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Preface

System-on-chip (SoC) is widely believed to represent the next major market for
microelectronics, and there is considerable interest world-wide in developing effec-
tive methods and tools to support the SoC paradigm. The work presented in this book
grew out of a special issue ‘Embedded Microelectronic Systems: Status and Trends’,
IEE Proceedings: Computers and Digital Techniques, April/June 2005.

Recently, a number of excellent books on SoC have been published, most of
which have focused on a particular area of SoC research. The field of SoC is broad
and expanding, and the prime objective of this book is to provide a timely and coherent
account of the recent advances in some of the SoC key research areas in one volume.
In order to achieve this, 25 international research groups were invited to contribute
to the book. Each contribution has an up-to-date research survey highlighting the
key achievements and future trends. To facilitate the understanding of the numerous
research topics covered in the book, each chapter has some background covering the
basic principles, and an extensive up-to-date list of references. To enhance the book’s
readability, the 25 chapters have been grouped into eight parts, each part examining
a particular theme of SoC research in depth.

In general, complete SoC designs consist of hardware and software components,
which are traditionally developed separately and combined at a later stage of the
design. This, however, increases time-to-market and system cost which is in contrac-
tion with some of the SoC drivers. To address such difficulties and to cope with the
continuing increased design complexity, newdesignmethodologies that support SoCs
are needed. Part I of the book contains six chapters (1 to 6) dealing with the systematic
and concurrent design, analysis and optimisation of SoC-based embedded systems.
Software plays a very important role in the design of SoC; Part II has three chapters
devoted to embedded software characterisation (Chapter 7), retargetable compilation
(Chapter 8) and power-aware software generation (Chapter 9).

Excessive power dissipation in SoC does not only limit their applications in
portable devices, but also results in increased packaging and cooling costs. Managing
the power issue is fundamental to successfully expending Moore’s law. Until recently,
dynamic power has been the dominant source of power consumption, however, leak-
age power is becoming a significant fraction of the total power in deep-submicron
designs. Part III contains four chapters (9 to 13) describing effective techniques
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for reducing the dynamic and leakage power consumption. These techniques can
be applied at various levels of the design hierarchy to allow designers to meet the
challenging power constraints in SoC. There are some compelling advantages of
employing reconfigurable devices in SoC in terms of speed, power, cost and time-to-
market. Architectures and designmethods for reconfigurable computing are discussed
in Part IV of the book (Chapter 14).

Telecomm and multimedia applications require mixed-signal SoCs; Chapter 15
of Part V describes methods and tools that automate the process of modelling and
generating analogue/RF cores for such SoCs. The International Technology Roadmap
on Semiconductors (ITRS – http://public.itrs.net/) predicts that the use of clock-less
designs will be increased in future SoCs to cope with timing issues. Chapter 16 of
Part five is concerned with the synthesis and design automation of asynchronous
systems. A key element in achieving functional design is the on-chip communication
that interconnects the SoC cores. Bus-based interconnections provide the current SoC
communication. However, SoCs complexity is increasing with the continuing scaling
downofCMOSfeature sizes. According to ITRS’03, an averageSoCwill contain>50
processing and memory blocks in 2008 and 100 such blocks in 2012. Consequently,
it may not be viable to continue to effectively employ bus-based communication
in future SoC. To address this concern, and improve performance of future SoCs,
different interconnection technologies are being developed. Part VI (Chapters 17
and 18) is devoted to network-on-chip, a new interconnection technology where SoC
cores communicate with each other by sending packets over an on-chip network.

Part VII of the book contains three chapters investigating functional design val-
idation and verification, which are important factors that contribute to the ultimate
costs of an SoC. Chapters 19 and 20 focus on simulation-based techniques that have
been developed to validate complex hardware/software systems, whilst Chapter 21
considers formal verification as a way of verifying system correctness. The high level
of integration is making the cost of testing SoC expensive, mainly due to the volume
of test data and limited test access to embedded cores. The ITRS’03 predicts that if the
current trends are maintained, by 2015 the cost of testing a transistor will approach
or even exceed the cost of manufacturing. Therefore, low-cost design-for-test tech-
niques for SoCs are required, which is the subject of the final part (Part VIII) of
the book. This part has four chapters, test-resource partitioning (Chapter 22), multi-
site testing (Chapter 23), on-chip timing measurement (Chapter 24) and yield and
reliability (Chapter 25).

Book audience

It is the intention of this book to contain a diverse coverage of SoC main research
themes, each theme is discussed in depth and therefore the book will appeal to broader
readership. SoC is a popular PhD research topic and is appearing as part of the
syllabus for both undergraduate and postgraduate Electronics and Computer Engi-
neering courses at many universities, and I hope that this book will complement the
research and teaching that is taking place in this area. Also, the book should serve as
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a valuable reference for designers and managers interested in various aspects of SoC
design and test.
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System-level design





Chapter 1

Multi-criteria decision making in
embedded system design

Simon Künzli, Lothar Thiele and Eckart Zitzler

1.1 Introduction

Embedded systems are usually evaluated according to a large variety of criteria such
as performance, cost, flexibility, power and energy consumption, size and weight.
As these kinds of non-functional objectives are very often conflicting, there is no
single optimal design but a variety of choices that represent different design trade-
offs. As a result, a designer is not only interested in one implementation choice but
in a well-chosen set that best explores these trade-offs.

In addition, embedded systems are often complex in that they consist of het-
erogeneous subcomponents such as dedicated processing units, application-specific
instruction set processors, general-purpose computing units, memory structures and
communication means like buses or networks. Therefore, the designer is faced with
a huge design space.

Embedded systems are resource constrained because of tight cost bounds. There-
fore, there is resource sharing on almost all levels of abstraction and resource types
that makes it difficult for a designer to assess the quality of a design and the final
effect of design choices. This combination of a huge design space on the one hand and
the complexity in interactions on the other hand makes automatic or semi-automatic
(interactive) methods for exploring different designs important.

Besides the above-mentioned multiple objectives in the design of embedded sys-
tems, there are tight constraints on the design time. One possibility to accommodate
late design changes and a short time-to-market is to choose a very flexible design,
close to a general-purpose computing system. On the other hand, this approach sac-
rifices almost all other quality criteria of a design. As a consequence, embedded
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systems are usually domain-specific and try to use the characteristics of the partic-
ular application domain in order to arrive at competitive implementations. In order
to achieve acceptable design times though, there is a need for automatic or semi-
automatic (interactive) exploration methods that take into account the application
domain, the level of abstraction on which the exploration takes place and that can
cope with conflicting criteria.

Following the usual hierarchical approach to embedded system design, there
are several layers of abstraction on which design choices must be taken. Above
the technology layer one may define the abstraction levels ‘logic design and high-
level synthesis’, ‘programmable architecture’, ‘software compilation’, ‘task level’
and ‘distributed operation’. These terms are explained in more detail in Section 1.2.
Design space exploration takes place on all these layers and is a generic tool within
the whole design trajectory of embedded systems.

A simplified view on the integration into an abstraction layer is shown in
Figure 1.1. For example, if the layer of abstraction is the ‘programmable archi-
tecture’, then the generation of a new design point may involve the choice of a cache
architecture. The estimation of non-functional properties may be concerned with the
performance of task execution on the underlying processor architecture, the size of
the cache or the total energy consumption. The estimation may either be done using
analytic methods or by a suitable simulator by use of suitable input stimuli, e.g. mem-
ory access traces. In any case, properties of the sub-components (from logic design)
are necessary, e.g. the relations among area, power consumption, structure and size
of the cache. The generation of new design points has to satisfy various constraints
e.g. in terms of feasible cache sizes or structures. The choice of a cache will then lead
to refined constraints for the design of its sub-components (digital design layer).

Figure 1.1 makes also apparent the interplay between exploration on the one
hand and estimation on the other. The methods and tools applied to the estimation of
non-functional properties very much depend on the particular abstraction layer and
the design objectives. For example, if the average timing behaviour is of concern,
very often simulation-based approaches are used. On the other hand, worst-case tim-
ing usually requires analytic methods. Estimation is particularly difficult as only a
limited knowledge about the properties of sub-components and the system environ-
ment in terms of input stimuli is available. For example, on the system-level, the
sub-components to be used are not designed yet and the individual tasks of the appli-
cation may not be fully specified. This chapter mainly focuses on the generation of
new design points and the decision process that finally leads to a design decision,
estimation will not be covered.

The purpose of the chapter is to review existing approaches to design space
exploration of embedded systems and to describe a generic framework that is based
on multi-objective decision making, black-box optimisation and randomised search
strategies. The framework is based on the PISA (Platform and Programming language
independent Interface for Search Algorithms) protocol that specifies a problem-
independent interface between the search/selection strategies on the one hand and
the domain-specific estimation and variation operators on the other. It resolves the
current problem that state-of-the-art exploration and search strategies are not (easily)
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Figure 1.1 Embedding of exploration in a hierarchical design trajectory for
embedded systems

accessible to solve the domain-specific exploration problems in embedded systems
design. The main questions the chapter would like to answer can be phrased as fol-
lows. How can one apply efficient design space exploration to a new design problem
in embedded systems design? How can one integrate a new estimation methodology
into a complete design space exploration in a simple and efficient way?

In Section 1.2 existing approaches to design space exploration in embedded sys-
tems are reviewed and classified. Section 1.4 describes the proposed framework that
is based on strategies that select promising design points (Section 1.4.1), implementa-
tion of domain-specific variation operators to determine a suitable neighbourhood of
current set of design points (Section 1.4.2), and the implementation based on the PISA
protocol (Section 1.4.3). A simple running example for cache exploration is used to
illustrate the different steps. Finally, Section 1.4.4 shortly describes a more complex
application, i.e. the system-level exploration of a stream processing architecture.

1.2 Approaches to design space exploration

There are a vast number of approaches available that make use of an automated or
semi-automated design space exploration in embedded systems design. Therefore,
only a representative subset will be discussed with an emphasis on the exploration
strategies, whereas the different estimation methods for non-functional properties
will not be discussed further.
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As described in Section 1.1, exploration of implementation alternatives happens
at various levels of abstraction in the design. These various layers are described next
and existing design space exploration approaches are classified accordingly:

• Logic design and high-level synthesis: Here one is concerned with the synthesis
of digital logic starting from either a register-transfer specification or a more
general imperative program. Here, the manual design of dedicated computing
units is also included. Typical design choices concern speed vs. implementation
area vs. energy consumption, see References 1 and 2.

• Programmable architecture: The programmable architecture layer contains all
aspects below the instruction set. For example, it contains the instruction set def-
inition, the microprocessor architecture in terms of instruction level parallelism,
the cache and memory structures. There are numerous examples of exploration
on this level of abstraction; they concern different aspects such as caches and
memories [3–5], or the whole processor architecture especially the functional
unit selection [6–8].

• Software compilation: This layer concerns all ingredients of the software develop-
ment process for a single task such as code synthesis from a model-based design or
a high-level program specification. Within the corresponding compiler, possible
exploration tasks are code size vs. execution speed vs. energy consumption. There
are attempts to perform a cross-layer exploration with the underlying processor
architecture, see References 9 and 10.

• Task Level: If the whole application is partitioned into tasks and threads, the
task level refers to operating system issues like scheduling, memory management
and arbitration of shared resources. Therefore, typical trade-offs in choosing the
scheduling and arbitration methods are energy consumption vs. average case vs.
worst case timing behaviour, e.g. Reference 11.

• Distributed operation: Finally, there exist applications that run on distributed
resources. The corresponding layer contains the hardware aspects of distributed
operation (such as the design of communication networks) as well as methods
of distributed scheduling and arbitration. On this level of abstraction, which is
sometimes called system level, one is interested in the composition of the whole
system that consists of various computing and communication resources. System-
level design not only refers to the structure of the system, but also involves
the mapping of application to the architecture and the necessary (distributed)
scheduling and arbitration methods. This highest level of abstraction seems to be
especially suited for exploration methods, see e.g. results on the communication
infrastructure [12,13], on distributed systems [14] or multiprocessor systems and
systems-on-chip [15–19].

The above approaches combine several important aspects such as the integration of
the exploration into the whole design process, the specific estimation method used to
evaluate the properties of design points and finally the method that is used to perform
the actual exploitation. Following the focus of the chapter, the existing approaches can
be classified in a way that is orthogonal to the abstraction layers, namely the methods
that are applied to perform the exploration itself. This way it becomes apparent that
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the exploration process is largely independent of the abstraction level. This property
will be used later on in defining the new generic framework.

If only a single objective needs to be taken into account in optimisation, the design
points are totally ordered by their objective value. Therefore, there is a single optimal
design (if all have different objective values). The situation is different if multiple
objectives are involved. In this case, design points are only partially ordered, i.e. there
is a set of incomparable, optimal solutions. They reflect the trade-offs in the design.
Optimality in this case is usually defined using the concept of Pareto-dominance:
A design point dominates another one if it is equal or better in all criteria and strictly
better in at least one. In a set of design points, those are called Pareto-optimal which
are not dominated by any other.

Using this notion, available approaches to the exploration of design spaces can
be characterised as follows.

1 Exploration by hand: The selection of design points is done by the designer
himself. The major focus is on efficient estimation of the selected designs,
e.g. Reference 16.

2 Exhaustive search: All design points in a specified region of the design parameters
are evaluated. Very often, this approach is combined with local optimisation in
one or several design parameters in order to reduce the size of the design space,
see References 4 and 20.

3 Reduction to a single objective: For design space exploration with multiple con-
flicting criteria, there are several approaches available that reduce the problem
to a set of single criterion problems. To this end, manual or exhaustive sampling
is done in one (or several) directions of the search space and a constraint optimi-
sation, e.g. iterative improvement or analytic methods, is done in the other, see
References 2, 3, 8 and 12.

4 Black-box randomised search: The design space is sampled and searched via
a black-box optimisation approach, i.e. new design points are generated based
on the information gathered so far and by defining an appropriate neighbour-
hood function (variation operator). The properties of these new design points
are estimated which increases the available information about the design space.
Examples of sampling and search strategies used are Pareto Simulated Annealing
[21] and Pareto Tabu Search [7,10], evolutionary multi-objective optimisation
[13,14,18,22] or Monte Carlo methods improved by statistical estimation of
bounds [1]. These black-box optimisations are often combined with local search
methods that optimise certain design parameters or structures [11].

5 Problem-dependent approaches: In addition to the above classification, one can
also find a close integration of the exploration with a problem-dependent char-
acterisation of the design space. Several possibilities have been investigated
so far.
• Use the parameter independence in order to prune the design space,

e.g. References 17 and 23.
• Restrict the search to promising regions of design space, e.g. Reference 6.
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• Investigate the structure of the Pareto-optimal set of design points, e.g.
using hierarchical composition of sub-component exploration and filtering,
e.g. References 5 and 15.

• Explicitly model the design space, use an appropriate abstraction, derive a
formal characterisation by symbolic techniques and use pruning techniques,
e.g. Reference 24.

Finally, usually an exhaustive search or a black-box randomised search is carried
out for those parts of the optimisation that are inaccessible for tailored techniques.

From the above classification, one can state that most of the above approaches
use randomised search techniques one way or the other, at least for the solution of
sub-problems. This observation does not hold for the exploration by hand or the
exhaustive search, but these methods are only feasible for small design spaces with
a few choices of the design parameters. Even in the case of a reduction to a single
objective or in the case of problem-dependent approaches, sub-optimisation tasks
need to be solved, either single objective or multi-objective and randomised (black-
box) search techniques are applied.

While constructing tools that perform design space exploration of embedded sys-
tems at a certain level of abstraction, the question arises, how to apply exploration to
a new design problem. How does one connect the problem-specific parts of the explo-
ration with a randomised black-box search engine? What is an appropriate interface
between the generic and problem-dependent aspects? Which search strategy should
one use? How can one achieve a simple implementation structure that leads to a
reliable exploration tool? Section 1.4 is devoted to this problem.

The basis of the proposed solution is the protocol PISA, see Reference 25. It is
tailored towards black-box randomised search algorithms and is characterised by the
following properties. (1) The problem-specific and the generic parts of the exploration
method are largely independent from each other, i.e. the generic search and selec-
tion should be treated as a black-box (separation of concerns). (2) The framework
itself should not depend on the machine types, operating systems or programming
languages used (portability). (3) The protocol and framework should be tailored
towards a reliable exploration. The main components of the proposed framework in
Figure 1.2 are a refinement of Figure 1.1. It shows the separation into the problem-
specific variation and estimation part on the one hand and generic black-box search
on the other.

1.3 A simple example: design space exploration of
cache architectures

Before the PISA framework is described in more detail (in Section 1.4.3), this
section introduces a simple example application that will be used throughout the
remainder of this chapter for illustration purposes. Note, that it is not the purpose of
the example to present any new results in cache optimisation.

The example problem to solve is to optimise the architecture of a cache for a
predefined benchmark application. The solution space for the problem is restricted to
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Figure 1.2 Overview of the proposed framework for design space exploration based
on the PISA protocol

Table 1.1 Parameters determining a cache architecture

No. Parameter Range

1 No. of cache lines 2k , with k = 6 . . . 14
2 Block size 2k bytes, with k = 3 . . . 7
3 Associativity 2k , with k = 0 . . . 5
4 Replacement strategy LRU or FIFO

L1 data caches only, i.e. the design choices include the cache size, the associativity
level, the block size and the replacement strategy. The goal is to identify a cache
architecture that (1) maximises the overall computing performance with respect to the
benchmark under consideration and (2) minimises the chip area needed to implement
the cache in silicon.

In Table 1.1, all parameters and possible values for the cache architecture are
given. A design point is therefore determined by three integer values and a Boolean
value. The integers denote the number of cache lines, the cache block size and
the cache associativity; the Boolean value encodes the replacement strategy: ‘false’
denotes FIFO (first-in-first-out), ‘true’ denotes LRU (least recently used). Figure 1.3
graphically depicts the design parameters. The values for the number of cache lines,
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Figure 1.3 Illustration of the considered design choices for an L1 data cache
architecture

block size and associativity have to be powers of 2, due to restrictions in the tools
used for evaluation of the caches.

The first objective according to which the cache parameters are to be optimised is
the CPI (cycles per instruction) achieved for a sample benchmark application and the
second objective is the chip area needed to implement the cache on silicon. To estimate
the corresponding objective values, two tools were used, namely sim-outorder
of SimpleScalar [26] and CACTI [27] provided by Compaq. The first tool served to
estimate the CPI for the benchmark compress95 running on the plain text version of
the GNU public licence as application workload. The smaller the CPI for compress95
for a particular solution, the better is the solution for this objective. The second tool
calculated an estimate for the silicon area needed to implement the cache. The smaller
the area, the better is the cache for the area objective.

1.4 A general framework for design space exploration

As discussed in Section 1.2, the proposed general framework for design space explo-
ration separates application-specific aspects from the optimisation strategy. The
resulting two parts are implemented as independent processes communicating via
text files, as will be detailed in Section 1.4.3. This concept (Figure 1.2) reflects the
working principle of black-box randomised search algorithms.

Black-box methods are characterised by the fact that they do not make any assump-
tions about the objective functions, and in this sense they treat the design criteria
as black-boxes which can contain arbitrarily complex functionalities. Initially, they
create one or several designs at random, which are then evaluated with respect to
the objective functions under consideration. Afterwards, the information about the
already considered design(s) is used in order to generate one or several different
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designs that are then evaluated as well. This process is repeated until a certain num-
ber of iterations has been carried out or another stopping condition is fulfilled. The
goal here is to exploit structural properties of the design space such that only a frac-
tion of the design space needs to be sampled to identify optimal and nearly optimal
solutions, respectively. This implies that different search space characteristics require
different search strategies, and accordingly various black-box optimisers such as ran-
domised local search, simulated annealing, evolutionary algorithms, etc. and variants
thereof are available, see Reference 28.

Two principles form the basis for all randomised search algorithms: selection
and variation. On the one hand, selection aims at focusing the search on promising
regions of the search space as will be discussed in Section 1.4.1. This part is usually
problem independent. On the other hand, variation means generating new designs
by slightly modifying or combining previously generated ones. Although standard
variation schemes exists – details can be found in Section 1.4.2 – the generation of
new designs based on existing ones is strongly application dependent, similarly to
the internal representation and the evaluation of designs.

1.4.1 Selection

The selection module implements two distinct phases: selection for variation and
selection for survival. The former type of selection chooses the most promising
designs from the set of previously generated designs that will be varied in order
to create new designs. For practical reasons, though, not all of the generated designs
will be kept in memory. While, e.g. simulated annealing and tabu search only store
one solution in the working memory (in this case, selection for variation simply
returns the single, stored solution), evolutionary algorithms operate on a population
of solutions, which is usually of fixed size. As a consequence, another selection phase
is necessary in order to decide which of the currently stored designs and the newly
created ones will remain in the working memory. This phase is often called selection
for survival or environmental selection, in analogy to the biological terminology used
in the context of evolutionary algorithms.

1.4.1.1 Selection for variation

Selection for variation is usually implemented in a randomised fashion. One possi-
bility to choose N out of M designs is to hold tournaments between two solutions
that are picked at random from the working memory based on a uniform probability
distribution. For each tournament, the better design is copied to a temporary set which
is also denoted as a mating pool – again a term mainly used within the field of evolu-
tionary computation. By repeating this procedure, several designs can be selected for
variation, where high-quality designs are more likely to have one or multiple copies
in the mating pool. This selection method is known as binary tournament selection;
many alternative schemes exist as well (see Reference 29).

Most of these selection algorithms assume that the usefulness or quality of a
solution is represented by a scalar value, the so-called fitness value. While fitness
assignment is straight forward in the case of a single objective function, the situation
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is more complex in a multi-objective scenario. Here, one can distinguish between
three conceptually different approaches.

• Aggregation: Traditionally several optimisation criteria are aggregated into a sin-
gle objective by, e.g. summing up the distinct objective function values, where
weight coefficients are used to control the influence of each criterion. The dif-
ficulty with this approach, though, is the appropriate setting of the weights.
This usually requires more knowledge about the design space than is actually
available. Furthermore, optimising a particular weight combination yields one
Pareto-optimal solution. To obtain several optimal trade-off designs, multiple
weight combinations need to be explored either in parallel or subsequently. Nev-
ertheless, not necessarily all Pareto-optimal designs can be found as illustrated in
Figure 1.4. The weighted-sum approach is only able to detect all solutions if the
front of Pareto-optimal solutions is convex. Similar problems occur with many
other aggregation methods, see Reference 30.

• Objective switching: The first papers using evolutionary algorithms to approxi-
mate the Pareto set suggested to switch between the different objectives during
the selection step. For instance, Schaffer [31] divided selection for variation into
n selection steps where n corresponds to the number of optimisation criteria; in
the ith step, designs in the working memory were chosen according to their ith
objective function value.

• Dominance-based ranking: Nowadays, most popular schemes use fitness assign-
ments that directly make use of the dominance relation or extensions of it.
By pairwise comparing all the designs in the working memory, different types
of information can be extracted. The dominance rank gives the number of solu-
tions by which a specific solution is dominated, the dominance count represents
the number of designs that a particular design dominates and the dominance
depth denotes the level of dominance when the set of designs is divided into
non-overlapping non-dominated fronts (see Reference 28 for details).
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These fitness assignment schemes can also be extended to handle design con-
straints. For dominance-based approaches, the dominance relation can be modified
such that feasible solutions by definition dominate infeasible ones, while among
infeasible designs the one with the lower constraint violation is superior – for feasible
solutions, the definition of dominance remains unchanged [28]. An alternative is the
penalty approach which can be used with all of the above schemes. Here, the overall
constraint violation is calculated and summarised by a real value. This value is then
added to the original fitness value (assuming that fitness is to be minimised), thereby,
infeasible solutions are penalised.

Finally, another issue that is especially important in the presence of multiple
objectives is maintaining diversity among the designs stored. If the goal is to identify
a set of Pareto-optima, special techniques are necessary in order to prevent the search
algorithm from converging to a single trade-off solution. Most modern multi-objective
optimisers integrate some diversity preservation technique that estimates the density
of solutions in the space defined by the objective functions. For instance, the density
around a solution can be estimated by calculating the Euclidean distance to the next
closest solution. This density information can then be incorporated into the fitness,
e.g. by adding original fitness value and density estimate. Again, there is variety of
different methods that cannot be discussed here in detail.

1.4.1.2 Selection for survival

When approximating the Pareto set, it is desirable not to lose promising designs due to
random effects. Therefore, selection for survival is usually realised by a deterministic
algorithm. Similar issues as with selection for variation come into play here; however,
almost all search methods make sure that designs not dominated among those in the
working memory are preferred over dominated ones with respect to environmental
selection. If there are too many non-dominated solutions, then additional diversity
information is used to further discriminate among these designs. Furthermore, as
many randomised search algorithms only keep a single solution in the working mem-
ory, often a secondary memory, a so-called archive (see also Figure 1.2), is maintained
that stores the current approximation of the Pareto set. For instance, PAES [32], a
randomised local search method for multi-objective optimisation, checks for every
generated design whether it should be added to the archive, i.e. whether it is dom-
inated by any other archive member. If the design was inserted, dominated designs
are removed. If the archive size is exceeded after insertion, a design with the highest
density estimate is deleted.

A theoretical issue that has been investigated recently by different researchers
[33,34] addresses the loss in quality per iteration. Optimally, the current set of designs
represents the best Pareto set approximation among all solutions ever considered dur-
ing the optimisation run – given the actual memory constraints. This goal is difficult
to achieve in general, but Laumanns et al. [33] proposed an archiving method by
which the loss can be bound and kept arbitrarily small by adjusting the memory
usage accordingly.
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1.4.1.3 Multi-objective optimisers

The above discussion could only touch the aspects involved in the design of the
selection process for a multi-objective randomised search algorithm. In fact, a vari-
ety of methods exist [28], which over the time have become more complex [35]. In
the evolutionary computation field, even a rapidly growing sub-discipline emerged
focusing on the design of evolutionary algorithms for multiple criteria optimisa-
tion [36]. However, an application engineer who would like to carry out a design
space exploration is not necessarily an expert in the optimisation field. He is rather
interested in using state-of-the-art multi-objective optimisers. For this reason, the
proposed design space exploration framework separates the general search strategy
from the application-specific aspects such as variation. Thereby, it is possible to use
precompiled search engines without any implementation effort.

1.4.2 Variation

In this subsection the application-specific part of the proposed design space explo-
ration framework is described. In particular, the variation module encapsulates the
representation of a design point and the variation operators, see also the overview
in Figure 1.2. It is the purpose of this component in the design space exploration
framework to generate suitable new design points from a given set of selected ones.
Therefore, the variation is problem-specific to a large extent and provides a major
opportunity in including domain knowledge.

1.4.2.1 Representation

A formal description of a design needs to be appropriately encoded in the opti-
misation algorithm. The main objectives for suitable design representations are as
follows.

• The encoding should be designed in a way that enables an efficient generation of
design points in an appropriate neighbourhood, see also the next subsection on
variation operators.

• The representation should be able to encode all relevant design points of the design
space. In particular, if the design space has been pruned using problem-dependent
approaches, the chosen representation should reflect these constraints in a way
that enables efficient variation for the determination of a neighbourhood.

• The design parameters should be independent of each other as much as possible
in order to enable a suitable definition of variation operators.

A representation of a solution can, e.g., consist of real or integer values, or vectors
thereof to encode clock speeds, memory size, cache size, etc. Bit vectors can be used
to describe the allocation of different resources. Another class of representations
could be the permutation of a vector with fix elements to represent, e.g., a certain task
scheduling. Furthermore, variable length data structures such as trees or lists can be
used for the representation of, e.g., graphs (see Reference 29 for an overview).

All parameters for the representation have to lie inside the problem specification
that spans the design space of possible solutions. A solution parameter could therefore
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be, e.g., a real value in the range given in the specification, an integer value in a list
of possible integers or a selected edge in a problem specification graph.

The cache example uses integer values to represent the number of cache lines in
the solution cache, the block size and the associativity. The integer values are the
actual cache parameters, such that these lie in the range specified in Table 1.1. The
cache line replacement strategy is represented by a Boolean value.

1.4.2.2 Variation operators

The purpose of the variation operators is to determine new design points given a
set of selected, previously evaluated, design points. There are several objectives for
selecting appropriate variation operators.

• The variation operators operate on the design representation and generate a local
neighbourhood of the selected design points. These new design points will be
evaluated by the estimation, see Figure 1.1. Therefore, the construction of the vari-
ation operators is problem-dependent and a major possibility to include domain
knowledge.

• The constructed neighbourhood should not contain infeasible design points, if
possible.

• In the case of infeasible design points where non-functional properties are outside
of given constraints, one may use a feedback loop shown in Figure 1.1 in order
to correct.

• The variation operator may also involve problem-dependent local search (e.g. by
optimising certain parameters or hidden optimisation criteria) in order to relieve
the randomised search from optimisation tasks that can better be handled with
domain knowledge.

In principle, different variation operators can be distinguished according to the
number of solutions they operate on. Most randomised search algorithms generate
a single new design point by applying a randomised operator to a known design
point. For simulated annealing and randomised local search algorithms this operator is
called the neighbourhood function, whereas for evolutionary algorithms this operator
is denoted as the mutation operator. The term mutation will be used in the remainder
of this section.

In the context of evolutionary algorithms there also exists a second type of varia-
tion, in addition to mutation. Since evolutionary algorithms maintain a population of
solutions, it is possible to generate one or more new solutions based on two or more
existing solutions. The existing designs selected for variation are often referred to as
parents, whereas the newly generated designs are called children. The operator that
generates ≥1 children based on ≥2 parents is denoted as recombination.

Mutation: The assumption behind mutation is that it is likely to find better solutions
in the neighbourhood of good solutions. Therefore, mutation operators are usually
designed in such a way that the probability of generating a specific solution decreases
with increasing distance from the parent. There exist several approaches to imple-
ment mutation. It is, e.g., possible to always change exactly one parameter in the
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representation of a solution and keep all other parameters unchanged. A different
mutation operator changes each of n parameters with probability 1/n, which leads to
the fact that one parameter is changed in expectation. This approach is also used in
the cache example.

Changing a parameter means changing its value, i.e. flipping a bit in a binary
representation, or choosing new parameter values according to some probability dis-
tribution for an integer- or real-valued representation. For representations based on
permutations of vector elements the mutation operator changes the permutation by
exchanging two elements. If the specification is based on lists of possible values, the
mutation operator selects a new element according to some probability distribution.

In general, a mutation operator should on the one hand produce a new solution
that is ‘close’ to the parent solution with a high probability, but on the other hand be
able to produce any solution in the design space, although with very small probability.
This is to prevent the algorithm from being stuck in a local optimum.

The cache example uses the following mutation operator. Each of the design
parameters is mutated with probability 0.25 (as there are four different parameters).
The change that is applied to each of the parameters is normally distributed, i.e., the
value of a parameter is increased by a value that is normally distributed around 0
inside the ranges given in Table 1.1, e.g. the block size parameter change is normally
distributed between −4 and +4. Note, that in the example changes of size 0 are also
allowed, i.e. the parameter remains unchanged.

Recombination: Recombination takes two or more solutions as input and then gen-
erates new solutions that represent combinations of the parents. The idea behind
recombination is to take advantage of the good properties of each of the parents to
produce even better children. In analogy to the mutation operator, a good recombina-
tion vector should produce solutions that lie ‘between’ the parents either with respect
to the parameter space or to the objective space.

For vectors in general, recombination of two parents can be accomplished by
cutting both solutions at randomly chosen positions and rearranging the resulting
pieces. For instance, one-point crossover creates a child by copying the first half
from the first parent and the second half from the second parent. If the cut is made
at every position, i.e. at each position randomly either the value from the first or the
second parent is copied, the operator is called uniform recombination.

A further approach for real-valued parameters is to use the average of the two
parents’ parameter values, or some value between the parents’ parameter values.
A detailed overview of various recombination operators for different representation
data structures can be found in Reference 29.

For the cache example uniform recombination was used, i.e. for each of the
parameters, like cache block size, it was randomly decided from which parent solution
the parameter for the first child solution should be used, while all unused parameters
of the parent solutions are then used for the second child solution. See Figure 1.5 on
the right-hand side for a graphical representation of uniform recombination.

Infeasible solutions: It can happen that after mutation or recombination a generated
solution is not feasible, i.e. the solution represented by the parameters does not
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Figure 1.5 Variation operators used in the cache example: mutation (left), recom-
bination (right)

describe a valid system. To solve this problem there are different possibilities. First,
one could ensure that the variation operators do not create infeasible solutions by
controlling the construction of new solutions, one can call this approach ‘valid by
construction’. Second, one could implement a repair method that turns constructed
solutions that are infeasible into feasible ones by fixing the infeasible parameters.
The third possibility is to introduce an additional constraint and to penalise infeasible
designs in the way as described in Section 1.4.1. Finally, one can use the concept of
penalty functions in order to guide the search away from areas with infeasible design
points.

1.4.3 Implementation issues

In this section the protocol used in PISA is briefly introduced, see also Reference 25.
It is the purpose of PISA to make state-of-the-art randomised search algorithms
for multi-objective optimisation problems readily available. Therefore, for a new
design space exploration task in embedded system design, one can concentrate
on the problem-dependent aspects, where the domain knowledge comes in. The
protocol has to be implemented by any design space exploration tool that would
like to benefit from precompiled and ready-to-use search algorithms available at
http://www.tik.ee.ethz.ch/pisa. Besides, the website also contains a set of applica-
tion problems and benchmark applications for the development of new randomised
search algorithms. The detailed protocol including file formats and data type defini-
tions is given in Reference 25. In the protocol description, the application-specific
part is called ‘variator’ and the search algorithm is denoted ‘selector’, according to
Figure 1.6. The variator also contains the estimation of non-functional properties.

The details of the protocol have been designed with several objectives in mind.

• Small amounts of data that need to be communicated between the two different
processes (selector and variator).

• The communicated data should be independent of the problem domain in order
to enable a generic implementation of the selector process.

• Separation into problem-independent (selector) and problem-dependent (variator)
processes.
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Figure 1.6 Communication between modules through text files as defined by the
PISA protocol. The files contain sample data

• The implementation of the protocol should be as much as possible independent of
the programming languages, hardware platforms and operating systems. It should
enable a reliable (delay-independent) execution of the design space exploration.

The protocol defines the sequence of actions performed by the selector and variator
processes. The communication between the two processes is done by exchange of
text files over a common file system. The handshake protocol is based on states
and ensures that during the optimisation process only one module is active at any
time. During the inactive period a process polls the state file for changes. Whenever a
module reads a state that requires some action on its part, the operations are performed
and the next state is set.

The core of the optimisation process consists of state 2 and state 3. In each iteration
the selector chooses a set of parent individuals and passes them to the variator. The
variator generates new child solutions on the basis of the parents, computes the
objective function values of the new individuals and passes them back to the selector.

In addition to the core states two more states are necessary for normal operation.
State 0 and state 1 trigger the initialisation of the variator and the selector, respectively.
In state 0 the variator reads the necessary parameters. Then, the variator creates
an initial population, determines the objective values of the individuals and passes
the initial population to the selector. In state 1, the selector also reads the required
parameters, then selects a sample of parent individuals and passes them to the variator.

The four states 0–3 provide the basic functionality of the PISA protocol. To add
some flexibility the PISA protocol defines a few more states which are mainly used to
terminate or reset both the variator process and the selector process. Table 1.2 gives
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Table 1.2 States for the PISA protocol

State Action Next state

State 0 Variator reads parameters and creates initial solutions State 1
State 1 Selector reads parameters and selects parent solutions State 2
State 2 Variator generates and evaluates new solutions State 3
State 3 Selector selects solutions for variation State 2
State 4 Variator terminates State 5
State 6 Selector terminates State 7
State 8 Variator resets. (Getting ready to start in state 0) State 9
State 10 Selector resets. (Getting ready to start in state 0) State 11

The main states of the protocol are printed in bold face.

an overview of all defined states. The additional states 4–11 are not mandatory for a
basic implementation of the protocol.

The data transfer between the two modules introduces some overhead compared
to a traditional monolithic implementation. Thus, the amount of data exchange for
each individual should be minimised. Since all representation-specific operators are
located in the variator, the selector does not have to know the representation of the
individuals. Therefore, it is sufficient to convey only the following data to the selector
for each individual: an identifier and its objective vector. In return, the selector only
needs to communicate the identifiers of the parent individuals to the variator. The
proposed scheme allows to restrict the amount of data exchange between the two
modules to a minimum.

For PISA-compliant search algorithms to work correctly, a designer has to ensure,
that all objectives are to be ‘minimised’. In addition the variator and selector have
to agree on a few common parameters: (1) the population size α, (2) the number
of parent solutions µ, (3) the number of child solutions λ and (4) the number of
objectives dim. These parameters are specified in the parameter file with suffix cfg,
an example file is shown in Figure 1.6.

The selector and the variator are normally implemented as two separate processes.
These two processes can be located on different machines with possibly different
operating systems. This complicates the implementation of a synchronisation method.
Most common methods for interprocess communication are therefore not applicable.

In PISA, the synchronisation problem is solved using a common state variable
which both modules can read and write. The two processes regularly read this state
variable and perform the corresponding actions. If no action is required in a certain
state, the respective process sleeps for a specified amount of time and then rereads
the state variable. The state variable is an integer number stored to a text file with
suffix sta. The protocol uses text files instead of, e.g. sockets, because file access
is completely portable between different platforms and familiar to all programmers.

All other data transfers between the two processes besides the state are also per-
formed using text files. The initial population is written by the variator to the file with
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suffix ini, the population is written by the selector to a file with suffix arc. In a
text file with suffix sel the selector stores the parent solutions that are selected for
variation. The newly generated solutions are passed from the variator to the selector
through a file with suffix var. All text files for data transfer have to begin with the
number of elements that follow and to end with the keyword END.

Once the receiving process has completely read a text file, it has to overwrite the
file with 0, to indicate that it successfully read the data.

1.4.4 Application of PISA for design space exploration

For the cache example presented in Section 1.3, the variator part was written in
Java. The mutation and recombination operator were implemented as described in
Section 1.4.2, and the combination with a selector is PISA-compliant as described
in Section 1.4.3. The selector was downloaded from the PISA website. The design
space exploration for L1 data caches was performed using strength Pareto evolu-
tionary algorithm (SPEA2), an evolutionary multi-objective optimiser described in
Reference 35.

The solutions selected by SPEA2 for variation were pairwise recombined with
probability 0.8 and the resulting solutions were then mutated with probability 0.8.
Afterwards the generated solutions were added to the population and passed to the
search algorithm for selection.

The design space with all solutions is shown in Figure 1.7. These design points
have been generated using exhaustive search in order to compare the heuristic search
with the Pareto front of optimal solutions. The front of non-dominated solutions found
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Figure 1.7 All 540 possible design points determined using exhaustive search and
the design points found by the multi-objective search algorithm SPEA2
after 40 generations
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Table 1.3 Details of ten non-dominated solutions for the simple example of a cache
exploration found after a typical design space exploration run

No. CPI Area Design parameters

1 0.5774 0.001311 LRU 27 cache lines Block size 8 d. m.
2 0.5743 0.001362 LRU 27 cache lines Block size 8 2 sets
3 0.5622 0.022509 FIFO 28 cache lines Block size 64 8 sets
4 0.5725 0.002344 LRU 27 cache lines Block size 16 2 sets
5 0.5488 0.024018 LRU 210 cache lines Block size 32 8 sets
6 0.5319 0.027122 LRU 210 cache lines Block size 32 16 sets
7 0.5666 0.002898 LRU 26 cache lines Block size 32 2 sets
8 0.5653 0.003629 FIFO 26 cache lines Block size 64 d. m.
9 0.5307 0.044902 FIFO 210 cache lines Block size 64 8 sets

10 0.5626 0.004907 LRU 26 cache lines Block size 64 2 sets

These solutions are marked with circles in Figure 1.7.

for the cache example with SPEA2 after a typical optimisation run with 40 generations
for a population size of six solutions is marked with circles. The details of the solutions
in the population after 40 generations are represented in Table 1.3.

Although the cache design space exploration problem is simple in nature, one can
make some observations which also hold for more involved exploration problems.
The two objectives, namely the minimisation of the silicon area and the minimisation
of the CPI, are conflicting, resulting in an area vs. performance trade-off. This results
in the fact that there is not a single optimal solution, but a front of Pareto-optimal
solutions. All points on this front represent different promising designs, leaving the
final choice for the design of the cache up to the designer’s preference. Further, one
can observe in Figure 1.7 that the evolutionary algorithm found solutions close to the
Pareto-optimal front.

The reduction of the problem to a single objective optimisation problem, e.g. using
a weighted-sum approach, is difficult already for this simple example, because it
represents a true multi-objective problem. It is not at all clear how to relate area to
performance, which would be needed for the weighted-sum approach.

As a more involved example, the design space exploration of complex stream
processor architectures on the system level has been performed using the PISA
framework. To this end, a variator process ‘EXPO’ has been implemented which
is available on the website of PISA also (Figure 1.8). The representation of design
points, the variation operators, the local search method to reduce the design space and
the way in which infeasible design points are avoided or repaired are all specific to
the application domain of stream processors. These methods are based on models for
stream processing tasks, a specification of the workload generated by traffic flows
and a description of the feasible space of architectures involving computation and
communication resources.
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Figure 1.8 On the PISA website, many different ready-to-use evolutionary search
algorithms can be downloaded. Additionally, a design space exploration
tool is offered for download at the website. The only steps needed for a
first design space exploration using the PISA framework are shown: (1)
just download a variator, e.g. the exploration tool EXPO and one of the
search algorithms on the right-hand side of the website, (2) unpack the
tools and then (3) run them

the evaluation of a single design point, the tool makes use of a new method
to estimate end-to-end packet delays and queueing memory, taking task scheduling
policies and bus arbitration schemes into account. The method is analytical and is
based on a high level of abstraction, where the goal is to quickly identify interesting
architectures, which may then be subjected to a more detailed evaluation, e.g. using
simulation. The approach used in EXPO and results are described in much more detail
in Reference 22.

For the simple cache example the design space could have been explored using
exhaustive search instead of employing evolutionary algorithms, which actually was
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done to determine all solutions shown in Figure 1.7. For larger design spaces, as
the one explored with EXPO, exhaustive search is prohibitive, and only randomised
search algorithms can be used. It has been shown in many studies (e.g. in Reference 28)
that evolutionary algorithms perform better on multi-objective optimisation problems
than do other simpler randomised search algorithms.

PISA enables the use of different evolutionary algorithms without having to
change the implementation of the exploration tools. A recent study [37] has shown
that for EXPO the quality of the approximation of the Pareto-optimal front may dif-
fer between different evolutionary algorithms. With a modular framework based on
the PISA protocol it is possible to test the design space exploration performance of
different randomised search algorithms to find the search algorithm most suitable to
the exploration problem.

1.5 Conclusions

This chapter introduced a framework for design space exploration of embedded sys-
tems. It is characterised by (1) multiple optimisation criteria, (2) randomised search
algorithms and (3) a software interface that clearly separates problem-dependent and
problem-independent parts of an implementation. In particular, the interface PISA
formally characterises this separation. It is implemented in a way that is independent
of programming language used and the underlying operating system. As a result, it is
easily possible to extend any existing method to estimate non-functional properties
with an effective multi-objective search.

It should be pointed out, that effective automatic or semi-automatic (inter-
active) exploration needs deep knowledge about the specific optimisation target,
i.e. the level of abstraction, the optimisation goals, efficient and accurate estima-
tion methods. Nevertheless, the PISA framework separates the problem-dependent
variation and estimation from the generic search and selection. Therefore, the user
is relieved from dealing with the complex and critical selection mechanisms in
multi-objective optimisation. On the other hand, his specific domain knowledge will
be important when designing the variation operators that determine a promising local
neighbourhood of a given search point.

Finally, it is common knowledge that the class of randomised search algorithms
described in the chapter does not guarantee to find the optimal solutions. In addi-
tion, if there is domain knowledge available that allows problem-specific exploration
methods to be applied, then there is little reason to use a generic approach. But usu-
ally, those analytic methods do not exist for complex optimisation scenarios as found
in embedded system design.
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Chapter 2

System-level performance analysis – the
SymTA/S approach

Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu,
Kai Richter and Rolf Ernst

2.1 Introduction

With increasing embedded system complexity, there is a trend towards heterogeneous,
distributed architectures. Multiprocessor system-on-chip designs (MpSoCs) use
complex on-chip networks to integrate multiple programmable processor cores,
specialised memories and other intellectual property (IP) components on a single
chip. MpSoCs have become the architecture of choice in industries such as net-
work processing, consumer electronics and automotive systems. Their heterogeneity
inevitably increases with IP integration and component specialisation, which design-
ers use to optimise performance at low power consumption and competitive cost.
Tomorrow’s MpSoCs will be even more complex, and using IP library elements in a
‘cut-and-paste’ design style is the only way to reach the necessary design productivity.

Systems integration is becoming the major challenge in MpSoC design. Embed-
ded software is increasingly important to reach the required productivity and flexibil-
ity. The complex hardware and software component interactions pose a serious threat
to all kinds of performance pitfalls, including transient overloads, memory overflow,
data loss and missed deadlines. The International Technology Roadmap for Semicon-
ductors, 2003 Edition (http://public.itrs.net/Files/2003ITRS/Design2003.pdf) names
system-level performance verification as one of the top three codesign issues.

Simulation is state-of-the-art in MpSoC performance verification. Tools from
many suppliers support cycle-accurate cosimulation of a complete hardware and soft-
ware system. The cosimulation times are extensive, but developers can use the same
simulation environment, simulation patterns and benchmarks in both function and
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performance verification. Simulation-based performance verification, however, has
conceptual disadvantages that become disabling as complexity increases.

MpSoC hardware and software component integration involves resource sharing
that is based on operating systems and network protocols. Resource sharing results in
a confusing variety of performance runtime dependencies. For example, Figure 2.1
shows a central processing unit (CPU) subsystem executing three processes. Although
the operating system activates T1, T2 and T3 strictly periodically (with periods P1

P2 and P3, respectively), the resulting execution sequence is complex and leads to
output bursts.

As Figure 2.1 shows, T1 can delay several executions of T3. After T1 completes,
T3 – with its input buffers filled – temporarily runs in burst mode with the execution
frequency limited only by the available processor performance. This leads to transient
T3 output burst, which is modulated by T1’s execution.

Figure 2.1 does not even include data-dependent process execution times, which
are typical for software systems, and operating system overhead is neglected. Both
effects further complicate the problem. Yet finding simulation patterns – or use cases –
that lead to worst-case situations as highlighted in Figure 2.1 is already challenging.

Network arbitration introduces additional performance dependencies. Figure 2.2
shows an example. The arrows indicate performance dependencies between the CPU
and digital signal processor (DSP) subsystems that the system function does not
reflect. These dependencies can turn component or subsystem best-case performance
into system worst-case performance – a so-called scheduling anomaly. Recall the T3

bursts from Figure 2.1 and consider that T3’s execution time can vary from one
execution to the next. There are two critical execution scenarios, called corner cases:
The minimum execution time for T3 corresponds to the maximum transient bus load,
slowing down other components’ communication, and vice versa.

The transient runtime effects shown in Figures 2.1 and 2.2 lead to complex
system-level corner cases. The designer must provide a simulation pattern that
reaches each corner case during simulation. Essentially, if all corner cases satisfy
the given performance constraints, then the system is guaranteed to satisfy its con-
straints under all possible operation conditions. However, such corner cases are
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extremely difficult to find and debug, and it is even more difficult to find simulation
patterns to cover them all. Reusing function verification patterns is not sufficient
because they do not cover the complex non-functional performance dependencies that
resource sharing introduces. Reusing component and subsystem verification patterns
is not sufficient because they do not consider the complex component and subsystem
interactions.

The system integrator might be able to develop additional simulation patterns,
but only for simple systems in which the component behaviour is well understood.
Manual corner-case identification and pattern selection is not practical for complex
MpSoCs with layered software architectures, dynamic bus protocols and operating
systems. In short, simulation-based approaches to MpSoC performance verification
are about to run out of steam, and should essentially be enhanced by formal techniques
that systematically reveal and cover corner cases.

Real-time systems research has addressed scheduling analysis for processors and
buses for decades, and many popular scheduling analysis techniques are available.
Examples include rate-monotonic scheduling and earliest deadline first [1], using
both static and dynamic priorities; and time-slicing mechanisms like time division
multiple access (TDMA) or round robin [2]. Some extensions have already found
their way into commercial analysis tools, which are being established, e.g. in the
automotive industry to analyse individual units that control the engine or parts of the
electronic stability program.

The techniques rely on a simple yet powerful abstraction of task activation and
communication. Instead of considering each event individually, as simulation does,
formal scheduling analysis abstracts from individual events to event streams. The
analysis requires only a few simple characteristics of event streams, such as an event
period or a maximum jitter. From these parameters, the analysis systematically derives
worst-case scheduling scenarios, and timing equations safely bound the worst-case
process or communication response times.

It might be surprising that – up to now – only very few of these approaches have
found their way into the SoC (system-on-chip) design community by means of tools.
Regardless of the known limitations of simulation such as incomplete corner-case
coverage and pattern generation, timed simulation is still the preferred means of
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performance verification in MpSoC design. Why then is the acceptance of formal
analysis still very limited?

One of the key reasons is a mismatch between the scheduling models assumed in
most formal analysis approaches and the heterogenous world of MpSoC scheduling
techniques and communication patterns that are a result of (a) different application
characteristics; (b) system optimisation and integration which is still at the beginning
of the MpSoC development towards even more complex architectures.

Therefore, a new configurable analysis process is needed that can easily be adapted
to such heterogeneous architectures. We can identify different approaches: the holistic
approach that searches for techniques spanning several scheduling domains; and
hierarchical approaches that integrate local analysis with a global flow-based analysis,
either using new models or based on existing models and analysis techniques.

In the following section, the existing analysis approaches from the literature on
real-time analysis are reviewed and key requirements for their application to MpSoC
design are identified. In Section 2.3, the fundamentals and basic models of the
SymTA/S technology are introduced. Section 2.4 surveys a large number of exten-
sions that enable the analysis of complex applications. Section 2.5 shows how the
overall analysis accuracy can be deliberately increased when designers specify few
additional correlation information. Automatic optimisations using evolutionary algo-
rithms is explained in Section 2.6, while Section 2.7 introduces the idea of sensitivity
analysis. An experiment is carried out in Section 2.8 and conclusions are drawn in
Section 2.9

2.2 Formal techniques in system performance analysis

Formal approaches to heterogeneous systems are rare. The ‘holistic’ approach [3,4]
systematically extends the classical scheduling theory to distributed systems.
However, because of the very large number of dependencies, the complexity of
the equations underlying the analysis grows with system size and heterogeneity.
In practice, the holistic approach is limited to those system configurations which
simplify the equations, such as deterministic TDMA networks. However, there is,
up to now, no general procedure to set-up and solve the holistic equations for arbitrary
systems. This could explain why such holistic approaches are largely ignored by the
SoC community even though there are many proposals for multiprocessor analysis
in real-time computing.

Gresser [5] and Thiele [6] established a different view on scheduling
analysis. The individual components or subsystems are seen as entities which
interact, or communicate, via event streams. Mathematically speaking, the
stream representations are used to capture the dependencies between the equations
(or equations sets) that describe the individual component’s timing. The difference to
the holistic approach (that also captures the timing using system-level equations) is
that the compositional models are well structured with respect to the architecture. This
is considered a key benefit, since the structuring significantly helps designers to under-
stand the complex dependencies in the system, and it enables a surprisingly simple
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solution. In the ‘compositional’ approach, an output event stream of one component
turns into an input event stream of a connected component. Schedulability analysis,
then, can be seen as a flow-analysis problem for event streams that, in principle, can
be solved iteratively using event stream propagation.

Both approaches use a highly generalised event stream representation to tame the
complexity of the event streams. Gresser uses a superpositional ‘event vector system’,
which is then propagated using complex event dependency matrices. Thiele et al. use
a more intuitive model. They use ‘numerical’ upper and lower bound event ‘arrival
curves’ for event streams, and similar ‘service curves’ for execution modelling.

This generality, however, has its price. Since they introduced new stream
models, both Thiele and Gresser had to develop new scheduling analysis algo-
rithms for the local components that utilise these models; the host of existing work
in real-time systems can not be reused. Furthermore, the new models are far less
intuitive than the ones known from the classical real-time systems’ research, e.g. the
model of rate-monotonic scheduling with its periodic tasks and worst-case execution
times. A system-level analysis should be simple and comprehensible, otherwise its
acceptance is extremely doubtful.

The compositional idea is a good starting point for the following considerations.
It uses some event stream representation to allow component-wise local analysis.
The local analysis results are, then, propagated through the system to reach a global
analysis result. We do not necessarily need to develop new local analysis tech-
niques if we can benefit from the host of work in real-time scheduling analysis.
For example, in Figure 2.1, even if input and output streams seem to have totally
different characteristics, the number of T3’s output events can be easily bounded
over a longer time interval. The bursts only occur temporarily, representing a tran-
sient overload within a generally periodic event stream. In other words, some key
characteristics of the original periodic stream remain even in the presence of heavy
distortion.

A key novelty of the SymTA/S approach is that it uses intuitive ‘standard event
models’ (Section 2.3.2) from real-time systems’ research rather than introducing
new, complex stream representations. Periodic events or event streams with jitter
and bursts [7] are examples of standard models that can be found in literature. The
SymTA/S technology allows us to extract this information from a given schedule and
automatically interface or adapt the event stream to the specific needs within these
standard models, so that designers can safely apply existing subsystem techniques of
choice without compromising global analysis.

2.3 The SymTA/S approach

SymTA/S [8] is a formal system-level performance and timing analysis tool for
heterogeneous SoCs and distributed systems. The application model of SymTA/S
is described in Section 2.3.1. The core of SymTA/S is a technique to couple local
scheduling analysis algorithms using event streams [9,10]. Event streams describe
the possible input/output (I/O) timing of tasks. Input and output event streams are
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described by standard event models which are introduced in detail in Section 2.3.2.
The analysis composition using event streams is described in Section 2.3.3. A second
key property of the SymTA/S compositional approach is the ability to adapt the
possible timing of events in an event stream. The event stream adaptation concept is
described in Section 2.3.4.

2.3.1 SymTA/S application model

A task is activated due to an activating event. Activating events can be generated in a
multitude of ways, including expiration of a timer, external or internal interrupt and
task chaining. Each task is assumed to have one input first in first out (FIFO). A task
reads its activating data from its input FIFO and writes data into the input FIFO of a
dependent task. A task may read its input data at any time during one execution. The
data is therefore assumed to be available at the input during the whole execution of
the task. SymTA/S also assumes that input data is removed from the input FIFO at
the end of one execution.

A task needs to be mapped on to a ‘computation’ or ‘communication’ resource to
execute. When multiple tasks share the same resource, then two or more tasks may
request the resource at the same time. In order to arbitrate request conflicts, a resource
is associated with a ‘scheduler’ which selects a task to which it grants the resource out
of the set of active tasks according to some scheduling policy. Other active tasks have
to wait. ‘Scheduling analysis’ calculates worst-case (sometimes also best-case) task
response times, i.e. the time between task activation and task completion, for all tasks
sharing a resource under the control of a scheduler. Scheduling analysis guarantees
that all observable response times will fall into the calculated (best-case, worst-case)
interval. Scheduling analysis is therefore conservative. A task is assumed to write its
output data at the end of one execution. This assumption is standard in scheduling
analysis.

Figure 2.3 shows an example of a system modelled with SymTA/S. The system
consists of two resources each with two tasks mapped on it. R1 and R2 are both
assumed to be priority scheduled. Src1 and Src2 are the sources of the external

E1 E2

E0 E3

Src1 T1 T2

Src2 T3 T4

i0 o0 i0 o0

i0 o0i0 o0

R1 R2

Figure 2.3 System modelled with SymTA/S
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Figure 2.4 Example of an event stream that satisfies the event model (P = 4,
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activating events at the system inputs. The possible timing of activating events is
captured by so-called ‘event models’, which are introduced in Section 2.3.2.

2.3.2 SymTA/S standard event models

Event models can be described by sets of parameters. For example, a ‘periodic with
jitter’event model has two parameters (P , J ) and states that each event generally
occurs periodically with period P , but that it can jitter around its exact position within
a jitter interval J . Consider an example where (P , J ) = (4, 1). This event model is
visualised in Figure 2.4. Each gray box indicates a jitter interval of length J = 1.
The jitter intervals repeat with the event model period P = 4. The figure additionally
shows a sequence of events which satisfies the event model, since exactly one event
falls within each jitter interval box, and no events occur outside the boxes.

An event model can also be expressed using two ‘event functions’ ηu(�t) and
ηl(�t).

Definition 2.1 (Upper event function) The upper ‘event function’ ηu(�t) specifies
the maximum number of events that can occur during any time interval of length �t .

Definition 2.2 (Lower event function) The lower ‘event function’ ηl(�t) specifies
the minimum number of events that have to occur during any time interval of length �t .

Event functions are piecewise constant step functions with unit-height steps, each
step corresponding to the occurrence of one event. Figure 2.5 shows the event func-
tions for the event model (P = 4, J = 1). Note that at the points where the functions
step, the smaller value is valid for the upper event function, while the larger value is
valid for the lower event function (indicated by dark dots). For any time interval of
length �t , the actual number of events is bound by the upper and lower event func-
tions. Event functions resemble arrival curves [11] which have been successfully used
by Thiele et al. for compositional performance analysis of network processors [12].
In the following, the dependency of ηu and ηl on �t is omitted for brevity.
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A ‘periodic with jitter’event model is described by the following event functions
ηu
P+J and ηl

P+J [13].

ηu
P+J =

⌈
�t + J

P
⌉

(2.1)

ηl
P+J = max

(
0,

⌊
�t − J

P
⌋)

(2.2)

To get a better feeling for event functions, imagine a sliding window of length
�t that is moved over the (infinite) length of an event stream. Consider �t = 4
(grey vertical bar in Figure 2.5). The upper event function indicates that at most
two events can be observed during any time interval of length �t = 4. This corre-
sponds, e.g. to a window position between t0 + 8.5 and t0 + 12.5 in Figure 2.4. The
lower event function indicates that no events have to be observed during �t = 4.
This corresponds, e.g. to a window position between t0 + 12.5 and t0 + 16.5 in
Figure 2.4.

In addition, ‘distance’ functions δmin(N ≥ 2) and δmax(N ≥ 2), are defined to
return, respectively, the minimum and maximum distance between N ≥ 2 consecutive
events in an event stream.

Definition 2.3 (Minimum distance function) The minimum distance function
δmin(N ≥ 2) specifies the minimum distance between N ≥ 2 consecutive events
in an event stream.

Definition 2.4 (Maximum distance function) The maximum distance function
δmax(N ≥ 2) specifies the maximum distance between N ≥ 2 consecutive events
in an event stream.
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For ‘periodic with jitter’ event models the following distance functions are
obtained

δmin(N ≥ 2) = max {0 , (N − 1) × P − J } (2.3)

δmax(N ≥ 2) = (N − 1) × P + J (2.4)

For example, the minimum distance between two events in a ‘periodic with jitter’event
model with (P = 4, J = 1) is three time units, and the maximum distance between
two events is five time units.

Periodic with jitter event models are well suited to describe generally peri-
odic event streams, which often occur in control, communication and multimedia
systems [14]. If the jitter is zero, then the event model is strictly periodic. If the
jitter is larger than the period, then two or more events can occur at the same
time, leading to bursts. To describe a ‘bursty’ event model, the ‘periodic with jit-
ter’ event model can be extended with a dmin parameter that captures the minimum
distance between events within a burst. A more detailed discussion can be found in
Reference 13.

Additionally, ‘sporadic’ events are also common [14]. Sporadic event streams
are modelled with the same set of parameters as periodic event streams. The differ-
ence is that for sporadic event streams, the lower event function ηl(�t) is always
zero. The maximum distance function δmax(N ≥ 2) approaches infinity for all
values of N [13]. Note that ‘jitter’ and dmin parameters are also meaningful in spo-
radic event models, since they allow us to accurately capture sporadic transient load
peaks.

Event models with this small set of parameters have several advantages. First,
they are easily understood by a designer, since period, jitter, etc. are familiar event
stream properties. Second, the corresponding event functions and distance functions
can be evaluated quickly, which is important for scheduling analysis to run fast. Third,
as will be shown in Section 2.3.3.2, compositional performance analysis requires the
modelling of possible timing of output events for propagation to the next scheduling
component. Event models as described above allow us to specify simple rules to
obtain output event models (Section 2.3.3.1) that can be described with the same set
of parameters as the activating event models. Therefore, there is no need to depart from
these event models whatever the size and structure of the composed system (hence
the term ‘standard’). This makes the compositional performance analysis approach
very general.

2.3.3 Analysis composition

In the compositional performance analysis methodology [13,14], local scheduling
analysis and event model propagation are alternated, during system-level analysis.
This requires the modelling of possible timing of output events for propagation to the
next scheduling component. In the following, first the output event model calculation
is explained. Then the compositional analysis approach is presented.
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2.3.3.1 Output event model calculation

The SymTA/S standard event models allow us to specify simple rules to obtain output
event models that can be described with the same set of parameters as the activating
event models. The output event model period obviously equals the activation period.
The difference between maximum and minimum response times (the response time
jitter) is added to the activating event model jitter, yielding the output event model
jitter (Equation (2.5)).

Jout = Jact + (tresp,max − tresp,min) (2.5)

Note that if the calculated output event model has a larger jitter than period, this
information alone would indicate that an early output event could occur before a late
previous output event, which obviously cannot be correct. In reality, output events
cannot follow closer than the minimum response time of the producer task. This is
indicated by the value of the ‘minimum distance’ parameter.

2.3.3.2 Analysis composition using standard event models

In the following, the compositional analysis approach is explained using the system
example in Figure 2.3. Initially, only event models at the external system inputs are
known. Since an activating event model is available for each task on R1, a local
scheduling analysis of this resource can be performed and output event models are
calculated for T1 and T3 (Section 2.3.3.1). In the second phase, all output event
models are propagated. The output event models become the activating event models
for T2 and T4. Now, a local scheduling analysis of R2 can be performed since all
activating event models are known.

However, it is sometimes impossible to perform system-level scheduling analysis
as explained above. This is shown in the system example in Figure 2.6.

Figure 2.6 shows a system consisting of two resources, R1 and R2, each with two
tasks mapped on to it. Initially, only the activating event models of T1 and T3 are
known. At this point the system cannot be analysed, because on every resource an
activating event model for one task is missing, i.e. response times on R1 need to be

E2 E1

E0 E3

Src1

Src2

T1 T2

T4 T3

i0 o0 i0 o0

o0 i0o0 i0

R1 R2

Figure 2.6 Example of a system with cyclic scheduling dependency
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calculated to be able to analyse R2. On the other hand, R1 cannot be analysed before
analysing R2. This problem is called ‘cyclic scheduling dependency’.

One solution to this problem is to initially propagate all external event models
along all system paths until an initial activating event model is available for each
task [15]. This approach is safe since on one hand scheduling cannot change an event
model period. On the other hand, scheduling can only ‘increase’ an event model
jitter [7]. Since a smaller jitter interval is contained in a larger jitter interval, the
minimum initial jitter assumption is safe.

After propagating external event models, global system analysis can be performed.
A global analysis step consists of two phases [13]. In the first phase local schedul-
ing analysis is performed for each resource and output event models are calculated
(Section 2.3.3.1). In the second phase, all output event models are propagated. It is
then checked if the first phase has to be repeated because some activating event mod-
els are no longer up-to-date, meaning that a newly propagated output event model
is different from the output event model that was propagated in the previous global
analysis step. Analysis completes if either all event models are up-to-date after the
propagation phase or if an abort condition, e.g. the violation of a timing constraint,
has been reached.

2.3.4 Event stream adaptation

A key property of the SymTA/S compositional performance analysis approach is the
ability to adapt the possible timing of events in an event stream (expressed through
the adaptation of an event model [13]). There are several reasons to do this. It may be
that a scheduler or a scheduling analysis for a particular component requires certain
event stream properties. For example, rate-monotonic scheduling and analysis [1]
require strictly periodic task activation. Alternatively, an integrated IP component
may require certain event stream properties. External system outputs may also impose
event model constraints, e.g. a minimum distance between output events or a maxi-
mum acceptable jitter. Such a constraint may be the result of a performance contract
with an external subsystem [16]. Event stream adaptation can also be done for the
sole purpose of ‘traffic shaping’ [13]. Traffic shaping can be used, e.g. to reduce tran-
sient load peaks, in order to obtain more regular system behaviour. Practically, event
model ‘adaptation’ is distinguished from event model ‘shaping’ in SymTA/S [17].
Adaptation is required to satisfy an event model constraint, while shaping is volun-
tary to obtain more regular system behaviour. Two types of event adaptation functions
(EAF) are currently implemented in SymTA/S: a ‘periodic’ EAF produces a periodic
event stream from a ‘periodic with jitter’ input event stream. A dmin-EAF enforces a
minimum distance between output events.

2.4 Complex embedded applications

Compositional performance analysis as described so far is not applicable to embed-
ded applications with complex task dependencies. This is because it uses a simple
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activation model where the completion of one task directly leads to the activation of a
dependent task. However, activation dependencies in realistic embedded applications
are usually more complex. A consumer task may require a different amount of data
per execution than produced by a producer task, leading to multi-rate systems. Task
activation may also be conditional, leading to execution-rate intervals. Furthermore,
a task may consume data from multiple task inputs. Then, task activation timing is a
function of the possible arrival timing of all required input data. Tasks with multiple
inputs also allow us to form cyclic dependencies (e.g. in a control loop).

In this section, the focus is on multiple inputs (both AND- and OR-activation)
and functional cycles [18]. Multi-rate systems and conditional communication are
not considered, since these features have not yet been incorporated into SymTA/S.
The theoretical foundations can be found in Reference 19.

2.4.1 Basic thoughts

The activation function of a consumer task C with multiple inputs is a Boolean function
of input events at the different task inputs. An imposed restriction is that activation
must not be invalidated due to the arrival of additional tokens [20]. This means that
negation is not allowed in the activation function. Consequently, the only acceptable
Boolean operators are AND and OR, since an input is negated in all other commonly
used Boolean operators (NOT, XOR, NAND, NOR).

In order to perform scheduling analysis on the resource to which task C is mapped,
activating event functions for task C have to be calculated from all input event func-
tions. In the following it is shown how to do this for AND- and OR-activation using
standard event models (Section 2.3.2). An extended discussion covering event models
in general can be found in Reference 19.

2.4.2 AND-activation

For a consumer task C with multiple inputs, AND-activation implies that C is activated
after an input event has occurred at each input i. An example of an AND-activated
task with three inputs is shown in Figure 2.7.

Note that AND-activation requires input data buffering, since at some inputs
data may have to wait until data has arrived at all other inputs for one consumer
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Figure 2.7 Example of an AND-activated task C
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activation. The term ‘AND-buffering’ is used to refer to this source of buffering. The
term ‘token’ [21] is used to refer to the amount of data required for one input event.

2.4.2.1 AND-activation period

To ensure bounded AND-buffer sizes, the period of all input event models must be
the same. The period of the activating event model equals this period.

Pi
!= Pj ; i, j = 1 . . . k ⇒

PAND = Pi ; i = 1 . . . k (2.6)

2.4.2.2 AND-activation jitter

In order to obtain the AND-activation jitter, consider how often activation of the
AND-activated task can occur during any time interval �t . Obviously, during any
time interval �t , the port with the smallest minimum number of available tokens
determines the minimum number of AND-activations. Likewise, the port with the
smallest maximum number of available tokens determines the maximum number of
AND-activations.

The number of available tokens at port i during a time interval �t depends on both
the number of tokens arriving during �t , and on the number of tokens that arrived
earlier, but did not yet lead to an activation because tokens at one or more other ports
are still missing. This is illustrated in the following example. Assume that the task
in Figure 2.7 receives tokens at each with the following ‘periodic with jitter’ input
event models:

P1 = 4, J1 = 0

P2 = 4, J2 = 2

P3 = 4, J3 = 3

Figure 2.8 shows a possible sequence of input events that adhere to these event
models, and the resulting AND-activation events. The numbering of events in the
figure indicates which events together lead to one activation of AND-activated task C.
As can be seen, the minimum distance between two AND-activations (activations 3
and 4 in Figure 2.8) equals the minimum distance between two input events at input 3,
which is the input with the largest input event model jitter. Likewise, the maximum
distance between two AND-activations (activations 1 and 2 in Figure 2.8) equals the
maximum distance between two input events at input 3. It is not possible to find a
different sequence of input events leading to a smaller minimum or a larger maximum
distance between two AND-activations. From this it results that the input with the
largest input event jitter determines the activation jitter of the AND-activated task, i.e.

JAND = max{Ji}; i = 1 . . . k (2.7)

This statement also remains true if the first set of input events does not arrive at the
same time (as is the case in Figure 2.8). A proof is given in Reference 19. Calculation
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Figure 2.8 AND-activation timing example

of the worst-case delay and backlog at each input due to AND-buffering can also be
found in Reference 19.

Note that in some cases it may be possible to calculate phases between the arrivals
of corresponding tokens in more detail, e.g. through the use of inter-event stream
contexts (Section 2.5.3). It may then be possible to calculate a tighter activating jitter
if it can be shown that a certain input cannot (fully) influence the activation timing
of an AND-activated task, because tokens at this input arrive relatively early. This is
particularly important for the analysis of functional cycles (Section 2.4.4).

2.4.3 OR-activation

For a consumer task C with multiple inputs, OR-activation implies that C is activated
each time an input event occurs at any input of C. Contrary to AND-activation, input
event models are not restricted, and no OR-buffering is required, since a token at one
input never has to wait for tokens to arrive at a different input in order to activate C.
Of course, activation buffering is still required.

An example of an OR-activated task with two inputs is shown in Figure 2.9.
Assume the following ‘periodic with jitter’event models at the two inputs of task C:

P1 = 4, J1 = 2

P2 = 3, J2 = 2

The corresponding upper and lower input event functions are shown in Figure 2.10.
Since each input event immediately leads to one activation of task C, the upper and
lower activating event functions are constructed by adding the respective input event
functions. The result is shown in Figure 2.11(a).

Recall a key requirement of compositional performance analysis, namely, that
event streams are described in a form that can serve both as input for local scheduling
analysis, and can be produced as an output of local scheduling analysis for propagation
to the next analysis component (Section 2.3.3.2). Due to the irregularly spaced steps
(visible in Figure 2.11(a)), the ‘exact’ activating event functions cannot be described
by a ‘periodic with jitter’event model, and thus cannot serve directly as input for
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Figure 2.10 Upper and lower input event functions in the OR-example. (a) OR input
1 (P1 = 4, J1 = 2); (b) OR input 2 (P2 = 3, J2 = 2)
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Figure 2.11 Upper and lower activating event functions in the OR-example.
(a) Exact; (b) periodic with jitter approximation

local scheduling analysis. Furthermore, after local scheduling analysis a ‘periodic
with jitter’output event model has to be propagated to the next analysis component.
An activation jitter is required in order to calculate an output jitter (Section 2.3.3.1).
Therefore, conservative approximations for the exact activating event functions that
can be described by a ‘periodic with jitter’event model (POR, JOR) need to be found.
The intended result is shown in Figure 2.11 (the exact curves appear as dotted lines).
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2.4.3.1 OR-activation period

The period of OR-activation is the least common multiple LCM(Pi) of all input event
model periods (the ‘macro period’), divided by the sum of input events during the
macro period assuming zero jitter for all input event streams.

POR = LCM(Pi)∑n
i=1 LCM(Pi)/Pi

= 1∑n
i=1(1/Pi )

(2.8)

2.4.3.2 OR-activation jitter

A conservative approximation for the exact activating event functions with a ‘periodic
with jitter’event model implies the following inequations.

⌈
�t + JOR

POR

⌉
≥

n∑
i=1

⌈
�t + Ji

Pi

⌉
(2.9)

max

(
0,

⌊
�t − JOR

POR

⌋)
≤

n∑
i=1

max

(
0,

⌊
�t − Ji

Pi

⌋)
(2.10)

In order to be as accurate as possible, the minimum jitter that satisfies in
Equations (2.9) and (2.10) must be found. It can be shown that the minimum jitter that
satisfies in Equation (2.9) and the minimum jitter that satisfies in Equation (2.10) are
the same [19]. In the following, the upper approximation (in Equation (2.9)) is used to
calculate the OR-activation jitter. Since the left and right sides of this inequation are
only piecewise continuous, the inequation cannot be simply transformed to obtain the
desired minimum jitter. The solution used here is to evaluate in Equation (2.9) piece-
wise for each interval [�tj , �tj+1], during which the right side of the inequation has a
constant value kj ∈ N. For each constant piece of the right side, a condition for a ‘local
jitter’ JOR,j is obtained that satisfies the inequation for all �t : �tj < �t ≤ �tj+1.

For each constant piece of the right side, in Equation (2.9) becomes[
�t + JOR, j

POR

]
≥ kj ; �tj < �t ≤ �tj+1 , kj ∈ N

Since the left side of this inequation is monotonically increasing with �t , it is
sufficient to evaluate it for the smallest value of �t , which approaches �tj , i.e.

lim
ε→+0

⌈
�tj + ε + JOR,j

POR

⌉
≥ kj ; kj ∈ N

⇔ lim
ε→+0

�tj + ε + JOR,j

POR
> kj − 1

⇔ lim
ε→+0

(JOR,j + ε) > (kj − 1) × POR − �tj

⇔ JOR,j ≥ (kj − 1) × POR − �tj (2.11)

The global minimum jitter is then the smallest value which satisfies all local jitter
conditions. As already said, ηu

OR displays a pattern of distances between steps which
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repeats periodically every macro period. Therefore, it is sufficient to perform the
above calculation for one macro period. An algorithm can be found in Reference 22.

2.4.4 Cyclic task dependencies

Tasks with multiple inputs allow us to build cyclic dependencies. A typical application
is a control loop, where one task represents the controller and the other represents a
model of the controlled system. A task graph with a cycle is shown in Figure 2.12.

Tasks with multiple inputs in cycles are assumed to be AND-activated, and to
produce one token at each output per execution. This implies that at least one initial
token must be present inside the cycle to avoid deadlock [21], and that the number
of tokens inside the cycles remains constant. Consequently, the period of the cycle-
external event model determines the period of all cycle tasks. Finally, exactly one
cycle task with one cycle-external and one cycle-internal input is assumed to exist in
a cycle. All other cycle tasks only have cycle-internal inputs. These restrictions allow
us to concisely discuss the main issues resulting from functional cycles. A much more
general discussion can be found in Reference 19.

In Section 2.4.2 it was established that the activation jitter of an AND-activated
task is bounded by the largest input jitter. As was the case for cyclic scheduling
dependencies (Section 2.3.3.2), system analysis starts with an initial assumption
about the cycle-internal jitter of the AND-activated task, since this value depends
on the output jitter of that task, which has not been calculated yet. A conservative
starting point is to initially assume zero internal jitter. Now analysis and event model
propagation can be iterated around the cycle, hoping to find a fix-point.

However, if only one task along the cycle has a response time which is an interval,
then after the first round of analysis and event model propagation the internal input
jitter of the AND-activated task will be larger than the external input jitter. In the
SymTA/S compositional performance analysis approach, this larger jitter will be
propagated around the cycle again, resulting in an even larger jitter at the cycle-
internal input of the AND-activated task (Section 2.3.3.2). It is obvious that the jitter
appears unbounded if calculated this way.
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The problem boils down to the fact that event model propagation as presented
so far captures neither correlations between the timing of events in different event
streams nor the fact that the number of tokens in a cycle is fixed. Therefore, the
activation jitter for the AND-activated task is calculated very conservatively.

2.4.5 Analysis idea

Cycle analysis requires detailed consideration of the possible phases between tokens
arriving at the cycle-external and the cycle-internal inputs of the AND-activated
task. The solution proposed in the following has the advantage to require only
minor modifications to the feed-forward system-level analysis already supported by
SymTA/S. The idea is as follows: initially, the cycle-internal input is assumed not to
increase the activation jitter of the AND-activated task. This allows to ‘cut’ the cycle-
internal edge, rendering a feed-forward system which can be analysed as explained in
Section 2.3.3.2. Then the time it takes a token to travel around the cycle is calculated,
and the validity of the initial assumption is verified.

In the following, the idea is explained for cycles with one initial tokens. Assume
an external ‘periodic with jitter’event model with period Pext and jitter Jext. Let tmin

ff
and tmax

ff be, respectively, the minimum and maximum sum of worst-case response
times of all tasks belonging to a cycle (the ‘time around the cycle’) as obtained through
analysis of the corresponding feed-forward system. Let us further assume that after
analysis of the corresponding feed-forward system, tmax

ff ≤ Pext.
At system startup, the first token arriving at the cycle-external input will imme-

diately activate the AND-concatenated task together with the initial token already
waiting at the cycle-internal input. No further activation of the AND-activated task
is possible until the next token becomes available at the cycle-internal input of that
task. If feed-forward analysis was valid, then this will take between tmin

ff and tmax
ff

time units.
The maximum distance between two consecutive external tokens is δmax

ext (2) =
Pext + Jext (Equation (2.4)). From tmax

ff ≤ Pext it follows that it is not possible that
the ‘2nd’ external token arriving as ‘late’ as possible after the ‘1st’ external token has
to wait for an internal token.

The ‘3rd’ external token can arrive at most δmax
ext (3) = 2 × Pext + Jext after the

‘1st’ external token. Therefore, if both the ‘2nd’ and the ‘3rd’ external tokens arrive
as late as possible, then the ‘3rd’ arrives Pext after the ‘2nd’. From tmax

ff ≤ Pext

it follows that the ‘3rd’ external token arriving as ‘late’ as possible after the ‘1st’
external token cannot wait for an internal token, even if the ‘2nd’ external token
also arrived as ‘late’ as possible. This argument can be extended to all further
tokens. Thus, no external token arriving as late as possible has to wait for an internal
token.

Activation of task b also cannot happen earlier than the arrival of an external
token. Therefore, the activating event model of task b is conservatively captured by
the external input event model (Equation (2.12)). This approach is therefore valid for
a cycle with M = 1 initial token, for which tmax

ff ≤ Pext.

Pact = Pext; Jact = Jext (2.12)
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For example, assume that in the system in Figure 2.12 task b is activated externally
with (Pb,ext = 4, Jb,ext = 3). Let us further assume that feed-forward analysis has
determined the time around the cycle to be [tmin

ff , tmax
ff ] = [2, 3], i.e. each internal input

event follows between [2,3] time units after the previous activating event. Figure 2.13
shows a snapshot of a sequence of external, internal and activating events for task b
(numbers indicate corresponding input events and the resulting activating event). The
first internal event is due to the initial token. As can be seen, activating event timing
can be described by the same event model as external input event timing. If on the other
hand analysis of the corresponding feed-forward system determines tmax

ff > Pext,
then this statement is no longer true, since for example the ‘3rd’ internal event could
occur later than the latest possible ‘3rd’ external event.

In Figure 2.13 it can also be seen that an ‘early’ external token may have to wait
for an internal token since two token arrivals at the cycle-internal input of task b
cannot follow closer than tmin

ff , and thus

δmin
act (2) =




δmin
ext (2); tmin

ff ≤ δmin
ext (2)

tmin
ff ; tmin

ff > δmin
ext (2)

(2.13)

Effectively, if tmin
ff > δmin

ext (2), then the cycle acts like a dmin-EAF with dmin = tmin
ff

(Section 2.3.4). This additional effect of the cycle does not ‘require’ a new scheduling
analysis, since the possible activation timing is only tightened. All possible event tim-
ing in the tighter model is already included in the wider model. Therefore, the results
in Equation (2.12) remain valid. However, it is worthwhile to perform scheduling
analysis again with the tighter activating event model for the AND-concatenated
task, since results will be more accurate.
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In Reference 19 it is shown that the approach presented in this section is also valid
for a cycle with M > 1 initial tokens, for which (M −1)×Pext < tmax

ff ≤ M ×Pext.
In Reference 19 it is also shown how to extend the approach to nested cycles. In
SymTA/S, the feed-forward analysis is performed for every cycle, and the required
number of initial tokens is calculated from tmax

ff . This number is then compared against
the number of cycle-tokens specified by the user in the same manner as any other
constraint is checked.

2.5 System contexts

Performance analysis as described so far can be unnecessarily pessimistic, because it
ignores certain correlations between consecutive task activations or assumes a very
pessimistic worst-case load distribution over time.

In SymTA/S, advanced performance analysis techniques taking correlations
between successive computation or communication requests as well as correlated
load distribution into account, have been added in order to yield tighter analysis
bounds. Cases where such correlations have a large impact on system timing are
especially difficult to simulate and, hence, are an ideal target for formal performance
analysis. Such correlations are called ‘system contexts’.

In Section 2.5.1, using an example of a hypothetical set-top box, the assumptions
made by a typical performance analysis, called ‘context-blind’ analysis, are reviewed.
Then, the analysis improvements that can be obtained when considering two different
types of system contexts separately and also in combination are shown: ‘intra event
stream contexts’, which consider correlations between successive computation or
communication requests (Section 2.5.2), and ‘inter event stream contexts’, which
consider possible phases between events in different event streams (Section 2.5.3).
The combination of both system contexts is explained in Section 2.5.4.

2.5.1 Context-blind analysis

The SoC implementation of a hypothetical set-top box shown in Figure 2.14 is
used as an example throughout this section. The set-top box can process Motion
Pictures Expert Group-2 (MPEG-2) video streams arriving from the RF-module
(rf _video) and sent via the bus (BUS) to the TV (tv). In addition, a decryption
unit (DECRYPTION ) allows us to decrypt encrypted video streams. The set-top box
can additionally process IP traffic and download web-content via the bus (ip) to the
hard-disk (hd).

The focus will be on worst-case response time calculation for the system bus.
Assume ‘static priority-based scheduling’ on the bus. The priorities are assigned as
follows: enc > dec > ip. MPEG-2 video frames are assumed to arrive periodically
from the RF-module. The arrival period is normalised to 100. The core execution and
communication times of the tasks are listed in Table 2.1.

The worst-case response time of ip, calculated by a context-blind analysis, is
170. As can be seen in Figure 2.15, even though a data dependency exists between
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Figure 2.14 Hypothetical set-top-box system

Table 2.1 Core execution
times

Task CET

enc [10,30]
dec [10,30]
ip [50,50]
Decryption [40,40]

enc and dec, which may even out their simultaneous activation, a context-blind
analysis assumes that in the worst-case all communication tasks are activated at the
same instant. Furthermore, even though MPEG-2 frames may have different sizes
depending on their type, a context-blind analysis assumes that every activation of
enc and dec leads to a maximum transmission time of one MPEG-2 frame.

2.5.2 Intra event stream context

Context-blind analysis assumes that in the worst case, every scheduled task executes
with its worst-case execution time for each activation. In reality, different events
often activate different behaviours of a computation task with different worst-case
execution time (WCET), or different bus loads for a communication task. Therefore,
a lower maximum load (and a higher minimum load) can be determined for a sequence
of successive activations of a higher-priority task if the types of the activating events
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Figure 2.15 Worst-case response time calculation for ‘ip without’ contexts, using
SymTA/S

are considered. This in turn leads to a shorter calculated worst-case response time
(and a longer best-case response time) of lower-priority tasks. The correlation within
a sequence of different activating events is called an ‘intra event stream context’.

Mok and Chen introduced this idea in Reference 23 and showed promising results
for MPEG-streams where the average load for a sequence of I-, P- and B-frames is
much smaller than in a stream that consists only of large I-frames, which is assumed
by a context-blind worst-case response time analysis. However, the periodic sequence
of types of activating events was supposed to be completely known.

In reality, intra event stream contexts can be more complicated. If no complete
information is available about the types of the activating events, it is no longer possible
to apply Mok’s and Chen’s approach. Mok and Chen also do not clearly distinguish
between different types of events on one hand, and different task behaviours, called
‘modes’ [24], on the other. However, this distinction is crucial for subsystem integra-
tion and compositional performance analysis. Different types of events are a property
of the sender, while modes are a property of the receiver. Both can be specified
separately from each other and later correlated. Furthermore, it may be possible to
propagate intra event stream contexts along a chain of tasks. It is then possible to also
correlate the modes of consecutive tasks.

In SymTA/S, intra event stream contexts are extended by allowing minimum and
maximum conditions for the occurrence of a certain type of event in a sequence of a
certain length n, in order to capture partial information about an event stream, n is an
arbitrary integer value. A single worst-case and a single best-case sequence of events
with length n can be determined from the available min- and max-conditions that can
be used to calculate the worst- and best-case load due to any number of consecutive
activations of the consumer task. In Reference 25, the static-priority preemptive
response-time calculation is extended to exploit this idea.

In the following, this approach is applied to the set-top box example. Suppose that
the video stream, sent from the RF to the bus, is encoded in one of several patterns of
I-, P- and B-frames (IBBBBB, IBBPBB, IPBBBB...), or that several video streams
are interleaved. Therefore, it is impossible to provide a fixed sequence of successive
frame types in the video stream. However, it may be possible to determine min- and
max-conditions for the occurrence of each frame type.
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Figure 2.16 Worst-case response time calculation for ip considering ‘intra’
contexts

The communication times of tasks enc and dec depend on the received frame type.
I-frames have the largest size and lead to the longest execution time, P-frames have the
middle size and B-frames have the smallest size. Therefore, the mode corresponding
to the transmission of an I-frame has the largest communication time and the mode
corresponding to the transmission of a B-frame has the lowest communication time.

Having both intra event stream context information and modes of the consumer
tasks, a weight-sorted worst-case sequence of frame types with length n can be
determined. The reader interested in knowing the algorithm to exploit min- and
max-conditions is referred to Reference 25.

Now the worst-case load produced on the bus can be determined for l successive
activations of enc and dec. This is performed, by iterating through the weight-sorted
sequence starting from the first event and adding up loads until the worst-case load
for l activations has been calculated. If l is bigger than n, the sequence length, the
algorithm goes only through l mod n events and adds the resulting load to the load
of the whole sequence multiplied by l div n.

In Figure 2.16, assuming that the worst-case sequence of frame types with length
2 is IP; and that the transmission time for an I-frame is 30 and for a P-frame is 20, the
calculated worst-case response time of ip, when considering the available intra event
stream context information, is shown. As can be seen, for both tasks enc and dec, the
produced load on the bus due to a transmission of two successive MPEG-2 frames is
smaller than in the context-blind case (see Figure 2.15). This leads to a reduction of
the calculated worst-case response time of ip: 150 instead of 170.

2.5.3 Inter event stream context

Context-blind analysis assumes that all scheduled tasks sharing a resource are inde-
pendent and that in the worst case all tasks are activated simultaneously. In reality,
activating events are often time-correlated, which rules out simultaneous activation
of all tasks. This in turn may lead to a lower maximum number (and higher minimum
number) of interrupts of a lower-priority task through higher-priority tasks, resulting
in a shorter worst-case response time (and longer best-case response time) of the



52 System-on-chip

lower-priority task. The correlation between time-correlated events in different event
streams is called an ‘inter event stream context’.

Tindell introduced this idea for tasks scheduled by a static priority preemptive
scheduler [26]. His work was later generalised by Palencia and Harbour [27]. Each
set of time-correlated tasks is grouped into a so-called ‘transaction’. Each transaction
is activated by a periodic sequence of external events. Each task belonging to a
transaction is activated when a relative time, called ‘offset’, elapses after the arrival
of the external event.

To calculate the worst-case response time of a task, a worst-case scenario for
its execution must be build. Tindell [26] showed that the worst-case interference of
a transaction on the response time of a task occurs at the ‘critical instant’ which
corresponds to the most-delayed activation of a higher-priority task belonging to the
transaction. The activation times of the analysed task and all higher-priority tasks
have to happen as soon as possible after the critical instant.

Since all activation times of all higher-priority tasks belonging to a transaction are
candidates for the critical instant of the transaction, the worst-case response time of
a lower-priority task has to be calculated for all possible combinations of all critical
instants of all transactions that contain higher-priority tasks, to find the absolute
worst case.

In the following, Tindell’s approach is applied to the set-top box example. Due to
the data dependency among enc, decryption and dec, these tasks are time-correlated.
The offset between the activations of enc and decryption corresponds to the exe-
cution time of enc. Based on this offset and the execution time of decryption, the
offset between the activations of enc and dec can be calculated.

In order to show the analysis improvement due to inter event stream contexts
in isolation, assume for now that all video-frames are I-frames. Figure 2.17 shows
for the inter event stream context case the calculated worst-case response time of ip

due to interrupts by enc and dec. As can be seen, a gap exists between successive
executions of enc and dec. Since ip executes during this gaps, one interrupt less of
ip is calculated (in this case through enc). This leads to a reduction of the calculated
worst-case response time of ip: 140 instead of 170.

20 40 60 10080 120 t0

30

30

30

enc
Priority 1
   (100) +   (0) + d(0)

dec
Priority 2
   (100) +   (20) + d(0)

ip
Priority 3
   (1000) +   (0) + d(0)

10 1030

Figure 2.17 Worst-case response time calculation for ‘ip’ considering ‘inter’
contexts
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Figure 2.18 Improved worst-case response time calculation due to ‘inter’ contexts

In Figure 2.18, analysis improvements with inter event stream context information
in relation to the context-blind case are shown as a function of the offset between enc

and dec, which is equal to the execution time of the decryption unit.
Curve a shows the reduction of the calculated worst-case response time of dec.

Depending on the offset, dec is either partially (offset value less than 30), completely
(offset value more than 70) or not interrupted at all by enc (offset value between 30
and 70). The latter case yields a maximum reduction of 50 per cent.

Curves b–g show the reduction in the calculated worst-case response time of ip

for different IP traffic sizes. The reduction is visible in the curves as dips. If no gaps
exists between two successive executions of enc and dec, no worst-case response
time reduction of ip can be obtained (offset value less than 30 or more than 70). If a
gap exists, then sometimes one interrupt less of ip can be calculated (either through
enc or dec), or there is no gain at all (curves d and f). Since the absolute gain that can
be obtained equals the smaller worst-case execution time of enc and dec, the relative
worst-case response time reduction is bigger for shorter IP traffic.

An important observation is that inter event stream context analysis reveals the
dramatic influence that a small local change, e.g. the speed of the decryption unit
reading data from the bus and writing the results back to the bus, can have on system
performance, e.g. the worst-case transmission time of lower-priority IP traffic.

2.5.4 Combination of contexts

‘Inter’ event stream contexts allow us to calculate a tighter number of interrupts
of a lower-priority task through higher-priority tasks. ‘Intra’ event stream contexts
allow us to calculate a tighter load for a number of successive activations of a
higher-priority task. The two types of contexts are orthogonal: the worst-case response
time of a lower-priority task is reduced because fewer high-priority task activations
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Figure 2.19 Worst-case response time calculation for ‘ip’ with ‘combination’ of
contexts

can interrupt its execution during a certain time interval, and also because the time
required to process a sequence of activations of each higher-priority task is reduced.
Therefore, performance analysis can be further improved if it is possible to consider
both types of contexts in combination. This is shown in Figure 2.19 for the worst-case
response time calculation of ip: 130 instead of 170.

In Figure 2.20, analysis improvements considering both inter and intra event
stream contexts in relation to the context-blind case are shown as a function of the
offset between enc and dec. Curve a shows the reduction of the calculated worst-case
response time of dec. Since dec is interrupted at most once by enc, and the worst-case
load produced due to one activation of enc is the transmission time of one I-frame,
no improvement is obtained through the context combination in comparison to curve
a in Figure 2.18.

Curves b–g show the reduction of the calculated worst-case response time of ip

for different IP traffic sizes. When comparing curves b and c (IP traffic sizes of 5 and
10) to curves b and c in Figure 2.18, it can be seen that no improvement is obtained
through the context combination. This is due to the fact that ip is interrupted at most
once by enc and at most once by dec. Therefore, as in case a, the calculated worst-
case load produced by the video streams is the same no matter whether the available
intra event stream context information is considered or not.

Curve d shows that for an IP traffic size of 30, no improvements are obtained
through the context combination in comparison to the ‘context-blind’ case. This is
due to the fact that for all offset-values, ip is interrupted exactly once by enc and
exactly once by dec, and that the calculated worst-case load produced by the video
streams due to one activation is the same no matter if intra event stream contexts are
considered or not.

Curves e and f show that for IP traffic sizes of 50 and 70 improvements are
obtained as a result of the context combination in comparison to both the intra and
inter event stream context analysis. Since intra and inter event stream contexts are
orthogonal, the reduction of the calculated worst-case response time of ip due to the
intra event stream context is constant for all offset values. Since no reduction due
to inter event stream context can be obtained for an offset value of 0 (equivalent to
the inter event stream context-blind case), the reduction shown in the curve for this
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Figure 2.20 Analysis improvement due to the ‘combination of intra and inter’
contexts

offset value can only be a result of the intra event stream context. On the other hand,
the additional reduction between the offset values 25 and 75 is obtained due to the
inter event stream context.

Curve g shows that for an IP traffic size of 90, even though the inter event stream
context leads to an improvement (see curve g in Figure 2.18), the improvement due
to the intra event stream context dominates, since no dip exists in the curve, i.e. no
additional improvements are obtained due to the context combination in comparison
to the intra event stream context case.

This example shows that considering the combination of system contexts can
yield considerably tighter performance analysis bounds compared with a context-
blind analysis. Equally important, this example reveals the dramatic influence that
a small local change can have on system performance. Systematically identifying
such system-level influences of local changes is especially difficult using simulation
due to the large number of implementations that would have to be synthesised and
executed. On the other hand, formal performance analysis can systematically and
quickly identify such corner cases. All these results took a couple of milliseconds to
compute using SymTA/S.

2.6 Design space exploration for system optimisation

This section gives an overview of the compositional design space exploration
framework used in SymTA/S which is based on evolutionary optimisation techniques.
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First, system parameters which can be subject to optimisation, i.e. the search
space, are described. Then some examples of metrics expressing desired or undesired
system properties used as optimisation objectives in the exploration framework are
presented. Afterwards, we will explain how the search space can be defined and
dynamically modified during exploration in order to allow the designer to guide
the search process. Finally, the iterative design space exploration loop performed in
SymTA/S is explained in detail.

2.6.1 Search space

The entire system is seen as a set of independent ‘chromosomes’, each representing
a distinct subset of system parameters. A chromosome carries variation operators
necessary for combination with other chromosomes of its type. Currently in SymTA/S,
the standard operator’s mutation and crossover which are independently applied to
the chromosomes, are used. The scope of a chromosome is arbitrary, it reaches from
one single system parameter to the whole system.

The search space and the optimisation objectives can be multidimensional, which
means that several system parameter can be explored simultaneously to optimise
multiple objectives. Possible search parameter include:

• mapping of tasks onto different resources
• changing priorities on priority-scheduled resources
• changing time slot sizes and time slot order on TDMA or round robin scheduled

resources
• changing the scheduling policy on a resource
• modifying resource speed
• traffic shaping

Traffic shaping is included in the search space because it increases the design space
and allows us to find solutions which are not possible without traffic modulation. This
shall be shown with a small example.

Consider the task set in Table 2.2 scheduled according to the static-priority pre-
emptive policy. All tasks are activated periodically except T0 which has a very large
jitter leading to the simultaneous arrival of three activations in the worst case.

Two experiments are conducted. The first one with the original activating event
models and the second one using a shaper at the input of T0 extending the minimum

Table 2.2 Simple task set

Name Activating event model CET Deadline

T0 P(100) + J (200) + d(10) 4 8
T1 P(100) + J (0) + d(0) 8 12
T2 P(100) + J (0) + d(0) 5 21
T3 P(100) + J (0) + d(0) 3 24
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Figure 2.21 WC scheduling scenarios T0 > T1 > T2 > T3. (a) minimum distance
10, (b) minimum distance 12

distance to 12. In the first experiment no priority assignment leading to a system
fulfilling all constraints is found. However, in the second experiment the priority
assignment T0 > T1 > T2 > T3 leading to a working system is found. The reason for
this is that extending the minimum distance of successive activations of T0 relaxes
the impact of the burst and leads to more freedom for the lower-priority tasks to
execute. This results in less preemption and thus earlier completion for T1, T2 and
T3. Figures 2.21(a) and (b) visualise this effect by showing the worst-case scheduling
scenarios for the priority assignment T0 > T1 > T2 > T3 with minimum distances
10 and 12.

Note that in the general case concerning distributed systems with complex per-
formance dependencies, optimisation through traffic shaping is not applicable in
such a straight forward manner. Nevertheless, traffic shaping can broaden consider-
ably the solution-space by restricting event streams, leading to increased freedom on
cross-related event streams.

2.6.2 Optimisation objectives

The SymTA/S exploration framework is capable of performing a multi-objective
optimisation of several concurrent optimisation objectives, leading usually to the
discovery of several ‘Pareto-optima’.
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Pareto-optimal solutions represent a certain trade-off between two or more
optimisation objectives, leaving it to the designer to decide which solution to adopt.
More precisely, given a set V of k-dimensional vectors v ∈ R

k . A vector v ∈ V

dominates a vector w ∈ V if for all elements 0 ≤ i < k we have vi ≤ wi and for
at least one element l we have vl < wl . A vector is called Pareto-optimal if it is not
dominated by any other vector in V .

Optimisation objectives can be any kind of metric, defined on desired or undesired
properties of the considered system. Note that some metrics only make sense in com-
bination with constraints. Each design alternative considered during the exploration
process is associated with a fitness vector containing one entry for every concurrent
optimisation objective.

In the following some example optimisation objectives used in the SymTA/S
exploration framework will be introduced using the following notation:

R maximum response time of a task or
maximum end-to-end latency along a path

D deadline (task or end-to-end)
ω constant weight > 0
k number of tasks or

number of constrained tasks/paths in the system

1 minimisation of the (weighted) sum of completion times

k∑
i=1

ωi × Ri

2 minimisation of the maximum lateness

max(R1 − D1, . . . , Rk − Dk)

3 maximisation of the minimum earliness

min(D1 − R1, . . . , Dk − Rk)

4 minimisation of the (weighted) average lateness

k∑
i=1

ωi × (Ri − Di)

5 maximisation of the (weighted) average earliness

k∑
i=1

ωi × (Di − Ri)

6 minimisation of end-to-end latencies
7 minimisation of jitters
8 minimisation of the sum of communication buffer sizes
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Figure 2.22 Search space definition

The choice of the metric for optimisation of a specific system is very important to
obtain satisfying results. Example metrics 4 and 5, for instance, express the average
timing behaviour of a system with regard to its timing constraints. They might mislead
an evolutionary algorithm and prevent it from finding system configurations fulfilling
all timing constraints, since met deadlines compensate linearly for missed deadlines.
For systems with hard real-time constraints, metrics with higher penalties for missed
deadline and fewer rewards for met deadlines can be more appropriate, since they lead
to a more likely rejection of system configurations violating hard deadline constraints.
The following example metric penalises violated deadlines in an exponential way
and can be used to optimise the timing properties of a system with hard real-time
constraints:

k∑
i=0

c
Ri−Di

i , ci > 1 constant

2.6.3 Defining the search space and controlling the exploration

The designer defines the current search space, by selecting and configuring a set
of chromosomes representing the desired search space. System parameters not
included inside the selected chromosomes remain immutable during the exploration.
Figure 2.22 shows this principle.

The set of chromosomes representing the search space serves as a blueprint for
specific individuals (phenotypes) used during exploration. The variation operators
(i.e. crossover and mutation) for these individuals are applied chromosome-wise.

The chromosomes are encoded and varied independently. There are two reasons
why independent encoding and variation have been chosen. First, it is easier to estab-
lish a constructively correct encoding on a small subset of design decisions. Such
an encoding scheme ensures that all chromosome values correspond to valid deci-
sions such that any chromosome variation is constructively valid. This improves the
optimisation process as it greatly reduces the effort of checking a generated design
for validity. It allows using the analysis engine of SymTA/S which requires correct
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design parameters to apply analysis (e.g. sum of time slots no longer than the period,
legal priority setting, etc.). Second, it is easy to add and remove design parameters
to the optimisation process, even dynamically, which is exploited in the exploration
framework.

Chromosomes can be defined arbitrarily as fine or coarse grain. This enables the
designer to define the search space very precisely. The designer can limit certain
parameters locally while giving others a more global scope. This way of defining
the search space represents a compositional approach to optimisation and allows us
to scale the search process. The designer can conduct several well-directed exploration
steps providing insight into the system’s performance dependencies. Based on this
knowledge she can then identify interesting design sub-spaces, worthy to be searched
in-depth or even completely. An a priori global exploration does not permit such
a flexibility and neglects the structure of the design space, giving the designer no
possibility to modify and select the exploration strategy. In the worst case, when
the composition of the design space is unfavourable, this can lead to non-satisfying
results with no possibility for the designer to intervene. In many approaches the only
possibility for the designer in such a case consists in restarting the exploration, hoping
for better results.

One important precondition for this approach to design space exploration is the
dynamic configurability of the search space. The exploration framework allows
the designer to redirect the exploration in a new direction without discarding
already obtained results. She can for example downsize the search space by fix-
ing parameters having the same values in (nearly) all obtained Pareto-optimal
solutions, or expand it with parameters not yet considered. Note that this method-
ology is more flexible than separate local parameter optimisation and subsequent
recombination.

2.6.4 Design space exploration loop

Figure 2.23 shows the design space exploration loop performed in the exploration
framework [28]. The ‘Optimisation controller’ is the central element. It is connected
to the ‘Scheduling analysis’ and to an ‘Evolutionary optimiser’. The ‘Scheduling
analysis’ checks the validity of a given system parameter set, that is represented by
an individual, in the context of the overall heterogeneous system. The ‘Evolution-
ary optimiser’ is responsible for the problem-independent part of the optimisation
problem, i.e. elimination of individuals and selection of interesting individuals for
variation. Currently, SPEA2 (Strength Pareto Evolutionary Algorithm 2) [29] and
FEMO (fair evolutionary multi-objective optimiser) [30] are used for this part. They
are coupled via PISA (Platform and Programming Language Independent Interface
for Search algorithms) [31], discussed in the previous chapter by Künzli.

Note that the selection and elimination strategy depends on the used multi-
objective optimiser. For instance FEMO [30], eliminates all dominated individuals
in every iteration and pursue a fair sampling strategy, i.e. each parent participates in
the creation of the same number of offspring. This leads to a uniform search in the
neighbourhood of elitist individuals.
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Figure 2.23 Design space exploration loop

The problem-specific part of the optimisation problem is coded in the chromo-
somes and their variation operators.

Before the exploration loop can be started the designer has to select the desired
search space (see Section 2.6.1) and the optimisation objectives (see Section 2.6.2)
she wants to optimise. The chromosomes representing the search space are included in
the evolutionary optimisation, while all other system parameters remain immutable.
After the designer has selected the search space and the optimisation task, SymTA/S
is initialised with the immutable part of the system and the selected chromosomes are
used as blueprints to create the initial population.

For each individual in the population the following is done:

• Step 1.1: The chromosomes of the considered individual are applied to the
SymTA/S engine. This completes the system and it can be analysed.

• Step 1.2 + 1.3: Each optimisation objective requests the necessary system
properties of the analysed system to calculate its fitness value.

• Step 1.4: The fitness values are communicated to the ‘Optimisation controller’.

Once these four steps are performed for each individual inside the population
the ‘Optimisation controller’ sends a list of all individuals and their fitness values to
the ‘Evolutionary optimiser’ (step 2). Based on the fitness values the ‘Evolutionary
optimiser’ creates two lists: a list of individuals which are to be deleted and a list of
individuals selected for variation and sends them back to the ‘Optimisation controller’
(step 3). Based on the two lists the ‘Optimisation controller’ then manipulates the
population, i.e. she deletes the according individuals and creates new offspring based
on the individuals selected for variation and adds them to the population (step 4).
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This completes the processing of one generation. The whole loop begins again
with the new created population.

After each iteration the designer can choose to modify the search space. This
consists, as explained in Section 2.6.3, in adding/removing chromosomes to/from the
individuals. The re-evaluation of the fitness values is performed automatically and
the next exploration iteration is then started.

The performance of the search procedure in SymTA/S is affected by the search
strategy of the optimiser, the coding of the chromosomes and their variation opera-
tions as well as the choice of the optimisation objectives. As far as the optimiser is
concerned, it is known that no general purpose optimisation algorithm exists that is
able to optimise effectively all kinds of problems [32].

2.7 Sensitivity analysis

Most analysis techniques known from literature give a pure ‘Yes/No’ answer regarding
the timing behaviour of a specific system with respect to a set of timing constraints
defined for that system. Usually, the analyses consider a predefined set of input
parameters and determine the response times, and thus, the schedulability of the
system.

However, in a realistic system design process it is important to get more infor-
mation with respect to the effects of parameter variations on system performance,
as such variations are inevitable during implementation and integration. Capturing
the bounds within which a parameter can be varied without violating the timing con-
straints offers more flexibility for the system designer and supports future changes.
These bounds shows how ‘sensitive’ the system or system parts are to system
configuration changes.

Liu and Layland [1] defined a maximum load bound on a resource that guar-
antees the schedulability of that resource when applying a rate-monotonic priority
assignment scheme. The proposed algorithm is limited to specific system configura-
tions: periodically activated tasks, tasks with deadlines at the end of their periods
and tasks that do not share common resources (like semaphores) or that do not
inter-communicate.

Later on, Lehoczky [33] extended this approach to systems with arbitrary task
priority assignment. However, his approach does not go beyond the limitations
mentioned above. Steve Vestal [34] proposed a fixed-priority sensitivity analysis for
tasks with linear computation times and linear blocking time models. His approach
is still limited to tasks with periodic activation patterns and deadlines equal to the
period. Punnekkat [35] proposed an approach that uses a combination of a binary
search algorithm and a slightly modified version of the response time schedulability
tests proposed by Audsley and Tindell [7,36].

In the following is presented a brief overview about the sensitivity analysis algo-
rithm and the analysis models and metrics used in SymTA/S. As already mentioned
above, different approaches were proposed for the sensitivity analysis of different sys-
tem parameters. However, these approaches can perform only single resource analysis
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as they are bounded by local constraints (tasks deadlines). Due to a fast increase of
system complexity and heterogeneity, the current distributed systems usually have
to satisfy global constraints rather than local ones. End-to-end deadlines or global
buffer limits are an example of such constraints. Hence, the formal sensitivity anal-
ysis approaches used at resource level cannot be transformed and applied at system
level, as this implies huge effort and less flexibility.

The sensitivity analysis framework used in SymTA/S combines a binary search
technique and the compositional analysis model implemented in SymTA/S. As
described in Section 2.3, SymTA/S couples the local scheduling analysis algorithms
into a global analysis model.

Since deadlines are the major constraints in real-time systems it makes sense to
measure the sensitivity of path latencies. As the latency of a path is determined by
the response times of all tasks along that path, and the response time of a task directly
depends on its core execution time, the following represent important metrics for the
sensitivity analysis.

1. Maximum variation of the core execution time of a task without violating the
system constraints or the system schedulability. If the system is not schedulable
or constraints are violated then find the maximum value of the task core execution
time that leads to a conforming system.

2. Minimum speed of a resource. The decrease of a resource speed directly affects
the core execution times of all tasks mapped on that resource but also reduces
the energy required by that resource. If the system is currently not schedulable or
constraints are violated then find the minimum resource speed that determines a
conforming system.

Variation of task execution/communication times: The search interval is determined
by the current WCET value tcore,max and the value corresponding to the maximum
utilisation bound of the resource holding the analysed task. If the current utilisation
of resource R is denoted by Rload and the maximum utilisation bound of resource R

is denoted by Rload,max, then the search interval is determined by:

[tcore,max; tcore,max + P × (Rload,max − Rload)]
where P represents the activation period in the case of periodic tasks or the minimum
inter-arrival time in the case of sporadic tasks. If, for the current system configuration,
the constraints are violated or the system is not schedulable then the search interval
is determined by [0; tcore,max].

The algorithm selects the interval middle value and verifies whether or not the
constraints are satisfied for the configuration obtained by replacing the task WCET
value with the selected value. If ‘yes’, then the upper half of the interval becomes
the new search interval, otherwise the lower half of the interval is searched. The
algorithm iterates until the size of the search interval becomes smaller than a specific
predefined value (abort condition).

Variation of resource speed: The same algorithm is applied to find the minimum speed
at which a resource can operate. If, for the current configuration, the constraints
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Figure 2.24 System-on-chip example

are satisfied and the system is schedulable then the search space is determined
by [Rspeed,min; Rspeed] where Rspeed is the current speed factor (usually 1) and
Rspeed,min is the speed factor corresponding to the maximum resource utilisation
bound. Otherwise, the search space is [Rspeed; Rspeed,max] where Rspeed,max is the
speed factor corresponding to the maximum operational speed of that resource.

The ideal value for the maximum resource utilisation bound is 100 per cent. How-
ever, the experiments performed on different system models show that, for utilisation
values above 98 per cent, the run-time of the sensitivity analysis algorithm drastically
increases. This is due to an increase of the analysed period (busy period) in case of
local analysis scheduling algorithms. Moreover, a resource load above 98 per cent
is not realistic in practice due to variations of the system clock frequency or other
distorting elements.

2.8 System-on-chip example

In this section, using SymTA/S, the techniques from the previous sections are applied
to analyse the performance of a system-on-chip example shown in Figure 2.24.

The embedded system in Figure 2.24 represents a hypothetical SoC consisting of a
micro-controller (uC ), a ‘DSP’ and dedicated hardware (‘HW’), all connected via an
on-chip bus (‘BUS’). ‘DSP’ and uC are equipped with local memory. The ‘HW’ acts
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Table 2.3 Core execution and communication times

Computation task C Communication task C

mon [10,12] c1 [8,8]
sys_if [15,15] c2 [4,4]
fltr [12,15] c3 [4,4]
upd [5,5] c4 [4,4]
ctrl [20,23] c5 [4,4]

Table 2.4 Event models at exter-
nal system inputs

Input s/p Pin Jin dmin,in

sens1 s 1000 0 0
sens2 s 750 0 0
sens3 s 600 0 0
sig_in p 60 0 0
tmr p 70 0 0

as an interface to a physical system. It runs one task (sys_if ) which issues actua-
tor commands to the physical system and collects routine sensor readings. sys_if is
controlled by task ctrl, which evaluates the sensor data and calculates the necessary
actuator commands. ctrl is activated by a periodic timer (‘tmr’) and by the arrival of
new sensor data (AND-activation in a cycle). Two initial tokens are assumed in the
cycle.

The physical system is additionally monitored by three sensors (sens1–sens3),
which produce data sporadically as a reaction to irregular system events. This data
is registered by an OR-activated monitor task (mon) on the uC, which decides how
to update the control algorithm. This information is sent to task upd on the ‘DSP’,
which updates parameters into shared memory.

The DSP additionally executes a signal-processing task ( fltr), which filters a
stream of data arriving at input sig_in, and sends the processed data via output sig_out.
All communication, except for shared-memory on the ‘DSP’, is carried out by com-
munication tasks c1–c5 over the on-chip ‘BUS’. Core execution times for each task
are shown in Table 2.3.

The event models in Table 2.4 are assumed at system inputs.
In order to function correctly, the system has to satisfy a set of path latency

constraints (Table 2.5). Constraints 1 and 3 have been explicitly specified by the
designer. The ‘2nd’ constraint implicitly follows from the fact that the cycle con-
tains two initial tokens. Constraint 3 is defined for causally dependent tokens [20].
Additionally, a maximum jitter constraint is imposed at output sig_out (Table 2.6).
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Table 2.5 Path latency constraints

Constraint # Path Maximum latency

1 sens1, sens2, sens3 → upd 70
2 sig_in→ sig_out 60
3 cycle (ctrl → ctrl) 140

Table 2.6 Output jitter constraint

Constraint # Output Event model period Event model jitter

4 sig_out Psig_out = 60 Jsig_out,max = 18

Table 2.7 Scheduling analysis results on uC

Task s/p Activating EM r s/p Output EM

mon s P (250) J (500) d(0) [10, 36] s P (250) J (526) d(10)

2.8.1 Analysis

Static priority scheduling is used both on the DSP and the BUS. The priorities on the
BUS and DSP, respectively, are assigned as follows: c1 > c2 > c3 > c4 > c5 and
f ltr > upd > ctrl.

Performance analysis results were obtained using SymTA/S [8]. In the first step,
SymTA/S performs OR-concatenation of the output event models of sens1–sens3 and
obtains the following ‘sporadic’ activating event model for task mon:

Pact = POR = 250, Jact = JOR = 500

The large jitter is due to the fact that input events happening at the same time lead to
a burst of up to three activations (no correlation between sens1–sens3 is assumed).
Since task ‘mon’ is the only task mapped onto uC, local scheduling analysis can
now be performed for this resource, in order to calculate the minimum and maximum
response times, as well as the output event model of task mon. The results of this
analysis are shown in Table 2.7.

The worst-case response time of task mon increases compared to its worst-case
core execution time, since later activations in a burst have to wait for the completion
of the previous activations. The output jitter increases by the difference between
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Table 2.8 Context-blind and sensitive analysis

Computation Respblind Respsens Communication Respblind Respsens
task tasks

mon [10,36] [10,36] c1 [8,8] [8,8]
sys_if [15,17] [15,15] c2 [4,12] [4,4]
fltr [12,15] [12,15] c3 [4,16] [8,12]
upd [5,22] [5,22] c4 [4,28] [8,20]
ctrl [20,53] [20,53] c5 [4,32] [8,32]

maximum and minimum core execution times compared to the activation jitter. The
minimum distance between output events equals the minimum core execution time.

At this point, the rest of the system cannot be analysed, because on every resource
activating event models for at least one task are missing. SymTA/S therefore gen-
erates a conservative starting-point by propagating all output event models along
all paths until an initial activating event model is available for each task. SymTA/S
then checks that the system cannot be overloaded in the long term. This calculation
requires only activation periods and worst-case core execution times and thus can be
done before response-time calculation.

System-level analysis can now be performed by iterating local scheduling anal-
ysis and event model propagation. SymTA/S determines that task ctrl belongs to
a cycle, checks that AND-concatenation is selected and then proceeds to analyse
the corresponding feed-forward system. SymTA/S executes until a fix-point for the
whole system has been reached, and then compares the calculated performance values
against performance constraints.

Table 2.8 shows the calculated response times of the computation and communi-
cation tasks with and without taking into account inter contexts. As can be observed,
the exploitation of context information leads to much tighter response time intervals
in the given example. This in turn reduces the calculated worst-case values for the
constrained parameters. Table 2.9 shows that, in contrast to the inter context-blind
analysis, all system constraints are satisfied when performance analysis takes inter
context into account. In other words, a context-blind analysis would have discarded
a solution which in reality is valid.

2.8.2 Optimisations

In this section, the architecture optimisation of the system-on-chip example is shown.
Optimisation objectives are the four defined constraints. We try to minimise the
latencies on paths 1–3 and the jitter at output sig_out.

In the first experiment the search space consists of the priority assignments on the
BUS and the DSP. Table 2.10 shows the existing Pareto-optimal solutions. In the first
two columns, tasks are ordered by priority, highest priority on the left. In the last four
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Table 2.9 Constraint values for context-blind and sensitive analysis

# Constraint Inter context-blind Inter context-sensitive

1 sens1, sens2, sens3 → upd 74 70
2 sig_in → sig_out 35 27
3 cycle (ctrl → ctrl) 130 120
4 Jsig_out ,max = 18 11 3

Table 2.10 Pareto optimal solutions

# Bus tasks DSP tasks Constrained values

1 2 3 4

1 c1, c2, c3, c4, c5 upd, fltr, ctrl 55 42 120 18
2 c1, c2, c4, c3, c5 upd, fltr, ctrl 59 42 112 18
3 c2, c1, c4, c5, c3 upd, fltr, ctrl 63 42 96 18
4 c1, c2, c3, c4, c5 fltr, upd, ctrl 70 27 120 3

columns, the actual value for all four constrained values is given. The best reached
values for each constraint are emphasised.

As can be observed there are several possible solutions, each with its own advan-
tages and disadvantages. We also observe that in each solution one constraint is only
barely satisfied. A designer might want to find some alternative solutions where all
constraints are fulfilled with a larger margin to the respective maximum values.

The search space is now extended by using a shaper at the output of task mon. It
is making sense to perform traffic shaping at this location, because the OR-activation
of mon can lead, in the worst-case scenario, to bursts at its output. That is, if all three
‘sensors’ trigger at the same time, mon will send three packets over the BUS with a
distance of 10 time units, which is its minimum core execution time. This transient
load peak affects the overall system performance in a negative way. A shaper is able to
increase this minimum distance in order to weaken the global impact of the worst-case
burst.

Table 2.11 shows Pareto-optimal solutions using a shaper at the output of mon
extending the minimum distance of successive events to 12 time units, and thus
weakening the global impact of the worst-case burst. The required buffer for this
shaper is minimal, because at most one packet needs to be buffered at any time.

We observe that several new solutions are found. Not all best values for each
constraint from the first attempt are reached, yet configurations 3 and 5 are interesting
since they are more balanced regarding the constraints.
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Table 2.11 Pareto optimal solutions: shaper at mon
output

# BUS tasks DSP tasks Constrained values

1 2 3 4

1 c2, c1, c3, c4, c5 upd, fltr, crtl 59 42 120 18
2 c1, c2, c4, c3, c5 upd, fltr, ctrl 63 42 112 18
3 c3, c2, c1, c4, c5 fltr, upd, ctrl 64 35 120 11
4 c2, c1, c5, c4, c3 upd, fltr, ctrl 67 42 96 18
5 c2, c3, c1, c5, c4 fltr, upd, ctrl 68 31 134 7

Table 2.12 Sensitivity analysis of tasks
WCETs

Task Current WCET Max WCET Slack

c1 8 8 0
c2 4 4 0
c3 4 7.65 3.65
c4 4 10.65 6.65
c5 4 22.5 18.5
upd 5 5 0
fltr 15 15 0
ctrl 23 30 7
sys_if 15 36 21
mon 12 15.66 3.66

2.8.3 Sensitivity analysis

This section presents the results of the sensitivity analysis algorithms described in
Section 2.7 applied to system configuration #2 shown in Table 2.10. Table 2.12 shows
the current WCET, the maximum WCET allowed as well as the free WCET slack
obtained for the particular configuration.

The bar diagrams in Figure 2.25 show the system flexibility with respect to
variations of tasks WCETs. It can be easily stated that the tasks and channels along
the filter path (c1, c2, fltr) are very inflexible due to the jitter constraint defined at
sig_out.

Table 2.13 presents the minimum resource speed factors that still guarantee that
the system meets all its constraints. A particular observation can be made considering
the speed of BUS. The results in Table 2.12 show that c1 and c2 are totally inflex-
ible. However, Table 2.13 shows that the DSP can be speed-down with maximum
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Figure 2.25 Sensitivity analysis results. (a) Tasks WCETS; (b) speed factors

26 per cent. By applying the sensitivity analysis for c1 and c2 only the WCET has
been modified, the best-case execution time (BCET) remaining constant. Contrary,
by changing the BUS speed both values, WCET and BCET, were changed. This led
to a smaller jitter at channel output and to a higher flexibility for the BUS speed.

Figure 2.25(b) shows the results presented in Table 2.13. The timing constraints
of filter-path (c1, c2, f ltr) and system-reactive-path (mon, c3, upd) lead to rigid DSP
properties with respect to later system changes.

2.9 Conclusions

The component integration step is critical in MpSoC design since it introduces com-
plex component performance dependencies, many of which cannot be fully overseen
by anyone in a design team. Finding simulation patterns covering all corner cases
will soon become virtually impossible as MpSoCs grow in size and complexity, and
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Table 2.13 Sensitivity analysis of resource
speed factors

Resource Current factor Min factor Slack

HW 1 0.42 0.58
DSP 1 1 0
BUS 1 0.74 0.26
uC 1 0.77 0.23

performance verification is increasingly unreliable. In industry, there is an urgent
need for systematic performance verification support in MpSoC design.

The majority of work in formal real-time analysis can be nicely applied to indi-
vidual, local components or subsystems. However, the well-established view on
scheduling analysis has been shown to be incompatible with the component inte-
gration style which is common practice in MpSoC design due to heavy component
reuse. The recently adopted event stream view on component interactions represents
a significant improvement for all kinds of system performance related issues.

First, the stream model elegantly illustrates the consequences of (a) resource shar-
ing and (b) component integration, two of the main sources of complexity. This helps
to identify previously unknown global performance dependencies, while tackling the
scheduling problem itself locally where it can be overseen.

Second, the use of intuitive stream models such as periodic events, jitter, burst
and sporadic streams, allows us to adopt existing local analysis and verification
techniques. Essentially, SymTA/S provides automatic interfacing and adaptation
among the most popular and practically used event stream models. In other words,
SymTA/S is the enabling technology for the reuse of known local component design
and verification techniques without compromising global analysis.

In this chapter, the basic ideas underlying the SymTA/S technology are presented.
SymTA/S has a large variety of features that enable the analysis of complex embed-
ded applications which can be found in practice. This includes multi-input tasks with
complex activation functions, cyclic functional dependencies between tasks, systems
with mutually exclusive execution modes and correlated task execution (intra and
inter contexts). These powerful concepts make SymTA/S a unique performance anal-
ysis tool that verifies end-to-end deadlines, buffer over-/underflows, and transient
overloads. SymTA/S eliminates key performance pitfalls and systematically guides
the designer to likely sources of constraint violations.

And the analysis with SymTA/S is extremely fast (10 s for the system in
Section 2.8, including optimisation). The turn-around times are within seconds. This
opens the door to all sorts of explorations, which is absolutely necessary for system
optimisation. SymTA/S uses genetic algorithms to automatically optimise systems
with respect to multiple goals such as end-to-end latencies, cycles, buffer memory
and others. Exploration is also useful for sensitivity analysis in order to determine
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slack and other popular measures of flexibility. This is specifically useful in systems
which might experience later changes or modifications, a design scenario often found
in industry. A large set of experiments demonstrates the application of SymTA/S and
the usefulness of the results.

The SymTA/S technology was already applied in case studies in telecommuni-
cation, multimedia and automobile manufacturing projects. The cases had a very
different focus. In one telecommunications project, a severe transient-fault sys-
tem integration problem, that not even prototyping could solve, was resolved. In
the multimedia case study, a complex two-stage dynamic memory scheduler was
modelled and analysed to derive maximum response times for buffer sizing and pri-
ority assignment. In several automotive studies, it was shown how the technology
enables a formal software certification procedure. The case studies have demon-
strated the power and wide applicability of the event flow interfacing approach. The
approach scales well to large, heterogeneous embedded systems including MpSoC.
And the modularity allows us to customise SymTA/S libraries to specific industrial
needs.

The SymTA/S approach can be used as a serious alternative or supplement to
performance simulation. The unique technology allows comprehensive system inte-
gration and provides much more reliable performance analysis results at far less
computation time.
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Chapter 3

Analysis and optimisation of
heterogeneous real-time embedded systems

Paul Pop, Petru Eles and Zebo Peng

3.1 Introduction

Embedded real-time systems have to be designed such that they implement correctly
the required functionality. In addition, they have to fulfil a wide range of
competing constraints: development cost, unit cost, reliability, security, size, perfor-
mance, power consumption, flexibility, time-to-market, maintainability, correctness,
safety, etc. Very important for the correct functioning of such systems are their timing
constraints: ‘the correctness of the system behaviour depends not only on the logical
results of the computations, but also on the physical instant at which these results are
produced’ [1].

Real-time systems have been classified as ‘hard’ real-time and ‘soft’ real-time
systems [1]. Basically, hard real-time systems are systems where failing to meet
a timing constraint can potentially have catastrophic consequences. For example,
a brake-by-wire system in a car failing to react within a given time interval can result
in a fatal accident. On the other hand, a multi-media system, which is a soft real-
time system, can, under certain circumstances, tolerate a certain amount of delays
resulting maybe in a patchier picture, without serious consequences besides some
possible inconvenience to the user.

Many real-time applications, following physical, modularity or safety constraints,
are implemented using ‘distributed architectures’. Such systems are composed of
several different types of hardware components, interconnected in a network. For
such systems, the communication between the functions implemented on different
nodes has an important impact on the overall system properties such as performance,
cost, maintainability, etc.
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The analysis and optimisation approaches presented are aimed towards
heterogeneous distributed hard real-time systems that implement safety-critical appli-
cations where timing constraints are of utmost importance to the correct behaviour
of the application.

The chapter is organised in ten sections. Section 3.2 presents the heterogeneous
real-time embedded systems addressed, and the type of applications considered.
Sections 3.3 and 3.4 introduce the current state-of-the-art on the analysis and optimisa-
tion of such systems. The rest of the chapter focuses in more detail on some techniques
for multi-cluster systems. The hardware and software architecture of multi-clusters,
together with the application model, are outlined in Section 3.5. Section 3.6 iden-
tifies partitioning and mapping and frame packing as design optimisation problems
characteristic to multi-clusters. We present an analysis for multi-cluster systems in
Section 3.7, and show, in Section 3.8, how this analysis can be used to drive the
optimisation of the packing of application messages to frames. The last two sections
present the experimental results of the frame packing optimisation and conclusions.

3.1.1 Automotive electronics

Although the discussion in this chapter is valid for several application areas, it is
useful, for understanding the distributed embedded real-time systems evolution and
design challenges, to exemplify the developments in a particular area.

If we take the example of automotive manufacturers, they were reluctant, until
recently, to use computer controlled functions onboard vehicles. Today, this attitude
has changed for several reasons. First, there is a constant market demand for increased
vehicle performance, more functionality, less fuel consumption and less exhausts, all
of these at lower costs. Then, from the manufacturers’ side, there is a need for
shorter time-to-market and reduced development and manufacturing costs. These,
combined with the advancements of semiconductor technology, which is delivering
ever-increasing performance at lower and lower costs, has led to the rapid increase
in the number of electronically controlled functions onboard a vehicle [2].

The amount of electronic content in an average car in 1977 had a cost of $110.
Currently, the cost is $1341, and it is expected that this figure will reach $1476 by
the year 2005, continuing to increase because of the introduction of sophisticated
electronics found until now only in high-end cars [3,4]. It is estimated that in 2006
the electronics inside a car will amount to 25 per cent of the total cost of the vehicle
(35 per cent for the high-end models), a quarter of which will be due to semiconductors
[3,5]. High-end vehicles currently have up to 100 microprocessors implementing and
controlling various parts of their functionality. The total market for semiconductors
in vehicles is predicted to grow from $8.9 billions in 1998 to $21 billion in 2005,
amounting to 10 per cent of the total worldwide semiconductors market [2,3].

At the same time with the increased complexity, the type of functions imple-
mented by embedded automotive electronics systems has also evolved. Thanks to the
semiconductors revolution, in the late 1950s, electronic devices became small enough
to be installed on board vehicles. In the 1960s the first analogue fuel injection system
appeared, and in the 1970s analogue devices for controlling transmission, carburetor,
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and spark advance timing were developed. The oil crisis of the 1970s led to the
demand of engine control devices that improved the efficiency of the engine, thus
reducing fuel consumption. In this context, the first microprocessor-based injection
control system appeared in 1976 in the United States. During the 1980s, more sophis-
ticated systems began to appear, such as electronically controlled braking systems,
dashboards, information and navigation systems, air conditioning systems, etc. In the
1990s, development and improvement have concentrated in the areas such as safety
and convenience. Today, it is not uncommon to have highly critical functions like
steering or braking implemented through electronic functionality only, without any
mechanical backup, as is the case in drive-by-wire and brake-by-wire systems [6,7].

The complexity of electronics in modern vehicles is growing at a very high pace,
and the constraints – in terms of functionality, performance, reliability, cost and
time-to-market – are getting tighter. Therefore, the task of designing such systems
is becoming increasingly important and difficult at the same time. New design
techniques are needed, which are able to

• successfully manage the complexity of embedded systems
• meet the constraints imposed by the application domain
• shorten the time-to-market
• reduce development and manufacturing costs

The success of such new design methods depends on the availability of analysis and
optimisation techniques, beyond those corresponding to the state-of-the-art, which
are presented in the next section.

3.2 Heterogeneous real-time embedded systems

3.2.1 Heterogeneous hardware architecture

Currently, distributed real-time systems are implemented using architectures where
each node is dedicated to the implementation of a single function or class of functions.
The complete system can be, in general, composed of several networks, intercon-
nected with each other (see Figure 3.1). Each network has its own communication

I/O interface

Comm. controller

CPU

RAM

ROM

ASIC

...
Sensors/actuators

Node

Figure 3.1 Distributed hard real-time systems
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protocol, and inter-network communication is via a gateway which is a node
connected to both networks. The architecture can contain several such networks,
having different types of topologies.

A network is composed of several different types of hardware components, called
‘nodes’. Typically, every node, also called ‘electronic control unit’ (ECU), has a
communication controller, CPU, RAM, ROM and an I/O interface to sensors and
actuators. Nodes can also have ASICs in order to accelerate parts of their functionality.

The microcontrollers used in a node and the type of network protocol employed
are influenced by the nature of the functionality and the imposed real-time, fault-
tolerance and power constraints. In the automotive electronics area, the functionality
is typically divided in two classes, depending on the level of criticalness:

• Body electronics refers to the functionality that controls simple devices such as
the lights, the mirrors, the windows, the dashboard. The constraints of the body
electronic functions are determined by the reaction time of the human operator that
is in the range of 100–200 ms. A typical body electronics system within a vehicle
consists of a network of 10–20 nodes that are interconnected by a low bandwidth
communication network such as LIN. A node is usually implemented using a
single-chip 8-bit microcontroller (e.g. Motorol-a 68HC05 or Motorola 68HC11)
with some hundred bytes of RAM and kilobytes of ROM, I/O points to con-
nect sensors and to control actuators, and a simple network interface. Moreover,
the memory size is growing by more than 25 per cent each year [6,8].

• System electronics are concerned with the control of vehicle functions that are
related to the movement of the vehicle. Examples of system electronics appli-
cations are engine control, braking, suspension, vehicle dynamics control. The
timing constraints of system electronic functions are in the range of a couple of
milliseconds to 20 ms, requiring 16- or 32-bit microcontrollers (e.g. Motorola
68332) with about 16 kB of RAM and 256 kB of ROM. These microcontrollers
have built-in communication controllers (e.g. the 68HC11 and 68HC12 automo-
tive family of microcontrollers have an on-chip CAN controller), I/O to sensors
and actuators, and are interconnected by high bandwidth networks [6,8].

Section 3.5 presents more details concerning the hardware and software architecture
considered by our analysis and optimisation techniques.

3.2.2 Heterogeneous communication protocols

As the communications become a critical component, new protocols are needed that
can cope with the high bandwidth and predictability required.

There are several communication protocols for real-time networks. Among the
protocols that have been proposed for vehicle multiplexing, only the Controller Area
Network (CAN) [9], the Local Interconnection Network (LIN) [10] and SAE’s J1850
[11] are currently in use on a large scale. Moreover, only a few of them are suitable
for safety-critical applications where predictability is mandatory [12]. Rushby [12]
provides a survey and comparison of communication protocols for safety-critical
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embedded systems. Communication activities can be triggered either dynamically, in
response to an event, or statically, at predetermined moments in time.

• Therefore, on one hand, there are protocols that schedule the messages statically
based on the progression of time, for example, the SAFEbus [13] and SPIDER
[14] protocols for the avionics industry, and the TTCAN [15] and Time-Triggered
Protocol (TTP) [1] intended for the automotive industry.

• On the other hand, there are several communication protocols where message
scheduling is performed dynamically, such as CAN used in a large number of
application areas including automotive electronics, LonWorks [16] and Profibus
[17] for real-time systems in general, etc. Out of these, CAN is the most well
known and widespread event-driven communication protocol in the area of
distributed embedded real-time systems.

• However, there is also a hybrid type of communication protocols, such as Byte-
flight [18] introduced by BMW for automotive applications and the FlexRay
protocol [19], that allows the sharing of the bus by event-driven and time-driven
messages.

The time-triggered protocols have the advantage of simplicity and predictability,
while event-triggered protocols are flexible and have low cost. Moreover, protocols
such as TTP offer fault-tolerant services necessary in implementing safety-critical
applications. However, it has been shown [20] that event-driven protocols such as
CAN are also predictable, and fault-tolerant services can also be offered on top of
protocols such as the TTCAN. A hybrid communication protocol such as FlexRay
offers some of the advantages of both worlds.

3.2.3 Heterogeneous scheduling policies

The automotive suppliers will select, based on their own requirements, the scheduling
policy to be used in their ECU. The main approaches to scheduling are

• Static cyclic scheduling algorithms are used to build, off-line, a schedule table with
activation times for each process, such that the timing constraints of processes
are satisfied.

• Fixed priority scheduling (FPS). In this scheduling approach each process has a
fixed (static) priority which is computed off-line. The decision on which ready
process to activate is taken on-line according to their priority.

• Earliest deadline first (EDF). In this case, that process will be activated which
has the nearest deadline.

Typically, processes scheduled off-line using static cyclic scheduling are non-pre-
emptable, while processes scheduled using techniques such as FPS and EDF are
pre-emptable. Another important distinction is between the event- and time-triggered
approaches.

• Time-triggered. In the time-triggered approach activities are initiated at prede-
termined points in time. In a distributed time-triggered system it is assumed
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that the clocks of all nodes are synchronised to provide a global notion of time.
Time-triggered systems are typically implemented using ‘non-pre-emptive static
cyclic scheduling’, where the process activation or message communication is
done based on a schedule table built off-line.

• Event-triggered. In the event-triggered approach activities happen when a signif-
icant change of state occurs. Event-triggered systems are typically implemented
using ‘pre-emptive fixed-priority-based scheduling’, or ‘earliest deadline first’,
where, as response to an event, the appropriate process is invoked to service it.

There has been a long debate in the real-time and embedded systems communities
concerning the advantages of each approach [1,21,22]. Several aspects have been
considered in favour of one or the other approach, such as flexibility, predictability,
jitter control, processor utilisation and testability.

Lönn and Axelsson [23] have performed an interesting comparison of ET
and TT approaches from a more industrial, in particular automotive perspective.
The conclusion is that one has to choose the right approach, depending on the
particularities of the application.

For certain applications, several scheduling approaches can be used together. Effi-
cient implementation of new, highly sophisticated automotive applications, entails
the use of time-triggered process sets together with event-triggered ones implemented
on top of complex distributed architectures.

3.2.4 Distributed safety-critical applications

Considering the automotive industry, the way functionality has been distributed on
an architecture has evolved over time. Initially, distributed real-time systems were
implemented using architectures where each node is dedicated to the implementation
of a single function or class of functions, allowing the system integrators to purchase
nodes implementing required functions from different vendors, and to integrate them
into their system [24]. There are several problems related to this restricted mapping
of functionality:

• The number of such nodes in the architecture has exploded, reaching, for example,
more than 100 in a high-end car, incurring heavy cost and performance penalties.

• The resulting solutions are sub-optimal in many aspects, and do not use the avail-
able resources efficiently in order to reduce costs. For example, it is not possible to
move a function from one node to another node where there are enough available
resources (e.g. memory, computation power).

• Emerging functionality, such as brake-by-wire in the automotive industry, is inher-
ently distributed, and achieving an efficient fault-tolerant implementation is very
difficult in the current setting.

This has created a huge pressure to reduce the number of nodes by integrating
several functions in one node and, at the same time, to distribute certain functionality
over several nodes (see Figure 3.2). Although an application is typically distributed
over one single network, we begin to see applications that are distributed across
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Functions of the first application
Functions of the second application

Functions of the third application

Figure 3.2 Distributed safety-critical applications

several networks. For example, in Figure 3.2, the third application, represented as
black dots, is distributed over two networks.

This trend is driven by the need to further reduce costs, improve resource usage,
but also by application constraints such as having to be physically close to particular
sensors and actuators. Moreover, not only are these applications distributed across
networks, but their functions can exchange critical information through the gateway
nodes.

3.3 Schedulability analysis

There is a large quantity of research [1,25,26] related to scheduling and schedulability
analysis, with results having been incorporated in analysis tools such as TimeWiz [27],
RapidRMA [28], RTA-OSEK Planner [29] and Aires [30]. The tools determine if the
timing constraints of the functionality are met, and support the designer in exploring
several design scenarios, and help to design optimised implementations.

Typically, the timing analysis considers independent processes running on single
processors. However, very often functionality consists of distributed processes that
have data and control dependencies, exclusion constraints, etc. New schedulability
analysis techniques are needed which can handle distributed applications, data and
control dependencies, and accurately take into account the details of the communica-
tion protocols that have an important influence on the timing properties. Moreover,
highly complex and safety-critical applications can in the future be distributed across
several networks, and can use different, heterogeneous, scheduling policies.

Pre-emptive scheduling of independent processes with static priorities running
on single-processor architectures has its roots in the work of Liu and Layland [31].
The approach has been later extended to accommodate more general computational
models and has also been applied to distributed systems [32]. Several surveys
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on this topic have been published [25,26,33]. Static cyclic scheduling of a set of
data dependent software processes on a multiprocessor architecture has also been
intensively researched [1,34].

Lee et al [35] has proposed an earlier deadline first strategy for non-pre-emptive
scheduling of process with possible data dependencies. Pre-emptive and non-pre-
emptive static scheduling are combined in the cosynthesis environment proposed
by Dave et al [36,37]. In many of the previous scheduling approaches researchers
have assumed that processes are scheduled independently. However, processes can be
sporadic or aperiodic, are seldom independent and normally they exhibit precedence
and exclusion constraints. Knowledge regarding these dependencies can be used
in order to improve the accuracy of schedulability analyses and the quality of the
produced schedules [38].

It has been claimed [22] that static cyclic scheduling is the only approach that
can provide efficient solutions to applications that exhibit data dependencies. How-
ever, advances in the area of fixed priority pre-emptive scheduling show that such
applications can also be handled with other scheduling strategies [39].

One way of dealing with data dependencies between processes in the context
of static priority-based scheduling has been indirectly addressed by the extensions
proposed for the schedulability analysis of distributed systems through the use of the
‘release jitter’ [32]. Release jitter is the worst-case delay between the arrival of a
process and its release (when it is placed in the ready-queue for the processor) and
can include the communication delay due to the transmission of a message on the
communication channel.

In References 32 and 40 time ‘offset’ relationships and ‘phases’, respectively,
are used in order to model data dependencies. Offset and phase are similar concepts
that express the existence of a fixed interval in time between the arrivals of sets of
processes. The authors show that by introducing such concepts into the computational
model, the pessimism of the analysis is significantly reduced when bounding the time
behaviour of the system. The concept of ‘dynamic offsets’ has been later introduced
and used to model data dependencies [41].

Currently, more and more real-time systems are used in physically distributed
environments and have to be implemented on distributed architectures in order to
meet reliability, functional, and performance constraints.

Researchers have often ignored or very much simplified the communication
infrastructure. One typical approach is to consider communications as processes with
a given execution time (depending on the amount of information exchanged) and to
schedule them as any other process, without considering issues such as communica-
tion protocol, bus arbitration, packaging of messages, clock synchronisation, etc. [40].

Tindell and Clark [32] integrate processor and communication scheduling and
provide a ‘holistic’ schedulability analysis in the context of distributed real-time
systems. The validity of the analysis has been later confirmed in Reference 42.

In the case of a distributed system the response time of a process also depends on
the communication delay due to messages. In Reference 32 the analysis for messages
is done in a similar way as for processes: a message is seen as a non-pre-emptable
process that is ‘running’ on a bus. The response time analyses for processes and
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messages are combined by realising that the ‘jitter’ (the delay between the ‘arrival’
of a process – the time when it becomes ready for execution – and the start of its
execution) of a destination process depends on the ‘communication delay’ (the time
it takes for a message to reach the destination process, from the moment it has been
produced by the sender process) between sending and receiving a message. Several
researchers have provided analyses that bound the communication delay for a given
communication protocol:

• CAN protocol [20];
• time-division multiple access protocol [32];
• asynchronous transfer mode protocol [43];
• token ring protocol [44],
• fiber distributed data interface protocol [45].
• time-triggered protocol [46];
• FlexRay protocol [47].

Based on their own requirements, the suppliers choose one particular scheduling
policy to be used. However, for certain applications, several scheduling approaches
can be used together.

One approach to the design of such systems, is to allow ET and TT processes to
share the same processor as well as static (TT) and dynamic (ET) communications
to share the same bus. Bus sharing of TT and ET messages is supported by protocols
which support both static and dynamic communication [19]. We have addressed the
problem of timing analysis for such systems [47].

A fundamentally different architectural approach to heterogeneous TT/ET
systems is that of heterogeneous multi-clusters, where each cluster can be either TT
or ET. In a ‘time-triggered cluster’ processes and messages are scheduled according
to a static cyclic policy, with the bus implementing a TDMA protocol, for example,
the time-triggered protocol. On ‘event-triggered clusters’ the processes are scheduled
according to a priority-based pre-emptive approach, while messages are transmitted
using the priority-based CAN bus. In this context, we have proposed an approach
to schedulability analysis for multi-cluster distributed embedded systems [48]. This
analysis will be outlined in Section 3.7.

When several event-driven scheduling policies are used in a heterogeneous
system, another approach [49] to the verification of timing properties is to couples
the analysis of local scheduling strategies via an event interface model.

3.4 Design optimisation

3.4.1 Traditional design methodology

There are several methodologies for real-time embedded systems design. The aim
of a design methodology is to coordinate the design tasks such that the time-to-
market is minimised, the design constraints are satisfied and various parameters are
optimised.
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The main design tasks that have to be performed are described in the following
sections.

3.4.1.1 Functional analysis and design

The functionality of the host system, into which the electronic system is embedded,
is normally described using a formalism from that particular domain of application.
For example, if the host system is a vehicle, then its functionality is described in terms
of control algorithms using differential equations, which are modelling the behaviour
of the vehicle and its environment. At the level of the embedded real-time system
which controls the host system, the functionality is typically described as a set of
functions, accepting certain inputs and producing some output values.

The typical automotive application is a control application. The controller reads
inputs from sensors, and uses the actuators to control the physical environment (the
vehicle). A controller can have several modes of operation, and can interact with
other electronic functions, or with the driver through switches and instruments.

During the functional analysis and design stage, the desired functionality is spec-
ified, analysed and decomposed into sub-functions based on the experience of the
designer. Several suppliers and manufacturers have started to use tools such as State-
mate [50], Matlab/Simulink [51], ASCET/SD [52] and SystemBuild/ MatrixX [53]
for describing the functionality, in order to eliminate the ambiguities and to avoid
producing incomplete or incoherent specifications.

At the level of functional analysis the exploration is currently limited to evaluat-
ing several alternative control algorithms for solving the control problem. Once the
functionality has been captured using tools such as Matlab/Simulink, useful explo-
rations can involve simulations of executable specifications in order to determine the
correctness of the behaviour, and to assess certain properties of chosen solutions.

3.4.1.2 Architecture selection and mapping

The architecture selection task decides what components to include in the hardware
architecture and how these components are connected.

According to current practice, architecture selection is an ad hoc process, based
on the experience of the designer and previous product versions.

The mapping task has to decide what part of the functionality should be
implemented on which of the selected components.

The manufacturers integrate components from suppliers, and thus the design space
is severely restricted in current practice, by the fact that the mapping of functionality
to an ECU is fixed.

3.4.1.3 Software design and implementation

This is the phase in which the software is designed and the code is written.
The code for the functions is developed manually for efficiency reasons, and thus

the exploration that would be allowed by automatic code generation is limited.
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At this stage the correctness of the software is analysed through simulations,
but there is no analysis of timing constraints, which is left for the scheduling and
schedulability analysis stage.

3.4.1.4 Scheduling and schedulability analysis

Once the functions have been defined and the code has been written, the scheduling
task is responsible for determining the execution strategy for the functions ‘inside an
ECU’, such that the timing constraints are satisfied.

Simulation is extensively used to determine if the timing constraints are satisfied.
However, simulations are very time consuming and provide no guarantees that the
timing constraints are met.

In the context of static cyclic scheduling, deriving a schedule table is a complex
design exploration problem. Static cyclic scheduling of a set of data-dependent soft-
ware processes on a multiprocessor architecture has received a lot of attention [1,34].
Such research has been used in commercial tools such as TTP-Plan [54] which derives
the static schedules for processes and messages in a time-triggered system using the
time-triggered protocol for communication.

If fixed priority pre-emptive scheduling is used, exploration is used to determine
how to allocate priorities to a set of distributed processes [55]. Their priority assign-
ment heuristic is based on the schedulability analysis from Reference 32. For earliest
deadline first the issue of distributing the global deadlines to local deadlines has to
be addressed [56].

3.4.1.5 Integration

In this phase the manufacturer has to integrate the ECUs from different suppliers.
There is a lack of tools that can analyse the performance of the interacting

functionality, and thus the manufacturer has to rely on simulation runs using the
realistic environment of a prototype car. Detecting potential problems at such a late
stage requires time-consuming extensive simulations. Moreover, once a problem is
identified it takes a very long time to go through all the previous stages in order to
fix it. This leads to large delays on the time-to-market.

In order to reduce the large simulation times, and to guarantee that potential vio-
lations of timing constraints are detected, manufacturers have started to use in-house
analysis tools and commercially available tools such as Volcano Network Architect
(for the CAN and LIN buses) [57].

Volcano makes inter-ECU communication transparent for the programmer. The
programmer only deals with ‘signals’ that have to be sent and received, and the details
of the network are hidden. Volcano provides basic API calls for manipulating signals.
To achieve interoperability between ECUs from different suppliers, Volcano uses a
‘publish/subscribe’ model for defining the signal requirements. Published signals are
made available to the system integrator by the suppliers, while subscribed signals
are required as inputs to the ECU. The system integrator makes the publish/subscribe
connections by creating a set of CAN frames, and creating a mapping between the data
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in frames and signals [58]. Volcano uses the analysis by Tindell et al [20] for bounding
the communication delay of messages transmitted using the CAN bus.

3.4.1.6 Calibration, testing, verification

These are the final stages of the design process. Because not enough analysis, testing
and verification has been done in earlier stages of the design, these stages tend to be
very time consuming, and problems identified here lead to large delays in product
delivery.

3.4.2 Function architecture co-design and platform-based design

New design methodologies are needed, which can handle the increasing complexity
of heterogeneous systems, and their competing requirements in terms of performance,
reliability, low power consumption, cost, time-to-market, etc. As the complexity of
the systems continues to increase, the development time lengthens dramatically, and
the manufacturing costs become prohibitively high. To cope with this complexity,
it is necessary to reuse as much as possible at all levels of the design process, and to
work at higher and higher abstraction levels.

‘Function/architecture co-design’ is a design methodology proposed in
References 59 and 60, which addresses the design process at higher abstraction
levels. Function/architecture co-design uses a top-down synthesis approach, where
trade-offs are evaluated at a high level of abstraction. The main characteristic of this
methodology is the use, at the same time with the top-down synthesis, of a bottom-up
evaluation of design alternatives, without the need to perform a full synthesis of the
design. The approach to obtaining accurate evaluations is to use an accurate mod-
elling of the behaviour and architecture, and to develop analysis techniques that are
able to derive estimates and to formally verify properties relative to a certain design
alternative. The determined estimates and properties, together with user-specified
constraints, are then used to drive the synthesis process.

Thus, several architectures are evaluated to determine if they are suited for the
specified system functionality. There are two extremes in the degrees of freedom
available for choosing an architecture. At one end, the architecture is already given,
and no modifications are possible. At the other end of the spectrum, no constraints are
imposed on the architecture selection, and the synthesis task has to determine, from
scratch, the best architecture for the required functionality. These two situations are,
however, not common in practice. Often, a ‘hardware platform’ is available, which
can be ‘parameterised’ (e.g. size of memory, speed of the buses, etc.). In this case,
the synthesis task is to derive the parameters of the platform architecture such that
the functionality of the system is successfully implemented. Once an architecture is
determined and/or parameterised, the function/architecture co-design continues with
the mapping of functionality onto the instantiated architecture.

This methodology has been used in research tools such as Polis [61] and Metropo-
lis [62], and has also led to commercial tools such as the Virtual Component Co-design
(VCC) [63].
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In order to reduce costs, especially in the case of a mass market product, the
system architecture is usually reused, with some modifications, for several product
lines. Such a common architecture is denoted by the term ‘platform’, and consequently
the design tasks related to such an approach are grouped under the term ‘platform-
based design’ [64]. The platform consists of a hardware infrastructure together with
software components that will be used for several product versions, and will be shared
with other product lines, in the hope to reduce costs and the time-to-market.

Keutzer et al [64] have proposed techniques for deriving such a platform for
a given family of applications. Their approach can be used within any design
methodology for determining a system platform that later on can be parameterised
and instantiated to a desired system architecture.

Considering a given application or family of applications, the system platform has
to be instantiated, deciding on certain parameters, and lower level details, in order to
suit that particular application(s). The search for an architecture instance starts from
a certain platform, and a given application. The application is mapped and compiled
on an architecture instance, and the performance numbers are derived, typically using
simulation. If the designer is not satisfied with the performance of the instantiated
architecture, the process is repeated.

In the remainder of the chapter we will consider a platform consisting
of event- and time-triggered clusters, using the CAN and TTP protocols for
communication, respectively. We will discuss analysis and optimisation techniques
for the configuration of the platform such that the given application is schedulable.

3.5 Multi-cluster systems

One class of heterogeneous real-time embedded systems is that of ‘multi-cluster’
systems. We consider architectures consisting of two clusters, one time-triggered and
the other event-triggered, interconnected by gateways (see Figure 3.2):

• In a ‘time-triggered cluster’ (TTC) processes and messages are scheduled accord-
ing to a static cyclic policy, with the bus implementing a TDMA protocol such
as, e.g. the time-triggered protocol (TTP) [65].

• On ‘event-triggered clusters’ (ETC) the processes are scheduled according to a
priority-based pre-emptive approach, while messages are transmitted using the
priority-based CAN bus [9].

The next two sections present the hardware and software architecture of a two-cluster
system, while Section 3.5.3 presents the application model used. Section 3.6 will
introduce design problems characteristic for multi-cluster systems composed of time-
triggered clusters interconnected with event-triggered clusters: the partitioning of
functionality between the TT and ET clusters, the mapping of functionality to the
nodes inside a cluster and the packing of application message to frames on the TTP
and CAN buses. Then, Section 3.8 will present two optimisation strategies for the
frame packing problem.
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3.5.1 Hardware architecture

A ‘cluster’ is composed of nodes which share a broadcast communication channel. Let
NT (NE) be the set of nodes on the TTC (ETC). Every ‘node’ Ni ∈ NT ∪NE includes
a communication controller and a CPU, along with other components. The gateways,
connected to both types of clusters, have two communication controllers, for TTP
and CAN. The communication controllers implement the protocol services, and run
independently of the node’s CPU. Communication with the CPU is performed through
a ‘Message Base Interface’ (MBI); see Figure 3.5.

Communication between the nodes on a TTC is based on the TTP [65]. The
TTP integrates all the services necessary for fault-tolerant real-time systems. The bus
access scheme is time-division multiple access (TDMA), meaning that each node Ni

on the TTC, including the gateway node, can transmit only during a predetermined
time interval, the TDMA slot Si . In such a slot, a node can send several messages
packed in a frame. A sequence of slots corresponding to all the nodes in the archi-
tecture is called a TDMA round. A node can have only one slot in a TDMA round.
Several TDMA rounds can be combined together in a cycle that is repeated period-
ically. The sequence and length of the slots are the same for all the TDMA rounds.
However, the length and contents of the frames may differ.

The TDMA access scheme is imposed by a message descriptor list (MEDL) that
is located in every TTP controller. The MEDL serves as a schedule table for the TTP
controller which has to know when to send/receive a frame to/from the communication
channel.

There are two types of frames in the TTP. The initialisation frames, or I-frames,
which are needed for the initialisation of a node, and the normal frames, or N-frames,
which are the data frames containing, in their data field, the application messages.
A TTP data frame (Figure 3.3) consists of the following fields: start of frame bit
(SOF), control field, a data field of up to 16 bytes containing one or more messages,

S
O
F

I
F
D

Control field, 8 bits
- 1 initialisation bit
- 3 mode change bits

Data field, up to 16 bytes

CRC field, 16 bits

Example TTP data frame

TDMA round
Cycle of two rounds

Slot

S0 S1 S2 S3 S0 S1 S2 S3

Frames

Figure 3.3 Time-triggered protocol
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Figure 3.4 Controller area network data frame (CAN 2.0A)

and a cyclic redundancy check (CRC) field. Frames are delimited by the inter-frame
delimiter (IDF, 3 bits).

For example, the data efficiency of a frame that carries 8 bytes of application data,
i.e. the percentage of transmitted bits which are the actual data bits needed by the appli-
cation, is 69.5 per cent (64 data bits transmitted in a 92-bit frame, without considering
the details of a particular physical layer). Note that no identifier bits are necessary,
as the TTP controllers know from their MEDL what frame to expect at a given point
in time. In general, the protocol efficiency is in the range of 60–80 per cent [66].

On an ETC, the CAN [9] protocol is used for communication. The CAN bus is
a priority bus that employs a collision avoidance mechanism, whereby the node that
transmits the frame with the highest priority wins the contention. Frame priorities
are unique and are encoded in the frame identifiers, which are the first bits to be
transmitted on the bus.

In the case of CAN 2.0A, there are four frame types: data frame, remote frame,
error frame and overload frame. We are interested in the composition of the data
frame, depicted in Figure 3.4. A data frame contains seven fields: SOF, arbitration
field that encodes the 11 bits frame identifier, a control field, a data field up to 8 bytes,
a CRC field, an acknowledgement (ACK) field and an end of frame field (EOF).

In this case, for a frame that carries 8 bytes of application data, we will have an
efficiency of 47.4 per cent [67]. The typical CAN protocol efficiency is in the range
of 25–35 per cent [66].

3.5.2 Software architecture

A real-time kernel is responsible for activation of processes and transmission of
messages on each node. On a TTC, the processes are activated based on the local
schedule tables, and messages are transmitted according to the MEDL. On an ETC,
we have a scheduler that decides on activation of ready processes and transmission
of messages, based on their priorities.

In Figure 3.5 we illustrate our message passing mechanism. Here we concen-
trate on the communication between processes located on different clusters. We have
previously presented the message passing within a TTC [68], and the infrastructure
needed for communications in an ETC [20].

Let us consider the example in Figure 3.5, where we have an application consisting
of four processes and four messages (depicted in Figure 3.5(b)) mapped on the two
clusters in Figure 3.5(c). Processes P1 and P4 are mapped on node N1 of the TTC,
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Figure 3.5 A message passing example

while P2 and P3 are mapped on node N2 of the ETC. Process P1 sends messages m1

and m2 to processes P2 and P3, respectively, while P2 and P3 send messages m3 and
m4to P4. All messages have a size of one byte.

The transmission of messages from the TTC to the ETC takes place in the fol-
lowing way (see Figure 3.5). P1, which is statically scheduled, is activated according
to the schedule table, and when it finishes it calls the send kernel function in order
to send m1 and m2, indicated in the figure by the number (1). Messages m1 and m2

have to be sent from node N1 to node N2. At a certain time, known from the schedule
table, the kernel transfers m1 and m2 to the TTP controller by packing them into a
frame in the MBI. Later on, the TTP controller knows from its MEDL when it has to
take the frame from the MBI, in order to broadcast it on the bus. In our example, the
timing information in the schedule table of the kernel and the MEDL is determined in
such a way that the broadcasting of the frame is done in the slot S1 of round 2 (2). The
TTP controller of the gateway node NG knows from its MEDL that it has to read a
frame from slot S1 of round 2 and to transfer it into its MBI (3). Invoked periodically,
having the highest priority on node NG, and with a period which guarantees that no
messages are lost, the gateway process T copies messages m1 and m2 from the MBI
to the TTP-to-CAN priority-ordered message queue OutCAN (4). Let us assume that
on the ETC messages m1 and m2 are sent independently, one per frame. The highest
priority frame in the queue, in our case the frame f1 containing m1, will tentatively
be broadcast on the CAN bus (5). Whenever f1 will be the highest priority frame on
the CAN bus, it will successfully be broadcast and will be received by the interested
nodes, in our case node N2 (6). The CAN communication controller of node N2

receiving f1 will copy it in the transfer buffer between the controller and the CPU,
and raise an interrupt which will activate a delivery process, responsible to activate
the corresponding receiving process, in our case P2, and hand over message m1 that
finally arrives at the destination (7).

Message m3 (depicted in Figure 3.5 as a grey rectangle labelled ‘m3’) sent by
process P2 from the ETC will be transmitted to process P4 on the TTC. The transmis-
sion starts when P2 calls its send function and enqueues m3 in the priority-ordered
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OutN2 queue (8). When the frame f3 containing m3 has the highest priority on the
bus, it will be removed from the queue (9) and broadcast on the CAN bus (10). Sev-
eral messages can be packed into a frame in order to increase the efficiency of data
transmission. For example, m3 can wait in the queue until m4 is produced by P3, in
order to be packed together with m4 in a frame. When f3 arrives at the gateway’s
CAN controller it raises an interrupt. Based on this interrupt, the gateway transfer
process T is activated, and m3 is unpacked from f3 and placed in the OutTTP FIFO
queue (11). The gateway node NG is only able to broadcast on the TTC in the slot
SG of the TDMA rounds circulating on the TTP bus. According to the MEDL of the
gateway, a set of messages not exceeding sizeSG of the data field of the frame travel-
ling in slot SG will be removed from the front of the OutTTP queue in every round,
and packed in the SG slot (12). Once the frame is broadcast (13) it will arrive at node
N1 (14), where all the messages in the frame will be copied in the input buffers of the
destination processes (15). Process P4 is activated according to the schedule table,
which has to be constructed such that it accounts for the worst-case communication
delay of message m3, bounded by the analysis in Section 3.7.1, and, thus, when P4

starts executing it will find m3 in its input buffer.
As part of our frame packing approach, we generate all the MEDLs on the TTC

(i.e. the TT frames and the sequence of the TDMA slots), as well as the ET frames
and their priorities on the ETC such that the global system is schedulable.

3.5.3 Application model

The functionality of the host system, into which the electronic system is embedded,
is normally described using a formalism from that particular domain of application.
For example, if the host system is a vehicle, then its functionality is described in
terms of control algorithms using differential equations, which are modelling the
behaviour of the vehicle and its environment. At the level of the embedded system
which controls the host system, viewed as the system level for us, the functionality is
typically described as a set of functions, accepting certain inputs and producing some
output values.

There is a lot of research in the area of system modelling and specification, and
an impressive number of representations have been proposed. Edward, [69] presents
an overview, classification and comparison of different design representations and
modelling approaches.

The scheduling and mapping design tasks deal with sets of interacting pro-
cesses. A ‘process’ is a sequence of computations (corresponding to several building
blocks in a programming language) which starts when all its inputs are available.
When it finishes executing, the process produces its output values. Researchers
have used, for example, ‘dataflow process networks’ (also called ‘task graphs’, or
‘process graphs’) [70] to describe interacting processes, and have represented them
using directed acyclic graphs, where a node is a process and the directed arcs are
dependencies between processes.

Thus, we model an application� as a set of process graphsGi ∈ � (see Figure 3.6).
Nodes in the graph represent processes and arcs represent dependency between the
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Figure 3.6 Application model

connected processes. A ‘process’ is a sequence of computations (corresponding to
several building blocks in a programming language) which starts when all its inputs
are available. When it finishes executing, the process produces its output values.
Processes can be pre-emptable or non-pre-emptable. ‘Non-pre-emptable’ processes
are processes that cannot be interrupted during their execution, and are mapped on the
TTC. ‘Pre-emptable’ processes can be can be interrupted during their execution, and
are mapped on the ETC. For example, a higher priority process has to be activated to
service an event, in this case, the lower priority process will be temporarily pre-empted
until the higher priority process finishes its execution.

A process graph is polar, which means that there are two nodes, called source and
sink, that conventionally represent the first and last process. If needed, these nodes
are introduced as dummy processes so that all other nodes in the graph are successors
of the source and predecessors of the sink, respectively.

The communication time between processes mapped on the same processor is
considered to be part of the process worst-case execution time and is not modelled
explicitly. Communication between processes mapped to different processors is per-
formed by message passing over the buses and, if needed, through the gateway.
Such message passing is modelled as a communication process inserted on the arc
connecting the sender and the receiver process (the black dots in Figure 3.6).

Potential communication between processes in different applications is not part
of the model. Technically, such a communication is implemented by the kernels
based on asynchronous non-blocking send and receive primitives. Such messages
are considered non-critical and are not affected by real-time constraints. Therefore,
communications of this nature will not be addressed.

Each process Pi is mapped on a processor M(Pi) (mapping represented by hash-
ing in Figure 3.6), and has a worst-case execution time Ci on that processor (depicted
to the left of each node). The designer can provide manually such worst-case times,
or tools can be used in order to determine the worst-case execution time of a piece of
code on a given processor [71].

For each message we know its size (in bytes, indicated to its left), and its period,
which is identical with that of the sender process. Processes and messages activated
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based on events also have a uniquely assigned priority, priorityP i for processes and
prioritymi for messages.

All processes and messages belonging to a process graph Gi have the same period
Ti = TGi which is the period of the process graph. A deadline DGi is imposed on
each process graph Gi . Deadlines can also be placed locally on processes. Release
times of some processes as well as multiple deadlines can be easily modelled by
inserting dummy nodes between certain processes and the source or the sink node,
respectively. These dummy nodes represent processes with a certain execution time
but which are not allocated to any processing element.

3.6 Multi-cluster optimisation

Considering the types of applications and systems described in the previous section,
and using the analysis outlined in Section 3.7, several design optimisation problems
can be addressed.

In this section, we present problems which are characteristic to applications
distributed across multi-cluster systems consisting of heterogeneous TT and ET
networks:

• Section 3.6.1 briefly outlines the problem of partitioning the processes of an
application into time- and event-triggered domains, and their mapping to the
nodes of the clusters.

• Section 3.6.2 presents the problem of packing of messages to frames, which is
of utmost importance in cost-sensitive embedded systems where resources, such
as communication bandwidth, have to be fully utilised [58,72,73]. This problem
will be discussed in more detail in Section 3.8.

The goal of these optimisation problems is to produce an implementation which meets
all the timing constraints (i.e. the application is schedulable).

In order to drive our optimisation algorithms towards schedulable solutions, we
characterise a given frame packing configuration using the degree of schedulability
of the application. The ‘degree of schedulability’ [74] is calculated as:

δ� =




c1 =
n∑

i=1

max(0, ri − Di), ifc1 > 0

c2 =
n∑

i=1

(ri − Di), ifc1 = 0

(3.1)

where n is the number of processes in the application, ri is the worst-case response
time of a process Pi and Di its deadline. The worst-case response times are calculated
by the MultiClusterScheduling algorithm using the response time analysis presented
in Section 3.7.

If the application is not schedulable, the term c1 will be positive, and, in this case,
the cost function is equal to c1. However, if the process set is schedulable, c1 = 0 and
we use c2 as a cost function, as it is able to differentiate between two alternatives,
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both leading to a schedulable process set. For a given set of optimisation parameters
leading to a schedulable process set, a smaller c2 means that we have improved
the worst-case response times of the processes, so the application can potentially
be implemented on a cheaper hardware architecture (with slower processors and/or
buses). Improving the degree of schedulability can also lead to an improvement in
the quality of control for control applications.

3.6.1 Partitioning and mapping

By partitioning, we denote the decision whether a certain process should be assigned
to the TT or the ET domain (and, implicitly, to a TTC or an ETC, respectively).
Mapping a process means assigning it to a particular node inside a cluster.

Very often, the partitioning decision is taken based on the experience and prefer-
ences of the designer, considering aspects such as the functionality implemented by
the process, the hardness of the constraints, sensitivity to jitter, legacy constraints,
etc. Let P be the set of processes in the application �. We denote with PT ⊆ P the
subset of processes which the designer has assigned to the TT cluster, while PE ⊆ P
contains processes which are assigned to the ET cluster.

Many processes, however, do not exhibit certain particular features or require-
ments which obviously lead to their implementation as TT or ET activities. The subset
P+ = P\(PT ∪PE) of processes could be assigned to any of the TT or ET domains.
Decisions concerning the partitioning of this set of activities can lead to various trade-
offs concerning, for example, the schedulability properties of the system, the amount
of communication exchanged through the gateway, the size of the schedule tables, etc.

For part of the partitioned processes, the designer might have already decided
their mapping. For example, certain processes, due to constraints such as having to
be close to sensors/actuators, have to be physically located in a particular hardware
unit. They represent the sets PM

T ⊆ PT and PM
E ⊆ PE of already mapped TT

and ET processes, respectively. Consequently, we denote with P∗
T = PT \PM

T the
TT processes for which the mapping has not yet been decided, and similarly, with
P∗

E = PE\PM
E the unmapped ET processes. The set P∗ = P∗

T ∪ P∗
E ∪ P+ then

represents all the unmapped processes in the application.
The mapping of messages is decided implicitly by the mapping of processes. Thus,

a message exchanged between two processes on the TTC (ETC) will be mapped on
the TTP bus (CAN bus) if these processes are allocated to different nodes. If the
communication takes place between two clusters, two message instances will be
created, one mapped on the TTP bus and one on the CAN bus. The first message is
sent from the sender node to the gateway, while the second message is sent from the
gateway to the receiving node.

Let us illustrate some of the issues related to partitioning in such a context. In the
example presented in Figure 3.7 we have an application1 with six processes, P1 to
P6, and four nodes, N1 and N2 on the TTC, N3 on the ETC and the gateway node NG.
The worst-case execution times on each node are given to the right of the application

1 Communications are ignored for this example.
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Figure 3.7 Partitioning example

graph. Note that N2 is faster than N3, and an ‘X’ in the table means that the process
is not allowed to be mapped on that node. The mapping of P1 is fixed on N1, P3 and
P6 are mapped on N2, P2 and P5 are fixed on N3, and we have to decide how to
partition P4 between the TT and ET domains. Let us also assume that process P5 is
the highest priority process on N3. In addition, P5 and P6 have each a deadline, D5

and D6, respectively, as illustrated in the figure by thick vertical lines.
We can observe that although P3 and P4 do not have individual deadlines, their

mapping and scheduling has a strong impact on their successors, P5 and P6, respec-
tively, which are deadline constrained. Thus, we would like to map P4 such that not
only P3 can start on time, but P4 also starts soon enough to allow P6 to meet its
deadline.

As we can see from Figure 3.7(a), this is impossible to achieve by mapping P4 on
the TTC node N2. It is interesting to observe that, if pre-emption would be allowed
in the TT domain, as in Figure 3.7(b), both deadlines could be met. This, however,
is impossible on the TTC where pre-emption is not allowed. Both deadlines can be
met only if P4 is mapped on the slower ETC node N3, as depicted in Figure 3.7(c).
In this case, although P4 competes for the processor with P5, due to the pre-emption
of P4 by the higher priority P5, all deadlines are satisfied.

For a multi-cluster architecture the communication infrastructure has an important
impact on the design and, in particular, the mapping decisions. Let us consider the
example in Figure 3.8. We assume that P1 is mapped on node N1 and P3 on node N3
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on the TTC, and we are interested to map process P2. P2 is allowed to be mapped on
the TTC node N2 or on the ETC node N4, and its execution times are depicted in the
table to the right of the application graph.

In order to meet the deadline, one would map P2 on the node it executes fastest,
N2 on the TTC, see Figure 3.8(a). However, this will lead to a deadline miss due to the
TTP slot configuration which introduces communication delays. The application will
meet the deadline only if P2 is mapped on the slower node, i.e. node N4 in the case
in Figure 3.8(b).2 Not only is N4 slower than N2, but mapping P2 on N4 will place
P2 on a different cluster than P1 and P3, introducing extra communication delays
through the gateway node. However, due to the actual communication configuration,
the mapping alternative in Figure 3.8(b) is desirable.

Using the notation introduced, the partitioning and mapping problem can be
described more exactly as follows. As an input we have an application � given
as a set of process graphs and a two-cluster system consisting of a TT and an ET
cluster. As introduced previously, PT and PE are the sets of processes already par-
titioned into TT and ET, respectively. Also, PM

T ⊆ PT and PM
E ⊆ PE are the

sets of already mapped TT and ET processes. We are interested to find a partition-
ing for processes in P+ = P\(PT ∪ PE) and decide a mapping for processes in
P∗ = P∗

T ∪ P∗
E ∪ P+, where P∗

T = PT \PM
T , and P∗

E = PE\PM
E such that imposed

2 Process T in Figure 3.8(b) executing on the gateway node NG is responsible for transferring messages
between the TTP and CAN controllers.
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deadlines are guaranteed to be satisfied. We have highlighted a possible solution to
this problem [75].

3.6.2 Frame packing

In both the TTP and CAN protocols messages are not sent independently, but several
messages having similar timing properties are usually packed into frames. In many
application areas, such as automotive electronics, messages range from one single bit
(e.g. the state of a device) to a couple of bytes (e.g. vehicle speed, etc.). Transmitting
such small messages one per frame would create a high communication overhead,
which can cause long delays leading to an unschedulable system. For example, 65 bits
have to be transmitted on CAN for delivering one single bit of application data.
Moreover, a given frame configuration defines the exact behaviour of a node on the
network, which is very important when integrating nodes from different suppliers.

Let us consider the motivational example in Figure 3.9, where we have the process
graph from Figure 3.9(d) mapped on the two-cluster system from Figure 3.9(e): P1

andP4 are mapped on nodeN1 from the TTC, whileP2 andP3 are mapped onN2 from
ETC. The data field of the frames is represented with a black rectangle, while the other
frame fields are depicted with a grey colour. We consider a physical implementation
of the buses such that the frames will take the time indicated in the figure by the
length of their rectangles. We are interested to find a frame configuration such that
the application is schedulable.

In the system configuration of Figure 3.9(a) we consider that, on the TTP bus,
the node N1 transmits in the first slot (S1) of the TDMA round, while the gateway
transmits in the second slot (SG). Process P3 has a higher priority than process P2,
hence P2 will be interrupted by P3 when it receives message m2. In such a setting,
P4 will miss its deadline, which is depicted as a thick vertical line in Figure 3.9.
Changing the frame configuration as in Figure 3.9(b), so that messages m1 and m2

are packed into frame f1and slot SG of the gateway comes first, processes P2 and P3

will receive m1 and m2 sooner and thus reduce the worst-case response time of the
process graph, which is still larger than the deadline. In Figure 3.9(c), we also pack
m3 and m4 into f2. In such a situation, the sending of m3 will have to be delayed until
m4 is queued by P2. Nevertheless, the worst-case response time of the application is
further reduced, which means that the deadline is met, thus the system is schedulable.

However, packing more messages will not necessarily reduce the worst-case
response times further, as it might increase too much the worst-case response times
of messages that have to wait for the frame to be assembled, this is the case with
message m3 in Figure 3.9(c).

This design optimisation problem can be formulated more exactly as follows. As
input to the frame-packing problem we have an application � given as a set of process
graphs mapped on an architecture consisting of a TTC and an ETC interconnected
through a gateway. We consider that the partitioning and mapping of processes has
been already decided.

We are interested to find a mapping of messages to frames (a frame packing
configuration) denoted by a 4-tuple ψ = 〈α,π ,β, σ 〉 such that the application � is
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schedulable. Once a schedulable system is found, we are interested to further improve
the ‘degree of schedulability’ so the application can potentially be implemented on a
cheaper hardware architecture (with slower buses and processors).

Determining a frame configuration ψ means deciding on:

• The mapping of application messages transmitted on the ETC to frames (the set
of ETC frames α), and their relative priorities, π . Note that the ETC frames α

have to include messages transmitted from an ETC node to a TTC node, messages
transmitted inside the ETC cluster, and those messages transmitted from the TTC
to the ETC.

• The mapping of messages transmitted on the TTC to frames, denoted by the set of
TTC frames β, and the sequence σ of slots in a TDMA round. The slot sizes are
determined based on the set β, and are calculated such that they can accommodate
the largest frame sent in that particular slot. We consider that messages transmitted
from the ETC to the TTC are not statically allocated to frames. Rather, we will
dynamically pack messages originating from the ETC into the ‘gateway frame’,
for which we have to decide the data field length (see Section 3.5.2).

Several details related to the schedulability analysis were omitted from the discussion
of the example. These details will be discussed in the next section.

3.7 Multi-cluster analysis and scheduling

Once a partitioning and a mapping is decided, and a frame packing configuration
is fixed, the processes and messages have to be scheduled. For the TTC this means
building the schedule tables, while for the ETC the priorities of the ET processes have
to be determined and their schedulability has to be analysed.

The analysis presented in this section works under the following assumptions:

• All the processes belonging to a process graph G have the same period TG.
However, process graphs can have different periods.

• The offsets are static (as opposed to dynamic [42]), and are smaller than the
period.

• The deadlines are arbitrary, i.e. can be larger than the period.

The basic idea is that on the TTC an application is schedulable if it is possible to build
a schedule table such that the timing requirements are satisfied.

On the ETC, the answer whether or not a system is schedulable is given by a
‘schedulability analysis’. Thus, for the ETC we use a ‘response time analysis’, where
the schedulability test consists of the comparison between the worst-case response
time ri of a process Pi and its deadline Di . Response time analysis of data dependent
processes with static priority pre-emptive scheduling has been proposed in [39,40,42],
and has been also extended to consider the CAN protocol [20]. The authors use the
concept of ‘offset’ in order to handle data dependencies. Thus, each process Pi is
characterised by an offset Oi , measured from the start of the process graph, that
indicates the earliest possible start time of Pi . Such an offset is, for example, O2 in
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Figure 3.9(a), as process P2 cannot start before receiving m1. The same is true for
messages, their offset indicating the earliest possible transmission time. The response
time analysis employed is presented in Section 3.7.1.

However, determining the schedulability of an application mapped on a multi-
cluster system cannot be addressed separately for each type of cluster, since the inter-
cluster communication creates a circular dependency: the static schedules determined
for the TTC influence through their offsets the worst-case response times of the
processes on the ETC, which in turn influence the schedule table construction on the
TTC. In Figure 3.9(b) packing m1 and m2 in the same frame leads to equal offsets
for P2 and P3. Because of this, P3 will delay P2 (which would not be the case if m2

sent to P3 would be scheduled in round 3, e.g.) and thus the placement of P4 in the
schedule table has to be accordingly delayed to guarantee the arrivals of m3 and m4.

In our analysis we consider the influence between the two clusters by making the
following observations:

• The start time of process Pi in a schedule table on the TTC is its offset Oi .
• The worst-case response time ri of a TT process is its worst-case execution time,

i.e. ri = Ci (TT processes are not pre-emptable).
• The worst-case response times of the messages exchanged between two clus-

ters have to be calculated according to the schedulability analysis described in
Section 3.7.1.

• The offsets have to be set by a scheduling algorithm such that the precedence
relationships are preserved. This means that, if process PB depends on process
PA, the following condition must hold: OB ≥ OA+rA. Note that for the processes
on a TTC which receive messages from the ETC this translates to setting the start
times of the processes such that a process is not activated before the worst-case
arrival time of the message from the ETC. In general, offsets on the TTC are set
such that all the necessary messages are present at the process invocation.

TheMultiClusterScheduling algorithm in Figure 3.10 receives as input the appli-
cation �, the frame configuration ψ , and produces the offsets φ and worst-case
response times ρ.

The algorithm sets initially all the offsets to 0 (line 1). Then, the worst-case
response times are calculated using the ResponseTimeAnalysis function (line 4)
using the analysis presented in Section 3.7.1. The fixed-point iterations that calculate
the response times at line 3 will converge if processor and bus loads are smaller than
100 per cent [39]. Based on these worst-case response times, we determine new values
φnew for the offsets using a list scheduling algorithm (line 6). We now have a schedule
table for the TTC and worst-case response times for the ETC, which are pessimistic.
The following loop will reduce the pessimism of the worst-case response times.

The multi-cluster scheduling algorithm loops until the degree of schedulability
δ� of the application � cannot be further reduced (lines 8–20). In each loop iteration,
we select a new offset from the set of φnew offsets (line 10), and run the response
time analysis (line 11) to see if the degree of schedulability has improved (line 12).
If δ� has not improved, we continue with the next offset in φnew.
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MultiClusterScheduling(�, M, �)
- - determines the set of offsets φ and worst-case response times ρ

1 for each Oi ∈ φ do Oi = 0 end for - - initially all offsets are zero
2 - - determine initial values for the worst-case response times
3 - - according to the analysis in Section 3.7.1
4 ρ = ResponseTimeAnalysis(�, M,�,φ)
5 - - determine new values for the offsets, based on the response times ρ

6 φnew = ListScheduling(�, M,�, ρ)
7 θ� = ∞ - - consider the system unschedulable at first
8 repeat - - iteratively improve the degree of schedulability δ�
9 for each Onew

i ∈ φnew do - - for each newly calculated offset
10 Oold

i = φ.Oi ;φ.Oi = φnewOnew
i - - set the new offset, remember old

11 ρnew = ResponseTimeAnalysis(�, M,�,&)
12 δnew� = SchedulabilityDegree(�, ρ)
13 if δnew� < δ� then - - the schedulability has improved
14 - - offsets are recalculated using ρnew

15 φnew = ListScheduling(�, M,�, ρnew)
16 break - - exit the for-each loop
17 else - - the schedulability has not improved
18 φ.Oi = Oold

i - - restore the old offset
19 end for
20 until θ� has not changed
21 return ρ,φ, δ�
endMultiClusterScheduling

Figure 3.10 The MulticlusterScheduling algorithm

When a new offset Onew
i leads to an improved δ� we exit the for-each loop 9–19

that examines offsets from φnew. The loop iteration 8–20 continues with a new set of
offsets, determined by ListScheduling at line 15, based on the worst-case response
times ρnew corresponding to the previously accepted offset.

In the multi-cluster scheduling algorithm, the calculation of offsets is performed
by the list scheduling algorithm presented in Figure 3.11. In each iteration, the algo-
rithm visits the processes and messages in the ReadyList. A process or a message in
the application is placed in the ReadyList if all its predecessors have been already
scheduled. The list is ordered based on the priorities [76]. The algorithm terminates
when all processes and messages have been visited.

In each loop iteration, the algorithm calculates the earliest time moment (offset)
when the process or message nodei can start (lines 5–7). There are four situations:

1 The visited node is an ET message. The messagemi is packed into its framef (line
9), and the offset Of of the frame is updated. The frame can only be transmitted
after all the sender processes that pack messages in this frame have finished
executing. The offset of message mi packed to frame f is equal to the frame
offset Of .
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ListScheduling(�, M, �, ρ) - - determines the set of offsets φ

1 ReadyList = source nodes of all process graphs in the application
2 while ReadyList �= � do
3 nodei = Head(ReadyList)
4 offset = 0 - - determine the earliest time when an activity can start
5 for each direct predecessor nodej of nodei do
6 offset = max(offset, Oj + rj )
7 end for
8 if nodei is a message mi then
9 PackFrame(mi , f ) - - pack each ready message m into its frame f

10 Of = max(Of , offset) - - update the frame offset
11 if f is complete then - - the frame is complete for transmission
12 if f ∈∝ then - - f is an ET frame
13 - - the offset of messages is equal to the frame offset
14 for each mj ∈ f do Oj = Of end for
15 else - - f is a TT frame
16 <round, slot> = ScheduleTTFrame(f , offset, � )
17 - - set the TT message offsets based on the round and slot
18 for each mj ∈ f do Oj = round* TT DMA + Oslot end for
19 endif; endif
20 else - - nodei is a process Pi

21 ifM(Pi) ∈ NE then - - if process Pi is mapped on the ETC
22 Oi = offset – the ETC process can start immediately
23 else - - process Pi is mapped on the TTC
24 - - Pi has to wait also for the processor M(Pi) to become available
25 Oi = max(offset, ProcessorAvailable(M(Pi)))
26 end if; end if;
27 Update(ReadyList)
28 end while
29 return offsets
end ListScheduling

Figure 3.11 ListScheduling algorithm

2 The node is a TT message. In this case, when the frame is ready for transmission,
it is scheduled using the ScheduleTTFrame function (presented in Figure 3.12),
which returns the round and the slot where the frame has been placed (line 16
in Figure 3.11). In Figure 3.12, the round immediately following offset is the
initial candidate to be considered (line 2). However, it can be too late to catch
the allocated slot, in which case the next round is considered (line 4). For this
candidate round, we have to check if the slot is not occupied by another frame. If
so, the communication has to be delayed for another round (line 7). Once a frame
has been scheduled, we can determine the offsets and worst-case response times
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ScheduleTTFrame (f , offset, ψ)
- - returns the slot and the round assigned to frame f

1 slot = the slot assigned to the node sending f - - the frame slot
2 round = offset / TTDMA - - the first round which could be a candidate
3 if offset – round * TTDMA > Oslot then - - the slot is missed
4 round = round + 1 - - if yes, take the next round
5 end if
6 while slot is occupied do
7 round = round + 1
8 end while
9 return round, slot
end ScheduleTTFrame

Figure 3.12 Frame scheduling on the TTC

(Figure 3.11, line 18). For all the messages in the frame the offset is equal to the
start of the slot in the TDMA round, and the worst-case response time is the slot
length.

3 The algorithm visits a process Pi mapped on an ETC node. A process on the ETC
can start as soon as its predecessors have finished and its inputs have arrived,
hence Oi = offset (line 22). However, Pi might experience, later on, interference
from higher priority processes.

4 Process Pi is mapped on a TTC node. In this case, besides waiting for the prede-
cessors to finish executing, Pi will also have to wait for its processor M(Pi) to
become available (line 25). The earliest time when the processor is available is
returned by the ProcessorAvailable function.

Let us now turn the attention back to the multi-cluster scheduling algorithm in
Figure 3.10. The algorithm stops when the δ� of the application � is no longer
improved, or when a limit imposed on the number of iterations has been reached.
Since in a loop iteration we do not accept a solution with a larger δ� , the algorithm
will terminate when in a loop iteration we are no longer able to improve δ� by
modifying the offsets.

3.7.1 Schedulability analysis for the ETC

For the ETC we use a response time analysis. A ‘response time analysis’ has two steps.
In the first step, the analysis derives the worst-case response time of each process (the
time it takes from the moment is ready for execution, until it has finished executing).
The second step compares the worst-case response time of each process to its deadline
and, if the response times are smaller or equal to the deadlines, the system is schedu-
lable. The analysis presented in this section is used in the ResponseTimeAnalysis
function (line 4 of the algorithm in Figure 3.10).
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Thus, the response time analysis [77] uses the following equation for determining
the worst-case response time ri of a process Pi :

ri = Ci +
∑

∀Pj∈hp(Pi)

⌈ ri

Tj

⌉
Cj (3.2)

where Ci is the worst-case execution time of process Pi , Tj is the period of pro-
cess Pj and hp(Pi) denotes the set of processes that have a priority higher than the
priority of Pi .

The summation term, representing the interference Ii of higher priority processes
on Pi , increases monotonically in ri , thus solutions can be found using a recurrence
relation. Moreover, the recurrence relations that calculate the worst-case response
time are guaranteed to converge if the processor utilisation is under 100 per cent.

The previously presented analysis assumes that the deadline of a process is smaller
or equal to its period. This assumption has later been relaxed [32] to consider ‘arbitrary
deadlines’ (i.e. deadlines can be larger than the period). Thus, the worst-case response
time ri of a process Pi becomes:

ri = max
q=0, 1, 2...

(Ji + wi(q) − qTi) (3.3)

whereJi is the jitter of processPi (the worst-case delay between the arrival of a process
and the start of its execution), q is the number of busy periods being examined and
wi(q) is the width of the level-i busy period starting at time qTi . The level-i busy
period is defined as the maximum time a processor executes processes of priority
greater than or equal to the priority of process Pi , and is calculated as [32]:

wi(q) = (q + 1)Ci + Bi +
∑

∀Pj∈hp(Pi)

⌈wi(q) + Jj

Tj

⌉
Cj (3.4)

The pessimism of the previous analysis can be reduced by using the information
related to the precedence relations between processes. The basic idea is to exclude
certain worst-case scenarios, from the critical instant analysis, which are impossible
due to precedence constraints.

Methods for schedulability analysis of data dependent processes with static prior-
ity pre-emptive scheduling have been proposed [39,40,41,42]. They use the concept
of ‘offset’ (or ‘phase’), in order to handle data dependencies. Tindell [39] shows
that the pessimism of the analysis is reduced through the introduction of offsets. The
offsets have to be determined by the designer.

In their analysis [39], the response time of a process Pi is:

ri = max
q = 0, 1, 2...

(
max∀Pj∈G

(
wi(q) + Oj + Jj − TG

(
q +

⌈
Oj + Jj − Oi − Ji

TG

⌉)
− Oi

))
(3.5)

where TG the period of the process graph G, Oi and Oj are offsets of processes Pi and
Pj , respectively, and Ji and Jj are the release jitters of Pi and Pj . In Equation (3.5),



Analysis and optimisation of embedded systems 105

the level-i busy period starting at time qTG is

wi(q) = (q + 1)C − i + Bi + Ii (3.6)

In the previous equation, the blocking term Bi represents interference from lower
priority processes that are in their critical section and cannot be interrupted, and Ci

represents the worst-case execution time of process Pi . The last term captures the
interference Ii from higher priority processes in the application, including higher
priority processes from other process graphs. Tindell [39] presents the details of the
interference calculation.

Although this analysis is exact (both necessary and sufficient), it is computa-
tionally infeasible to evaluate. Hence, Tindell [39] proposes a feasible but not exact
analysis (sufficient but not necessary) for solving Equation (3.5). Our implementa-
tions use the feasible analysis provided in Tindell [39] for deriving the worst-case
response time of a process Pi .

We are now interested to determine the worst-case response time of frames and
the worst-case queuing delays experienced by a frame in a communication controller.

Regarding the worst-case response time of messages, we have extended the CAN
analysis from messages [20] and applied it in the contest of frames on the CAN bus:

rf = max
q=0, 1, 2...

(Jf + Wf (q) + (1 + q)Cf ) (3.7)

In the previous equation Jf is the jitter of frame fwhich in the worst case is equal
to the largest worst-case response time rS(m)of a sender process S(m) which sends
message m packed into frame f :

Jf = max∀m∈f (rSm) (3.8)

In Equation (3.7), Wf is the ‘worst-case queuing delay’ experienced by f at the
communication controller, and is calculated as:

Wf (q) = wf (q) − qTf (3.9)

where q is the number of busy periods being examined, and wf (q) is the width of
the level-f busy period starting at time qTf .

Moreover, in Equation (3.7), Cf is the worst-case time it takes for a frame f to
reach the destination controller. On CAN, Cf depends on the frame configuration
and the size of the data field, sf , while on TTP it is equal to the slot size in which f

is transmitted.
The worst-case response time of message m packed into a frame f can be

determined by observing that rm = rf .
The worst-case queueing delay for a frame (Wf in Equation (3.7)) is calculated

differently for each type of queue:

1 The output queue of an ETC node, in which case W
Ni

f represents the worst-case
time a frame f has to spend in the OutNi

queue on ETC node Ni . An example of
such a frame is the one containing message m3 in Figure 3.9(a), which is sent by
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process P2 from the ETC node N2 to the gateway node NG, and has to wait in the
OutN2 queue.

2 The TTP-to-CAN queue of the gateway node, in which case WCAN
f is the worst-

case time a framef has to spend in the OutCAN queue of nodeNG. In Figure 3.9(a),
the frame containing m1 is sent from the TTC node N1 to the ETC node N2, and
has to wait in the OutCAN queue of gateway node NG before it is transmitted on
the CAN bus.

3 The CAN-to-TTP queue of the gateway node, where WTTP
f captures the time

f has to spend in the OutTTP queue node NG. Such a situation is present in
Figure 3.9(a), where the frame with m3 is sent from the ETC node N2 to the TTC
node N1 through the gateway node NG where it has to wait in the OutTTP queue
before it is transmitted on the TTP bus, in the SG slot of node NG.

On the TTC, the synchronisation between processes and the TDMA bus config-
uration is solved through the proper synthesis of schedule tables, hence no output
queues are needed. The frames sent from a TTC node to another TTC node are taken
into account when determining the offsets, and are not involved directly in the ETC
analysis.

The next sections show how the worst queueing delays are calculated for each of
the previous three cases.

3.7.1.1 Worst-case queuing delays in the OutNi and OutCAN queues

The analyses for WNi

f and WCAN
f are similar. Once f is the highest priority frame in

the OutCAN queue, it will be sent by the gateway’s CAN controller as a regular CAN
frame, therefore the same equation for wf can be used:

wf (q) = Bf +
∑

∀fj∈hp(f )

⌈
wf (q) + Jj

Tj

⌉
Cj (3.10)

The intuition is that f has to wait, in the worst case, first for the largest lower
priority frame that is just being transmitted (Bf ) as well as for the higher priority
fj ∈ hp(f ) frames that have to be transmitted ahead of f (the second term). In the
worst case, the time it takes for the largest lower priority frame fk ∈ p(f ) to be
transmitted to its destination is:

Bf = max
∀f k∈lp(f )

(Ck) (3.11)

Note that in our case, lp(f ) andhp(f ) also include messages produced by the gateway
node, transferred from the TTC to the ETC.

3.7.1.2 Worst-case queuing delay in the OutTTP queue

The time a frame f has to spend in the OutTTP queue in the worst case depends on
the total size of messages queued ahead of f (OutTTP is a FIFO queue), the size SG

of the data field of the frame fitting into the gateway slot responsible for carrying
the CAN messages on the TTP bus, and the period TTDMA with which this slot SG is
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MultiClusterConfiguration(�)
1 - - determine an initial partitioning and mapping M,
2 - - and an initial frame configuration ψ0

3 <M,ψ0> = PartitioningAndMapping(�)
4 - - the frame packing optimization algorithm
5 ψ = FramePackingOptimization(�, M,ψ0)
6 - - test if the resulted configuration leads to a schedulable application
7 ifMultiClusterScheduling(�, M,ψ) returns schedulable then
8 returnM,ψ
9 else
10 return unschedulable
11 endif
endMultiClusterConfiguration

Figure 3.13 The general frame packing strategy

circulating on the bus [46]:

wTTP
f (q) = Bf +

⌊
(q + 1)sf + If (wf (q))

SG

⌋
TTDMA (3.12)

where If is the total size of the frames queued ahead of f . Those frames fj ∈hp(f )
are ahead of f , which have been sent from the ETC to the TTC, and have higher
priority than f :

If (w) =
∑

∀fj∈hp(f )

⌈
wf + Jj

Tj

⌉
sj (3.13)

where the frame jitter Jj is given by Equation (3.8).
The blocking termBf is the time interval in whichf cannot be transmitted because

the slot SG of the TDMA round has not arrived yet. In the worst case (i.e. the frame
f has just missed the slot SG), the frame has to wait an entire round TTDMA for the
slot SG in the next TDMA round.

3.8 Frame-packing optimisation strategy

The general multi-cluster optimisation strategy is outlined in Figure 3.13. The
MultiClusterConfiguration strategy has two steps:

1 In the first step, line 3, the application is partitioned on the TTC and ETC
clusters, and processes are mapped to the nodes of the architecture using the
PartitioningAndMapping function. The partitioning and mapping can be done
with an optimisation heuristic [75]. As part of the partitioning and mapping pro-
cess, an initial frame configuration ψ0 = 〈α0, π0,β0σ 0〉 is derived. Messages
exchanged by processes partitioned to the TTC will be mapped to TTC frames,
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while messages exchanged on the ETC will be mapped to ETC frames. For each
message sent from a TTC process to an ETC process, we create an additional mes-
sage on the ETC, and we map this message to an ETC frame. The sequence σ 0 of
slots for the TTC is decided by assigning in order nodes to the slots (Si = Ni). One
message is assigned per frame in the initial set β0 of TTC frames. For the ETC,
the frames in the set α0 initially hold each one single message, and we calculate
the message priorities 30 based on the deadlines of the receiver processes.

2 The frame packing optimisation, is performed as the second step (line 5 in
Figure 3.13). The FramePackingOptimization function receives as input the
application �, the mapping M of processes to resources and the initial frame
configuration ψ0, and it produces as output the optimised frame packing config-
uration ψ . Such an optimisation problem is NP complete [78], thus obtaining the
optimal solution is not feasible. We present two frame packing optimisation strate-
gies, one based on a simulated annealing approach, presented in Section 3.8.1,
while the other, outlined in Section 3.8.2, is based on a greedy heuristic that
uses intelligently the problem-specific knowledge in order to explore the design
space.

If after these steps the application is unschedulable, we conclude that no satisfactory
implementation could be found with the available amount of resources.

Testing if the application� is schedulable is done using theMultiClusterSchedul-
ing (MCS) algorithm (line 7 in Figure 3.13). The multi-cluster scheduling algorithm,
presented in Figure 3.10, takes as input an application �, a mapping M and an ini-
tial frame configuration ψ0, builds the TT schedule tables, sets the ET priorities for
processes, and provides the global analysis.

3.8.1 Frame packing with simulated annealing

The first algorithm we have developed is based on a simulated annealing (SA) strategy
[78], and is presented in Figure 3.14. The algorithm takes as input the application
�, a mapping M and an initial frame configuration ψ0, and determines the frame
configuration ψ which leads to the best degree of schedulability δ� (the smaller the
value, the more schedulable the system, see Section 3.6).

Determining a frame configuration ψ means finding the set of ETC frames α and
their relative priorities π , and the set of TTC frames B, including the sequence σ of
slots in a TDMA round.

The main feature of a SA strategy is that it tries to escape from a local optimum by
randomly selecting a new solution from the neighbours of the current solution. The
new solution is accepted if it is an improved solution (lines 9–10 of the algorithm in
Figure 3.14). However, a worse solution can also be accepted with a certain probability
that depends on the deterioration of the cost function and on a control parameter called
temperature (lines 12–13).

In Figure 3.14 we give a short description of this algorithm. An essential com-
ponent of the algorithm is the generation of a new solution ψnew starting from the
current one ψcurrent. The neighbours of the current solution ψcurrent are obtained by
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SimulatedAnnealing(�, M, ψ0)
1 - - given an application � finds out if it is schedulable and produces
2 - - the configuration 〈�,π ,β, σ 〉 leading to the smallest δ�
3 - - initial frame configuration
4 ψcurrent = ψ0

5 temperature = initial temperature TI
6 repeat
7 for i = 1 to temperature length TL do
8 generate randomly a neighboring solution ψnew of ψcurrent

9 δ = MultiClusterScheduling(�, M, ψnew) -
MultiClusterScheduling(�, M, ψcurrent)

10 if δ < 0 then ψcurrent = ψnew

11 else
12 generate q = Random (0, 1)
13 if q < e−δ/temperature then ψcurrent = ψnew end if
14 end if
15 end for
16 temperature = ε * temperature
17 until stopping criterion is met
18 return SchedulabilityTest(�, M, ψbest), solution ψ best

corresponding to the best degree of schedulablity δ�
end SimulatedAnnealing

Figure 3.14 The SimulatedAnnealing algorithm

performing transformations (called moves) on the current frame configurationψcurrent

(line 8). We consider the following moves:

• moving a message m from a frame f1 to another frame f2 (or moving m into a
separate single-message frame);

• swapping the priorities of two frames in α;
• swapping two slots in the sequence σ of slots in a TDMA round.

For the implementation of this algorithm, the parameters TI (initial temperature),
TL (temperature length), ε (cooling ratio) and the stopping criterion have to be
determined. They define the ‘cooling schedule’ and have a decisive impact on the
quality of the solutions and the CPU time consumed. We are interested to obtain
values for TI, TL and ε that will guarantee the finding of good quality solutions in a
short time.

We performed long runs of up to 48 h with the SA algorithm, for ten synthetic pro-
cess graphs (two for each graph dimension of 80, 160, 240 320, 400, see Section 3.9)
and the best ever solution produced has been considered as the optimum. Based on
further experiments we have determined the parameters of the SA algorithm so that
the optimisation time is reduced as much as possible but the near-optimal result is
still produced. For example, for the graphs with 320 nodes, TI is 700, TL is 500 and
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ε is 0.98. The algorithm stops if for three consecutive temperatures no new solution
has been accepted.

3.8.2 Frame packing greedy heuristic

The OptimizeFramePacking greedy heuristic (Figure 3.15) constructs the solution
by progressively selecting the best candidate in terms of the degree of schedulability.

We start by observing that all activities taking place in a multi-cluster system
are ordered in time using the offset information, determined in the StaticScheduling
function based on the worst-case response times known so far and the application
structure (i.e. the dependencies in the process graph). Thus, our greedy heuristic
outlined in Figure 3.15, starts with building two lists of messages ordered according
to the ascending value of their offsets, one for the TTC, messagesβ , and one for ETC,
messagesα . Our heuristic is to consider for packing in the same frame messages
which are adjacent in the ordered lists. For example, let us consider that we have
three messages, m1 of 1 byte, m2 of 2 bytes and m3 of 3 bytes, and that messages
are ordered as m3, m1, m2 based on the offset information. Also, assume that our
heuristic has suggested two frames, frame f1 with a data field of 4 bytes, and f2 with
a data field of 2 bytes. The PackMessages function will start with m3 and pack it in
frame f1. It continues with m2, which is also packed into f1, since there is space left
for it. Finally, m3 is packed in f2, since there is no space left for it in f1.

The algorithm tries to determine, using the for-each loops in Figure 3.15, the best
frame configuration. The algorithm starts from the initial frame configuration ψ0, and
progressively determines the best change to the current configuration. The quality of a
frame configuration is measured using theMultiClusterScheduling algorithm, which
calculates the degree of schedulability δ� (line 13). Once a configuration parameter
has been fixed in the outer loops it is used by the inner loops:

• Lines 10–15: The innermost loops determine the best size Sα for the currently
investigated framefα in the ETC frame configurationαcurrent. Thus, several frame
sizes are tried (line 11), each with a size returned by RecomendedSizes to see if
it improves the current configuration. The RecomendedSizes(messagesα) list is
built recognising that only messages adjacent in the messagesα list will be packed
into the same frame. Sizes of frames are determined as a sum resulted from adding
the sizes of combinations of adjacent messages, not exceeding 8 bytes. For the
previous example, with m1, m2 and m3, of 1, 2 and 3 bytes, respectively, the
frame sizes recommended will be of 1, 2, 3, 4, and 6 bytes. A size of 5 bytes will
not be recommended since there are no adjacent messages that can be summed
together to obtain 5 bytes of data.

• Lines 9–16: This loop determines the best frame configuration α. This means
deciding on how many frames to include in α (line 9), and which are the best
sizes for them. In α there can be any number of frames, from one single frame
to nα frames (in which case each frame carries one single message). Once a
configuration αbest or the ETC, minimising δ� , has been determined (saved in
line 16), the algorithm looks for the frame configuration β which will further
improve δ� .
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• Lines 7–17: The best size for a frame fβ is determined similarly to the size for a
frame fα .

• Lines 6–18: The best frame configuration βbest is determined. For each frame
configuration β tried, the algorithm loops again through the innermost loops to
see if there are better frame configurations α in the context of the current frame
configuration βcurrent.

• Lines 4–19: After a βbest has been decided, the algorithm looks for a slot sequence
σ starting with the first slot and tries to find the node which, when transmitting in
this slot, will reduce δ� . Different slot sequences are tried by swapping two slots
within the TDMA round (line 5).

For the initial message priorities π0 (initially, there is one message per frame)
we use the ‘heuristic optimised priority assignment’ (HOPA) approach [55], where
priorities in a distributed real-time system are determined, using knowledge of the
factors that influence the timing behaviour, such that the degree of schedulability of
the system is improved (line 1). The ETC message priorities set at the beginning of
the algorithm are not changed by our greedy optimisation loops. The priority of a
frame fα ∈ α is given by the message m ∈ fα with the highest priority.

The algorithm continues in this fashion, recording the best ever ψbest configura-
tions obtained, in terms of δ� , and thus the best solution ever is reported when the
algorithm finishes.

3.9 Experimental results

For the evaluation of our frame-packing optimisation algorithms we first used process
graphs generated for experimental purpose. We considered two-cluster architectures
consisting of 2, 4, 6, 8 and 10 nodes, half on the TTC and the other half on the ETC,
interconnected by a gateway. Forty processes were assigned to each node, resulting
in applications of 80, 160, 240, 320 and 400 processes.

We generated both graphs with random structure and graphs based on more regular
structures such as trees and groups of chains. We generated a random structure graph
deciding for each pair of two processes if they should be connected or not. Two
processes in the graph were connected with a certain probability (between 0.05 and
0.15, depending on the graph dimension) on the condition that the dependency would
not introduce a loop in the graph. The width of the tree-like structures was controlled
by the maximum number of direct successors a process can have in the tree (from 2
to 6), while the graphs consisting of groups of chains had 2 to 12 parallel chains of
processes. Furthermore, the regular structures were modified by adding a number of
3 to 30 random cross-connections.

The mapping of the applications to the architecture has been done using a simple
heuristic that tries to balance the utilisation of processors while minimising commu-
nication. Execution times and message lengths were assigned randomly using both
uniform and exponential distribution within the 10–100 ms and 1–2 bytes ranges,
respectively. For the communication channels we considered a transmission speed of
256 kbps and a length below 20 meters. All experiments were run on a SUN Ultra 10.
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Table 3.1 Evaluation of the frame-packing optimisation algorithms

No. of Straightforward solution (SP) OptimizeFramePacking (OFP) SimulatedAnnealing
processes (SA)

average max time average max time time
(%) (%) (s) (%) (%) (s) (s)

80 2.42 17.89 0.09 0.40 1.59 4.35 235.95
160 16.10 42.28 0.22 2.28 8.32 12.09 732.40
240 40.49 126.4 0.54 6.59 21.80 49.62 2928.53
320 70.79 153.08 0.74 13.70 30.51 172.82 7585.34
400 97.37 244.31 0.95 31.62 95.42 248.30 22099.68

The first result concerns the ability of our heuristics to produce schedulable
solutions. We have compared the degree of schedulability δ� obtained from our
OptimizeFramePacking (OFP) heuristic (Figure 3.15) with the near-optimal values
obtained by SA (Figure 3.14). Obtaining solutions that have a better degree of schedu-
lability means obtaining tighter worst-case response times, increasing the chances of
meeting the deadlines.

Table 3.1 presents the average percentage deviation of the degree of schedulabil-
ity produced by OFP from the near-optimal values obtained with SA. Together with
OFP, a straightforward approach (SF) is presented. The SF approach does not con-
sider frame packing, and thus each message is transmitted independently in a frame.
Moreover, for SF we considered a TTC bus configuration consisting of a straightfor-
ward ascending order of allocation of the nodes to the TDMA slots; the slot lengths
were selected to accommodate the largest message frame sent by the respective node,
and the scheduling has been performed by the MultiClusterScheduling algorithm in
Figure 3.10.

In Table 3.1 we have one row for each application dimension of 80–400 processes,
and a header for each optimisation algorithm considered. For each of the SF and
OFP algorithms we have three columns in the table. In the first column, we present
the average percentage deviation of the algorithm from the results obtained by SA.
The percentage deviation is calculated according to the formula:

deviation = θ
approach
� − θSA

�

θSA
�

100 (3.14)

The second column presents the maximum percentage deviation from the SA
result, and the third column presents the average execution time of the algorithm, in
seconds. For the SA algorithm we present only its average execution times.

Table 3.1 shows that when packing messages to frames, the degree of schedula-
bility improves dramatically compared to the straightforward approach. The greedy
heuristicOptimizeFramePacking performs well for all the graph dimensions, having,
e.g., run-times which are on average under 50 for applications with 240 processes.
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ABS TCM

CEM

ECM ETM

TTP bus

CAN bus

TT cluster

ET cluster

Figure 3.16 Hardware architecture for the cruise controller

When deciding on which heuristic to use for design space exploration or system
synthesis, an important issue is the execution time. On average, our optimisation
heuristics needed a couple of minutes to produce results, while the simulated annealing
approach had an execution time of up to 6 h.

3.9.1 The vehicle cruise controller

A typical safety-critical application with hard real-time constraints, is a vehicle cruise
controller (CC). We have considered a CC system derived from a requirement spec-
ification provided by the industry. The CC delivers the following functionality: it
maintains a constant speed for speeds over 35 km/h and under 200 km/h, offers an
interface (buttons) to increase or decrease the reference speed and is able to resume
its operation at the previous reference speed. The CC operation is suspended when
the driver presses the brake pedal.

The specification assumes that the CC will operate in an environment consisting
of two clusters. There are four nodes which functionally interact with the CC system:
the Anti-lock Braking System (ABS), the Transmission Control Module (TCM),
the Engine Control Module (ECM) and the Electronic Throttle Module (ETM) (see
Figure 3.16).

It has been decided to map the functionality (processes) of the CC over these four
nodes. The ECM and ETM nodes have an 8-bit Motorola M68HC11 family CPU with
128 kbytes of memory, while the ABS and TCM are equipped with a 16-bit Motorola
M68HC12 CPU and 256 kbytes of memory. The 16-bit CPUs are twice as fast than
the 8-bit ones. The transmission speed of the communication channel is 256 kbps and
the frequency of the TTP controller was chosen to be 20 MHz.

We have modelled the specification of the CC system using a set of 32 processes
and 17 [72] where the mapping of processes to the nodes is also given. The period
was chosen 250 ms, equal to the deadline.

In this setting, the straightforward approach SF produced an end-to-end worst-
case response time of 320 ms, greater than the deadline, while both the OFP and SA
heuristics produced a schedulable system with a worst-case response time of 172 ms.
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This shows that the optimisation heuristic proposed, driven by our schedulabil-
ity analysis, is able to identify that frame packing configuration which increases
the schedulability degree of an application, allowing the developers to reduce the
implementation cost of a system.

3.10 Conclusions

Heterogeneous distributed real-time systems are used in several application areas to
implement increasingly complex applications that have tight timing constraints. The
heterogeneity is manifested not only at the hardware and communication protocol
levels, but also at the level of the scheduling policies used. In order to reduce costs
and use the available resources more efficiently, the applications are distributed across
several networks.

We have introduced the current state-of-the-art analysis and optimisation tech-
niques available for such systems, and addressed in more detail a special class of
heterogeneous distributed real-time embedded systems called multi-cluster systems.

We have presented an analysis for multi-cluster systems and outlined several char-
acteristic design problems, related to the partitioning and mapping of functionality
and the optimisation of the access to the communication infrastructure. An approach
to schedulability-driven frame packing for the synthesis of multi-cluster systems
was presented as an example of solving such a design optimisation problem. We
have developed two optimisation heuristics for frame configuration synthesis which
are able to determine frame configurations that lead to a schedulable system. We
have shown that by considering the frame packing problem, we are able to synthesise
schedulable hard real-time systems and to potentially reduce the overall cost of the
architecture.

The main message of the presented research is that efficient analysis and optimi-
sation methods are needed and can be developed for the efficient implementation of
applications distributed over interconnected heterogeneous networks.
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Chapter 4

Hardware/software partitioning of
operating systems: focus on

deadlock avoidance
Jaehwan John Lee and Vincent John Mooney III

4.1 Introduction

Primitive operating systems were first introduced in the 1960s in order to relieve
programmers of common tasks such as those involving Input/Output (I/O). Grad-
ually, scheduling and management of multiple jobs/programs became the purview
of an Operating System (OS). Many fundamental advances, such as multithreading
and multiprocessor support, have propelled both large companies and small to the
forefront of software design.

Recent trends in chip design press the need for more advanced operating systems
for System-on-a-Chip (SoC). However, unlike earlier trends where the focus was on
scientific computing, today’s SoC designs tend to be driven more by the needs of
embedded computing. While it is hard to state exactly what constitutes embedded
computing, it is safe to say that the needs of embedded computing form a superset of
scientific computing. For example, real-time behaviour is critical in many embedded
platforms due to close interaction with non-humans, e.g. rapidly moving mechan-
ical parts. In fact, the Application-Specific Integrated Circuits (ASICs) preceding
SoC did not integrate multiple processors with custom hardware, but instead were
almost exclusively digital logic specialised to a particular task and hence very timing
predictable and exact. Therefore, we predict that advances in operating systems for
SoC focusing on Real-Time Operating System (RTOS) design provide a more natural
evolution for chip design as well as being compatible with real-time systems.

Furthermore, thanks to the recent trends in the technologies of MultiProcessor SoC
(MPSoC) and reconfigurable chips, many hardware Intellectual Property (IP) cores
that implement software algorithms have been developed to speed up computation.
However, efforts to fully exploit these innovative hardware IP cores have encountered
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many difficulties such as interfacing IP cores to a specific system, modifying IP cores
to fulfil requirements of a system under consideration, porting device drivers and
finally integrating both IP cores and software seamlessly. Much work of interfacing,
modifying and/or porting IP cores and device drivers has relied on human resources.
Hardware/software codesign frameworks can help reduce this burden on designers.

This chapter focuses on such research in the design of OS, especially RTOSes.
We have implemented and upgraded the δ hardware/software RTOS/MPSoC design
framework (shown in Figure 4.1). Since we have already described key aspects of
our approach in References 1–5, in this chapter we first briefly explain the δ frame-
work and then focus more on an exposition of deadlock issues. We believe deadlock
issues are on the horizon due to the rapid evolution in MPSoC technology and the
introduction of many innovative IP cores. We predict that future MPSoC designs
will have hundreds of processors and resources (such as custom FFT hardware) all
in a single chip; thus, systems will handle much more functionality, enabling a much
higher level of concurrency and requiring many more deadlines to be satisfied. As a
result, we predict there will be resource sharing problems among the many processors
desiring the resources, which may result in deadlock more often than designers might
realise.

The remainder of this chapter is organised as follows. Section 4.2 presents our
target MPSoC architecture and then explains the δ hardware/software RTOS design
framework version 2.0 including a description of two hardware RTOS components:
a ‘lock’ cache and a dynamic memory allocator. Section 4.3 motivates deadlock
issues and provides background about deadlock problems. Section 4.4 focuses on
several new software/hardware solutions to such deadlock problems. Section 4.5
addresses experimental setup and shows various comparison results with applications
that demonstrate how the δ framework could impact hardware/software partition-
ing in current and future RTOS/MPSoC designs. Finally, Section 4.6 concludes this
chapter.

4.2 Hardware/software RTOS design

4.2.1 RTOS/MPSoC target

Figure 4.2 shows our primary target MPSoC consisting of multiple processing
elements with L1 caches, a large L2 memory, and multiple hardware IP compo-
nents with essential interfaces such as a memory controller, an arbiter and a bus
system. The target also has a shared memory multiprocessor RTOS (Atalanta [6]
developed at the Georgia Institute of Technology), which is small and configurable.
The code of Atalanta RTOS version 0.3 resides in shared memory, and all processing
elements (PEs) execute the same RTOS code and share kernel structures as well as
the states of all processes and resources. Atalanta supports priority scheduling with
priority inheritance as well as round-robin; task management such as task creation,
suspension and resumption; various Inter Process Communication (IPC) primitives
such as semaphores, mutexes, mailboxes, queues and events; memory management;
and interrupts. As shown in Figure 4.2, hardware IP cores can be either integrated
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Figure 4.2 Future MPSoC

into the reconfigurable logic or implemented as custom logic. Besides, specialised IP
cores such as DSP processors and wireless interface cores can also be integrated into
the chip.

4.2.2 The δ framework

The δ hardware/software RTOS generation framework (shown in Figure 4.1) for
MPSoC has been proposed to enable automatic generation of different mixes of pre-
designed hardware/software RTOS components that fit the target MPSoC a user is
designing so that RTOS/MPSoC designers can explore crucial decisions early in the
design phase of their target product(s) [1–5]. Thus, the δ framework helps users
explore which configuration is most suitable for users’ target and application or set
of applications. In other words, the δ framework is specifically designed to pro-
vide a solution to rapid RTOS/MPSoC (both hardware and software) design space
exploration so that users can easily and quickly find a few optimal RTOS/MPSoC
architectures that are most suitable to their design goals. The δ framework gener-
ates a configured RTOS/MPSoC design that is simulatable in a hardware/software
cosimulation environment after the generated design is compiled. Hardware designs
are described in a Hardware Description Language (HDL) such as Verilog. Software
designs could be described in any language although we have only used C in our
designs.

From the initial implementation [1, 2], we have extended the δ framework to
include parameterised generators of hardware IP components (i.e. automatically con-
figurable to fit a desired target architecture) as well as the generation of various types
of bus systems. This section gives an overview of parameterised generators for a
customised RTOS/MPSoC design including a bus configurator, a dynamic memory
management unit generator and a custom ‘lock’ cache generator, and explains such
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Figure 4.3 GUI of the δ framework

available IP components briefly. Many low-level details – e.g. details of the bus sys-
tem generation – are not repeated in this chapter but instead are available in referenced
works [1–22].

Figure 4.3 shows a Graphical User Interface (GUI) for the δ framework ver-
sion 2.0, which now integrates four parameterised generators we have and generates
an RTOS/MPSoC system. The GUI generates a top-level architecture file plus addi-
tional configuration files, used as input parameter files to generate specific hardware
component files (i.e. modules) either using a dedicated generator or via Verilog
PreProcessor (VPP [23]).

Here we summarise each generator briefly. For more information, please see
specific references. When users want to create their own specific bus systems, by
clicking ‘Bus configuration’ (shown at the top right of Figure 4.3), users can specify
address and data bus widths as well as detailed bus topology for each subsystem in
case a system has a hierarchical bus structure. After the appropriate inputs are entered,
the tool will generate a user-specified bus system with the specified hierarchy. Further
details about bus system generation are described in References 7 to 10.

At the bottom of Figure 4.3, there are several options for ‘Hardware
RTOS Components’: the SoC Lock Cache (SoCLC), multiple deadlock detec-
tion/ avoidance solutions, and the SoC Dynamic Memory Management Unit
(SoCDMMU). The details of these hardware RTOS components will be described in
Section 4.2.3.

In addition to selecting hardware RTOS components, the δ framework version 2.0
can also manipulate the size and type of each RTOS component by use of input
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Figure 4.4 GUI for automatic generation of a hardware deadlock solution

parameters. For instance, when users want to include SoCLC, they specify the num-
ber of short locks (short locks are held for a very short time, e.g. 100 cycles or
less) and the number of long locks (equivalent to semaphores) according to the
expected requirements for their specific target (or goal). Detailed parameterised
SoCLC generation is discussed in References 11 and 18.

For deadlock hardware components, after a user selects either the Deadlock Detec-
tion Unit (DDU), the Deadlock Avoidance Unit (DAU) or the Parallel Banker’s
Algorithm Unit (PBAU), the GUI tool shown in Figure 4.3 directs the generation
at the specified deadlock IP component with the designated type and specific size
according to the number of tasks and resources specified in the Target Architecture
window (see upper left of Figure 4.3) [7]. Figure 4.4 shows a separate deadlock
hardware solution generator [7]. The generation process is the same as we explained
above. In the screen shot shown in Figure 4.4, the user has selected four PEs all of
the same type, namely, MPC755.

For the SoCDMMU IP component, users specify the number of memory blocks
(available for dynamic allocation in the system) and several additional parameters,
and then the GUI tool generates a user-specified SoCDMMU. Details regarding
parameterised SoCDMMU generation are addressed in References 13 and 14.

We briefly describe our approach to HDL file generation in the following
example.

Example 4.1 Top-level architecture file generation in the δ framework
This example briefly describes a specific portion of the δ framework that generates a
top-level design file of a particular MPSoC with the SoCLC hardware IP component.
Figure 4.5 illustrates that the GUI tool (shown in Figure 4.3) generates a top-level
architecture file (i.e. a top-level file for the system being designed, where the top-level
file instantiates any number of additional modules needed in an overall hierarchy)
according to the description of a user-specified system with hardware IP components.
Let us assume that a user selects a system having three PEs and an SoCLC for eight
short locks and eight long locks. Then, the generation process starts with a description
of a system having an SoCLC (i.e. LockCache description) in the description library.
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(iii) Compile and
        instantiations

wire addr;
wire data;
wire br_bar;
wire bg_bar;
...
initial begin ... end;

(ii) Add wires and initial states

(i) Instantiation code generation

clock clock_gen (SYSCLK);
cpu_mpc755 cpu1 (...);
arbiter arb (br_bar, bg_bar);
hwlock soclc (addr, data, ...);
...

Desc LockCache
cpu_mpc755,
memory controller
arbiter

enddesc

Description
library

PEs 1,2,3
SoCLC

Arbiter

Clock

Memory
1,2,3

...

Figure 4.5 Top file generation in the δ framework

The LockCache description lists modules necessary to build a system containing an
SoCLC, such as PEs, L2 memory, a memory controller, a bus arbiter, an interrupt
controller and an SoCLC with the specified locks. The Verilog top file generator,
which we call Archi_gen, writes all instantiation code for each module in the list
of the LockCache description to a file. In case that a system contains multiple units of
the same type of module (e.g. multiple PEs), Archi_gen also automatically includes
multiple instantiation code of the same type IP with distinct identification numbers
since some modules need to be instantiated multiple times. Then, Archi_genwrites
necessary wires described in the LockCache description, and then writes initialisation
routines necessary to execute simulation. Later by compiling Top.v, a specified
target hardware architecture will be ready for exploration via standard simulation
tools (in our case, Seamless CVE [37]) [2]. �

4.2.3 Hardware RTOS components

This subsection briefly summarises two available hardware IP components presented
previously: SoCLC and SoCDMMU.

4.2.3.1 SoCLC

Synchronisation has always been a critical issue in multiprocessor systems. As multi-
processors execute a multitasking application on top of an RTOS, any important shared
data structure, also called a Critical Section (CS), may be accessed for inter-process
communication and synchronisation events occurring among the tasks/processors in
the system.
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Previous work has shown that the SoCLC, which is a specialised custom hardware
unit realising effective lock-based synchronisation for a multiprocessor shared-
memory SoC as shown in Figure 4.6, reduces on-chip memory traffic, provides a
fair and fast lock hand-off, simplifies software, increases the real-time predictability
of the system and improves performance as well [15–18].

Akgul et al. [17] extended the SoCLC mechanism with a priority inheritance sup-
port implemented in hardware. Priority inheritance provides a higher level of real-time
guarantees for synchronising application tasks. The authors present a solution to the
priority inversion problem in the context of an MPSoC by integrating an Immedi-
ate Priority Ceiling Protocol (IPCP) [24] implemented in hardware. The approach
also provides higher performance and better predictability for real-time applications
running on an MPSoC.

Experimental results indicate that the SoCLC hardware mechanism with priority
inheritance achieves a 75 percent speedup in lock delay (i.e. average time to access
a lock during application execution [17]). The cost in terms of additional hardware
area for the SoCLC with 128 locks supporting priority inheritance is approximately
10 000 NAND2 gates in TSMC .25µ chip fabrication technology [18].

4.2.3.2 SoCDMMU

The System-on-a-Chip Dynamic Memory Management Unit shown in Figure 4.7 is
a hardware unit that allows a fast and deterministic way to dynamically allocate/
de-allocate global (L2) memory among PEs [12]. The SoCDMMU is able to convert
the PE address (virtual address) to a physical address. The memory mapped address
or I/O port to which the SoCDMMU is mapped is used to send commands to the
SoCDMMU (writing data to the port or memory-mapped location) and to receive
the results of the command execution (reading from the port or memory-mapped
location).
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As shown in References 12 and 14, the SoCDMMU achieves a 4.4× over-
all speedup in memory management during application transition time of several
examples when compared with conventional memory allocation/deallocation tech-
niques, i.e. malloc() and free(). The SoCDMMU is synthesisable and has been
integrated into a system example including porting SoCDMMU functionality to an
RTOS (so that the user can access SoCDMMU functionality using standard software
memory management APIs) [12]. Also, the SoCDMMU-crossbar switch Generator
(DX-Gt [13]) can configure and optimise the SoCDMMU and associated crossbar
switch to suit a specific system (e.g. for a particular memory configuration and num-
ber of PEs). In this way, DX-Gt automates the customisation and the generation of
the hardware memory management functionalities with associated crossbar support.
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4.3 Background and prior work for deadlock

In this section we motivate the development of deadlock-related software and hard-
ware IP components and then introduce definitions and prior work related to our
deadlock research.

4.3.1 Motivation for the design of deadlock-related hardware components

In most current embedded systems in use today, deadlock is not a critical issue due to
the use of only a few (e.g. two or less) processors and a couple of custom hardware
resources (e.g. direct memory access hardware plus a video decoder). However, in the
coming years future chips may have five to twenty (or more) processors and ten to a
hundred resources all in a single chip. This is the way we predict MPSoC will rapidly
evolve. Even in the platform design area, Xilinx already has been able to include
multiple PowerPC processors in the Virtex-II Pro and Virtex-IV FPGA [25]. Given
current technology trends, we predict that MPSoC designers and users are going to
start facing deadlock problems more and more often. That is, deadlock problems are
on the horizon.

How can we efficiently and timely cope with deadlock problems in such an
MPSoC? Although dynamic resource allocation in an MPSoC may produce dead-
lock problems, MPSoC architectures can be modified to provide efficient hardware
solutions to deadlock. Before describing such solutions, we first introduce some
definitions and our target system model in the following section.

4.3.2 Background

4.3.2.1 Definitions

Definitions of ‘deadlock’, ‘livelock’ and ‘avoidance’ in our context can be stated as
follows:

Definition 4.1 A system has a deadlock if and only if the system has a set of pro-
cesses, each of which is blocked (e.g. preempted), waiting for requirements that can
never be satisfied.

Definition 4.2 Livelock is a situation where a request for a resource is repeatedly
denied and possibly never accepted because of the unavailability of the resource,
resulting in a stalled process, while the resource is repeatedly made available for
other process(es) which make progress.

Definition 4.3 Deadlock avoidance is a way of dealing with deadlock where
resource usage is dynamically controlled not to reach deadlock (i.e. on the fly, resource
usage is controlled to ensure that there can never be deadlock).

In addition, we define two kinds of deadlock: request deadlock (R-dl) and grant
deadlock (G-dl).
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Definition 4.4 For a given system, if a request from a process directly causes
the system to have a deadlock at that moment, then we denote this case as request
deadlock or R-dl [7].

Definition 4.5 For a given system, if the grant of a resource to a process directly
causes the system to have a deadlock at that moment, then we denote this case as
grant deadlock or G-dl [7].

While a request deadlock (R-dl) example is described in Example 4.4 of
Section 4.4.3, a grant deadlock (G-dl) example is described in the example pre-
sented in Section 4.5.6.1. Please note that we differentiate between R-dl and G-dl
because our deadlock avoidance algorithm in Section 4.4.3 requires the distinction
to be made. The distinction is required because some actions can only be taken for
either R-dl or G-dl; e.g. for G-dl it turns out that perhaps deadlock can be avoided by
granting the released resource to a lower priority process.

We now define ‘single-instance resource’ and ‘multiple-instance resource’.

Definition 4.6 A single-instance resource is a resource that services no more than
one process at a time. That is, while the resource is processing a request from a
process, all other processes requesting to use the resource must wait [26].

Definition 4.7 A multiple-instance resource is a resource that can service two or
more processes at the same time, providing the same or similar functionality to all
serviced processes [26].

Example 4.2 An example of a multiple-instance resource
The SoC Dynamic Memory Management Unit dynamically allocates and deallocates
segment(s) of global level two (L2) memory between PEs with very fast and deter-
ministic time (e.g. four clock cycles) [12]. In a system having an SoCDMMU and 16
segments of global L2 memory, which can be considered as a 16-instance resource,
rather than having each PE (or process) keep track of each segment, PEs request seg-
ment(s) from the SoCDMMU (which keeps track of the L2 memory). In this way, not
only can the overhead of tracking segments for each PE be reduced but also interfaces
between PEs and segments can be simplified because PEs request segment(s) from
one place (i.e. the SoCDMMU). �

We also introduce the definitions of an ‘H-safe sequence’ and an ‘H-safe state’
used to clarify the Parallel Banker’s Algorithm. Please note that the notion of ‘safe’
was first introduced by Dijkstra [27] and was later formalised into ‘safe sequence’,
‘safe state’ and ‘unsafe state’ by Habermann [28]. We refer to Habermann’s ‘safe
sequence’ as an ‘H-safe sequence’, to Habermann’s ‘safe state’ as an ‘H-safe state’
and to Habermann’s ‘unsafe state’ as an ‘H-unsafe state’ where the ‘H’ stands for
Habermann.
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Figure 4.8 A practical MPSoC realisation

Definition 4.8 An H-safe sequence is an enumeration p1,p2, . . . ,pn of all the
processes in the system, such that for each i = 1, 2, . . . , n, the resources that pi

may request are a subset of the union of resources that are currently available and
resources currently held by p1,p2, . . . ,pi−1 [27,28].

Theorem 4.1 A system of processes and resources is in an H-safe state if and only
if there exists an H-safe sequence {p1,p2, . . . ,pn}. If there is no H-safe sequence,
the system is in an H-unsafe state [28].

4.3.2.2 System model in the view of deadlock

To address deadlock issues, we first show a modified MPSoC from Figure 4.2 in the
following example:

Example 4.3 A future Request-Grant MPSoC
We introduce the device shown in Figure 4.8 as a particular MPSoC example. This
MPSoC consists of four PEs and four resources: a Video and Image capturing interface
(VI), an MPEG encoder/decoder, a DSP and a Wireless Interface (WI), which we
refer to as q1, q2, q3 and q4, respectively, as shown in Figure 4.8(b). The MPSoC
also contains memory, a memory controller and a DAU. In the figure, we assume that
each PE has only one active process; i.e. each process p1, p2, p3 and p4, as shown
in Figure 4.8(b), runs on PE1, PE2, PE3 and PE4, respectively. In the current state,
resource q1 is granted to process p1, which in turn requests q2. In the meantime, q2

is granted to p3, which requests q4, while q4 is granted to process p4. The DAU in
Figure 4.8 receives all requests and releases, decides whether or not the request or
grant can cause a deadlock and then permits the request or grant only if no deadlock
results. �
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We consider this kind of request-grant system with many resources and processes
as shown in Figure 4.8 as our system model in the view of deadlock. Based on our
system model, we first introduce prior work in deadlock research and then describe
new approaches for such MPSoCs.

4.3.3 Prior work in deadlock research

4.3.3.1 Overview of prior deadlock research

Researchers have put tremendous efforts into deadlock research, three well-known
areas of which are deadlock detection, prevention and avoidance [26, 27, 29, 30].
Among them, deadlock detection provides more freedom for a system since deadlock
detection does not typically restrict the behaviour of a system, facilitating full concur-
rency. Deadlock detection, however, usually requires a recovery once a deadlock is
detected. In contrast, deadlock prevention prevents a system from reaching deadlock
by typically restraining request orders to resources in advance, implying restrictions
on concurrency. One such method is the Priority Ceiling Protocol (PCP [24]), which is
only a solution for a single processor system, though. Another method is the collective
request method, which, however, tends to cause resource under-utilisation as well as
process starvation [26]. Deadlock avoidance, by contrast, generally sits in-between;
that is, deadlock avoidance normally gives more freedom with less restrictions than
deadlock prevention [26]. As implemented in known algorithms, deadlock avoidance
essentially requires knowledge about the maximum necessary resource requirements
for all processes in a system, which unfortunately makes the implementation of
deadlock avoidance difficult in real systems with dynamic workloads [27–30].

4.3.3.2 Deadlock detection

All software deadlock detection algorithms known to the authors to date have a run-
time complexity of at least O(m × n), where m is the number of resources and n is
the number of processes. In 1970, Shoshani et al. [29] proposed an O(m × n2) run-
time complexity detection algorithm, and about two years later, Holt [30] proposed
an O(m × n) algorithm to detect a knot that tells whether deadlock exists or not.
Both of the aforementioned algorithms (of Shoshani et al. and of Holt) are based
on a Resource Allocation Graph (RAG) representation. Leibfried [31] proposed a
method of describing a system state using an adjacency matrix representation and
a corresponding scheme that detects deadlock with matrix multiplications but with
a run-time complexity of O(m3). Kim and Koh [32] proposed an algorithm with
O(m×n) time for ‘detection preparation’; thus an overall time for detecting deadlock
(starting from a system description that just came into existence, e.g. due to multiple
grants and requests occurring within a particular time or clock cycle) of at least
O(m × n).

4.3.3.3 Deadlock avoidance

A traditional well-known deadlock avoidance algorithm is the Banker’s Algorithm
(BA) [27]. The algorithm requires each process to declare the maximum requirement
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(claim) of each resource it will ever need. In general, traditional deadlock avoidance
(i.e. based on some variant of BA) is more expensive than deadlock detection and may
be impractical because of the following disadvantages: (1) an avoidance algorithm
must be executed for every request prior to granting a resource, (2) deadlock avoidance
tends to restrict resource utilisation, which may degrade normal system performance
and (3) the maximum resource requirements (and thus requests) might not be known
in advance [27, 33].

In 1990, Belik [34] proposed a deadlock avoidance technique in which a path
matrix representation is used to detect a potential deadlock before the actual allo-
cation of resources. However, Belik’s method requires O(m × n) time complexity
for updating the path matrix in releasing or allocating a resource and thus an overall
complexity for avoiding deadlock of O(m × n), where m and n are the numbers of
resources and processes, respectively. Furthermore, Belik did not mention any solu-
tion to livelock although livelock is a possible consequence of his deadlock avoidance
algorithm.

4.4 New approaches to deadlock problems

In this section, we describe in detail deadlock related IP components, i.e. the Dead-
lock Detection hardware Unit (DDU), the DAU and the Parallel Banker’s Algorithm
Unit (PBAU).

4.4.1 Introduction

All of the algorithms referenced in Section 4.3 assume an execution paradigm of
one instruction or operation at a time. With a custom hardware implementation of a
deadlock algorithm, however, parallelism can be exploited.

Detection of deadlock is extremely important since any request for or grant of
a resource might result in deadlock. Invoking software deadlock detection on every
resource allocation event would typically cost too much computational power; thus,
using a software implementation of deadlock detection and/or avoidance would per-
haps be impractical in terms of the performance cost. A promising way of solving
deadlock problems with small compute power is to implement deadlock detection
and/or avoidance in hardware.

To handle this possibility, the DDU [19,20], the DAU [21] utilising the DDU and
the PBAU [22] have recently been proposed. These three hardware deadlock solutions
improve the reliability and timeliness of applications running on an MPSoC under an
RTOS. Of course, adding a centralised module on MPSoC may lead to a bottleneck.
However, since resource allocation and deallocation are preferably managed by an
OS (which already implies some level of centralised operation), adding hardware can
potentially reduce the burden on software rather than becoming a bottleneck.

4.4.2 New deadlock detection methodology: the DDU

The DDU manipulates a simple Boolean representation of the types of each edge: the
request edge of a process requesting a resource, the grant edge of a resource granted
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to a process, or no activity (neither a request nor a grant) [7]. Since the DDU is
implemented in a small amount of hardware, the designed deadlock detection unit
hardly affects system performance (and potentially has no negative impact whatso-
ever) yet provides the basis for an enhanced deadlock detection methodology. The
DDU has been proven to have a run-time complexity of O(min(m, n)) using custom
hardware [7].

The DDU consists of three parts as shown in Figure 4.9: matrix cells (part 1),
weight cells (part 2) and a decide cell (part 3). Part 1 of the DDU is a realisation of
the system state matrix Mij (shown in Equation (4.1)) via use of an array of matrix
cells that represents an array of αst entries where 1 ≤ s ≤ m and 1 ≤ t ≤ n. Since
each matrix element αst represents one of the following: gs⇀t (a grant edge), rt→s

(a request edge) or 0st (no edge) (i.e. αst is ternary-valued), αst can be minimally
defined as a pair of two bits αst = (αr

st ,α
g
st ). If an entry αst is a grant edge g, bit αr

st

is set to 0, and α
g
st is set to 1; if an entry αst is a request edge r , bit αr

st is set to 1, and
α
g
st is set to 0; otherwise, both bits αr

st and α
g
st are set to 0. Hence, an entry αst can be

only one of the following binary encodings: 01 (a grant edge), 10 (a request edge) or
00 (no edge).
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 (4.1)

On top of the matrix, terminal edges (i.e. edges connected to a node with only
incoming edges or only outgoing edges and thus provably not involved in deadlock)
are iteratively found and removed to detect deadlock (i.e. edges are still remaining by
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the end of iterations). Such discoveries and removals of terminal edges are performed
in part 2, which consists of two weight vectors: (1) a column weight vector Wc below
the matrix cells and (2) a row weight vector Wr on the right-hand side of the array of
matrix cells. Each element wct , 1 ≤ t ≤ n, in Wc is called a column weight cell, and
each element wrs , 1 ≤ s ≤ m, in Wr is called a row weight cell. Both wct and wrs

represent whether the corresponding node has terminal edges, non-terminal edges
or neither. At the bottom right corner of the DDU is one decide cell (part 3) which
calculates at each iteration whether there exist terminal edges (if none, all iterations
are done) or whether there exist non-terminal edges (in order to check deadlock).

Figure 4.9 specifically illustrates the DDU for three processes and three resources.
This DDU has nine matrix cells (3 × 3) for each edge element (αr

st ,α
g
st ) of Mij , six

weight cells (three for column processing and three for row processing), and one
decide cell for deciding whether or not deadlock has been detected. The details of
each cell are described in Reference 7. The area of Figure 4.9 mapped to a 0.3 µm
standard cell library from AMIS [35] is 234 in units equivalent to minimum-sized
two-input NAND gates in the library [19, 20].

An RTOS/MPSoC system example with the DDU achieves approximately a
1400X speedup in deadlock detection time and a 46 percent speedup in applica-
tion execution time over an RTOS/MPSoC system with a deadlock detection method
in software (please see details in Section 4.5.5) [19, 20].

4.4.3 New deadlock avoidance methodology: the DAU

The Deadlock Avoidance Unit, our new approach to deadlock avoidance, not only
detects deadlock but also avoids possible deadlock within a few clock cycles and with
a small amount of hardware. The DAU, if employed, tracks all requests and releases
of resources and avoids deadlock by not allowing any grant or request that leads to a
deadlock.

The disadvantages (1), (2) and (3) mentioned in Section 4.3.3.3 unfortunately
make the implementation of deadlock avoidance difficult in real systems. Our novel
DAU approach to mixing deadlock detection and avoidance (thus, not requiring
advanced, a priori knowledge of resource requirements) contributes to easier adapta-
tion of deadlock avoidance in an MPSoC by accommodating both maximum freedom
(i.e. maximum concurrency of requests and grants depending on a particular execution
trace) with the advantage of deadlock avoidance. Note that the DAU only supports
systems with single-instance resources.

Algorithm 1 shows our deadlock avoidance approach. Rather than give an
overview of Algorithm 1, we illustrate actual operation with Example 4.4.

Algorithm 1 Deadlock Avoidance Algorithm (DAA)

DAA (event) {
1 case (event) {
2 a request:
3 if the resource is available
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4 grant the resource to the requester
5 else if the request would cause request deadlock (R-dl)
6 if the priority of the requester greater than that of the owner
7 make the request be pending
8 ask the current owner of the resource to release the resource
9 else
10 ask the requester to give up resource(s)
11 end-if
12 else
13 make the request be pending
14 end-if
15 break

16 a release:
17 if any process is waiting for the released resource
18 if the grant of the resource would cause grant deadlock
19 grant the resource to a lower priority process waiting
20 else
21 grant the resource to the highest priority process waiting
22 end-if
23 else
24 make the resource become available
25 end-if
26 } end-case
}

Example 4.4 Avoidance of request deadlock
Figure 4.10 illustrates the DAU, implemented in Verilog HDL. The DAU consists
of four parts: a DDU [19, 20], command registers, status registers and DAA logic
(implementing Algorithm 1) with a finite state machine. The command registers
receive request and grant commands from each PE. The processing results of the DAU
are stored into status registers read by all PEs. The DAA logic mainly controls DAU
behaviour, i.e. DAA logic interprets and executes commands (requests or releases)
from PEs as well as returns processing results back to PEs via status registers.

We now show a sequence of requests and grants that would lead to R-dl as shown
in Figure 4.11 and Table 4.1. In this example, we assume the following. (1) Process p1

requires resources q1 (VI) and q2 (IDCT) to complete its job. (2) Process p2 requires
resources q2 and q3 (DSP). (3) Process p3 requires resources q3 and q1.

The detailed sequence is shown in Table 4.1. At time t1, process p1 requests
q1. Then the DAU checks for the availability of the resource requested, i.e. the
DAU checks if no other process either holds or is requesting the resource (line 3 of
Algorithm 1). Since q1 is available, q1 is granted top1 immediately (line 4). Similarly,
at time t2, process p2 requests and acquires q2 (line 4), and, at time t3, process p3

requests and acquires q3 (line 4). After that, at time t4, process p2 requests q3; since
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q3 is unavailable because it was already granted to p3, the DAU checks the possibility
of request deadlock (R-dl) (line 5). The request edge p2 → q3 is temporarily written
inside the DDU. Then, deadlock detection check is performed. Since the request does
not cause R-dl (line 12), the request is valid and becomes pending (line 13). At time
t5, process p3 requests q1; since q1 was already granted to p1, and since the request
does not cause R-dl, this request also becomes pending (lines 5, 12 and 13).

At time t6, process p1 requests q2; since q2 is unavailable, the DAU checks (via
the DDU) whether the request would cause R-dl (line 5). Since at this time the request
p1 → q2 indeed will cause R-dl, the DAU identifies the potential R-dl. Thus, the
DAU next compares the priority of p1 with that of the current owner of q2 (line 6).
Since the priority of p1 is higher than that of p2 (i.e. the current owner of q2), the
DAU makes the request be pending for p1 (line 7) and then asks p2 to give up q2 so
that p1 can proceed (line 8).
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Table 4.1 A sequence of requests and grants that would lead to R-dl

Time Events

t0 The application starts
t1 p1 requests q1; q1 is granted to p1
t2 p2 requests q2; q2 is granted to p2
t3 p3 requests q3; q3 is granted to p3
t4 p2 requests q3, which becomes pending
t5 p3 requests q1, which also becomes pending
t6 p1 requests q2, which is about to lead to R-dl. However, the DAU detects the

possibility of R-dl. Thus, the DAU asks p2 to give up resource q2
t7 p2 releases q2, which is granted to p1. A moment later, p2 requests q2 again
t8 p1 uses and releases q1 and q2. Then, while q1 is granted to p3, q2 is granted to p2
t9 p3 uses and releases q1 and q3, q3 is granted to p2
t10 p2 finishes its job, and the application ends

As a result, the DAU avoids the potential R-dl, and, at time t7, p2 gives up and
releases q2 (line 16). Then, since p1 is waiting for q2 (line 17), q2 needs to be granted
to p1. However, there could be potential grant deadlock (G-dl) when any process
is waiting for released resources (line 17); thus, the DAU checks potential G-dl
before actually granting via use of the DDU (see References 7, 19 and 20). The DAU
temporarily marks a grant of q2 ⇀ p1 inside the DDU, and then to check potential
G-dl, the DAU initiates the DDU to execute its deadlock detection algorithm. Since
the temporary grant does not cause G-dl (line 20), it becomes a fixed grant; thus q2

is granted to p1 (line 21) (of course, p2 has to request q2 again at a later time in order
for p2 to continue making progress).

After using q1 and q2, p1 releases q1 and q2 at time t8. Then, while q1 needs to be
granted to p3, q2 needs to be granted to p2. However, there could also be potential
G-dl, the DAU again checks potential G-dl. Since a grant of q1 ⇀ p3 does not cause
G-dl (line 20), q1 is safely granted to p3 (line 21). Similarly, q2 is granted to p2

(lines 17, 20 and 21). Thus, p3 uses q1 and q3 and at time t9 releases q1 and q3; next
q3 is granted to p2, which then uses q2 and q3 and finishes its job at time t10. �

The DAU not only provides a solution to both deadlock and livelock but is
also up to 312X faster than an equivalent software solution (please see details in
Section 4.5.6) [21]. A more complete DAU description is available in References 7
and 21.

4.4.4 Parallel banker’s algorithm

The DAU in Section 4.4.3 can only be used for systems exclusively with single-
instance resources because the algorithm employed assumes all resources are single-
instance resources. No easy way is known to extend the algorithm employed by the
DAU to handle multiple-instance resources. However, a well-known solution exists
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for multiple-instance resources: the BA [27, 28]. Thus, we have devised the Parallel
Banker’s Algorithm Unit (PBAU), which can be used not only for a system with
single-instance resources but also for a system with multiple-instance resources as
well [22].

We now explain the main concept of our novel Parallel Banker’s Algorithm (PBA)
and its hardware implementation in the PBA Unit (PBAU). Algorithm 2 shows PBA
for multiple-instance multiple-resource systems. PBA executes whenever a process
is requesting resources and returns the status of whether the request is successfully
granted or is rejected due to the possibility of deadlock. PBA decides if the system is
still going to be sufficiently safe after the grant, i.e. if there exists at least one H-safe
sequence of process executions after some allocation of resources that the process
requested.

Before explaining the details of PBA, let us first introduce both notation used
as shown in Table 4.2 and data structures used as shown in Table 4.3. In Table 4.2,
array[], array[i][] and array[][j] mean ‘all elements of the array’, ‘all elements of
row i of the array’, and ‘all elements of column j of the array’, respectively. In
Table 4.3, Request[i][j] is a request for resource j from process i. If resource j is
a single-instance resource, Request[i][j] is either ‘0’ or ‘1’; otherwise, if resource j

Table 4.2 Notations for PBA

Notation Explanation

pi A process
qj A resource
array[][] or array[] All elements of the array
array[i][] All elements of row i of the array
array[][j] All elements of column j of the array

Table 4.3 Data structures for PBA

Name Notation Explanation

Request[i][j] Rij Request from process i for resource j

Maximum[i][j] Xij Maximum demand of process i for resource j

Available[j] Vj Current number of unused resource j

Allocation[i][j] Gij Process i’s current allocation of j
Need[i][j] Nij Process i’s potential for more j

(Need[i][j] = Maximum[i][j] − Allocation[i][j])
Work[j] Wj A temporary storage (array) for Available[j]
Finish[i] Fi Whether process i may potentially complete successfully
Wait_count[i] Ci Wait count for process i; used to help break livelock
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is a multiple-instance resource, Request[i][j] can take on values greater than one.
Maximum[i][j] represents the maximum instance demand of process i for resource j .
Available[j] indicates the number of available instances of resource j . Allocation[i][j]
records the number of instances of resource j allocated to process i. Need[i][j] con-
tains the number of additional instances of resource j that process i may need. Note
that Need[i][j] = Maximum[i][j] – Allocation[i][j]. Work[] (i.e. Work[j] for all j )
is a temporary storage for Available[] (i.e. Available[j] for all j ). Finish[i] denotes
whether or not process i can potentially complete successfully (we utilise the notion of
an H-safe sequence to compute Finish[i]). Wait_count[i] is a counter for each process
and is incremented by one each time a request is denied; proper use of Wait_count[i]
can enable some potential livelock situations to be broken.

Algorithm 2 Parallel Banker’s Algorithm (PBA)

PBA (Process pi sends Request[i][] for resources) {
STEP 1:

1 if (∀j , (Request[i][j] ≤ Need[i][j])) /* ∀ means for all */
2 goto STEP 2
3 else deny pi’s request

STEP 2:
4 if (∀j , (Request[i][j] ≤ Available[j]))
5 goto STEP 3
6 else deny pi’s request, increment Wait_count[i] by one and return

STEP 3: pretend to allocate requested resources
7 ∀j , Available[j] := Available[j] – Request[i][j]
8 ∀j , Allocation[i][j] := Allocation[i][j] + Request[i][j]
9 ∀j , Need[i][j] := Maximum[i][j] – Allocation[i][j]

STEP 4: prepare for the H-safety check
10 ∀j , Work[j] := Available[j]
11 ∀i, Finish[i] := false

STEP 5: H-safety check
12 Let able-to-finish(i) be ((Finish[i] == false) and (∀j , Need[i][j] ≤ Work[j]))
13 Find all i such that able-to-finish(i)
14 if such i exists,
15 ∀j , Work[j] := Work[j] + ���i such that able-to-finish(i) Allocation[i][j]
16 ∀i, if able-to-finish(i) then Finish[i] := true
17 repeat STEP 5
18 else (i.e. no such i exists) goto STEP 6 (end of iteration)

STEP 6: H-safety decision
19 if (∀i, (Finish[i] == true))
20 then pretended allocations anchor; pi proceeds (i.e. H-safe)
21 else
22 restore the original state and deny pi’s request (i.e. H-unsafe)
}
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Parallel Banker’s Algorithm takes as input the maximum requirements of each
process and guarantees that if the system began in an H-safe state, the system will
always remain in an H-safe state. Tables (data structures or arrays) are maintained
of available resources, maximum requirements, current allocations of resources and
resources needed, as shown in Table 4.3. PBA uses these tables/matrices to deter-
mine whether the state of the system is either H-safe or H-unsafe. When resources are
requested by a process, the tables are updated pretending the resources were allocated.
If the tables will result in an H-safe state, then the request is actually granted; other-
wise, the request is not granted, and the tables are returned to their previous states.
Please note that possible livelock situations must be detected by alternate methods
not part of PBA, e.g. via use of Wait_count[i].

Let us explain Algorithm 2 step by step. A process can request multiple resources
at a time as well as multiple instances of each resource. In Step 1, when process i

requests resources, PBA first checks if the request (i.e. Request[i][]) does not exceed
the maximum claims (i.e. Need[i][]) for process i. If the request is within pi’s pre-
declared claims, PBA continues to Step 2; otherwise, if the request is not within pi’s
maximum claims, the request is denied with an error code.

In Step 2, PBA checks if there are sufficient available resources for this request. If
sufficient resources exist, PBA continues to Step 3; otherwise, the request is denied.

In Step 3, it is pretended that the request could be fulfilled, and the tables are
temporarily modified according to the request.

In Step 4, PBA prepares for the H-safety check, i.e. initialises variables Finish[]
and Work[]. Work[] is used to search for processes that can finish their jobs by
acquiring (if necessary) both resources currently Available[] and resources that will
become available during the execution of an H-safe sequence (i.e. resources currently
held by previous processes in an H-safe sequence, please see Definition 4.8).

At each iteration of Step 5, PBA tries to find processes that can finish their jobs
by acquiring some or all resources available according to Work[] (please see the
previous paragraph). If one or more such processes exist, PBA adds all resources
that these processes hold to Work[], then declares these processes to be able-to-finish
(i.e. Finish[i] := true for each process i), and finally repeats Step 5. On the other
hand, if no such process exists – meaning either all processes became able-to-finish
or no more processes can satisfy the comparison (i.e. Need[i][j] ≤ Work[j] for all j ) –
PBA moves to Step 6 to decide whether or not the pretended allocation state is
H-safe.

In Step 6, if all processes have been declared to be able-to-finish, then the
pretended allocation state is in an H-safe state (meaning there exists at least one
identifiable H-safe sequence by which all processes can finish their jobs in the order
of processes having been declared to be able-to-finish in the iterations of Step 5); thus,
the requester can safely proceed. However, in Step 6, if there remain any processes
unable to finish, the pretended allocation state may cause deadlock; thus, PBA denies
the request, restores the original allocation state before the pretended allocation and
also increases Wait_count[i] for the requester (process i).

The following example illustrates how PBA works in a simple yet general case.
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Table 4.4 A resource allocation state

Maximum Allocation Need Available

q1 q2 q1 q2 q1 q2 q1 q2
p1 3 2 1 1 2 1 1 1
p2 2 1 1 0 1 1
p3 1 2 0 0 1 2

Table 4.5 Initial resource allocation state for case (1)

Maximum Allocation Need Available

q1 q2 q1 q2 q1 q2 q1 q2
p1 3 2 1 1 2 1 0 1
p2 2 1 2 0 0 1
p3 1 2 0 0 1 2

Example 4.5 Resource allocation controlled by PBA
Consider a system with three processes p1, p2 and p3 as well as two resources
q1 and q2, where q1 has three instances and q2 has two instances. Table 4.4 shows a
possible current resource allocation status in the system as well as maximum resource
requirements for each process. Notice that Need[i][j] = Max[i][j] − Allocation[i][j].

Currently one instance of q1 and one instance of q2 are given to p1, and another
instance of q1 is given to p2. Thus, only one instance of q1 and one instance of q2

are available. At this moment, let us consider two cases. (1) When p2 requests one
instance of q1, will it be safely granted? (2) When p1 requests one instance of q2,
will it be safely granted? First, considering case (1), let us pretend to grant q1 to p2;
then the allocation table would be changed as shown in Table 4.5.

Now PBA checks if the resulting system stays in an H-safe state (please see
Theorem 4.1). That is, there must exist an H-safe sequence even if all processes
were to request up to their maximum needs after the pretended grant [27,28,30].
The following corresponds to Step 5 of PBA. From Table 4.5, if p2 requests one
more instance of q2 (i.e. up to p2’s maximum claim), since q2 is available, q2 is going
to be granted to p2, which will enable p2 to finish its job and release all resources.
Then, the available resources will be two instances of q1 and one instance of q2 as
shown in Table 4.6.

Next, p1 can acquire these available resources, finish its job and release all
resources; the available resources will be three instances of q1 and two instances
of q2 as shown in Table 4.7.
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Table 4.6 Resource allocation state in case (1) after
p2 finishes

Maximum Allocation Need Available

q1 q2 q1 q2 q1 q2 q1 q2
p1 3 2 1 1 2 1 2 1
p2 2 1 0 0 2 1
p3 1 2 0 0 1 2

Table 4.7 Resource allocation state in case (1) after
p1 finishes

Maximum Allocation Need Available

q1 q2 q1 q2 q1 q2 q1 q2
p1 3 2 0 0 3 2 3 2
p2 2 1 0 0 2 1
p3 1 2 0 0 1 2

Table 4.8 A resource allocation state in case (2)

Maximum Allocation Need Available

q1 q2 q1 q2 q1 q2 q1 q2
p1 3 2 1 2 2 0 1 0
p2 2 1 1 0 1 1
p3 1 2 0 0 1 2

Similarly, p3 can acquire these available resources and finally finish its job. As
a result, an H-safe sequence exists in the order p2,p1 and p3. That is, after the grant
of one instance of q1 to p2, the system remains in an H-safe state.

Now considering case (2), let us pretend to grant one instance of q2 to p1; then
the allocation table would be changed as shown in Table 4.8 (which is appropriately
altered from Table 4.4). From this moment on, neither processes p1, p2 nor p3 can
acquire up to its declared maximum unless another process releases resources that
the process holds. Thus, the system will not remain in any H-safe state. As a result,
the algorithm will deny the request in case (2). �
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Figure 4.12 PBAU architecture

4.4.5 PBAU architecture

Figure 4.12 illustrates the PBAU architecture. The PBAU is composed of element
cells, process cells, resource cells and a safety cell in addition to a Finite State Machine
(FSM) and a processor interface.

The Processor Interface (PI) consists of command registers and status registers.
PI receives and interprets commands (requests or releases) from processes as well as
accomplishes simple jobs such as setting up the number of maximum claims and avail-
able resources as well as adjusting the number of allocated and available resources in
response to a release of resources. PI also returns processing results back to PEs via
status registers as well as activates the FSM in response to a request for resources from
a process. Details of each cell are in Reference 7. For exact area estimation, instead of
the PBAU shown in Figure 4.12, which is for three processes and three resources, we
implemented a PBAU for five processes and five resources (as well as several larger
PBAUs [7,22]). For a PBAU with five processes and five resources, when mapped to
a 0.25µm standard cell library from QualCore Logic [36], the resulting area is 1303
in units equivalent to minimum-sized two-input NAND gates in the library; similarly,
for a PBAU with twenty processes and twenty resources, the area is 19753 NAND
gates in the same technology.
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4.4.6 Trade-offs between the DAU and the PBAU

As we mentioned in the beginning of Section 4.4.4, one disadvantage of the DAU
(in Section 4.4.3) is that it can only be used for systems exclusively with single-
instance resources. However, some advantages are (i) the DAU does not require
maximum resource claims in advance and (ii) it restricts resource usage minimally
since the DAU does not limit the system to remain in an H-safe state (note that
an H-unsafe state may possibly not result in deadlock). Also note that a multiple-
instance resource can be redefined as a group of multiple single-instance resources.
For instance, a set of two Input/Output (I/O) buffers can be considered as two distinct
I/O buffers, each a single-instance resource; thus, a trade-off exists in potentially
converting multiple-instance resources into multiple single-instance resources at a
cost of increased DAU size and greater complexity (e.g. now a process requiring
I/O buffers may have to check several times, i.e. for several single-instance I/O
resources).

Conversely, while the PBAU can be used not only for a system with single-instance
resources but also for a system with multiple-instance resources as well [22], the
disadvantages mentioned in the first paragraph of Section 4.3.3.3 apply to the PBAU
(but not to the DAU).

In terms of area trade-offs between the DAU and the PBAU, for five processes and
five resources, the DAU takes 1597 NAND gates whereas the PBAU takes 1303 gates,
and for twenty processes and twenty resources, the DAU takes 15247 NAND gates
whereas the PBAU takes 19753 gates. Overall, the area of PBAU grows a little faster
with respect to the total number of processes multiplied by resources. The reason is
that the PBAU in our implementation supports up to 16 instances (4 bits assigned) for
each resource while the DAU supports only single-instance resources (2 bits assigned
for each matrix element).

4.5 Experimentation and results

In this section, we first explain the detailed base MPSoC for experimentation and
various configured RTOS/MPSoCs. Then, we demonstrate performance comparisons
among the RTOS/MPSoC systems with applications.

4.5.1 Base MPSoC for experimentation

Prior to inclusion of any hardware RTOS components, all configured RTOS/MPSoC
experimental simulations presented in this chapter have exactly the same base sys-
tem consisting of four Motorola MPC755s and four resources as introduced in
Section 4.3.2.2. We implemented most of the base system in Verilog HDL; how-
ever, please note that we did not implement the MPC755 in Verilog (PE cores and
corresponding simulation models are typically provided by vendors, e.g. Seamless
CVE [37] provides processor support packages). Each MPC755 has separate instruc-
tion and data L1 caches each of size 32 kB. Four resources available are a video
interface (VI) device, a DSP, an IDCT unit and a wireless interface (WI) device.
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Table 4.9 Configured RTOS/MPSoCs

System Configured components on top of base pure software RTOS

RTOS1 Pure software RTOS with priority inheritance support in software (Section 4.2.1)
RTOS2 SoCLC with immediate priority ceiling protocol in hardware (Section 4.2.3.1)
RTOS3 SoCDMMU in hardware (Section 4.2.3.2)
RTOS4 Pure software RTOS with a software deadlock detection algorithm
RTOS5 DDU in hardware (Section 4.4.2)
RTOS6 DAA (i.e. Algorithm 1) in software (Section 4.4.3)
RTOS7 DAU in hardware (Section 4.4.3)
RTOS8 PBA (i.e. Algorithm 2) in software (Section 4.4.4)
RTOS9 PBAU in hardware (Section 4.4.5)

These four resources have timers, interrupt generators and input/output ports as nec-
essary to support proper simulation. The base system also has a bus arbiter, a clock
driver, a memory controller and 16 MB of shared memory. The master clock rate of the
bus system is 10 ns (the minimum external clock period for MPC755 [38], which was
designed in .22µ technology). Code for each MPC755 runs on an instruction-accurate
(not cycle-accurate) MPC755 simulator provided by Seamless CVE [37].

The experimental simulations were carried out using Seamless Co-Verification
Environment (CVE) [37] aided by Synopsys VCS [39] for Verilog HDL simulation
and XRAY [40] for software debugging. We have used Atalanta RTOS version 0.3 [6],
a shared-memory multiprocessor RTOS, introduced in Section 4.2.1.

4.5.2 Configured RTOS/MPSoCs for experimentation

Using the δ hardware/software RTOS design framework, we have specified various
RTOS/MPSoC configurations as shown in Table 4.9. All RTOS/MPSoC configura-
tions are generated primarily based on the base MPSoC described in the previous
section.

4.5.3 Execution time comparison between RTOS1 and RTOS2

This section presents the performance comparison between SoCLC (please see
Section 4.2.3.1 and References 15–18 for more detail) with priority inheritance in
hardware versus the full software Atalanta RTOS with priority inheritance in software.
In this comparison, the application used is an algorithmic model of a robot control
application with an MPEG decoder. Five tasks in the application represent recognis-
ing objects, avoiding obstacles, moving, displaying robot trajectory and recording
data. More details are described in Reference 18.

For performance comparison, lock delay and overall execution time for each
architecture were measured. The first architecture does not include SoCLC and is
named as the ‘RTOS1’ case; the second architecture includes SoCLC and is named
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Table 4.10 Simulation results of the robot application

(Time in clock cycles) RTOS1 RTOS2 Speedup&

Lock delay∗ 6701 3834 1.75×
Overall execution∗ 112170 78226 1.43×

∗ The time unit is a bus clock, and the values are averaged.
& The speedup is calculated according to the formula by Hennessy and
Patterson [41].

Table 4.11 Execution Time of some SPLASH-2 benchmarks
using glibc malloc() and free()

Benchmark Total Memory Percentage of
exe. time management time used
(cycles) time (cycles) for memory

management

LU 318307 31512 9.90
FFT 375988 101998 27.13
RADIX 694333 141491 20.38

as the ‘RTOS2’ case. As seen from Table 4.10, RTOS2 (the SoCLC with priority
inheritance in hardware) achieves a 75 percent speedup (i.e. 1.75×) in lock delay
and a 43 percent speedup (i.e. 1.43×) in overall execution time when compared to
RTOS1 (Atalanta RTOS with priority inheritance in software).

4.5.4 Execution time comparison between RTOS1 and RTOS3

This section demonstrates a performance comparison between RTOS1 and RTOS3.
For the performance comparison, several benchmarks taken from the SPLASH-2
application suite have been used: Blocked LU Decomposition (LU), Complex 1D
FFT (FFT) and Integer Radix Sort (RADIX) [42, 43].

Table 4.11 shows the execution time of the benchmarks in clock cycles and the total
number of cycles consumed in memory management when the benchmarks use con-
ventional memory allocation/deallocation techniques (glibc [44, 45] malloc()
and free()).

Table 4.12 shows the same information introduced in Table 4.11 but with
the benchmarks using the SoCDMMU for memory allocation/deallocation. Also,
Table 4.12 shows the reduction in memory management execution time due to using
the SoCDMMU instead of using glibc malloc() and free() functions. This
reduction in the memory management execution time yields speedups in the bench-
mark execution time. As we can see in Table 4.12, using the SoCDMMU tends to
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Table 4.12 Execution time of some SPLASH-2 benchmarks using the SoCDMMU

Benchmark Total Memory Percentage of Percentage of Percentage of
time mgmt. time used reduction in reduction in
(cycles) time for memory time used to benchmark

(cycles) mgmt. manage memory exe. time

LU 288271 1476 0.51 95.31 9.44
FFT 276941 2951 1.07 97.10 26.34
RADIX 558347 5505 0.99 96.10 19.59
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Figure 4.13 Events RAG

speed up application execution time and this speedup is almost equal to the percentage
of time consumed by conventional software memory management techniques. For
more details, please see Reference 14.

4.5.5 Execution time comparison between RTOS4 and RTOS5

In this experiment, we wanted to identify the performance difference in an appli-
cation executing using the DDU versus a software deadlock detection algorithm. In
RTOS5, the MPSoC has a DDU for five processes and five resources. We devised an
application example inspired by the Jini lookup service system [46], in which client
applications can request services through intermediate layers (i.e. lookup, discovery
and admission). In this experiment, we invoked one process on each PE and priori-
tised all processes, p1 being the highest and p4 being the lowest. The video frame
we use for the experiment is a test frame whose size is 64 by 64 pixels. The IDCT
processing time of the test frame takes approximately 23 600 clock cycles.

We show a sequence of requests and grants that finally leads to a deadlock as
shown in Figure 4.13 and Table 4.13. When the IDCT is released by p1 at time t4,
the IDCT is granted to p2 since p2 has a higher priority than p3. This last grant will
lead to a deadlock in the SoC. More details are described in References 7 and 20.

With the above scenario, we measured both deadlock detection time � and appli-
cation execution time from the application start (t0) until the detection of a deadlock
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Table 4.13 A sequence of requests and grants

Time Number Events

t0 e0 The application starts
t1 e1 p1 requests IDCT and VI; IDCT and VI are granted to p1 immediately
t2 e2 p3 requests IDCT and WI; WI is granted to p3 immediately
t3 e3 p2 requests IDCT and WI. Both p2 and p3 wait IDCT
t4 e4 IDCT is released by p1
t5 e5 IDCT is granted to p2 since p2 has a higher priority than p3

Table 4.14 Deadlock detection time and application execution time

Method of Algorithm Application Speedup
implementation run time∗ run time∗

PDDA software 1830 40 523 40 523 − 27 714

27 714
= 46%DDU(hardware) 1.3 27 714

∗ The time unit is a bus clock, and the values are averaged.

in two cases: (1) on top of RTOS4 (a software parallel deadlock detection algorithm
(PDDA)) and (2) RTOS5 (the DDU). Note that the RTOS initialisation time was
excluded (i.e. the RTOS is assumed to be fully operational at time t0). Table 4.14
shows that (1) in average the DDU achieved a 1408× speedup over the PDDA in
software and that (2) the DDU gave a 46 percent speedup in application execution
time over the PDDA. The application invoked deadlock detection ten times. Note that
a different case where deadlock does not occur so early would of course not show
a 46 percent speedup, but instead would show a potentially far lower percentage
speedup; nonetheless, for critical situations where early deadlock detection is crucial,
our approach can help significantly.

4.5.6 Execution time comparison between RTOS6 and RTOS7

In this experiment, we wanted to identify the performance difference in an application
executing on top of RTOS6 (DAA, i.e. Algorithm 1 in software) versus on top of
RTOS7 (i.e. the MPSoC with a DAU for five processes and five resources).

4.5.6.1 Application example I

This application performs the same job briefly described in Section 4.5.5. We show
a sequence of requests and grants that would lead to grant deadlock (G-dl) as shown
in Figure 4.14 and Table 4.15.
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Figure 4.14 Events RAG (grant deadlock)

Table 4.15 A sequence of requests and grants that could lead to grant
deadlock (G-dl)

Time Events

t0 The application starts
t1 p1 requests q1 and q2, which are granted to p1 immediately
t2 p3 requests q2 and q4; only q4 is granted to p3 since q2 is not available
t3 p2 also requests q2 and q4
t4 q1 and q2 are released by p1
t5 Then, the DAU tries to grant q2 to p2 (see an arc from q2 to p2 in the middle graph

of Figure 4.14) since p2 has a priority higher than p3. However, the DAU detects
potential G-dl. Thus, the DAU grants q2 to p3, which does not lead to a deadlock

t6 q2 and q4 are used and released by p3
t7 q2 and q4 are granted to p2
t8 p2 finishes its job, and the application ends

Recall that there is no constraint on the ordering of the resource usage. That
is, when a process requests a resource and the resource is available, it is granted
immediately to the requesting process. At time t1, process p1, running on PE1,
requests both VI and IDCT, which are then granted top1. After that, p1 starts receiving
a video stream through VI and performs some IDCT processing. At time t2, process
p3, running on PE3, requests IDCT and WI to convert a frame to an image and to send
the image through WI. However, only WI is granted to p3 since IDCT is unavailable.
At time t3, p2 running on PE2 also requests IDCT and WI, which are not available
for p2. When IDCT is released by p1 at time t4, IDCT would typically (assuming
the DAU is not used) be granted to p2 since p2 has a priority higher than p3; thus,
the system would typically end up in deadlock (i.e. consider the right-side graph in
Figure 4.13 where p2 → q2 is changed to q2 ⇀ p2). However, the DAU discovers
the potential G-dl (see the middle graph in Figure 4.14) and then avoids the G-dl by
granting IDCT to p3 even though p3 has a priority lower than p2 (see the right-side
graph in Figure 4.14). Then, p3 uses and releases IDCT and WI at time t6. After that,
IDCT and WI are granted to p2 at time t7; p2 then finishes its job at time t8.
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Table 4.16 Execution time comparison example with G-dl possible

Method of Algorithm Application Speedup
implementation runtime∗ runtime∗

DAA in software 2188 47 704 47 704 − 34 791

34 791
= 37%DAU (hardware) 7 34 791

∗ The time unit is a bus clock, and the values are averaged.

With the above scenario, we wanted to measure two figures, average execution
time of deadlock avoidance algorithms and total execution time of the application in
two cases: (1) on top of RTOS6 (using DAA, i.e. Algorithm 1 in software) versus
(2) on top of RTOS7 (using the DAU in hardware).

4.5.6.2 Experimental result I

Table 4.16 shows that the DAU achieves a 312× speedup in average algorithm execu-
tion time and gives a 37 percent speedup in application execution time over avoiding
deadlock with DAA in software. Note that the application invoked deadlock avoid-
ance 12 times (since every request and release results in deadlock avoidance algorithm
invocation).

4.5.6.3 Application example II

We also carried out another experiment in the case of request deadlock (R-dl), which
is already introduced in Example 4.4 of Section 4.4.3. This application also performs
a job very similar to the job briefly described in Section 4.5.5, but in this execution
trace the order of requests is different (see Table 4.1 in Section 4.4.3 for the trace; see
Reference 7 for even more detail). We similarly measured two figures, average dead-
lock avoidance algorithm execution time and total execution time of the application
in two cases: (1) on top of RTOS6 versus (2) RTOS7.

4.5.6.4 Experimental result II

Table 4.17 demonstrates that the DAU achieves a 294× speedup in average algorithm
execution time and gives a 44 percent speedup in application execution time over
avoiding deadlock with DAA in software. Note that the application invoked deadlock
avoidance 14 times.

4.5.7 Execution time comparison between RTOS8 and RTOS9

To measure the performance difference between RTOS8 (using the BA in soft-
ware) and RTOS9 (exploiting the PBAU), we execute a sample robotic application
which performs the following: recognising objects, avoiding obstacles and display-
ing trajectory requiring DSP processing; robot motion and data recording involving
accessing IO buffers; and proper real-time operation (e.g. maintaining balance) of
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Table 4.17 Execution time comparison example with R-dl possible

Method of Algorithm Application Speedup
implementation runtime∗ runtime∗

DAA in software 2102 55 627 55 627 − 38 508

38 508
= 44%DAU (hardware) 7.14 38 508

∗ The time unit is a bus clock, and the values are averaged.

Table 4.18 A sequence of requests and releases

Time Events

t0 The application starts, and the numbers of available resources in the system are set
t1 ∼ t5 p1 ∼ p5 set their maximum claims for resources as shown in Table 4.19
t6 p1 requests one instance of r2
t7 p2 requests two instances of r1
t8 p3 requests three instances of r1 and two instances of r3
t9 p4 requests two instances of r1, one instance of r2 and one instance of r3
t10 p5 requests two instances of r3
t11 p1 requests two instances of r2 and one instance of r3
t12 p5 requests one instance of r1. So far, granting all requests results in a system in an

H-safe state
t13 p5 again requests one more instance of r1, which results in an H-unsafe state. Thus,

this request is denied. The wait count for p5 is increased
t14 p3 releases two instances of r1 and two instances of r3
t15 p3 initiates a faulty request (i.e. it requests five instances of r1, r2 and r3,

respectively), which of course is denied
t16 p5 again requests one more instance of r1, which now results in an H-safe state.

Thus, this request is granted. The wait count for p5 is cleared
t17 p1 finishes its job and releases three instances of r2 and one instance of r3
t18 p2 releases two instances of r1
t19 p3 releases one instance of r1
t20 p4 releases two instances of r1, one instance of r2 and one instance of r3
t21 p5 releases two instances of r1 and two instances of r3, the application ends

the robot demanding fast and deterministic allocation and deallocation of memory
blocks. This application invokes a sequence of requests and releases. In a specific
trace, the sequence has ten requests, six releases and five claim settings as shown
in Table 4.18 with one faulty request that violates a pre-declared maximum claim
(e.g. Request[i][j] > Need[i][j]) and one additional request that leads to an H-unsafe
state. Please note that every command is processed by an avoidance algorithm (either
PBAU or BA in software).
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Table 4.19 Initial resource allocation state at time t5

Maximum Allocation Need Available

q1 q2 q3 q1 q2 q3 q1 q2 q3 q1 q2 q3
p1 7 5 3 0 0 0 7 5 3 10 5 7
p2 3 2 2 0 0 0 3 2 2
p3 9 0 2 0 0 0 9 0 2
p4 2 2 2 0 0 0 2 2 2
p5 4 3 3 0 0 0 4 3 3

Table 4.20 Resource allocation states

Allocation Need Available

r1 r2 r3 r1 r2 r3 r1 r2 r3
At time t10
p1 0 1 0 7 4 3 3 3 2
p2 2 0 0 1 2 2
p3 3 0 2 6 0 0
p4 2 1 1 0 1 1
p5 0 0 2 4 3 1

At time t12
p1 0 3 1 7 2 2 2 1 1
p2 2 0 0 1 2 2
p3 3 0 2 6 0 0
p4 2 1 1 0 1 1
p5 1 0 2 3 3 1

Detailed sequence explanation is as follows. There are five processes and three
resources in the system. Table 4.19 shows the available resources and maximum
claims of each process in the system at time t5 (‘Maximum’ equals ‘Need’ currently).

Table 4.20 shows the resource allocation state at time t10 as processes are using
resources. After two more requests, Table 4.20 shows the resource allocation state at
time t12. So far, all requests result in H-safe states. However, at time t13 in Table 4.18,
when p5 requests one additional instance of resource r1, the system would result in
an H-unsafe state if granted. Thus, PBAU rejects the request; Wait_count[5] (see
Table 4.3 and Section 4.4.4) for p5 is incremented, and p5 needs to re-request r1 later.

At time t14, p3 releases two instances of r1 and two instances of r3, and the
resulting allocation state is shown in Table 4.21. At time t16, p5 re-requests one
additional instance of resource r1, and the request is granted as shown Table 4.21.
Wait_count[5] for p5 is cleared (set to zero).
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Table 4.21 Resource allocation states

Allocation Need Available

r1 r2 r3 r1 r2 r3 r1 r2 r3
At time t14
p1 0 3 1 7 2 2 4 1 3
p2 2 0 0 1 2 2
p3 1 0 0 8 0 2
p4 2 1 1 0 1 1
p5 1 0 2 3 3 1

At time t16
p1 0 3 1 7 2 2 3 1 3
p2 2 0 0 1 2 2
p3 1 0 0 8 0 2
p4 2 1 1 0 1 1
p5 2 0 2 2 3 1

Table 4.22 Application execution time comparison for PBAU test

Method of Algorithm PBAU speedup Application Application speedup
implementation execution execution

time time

BA in software 5398.4 5398.4 − 3.32

3.32
= 1625× 221 259 221 259 − 185 716

185 716
= 19%

PBAU (hardware) 3.32 185 716

∗ The time unit is a clock cycle, and the values are averaged.

After time t16, as time progresses, all processes finish their jobs and release
allocated resources.

With the above scenario, summarised in Tables 4.18–4.21, we measure two
figures, average deadlock avoidance algorithm execution time and total application
execution time in two cases: (1) on top of RTOS8 (using BA in software) versus
(2) on top of RTOS9 (exploiting the PBAU).

Table 4.22 shows that PBAU achieves approximately a 1600× speedup in average
deadlock avoidance algorithm execution time and gives a 19 percent speedup in
application execution time over avoiding deadlock with BA in software. Please note
that during the run-time of the application, each avoidance method (PBAU or BA in
software) is invoked 22 times in both cases, respectively (since every request and every
release invokes a deadlock avoidance calculation). Table 4.23 represents the average
algorithm execution time distribution in terms of different types of commands.

Thus, while BA in software spends roughly 5400 clock cycles on average at each
invocation in this experiment, PBAU only spends 3.32 clocks on average.
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Table 4.23 Algorithm execution time comparison between PBAU vs. BA in software

Set Set Request Release Faulty
available max claim command command command

# of commands 1 5 9 6 1
BA in software 416 427 11 337 2270 560
PBAU (hardware) 1 1 6.5 1 2

∗ The time unit is a clock cycle, and the values are averaged if there are multiple commands of the same
type. ‘#’ denotes ‘the number of’.

4.6 Conclusions

This chapter presents a methodology for hardware/software partitioning of operating
systems among pre-designed hardware and software RTOS pieces. The δ hard-
ware/software RTOS/MPSoC codesign framework has been used to configure and
generate simulatable RTOS/MPSoC designs having both appropriate hardware and
software interfaces for each specified system architecture. The δ framework is specifi-
cally designed to help RTOS/MPSoC designers more easily and quickly explore their
design space with available hardware and software modules so that they can effi-
ciently search and discover a few optimal solutions matched to the specifications and
requirements of their design.

We have configured, generated and simulated various RTOS/MPSoC systems
with available hardware/software RTOS components such as SoCLC, SoCDMMU,
DDU, DAU, PBAU and equivalent software modules, respectively. From the
simulations using Seamless CVE from Mentor Graphics, we show that our method-
ology is a viable approach to rapid hardware/software partitioning of OS. In addition,
we demonstrated the following with experiments. (i) A system with the SoCLC shows
a 75 percent speedup in lock delay and a 43 percent speedup in overall execution time
when compared to a system implementing priority inheritance and lock handling
in software. (ii) A system with the SoCDMMU reduced benchmark execution time
by 9.44 percent or more as compared to a system without the SoCDMMU. (iii) An
RTOS/MPSoC system with the DDU achieved approximately a 1400X speedup in
deadlock detection time and a 46 percent speedup in application execution time over
an RTOS/MPSoC system with a deadlock detection method in software. (iv) A sys-
tem with the DAU reduced deadlock avoidance time by 99 percent (about 300X) and
application execution time by 44 percent as compared to a system with a deadlock
avoidance algorithm in software. (v) The PBAU achieved a roughly 1600X speedup
in average deadlock avoidance algorithm execution time and a 19 percent speedup
in application execution time over avoiding deadlock with a version of the Bankers
Algorithm in software.

In summary, we present recent updates to the δ hardware software RTOS
partitioning framework. We focus on the DAU and the PBAU, the first work
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known to the authors on hardware support for deadlock avoidance in MPSoC/RTOS
hardware/software codesign.
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Chapter 5

Models of computation in the design process

Axel Jantsch and Ingo Sander

5.1 Introduction

A system-on-chip (SoC) can integrate a large number of components such as
microcontrollers, digital signal processors (DSPs), memories, custom hardware and
reconfigurable hardware in the form of field programmable gate arrays (FPGAs)
together with analogue-to-digital (A/D) and digital-to-analogue (D/A) converters on
a single chip (Figure 5.1). The communication structures become ever more sophis-
ticated consisting of several connected and segmented buses or even packet switched
networks. In total there may be dozens or hundreds of such components on a single
SoC. These architectures offer an enormous potential but they are heterogeneous
and tremendously complex. This also applies to embedded software. Moreover, the
overall system complexity grows faster than system size due to the component interac-
tion. In fact, intra-system communication is becoming the dominant factor for design,
validation and performance analysis. Consequently, issues of communication, syn-
chronisation and concurrency must play a prominent role in all system design models
and languages.

The design process for SoCs is complex and sophisticated. From abstract models
for requirements definition and system specification more and more refined models
are derived leading eventually to low level implementation models that describe the
layout and the assembler code. Most of the models are generated and processed either
fully automatically or with tool support. Once created models have to be verified to
check their consistency and correctness.

Figure 5.2 depicts a few of the models typically generated and transformed during
a design project. Different design tasks require different models. A system level
feasibility study and performance analysis needs key performance properties of the
architecture, components and functions but not a full behavioural model. Schedul-
ing and schedulability analysis need abstract task graphs, timing requirements and an
abstract model of the scheduler in the operating system. Synthesis and verification
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tools need behavioural models at a proper abstraction level. Noise, EMC analysis, test
pattern generators and many other tools have their own requirements on the models
they use.

Since all design tasks put specific requirements on a model, we may ask, how
strong the influence of a model of computation is on the potential and efficiency of
design techniques. The answers are dependent on the specific design tasks and tools.
We consider only a small selection of tasks, namely HW synthesis, simulation and
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formal verification. For models of computation for embedded software, see Part II,
Chapter 7. Also, we cannot take all possible models into account, but we restrict the
discussion to three specific MoC classes: untimed MoCs, synchronous MoCs, discrete
and continuous time MoCs. They are distinguished by their abstraction of time and
their synchronisation behaviour which will allow us to analyse design techniques
with respect to these aspects. Other aspects such as data representation will not be
covered.

In the next section we introduce the MoCs under consideration and review some
of their important properties. In Section 5.3 we trace MoCs in different design phases
and in Section 5.4, we discuss the importance of MoCs for synthesis, simulation and
verification techniques.

5.2 Models of computation

We use the term ‘Model of Computation’ (MoC) to focus on issues of concurrency
and time. Consequently, even though it has been defined in different ways by different
authors (see for instance References 1–5), we use it to define the time representa-
tion and the semantics of communication and synchronisation between processes in
a process network. Thus, a MoC defines how computation takes place in a struc-
ture of concurrent processes, hence giving semantics to such a structure [6,7]. These
semantics can be used to formulate an abstract machine that is able to execute a
model. ‘Languages’ are not computational models, but have underlying computa-
tional models. For instance the languages VHDL, Verilog and SystemC share the
same discrete time, event driven computational model. On the other hand, languages
can be used to support more than one computational model. In ForSyDe [8] the func-
tional language Haskell [9] is used to express several models of computation. Libraries
have been created for synchronous, untimed and discrete time models of computa-
tion. Standard ML has been used similarly [10]. SystemC has also been extended to
support SDF (synchronous dataflow) and CSP (communicating sequential processes)
MoCs in addition to its native discrete time MoC [11].

To choose the right model of computation is of utmost importance, since each
MoC has certain properties. As an example consider a process network modelled as a
discrete time system in SystemC. In the general case automatic tools will not be able
to compute a static schedule for a single processor implementation, even if the process
network would easily allow it. For this reason Patel and Shukla [11] have extended
SystemC to support an SDF MoC. The same process network expressed as an SDF
can then easily be statically scheduled by a tool.

Skillicorn and Talia [12] discuss models of computation for parallel architec-
tures. Their community faces similar problems as those in design of embedded
systems. In fact all typical parallel computer structures (SIMD, MIMD1) can be imple-
mented on a SoC architecture. Recognising that programming of a large number of

1 Flynn has classified typical parallel data structures in Reference 15 where SIMD is an abbreviation
for Single Instruction, Multiple Data and MIMD for Multiple Instruction, Multiple Data.
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communicating processors is an extremely complex task, they try to define properties
for a suitable model of parallel computation. They emphasise that a model should
hide most of the details (decomposition, mapping, communication, synchronisation)
from programmers, if they are able to manage intellectually the creation of software.
The exact structure of the program should be inserted by the translation process rather
than by the programmer. Thus models should be as abstract as possible, which means
that the parallelism has not even been made explicit in the program text. They point
out that ad hoc compilation techniques cannot be expected to work on problems of
this complexity, but advocate building software that is correct by construction rather
than by verifying program properties after construction. Programs should be archi-
tecture independent to allow reuse. The model should support cost measures to guide
the design process and should have guaranteed performance over a useful variety of
architectures.

In the following sections, we present a number of important models of com-
putations and give their key properties. Following References 1 and 7 we organise
them according to their time abstraction. We distinguish between discrete time mod-
els, synchronous models where a cycle denotes an abstract notion of time, and
untimed models. This is consistent with the tagged-signal model proposed by Lee
and Sangiovanni-Vincentelli [2]. There each event has a time tag and different time
tag structures result in different MoCs. For example, if the time tags correspond to
real numbers we have a continuous time model; integer time tags result in discrete
time models; time tags drawn from a partially ordered set result in an untimed MoC.

Models of computation can be organised along other criteria, e.g. along with
the kinds of elements manipulated in a MoC which leads Paul and Thomas [3] to
a grouping of MoCs for hardware artefacts, for software artefacts and for design
artefacts. However, an organisation along properties that are not inherent is of limited
use because it changes when MoCs are used in different ways.

A consequence of an organisation along the time abstraction is that all strictly
sequential models such as finite state machines and sequential algorithms are not
distinguished. All of them can serve for modelling individual processes, while the
semantics of the MoC defines the process interaction and synchronisation.

5.2.1 Continuous time models

When time is represented by a continuous set, usually the real numbers, we talk of
a continuous time MoC. Prominent examples of continuous time MoC instances are
Simulink [13], VHDL-AMS and Modelica [14]. The behaviour is typically expressed
as equations over real numbers. Simulators for continuous time MoCs are based on
differential equation solvers that compute the behaviour of a model including arbitrary
internal feedback loops.

Due to the need to solve differential equations, simulations of continuous time
models are very slow. Hence, only small parts of a system are usually modelled with
continuous time such as analogue and mixed signal components.

To be able to model and analyse a complete system that contains analogue com-
ponents, mixed-signal languages and simulators such as VHDL-AMS have been
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developed. They allow us to model the pure digital parts in a discrete time MoC and
the analogue parts in a continuous time MoC. This allows for complete system sim-
ulations with acceptable simulation performance. It is also a typical example where
heterogeneous models based on multiple MoCs have clear benefits.

5.2.2 Discrete time models

Models where all events are associated with a time instant and the time is represented
by a discrete set, such as the natural numbers, are called discrete time models.2

Discrete time models are often used for the simulation of hardware. Both
VHDL [16] and Verilog [17] use a discrete time model for their simulation
semantics. A simulator for discrete time MoCs is usually implemented with a
global event queue that sorts occurring events. Discrete time models may have
causality problems due to zero-delay in feedback loops, which are discussed in
Section 5.2.4.

5.2.3 Synchronous models

In synchronous MoCs time is also represented by a discrete set, but the elementary
time unit is not a physical unit but more abstract due to two abstraction mechanisms:

1 Each event occurs in a specific evaluation cycle (also called time slot or clock
cycle). The occurrence of evaluation cycles is globally synchronised even for
independent parts of the system. But the relative occurrence of events within the
same evaluation cycle is not further specified. Thus, events within an evaluation
cycle are only partially ordered as defined by causality and data dependences only.

2 Intermediate events that are not visible at the end of an elementary evaluation
cycle are irrelevant and can be ignored.

In each evaluation cycle all processes evaluate once and all events occurring
during this process are considered to occur simultaneously.

The synchronous assumption can be formulated according to Reference 19. The
synchronous approach considers ‘ideal reactive systems that produce their outputs
synchronously with their inputs, their reaction taking no observable time’. This
implies that the computation of an output event is instantaneous. The synchronous
assumption leads to a clean separation between computation and communica-
tion. A global clock triggers computations that are conceptually simultaneous and

2 Sometimes this group of MoCs is denoted as ‘discrete event MoC’. However, strictly speaking
‘discrete event’ and ‘discrete time’ are independent, orthogonal concepts. The first denotes a model where
the set of the event values is a discrete set while the second denotes a model with time values drawn from
a discrete set, e.g. integers. In contrast, ‘continuous time’ and ‘continuous event’ models use continuous
sets for time and event values, respectively, e.g. the real numbers. All four combinations occur in practice:
continuous time/continuous event models, continuous time/discrete event models, discrete time/continuous
event models and discrete time/discrete event models. See for instance Reference 18 for a good coverage
of discrete event models.
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instantaneous. This assumption frees the designer from the modelling of complex
communication mechanisms and provides a solid base for formal methods.

A synchronous design technique has been used in hardware design for clocked
synchronous circuits. A circuit behaviour can be described deterministically inde-
pendent of the detailed timing of gates by separating combinational blocks from each
other with clocked registers. An implementation will have the same behaviour as the
abstract circuit under the assumption that the combinational blocks are ‘fast enough’
and that the abstract circuit does not include zero-delay feedback loops.

The synchronous assumption implies a simple and formal communication model.
Concurrent processes can easily be composed together. However, feedback loops
with zero-delay may cause causality problems which are discussed next.

5.2.4 Feedback loops in discrete time and synchronous models

Discrete time models allow zero-delay computation; in perfectly synchronous models
this is even a basic assumption. As a consequence, feedback loops may introduce
inconsistent behaviour. In fact, feedback loops as illustrated in Figure 5.3 may have
no solution, may have one solution or may have many solutions.

Figure 5.3(a) shows a system with a zero-delay feedback loop that does not have a
stable solution. If the output of the Boolean AND function is True then the output of
the NAND function isFalse. But this means that the output of the AND function has
to be False, which is in contradiction to the starting point of the analysis. Starting
with the value False on the output of AND does not lead to a stable solution either.
Clearly there is no solution to this problem.

Figure 5.3(b) shows a system with a feedback loop with multiple solutions. Here
the system is stable, if both AND functions have False or if both AND functions
have True as their output value. Thus the system has two possible solutions.

Figure 5.3(c) shows a feedback loop with only one solution. Here the only solution
is that both outputs are True.

It is crucial for the design of safety-critical systems that feedback loops with
no solution as in Figure 5.3(a) are detected and eliminated, since they result in an
oscillator. Also feedback loops with multiple solutions imply a risk for safety-critical
systems, since they lead to non-determinism. Non-determinism may be acceptable,
if it is detected and the designer is aware of its implications, but may have serious
consequences, if it stays undetected.
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Figure 5.3 A feedback loop in a synchronous system. System (a) has no solutions,
(b) has multiple solutions and (c) has a single solution
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Since feedback loops in discrete time and synchronous models are of such
importance there are several approaches which address this problem [6].

Microstep: In order to introduce an order between events that are produced and
consumed in an event cycle, the concept of microsteps has been introduced into
languages such as VHDL. VHDL distinguishes between two dimensions of time.
The first one is given by a time unit, e.g. a picosecond, while the second is given
by a number of delta-delays. A delta-delay is an infinitesimal small amount of
time. An operation may take zero time units, but it takes at least one delta-delay.
Delta-delays are used to order operations within the same time unit.

While this approach partly solves the zero-delay feedback problem, it introduces
another problem since delta delays will never cause the advance of time measured
in time units. Thus during an event cycle there may be an infinite amount of delta-
delays. This would be the result, if Figure 5.3(a) would be implemented in VHDL,
since each operation causes time to advance with one delta-delay. An advantage of
the delta-delay is that simulation will reveal that the composite function oscillates.
However, a VHDL simulation would not detect that Figure 5.3(b) has two solutions,
since the simulation semantics of VHDL would assign an initial value for the output
of the AND gates (False3) and thus would only give one stable solution, concealing
the non-determinism from the designer. Another serious drawback of the microstep
concept is that it leads to more complicated semantics, which complicates formal
reasoning and synthesis.
Forbid zero-delays: The easiest way to cope with the zero-delay feedback problem

is to forbid them. In case of Figures 5.3(a) and 5.3(b) this would mean the insertion
of an extra delay function, e.g. after the upper AND function. Since a delay function
has an initial value the systems will stabilise. Assuming an initial value of True,
Figure 5.3(a) will stabilise in the current event cycle with the values False for
the output of the NAND function and False for the value of the AND function.
Figure 5.3(b) would stabilise with the output value True for both AND functions.
A possible problem with this approach is that a stable system such as Figure 5.3(c) is
rejected, since it contains a zero-delay feedback loop. This approach is adopted in the
synchronous language Lustre [20] and in synchronous digital hardware design. When
used in a synchronous MoC the resulting MoC variant is sometimes called ‘clocked
synchronous MoC’ [1].
Unique fixed-point: The idea of this approach is that a system is seen as a set

of equations for which one solution in the form of a fixed-point exists. There is a
special value ⊥ (‘bottom’) that allows it to give systems with no solution or many
solutions a fixed-point solution. The advantage of this method is that the system
can be regarded as a functional program, where formal analysis will show if the
system has a unique solution. Also systems that have a stable feedback loop as in
Figure 5.3(c) are accepted, while the systems of Figures 5.3(a) and 5.3(b) are rejected

3 VHDL defines the data type Boolean by means of type Boolean is (False, True). At
program start variables and signals take the leftmost value of their data type definitions; in case of the
boolean data type the value False is used.
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(the result will be the value ⊥ as the solution for the feedback loops). Naturally, the
fixed-point approach demands more sophisticated semantics, but the theory is well
understood [21]. Esterel has adopted this approach and the constructive semantics of
Esterel are described in Reference 22.
Relation based: This approach allows the specification of systems as relations.

Thus a system specification may have zero solutions, one solution or multiple solu-
tions. Though an implementation of a system usually demands a unique solution,
other solutions may be interesting for high-level specifications. The relation-based
approach has been employed in the synchronous language Signal [23].

5.2.5 Untimed models

In untimed models there is no global notion of time. If one event does not depend
directly or indirectly on another event, it is undefined if one event occurs at the
same time as, earlier or later than the other event. Hence, the only ordering on the
occurrence of events is determined by causal relationships. If one event depends on
another event, it must occur after the other event.

5.2.5.1 Data flow process networks

Data flow process networks [24] are a special variant of Kahn process net-
works [25, 26]. In a Kahn process network processes communicate with each other
via unbounded FIFO channels. Writing to these channels is ‘non-blocking’, i.e. they
always succeed and do not stall the process, while reading from these channels is
‘blocking’, i.e. a process that reads from an empty channel will stall and can only
continue when the channel contains sufficient data items (‘tokens’). Processes in
a Kahn process network are ‘monotonic’, which means that they only need partial
information of the input stream to produce partial information of the output stream.
Monotonicity allows parallelism, since a process does not need the whole input signal
to start the computation of output events. Processes are not allowed to test an input
channel for existence of tokens without consuming them. In a Kahn process network
there is a total order of events inside a signal. However, there is no order relation
between events in different signals. Thus Kahn process networks are only partially
ordered which classifies them as an untimed model.

A data flow program is a directed graph consisting of nodes (‘actors’) that repre-
sent communication and arcs that represent ordered sequences (‘streams’) of events
(‘tokens’) as illustrated in Figure 5.4. Empty circles denote nodes, arrows denote

C

A B D

Figure 5.4 A data flow process network
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streams and the filled circles denote tokens. Data flow networks can be hierarchical
since a node can represent a data flow graph.

The execution of a data flow process is a sequence of ‘firings’ or ‘evaluations’.
For each firing tokens are consumed and tokens are produced. The number of tokens
consumed and produced may vary for each firing and is defined in the ‘firing rules’
of a data flow actor.

Data flow process networks have been shown to be very valuable in digital signal
processing applications. When implementing a data flow process network on a single
processor, a sequence of firings, also called a ‘schedule’, has to be found. For general
data flow models it is undecidable whether such a schedule exists because it depends
on the input data.

Synchronous data flow (SDF) [27, 28] puts further restrictions on the data flow
model, since it requires that a process consumes and produces a fixed number of
tokens for each firing. With this restriction it can be tested efficiently, if a finite static
schedule exists. If one exists it can be effectively computed. Figure 5.5 shows an
SDF process network. The numbers on the arcs show how many tokens are produced
and consumed during each firing. A possible schedule for the given SDF network is
{A,A,C,C,B,D}.

SDF is an excellent example of a MoC that offers useful properties by restricting
the expressive power. There exists a variety of different data flow models each repre-
senting a different trade-off between interesting formal properties and expressiveness.
For an excellent overview see Reference 24.

5.2.5.2 Rendezvous-based models

A rendezvous-based model consists of concurrent sequential processes. Processes
communicate with each other only at synchronisation points. In order to exchange
information, processes must have reached this synchronisation point, otherwise they
have to wait for each other. Each sequential process has its own set of time tags.
Only at synchronisation points processes share the same tag. Thus there is a partial
order of events in this model. The process algebra community uses rendezvous-based
models. The CSP model of Hoare [29] and the CCS (Calculus of Communicating
Systems) model of Milner [30, 31] are prominent examples. The language Ada [32]
has a communication mechanism based on rendezvous.
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Figure 5.5 A synchronous data flow process network
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5.2.6 Heterogeneous models of computation

A lot of effort has been spent to mix different models of computation. This approach
has the advantage, that a suitable model of computation can be used for each part
of the system. On the other hand, as the system model is based on several compu-
tational models, the semantics of the interaction of fundamentally different models
has to be defined, which is no simple task. This even amplifies the validation prob-
lem, because the system model is not based on a single semantics. There is little
hope that formal verification techniques can help and thus simulation remains the
only means of validation. In addition, once a heterogeneous system model is speci-
fied, it is very difficult to optimise systems across different models of computation.
In summary, while heterogeneous MoCs provide very general, flexible and useful
simulation and modelling environment, cross-domain validation and optimisation
will remain elusive for many years for any heterogeneous modelling approach. In the
following an overview of related work on mixed models of computation is given.

In *charts [33] hierarchical finite state machines are embedded within a variety of
concurrent models of computations. The idea is to decouple the concurrency model
from the hierarchical FSM semantics. An advantage is that modular components,
e.g. basic FSMs, can be designed separately and composed into a system with the
model of computation that best fits to the application domain. It is also possible to
express a state in an FSM by a process network of a specific model of computation.
*charts has been used to describe hierarchical FSMs that are composed using data
flow, discrete event and synchronous models of computations.

The composite dataflow [34] integrates data and control flow. Vectors and the
conversion from scalar values to vectors and vice versa are integral parts of the model.
This allows us to capture the timing effects of these conversions without resorting to
a synchronous or discrete time MoC. Timing of processes is represented only to the
level to determine if sufficient data are available to start a computation. In this way
the effects of control and timing on dataflow processing are considered at the highest
possible abstraction level because they only appear as data dependency problems.
The model has been implemented to combine Matlab and SDL into an integrated
system specification environment [35].

Internal representations like the system property intervals (SPI) model [36] and
FunState [37] have been developed to integrate a heterogeneous system model into
one abstract internal representation. The idea of the SPI model is to allow for global
system analysis and system optimisation across language boundaries, in order to
allow reliable and optimised implementations of heterogeneously specified embed-
ded real-time systems. All synthesis relevant information, such as resource utilisation,
communication and timing behaviour, is extracted from the input languages and trans-
formed into the semantics of the SPI model. An SPI model is a set of parameterised
communicating processes, where the parameters are used for the adaptation of dif-
ferent models of computation. SPI allows us to model non-determinism through the
use of behavioural intervals. There exists a software environment for SPI that is
called the SPI workbench and which is developed for the analysis and synthesis of
heterogeneous systems.
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The FunState representation refines the SPI model by adding the capability of
explicitly modelling state information and thus allows the separation of data flow
from control flow. The goal of FunState is not to provide a unifying specification, but
it focuses only on specific design methods, in particular scheduling and validation.
The internal FunState model shall reduce design complexity by representing only the
properties of the system model relevant to these design methods.

The most well-known heterogeneous modelling and simulation framework is
Ptolemy [6,38]. It allows us to integrate a wide range of different MoCs by defining
the interaction rules of different MoC domains.

5.3 MoCs in the design flow

From the previous sections it is evident that different models fundamentally have
different strengths and weaknesses. There is no single model that can satisfy all
purposes and thus models of computation have to be chosen with care.

Let us revisit the discussed MoCs while considering the different design phases
and the design flow. For the sake of simplicity we only identify five main design tasks
as illustrated in Figure 5.6. Early on, the feasibility analysis requires detailed studies
of critical issues that may concern performance, cost, power or any other functional
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Figure 5.6 Suitability of MoCs in different design phases. ‘C’ stands for continuous
time MoC; ‘D’ for discrete time MoC; ‘S’ for synchronous MoC; and
‘U’ for untimed MoC. More than one label on a design phase means,
that all of the MoCs are required since no single MoC is sufficient by
itself
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or non-functional property. The functional specification determines the entire system
functionality (at a high abstraction level) and constitutes the reference model for
the implementation. Independent of the functional specification is the architecture
specification, which may come with performance and functional models of proces-
sors, buses and other resources. The task graph breaks the functionality in concurrent
activities (tasks), which are mapped onto architecture resources. Once resource bind-
ing and scheduling has been performed, the detailed implementation for the resources
is created.

The essential difference of the four main computational models that we introduced
in the previous section, is the representation of time. This feature alone weighs heavily
with respect to their suitability for design tasks and development phases.

5.3.1 Continuous time models

Continuous time MoCs are mostly used to accurately model and analyse existing or
prospective devices. They reflect detailed electrical and physical properties with high
precision. Hence, they are ideal to study and model tiny entities in great detail but
they are unsuitable to analyse and simulate large collections and complex systems
due to the overwhelming amount of detail. They are usually not used to specify
and constrain behaviour but may serve as reference models for the implementation.
Thus, they are frequently used in feasibility studies, to analyse critical issues, and
in architectural models to represent analogue or mixed signal components in the
architecture. Analogue synthesis is still not well automated and hence continuous
time models are rarely used as input to synthesis tools.

5.3.2 Discrete time models

The discrete time MoC constitutes a very general basis for modelling and simulation
of almost arbitrary systems. With the proper elementary components it can serve to
model digital hardware consisting of transistors and gates; systems-on-chip consisting
of processors, memories, and buses; networks of computers, clients and servers; air
traffic control systems; evolution of prey–predator populations; and much more [18].
In fact it is most popular and widely used in an enormous variety of engineering,
economic and scientific applications.

However, it cannot be used for everything. In the context of hardware and soft-
ware design the discrete time model has the drawback that a precise delay information
cannot be synthesised. To provide a precise delay model for a piece of computation
may be useful for simulation and may be appropriate for an existing component, but
it hopelessly over-specifies the computation for synthesis. Assume a multiplication is
defined to take 5 ns. Shall the synthesis tool try to get as close to this figure as possible?
What deviation is acceptable? Or should it be interpreted as ‘max 5 ns’? Different tools
will give different answers to these questions and synthesis for different target tech-
nologies will yield very different results and none of them will match the simulation
of the discrete time model. The situation becomes even worse, when a delta-delay
based model is used. As we discussed in Section 5.2.4 the delta-delay model elegantly
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solves the problem of non-determinism for simulation, but it requires a mechanism
for globally ordering the events. Essentially, a synthesis system had to synthesise a
similar mechanism together with the target design, which is an unacceptable overhead.

These problems notwithstanding, synthesis systems for both hardware and
software have been developed for languages based on time models. VHDL and
Verilog-based tools are the most popular and successful examples. They have
avoided these problems by ignoring the discrete time model and interpreting the
specification according to a clocked synchronous model. Specific coding rules and
assumptions allow the tool to identify a clock signal and infer latches or registers
separating the combinatorial blocks. The drawbacks of this approach are that one has
to follow special coding guidelines for synthesis, that specification and implemen-
tation may behave differently, and in general that the semantics of the language is
complicated by distinguishing between a simulation and a synthesis semantics. The
success of this approach illustrates that mixing different MoCs in the same language
is practical. It also demonstrates the suitability of the clocked synchronous model for
synthesis but underscores that the discrete time model is not synthesisable.

5.3.3 Synchronous models

The synchronous models represent a sensible compromise between untimed and dis-
crete time models. Most of the timing details can be ignored but we can still use an
abstract time unit, the evaluation or clock cycle, to reason about the timing behaviour.
Therefore it has often a natural place as an intermediate model in the design process.
Lower level synthesis may start from a synchronous model. Logic and RTL synthesis
for hardware design and the compilation of synchronous languages for embedded
software are prominent examples. The result of certain synthesis steps may also
be represented as a synchronous description such as scheduling and behavioural
synthesis.

It is debatable if a synchronous model is an appropriate starting point for higher
level synthesis and design activities. It fairly strictly defines that activities occur-
ring in the same evaluation cycle but in independent processes are simultaneous.
This imposes an unnecessarily strong coupling between unrelated processes and may
restrict early design and synthesis activities too much.

On the other hand in many systems timing properties are an integral part of the
system functionality and are therefore an important part of a system specification
model. Complex control structures typically require a fine control over the relative
timing of events and activities. As single chip systems increase in complexity, this
feature becomes more common. Already today there is hardly any SoC design that
does not exhibit complex control.

Synchronous models constitute a very good compromise for dealing with time at
an abstract level. While they avoid the nasty details of low-level timing problems, they
allow us to represent and analyse timing relations. In essence the clock or evaluation
cycle defines ‘abstract time budgets’ for each block. The time budgets turn into timing
constraints for the implementation of these blocks. The abstract time budgets constrain
the timing behaviour without over-constraining it. Potentially there is a high degree



174 System-on-chip

of flexibility in this approach if the evaluation cycles of a synchronous MoC are not
considered as fixed-duration clock cycles but rather as abstract time budgets, which
do not have to be of identical duration in different parts of the design. Their duration
could also change from cycle to cycle if required. Re-timing techniques exploit this
flexibility [39, 40].

This feature of offering an intermediate and flexible abstraction level of time
makes synchronous MoCs suitable for a wide range of tasks as indicated in Figure 5.6.

5.3.4 Untimed models

Untimed models have an excellent track record in modelling, analysing and designing
signal processing systems. They are invaluable in designing digital signal processing
algorithms and analysing their key performance properties such as signal-to-noise
ratio.

Furthermore, they have nice mathematical features, which facilitate certain syn-
thesis tasks. The tedious scheduling problem for software implementations is well
understood and efficiently solvable for synchronous data flow graphs. The same can
be said for determining the right buffer sizes between processes, which is a neces-
sary and critical task for hardware, software and mixed implementations. How well
the individual processes can be compiled to hardware or software depends on the
language used to describe them. The data flow process model does not restrict the
choice of these languages and is therefore not responsible for their support. For what
it is responsible, i.e. the communication between processes and their relative timing,
it provides excellent support due to a carefully devised mathematical model.

5.3.5 Discussion

Figure 5.6 illustrates this discussion and indicates in which design phases the different
MoCs are most suitable. Note that several MoCs placed on a design phase bubble
means that in general a single MoC does not suffice for that phase but several or all
of them may be required.

No single MoC serves all purposes equally well. The emphasis is on ‘equally
well’ because all of them are sufficiently expressive and versatile to be used in a
variety of contexts. However, their different focus makes them more or less suitable
for specific tasks. For instance a discrete time, discrete event model can be used to
model and simulate almost anything. But it is extremely inefficient to use it to simu-
late and analyse complex systems when detailed timing behaviour is irrelevant. This
inefficiency concerns both tools and human designers. Simulation of a discrete time
model takes orders of magnitude longer than simulation of an untimed model. Formal
verification is orders of magnitude more efficient for perfectly synchronous models
than for discrete time models. Human designers are significantly more productive in
modelling and analysing a signal processing algorithm in an untimed model than in
a synchronous or discrete time model. They are also much more productive to model
a complex, distributed system when they have appropriate and high-level communi-
cation primitives available, than when they have to express all communication with
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unprotected shared variables and semaphores. Hardware engineers working on the
RT level (synchronous MoC) design many more gates per day than their counterparts
not using a synchronous design style. Analogue designers are even less productive in
terms of designed transistors per day because they deal with the full range of details
at the physical and electrical level. Unfortunately, good abstractions at a higher level
have not been found yet for analogue design with the consequence that analogue
design is less automated and less efficient than digital design.

MoCs impose different restrictions which, if selected carefully, can lead to signif-
icant improvements in design productivity and quality. A strict finite state machine
model can never have unbounded memory requirements. This property is inherent in
any FSM model and does not have to be proved for every specific design. The amount
of memory required can be calculated by static analysis and no simulation is required.
This is in contrast to models with dynamic memory allocation where it is in general
impossible to prove an upper bound for the memory requirement and long simulations
have to be used to obtain a high level of confidence that the memory requirements are
indeed feasible. FSM models are restrictive but if a problem suits these restrictions,
the gain in design productivity and product quality can be tremendous.

A similar example is synchronous dataflow. If a system can be naturally expressed
as an SDF graph, it can be much more efficiently analysed, scheduled and designed
than the same system modelled as a general dataflow graph.

As a general guideline we can state that ‘the productivity of tools and designers
is highest if the least expressive MoC is used that still can naturally be applied to the
problem’.

Thus, all the different computational models have their place in the design flow.
Moreover, several different MoCs have to be used in the same design model because
different sub-systems have different requirements and characteristics. This leads
naturally to heterogeneous MoCs which can either be delayed within one language or
with several languages under a coordination framework as will be discussed below.

5.4 Design activities

Next we investigate specific design tasks and their relation to MoCs. We do not
intend to present an exhaustive list of activities, but we hope to illustrate the strong
connection and interdependence of design tasks and models on which they operate.

5.4.1 Synthesis

Today several automatic synthesis steps are part of the standard design flow of ASICs
and SoCs. Register Transfer Level (RTL) synthesis, technology mapping, placement
and routing, logic and FSM synthesis are among those. Other techniques that have
been researched and developed but not successfully commercialised are high-level
synthesis, system level partitioning, resource allocation and task mapping. We take a
closer look at RTL and high-level synthesis because they are particularly enlightening
examples.
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PROCESS (clk, reset)
BEGIN
IF reset = ´0´ THEN

state <= 0;
ELSIF clk’event AND clk = ´1´ THEN

state <= nextstate;
END IF;

END PROCESS

Figure 5.7 A VHDL process encoding the P_reg block of Figure 5.8

5.4.1.1 RTL synthesis

Register transfer level synthesis takes as input an HDL (Hardware Description
Language) model of a process, for instance written in VHDL or Verilog, and gener-
ates a netlist of gates that adheres to a synchronous design style. Since VHDL and
Verilog are simulation not synthesis languages, some of their constructs cannot be
synthesised. Every RTL synthesis tool defines a synthesisable subset of the input
language.4 This subset definition has two objectives. First, constructs that cannot
be synthesised into HW are excluded. Obvious examples are file I/O operations
and dynamic memory management. Second, typical and efficient HW structures are
encoded in the language subset. Synthesis tools will identify FSMs, memories, reg-
isters and combinatorial logic in the source model and translate them efficiently onto
corresponding HW structures. For example, VHDL processes have to be written in
a specific style with only one clock signal such that the synthesis tool can extract a
combinatorial netlist with registers at the outputs. Figure 5.7 shows a VHDL process
that would be interpreted as a FSM state register by most synthesis tools. If two other
combinatorial processes are provided and properly modelled, the tool would derive
a FSM structure as shown in Figure 5.8. P_reg reacts to a reset signal to go into the
initial state, and to a clock signal to make a state transition.

The definition of a synthesisable subset and the particular interpretation of syn-
thesis tools lead to a divergence of simulation semantics and synthesis semantics.
There are three main motivations for this.

1 Some language constructs are pure simulation devices and there is no reason why
anybody would want to synthesise them. Examples are file access and assertions.

2 Some language constructs are too expensive to implement in hardware and the
current state of the art suggests that they should not be synthesised. Examples are
multi-dimensional arrays and dynamic memory allocation. When future engineers
conclude that such constructs should also be available to hardware designers, these
restrictions may disappear.

4 There are different subsets imposed by different tools, but they are not very essential and concern
mostly issues of user convenience and synthesis performance rather than the semantics. There exists even
an IEEE standard for a synthesisable subset.
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P_regP_next P_out

nextstate state outputinput

clk reset

Figure 5.8 A VHDL synthesis tool derives a state machine when the VHDL
description contains three properlymodelled processes. P_next is a com-
binatorial process defining the nextstate transition function. P_reg is a
register storing the state. P_out models the output encoding function.

3 The timing model of the simulation semantics is ill-suited for synthesis. The
simulation semantics is based on a discrete time model and allows us to express
delays in terms of nano- and picoseconds. In contrast the synthesised model is a
clock synchronous MoC that simply cannot express physical time delays.

The last item interests us most because it shows that VHDL/Verilog-based sim-
ulation and synthesis use different models of computation, according to our scheme
in Section 5.2. The simulation semantics is based on a discrete time MoC which is
unsuitable for synthesis. Even if a delay of e.g. 2 ns could be accurately synthesised,
it would over-constrain the following technology mapping, placement and routing
steps and lead to a hopelessly inefficient implementation. Accurate synthesis of the
delta-delay concept is even more elusive.

In contrast, the clocked synchronous MoC5 allows us to separate synthesis of the
behavior from timing issues. Since the clock structure and the scheduling of compu-
tations in clock cycles is already part of the input model, the RTL synthesis focuses
on optimising the combinatorial blocks between registers. In an analysis step separate
from synthesis the critical paths can be identified and the overall system performance
can be assessed. Re-timing techniques, that move gates and combinatorial blocks
across clock cycle boundaries, can shorten critical paths and increase overall per-
formance. If all this proves insufficient the input model to RTL synthesis has to be
modified.

In conclusion, for RTL synthesis a clocked synchronous MoC is the best choice
because it reflects efficient hardware structures and allows for an effective separa-
tion of behavioural synthesis from timing optimisation. A lower level, discrete time
MoC is entirely inadequate since it over-constrains the synthesis. Starting synthesis
with a model based on a higher time abstraction, an untimed MoC, imposes fewer
constraints on the synthesis process but consequently requires the synthesis task to
include scheduling of operations as will be discussed next.

5 Recall from Section 5.2.4 that a clocked synchronous MoC is a synchronous MoC variant where no
feedback loops are allowed within the same clock cycle. Therefore the feedback loop in Figure 5.8 has to
be broken by the P_reg register process.
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5.4.1.2 High-level synthesis

High-level synthesis, later also called behavioural synthesis, as defined and
researched heavily [41], includes the tasks of resource allocation, operation bind-
ing and operation scheduling. The input is an algorithm described in a sequential
language such as C or as a VHDL process. ‘Resource allocation’ estimates the type
and number of HW resources required to implement the algorithm, e.g. how many
multipliers, adders, ALUs, etc. ‘Operation binding’ binds operations of the algorithm
to allocated resources. ‘Scheduling’ assigns the operations to specific clock steps, thus
determining when they will be executed. Figure 5.9 illustrates the scheduling proce-
dure. From the algorithmic specification in Figure 5.9(a) the dataflow graph 5.9(b)
is extracted to represent the data dependences. Figure 5.9(c) shows the scheduled
dataflow graph by using the As-Soon-As-Possible (ASAP) scheduling principle.

The natural MoC for the input to high-level synthesis is an untimed MoC.
Synchronous or discrete time MoCs are unsuitable because they both determine the
execution time of individual operations, rendering the scheduling step superfluous. In
fact the untimed model was the MoC chosen by all groups that developed high-level
synthesis systems. This was either done by defining a dedicated language that could
only express an untimed MoC, or by sub-setting a general purpose design language
such as VHDL or Verilog. Resource allocation and operation binding concerns the

(1) a  := i1 + i2;
(2) o1 := (a – i3) * 3;
(3) o2 := i4 + i5 + i6;
(4) d  := i7 * i8;
(5) g  := d + i9 + i10;
(6) o3 := i11 * 7 * g;
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Figure 5.9 An algorithmic specification and its scheduled dataflow graph
(a) algorithmic specification, (b) dataflow graph and (c) scheduled
dataflow graph (from Reference 42)
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refinement of computation. The abstraction level of the computation and the operators
are not defined by the MoCs in Section 5.2. Thus, the untimed MoC is a suitable input
to high-level synthesis independent of the kind of operations involved, simple adders
and half-adders or highly complex processing elements.

5.4.1.3 Discussion

Other synthesis procedures also have their natural input and output MoC. Hence,
each synthesis method has to be provided with input models that match its natural
MoC, e.g. a clocked synchronous MoC for RTL and an untimed MoC for high-level
synthesis. In practice this is accomplished in one of two ways. The obvious approach
is to choose an input language that matches well with the natural MoC. If this is
not desirable due to other constraints, a language subset and interpretation rules are
established, that approximate the MoC required by the synthesis method. We call
this technique the ‘projection’ of an MoC into a design language. It is illustrated in
Figure 5.10.

Taking a step back we can contemplate the relation between synthesis methods
and MoCs. They are mutually dependent and equally important. While it is in general
correct that every synthesis method has ‘natural MoCs’ defining its input and output,
we can also observe that the major synthesis steps follow naturally from the definition
of the MoCs. For every significant difference between two MoCs we can formulate
a synthesis step transforming one MoC into the other. On the other hand, the MoCs
represent useful abstractions only if we can identify efficient synthesis methods that
use them as input and output.

Our treatment of MoCs does not cover other relevant issues such as abstraction
and refinement of computation and data types. We have focused foremost on time and
therefore we could discuss the scheduling problem of high-level synthesis convinc-
ingly while we barely mentioned the allocation and binding tasks. We believe there
are good arguments for using time as the primary criteria for categorising MoCs while
other domains such as computation, communication and data lead to variants within

Input design language

MoC
projection

Input
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Output
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Synthesis
method

Synthesis
tool

Output design language

MoC
projection

Output
MoC

Input
MoC

Figure 5.10 MoC projection into design languages
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the same MoC. For a more thorough discussion of this question see Reference 43
or 7. For a further elaboration of domains and abstractions see Reference 44.

5.4.2 Simulation

All MoCs that we have discussed can be simulated. So the question that we have to
ask is not, which MoC is suitable for simulation, but how efficiently a given MoC
can be simulated. Also, we may want to distinguish different purposes of simula-
tion and then we can ask if, for a given purpose, we should prefer one MoC to
another.

It is obvious that discrete time MoC simulations are slower than synchronous
MoC simulations which in turn are slower than untimed MoC simulations, because
MoCs at lower abstraction levels require the computation of many more details. It has
been reported that simulations of clock cycle true models, which correspond to our
clocked synchronous MoCs, are 1–2 orders of magnitude faster than discrete event
simulations, which correspond to our discrete time MoC [45]. Moving to an untimed
MoC, e.g. functional or transaction level simulations, can further speed-up simulation
by 1 to 2 orders of magnitude [45,46]. Higher abstraction in any of the domains
time, data, computation and communication, improves simulation performance, but
the time abstraction seems to be play a dominant role [47], because a higher time
abstraction significantly reduces the number of events in a simulation uniformly in
all parts of a model.

The disadvantage with abstract MoCs is the loss of accuracy. Detailed timing
behaviour and the clock cycle period cannot be analysed in a synchronous MoC sim-
ulation. Transaction level models cannot unveil problems in the details of the interface
and low-level protocol implementation. In an untimed MoC no timing related prop-
erties can be investigated and arithmetic overflow effects cannot be observed when
using ideal, mathematical data types. Clearly, a trade-off between accuracy and sim-
ulation performance, as illustrated in Figure 5.11, demands that a design is simulated
at various abstractions during a design project from specification to implementation.

5.4.3 Formal verification

Formal verification techniques experience a similar trade-off to simulation. If there
are too many details in a model, the run-time and memory requirements of most
verification tools become prohibitive. Consequently, most techniques are specialised
on a particular MoC and sometimes also on a restricted set of properties. They follow
the MoCs established by synthesis and design methods, because these have turned
out to be useful MoCs for several formal verification techniques as well.

An example formal technique is model checking [48]. It requires a finite state
machine (FSM) based model of the design and allows to express and verify various
properties such as that a particular variable assignment will never occur in any of the
possible states reachable from an initial state. Model checking essentially explores
the state space of the FSM until it either finds a counter-example or it can prove the
given property, e.g. by exploring the entire reachable state space.
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Figure 5.11 The trade-off between accuracy and simulation performance

Multiple, communicating FSMs can be handled but only by merging them into
a single, flat FSM. This often leads to serious state space explosion problems. Due
to clever algorithms and highly efficient data representations model checking can be
applied to realistic designs and proves useful in practice.

The natural MoC for property checking is a synchronous MoC, just as for RTL
synthesis, since it corresponds to a finite state machine and its evolution. Detailed
timing information below the granularity of synchronous MoCs cannot be handled by
model checking unless they are encoded in a way fitting into the MoC. On the other
hand an untimed MoC would in principle be compatible with model checking but it
would allow for infinitely many ways to merge multiple FSMs into a single one, thus
magnifying the state space explosion problem even further.

Just as in the case of synthesis techniques, we can also observe that all formal
verification techniques require specific MoCs as input descriptions. The basic princi-
ples, such as theorem proving, are often much more general but have to be specialised
for a specific problem domain, and thus for a specific MoC, to make them useful in
practice. Hence, a MoC serves by dramatically restricting the problem space and, if
selected carefully, allows for efficient verification tools.

5.4.4 Summary

Table 5.1 summarises the discussed tasks and gives their respective MoCs.
As mentioned earlier, we have chosen to distinguish the MoCs according to their

time abstraction. Therefore we can naturally analyse design tasks that have a strong
relation to a particular time abstraction such as scheduling or cycle-true simulation.
For an analysis of all other design tasks in a similar satisfactory way we would
have to introduce MoC variants based on computation, data and communication
abstractions.
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Table 5.1 Design activities with their respective MoCs
(U-MoC = Untimed MoC, S-MoC = Syn-
chronous MOC, D-MoC = Discrete time
MoC, C-MoC = Continuous time MoC)

Input MoC Design task Output MoC

U-MoC High-level synthesis S-MoC
S-MoC RTL synthesis D-MoC
U-MoC Transaction level simulation
S-MoC Cycle-true simulation
D-MoC Discrete-event simulation
C-MoC Analogue simulation
S-MoC Model and property checking

5.5 Conclusions

We have analysed the relation between some inherent properties of computational
models and various design tasks and phases. Since this is an endeavour far beyond
a single article we have taken time as our primary parameter and have defined
four MoC classes based on the time abstraction: continuous time, discrete time,
synchronous time and untimed MoC. This is justified because the chosen repre-
sentation of time has a critical influence on synchronisation, communication and
the overall system behaviour for systems described by communicating concurrent
processes. For a more elaborate study that encompasses all design activities and
phases we suggest to still use time abstraction as the primary criterion for defining
MoCs but to use other abstractions and domains to introduce more MoC variants as
suitable.

We have not carefully illuminated the relation between MoCs and design
languages since it is an intricate one with many subtle connections and implica-
tions that requires a chapter of its own. For more, but not an exhaustive, elaboration
of this issue see Reference 43.

The main targets of our study, complex, heterogeneous, embedded systems,
require the use of all presented MoCs. But each MoC has a very specific place
and role in the design process as illustrated by Figure 5.6 and Table 5.1. The usage of
MoCs should be a conscious choice based on their inherent properties and the given
objective and design task. Using them for the wrong purpose will lead to poor results
that cannot be rectified by improving a synthesis or simulation algorithm.

But MoCs are not just predefined and given to us and we merely have to pick
the right one. Rather, they have to be properly developed and defined for a particular
purpose. This is a delicate task because we face a difficult trade-off. To simplify
the overall design process and support tool interoperability we would like to have as
few different MoCs as possible. However, if we aim at the best possible MoC for a
specific task, we will have to integrate many, specialised MoCs in the design flow.
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History shows, that the process of identifying, accepting and establishing MoCs is
tedious and slow. The successful introduction of a new MoC is typically bound to a
major paradigm change, such as the move from schematic entry design to RTL-based
synthesis.
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Chapter 6

Architecture description languages for
programmable embedded systems

Prabhat Mishra and Nikil Dutt

6.1 Introduction

Embedded systems are everywhere – they run the computing devices hidden inside
a vast array of everyday products and appliances such as cell phones, toys, handheld
PDAs, cameras and microwave ovens. Cars are full of them, as are airplanes, satellites
and advanced military and medical equipments. As applications grow increasingly
complex, so do the complexities of the embedded computing devices. Figure 6.1
shows an example embedded system, consisting of programmable components
including a processor core, coprocessors and memory subsystem. The programmable
components are used to execute the application programs. Depending on the appli-
cation domain, the embedded system can have application specific hardwares,
interfaces, controllers and peripherals. The programmable components, consist-
ing of a processor core, coprocessors and memory subsystem, are referred to as
‘programmable embedded systems’. They are also referred to as ‘programmable
architectures’.

As embedded systems become ubiquitous, there is an urgent need to facilitate
rapid design space exploration (DSE) of programmable architectures. This need for
rapid DSE becomes even more critical given the dual pressures of shrinking time-
to-market and ever-shrinking product lifetimes. Architecture Description Languages
(ADLs) are used to perform early exploration, synthesis, test generation and validation
of processor-based designs as shown in Figure 6.2. ADLs are used to specify pro-
grammable architectures. The specification can be used for generation of a software
toolkit including the compiler, assembler, simulator and debugger. The application
programs are compiled and simulated, and the feedback is used to modify the ADL
specification with the goal of finding the best possible architecture for a given set



188 System-on-chip

D2A
converter

Processor
core

A2D
converter

DMA
controller

Memory
subsystem

Sensors &
actuators

FPGA
ASIC/

Programmable embedded systems

Coprocessor

Coprocessor

Embedded systems

Figure 6.1 An example embedded system

Architecture specification
( English document )

Synthesis

Implementation

Toolkit
generator

Simulator
Binary

Compiler

Application
programs

Test
generator

JTAG interface,
Test Programs, ...

RTOS
generator

Real-time
Operating systems

Validation

ADL specification

Figure 6.2 ADL-driven exploration, synthesis and validation of programmable
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of applications. The ADL specification can also be used for generating hardware
prototypes under design constraints such as area, power and clock speed. Several
researches have shown the usefulness of ADL-driven generation of functional test
programs and test interfaces. The specification can also be used to generate device
drivers for real-time operating systems (RTOS) [1].

Previously, researchers have surveyed architecture description languages for retar-
getable compilation [2], and systems-on-chip design [3]. Qin and Malik [2] surveyed
the existing ADLs and compared the ADLs to highlight their relative strengths and
weaknesses in the context of retargetable compilation. Tomiyama et al. [3] classi-
fied existing ADLs into four categories based on their main objectives: synthesis,
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compiler generation, simulator generation and validation. This chapter presents a
comprehensive survey of existing ADLs and the accompanying methodologies for
programmable embedded systems design.

The rest of the chapter is organised as follows: Section 6.2 describes how ADLs
differ from other modelling languages. Section 6.3 surveys the existing ADLs.
Section 6.4 presents the ADL-driven methodologies on software toolkit generation,
hardware synthesis, exploration and validation of programmable embedded systems.
This study forms the basis for comparing the relative merits and demerits of the exist-
ing ADLs in Section 6.5. Finally, Section 6.6 concludes this chapter with a discussion
on expected features of future ADLs.

6.2 ADLs and other languages

The phrase ‘architecture description language’ has been used in the context of
designing both software and hardware architectures. Software ADLs are used for
representing and analysing software architectures [4,5]. They capture the behavioural
specifications of the components and their interactions that comprises the software
architecture. However, hardware ADLs capture the structure (hardware components
and their connectivity) and the behaviour (instruction-set) of processor architectures.
This chapter surveys hardware ADLs.

The concept of using machine description languages for specification of archi-
tectures has been around for a long time. Early ADLs such as ISPS [6] were used
for simulation, evaluation and synthesis of computers and other digital systems. This
chapter surveys contemporary ADLs.

How do ADLs differ from programming languages, hardware description lan-
guages, modelling languages and the like? This section attempts to answer this
question. However, it is not always possible to answer the following question: given
a language for describing an architecture, what are the criteria for deciding whether
it is an ADL or not?

In principle, ADLs differ from programming languages because the latter bind
all architectural abstractions to specific point solutions, whereas ADLs intentionally
suppress or vary such binding. In practice, architecture is embodied and recoverable
from code by reverse engineering methods. For example, it might be possible to anal-
yse a piece of code written in C and figure out whether it corresponds to Fetch unit
or not. Many languages provide architecture level views of the system. For example,
C++ offers the ability to describe the structure of a processor by instantiating objects
for the components of the architecture. However, C++ offers little or no architecture-
level analytical capabilities. Therefore, it is difficult to describe architecture at a
level of abstraction suitable for early analysis and exploration. More importantly,
traditional programming languages are not a natural choice for describing architec-
tures due to their inability in capturing hardware features such as parallelism and
synchronisation.

Architecture description languages differ from modelling languages (such as
UML) because the latter are more concerned with the behaviours of the whole
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rather than the parts, whereas ADLs concentrate on representation of components.
In practice, many modelling languages allow the representation of cooperating com-
ponents and can represent architectures reasonably well. However, the lack of an
abstraction would make it harder to describe the instruction-set of the architecture.

Traditional Hardware Description Languages (HDLs), such as VHDL and Verilog,
do not have sufficient abstraction to describe architectures and explore them at the
system level. It is possible to perform reverse-engineering to extract the structure
of the architecture from the HDL description. However, it is hard to extract the
instruction-set behaviour of the architecture. In practice, some variants of HDLs
work reasonably well as ADLs for specific classes of programmable architectures.

There is no clear line between ADLs and non-ADLs. In principle, programming
languages, modelling languages and hardware description languages have aspects
in common with ADLs, as shown in Figure 6.3. Languages can, however, be dis-
criminated from one another according to how much architectural information they
can capture and analyse. Languages that were born as ADLs show a clear advan-
tage in this area over languages built for some other purpose and later co-opted
to represent architectures. Section 6.5 will re-visit this issue in light of the survey
results.

6.3 The ADL survey

Figure 6.4 shows the classification of ADLs based on two aspects: ‘content’ and
‘objective’. The content-oriented classification is based on the nature of the infor-
mation an ADL can capture, whereas the objective-oriented classification is based
on the purpose of an ADL. Contemporary ADLs can be classified into six cate-
gories based on the objective: simulation-oriented, synthesis-oriented, test-oriented,
compilation-oriented, validation-oriented and operating-system-oriented.

Architecture description languages can be classified into four categories based
on the nature of the information: structural, behavioural, mixed and partial. The
structural ADLs capture the structure in terms of architectural components and their
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connectivity. The behavioural ADLs capture the instruction-set behaviour of the pro-
cessor architecture. The mixed ADLs capture both structure and behaviour of the
architecture. These ADLs capture complete description of the structure or behaviour
or both. However, the partial ADLs capture specific information about the architec-
ture for the intended task. For example, an ADL intended for interface synthesis does
not require internal structure or behaviour of the processor.

Traditionally, structural ADLs are suitable for synthesis and test-generation. Sim-
ilarly, behavioural ADLs are suitable for simulation and compilation. It is not always
possible to establish a one-to-one correspondence between content and objective
based classification. For example, depending on the nature and amount of information
captured, partial ADLs can represent any one or more classes of the objective-based
ADLs. This section presents the survey using content-based classification of ADLs.

6.3.1 Structural ADLs

Architecture description language designers consider two important aspects: level of
abstraction versus generality. It is very difficult to find an abstraction to capture the
features of different types of processors. A common way to obtain generality is to
lower the abstraction level. Register transfer level (RT-level) is a popular abstraction
level – low enough for detailed behaviour modelling of digital systems, and high
enough to hide gate-level implementation details. Early ADLs were based on RT-level
descriptions. This section briefly describes two structural ADLs: MIMOLA [7] and
UDL/I [8].

6.3.1.1 MIMOLA

MIMOLA [7] is a structure-centric ADL developed at the University of Dortmund,
Germany. It was originally proposed for micro-architecture design. One of the major
advantages of MIMOLA is that the same description can be used for synthesis,
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simulation, test generation and compilation. A tool chain including the MSSH hard-
ware synthesiser, the MSSQ code generator, the MSST self-test program compiler,
the MSSB functional simulator and the MSSU RT-level simulator were developed
based on the MIMOLA language [7]. MIMOLA has also been used by the RECORD
[9] compiler.

MIMOLA description contains three parts: the algorithm to be compiled, the target
processor model and additional linkage and transformation rules. The software part
(algorithm description) describes application programs in a PASCAL-like syntax. The
processor model describes micro-architecture in the form of a component netlist. The
linkage information is used by the compiler in order to locate important modules such
as program counter and instruction memory. The following code segment specifies
the program counter and instruction memory locations [7]:

LOCATION_FOR_PROGRAMCOUNTER PCReg;
LOCATION_FOR_INSTRUCTIONS IM[0..1023];

The algorithmic part of MIMOLA is an extension of PASCAL. Unlike other high-
level languages, it allows references to physical registers and memories. It also allows
use of hardware components using procedure calls. For example, if the processor
description contains a component named MAC, programmers can write the following
code segment to use the multiply-accumulate operation performed by MAC:

res := MAC(x, y, z);

The processor is modelled as a net-list of component modules. MIMOLA permits
modelling of arbitrary (programmable or non-programmable) hardware structures.
Similar to VHDL, a number of predefined, primitive operators exist. The basic entities
of MIMOLA hardware models are modules and connections. Each module is specified
by its port interface and its behaviour. The following example shows the description
of a multi-functional ALU module [7]:

MODULE ALU
(IN inp1, inp2: (31:0);
OUT outp: (31:0);
IN ctrl: (1:0);

)
CONBEGIN

outp <- CASE ctrl OF
0: inp1 + inp2 ;
1: inp1 - inp2 ;
2: inp1 AND inp2 ;
3: inp1 ;
END;

CONEND;
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The CONBEGIN/CONEND construct includes a set of concurrent assignments.
In the example a conditional assignment to output port outp is specified, which
depends on the two-bit control input ctrl. The netlist structure is formed by con-
necting ports of module instances. For example, the following MIMOLA description
connects two modules: ALU and accumulator ACC.

CONNECTIONS ALU.outp -> ACC.inp
ACC.outp -> ALU.inp

The MSSQ code generator extracts instruction-set information from the module
netlist. It uses two internal data structures: connection operation graph (COG) and
instruction tree (I-tree). It is a very difficult task to extract the COG and I-trees
even in the presence of linkage information due to the flexibility of an RT-level
structural description. Extra constraints need to be imposed in order for the MSSQ
code generator to work properly. The constraints limit the architecture scope of MSSQ
to micro-programmable controllers, in which all control signals originate directly
from the instruction word. The lack of an explicit description of processor pipelines
or resource conflicts may result in poor code quality for some classes of VLIW or
deeply pipelined processors.

6.3.1.2 UDL/I

Unified design language, UDL/I [8] is developed as a hardware description language
for compiler generation in COACH ASIP design environment at Kyushu Univer-
sity, Japan. UDL/I is used for describing processors at an RT-level on a per-cycle
basis. The instruction-set is automatically extracted from the UDL/I description [10],
and then it is used for generation of a compiler and a simulator. COACH assumes
simple RISC processors and does not explicitly support ILP or processor pipelines.
The processor description is synthesisable with the UDL/I synthesis system [11].
The major advantage of the COACH system is that it requires a single description
for synthesis, simulation and compilation. Designer needs to provide hints to locate
important machine states such as program counter and register files. Due to difficulty
in instruction-set extraction (ISE), ISE is not supported for VLIW and superscalar
architectures.

Structural ADLs enable flexible and precise micro-architecture descriptions. The
same description can be used for hardware synthesis, test generation, simulation and
compilation. However, it is difficult to extract the instruction-set without restrictions
on description style and target scope. Structural ADLs are more suitable for hardware
generation than retargetable compilation.

6.3.2 Behavioural ADLs

The difficulty of instruction-set extraction can be avoided by abstracting behavioural
information from the structural details. Behavioural ADLs explicitly specify
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the instruction semantics and ignore detailed hardware structures. Typically, there is
a one-to-one correspondence between behavioural ADLs and instruction-set reference
manual. This section briefly describes four behavioural ADLs: nML [12], ISDL [13],
Valen-C [14] and CSDL [15,16].

6.3.2.1 nML

nML is an instruction-set oriented ADL proposed at Technical University of
Berlin, Germany. nML has been used by code generators CBC [17] and CHESS
[18], and instruction set simulators Sigh/Sim [19] and CHECKERS. Currently,
CHESS/CHECKERS environment is used for automatic and efficient software
compilation and instruction-set simulation [20].

nML developers recognised the fact that several instructions share common prop-
erties. The final nML description would be compact and simple if the common
properties are exploited. Consequently, nML designers used a hierarchical scheme to
describe instruction sets. The instructions are the topmost elements in the hierarchy.
The intermediate elements of the hierarchy are partial instructions (PIs). The rela-
tionship between elements can be established using two composition rules: AND-rule
and OR-rule. The AND-rule groups several PIs into a larger PI and the OR-rule enu-
merates a set of alternatives for one PI. Therefore, instruction definitions in nML can
be in the form of an AND-OR tree. Each possible derivation of the tree corresponds
to an actual instruction.

To achieve the goal of sharing instruction descriptions, the instruction set is enu-
merated by an attributed grammar [21]. Each element in the hierarchy has a few
attributes. A non-leaf element’s attribute values can be computed based on its chil-
dren’s attribute values. Attribute grammar is also adopted by other ADLs such as ISDL
[13] and TDL [22]. The following nML description shows an example of instruction
specification [12]:

op numeric_instruction(a:num_action, src:SRC, dst:DST)
action {

temp_src = src;
temp_dst = dst;
a.action;
dst = temp_dst;

}
op num_action = add | sub
op add()
action = {

temp_dst = temp_dst + temp_src
}

The definition of numeric_instruction combines three PIs with the
AND-rule: num_action, SRC and DST. The first PI, num_action, uses the



ADLs for programmable embedded systems 195

OR-rule to describe the valid options for actions: add or sub. The number of
all possible derivations of numeric_instruction is the product of the size
of num_action, SRC and DST. The common behaviour of all these options is
defined in the action attribute of numeric_instruction. Each option for
num_action should have its own action attribute defined as its specific behaviour,
which is referred by the a.action line. For example, the above code segment has
action description for add operation. Object code image and assembly syntax can
also be specified in the same hierarchical manner.

nML also captures the structural information used by instruction-set architecture
(ISA). For example, storage units should be declared since they are visible to the
instruction-set. nML supports three types of storages: RAM, register and transitory
storage. Transitory storage refers to machine states that are retained only for a limited
number of cycles, e.g. values on buses and latches. Computations have no delay in
nML timing model – only storage units have delay. Instruction delay slots are modelled
by introducing storage units as pipeline registers. The result of the computation is
propagated through the registers in the behaviour specification.

nML models constraints between operations by enumerating all valid combina-
tions. The enumeration of valid cases can make nML descriptions lengthy. More
complicated constraints, which often appear in DSPs with irregular instruction level
parallelism (ILP) constraints or VLIW processors with multiple issue slots, are hard to
model with nML. For example, nML cannot model the constraint that operation I1
cannot directly follow operation I0. nML explicitly supports several addressing
modes. However, it implicitly assumes an architecture model which restricts its
generality. As a result it is hard to model multi-cycle or pipelined units and multi-word
instructions explicitly. A good critique of nML is given by Hantoog et al [23].

6.3.2.2 ISDL

Instruction Set Description Language (ISDL) was developed at MIT and used by the
Aviv compiler [24] and GENSIM simulator generator [25]. The problem of constraint
modelling is avoided by ISDL with explicit specification. ISDL is mainly targeted
towards VLIW processors. Similar to nML, ISDL primarily describes the instruction-
set of processor architectures. ISDL consists mainly of five sections: instruction
word format, global definitions, storage resources, assembly syntax and constraints.
It also contains an optimisation information section that can be used to provide certain
architecture specific hints for the compiler to make better machine dependent code
optimisations.

The instruction word format section defines fields of the instruction word. The
instruction word is separated into multiple fields each containing one or more sub-
fields. The global definition section describes four main types: tokens, non-terminals,
split functions and macro definitions. Tokens are the primitive operands of instruc-
tions. For each token, assembly format and binary encoding information must be
defined. An example token definition of a binary operand is:

Token X[0..1] X_R ival {yylval.ival = yytext[1] - ’0’;}
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In this example, following the keyword Token is the assembly format of the
operand. X_R is the symbolic name of the token used for reference. The ival is
used to describe the value returned by the token. Finally, the last field describes
the computation of the value. In this example, the assembly syntax allowed for the
token X_R is X0 or X1, and the values returned are 0 or 1, respectively.

The value (last) field is used for behavioural definition and binary encoding assign-
ment by non-terminals or instructions. Non-terminal is a mechanism provided to
exploit commonalities among operations. The following code segment describes a
non-terminal named XYSRC:

Non_Terminal ival XYSRC: X_D {$$ = 0;} |
Y_D {$$ = Y_D + 1;};

The definition of XYSRC consists of the keyword Non_Terminal, the type
of the returned value, a symbolic name as it appears in the assembly and an action
that describes the possible token or non-terminal combinations and the return value
associated with each of them. In this example, XYSRC refers to tokens X_D and Y_D
as its two options. The second field (ival) describes the returned value type. It
returns 0 for X_D or incremented value for Y_D.

Similar to nML, storage resources are the only structural information modelled
by ISDL. The storage section lists all storage resources visible to the programmer.
It lists the names and sizes of the memory, register files and special registers. This
information is used by the compiler to determine the available resources and how
they should be used.

The assembly syntax section is divided into fields corresponding to the separate
operations that can be performed in parallel within a single instruction. For each field,
a list of alternative operations can be described. Each operation description consists
of a name, a list of tokens or non-terminals as parameters, a set of commands that
manipulate the bitfields, RTL description, timing details and costs. RTL description
captures the effect of the operation on the storage resources. Multiple costs are allowed
including operation execution time, code size and costs due to resource conflicts. The
timing model of ISDL describes when the various effects of the operation take place
(e.g. because of pipelining).

In contrast to nML, which enumerates all valid combinations, ISDL defines
invalid combinations in the form of Boolean expressions. This often leads to a simple
constraint specification. It also enables ISDL to capture irregular ILP constraints. The
following example shows how to describe the constraint that instruction I1 cannot
directly follow instruction I0. The ‘[1]’ indicates a time shift of one instruction
fetch for the I0 instruction. The ‘˜’ is a symbol for NOT and ‘&’ is for logical AND.

˜(I1 *) & ([1] I0 *, *)
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ISDL provides the means for compact and hierarchical instruction set
specification. However, it may not be possible to describe instruction sets with
multiple encoding formats using the simple tree-like instruction structure of ISDL.

6.3.2.3 Valen-C

Valen-C is an embedded software programming language proposed at Kyushu
University, Japan [14,26]. Valen-C is an extended C language which supports explicit
and exact bit-width for integer type declarations. A retargetable compiler (called
Valen-CC) has been developed that accepts C or Valen-C programs as an input
and generates the optimised assembly code. Although Valen-CC assumes simple
RISC architectures, it has retargetability to some extent. The most interesting feature
of Valen-CC is that the processor can have any datapath bit-width (e.g. 14 bits or
29 bits). The Valen-C system aims at optimisation of datapath width. The target pro-
cessor description for Valen-CC includes the instruction set consisting of behaviour
and assembly syntax of each instruction as well as the processor datapath width.
Valen-CC does not explicitly support processor pipelines or ILP.

6.3.2.4 CSDL

Computer system description languages (CSDL) is a family of machine descrip-
tion languages developed for the Zephyr compiler infrastructure at the University of
Virginia. CSDL consists of four languages: SLED [16], λ-RTL, CCL and PLUNGE.
SLED describes assembly and binary representations of instructions [16], while
λ-RTL describes the behaviour of instructions in the form of register transfers [15].
CCL specifies the convention of function calls [27]. PLUNGE is a graphical notation
for specifying the pipeline structure.

Similar to ISDL, SLED (Specification Language for Encoding and Decoding)
uses a hierarchical model for machine instruction. SLED models an instruction
(binary representation) as a sequence of tokens, which are bit vectors. Tokens
may represent whole instructions, as on RISC machines, or parts of instructions,
as on CISC machines. Each class of token is declared with multiple fields. The
construct patterns help to group the fields together and to bind them to binary val-
ues. The directive constructors help to connect the fields into instruction words.
Similar to nML, SLED enumerates legal combinations of fields. There is neither a
notion of hardware resources nor explicit constraint descriptions. Therefore, with-
out significant extension, SLED is not suitable for use in VLIW instruction word
description [2].

To reduce description effort, λ-RTL was developed. A λ-RTL description will
be translated into register-transfer lists for the use of vpo (very portable optimiser).
According to the developers [15], λ-RTL is a high order, strongly typed, polymorphic,
pure functional language based largely on Standard ML [28]. It has many high-level
language features such as name space (through the module and import directives) and
function definition. Users can even introduce new semantics and precedence to basic
operators.
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In general, the behavioural languages have one feature in common: hierarchical
instruction set description based on attribute grammar [21]. This feature simplifies
the instruction set description by sharing the common components between
operations. However, the capabilities of these models are limited due to the lack
of detailed pipeline and timing information. It is not possible to generate cycle accu-
rate simulators without certain assumptions regarding control behaviour. Due to lack
of structural details, it is also not possible to perform resource-based scheduling using
behavioural ADLs.

6.3.3 Mixed ADLs

Mixed languages captures both structural and behavioural details of the architec-
ture. This section briefly describes five mixed ADLs: FlexWare, HMDES, TDL,
EXPRESSION and LISA.

6.3.3.1 FlexWare

FlexWare is a CAD system for DSP or ASIP design [29]. The FlexWare system
includes the CodeSyn code generator and the Insulin simulator. Both behaviour and
structure are captured in the target processor description. The machine description
for CodeSyn consists of three components: instruction set, available resources (and
their classification) and an interconnect graph representing the datapath structure.
The instruction set description is a list of generic processor macro instructions to
execute each target processor instruction. The simulator uses a VHDL model of
a generic parameterisable machine. The parameters include bit-width, number of
registers, ALUs and so on. The application is translated from the user-defined target
instruction set to the instruction set of the generic machine. Then, the code is executed
on the generic machine.

6.3.3.2 HMDES

Machine description language HMDES was developed at the University of Illinois at
Urbana-Champaign for the IMPACT research compiler [30]. C-like pre-processing
capabilities such as file inclusion, macro-expansion and conditional inclusion are
supported in HMDES. An HMDES description is the input to the MDES machine
description system of the Trimaran compiler infrastructure, which contains IMPACT
as well as the Elcor research compiler from HP Labs. The description is first pre-
processed, then optimised and translated to a low-level representation file. A machine
database reads the low-level files and supplies information for the compiler backend
through a pre-defined query interface.

MDES captures both structure and behaviour of target processors. Information
is broken down into sections such as format, resource usage, latency, operation and
register. For example, the following code segment describes register and register
file. It describes 64 registers. The register file describes the width of each register and
other optional fields such as generic register type (virtual field), speculative, static and
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rotating registers. The value ‘1’ implies speculative and ‘0’ implies non-speculative.

SECTION Register {
R0(); R1(); ... R63();
’R[0]’(); ... ’R[63]’();
...

}

SECTION Register_ File {
RF_i(width(32) virtual(i) speculative(1)

static(R0...R63) rotating(’R[0]’...’R[63]’));
...

}

MDES allows only a restricted retargetability of the cycle-accurate simulator to
the HPL-PD processor family [31]. MDES permits description of memory systems,
but limited to the traditional hierarchy, i.e. register files, caches and main memory.

6.3.3.3 TDL

Target description language TDL [22] was developed at Saarland University,
Germany. The language is used in a retargetable postpass assembly-based code opti-
misation system called PROPAN [32]. A TDL description contains four sections:
resource, instruction set, constraints and assembly format.

TDL offers a set of pre-defined resource types whose properties can be described
by a pre-defined set of attributes. The pre-defined resource types comprise functional
units, register sets, memories and caches. Attributes are available to describe the
bit-width of registers, their default data type, the size of a memory, its access width
and alignment restrictions. The designer can extend the domain of the pre-defined
attributes and declare user-defined attributes if additional properties have to be taken
into account.

Similar to behavioural languages, the instruction-set description of TDL is based
on attribute grammar [21]. TDL supports VLIW architectures, so it distinguishes oper-
ation and instruction. The instruction-set section also contains definition of operation
classes that groups operations for the ease of reference. TDL provides a non-terminal
construct to capture common components between operations.

Similar to ISDL, TDL uses Boolean expressions for constraint modelling. A con-
straint definition includes a premise part followed by a rule part, separated by a colon.
The following code segment describes constraints in TDL [22]:

op in {C0}: op.dst1 = op.src1;
op1 in {C1} & op2 in {C2}: !(op1 &&op2);

The first one enforces the first source operand to be identical to the destina-
tion operand for all operations of the operation class C0. The second rule prevents
any operation of operation class C1 to be executed in parallel with an operation of
operation class C2.
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The assembly section deals with syntactic details of the assembly language such
as instruction or operation delimiters, assembly directives and assembly expressions.
TDL is assembly oriented and provides a generic modelling of irregular hardware
constraints. TDL provides a well-organised formalism for VLIW DSP assembly code
generation.

6.3.3.4 EXPRESSION

The above-mixed ADLs require explicit description of Reservation Tables (RT). Pro-
cessors that contain complex pipelines, large amounts of parallelism and complex
storage sub-systems, typically contain a large number of operations and resources
(and hence RTs). Manual specification of RTs on a per-operation basis thus becomes
cumbersome and error-prone. The manual specification of RTs (for each configura-
tion) becomes impractical during rapid architectural exploration. The EXPRESSION
ADL [33] describes a processor as a netlist of units and storages to automatically
generate RTs based on the netlist [34]. Unlike MIMOLA, the netlist representation
of EXPRESSION is coarse grain. It uses a higher level of abstraction similar to
block-diagram level description in architecture manual.

EXPRESSION ADL was developed at University of California, Irvine. The
ADL has been used by the retargetable compiler (EXPRESS [35]) and simulator
(SIMPRESS [36]) generation framework. The framework also supports a graphical
user interface (GUI) and can be used for design space exploration of programmable
architectures consisting of processor cores, coprocessors and memories [37].

An EXPRESSION description is composed of two main sections: behaviour
(instruction-set) and structure. The behaviour section has three subsections: opera-
tions, instruction and operation mappings. Similarly, the structure section consists of
three subsections: components, pipeline/data-transfer paths and memory subsystem.

The operation subsection describes the instruction-set of the processor. Each oper-
ation of the processor is described in terms of its opcode and operands. The types
and possible destinations of each operand are also specified. A useful feature of
EXPRESSION is operation group that groups similar operations together for the ease
of later reference. For example, the following code segment shows an operation group
(alu_ops) containing two ALU operations: add and sub.

(OP_GROUP alu_ops
(OPCODE add

(OPERANDS (SRC1 reg) (SRC2 reg/imm) (DEST reg))
(BEHAVIOR DEST = SRC1 + SRC2)
...

)
(OPCODE sub

(OPERANDS (SRC1 reg) (SRC2 reg/imm) (DEST reg))
(BEHAVIOR DEST = SRC1 - SRC2)
...

)
)
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Figure 6.5 The DLX architecture

The instruction subsection captures the parallelism available in the architecture.
Each instruction contains a list of slots (to be filled with operations), with each
slot corresponding to a functional unit. The operation mapping subsection is used
to specify the information needed by instruction selection and architecture-specific
optimisations of the compiler. For example, it contains mapping between generic and
target instructions.

The component subsection describes each RT-level component in the architecture.
The components can be pipeline units, functional units, storage elements, ports and
connections. For multi-cycle or pipelined units, the timing behaviour is also specified.

The pipeline/data-transfer path subsection describes the netlist of the processor.
The ‘pipeline path description’ provides a mechanism to specify the units which
comprise the pipeline stages, while the ‘data-transfer path description’ provides a
mechanism for specifying the valid data-transfers. This information is used to both
retarget the simulator, and to generate reservation tables needed by the scheduler
[34]. An example path declaration for the DLX architecture [38] (Figure 6.5) is
shown below. It describes that the processor has five pipeline stages. It also describes
that the Execute stage has four parallel paths. Finally, it describes each path, e.g. it
describes that the FADD path has four pipeline stages.

(PIPELINE Fetch Decode Execute MEM WriteBack)
(Execute (ALTERNATE IALU MULT FADD DIV))
(MULT (PIPELINE MUL1 MUL2 ... MUL7))
(FADD (PIPELINE FADD1 FADD2 FADD3 FADD4))
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The memory subsection describes the types and attributes of various storage
components (such as register files, SRAMs, DRAMs and caches). The memory netlist
information can be used to generate memory aware compilers and simulators [39,40].
Memory aware compilers can exploit the detailed information to hide the latency of
the lengthy memory operations [41].

In general, EXPRESSION captures the data path information in the processor.
The control path is not explicitly modelled. Also, the VLIW instruction composition
model is simple. The instruction model requires extension to capture inter-operation
constraints such as sharing of common fields. Such constraints can be modelled by
ISDL through cross-field encoding assignment.

6.3.3.5 LISA

LISA (Language for Instruction Set Architecture) [42] was developed at Aachen
University of Technology, Germany with a simulator centric view. The language has
been used to produce production quality simulators [43]. An important aspect of LISA
language is its ability to capture control path explicitly. Explicit modelling of both
datapath and control is necessary for cycle-accurate simulation. LISA has also been
used to generate retargetable C compilers [44,45].

LISA descriptions are composed of two types of declarations: resource and opera-
tion. The resource declarations cover hardware resources such as registers, pipelines
and memories. The pipeline model defines all possible pipeline paths that opera-
tions can go through. An example pipeline description for the architecture shown in
Figure 6.5 is as follows:

PIPELINE int = {Fetch; Decode; IALU; MEM; WriteBack}
PIPELINE flt = {Fetch; Decode; FADD1; FADD2;

FADD3; FADD4; MEM; WriteBack}
PIPELINE mul = {Fetch; Decode; MUL1; MUL2; MUL3; MUL4;

MUL5; MUL6; MUL7; MEM; WriteBack}
PIPELINE div = {Fetch; Decode; DIV; MEM; WriteBack}

Operations are the basic objects in LISA. They represent the designer’s view of
the behaviour, the structure, and the instruction set of the programmable architecture.
Operation definitions capture the description of different properties of the system
such as operation behaviour, instruction set information and timing. These operation
attributes are defined in several sections:

• The CODING section describes the binary image of the instruction word.
• The SYNTAX section describes the assembly syntax of instructions.
• The SEMANTICS section specifies the instruction-set semantics.
• The BEHAVIOR section describes components of the behavioural model.
• The ACTIVATION section describes the timing of other operations relative to

the current operation.
• The DECLARE section contains local declarations of identifiers.
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LISA exploits the commonality of similar operations by grouping them into one.
The following code segment describes the decoding behaviour of two immediate-type
(i_type) operations (ADDI and SUBI) in the DLX Decode stage. The complete
behaviour of an operation can be obtained by combining its behaviour definitions in
all the pipeline stages.

OPERATION i_type IN pipe_int.Decode {
DECLARE {

GROUP opcode={ADDI || SUBI}
GROUP rs1, rd = {fix_register};

}
CODING {opcode rs1 rd immediate}
SYNTAX {opcode rd ‘‘,’’ rs1 ‘‘,’’ immediate}
BEHAVIOR { reg_a = rs1; imm = immediate; cond = 0;
}
ACTIVATION {opcode, writeback}

}

A language similar to LISA is RADL. RADL [46] was developed at Rockwell,
Inc. as an extension of the LISA approach that focuses on explicit support of detailed
pipeline behaviour to enable generation of production quality cycle-accurate and
phase-accurate simulators.

6.3.4 Partial ADLs

The ADLs discussed so far capture a complete description of the processor’s structure,
behaviour or both. There are many description languages that capture partial infor-
mation of the architecture needed to perform a specific task. This section describes
two such ADLs.

AIDL is an ADL developed at the University of Tsukuba for design of high-
performance superscalar processors [47]. It seems that AIDL does not aim at datapath
optimisation but aims at validation of the pipeline behaviour such as data-forwarding
and out-of-order completion. In AIDL, timing behaviour of the pipeline is described
using interval temporal logic. AIDL does not support software toolkit generation.
However, AIDL descriptions can be simulated using the AIDL simulator.

PEAS-I is a CAD system for ASIP design supporting automatic instruction set
optimisation, compiler generation and instruction level simulator generation [48]. In
the PEAS-I system, the GNU C compiler is used, and the machine description of
GCC is automatically generated. Therefore, there exists no specific ADL in PEAS-I.
Inputs to PEAS-I include an application program written in C and input data to the
program. Then, the instruction set is automatically selected in such a way that the
performance is maximised or the gate count is minimised. Based on the instruction
set, GNU CC and an instruction level simulator are automatically retargeted.
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6.4 ADL driven methodologies

The survey of ADLs is incomplete without a clear understanding of the supported
methodologies. This section investigates the contribution of the contemporary ADLs
in the following methodologies:

• software toolkit generation and exploration
• generation of hardware implementation
• top-down validation

6.4.1 Software toolkit generation and exploration

Embedded systems present a tremendous opportunity to customise designs by
exploiting the application behaviour. Rapid exploration and evaluation of candidate
architectures are necessary due to time-to-market pressure and short product lifetimes.
ADLs are used to specify processor and memory architectures and generate software
toolkit including compiler, simulator, assembler, profiler and debugger. Figure 6.6
shows a traditional ADL-based design space exploration flow. The application pro-
grams are compiled and simulated, and the feedback is used to modify the ADL
specification with the goal of finding the best possible architecture for the given set
of application programs under various design constraints such as area, power and
performance.

An extensive body of recent work addresses ADL driven software toolkit gen-
eration and design space exploration of processor-based embedded systems, in both
academia: ISDL [13], Valen-C [14], MIMOLA [9], LISA [42], nML [12], Sim-nML
[49], EXPRESSION [33], and industry: ARC [50], Axys [51], RADL [46], Target
[20], Tensilica [52], MDES [31].

One of the main purposes of an ADL is to support automatic generation of a
high-quality software toolkit including at least an ILP compiler and a cycle-accurate
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Figure 6.6 ADL driven design space exploration
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simulator. However, such tools require detailed information about the processor,
typically in a form that is not concise and easily specifiable. Therefore, it becomes
necessary to develop procedures to automatically generate such tool-specific informa-
tion from the ADL specification. For example, RTs are used in many ILP compilers to
describe resource conflicts. However, manual description of RTs on a per-instruction
basis is cumbersome and error-prone. Instead, it is easier to specify the pipeline
and datapath resources in an abstract manner and generate RTs on a per-instruction
basis [34].

This section describes some of the challenges in automatic generation of software
tools (focusing on compilers and simulators) and surveys some of the approaches
adopted by current tools.

6.4.1.1 Compilers

Traditionally, software for embedded systems was hand-tuned in assembly. With
increasing complexity of embedded systems, it is no longer practical to develop
software in assembly language or to optimise it manually except for critical sections of
the code. Compilers which produce optimised machine specific code from a program
specified in a high-level language (HLL) such as C/C++ and Java are necessary in
order to produce efficient software within the time budget. Compilers for embedded
systems have been the focus of several research efforts recently [53].

The compilation process can be broadly broken into two steps: analysis and syn-
thesis [54]. During analysis, the program (in HLL) is converted into an intermediate
representation (IR) that contains all the desired information such as control and data
dependences. During synthesis, the IR is transformed and optimised in order to gen-
erate efficient target specific code. The synthesis step is more complex and typically
includes the following phases: instruction selection, scheduling, resource allocation,
code optimisations/transformations and code generation [55]. The effectiveness of
each phase depends on the algorithms chosen and the target architecture. A further
problem during the synthesis step is that the optimal ordering between these phases
is highly dependent on the target architecture and the application program. As a
result, traditionally, compilers have been painstakingly hand-tuned to a particular
architecture (or architecture class) and application domain(s). However, stringent
time-to-market constraints for SOC designs no longer make it feasible to manu-
ally generate compilers tuned to particular architectures. Automatic generation of
an efficient compiler from an abstract description of the processor model becomes
essential.

A promising approach to automatic compiler generation is the ‘retargetable com-
piler’ approach (see Part II embedded software, Chapter 8). A compiler is classified
as retargetable if it can be adapted to generate code for different target processors with
significant reuse of the compiler source code. Retargetability is typically achieved
by providing target machine information (in an ADL) as input to the compiler along
with the program corresponding to the application.

The complexity in retargeting the compiler depends on the range of target proces-
sors it supports and also on its optimising capability. Due to the growing amount of ILP
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features in modern processor architectures, the difference in quality of code generated
by a naive code conversion process and an optimising ILP compiler can be enormous.
Recent approaches on retargetable compilation have focused on developing opti-
misations/transformations that are ‘retargetable’ and capturing the machine-specific
information needed by such optimisations in the ADL. The retargetable compilers
can be classified into three broad categories, based on the type of the machine model
accepted as input.

Architecture template based: Such compilers assume a limited architecture
template which is parameterisable for customisation. The most common param-
eters include operation latencies, number of functional units, number of registers,
etc. Architecture template based compilers have the advantage that both optimi-
sations and the phase ordering between them can be manually tuned to produce
highly efficient code for the limited architecture space. Examples of such com-
pilers include the Valen-C compiler [14] and the GNU-based C/C++ compiler from
Tensilica Inc. [52]. The Tensilica GNU-based C/C++ compiler is geared towards
the Xtensa parameterisable processor architecture. One important feature of this
system is the ability to add new instructions (described through an Instruction
Extension Language) and automatically generate software tools tuned to the new
instruction-set.

Explicit behavioural information based: Most compilers require a specification
of the behaviour in order to retarget their transformations (e.g. instruction selection
requires a description of the semantics of each operation). Explicit behavioural infor-
mation based retargetable compilers require full information about the instruction-set
as well as explicit resource conflict information. Examples include the AVIV [24]
compiler using ISDL, CHESS [18] using nML and Elcor [31] using MDES. The
AVIV retargetable code generator produces machine code, optimised for mini-
mal size, for target processors with different instruction-set. It solves the phase
ordering problem by performing a heuristic branch-and-bound step that performs
resource allocation/assignment, operation grouping and scheduling concurrently.
CHESS is a retargetable code generation environment for fixed-point DSP proces-
sors. CHESS performs instruction selection, register allocation and scheduling as
separate phases (in that order). Elcor is a retargetable compilation environment for
VLIW architectures with speculative execution. It implements a software pipelin-
ing algorithm (modulo scheduling) and register allocation for static and rotating
register files.

Behavioural information generation based: Recognising that the architecture
information needed by the compiler is not always in a form that may be well
suited for other tools (such as synthesis) or does not permit concise specifica-
tion, some research has focused on extraction of such information from a more
amenable specification. Examples include the MSSQ and RECORD compiler using
MIMOLA [9], retargetable C compiler based on LISA [44] and the EXPRESS com-
piler using EXPRESSION [33]. MSSQ translates Pascal-like HLL into microcode
for micro-programmable controllers, while RECORD translates code written in
a DSP-specific programming language, called data flow language (DFL), into
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machine code for the target DSP. The retargetable C compiler generation using
LISA is based on reuse of a powerful C compiler platform with many built-in code
optimisations and generation of mapping rules for code selection using the instruc-
tion semantics information [44]. The EXPRESS compiler tries to bridge the gap
between explicit specification of all information (e.g. AVIV) and implicit specifi-
cation requiring extraction of instruction-set (e.g. RECORD), by having a mixed
behavioural/structural view of the processor.

6.4.1.2 Simulators

Simulators are critical components of the exploration and software design toolkit for
the system designer. They can be used to perform diverse tasks such as verifying
the functionality and/or timing behaviour of the system (including hardware and
software), and generating quantitative measurements (e.g. power consumption) which
can be used to aid the design process.

Simulation of the processor system can be performed at various abstraction levels.
At the highest level of abstraction, a functional simulation of the processor can be
performed by modelling only the instruction-set (IS). Such simulators are termed
instruction-set simulators (ISS) or instruction-level simulators (ILS). At lower levels
of abstraction are the cycle-accurate and phase-accurate simulation models that yield
more detailed timing information. Simulators can be further classified based on
whether they provide bit-accurate models, pin-accurate models, exact pipeline models
and structural models of the processor.

Typically, simulators at higher levels of abstraction (e.g. ISS, ILS) are faster
but gather less information as compared to those at lower levels of abstraction
(e.g. cycle-accurate, phase-accurate). Retargetability (i.e. ability to simulate a wide
variety of target processors) is especially important in the arena of embedded system
design with emphasis on exploration and co-development of hardware and software.
Simulators with limited retargetability are very fast but may not be useful in all aspects
of the design process. Such simulators typically incorporate a fixed architecture tem-
plate and allow only limited retargetability in the form of parameters such as number
of registers and ALUs. Examples of such simulators are numerous in the industry and
include the HPL-PD [31] simulator using the MDes ADL.

The model of simulation adopted has significant impact on the simulation speed
and flexibility of the simulator. Based on the simulation model, simulators can be
classified into three types: interpretive, compiled and mixed.

Interpretation based: Such simulators are based on an interpretive model of the
processor’s instruction-set. Interpretive simulators store the state of the target proces-
sor in host memory. It then follows a fetch, decode and execute model: instructions
are fetched from memory, decoded and then executed in serial order. Advantages
of this model include ease of implementation, flexibility and the ability to collect
varied processor state information. However, it suffers from significant performance
degradation as compared with the other approaches primarily due to the tremendous
overhead in fetching, decoding and dispatching instructions. Almost all commercially



208 System-on-chip

available simulators are interpretive. Examples of research interpretive retargetable
simulators include SIMPRESS [36] using EXPRESSION and GENSIM/XSIM [25]
using ISDL.

Compilation based: Compilation-based approaches reduce the runtime overhead
by translating each target instruction into a series of host machine instructions which
manipulate the simulated machine state. Such translation can be done either at compile
time (static compiled simulation) where the fetch–decode–dispatch overhead is com-
pletely eliminated, or at load time (dynamic compiled simulation) which amortises
the overhead over repeated execution of code. Simulators based on the static compi-
lation model are presented by Zhu and Gajski [56] and Pees et al. [43]. Examples of
dynamic compiled code simulators include the Shade simulator [57] and the Embra
simulator [58].

Interpretive + Compiled: Traditional interpretive simulation is flexible but
slow. Instruction decoding is a time-consuming process in a software simulation.
Compiled simulation performs compile time decoding of application programs to
improve the simulation performance. However, all compiled simulators rely on
the assumption that the complete program code is known before the simulation
starts and is furthermore run-time static. Due to the restrictiveness of the compiled
technique, interpretive simulators are typically used in embedded systems’ design
flow. Two recently proposed simulation techniques (JIT-CCS [59] and IS-CS [60])
combine the flexibility of interpretive simulation with the speed of the compiled
simulation.

The ‘just-in-time cache compiled simulation’ (JIT-CCS) technique compiles an
instruction during run-time, just-in-time before the instruction is going to be exe-
cuted. Subsequently, the extracted information is stored in a simulation cache for
direct reuse in a repeated execution of the program address. The simulator recognises
if the program code of a previously executed address has changed and initiates a
re-compilation. The ‘instruction set compiled simulation’ (IS-CS) technique performs
time-consuming instruction decoding during compile time. In this case, an instruc-
tion is modified at run-time, the instruction is re-decoded prior to execution. It also
uses an ‘instruction abstraction’ technique to generate aggressively optimised decoded
instructions that further improve simulation performance [60,61].

6.4.2 Generation of hardware implementation

Recent approaches on ADL-based software toolkit generation enable performance
driven exploration. The simulator produces profiling data and thus may answer ques-
tions regarding the instruction set, the performance of an algorithm and the required
size of memory and registers. However, the required silicon area, clock frequency
and power consumption can only be determined in conjunction with a synthesisable
HDL model.

There are two major approaches in the literature for synthesisable HDL generation.
The first one is a parameterised processor core-based approach. These cores are bound
to a single processor template whose architecture and tools can be modified to a certain
degree. The second approach is based on processor specification languages.
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6.4.2.1 Processor template based

Examples of processor template-based approaches are Xtensa [52], Jazz [62] and
PEAS [63]. Xtensa [52] is a scalable RISC processor core. Configuration options
include the width of the register set, caches and memories. New functional units and
instructions can be added using the Tensilica Instruction (TIE) language. A synthe-
sisable hardware model along with software toolkit can be generated for this class of
architectures. Improv’s Jazz [62] processor is supported by a flexible design method-
ology to customise the computational resources and instruction set of the processor.
It allows modifications of data width, number of registers, depth of hardware task
queue and addition of custom functionality in Verilog. PEAS [63] is a GUI-based
hardware/software codesign framework. It generates HDL code along with software
toolkit. It has support for several architecture types and a library of configurable
resources.

6.4.2.2 Specification language based

Figure 6.7 shows a typical framework of processor description language-driven
HDL generation. Structure-centric ADLs such as MIMOLA are suitable for hard-
ware generation. Some of the behavioural languages (such as ISDL and nML) are
also used for hardware generation. For example, the HDL generator HGEN [25]
uses ISDL description, and the synthesis tool GO [20] is based on nML. Itoh
et al. [64] have proposed a micro-operation description-based synthesisable HDL
generation.
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Mixed languages such as LISA and EXPRESSION capture both structure and
behaviour of the processor. The synthesisable HDL generation approach based on
LISA language [65] produces an HDL model of the architecture. The designer has the
choice to generate a VHDL, Verilog or SystemC representation of the target architec-
ture [66]. The HDL generation methodology presented by Mishra et al. [67] combines
the advantages of the processor template-based environments and the language-based
specifications using EXPRESSION ADL.

6.4.3 Top-down validation

Validation of microprocessors is one of the most complex and important tasks in the
current System-on-Chip (SoC) design methodology. Figure 6.8 shows a traditional
architecture validation flow. The architect prepares an informal specification of the
microprocessor in the form of an English document. The logic designer implements
the modules in the RTL. The ‘RTL design’ is validated using a combination of simu-
lation techniques and formal methods. One of the most important problems in today’s
processor design validation is the lack of a golden reference model that can be used
for verifying the design at different levels of abstraction. Thus, many existing val-
idation techniques employ a ‘bottom-up approach’ to pipeline verification, where
the functionality of an existing pipelined processor is, in essence, reverse-engineered
from its RTL implementation.

Mishra [68] has presented an ADL-driven validation technique that is com-
plementary to these bottom-up approaches. It leverages the system architects’
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knowledge about the behaviour of the programmable embedded systems through
ADL constructs, thereby allowing a powerful ‘top-down approach’ to microproces-
sor validation. Figure 6.9 shows an ADL-driven top-down validation methodology.
This methodology has two important steps: validation of ADL specification, and
specification-driven validation of programmable architectures.

6.4.3.1 Validation of ADL specification

It is important to verify the ADL specification to ensure the correctness of the architec-
ture specified and the generated software toolkit. Both static and dynamic behaviour
need to be verified to ensure that the specified architecture is well formed. The static
behaviour can be validated by analysing several static properties such as, connect-
edness, false pipeline and data-transfer paths and completeness using a graph-based
model of the pipelined architecture [69,70].

The dynamic behaviour can be validated by analysing the instruction flow in the
pipeline using a Finite State Machine (FSM) based model to verify several important
architectural properties such as determinism and in-order execution in the presence
of hazards and multiple exceptions [71,72].

6.4.3.2 Specification-driven validation

The validated ADL specification can be used as a golden reference model for top-down
validation of programmable architectures. The top-down validation approach has
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been demonstrated in two directions: functional test program generation, and design
validation using a combination of equivalence checking and symbolic simulation.

Test generation for functional validation of processors has been demonstrated
using MIMOLA [7], EXPRESSION [73] and nML [20]. A model checking based
approach is used to automatically generate functional test programs from the proces-
sor specification using EXPRESSION ADL [73]. It generates a graph model of the
pipelined processor from the ADL specification. The functional test programs are
generated based on the coverage of the pipeline behaviour.

ADL-driven design validation using equivalence checking has been demonstrated
using EXPRESSIONADL [74]. This approach combines ADL-driven hardware gen-
eration and validation. The generated hardware model (RTL) is used as a reference
model to verify the hand-written implementation (RTL design) of the processor. To
verify that the implementation satisfies certain properties, the framework generates
the intended properties. These properties are applied using symbolic simulation [74].

6.5 Comparative study

Table 6.1 compares the features of contemporary ADLs in terms of their support
for compiler generation, simulator generation, test generation, synthesis and formal
verification. Also, information captured by the ADLs is compared.

SinceMIMOLA and UDL/I are originally HDLs, their descriptions are synthesis-
able and can be simulated using HDL simulators. MIMOLA appears to be successful
for retargetable compilation for DSPs with irregular datapaths. However, since its
abstraction level is rather low, MIMOLA is laborious to write. COACH (uses UDL/I)
supports generation of both compilers and simulators. nML and ISDL support ILP
compiler generation. However, due to the lack of structural information, it is not
possible to automatically detect resource conflicts between instructions. MDES sup-
ports simulator generation only for the HPL-PD processor family. EXPRESSION has
ability to automatically generate ILP compilers, reservation tables and cycle-accurate
simulators. Furthermore, description of memory hierarchies is supported. LISA and
RADL were originally designed for simulator generation. AIDL descriptions are
executable on the AIDL simulator, and do not support compiler generation.

From the above comparison it is obvious thatADLs should capture both behaviour
(instruction set) and structure (netlist) information in order to generate high-quality
software toolkit automatically and efficiently. Behaviour information which is nec-
essary for compiler generation should be explicitly specified for mainly two reasons.
First, instruction-set extraction from netlists described in synthesis-oriented ADLs
or HDLs does not seem to be applicable to a wide range of processors. Second,
synthesis-oriented ADLs or HDLs are generally tedious to write for the purpose of
DSE. Also, structure information is necessary not only to generate cycle-accurate
simulators but also to generate ILP constraints which are necessary for high-quality
ILP compiler generation.

ADLs designed for a specific domain (such as DSP or VLIW) or for a specific
purpose (such as simulation or compilation) can be compact and it is possible to
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automatically generate efficient (in terms of area, time and power) tools/hardwares.
However, it is difficult to design an ADL for a wide variety of architectures to
perform different tasks using the same specification. Generic ADLs require the
support of powerful methodologies to generate high-quality results compared with
domain-specific/task-specific ADLs.

6.6 Conclusions

In the past, an ADL was designed to serve a specific purpose. For example,
MIMOLA and UDLI have features similar to a hardware description language and
were used mainly for synthesis of processor architectures. Similarly, LISA and
RADL were designed for simulation of processor architectures. Likewise, MDES
and EXPRESSION were designed mainly for generating retargetable compilers.

The early ADLs were either structure-oriented (MIMOLA, UDL/I), or behaviour-
oriented (nML, ISDL). As a result, each class of ADLs is suitable for specific tasks.
For example, structure-oriented ADLs are suitable for hardware synthesis, and unfit
for compiler generation. Similarly, behaviour-oriented ADLs are appropriate for gen-
erating compiler and simulator for instruction-set architectures, and unsuited for
generating cycle-accurate simulator or hardware implementation of the architecture.
The later ADLs (LISA and EXPRESSION) adopted the mixed approach where the
language captures both structure and behaviour of the architecture.

At present, the existing ADLs are getting modified with the new features
and methodologies to perform software toolkit generation, hardware generation,
instruction-set synthesis, and test generation for validation of architectures. For exam-
ple, nML is extended by Target Compiler Technologies [20] to perform hardware
synthesis and test generation. Similarly, LISA language has been used for hardware
generation [66,75], instruction encoding synthesis [76] and JTAG interface gener-
ation [77]. Likewise, EXPRESSION has been used for hardware generation [67],
instruction-set synthesis [78], test generation [73,79] and specification validation
[70,74].

The majority of the ADLs were designed mainly for processor architectures.
MDES have features for specifying both processor and memory architectures.
EXPRESSION allows specification of processor, memory and co-processor archi-
tectures [80]. Similarly, the language elements of LISA enable the description of
processor, memory, peripherals and external interfaces [77,81].

In the future, the existing ADLs will go through changes in two dimensions. First,
ADLs will specify not only processor, memory and co-processor architectures but also
other components of the system-on-chip architectures including peripherals and exter-
nal interfaces. Second, ADLs will be used for software toolkit generation, hardware
synthesis, test generation, instruction-set synthesis, and validation of microproces-
sors. Furthermore, multiprocessor SoCs will be captured and various attendant tasks
will be addressed. The tasks include support for formal analysis, generation of RTOS,
exploration of communication architectures and support for interface synthesis. The
emerging ADLs will have these features.
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Embedded software





Chapter 7

Concurrent models of computation for
embedded software

Edward Lee and Stephen Neuendorffer

7.1 Introduction

Embedded software has traditionally been thought of as ‘software on small com-
puters’. In this traditional view, the principal problem is resource limitations (small
memory, small data word sizes and relatively slow clocks). The solutions emphasise
efficiency; software is written at a very low level (in assembly code or C), operating
systems with a rich suite of services are avoided and specialised computer architec-
tures such as programmable DSPs and network processors are developed to provide
hardware support for common operations. These solutions have defined the practice
of embedded software design and development for the last 25 years or so.

Of course, thanks to the semiconductor industry’s ability to follow Moore’s law,
the resource limitations of 25 years ago should have almost entirely evaporated. Why
then has embedded software design and development changed so little? It may be
because extreme competitive pressure in products based on embedded software, such
as consumer electronics, rewards only the most efficient solutions. This argument is
questionable, however, since there are many examples where functionality has proven
more important than efficiency. We will argue that resource limitations are not the
only defining factor for embedded software, and may not even be the principal factor
now that the technology has improved so much.

Resource limitations are an issue to some degree with almost all software. So
generic improvements in software engineering should, in theory, also help with
embedded software. There are several hints, however, that embedded software is
different in more fundamental ways. For one, object-oriented techniques such as
inheritance, dynamic binding and polymorphism are rarely used in practice with
embedded software development. In another example, processors used for embedded
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systems often avoid the memory hierarchy techniques that are used in general purpose
processors to deliver large virtual memory spaces and faster execution using caches.
In a third example, automated memory management, with allocation, deallocation
and garbage collection, are largely avoided in embedded software. To be fair, there
are some successful applications of these technologies in embedded software, such as
the use of Java in cell phones, but their application remains limited and is largely con-
fined to providing the services in embedded systems that are actually more akin with
general purpose software applications (such as database services in cell phones).

There are further hints that the software solutions for embedded software may
ultimately differ significantly from those for general purpose software. We point
to four recent cases where fundamentally different software design techniques have
been applied to embedded software. All four define concurrency models, component
architectures and management of time-critical operations in ways that are significantly
different from prevailing software engineering techniques. The first two are nesC with
TinyOS [1,2], which was developed for programming very small programmable sen-
sor nodes called ‘motes’, and Click [3,4], which was created to support the design
of software-based network routers. These first two have an imperative flavour, and
components interact principally through procedure calls. The next two are Simulink
with Real-Time Workshop (from The MathWorks), which was created for embedded
control software and is widely used in the automotive industry, and SCADE (from
Esterel Technologies, see Reference 5), which was created for safety-critical embed-
ded software and is used in avionics. These next two have a more declarative flavour,
where components interact principally through messages rather than procedure calls.
There are quite a few more examples that we will discuss below. The amount of
experimentation with alternative models of computation for embedded software is
yet a further indication that the prevailing software abstractions are inadequate.

Embedded systems are integrations of software and hardware where the software
reacts to sensor data and issues commands to actuators. The physical system is an
integral part of the design and the software must be conceptualised to operate in
concert with that physical system. Physical systems are intrinsically concurrent and
temporal. Actions and reactions happen simultaneously and over time, and the metric
properties of time are an essential part of the behaviour of the system.

Software abstracts away time, replacing it with ordering. In the prevailing soft-
ware abstraction, that of imperative languages such as C, C++ and Java, the ‘order’
of actions is defined by the program, but not by their ‘timing’. This prevailing imper-
ative abstraction is overlaid with another abstraction, that of threads or processes,1

typically provided by the operating system, but occasionally by the language (as
in Java).

We will argue that the lack of timing in the core abstraction is a flaw, from
the perspective of embedded software, and that threads as a concurrency model are a
poor match to embedded systems. They are mainly focused on providing an illusion of

1 Threads are processes that can share data. The distinction between the two is not important in our
discussion, so we will use the term ‘threads’ generically to refer to both.
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concurrency in fundamentally sequential models, and they work well only for modest
levels of concurrency or for highly decoupled systems that are sharing resources,
where best-effort scheduling policies are sufficient.

Of the four cases cited above, not one uses threads as the concurrency model. Of
the four, only one (Simulink) is explicit about timing. This may be a reflection of how
difficult it is to be explicit about timing when the most basic notion of computation
has abstracted time away. To be fair, the others do provide mechanisms to manage
time-critical events. TinyOS and Click both provide access to hardware timers, but
this access is largely orthogonal to the semantics. It is treated as an I/O interaction.

There are, of course, software abstractions that admit concurrency without
resorting to threads. In functional languages (e.g. see Reference 6), programs are
compositions of declarative relationships, not specifications of an order of opera-
tions. But although declarative techniques have been used in embedded software
(e.g. Simulink and SCADE), functional languages have found almost no usage in
embedded software. Thus, whether a language is imperative or declarative probably
has little bearing on whether it is useful for embedded software.

Embedded software systems are generally held to a much higher reliability stan-
dard than general purpose software. Often, failures in the software can be life
threatening (e.g. in avionics and military systems). We argue that the prevailing
concurrency model based on threads does not achieve adequate reliability. In this
prevailing model, interaction between threads is extremely difficult for humans to
understand. The basic techniques for controlling this interaction use semaphores and
mutual exclusion locks, methods that date back to the 1960s [7]. These techniques
often lead to deadlock or livelock conditions, where all or part of a program cannot
continue executing. In general purpose computing, this is inconvenient, and typically
forces a restart of the program (or even a reboot of the machine). However, in embed-
ded software, such errors can be far more than inconvenient. Moreover, software is
often written without sufficient use of these interlock mechanisms, resulting in race
conditions that yield non-deterministic program behaviour.

In practice, errors due to misuse (or no use) of semaphores and mutual exclu-
sion locks are extremely difficult to detect by testing. Code can be exercised in
deployed form for years before a design flaw appears. Static analysis techniques can
help (e.g. Sun Microsystems’ LockLint), but these methods are often thwarted by
conservative approximations and/or false positives.

It can be argued that the unreliability of multi-threaded programs is due at least in
part to inadequate software engineering processes. For example, better code reviews,
better specifications, better compliance testing and better planning of the develop-
ment process can help solve the problems. It is certainly true that these techniques
can help. However, programs that use threads can be extremely difficult for program-
mers to understand. If a program is incomprehensible, then no amount of process
improvement will make it reliable. For example, development schedule extensions
are as likely to degrade the reliability of programs that are difficult to understand as
they are to improve it.

Formal methods can help detect flaws in threaded programs, and in the process can
improve the understanding that a designer has of the behaviour of a complex program.
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But if the basic mechanisms fundamentally lead to programs that are difficult to
understand, then these improvements will fall short of delivering reliable software.

All four of the cases cited above offer concurrency models that are much easier
to understand than threads that interact via semaphores and mutual exclusion locks.

Simulink and SCADE are based on a synchronous abstraction, where components
conceptually execute simultaneously, aligned with one or more interlocked clocks.
SCADE relies on an abstraction where components appear to execute instantaneously,
whereas Simulink is more explicit about the passage of time and supports definition
of tasks that take time to execute and execute concurrently with other tasks. In both
cases, every (correctly) compiled version of the program will execute identically, in
that if it is given the same inputs, it will produce the same outputs. In particular, the
execution does not depend on extraneous factors such as processor speed. Even this
modest objective is often hard to achieve using threads directly.

TinyOS and Click offer concurrency models that are closer to the prevailing
software abstractions, since they rely on procedure calls as the principle component
interaction mechanism. However, neither model includes threads. The key conse-
quence is that a programmer can rely on the atomicity of the execution of most
program segments, and hence does not usually need to explicitly deal with mutual
exclusion locks or semaphores. The result again is more comprehensible concurrent
programs.

7.2 Concurrency and time

In embedded software, concurrency and time are essential aspects of a design. In this
section, we outline the potential problems that software faces in dealing with these
aspects.

Time is a relatively simple issue, conceptually, although delivering temporal
semantics in software can be challenging. Time is about the ordering of events. Event
x happens before event y, for example. But in embedded software, time also has a
metric. That is, there is an amount of time between events x and y, and the amount
of time may be an important part of the correctness of a system.

In software, it is straightforward to talk about the order of events, although in
concurrent systems it can be difficult to control the order. For example, achieving
a specified total ordering of events across concurrent threads implies interactions
across those threads that can be extremely difficult to implement correctly. Research
in distributed discrete-event simulation, for example, underscores the subtleties that
can arise (e.g. see References 8 and 9).

It is less straightforward to talk about the metric nature of time. Typically, embed-
ded processors have access to external devices called timers that can be used to
measure the passage of time. Programs can poll for the current time, and they can
set timers to trigger an interrupt at some time in the future. Using timers in this way
implies immediately having to deal with concurrency issues. Interrupt service rou-
tines typically pre-empt currently executing software, and hence conceptually execute
concurrently.
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Concurrency in software is a challenging issue because the basic software abstrac-
tion is not concurrent. The basic abstraction in imperative languages is that the
memory of the computer represents the current state of the system, and instructions
transform that state. A program is a sequence of such transformations. The problem
with concurrency is that from the perspective of a particular program, the state may
change on its own at any time. For example, we could have a sequence of statements:

x = 5;
print x;

that results in printing the number ‘6’ instead of ‘5’. This could occur, e.g., if after
execution of the first statement an interrupt occurred, and the interrupt service routine
modified the memory location where x was stored. Or it could occur if the computer
is also executing a sequence of statements:

x = 6;
print x;

and a multitasking scheduler happens to interleave the executions of the instructions of
the two sequences. Two such sequences of statements are said to be ‘non-determinate’
because, by themselves, these two sequences of statements do not specify a single
behaviour. There is more than one behaviour that is consistent with the specification.

Non-determinism can be desirable in embedded software. Consider for example
an embedded system that receives information at random times from two distinct
sensors. Suppose that it is the job of the embedded software to fuse the data from
these sensors so that their observations are both taken into account. The system as
a whole will be non-determinate since its results will depend on the order in which
information from the sensors is processed. Consider the following program fragment:

y = getSensorData(); // Block for data
x = 0.9 * x + 0.1 * y; // Discounted average
print x; // Display the result

This fragment reads data from a sensor and calculates a running average using a
discounting strategy, where older data has less effect on the average than newer data.

Suppose that our embedded system uses two threads, one for each sensor, where
each thread executes the above sequence of statements repeatedly. The result of
the execution will depend on the order in which data arrives from the sensors, so
the program is non-determinate. However, it is also non-determinate in another
way that was probably not intended. Suppose that the multitasking scheduler happens
to execute the instructions from the two threads in interleaved order, as shown here:

y = getSensorData(); // From thread 1
y = getSensorData(); // From thread 2
x = 0.9 * x + 0.1 * y; // From thread 1
x = 0.9 * x + 0.1 * y; // From thread 2
print x; // From thread 1
print x; // From thread 2
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The result is clearly not right. The sensor data read by thread 1 is ignored. The
discounting is applied twice. The sensor data from thread 2 is counted twice. And the
same (erroneous) result is printed twice.

A key capability for preventing such concurrency problems is ‘atomicity’.
A sequence of instructions is ‘atomic’ if during the execution of the sequence, no
portion of the state that is visible to these instructions changes unless it is changed by
the instructions themselves.

Atomicity is provided by programming languages and/or operating systems
through ‘mutual exclusion’ mechanisms. These mechanisms depend on low-level
support for an indivisible ‘test and set’. Consider the following modification:

acquireLock(); // Block until acquired
y = getSensorData(); // Block for data
x = 0.9 * x + 0.1 * y; // Discount old value
print x; // Display the result
releaseLock(); // Release the lock

The first statement calls an operating system primitive2 that tests a shared,
Boolean-valued variable, and if it is false, sets it to true and returns. If it is true,
then it blocks, waiting until it becomes false. It is essential that between the time this
primitive tests the variable and the time it sets it to true, that no other instruction in
the system can access that variable. That is, the test and set occur as one operation,
not as two. The last statement sets the variable to false.

Suppose we now build a system with two threads that each execute this sequence
repeatedly to read from two sensors. The resulting system will not exhibit the problem
above because the multitasking scheduler cannot interleave the executions of the
statements. However, the program is still not correct. For example, it might occur
that only one of the two threads ever acquires the lock, and so only one sensor is read.
In this case, the program is not ‘fair’. Suppose that the multitasking scheduler is forced
to be fair, say by requiring it to yield to the other thread each time releaseLock()
is called. The program is still not correct, because while one thread is waiting for
sensor data, the other thread is blocked by the lock and will fail to notice new data
on its sensor.

This seemingly trivial problem has become difficult. Rather than trying to fix it
within the threading model of computation (we leave this an exercise), we will show
that alternative models of computation make this problem easy.

Suppose that the program is given by the diagram in Figure 7.1.3 Suppose that
the semantics are those of Kahn process networks (PN) [10,11] augmented with a
non-deterministic merge [12,13]. In that figure, the components (blocks) are called
‘actors’. They have ports (shown by small triangles), with input ports pointing into

2 Mutual exclusion locks may also be provided as part of a programming language. The ‘synchronised’
keyword in Java, e.g. performs the same function as our ‘acquireLock’ command.

3 We give this program using a visual syntax to emphasise its concurrent semantics, and because visual
syntaxes are commonly used for languages with similar semantics, such as SCADE and Simulink. But the
visual syntax makes this no less a program.
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Figure 7.1 Process network realisation of the sensor fusion example

the blocks and output ports pointing out. Each actor encapsulates functionality that
reads input values and produces output values.

In PN semantics, each actor executes continually in its own thread of control.
The Sensor1 and Sensor2 actors will produce an output whenever the corresponding
sensors have data (this could be done directly by the interrupt service routine, e.g.).
The connections between actors represent sequences of data values. The Merge actor
will non-deterministically interleave the two sequences at its input ports, preserving
the order within each sequence, but yielding arbitrary ordering of data values across
sequences. Suppose it is ‘fair’ in the sense that if a data value appears at one of the
inputs, then it will ‘eventually’ appear at the output [14]. The remaining actors simply
calculate the discounted average and display it. The SampleDelay actor provides an
initial ‘previous average’ to work with (which prevents this program from deadlocking
for lack of data at the input to the Expression actor). This program exhibits none of
the difficulties encountered above with threads, and is both easy to write and easy to
understand.

We can now focus on improving its functionality. Notice that the discounting
average is not ideal because it does not take into account ‘how old’ the old data is.
That is, there is no time metric. Old data is simply the data previously observed,
and there is no measure of how long ago it was read. Suppose that instead of Kahn
process networks semantics, we use ‘discrete-event’ (DE) semantics [8,15]. A mod-
ified diagram is shown in Figure 7.2. In that diagram, the meaning of a connection
between actors is slightly different from the meaning of connections in Figure 7.1.
In particular, the connection carries a sequence of data values as before, but each
value has a ‘time stamp’. The time stamps on any given sequence are non-decreasing.
A data value with a time stamp is called an ‘event’.

The Sensor1 and Sensor2 actors produce output events stamped with the time
at which their respective interrupt service routines are executed. The merge actor
is no longer non-deterministic. Its output is a chronological merge of the two input
sequences.4 The TimeGap actor produces on its output an event with the same time

4 A minor detail is that we have to decide how to handle simultaneous input events. We could e.g. produce
them both at the output with the one from the top input port preceding the one at the bottom input port.
The semantics of simultaneous events is considered in detail in Reference 15.
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Figure 7.2 Discrete event realisation of an improved sensor fusion example

stamp as the input but whose value is the elapsed time between the current event and
the previous event (or between the start of execution and the current event if this is
the first event). The expression shown in the next actor calculates a better discounted
average, one that takes into account the time elapsed. It implements an exponential
forgetting function.

The Register actor in Figure 7.2 has somewhat interesting semantics. Its output is
produced when it receives a trigger input on the bottom port. The value of the output
is that of a ‘previously observed’ input (or a specified initial value if no input was
previously observed). In particular, at any given time stamp, the value of the output
does not depend on the value of the input, so this actor breaks what would otherwise
be an unresolvable causality loop.

Even with such a simple problem, threaded concurrency is clearly inferior. PN
offers a better concurrency model in that the program is easier to construct and
to understand. The DE model is even better because it takes into account metric
properties of time, which matter in this problem.

In real systems, the contrast between these approaches is even more dramatic.
Consider the following two program fragments:

acquireLockA();
acquireLockB();
x = 5;
print x;
releaseLockB();
releaseLockA();

and

acquireLockB();
acquireLockA();
x = 5;
print x;
releaseLockA();
releaseLockB();
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If these two programs are executed concurrently in two threads, they could
deadlock. Suppose the multitasking scheduler executes the first statement from the
first program followed by the first statement from the second program. At this point,
the second statement of both programs will block! There is no way out of this. The
programs have to be aborted and restarted.

Programmers who use threads have tantalising simple rules to avoid this problem.
For example, ‘always acquire locks in the same order’ [16]. However, this rule is
almost impossible to apply in practice because of the way programs are modularised.
Any given program fragment is likely to call methods or procedures that are defined
elsewhere, and those methods or procedures may acquire locks. Unless we examine
the source code of every procedure we call, we cannot be sure that we have applied
this rule.5

Deadlock can, of course, occur in PN and DE programs. If in Figure 7.1 we had
omitted the SampleDelay actor, or in Figure 7.2 we had omitted the Register actor, the
programs would not be able to execute. In both cases, the Expression actor requires
new data at all of its input ports in order to execute, and that data would not be able
to be provided without executing the Expression actor.

The rules for preventing deadlocks in PN and DE programs are much easier to
apply than the rule for threads. For certain models of computation, whether deadlock
occurs can be checked through static analysis of the program. This is true of the
DE model used above for the improved sensor fusion problem, for example. So, not
only was the model of computation more expressive in practice (i.e. it more readily
expressed the behaviour we wanted), but it also had stronger formal properties that
enabled static checks that prove the absence of certain flaws (deadlock, in this case).

We will next examine a few of the models of computation that have been used
for embedded systems.

7.3 Imperative concurrent models

As mentioned above, TinyOS and Click have an imperative flavour. What this means
is that when one component interacts with another, it gives a command, ‘do this’. The
command is implemented as a procedure call. Since these models of computation are
also concurrent, we call them ‘imperative concurrent’ models of computation.

In contrast, when components in Simulink and SCADE interact, they simply
offer data values, ‘here is some data’. It is irrelevant to the component when
(or even whether) the destination component reacts to the message. These models
of computation have a declarative flavour, since instead of issuing commands, they
declare relationships between components that share data. We call such models of
computation ‘declarative concurrent’ models of computation.

We begin with the imperative concurrent models of computation.

5 In principle, it might be possible to devise a programming language where the locks that are acquired
by a procedure are part of the type signature of the procedure, much as in Java where the exceptions that
are thrown by a procedure are part of its type signature. However, we know of no language that does this.
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Figure 7.3 A representation of a nesC/TinyOS configuration

7.3.1 nesC/TinyOS

TinyOS is a specialised, small-footprint operating system for use on extremely
resource-constrained computers, such as 8-bit microcontrollers with small amounts
of memory [1]. It is typically used with nesC, a programming language that describes
‘configurations’, which are assemblies of TinyOS components [2].

A visual rendition of a two-component configuration is shown in Figure 7.3,
where the visual notation is that used in Reference 2. The components are grey
boxes with names. Each component has some number of interfaces, some of which
it ‘uses’ and some of which it ‘provides’. The interfaces it provides are put on top of
the box and the interfaces it uses are put on the bottom. Each interface consists of a
number of methods, shown as triangles. The filled triangles represent methods that are
called ‘commands’ and the unfilled triangles represent ‘event handlers’. Commands
propagate downwards, whereas events propagate upwards.

After initialisation, computation typically begins with events. In Figure 7.3, Com-
ponent 2 might be a thin wrapper for hardware, and the interrupt service routine
associated with that hardware would call a procedure in Component 1 that would
‘signal an event’. What it means to signal an event is that a procedure call is made
upwards in the diagram via the connections between the unfilled triangles. Compo-
nent 1 provides an event handler procedure. The event handler can signal an event
to another component, passing the event up in the diagram. It can also call a com-
mand, downwards in the diagram. A component that provides an interface provides
a procedure to implement a command.

Execution of an event handler triggered by an interrupt (and execution of any com-
mands or other event handlers that it calls) may be pre-empted by another interrupt.
This is the principle source of concurrency in the model. It is potentially problematic
because event handler procedures may be in the middle of being executed when an
interrupt occurs that causes them to begin execution again to handle a new event.
Problems are averted through judicious use of the ‘atomic’ keyword in nesC. Code
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that is enclosed in an atomic block cannot be interrupted (this is implemented very
efficiently by disabling interrupts in the hardware).

Clearly, however, in a real-time system, interrupts should not be disabled for
extensive periods of time. In fact, nesC prohibits calling commands or signalling
events from within an atomic block. Moreover, no mechanism is provided for an
atomic test-and-set, so there is no mechanism besides the atomic keyword for imple-
menting mutual exclusion. The system is a bit like a multithreaded system but with
only one mutual exclusion lock. This makes it impossible for the mutual exclusion
mechanism to cause deadlock.

Of course, this limited expressiveness means that event handlers cannot perform
non-trivial concurrent computation. To regain expressiveness, TinyOS has tasks. An
event handler may ‘post a task’. Posted tasks are executed when the machine is idle
(no interrupt service routines are being executed). A task may call commands through
the interfaces it uses. It is not expected to signal events, however. Once task execution
starts, it completes before any other task execution is started. That is, task execution
is atomic with respect to other tasks. This greatly simplifies the concurrency model,
because now variables or resources that are shared across tasks do not require mutual
exclusion protocols to protect their accesses. Tasks may be pre-empted by event
handlers, however, so some care must be exercised when shared data is accessed
here to avoid race conditions. Interestingly, it is relatively easy to statically analyse a
program for potential race conditions [2].

Consider the sensor fusion example from above. A configuration for this is
sketched in Figure 7.4. The two sensors have interfaces called ‘reading’ that accept
a command, a signal, an event. The command is used to configure the sensors. The
event is signalled when an interrupt from the sensor hardware is handled. Each time
such an event is signalled, the Fuser component records the sensor reading and posts
a task to update the discounted average. The task will then invoke the command in the
print interface of the Printer component to display the result. Because tasks execute
atomically with respect to one another, in the order in which they are posted, the only
tricky part of this implementation is in recording the sensor data. However, tasks in
TinyOS can be passed arguments on the stack, so the sensor data can be recorded
there. The management of concurrency becomes extremely simple in this example.

Fuser

Reading

Reading

Reading

Reading Print

Print

Sensor1 Sensor2 Printer

Figure 7.4 A sketch of the sensor fusion problem as a nesC/TinyOS configuration
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In effect, in nesC/TinyOS, concurrency is much more disciplined than with
threads. There is no arbitrary interleaving of code execution, there are no block-
ing operations to cause deadlock and there is a very simple mechanism for managing
the one non-deterministic pre-emption that can be caused by interrupts. The price paid
for this, however, is that applications must be divided into small, quickly executing
procedures to maintain reactivity. Since tasks run to completion, a long-running task
will starve all other tasks.

7.3.2 Click

Click was originally developed for designing software implementations of network
routers on general purpose computers running Linux [3,4]. It has been recently adapted
for designing software for specialised network processors [17], and has proven to offer
effective abstractions for this style of embedded software, at least. The abstractions
have a great deal of potential for any embedded software that deals with multiple
converging asynchronous streams of stimuli.

As with nesC/TinyOS, in the Click model, connections between components rep-
resent method bindings. Click does not have the bidirectional interfaces of TinyOS,
but it has its own twist that can be used to accomplish similar objectives. In Click,
connections between ports can be ‘push’ or ‘pull’. In a push connection, the method
call originates with the source of the data. That is, the producer component calls
the consumer component. In a pull connection, the method call originates with
the consumer. That is, the consumer component calls the producer component to
demand data. It is worth noting that there are middleware frameworks with similar
push/pull semantics, such as the CORBA event service [18,19]. These, however, are
aimed at distributed computation rather than at managing concurrency within a sin-
gle CPU. Click executes in a single thread, and we will see that this simplifies the
design of Click applications compared with what would be required by distributed
models.

Figure 7.5 shows a Click model using the visual notation from Reference 4. Boxes
again represent components, and ports are shown either as rectangles (for output ports)
or triangles (for input ports). If a port is filled in black, then it is required to link to a
push connection. If it is filled in white, then it is required to link to a pull connection.

Sensor1

Sensor1

Queues Expr Sink

Pull output portPush output port

Push input port
Agnostic input port

Pull input port

Agnostic output port

Figure 7.5 A representation of a Click program
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If it has a double outline, then it is agnostic, and can be linked to either type of
connection.

A component with just a push output port, like Sensor1 and Sensor2 in Figure 7.5,
can function as a thin wrapper around hardware that will produce data. Conceptually,
the component autonomously6 initiates a reaction by pushing data on its output port,
which means calling a method in a downstream component. That method in the
downstream component may itself trigger further reactions by either pushing data to
output ports or pulling data from input ports.

In the example shown in Figure 7.5, the components downstream of Sensor1 and
Sensor2 are Queues. They have push inputs and pull outputs. When a method is called
to push data into them, that method simply stores the data on a queue. When a method
is called to pull data from their outputs, either a datum is provided or a null value is
provided to indicate that no data are available.

Click runs in a single thread, so the push and pull methods of the queue component
will be atomic with respect to one another. Thus, no special care needs to be taken to
manage the fact that callers from the left and from the right will both access the same
(queue) data structure.

Click maintains a task queue and executes tasks from this queue whenever the
main loop becomes idle. Polling the sensors for data, for example, is accomplished by
tasks that are always present on the task queue. In the example shown in Figure 7.5,
the Sink component has a single pull input. This component would, e.g., have
a task on the Click task queue that is repeatedly executed and pulls data from the
input port. The upstream component, labelled Expr, has agnostic input and output
ports. Because of the way it is connected, these ports will be used as pull ports.
A pull from the Sink will cause the Expr component to pull data from the queues.
Note that the Expr component can implement a scheduling strategy (such as round
robin) to access the queues fairly. Generally, scheduling can be accomplished by
components that have pull inputs and/or push outputs and that post tasks on the event
queue.

It is easy to see how the example in Figure 7.5 could be adapted to implement
the sensor fusion problem. Once again, the representation is simple and clear, with
no particular difficulties due to concurrency. The primary mechanism for avoiding
deadlock is the style that a pull should return null if no data are available. The
danger of livelock is largely eliminated by avoiding feedback loops, although several
interesting models include feedback loops that do not livelock because of the logic
contained in components (see Reference 4, section 2.6). Data races do not occur
accidentally because methods execute atomically. Nonetheless, on a coarser level,
non-deterministic interactions like those in the sensor fusion example are easy to
define. Indeed, these kinds of interactions are common in the application domain that
Click targets, network routers.

6 Currently, Click accomplishes this by repeatedly executing a task that polls the hardware, instead
of an interrupt service routine, but it does not seem hard to adapt the model to leverage interrupt service
routines, if desired.
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7.3.3 Others

There are many other models with imperative concurrent semantics. Here, we briefly
mention some that have been applied to the design of embedded systems.

7.3.3.1 Bluespec

In a Bluespec [20,21] model, components not only contain methods, but also ‘activa-
tion rules’ and ‘execution constraints’. Each activation rule describes an atomic state
update in the system, which can be performed whenever the associated execution
constraints are satisfied. Bindings between methods enable complex state updates to
be specified compositionally as a group of methods.

Conceptually, state updates in a Bluespec system occur sequentially. However,
in some cases activation rules operate on independent portions of the system state,
in which case they are called ‘conflict free’. These ‘conflict-free’ rules repre-
sent parallelism in a system and can be executed concurrently. Bluespec discovers
conflict-free rules through static program analysis and generates run-time scheduling
logic.

Livelock in Bluespec models is prevented by a requirement that no method can
cause itself to be executed through a sequence of method invocations. This require-
ment is guaranteed through static analysis of component compositions. Deadlock in
Bluespec models cannot generally be avoided, since it is possible that a state in exe-
cution is reached where there are no activation rules whose execution constraints can
be satisfied.

Bluespec has seen significant application in the specification of digital logic cir-
cuits [22,23]. Current compilers map a composition to a synchronous circuit that
executes an activation rule in a single cycle. Methods are converted into combina-
tional logic, which is guaranteed to be acyclic given the constraints on re-entrant
methods. In each cycle every rule executes concurrently, but the results are gated so
that only the state updates corresponding to a set of conflict-free rules are committed
to the system state.

Bluespec models can also be synthesised directly into sequential software, which
can be used to efficiently simulate synthesised digital logic systems. In software, it
is more efficient to make scheduling decisions for activation rules initially and to
only execute code corresponding to a single activation rule at a time. In comparison
with direct simulation of synthesised digital logic, this technique offers significant
speedup for many applications, since only committed activation rules are actually
executed. Additionally, given coarse-grained activation rules, it seems possible to
execute more than one rule in software concurrently.

7.3.3.2 Koala

Koala [24,25] is a model and language for components with procedure-call interfaces
and a visual syntax with ‘provides’ and ‘requires’ ports that get connected. It has been
proposed for use in the design of consumer electronics software specifically. As with
nesC/TinyOS and Click, in a Koala model, connections between components repre-
sent method bindings. Communication occurs through method arguments and return
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values and the interaction between communicating components is primarily sequen-
tial. Koala allows components to contain arbitrary code and perhaps to encapsulate
arbitrary operating system threads.

A ‘configuration’ is an interconnection of components plus configuration-specific
code in something called a ‘module’. To get hierarchy, the configuration can export
its own requires and provides interfaces, and these can be mediated by the module.
For example, the module can translate a particular provided method into a sequence
of calls to provided methods of the components (e.g. to initialise all the components).
The module is configuration specific, and is not itself a component, so it does not
pollute the component library. The module can also provide services that are required
by the components. For example, a component may require values for configuration
parameters, and the module can provide those values. Partial evaluation is used to
avoid introducing overhead in doing things this way.

Modules offer a much richer form of hierarchical abstraction than either nesC
or Click provide. Modules are also used to implement primitive components, thus
providing the leaf cells of the hierarchy.

Each ‘requires’ interface must be connected to either a module or a ‘provides’
interface (input port). A ‘provides’ interface, however, can be connected to zero
or more ‘requires’ interfaces. An example is given in Reference 24 where compo-
nents require a particular hardware interface (an I2C bus) that must be provided by
a configuration. Operating system and scheduling services also interact with com-
ponents through requires and provides interfaces. Thus, the language provides clean
mechanisms for relating hardware requirements to software services.

A limited form of dynamic binding is provided in the form of ‘switches’, which
work together with a module to direct procedure calls. These can be used at run
time to direct a method call to one or another component. Switches can also be used
with ‘diversity interfaces’ (see below), in which case, partial evaluation will likely
lead to static binding and the elimination of some components from a configuration
(components that are not used).

‘Diversity’ means one definition, multiple products. Koala’s features support
this well, particularly through its partial evaluation and static binding, which avoid
the overhead often incurred by making components flexible. The authors compare
the use of ‘requires’ interfaces to property lists in more conventional component
architectures withset() andget()methods, and point out thatset() andget()
make it more difficult to optimise when properties are set at design time. Instead of
‘providing’ interfaces that must be filled in by the configuration (e.g. set()), Koala
components have ‘required’ interfaces that the configuration must provide. These are
called ‘diversity interfaces’.

Koala components can provide ‘optional interfaces’ (fashioned after COM’s query
interface mechanism), which are automatically extended with an isPresent func-
tion, which the component is required to implement. For example the presence of
an interface may depend on the hardware configuration. A component may also
require an ‘optional interface’ (which is, to be sure, odd terminology), in which
case the component can query for whether a configuration has a matching ‘provides’
interface.
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The hierarchical structure, components with provides and requires interfaces and
bindings concepts come from the architecture description language Darwin [26], but
the modules and diversity schemes are new.

7.4 Declarative concurrent models

As mentioned above, Simulink and SCADE have a declarative flavour. The interac-
tions between components are not ‘imperative’ in that one component does not ‘tell
the other what to do’. Instead, a ‘program’ is a declaration of the relationships among
components. In this section, we examine a few of the models of computation with
this character.

7.4.1 Simulink

Simulink was originally developed as a modelling environment, primarily for control
systems. It is rooted in a continuous-time semantics, something that is intrinsically
challenging for any software system to emulate. Software is intrinsically discrete, so
an execution of a Simulink ‘program’ often amounts to approximating the specified
behaviour using numerical integration techniques.

A Simulink ‘program’ is an interconnection of blocks where the connections
are the ‘variables’, but the value of a variable is a function, not a single value. To
complicate things, it is a function defined over a continuum. The Integrator block
e.g., takes as input any function of the reals and produces as output the integral of that
function. In general, any numerical representation in software of such a function and
its integral is an approximation, where the value is represented at discrete points in
the continuum. The Simulink execution engine (which is called a ‘solver’) chooses
those discrete points using sometimes quite sophisticated methods.

Although initially Simulink focused on simulating continuous dynamics and
providing excellent numerical integration, more recently it acquired a discrete capa-
bility. Semantically, discrete signals are piecewise-constant continuous-time signals.
A piecewise constant signal changes value only at discrete points on the time line.
Such signals are intrinsically easier for software, and more precise approximations
are possible.

In addition to discrete signals, Simulink has discrete blocks. These have a
‘sampleTime’ parameter, which specifies the period of a periodic execution. Any
output of a discrete block is a piecewise constant signal. Inputs are sampled at
multiples of the sampleTime.

Certain arrangements of discrete blocks turn out to be particularly easy to exe-
cute. An interconnection of discrete blocks that all have the same sampleTime
value, for example, can be efficiently compiled into embedded software. But even
blocks with different sampleTime parameters can yield efficient models, when the
sampleTime values are related by simple integer multiples.

Fortunately, in the design of control systems (and many other signal processing
systems), there is a common design pattern where discrete blocks with harmonically
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Figure 7.6 A representation of a Simulink program

related sampleTime values are commonly used to specify the software of embedded
control systems.

Figure 7.6 shows schematically a typical Simulink model of a control system.
There is a portion of the model that is a model of the physical dynamics of the
system to be controlled. There is no need, usually, to compile that specification into
embedded software. There is another portion of the model that represents a discrete
controller. In this example, we have shown a controller that involves multiple values
of the sampleTime parameter, shown as numbers below the discrete blocks. This
controller is a specification for a program that we wish to execute in an embedded
system.

Real-Time Workshop is a product from The MathWorks associated with Simulink.
It takes models as shown in Figure 7.6 and generates code. Although it will generate
code for any model, it is intended principally to be used only on the discrete controller,
and indeed, this is where its strengths come through.

The discrete controller shown in Figure 7.6 has fast running components (with
sampleTime values of 0.02 or 20 ms) and slow running components (with sample-
Time values of 0.1 or 1/10 of a second). In such situations, it is not unusual for
the slow running components to involve much heavier computational loads than the
fast running components. It would not do to schedule these computations to execute
atomically, as is done in TinyOS and Click (and SCADE, as discussed below). This
would permit the slow running component to interfere with the responsivity (and time
correctness) of the fast running components.

Simulink with Real-Time Workshop uses a clever technique to circumvent this
problem. The technique exploits an underlying multitasking operating system with
pre-emptive priority-driven multitasking. The slow running blocks are executed in a
separate thread from the fast running blocks, as shown in Figure 7.7. The thread for
the fast running blocks are given higher priority than that for the slow running blocks,
ensuring that the slow running code cannot block the fast running code. So far, this
just follows the principles of rate-monotonic scheduling [27].

But the situation is a bit more subtle than this, because data flows across the rate
boundaries. Recall that Simulink signals have continuous-time semantics, and that
discrete signals are piecewise constant. The slow running blocks should ‘see’ at their
input a piecewise constant signal that changes values at the slow rate. To guarantee
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Figure 7.7 A simplified representation of a Simulink schedule

that, the model builder is required to put a zero-order hold (ZOH) block at the point of
the rate conversion. Failure to do so will trigger an error message. Cleverly, the code
for the ZOH runs at the rate of the slow block but at the priority of the fast block. This
makes it completely unnecessary to do semaphore synchronisation when exchanging
data across these threads.

When rate conversions go the other way, from slow blocks to fast blocks, the
designer is required to put a UnitDelay block, as shown in Figure 7.6. This is because
the execution of the slow block will typically stretch over several executions of the
fast block, as shown in Figure 7.7.7 To ensure determinacy, the updated output of
the block must be delayed by the worst case, which will occur if the execution stretches
over all executions of the fast block in one period of the slow block. The unit delay
gives the software the slack it needs in order to be able to permit the execution of the
slow block to stretch over several executions of the fast one. The UnitDelay executes
at the rate of the slow block but at the priority of the fast block.

This same principle has been exploited in Giotto [28], which constrains the pro-
gram to always obey this multirate semantics and provides (implicitly) a unit delay on
every connection. In exchange for these constraints, Giotto achieves strong formal
structure, which results in, among other things, an ability to perform schedulabil-
ity analysis (the determination of whether the specified real-time behaviour can be
achieved by the software).

The Simulink model does have some weaknesses, however. The sensor fusion
problem that we posed earlier does not match its discrete multitasking model very
well. While it would be straightfoward to construct a discrete multitasking model that
polls the sensors at regular (harmonic) rates, reacting to stimulus from the sensors at
random times does not fit the semantics very well. The merge shown in Figure 7.2
would be challenging to accomplish in Simulink, and it would not benefit much from
the clever code generation techniques of Real-Time Workshop.

7 This schedule is simplified, showing only the invocations of the methods associated with the blocks
that produce outputs.
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7.4.2 Discrete-event

In Figure 7.2, we gave a discrete-event model of an improved sensor fusion algorithm
with an exponential forgetting function. Discrete-event modelling is widely used
in electronic circuit design (VHDL and Verilog are discrete-event languages), in
computer network modelling and simulation (e.g. OPNET Modeler8 and Ns-29), and
in many other disciplines.

In discrete-event models, the components interact via signals that consist of
‘events’, which typically carry both a data payload and a time stamp. A straight-
forward execution of these models uses a centralised event queue, where events are
sorted by time stamp, and a runtime scheduler dispatches events to be processed in
chronological order. Compared with the Simulink/RTW model, there is much more
flexibility in DE because discrete execution does not need to be periodic. This fea-
ture is exploited in the model of Figure 7.2, where the Merge block has no simple
counterpart in Simulink.

A great deal of work has been done on efficient and distributed execution of such
models, much of this work originating in either the so-called ‘conservative’ technique
of Chandy and Misra [29] or the speculative execution methods of Jefferson [9].
Much less work has been done in adapting these models as an execution platform
for embedded software, but there is some early work that bears a strong semantic
resemblance to DE modelling techniques [30,31]. A significant challenge is to achieve
the timed semantics efficiently while building on software abstractions that have
abstracted away time.

7.4.3 Synchronous languages

SCADE [5] (Safety Critical Application Development Environment), a commercial
product of Esterel Technologies, builds on the synchronous language Lustre [32],
providing a graphical programming framework with Lustre semantics. Of the flagship
synchronous languages, Esterel [33], Signal [34] and Lustre, Lustre is the simplest
in many respects. All the synchronous languages have strong formal properties that
yield quite effectively to formal verification techniques, but the simplicity of Lustre
in large part accounts for SCADE achieving certification for use in safety critical
embedded avionics software.10

The principle behind synchronous languages is simple, although the consequences
are profound [35]. Execution follows ‘ticks’ of a global ‘clock’. At each tick, each
variable (represented visually by the wires that connect the blocks) may have a value
(it can also be absent, having no value). Its value (or absence of value) is defined
by functions associated with each block. That is, each block is a function from input
values to output values. In Figure 7.8, the variables x and y at a particular tick are

8 http://opnet.com/products/modeler/home.html
9 http://www.isi.edu/nsnam/ns
10 The SCADE tool has a code generator that produces C or ADA code that is compliant with the DO-

178B Level A standard, which allows it to be used in critical avionics applications (see http://www.rtca.org).
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f

g

Figure 7.8 A simple feedback system illustrating the fixed point principles of
synchronous languages

related by

x = f (y) and y = g(x)

The task of the compiler is to synthesise a program that, at each tick, solves these
equations. Perhaps somewhat surprisingly, this turns out to be not difficult, well-
founded and reasonably efficient.

An interesting issue with Lustre is that it supports multiple rates. That is, the
master clock can be ‘divided down’ so that certain operations are performed on only
some ticks of the clock. There is a well-developed formal ‘clock calculus’ that is used
by the compiler to analyse systems with such multirate behaviour. Inconsistencies
are detected by the compiler.

In SCADE, the functions associated with blocks can be defined using state
machines. They can have behaviour that changes with each tick of the clock. This
offers an expressive and semantically rich way to define systems, but most interest-
ingly, it also offers opportunities for formal verification of dynamic behaviour. As long
as the state machines have a finite number of states, then in principle, automated tools
can explore the reachable state space to determine whether safety conditions can be
guaranteed.

The non-deterministic merge of Figure 7.1 is not directly supported by Lustre. The
synchronous language Signal [34] extends the principles of Lustre with a ‘default’
operator that supports such non-deterministic merge operations. The timed behaviour
of Figure 7.2 is also not directly supported by Lustre, which does not associate any
metric with the time between ticks. Without such a metric, the merging of sensor
inputs in Figure 7.2 cannot be done deterministically. However, if these events are
externally merged (e.g. in the interrupt service routines, which need to implement the
appropriate mutual exclusion logic), then Lustre is capable of expressing the rest of
the processing. The fact that there is no metric associated with the time between ticks
means that Lustre programs can be designed to simply react to events, whenever they
occur. This contrasts with Simulink, which has temporal semantics. Unlike Simulink,
however, Lustre has no mechanisms for multitasking, and hence long running tasks
will interfere with reactivity. A great deal of research has been done in recent years in
‘desynchronising’ synchronous languages, so we can expect in the future progress in
this direction.
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Figure 7.9 A diagram representing dataflow-oriented components

7.4.4 Dataflow

As with the other models of computation considered here, components in a dataflow
model of computation also encapsulate internal state. However, instead of interacting
through method calls, continuous-time signals, or synchronously defined variables,
components interact through the asynchronous passing of data messages. Each mes-
sage is called a ‘token’. In this section, we will deal only with models where messages
are guaranteed to be delivered in order and not lost. For these models it is common
to interpret the sequence of tokens communicated from one port to another as a
(possibly infinite) ‘stream’. It is not uncommon to use visual representations for
dataflow systems, as in Figure 7.9. In that figure, the wires represent streams, the
blocks represent dataflow ‘actors’, and the triangles represent ‘ports’. Input ports
point into the block, and output ports point out. Feedback is supported by most
variants of dataflow semantics, although when there is feedback, there is risk of
deadlock. There are many variants of dataflow semantics. We consider a few of
them here.

7.4.4.1 Kahn process networks

Figure 7.1, discussed above, has the semantics of Kahn process networks [10,11] aug-
mented with a non-deterministic merge [12,13]. In PN semantics, each actor executes
(possibly forever) in its own thread of control. The connections between actors rep-
resent streams of tokens. In Kahn/MacQueen semantics [10], the way that threads
interact with the ports has a key constraint that guarantees determinacy. Specifi-
cally, a thread is not permitted to ‘ask’ an input port whether there are available
tokens to read. It must simply read from the port, and if no tokens are available,
the thread blocks until tokens become available. This behaviour is called ‘block-
ing reads’. Correspondingly, when the thread produces an output token, it simply
sends it to the output port and continues. It is not permitted to ask the output port
whether there is room for the token, or whether the ultimate recipient of the token
is ready to receive it. These simple rules turn out to sufficient to ensure that actors
implement ‘monotonic’ functions over streams, which in turn guarantees determinacy
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[36]. Determinacy in this case means that every execution of the PN system yields
the same stream on tokens on each connection. That is, the PN system ‘determines’
the streams.

In Figure 7.1, the Merge actor will non-deterministically interleave the two
sequences at its input ports, preserving the order within each sequence, but yielding
arbitrary ordering of data values across sequences. This behaviour is not mono-
tonic. In fact, it cannot be implemented with blocking reads in a single actor thread.
Extensions of PN that support such non-deterministic operations turn out to be
especially useful for embedded software, and have been an active area of research
[12,13].

A key issue with PN models is that they may deadlock. They may also consume
unbounded memory buffering tokens between actors. It turns out that it is undecidable
whether a PN model deadlocks or executes in bounded memory. This means that no
algorithm exists that can always answer these questions in finite time. Nonetheless,
there are simple execution policies that guarantee that if a particular PN system
can be executed without deadlock in bounded memory, then it will be executed
without deadlock in bounded memory [37]. The undecidable problem is solved by a
runtime policy, which does not need to solve the problem in bounded time. A practical
implementation of this policy is available in the Ptolemy II system [38].

7.4.4.2 Dennis dataflow

In a distinct family of dataflow models of computation, instead of executing a (possi-
bly infinite) thread, a component executes a sequence of distinct ‘firings’. This style
of dataflow model was introduced by Dennis in the 1970s [39], and was applied to the
design of high-performance computer architectures for several years. Semantically,
the sequence of firings, of course, can be considered to be a thread with a limited
mechanism for storing state, so at a fundamental level, the distinction between PN
and Dennis dataflow is not great [11]. But it turns out to be particularly convenient
to formulate dataflow systems in terms of firings. A great deal of formal analysis of
the system is enabled by this abstraction.

A firing is enabled by satisfaction of a ‘firing rule’. The formal structure of firing
rules has considerable bearing on the formal properties of the model as a whole [40].
Each firing reads a short sequence of input tokens and produces a short sequence of
output tokens. The firing of a dataflow component might also update the internal state
of a component, affecting the behavior of the component in future firings.

There are two common ways of implementing dataflow models. One possi-
bility is to implement a centralised run-time scheduler that selects and executes
actors whose firing rules are satisfied. A second possibility is to statically anal-
yse the dataflow graph and construct a static, finite description of the schedule. The
latter approach is preferable for embedded software, since the static analysis also
yields execution time and memory usage information. However, for general dataflow
models, it turns out to be undecidable whether such static schedules can be con-
structed [41]. A suite of decidable special cases of dataflow have been developed over
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the years, however, and some of these are quite promising for embedded software
systems.

7.4.4.3 Decidable dataflow models

A simple special case of dataflow models restricts actors so that on each port, they
produce and consume a fixed, pre-specified number of tokens. This model of com-
putation has been called ‘synchronous dataflow’ (SDF) [42], but to avoid confusion
with the (significantly different) synchronous languages (e.g. see Reference 32), it
would perhaps better be called ‘statically schedulable dataflow’ (SSDF). Indeed, the
key feature of this model of computation is that simple static analysis either yields
a static schedule that is free of deadlock and consumes bounded memory, or proves
that no such schedule exists [42].

Because of the constraint that actors produce and consume only fixed, pre-
specified numbers of tokens on each firing, SSDF by itself cannot easily describe
applications with data-dependent control structure. A number of extensions enrich
the semantics in various ways.

Boolean dataflow [41,43] (BDF) and integer-controlled dataflow [44] (IDF) aug-
ment the model by permitting the number of tokens produced or consumed at a port
to be symbolically represented by a variable. The value of this variable is permitted to
change during execution, so data-dependent control flow can be represented. Static
analysis can often still be performed, but in principle, it is undecidable whether a BDF
or IDF program can execute without deadlock in bounded memory. Nonetheless, for
many practical programs, static analysis often yields a proof that it can, and in the
process also yields a ‘quasi-static schedule’, which is a finite representation of a
schedule with data-dependent control flow.

The fact that BDF and IDF are undecidable formalisms, however, is inconve-
nient. Static analysis can fail to find a schedule even when such a schedule exists.
Cyclo-static dataflow (CSDF) [45] offers slightly more expressiveness than SSDF
by permitting the production and consumption rates at ports to vary periodically.
SSDF can also be combined hierarchically with finite state machines (FSMs), and
if the state transitions are constrained to occur only at certain disciplined times, the
model remains decidable. This combination has been called heterochronous dataflow
(HDF) [46]. Parameterised SSDF [47] offers similarly expressive variability of pro-
duction and consumption rates while remaining within a decidable formalism. Most
of these variants of dataflow are available in the Ptolemy II system [38] or in Ptolemy
Classic [48].

7.4.5 PECOS

A final model that we consider shares a number of features with the previous, but
also has some unique properties. In a PECOS [49–51] model, there are three types
of components: ‘active’, ‘event’ and ‘passive’. These components are composed
hierarchically with the constraint that an active component must occur at the root
of the tree. Active components are associated with an independent thread that is
periodically activated. Event components are similar to active components, except
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they are triggered by aperiodic events occurring in the system. Event components are
generally associated with sensors and actuators in the system and are triggered when
a sensor has data or an actuator requires data. Passive components are executed by
the element that contains them.

Connections between components represent a variable in shared memory that is
read and written by the components connecting to it. Each passive component is
specified by a single execute() method that reads the appropriate input variables
and writes the correct output variables. The simplest PECOS model consists of an
active component at the toplevel, containing only passive components. The entire
execution occurs in the single thread, and consists of sequenced invocations of the
execute() methods.

Active and event components are specified by a synchronise() method,
in addition to the execute() method. In order to avoid data races, variables
for communicating with active and event components are double buffered. The
synchronise() method is executed by the component’s container to copy
the input and output variables. The execute() method that actually performs
processing only accesses the variable copies.

7.5 Conclusions

The diversity and richness of semantic models for embedded software is impressive.
This is clearly a lively area of research and experimentation, with many innovative
ideas. It is striking that none of the concurrent models of computation considered in
this chapter rely on threads as the principle concurrency mechanism. Yet prevailing
industrial practice in embedded software often does, building the software by creat-
ing concurrent threads and using the mutual exclusion and semaphore mechanisms
of a real-time operating system to manage concurrency issues. We argue that these
mechanism are too difficult for designers to understand, and that, except in very
simple systems, should not be used in raw form. At a minimum, a design pattern
corresponding to a clean concurrent model of computation (such as process networks
or synchronous component composition) is required to achieve truly reliable systems.
But better than informal use of such design patterns is the use of languages or frame-
works that enforce the pattern and provide proven implementations of the low-level
details. We have outlined the key features of a few such promising languages and
frameworks.
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Chapter 8

Retargetable compilers and architecture
exploration for embedded processors

Rainer Leupers, Manuel Hohenauer, Kingshuk Karuri,
Gunnar Braun, Jianjiang Ceng, Hanno Scharwaechter,

Heinrich Meyr and Gerd Ascheid

8.1 Introduction

Compilers translate high-level language source code into machine-specific assembly
code. For this task, any compiler uses a model of the target processor. This model cap-
tures the compiler-relevant machine resources, including the instruction set, register
files and instruction scheduling constraints. While in traditional target-specific com-
pilers this model is built-in (i.e. it is hard-coded and probably distributed within the
compiler source code), a ‘retargetable compiler’ uses an external processor model
as an additional input that can be edited without the need to modify the compiler
source code itself (Figure 8.1). This concept provides retargetable compilers with
high flexibility w.r.t. the target processor.

Retargetable compilers have been recognised as important tools in the context of
embedded system-on-chip (SoC) design for several years. One reason is the trend
towards increasing use of programmable processor cores as SoC platform building
blocks, which provide the necessary flexibility for fast adoption e.g. of new media
encoding or protocol standards and easy (software based) product upgrading and
debugging. While assembly language used to be predominant in embedded processor
programming for quite some time, the increasing complexity of embedded application
code now makes the use of high-level languages like C and C++ just as inevitable
as in desktop application programming.
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Figure 8.1 Classical vs. retargetable compiler

In contrast to desktop computers, embedded SoCs have to meet very high
efficiency requirements in terms of MIPS per Watt, which makes the use of power-
hungry, high-performance off-the-shelf processors from the desktop computer domain
(together with their well-developed compiler technology) impossible for many appli-
cations. As a consequence, hundreds of different domain or even application-specific
programmable processors have appeared in the semiconductor market, and this
trend is expected to continue. Prominent examples include low-cost/low-energy
microcontrollers (e.g. for wireless sensor networks), number-crunching digital signal
processors (e.g. for audio and video codecs), as well as network processors (e.g. for
internet traffic management).

All these devices demand their own programming environment, obviously includ-
ing a high-level language (mostly ANSI C) compiler. This requires the capability
of quickly designing compilers for new processors, or variations of existing ones,
without the need to start from scratch each time. While compiler design tradition-
ally has been considered a very tedious and manpower intensive task, contemporary
retargetable compiler technology makes it possible to build operational (not heav-
ily optimising) C compilers within a few weeks and more decent ones approximately
within a single man-year. Naturally, the exact effort heavily depends on the com-
plexity of the target processor, the required code optimisation and robustness level,
and the engineering skills. However, compiler construction for new embedded pro-
cessors is now certainly much more feasible than a decade ago. This permits us to
employ compilers not only for application code development, but also for optimising
an embedded processor architecture itself, leading to a true ‘compiler/architecture
codesign’ technology that helps to avoid hardware–software mismatches long before
silicon fabrication.

This chapter summarises the state-of-the-art in retargetable compilers for embed-
ded processors and outlines their design and use by means of examples and case
studies. In Section 8.2, we provide some compiler construction background needed
to understand the different retargeting technologies. Section 8.3 gives an overview
of some existing retargetable compiler systems. In Section 8.4, we describe how the
above-mentioned ‘compiler/architecture codesign’ concept can be implemented in
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a processor architecture exploration environment. A detailed example of an indus-
trial retargetable C compiler system is discussed in Section 8.5. Finally, Section 8.6
concludes and takes a look at potential future developments in the area.

8.2 Compiler construction background

The general structure of retargetable compilers follows that of well-proven clas-
sical compiler technology, which is described in textbooks such as [1–4]. First,
there is a language ‘frontend’ for source code analysis. The frontend produces an
‘intermediate representation’ using which a number of machine-independent code
optimisations are performed. Finally, the ‘backend’ translates the intermediate rep-
resentation into assembly code, while performing additional machine-specific code
optimisations.

8.2.1 Source language frontend

The standard organisation of a frontend comprises a ‘scanner, a parser and a seman-
tic analyser’ (Figure 8.2). The scanner performs lexical analysis on the input source
file, which is first considered just as a stream of ASCII characters. During lexical
analysis, the scanner forms substrings of the input string to groups (represented by
tokens), each of which corresponds to a primitive syntactic entity of the source lan-
guage, e.g. identifiers, numerical constants, keywords or operators. These entities can
be represented by regular expressions, for which in turn finite automata can be con-
structed and implemented that accept the formal languages generated by the regular
expressions. Scanner implementation is strongly facilitated by tools like lex [5].

The scanner passes the tokenised input file to the parser, which performs syntax
analysis w.r.t. the context-free grammar underlying the source language. The parser
recognises syntax errors and, in case of a correct input, builds up a tree data structure
that represents the syntactic structure of the input program.

Parsers can be constructed manually based on the LL(k) and LR(k) theory [2].
An LL(k) parser is a top-down parser, i.e. it tries to generate a derivation of the input
program from the grammar start symbol according to the grammar rules. In each

Scanner Parser
Semantic 
analyser

int f(int x)
{
int y;
y = x << 2;
return y;

}

Source 
code

Token 
stream

...
´id´
´<<´
´const´
...

x 2

<<

Syntax

tree

IR

Figure 8.2 Source language frontend structure
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step, it replaces a non-terminal by the right-hand side of a grammar rule. In order
to decide which rule to apply out of possibly many alternatives, it uses a lookahead
of k symbols on the input token stream. If the context-free grammar shows certain
properties, this selection is unique, so that the parser can complete its job in linear
time in the input size. The same also holds for LR(k) parsers which can process
a broader range of context-free grammars, though. They work bottom-up, i.e. the
input token stream is step-by-step reduced until finally reaching the start symbol.
Instead of making a reduction step solely based on the knowledge of the k lookahead
symbols, the parser additionally stores input symbols temporarily on a stack until
enough symbols for an entire right-hand side of a grammar rule have been read. Due
to this, the implementation of an LR(k) parser is less intuitive and requires some more
effort than for LL(k).

Constructing LL(k) and LR(k) parsers manually provides some advantage in pars-
ing speed. However, in most practical cases tools like yacc [5] (that generates a variant
of LR(k) parsers) are employed for semi-automatic parser implementation.

Finally, the semantic analyser performs correctness checks not covered by syntax
analysis, e.g. forward declaration of identifiers and type compatibility of operands. It
also builds up a symbol table that stores identifier information and visibility scopes.
In contrast to scanners and parsers, there are no widespread standard tools like lex and
yacc for generating semantic analysers. Frequently, attribute grammars [1] are used,
though, for capturing the semantic actions in a syntax-directed fashion, and special
tools like ox [6] can extend lex and yacc to handle attribute grammars.

8.2.2 Intermediate representation and optimisation

In most cases, the output of the frontend is an intermediate representation (IR) of
the source code that represents the input program as assembly-like, yet machine-
independent low-level code. Three address code (Figures 8.3 and 8.4) is a common
IR format.

There is no standard format for three address code, but usually all high-level
control flow constructs and complex expressions are decomposed into simple state-
ment sequences consisting of three-operand assignments and gotos. The IR generator
inserts ‘temporary variables’ to store intermediate results of computations.

int fib (int m)
{ int f0 = 0, f1 = 1, f2, i;
if (m <= 1) return m;
else
for (i = 2; i<=m; i++) {
f2 = f0 + f1;
f0 = f1;
f1 = f2; }
return f2;

}

Figure 8.3 Sample C source file fib.c (Fibonacci numbers)
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int fib (int m_2)
{
int f0_4, f1_5, f2_6, i_7, t1, t2, t3, t4, t6, t5;

f0_4 = 0;
f1_5 = 1;
t1 = m_2 <= 1;
if (t1) goto LL4;
i_7 = 2;
t2 = i_7 <= m_2;
t6 = !t2;
if (t6) goto LL1;

LL3: t5 = f0_4 + f1_5;
f2_6 = t5;
f0_4 = f1_5;
f1_5 = f2_6;

LL2: t3 = i_7;
t4 = t3 + 1;
i_7 = t4;
t2 = i_7 <= m_2;
if (t2) goto LL3;

LL1: goto LL5;
LL4: return m_2;
LL5: return f2_6;
}

Figure 8.4 Three address code IR for source file fib.c. Temporary variable iden-
tifiers inserted by the frontend start with letter ‘t’. All local identifiers
have a unique numerical suffix. The particular IR format is generated
by the LANCE C frontend [7]

Three address code is a suitable format for performing different types of ‘flow
analysis’, i.e. control and data flow analysis. Control flow analysis first identifies the
basic block1 structure of the IR and detects the possible control transfers between
basic blocks. The results are captured in a control flow graph (CFG). Based on the
CFG, more advanced control flow analyses can be performed, for example, in order
to identify program loops. Figure 8.5 shows the CFG generated for the example from
Figures 8.3 and 8.4.

Data flow analysis works on the statement level and determines interdependencies
between computations. For instance, the data flow graph (DFG) from Figure 8.6
shows relations of the form ‘statement X computes a value used as an argument in
statement Y’.

1 A basic block is a sequence of IR statements with unique control flow entry and exit points.
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Figure 8.5 Control flow graph for fib.c

Both the CFG and the DFG form the basis for many code optimisation passes
at the IR level. These include common subexpression elimination, jump optimisa-
tion, loop invariant code motion, dead code elimination and other ‘Dragon Book’
[1] techniques. Due to their target machine independence, these IR optimisations
are generally considered complementary to machine code generation in the back-
end and are supposed to be useful ‘on the average’ for any type of target. However,
care must be taken to select an appropriate IR optimisation sequence or script for
each particular target, since certain (sometimes quite subtle) machine-dependencies
do exist. For instance, common subexpression elimination removes redundant com-
putations to save execution time and code size. At the assembly level, however,
this effect might be over-compensated by the higher register pressure that increases
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Figure 8.6 DFG for fib.c

the amount of spill code. Moreover, there are many interdependencies between the
IR optimisations themselves. For instance, constant propagation generally creates
new optimisation opportunities for constant folding, and vice versa, and dead code
elimination is frequently required as a ‘cleanup’ phase in between other IR optimi-
sations. A poor choice of IR optimisations can have a dramatic effect on final code
quality. Thus, it is important that IR optimisations be organised in a modular fashion,
so as to permit enabling and disabling of particular passes during fine-tuning of a new
compiler.

8.2.3 Machine code generation

During this final compilation phase, the IR is mapped to target assembly code. Since
for a given IR an infinite number of mappings as well as numerous constraints exist,
this is clearly a complex optimisation problem. In fact, even many optimisation sub-
problems in code generation are NP-hard, i.e. require exponential runtime for optimal
solutions. As a divide-and-conquer approach, the backend is thus generally organised
into three main phases: ‘code selection’, ‘register allocation’ and ‘scheduling’, which
are implemented with a variety of heuristic algorithms. Dependent on the exact prob-
lem definition, all of these phases may be considered NP-hard, e.g. Reference 8 anal-
yses the complexity of code generation for certain types of target machines. The rest
of this subsection describes the different phases of machine code generation in detail.

8.2.3.1 Code selection

The IR of an application is usually constructed using primitive arithmetic, logical and
comparison operations. The target architecture might combine several such primitive
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operations into a single instruction. A classical example is the multiply and accumulate
(MAC) instruction found in most DSPs which combines a multiplication operation
with a successive addition. On the other hand, a single primitive operation might
have to be implemented using a sequence of machine instructions. For example, the
C negation operation might need to be implemented using a logical not followed by an
increment, if the target architecture does not implement negation directly. The task of
mapping a sequence of primitive IR operations to a sequence of machine instructions
is performed by the ‘code selector’ or ‘instruction selector’.

In particular for target architectures with complex instruction sets, such as CISCs
and DSPs, careful code selection is key for good code quality. Due to complexity
reasons, most code selectors work only on trees [9], even though generalised code
selection for arbitrary DFGs can yield higher code quality for certain architectures
[10,11]. The computational effort for solving the NP-hard generalised code selection
problem is normally considered too high in practice, whereas optimum code selection
for trees can be efficiently accomplished using dynamic-programming techniques as
described below.

For the purpose of code selection, the optimised IR is usually converted into a
sequence of tree-shaped DFGs or Data Flow Trees (DFTs). Each instruction is repre-
sented as a ‘tree-pattern’ that can partially cover a sub-tree of a DFT and is associated
with a cost. Figure 8.7 shows a set of instruction patterns for the Motorola 68 k CPU
where each pattern has the same cost. As can be seen in Figure 8.8, the same DFT can
be covered in multiple ways using the given instruction patterns. Using the cost metric
for the machine instructions, the code selector aims at a minimum-cost covering of
the DFTs by the given instruction patterns.
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Figure 8.7 Five instruction patterns available for a Motorola 68 k CPU
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Figure 8.8 Two possible coverings of a DFT using the instruction patterns from
Figure 8.7

Terminals: {MEM, +, -, *}
Non-terminals: {reg1, reg2}
Start symbol: reg1

Instruction Syntax Cost Rule
add reg1, reg2, reg1 2 reg1 → +(reg1, reg2)

add reg1, MEM, reg1 2 reg2 → +(reg1, MEM)
sub MEM, reg1, reg1 2 reg1 → −(MEM, reg1)
mu1 reg1, reg2, reg1 2 reg1 → *(reg1, reg2)

mu1 reg1, MEM, reg2 2 reg2 → *(reg1, MEM)
mac reg1, reg2, MEM 2 reg1 → +(*(reg1, reg2),MEM)

mov reg1, reg2 1 reg2 → reg1
mov reg2, reg1 1 reg1 → * reg2

load MEM, reg2 1 reg2 → MEM

Figure 8.9 A context-free grammar representing different instruction patterns. The
two non-terminals (reg1, reg2) in the grammar represent two different
register classes. The right-hand side of each grammar rule is gener-
ated by pre-order traversal of the corresponding instruction pattern, the
left-hand side refers to where the instruction produces its result

Generally the code selection algorithms for DFTs use special context-free gram-
mars to represent the instruction patterns. In such grammars, each rule is annotated
with the cost of the corresponding pattern (Figure 8.9). The non-terminals in the gram-
mar rules usually correspond to the different register classes or memory addressing
mechanisms of the target architecture, and are placeholders for the results produced by
the corresponding instructions. In each step of code selection, a sub-tree of the entire
DFT is matched to a grammar rule, and the sub-tree is replaced by the non-terminal
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Figure 8.10 DFT covering using the grammar rules of Figure 8.9. In each step a
sub-tree is replaced by the non-terminal(s) corresponding to one or
more matching grammar rule(s)

in the corresponding rule (Figure 8.10). Since the context-free grammars represent-
ing instruction patterns are generally very ambiguous, each sub-tree, potentially, can
be matched using different candidate rules. The optimum code selection, therefore,
must take into account the costs of the different candidate rules to resolve these
ambiguities.

The generalised dynamic-programming algorithm of code selection for DFTs
applies a bottom-up technique to enumerate the costs of different possible covers
using the available grammar rules. It calculates the minimum-cost match at each
node of the DFT for each non-terminal of the grammar (Figure 8.11). After the
costs of different matches are computed, the tree is traversed in a top-down fashion
selecting the minimum-cost non-terminal (and the corresponding instruction pattern)
for each node.

8.2.3.2 Register allocation

The code selector generally assumes that there are an infinite number of ‘virtual reg-
isters’ to hold temporary values. Subsequent to code selection, the register allocator
decides which of these temporaries are to be kept in machine registers to ensure
efficient access. Careful register allocation is key for target machines with RISC-like
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Figure 8.11 Dynamic programming technique for code selection on the DFT of
Figure 8.10 using the grammar rules of Figure 8.9. For each interme-
diate node of the DFT, the minimum cost match for each non-terminal
is calculated in a bottom-up fashion. The optimum cover consists of the
rules in the grey boxes

loadstore-architectures and large register files. Frequently, there are many more simul-
taneously live variables than physically available machine registers. In such cases,
the register allocator inserts ‘spill code’ to temporarily store register variables to main
memory. Obviously, spill code needs to be minimised in order to optimise program
performance and code size.

Many register allocators use a graph colouring approach [12,13] to accomplish
this task. Although graph colouring is an NP-complete problem, a linear-time approx-
imation algorithm exists that produces fairly good results. A register allocator first
creates an ‘interference graph’ by examining the CFG and DFG of an application.
Each node of the interference graph represents a temporary value. An edge between
two nodes indicates that the corresponding temporaries are simultaneously ‘alive’
and therefore, cannot be assigned to the same register (Figure 8.12). If the target
processor hasK registers, then colouring the graph withK colours is a valid register
assignment. Spills are generated when K-colouring of the graph is not possible.

8.2.3.3 Instruction scheduling

For target processors with instruction ‘pipeline hazards’ and/or ‘instruction-level
parallelism’ (ILP), such as VLIW machines, instruction scheduling is an absolute
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Figure 8.12 A code fragment and the corresponding interference graph. Since the
graph is three-colourable, a valid register assignment with only three
registers can be generated

necessity. For pipelined architectures without any hardware interlocks or data for-
warding mechanism, instruction scheduling is required to ensure correct program
semantics. For processors with high ILP, instruction scheduling is necessary to exploit
the fine-grained parallelism in the applications. Like other backend phases, optimal
scheduling is an intractable problem. However, there exist a number of powerful
scheduling heuristics, such as list scheduling and trace scheduling [3].

Instruction scheduling is usually employed to resolve the (potentially) conflicting
accesses to the same hardware resource(s) by a pair of instructions. The scheduler
must take into account the structural, data or control hazards that usually result from
pipelining. The schedulability of any two instructions, X and Y, under such hazards
can usually be described using ‘latency’ and ‘reservation’ tables.

For the instruction X, the latency table specifies the number of cycles X takes
to produce its result. This value places a lower bound on the number of instructions
that Y, if it uses the result of X, must wait before it starts executing. In such cases,
the scheduler must insert the required number of No-Operations (NOPs) (or other
instructions that are not dependent on X) between X and Y to ensure correct program
semantics. The reservation table specifies the number of hardware resources used
by an instruction and the durations of such usages. The scheduler must ensure that
X and Y do not make conflicting accesses to any hardware resource during execution.
For example, if hardware multiplication takes three cycles to complete, then the
scheduler must always keep two multiplication instructions at least three cycles apart
(again by inserting NOPs or other non-multiplication instructions).

Scheduling can be done locally (for each basic block) or globally (across basic
blocks). Most of the local schedulers employ the list scheduling technique. In contrast,
the global scheduling techniques (such as trace scheduling, percolation scheduling,
etc.) are more varied and out of scope of the current discussion.

In the list scheduling approach, the DFG of a basic block is topologically sorted on
the basis of data-dependencies. The ‘independent nodes’ of the topologically sorted
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Figure 8.13 List scheduling applied to a DFG for a four-slot VLIW machine. For
each step of the scheduling algorithm, nodes in the ready set are encir-
cled, and the nodes finally selected by the algorithm are shown in grey
colour. The partially scheduled code after each step is shown in grey
boxes. Each node has been given a number for a better understanding
of the explanation provided in the text

graph are entered into a ‘ready’ (for scheduling) set. Then, one member of the ready
set is removed along with the edges emanating from it and is scheduled. The process
is then recursively applied on the resulting graph.

An example of list scheduling for a four-slot VLIW machine, with three arithmetic
logic units (ALUs) and one division unit, is presented in Figure 8.13. The division
operation has a latency of four and all other operations have a latency of one. Initially,
the ready set for the topologically sorted DFG consists of four nodes: two left shift
and two division operations (nodes 1, 2, 3, 4). The left shift operations (nodes 2 and 3)
can be scheduled simultaneously in two of the three available ALUs. However, only
one division can be scheduled in the available division unit. The tie between the two
division operations is broken by selecting node 4 which lies on the ‘critical path’ of
the graph.

In the next scheduling step, only node 1 is available for scheduling. Although
node 6 has no predecessor in the graph after removal of nodes 3 and 4, it can only
be scheduled in the fifth cycle, i.e. after the division operation of node 3 produces
its result. The scheduler schedules node 6 in step 3 after inserting two NOPs to take
care of the latency of the division operation. The last two steps schedule the rest of
the graph as shown in the figure.
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Note that selecting node 1 in the first step would have resulted in a longer schedule
than the current one. In general, the effectiveness of list scheduling lies in selecting
the ‘most eligible’ member from the ready set that should result in an optimal or near
optimal schedule. A number of heuristics [3], such as the one used in this example
(i.e. selecting nodes on the critical path), have been proposed for this task.

8.2.3.4 Other backend optimisations

Besides the above three standard code generation phases, a backend frequently also
incorporates different target-specific code optimisation passes. For instance, address
code optimisation [14] is useful for a class of digital signal processors (DSPs), so as
to fully utilise dedicated address generation hardware for pointer arithmetic. Many
VLIW compilers employ loop unrolling and software pipelining [15] for increas-
ing instruction-level parallelism in the hot spots of application code. Loop unrolling
generates larger basic blocks inside loop bodies and hence provides better oppor-
tunities for keeping the VLIW functional units busy most of the time. Software
pipelining rearranges the loop iterations so as to remove intra-loop data-dependencies
that otherwise would obstruct instruction-level parallelism. Finally, Network Pro-
cessing Unit (NPU) architectures for efficient protocol processing require yet a
different set of machine-specific techniques [16] that exploit bit-level manipulation
instructions.

The separation of the backend into multiple phases is frequently needed to
achieve sufficient compilation speed but tends to compromise code quality due to
interdependencies between the phases. In particular, this holds for irregular ‘non-
RISC’ instruction sets, where the phase interdependencies are sometimes very tight.
Although there have been attempts to solve the code generation problem in its entirety,
e.g. based on integer linear programming [17], such ‘phase-coupled’ code generation
techniques are still far from widespread use in real-word compilers.

8.3 Approaches to retargetable compilation

From the above discussions it is obvious that compiler retargeting mainly requires
adaptations of the backend, even though IR optimisation issues certainly should not
be neglected. In order to provide a retargetable compiler with a processor model, as
sketched in Figure 8.1, a formal machine description language is required. For this pur-
pose, dozens of different approaches exist. These can be classified w.r.t. the intended
target processor class (e.g. RISC vs. VLIW) and the modelling abstraction level,
e.g. purely behavioural, compiler-oriented vs. more structural, architecture-oriented
modelling styles.

‘Behavioural modelling languages’ make the task of retargeting easier, because
they explicitly capture compiler-related information about the target machine,
i.e. instruction set, register architecture and scheduling constraints. On the other
hand, they usually require good understanding of compiler technology. In contrast,
‘architectural modelling languages’ follow a more hardware design oriented approach



Embedded processors 265

and describe the target machine in more detail. This is convenient for users not much
familiar with compiler technology. However, automatic retargeting gets more diffi-
cult, because a ‘compiler view’ needs to be extracted from the architecture model,
while eliminating unnecessary details.

In the following, we will briefly discuss a few representative examples of retar-
getable compiler systems. For a comprehensive overview of existing systems see
Reference 18.

8.3.1 MIMOLA

MIMOLA denotes both a mixed programming and hardware description language
(HDL) and a hardware design system. As the MIMOLA HDL serves multiple pur-
poses, e.g. register-transfer level (RTL) simulation and synthesis, the retargetable
compiler MSSQ [19,20] within the MIMOLA design system follows the above-
mentioned architecture-oriented approach. The target processor is described as an
RTL netlist, consisting of components and interconnect. Figure 8.14 gives an example
of such an RTL model.

Since the HDL model comprises all RTL information about the target machine’s
controller and data path, it is clear that all information relevant for the compiler
backend of MSSQ is present, too. However, this information is only implicitly avail-
able, and consequently the lookup of this information is more complicated than in a
behavioural model.

MSSQ compiles an ‘extended subset’ of the PASCAL programming language
directly into binary machine code. Due to its early introduction, MSSQ employs only
few advanced code optimisation techniques (e.g. there is no graph-based global regis-
ter allocation), but performs the source-to-architecture mapping in a straightforward
fashion, on a statement-by-statement basis. Each statement is represented by a DFG,
for which an isomorphic subgraph is searched in the target data path. If this matching
fails, the DFG is partitioned into simpler components, for which graph matching is
invoked recursively.

In spite of this simple approach, MSSQ is capable of exploiting instruction-
level parallelism in VLIW-like architectures very well, due to the use of a flexible
instruction scheduler. However, code quality is generally not acceptable in case of
complex instruction sets and load/store data paths. In addition, it shows comparatively
high compilation times, due to the need for exhaustive graph matching.

The MIMOLA approach shows very high flexibility in compiler retargeting, since
in principle any target processor can be represented as an RTL HDL model. In addition,
it avoids the need to consistently maintain multiple different models of the same
machine for different design phases, e.g. simulation and synthesis, as all phases
can use the same ‘golden’ reference model. MSSQ demonstrates that retargetable
compilation is possible with such unified models, even though it does not well handle
architectures with complex instruction pipelining constraints (which is a limitation
of the tool, though, rather than of the approach itself). The disadvantage, however, is
that the comparatively detailed modelling level makes it more difficult to develop the
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MODULE SimpleProcessor (IN inp:(7:0); OUT outp:(7:0)); STRUCTURE
IS TYPE InstrFormat = FIELDS -- 21-bit horizontal instruction word

imm: (20:13);
RAMadr: (12:5);
RAMctr: (4);
mux: (3:2);
alu: (1:0);

END;
Byte = (7:0); Bit = (0); -- scalar types

PARTS -- instantiate behavioral modules
IM: MODULE InstrROM (IN adr: Byte; OUT ins: InstrFormat);

VAR storage: ARRAY[0..255] OF InstrFormat;
BEGIN ins <- storage[adr]; END;

PC, REG: MODULE Reg8bit (IN data: Byte; OUT outp: Byte);
VAR R: Byte;
BEGIN R := data; outp <- R; END;

PCIncr: MODULE IncrementByte (IN data: Byte; OUT inc: Byte);
BEGIN outp <- INCR data; END;

RAM: MODULE Memory (IN data, adr: Byte; OUT outp: Byte; FCT c: Bit);
VAR storage: ARRAY[0..255] OF Byte;
BEGIN
CASE c OF: 0: NOLOAD storage; 1: storage[adr] := data; END;
outp <- storage[adr];
END;

ALU: MODULE AddSub (IN d0, d1: Byte; OUT outp: Byte; FCT c: (1:0));
BEGIN -- "%" denotes binary numbers
outp <- CASE c OF %00: d0 + d1; %01: d0 - d1; %1x: d0; END;
END;

MUX: MODULE Mux3x8 (IN d0,d1,d2: Byte; OUT outp: Byte; FCT c: (1:0));
BEGIN outp <- CASE c OF 0: d0; 1: d1; ELSE: d2; END; END;

CONNECTIONS
-- controller: -- data path:
PC.outp -> IM.adr; IM.ins.imm -> MUX.dO;
PC.outp -> PCIncr.data; inp -> MUX.d1; -- primary input
PCIncr.outp -> PC.data; RAM.outp -> MUX.d2;
IM.ins.RAMadr -> RAM.adr; MUX.outp -> ALU.d1;
IM.ins.RAMctr -> RAM.c; ALU.outp -> REG.data;
IM.ins.alu -> ALU.C; REG.outp -> ALU.d0;
IM.ins.mux -> MUX.c; REG.outp -> outp; -- primary output
END; -- STRUCTURE LOCATION_FOR_PROGRAMCOUNTER PC;
LOCATION_FOR_INSTRUCTIONS IM; END; -- STRUCTURE

Figure 8.14 MIMOLA HDL model of a simple processor

model and to understand its interaction with the retargetable compiler, since e.g. the
instruction set is ‘hidden’ inside the model.

Some of the limitations have been removed in RECORD, another MIMOLA HDL
based retargetable compiler that comprises dedicated code optimisations for DSPs.
In order to optimise compilation speed, RECORD uses an ‘instruction set extraction
technique’ [21] that bridges the gap between RTL models and behavioural processor
models. Key ideas of MSSQ, e.g. the representation of scheduling constraints by
binary partial instructions, have also been adopted in the CHESS compiler [22,23],
one of the first commercial tool offerings in that area. In the Expression compiler [24],
the concept of structural architecture modelling has been further refined to increase
the reuse opportunities for model components.
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8.3.2 GNU C compiler

The widespread GNU C compiler gcc [25] can be retargeted by means of a machine
description file that captures the compiler view of a target processor in a behavioural
fashion. In contrast to MIMOLA, this file format is heterogeneous and solely designed
for compiler retargeting. The gcc compiler is organised into a fixed number of different
passes. The frontend generates a three address code like IR. There are multiple built-in
‘Dragon Book’ IR optimisation passes, and the backend is driven by a specification
of instruction patterns, register classes and scheduler tables. In addition, retarget-
ing gcc requires C code specification of numerous support functions, macros and
parameters.

The gcc compiler is robust and well-supported, it includes multiple source lan-
guage frontends, and it has been ported to dozens of different target machines,
including typical embedded processor architectures like ARM, ARC, MIPS and
Xtensa. However, it is very complex and hard to customise. It is primarily designed for
‘compiler-friendly’ 32-bit RISC-like loadstore architectures. While porting to more
irregular architectures, such as DSPs, the gcc compiler can be ported to non-RISC
processor architectures, too, this generally results in huge retargeting effort and/or
insufficient code quality.

8.3.3 Little C compiler

Like gcc, retargeting the ‘little C compiler’ lcc [26,27] is enabled via a machine
description file. In contrast to gcc, lcc is a ‘lightweight’ compiler that comes with
much less source code and only a few built-in optimisations, and hence lcc can be
used to design compilers for certain architectures very quickly. The preferred range
of target processors is similar to that of gcc, with some further restrictions on irregular
architectures, though.

In order to retarget lcc, the designer has to specify the available machine registers,
as well as the translation of C operations (or IR operations, respectively) to machine
instructions by means of ‘mapping rules’. The following excerpt from lcc’s Sparc
machine description file [27] exemplifies two typical mapping rules:

addr: ADDP4(reg,reg)"%%%0+%%%1"
reg: INDIRI1(addr) "ldsb [%0],%%%c\n"

The first line instructs the code selector how to cover address computations
(‘addr’) that consist of adding two 4-byte pointers (‘ADDP4’) stored in registers
(‘reg’). The string ‘%%%0+%%%1’ denotes the assembly code to be emitted, where
‘%0’ and ‘%1’ serve as placeholders for the register numbers to be filled later by
the register allocator (and ‘%%’ simply emits the register identifier symbol ‘%’).
Since ‘addr’ is only used in context with memory accesses, here only a substring
without assembly mnemonics is generated.

The second line shows the covering of a 1-byte signed integer load from memory
(‘INDIRI1’), which can be implemented by assembly mnemonic ‘ldsb’, followed by
arguments referring to the load address (‘%0’, returned from the ‘addr’ mapping rule)
and the destination register (‘%c’).
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By specifying such mapping rules for all C/IR operations plus around 20 relatively
short C support functions, lcc can be retargeted quite efficiently. However, lcc is very
limited in the context of non-RISC embedded processor architectures. For instance,
it is impossible to model certain irregular register architectures (as e.g. in DSPs)
and there is no instruction scheduler, which is a major limitation for targets with
instruction-level parallelism. Therefore, lcc has not found wide use in code generation
for embedded processors so far.

8.3.4 CoSy

The CoSy system from ACE [28] is a retargetable compiler for multiple source
languages, including C and C++. Like gcc, it includes several Dragon Book optimi-
sations, but shows a more modular, extensible software architecture, which permits
to add IR optimisation passes through well-defined interfaces.

For retargeting, CoSy comprises a backend generator that is driven by the CGD
‘machine description format’. Similar to gcc and lcc, this format is full-custom and
only designed for use in compilation. Hence, retargeting CoSy requires significant
compiler know-how, particularly w.r.t. code selection and scheduling. Although it
generates the backend automatically from the CGD specification, including standard
algorithms for code selection, register allocation and scheduling, the designer has to
fully understand the IR-to-assembly mapping and how the architecture constrains the
instruction scheduler.

The CGD format follows the classical backend organisation. It includes mapping
rules, a register specification, as well as scheduler tables. The register specification
is a straightforward listing of the different register classes and their availability for
the register allocator (Figure 8.15).

Mapping rules are the key element of CGD (Figure 8.16). Each rule describes
the assembly code to be emitted for a certain C/IR operation, depending on matching
conditions and cost metric attributes. Similar to gcc and lcc, the register allocator
later replaces symbolic registers with physical registers in the generated code.

Mapping rules also contain a link to the CGD scheduler description. By means of
the keywords ‘PRODUCER’ and ‘CONSUMER’, the instructions can be classified
into groups, so as to make the scheduler description more compact. For instance, arith-
metic instructions performed on a certain ALU generally have the same latency values.
In the scheduler description itself (Figure 8.17), the latencies for pairs of instruction
groups are listed as a table of numerical values. As explained in Section 8.2.3, these
values instruct the scheduler to arrange instructions a minimum amount of cycles apart
from each other. Different types of inter-instruction dependencies are permitted, here
the keyword ‘TRUE’ denotes data dependency.2

2 Data dependencies are sometimes called ‘true’, since they are induced by the source program itself.
Hence, they cannot be removed by the compiler. In contrast, there are ‘false’, or anti-dependencies that are
only introduced by code generation via reuse of registers for different variables. The compiler should aim
at minimising the amount of false dependencies, in order to maximise the instruction scheduling freedom.
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REGISTERS
(************* General-purpose registers ****************)

R0,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,

(************* Floating-point registers ****************)
F0,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F12,F13,F14,F15,

(************* Double-precision registers ****************)
D0<F0,F1>,D2<F2,F3>,D4<F4,F5>,D6<F6,F7>,D8<F8,F9>,D10<F10,F11>,D12<F12,F13>,D14<F14,F15>,

(************* Miscellaneous registers       ****************)
PC, FPSR;

(************* Aliases ****************)
REGI: R2..R31; 
REGI0: R0..R31; 
REGF: F0..F31; 
REGD: D0..D30; 
RET: R31; 
FP: R30; 
SP: R29; 
TEMP: R2..R15,F0..F15;

AVAIL (*The registers available to the register allocator*) 
<R0..R29,R31,F0..F15,F0..F31,D0..D30>;

Machine
registers

Combined 
registers

Register 
classes

Figure 8.15 CGD specification of processor registers

}} 
COST 1;
PRODUCER ALU_Out;
CONSUMER ALU_In;
TEMPLATE ALU_op; 
EMIT {  
    printf("ADD %s,%s,%s\n",REGNAME(rd),REGNAME(rs1),REGNAME(rs2));
}

Rule name IR operation

Argument 
registers

Matching 
condition

Link to 
scheduler 

description

Assembly 
output

IS_POINTER_OR_INT(o.Type)

CONDITION  {
RULE [mirPlus_regi_regi__regi] o:mirPlus ( rs1:regi0, rs2:regi0) ->rd:regi;

Figure 8.16 CGD specification of mapping rules

Via the ‘TEMPLATE’ keyword, a reservation table entry is referenced. The ‘&’
symbol separates the resource use of an instruction group over the different cycles
during its processing in the pipeline. For instance, in the last line of Figure 8.17,
instruction group ‘MUL_op’ occupies resource ‘EX_mul’ for two subsequent cycles.

The CGD processor modelling formalism makes CoSy a quite versatile retar-
getable compiler. Case studies for RISC architectures show that the code quality
produced by CoSy compilers is comparable to that of gcc. However, the complexity of
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SCHEDULER

PRODUCER ALU_Out, MUL_Out;

CONSUMER ALU_In, MUL_In;

TRUE ALU_In MUL_In:
ALU_Out 
MUL_Out

1 
2

1 
2

RESOURCES EX_alu, EX_mul;

TEMPLATES
ALU_op :=() & () & EX_alu & ();
MUL_op :=() & () & EX_mul & EX_mul & ();

Instruction 
classes

Instruction 
class 

latencies

Reservation
tables

Figure 8.17 CGD specification of scheduler tables

the CoSy system and the need for compiler background knowledge make retargeting
more tedious than e.g. in the case of lcc.

8.4 Processor architecture exploration

8.4.1 Methodology and tools for ASIP design

As pointed out in Section 8.1, one of the major applications of retargetable compilers in
SoC design is to support the design and programming of application-specific instruc-
tion set processors (ASIPs). ASIPs receive increasing attention in both academia and
industry due to their optimal flexibility/efficiency compromise [29]. The process of
evaluating and refining an initial architecture model step-by-step to optimise the archi-
tecture for a given application is commonly called architecture exploration. Given
that the ASIP application software is written in a high-level language like C, it is
obvious that compilers play a major role in architecture exploration. Moreover, in
order to permit frequent changes of the architecture during the exploration phase,
compilers have to be retargetable.

Today’s most widespread architecture exploration methodology is sketched in
Figure 8.18. It is an iterative approach that requires multiple re-mapping of the appli-
cation code to the target architecture. In each iteration, the usual software development
tool chain (C compiler, assembler, linker) is used for this mapping. Since exploration
is performed with a virtual prototype of the architecture, an instruction set simulator
together with a profiler are used to measure the efficiency and cost of the current
architecture w.r.t. the given (range of ) applications, e.g. in terms of performance and
area requirements.

We say that hardware (processor architecture and instruction set) and software
(application code) ‘match’, if the hardware meets the performance and cost goals, and
there is no over- or under-utilisation of HW resources. For instance, if the HW is not
capable of executing the ‘hot spots’ of the application code under the given timing
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constraints, e.g. due to insufficient function units, too much spill code or too many
pipeline stalls, then more resources need to be provided. On the other hand, if many
function units are idle most of the time or half of the register file remains unused, this
indicates an under-utilisation. Fine-grained profiling tools make such data available
to the processor designer. However, it is still a highly creative process to determine
the exact source of bottlenecks (application code, C compiler, processor instruction
set or microarchitecture) and to remove them by corresponding modifications, while
simultaneously overlooking their potential side effects.

If the HW/SW match is initially not satisfactory, the ASIP architecture is further
optimised, dependent on the bottlenecks detected during simulation and profiling.
This optimisation naturally requires HW design knowledge, and may comprise e.g.
addition of application-specific custom machine instructions, varying register file
sizes, modifying the pipeline architecture, adding more function units to the data
path or simply removing unused instructions. The exact consequences of such mod-
ifications are hard to predict, so that usually multiple iterations are required in order
to arrive at an optimal ASIP architecture that can be handed over to synthesis and
fabrication.

With the research foundations of this methodology laid in the 1980s and 1990s
(see Reference 18 for a summary of early tools), several commercial offerings are
available now in the EDA (electronic design automation) industry, and more and
more start-up companies are entering the market in that area. While ASIPs offer
many advantages over off-the-shelf processor cores (e.g. higher efficiency, reduced
royalty payments and better product differentiation), a major obstacle is still the poten-
tially costly design and verification process, particularly concerning the SW tools
shown in Figure 8.18. In order to minimise these costs and to make the exploration
loop efficient, all approaches to processor architecture exploration aim at automating
the retargeting of these tools as much as possible. In addition, a link to HW design has

Application

C Compiler

Assembler

Linker

Simulator

Profiler

Figure 8.18 Processor architecture exploration loop
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to be available in order to accurately estimate area, cycle time and power consumption
of a new ASIP. In most cases this is enabled by automatic HDL generation capabil-
ities for processor models, which provide a direct entry to gate-true estimations via
traditional synthesis flows and tools.

One of the most prominent examples of an industrial ASIP is the Tensilica Xtensa
processor [30]. It provides a basic RISC core that can be extended and customised by
adding new machine instructions and adjusting parameters, e.g. for the memory and
register file sizes. Software development tools and an HDL synthesis model can be
automatically generated. Application programming is supported via the gcc compiler
and a more optimising in-house C compiler variant. The Tensilica Xtensa, together
with its design environment, completely implement the exploration methodology
from Figure 8.18. On the other hand, the use of a largely predefined RISC core as the
basic component poses limitations on the flexibility and the permissible design space.
An important new entry to the ASIP market is Stretch [31]. Their configurable S5000
processor is based on the Xtensa core, but includes an embedded field-programmable
gate array (FPGA) for processor customisation. While FPGA vendors have combined
processors and configurable logic on a single chip for some time, the S5000 ‘instruc-
tion set extension fabric’ is optimised for implementation of custom instructions,
thus providing a closer coupling between processor and FPGA. In this way, the ASIP
becomes purely SW-configurable and field-programmable, which reduces the design
effort, yet at the expense of reduced flexibility.

8.4.2 ADL-based approach

More flexibility is offered by the tool suite from Target Compiler Technologies
[23] that focuses on the design of ASIPs for signal processing applications. In this
approach, the target processor can be freely defined by the user in the nML architec-
ture description language (ADL). In contrast to a purely compiler-specific machine
model, such as in the case of gcc or CoSy’s CGD, an ADL such as nML also captures
information relevant for the generation of other software development tools, e.g. sim-
ulator, assembler and debugger, and hence covers a greater level of detail. On the
other hand, in contrast to HDL based approaches to retargetable compilation, such
as MIMOLA, the abstraction level is still higher than RTL and usually allows for a
concise explicit modelling of the instruction set. The transition to RTL only takes
place once the ADL model is refined to an HDL model for synthesis.

LISATek is another ASIP design tool suite that originated at Aachen University
[32]. It has first been produced by LISATek Inc. and is now available as a part of
CoWare’s SoC design tool suite [33]. LISATek uses the LISA 2.0 (Language for
Instruction Set Architectures) ADL for processor modelling. A LISA model captures
the processor resources like registers, memories and instruction pipelines, as well
as the machine’s instruction-set architecture (ISA). The ISA model is composed of
‘operations’ (Figure 8.19), consisting of ‘sections’ that describe the binary coding,
timing, assembly syntax and behaviour of machine operations at different abstraction
levels. In an instruction-accurate model (typically used for early architecture explo-
ration), no pipeline information is present, and each operation corresponds to one
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OPERATION ADD IN pipe.EX {
// declarations
DECLARE {
INSTANCE writeback;
GROUP src1, dst = { reg };
GROUP src2 = { reg || imm };}

// assembly syntax
SYNTAX { "addc" dst "," srcl "," src2 }

// binary encoding
CODING { 0b0101 dst src1 src2 }

// behavior (C code)
BEHAVIOR {
u32 op1, op2, result, carry;
if (forward) {
op1 = PIPELINE_REGISTER(pipe,EX/WB),result;}
else {
op1 = PIPELINE_REGISTER(pipe,DC/EX).op1;}
result = op1 + op2;
carry = compute_carry(op1, op2, result);
PIPELINE_REGISTER(EX/WB).result = result;
PIPELINE_REGISTER(EX/WB).carry = carry; }

// pipeline timing
ACTIVATION { writeback, carry_update }

}

Figure 8.19 LISA operation example: execute stage of an ADD instruction in a
cycle-true model with forwarding hardware modelling

instruction. In a more fine-grained, cycle-accurate model, each operation represents
a single pipeline stage of one instruction. LISATek permits the generation of soft-
ware development tools (compiler, simulator, assembler, linker, debugger, etc.) from
a LISA model, and embeds all tools into an integrated GUI environment for applica-
tion and architecture profiling. In addition, it supports the translation of LISA models
to synthesisable VHDL and Verilog RTL models. Figure 8.20 shows the intended
ASIP design flow with LISATek. In addition to an implementation of the exploration
loop from Figure 8.18, the flow also comprises the synthesis path via HDL models,
which enables back-annotation of gate-level hardware metrics.

In Reference 34 it has been exemplified how the LISATek architecture explo-
ration methodology can be used to optimise the performance of an ASIP for an IPv6
security application. In this case study, the goal was to enhance a given processor
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Figure 8.20 LISATek based ASIP design flow

architecture (MIPS32) by means of dedicated machine instructions and a microar-
chitecture for fast execution of the compute-intensive Blowfish encryption algorithm
(Figure 8.21) in IPsec. Based on initial application C code profiling, hot spots were
identified that provided first hints on appropriate custom instructions. The custom
instructions were implemented as a co-processor (Figure 8.22) that communicates
with the MIPS main processor via shared memory. The co-processor instructions were
accessed from the C compiler generated from the LISA model via compiler intrinsics.
This approach was feasible due to the small number of custom instructions required,
which can be easily utilised with small modifications of the initial Blowfish C
source code. LISATek-generated instruction-set simulators embedded into a SystemC
based co-simulation environment were used to evaluate candidate instructions
and to optimise the co-processor’s pipeline microarchitecture on a cycle-accurate
level.

Finally, the architecture implementation path via LISA-to-VHDL model transla-
tion and gate-level synthesis was used for further architecture fine-tuning. The net
result was a 5× speedup of Blowfish execution over the original MIPS at the expense
of an additional co-processor area of 22 k gates. This case study demonstrates that
ASIPs can provide excellent efficiency combined with IP reuse opportunities for sim-
ilar applications from the same domain. Simultaneously, the iterative, profiling based
exploration methodology permits us to achieve such results quickly, i.e. typically
within a few man-weeks.

The capability of modelling the ISA behaviour in arbitrary C/C++ code makes
LISA very flexible w.r.t. different target architectures and enables the generation of
high-speed ISA simulators based on the JITCC technology [35]. As in the MIMOLA
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Figure 8.21 Blowfish encryption algorithm for IPsec: Pi denotes a 32-bit subkey,
F denotes the core subroutine consisting of substitutions and add/xor
operations

and Target approaches, LISATek follows the ‘single golden model’ paradigm, i.e. only
one ADL model (or automatically generated variants of it) is used throughout the
design flow in order to avoid consistency problems and to guarantee ‘correct-by-
construction’ software tools during architecture exploration. Under this paradigm, the
construction of retargetable compilers is a challenging problem, since in contrast to
special-purpose languages like CGD the ADL model is not tailored towards compiler
support only. Instead, similar to MIMOLA/MSSQ (see Section 8.3.1), the compiler-
relevant information needs to be extracted with special techniques. This is discussed
in more detail in the next section.

8.5 C compiler retargeting in the LISATek platform

8.5.1 Concept

The design goals for the retargetable C compiler within the LISATek environment
were to achieve high flexibility and good code quality at the same time. Normally,
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these goals are contradictory, since the more the compiler can exploit knowledge
of the range of target machines, the better is the code quality, and vice versa. In fact,
this inherent trade-off has been a major obstacle for the successful introduction of
retargetable compilers for quite some time.

However, a closer look reveals that this only holds for ‘push-button’ approaches
to retargetable compilers, where the compiler is expected to be retargeted fully auto-
matically once the ADL model is available. If compiler retargeting follows a more
pragmatic user-guided approach (naturally at the cost of a slightly longer design
time), then one can escape from the above dilemma. In the case of the LISA ADL,
an additional constraint is the unrestricted use of C/C++ for operation behaviour
descriptions. Due to the need for flexibility and high simulation speed, it is impossi-
ble to sacrifice this description vehicle. On the other hand, this makes it very difficult
to automatically derive the compiler semantics of operations, due to large syntactic
variances in operation descriptions. In addition, hardware-oriented languages like
ADLs do not at all contain certain types of compiler-related information, such as
C type bit widths, function calling conventions, etc., which makes an interactive,
GUI-based retargeting environment useful, anyway.

In order to maximise the reuse of existing, well-tried compiler technology and
to achieve robustness for real-life applications, the LISATek C compiler builds on
the CoSy system (Section 8.3.4) as a backbone. Since CoSy is capable of gener-
ating the major backend components (code selector, register allocator, scheduler)
automatically, it is sufficient to generate the corresponding CGD fragments (see
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Figure 8.23 Two instruction encoding formats (compositions)

Figures 8.15–8.17) from a LISA model in order to implement an entire retargetable
compiler tool chain.

8.5.2 Register allocator and scheduler

Out of the three backend components, the register allocator is the easiest one to
retarget, since the register information is explicit in the ADL model. As shown in
Figure 8.15, essentially only a list of register names is required, which can be largely
copied from the resource declaration in the LISA model. Special cases (e.g. combined
registers, aliases, special-purpose registers such as the stack pointer) can be covered
by a few one-time user interactions in the GUI.

As explained in Section 8.2.3, generation of the instruction scheduler is driven
by two types of tables: latency tables and reservation tables. Both are only implicit in
the ADL model. Reservation tables model inter-instruction conflicts. Similar to the
MSSQ compiler (Section 8.3.1), it is assumed that all such conflicts are represented
by instruction encoding conflicts.3 Therefore, reservation tables can be generated by
examining the instruction encoding formats in a LISA model.

Figures 8.23 and 8.24 exemplify the approach for two possible instruction formats
or ‘compositions’. Composition 0 is VLIW-like and allows to encode two parallel
8-bit instructions. In composition 1, the entire 16 instruction bits are required due
to an 8-bit immediate constant that needs to be encoded. In the corresponding LISA
model, these two formats are modelled by means of a switch/case language construct.

The consequences of this instruction format for the scheduler are that instruc-
tions that fit into one of the 8-bit slots of composition 0 can be scheduled in either
of the two, while an instruction that requires an immediate operand blocks other

3 This means that parallel scheduling of instructions with conflicting resource usage is already prohibited
by the instruction encoding itself. Architectures for which this assumption is not valid appear to be rare
in practice, and if necessary there are still simple workarounds via user interaction, e.g. through manual
addition of artificial resources to the generated reservation tables.
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OPERATION decode_op
{
DECLARE
{

ENUM composition = {compositionO,
composition1};

GROUP reg8_insnl, reg8_insn2 = { reg8_op };
GROUP imm16_insn = { imml6_op};

}
SWITCH(compositions)
{

CASE composition0:
{
CODING AT (progam_counter)

{ insn_reg = = reg8_insn1 | | reg8_insn2 }
SYNTAX { reg8_insn1 " , " reg_insn2}
}
CASE composition1:
{
CODING AT (progam_counter)

{ insn_reg = = imm16_insn }
SYNTAX { imm16_insn }
}

}
}

Figure 8.24 LISA model fragment for instruction format from Figure 8.23

instructions from being scheduled in parallel. The scheduler generator analyses these
constraints and constructs ‘virtual resources’ to represent the inter-instruction con-
flicts. Naturally, this concept can be generalised to handle more complex, realistic
cases for wider VLIW instruction formats. Finally, a reservation table in CGD format
(see Figure 8.17) is emitted for further processing with CoSy.4

The second class of scheduler tables, latency tables, depends on the resource
access of instructions as they run through the different instruction pipeline stages. In
LISA, cycle-accurate instruction timing is described via ‘activation sections’ inside
the LISA operations. One operation can invoke the simulation of other operations
downstream in the pipeline during subsequent cycles, e.g. an instruction fetch stage
would typically be followed by a decode stage, and so forth. This explicit modelling
of pipeline stages makes it possible to analyse the reads and writes to registers at

4 We also generate a custom scheduler as an optional bypass of the CoSy scheduler. The custom
scheduler achieves better scheduling results for certain architectures [36].



Embedded processors 279

SUB

ADDI

ALU

Writeback

imm_ 
alu_instr SUBI

Register 
file

1 2 1

1 × write

DecodeFetchMain

3

ADD

Execute

Register_ 
alu_instr

Write portRead ports

2 × read

Figure 8.25 Register file accesses of an instruction during its processing over
different pipeline stages

a cycle-true level. In turn, this information permits to extract the different types of
latencies, e.g. due to a data dependency.

An example is shown in Figure 8.25, where there is a typical four-stage pipeline
(fetch, decode, execute, writeback) for a load/store architecture with a central register
file.5 By tracing the operation activation chain, one can see that a given instruction
makes two read accesses in stage ‘decode’ and a write access in stage ‘writeback’.
For arithmetic instructions executed on the ALU, for instance, this implies a latency
value of 2 (cycles) in the case of a data dependency. This information can again
be translated into CGD scheduler latency tables (Figure 8.17). The current version
of the scheduler generator, however, is not capable of automatically analysing for-
warding/bypassing hardware, which is frequently used to minimise latencies due to
pipelining. Hence, the fine-tuning of latency tables is performed via user interaction in
the compiler retargeting GUI, which allows the user to add specific knowledge in order
to override potentially too conservative scheduling constraints, so as to improve code
quality.

8.5.3 Code selector

As sketched in Section 8.2.3, retargeting the code selector requires specification
of instruction patterns (or mapping rules) used to cover a DFG representation
of the IR. Since it is difficult to extract instruction semantics from an arbitrary

5 The first stage in any LISA model is the ‘main’ operation that is called for every new simulation
cycle, similar to the built-in semantics of the ‘main’ function in ANSI C.
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Figure 8.26 GUI for interactive compiler retargeting (code selector view)

C/C++ specification as in the LISA behaviour models, this part of backend retar-
geting is least automated. Instead, the GUI offers the designer a mapping dialogue
(Figure 8.26, see also Reference 37) that allows for a manual specification of mapping
rules. This dialog enables the ‘drag-and-drop’ composition of mapping rules, based on
(a) the IR operations needed to be covered for a minimal operational compiler and
(b) the available LISA operations. In the example from Figure 8.26, an address com-
putation at the IR level is implemented with two target-specific instructions (LDI and
ADDI) at the assembly level.

Although significant manual retargeting effort is required with this approach, it is
much more comfortable than working with a plain compiler generator such as CoSy
(Section 8.3.4), since the GUI hides many compiler internals from the user and takes
the underlying LISA processor model explicitly into account, e.g. concerning the
correct assembly syntax of instructions. Moreover, it ensures very high flexibility
w.r.t. different target processor classes, and the user gets immediate feedback on
consistency and completeness of the mapping specification.

The major drawback, however, of the above approach is a potential ‘model con-
sistency’ problem, since the LISA model is essentially overlayed with a (partially
independent) code selector specification. In order to eliminate this problem, yet
retaining flexibility, the LISA language has recently been enhanced with ‘seman-
tic sections’ [38]. These describe the behaviour of operations from a pure compiler
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OPERATION ADD {
DECLARE {
GROUP src1, dst = { reg };
GROUP src2 = { reg || imm };}

SYNTAX { "add" dst "," src1 "," src2 }
CODING { 0b0000 src1 src2 dst }
BEHAVIOR {

dst = src1 + src2;
if (((src1 < 0) && (src2 < 0)) ||

((src1 > 0) && (src2 > 0) &&
(dst < 0)) ||
((src1 > 0) && (src2 < 0) &&
(src1 > -src2)) ||
(src1 < 0) && (src2 > 0) &&
(-src1 < src2)))

{ carry = 1; }}}

Figure 8.27 Modelling of an add operation in LISA with carry flag generation as a
side effect

OPERATION ADD {
DECLARE {
GROUP src1, dst = { reg };
GROUP src2 = { reg || imm };}
SYNTAX { "add" dst "," src1 "," src2 }
CODING { 0b0000 src1 src2 dst }
SEMANTICS { _ADDI[_C] ( src1, src2 ) -> dst; }}

OPERATION reg {
DECLARE {
LABEL index; }
SYNTAX { "R" index=#U4 }
ODING { index=0bxxxx }
SEMANTICS { _REGI(R[index])<0..31> }}

Figure 8.28 Compiler semantics modelling of the add operation from Figure 8.27
and a micro-operation for register file access (micro-operation
‘_REGI’)

perspective and in a canonical fashion. In this way, semantic sections eliminate syn-
tactic variances and abstract from details such as internal pipeline register accesses
or certain side effects that are only important for synthesis and simulation.

Figure 8.27 shows a LISA code fragment for an ADD instruction that generates
a carry flag. The core operation (‘dst = src1 + src2’) could be analysed easily in this
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example, but in reality more C code lines might be required to capture this behaviour
precisely in a pipelined model. The carry flag computation is modelled with a separate
if-statement, but the detailed modelling style might obviously vary. On the other hand,
the compiler only needs to know that (a) the operation adds two registers and (b) it
generates a carry, independent of the concrete implementation.

The corresponding semantics model (Figure 8.28) makes this information explicit.
Semantics models rely on a small set of precisely defined ‘micro-operations’
(‘_ADDI’ for ‘integer add’ in this example) and capture compiler-relevant side effects
with special attributes (e.g. ‘_C’ for carry generation). This is feasible, since the
meaning of generating a carry flag (and similar for other flags like zero or sign) in
instructions like ADD does not vary between different target processors.

Frequently, there is no one-to-one correspondence between IR operations (com-
piler dependent) and micro-operations (processor dependent). Therefore, the code
selector generator that works with the semantic sections must be capable of imple-
menting complex IR patterns by sequences of micro-operations. For instance, it might
be needed to implement a 32-bit ADD on a 16-bit processor by a sequence of an ADD
followed by an ADD-with-carry. For this ‘lowering’, the code selector generator relies
on an extensible default library of ‘transformation rules’. Vice versa, some LISA oper-
ations may have complex semantics (e.g. a DSP-like multiply accumulate) that cover
multiple IR operations at a time. These complex instructions are normally not needed
for an operational compiler but should be utilised in order to optimise code quality.
Therefore, the code selector generator analyses the LISA processor model for such
instructions and automatically emits mapping rules for them.

The use of semantic sections in LISA enables a much higher degree of automation
in code selector retargeting, since the user only has to provide the semantics per LISA
operation, while mapping rule generation is completely automated (except for user
interactions possibly required to extend the transformation rule library for a new target
processor).

The semantics approach eliminates the above-mentioned model consistency prob-
lem at the expense of introducing a potential ‘redundancy’ problem. This redundancy
is due to the co-existence of separate behaviour (C/C++) and semantics (micro-
operations) descriptions. The user has to ensure that behaviour and semantics do
not contradict. However, this redundancy is easily to deal with in practice, since
behaviour and semantics are local to each single LISA operation. Moreover, as out-
lined in Reference 39, co-existence of both descriptions can even be avoided in
some cases, since one can generate the behaviour from the semantics for certain
applications.

8.5.4 Results

The retargetable LISATek C compiler has been applied to numerous different proces-
sor architectures, including RISC, VLIW and network processors. Most importantly,
it has been possible to generate compilers for all architectures with limited effort,
the order of some man-weeks, dependent on the processor complexity. This indicates
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Figure 8.29 Comparison between the gcc compiler and the CoSy-based LISATek
C compiler: (a) execution cycles and (b) code size

that the semi-automatic approach outlined in Section 8.5 works for a large variety of
processor architectures commonly found in the domain of embedded systems.

While this flexibility is a must for retargetable compilers, code quality is an
equally important goal. Experimental results confirm that the code quality is generally
acceptable. Figure 8.29 shows a comparison between the gcc compiler (Section 8.3.2)
and the CoSy based LISATek C compiler for a MIPS32 core and some benchmark
programs. The latter one is an ‘out-of-the-box’ compiler that was designed within
two man-weeks, while the gcc compiler due to its wide use most likely incorporates
significantly more manpower. On average, the LISATek compiler shows an overhead
of 10 per cent in performance and 17 per cent in code size. With specific compiler
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optimisations added to the generated backend, this gap could certainly be further
narrowed.

Further results for a different target (Infineon PP32 network processor) show that
the LISATek compiler generates better code (40 per cent in performance, 10 per cent
in code size) than a retargeted lcc compiler (Section 8.3.3), due to more built-in code
optimisation techniques in the CoSy platform . Another data point is the ST200 VLIW
processor, where the LISATek compiler has been compared to the ST Multiflow,
a heavily optimising target-specific compiler. In this case, the measured overhead has
been 73 per cent in performance and 90 per cent in code size, which is acceptable for
an ‘out-of-the-box’ compiler that was designed with at least an order of magnitude
less time than the Multiflow. Closing this code quality gap would require adding
special optimisation techniques, e.g. in order to utilise predicated instructions, which
are currently ignored during automatic compiler retargeting. Additional optimisation
techniques are also expected to be required for highly irregular DSP architectures,
where the classical backend techniques (Section 8.2.3) tend to produce unsatisfactory
results. From our experience we conclude that such irregular architectures can hardly
be handled in a completely retargetable fashion, but will mostly require custom opti-
misation engines for highest code quality. The LISATek/CoSy approach enables this
by means of a modular, extensible compiler software architecture, naturally at the
expense of an increased design effort.

8.6 Summary and outlook

Motivated by the growing use of ASIPs in embedded SoCs, retargetable compilers
have made their way from academic research to EDA industry and application by
system and semiconductor houses. While still being far from perfect, they increase
design productivity and help to obtain better quality of results. The flexibility of
today’s retargetable compilers for embedded systems can be considered satisfactory,
but more research is required on how to make code optimisation more retargetable.

We envision a pragmatic solution where optimisation techniques are coarsely clas-
sified w.r.t. different target processor families, e.g. RISCs, DSPs, NPUs and VLIWs,
each of which shows typical hardware characteristics and optimisation requirements.
For instance, software pipelining and utilisation of SIMD (single instruction multi-
ple data) instructions are mostly useful for VLIW architectures, while DSPs require
address code optimisation and a closer coupling of different backend phases. Based
on a target processor classification given by the user w.r.t. the above categories, an
appropriate subset of optimisation techniques would be selected, each of which is
retargetable only within its family of processors.

Apart from this, we expect a growing research interest in the following areas of
compiler-related EDA technology.

Compilation for low power and energy: Low power and/or low-energy consump-
tion have become primary design goals for embedded systems. As such systems are
more and more dominated by software executed by programmable embedded proces-
sors, it is obvious that compilers may also play an important role, since they control
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the code efficiency. At first glance, it appears that program energy minimisation is
identical to performance optimisation, assuming that power consumption is approx-
imately constant over the execution time. However, this is only a rule-of-thumb, and
the use of fine-grained instruction-level energy models [40,41] shows that there can
be a trade-off between the two optimisation goals, which can be explored with special
code generation techniques. The effect is somewhat limited, though, when neglect-
ing the memory subsystem, which is a major source of energy consumption in SoCs.
More optimisation potential is offered by exploitation of SoC (scratch-pad) memo-
ries, which can be treated as entirely compiler-controlled, energy efficient caches.
Dedicated compiler techniques, such as [42,43], are required to ensure an optimum
use of scratchpads for program code and/or data segments. See Part II, Chapter 9 for
more details on ‘software power optimisation’.

Source-level code optimisation: In spite of powerful optimising code transfor-
mations at the IR or assembly level, the resulting code can be only as efficient as
the source code passed to the compiler. For a given application algorithm, an infinite
number of C code implementations exist, possibly each resulting in different code
quality after compilation. For instance, downloadable reference C implementations
of new algorithms are mostly optimised for readability rather than performance, and
high-level design tools that generate C as an output format usually do not pay much
attention to code quality. This motivates the need for code optimisations at the source
level, e.g. C-to-C transformations, that complement the optimisations performed by
the compiler, while retaining the program semantics. Moreover, such C-to-C trans-
formations are inherently retargetable, since the entire compiler is used as a backend
in this case. Techniques like References 44–46 exploit the implementation space at
the source level to significantly optimise code quality for certain applications, while
tools like PowerEscape [47] focus on efficient exploitation of the memory hierarchy
in order to minimise power consumption of C programs.

Complex application-specific machine instructions: Recent results in ASIP
design automation indicate that a high performance gain is best achieved with complex
application-specific instructions that go well beyond the classical custom instruc-
tions like multiply accumulate for DSPs. While there are approaches to synthesising
such custom instructions based on application code analysis [48–50], the interaction
with compilers is not yet well understood. In particular, tedious manual rewriting of
the source code is still required in many cases to make the compiler aware of new
instructions. This slows down the ASIP design process considerably, and in an ideal
environment the compiler would automatically exploit custom instruction set exten-
sions. This will require generalisation of classical code selection techniques to cover
more complex constructs like directed acyclic graphs or even entire program loops.
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Chapter 9

Software power optimisation

J. Hu, G. Chen, M. Kandemir and N. Vijaykrishnan

9.1 Introduction

Over the last decade, numerous software techniques have been proposed to improve
the power efficiency of the underlining systems (Figure 9.1). These techniques dif-
fer from each other in various ways. Some of them employ compiler techniques to
reduce the dynamic power consumption of processors by utilising voltage scaling,
while some of the others focus on reducing static power consumption for memo-
ries by tuning the operating system (OS) or Java Virtual Machine (JVM). On the
other hand, many of these techniques also share similarities. For example, there are
a large number of power optimisation techniques targeting at memories, though they
achieve their goals via different alternatives. There are also many techniques that
improve power efficiency by controlling power modes of different components in the
system. In short, two software power optimisation techniques could be similar from
one aspect, but they could also be totally different if compared from another aspect.
To better understand current software power optimisation techniques, we need to
study them from different perspectives. In general, current techniques can be divided
into different categories from four perspectives: power mode utilisation, operating
level, power type and targeted components. Figure 9.2 gives a summary of these four
perspectives.

Different operating modes (power modes/energy modes) are usually available
in a power-aware system. Each mode consumes a different amount of power.
This provision is available in processors, memory, disks and other peripherals. While
these power-saving modes are extremely useful during idle periods, one has to pay
a cost of exit latency for these hardware entities to transition back to the operational
(active) state once the idle period is over. Software power optimisation techniques
usually try to utilise as few hardware components as possible without paying per-
formance penalties, and transition the rest into a power-conserving operating mode.
Depending on how they utilise the operating modes, these techniques can be divided
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into three groups: control power modes, enhance power modes and side effect of per-
formance optimisation. Some techniques achieve power savings by controlling the
power modes without transforming the original program. That is, other than the addi-
tional power control instructions, the original program is not modified. For example,
Hsu and Kremer [1] proposed a compiler algorithm to optimise programs for power
usage using dynamic voltage scaling. This algorithm identifies program regions where
the CPU can be slowed down with negligible performance loss, and inserts power
control instructions for such regions to save power. Some techniques take a more
aggressive step in utilising the power modes. They transform the original program
so that the existing power modes can be utilised more efficiently. Zhang et al. [2]
identified that significant additional power savings can be obtained when loop opti-
misation techniques such as loop fusion or loop fission are applied before inserting
power control instructions into the original program. Power savings can also be
obtained as a side-effect of performance-oriented optimisations (without utilising
power modes). Kandemir et al. [3] evaluated power impact of several popular loop
optimisation techniques that are used for performance optimisation. They found that
most performance-oriented optimisations reduce the overall power consumption even
though they tend to increase the data-path energy.

By looking at what level they operate on, current software power optimisation
techniques can be put into three different categories: compiler, OS/JVM and
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application. Compiler techniques gather information from programs through pro-
gram analysis tool, and then improve the power efficiency by transforming the
program or inserting power mode control instructions at appropriate points in the
program [1,2,4–6]. For example, the compiler can identify the last use of the instruc-
tions and places the corresponding cache lines that contain them into a low leakage
mode to save power [2]. In another example, the compiler identifies the number of
functional units to activate for different loops in the application, and then applies
a leakage control mechanism to the unused units based on such compiler analysis
[5]. OS/JVM techniques monitor the runtime behaviour of the applications and make
decisions dynamically based on fixed or adaptive strategies for controlling the system
power modes. For example, by tuning the frequency of invoking garbage collection
based on object allocation and garbage creation rate, JVM can turn off more unused
memory banks and save a significant amount of power consumption [7]. In a system
where disks consume a large portion of total power, OS can predict session lengths
based on previous disk accesses and shutdown disks between sessions adaptively
to save power [8]. Both compiler and OS/JVM techniques are general in the sense
that they can be applied to any application in the system. In comparison, there are
also some techniques that target specific applications. For example, Rabiner and
Chandrakasan [9] developed a power-efficient motion estimation algorithm used in
power-constrained devices. Such application-specific techniques usually achieve bet-
ter power savings than a general technique, but their applicability is limited to a small
group of applications.

The main sources of power consumption in current complementary metal oxide
semiconductor (CMOS)-technology-based circuits are dynamic power and static
power (also called leakage power) [10]. Dynamic power is consumed whenever a
component is utilised. In contrast, static power is consumed as long as power supply
is maintained and is independent of component activity. Software power optimisation
techniques can be classified into two groups based on whether a technique optimises
dynamic power consumption or static power consumption. Dynamic voltage scaling
[1,6] is recognised as one of the most effective techniques for reducing dynamic power
consumption. It exploits the fact that a major portion of power of CMOS circuitry
scales quadratically with the supply voltage. As a result, lowering the supply voltage
can significantly reduce power dissipation. In Reference 9, the dynamic power con-
sumption of the portable device is reduced by offloading some portion of the work to
a high-powered base-station. Data locality optimisation techniques such as loop tiling
reduces dynamic power consumption through the reduction of memory accesses and
the associated power consumption. While static power consumption used to be an
insignificant part of the overall power consumption, due to the continued shrinking of
transistors and associated technology changes, static power consumption has become
an important portion of overall power consumption. In fact, it is shown to be the dom-
inant part of the chip power budget for 0.10 µm technology and below [11]. Most
software power optimisation techniques reduce static power consumption by putting
idle components into ‘off’ or ‘sleep’ mode in which static power consumption is much
lower than in active mode. For example, a compiler can select a suitable instruction
per cycle (IPC) for each loop, and then turn off unused or not frequently used integer



292 System-on-chip

Table 9.1 Nine techniques and their categories

Technique Power mode Operating Power type Targeted
utilisation level components

Hsu and Kremer [1] Control power mode Compiler Dynamic Processor
Xie et al. [6] Control power mode Compiler Dynamic Processor
Delaluz et al. [4] Enhance power mode Compiler Static Memory
Chen et al. [7] Enhance power mode OS/JVM Static Memory
Lu and Micheli [8] Control power mode OS/JVM Dynamic Disk
Zhang et al. [2] Enhance power mode Compiler Static Memory
Rabiner and Side effect Application Dynamic Processor

Chandrakasan [9]
Kim et al. [5] Enhance power mode Compiler Static Processor
Kandemir et al. [3] Side effect Compiler Dynamic Memory and

processor

ALUs to save static energy [5]. In a JVM environment, unused memory banks can
be turned off to save static energy, and such benefits can be increased by carefully
selecting an appropriate garbage collection frequency such that the idle time of unused
memory banks is increased.

Software power optimisation techniques can also be categorised by the compo-
nents they are applied to. Among the various components in a system, the major
power consumers are memory, processor, disk and interconnect. There is much prior
research focusing on memory [2,4,7], processor [1,5,6,9], disk [8] and interconnect
[12]. Table 9.1 gives some related work on software power optimisations and their
categories according to Figure 9.2.

In the following sections, we will present examples of software power optimi-
sations. First, we will show how algorithmic decisions influence energy efficiency.
Then, we will show how traditional compiler optimisations can affect power con-
sumption. The rest of the chapter focuses on the use of software to control hardware
configuration, power mode settings and enhancement of energy savings through
power mode setting. These sections include examples from related work of other
researchers in literature for pedagogic reasons.

9.2 Influence of algorithms on energy efficiency

Arguably, application-level energy optimisation has the most significant impact on
system energy efficiency. Different algorithm implementations can have huge dif-
ferences in the way in which computation, communication and data transferring are
carried out in a given computing platform, leading to vastly different power/energy
consumption. There are two possible directions for application-level energy optimi-
sation. The first one is to develop a different algorithm to perform the exactly same
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task with much higher energy efficiency. For example, the computational complex-
ity of different sorting algorithms will result in different energy consumption even
though they achieve the same functionality. When these algorithms were used to
sort 100 integers on SimplePower, an energy estimation tool, quick sort over bub-
ble sort and heap sort reduced the datapath energy consumption by 83 per cent and
30 per cent [13]. In this case, energy reduction directly stems as a side-effect of
performance optimizations.

The second option is to trade computational accuracy and throughput for energy
savings. The second option is highly desirable where the energy is a major resource
constraint and the computational accuracy can be sacrificed to prolong the system
lifetime limited by energy source, e.g. battery-powered embedded systems for sig-
nal and image processing. Energy–quality (E–Q) scalability is used in Sinha et al.’s
work [14] as a metric to evaluate the energy scalability of algorithms in terms of
computational accuracy and energy consumption. E–Q performance is the quality
of computation achieved for a given energy constraint. A better E–Q performance
approaches to the maximum computational quality at less energy consumption.
A good example to show the difference of algorithm E–Q performance is how to
compute a simple power series as follows [14],

f (x) = 1 + k1x + k2x
2 + · · · + kNx

N

A straightforward algorithm to compute this power series uses an N -iteration loop
where each term off (x) is evaluated in a single iteration and the computation proceeds
from left to right in the expression. If the energy consumption for each loop iteration
is assumed the same and ki’s values are similar, for a given x = 2, the computation
till N − 1 iteration consumes (N − 1)/N of the total energy of the loop while only
achieving 50 per cent of the computation accuracy since 2N/f (2) ≈ 1/2 [14].

However, if we change the computation in the reverse way, the first iteration com-
putes kN−1x

N−1, the first couple of iterations will approach the maximum accuracy
at the minimum energy consumption (e.g. 2/N of the total energy, omitting other
overheads). Such a computation delivers much better E–Q performance. The obser-
vation here is that the ordering of this power series evaluation to achieve higher E–Q
performance is determined by the value of x. If x > 1.0, the reverse ordering should
be selected. Otherwise, the original ordering performs better.

The implication of designing such an energy-scalable algorithm is the potential
that the computation can be controlled to achieve significant energy reduction while
guaranteeing acceptable accuracy. Figure 9.3 shows quality (Q) as a function of
energy (E) where the transformed algorithm exhibits a much better E–Q scalability
than the original one. To achieve the same computational quality, the transformed
algorithm consumes much less energy than the original algorithm does sinceE � E′.

To design energy-scalable algorithms such as finite impulse response (FIR) filter-
ing for digital signal processing (DSP) and discrete cosine transform (DCT) for image
decoding in energy-constrained embedded systems, we can reorder the multiply-
accumulate (MAC) operations in such a way that components with large weights will
be first evaluated to approach the maximum accuracy (quality) as soon as possible.
In case of energy shortage, the remaining computation component (e.g. MACs) with
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Figure 9.3 The E–Q performance of different algorithms

small weights can be omitted for energy savings. Such an algorithm also provides
the system with the adaptability and flexibility to dynamically adjust the quality of
services (e.g. computation, communication) based on the remaining power level of
the battery.

9.3 Impact of compiler code optimisation

Many performance optimisations (such as optimal register allocation, redundant
subexpression elimination and loop strength reduction) performed by modern com-
pilers can also reduce energy consumption. For example, a compiler can improve the
performance of a program by storing a frequently used value in a register instead of
the main memory. Since accessing the register consumes less energy than accessing
the main memory, this optimisation also reduces energy consumption. However, not
all performance-oriented optimisations are beneficial from the energy perspective.
An example of this case is compiler-guided speculative cache prefetching [15]. That
is, the compiler predicts the data that will be used in the near further and inserts
the instructions into certain points of the program to load these data into the cache
in advance of their actual use. This optimisation reduces the overall execution time
by overlapping the cache fetching time with the program execution time. However,
such overlapping does not hide the energy consumed for fetching the data, and,
consequently, it does not necessarily reduce the overall energy consumption.

Being one of the most important forms of compiler optimisations, loop trans-
formations are widely used by the compiler, especially in array-intensive code, to
improve the quality of the code, e.g. code transformations to improve data cache
locality [16] for performance enhancement. In the rest of this section, we introduce
some typical loop nest optimisations, i.e. linear loop transformations, tiling, unrolling,
fusion and fission, and discuss their impact on power consumption.

Linear loop transformations attempt to improve cache performance, instruc-
tion scheduling and iteration-level parallelism by modifying the traversal order of
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the iteration space of the loop nest. The simplest form of loop transformation, called
loop interchange, can improve data locality (cache utilisation) by changing the order
of the loops. From the power consumption point of view, by applying this transfor-
mation we can expect a reduction in the total memory power due to better utilisation
of the cache. For the power consumed in other parts of the system, if loop transfor-
mations can result in complex loop bounds and array subscript expressions that can
potentially increase the power consumed in the core datapath.

Another important technique used to improve cache performance is blocking, or
tiling. When it is used for cache locality, arrays that are too big to fit in the cache
are broken up into smaller pieces (to fit in the cache). When we consider power,
potential benefits from tiling depend on the changes in power dissipation induced
by the optimisation on different system components. We can expect a decrease in
power consumed in memory, due to better data reuse [17]. On the other hand, in the
tiled code, we traverse the same iteration space of the original code using twice as
many loops (in the most general case); this entails extra branch-control operations
and macro calls. These extra computations might increase the power dissipation in
the core.

Loop unrolling reduces the trip count of a given loop by putting more work inside
the nest with the aim of reducing the number of memory accesses and promoting the
register reuse. From the power point of view, fewer accesses to the memory means less
power dissipation. In addition, we can also expect a reduction in the power consumed
in the register file and data buses.

Loop fusion combines two loops into one loop. Since it improves data reuse,
it can reduce the power consumed in the memory system. And, if used with scalar
replacement, it can eliminate a number of memory references again reducing the
memory system power. Also, since it reduces the number of loop nests, it eliminates
lots of branch instructions that would otherwise contribute to a significant percentage
of the core power.

In loop fission, the compiler breaks down a loop into two (or more) separate
loops. When done solely for optimising the iteration scheduling, this transformation
can increase power consumption in memory system and elsewhere due to an increase
in the number of loop nests and a decrease in temporal locality. However, combining
with low power mode available in cache or memory systems, loop fission has the
potential to improve the opportunity for power mode control.

9.4 Software-controlled voltage scaling

Dynamic voltage scaling (DVS) is one of the most effective power reduction tech-
niques. Lowering the supply voltage can reduce power dissipation since CMOS
circuitry power quadratically scales with the supply voltage. Reduction of supply volt-
ages also helps to reduce leakage power. See Part III, Chapter 11 for more information
on DVS enabled systems.

Voltage scaling has been applied extensively in real-time software. Many of these
applications are deadline-oriented in their execution. While completing an application
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before a specified deadline, there are no significant advantages to completing them
early before the deadline. Software-oriented voltage scaling techniques exploit this
property. If there is enough slack for a given task to be completed before its deadline,
the supply voltage of the system is reduced to prolong the duration of the task to
reduce the slack. An effective DVS algorithm is one that intelligently determines
when to adjust the current frequency–voltage setting (scaling points) and to which
frequency–voltage setting (scaling factors), so that considerable savings in energy
can be achieved while the required performance is still delivered. Designing a good
DVS algorithm is not an easy task. The overheads of transitions to and from different
frequency–voltage settings may wipe out the benefits of DVS.

In addition to setting the voltage of a task, the available slack of different tasks
can be varied by the software to enhance the overall effectiveness of power savings.
For example, scheduling techniques can order the execution of the different tasks to
maximise the opportunities for energy savings. Consider the tasks with deadlines and
durations given in Table 9.2 to illustrate potential benefits from voltage scaling.

In the normal case without voltage scaling the tasks A and B would have completed
within 7 units of time. In order to reduce the power, we can prolong the execution of
B from 2 units of time to 5 units of time. This can be achieved by reducing the voltage
of the system when operating on task B. In a practical system, it may be difficult to
exactly make use of the entire slack due to the overheads of transitioning from one
supply voltage to another. If the energy overhead due to the voltage transitioning to
lower voltage and back is higher, it is not worthwhile to perform the transition.

Next, let us consider the scheduling of C and D. If C is scheduled as soon as
it arrives at time unit 10, then neither task C nor task D can be operated at a lower
voltage. However, if task C is not scheduled after task D, then task D can be prolonged
from 3 units of time to 4 units of time. This illustrates a case where scheduling can
provide energy savings.

Running as slowly as possible will minimise the CPU energy consumption but
increase the overall system energy consumption, because the power-consuming non-
CPU devices stay on longer. Consequently, when applying such voltage scaling
approaches it is important to consider the impact on the rest of the system. Hsu
and Kremer [1] proposed a compiler algorithm that addressed the aforementioned
design issues. The idea is to identify the program regions in which the CPU is

Table 9.2 Example schedule

Task Arrival Duration Deadline
time

A 0 5 10
B 0 2 10
C 10 2 17
D 11 3 15
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mostly idle due to memory stalls, and slow them down for energy reduction. On an
architecture that allows the overlap of the CPU and memory activities, such slow-
down will not result in serious performance degradation. As a result, it alleviates the
situation where non-CPU systems components become dominant in the total system
energy usage.

Voltage scaling approaches have also been applied in the context of on-chip
multiprocessors. In Reference 18, the compiler takes advantage of heterogeneity
in parallel execution between the loads of different processors and assigns different
voltages/frequencies to different processors, if doing so reduces energy consumption
without increasing overall execution cycles significantly. For example, consider a
loop that is parallelised across four processors such that processors P1, P2, P3 and
P4 have different numbers of instructions to execute. Consider that the loop is par-
allelised in such a fashion that they have no dependencies in the four parallel code
segments and that all processors need to synchronise before proceeding to execute
the rest of the code. In such a case, the processors can be assigned a voltage to stretch
the execution of lighter loads to match that of the processor having the heaviest
load of instructions to execute. Given that the compiler can estimate the workload
statically, it can also be used to set the voltage levels for the different processors.
Since switching from one voltage level to another incurs performance and energy
overheads, the software can also be used to enhance voltage reuse. For example,
if processor P1 is assigned a voltage V1 when executing loop 1, the compiler can
attempt to assign a parallel code segment such that P1 can execute loop 2 fragment
with the same voltage V1.

9.5 Compiler-directed resource reconfiguration

Conventional computer systems are often designed with respect to the worst case
in order to achieve high performance in all cases. Such a design philosophy is an
overkill for most applications. For instance, a register file in an 8-wide superscalar
microprocessor will require 16 read ports (assuming maximum two source operands
per instruction) and 8 write ports to avoid any structural hazards in the worst case. Due
to the large number of read/write ports, the register file will not only incur huge area
overhead, but also significantly increase its dynamic and leakage power consumption.
However, a majority of source operands (up to 66 per cent reported in Reference 19)
are obtained from the bypassing network rather than the register file. Such an obser-
vation can be utilised to design an energy-efficient register file with a significantly
reduced number of read ports while only incurring a negligible performance loss
[19]. Throughout the processor chip, most components/logic blocks are designed in
such a way and put unnecessary burdens on transistor/die area budget and power
budget. From power-saving perspective, reconfiguring the major processor blocks,
or called resources such as register file, functional unit pool and caches to varying
requirements of the application performance behaviour by using least resources is a
very effective approach. Notice that reconfiguration has both performance and power
overhead.
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There are at least two possible ways to perform this dynamic resources
reconfiguration: dynamic schemes and compiler schemes. Dynamic schemes monitor
the application behaviour at runtime and use prediction schemes to direct resource
reconfiguration when dynamic behaviour changes are detected. On the other hand,
compiler schemes analyse the application program code and identify the discrepancy
in resource demands between code segments. Then the compiler decides whether it is
beneficial (e.g. for power savings) to reconfigure resources at that point. If so, a special
instruction is inserted at that point by the compiler to perform dynamic reconfiguration
at runtime. In general, dynamic schemes are more straightforward in implementation
and can be accurate in detecting program behaviour changes with additional hard-
ware. However, they need a profiling/learning period before a reconfiguration can
be decided, which may delay an early reconfiguration. Further, a dynamic scheme
will need additional time or multiple reconfigurations to reach a possible optimal
configuration, which may further reduce the possible benefits. In contrast, the execu-
tion of compiler-inserted reconfiguration instructions reconfigures specific processor
resources. The quality of the decision is determined by how well the compiler anal-
yses the code. The insertion and execution of these special instructions incur code
size and performance overhead. Compiler schemes also require instruction set archi-
tecture (ISA) extension to include this reconfiguration instruction. In this section, we
will focus on compiler schemes for dynamic resource reconfiguration to reduce the
power consumption in processors.

The granularity of reconfigurable resources can vary from the whole processor
datapath pipeline, to macro blocks such as instruction issue queue, register file and
caches, or to blocks such as functional units. For example, if the compiler finds
out the instruction level parallelism of a particular large code segment is very low
due to data dependences, the compiler can insert a special instruction right before
the code segment to either convert the datapath from out-of-order issue mode to in-
order issue mode, or shut off one or more clusters in a clustered datapath design,
or shut off a portion of the instruction issue queue and functional units to achieve
power savings. For signal or image processing applications mostly dealing with short-
width values, the compiler can reconfigure the functional units by shutting off the
high-bit portion not used and schedule short-value operations to those functional
units. This is especially useful in VLIW (very long instruction word) architectures.
The granularity of resource reconfiguration varies from applications, to function
calls within a particular application, to loops within a function and even to much
smaller code structures such as basic blocks. Figure 9.4 shows the points where
compiler-directed resource reconfiguration can be invoked at different granularity.

In the rest of this section, we describe Hu et al.’s work [20] to show how the
compiler can direct dynamic data cache reconfiguration at the granularity of loop
boundaries for power saving. Caches are critical components in processors that form
a memory hierarchy to bridge the increasing speed gap between the CPU and main
memory (DRAM). Modern microprocessors, for both low-end embedded systems and
high-end servers, dedicate a large portion of transistor budget and die area to cache
memories. Consequently, on-chip caches contribute a significant share of the total
processor power consumption, e.g. the instruction cache and data cache consume
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Figure 9.4 Compiler-directed resource reconfiguration at different granularities

43 per cent of the power budget in StrongARM SA-110 [21], and 22 per cent of
the processor power in PowerPC [22]. Obviously, optimising power efficiency in
caches is of first-class importance in designing low power systems.

In array-intensive code such as for signal and image processing applications,
loop nests dominate the performance and power behaviour. Since each loop nest
may manipulate different arrays in different ways, the cache behaviour of loop nests,
which is determined by the footprints of the data manipulated by the loop nest, might
be very different from each other. A conventional fixed-size data cache cannot adapt
to the cache demands of different loop nests in array-intensive code to achieve power
efficiency. Larger cache (in both cache size and associativity) reduces cache conflict
misses, the main source of cache misses in array code, leading to better perfor-
mance (assuming no impact on the clock cycle time). However, large caches increase
the overall power consumption due to the large per access power consumption. On the
other side, smaller cache than the one demanded by the loop nest will significantly
increase cache conflict misses and cause accesses to the lower-level large memory.
Besides the considerable performance loss in small cache configuration, the power
overhead due to accessing the lower level caches or main memory may also be huge.
The best solution is to find the right data cache configuration for each loop nest
and reconfigure the data cache at loop nest boundary for both higher performance
and higher power efficiency. Hu et al.’s work [20] provides such a solution, called
compiler-directed cache polymorphism (CDCP).

The key idea in CDCP is to identify the reuse space of each array for a given
loop nest and then to determine a near-optimal cache configuration that realises the
data reuses into data localities. CDCP first simulates the interferences (conflicts)
in reuse spaces among arrays and calculate an initial cache configuration based on
these interference statistics and array sizes, followed by an optimising process to
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Table 9.3 Near-optimal cache configurations
computed by CDCP for each
loop nest in aps. A configura-
tion ‘2kB8W’ means data cache
size is 2 kB and set associativity is
eight ways

Loop nests/ 16 bytes 32 bytes 64 bytes
block sizes

loop1 2kB8W 4kB4W 8kB8W
loop2 16kB4W 16kB8W 32kB8W
loop3 2kB16W 4kB8W 8kB8W

generate the near-optimal configuration for that loop nest. A ‘near-optimal cache
configuration’ is informally defined as the one with the smallest capacity and asso-
ciativity that approximates the locality that can be obtained using a very large and
fully associative cache. Intuitively, any increase in either cache size or associativity
over this configuration would not produce any significant improvement. At code gen-
eration stage, the compiler uses the near-optimal cache configuration computed for
each loop nest to insert a special resource reconfiguration instruction, if necessary,
just before the first instruction of that loop. Therefore, with the near-optimal cache
configuration, each loop nest can maximise its performance as well as keep energy
consumption in control.

An application, aps, from Perfect Club for Mesoscale Hydro Model is used here
to show how CDCP works. aps consists of three loop nest (loop1, loop2 and loop3),
which are the kernel code, and manipulates 17 arrays. Given different data cache block
sizes (e.g. 16 bytes, 32 bytes or 64 bytes), the near-optimal data cache configurations
computed by CDCP for each loop nest are given in Table 9.3. These configurations
are then passed to machine-dependent optimisation phases and code-generating stage
to direct the compiler to insert data cache reconfiguration instructions (supported by
ISA extensions).

The CDCP assumes a underlying reconfigurable cache supporting the dynamic
reconfiguration at runtime, which is controlled by reconfiguration instructions
setting a specific cache reconfiguration register. The address-bits adjustment for
different cache reconfigurations is assumed to be taken care of by the reconfigurable
mechanism implemented. As an example, Figure 9.5 shows a reconfigurable cache,
where the cache has a total size of 32 kB, block size of 32 B, and set associativity
of eight ways. Each cache way is logically divided into eight subarrays supporting
fine-grain reconfiguration. One cache reconfiguration register (CRR) is used to con-
trol cache access with a particular configuration and can be updated by the special
cache reconfiguration instructions inserted by the compiler to perform cache recon-
figuration. The output of this reconfiguration register (CRR) controls which cache
ways (way selection portion, 8 bits) and which logical subarrays (subarray selection
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Figure 9.5 A reconfigurable cache supports compiler-directed cache polymorphism
(CDCP). This figure only shows the reconfiguration control signals for
way selection and subarray selection. The peripheral circuitry is omitted
from this logical view

portion, 8 bits) within each way are active (normal mode and ready for access) or
inactive (not accessible due to low-power control mode, either Gated_Vdd or DVS).
For example, before the execution of loop2 in aps, the data cache is reconfigured
to 16kB8W (32-byte block size) by the reconfiguration instruction setting all 8 bits
(to 1’s) in the way selection portion of CRR and only setting the high 4 bits (to 1’s)
in the subarray selection portion of CRR such that the lower four logical subarrays
within each way are disabled and put into inactive mode as shown by the dash-dot
line rectangle in Figure 9.5.

How about the performance using the near-optimal cache configuration for each
loop nest when compared to some optimal (best performance achievable) config-
urations? With the same example application aps, Table 9.4 shows the data cache
miss rate comparisons for each of its three loop nests under different cache block
sizes. From this table, we can conclude that this CDCP is very effective in locat-
ing the near-optimal cache configuration, especially at moderate cache block sizes,
e.g. 32 bytes and 64 bytes. Referring to Figure 9.5, in the execution of aps, data
cache is reconfigured to 4kB4W for loop1 leading to a dynamic power reduction
of up to 87.5 per cent, then reconfigured to 16kB8W for loop2 implying a power
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Table 9.4 Data cache performance (miss rate) comparison for each loop nest
in aps. For each cache block size, Optimal is the cache perfor-
mance using the configuration for best performance and the CDCP
column gives the cache performance using the near-optimal cache
configurations computed by CDCP

Loop nests/
block sizes

16 bytes 32 bytes 32 Bytes

Optimal CDCP Optimal CDCP Optimal CDCP

loop1 0.0183 0.0183 0.0092 0.0109 0.0047 0.0053
loop2 0.0330 0.0339 0.0165 0.0185 0.0082 0.0088
loop3 0.0413 0.0588 0.0207 0.0207 0.0103 0.0103

reduction of up to 50 per cent, and reconfigured to 4kB8W for loop3 with potential
power saving of up to 87.5 per cent. These numbers are potential power reductions
only considering the data array part in the cache. Performance and power overhead
of cache reconfiguration is likely negligible in array-intensive code.

9.6 Software control of power modes

The software can be used to control the transition of the power mode of the differ-
ent components based on their anticipated usage during the execution of a program.
Most components support multiple modes for power savings. For example, the pro-
cessor can be operated at different voltages, the disk can be either spinning or shut
down or the memory can be in various sleep modes.

9.6.1 Memory mode control

Figure 9.6 shows possible power modes for a memory module and transitions between
modes. There are five operating modes: ‘active’, ‘standby’, ‘napping’, ‘power-down’,
and ‘disabled’. Each mode is characterised by its ‘power consumption’ and the time
that it takes to transition back to the active mode (‘resynchronisation time’). The resyn-
chronisation times in cycles are shown along with arrows (assuming a negligible cost ε
for transitioning to a lower power mode).

We will utilise the approach presented by Delaluz et al. [4] to illustrate the use
of software control of power modes. Their approach uses a compiler to issue com-
mands to control the power mode of DRAM modules. The application behaviour is
statically analysed to detect idleness of memory modules for selective power down.
This approach can be considered conservative since memory modules will not be
transitioned to low power modes unless one is absolutely sure that a module will not
be referenced for a while. However, its advantage is that there are no performance
overheads due to resynchronisation. The goal of this compiler-directed mechanism
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is to detect idle periods for each memory module, and to transition it into a lower
power mode without paying any resynchronisation costs. Consequently, if the inter-
access time is T , and the resynchronisation time is Tp (assuming less than T ), then
the compiler would transition the module into a lower energy mode (with a unit time
energy ofEp) for the initial T −Tp period (which would consume a total �T −Tp	Ep

energy), activate the module to bring it back to the active mode at the end of this
period following which the module will resynchronise before it is accessed again
(consuming TpEa energy during transition assuming that Ea is the unit time energy
for active mode as well as during the transition period). As a result, the total energy
consumption with this transitioning would be [T −Tp]Ep +TpEa without any resyn-
chronisation overheads, while the consumption would have been T Ea if there had
been no transitioning. The compiler can evaluate all possible choices based on the
mode energy, corresponding resynchronisation times and inter-access time, to select
the best choice. Note that the compiler can select different low power modes for dif-
ferent idle periods of the same module depending on the duration of each idle period.
When the inter-access time is ∞ (i.e. there is no next access), the module can be put
into disabled mode.

The compiler-directed approach uses clustering to group the related (similar life-
time access patterns) array variables together so that they can be placed in the same
memory modules. This increases the likelihood of transitioning a memory module to
a lower energy mode. On the other hand, placing variables that are accessed at dif-
ferent points of the execution in the same module would result in its longer residence
in the active mode.

The default allocation of variables is in program declared order. Declaration order
of array variables may have nothing to do with their access profiles and life times.
Consequently, this order rarely leads to opportunities for effective use of low power
operating modes. The strategy here is to analyse the program and determine the arrays
with similar access behaviour and use this information to modify the declaration
order of array variables so that those with similar access behaviour are declared
consecutively. Note that this approach requires minimum modifications to the source
code. The disadvantage is that depending on the array and bank sizes, the resulting
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module assignments may not necessarily be energy-efficient, especially if the arrays
are smaller and some banks contain a large number of array variables, or some large
arrays are divided across several banks. Bank alignment of arrays is implemented
to eliminate this effect as long as doing so does not increases the total number of
required banks.

In order to perform mode control, it is necessary for the compiler to find bank
access times. This requires translating array access profiles to bank access profiles
taking into account the memory configuration. After determining the bank access
profile and detecting the idle slots, for each bank we can determine suitable operating
modes. Note that the modes can be determined for each bank independently using the
energy consumption, resynchronisation times and inter-access times. The last part of
the compilation is to insert suitable mode transitioning instructions in the program
code. Since most of the optimisations are on array-based applications, it is reasonable
to choose the number of loop iterations as the basic unit for measuring time, requiring
that all times be converted to iteration counts.

9.6.2 Controlling cache leakage power modes

While optimising dynamic power consumption is crucial in designing future micro-
processors, controlling leakage power is arising as the next big challenge in processor
design due to the continuous scaling down of the transistor threshold voltages and
increasing number of integrated on-chip transistors [23]. See Part III, Chapter 13 for
more information on leakage power in nano-scale circuits. There are various power
modes that a CMOS circuit can be placed in to reduce leakage power [24]. The
software can be used to determine when to make the power mode transitions.

The major component influencing leakage is subthreshold leakage current that
is an exponential function of supply voltage V and threshold voltage (−Vth).
Equation (9.1) [11] shows how subthreshold leakage current depends on threshold
voltage and supply voltage:

Isub = K1We
−Vth/nVθ (1 − e−V /Vθ ) (9.1)

K1 and n are experimentally derived, W is the gate width and Vθ in the exponents is
the thermal voltage. At room temperature, Vθ is about 25 mV; it increases linearly as
temperature increases. If Isub grows enough to build up heat, Vθ will also start to rise,
further increasing Isub and possibly causing thermal runaway. Equation (9.1) suggests
two ways to reduce Isub. First, we could turn off the supply voltage – i.e. set V to
zero so that the factor in parentheses also becomes zero. Second, we could increase
the threshold voltage, which – because it appears as a negative exponent – can have
a dramatic effect in even small increments.

Similar to the strategy described for memory mode transitions in the previous
section, a compiler can be used to analyse the usage of the different components and set
the supply voltage and threshold voltage to reduce leakage power in the idle state. We
will consider two examples of leakage power mode savings using compiler analysis.
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First, we will consider the compiler-directed instruction cache leakage
optimisation proposed in Reference 2. In this approach, the compiler identifies the last
use of the instructions and inserts special leakage control instruction to place the cor-
responding cache line that contains them into a low leakage mode. A compiler-based
leakage optimisation strategy makes sense in a VLIW environment where the com-
piler has control of instruction execution order and is possible to significantly optimise
instruction cache leakage energy.

Compiler strategy for cache leakage optimisation requires low-level circuit sup-
port, e.g. the dynamic scaling of the supply voltage in this case. As supply voltage to
the cache cells reduces, the leakage current reduces significantly due to short-channel
effects. The choice of the supply voltage influences whether the data is retained or
not. When the normal supply voltage of 1.0 V is reduced below 0.3 V (for a 0.07µm
process), the data in the cells are no longer retained. Thus, 0.3 V supply voltage can
be selected for the state-preserving leakage control mode. However, if state preser-
vation is not a consideration, the supply voltage can be switched to 0 V to gain more
reduction in energy. Consequently, there are two leakage power states for each cache
line, a normal operational mode with high leakage current and a low leakage state in
idle mode. The low leakage state can either be state-preserving or destroying based
on application needs.

Compiler strategies for instruction cache leakage control can control the leakage
state of each cache line through appropriate ISA support. Intuitively, two compiler
strategies can be developed for turning off instruction cache lines. The first approach,
called the ‘conservative strategy’, does not turn off an instruction cache line unless it
knows for sure that the current instruction that resides in that line is dead (i.e. will not
be referenced for the remaining part of the execution). The second approach is called
the ‘optimistic strategy’ and turns off a cache line even if the current instruction
instance in it is not dead yet. This might be a viable option if there is a large gap
between two successive visits to the cache line. In such a case, the instructions need
to be fetched from a lower level memory hierarchy, if the contents of a turned off
cache line are required again.

Other questions that arise in the design of the leakage control mechanism are: what
application characteristic should the compiler extract for directing these two leakage
control modes? What granularity should the compiler insert the special leakage control
instructions at? For example, the conservative strategy is based on determining the
last usage of instructions. In other words, it tries to detect the use of the last instance
of each instruction. Once this last use is detected, the corresponding cache line can
be turned off. While it is possible to turn off the cache line immediately after the
last use, such a strategy would not be very effective, because it would result in
significant code expansion due to the large number of turn-off instructions inserted
in the code. Also, such frequent turn-off instructions themselves would consume
considerable dynamic energy. Obviously, instruction level analysis would not work
for this leakage control. Notice that program behaviour, in general, is characterised
by some high-level structures such as loops and function calls and those structures
also produce program phases and phase changes during execution. Consequently,
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loop structures in program code were exploited for invoking leakage control in many
research works in this area as is the case here.

9.6.2.1 Conservative strategy

Conservative strategy captures loop structures in program code and turns off instruc-
tions at the ‘loop granularity level’. More specifically, when the execution exits a
loop and it is for sure that this loop will not be visited again, the compiler turns off the
cache lines that hold the instructions belonging to the loop (including those in the loop
body as well as those used to implement the loop control code itself). While ideally
one would want to issue turn-offs only for the cache lines that hold the instructions
in the loop, identifying these cache lines is costly (i.e. it either requires some type
of circuit support which itself would consume energy, or a software support which
would be very slow). As a result, a more practical implementation is to turn off all
cache lines when the execution exits loops. While this has the drawback of turning
off the cache lines that hold the instructions sandwiched between the inner and outer
loops of a nest (and lead to reactivation costs for such lines), the impact of this in
practice is not too much as typically there are not many instructions sandwiched
between nested loops. Turning off all cache lines also eliminates the complexity of
selectively turning off a cache line in a set-associative cache and problems associated
with multiple instructions from different loops being stored in a single cache line.

The idea behind the conservative strategy is illustrated in Figure 9.7 for a case
that contains three loops, two of which are nested within the third one. Assume
that once the outer loop is exited, this fragment is not visited again during execution.
Here, Loop Body-I and Loop Body-II refer to the loop bodies of the inner loops. In the
conservative strategy, when execution exits Loop Body-I (i.e. the loop that contains it),
the compiler cannot turn off the cache lines occupied by it, because, there is an outer
loop that will re-visit this loop body; in other words, the instructions in Loop Body-
I are not dead yet. The same argument holds when execution exits Loop Body-II.

  END DO
  ...

      F[i][j] += A[i][k] * D[k][j];
      ...
    END DO
  END DO
  ...
END DO

Loop
Body-II

Loop
Body-III

Loop
Body-I

  ...
DO i = 1, N

  DO j = 1, N
    DO k = 1, N

  DO j = 1, N
    DO k = 1, N

    END DO

      A[i][j] += B[i][k] * C[k][j];
      ...

Figure 9.7 A code fragment that contains three loops
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However, when execution exits the outer loop, the conservative strategy turns off all
the cache lines that hold the instructions of this code fragment (i.e. all instructions in
all three loops). As mentioned above, the leakage control instruction, in fact, turns
off all the cache lines for implementation efficiency. It is clear that this strategy
may not perform well if there is a large outermost loop that encloses a majority
of the instructions in the code. In such cases, the cache lines occupied by the said
instructions will not be turned off until the outermost loop finishes its execution.
And, when this occurs, it might be too late to save any leakage energy. For example,
if there is an outermost loop (in the application being optimised) that encloses the
entire code (e.g. a convergence test in some array applications), this strategy will not
generate very good results as it will have little opportunity to turn off cache lines.

9.6.2.2 Optimistic strategy

The optimistic strategy tries to remedy this drawback of the conservative scheme
by turning off the cache lines optimistically. What we mean by optimism here is that
the cache lines are turned off even if we know that the corresponding instruction
instance(s) will be visited again, but the hope is that the gap (in cycles) between
successive executions of a given instruction is large enough so that significant amounts
of energy can be saved. Obviously, an important question here is how to make sure
that at compile time (i.e. statically) there will be a large gap between successive
executions of the same instruction. Here, as in the conservative case, the compiler
works on a loop granularity. When execution exits a loop, the instructions in the loop
body are turned off if either that loop will not be visited again (as in the conservative
case) or the loop will be re-visited but there will be execution of another loop between
the last and the next visit. Returning to the code fragment in Figure 9.7, when the
execution exits Loop Body-I, the instructions in it can be turned off. This is because
before Loop Body-I is visited again, the execution should proceed with another loop
(the one with Loop Body-II), and the compiler optimistically assumes that this latter
loop will take long time to finish. Similarly, the instructions in Loop Body-II can be
turned off when the execution exits Loop Body-II.

Obviously, this strategy is more aggressive (in turning off the cache lines) than
the conservative strategy. The downside is that in each iteration of the outer loop in
Figure 9.7, it needs to re-activate the cache lines that hold Loop Body-I and Loop
Body-II. The energy overhead of such a re-activation depends on the leakage saving
mode employed. Also, since each reactivation incurs a performance penalty, the
overall execution time impact due to the optimistic strategy can be expected to be
much higher than that due to the conservative strategy. This will be particularly felt
when the state-destroying leakage control mechanism is employed (since it takes
longer to come back to normal operation from state-destroying than state-preserving
mode due to the L2 cache latency). If there are code fragments that are not enclosed
by any loops, each such fragment can be treated as if it is within a loop which iterates
only once. It should be emphasised, however, that both strategies turn off cache
lines considering the instruction execution patterns. Since a typical cache line can
accommodate several instructions during the course of execution, turning off a cache
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line may later lead to re-activation of the same cache line if another instruction wants
to use it. This re-activation has both performance and energy penalty which should
also be accounted for. Note that as the instruction cache gets bigger this problem will
be of less importance. This is because in a larger cache we can expect less cache line
sharing among instructions.

9.6.3 Controlling functional unit leakage mode

In this part, we show another example of a technique presented by Kim et al. [5]
to demonstrate the interaction between the compiler and the architecture in affecting
power control mechanisms that exploit application characteristics. In this case, the
compiler attempts to exploit the idleness in functional units of wide-issue VLIW
architectures. The basis of the work stems from the observation that there is an
inherent variation in the maximum number of instructions that can be executed per
cycle when executing an application. Not all parts of a given VLIW program can
issue the maximum IPC. Due to data dependences and other reasons, it is typical that
many VLIW cycles can execute fewer operations than that can be accommodated by
the physical resources.

The approach proposed by Kim et al. [5] focuses on nest-intensive applications
and identifies a suitable IPC assignment for basic blocks in the loop. After assigning
an IPC to each loop, the next step is scheduling the code being optimised consider-
ing these IPCs. The scheduling strategy is adaptive as it changes the maximum IPC
during the course of execution. In this step, the control flow graph (CFG) is traversed
basic block by basic block, and for each block we schedule its operations using the
IPC assigned to it. We also insert functional unit turn-on and turn-off instructions at
the beginning and end of the associated loop containing the basic block considering
its assigned IPC and the available integer ALUs in the architecture. When we set the
IPC to k′, the k− k′ integer ALUs are shut off (assuming that the machine contains a
maximum of k integer ALUs). When (e.g. in executing the next nest in the code) we
increase the IPC from k′ to k′′ where k′ < k′′ < k, we need to turn on k′′ − k′ integer
ALUs. As compared to dynamic IPC regulation strategies, the compilation approach
incurs much less overhead as IPCs are determined at compile time. The only runtime
overhead is the execution of turn-on/off instructions and extra execution cycles and
energy due to increased schedule length.

This energy-saving strategy can, in general, increase execution time as it is not
always possible to find a suitable IPC (lower than what the underlying machine can
sustain) for each loop without increasing its schedule length. Increasing the schedule
length also has an impact on energy consumption as all active functional units con-
sume leakage energy during the extra cycles (coming from the reduced IPC). For the
proposed strategy to reduce overall energy, the energy increase due to extra execution
cycles should not offset the energy gains obtained through shutting off some integer
ALUs. To illustrate this last point, let us consider Figure 9.8. This figure shows
a schematic description of the original schedule and modified (optimised) sched-
ule. As compared to the original schedule, the optimised schedule reduces the width
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Figure 9.8 Original and modified schedules

(by restricting the maximum IPC) and increases the length (by increasing the num-
ber of cycles). By width of a schedule, we mean the number of integer ALUs used
in executing the code. Let A denote the product of the total number of additional
functional units that remain active in the original schedule as compared to the opti-
mised schedule and the number of cycles of execution in the original schedule. Let B
denote the product of the number of functional units active in the optimised schedule
and the extra cycles in the optimised schedule. Let A′ and B′ denote the corre-
sponding leakage energy expended due to slots in A and B. Clearly, this strategy
is beneficial only if A′ > B′ and the number of extra cycles is within a tolerable
limit.

9.7 Enhancing power mode energy savings through data/code
restructuring

In this section, we use two examples borrowed from Delaluz et al.’s work [25]
and Zhang et al.’s work [2] to demonstrate how the compiler optimisations can
be utilised to improve energy efficiency in a partitioned memory architecture with
low power modes and to improve the instruction cache leakage savings from the
compiler-directed strategies discussed in the previous section.

9.7.1 Compiler optimisation for partitioned memory architectures

In a partitioned off-chip memory (DRAM) architecture that consists of multiple mem-
ory banks, each of which can be operated in a number of operating modes (power
modes) and the power modes can be controlled using either the compiler (as observed
earlier in this chapter) or runtime system. Another important issue for a compilation
approach to minimise the memory energy consumption is to restructure code and data
such that as many memory banks as possible can be put into a low-power operating
mode without impacting execution time (performance). This subsection introduces
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  {a[i], b[i]}
END DO

  {c[i], d[i], e[i]}
END DO

  {e[i], f[i]}
END DO

DO i = 1, N

DO i = 1, N

DO i = 1, N
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f
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d

Nxcc
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Figure 9.9 An example of array allocation

the compilation techniques that attempt to address this issue using a set of loop (iter-
ation space) and memory layout (data space) optimisations: array allocation, loop
fission, loop splitting and array renaming.

The basic idea behind the array allocation (data placement) algorithm is to place
the arrays with the same (or similar) access patterns into the same (set of) bank(s).
This is reasonable as such arrays are usually used (or not used) at the same time during
which the memory bank(s) that hold them can be turned on (or off). By clustering
arrays with similar access patterns together, the compiler optimisation can improve
the opportunity for power mode control in such a multi-banked memory, leading to
higher energy efficiency of the system.

As an example, let us consider the program fragment shown in Figure 9.9 whose
array relation graph (ARG) with and without hyper-edge (spanning multiple nodes) is
shown next to it. In ARG, the nodes represent the arrays declared in the program and
the weight of an edge (or hyper-edge) represents the number of times (in cycles) two
(or multiple) arrays that are incident on the edge are accessed in the same nested loop.
Note that there are two edges, (a,b) and (e,f), and one hyper-edge (c,d,e)
(shown in the first graph as a dashed path). This hyper-edge is then transformed into
two (normal) edges (c,d) and (d,e) (as shown in the last graph), all with the same
edge weightNxcc assuming that each nest has a cycle count of cc. Two obvious paths
in this last graph are a-b and c-d-e-f. Assuming that the arrays are of the same
size and a memory bank can hold two arrays, the compiler places a and b into the
first bank, c and d into the second bank and e and f into the third.

Loop fission takes a nested loop that contains multiple statements in it and creates
multiple nested loops each with a subset of the original statements. Loop fission
helps to improve the effectiveness of the array allocation module by allowing a finer-
granular control over the allocation of arrays. For instance, in the example shown in
Figure 9.10 (assuming that the arrays are of the same size and each memory bank can
hold at most two arrays), with the original nest, the two banks that contain the four
arrays should be in the active mode throughout the entire execution. After the loop
fission, on the other hand, only a single bank needs to be in the active mode during
the execution of each loop (assuming that the original array allocation places a and
b into one bank, and c and d into the other). The other bank can be put into a low
power mode, thereby saving energy.

Loop splitting divides the index set of a nested loop into two or more disjoint
parts. It was originally developed to break some data dependences by placing the
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  {a[i], b[i]}
END DO

END DO
  {c[i], d[i]}

  {a[i], b[i]}

END DO
  {c[i], d[i]}

DO i = 1, N

DO i = 1, N

DO i = 1, N

Figure 9.10 Loop fission to improve array allocation

  {a[i], b[i]}
END DO

END DO

DO i = N/2 + 1, N
  {a[i], b[i]}

  {a[i], b[i]}
END DO

DO i = 1, N

DO i = 1, N/2

Figure 9.11 Loop splitting to improve array allocation

DO i = 1, N

DO i = 1, N

DO i = 1, N

DO i = 1, N

....

  {a[i], c[i]}
END DO

....

  {b[i], c[i]}
END DO

  {a[i], c[i]}  {a[i], c[i]}
END DOEND DO

Figure 9.12 Array renaming to improve array allocation

source iteration of the dependence and the target iteration into separate loops. Note
that since this optimisation does not change the execution order of loop iterations, it
is always legal. Loop splitting has an important use in energy optimisation for large
arrays that span multiple banks. For the example shown in Figure 9.11, assume that
each of a and b spans two memory banks (i.e. total four memory banks are needed).
During the execution of the original loop (the left one), all four banks should be in
the active state. After the loop splitting, however, only two memory banks need to be
in the active mode during the execution of each loop.

Array renaming is an optimisation that exploits the result of live variable analysis
[26] to reuse the same memory space for storing multiple array variables whose
lifetimes are disjoint. The code fragment in Figure 9.12 shows an example case with
two arrays of disjoint lifetimes (a and b). That is, we assume that after the first nest,
the array a is not needed, hence its memory space can be reused for some other array
(in this case, the arrayb). Supposing that the arrays are of the same size and each bank
can hold two arrays, in the original code (the left one), the array allocation module
might place a and c into the same bank and b into another bank. In this case, during
the execution of the first nest, only the first bank will be in the active mode and during
the execution of the second nest, two banks will be in the active mode. On the other
hand, if we reuse the same space for a and b (as shown on the right in the code), only
one memory bank will be used during both the nests.
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9.7.2 Impact of compiler optimisations on instruction cache leakage
control

As discussed in the early part of this section, any compiler optimisations (espe-
cially those targeting at improving data locality) can modify the instruction execution
order (sequence) dramatically leading to a significantly different energy picture.
Such a characterisation of the impact of such optimisations on the effectiveness
of the proposed mechanism can be fed-back to compiler writers, leading to better
(e.g. energy-aware) compilation strategies. This subsection focuses on the impact of
loop fission on compiler-directed instruction cache leakage management introduced
in the previous section.

The loop fission transformation cuts the body of a for-loop statement into two
parts. The first statement of the second part specifies the cut position. It is generally
used for enhancing iteration-level parallelism (by placing statements with dependence
sources into one loop and the ones with dependence sinks into the other), for improv-
ing instruction cache behaviour (by breaking a very large loop body into smaller,
manageable sub-bodies with better instruction cache locality), and even for improv-
ing data cache locality (by separating the statements that access arrays that would
create conflicts in the data cache). Different optimising compilers can employ this
transformation for one or more of these reasons.

As an example, let us consider the fragment shown in Figure 9.13(a). If we
distribute the outermost loop over the two groups of statements (denoted Body-I
and Body-II in the figure), we obtain the fragment depicted in Figure 9.13(b).
Figures 9.13(c) and (d), on the other hand, illustrate how the instructions in the
fragments in Figures 9.13(a) and (b), respectively, would map to the instruction
cache. The figure is used only for illustrative purposes and masks the details.
In Figures 9.13(c) and (d), Header is the loop control code. Note that in the distributed
version, Header is duplicated. Now, let us try to understand how this optimisation
would influence the effectiveness of leakage optimisation strategies. First, let us focus

Body-I

Body-II

Body-II

Header

Body-I

Header

Header

Body-II

Body-I

Body-II

(a) (c)(b) (d)

Body-I

Figure 9.13 (a) A code fragment with a loop, (b) the distributed version of (a),
(c) the instruction cache layout for (a), (d) the instruction cache layout
for (d)
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on Figure 9.13(c). During execution all three blocks (Header, Body-I and Body-II)
need to be accessed very frequently, and there will be little opportunity (or energy
benefit) in placing the cache lines in question into leakage control mode. If we con-
sider the picture in Figure 9.13(d), on the other hand, when we are executing the
first loop only the first Header and Body-I need to be activated. The second Header
and Body-II can be kept in a leakage saving mode. Similarly, when we move to the
second loop, during execution, only the second Header and Body-II need to be acti-
vated. Therefore, at any given time, the distributed alternative leads to the activation
of fewer cache lines. However, the number of cache lines occupied by the code is one
part of the big picture. Since we are focusing on the leakage energy consumption, we
also need to consider the execution time. If, in this code fragment, data cache locality
is a problem, then the first alternative (without distribution) might have shorter exe-
cution time if loop distribution destroys data cache locality. Consequently, although
the alternative in Figure 9.13(d) will occupy fewer cache lines at a given time, it will
keep those cache lines in the active mode for a longer duration of time. Consequently,
there is a tradeoff here between the number of cache lines occupied and the time
duration during which they are active.

9.8 Conclusions

Software can have significant impact on system energy consumption. Energy-
efficiency is one of the critical criteria when designing or evaluating software for
embedded systems with limited energy supply. There are many optimisation tech-
niques that can improve energy-efficiency of the software. This chapter has shown
various examples of software that can be used to control power modes, enhance power
modes, reconfigure resources for energy-efficiency. In addition, we also showed
examples of how algorithm modifications and traditional compiler optimisations
influence power consumption.
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Chapter 10

Power-efficient data management for
dynamic applications

P. Marchal, J.I. Gomez, D. Atienza, S. Mamagkakis and
F. Catthoor

10.1 The design challenges of media-rich services

Business analysts forecast a 250 billion dollar market for media-rich, mobile wire-
less terminals [1]. These systems require an enormous computational performance
(40 GOPS1). Even though current PCs offer this performance requirement, they con-
sume too much power (10–100 W). Mobile devices should consume at least two
or three orders of magnitude less power [2]. Furthermore, they should be cheap to
successfully penetrate the consumer market. Consequently and in spite of the design
issues, the engineering and manufacturing costs need to be reduced. Industry strongly
believes that platforms are a potential way to meet the above challenges.

10.1.1 The era of platform-based design

A platform is a fixed micro-architecture together with a programming environment
that minimises mask-making costs and is flexible enough to work for a set of appli-
cations [3]. The production volumes can then remain high over an extended chip
lifetime.

Given the strong energy constraints, we must choose the flavour of these plat-
forms. Since power is cubic to the processing frequency, parallelism is an effective
way to reduce power and energy consumption. Then, multiple simple processors
are preferred to one complex speculative and out-of-order processor. In the right
application domain, we can get better performance and spend less energy. Besides par-
allelism, heterogeneity is an alternative way to decrease the energy cost. For instance,

1 Giga operations per second.
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Figure 10.1 Characteristics of our application domain

the TI OMAP platform combines a RISC processor with a digital signal processor
(DSP). The RISC is more energy-efficient for the input/output processing and simple
control-dominated applications. The DSP, on the other hand, provides the compu-
tational performance for audio and video processing, while keeping the energy cost
bounded.

Taking a look at the market, it is clear that heterogeneous multi-processor plat-
forms are conquering the world of low power embedded systems: ST Nomadik [4],
Philips Nexperia [5], TI OMAP [6].

10.1.2 The desire for media-rich services

Platforms perfectly support the next wave of media-rich, wireless applications, bound
to flood the multi-billion dollar consumer market. Typical applications are media-
players such the MPEG4 IM1 player.

We summarise the most important characteristics of the application domain in
Figure 10.1:

• Multi-threaded: The systems contain multiple tasks which can execute in parallel.
The tasks can either be independent or dependent. In Figure 10.1, the system
contains two parallel tasks (T1 and T2).

• A closed system: The entire set of possible tasks is known at design time (i.e. we
know the source code of every task to be executed in the system). However,
the start time of each task and the exact instances of a task being executed at a
precise instant, is only known at run time. User interaction and data-dependent
conditions introduce non-deterministic behaviour in the system, making it impos-
sible to accurately predict which tasks will be executed in parallel. We assume
that no tasks can be downloaded on the system (such as e.g. Java applets or other
software agents). For our example, this entails that no other types of tasks but T1
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and T2 can occur at runtime. Conceptually, it is feasible to extend our framework
and methodology for open systems, but we leave this for future work.

• Time-constraints: Tasks within multi-media applications are usually bound to
time-constraints. The most common deadline is the frame-rate (see above). To
have a fluid video display the tasks of a thread-frame have to finish within its
deadline. We indicate the deadline imposed by the frame-rate on our application
in Figure 10.1. In the first frame, we use a high frame-rate, i.e. a tight deadline
for T1. Thereafter, a user event relaxes the frame-rate. In the remainder of this
text, we mainly focus on the frame-rate, despite the fact that other deadlines will
in practice also occur.

• Tasks are control/data flow graphs: Each task is a control/data flow graph. Hence,
parts of a task may be conditionally executed. As a result, which data and how
frequently it is accessed may significantly vary at runtime. We take as a premise
that at the start of each task we know how much memory it needs. The memory
space can be used for the static data or as a heap for runtime allocated data.
For instance, we assume that T1 requires two data structures whereas T2 only
needs one.

• Data-dominated: The tasks are data-dominated. As a result, the energy of the data
memory architecture dominates the system cost. On multi-media systems, this
assumption is particularly true after the cost of the instruction memory hierarchy
is optimised (e.g. with References 7 and 8). The data memory cost is then usually
the remaining energy bottleneck. Consequently, optimising the data memory is
the top priority, even if it afterwards slightly increases the processing energy
consumption.

In the next subsection, we discuss the main challenges to integrate these
applications on an embedded platform.

10.1.3 Memories rule power and performance

The memory system is an important contributor to the performance and power con-
sumption of embedded software, particularly for multi-media applications [9,10].
The most well-known technique for improving the performance of the memory sub-
system is introducing a layered memory architecture. Large memories used to store
multi-media data have long access times. Therefore, they are too slow to supply data
at a sufficient rate to the processing elements. As a result, the processing elements
stall, thereby wasting time and energy. To improve the performance and reduce the
energy cost, designers create a layered memory hierarchy. Each layer contains smaller
memories to buffer the data that is frequently accessed by the processor.

In this work, we focus on how to exploit a layered memory architecture. Partic-
ularly, we optimise the available bandwidth to the multiple memories/banks of each
layer. This problem consists of detecting a data assignment and instruction schedule
that satisfy all time-constraints while minimising the energy consumption. Despite
the many techniques already exist for this problem (Section 10.3), this approach
improves the bandwidth within a basic block and assume that the memories are
accessed by a ‘single thread’. Moreover, these approaches require that access pattern
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of the application can be analysed at design-time. Unfortunately, in our application
domain multiple-threads often share memory resources. Furthermore, the user deter-
mines which threads are running. As a consequence, we can only characterise the
access pattern at runtime. We will show in Sections 10.4.1.1, 10.4.2.1 and 10.5.1 that
existing techniques break down under these circumstances, resulting in energy and
performance loss.

We will overview the techniques which we have developed to overcome the
above limitations. We have investigated on the one hand design-time techniques
for globally optimising the memory bandwidth, even across the tasks’ boundaries
(Sections 10.4.1.2 and 10.4.1.3 for the shared layer and section 10.4.2.2 for the local
layer). On the other hand, we have developed a combined design-time approach for
dealing with the dynamic behaviour (Section 10.5). It makes runtime decisions based
on an extensive design time analysis phase. Finally, we present how these runtime
decisions can be energy-efficiently implemented at runtime (Section 10.6). Before
introducing our approach, we explain the memory architecture targeted throughout
this text (Section 10.2) and the related work more in detail (Section 10.3).

10.2 Target architecture

During our research, we concentrate on a generic target architecture (Figure 10.2).
Different processing tiles contain multiple processing elements that share a local
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Figure 10.2 Target architecture for bandwidth optimisation
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memory layer. The processing elements within the same tile are closely synchronised.
A processing tile could be, for instance, a very long instruction word (VLIW) or a
simple RISC processor (like on a TI OMAP). The local memory layer on a processing
tile may comprise multiple scratch pad memories/banks. Again this closely resembles
ST LX [11] or TI C6X [6] DSPs where up to eight memories are included in the local
layer. We do not directly exploit cache memories, but focus on scratch pad memories.
These software-controlled memories do not require complex tag-decoding logic [12].
Therefore, they have a lower energy cost per access compared to caches, and also
reduce the indeterminacy of the system. To further reduce the global energy cost, we
assume that they are heterogeneous: they can have different sizes, different number
of ports and access time.

Furthermore, the processing tiles share an off-chip SDRAM (like on the TI OMAP
or Philips Nexperia). We include the SDRAM in our overall target architecture,
because it may consume up to 30 per cent of the system energy cost of a commercial
hand-held device [13].2

We integrate a cross-bar as communication architecture both between the pro-
cessing elements and the local layer as between the local layers and the shared
SDRAM. Although a cross-bar is not the most energy-efficient architecture, its energy
cost is currently limited to only 10 per cent of the global data transfer cost.3 With
this configuration, the communication architecture does not have any impact on the
achievable performance, but the ports of the different memory layers (local memories
and SDRAM) become potential bandwidth bottlenecks.

10.3 Surveying memory bandwidth optimisation

Memory bandwidth optimisation is a widely researched topic. Most of the related
work is focused on improving the bandwidth of a single memory layer. This layer
can either consist of multiple SRAMs or a large SDRAM memory (Figure 10.2). We
discern two methods which are commonly applied/combined to optimise the memory
bandwidth: data layout transformations and instruction scheduling techniques. Data
layout transformations may comprise several optimisations: from deciding the opti-
mal address in memory (and thus, the optimal memory module) for each application
variable to the array elements relative order in memory. Variables lifetime can also
be exploited to fully exploit the available memory space. Instruction scheduling tries
to find a memory access ordering that optimises a specific cost. The goal is usually to
increase the system’s performance. Only a few methods exchange the performance
gains for energy savings. In the next subsections, we outline them for SDRAMs and
for the local memory layer.

2 This percentage is for a complete system including speakers, LCD, etc.
3 In principle, a more scalable communication architecture could be programmed or synthesised (such

as e.g. Referene 14) However, research on advanced communication architectures falls outside the scope
of this text.



324 System-on-chip

...

Page

Column 
decoder

Row 
decoder

Page 
buffer

Bank

Output/input 
register

Figure 10.3 Multi-banked SDRAM architecture

10.3.1 SDRAM bandwidth

SDRAMs are mostly used for storing large multi-media data. The access time and
energy cost of an SDRAM heavily depend on how it is used. In general, an SDRAM
consists of several banks (Figure 10.3). Fetching or storing data in an SDRAM
involves three memory operations. An activation operation decodes the row address,
selects the appropriate bank and moves a page/row to the page buffer of the corre-
sponding buffer. After a page is opened, a read/write operation moves data to/from
the output pins of the SDRAM. Only one bank can use the pins at a time. When the
next read/write accesses hit in the same page, the memory controller does not need to
activate the page again (a ‘page-hit’). The application can read these data elements at
a lower access latency and lower energy cost. However, when another page is needed
(a ‘page-miss’), precharging the bank is needed first. Only thereafter the new page
can be activated and the data can be read. Note that pages from different banks can
be opened simultaneously. We can then interleave the access among banks in order
to minimise the number of page-misses. The less page-misses occur, the better the
performance and energy consumption of the SDRAM become. Most methods below
focus on transforming the application such that page-misses are avoided.

10.3.1.1 Data layout transformations and data assignment techniques

For a fixed access schedule, the layout of the data in a memory bank defines how
many page-misses occur (Figure 10.4). To illustrate this, we map the scalars a,b,c,d,e,f
in two different ways onto the pages of an SDRAM bank. If a memory operation
accesses an open page, a page-hit occurs (H). If, on the other hand, the next operation
reads/writes to another page, a page-miss happens (M). For example, in the first
layout, an access to c after one to a results in a page-hit, while an access to e after
one to a causes a page-miss. Given the presented access sequence, four page-misses
occur in the left layout. If we change the data layout, we can reduce the number of
page-misses. For example, when we move e to the first page and b to the second
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Figure 10.4 Different data layouts impact the number of page-misses

one, only two page-misses remain (Figure 10.4 – right). Furthermore, it reduces the
execution time from 22 to 14 cycles. Since the data layout has such a large impact
on the performance, several authors have proposed techniques to optimise it. Rixner
et al. [18] partitioned arrays into tiles, each fitting into a single page. The tiles are
derived such that the number of transitions between the tiles, and thus the number
of page-misses, is minimised. Reference 16 proposes to layout the scalar variables
inside the program text, reducing the overall page-misses.

In contrast with the older DRAM architectures, most SDRAMs nowadays have
more than one bank. For example, the Rambus’ SDRAMs have up to 32 banks.
Multiple banks provide an alternative way to eliminate page-misses. For instance,
Reference 17 distributes data with a high temporal affinity over different banks such
that page-misses are avoided. Their optimisations rely on the fact that the temporal
affinity in a single-threaded application is analysable at design time.

Thus, despite data assignment techniques exist for limiting the page-miss penalty,
they are restricted to single-threaded, design-time analysable tasks. As we will moti-
vate in Section 10.5.1, these techniques break down for dynamic multi-threaded
applications.

10.3.1.2 Memory access reordering techniques

The access order also influences the number of page-misses. Consider the code of
the basic block shown in Figure 10.5(a). Its data flow graph is also shown. After data
dependence analysis, several memory access schedules are feasible (just two of them
are shown). However, as depicted in the figure, the choice impacts the number of
page-misses (and thus, the performance and energy consumption). We assume the left
data layout in Figure 10.4. The data dependence analysis reveals that read accesses
to a, b, d and e may be performed in any order. To hide the multiplication latencies,
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we may opt to generate the top schedule of Figure 10.5(b). It causes five page-
misses out of seven accesses; reordering the accesses as shown in the second option
helps to reduce the number of page-misses to just two. The potential performance
improvement derived from the first schedule will very likely become a time penalty
because of the extra page-misses. Moreover, the total energy consumption will be
significantly larger.

As we will see in Section 10.4.1.1 for multi-threaded contexts, memory accesses
from different concurrent tasks interfere with each other. As a consequence, task
scheduling is a higher level way of changing the final access ordering.

We may classify the existing work in this area in two main threads: hardware
approaches (trying to reorder accesses through smart memory controllers) or by soft-
ware approaches (that rely on the compiler to perform code transformations and
instruction scheduling optimisations). Several authors [18,19] propose hardware con-
trollers to reorder the accesses. Typically, they buffer and classify memory access
operations according to their type (precharge, row memory accesses and column
memory accesses) and according to the accessed bank and the row. The hardware
logic of the memory manager selects from this classified set which operation to exe-
cute first. Since we focus in low power design, we strive to simplify the hardware to
the bare minimum and put the complexity of our designs as much as possible in the
design-time preparation phase (subsection 10.5.2). In this way, we avoid the extra
hardware which increases the energy consumption of all memory accesses.

Several software approaches have been presented too. Panda et al. [20] expose
the special access modes of SDRAM memories to the compiler. As a result, their
scheduler can hide the access latency to the SDRAMs. The work was started in the
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context of system synthesis, but later on extended to VLIW compilers [21]. Finally,
Lyuh and Kim [22] combine the scheduling technique of Panda et al. [20] with the
memory energy model of Delaluz et al. [23] for reducing the static SDRAM energy.

The above existing techniques rely on the fact that the access pattern can be
analysed at design time for single-threaded applications. This is not the case in our
application domain. Dynamism and data-dependent control flow in modern applica-
tions makes quasi unpredictable the final access pattern of a single thread. Matters
become more complex in the multi-thread context: memory accesses from differ-
ent threads are interleaved. Currently, no techniques analyse the access pattern
across threads. Moreover, the dynamic behaviour of some multi-threaded applica-
tions further complicates the problem: the active task-set (set of tasks executing
simultaneously) is only known at runtime. Therefore, it is impossible to predict the
inter-tasks memory access interactions at design-time, since we cannot even know
which tasks will be executed in parallel!

10.3.2 Bandwidth to the local memory layer

Complementary to the SDRAM layer, memory bandwidth optimisation has also been
researched for the local memory layer. Their optimisation objective is mostly reducing
memory area/energy while guaranteeing performance. In this subsection, we discern
again techniques which only change the data assignment and the ones which combine
it with instruction scheduling.

10.3.2.1 Data layout based techniques

In the synthesis community, many techniques were developed for synthesising a
memory architecture which provides sufficient memory bandwidth, but is energy or
area efficient too (e.g. References 24,25). They generate a memory architecture and
decide on the data to memory assignment in a single step. As a consequence, this
makes them not directly applicable for predefined memory architectures (such as on
ASIPs or DSPs).

Modern DSPs usually have a local memory layer which consists of multiple
SRAM memories. Let us consider the architecture in Figure 10.6 as an example.
It has two single ported memory banks (X,Y) which can be read in parallel. Most
compilers would model this memory layer as a monolithical memory with multiple
ports. Under this assumption, data layout has almost no influence in the potential
performance. The compiler will schedule in parallel as many memory operations as it
can as load/store units exist on the architecture. Since the compiler is not bank-aware,
it will even schedule accesses to the same memory bank in parallel. Although this
simplifies the instruction scheduling, special hardware at runtime needs to serialise
the parallel accesses to the same memory resource. The DSP is then stalled and
performance is lost. Several authors therefore expose the local memory architecture
to the linker.

A conscious data layout may help to alleviate this problem. Saghir et al. [26] max-
imise the performance by carefully distributing the data across the different memories.
In this way, they ensure that as many accesses as possible can be executed in parallel.
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Figure 10.6 A VLIW architecture borrowed from Reference 26

Some very recent approaches [27] dynamically reallocate data in the local layer.
At compile time they perform a life analysis of the task and insert instructionc to
dynamically copy code segements and variables onto the scratchpad at runtime. They
report energy reductions up to 34 per cent compared to static allocation. However,
their technique cannot efficiently handle dynamic applications. A static analysis of
a dynamic application cannot reaveal which data will be accessed at any point of
the task. Furthermore, multi-tasked environments, where the local layer is shared
between several tasks, are not considered at all.

10.3.2.2 Access order

The memory accesses order has also an important impact on the performance. and
energy consumption. Indeed, changing the access ordering may allow us to achieve
the same performance with a more energy-efficient memory system. Let us see how
with an example (Figure 10.7). The application has one small array (B) and a bigger
one (A). The memory system may consist of several instances of any of the modules
in the ‘Memory library’. Considering the access schedule 1, the architecture 1 is the
most energy-efficient that enables the schedule. However, the dual port memory has
an important impact on the energy consumption of this architecture. By rescheduling
the memory accesses of the inner loop, we can eliminate the need for this mem-
ory (architecture 2 in Figure 10.7). It retains the same performance, but both data
structures can now be mapped in a single port memory, thereby reducing the energy
cost from 0.23 mJ to 0.13 mJ. From this example, it is clear that data layout and
access scheduling are very effective in lowering the architecture cost. Because both
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Figure 10.7 Reducing the memory cost with access ordering

techniques are so closely coupled, several authors propose to optimise memory layout
and access ordering together.

An example is Reference 28. It optimises the memory bandwidth in a separate step
before compilation, thereby outputting a (partial) data assignment which constrains
the final instruction scheduling. It guarantees that enough memory bandwidth exists
to meet the deadline, while remaining as energy-efficient as possible. This technique
optimises the storage bandwidth within a basic block for memories with a uniform
access time of the application. An extension to this work, Reference 29 indicates
how this technique, initially developed for a system synthesis, can also be used on
existing processor architectures. But in both cases, they only reorder the memory
accesses within the scope of a basic block.

More global optimisation techniques can further improve the performance. In the
past, several authors have proposed techniques to globally schedule instructions to
parallelise code [30], but they do not consider how to optimise the memory band-
width. Verhaegh et al. [31] define an operation schedule which reduces the number
of memory ports. However, they do not take into account which data structures are
accessed or how they are mapped onto the memory.

In summary, the main limitations of the above bandwidth optimisation techniques
for both the local and the shared memory layer are:

1 Single-threaded applications: they optimise the memory bandwidth for a single
task at a time. As a result, we cannot directly use them in our context, since we
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want to optimise the bandwidth across multiple tasks (e.g. on the shared SDRAM
layer).

2 Static applications: the above data layout/assignment techniques obtain informa-
tion on the locality for the data at design time. The locality depends on which tasks
are executing in parallel. Since in our application domain the actual schedule is
only known at runtime, we can no longer extract it at design time.

3 No global optimisation: the existing techniques only reorder the memory accesses
within the scope of a basic block. No optimisations across the boundaries of the
basic blocks are systematically applied. As we will show for the local memory
layer (Section 10.4.2), this significantly reduces the potential performance gains
and energy savings.

For our application domain and target architecture, several extensions are clearly
needed for dealing with multiple threads and coping with the dynamic behaviour. We
discuss now techniques which optimise the memory hierarchy across the boundaries
of a single task (subsection 10.3.3) and overview the techniques for managing dynamic
behaviour (section 10.3.4).

10.3.3 Memory optimisation in multi-threaded applications

Different design communities have researched the influence of the communica-
tion architecture and memory subsystem on the performance of a multi-threaded
application.

A large body of research exists in the high-performance computing domain on
parallelising applications while reducing the communication cost (e.g. the SUIF-
project [32] and the Paradigm compiler [33]). However, they target an architecture
which is very different from ours. For example, they rely on complex hardware to
guarantee data coherency and consistency, which may come at an important energy
penalty. Furthermore, their techniques only work for statically analysable code and
cannot cope with runtime variations which are typically present in modern multi-
media applications. These limitations render this prior-art not directly applicable to
our context.

Also in the embedded system’s context many authors have studied multi-threaded
applications. Li and Wolf [34] proposed a top-down hierarchical approach, compiling
code on a heterogeneous multi-processor. The main disadvantage of this approach
is that they use a synchronous data-flow model. It covers only a limited application
domain and is not sufficient for our target domain.

Finally, since the middle of the last decennium, multi-processors systems have
been widely researched in the system-level design community. Most techniques
explore how to combine IP-blocks such that the system cost (albeit performance,
energy or area) is reduced. In this context, the ordering and assignment of the
tasks to the processing elements plays an important role in the system’s performance
(see Reference 35 for an overview). However, in recent years, the energy consump-
tion has become an important bottleneck too. When energy is considered at all in
task scheduling, the focus has been on the processing cores. Schmitz et al. [36]
present a complete methodology to map multi-tasked and multimode applications
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onto heterogeneous multi-processor platforms. They focus on task and communi-
cation mapping, tasks scheduling and dynamic voltage scheduling. However, their
model does not specifically include the memory system. They incorporate communi-
cation costs between tasks, but this information is not enough to efficiently optimise
the memory hierarchy.

Unfortunately, only limited research exists in reducing the energy cost of the
memory system. References 37 and 38 describe both a heuristic which does allocation,
assignment, scheduling of multiple task-graphs. References 39 and 40 compile a
task-graph on a given heterogeneous architecture. They explicitly model the memory
system, interconnect and processing elements. The algorithm answers the following
question: is it better to distribute the data (at a higher communication cost) or to keep
data local (at a higher local memory cost). The above approaches use a naive memory
architecture model and hardly incorporate the real behaviour of the interconnections
and memories.

Recently, Reference 41 has discussed how many processors are required to execute
code as energy-efficiently as possible. The task interaction is empirically accounted
for (based on simulation), but this is not a scalable approach. Patel et al. [42] par-
titions the data space of a linked binary. Each part is then mapped onto a memory
bank. It selects the partition which optimises the energy cost compared to a dual
port memory. The performance of each partition is not accurately estimated since the
technique does not account for memory stalls.

We identify the following limitations to the above techniques:

1 they target an architecture which is either too different from ours or is not detailed
enough. As a result, we cannot reuse them to optimise the interaction between
parallel executing tasks;

2 their program model is too limited for our application domain in which dynamic
behaviour plays an important role too.

In the next section, we review the current techniques for coping with the dynamic
behaviour.

10.3.4 Runtime memory management

Dynamic applications are slowly becoming desirable in the context of embedded
systems. The unpredictability generated by the dynamism entails the usage of runtime
policies for effective optimisations. These policies must be implemented efficiently
to minimise the resulting overhead (Figure 10.8).

As indicated in the previous sections, for memory bandwidth optimisation,
the policy making consists of scheduling the tasks (or their instructions) and
(re)distributing their data across the available memories (step 1). To efficiently imple-
ment these decisions, we need to manage the memory space at runtime (step 2).
In this section, we overview both the runtime decision taking and implementation
techniques.
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Figure 10.8 Runtime memory optimisation decomposed in two problems: decision
taking and implementation

10.3.4.1 Runtime policies

In the context of embedded systems, only a few techniques decide where to store the
data at runtime taking the memory architecture into account. For instance, References
12 and 43 decide at design time for each call-site to malloc/new to which memory
the data should be assigned. They base their decision on simple criteria: object co-
location to avoid conflict misses, object size and access frequency. Nearly no work has
been done on memory-aware task scheduling for dynamic multi-media applications.
One of the only contributions in this area is Reference 44. There, an OS scheduler
directs the power mode transitions of the SDRAM modules, but performs no access
scheduling or bank assignment.

10.3.4.2 Enforcing runtime policies

Dynamic memory management is a well-known problem. It has been widely
researched in the context of general purpose computing. The main reason is that
high-level programming languages intensively allocate data on the heap at runtime.
For example, every time in C++ a new object is created, the ‘new’ function dynami-
cally allocates memory space on the heap. Since applications allocate many differently
sized data structures, the heap space easily becomes fragmented. This significantly
reduces the available memory space and increases the allocation overhead. Several
dynamic memory managers have been proposed for reducing fragmentation (Refer-
ences 45 and 46 give an overview). An important technique to eliminate fragmentation
is adapting the dynamic memory manager to the allocation requests of the applica-
tions. Kiem-Phong [47] splits the available memory in pools. Every pool is then
managed by a separate dynamic memory manager, which deals with a subset of the
allocation requests. Usually, the subsets consist of the allocation requests with a
similar size.

The authors of Reference 48 present a deterministic hardware-based dynamic
memory manager. The memory is hierarchically managed. Each processor has its
own memory pool which is controlled by the realtime operating system (RTOS).
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Whenever the space in this pool is too limited, the processor allocates more memory
from the shared memory pool. The shared pool is split in fixed sized blocks to sim-
plify its management. The result is a memory manager which has very fast memory
(de)allocations times.

In the context of multi-processors, the most scalable and fastest memory managers
use a combination of private heaps combined with a shared pool [45,49]. These
memory managers avoid typical multi-processor allocation problems such as blow-
up of the required memory space, false sharing of cache-lines and contention of
threads accessing the shared memory. However, they are unaware of the memory
architecture and are complementary to our work. As we will show in Section 10.6,
we reuse the above techniques to manage the memory space at runtime, but we have
to carefully control their allocation overhead.

We conclude from the above that:

1 no decision techniques cope with the underlying memory architecture, albeit a
multi-banked SDRAM or the local memory layer;

2 no current runtime decision techniques optimise the memory bandwidth;
3 despite dynamic memory management being a well-researched problem, limited

support is available to integrate these decisions inside the code.

10.4 Memory bandwidth optimisation for platform-based design

Many techniques optimise the memory bandwidth for a single thread (Section 10.3),
but they break down when applied to multi-threaded applications. In this section, we
illustrate how parallel accesses from different processing elements either to the shared
memory (subsection 10.4.1) or the local memory layer (subsection 10.4.2) degrade
the system’s performance and increase its energy consumption. For each of them,
we will introduce techniques to mitigate the problems. Our techniques exploit data
assignment and scheduling to optimise the behaviour of the memories.

10.4.1 The shared layer

As motivated, the shared layer usually is based on a multi-banked memory, such as an
SDRAM. In this subsection, we first explain with an example why existing techniques
break down (subsection 10.4.1.1). Then, we present how to overcome these limitations
with data assignment and task scheduling (Sections 10.4.1.2–10.4.1.3).

10.4.1.1 Multi-threading causes extra page-misses

Over the past years, several techniques have been proposed to eliminate page-misses
inside a single thread (Section 10.3.1), but they cannot cope the ones caused by
parallel threads. A small example explains why (Figure 10.9). It consists of task 1
and task 2, running on a different processor tile and accessing data stored in the shared
SDRAM memory. As explained above, the more page-misses occur on the SDRAM,
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the more energy is consumed.4 One way to minimise the number of page-misses is
to carefully assign the tasks’ data to the banks of the SDRAM. Current techniques
optimise the assignment of a single task at a time. In the case of our example, they
generate layout A. If both tasks are sequentially executed, it results in only one page-
miss for task1 (see sequential schedule). Also for task 2, only three page-misses
occur, because its data (b and c) are distributed across the two banks (see again the
sequential schedule).

As soon as both tasks execute in parallel while using layout A, extra delays and
many more misses occur, because the SDRAM interleaves accesses from both tasks.
For example, task 1 fetches a while task 2 reads simultaneously from b. With its
single memory port, the SDRAM cannot access both data structures in parallel. Its
interface has to serialise them, delaying the access to b with one cycle. Furthermore,
every other access to a or b results in a page-miss, because they are stored on different
pages in the same bank. The extra page-misses augment the energy cost and further
delay the execution.

Interacting tasks on shared resources thus cause more delays and generate extra
page-misses. Currently, no techniques can avoid this, because they optimise the data
layout within a single task.

10.4.1.2 Optimising the data assignment across the tasks’ boundaries

We have proposed a technique for reducing page-misses across the tasks’ boundaries
[50]. It stores frequently accessed data structures with high access locality in separate
banks as much as possible. To identify these data structures, we have developed a
heuristic parameter called selfishness.5 At design-time, each task is analysed and
profiled independently. Every relevant data structure of each task is characterised
with a ‘selfishness factor’. A data structure’s selfishness is the average time between
accesses (tba) divided by the average time between page-misses (tbm). It is a measure
of spatial locality of the data structure; we finally weight it with the data structure’s
importance by multiplying it by the number of accesses to the data structure.

At runtime, when we know which tasks will co-occur in time, we decide the assign-
ment of the alive data. We have implemented a greedy algorithm that assigns data to
the banks by decreasing order of selfishness. The higher the selfishness becomes, the
more important it is to store the data in a separate bank. Our algorithm distributes the
data across banks such that the ‘selfishness’ of the banks is balanced. The selfishness
of a bank is the sum of the selfishness of all data structures in the bank.

Consider the example in Figure 10.9. The sequential schedule gives us the required
information for each data structure. a and b both have the same spatial locality,
because the time between misses equals the entire duration of the task and the time
between accesses is similar. However, because b is less frequently accessed than a,
its selfishness is slightly lower. The selfishness of c is much lower than both a and

4 For the clarity of our example, we only focus on their energy penalty, i.e. no performance penalty due
to page-misses.

5 For details of how to measure selfishness we refer to Reference 50.
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Figure 10.9 Interleaved accesses from different tasks cause page-misses and extra
stalls

b, since for every access a page-miss occurs and it is less accessed. Therefore, when
we schedule both tasks in parallel, our algorithm first separates the most selfish data
structures a and b and then stores c with b (since the bank containing b is less selfish
than the one with a). This corresponds with layout B in the figure. As a result, only
five page-misses remain and the energy cost is significantly reduced compared with
a naive layout: layout A just places one data structure after the other. This results in
one page-miss per access.

10.4.1.3 Task ordering to trade-off energy/performance

Besides data assignment, the task order also heavily impacts the system’s energy
and performance. For instance, if we execute task 1 and task 2 sequentially, four
page-misses occur. This is the most energy-efficient solution, but takes the longest
time to execute. In contrast, when we execute both tasks in parallel, the exe-
cution time becomes shorter, but five page-misses occur, thus the energy cost
increases.

Generally, by changing the task order we can trade-off the energy/performance
of the system. We have developed an algorithm to schedule a set of tasks in such
a way that the energy consumption is minimised while meeting a pre-fixed time
deadline. For a given application, we first define the most likely combination of
tasks that will happen at runtime (we call these combinations ‘scenarios’. See
Section 10.5). For each scenario and a specific time-constraint, we explore differ-
ent schedule possibilities, trying to find the most energy-efficient. Once the relative
schedule is defined, we must allocate the data of the tasks. For that purpose, we
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re-use the ideas presented in the previous section. The obtained task schedule and
data allocation represent a Pareto-optimal solution for performance and energy. We
iteratively modify the time-constraint in order to generate a set of solutions, auto-
matically generating a set of Pareto-optimal solutions (called a ‘Pareto curve’. In
Figure 10.10 we depict the Pareto curve for our example). The designer can pick
the operating point which best fits his needs from the generated trade-off points.
All the details of this joined task schedule/data assignment technique are shown in
Reference 51.

Memory aware task scheduling may be be also beneficial for performance. Assum-
ing that it is always better to distribute the data across banks to reduce the number of
page-misses, a conservative task schedule increases the assignment freedom. When
the ratio ‘number of data structures : number of banks’ becomes high, insufficient
banks are available to separate all energy critical data structures from each other.
Data allocation alone does not suffice to decrease the number of page-misses. In such
a situation, task scheduling is a good way to enlarge the freedom of the allocation
process. Generally, sequential schedules result in the lowest energy consumption,
but they have the worst execution time. In general, the trend is clear: the lower the
execution time (scheduling more tasks in parallel), the higher the energy consump-
tion. Of course, some schedules will not follow this tendency. Sometimes, too much
parallelism is bad even for performance!! (if the number of page-misses increases too
much and the applications are memory bounded, an aggressive parallel task schedule
could increase the total execution time).

In Figure 10.11 time and SDRAM energy consumption values are shown for
four different schedules of the same task-set. Schedule D corresponds to a sequential
scheduling: as expected, the longest execution time with the lowest energy consump-
tion. Full parallel schedule is shown in part A of the figure. B and C are intermediate
schedules, that trade-off performance and energy consumption. As well as illustrat-
ing our point, Figure 10.11 also points out that the execution time of a task cannot
be estimated independent of the other tasks running in parallel with it. The time
penalty raised from sharing the SDRAM between several concurrent tasks reaches
up to 300 per cent for CMP (in schedule A), compared to its execution time without
other tasks executing on the platform.



Power-efficient data management 337

20000 40000 600000

DCT RAW CONV

DCT RAW
CONV

Time [cycles]

E = 35.8

E = 44.18

CONV
RAW

DCT
E = 76.5

RAW

DCT
E = 56.41

CONV

CMP

A

B

C

D

CMP

Figure 10.11 Scheduling outputs for four tasks

10.4.2 The local memory layer

10.4.2.1 Access conflicts reduce the system’s performance

As indicated in Section 10.3.2, existing techniques only optimise the memory band-
width in the scope of a basic-block. As a result, a large room for improvement remains.
We illustrate this with a small example that consists of three data-dominated loops
(see code in Figure 10.12 – left) which are executed on a platform that consists of three
single-port memories: two 4 kB ones (0.11 nJ/access) and a 2 kB one (0.06 nJ/access).

Because the applications are data-dominated, the duration of the memory access
schedule determines the performance of the loops. We assume that the remaining
operations can be performed in parallel with the memory accesses or take only limited
time. We will use the example presented in Figure 10.12 – left to study the influence of
memory access schedule together with data assignment in the resulting performance
and energy consumption.

Current compilers are not aware of the final data to memory assignment. During
instruction scheduling, most compilers simply assume that any memory operation
finishes after n-cycles. When the executed operation takes longer than presumed, the
entire processor is stalled. As a result, often a large difference exists between the
expected and the effective performance of the processor. We use a typical modulo
scheduler [52] to generate our memory access scheduling. Note that a modulo sched-
uler may schedule read/write operations from the same instruction in the same cycle.
This is the case in our examples: the write operation belongs to the iteration i while
the read operation comes from iteration i + 1. Modulo scheduling may be applied
when there are no data-dependent conditions in the loop body. The scheduler gener-
ates a memory access schedule for the inner-loops of 460 cycles (Figure 10.13(a)).
However, the actual performance varies between 540 and 740 cycles. The schedule
takes longer than expected because the processor has to serialise the accesses to D
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int A[301],int B[100];int D[100] int A[300],int B[100];int D[100]
int C[100]; int U[2]; int C[100]; int U[2];
int i,j;

for(i=0;i<100;i++);// loop 1 for(int i=0; i<100; i++) // loop 2
A[i+1]=A[i]+1; D[i]=C[i]+B[i];

for(i=0; i<2; i++){ // loop 1&3
for(int j=0; j<40; j++){
D[j] = D[j-1]+ D[j];

for(i=0;i<100;i++) // loop 2 A[40*i+j]=A[40*i+j-1] + 1;
D[i]=C[i]+B[i]; }

U[i] = D[39];
for(i=0;i<2;i++){ // loop 3 }
for(j=0;j<40;j++) // loop 31 // remainder of loop 1
D[j]=D[j-1]+D[j]; for (int i=0; i<20; i++)
U[i]=D[39]; A[i+80] = A[i-1+80] + 1;
}

Figure 10.12 Motivational example: original code (left), code after fusion (right)

in loop 31. Extra stalls occur depending on whether the linker has assigned the C, B
and/or D to the same memory.

Because how the linker assigns the data to the memories has such a large impact
on the performance of the system, it is better to optimise the data assignment and the
memory schedule together [28]. Our technique imposes restrictions on the assignment
such that the energy is optimised, but still guarantees that the time-budget is met. The
assignment constraints are modelled with a conflict graph (e.g. Figure 10.14 – left).
The nodes correspond to the data structures of the application. An edge between two
data structures indicates that we need to store them in different memories. Hence, the
corresponding accesses to these data structures can be executed in parallel.

The assignment-constraints imposed by the conflict graph prevents certain
accesses from happening in parallel. This restricts the feasible schedules to those
respecting the access restrictions. Thus, the conflict graph links data assignment and
instruction scheduling: for a specific conflict graph we can determine the fastest
schedule possible when using the least energy consuming data assignment solution.
For instance, the edge between A and C (Figure 10.14 – left) forces us to store both
data structures in different memories. The fastest schedule for this conflict graph takes
540 cycles (Figure 10.13(b)). It consumes 64.4 nJ,6 because the conflict edges force
us to store both A and B in large memory (see complete assignment in Figure 10.14 –
left). Note that the energy consumed in the memories only depends on the conflict
graph, not on the access schedule. For a fixed conflict graph, the energy dissipated in
the memories will remain the same even with different instruction schedules.

We can decrease the energy cost of the above assignment by reducing the number
of conflicts. After eliminating the edges between B–D, C–D and B–C, the small

6 We compute the energy consumption as follows:
∑

∀m∈M
∑

∀ds∈m NrAccess(ds)Em
access
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Figure 10.13 Empty issue slots in the memory access schedule of the inner-loops:
(a) existing compiler, (b) with fastest partial data assignment, (c) with
most energy-efficient partial assignment

data structures B,D and C can be assigned in the smallest and most energy-efficient
memory (Figure 10.14 – right). The energy consumption is then 54.4 nJ instead of the
original 64.4 nJ. Fewer conflicts also imply that fewer memory accesses can execute
in parallel. The fastest feasible schedule now takes 740 cycles (Figure 10.13(c)). The
energy savings thus come at a performance loss.

However, many memory access slots remain empty (check again Figure 10.13).
This is mainly due to: (1) inter-iteration dependencies. For instance, the initiation
interval of loop 1 is 2, because A depends on itself. Hence, only 30 per cent of
the available memory slots are used; (2) we do not use power hungry multi-port
memories. Consequently, we cannot schedule operations that access the same data in
parallel. For example, in loop 31 we cannot execute the accesses to D in parallel.

10.4.2.2 Global schedule: loop morphing

With more global optimisations, such as loop fusion [53], we can further compact
the application’s schedule. However, existing fusion techniques can only overlap
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few iterations. Consider the loop nests in Figure 10.16. We also show their iteration
domains (each dot corresponds to a single iteration). Traditional techniques would
only fuse four out of nine iterations, due to the different dimensions of the loop nests.
This restriction limits the achievable performance gains.

Let us apply loop fusion to our previous example (code in Figure 10.12). We first
select one conflict graph, which prevents certain accesses from happening in parallel.
Let us consider the fastest conflict graph (Figure 10.14 – left). If we choose to fuse
loop 1 and loop 2, the resulting schedule would take 440 cycles (Figure 10.15(a)).
Another option would be to fuse loop 1 and loop 3. In this case, the loop nests are not
conformable (they do not have the same number of dimensions and their loop limits
are different). However, current loop fusion techniques will just fuse 40 iterations,
resulting in a schedule length of 460 cycles.

Loop morphing is a technique that enables loop fusion beyond conformability
limits (details can be found in Reference 54). Once we have decided which loops to
fuse, our algorithm gradually tries to make them as similar as possible. Loop splitting
and strip mining are iteratively applied to obtain conformable loop nests. Figure 10.17
shows the different steps to fully fuse the loops shown in Figure 10.16. First, we apply
strip-mining to l2 to fit the number of dimensions of the other loop. The resulting
loop nest is split to avoid the if-condition in the body of the loop. A new loop nest,
with just one iteration, is generated (l3). We now transform the longest loop l1 such
that it has the same length as l2. This transformation is accomplished through loop
splitting. After that, we have two loop nests perfectly conformable, that we can easily
fuse (Phase 2 of Figure 10.17). Note that eight iterations have been fused, instead of
only four in Figure 10.16.

In our example in Figure 10.12, we first split loop 1. Two loops are generated: one
with the first 80 iterations and a second one with the last 20 iterations. Strip mining is
applied to the first of these two new loops. This way we obtain a two-level nested loop,
similar to loop 3. Fusion is now straightforward. Finally, the 20 remainder iterations
from loop 1 may be considered for subsequent fusion decisions. The final code after
morphing is shown in Figure 10.12 – right. Always using the fastest conflict graph,
loop morphing enables a schedule length of only 380 cycles (Figure 10.15(c)).

From the above, we conclude that for a given conflict graph we may decide which
are the best loops to fuse, and use morphing to maximise the iterations fused. However,
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Figure 10.16 Existing fusion techniques can only overlap a limited number of
iterations

if we change the conflict graph, we need to take different fusion decisions. For
example, under the more energy-efficient conflict graph (Figure 10.15(c)), it is more
beneficial to fuse loop 1 and loop 2. The execution time is then 540 cycles compared
to 740 cycles for the non-fused code, for the same energy consumption. The fusion
decisions and, consequently, the performance of the application, heavily depend on
the conflict graph. The more conflicts the higher the application’s performance, but
the more energy hungry it becomes.

In Reference 55, we present a heuristic to decide which loops to combine. The
input of the algorithm is an initial description of the loops, their statements and
iteration domains. As stated above, the decision also takes into account the cur-
rent conflict graph. We compute the ‘fusion gain’ of all possible pairwise fusions.
The fusion gain is an estimation of the relative system’s performance gains after
fusion. We estimate the schedule length of every basic block with an iterative
modulo scheduler. The performance gain estimation is obtained by comparing
the schedule length of the original loop nests and the fused version. The schedule
takes the assignment constraints into account. We only schedule memory opera-
tions in parallel if a conflict exists between their corresponding data in the conflict
graph.

After computing the fusion gains for all possible loop nest pairs, we fuse the loop
pair with the highest gain. After the fusion step, we re-evaluate which loop pairs
can be combined (data dependences may prevent some loops from being fused) and
re-compute the fusion gains of the newly generated loops. This process is iteratively
performed until the performance gain does not exceed a prefixed threshold. We finally
obtain a fused version of the code which is the corresponding conflict graph.

Thereafter, we generate information to decide which conflict edges (from the
conflict graph) to remove first. This generates a more energy-efficient conflict graph
that triggers a new loop fusion process from the original code. This way, we may
generate different versions of the code (i.e. the original code after different fusion
decisions applied). Each of these versions has a conflict graph (and thus, an energy
consumption) associated. Again, we have automatically traded-off performance and
energy consumption, allowing the designer to choose the optimal point that meets the
constraints with the lowest energy consumption. Figure 10.18 shows this trade-off
for different sets of benchmarks. Details can be found in Reference 55.
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Figure 10.18 Energy versus performance trade-off

From this example, we conclude that fusion shortens the memory access schedule
on condition that:

1 We overlap loops even with non-conformable loop headers. Otherwise, the num-
ber of overlapping iterations after fusion is limited. Therefore, we have proposed
loop morphing, a technique that combines loop fusion, strip mining and loop
splitting. Loop morphing fuses non-conformable loops while increasing the
instruction level parallelism in as many iterations as possible. Besides its benefits
for optimising the memory bandwidth, it may be useful for different optimisation
objectives. Loop morphing has been presented in Reference 54.

2 We combine the loops which results in the largest performance gains. Our tech-
nique pairwise fuses loops which considers memory size, number of ports, access
latency and assignment constraints.

We have presented approaches which more globally optimise the memory band-
width for both the local and shared memory layer. In the next section, we discuss
how to cope with the dynamic behaviour of media-rich applications. Our approach
for this problem relies on the above techniques.

10.5 Scenarios for coping with dynamic behaviour

Dynamism introduces a certain degree of unpredictability in the system. Fully static
optimisations cannot handle this non-deterministic behaviour, and the solutions
obtained may be far from optimal. On the other hand, moving all the optimisations to
runtime may introduce too much overhead. Scenarios lay in the middle of these two
extremes. An exhaustive analysis is performed at design time, to gather all the rele-
vant information about every task and their potential interactions. This information
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Figure 10.20 Our runtime task schedule/SDRAM assignment solution

will be later used at runtime to quickly take a decision. In this section, we will first
examine the impact of this dynamism, focusing in the resulting energy consumption.
Later, we will briefly explain the scenario approach.

10.5.1 Energy constraints demands for runtime decisions

Due to the dynamic behaviour of our application domain, it is more energy-efficient
to assign the data and schedule the tasks at runtime. An example in the context of
the SDRAM layer explains why (Figure 10.19). At the start of each frame, the user
executes task 1 and/or task 2. They are the same tasks as in Section 10.4.1. We thus
only know at runtime which tasks execute and which data they require. Also, note
that the deadline varies from frame to frame. For example, at the start of frame 2, the
user lowers the video quality, reducing the frame-rate by half. The system has then
twice more time for each frame.

The optimal task order/data assignment decisions vary from frame to frame (see
Figure 10.20). For example, to satisfy the short deadline in frame 1, we have to
schedule both tasks in parallel. We obtain the least number of page-misses using
layout B from Figure 10.9. However, in frame 2, only task 2 is active. As indicated
in Figure 10.9, layout A is then more energy-efficient.

Finally, in frame 3, both tasks are started again. However, since the frame-rate is
lower now, we can execute them sequentially and eliminate most page-misses with
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Figure 10.21 State-of-the-art task schedule/SDRAM assignment: (1) design-time
and (2) operating system based solution

layout A. So, in each frame, different scheduling/assignment decisions are optimal
for energy and we can only take these decisions at runtime.

Current approaches always generate more page-misses. Design-time techniques
only select one task schedule and layout (Figure 10.21(1)). This single design has to
meet the deadline for the worst-case load, i.e. task 1 and task 2 executed within the
short deadline (frame 1). The most energy-efficient design for this load is executing
both tasks in parallel and using layout B (Figure 10.9). This operating point is not
optimal for both frame 2 and frame 3. It results in seven more page-misses than the
above approach. A pure design-time technique is thus not energy-efficient.

Furthermore, also current runtime approaches are far from optimal. A typical
OS does not account for the specific behaviour of SDRAMs. As long as enough
processors are available, it schedules all tasks in parallel and assigns the data to the
first available free space (Figure 10.21(2)). By storing all the data in a single bank
and scheduling the tasks in parallel, 12 more page-misses occur than in the optimal
case. Again this solution is not energy-efficient.

These results indicate the potential benefits for a runtime technique which con-
siders the SDRAM behaviour and can generate the solutions of Figure 10.20. Since it
should make complex task scheduling/data assignment at runtime, the main difficulty
is restricting its overhead. The local memory layer requires a similar approach, but
we restrict ourselves to the shared SDRAM layer.

10.5.2 Our scenario-based approach

We have proposed a mixed design-time/runtime approach for coping with the
dynamic behaviour (Section 10.6). The philosophy behind it is to take most schedul-
ing/assignment decisions at design-time for all frequently occurring task sets. In this
way, we can reuse our bandwidth optimisation techniques for multi-threaded applica-
tions and at the same time limit the runtime complexity. Only for the more seldomly
occurring task-sets a pure runtime decision is taken as a backup solution. In the next
paragraphs, we explain the main steps of our methodology (Figure 10.22).

10.5.2.1 Scenario identification

Fixing as many decisions as possible at design time comes at the risk of ignor-
ing the actual behaviour and generating worst-case designs. For example, consider
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Figure 10.22 A scenario-based design-time/runtime approach

the code in Figure 10.23. Even though parts of the code are conditionally
executed (e.g. mode and ctrl-conditions in the second loop nest), design-
time techniques assume that both branches are executed, optimising thus the
design for the worst-case load. As a consequence, we heavily over-estimate the
required bandwidth and usually generate an over-dimensioned and energy-inefficient
system.

To prevent this energy-loss, we try to capture the dynamic behaviour with
scenarios. First, we analyse which tasks-sets often co-occur at runtime. We call
them ‘inter-task scenarios’. A similar but more restrictive concept is used by
Reference 56. Second, we narrow down the data-dependent behaviour inside the
tasks with ‘intra-task scenarios’. An intra-task scenario is an execution path through
the task (or a combination of execution paths) for different data-dependent parame-
ters [57,58]. Both the inter- and intra-task scenarios should be manually extracted by
the designer (using profiling). For example, in the code of Figure 10.23, we derive
two intra-task scenarios, one for mode equals true and another one for mode equals
false. Even though research outside IMEC is ongoing into how to identify scenarios
[59,60], a more automated approach is still needed.
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After identifying the scenarios, we can represent each one with a data-flow graph
on which we can easily apply our design-time techniques.

10.5.2.2 Storage bandwidth optimisation at design time

In the second step, we optimise the storage bandwidth of each scenario. Our design-
time techniques generate for each scenario a set of task ordering/data assignment
solutions. Each solution optimises the energy cost for a given time-budget. From
this set, we only retain the Pareto-optimal solutions. For example, for our example’s
scenario in which task1 and task2 are active (Section 10.5.1), we would generate the
Pareto curve of Figure 10.10. Finally, we integrate the Pareto set of each scenario
into the OS. We provide more details in Reference 61.

10.5.2.3 Runtime phase

Then, at runtime, after identifying which scenario is activated and which is its dead-
line, we simply select the best prestored operating point on the Pareto curve and
enforce its task ordering and data assignment decisions. For example, for frame 1 of
our example (Section 10.5.1), our runtime mechanism then selects the leftmost oper-
ating point, scheduling both tasks in parallel with layout B. In contrast, for frame 2
with the relaxed deadline, it implements the rightmost operating point. If the scenario
was not analysed at design time, we use a back-up solution. For example, we simply
use an existing dynamic memory (DM) manager for assigning the data. Note that our
approach leverages current design-time techniques, but requires that scenarios can
be identified inside the application. Obviously, this partly restricts the applicability
of our technique.7

10.6 DM management

The memory space available at runtime to our applications can be located in any
physical memory of the system. It is managed with the help of a DM manager. DM
management basically consists of two separate tasks, i.e. allocation and dealloca-
tion. Allocation searches for a memory block big enough to satisfy the request of
a given application and deallocation returns this block to the available memory of
the system in order to be reused later. In real applications, memory blocks with
various sizes are requested and returned in a random order, creating ‘holes’ among
used blocks (Figure 10.24). These holes are known as memory fragmentation [46].
We talk about ‘internal fragmentation’ when the wasted space is inside allocated par-
titions. Otherwise, we will name it external fragmentation. Internal fragmentation
happens when allocated memory is larger than requested memory and not being used

7 Another approach could be to start from existing OSs and make them account for the energy cost of the
underlying memory architecture. All decisions are then made at runtime without design-time preparation.
Even though we did not investigate this, we expect that such an approach causes too much energy overhead
and violates more deadlines, but more research is still needed.
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Figure 10.24 Fragmentation in DM management

(e.g. a free block of 5 kB is used for a request of 4 kB, hence 1 kB is wasted). If we suf-
fer from external fragmentation, total memory space exists to satisfy the request, but
it is not contiguous (e.g. if a request asks for 6 kB and there are several non-contigous
free blocks of 3 kB, the memory request cannot be satisfied). The DM manager has
to take care of fragmentation issues.

We have classified all the important design options in different orthogonal deci-
sion trees, which can compose the design space of DM management. Based on these
orthogonal trees, we can construct custom DM manager from its basic building ele-
ments. The most critical parts of the design search space are overviewed in the next
paragraphs. For a complete description about the design space and how it can be
used to build custom DM managers see References 62 and 63. Then, we analyse the
most commonly used DM managers with the use of the design space. Finally, we
explain our approach and why it is more energy-efficient than other state-of-the-art
approaches to construct DM managers.

10.6.1 A brief summary of the DM management design space

The most important part is trying to prevent fragmentation. In Figure 10.25, we
illustrate the most commonly used technique to prevent memory fragmentation. This
technique assigns memory blocks to different memory segments (also called pools),
which are then accessed by one pointer array that keeps track of the initial position
of the pool with free blocks. The goal is to try to anticipate the size of the memory
requests of the application. If every memory request is met with a memory block with
the same size, then no memory space inside the block gets wasted. This means less
internal fragmentation and a quick allocation of the requested block. For example, if
an application usually employs blocks of 8 kB and 1024 kB, 50 per cent of its total
memory allocation requests, its DM management will be simplified significantly if
two memory pools of these sizes exist, then just two accesses are needed to return one
block (i.e. one access to the pointer array and another one to update the first memory
block pointer available to the next one).
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The second most important part of the DM management design space is about
trying to deal with fragmentation. This means using defragmentation functions
(i.e. coalescing and splitting memory blocks – see also Reference 64). On the left,
we can see the coalescing of memory blocks, which is the way to deal with external
fragmentation. If a requested size (e.g. 20 kB) is bigger than the size of the available
memory blocks (e.g. 10 kB), then it is possible to coalesce the two smaller blocks.
On the right, the splitting of a memory block is shown, which is the way to deal with
internal fragmentation. If a requested size (e.g. 4 kB), is smaller than the size of the
available memory block (e.g. 10 kB), then it is possible to split it into two smaller
blocks. In this way, the remaining 6 kB are not wasted on internal fragmentation and
can be re-used for a later request.

Finally, the third most important part of the design space is about trying to select
the correct block to fulfill the memory request. This is done by the ‘fit policies’, some
of which can be seen in Figure 10.27. On the left, it is shown how a ‘first fit’ policy
works. This policy satisfies the memory request with the first block that it finds, that
is not reserved and has enough or more space than the request. Needless to say, this
policy is fast, but produces big amounts of internal fragmentation since blocks of
large sizes can be used for allocation requests that are small. In the middle, the ‘exact
fit’ policy is depicted. This policy will not stop looking for a block, unless it finds a
block with the same size as the request. This policy eliminates internal fragmentation,
but it is very slow due to the large amount of blocks that are needed to find the best
candidate if the list of free blocks is extensive. Finally, on the right side, we can
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see the ‘approximate match’ policy. This policy satisfies the request according to a
parameter, defined by the designer, which is a threshold that states how precisely it
should look for a suitable block. In the case of Figure 10.27, this parameter states that
the assigned block cannot be bigger than twice the size of the request. This is a more
balanced approach than the two previous ones, neither wasting too much memory
space nor slowing down the DM manager too much. However, the two previous
options are also found in the literature in extreme cases where one of the two metrics
(i.e. minimisation of memory space or performance) is much more important than the
other one.
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10.6.2 Existing memory managers focus on different parts of the design
space

All the DM managers include these previous decisions of the design space in one
way or the other in their designs. In the following we describe the main types of
state-of-the-art DM managers.

First of all, one of the most popular DM managers, namely the Lea Allocator
[64], is designed to optimise memory footprint by eliminating fragmentation, while
preserving a reasonable speed. It is very frequently used in Linux-based systems.
More specifically, it uses a very complex pool architecture, which prevents memory
fragmentation and speeds up DM management. Then, it tries to defragment as much
as possible, thus reducing even more the memory fragmentation, but slowing down
DM management in a very significant percentage. Finally, it uses a combination of the
previous best fit and first fit policies, which in total does not improve the speed a lot,
but manages to preserve a reasonable low fragmentation level in a general context.
The problem with the Lea Allocator, in the context of energy-efficiency, is that it
uses far too many memory accesses trying to defragment. All these memory accesses
cause the power consumption to increase extensively.

Second, another very popular type of DM manager is the one which uses many
simple fixed-sized pools to allocate memory. This style is used by the Kingsley
Allocator [46]. These allocators are very fast, but they deal poorly with fragmentation,
thus use a big memory footprint. More specifically, they use a more straightforward
definition of fixed-sized pools where only one size can fit in each pool perfectly
and many lists of different sizes are pre-allocated during the initialisation of the DM
managers, which try to prevent as much fragmentation as possible by placing the
memory requests in the correct pools but can result in a large portion of memory
wastage if all the memory pools of different sizes are not used. However, the truth is
that the main goal of these kind of managers is quick-allocations and de-allocations
and not limiting memory footprint consumption. As a result, since they use fixed-
sized memory pools, they rarely (or even never) coalesce and split memory blocks
thus ignoring defragmentation. This makes fragmentation usually even worse, but
makes the DM manager even quicker. Finally, they also use a combination of best
fit and first fit policies, which in total do not affect much speed, but unfortunately
maintain the very high fragmentation level. The problem with this kind of allocator,
in the context of energy-efficiency, is that high fragmentation affects the energy per
access, because we have to assign data with more fragmentation to bigger, more
power-hungry memories.

Finally, several custom DM managers exist to satisfy the needs of specific types of
applications and their memory requests. An example is the Obstacks [46] custom DM
manager, which is used to optimise a stack-like behaviour. Obstacks uses variable-
sized pools, with no defragmentation support and an exact fit policy. This allocator
is very fast and works well when many consecutive small-sized block allocations
occur and finally one deallocation can be used to deallocate all the memory blocks at
the same time (i.e. stack-like behaviour). Any other behaviour or big-sized requests
make the fragmentation grow extensively, thus reducing its energy-efficiency because
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bigger memories are needed to store the data (as explained in the previous paragraph).
The main limitation of these custom allocators is that they rely on a specific dynamic
behaviour to work well and are manually designed and optimised. Unfortunately, no
systematic methodology exists to create a custom DM manager from scratch to match
a specific dynamic behaviour of an application.

10.6.3 Our approach to create a low power custom DM managers

Our approach consists of the study of the complete design search space. Also, we
profile extensively applications to define its dynamic behaviour and its dominant
dynamic data allocation sizes. The combination of these two elements produces a
systematic methodology to create custom DM managers. In contrast with the pre-
vious approaches we address the whole design space rather than focusing on small
subsets that may work well for a certain number of applications and a concrete metric
(e.g. performance as Kingsley-based managers). Thus, we create custom DM man-
agers with reduced power consumption, because we try at the same time to have few
memory accesses and keep a low fragmentation level. The key point of our energy-
efficient approach is the study of the trade-offs between low memory accesses to
improve speed and low memory fragmentation to reduce the use of memory footprint
(for more details see References 62 and 63). Moreover, all our custom DM managers
are implemented in the middleware on top of the OS, hence platform-independent.
This means that they do not require any hardware changes, as opposed to Reference 48.

As the basic template used in our energy-efficient DM managers, using the pro-
filing information obtained in each concrete application, at least one fixed-sized pool
is assigned to each of the sizes of the dominant data types. The sizes that are good
candidates are those that imply at least 20 per cent of the total amount of allocation
requests. This approach prevents most of the memory fragmentation and speeds up
the DM manager by a significant factor (i.e. between 10 and 50 per cent ) compared to
those using only general-pools with many sizes. Then, we defragment only when this
is absolutely needed to carefully balance the overhead of memory accesses required
in the coalescing and splitting mechanisms. Mostly, we defragment when we are
close to the high watermark of our memory space to try to avoid the allocation of the
next requested memory block in a larger memory. Finally, a first fit policy is used
only for dominant data types, for which we have already provided pools with their
corresponding block size, thus it is equivalent to exact fit. The remaining data types
must make concessions and sacrifice some memory footprint using an ‘approximate
fit’ policy for preserving a certain degree of performance, because the number of
memory accesses explodes if the DM manager searches the pools exhaustively to
find the exact fit, as we indicated in the previous section.

We illustrate our technique with a real-life illustrative example: the Deficit Round
Robin (DRR) application taken from the NetBench benchmarking suite [65]. It is a
buffering and scheduling algorithm implemented in many wireless network routers
today. Using the DRR algorithm the router tries to accomplish a fair scheduling by
allowing the same amount of data to be passed and sent from each internal queue.
It requires the use of DM because the input can vary enormously depending on the
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network traffic. The DRR algorithm has three types of dynamic data: the Internet
packets, the packet headers and the list that accommodates the internal queues. It
works in three phases when it is receiving packets. First, it checks the packet header,
second it traverses the list of internal queues and, finally, it traverses the correct
internal queue and stores the Internet packet in a first-in first-out (FIFO) order. Then,
it forwards the packets in three additional phases. First, it traverses the list of internal
queues, second, it picks up the first Internet packet and, finally, checks the packet
header to forward it.

After analysing the DM behaviour and allocation sizes of this example with our
approach, we decide to create two fixed-sized memory pools for the maintenance
fields of the list of internal queues and the headers of the packets. Then, a general
pool using approximate fit is used to store the internal variable-sized packets coming
from the network that need to be forwarded. This choice was based on the dynamic
sub-phases found with our approach in the algorithm, which indicate that the list of
internal queues has 85 per cent of the total accesses on average and that this list is
small enough to fit inside a small memory pool of 4 kB (or 8 kB in the worst case),
which can increase significantly the locality when all the blocks are placed together
and reduce enormously the complexity of DM management compared to other DM
managers (i.e. 40 per cent less energy than Lea and 45 per cent less memory footprint
than Kingsley-based DM managers).

Other experimental results in real-life embedded applications from the multi-
media and wireless network domain show a significant reduction (up to 60 per cent)
in power consumption with the use of our approach [66]. Also, when other factors
are really limiting (e.g. memory footprint), trade-offs can be made to achieve the
desired results (i.e. reduction of 60 per cent on average in memory footprint [62])
by an exhaustive exploration of the design space using our plug-and-play approach
(see Reference 63 for more details). Finally, runtime behaviour profiling is embed-
ded within our custom DM managers, so that real-time performance restrictions can
be observed and deadlines met, using trade-offs between power consumption and
performance [63].

10.7 Conclusions

In dynamic multi-threaded applications dealing with dynamic data and tasks is crucial.
The memory bandwidth is both an issue at the shared SDRAM memory as well as on
the local memory layer.

Modern multi-media applications contain multiple tasks and/or benefit from task
parallelisation. However, tasks running on multiple processors can access the same
memory in parallel. This causes access conflicts that delay the system and increase
its energy cost. Since existing techniques also optimise the memory bandwidth inside
a single task, they cannot cope with inter-task conflicts. A need thus exists for tech-
niques that optimise the memory bandwidth across the tasks’ boundaries. We have
therefore introduced several task-ordering/data assignment techniques for both the
local memory layer as the SDRAM.
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Multi-media applications consist of multiple tasks which are started/stopped at
runtime due to user events. Also the tasks themselves have become data-dependent.
We have shown that design-time nor runtime techniques can effectively deal with this
dynamic behaviour. Therefore, we have introduced a novel scenario-based memory
bandwidth approach. It combines the best of the design-time and runtime techniques.

Finally, runtime memory management requires an efficient management of the
free space. We have introduced a methodology which customises the DM managers
for this purpose.

In future work, we want to automatically extract the inter-thread frame scenarios
form the user’s behaviour.
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Chapter 11

Low power system scheduling,
synthesis and displays

Niraj K. Jha

11.1 Introduction

Low power system synthesis, specifically, system-on-a-chip (SoC) synthesis and
hardware–software co-synthesis of distributed embedded systems, has attracted much
attention. The system may be wireless and may have both quality of service (QoS)
and real-time constraints. We will discuss such synthesis techniques in this chapter.

A significant fraction of the software and resource usage of a handheld computer
system is devoted to its graphical user interface (GUI). GUIs are direct users of the
display. They enable users to interact with the software. Since displays often are
the greatest energy-consumers in such systems, it is important to optimise GUIs for
energy. In addition, dynamic voltage scaling (DVS) and dynamic power management
(DPM) techniques have traditionally been applied to computation and I/O intensive
tasks. However, many modern applications are interactive in nature, necessitating
new DVS/DPM techniques that take into account the user’s perspective. Display
power can be directly targeted by optimising the power of its various components.

We discuss low power system scheduling, synthesis and interactive systems in
Sections 11.2, 11.3 and 11.4, respectively. We point out some open problems and
conclude in Section 11.5.

11.2 Low power system scheduling

In this section, we discuss various low power distributed system scheduling
techniques based on DVS and adaptive body biasing (ABB).

Whenever both DVS and DPM [1] are available for a processor, it is known that
it is always advantageous to exploit DVS first.
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The circuit delay depends on supply voltage Vdd and threshold voltage Vt as
follows [2]:

delay = k × Vdd/(Vdd − Vt)
α (11.1)

where k and α are constants, 1 < α ≤ 2. Thus, delay increases as Vdd decreases.
The switching power consumption (which currently dominates power consumption
in complementary metal oxide semiconductor (CMOS) technology) is given by

Pswitch = NCLV
2
ddf (11.2)

whereN is the switching activity,CL the load capacitance andf the frequency.N×CL

is referred to as the switched capacitance. Note that f is inversely proportional to
circuit delay. Hence, Pswitch ∝ Vdd(Vdd − Vt)

α .
Another component of power consumption is short-circuit power that is incurred

during logic transition when both the nMOS and pMOS networks of a CMOS gate
conduct for a short duration. Together, switching and short-circuit power are referred
to as dynamic power.

As technology feature size continues to scale, a third component of power, leakage
power, is accounting for larger fractions of system power and will rival switching
power by 2008/9. It is currently due to subthreshold leakage current, Isub, as well as
drain-body junction leakage current, Ij, and source-body junction leakage current, Ib,
and is given by [3]:

Pleakage = Is

(
W

L

)
Vdde

−Vt/nVT+ | Vbs | (Ij + Ib) (11.3)

where Is and n are technology parameters, W and L are device geometries, VT is
the thermal voltage and Vbs is the body bias voltage. The first term corresponds to
subthreshold leakage power (given by Isub × Vdd) and the second term to junction
leakage power.

Table 11.1 shows the expected break-up between dynamic and leakage power in
future technologies [4].

The input specification of real-time distributed systems is frequently given in
terms of a set of task graphs. A task graph is a directed acyclic graph in which
a node is associated with a coarse-grained task (e.g. discrete cosine transform)
with a worst-case execution time (if the task can be run on more than one type

Table 11.1 Power consumption break-up for
future technologies

Technology 0.07 µm 0.05 µm 0.035 µm

Dynamic power 78% 56% 33%
Leakage power 22% 44% 67%
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of processing element, then the corresponding set of worst-case execution times is
available) and an edge is associated with the amount of data transferred between
tasks (or the worst-case communication times on the communication links the edge
can be assigned to). The period associated with a task graph indicates the time inter-
val between its successive executions. A hard deadline, by which time the task must
complete execution, is given for each sink node and some intermediate nodes. An
arrival time, by which time the task may begin execution, is given for each source
node and possibly some intermediate nodes. A multi-rate system consists of multiple
task graphs with different periods. The least common multiple of all the periods is
called the hyperperiod. It is known that scheduling in the hyperperiod gives a valid
schedule [5].

In addition to periodic task graphs, the system may also contain aperiodic tasks.
An aperiodic task is invoked at any time and may have a hard or soft deadline. In
case of soft deadlines, only the response time of the task needs to be minimised. For
aperiodic tasks, generally a minimum inter-instance arrival time is specified.

Example 11.1 Figure 11.1 shows an embedded system specification consisting of
two task graphs, each with the same period. The worst-case execution times of tasks
T1–T7 at maximum voltage on a particular processor are shown next to them. The
worst-case communication time for edge E1 on a particular communication link is
also shown. The communication times on the other edges are not shown since their
corresponding edges are assumed to be mapped to the same processing element (PE).
In distributed computing, it is traditionally assumed that intra-PE task communication
takes negligible time compared to inter-PE task communication. �

In addition to task graphs, a system synthesis algorithm requires information on
the resource library. This library may consist of various PEs, such as general-purpose
processors, dynamically reconfigurable field-programmable gate arrays (FPGAs) and
application-specific integrated circuits (ASICs), in addition to communication links
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and memory modules. The system may be implemented on a printed circuit board
or a SoC.

11.2.1 DVS for distributed systems

Dynamic voltage scaling techniques for single processors have a rich history (see the
survey article [6]). However, in this section, we concentrate on DVS techniques for
distributed systems, which consist of multiple PEs connected with an interconnection
network.

In Reference 7, a power-conscious algorithm is given for jointly scheduling multi-
rate periodic task graphs with hard deadlines and aperiodic tasks with hard or soft
deadlines. Periodic tasks are first scheduled statically and room made in the schedule
for hard aperiodic tasks. Soft aperiodic tasks are scheduled dynamically with an on-
line scheduler. It exploits the concepts of slack stealing and resource reclaiming to
minimise the response times of aperiodic tasks. It uses DPM for parts of the schedule
where DVS is not applicable.

In Reference 8, a list scheduling technique chooses the best two supply voltages
for each task in a task graph specification. It uses dynamic recalculation of energy-
sensitive task priorities for this purpose.

In Reference 9, a hybrid global/local search optimisation framework is given
for DVS. Performance is a constraint under which an attempt is made to find the
optimum voltage level for all the tasks that need to be executed. The schedule of
tasks on different processors is assumed to be known a priori. The power consumed
by the DVS hardware and the time to switch between voltages are also taken into
account. A genetic algorithm is used for global search (coupled with a technique
called simulated heating) and hill climbing, and Monte Carlo techniques for local
search.

In Reference 10, a power-aware scheduling algorithm is presented for mission-
critical applications. It satisfies min/max timing constraints and maximum power
constraint. In addition, it also tries to meet minimum power constraints in order to
make full use of free power (e.g. solar power) or to control power jitter.

Motivated by the work in Reference 11, the work in Reference 12 proposes a DVS
scheme based on a static-priority list scheduling algorithm. It does effective slack allo-
cation based on critical path analysis. It locates the critical path that minimises the
ratio of total slack to total worst-case execution time on the path. It then extends
the critical path such that the available slack is uniformly distributed. The algorithm
terminates when no path can be extended anymore. It is optimal for non-pre-emptive
fixed-priority scheduling on a single processor, but not for distributed systems. It does
not target scenarios in which various tasks have different switching activities or
heterogeneous distributed architectures in which different voltage-scalable proces-
sors have different voltage scaling characteristics. These limitations are overcome
in Reference 13, in which simulated annealing is used to optimise task priorities
and a fast slack allocation method is used based on the concept of energy gradients.
An energy gradient is the negative of the derivative of energy with respect to the
execution time of a task for a given supply voltage. For a single processor, allocating
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slack to the set of extensible tasks with the highest energy gradient is optimal (these
are tasks for which an extension of the execution time does not lead to any deadline
violations). Although no longer optimal for distributed systems, this remains a very
effective heuristic.

Example 11.2 Consider the two task graphs in Figure 11.1 again. Assuming a dis-
tributed system consisting of two PEs connected by a bus, one can generate an initial
schedule, as shown in Figure 11.2. This schedule has been derived based on a priority
assigned to each task, which is an inverse of its latest possible start time that does
not violate any deadlines. The schedule assumes worst-case execution and commu-
nication times for Vdd = 1.8 V. It also assumes that both PEs have communication
buffers to allow processing and communication to go on in parallel. One critical path
is (T1, T2, E1, T3, T6, T7). No voltage scaling is possible for this schedule since all
scheduled events are on critical paths. However, if we change the execution order
of tasks, as shown in Figure 11.3, then the critical path gets broken, allowing more
flexibility in the schedule that can be exploited for voltage scaling for tasks T1 and
T2. This results in a 40 per cent decrease in overall power consumption. �

In Reference 14, a scheduling algorithm is presented for real-time distributed
embedded systems that combines DVS and ABB to jointly optimise dynamic and
leakage power. It derives an analytical expression to obtain the optimal supply voltage
and body bias voltage for a given clock frequency. Based on this expression, it com-
putes the optimal energy consumption for a given clock frequency and analyses the
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trade-off between energy consumption and execution time for a set of interdependent
tasks under real-time constraints. It shows that in future CMOS technologies, using
DVS+ABB, will be much more effective for reducing distributed system power than
using DVS alone. A similar problem is also solved in Reference 15 using non-linear
programming and mixed integer linear programming.

Example 11.3 Consider the task graph shown in Figure 11.4. Suppose the power
consumptions of tasks T1, T2 and T3 are c1, c2 and c3, respectively. Figure 11.5
shows a valid schedule on a distributed system consisting of two PEs linked by a bus.
Suppose initially for PE1, Vdd = 2.0 V andVth = 0.6 V whereas for PE2, Vdd = 1.5 V
and Vth = 0.4 V. Figure 11.6 shows a new schedule if the execution times of tasks T1,
T2 and T3 are extended to 4, 6 and 5 time units, respectively. Since the execution time
of T1 is extended from 3 to 4 time units, the speed of processor PE1 can be scaled by
a ratio of 4

3 .
Consider the 0.07µm technology, in which dynamic power constitutes 78 per

cent of total power consumption and leakage power 22 per cent (see Table 11.1). To
scale the frequency of task T1 by 4

3 , we can reduce theVdd of PE1 from 2.0 V to 1.55 V
(assumingα = 1.4 in Equation (11.1)). The dynamic power of T1 reduces from 0.78c1

to 0.35c1 and the leakage power from 0.22c1 to 0.17c1, based on Equations (11.2)
and (11.3), respectively. Thus, the overall power of T1 reduces to 0.52c1. Similarly,
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the power consumption of T2 and T3 is reduced to 0.65c2 and 0.58c3, respectively.
This results in an average power reduction of 42 per cent compared to no voltage
scaling, assuming c1 = c2 = c3.

Another way to approach the above problem is through combined supply and
threshold voltage scaling. To scale the frequency of PE1 by 4

3 for T1, its Vth can be
changed from 0.6 V to 0.64 V and Vdd from 2.0 V to 1.62 V. This reduces the dynamic
power of T1 to 0.38c1 and leakage power to 0.06c1 for a total of 0.44c1. Similarly,
the power for T2 and T3 is reduced to 0.56c2 and 0.51c3, respectively. Thus, a greater
overall reduction of 50 per cent is obtained, assuming c1 = c2 = c3.

Figure 11.7 presents the normalised power consumption for the three technolo-
gies. It can be seen that Vdd scaling alone becomes much less effective than combined
Vdd + Vth scaling. �

In Reference 16, a two-phase method is presented that integrates task scheduling,
ordering and voltage selection. In the first phase, task scheduling and ordering are
performed to maximise the opportunities for voltage selection-based energy reduc-
tion in the second phase. Voltage selection is formulated as an integer programming
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problem and solved efficiently. With inspiration from Reference 16, in Reference 17,
an interprocessor communication-aware task graph scheduling algorithm is presented
for multi-processors. It reduces energy by reducing overall interprocessor commu-
nication and executing certain cycles at a lower voltage level. It tries to foresee the
amount of interprocessor communication the schedule will generate and takes into
account the energy savings that can be obtained by a subsequent voltage selection step.

11.2.2 Battery-aware techniques

In Reference 18, two battery-aware static scheduling techniques are presented.
As suggested in References 19 and 20, reducing the discharge current level and
shaping its distribution are essential for extending battery lifespan. This is based on
the observation that battery capacity decreases as the discharge current increases. The
first scheduling technique in Reference 18 optimises the discharge power profile in
order to maximise the utilisation of battery capacity. The second technique efficiently
re-allocates slack time to better enable DVS. This helps reduce the average discharge
power consumption as well as flatten the discharge power profile.

In Reference 21, a scheduling algorithm is given for obtaining a power profile
that maximises battery lifetime based on an accurate analytical battery model. It also
exploits the battery charge recovery effect which implies that letting the battery rest
intermittently actually increases the available battery capacity.

In Reference 22, a two-phase battery-aware DVS algorithm is presented. In the
first off-line phase, the tasks are scheduled in the hyperperiod based on their worst-
case execution times. In the second on-line phase, voltage levels are reassigned
based on the additional slack generated due to the fact that tasks usually take less
than their worst-case execution time. The procedure is applicable to multi-processor
environments.

It is common for a system to contain multiple batteries. These batteries are typi-
cally discharged serially and completely. In Reference 23, it is shown that round-robin
scheduling, in which batteries are discharged in a round-robin fashion, leads to longer
battery lifetimes than serial scheduling.

An excellent survey of battery-aware techniques, which includes battery mod-
elling and battery-efficient system design, can be found in Reference 24.

11.2.3 Power optimisation of communication links

Dynamic voltage scaling for communication links is a very new area of research. With
increasing demands on system bandwidth, interconnection networks are becoming
energy/power limited as well. Interconnection network fabrics were historically used
in high-end multi-processor systems. Now they have proliferated to a wide range
of systems – clusters, terabit Internet routers, server blades and on-chip networks.
In some systems, they consume up to 40 per cent of the system power budget.

Components of a DVS link are shown in Figure 11.8. A transmitter converts
digital binary signals to electrical signals. A receiver converts electrical signals back
to binary signals. The signalling channel is modelled as a transmission line. The clock
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recovery block compensates for delay through the signalling channel. The adaptive
power supply regulator tracks the link frequency, regulates the voltage and feeds
the voltage to multiple links. The frequency synthesiser generates the frequency. It is
important to take into account the time and energy required to make voltage/frequency
transitions in a DVS link.

In Reference 25, a history-based DVS method is presented to dynamically adjust
the voltage and frequency of communication links to minimise their power consump-
tion. In this method, each router predicts future communication traffic based on past
link and input buffer utilisation. Since the method only relies on local traffic informa-
tion, the hardware required in each router to implement DVS is quite simple, as shown
in Figure 11.9. This hardware is placed at each output port of a router. It controls the
multiple links of that port. Link utilisation is measured using a counter that counts the
total number of cycles used to relay flits in a histroy interval (flit stands for a flow con-
trol unit and is a fixed-sized segment of a packet that is to be transmitted). A second
counter determines the ratio between the router and link clock periods. A multiplier
combines the two counter outputs to compute the link utilisation. A weighted average
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of prior and current link/buffer utilisations is used to compute the new voltage and
frequency based on some thresholds.

It has been shown that up to 6× link power reduction is possible at moderate impact
on performance (around 15 per cent increase in latency and 3 per cent reduction in
throughput).

While designing an interconnection network, designers usually perform a worst-
case power analysis to guarantee safe on-line operation. This increases system cost,
and also restricts network performance. In Reference 26, an on-line scheme, called
PowerHerd, is presented that can dynamically regulate network power consumption
and guarantee that network peak power constraints are never exceeded. It is a dis-
tributed scheme. Each router maintains a local power budget, controls its local power
consumption and exchanges spare power resources with its neighbouring routers to
optimise network performance. Armed with PowerHerd, the designers can concen-
trate on the average-case power consumption, rather than the worst-case, allowing
the use of more powerful interconnection networks in the system.

PowerHerd is composed of mechanisms for power estimation, prediction, sharing,
regulation and routing built into each router, as shown in Figure 11.10. Initially,
the user-defined global power budget, PGPB, is divided evenly and stored in the
power budget register at each router. This forms the local power constraint, P iLPB,
at each router i. Using actual activity, each router estimates its power consumption
at runtime, which is used to predict future activity and power consumption. Based
on the estimate, each router decides if it has spare power to share with neighbouring
routers, updating the power register accordingly. In each cycle, the power regulation
mechanism dynamically throttles the switch allocator to keep the router power within
the allocated power budget. Finally, the routing protocol steers network traffic towards
routers with excess power budgets.

In Reference 27, a framework is discussed that can estimate power consumption
of switch fabrics in network routers. It models node switches, internal buffers and
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interconnect wires within the fabric. This framework is used to analyse four switch
fabric architectures. The framework is suitable for system architecture exploration
based on high-performance network router design.

In Reference 28, a DPM method is presented for interconnection networks in
which network links can be turned on and off based on network utilisation. This is
done in a distributed fashion.

Leakage power modelling of networks has been addressed in Reference 29. It is
shown that router buffers are the main candidates for leakage power optimisation.
Leakage reduction policies are shown to reduce buffer leakage power by up to 30×.

11.3 Low power system synthesis

In this section, we survey various system synthesis techniques for low power SoCs
and distributed embedded systems.

The key steps in system synthesis are allocation, assignment, scheduling and
performance evaluation. Allocation determines the number of each type of PE and
communication link in the system architecture. Assignment chooses a PE (link) to
execute each task (communication) upon. Scheduling determines the time of execu-
tion of each task and communication. Performance evaluation involves computing
the price, speed and power of the system architecture.

Three popular algorithms for system synthesis are iterative improvement, con-
structive and genetic. An iterative improvement algorithm starts with an initial
solution and makes changes to it iteratively in order to improve its quality. A greedy
approach would be to apply various available optimisation moves to the current sys-
tem architecture and accept the one that improves the architecture quality the most.
This is continued until no more improvement is possible. However, such an approach
is likely to trap the algorithm in local minima. This problem can be alleviated by
variable-depth iterative improvement which makes it possible to back-out of local
minima.

Constructive algorithms incrementally synthesise the architecture by following a
fixed set of rules. Since they are fast, they are effective when the problem size is large
and only a constrained exploration of the design space is possible. However, they too
can easily get trapped in local minima.

Genetic algorithms work on a pool of solutions (system architectures in this case)
that evolve through multiple generations. Genetic operators, such as crossover and
mutation, exchange information between solutions and introduce randomised local
changes in them to try to improve solution quality. The highest-quality solutions
are then selected for the next generation. Such algorithms excel at multi-objective
optimisation and can easily get out of local minima.

11.3.1 Low power SoC synthesis

The method in Reference 30 considers an SoC with a fixed allocation of one processor,
ASIC, instruction cache, data cache and main memory. As a case study, an MPEG-2
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encoder is chosen to investigate the impact of different hardware/software partitions
of the input specification between the processor and ASIC, and different system con-
figurations such as cache size, cache line size, cache associativity and main memory
size, on power dissipation of the SoC. The extension of this method in Reference 31
assumes the same SoC architecture, however, with the hardware fixed. The soft-
ware is changed through various high-level transformations. This impacts cache and
memory parameters. It investigates overall system energy. Another extension of this
approach is given in Reference 32.

In Reference 33, the allocation of the SoC architecture is not fixed beforehand,
and is hence not limited to a single processor and ASIC. It describes a tool called
MOCSYN which synthesises real-time heterogeneous single-chip hardware/software
architectures using an adaptive multi-objective genetic algorithm. It starts with a
system specification consisting of multiple periodic task graphs as well as a database of
core and SoC characteristics. The database consists of the worst-case execution times
and average/peak power consumption of each task on each core on which the task
can possibly run. Each core has a width, height, maximum clock frequency, variable
indicating whether or not its communication is buffered and energy consumption
per cycle dedicated to communication. In addition, information on core price is also
available. A single system synthesis run produces multiple SoC designs which trade-
off system price, power and area under real-time constraints. It assumes asynchronous
communication between synchronous cores on the SoC and determines the best clock
frequency for each core. It produces a hierarchical bus structure which balances ease
of layout with the reduction of bus contention. It also performs floorplanning in the
inner loop of system synthesis to accurately estimate global communication delays
and energy, as well as clock network energy.

Figure 11.11 gives an overview of MOCSYN. First, the clock frequency is deter-
mined for each core, and some initial solutions obtained. In the outer cluster loop,
the allocation is fixed. In the inner architecture loop, the task assignments are refined
through various generations of the genetic algorithm. Then link priorities are assigned
so that cores that communicate a lot may be placed close to each other in the block
placement step. Links are re-prioritised based on more accurate global wiring infor-
mation obtained from block placement. A hierarchical bus structure is obtained that
trades off potential bus contention for ease of routing. Thereafter, the tasks and com-
munication events are scheduled. Then another allocation is chosen and the above
process repeated. The best architectures seen in any generation are given as outputs,
each better than another in at least one aspect, e.g. system price or power.

In Reference 34, a functional partitioning method is given for synthesising low
power real-time distributed embedded systems whose constituent nodes are SoCs.
The input specification, given as a set of task graphs, is partitioned and each segment
implemented as an SoC. It merges functional partitioning and SoC synthesis into a
unified method. The genetic algorithm presented in Reference 33 is extended for this
purpose.

In Reference 35, the target SoC architecture consists of one processor, instruc-
tion/data cache, main memory and several ASICs and peripherals. It shows the
importance of adequate adaptation between core and interface parameters to minimise
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power consumption. Cache parameters and configurations of cache buses have a
significant effect in this respect.

In Reference 36, DVS is integrated into SoC synthesis. The target architecture con-
sists of one processor and instruction/data cache. The input specification is assumed
to consist of independent periodic tasks. The technique also addresses selection of
the best processor core and determination of cache size and configuration to best
enable DVS.

11.3.2 Low power distributed system synthesis

In a distributed system, PEs are not limited to a single chip. However, system
synthesis still consists of solving the allocation, assignment, scheduling and perfor-
mance evaluation problems. We discuss various types of distributed system synthesis
algorithms next.

11.3.2.1 Iterative improvement algorithm

In Reference 37, the first work to integrate DVS into system synthesis is presented.
Independent periodic tasks are assumed which are mapped to multiple processors
connected by a bus. In addition to voltage, the switched capacitance is also implicitly
optimised. Resource allocation is done using a gradient-driven iterative improvement
heuristic. Tasks are also iteratively assigned to allocated processors based on an
objective function. Additional load balancing is attempted in a post-processing step.
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11.3.2.2 Constructive algorithms

In Reference 38, a constructive algorithm, called COSYN, is described which starts
with a set of multi-rate periodic task graphs with real-time constraints and produces
a price and power optimised distributed system architecture. It uses a combination of
pre-emptive and non-pre-emptive scheduling. However, use of pre-emptive schedul-
ing should be avoided as much as possible since it increases power consumption.
It performs task clustering before system synthesis to make synthesis more tractable.
This allows it to tackle very large task graphs (with more than a thousand tasks).
It uses the concept of task graph pipelining to handle task graphs in which period is
less than the deadline.

For medium- to large-scale embedded systems, such as telecom transport systems,
task graphs are usually hierarchical, i.e. each node in an upper-level task graph may
correspond to a full-fledged task graph at a lower level. If flat, non-hierarchical system
architectures are derived from such hierarchical task graphs, many communication
and processing bottlenecks may be created. In Reference 39, a constructive algo-
rithm, called COHRA, is given to synthesise hierarchical distributed architectures
from hierarchical or non-hierarchical real-time periodic task graphs. A hierarchical
architecture is obtained by composing lower-level sub-architectures. COHRA also
optimises power consumption and fault tolerance.

11.3.2.3 Genetic algorithms

In Reference 40, a genetic algorithm, called MOGAC, is used to synthesise real-
time heterogeneous distributed architectures from multi-rate real-time periodic task
graph specifications. It optimises both price and power. Genetic algorithms excel
at such multi-objective optimisation. The number and type of PEs are not fixed
a priori. Genetic algorithms allow solutions to cooperatively share information with
each other, exploring the set of solutions that can only be improved in one way by
being degraded in another (the Pareto-optimal set). MOGAC uses heuristics to allow
multi-rate systems to be scheduled in reasonable time even when the periods are very
different and possibly co-prime.

In Reference 41, a genetic algorithm called COWLS targets embedded systems
consisting of servers and low power clients which communicate with each other
through a channel of limited bandwidth, e.g. a wireless link. Clients may be mobile.
It simultaneously optimises the price of the client–server system, power consumption
of the client and response times of tasks with only soft deadlines, while meeting all the
hard deadlines. It produces numerous solutions which trade off architectural features
such as price, power and response time.

In Reference 42, a genetic algorithm targeting distributed systems consisting of
processors and dynamically reconfigurable FPGAs is presented. It is based on a two-
dimensional, multi-rate cyclic scheduling algorithm for such FPGAs. It determines
task priorities based on real-time constraints and FPGA reconfiguration overhead
information, and schedules tasks based on resource utilisation and reconfiguration
condition in time and space. It optimises both system price and power. FPGA
reconfiguration power is shown to consume a significant fraction of FPGA power.
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A genetic algorithm is also used in Reference 43 to incorporate DVS into an
energy minimisation technique for distributed embedded systems. It takes the power
variations of tasks into account while performing DVS. An off-line voltage scaling
heuristic is proposed which is fast enough to be used in system synthesis, starting
from real-time periodic task graphs. Both task assignment and scheduling are done
with the help of a genetic algorithm. This method has been extended in Reference 44.

11.3.2.4 Joint energy optimisation of processors and communication links

High-speed serial network interfaces are being used to connect processors and
peripherals in distributed embedded systems. The fact that many such interfaces
support multiple data rates can be exploited to perform power/performance trade-
offs between communication and computation on processors that employ DVS. In
Reference 45, a speed selection methodology is presented for globally optimising the
energy consumption of embedded networked systems.

Earlier, it was mentioned that DVS is also possible in communication links.
Naturally, performing simultaneous DVS in the processors and communication links
in a distributed system can yield greater power savings than performing DVS in the
processors alone. Such a method was presented in Reference 46. This obviously
poses extra design challenges. The scheduling algorithm not only needs to consider
real-time constraints, but also the underlying flow control techniques. The available
system slack now has to be efficiently distributed among both processors and links,
and communications may need to be scheduled through multiple hops.

11.3.2.5 QoS driven system synthesis

Quality of service is an important consideration in designing systems for real-time
multi-media and wireless communication applications. In Reference 47, a DVS tech-
nique for partitioning a set of applications among multiple processors is given which
minimises system energy while satisfying individual QoS requirements. QoS is a
function of the required resources, such as bandwidth, CPU time and buffer space.
The applications are assumed to be independent, have the same arrival times and no
deadline constraints.

11.3.3 Low-energy network-on-chip architectures

Network-on-chip (NoC) architectures have recently received a lot of attention [48].
For more details, see Part IV of this book. They have regular tiles with a router
embedded in each tile. The tiles may contain a general-purpose processor, digital
signal processor, memory, etc. Inter-tile communication is based on routing of pack-
ets. In Reference 49, a method is given for mapping intellectual property cores of an
SoC onto the tiles of a generic NoC architecture in order to minimise total communi-
cation energy. Performance constraints are satisfied through bandwidth reservation.
While this is an indirect method of mapping tasks and communications to NoCs, in
Reference 50 an energy-aware static scheduling algorithm is presented that directly
assigns and schedules both tasks and communications on an NoC architecture under
real-time constraints.
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11.3.4 Task graph generation

The starting point for most algorithms and tools for SoC and distributed system
synthesis is a set of task graphs. However, the embedded system applications are
often written in C, and no task graphs are available for them. Manually deriving task
graphs from C is a tedious and error-prone endeavour. To bridge this gap, a task graph
extraction tool is described in Reference 51 that automatically extracts a set of task
graphs from embedded applications written in C. It is available for download.

A popular random task graph generator, called TGFF, is presented in Reference 52.
It can generate both independent tasks as well sets of task graphs. It creates a complete
description of a scheduling problem instance. This includes attributes for processors,
communication links, tasks and inter-task communication. The user is allowed to
control correlations between attributes in a parametrised fashion.

Another source of realistic task graphs is the E3S suite [53]. It is based on EEMBC
benchmarks. The E3S suite has data for 17 processors, including AMD ElanSC520,
Analog Devices 21065L, Motorola MPC555 and Texas Instruments TMS320C6203.
These processors are characterised based on the measured execution times of 47
tasks, power numbers derived from processor datasheets and additional information,
such as die sizes and prices. E3S also contains communication resources modelling
a number of different buses, e.g. CAN, IEEE1394, PCI, USB 2.0 and VME. There
is one task set for each of the following application suites: automotive/industrial,
consumer, networking, office automation and telecommunications.

11.4 Low power interactive systems

Power consumption is a major concern in mobile computing, e.g. with laptops and
handheld computers. On such systems, a significant fraction of software is interactive,
not compute-intensive. It has been shown in Reference 54 that over 90 per cent of the
time and energy in such systems may be spent waiting for user input. Such idle times
obviously offer significant opportunities for DVS and DPM. At the same time, since
displays tend to consume a significant fraction of total system power in such systems
and GUIs mediate between the user and the system, characterising and optimising
the GUI energy is also an important new concern. Finally, display-related power can
be directly targeted by optimising its various components. In this section, we discuss
recent work in these areas.

11.4.1 Energy characterisation of GUIs

Comprehensive energy characterisation methodologies and experimental results have
been presented in Reference 55. User interfaces consisted of an average of 48 per cent
of the application code even a decade ago (early 1990s) [56]. Since modern user inter-
faces are mostly graphical, this only increases its fraction of source code and resource
usage. In Reference 55, three different GUI platforms (Qt, Microsoft Windows and the
X Window system) are characterised on three handheld computers (two versions of
HP/Compaq iPAQ and a Sharp Zaurus). A similar energy characterisation is possible
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for laptops. The characterisation shows that the GUIs are energy-expensive, their
different features consume drastically different amounts of energy and different GUI
platforms display significant variations in their energy consumption.

The energy consumption of GUIs can be characterised from three different per-
spectives [55]: hardware, software and application. Figure 11.12 shows the hardware
perspective. It consists of an LCD controller (LCDC). A framebuffer is implemented
in main memory and stores data for a full screen. For a screen change, the processor
generates new data for the changed screen pixels and stores them in the frame-
buffer. This implies higher energy consumption with increased temporal changes
in the screen. To maintain screen data, the LCDC must sequentially read screen data
from the framebuffer and refresh the LCD pixels. This implies higher energy con-
sumption with increased spatial changes in the screen. The display itself consists of
LCD power circuitry, front light and an LCD.

Figure 11.13 shows the software perspective. The OS handles user-generated
interrupts. It produces events for the GUI platform, which are delivered to the GUI
application through an event loop. The application instructs the platform on how the
GUI should change. The platform coordinates GUIs of various applications, deter-
mines how the screen changes, generates new screen pixel data and then calls OS
services to update the screen.

From the application perspective, a GUI consumes energy through user–GUI
interaction sessions, in which the user locates the application, starts it, interacts with
it and closes it. This typically consists of a series of window operations.
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Figure 11.14 Personnel viewer: original

11.4.2 Energy-efficient GUI design

Traditional software power optimisation techniques usually reduce system energy
during its busy time. This has limited utility in interactive systems where the system
waits for the user input most of its time. Since the display must be on during system
wait time, an effective way to reduce system energy is to improve user productivity.
Studies from the field of psychology have shown that reading speed depends on the
GUI layout and conciseness in addition to visibility. The cognitive process is governed
by the Hick–Hyman Law [57,58]. Based on this law, a GUI should present as few
choices as possible, e.g. split menus. The motor speed of humans is governed by the
Fitts Law [59]. Based on this law, a GUI should utilise as much screen area as possible
for widgets to be hit. Widgets that need to be hit sequentially should be placed next
to each other.

In Reference 60, various techniques for energy-efficient GUI design are given
that exploit the above laws. These techniques include low-energy colours, reduced
screen changes, hot keys, user input cache, content placement, paged display and
quick buttons. These techniques reduce the energy consumed in the display, storage,
CPU and buses.

Example 11.4 Figures 11.14 and 11.15 show two implementations for a GUI for
a personnel viewer: original and energy-efficient. The personnel viewer enables a
user to scroll through a list of names and display information about selected indi-
viduals. Radio buttons at the top allow a user to select among position, affiliation
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Figure 11.15 Personnel viewer: energy-efficient

and health queries. The original GUI requires two button presses to display informa-
tion: radio button at the top to select the data and the pushbutton at the bottom
to process the selection. The energy-efficient version replaces this with a single
set of pushbuttons at the top. It also replaces the scrollbar with up–down buttons
and alphabetic index tabs, and uses a low power colour scheme. This leads to
an average improvement in performance by 35 per cent and in system energy by
45 per cent. �

11.4.3 DVS/DPM for interactive systems

It was mentioned earlier that because of large system wait times (when the system
waits for user input), there are major opportunities for DVS/DPM in interactive sys-
tems. One of the key problems in DVS/DPM is resource usage prediction. Most
existing resource usage prediction techniques may work well for computation and
I/O intensive tasks, but not for interactive tasks. Since the GUI takes care of system–
user interaction, it often has a priori knowledge of how the system and user interact
at a given moment. In Reference 54, techniques are given to use this knowledge and
the above-mentioned psychological laws to predict user delays. Such delay predic-
tions can be combined with DVS/DPM for aggressive power optimisation with little
sacrifice in user productivity or satisfaction.

Example 11.5 Figure 11.16 shows the power consumption profile when some com-
putation is performed using a Qtopia Calculator on the Sharp Zaurus SL-5500 PDA.
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Figure 11.16 Power consumption of calculator on Sharp Zaurus

Power is sampled 400 times per second. The power peaks correspond to responses
of the calculator to tappings of GUI buttons. The system waits for user inputs in the
valleys while the OS does maintenance jobs such as handling timer interrupts and
scheduling that account for the minor spikes in the valley. This is representative of
interactive systems. An analysis of this application shows that 90 per cent of system
energy and time is used up waiting for user input. The waiting periods are typically
longer than 500 ms. Thus, the system can be put in a very low power mode. However,
since it may take more than 150 ms to bring the system back to the normal mode from
a very low power mode and the human perceptual threshold is between 50 ms and
100 ms, using the strategy of waking up the system only on next user input may lead
to degradation in user productivity and be annoying to the user. Thus, DVS/DPM
techniques for interactive systems need to predict when the system begins waiting for
user input and how long is the wait. In Reference 54, this is done based on modelling
the GUIs with their state transition diagrams and using psychological laws that model
human perceptual, cognitive and motor delays to make the above predictions. �

11.4.4 Display-related power reduction

As shown earlier, an LCD system is composed of an LCD panel, framebuffer mem-
ory, LCD and framebuffer controller, and a backlight inverter and lamp, which are
all heavy power-consumers. In Reference 61, techniques are given to minimise the
energy of each of these components without causing any appreciable degradation
in display quality. These techniques include variable-duty-ratio refresh, dynamic-
colour-depth control and backlight luminance dimming with brightness compensation
or contrast enhancement.

In Reference 62, several software-only techniques are introduced for LCD DPM.
The first technique decreases the dot clock frequency that is used in processor-display
communication, thus decreasing the display refresh rate as a side-effect. The second
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technique exploits the liquid crystal properties in the display to disable the LCD
controller with minimum flicker. The third technique is based on reducing the image
luminance. The last technique reduces backlight luminance based on environmental
conditions.

In Reference 63, framebuffer compression methodologies are given for reducing
display power. They are based on run-length encoding for on-the-fly compression,
with a negligible impact on resources and time. When there are frequent partial frame-
buffer updates, an adaptive and incremental re-compression technique maintains its
efficiency. These techniques reduce the activity of the framebuffer and associated
buses during sweep operations.

In Reference 64, a concurrent brightness and contrast scaling technique is pre-
sented for backlit TFT-LCDs. It reduces backlight illumination while retaining image
fidelity through preservation of the image contrast.

11.5 Chapter summary and open problems

Given that when both are applicable to processors in a distributed system, DVS is
better than DPM, purely DPM-based system scheduling may not be that useful an area
to pursue. This is specially true because many existing processors already have DVS
capability. Of course, DPM will continue to be useful for other parts of the system
which do not have DVS capability. Also, DVS cannot always get rid of all the idle
slots in the system schedule. Thus, a combined DVS+DPM approach is preferable,
applying DVS before DPM. In addition, targeting both switching and leakage power
at the system level requires more research, e.g. by including ABB techniques in
scheduling.

Battery-aware DVS+DPM approaches need further investigation. It is known that
reducing the workload in a battery-operated system for a period of time leads to a
recovery effect, which results in an increase in battery capacity [65]. More work
needs to be done to exploit this effect in system scheduling.

Since interconnection networks are consuming increasingly larger fractions of
system power, more DVS/DPM techniques for such networks are urgently needed.
Power is also related to temperature. System-level thermal management will emerge
as an important issue in the future. This will need to take both the network and PE
tiles into account.

Low power system synthesis is also not a mature area. Currently, most such
algorithms assume that the average power consumption of each task on each type
of PE it can run on has been given. This is done because using more sophisticated
power estimation techniques for processors, FPGAs and ASICs in the inner loop
of system synthesis is currently not feasible. This points to the need for fast, yet
relatively accurate, power estimation techniques, such as high-level macromodels, to
drive system synthesis. Although some progress has been made in this direction for
ASICs, high-level energy or power macromodels for processors and FPGAs deserve
more attention. After obtaining such macromodels, the next step will be to integrate
them in the inner loop of system synthesis.
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Finally, when more sophisticated power-aware and battery-aware distributed
system scheduling algorithms become available, they also need to be integrated in
the inner loop of system synthesis.
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Chapter 12

Power minimisation techniques at the RT-level
and below

Afshin Abdollahi and Massoud Pedram

12.1 Introduction

A dichotomy exists in the design of modern microelectronic systems: they must be low
power and high performance, simultaneously. This dichotomy largely arises from the
use of these systems in battery-operated portable (wearable) platforms. Accordingly,
the goal of low power design for battery-powered electronics is to extend the bat-
tery service life while meeting performance requirements. Unless optimisations are
applied at different levels, the capabilities of future portable systems will be severely
limited by the weight of the batteries required for an acceptable duration of service.
In fixed, power-rich platforms, the packaging cost and power density/reliability issues
associated with high power and high performance systems also force designers to
look for ways to reduce power consumption. Thus, reducing power dissipation is a
design goal even for non-portable devices since excessive power dissipation results
in increased packaging and cooling costs as well as potential reliability problems.
Meanwhile, following Moore’s Law, integrated circuit densities and operating speeds
have continued to go up in unabated fashion. The result is that chips are becoming
larger, faster and more complex and because of this, consuming increasing amounts
of power.

These increases in power pose new and difficult challenges for integrated
circuit designers. While the initial response to increasing levels of power con-
sumption was to reduce the supply voltage, it quickly became apparent that this
approach was insufficient. Designers subsequently began to focus on advanced
design tools and methodologies to address the myriad of power issues. Compli-
cating designers’ attempts to deal with these issues are the complexities – logical,
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physical and electrical – of contemporary IC designs and the design flows required to
build them.

The established front-end approach to designing for lower power is to estimate
and analyse power consumption at the register transfer level (RTL), and to mod-
ify the design accordingly. In the best case, only the RTL within given functional
blocks is modified, and the blocks re-synthesised. The process is re-iterated until
the desired results are achieved. Sometimes, though, the desired power consump-
tion reductions may be achieved only by modifying the overall design architecture.
Modifications at this level affect not only power consumption, but also other per-
formance metrics, and may indeed greatly affect the cost of the chip. Thus, such
modifications require re-evaluation and re-verification of the entire design. The archi-
tectural optimisation techniques, however, fall outside the coverage of the present
chapter.

This chapter reviews a number of representative RTL design automation tech-
niques that focus on low power design. It should be of interest to designers of
power efficient devices, integrated circuit (IC) design engineering managers and elec-
tronic design automation (EDA) managers and engineers. More precisely, it covers
techniques for sequential logic synthesis, RTL power management, multiple volt-
age design and leakage power minimisation and control techniques. Interested
readers can find wide-ranging information on various aspects of low power design in
References 1–3.

12.2 Multiple-voltage design

Using different voltages in different parts of a chip may reduce the global energy
consumption of a design at a rather small cost in terms of algorithmic and/or architec-
tural modifications. The key observation is that the minimum energy consumption in
a circuit is achieved if all circuits paths are timing-critical (there is no positive slack
in the circuit). A common voltage scaling technique is thus to operate all the gates
on non-critical timing paths of the circuit at a reduced supply voltage. Gates/modules
that are part of the critical paths are powered at the maximum allowed voltage, thus,
avoiding any delay increase; the power consumed by the modules that are not on the
critical paths, on the other hand, is minimised because of the reduced supply voltage.
Using different power supply voltages on the same chip of circuitry requires the use
of level shifters at the boundaries of the various modules (a level converter is needed
between the output of a gate powered by a low VDD and the input of a gate powered
by a high VDD, i.e. for a step-up change.) Figure 12.1 depicts a typical level con-
verter design. Notice that if a gate that is supplied with VDD,L drives a fanout gate at
VDD,H, transistors N1 and N2 receive inputs at reduced supply and the cross-coupled
positive channel metal oxide semiconductor (PMOS) transistors do the level conver-
sion. Level converters are obviously not needed for a step-down change in voltage.
Overhead of level converters can be mitigated by doing conversions at register bound-
aries and embedding the level conversion inside the flip flops (see Reference 4 for
details).
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Figure 12.1 A typical level-converter design

A polynomial time algorithm for multiple-voltage scheduling of performance-
constrained non-pipelined designs is presented by Raje and Sarrafzadeh [5]. The idea
is to establish a supply voltage level for each of the operations in a data flow graph,
thereby, fixing the latency of that operation. The goal is then to minimise the total
power dissipation while satisfying the system timing constraints. Power minimisation
is in turn accomplished by ensuring that each operation will be executed using the
minimum possible supply voltage. The proposed algorithm is composed of a loop
where, in each iteration, slacks of nodes in the acyclic data flow graph are calculated.
Then, nodes with the maximum slack are assigned to lower voltages in such a way that
timing constraints are not violated. The algorithm stops when no positive slack exists
in the data flow graph. Notice that this algorithm assumes that the Pareto-optimal
voltage vs. delay curve is identical for all computational elements in the data flow
graph. Without this assumption, there is no guarantee that this algorithm will produce
an optimal design.

In Reference 6, the problem is addressed for combinational circuits, where only
two supply voltages are allowed. A depth-first search is used to determine those com-
putational elements, which can be operated at low supply voltage without violating
the circuit timing constraints. A computational element is allowed to operate at VDD,L

only if all its successors are operating at VDD,L. For example, Figure 12.2(a) demon-
strates a clustered voltage scaling (CVS) solution in which each circuit path starts with
VDD,H and switches to VDD,L when delay slack is available. The timing-critical path
is shown with thick line segments. Here grey-coloured cells are running at VDD,L.
Level conversion (if necessary) is done in the flip flops at the end of the circuit
paths. An extension to this approach is proposed in Reference 7, which is based on
the observation that by optimising the insertion points of level converters, one can
increase the number of gates using VDD,L without increasing the number of level
converters. This leads to higher power savings. For example, in the CVS solution
depicted in Figure 12.2(a), assume that the path delay from flip-flop FF3 to gate G2

is much longer than that of the path from FF1 to G2. In addition, assume that if we
apply VDD,L to G2, then the path from FF3 to FF5 through G2 will miss its target
combinational delay, i.e. G2 must be assigned a supply level of VDD,H. With the CVS
approach, it immediately follows that G3 must be assigned VDD,H although a poten-
tially large positive slack remains in the path from FF1 to G2. The situation is the same
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for G4 and G5. Consequently, the CVS approach can miss opportunities for applying
VDD,L to some gates in the circuit. If the insertion point of the level converter LC1 is
allowed to move up to the interface between G3 and G2, the gates G3 through G5 can
be assigned a supply of VDD,L, as depicted in Figure 12.2(b). The structure shown
there is one that can be obtained by the extended CVS (ECVS) algorithm. Both CVS
and ECVS assign the appropriate power supply to the gates by traversing the circuit
from the primary outputs to the primary inputs in a topological order. ECVS allows a
VDD,L-driven gate to feed a VDD,H-driven gate along with the insertion of a dedicated
level converter.

Chen et al. [8] proposed an approach for voltage assignment in combinational
logic circuits. First, a lower bound on dynamic power consumption is determined by
exploiting the available slacks and the value of the dual-supply voltages that may be
used in solving the problem of minimising dynamic power consumption of the circuit.
Next, a heuristic algorithm is proposed for solving the voltage-assignment problem,
where the values of the low and the high supply voltages are either specified by the
user or fixed to the estimated ones.

Manzak and Chakrabarti [9] present resource- and latency-constrained scheduling
algorithms to minimise power/energy consumption when the resources operate at
multiple voltages. The proposed algorithms are based on efficient distribution of slack
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among the nodes in the data flow graph. The distribution procedure tries to implement
the minimum energy relation derived using the Lagrange multiplier method in an
iterative fashion.

An important phase in the design flow of multiple-voltage systems is that of
assigning the most convenient supply voltage, selected from a fixed number of values,
to each operation in the control-data flow graph (CDFG). The problem is to assign the
supply voltages and to schedule the tasks so as to minimise the power dissipation under
throughput/resource constraints. An effective solution has been proposed by Chang
and Pedram [10]. The technique is based on dynamic programming and requires the
availability of accurate timing and power models for the macro-modules in a RTL
library. A preliminary characterisation procedure must then be run to determine an
energy-delay curve for each module in the library and for all possible supply-voltage
assignments. The points on the curve represent various voltage assignment solutions
with different trade-offs between the performance and the energy consumption of the
cell. Each set of curves is stored in the RTL library, ready to be invoked by the cost
function that guides the multiple supply-voltage scheduling algorithm. We provide a
brief description of the method for the simple case of CDFGs with a tree structure.
The algorithm consists of two phases: first, a set of possible power-delay trade-
offs at the root of the tree is calculated; then, a specific macro-module is selected
for each node in such a way that the scheduled CDFG meets the required timing
constraints. To compute the set of possible solutions, a power-delay curve at each
node of the tree (proceeding from the inputs to the output of the CDFG) is computed;
such a curve represents the power-delay trade-offs that can be obtained by selecting
different instances of the macro-modules, and the necessary level shifters, within
the subtree rooted at each specific node. The computation of the power-delay curves
is carried out recursively, until the root of the CDFG is reached. Given the power-
delay curve at the root node, that is, the set of trade-offs the user can choose from,
a recursive preorder traversal of the tree is performed, starting from the root node,
with the purpose of selecting which module alternative should be used at each node
of the CDFG. Upon completion, all the operations are fully scheduled; therefore, the
CDFG is ready for the resource-allocation step.

More recently, a level-converter free approach is proposed in Reference 11 where
the authors try to eliminate the overhead imposed by level converters by suggesting
a voltage scaling technique without utilising level converters. The basic initiative is
to impose some constraints on the voltage differences between adjacent gates with
different supply voltages based on the observation that there will be no static current if
the supply voltage of a driver gate is higher than the subtraction of the threshold voltage
of a PMOS from the supply voltage of a driven gate. Murugavel and Ranganathan
[12] proposed behavioural-level power optimisation algorithms that use voltage and
frequency scaling. In this work, the operators in a data flow graph are scheduled
in the modules of the given architecture, by applying voltage and frequency scaling
techniques to the modules of the architecture such that the power consumed by the
modules is minimised. The global optimal selection of voltages and frequencies for
the modules is determined through the use of an auction-theoretic model and a game-
theoretic solution. The authors present a resource-constrained scheduling algorithm,
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which is based on applying the Nash equilibrium function to the game-theoretic
formulation.

12.3 Dynamic voltage scaling and Razor logic

The dependence of both performance and power dissipation on supply voltage results
in a trade-off in circuit design. High supply voltage results in high performance
while low supply voltage makes an energy-efficient design. Dynamic voltage scaling
(DVS) [13] is a powerful technique to reduce circuit energy dissipation in which the
application or operating system identifies periods of low processor utilisation that
can tolerate reduced frequency which allows reduction in the supply voltage. Since
dynamic power scales quadratically with supply voltage, DVS significantly reduces
energy consumption with a limited impact on system performance [14].

Several factors determine the voltage required to reliably operate a circuit in a
given frequency. The supply voltage must be sufficiently high to fully evaluate the
critical path in a single clock cycle (i.e. critical voltage). To ensure that the cir-
cuit operates correctly even in the worst-case operating environment some voltage
margins are added to the critical voltage (e.g. process margin due to manufacturing
variations, ambient margins to compensate high temperatures and noise margins due
to uncertainty in supply and signal voltage levels).

To ensure correct operation under all possible variations, a conservative supply
voltage is typically selected using corner analysis. Hence, margins are added to the
critical voltage to account for uncertainty in the circuit models and to account for the
worst-case combination of variations. However, such a worst-case combination of
variations may be highly improbable; hence this approach is overly conservative.

In some approaches the delay of an embedded inverter chain is used as a predic-
tion of the critical path delay of the circuit and the supply voltage is tuned during
processor operation to meet a predetermined delay through the inverter-chain [15].
This approach to DVS allows dynamic adjustment of the operating voltage to account
for global variations in supply voltage drop, temperature fluctuation and process vari-
ations. However, it cannot account for local variations, such as local supply voltage
drops, intra-die process variations and cross-coupled noise, and therefore requires
the addition of some margins to the critical voltage. Also, the delay of an inverter
chain does not scale with voltage and temperature in the same way as the delays of the
critical paths of the actual design, which can contain complex gates and pass-transistor
logic, which again requires extra voltage margins.

Ernst et al. [16] proposed a different approach to DVS, referred to as Razor
logic, which is based on dynamic detection and correction of speed path failures in
digital designs. The basic idea is to tune the supply voltage by monitoring the error rate
during operation, which eliminates the need for voltage margins that are necessary for
‘always-correct’ circuit operation in conventional DVS. In Razor logic, the operation
at sub-critical supply voltages does not constitute a ‘failure’, but instead represents a
trade-off between the power dissipation penalties incurred from error correction vs.
the additional power savings obtained from operating at a lower supply voltage.
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The Razor logic based DVS utilises a combination of circuit and architectural
techniques for low-cost error detection and correction of delay failures. Each flip-
flop in the critical path is augmented with a ‘shadow’ latch which is controlled using
a delayed clock. The operating voltage is constrained such that the worst-case delay
meets the shadow latch setup time, even though the main flip-flop could fail. By
comparing the values latched by the flip-flop and the shadow latch, a timing error in
the main flip-flop can be detected. The value in the shadow latch, which is guaranteed
to be correct, is subsequently utilised to correct the delay failure.

This concept is illustrated in Figure 12.3(a) for a pipeline stage. The operation of
a Razor flip-flop is shown in Figure 12.3(b). In clock cycle 1, the combinational logic
L1 meets the setup time by the rising edge of the clock and both the main flip-flop and
the shadow latch will latch the correct data. In this case, the error signal at the output
of the XOR gate remains low and the operation of the pipeline is unaltered. In cycle 2,
the combinational logic delay exceeds the intended delay due to sub-critical voltage
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scaling. In this case, the correct data is not latched by the main flip-flop. However,
because the shadow latch operates from a delayed clock, it successfully latches the
correct data some time in cycle 3. By comparing the valid data of the shadow latch
with the data in the main flip-flop, an error signal is generated in cycle 3. Later, in
cycle 4, the valid data in the shadow latch is restored into the main flip-flop and
becomes available to the next pipeline stage L2.

If an error occurs in pipeline stage L1 in a particular clock cycle, the data in
L2 in the following clock cycle is incorrect and must be flushed from the pipeline.
However, since the shadow latch contains the correct output data of pipeline stage L1,
the instruction does not need to be re-executed through this failing stage. In addition
to invalidating the data in the following pipeline stage, an error stalls the preceding
pipeline stages (incurring one cycle penalty) while the shadow latch data is restored
into the main flip-flops. Then data is re-executed through the following pipeline stage.
A number of different methods, such as clock gating or flushing the instruction in the
preceding stages, were presented in Reference 16.

12.4 RTL power management

Digital circuits usually contain portions that are not performing useful computations
at each clock cycle. Power reductions can then be achieved by shutting down the
circuitry when it is idle.

12.4.1 Precomputation logic

Precomputation logic, presented in Reference 17, relies on the idea of duplicating
part of the logic with the purpose of precomputing the circuit output values one
clock cycle before they are required, and then uses these values to reduce the total
amount of switching in the circuit during the next clock cycle. In fact, knowing the
output values one clock cycle in advance allows the original logic to be turned off
during the next time frame, thus eliminating any charging and discharging of the
internal capacitances. Obviously, the size of the logic that pre-calculates the output
values must be kept under control since its contribution to the total power balance
may offset the savings achieved by blocking the switching inside the original circuit.
Several variants to the basic architecture can then be devised to address this issue.
In particular, sometimes it may be convenient to resort to partial, rather than global,
shutdown, i.e. to select for power management only a (possibly small) subset of the
circuit inputs.

The synthesis algorithm presented in Reference 17 suffers from the limitation that
if a logic function is dependent on the values of several inputs for a large fraction of the
applied input combinations, then no reduction in switching activity can be obtained.
Monteiro et al. [18] focused on a particular sequential precomputation architecture
where the precomputation logic is a function of all of the input variables. The authors
call this architecture the ‘complete input-disabling architecture’. It is shown that
the complete input-disabling architecture can reduce power dissipation for a larger
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class of sequential circuits compared to the subset input-disabling architecture. The
authors present an algorithm to synthesise precomputation logic for the complete
input-disabling architecture.

12.4.2 Clock gating

Another approach to RT and gate-level dynamic power management, known as gated
clocks [19–21], provides a way to selectively stop the clock, and thus, force the origi-
nal circuit to make no transition, whenever the computation that is to be carried out at
the next clock cycle is redundant. In other words, the clock signal is disabled accord-
ing to the idle conditions of the logic network. For reactive circuits, the number of
clock cycles in which the design is idle in some wait states is usually large. Therefore,
avoiding the power waste corresponding to such states may be significant.

The logic for the clock management is automatically synthesised from the Boolean
function that represents the idle conditions of the circuit (cf. Figure 12.4.) It may
well be the case that considering all such conditions results in additional circuitry
that is too large and too power-consuming. It may then be necessary to synthesise a
simplified function, which dissipates the minimum possible power and stops the clock
with maximum efficiency. The use of gated clocks has the drawback that the logic
implementing the clock-gating mechanism is functionally redundant, and this may
create major difficulties in testing and verification. The design of highly testable-gated
clock circuits is discussed in Reference 22.

Another difficulty with clock gating is that one must stop hazards/glitches on EN
signal from corrupting the clock signal to the register sets. This can be accomplished
by introducing a transparent negative latch between EN and the AND gate as shown
in Figure 12.5.

12.4.3 Computational kernels

Sequential circuits may have an extremely large number of reachable states, but
during normal operation, these circuits tend to visit only a relatively small subset of
the reachable states. A similar situation occurs at the primary outputs; while the circuit
walks through the most probable states, only a few distinct patterns are generated at
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the combinational outputs of the circuit. Many researchers have proposed approaches
for synthesising a circuit that is fast and power-efficient under typical input stimuli,
but continues to operate correctly even when uncommon input stimuli are applied to
the circuit.

Reference 23 presents a power optimisation technique by exploiting the concept
of computational kernel of a sequential circuit, which is a highly simplified logic
block that imitates the steady-state behaviour of the original specification. This block
is smaller, faster and less power-consuming than the circuit from which it is extracted
and can replace the original network for a large fraction of the operation time.

The p-order computational kernel of an FSM is defined with respect to a given
probability threshold p and includes the subset of the states, Sp, of the original FSM
whose steady-state occupation probabilities are larger than p. The combinational
kernel also includes the subset of states, Rp, where for each state in Rp there is an
edge from a state in Sp to that state. As an example, consider the simple FSM shown
in Figure 12.6(a) in which the input and output values are omitted for the sake of
simplicity and the states are annotated with the steady-state occupation probabilities
calculated through Markovian analysis of the corresponding state transition graph
(STG). If we specify a probability threshold of p = 0.25, then the computational
kernel of the FSM is depicted in Figure 12.6(b). States in black represent set Sp,
while states in grey represent Rp. The kernel probability is Prob(Sp) = 0.29 +
0.25 + 0.32 = 0.86.

Given a sequential circuit with the standard topology depicted in Figure 12.7(a),
the paradigm for improving its quality with respect to a given cost function (e.g. power
dissipation, latency) is based on the architecture shown in Figure 12.7(b).

The basic elements of the architecture are: the combinational portion of the orig-
inal circuit (block CL), the computational kernel (block K), the selector function
(block S), the double state flip-flops (DSFFs) and the output multiplexers (MUX).
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Figure 12.7 Illustration of computational kernel utilisation. (a) Baseline architec-
ture, (b) Kernel-based optimised architecture

The computational kernel can be seen as a ‘dense’ implementation of the circuit
from which it has been extracted. In other terms, K implements the core functions
of the original circuit, and because of its reduced complexity, it usually implements
such functions in a faster and more efficient way. The purpose of selector function
S is that of deciding what logic block, between CL and K, will provide the output
value and the next-state in the following clock cycle. To take a decision, S examines
the values of the next-state outputs at clock cycle n. If the output and next-state
values in cycle n+ 1 can be computed by the kernel K, then S takes on the value 1.
Otherwise, it takes on the value 0. The value of S is fed to a flip-flop, whose output
is connected to the MUXs that select which block produces the output and the next-
state. The optimised implementation is functionally equivalent to the original one.
Computational kernels are a generalisation of the precomputation architecture from
combinational and pipelined sequential circuits to finite state machines. Benini et al.
[23] proposed an algorithm for generating the computational kernel of a FSM by
iterative simplification of the original network by redundancy removal.



398 System-on-chip

Benini et al. [24] raise the level of abstraction at which the kernel-based
optimisation strategy can be exploited and show how RTL components for which
only a functional specification is available can be optimised using the computational
kernels. They present a technique for computational kernel extraction directly from
the functional specification of a RTL module. Given the STG specification, the pro-
posed algorithm calculates the kernel exactly through symbolic procedures similar to
those employed for FSM reachability analysis. The authors also provide approximate
methods to deal with large STGs. More precisely, they propose two modifications
to the basic procedure. The first one replaces the exact probabilistic analysis of the
STG with an approximate analysis. In the second solution, symbolic state probability
computation is bypassed and the set of states belonging to the kernel is determined
directly from RTL simulation traces of a given (random or user-provided) stream.

12.4.4 State machine decomposition

Decomposition of finite state machines for low power has been proposed by Monteiro
and Oliveira [25]. The basic idea is to decompose the STG of a FSM into two STGs
that jointly produce the equivalent input–output behaviour as the original machine.
Power is saved because, except for transitions between the two sub-FSMs, only one
of the sub-FSM needs to be clocked. The technique follows a standard decomposition
structure. The states are partitioned by searching for a small subset of states with high
probability of transitions among these states and a low probability of transitions to
and from other states. This subset of states will then constitute a small sub-FSM that is
active most of the time. When the small sub-FSM is active, the other larger sub-FSM
can be disabled. Consequently, power is saved because most of the time only the
smaller, more power-efficient, sub-FSM is clocked.

In Reference 26 the combinational logic block is partitioned (e.g. to CL1 and CL2)
and the active part is decided based on the encoding of the present state. The states
selected for one of the sub-FSM (i.e. M1) are all encoded in such a way that the enable
signal is always on for CL1 while it is off for CL2. Conversely, for all states in the
other sub-FSM (i.e. M2), the enable signal is always off for CL1 while it is on for CL2.
Consequently, for all transitions within M1, only CL1 will be active and vice-versa.

Consider as an example dk27 FSM from the MCNC benchmark set, depicted in
Figure 12.8. Assume that the input signal values, 0 and 1, occur with equal probabil-
ities. The steady-state probabilities which are shown next to the states in this figure
have been computed accordingly. Suppose we partition the FSM into two subma-
chines M1 and M2 along the dotted line. Then around 40 per cent of the transitions
occur in submachine M1, 40 per cent of the transitions occur in submachine M2 and
20 per cent of the transitions occur between submachines M1 and M2. Now suppose
that the FSM is synthesised as two individual combinational circuits for submachines
M1 and M2. Then we can turn off the combinational circuit for submachine M2 when
transitions occur within submachine M1. Similarly, we can turn off the combina-
tional circuit for submachine M1 when transitions occur within submachine M2. The
states are partitioned such that the probability of transitions within any sub-FSM is
maximised and the estimated overhead is minimised.
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Figure 12.8 Example of an FSM (dk27) that may be decomposed into two sub-
FSMs such that one sub-FSM can be shut off when the other is active
and vice versa

These methods for FSM decomposition can be considered as extensions of the
gated-clock for FSM self-loops approach proposed in Reference 27. In FSM decompo-
sition the cluster of states that are selected for one of the sub-FSMs can be considered
as a ‘super-state’ and then transitions between states in this cluster can be seen as
self-loops on this ‘super-state’.

12.4.5 Guarded evaluation

Guarded evaluation [28] is the last RT and gate-level shutdown technique we review
in this section. The distinctive feature of this solution is that, unlike precomputation
and gated clocks, it does not require one to synthesise additional logic to implement
the shutdown mechanism; instead, it exploits existing signals in the original circuit.
The approach is based on placing some guard logic, consisting of transparent latches
with an enable signal, at the inputs of each block of the circuit that needs to be power-
managed. When the block must execute some useful computation in a clock cycle,
the enable signal makes the latches transparent. Otherwise, the latches retain their
previous states, thus, blocking any transition within the logic block.

Guarded evaluation provides a systematic approach to identify where transparent
latches must be placed within the circuit and by which signals they must be controlled.
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Figure 12.9 Example of guard logic insertion

For example, letC be a combinational logic block (cf. Figure 12.9(a)),X be the set of
primary inputs to C and z be a signal in C. Furthermore, let F be the portion of logic
that drives z and Y be the set of inputs to F . Finally, let DZ(X) be the observability
don’t-care set for z (i.e. the set of primary input assignments for which the value of
z does not influence the outputs of C). Now consider a signal s in C which logically
implies DZ(X), i.e. s ⇒ DZ(X). Then, if s = 1, then the value of z is not required
to compute the outputs of C. If we call te(Y ) the earliest time at which any input to
F can switch when s = 1, and tl(s) as the latest time at which s settles to one, then
signal s can be used as the guard signal forF (cf. Figure 12.9(b)) if tl(s) < te(Y ). This
is because z is not required to compute the outputs of C when s = 1, and therefore,
block F can be shut down. Notice that the condition tl(s) < te(Y ) guarantees that
the transparent latches in the guard logic are shut down before any of the inputs to F
makes a transition.

This technique, referred to as pure guarded evaluation, has the desirable property
that when applied, no changes in the original combinational circuitry are needed.
On the other hand, if some resynthesis and restructuring of the original logic is
allowed, a larger number of logic shutdown opportunities may become available.

12.5 Sequential logic synthesis for low power

Power can be minimised by appropriate synthesis of logic. The goal in this case is to
minimise the so-called switched capacitance of the circuit by low power driven logic
minimisation techniques.

12.5.1 State assignment

State encoding/assignment, as a crucial step in the synthesis of the controller circuitry,
has been extensively studied. Roy and Prasad [29] were the first to address the problem
of reducing switching activity of input state lines of the next state logic, during the
state assignment, formulating it as a Minimum Weighted Hamming Distance problem
[29]. Olson et al. [30] used a linear combination of switching activity of the next state
lines and the number of literals as the cost function. Tsui et al. [31] used simulated
annealing as a search strategy to find a low power state encoding that accounts for
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both the switching activity of the next state lines and switched capacitance of the next
state and output logic.

For example, consider the state transition graph for a BCD to Excess-3 Converter
depicted in Figure 12.10. Assume that the transition probabilities of the thicker edges
in this figure are more than those of the thin edges. The key idea behind all of the low
power state assignment techniques is to assign minimum Hamming distance codes
to the state pairs that have large inter-state transition probabilities. For example, the
coding, S0 = 000, S1 = 001, S2 = 011, S3 = 010, S4 = 100, S5 = 101, S6 = 111,
S7 = 110 fulfills this requirement.

Wu et al. [32] proposed the idea of realising a low power FSM by using T flip-
flops. The authors showed that use of T flip-flops results in a natural clock gating and
may result in reduced next state logic complexity. However, that work was mostly
focused on BCD counters which have cyclic behaviour. The cyclic behaviour of coun-
ters results in a significant reduction of combinational logic complexity and, hence,
lowers power consumption. Reference 33 introduces a mathematical framework for
cycle representation of Markov processes and based on that, proposes solutions to
the low power state assignment problem. The authors first identify the most proba-
ble cycles in the FSM and encode the states on these cycles with Grey codes. The
objective function is to minimise the Weighted Hamming Distance. This reference
also teaches how a combination of T and D flip-flops as state registers can be used
to achieve a low power realisation of a FSM.

12.5.2 Retiming

Retiming is to reposition the registers in a design to improve the area and performance
of the circuit without modifying its input–output behaviour. The technique was ini-
tially proposed by Leiserson and Saxe [34]. This technique changes the location of
registers in the design in order to achieve one of the following goals: (1) minimise
the clock period; (2) minimising the number of registers or (3) minimise the number
of registers for a target clock period.
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Minimising dynamic power for synchronous sequential digital designs is
addressed in the literature. Monteiro et al. [35] presented heuristics to minimise
the switching activity in a pipelined sequential circuit. Their approach is based on
the fact that registers have to be positioned on the output edges of the computational
elements that have high switching activity. The reason for power savings is that in this
case the output of a register switches only at the arrival of the clock signal as opposed
to potentially switching many times in the clock period. Consider the simple example
of a logic gate belonging to a synchronous circuit and a capacitive load driven by
the output gate. In CMOS technology, the power dissipated by gate is proportional
to the product of the switching activity of the output node of the gate and the output
load. At the output of gate some spurious transitions (i.e. glitches) may occur, which
can result in a significant power waste. Suppose a register is inserted between the
output of the gate and the capacitive load, in the new circuit the output of the register
can make, at most, one transition per clock cycle. In fact, the gate output may have
many redundant transitions but they are all filtered out by the register; hence, these
logic hazards do not propagate to the output load.

The heuristic retiming technique of Reference 35 applies to a synchronous network
with pipeline structure. The basic idea is to select a set of candidate gates in the
circuit such that if registers are placed at their outputs, the total switching activity
of the network gets minimised. The selection of the gates is driven by two factors:
the amount of glitching that occurs at the output of each gate and the probability that
such glitching propagates to the gates located in the transitive fanout. Registers are
initially placed at the primary inputs of the circuit, and backward retiming (which
consists of moving one register from all gate inputs to the output) is applied until
all the candidate gates have received a register on their outputs. Then, registers that
belong to paths not containing any of the candidate gates are repositioned, with the
objective of minimising both the delay and the total number of registers in the circuit.
This last retiming phase does not affect the registers that have been already placed at
the outputs of the previously selected gates. In Reference 36, fixed-phase retiming is
proposed to reduce dynamic power consumption. The edge-triggered circuit is first
transformed to a two-phase level-clocked circuit, by replacing each edge-triggered
flip-flop by two latches. Using the resulting level-clocked circuit, the latches of one
phase are kept fixed, while the latches belonging to the other phase are moved onto
wires with high switching activity and loading capacitance.

Fixed-phase retiming is best illustrated by the example shown below.
Figure 12.11(a) shows a section of a pipelined circuit with edge-triggered flip-flops.
The numbers on the edges represent the potential reduction in power dissipation when
an edge-triggered flip-flop is present on that edge, assuming that the rest of the circuit
remains unchanged. Negative values of power reduction indicate an increase in power
dissipation when a flip-flop is placed on an edge. This reduction in power dissipa-
tion can be achieved if the edge has a high glitching-capacitance product [3]. After
replacing each edge-triggered flip-flop by two back-to-back level-clocked latches,
the resulting circuit is fixed-phase retimed to obtain the circuit in Figure 12.11(b).

Assuming a non-overlapping two-phase clocking schemeπ = 〈φ0 = 4, γ0 = 1,
φ1 = 4, γ1 = 1〉 such as the one shown in Figure 12.11(c), power dissipation can
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be reduced by 11.8 units. Specifically, the glitching on edges B → D, E → F
and E → H is ‘masked’ for 60 per cent of the clock cycle which decreases power
dissipation by 0.6 × (12 + 13 − 2) = 13.8 units of power. At the same time, the
glitching on edges G → J and H → K is ‘exposed’ for 40 per cent of the clock
cycle which increases power dissipation by 0.4 × (10 − 5) = 2 power units. In order
to simplify the computation of changes in power dissipation for this example, it is
assumed that glitching is uniformly distributed over the entire clock period and that
the relocation of latches does not change glitching significantly.

Chabini and Wolf proposed a hybrid retiming and supply voltage scaling [37].
They observed that critical paths are related to the position of registers in a design
so they tried not only to scale down the supply voltage of computational elements
that are off the critical paths, but also to move registers to maximise the number of
computational elements that are off the critical paths, thereby further minimising the
circuit power consumption. Registers have to be moved from their positions by the
standard retiming technique. Instead of unifying basic retiming and supply voltages
scaling, the authors propose to apply ‘guided retiming’ followed by the application of
voltage scaling on the retimed design. Polynomial time algorithms based on dynamic
programming to realise the guided retiming as well as the supply voltage scaling on
the retimed design are proposed.

12.6 Leakage power reduction techniques

In many new high-performance designs, the leakage component of power consump-
tion is comparable to the switching component. Reports indicate that 40 per cent or
an even higher percentage of the total power consumption is due to the leakage of
transistors. This percentage will increase with technology scaling unless effective
techniques are introduced to bring leakage under control. This section focuses mostly
on RTL optimisation and design automation techniques that accomplish this goal.

There are four main sources of leakage current in a CMOS transistor:

1 Reverse-biased junction leakage current (IREV)
2 Gate induced drain leakage (IGIDL)
3 Gate direct-tunnelling leakage (IG)
4 Subthreshold (weak inversion) leakage (ISUB)

Let IOFF denote the leakage of an OFF transistor (VGS = 0 V for an NMOS device
which results in IG = 0).

IOFF = IREV + IGIDL + ISUB

Components, IREV and IGIDL are maximised when VDB = VDD. Similarly, for
short-channel devices, ISUB increases with VDB because of the DIBL effect. Note
the IG is not a component of the OFF current, since the transistor gate must be at
a high potential with respect to the source and substrate for this current to flow. An
effective approach to overcome the gate leakage currents while maintaining excel-
lent gate control is to replace the currently used silicon dioxide gate insulator with
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high-K dielectric material such as TiO2 and Ta2O5. Use of the high-K dielectric
will allow a less aggressive gate dielectric thickness reduction while maintaining
the required gate overdrive at low supply voltages [38]. High-K gate dielectrics are
expected to be introduced in 2006 [39]. Therefore, it is reasonable to ignore the
IG component of leakage. Among the three components of IOFF, ISUB is the domi-
nant component. Hence, most leakage reduction techniques focus on ISUB. For more
details on the different leakage mechanisms, see Chapter 13.

12.6.1 Power gating and multi-threshold CMOS

The most obvious way of reducing the leakage power dissipation of a VLSI circuit
in the STANDBY state is to turn off its supply voltage. This can be done by using
one PMOS transistor and one NMOS transistor in series with the transistors of each
logic block to create a virtual ground and a virtual power supply as depicted in
Figure 12.12. In practice, only one transistor is necessary. Because of the lower
on-resistance, NMOS transistors are usually used.

In the ACTIVE state, the sleep transistor is on. Therefore, the circuit functions as
usual. In the STANDBY state, the transistor is turned off, which disconnects the gate
from the ground. To lower the leakage, the threshold voltage of the sleep transistor
must be large. Otherwise, the sleep transistor will have a high leakage current, which
will make the power gating less effective. Additional savings may be achieved if the
width of the sleep transistor is smaller than the combined width of the transistors
in the pull-down network. In practice, Dual VT CMOS or multi-threshold CMOS
(MTCMOS) is used for power gating [40,41]. In these technologies there are several
types of transistors with different VT values. Transistors with a low VT are used to
implement the logic, while high-VT devices are used as sleep transistors.

To guarantee the proper functionality of the circuit, the sleep transistor has to be
carefully sized to decrease its voltage drop while it is on. The voltage drop on the sleep
transistor decreases the effective supply voltage of the logic gate. Also, it increases
the threshold of the pull-down transistors due to the body effect. This increases
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Figure 12.12 Power gating circuit
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the high-to-low transition delay of the circuit. This problem can be solved by using
a large sleep transistor. On the other hand, using a large sleep transistor increases
the area overhead and the dynamic power consumed for turning the transistor on
and off. Note that because of this dynamic power consumption, it is not possible
to save power for short idle periods. There is a minimum duration of the idle time
below which power saving is impossible. Increasing the size of the sleep transistors
increases this minimum duration.

Since using one transistor for each logic gate results in a large area and power over-
head, one transistor may be used for each group of gates as depicted in Figure 12.13.
Notice that the size of the sleep transistor in this figure ought to be larger than the one
used in Figure 12.12. To find the optimum size of the sleep transistor, it is necessary to
find the vector that causes the worst case delay in the circuit. This requires simulating
the circuit under all possible input values, a task that is not possible for large circuits.

In Reference 41, Kao and Chandrakasan describe a method to decrease the size
of sleep transistors based on the mutual exclusion principle. In their method, the
authors first size the sleep transistors to achieve delay degradation less than a given
percentage for each gate. Notice that this guarantees that the total delay of the circuit
will be degraded by less than the given percentage. In fact the actual degradation can
be as much as 50 per cent smaller. The reason for this is that NMOS sleep transistors
degrade only the high-to-low transitions and at each cycle only half of the gates switch
from high to low. If two gates switch at different times (i.e. their switching windows
are non-overlapping), then their corresponding sleep transistors can be shared.

Although sleep transistors can be used to disconnect logic gates from ground,
using them to disconnect flip-flops from ground or supply voltage results in the loss
of data. Hyo-Sig Won et al. [42] solve this problem by using high-threshold transistors
for the inverters that hold data and low-threshold transistors for other parts of flip-
flops. In the sleep mode, the low-threshold transistors are disconnected from the
ground, but the two inverters that hold data stay connected to the ground. Since high-
threshold transistors have been used in the inverters, their leakage is small. Other
possibilities for saving data when MTCMOS is applied to a sequential circuit are to
utilise leakage-feedback gates and flip-flops [43] or balloon latches [44].
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12.6.2 Multiple-threshold cells

Multiple-threshold voltages have been available on many CMOS processes for a
number of years. Multiple-threshold CMOS circuit, which has both high- and low-
threshold transistors in a single chip, can be used to deal with the leakage problem. The
high-threshold transistors can suppress the subthreshold leakage current, while the
low-threshold transistors are used to achieve the high performance. Since the standby
power is much larger for low VT transistors compared to the high VT ones, usage is
limited to using low VT transistors on timing-critical paths, with insertion rates of the
order of 20 per cent or less. Since Tox and Lgate are the same for high and low VT

transistors, low VT insertion does not adversely impact the active power component
or the design size. Drawbacks are that variation due to doping is uncorrelated between
the high- and low-threshold transistors and extra mask steps incur a process cost.

The technology used for fabricating circuits can restrict the manner in which
transistors can be mixed. For example, it may not be possible to use different threshold
voltages for transistors in a stack due to their proximity. Furthermore, to simplify the
design process and computer-aided design (CAD) algorithms, one may wish to restrict
the way transistors are mixed. For example, when transistors of the same type are
used in a logic cell, the size of multi-threshold cell library is only twice that of the
original (single threshold) cell library. This reduces the library development time as
well as the complexity and run time of CAD algorithms and tools that use the library.

In general, one expects that the leakage saving increases as the freedom to mix low
and highVT devices in a logic cell is increased. However, the percentage improvement
is usually minor. Compared to the case of using logic cells with the same type of
transistors (i.e. low-threshold or high-threshold) everywhere, Reference 45 reports
an average of only 5 per cent additional leakage savings by using logic cells with the
same type of transistors in a transistor stack.

Although using two threshold voltages instead of one significantly decreases
the leakage current in a circuit, using more than two threshold voltages marginally
improves the result [46]. This is true even when the threshold values are optimised to
minimise the leakage for a given circuit. Thus, in many designs, only two threshold
voltages are used.

12.6.3 Minimum leakage vector (MLV) method

The leakage current of a logic gate is a strong function of its input values. The reason
is that the input values affect the number of OFF transistors in the NMOS and PMOS
networks of a logic gate.

Table 12.1 shows the leakage current of a two-input NAND gate built in a 0.18µm
CMOS technology with a 0.2 V threshold voltage and a 1.5 V supply voltage. Input A
is the one closer to the output of the gate.

The minimum leakage current of the gate corresponds to the case when both its
inputs are zero. In this case, both NMOS transistors in the NMOS network are off,
while both PMOS transistors are on. The effective resistance between the supply
and the ground is the resistance of two OFF NMOS transistors in series. This is
the maximum possible resistance. If one of the inputs is zero and the other is one,
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Table 12.1 The leakage values of
a NAND gate

Inputs Output Leakage

A B O current (nA)

0 0 1 23.06
0 1 0 51.42
1 0 0 47.15
1 1 0 82.94

the effective resistance will be the same as the resistance of one OFF NMOS transistor.
This is clearly smaller than the previous case. If both inputs are one, both NMOS
transistors will be on. On the other hand, the PMOS transistors will be off. The
effective resistance in this case is the resistance of two OFF PMOS transistors in
parallel. Clearly, this resistance is smaller than the other cases.

In the NAND gate of Table 12.1 the maximum leakage is about three times higher
than the minimum leakage. Note that there is a small difference between the leakage
current of the A = 0, B = 1 vector and the A = 1, B = 0 vector due to the
body effect. The phenomenon whereby the leakage current through a stack of two or
more OFF transistors is significantly smaller than a single device leakage is called
the ‘stack effect’. Other logic gates exhibit a similar leakage current behaviour with
respect to the applied input pattern. As a result, the leakage current of a circuit is a
strong function of its input values. It is possible to achieve a moderate reduction in
leakage using this technique, but the reduction is not as high as the one achieved by
the power gating method. On the other hand, the MLV method does not suffer from
many of the shortcomings of the other methods. In particular,

1 No modification in the process technology is required.
2 No change in the internal logic gates of the circuit is necessary.
3 There is no reduction in voltage swing.
4 Technology scaling does not have a negative effect on its effectiveness or its

overhead. In fact, the stack effect becomes stronger with technology scaling as
DIBL worsens.

The first three facts make it very easy to use this method in existing designs. This tech-
nique is also referred to as input vector control (IVC) [47]. The problem of finding
MLV for an arbitrary circuit is NP-complete [48] for which a number of heuris-
tics have been proposed including a random simulation based approach presented
in Reference 47. Bobba and Hajj [48] used a constraint graph to solve the problem
for circuits with only a small number of inputs. An explicit branch and bound enu-
meration technique is described in Reference 49. For large circuits, bounds on the
minimum and maximum leakage values were obtained by using heuristics. Abdollahi
et al. [50] formulated the problem of determining the MLV using a series of Boolean
satisfiability problems and solved accordingly. The authors report between 10 per cent
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and 55 per cent reduction in the leakage by using the MLV technique. Note that the
saving is defined as (1−LeakageMLV/LeakageAVG)×100, where LeakageMLV is the
leakage when the minimum leakage vector drives the circuit whereas LeakageAVG

is the expected leakage current under an arbitrary input combination (this is used
because the input value prior to entering the sleep mode is unknown).

Lee and Blaauw [51] used the combination of MLV and dual-VT assignment for
leakage power reduction. They observe that within the performance constraints, it
is more effective to switch off a high-VT transistor than a low-VT one. Naidu et al.
[52] proposed an integer linear programming (ILP) model for circuits composed of
NAND or AOI gates, which obtains the MLV. Gao and Hayes [53] proposed an ILP
model for finding MLV, called the virtual gate or VG-ILP model. Virtual gates are
cells that are added to the given circuit to facilitate model formulation, but have no
impact on the functionality of the original circuit. The leakage current is viewed as a
pseudo-Boolean function of the inputs, which is subsequently linearised. The authors
resort to ILP to obtain the input MLV using linearised leakage current functions.
They also propose a fast, heuristic technique for MLV calculation, which selectively
relaxes variables of the ILP model, leading to a mixed-integer linear programming
(MLP) model.

12.6.4 Increasing the transistor channel lengths

Active leakage of CMOS gates can be reduced by increasing their transistor channel
lengths [54]. This is because there is aVT roll-off due to the short channel effect (SCE).
Therefore, different threshold voltages can be achieved by using different channel
lengths. The longer transistor lengths used to achieve high-threshold transistors tend
to increase the gate capacitance, which has a negative impact on the performance
and dynamic power dissipation. Compared with multiple-threshold voltages, long
channel insertion has similar or lower process cost, taken as the size increase rather
than the mask cost. It results in lower process complexity. In addition, the different
channel lengths track each other over process variation. This technique can be applied
in a greedy manner to an existing design to limit the leakage currents [55]. A potential
penalty is that the dynamic power dissipation of the up-sized gate is increased propor-
tional to the effective channel length increase. In general, circuit power dissipation
may not be saved unless the activity factor of the affected gates is low. Therefore,
the activity factor must be taken into account when choosing gates whose transistor
lengths are to be increased.

12.6.5 Transistor sizing with simultaneous threshold and supply voltage
assignment

Increasing the threshold voltage of a transistor reduces the leakage current exponen-
tially, but it has a marginal effect on the dynamic power dissipation. On the other
hand, reducing the width of a transistor reduces both leakage and dynamic power, but
at a linear rate only. Nguyen et al. [56] report an average 60 per cent and 75 per cent
reduction in the total power dissipation by using sizing alone and sizing combined



410 System-on-chip

with VT assignment, respectively. The combination of the technique with dual Vdd
assignment resulted in only a marginal improvement, probably because of the optimi-
sation algorithm used by the authors. Combining the three optimisations is currently
an active area of research and will enable synthesising lower power circuits in the
near future.

12.7 Conclusions

Several key elements emerge as enablers for an effective low power design method-
ology. The first is the availability of accurate, comprehensive power models. The
second is the existence of fast, easy to use high-level estimation and design explo-
ration tools for analysis and optimisation during the design creation process, while the
third is the existence of highly accurate, high-capacity verification tools for tape-out
power verification. As befitting a first-order concern, successfully managing the vari-
ous power-related design issues will require that power be addressed at all phases and
in all aspects of design, especially during the earliest design and planning activities.
Advanced power tools will play central roles in these efforts.

An RTL design methodology supported by the appropriate design automation
tools is one of the most effective methods of designing complex chips for lower power
dissipation. Moreover, this methodology drastically reduces the risk of not meeting
often harsh power constraints by the early identification of power hogs or hot spots,
and enabling the analysis and selection of alternative solutions. Such methodologies
have already been adopted by designers of complex chips and constitute the state-of-
the-art in designing complex, high-performance, yet low power, designs.

This chapter reviewed a number of RTL techniques for low power design of
VLSI circuits targeting both dynamic and leakage components of power dissipation
in CMOS VLSI circuits. A more detailed review of techniques for low power design
of VLSI circuits and systems can be found in many references, including Reference 1.
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Chapter 13

Leakage power analysis and reduction for
nano-scale circuits

Amit Agarwal, Saibal Mukhopadhyay, Chris H. Kim,
Arijit Raychowdhury and Kaushik Roy

13.1 Introduction

Complementary metal oxide semiconductor (CMOS) devices have been scaled down
aggressively in each technology generation to achieve higher integration density and
performance [1–3]. With technology scaling, the supply voltage needs to be scaled
down to reduce the dynamic power and maintain reliability [3]. However, this requires
the scaling of the device threshold voltage (Vth) to maintain a reasonable gate over
drive [4]. The threshold voltage (Vth) scaling and the Vth reduction due to short-
channel effects (SCEs) (like drain-induced-barrier-lowering (DIBL), Vth-roll off)
[4–6], result in an exponential increase in the subthreshold current (Figure 13.1).
To control the short-channel effect and to increase the transistor drive strength,
oxide thickness needs to be scaled down in each technology generation. The aggres-
sive scaling of oxide thickness results in a high direct tunnelling current through
the gate insulator of the transistor [4,5] (Figure 13.1). On the other hand, scaled
devices require the use of the higher substrate doping density and the application of
the ‘halo’ profiles (implant of high doping region near the source and drain junc-
tions of the channel) to reduce the depletion region width of the source–substrate and
drain–substrate junctions [4,5]. A lower depletion region width helps to control the
short-channel effect. The high doping density near the source–substrate and drain–
substrate junctions cause significantly large BTBT current through these junctions
under high reversed bias [4,5] (Figure 13.1). Hence, with technology scaling, each
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Figure 13.1 Major leakage components in a transistor

of these leakage components increases drastically, resulting in increase in the total
leakage current [3].

In the nanometre regime, a significant portion of the total power consumption
in high-performance digital circuits is due to leakage currents. Because high-
performance systems are constrained to a predefined power budget, the leakage
power reduces the available power, impacting performance. It also contributes to
the power consumption during standby operation, reducing battery life [7]. Hence,
techniques are necessary to reduce leakage power while maintaining the high perfor-
mance. Moreover, as described above different components of leakage are becoming
important with technology scaling. This increase in different leakage components
has two major implications in leakage estimation and low power logic design. First,
this results in a dramatic increase of the total leakage [7]. But, more importantly,
each of the leakage components becomes equally important in nano-scaled devices
[5,8]. Hence, the relative magnitudes of the leakage components play a major role in
low-leakage logic design [9]. Each leakage reduction technique needs re-evaluation
in scaled technologies where subthreshold conduction is not the only leakage mech-
anism. The new low power circuit techniques are required to reduce total leakage in
high-performance nano-scale circuits. Furthermore, the magnitudes of each of these
components depend strongly on the device geometry (namely, channel length, oxide
thickness and transistor width), the doping profiles and temperature [4,5]. Hence,
accurate estimation of the total leakage current is extremely important for designing
low power CMOS circuits in the nanometre regime.

In this chapter, different leakage components and their impact on logic circuits is
described. The basic physical mechanisms of the major leakage components, namely,
the junction BTBT, the subthreshold and the gate leakage, are discussed. The leakage
models based on (1) the device geometry, (2) the two-dimensional (2D) doping profile
of the device and (3) the operating temperature are described. Different integrated
circuit techniques to reduce overall leakage in both logic and cache memories are
shown. A spectrum of circuit techniques including dual Vth, forward/reverse bias,
dynamically varying the Vth during run time, sleep transistor, natural stacking, are
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reviewed. Based on these techniques, different leakage-tolerant schemes for logic
and memories are summarised.

13.2 Different components of leakage current

In this section, the basic physical mechanisms of the major leakage components,
namely, the junction BTBT, the subthreshold and the gate leakage, are discussed.
The discussion is principally based on the NMOS transistors. However, it is equally
applicable to PMOS transistors also. The discussion is based on the nano-scale devices
with 2D non-uniform channel (‘super halo’ channel doping) and source/drain (S/D)
doping profiles. A schematic of the device structure (symmetric about the middle of
the channel) is shown in Figure 13.2 [10].

In nano-scale devices to control the threshold voltage and the short-channel effect,
the 2D non-uniform doping profile is used. In the vertical direction (direction per-
pendicular to channel, direction Y in Figure 13.2), the doping is lower at the surface
(to reduce threshold voltage) but increases at a depth below the surface (to control
short-channel effect). This is known as ‘retrograde’ profile. In the lateral direction,
the doping is designed to be higher near the source–substrate and drain–substrate
junctions. A higher doping prevents the penetration of the source and drain depletion
region within the channel, thereby reducing the short-channel effects. The patches of
the higher doping regions near the source and drain junctions, are known as ‘halo’
regions and this type of laterally non-uniform profile is called the ‘halo’ profile.
In nano-scale transistors both the ‘retrograde’ and ‘halo’ types of profiles are used
together, resulting in a 2D non-uniform doping profile (‘super halo’). The described
non-uniform doping has a strong impact on the leakage components in nano-scale
MOSFETS. The next three sections describe the basic physical mechanisms that
govern different leakage components.

bulk
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Figure 13.2 Device structure
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13.2.1 Junction band-to-band tunnelling current (IBTBT)

A high electric field across a reverse biased p–n junction causes significant current to
flow through the junction due to tunnelling of electrons from the valence band of the
p-region to the conduction band of the n-region (Figure 13.3) [5]. Tunnelling occurs
when the total voltage drop across the junction (applied reverse bias (Vapp)+ built-in
voltage (ψbi)) is more than the band-gap (�g). The tunnelling current density through
a silicon p–n junction is given by [5]:

Jb−b = A
EVapp

�
1/2
g

exp

(
−B�

3/2
g

E

)

A =
√

2m∗q3

4π3�2
and B = 4

√
2m∗

3q�

(13.1)

where m∗ is the effective mass of electron, E is the electric field at the junction,
q is the electronic charge and � is the reduced Plank’s constant. In an NMOSFET
when the drain and/or the source is biased at a potential higher than that of the
substrate, a significant BTBT current flows through the drain–substrate and/or the
source–substrate junctions. The total BTBT current in the MOSFET is the sum of the
currents flowing through two junctions and is given by:

IBTBT = weff

∫
l

Jb−b(x, y)dl

∣∣∣∣
drain

+ weff

∫
l

Jb−b(x, y)dl

∣∣∣∣
source

l := Junction line ≡
solution of the equation Na(x, y) = Nd(x, y)

(13.2)
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Figure 13.3 Physical picture of valence band electron tunnelling in a reversed bias
p–n junction
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where Jb−b(x, y) is the current density at a point (x, y) at the junction. Hence, the
total junction BTBT current in a MOSFET can be obtained by considering the current
from both junctions. It can be observed from Equation (13.1) that, the junction BTBT
current is a strong function of the electric field across the drain–substrate (not source–
substrate) junction. The electric field across a reverse-bias p–n junction can be given
by (assuming abrupt and step junctions):

ξjn =
√

2qNaNd(Vapp + Vbi)

εsi(Na +Nd)
(13.3)

where Na and Nd are the doping in the p and n side, respectively, Vbi is built-
in potential across the junction and Vapp is the applied reverse bias. Although not
explicitly shown in Equation (13.3), the junction electric field is also a strong function
of the abruptness (how fast doping changes fromp-type to n-type across the junction)
of the p–n junction. For same doping density and applied reverse bias, increasing the
abruptness increases the junction electric field. The built-in potential also depends
(weakly) on the doping at the two junctions and is given by:

Vbiside = kT

q
ln

(
NasideNdside

n2
i

)
; assuming non-degenerate doping (13.4)

Using Equations (13.1)–(13.4) and considering the non-uniformity of the channel
and the source–drain doping profile analytical expressions for the junction tunnelling
current can be obtained as shown in Reference 11. From Equations (13.1) and (13.3)
it can be observed that, application of a higher reverse bias across the junction results
in an exponential increase in the junction tunnelling current. Hence, application of a
reverse substrate bias (Vbs < 0) in the ‘off-state’ of an NMOS (Vgs = 0, Vds = VDD)

exponentially increases the junction tunnelling current. Moreover, Equation (13.3)
also suggests that a higher junction doping also increases the junction electric field.
Hence, use of the highly doped ‘halo’ regions near the drain–substrate (or source–
substrate) junction increases the junction tunnelling current. Hence, increasing the
strength of the ‘halo’ doping has a negative impact on the junction tunnelling leakage.
Figure 13.4 shows the variation of the junction tunnelling current with reverse sub-
strate bias in predictive NMOS devices with Leff = 25 nm (VDD = 0.7 V) and 50 nm
(VDD = 0.9 V) and different doping profiles. It can be observed that, the tunnelling
current increases with the application of reverse bias. Moreover, due to higher ‘halo’
doping and more abrupt junction, tunnelling current in the 25 nm device is signif-
icantly higher than that in the 50 nm device. Increasing the strength of the ‘halo’
doping also results in a higher junction tunnelling current as show in Figure 13.5 (for
a predictive 25 nm device).

13.2.2 Subthreshold current (Ids)

In the ‘off’ state of a device (Vgs < Vth) the current flowing from the drain to the
source of a transistor is known as the subthreshold current. The subthreshold current
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flowing through a transistor is given by [5],

Isub = weff

Leff
µ

√
qεsiNcheff

2!s
v2

Texp

(
Vgs − Vth

nvT

)(
1 − exp

(−Vds

vT

))
(13.5)

whereNcheff is the effective channel doping,!s is the surface potential, n is the sub-
threshold swing and vT is the thermal voltage given by kT /q. From Equation (13.5) it
can be observed that the subthreshold leakage depends exponentially on the threshold
voltage (Vth) of the device. Hence, the factors that modify the transistor threshold volt-
age have a strong impact on the subthreshold current. In the subthreshold region the
inversion charge is negligible in the channel and hence the total charge in the channel
principally consists of the depletion charge [5]. The depletion charge depends on the
effective doping density (Ncheff ) in the channel. In long-channel transistor theory,
the threshold voltage is defined as the gate voltage at which the surface potential
(i.e. the amount of bending of the conduction band in the silicon substrate) reaches
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2!B = 2(kT /q) ln(Ncheff /ni) (Figure 13.6) [12]. Hence, the threshold voltage in a
long-channel transistor is given by [4,5]:

Vth = VFB + 2!B +
√

2εsiqNcheff (2!B)

Cox
(13.6)

where VFB is the flat-band potential. However, in a short-channel transistor the
threshold voltage is affected by the following factors.

13.2.2.1 Body effect

Reverse biasing well-to-source junction of a MOSFET transistor widens the bulk
depletion region and increases the threshold voltage [4,5]. The effect of body bias
can be considered in the threshold voltage equation as [4,5]:

Vth = VFB + 2φB +
√

2εsiqNcheff (2φB − VBS)

Cox

(13.7)
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13.2.2.2 Short-channel effect

In long-channel devices, the source and drain are separated far enough that their
depletion regions have no effect on the potential or field pattern in most parts of
the device. Hence, for such devices, the threshold voltage is virtually independent of
the channel length and drain bias [4]. In a short-channel device, however, the distance
between the source and drain depletion region is comparable to the depletion width in
the vertical direction. As a result, source–drain depletion width has a more pronounced
effect on potential profiles and field patterns [4,5]. The source and drain depletion
regions now penetrate more into the channel length, resulting in part of the channel
being already depleted. Thus, gate voltage has to invert less bulk charge to turn
a transistor on. This is known as short-channel effect, which reduces the threshold
voltage of a transistor [5]. The fraction of the depletion charge supplied by the source–
drain depletion region (%QB) to the total depletion charge (QB) required at the
threshold condition is a measure of the short-channel effect. As the channel length
is reduced or the drain bias is increased (which increases the drain depletion width)
%QB increases, thereby reducing the threshold voltage [5]. The reduction of Vth

with the reduction of the channel length is known as Vth-roll off. The reduction of
Vth with the increase in the drain bias is known as drain-induced barrier lowering
(DIBL) [4,5]. The short-channel effect can also be described as the fact that, for same
gate voltages the amount of band bending in the Si–SiO2 interface is more in a
short-channel device compared to a long-channel device. Using this explanation the
short-channel effect in Vth can be modelled as a lowering in the surface potential (!S)
required to obtain the threshold condition (say%!S) from its long-channel zero bias
value (%!S0 = 2vT ln(Ncheff /ni)). Using the charge sharing model (Figure 13.7)
and following the procedure given in References 13–15, the Vth of a short-channel
transistor can be expressed as:

Vth = VFB + (!s0 −%!s)+ γ
√
!s0 − Vbs

(
1 − λ

Xd

Leff

)
(13.8)
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Figure 13.7 Diagram for charge sharing model explaining the reduction of Vth due
to the source–drain depletion regions [5]

where γ = √
2qεsiNcheff /Cox is the body factor, Xd = √

2εsi/qNcheff
√
!s0 − Vbs

is the depletion layer thickness and λ is a fitting parameter (≈1). The reduction in the
surface potential due to short-channel effect (%!s) can be modelled as:

%!s = vTln(NsdeffNcheff /n
2
i )−!s0 + 0.5Vds

[cosh(Leff /
√
(εsitoxXd)/(ηεsio2))] (13.9)

where Nsdeff is the effective source/drain doping and η is another fitting parameter
which is usually close to one [13]. It can be observed that increasing the drain bias
(VDS) or reducing the channel length increases %!S thereby reducing the threshold
voltage. From the above discussion it can also be observed that, the short-channel
effect can be reduced by reducing the drain and source depletion width. In a nano-
scaled short-channel transistor this is achieved by adding the highly doped ‘halo’
implants near the source–substrate and the drain–substrate junction.

13.2.2.3 Quantum-confinement effect

In scaled devices, due to high electric field at the surface (ξs) and high sub-
strate doping, the quantisation of inversion-layer electron energy modulates Vth.
Quantum-mechanical behaviour of the electrons increases Vth, thereby reducing the
subthreshold current, since more band bending is required to populate the lowest
sub-band, which is at an energy higher than the bottom of the conduction band
(Figure 13.6). When ξs is higher than 106 V/cm, electrons occupy only the low-
est sub-band. In that case, the quantisation effect can be modelled as an increase in
threshold voltage by an amount %VQM, given by [5]:

%VQM =
(

1 + 3tox

Xd

)(
E0

q
− kT

q
ln

(
8πqmdξs

h2NC

))
(13.10)

whereE0 is the lowest sub-band energy given by [5]Eo = [(3hqsξs/4
√

2mx)3/4]2/3,
NC is the effective conduction band density of states,mx is the quantisation effective
mass of electron and md is the density of states effective mass of electron. It can be
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observed that with an increase in the surface electric field E0 increases and hence
%VQM increases. With technology scaling, first, due to higher doping and second,
due to higher oxide field (scaling of oxide thickness) surface electric field increases
resulting in an increase in E0. Hence, the effects of quantum correction become
extremely important in nano-scaled devices.

13.2.2.4 Narrow-width effect

The decrease in gate width modulates the threshold voltage of a transistor, and
thereby modulates the subthreshold leakage. In the local oxide isolation (LOCOS)
gate MOSFET, the existence of the fringing field causes the gate-induced depletion
region to spread outside the defined channel width and under the isolations as shown
in Figure 13.8(a). This results in an increase of the total depletion charge in the bulk
region above its expected value. This effect becomes more substantial as the channel
width decreases, and the depletion region underneath the fringing field is compara-
ble to the classical depletion formed by the vertical field. This results in increase of
threshold voltage due to the narrow-width effect [15,16]. This narrow-width effect
can be modelled as an increase in the Vth by the amount given by [15]:

%VNWE = πqNcheffX
2
d

2Coxweff
= 3π

tox

weff
φs (13.11)

A more accurate model of this effect can be found in Reference 16. A more complex
effect is observed in trench isolation devices, known as the inverse-narrow-width
effect. In the case of trench isolation devices, the depletion layer cannot spread under
the oxide isolation [see Figure 13.8(b)]. Hence, the total depletion charge in the bulk
does not increase, thereby eliminating the increase in the threshold voltage. On the
other hand, due to the 2D field-induced edge fringing effect at the gate edge, formation
of an inversion layer at the edges occurs at a lower voltage than the voltage required at
the centre. Moreover, the overall gate capacitance now includes the sidewall capac-
itance (CF) due to overlap of the gate with the isolation oxide. This increases the
overall gate capacitance from Cox to (Cox + CF) in Equation (13.6) [17]. Hence, the
threshold voltage reduces as shown in Figure 13.9 [17].

∆QB

QB

SiO2SiO2

GATE(a) (b) GATE

SiO2 SiO2

Figure 13.8 Two types of device structures and associated inversion – depletion
layer (a) LOCOS gate MOSFET, (b) Trench isolated MOSFET
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Figure 13.9 Variation of threshold voltage with gate width for uniform doping [17]

Including all of the above-mentioned effects the threshold voltage of a transistor
can be modelled as:

Vth = VFB + (!s0 −%!s)+ γ
√
!s0 − Vbs

(
1 − λ

Xd

Leff

)
+%VNWE +%VQM

(13.12)

The threshold voltage and the subthreshold current depend on the effective channel
and source/drain doping [5,13–15]. In nano-scale MOSFET the effective channel dop-
ing strongly depends on the ‘halo’ doping concentration. Increasing the ‘halo’ doping
concentration increases the effective channel doping. Figure 13.10 shows the varia-
tion of the subthreshold current with drain and substrate bias in a predictive 25 nm
device. It can be observed that, the current increases with an increase in the drain bias
(due to DIBL effect). Application of a reverse substrate bias reduces the current (due
to ‘body effect’). Moreover, it can be observed that, if the quantum effect is consid-
ered there is a significant reduction in the current. Figure 13.5 shows that an increase
in the ‘halo’ strength results in a considerable reduction in the subthreshold leakage.
This is due to the fact that, increasing ‘halo’ strength reduces the short-channel effect.

13.2.3 Modelling gate tunnelling current (Igate)

Reduction of gate oxide thickness results in an increase in the field across the oxide.
The high electric field coupled with low oxide thickness results in tunnelling of elec-
trons from inverted channel to gate (or vice versa) or from gate to source/drain overlap
region (or vice versa) resulting in the gate oxide tunnelling current. In scaled devices
(with oxide thickness <3 nm) this tunnelling occurs through the trapezoidal energy
barrier (Figure 13.11) and is known as direct tunnelling. Direct tunnelling occurs when
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Figure 13.11 Direct tunnelling of electrons

the potential drop across the oxide (Vox) is less than the SiO2−Si conduction band
energy difference (!ox) (i.e. barrier height in Figure 13.11). The direct tunnelling
current density is expressed as [5]:

JDT = Ag(Vox/Tox)
2exp

(
−Bg(1 − (1 − Vox/φox)

3/2)

Vox/Tox

)

where, Ag = q3

16π2�φox
and Bg = 4

√
2m∗φ3/2

ox

3�q
(13.13)
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where JDT is the direct tunnelling current density, Vox is the potential drop across
the gate oxide, φox is the barrier height of the tunnelling electron, m∗ is the effective
mass of an electron in the conduction band of silicon and Tox is the oxide thickness.
Figure 13.12 shows the variation of the direct tunnelling current density based on
Equation (13.13). It can be observed that tunnelling current increases exponentially
with oxide potential and oxide thickness. The potential drop across the oxide can be
obtained from

VGS = VFB + Vpoly +!S + Vox where Vpoly = ε2
oxE

2
ox

2qεsiNpoly
(13.14)

where Npoly is the doping density in the poly-silicon, εsi is the permittivity of silicon
and εox is the permittivity of SiO2.

There are three major mechanisms for direct tunnelling in MOS devices, namely,
electron tunnelling from conduction band (ECB), electron tunnelling from valence
band (EVB) and hole tunnelling from valance band (HVB) [18,19] (see Figure 13.13).
In NMOS, ECB controls the gate-to-channel tunnelling current in inversion, whereas
gate-to-body tunnelling is controlled by EVB in depletion-inversion and ECB in accu-
mulation. Inp-channel MOSs (PMOSs), HVB controls the gate-to-channel leakage in
inversion, whereas gate-to-body leakage is controlled by EVB in depletion-inversion
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Figure 13.13 Direct tunnelling current mechanisms
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Figure 13.14 Components of tunnelling current [18,19]

and ECB in accumulation [18,19]. Since the barrier height for HVB (4.5 eV) is consid-
erably higher than barrier height for ECB (3.1 eV), the tunnelling current associated
with HVB is much less than the current associated with ECB. This results in lower
gate leakage current in PMOS than in NMOS [20].

Major components of gate tunnelling in a scaled MOSFET device are [10,13]:
(1) Gate to S/D overlap region current (edge direct tunnelling (EDT)) components
(Igso and Igdo), (2) gate-to-channel current (Igc), part of which goes to source (Igcs)

and rest goes to drain (Igcd), (3) gate-to-substrate leakage current (Igb) (Figure 13.14).
Accurate modelling of each of the components is based on the following equation [18]:

JDT = Ag

(
Toxref

tox

)ntox (VgVaux

t2ox

)
× exp(−Btox(α − β|Vox|)(1 + γ |Vox|))

(13.15)

where Toxref is the reference oxide thickness at which all parameters are extracted,
ntox is a fitting parameter (default 1) and Vaux is an auxiliary function that approxi-
mates the density of tunnelling carriers and available states. The functional form of
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Vaux depends on the tunnelling mechanism and hence takes different values for the
different tunnelling components [18].

13.2.4 Effect of technology scaling on different components of leakage
currents

Figure 13.15 shows that with technology scaling each of the leakage components
increases drastically, resulting in increase in the total leakage current [3]. Figure 13.16
shows the different leakage component of NMOS devices of 25 nm and 50 nm physical
gate length [21] at different oxide thickness based on the results of device simulation
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[12]. Also, only the oxide thickness was varied in the simulations for a particular
technology node (keeping doping constant). The gate leakage and the subthreshold
leakage are strongly correlated through oxide thickness. A high oxide thickness results
in low gate leakage. Although according to the long-channel MOSFET theory, higher
oxide thickness helps to increase the threshold voltage, it will worsen the short-
channel effect [5]. If the short-channel effect is not very high (e.g. in the 50 nm device
in Figure 13.16(a)) increasing Tox may reduce the subthreshold leakage. However,
in a nano-scale device where SCE is extremely severe (e.g. in the 25 nm device in
the present case), an increase in the oxide thickness will increase the subthreshold
leakage (Figure 13.16(a)). Similarly, the subthreshold leakage and the junction BTBT
are strongly coupled through the doping profile. Figure 13.16(b) shows the different
leakage components of a 25 nm device at different doping profile (oxide thickness and
VDD were kept constant). A strong ‘halo’ doping reduces the subthreshold current but
results in a high BTBT. Reduction of the halo-strength lowers the BTBT, but increases
subthreshold current considerably (Figure 13.16(b)). From the above discussion it can
be concluded that magnitude of the leakage components and their relative dominance
on each other depends strongly on device geometry and doping profile.

13.2.5 Effect of temperature on different components of leakage current

The basic physical mechanisms governing the different leakage current components
have different temperature dependence. Subthreshold current is governed by the
carrier diffusion that increases with an increase of temperature. Since tunnelling
probability of an electron through a potential barrier does not depend directly on
temperature, the gate and the junction band-to-band tunnelling is expected to be less
sensitive to temperature variations. However, increase of temperature reduces the
band-gap of silicon [22], which is the barrier height for tunnelling in BTBT. Hence, the
junction BTBT is expected to increase with an increase in temperature. Figure 13.17
shows the effect of temperature variation on individual leakage component of the
previously mentioned 25 nm NMOS device based on the device simulation. From
Figure 13.17, it is observed that the subthreshold leakage increases exponentially
with temperature, the junction BTBT increases slowly with temperature and the gate
leakage is almost independent of temperature variation. Figure 13.17 shows that for
that particular NMOS device, at T = 300 K (a possible temperature in the stand-by
mode) the gate leakage is the dominant leakage component. However, the subthresh-
old and the BTBT become dominant at T = 400 K (a possible temperature in the
active mode). Hence, it can be concluded that the individual leakage components and
the total leakage depend strongly on temperature (or mode of operation).

13.3 Circuit techniques to reduce leakage in logic

Since circuits are mostly designed for the highest performance – say to satisfy overall
system cycle time requirements – they are composed of large gates, highly parallel
architectures with logic duplication. As such, the leakage power consumption is
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Table 13.1 Circuit techniques to reduce leak-
age

Runtime techniques

Design time
techniques

Standby leakage
reduction

Active leakage
reduction

Dual-Vth Natural stacking DVTS
Sleep transistor
FBB/RBB

substantial for such circuits. However, not every application requires a fast circuit to
operate at the highest performance level all the time. Modules, in which computation
is bursty in nature, e.g. functional units in a microprocessor or sections of a cache, are
often idle. It is of interest to conceive of methods that can reduce the leakage power
consumed by these circuits. Different circuit techniques have been proposed to reduce
leakage energy utilising this slack without impacting performance. These techniques
can be categorised based on when and how they utilise the available timing slack
(Table 13.1), e.g. dual Vth statically assigns high Vth to some transistors in the non-
critical paths at the ‘design time’ so as to reduce leakage current. The techniques,
which utilise the slack in ‘runtime’, can be divided into two groups depending on
whether they reduce standby leakage or active leakage. Standby leakage reduction
techniques put the entire system in a low leakage mode when computation is not
required. Active leakage reduction techniques slow down the system by dynamically
changing the Vth to reduce leakage when maximum performance is not needed. In
active mode, the operating temperature increases due to the switching activities of
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Figure 13.18 (a) A dual Vth CMOS circuit, (b) Path distribution of dual Vth and
single Vth CMOS

transistors. This has an exponential effect on subthreshold leakage making this the
dominant leakage component during active mode and amplifying the leakage problem.

13.3.1 Design time techniques

Design time techniques exploit the delay slack in non-critical paths to reduce leakage.
These techniques are static; once it is fixed, it cannot be changed dynamically while
the circuit is operating.

13.3.1.1 Dual threshold CMOS

In logic, a high Vth can be assigned to some transistors in the non-critical paths so
as to reduce subthreshold leakage current, while the performance is not sacrificed
by using low Vth transistors in the critical path(s) [23,24]. No additional circuitry is
required, and both high performance and low leakage can be achieved simultaneously.
Figure 13.18(a) illustrates the basic idea of a dual Vth circuit. The path distribution of
dualVth and singleVth standard CMOS for a 32-bit adder is shown in Figure 13.18(b).
DualVth CMOS has the same critical delay as the single lowVth CMOS circuit, but the
transistors in the non-critical paths can be assigned high Vth to reduce leakage power.
Dual threshold CMOS is effective in reducing leakage power during both standby and
active modes. Many design techniques have been proposed, which consider upsizing
of high Vth transistor [25] in dual Vth design to improve performance, or upsizing
additional low Vth transistor to create more delay slack and then converting it to high
Vth to reduce leakage power. Upsizing the transistor affects switching power and die
area that can be traded off against using a low Vth transistor, which increases leakage
power.

Domino logic can be susceptible to leakage – especially wide OR domino gates.
Low threshold evaluation logic reduces noise immunity. Hence, for scaled technolo-
gies, domino may require larger keeper transistors which in turn can affect speed.
Figure 13.19 shows a typical dualVth domino logic [26] for low leakage noise immune
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Figure 13.19 Dual Vth domino gate with low Vth devices shaded [26]

operations. Because of the fixed transition directions in domino logic, one can easily
assign low Vth to all transistors that switch during the evaluate mode and high Vth

to all transistors that switch during precharge modes. When a dual Vth domino logic
stage is placed in standby mode, the domino clock needs to be high (evaluate) in order
to shut off the high Vth devices (e.g. P1, I2 PMOS and I3 NMOS). Furthermore, to
ensure that the internal node remains at solid logic ZERO, which turns off the high
Vth keeper and I1 NMOS, the initial inputs into the domino gate must be set high.

A high Vth device can be achieved by varying different parameters, e.g. changing
doping profile, using higher oxide thickness and increasing the channel length. Each
parameter has its own trade-off in terms of process cost, effect on different leakage
components and SCE.

13.3.1.1.1 Changing doping profile

Higher threshold voltages can be achieved by increasing the channel doping densities
[27]. For this approach, two additional masks are required resulting in high process
cost. This technique is commonly used to modify the threshold voltages. However, the
threshold voltage can vary due to the non-uniform distribution of the doping density,
making it difficult to achieve dual threshold voltages when the threshold voltages are
very close to each other. High Vth can also be achieved by increasing the strength of
halo by (1) increasing the peak dopingAp, (2) moving the position of the lateral peak
of the halo close to the centre of the channel, i.e. by decreasing βa and (3) moving the
position of the vertical peak of the halo away from the bottom junction and towards
the surface (Section 13.1). However, increasing the strength of the ‘halo’ increases
the junction tunnelling (Figure 13.5), which might become severe in nano-scaled
devices where junction tunnelling is a significant portion of total leakage.

13.3.1.1.2 Higher oxide thickness

A higher Tox can be used to obtain a highVth device for dual threshold CMOS circuits.
Higher oxide thickness not only reduces the subthreshold leakage but also reduces
gate oxide tunnelling, since the oxide tunnelling current decreases exponentially with
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increase in oxide thickness. Since higher oxide thickness reduces the gate capacitance,
it is also beneficial for dynamic power reduction [27]. However, in a nano-scale
device where SCE is extremely severe (e.g. in the 25 nm device), an increase in the
oxide thickness will increase the subthreshold leakage (Figure 13.16(a)). In order
to suppress the SCE, the high Tox device needs to have a longer channel length as
compared to the low Tox device [27]. Advanced process technology is required for
fabricating multiple Tox CMOS.

13.3.1.1.3 Larger channel length

For short-channel transistors, the threshold voltage increases with the increase in
channel length (Vth roll-off). Multiple channel length design uses the conventional
CMOS technology. However, for the transistors with feature size close to 0.1µm,
halo implants [5] are used to suppress the short-channel effect. This causes the Vth

roll-off to be very sharp; and hence, it is non-trivial to control the threshold voltages
near the minimum feature size for such technologies. The longer transistor lengths for
the high-threshold transistors will increase the gate capacitance, which has negative
effect on the performance and power.

With the increase in Vth variation and supply voltage scaling, it is becoming diffi-
cult to maintain sufficient gap among lowVth, highVth and supply voltage required for
dual Vth design. Furthermore, dual Vth design increases the number of critical paths
in a die. It has been shown in Reference 28 that as the number of critical paths on a
die increases, within-die delay variation causes both mean and standard deviation of
the die frequency distribution to become smaller, resulting in reduced performance.

13.3.2 Runtime techniques

13.3.2.1 Standby leakage reduction techniques

A common architectural technique to keep the power of fast, hot circuits within
bounds has been to freeze the circuits – place them in a standby state – any time when
they are not needed. Standby leakage reduction techniques exploit this idea to place
certain sections of the circuitry in standby mode (low leakage mode) when they are
not required.

13.3.2.1.1 Natural transistor stacks

Leakage currents in NMOS or PMOS transistors depend exponentially on the voltage
at the four terminals of the transistor. Increasing the source voltage of an NMOS
transistor reduces subthreshold leakage current exponentially due to negative Vgs,
lowered signal rail (VDD-Vs), reduced DIBL and body effect. This effect is also called
self-reverse biasing for of transistor. The self-reverse bias effect can be achieved by
turning off a stack of transistors [29]. Turning off more than one transistor in a
stack raises the internal voltage (source voltage) of the stack, which acts as reverse
biasing the source. Figure 13.20(a) depicts a simple pull down network of a four input
NAND gate. This pull-down network forms a stack of four transistors. If some of
the transistors are turned off for a long time, the circuit reaches a steady-state where
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Figure 13.20 (a) Effect of transistor stacking on source voltage, (b) leakage current
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leakage through each transistor is equal and the voltage across each transistor settles
to a steady-state value. In cases where only one NMOS device is off, the voltage at the
source node of the off transistor would be virtually zero because all other on transistors
will act as short circuits. Hence, there is no self-reverse biasing effect and the leakage
across the off transistor is large. If more than one transistor is off, the source voltages
of the off transistor, except the one connected to ground by on transistors, will be
greater than zero. The leakage will be determined mainly by the most negatively
self-reverse biased transistor (since subthreshold leakage is an exponential function
of gate-source voltage). The voltages at the internal nodes depend on the input applied
to the stack. Figure 13.20(a) shows the internal voltages when all four transistors are
turned off. These internal voltages make the off transistors self-reverse biased. The
reverse bias makes the leakage across the off transistor very small. Figure 13.20(b)
shows the subthreshold leakage current versus number of off transistors in a stack.
There is a large difference in leakage current between one off transistor and two off
transistors. Turning off three transistors does improve subthreshold leakage, however,
there is a diminishing return.

The voltages at the internal nodes depend on the input applied to the stack. Func-
tional blocks such as NAND, NOR or other complex gates readily have a stack of
transistors. Maximising the number of off transistors in a natural stack by applying
proper input vectors can reduce the standby leakage of a functional block. A model
and algorthim is proposed in Reference 10 to estimate leakage and to select the proper
input vectors to minimise the leakage in logic blocks. Table 13.2 shows the quiescent
current flowing into different functional blocks for the best- and worst-case input
vectors. All the results are based on HSPICE simulation using 0.18µm technology
with VDD = 1.5 V. Results show that application of a proper input vector can be
efficient in reducing the total subthreshold leakage in the standby mode of operation
[30].

Since gate and junction leakage are also important in scaled technologies, the
input vector control technique using a stack of transistors needs to be reinvestigated
to effectively reduce the total leakage. It has been shown that with high gate leakage,
the traditional way of using stacking fails to reduce leakage and in the worst case might
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Table 13.2 Input vector control

Circuit Input vector Iddq (nA) Comments

4 input NAND ABCD = 0000 0.60 Best
ABCD = 1111 24.1 Worst

3 input NOR ABC = 111 0.13 Best
ABC = 000 29.5 Worst

Full adder A,B,Ci = 111 7.8 Best
A,B,Ci = 001 62.3 Worst

4 bit ripple adder A = B = 0000, Ci = 0 91.3 Best
A = B = 1111, Ci = 1 94.0 Best
A = B = 0101, Ci = 1 282.9 Worst

increase the overall leakage [9]. The gate leakage depends on the voltage drop across
different regions of the transistor. Applying ‘00’ as the input to a two-transistor stack
only reduces subthreshold leakage and does not change the gate leakage component.
It has been shown that using ‘10’ reduces the voltage drop across the terminals, where
the gate leakage dominates, thereby lowering the gate leakage while offering marginal
improvement in subthreshold leakage [9]. In scaled technologies where gate leakage
dominates the total leakage, using ‘10’ might produce more savings in leakage as
compared to ‘00’ . The source–substrate and drain–substrate junction BTBT leakage
is a weak function of input voltage and hence, it can be neglected from the analysis.

13.3.2.1.2 Sleep transistor (forced stacking)

This technique inserts an extra series connected transistor (sleep transistor) in the
pull-down/pull-up path of a gate and turns it ‘off’ in the standby mode of operation
[31]. During regular mode of operation, the extra transistor is turned on. This provides
substantial savings in leakage current during the standby mode of operation. However,
due to the extra stacked transistor (sleep transistor), the drive current of forced-stack
gate is lower resulting in increased delay. Hence, this technique can only be used
for paths that are non-critical. If the Vth of the sleep transistor is high, extra leakage
saving is possible. The circuit topology is known as MTCMOS (Figure 13.21) [32].

In fact, only one type (i.e. either PMOS or NMOS) of high Vth transistor is
sufficient for leakage reduction. The NMOS insertion scheme is preferable, since the
NMOS on-resistance is smaller at the same width and hence it can be sized smaller
than a corresponding PMOS [33]. However, MTCMOS can only reduce leakage
power in standby mode and the large inserted sleep transistors can increase the area
and delay. Moreover, if data retention is required in standby mode, an extra high
Vth memory circuit is needed to maintain the data. Instead of using high Vth sleep
transistors, super cut-off CMOS (SCCMOS) circuit uses low Vth transistors with an
inserted gate bias generator [34]. In standby mode, the gate is applied to VDD + 0.4 V
for PMOS (VSS − 0.4 V for NMOS) by using the internal gate bias generator to fully
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Figure 13.21 Schematic of MTCMOS circuit with low Vth device shaded [32]
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P1

Figure 13.22 Domino gate with sleep transistor [35]

cut off the leakage current. Compared to MTCMOS where it becomes difficult to turn
on the high Vth sleep transistor at very low supply voltages, SCCMOS circuits can
operate at very low supply voltages.

A sleep transistor technique is proposed in Reference 35 to save leakage in domino
gates. In Figure 13.22 two small sleep transistors are added to a conventional CMOS
domino gate [35]. In standby mode the clock is left high and sleep signal is asserted.
If the data input was high, node 1 would have been discharged. If the data input was
low, node 1 would be high but leakage through NMOS dynamic pull-down stack
would slowly discharge the node to ground. The NMOS sleep transistor is added to
prevent any short circuit current in the static output logic while the dynamic node
discharges to ground. Node 2 would rise as static pull up turns on which would cause
the NMOS transistors in the pull-down stacks of the following domino gates to turn
on, accelerating the discharge of their internal dynamic nodes. Since sleep transistors
are not in the critical path (evaluation path), minimal performance loss is incurred.
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Figure 13.23 (a) Variable threshold CMOS [32], (b) Realising body biasing by
changing the source voltage with respect to body voltage, which is
grounded [39]

13.3.2.1.3 Forward/reverse body biasing

Variable threshold CMOS (VTCMOS) is a body biasing design technique [36].
Figure 13.23(a) shows the VTCMOS scheme. In order to achieve different threshold
voltages, a self-substrate bias circuit is used to control the body bias. In the active
mode, a zero body bias (ZBB) is applied. While in standby mode, a deep reverse body
bias (RBB) is applied to increase the threshold voltage and to cut off the leakage cur-
rent. Providing the body bias voltage requires routing a body bias grid and this adds to
the overall chip area. Keshavarzi et al. reported that RBB lowers IC leakage by three
orders of magnitude in a 0.35µm technology [37]. However, more recent data shows
that the effectiveness of RBB to lower Ioff decreases as technology scales due to the
exponential increase in source–substrate and drain–substrate band-to-band tunnelling
leakage at the source–substrate and drain–substrate p–n junctions due to halo doping
in scaled devices [37]. Moreover, smaller channel length with technology scaling and
lower channel doping to reduce Vth worsens the short-channel effect and diminishes
the body effect. This in turns weakens the Vth modulation capability of RBB.

For scaled technologies, recent design [38] has been proposed using forward body
biasing (FBB) to achieve better current drive with less short-channel effect. Circuit is
designed using high Vth transistor (high channel doping) reducing leakage in standby
mode, while FBB is applied in active mode to achieve high performance. Both high-
channel doping and FBB reduce short-channel effect relaxing the scalability limit of
channel length due toVth roll-off and DIBL. This results in higher Ion compared to low
Vth design for same worst case Ioff , improving performance. RBB can also be applied
in standby mode together with FBB to further reduce the leakage current. It has been
shown that FBB/high-Vth along with RBB reduces leakage by 20×, as opposed to
3× for the RBB/low-Vth. FBB devices, however, have larger junction capacitance
and body effect, which reduces the delay improvement especially in stacked circuits.
FBB can also be combined with lowering the VDD to achieve the same performance
as high VDD, while reducing the switching and standby leakage power.

Raising the NMOS source voltage while tying the NMOS body to ground can
produce the same effect as RBB. Forward body biasing can also be realised by



Leakage power analysis and reduction for nano-scale circuits 439

applying a negative source voltage with respect to the body, which is tied to ground.
Figure 13.23(b) illustrates the circuit diagram of this technique [39]. The main advan-
tage is that it eliminates the need for a deep N -well or triple-well process since
substrate of the target system and the control circuitry can be shared.

13.3.2.2 Active leakage reduction techniques

During active mode of operation the circuit works at higher temperature. It can be
observed from Figure 13.17 that the subthreshold leakage increases exponentially with
temperature, the junction BTBT increases slowly with temperature and the gate leak-
age is almost independent of temperature variation. Due to exponential increase in
leakage, the active leakage power in sub-100 nm generations accounts for a large
fraction of the total power consumption even during runtime. However, not every
application requires a fast circuit to operate at the highest performance level all the
time. Active leakage reduction techniques exploit this idea to intermittently slow
down the fast circuitry and reduce the leakage power consumption as well as the
dynamic power consumption when maximum performance is not required.

13.3.2.2.1 Dynamic Vth scaling (DVTS)

A DVTS scheme uses body biasing to adaptively change the Vth based on the per-
formance demand. The lowest Vth is delivered via ZBB, if the highest performance
is required. When performance demand is low, clock frequency is lowered and Vth

is raised via RBB to reduce the run-time leakage power dissipation. In cases when
there is no workload at all, the Vth can be increased to its upper limit to signifi-
cantly reduce the standby leakage power. ‘Just enough’ throughput is delivered for
the current workload by tracking the optimal Vth while leakage power is considerably
reduced by intermittently slowing down the circuit.

Several different DVTS system implementations have been proposed in literature
[40,41]. Figure 13.24 shows a DVTS hardware that uses continuous body bias con-
trol to track the optimal Vth for a given workload. A clock speed scheduler, which
is embedded in the operating system, determines the (reference) clock frequency
at runtime. The DVTS controller adjusts the PMOS and NMOS body bias so that

+

–
∑

CLK

error[n] = Fclk[n]–Fcp[n]
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Feedback alg. Charge pumps

Critical path
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Figure 13.24 Dynamic Vth scaling system proposed in Reference 40
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Figure 13.25 Vth hopping scheme proposed in Reference 41

the oscillator frequency of the critical path replica tracks the given reference clock
frequency. The error signal, which is the difference between the reference clock fre-
quency and the oscillator frequency, is fed into the feedback controller. The continuous
feedback loop can also compensate for process, supply voltage and temperature vari-
ations. A simpler method called ‘Vth hopping scheme’, which dynamically switches
between low Vth and high Vth depending on the performance demand, is proposed
in Reference 41. The schematic diagram of the Vth hopping scheme is shown in
Figure 13.25. Compared to the continuous body bias control in Figure 13.24, the
discrete control has two levels of Vth. If control signal VTHlow_Enable is asserted,
the transistors in the target system are forward body biased and the Vth is low. When
performance can be traded off for lower power consumption, VTHhigh_Enable is
asserted and a high Vth is applied. The operating frequency of the target system is
set to fCLK when Vth is low and to fCLK/2 when the Vth is high. An algorithm that
adaptively changes the Vth depending on the workload is also verified and applied
to an MPEG4 video encoding system. As mentioned in the previous section, the
effectiveness of RBB is expected to be low due to the worsening short-channel
effect and increasing band-to-band tunnelling leakage at the source–substrate and
drain–substrate junctions. FBB can be applied together with RBB to achieve a better
performance-leakage tradeoff for DVTS systems.

13.4 Circuit techniques to reduce leakage in cache memories

Figure 13.26(a) shows the seven available terminals in a conventional 6T SRAM
cell; VSL, VPWELL, VNWELL, VDL, VWL, VBL and VBLB. Various SRAM cell archi-
tectures have been proposed in the past where one or more of the seven terminal
voltages are controlled during standby mode for reducing the leakage components
shown in Figure 13.26(b). Each technique exploits the fact that the active portion of
a cache is very small, which gives the opportunity to put the large idle portion in a
low-leakage sleep mode. Effectiveness and overhead of each technique are evaluated
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Figure 13.26 (a) Severn terminals of the 6T SRAM cell, (b) dominant leakage
components in a 6T SRAM

based on the following discussions. First, the impact of the technique on various leak-
age components should be considered. Although subthreshold leakage still continues
to dominate the IOFF at high temperatures, ultra-thin oxides and high doping con-
centrations have led to a rapid increase in direct tunnelling gate leakage and BTBT
leakage at the source and drain junctions in the nano-metre regime. Each leakage
reduction technique needs re-evaluation in scaled technologies where subthreshold
conduction is not the only leakage mechanism. Second, the impact of the leakage
reduction technique on SRAM read/write delay should be considered. Third, the
transition latency/energy overhead should be taken into account, because of the lim-
ited time and energy budget for the mode transition. Last, the leakage reduction
technique should not have a noticeable impact on SRAM cell stability or soft error
rate (SER). Based on these discussions, the different low-leakage SRAM cells are
summarised in Table 13.3.

The source biasing scheme raises the source line voltage (VSL) in sleep mode
[42–46], which reduces subthreshold leakage due to the three effects described in
Section 13.3.2.1.1 The gate leakage in the cell is also reduced due to the relaxed
signal rail, VDD- VSL [46]. An extra NMOS has to be series connected in the pull-
down path in order to cutoff the source line from ground during sleep mode, and this
in turn imposes an extra access delay. The reduced signal charge in sleep mode also
causes the SER to rise, requiring additional error correction coding circuits [30].

RBB the NMOS (or PMOS) can reduce subthreshold leakage via body effect,
while not affecting the access time by switching to zero body-biasing (ZBB) in active
mode [44,47,48]. A large latency/energy overhead is imposed for the body-bias tran-
sition due to the large VBB swing and substrate capacitance. This scheme becomes
less attractive in scaled technologies since the body coefficient decreases with smaller
dimensions, and the source and drain junction BTBT leakage becomes enhanced by
RBB. For scaled technologies, recent design [49] has been proposed using forward
body biasing (FBB) to reduce subthreshold leakage and to achieve better current
drive while maintaining reasonable junction BTBT. A new high Vth device optimised
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for FBB is proposed which changes the doping profile by adjusting the peak halo
doping (channel engineering) or uses gate material with a higher work function
(work function engineering) [49]. This scheme resolves the drawback associated
with RBB SRAM and suggest a viable solution for reducing leakage in nano-scale
memories.

Supply voltage is lowered in a dynamicVDD SRAM (DVSRAM) [44,50], which in
turn reduces the subthreshold, gate and BTBT leakage. This scheme requires a smaller
signal rail (VDL-VGND) compared to the SBSRAM for equivalent leakage savings.
Although there is no impact on delay in the active mode, the largeVDD swing between
sleep and active mode imposes a larger latency/energy transition overhead than the
SBSRAM. Moreover, the greatest drawback of the DVSRAM is that it increases the
bitline leakage in the sleep mode since the voltage level in the stored node also drops
as the VDD is lowered. Therefore, this scheme is not suitable for dual Vth designs
where the speed-critical access transistors may already be using low Vth devices with
high leakage levels.

A technique that biases the bitlines to an intermediate level has been proposed to
reduce the access transistor leakage via the DIBL effect [51]. Since only the access
transistors benefit from the leakage reduction, the overall leakage saving is moderate.
Unlike the three previously mentioned techniques, this scheme has to be applied to
the entire subarray because the bitline is shared across different cache lines. The
main limitation comes from the fact that there is a precharge latency whenever a new
subarray is accessed. This would mean that an architectural modification is required
in order to resolve the multiple hit times in case the precharge instant is not known
ahead of time.

The negative word line scheme [52] pulls down the VWL to a negative voltage
during standby in order to avoid the subthreshold leakage through the access transis-
tors. However, it has issues such as increase in gate leakage and higher voltage stress
in the access transistors. Although this technique has no impact on performance or
SER, there is a power loss due to generating the negative bias using charge pumps.
This becomes more serious as the supply voltage is scaled.

13.5 Conclusions

Semiconductor devices are aggressively scaled each technology generation to achieve
high integration density while the supply voltage is scaled to achieve lower switch-
ing energy per device. However, to achieve high performance there is need for
commensurate scaling of the transistor threshold voltage (Vth). Scaling of transis-
tor threshold voltage is associated with exponential increase in subthreshold leakage
current. Aggressive scaling of the devices in the nano-metre regime not only increases
the subthreshold leakage but also has other negative impacts such as increased DIBL,
Vth roll-off, reduced on-current to off-current ratio and increased source–drain resis-
tance. To avoid these short-channel effects, oxide thickness scaling and higher and
non-uniform doping needs to be incorporated as the devices are scaled in nano-
metre regime, which results in exponential increase in gate and junction band-to-band
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tunnelling leakage. This increase in total leakage causes the leakage current to become
a major component of total power consumption. Hence, leakage reduction techniques
are becoming indispensable in future designs. This chapter explained the various leak-
age mechanisms and discussed different circuit level techniques to reduce leakage
energy and design tradeoffs.

References

1 BORKAR, S.: ‘Design challenges of technology scaling’, IEEE Micro, 1999,
19(4), 23

2 BREWS, J., and SZE, S.M.: ‘High speed semiconductor devices’ (John Wiley
& Sons, New York, 1990)

3 International Technology Roadmap for Semiconductors 2001 Edition: Semicon-
ductor Industry Association, Available: http://public.itrs.net/Files/2001ITRS/
Home.htm

4 ROY, K., MUKHOPADHYAY, S., and MEIMAND, H.: ‘Leakage current mech-
anisms andleakage reduction techniques in deep-submicron CMOS circuit’,
Proceedings of IEEE, February 2003, 91(2), pp. 305–327

5 TAUR, Y., and NING, T.H.: ‘Fundamentals of modern VLSI devices’
(Cambridge University Press, New York, 1998)

6 KESHAVARZI, A., ROY, K., and HAWKINS, C.F.: ‘Intrinsic leakage in deep
submicron CMOS ICs-measurement-based test solutions’, IEEE Transaction on
VLSI Sysytems, 2000, 8(6), pp. 717–723

7 ROY, K., and PRASAD, S.C.: ‘Low-power CMOS VLSI circuit design’ (Wiley
Interscience Publications, New York, 2000)

8 AGARWAL, A., KIM, C.H., MUKHOPADHYAYA, S., and ROY, K.: ‘Leakage
in nano-scale technologies: mechanisms, impact and design considerations’.
Design automation conference (DAC), 2004

9 MUKHOPADHYAY, S., NEAU, C., CAKICI, T., AGARWAL, A., KIM, C.H.,
and ROY, K.: ‘Gate leakage reduction for scaled devices using transistor
stacking’, IEEE Transactions on Very Large Scale Integration Systems, 2003

10 LEE, Z., MCILRATH, M.B., and ANTONIADIS, D.A., ‘Two-dimensional
doping profile characterization of MOSFET’s by inverse modeling using char-
acteristics in the subthreshold Region’, IEEE Transaction on Electron Device,
August 1999, pp. 1640–1649

11 MUKHOPADHYAY, S., RAYCHOWDHURY, A., and ROY, K.: ‘Accurate esti-
mation of total leakage in nanometer scale bulk CMOS circuits based on device
geometry and doping profile’, IEEE Transaction on CAD, March 2005

12 MEDICI: Two-dimensional semiconductor device simulation program. AVANT!
Corp., Fremont, CA, 2000

13 LIU, Z., HU, C., HUANG, J.-H., CHAN, T.-Y., JENG, M.-C., KO, P.K., and
CHENG, Y.C.: ‘Threshold voltage model for deep-submicrometer MOSFET’s’,
IEEE Transactions on Elecrons Devices, 1993, 40, pp. 86–95



Leakage power analysis and reduction for nano-scale circuits 445

14 ZHOU, X., LIM, K.Y., and LIM, D.: ‘A general approach to compact threshold
voltage formulation based on 2-D numerical simulation and experimental corre-
lation for deep-submicron ULSI technology development’, IEEE Transactions
on Elecrons Devices, 2000, 47, pp. 214–221

15 FOTTY, D.: ‘MOSFET modelling with SPICE,’ (Prentice Hall PTR, NJ,
1997)

16 BSIM3v3.2.2 MOSFET Model BSIM Group, University of California, Berkeley,
CA http://www-device.eecs.berkeley.edu/∼bsim3/

17 CHUNG, S., and LI, C.-T.: ‘An analytical threshold-voltage model of trench-
isolated MOS devices with nonuniformly doped substrates’, IEEE Transactions
on Electron Devices, 1992, 39, pp. 614–622

18 CAO, K., LEE, W.-C., LIU, W. et al.: ‘BSIM4 gate leakage model including
source drain partition’, Tech. Digest IEDM, 2000, pp. 815–818

19 BSIM4.2.1 MOSFET Model, BSIM Group, University of California, Berkeley,
CA, http://www-device.eecs.berkeley.edu/∼bsim3/

20 HAMZAOGLU, F., and STAN, M.: ‘Circuit-level techniques to control gate
leakage for sub-100 nm CMOS’. Proceedings of ISLPED, August 2002,
pp. 60–63

21 ‘Well-Tempered’ Bulk-Si NMOSFET Device Home Page, Microsystems Tech-
nology Laboratory, MIT, Available: http://www-mtl.mit.edu/Well/

22 PIERRET, R.: ‘Advanced semiconductor fundamentals’, in NEUDECK, G.W.,
and PIERRET, R.F. (Eds): ‘Modular series on solid states devices, vol VI’
(Addison-Wesley Publishing Company, MA, 1989)

23 KETKAR, M. et al., ‘Standby power optimization via transistor sizing and dual
threshold voltage assignment’. Proceedings of the international conference on
Computer aided design, November 2002, pp. 375–378

24 WEI, L., CHEN, Z., JOHNSON, M., ROY, K., YE, Y., and DE, V.: ‘Design and
optimization of dual threshold circuits for low voltage low power applications’,
IEEE Transactions on VLSI Systems, 1999, 7, pp. 16–24

25 KARNIK, T. et al.: ‘Total power optimization by simultaneous dual-Vt allocation
and device sizing in high performance microprocessors’. ACM/IEEE Design
automation conference, vol. 486, 2002

26 KAO, J.T., and CHANDRAKASAN, A.P.: ‘Dual-threshold voltage techniques
for low-power digital circuits,’ IEEE Journal of Solid-State Circuits, 35, 2000,
p. 1009

27 SIRISANTANA, N., WEI, L., and ROY, K.: ‘High-performance low-power
CMOS circuits using multiple channel length and multiple oxide thickness’.
Proceedings of the 2000 international conference on Computer design, vol. 227,
2000

28 BOWMAN, K.A. et al.: ‘Impact of die-to-die and within die parameter fluctions
on the maximum clock frequency distribution for gigascale integration’, IEEE
Journal of Solid State Circuits, 2002, 37, pp. 183–190

29 YE, Y., BORKAR, S., and DE, V.: ‘A new technique for standby leakage reduc-
tion in high performance circuits’. IEEE symposium on VLSI circuits, vol. 40,
1998



446 System-on-chip

30 CHEN, Z., WEI, L., KESHAVARZI, A., and ROY, K.: ‘IDDQ testing for deep
submicron ICs: challenges and solutions’, IEEE Design and Test of Computers,
2002, 19, pp. 24–33

31 JOHNSON, M.C., SOMASEKHAR, D., and ROY, K.: ‘Leakage control with
efficient use of transistor stacks in single threshold CMOS’. Proceedings of
ACM/IEEE Design automation conference, vol. 442, 1999

32 MUTOH, S. et al.: ‘1-V Power supply high-speed digital circuit technology with
multi-threshold voltage CMOS’, IEEE Journal of Solid-State Circuits, 30, 1995,
p. 847

33 KAO, J., CHANDRAKASAN, A., and ANTONIADIS, D.: ‘Transistor siz-
ing issues and tool for multi-threshold CMOS technology’. Proceedings of
ACM/IEEE Design automation conference, vol. 495, 1997

34 KAWAGUCHI, H., NOSE, K., and SAKURAI, T.: ‘A CMOS scheme for 0.5V
supply voltage with pico-ampere standby current’. Digest of technical papers of
IEEE international Solid-state circuits conference, vol. 192, 1998

35 HEO, S., and ASANOVIC, K.: ‘Leakage-biased domino circuits for dynamic
fine-grain leakage reduction’. Symposium on VLSI circuits, vol. 316,
2002

36 KURODA, T. et al.: ‘A 0.9V 150MHz 10mW 4mm2 2-D discrete cosine trans-
form core processor with variable-threshold-voltage scheme’. Digest of technical
papers of IEEE international Solid-state circuits conference, vol. 166, 1996

37 KESHAVARZI, A., HAWKINS, C.F., ROY, K., and DE, V.: ‘Effectiveness of
reverse body bias for low power CMOS circuits’. Proceedings of the 8th NASA
symposium on VLSI design, vol. 231, 1999, pp. 2.3.1–2.3.9

38 NARENDRA, S. et al. ‘Forward body bias for microprocessors in 130-nm tech-
nology generation and beyond’, IEEE Journal of Solid State Circuits, May 2003,
38, pp. 696–701

39 MIZUNO, H. et al.: ‘An 18-µAstandby current 1.8-V, 200-MHz microprocessor
with self-substrate-biased data-retention mode’, IEEE Journal of Solid-State
Circuits, 34, 1999, pp. 1492–1500

40 KIM, C.H., and ROY, K.: ‘DynamicVth scaling scheme for active leakage power
reduction’. Design, automation and test in Europe, vol. 163, 2002

41 NOSE, K. et al.: ‘Vth-hopping scheme for 82% power saving in low-voltage
processors’. Proceedings of IEEECustom integrated circuits conference, vol. 93,
2001

42 AGARWAL, A., LI, H., and ROY, K.: ‘A single-Vt low-leakage gated-ground
cache for deep submicron’, IEEE Journal of Solid-State Circuits, 2003, 38,
pp. 319–328

43 YAMAUCHI, H. et al.: ‘A 0.8V/100MHz/sub-5mW-operated mega-bit SRAM
cell architecture with charge-recycle offset-source driving (OSD) scheme’.
Symposium on VLSI circuits, vol. 126, 1996

44 BHAVNAGARWALA, A.J., KAPOOR, A., and MEINDL, J.D.: ‘Dynamic
threshold CMOS SRAMs for fast, portable applications’. ASIC/SOC confer-
ence, vol. 359, 2000



Leakage power analysis and reduction for nano-scale circuits 447

45 OSADA, K. et al.: ‘16.7fA/cell tunnel-leakage-suppressed 16Mb SRAM for
handling cosmic-ray-induced multi-errors’. International Solid-state circuits
conference, vol. 302, 2003

46 AGARWAL, A., and ROY, K.: ‘Noise tolerant cache design to reduce gate
and subthreshold leakage in nanometer regime’. Accepted in international
symposium of Low power electronics and design (ISLPED2003), 2003

47 KAWAGUCHI, H., ITAKA, Y., and SAKURAI, T.: ‘Dynamic leakage cut-off
scheme for low-voltage SRAM’s’. Symposium on VLSI circuits, vol. 140, 1998

48 KIM, C.H., and ROY, K.: ‘Dynamic Vt SRAM: a leakage tolerant cache mem-
ory for low voltage microprocessors’. International symposium on Low power
electron and design, vol. 251, 2002

49 KIM C.H. et al.: ISLPED, 2003
50 FLAUTNER, K. et al.: ‘Drowsy caches: simple techniques for reducing leakage

power’. International symposium on Computer architecture, vol. 148, 2002
51 HEO, S. et al.: ‘Dynamic fine-grain leakage reduction using leakage-biased

bitlines’. International symposium on Computer architecture, vol. 137, 2002
52 ITOH, K., FRIDI, A.R., BELLAOUAR, A., and ELMASRY, M.I.: ‘A deep

sub-V, single power-supply SRAM cell with multi-Vt, boosted storage node and
dynamic load’. Symposium onVLSI circuits digest of technical papers, vol. 132,
1996





Part IV

Reconfigurable computing





Chapter 14

Reconfigurable computing: architectures and
design methods

T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer,
W. Luk and P.Y.K. Cheung

14.1 Introduction

Reconfigurable computing is rapidly establishing itself as a major discipline that
covers various subjects of learning, including both computing science and electronic
engineering. Reconfigurable computing involves the use of reconfigurable devices,
such as Field Programmable Gate Arrays (FPGAs), for computing purposes. Recon-
figurable computing is also known as configurable computing or custom computing,
since many of the design techniques can be seen as customising a computational
fabric for specific applications [1].

Reconfigurable computing systems often have impressive performance. Consider,
as an example, the point multiplication operation in Elliptic Curve cryptography. For
a key size of 270 bits, it has been reported [2] that a point multiplication can be
computed in 0.36 ms with a reconfigurable computing design implemented in an
XC2V6000 FPGA at 66 MHz. In contrast, an optimised software implementation
requires 196.71 ms on a dual-Xeon computer at 2.6 GHz; so the reconfigurable com-
puting design is more than 540 times faster, while its clock speed is almost 40 times
slower than the Xeon processors. This example illustrates a hardware design imple-
mented on a reconfigurable computing platform. We regard such implementations as
a subset of reconfigurable computing, which in general can involve the use of runtime
reconfiguration and soft processors.

Reconfigurable computing involves devices that can be reconfigured: their cir-
cuits can be changed after they are manufactured. This means that rather than
using a single circuit for many applications, such as a microprocessor, specific
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circuits can be generated for specific applications. How can circuits be changed after
manufacture? Typically, reconfigurable devices use memory whose state switches
logical elements (e.g. flip-flops and function generators), and the wiring between
them. The state of all these memory bits is known as the configuration of the
device, and determines its function (e.g. image processor, network firewall). In
Section 14.3, we survey different styles of reconfigurable logical elements and
wiring.

New circuits for new applications can be uploaded to the reconfigurable device
by writing to the configuration memory. An example of a reconfigurable device
is the Xilinx Virtex 4 [3]. In this device, the configuration memory controls logical
elements (which include flip-flops, function generators, multiplexors and memories),
and wiring, arranged in a hierarchical scheme.

Designing circuits for reconfigurable devices is akin to designing application-
specific integrated circuits, with the additional possibility that the design can
change, perhaps in response to data received. Design methods can be general-
purpose (e.g. using the C programming language), or special-purpose (e.g. using
domain-specific tools such as MATLAB). We review such design methods in
Section 14.4.

There are many commercial tools which support reconfigurable computing,
including:

• Xilinx’s ISE [4], an example of a reconfigurable device vendor tool, which gener-
ates configurations for Xilinx’s families of reconfigurable hardware from inputs
such as hardware description languages.

• Celoxica’s DK [5] design suite, which allows descriptions based on the C pro-
gramming language to be translated to configurations for reconfigurable hardware
in the form of hardware description languages.

• Synplicity Synplify Pro [6], which allows reconfigurable designs in hardware
description languages (perhaps the output of Celoxica’s DK) to be optimised
and converted into a netlist, which reconfigurable device vendor tools (such as
Xilinx’s ISE) can then convert into a configuration.

Is this speed advantage of reconfigurable computing over traditional micropro-
cessors a one-off or a sustainable trend? Recent research suggests that it is a trend
rather than a one-off for a wide variety of applications: from image processing [7] to
floating-point operations [8].

Sheer speed, while important, is not the only strength of reconfigurable com-
puting. Another compelling advantage is reduced energy and power consumption.
In a reconfigurable system, the circuitry is optimised for the application, such that
the power consumption will tend to be much lower than that for a general-purpose
processor. A recent study [9] reports that moving critical software loops to reconfig-
urable hardware results in average energy savings of 35–70 per cent with an average
speedup of 3–7 times, depending on the particular device used.

Other advantages of reconfigurable computing include a reduction in size and
component count (and hence cost), improved time-to-market, and improved flex-
ibility and upgradability. These advantages are especially important for embedded
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applications. Indeed, there is evidence [10] that embedded systems developers
show a growing interest in reconfigurable computing systems, especially with
the introduction of soft cores which can contain one or more instruction processors
[11–16].

In this chapter, we present a survey of modern reconfigurable system architectures
and design methods. Although we also provide background information on notable
aspects of older technologies, our focus is on the most recent architectures and design
methods, as well as the trends that will drive each of these areas in the near future.
In other words, we intend to complement other surveys [17–21] by:

(1) providing an up-to-date survey of material that appears after the publication of
the papers mentioned above;

(2) identifying explicitly the main trends in architectures and design methods for
reconfigurable computing;

(3) examining reconfigurable computing from a perspective different from existing
surveys, for instance classifying design methods as special-purpose and general-
purpose;

(4) offering various direct comparisons of technology options according to a
selected set of metrics from different perspectives.

The rest of the chapter is organised as follows. Section 14.2 contains back-
ground material that motivates the reconfigurable computing approach. Section 14.3
describes the structure of reconfigurable fabrics, showing how various researchers
and vendors have developed fabrics that can efficiently accelerate time-critical por-
tions of applications. Section 14.4 covers recent advances in the development of
design methods that map applications to these fabrics, and distinguishes between those
which employ special-purpose and general-purpose optimisation methods. Finally,
Section 14.5 concludes and summarises the main trends in architectures, design
methods and applications of reconfigurable computing.

14.2 Background

Many of today’s compute-intensive applications require more processing power than
ever before. Applications such as streaming video, image recognition and process-
ing, and highly interactive services are placing new demands on the computation
units that implement these applications. At the same time, the power consumption
targets, the acceptable packaging and manufacturing costs, and the time-to-market
requirements of these computation units are all decreasing rapidly, especially in
the embedded hand-held devices market. Meeting these performance requirements
under the power, cost and time-to-market constraints is becoming increasingly
challenging.

In the following, we describe three ways of supporting such processing
requirements: high-performance microprocessors, application-specific integrated
circuits and reconfigurable computing systems.
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High-performance microprocessors provide an off-the-shelf means of addressing
processing requirements described earlier. Unfortunately for many applications,
a single processor, even an expensive state-of-the-art processor, is not fast enough.
In addition, the power consumption (100 W or more) and cost (possibly thousands
of dollars) of state-of-the-art processors place them out-of-reach for many embed-
ded applications. Even if microprocessors continue to follow Moore’s Law so that
their density doubles every 18 months, they may still be unable to keep up with the
requirements of some of the most aggressive embedded applications.

Application-specific integrated circuits (ASICs) provide another means of
addressing these processing requirements. Unlike a software implementation, an
ASIC implementation provides a natural mechanism for implementing the large
amount of parallelism found in many of these applications. In addition, an ASIC
circuit does not need to suffer from the serial (and often slow and power-hungry)
instruction fetch, decode and execute cycle that is at the heart of all microprocessors.
Furthermore, ASICs consume less power than reconfigurable devices. Finally, an
ASIC can contain just the right mix of functional units for a particular application;
in contrast, an off-the-shelf microprocessor contains a fixed set of functional units
which must be selected to satisfy a wide variety of applications.

Despite the advantages of ASICs, they are often infeasible or uneconomical for
many embedded systems. This is primarily due to two factors: the cost of pro-
ducing an ASIC often due to the mask’s cost (up to $1 million [22]), and the
time to develop a custom integrated circuit, can both be unacceptable. Only for
the very highest-volume applications would the improved performance and lower
per-unit price warrant the high non-recurring engineering (NRE) cost of designing
an ASIC.

A third means of providing this processing power is a reconfigurable comput-
ing system. A reconfigurable computing system typically contains one or more
processors and a reconfigurable fabric upon which custom functional units can be
built. The processor(s) executes sequential and non-critical code, while code that
can be efficiently mapped to hardware can be ‘executed’ by processing units that
have been mapped to the reconfigurable fabric. Like a custom integrated circuit,
the functions that have been mapped to the reconfigurable fabric can take advan-
tage of the parallelism achievable in a hardware implementation. Also like an ASIC,
the embedded system designer can produce the right mix of functional and storage
units in the reconfigurable fabric, providing a computing structure that matches the
application.

Unlike an ASIC, however, a new fabric need not be designed for each appli-
cation. A given fabric can implement a wide variety of functional units. This
means that a reconfigurable computing system can be built out of off-the-shelf
components, significantly reducing the long design-time inherent in an ASIC
implementation. Also unlike an ASIC, the functional units implemented in the recon-
figurable fabric can change over time. This means that as the environment or usage
of the embedded system changes, the mix of functional units can adapt to bet-
ter match the new environment. The reconfigurable fabric in a handheld device,
for instance, might implement large matrix multiply operations when the device is
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used in one mode, and large signal processing functions when the device is used in
another mode.

Typically, not all of the embedded system functionality needs to be implemented
by the reconfigurable fabric. Only those parts of the computation that are time-critical
and contain a high degree of parallelism need to be mapped to the reconfigurable
fabric, while the remainder of the computation can be implemented by a standard
instruction processor. The interface between the processor and the fabric, as well as
the interface between the memory and the fabric, are therefore of the utmost impor-
tance. Modern reconfigurable devices are large enough to implement instruction
processors within the programmable fabric itself: soft processors. These can be gen-
eral purpose, or customised to a particular application; application specific instruction
processors and flexible instruction processors are two such approaches. Section 14.4.3
deals with soft processors in more detail.

Other devices show some of the flexibility of reconfigurable computers. Examples
include graphics processor units and application specific array processors. These
devices perform well on their intended application, but cannot run more general
computations, unlike reconfigurable computers and microprocessors.

Despite the compelling promise of reconfigurable computing, it has limitations
of which designers should be aware. For instance, the flexible routing on the bit
level tends to produce large silicon area and performance overhead when compared
with ASIC technology. Hence for large volume production of designs in applications
without the need for field upgrade, ASIC technology or gate array technology can still
deliver higher performance design at lower unit cost than reconfigurable computing
technology. However, since FPGA technology tracks advances in memory technology
and has demonstrated impressive advances in the last few years, many are confident
that the current rapid progress in FPGA speed, capacity and capability will continue,
together with the reduction in price.

It should be noted that the development of reconfigurable systems is still a matur-
ing field. There are a number of challenges in developing a reconfigurable system.
We describe two such challenges below.

First, the structure of the reconfigurable fabric and the interfaces between the fab-
ric, processor(s) and memory must be very efficient. Some reconfigurable computing
systems use a standard field-programmable gate array [3,23–27] as a reconfigurable
fabric, while others adopt custom-designed fabrics [28–39].

Another challenge is the development of computer-aided design and compilation
tools that map an application to a reconfigurable computing system. This involves
determining which parts of the application should be mapped to the fabric and which
should be mapped to the processor, determining when and how often the reconfig-
urable fabric should be reconfigured, which changes the functional units implemented
in the fabric, as well as the specification of algorithms for efficient mappings to the
reconfigurable system.

In this chapter, we provide a survey of reconfigurable computing, focusing our
discussion on both of the issues described above. In the next section, we provide a
survey of various architectures that are found useful for reconfigurable computing;
material on design methods will follow.
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14.3 Architectures

We shall first describe system-level architectures for reconfigurable computing. We
then present various flavours of reconfigurable fabric. Finally, we identify and
summarise the main trends.

14.3.1 System-level architectures

A reconfigurable system typically consists of one or more processors, one or more
reconfigurable fabrics, and one or more memories. Reconfigurable systems are often
classified according to the degree of coupling between the reconfigurable fabric
and the CPU. Compton and Hauck [18] present the four classifications shown in
Figure 14.1(a–d). In Figure 14.1(a), the reconfigurable fabric is in the form of one or
more stand-alone devices. The existing input and output mechanisms of the processor
are used to communicate with the reconfigurable fabric. In this configuration, the data
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transfer between the fabric and the processor is relatively slow, so this architecture
only makes sense for applications in which a significant amount of processing can be
done by the fabric without processor intervention. Emulation systems often take on
this sort of architecture [40,41].

Figure 14.1(b) and 14.1(c) shows two intermediate structures. In both cases,
the cost of communication is lower than that of the architecture in Figure 14.1(a).
Architectures of these types are described in References 31, 32, 36, 38, 42–45.
Next, Figure 14.1(d) shows an architecture in which the processor and the fabric
are very tightly coupled; in this case, the reconfigurable fabric is part of the pro-
cessor itself; perhaps forming a reconfigurable sub-unit that allows for the creation
of custom instructions. Examples of this sort of architecture have been described in
References 33, 35, 39 and 46.

Figure 14.1(e) shows a fifth organisation. In this case, the processor is embedded
in the programmable fabric. The processor can either be a ‘hard’ core [47,48], or can
be a ‘soft’ core which is implemented using the resources of the programmable fabric
itself [11–16].

A summary of the above organisations can be found in Table 14.1. Note the band-
width is the theoretical maximum available to the CPU: for example, in Chess [33],

Table 14.1 Summary of system architectures

Class CPU to Shared Fine grained or Example
memory memory size coarse grained application
bandwidth
(MB/s)

(a) External
stand-alone
processing unit

RC2000 [49] 528 152MB Fine grained Video processing
(b)/(c) Attached

processing
unit/co-processsor

Pilchard [50] 1064 20 kbytes Fine grained DES encryption
Morphosys [38] 800 2048 bytes Coarse grained Video compression

(d) Reconfigurable
functional unit

Chess [33] 6400 12288 bytes Coarse grained Video processing
(e) Processor

embedded in
a reconfigurable
fabric

Xilinx Virtex II 1600 1172 kB Fine grained Video compression
Pro [27]
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we assume that each block RAM is being accessed at its maximum rate. Organisa-
tion (a) is by far the most common, and accounts for all commercial reconfigurable
platforms.

14.3.2 Reconfigurable fabric

The heart of any reconfigurable system is the reconfigurable fabric. The reconfig-
urable fabric consists of a set of reconfigurable functional units, a reconfigurable
interconnect and a flexible interface to connect the fabric to the rest of the system.
In this section, we review each of these components, and show how they have been
used in both commercial and academic reconfigurable systems.

A common theme runs through this entire section: in each component of the
fabric, there is a trade-off between flexibility and efficiency. A highly flexible fabric
is typically much larger and much slower than a less flexible fabric. On the other
hand, a more flexible fabric is better able to adapt to the application requirements.

In the following discussions, we will see how this trade-off has influenced the
design of every part of every reconfigurable system. A summary of the main features
of various architectures can be found in Table 14.2.

1. Reconfigurable functional units: Reconfigurable functional units can be clas-
sified as either coarse-grained or fine-grained. A fine-grained functional unit can
typically implement a single function on a single (or small number) of bits. The most
common kinds of fine-grained functional units are the small lookup tables that are
used to implement the bulk of the logic in a commercial field-programmable gate
array. A coarse-grained functional unit, on the other hand, is typically much larger,
and may consist of arithmetic and logic units (ALUs) and possibly even a significant
amount of storage. In this section, we describe the two types of functional units in
more detail.

Many reconfigurable systems use commercial FPGAs as a reconfigurable fabric.
These commercial FPGAs contain many three to six input lookup tables, each of which
can be thought of as a very fine-grained functional unit. Figure 14.2(a) illustrates
a lookup table; by shifting in the correct pattern of bits, this functional unit can
implement any single function of up to three inputs – the extension to lookup tables
with larger numbers of inputs is clear. Typically, lookup tables are combined into
clusters, as shown in Figure 14.2(b). Figure 14.3 shows clusters in two popular FPGA
families. Figure 14.3(a) shows a cluster in the Altera Stratix device; Altera calls
these clusters ‘logic array blocks’ [24]. Figure 14.3(b) shows a cluster in the Xilinx
architecture [27]; Xilinx calls these clusters ‘configurable logic blocks’ (CLBs). In the
Altera diagram, each block labelled ‘LE’ is a lookup table, while in the Xilinx diagram,
each ‘slice’ contains two lookup tables. Other commercial FPGAs are described in
References 3, 23, 25 and 52.

Reconfigurable fabrics containing lookup tables are very flexible, and can be used
to implement any digital circuit. However, compared to the coarse-grained structures
in the next subsection, these fine-grained structures have significantly more area,
delay and power overhead. Recognising that these fabrics are often used for arithmetic
purposes, FPGA companies have added additional features such as carry-chains and
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Figure 14.2 Fine-grained reconfigurable functional units: (a) three-input lookup
table, (b) cluster of lookup tables

cascade-chains to reduce the overhead when implementing common arithmetic and
logic functions. Figure 14.4 shows how the carry and cascade chains, as well as the
ability to break a four-input lookup table into four two-input lookup tables can be
exploited to efficiently implement carry-select adders [24]. The multiplexers and the
exclusive-OR gate in Figure 14.4 are included as part of each logic array block, and
need not be implemented using other lookup tables.

The example in Figure 14.4 shows how the efficiency of commercial FPGAs can
be improved by adding architectural support for common functions. We can go much
further than this though, and embed significantly larger, but far less flexible, recon-
figurable functional units. There are two kinds of devices that contain coarse-grained
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Figure 14.3 Commercial logic block architectures: (a) Altera logic array block
[24], (b) Xilinx configurable logic block [27]

functional units; modern FPGAs, which are primarily composed of fine-grained func-
tional units, are increasingly being enhanced by the inclusion of larger blocks. As
an example, the Xilinx Virtex device contains embedded 18-bit by 18-bit multiplier
units [27]. When implementing algorithms requiring a large amount of multiplica-
tion, these embedded blocks can significantly improve the density, speed and power
of the device. On the other hand, for algorithms which do not perform multiplication,
these blocks are rarely useful. The Altera Stratix devices contain a larger, but more
flexible embedded block, called a DSP block, shown in Figure 14.5 [24]. Each of
these blocks can perform accumulate functions as well as multiply operations. The
comparison between the two devices clearly illustrates the flexibility and overhead
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Figure 14.6 ADRES reconfigurable functional unit [34]

trade-off; the Altera DSP block may be more flexible than the Xilinx multiplier,
however, it consumes more chip area and runs somewhat slower.

The commercial FPGAs described above contain both fine-grained and coarse-
grained blocks. There are also devices which contain only coarse-grained blocks
[28,29,31,33,34,38]. An example of a coarse-grained architecture is the ADRES archi-
tecture which is shown in Figure 14.6 [34]. Each reconfigurable functional unit in
this device contains a 32-bit ALU which can be configured to implement one of sev-
eral functions including addition, multiplication and logic functions, with two small
register files. Clearly, such a functional unit is far less flexible than the fine-grained
functional units described earlier; however if the application requires functions which
match the capabilities of the ALU, these functions can be very efficiently implemented
in this architecture.

2. Reconfigurable interconnects: Regardless of whether a device contains fine-
grained functional units, coarse-grained functional units, or a mixture of the two, the
functional units needed to be connected in a flexible way. Again, there is a trade-off
between the flexibility of the interconnect (and hence the reconfigurable fabric) and
the speed, area and power-efficiency of the architecture.

As before, reconfigurable interconnect architectures can be classified as fine-
grained or coarse-grained. The distinction is based on the granularity with which wires
are switched. This is illustrated in Figure 14.7, which shows a flexible interconnect
between two buses. In the fine-grained architecture in Figure 14.7(a), each wire
can be switched independently, while in Figure 14.7(b), the entire bus is switched
as a unit. The fine-grained routing architecture in Figure 14.7(a) is more flexible,
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Configuration bit

Figure 14.7 Routing architectures: (a) fine-grained and (b) coarse-grained

since not every bit needs to be routed in the same way; however, the coarse-grained
architecture in Figure 14.7(b) contains far fewer programming bits, and hence suffers
much less overhead.

Fine-grained routing architectures are usually found in commercial FPGAs. In
these devices, the functional units are typically arranged in a grid pattern, and they
are connected using horizontal and vertical channels. Significant research has been
performed in the optimisation of the topology of this interconnect [53,54]. Coarse-
grained routing architectures are commonly used in devices containing coarse-grained
functional units. Figure 14.8 shows two examples of coarse-grained routing architec-
tures: (a) the Totem reconfigurable system [28]; (b) the Silicon Hive reconfigurable
system [37], which is less flexible but faster and smaller.

3. Emerging directions: Several emerging directions will be covered in the fol-
lowing. These directions include low power techniques, asynchronous architectures,
and molecular microelectronics.
• Low power techniques. Early work explores the use of low-swing circuit tech-

niques to reduce the power consumption in a hierarchical interconnect for a
low-energy FPGA [55]. Recent work involves: (a) activity reduction in power-
aware design tools, with energy saving of 23 per cent [56]; (b) leakage current
reduction methods such as gate biasing and multiple supply-voltage integration,
with up to two times leakage power reduction [57]; and (c) dual supply-voltage
methods with the lower voltage assigned to non-critical paths, resulting in an
average power reduction of 60 per cent [58].

• Asynchronous architectures. There is an emerging interest in asynchronous FPGA
architectures. An asynchronous version of Piperench [31] is estimated to improve
performance by 80 per cent, at the expense of a significant increase in con-
figurable storage and wire count [59]. Other efforts in this direction include
fine-grained asynchronous pipelines [60], quasi delay-insensitive architectures
[61] and globally asynchronous locally synchronous techniques [62].

• Molecular microelectronics. In the long term, molecular techniques offer a
promising opportunity for increasing the capacity and performance of recon-
figurable computing architectures [63]. Current work is focused on developing
programmable logic arrays based on molecular-scale nano-wires [64,65].
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Figure 14.8 Example coarse-grained routing architectures: (a) Totem coarse-
grained routing architecture [28] and (b) Silicon Hive coarse-grained
routing architecture [37]

14.3.3 Architectures: main trends

The following summarises the main trends in architectures for reconfigurable
computing.

1. Coarse-grained fabrics: As reconfigurable fabrics are migrated to more
advanced technologies, the cost (in terms of both speed and power) of the inter-
connect part of a reconfigurable fabric is growing. Designers are responding to this
by increasing the granularity of their logic units, thereby reducing the amount of inter-
connect needed. In the Stratix II device, Altera moved away from simple four-input
lookup tables, and used a more complex logic block which can implement functions
of up to seven inputs. We should expect to see a slow migration to more complex
logic blocks, even in stand-alone FPGAs.

2. Heterogeneous functions: As devices are migrated to more advanced technolo-
gies, the number of transistors that can be devoted to the reconfigurable logic fabric
increases. This provides new opportunities to embed complex non-programmable
(or semi-programmable) functions, creating heterogeneous architectures with both
general-purpose logic resources and fixed-function embedded blocks. Modern Xilinx
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parts have embedded 18 by 18-bit multipliers, while modern Altera parts have
embedded DSP units which can perform a variety of multiply/accumulate functions.
Again, we should expect to see a migration to more heterogeneous architectures in
the near future.

3. Soft cores: The use of ‘soft’ cores, particularly for instruction processors,
is increasing. A ‘soft’ core is one in which the vendor provides a synthesisable
version of the function, and the user implements the function using the reconfigurable
fabric. Although this is less area- and speed-efficient than a hard embedded core,
the flexibility and the ease of integrating these soft cores makes them attractive. The
extra overhead becomes less of a hindrance as the number of transistors devoted to the
reconfigurable fabric increases. Altera and Xilinx both provide numerous soft cores,
including soft instruction processors such as NIOS [11] and Microblaze [16]. Soft
instruction processors have also been developed by a number of researchers, ranging
from customisable JVM and MIPS processors [14] to ones specialised for machine
learning [12] and data encryption [13].

14.4 Design methods

Hardware compilers for high-level descriptions are increasingly recognised to be the
key to reducing the productivity gap for advanced circuit development in general,
and for reconfigurable designs in particular. This section looks at high-level design
methods from two perspectives: special-purpose design and general-purpose design.
Low-level design methods and tools, covering topics such as technology mapping,
floorplanning and place and route, are beyond the scope of this chapter – interested
readers are referred to Reference 18.

14.4.1 General-purpose design

This section describes design methods and tools based on a general-purpose pro-
gramming language such as C, possibly adapted to facilitate hardware development.
Of course, traditional hardware description languages such as VHDL and Verilog are
widely available, especially on commercial reconfigurable platforms.

A number of compilers from C to hardware have been developed. Some of the
significant ones are reviewed here. These range from compilers which only target
hardware, to those which target complete hardware/software systems; some also
partition into hardware and software components.

We can classify different design methods into two approaches: the annotation and
constraint-driven approach, and the source-directed compilation approach. The first
approach preserves the source programs in C or C++ as much as possible and makes
use of annotation and constraint files to drive the compilation process. The second
approach modifies the source language to let the designer to specify, for instance, the
amount of parallelism or the size of variables.

1. Annotation and constraint-driven approach: The systems mentioned below
employ annotations in the source-code and constraint files to control the optimisation
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process. Their strength is that usually only minor changes are needed to produce
a compilable program from a software description – no extensive re-structuring
is required. Five representative methods are SPC [66], Streams-C [67], Sea
Cucumber [68], SPARK [69] and Catapult-C [70].

SPC [66] combines vectorisation, loop transformations and retiming with auto-
matic memory allocation to improve performance. SPC accelerates C loop nests
with data dependency restrictions, compiling them into pipelines. Based on the SUIF
framework [71], this approach uses loop transformations, and can take advantage
of run-time reconfiguration and memory access optimisation. Similar methods have
been advocated by other researchers [72,73].

Streams-C [67] compiles a C program to synthesisable VHDL. Streams-C exploits
coarse-grained parallelism in stream-based computations; low-level optimisations
such as pipelining are performed automatically by the compiler.

Sea Cucumber [68] compiles Java programs to hardware using a similar scheme
to Handel-C, which we detail in the next section. Unlike Handel-C, no language
extensions are needed; like Streams-C, users must call a library, in this case based on
Communicating Sequential Processes (CSP [74]). Multiple circuit implementations
of the library primitives enable trade-offs.

SPARK [69] is a high-level synthesis framework targeting multi-media and image
processing. It compiles C code with the following steps: (a) list scheduling based on
speculative code motions and loop transformations, (b) resource binding pass with
minimisation of interconnect, (c) finite state machine controller generation for the
scheduled datapath, (d) code generation producing synthesisable register-transfer
level VHDL. Logic synthesis tools then synthesise the output.

Catapult C synthesises Register Transfer Level (RTL) descriptions from unanno-
tated C++, using characterisations of the target technology from RTL synthesis tools
[70]. Users can set constraints to explore the design space, controlling loop pipelining
and resource sharing.

2. Source-directed compilation approach: A different approach adapts the source
language to enable explicit description of parallelism, communication and other
customisable hardware resources such as variable size. Examples of design meth-
ods following this approach include ASC [75], Handel-C [76], Haydn-C [77] and
Bach-C [78].

ASC [75] adopts C++ custom types and operators to provide a C++ program-
ming interface on the algorithm, architecture, arithmetic and gate levels. This
enables the user to program on the desired level for each part of the applica-
tion. Semi-automated design space exploration further increases design productivity,
while supporting the optimisation process on all available levels of abstraction.
The object-oriented design enables efficient code-reuse, and includes an integrated
arithmetic unit generation library [79]. A floating-point library [80] provides over
200 different floating point units, each with custom bitwidths for mantissa and
exponent.

Handel-C [76] extends a subset of C to support flexible width variables, sig-
nals, parallel blocks, bit-manipulation operations and channel communication.
A distinctive feature is that timing of the compiled circuit is fixed at one cycle per
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C statement. This allows Handel-C programmers to schedule hardware resources
manually. Handel-C compiles to a ‘one-hot’ state machine using a token-passing
scheme developed by Page and Luk [81]; each assignment of the program maps to
exactly one control flip-flop in the state machine. These control flip-flops capture
the flow of control (represented by the token) in the program: if the control flip-flop
corresponding to a particular statement is active, then control has passed to that
statement, and the circuitry compiled for that statement is activated. When the
statement has finished execution, it passes the token to the next statement in
the program.

Haydn-C [77] extends Handel-C for component-based design. Like Handel-C,
it supports description of parallel blocks, bit-manipulation operations and channel
communication. The principal innovation of Haydn-C is a framework of optional
annotations to enable users to describe design constraints, and to direct source-level
transformations such as scheduling and resource allocation. There are automated
transformations so that a single high-level design can be used to produce many imple-
mentations with different trade-offs. This approach has been evaluated using various
case studies, including FIR filters, fractal generators and morphological operators.
The fastest morphological erosion design is 129 times faster and 3.4 times larger than
the smallest design.

Bach-C [78] is similar to Handel-C but has an untimed semantics, only syn-
chronising between parallel threads on synchronous communications between them,
possibly giving greater scope for optimisation. It also allows asynchronous communi-
cations but otherwise resembles Handel-C, using the same basic one-hot compilation
scheme.

Table 14.3 summarises the various compilers discussed in this section, showing
their approach, source and target languages, target architecture and some example
applications. Note that the compilers discussed are not necessarily restricted to the
architectures reported; some can usually be ported to a different architecture by using
a different library of hardware primitives.

14.4.2 Special-purpose design

Within the wide variety of problems to which reconfigurable computing can be
applied, there are many specific problem domains which deserve special consid-
eration. The motivation is to exploit domain-specific properties: (a) to describe the
computation, such as using MATLAB for digital signal processing and (b) to optimise
the implementation, such as using word-length optimisation techniques described
later.

We shall begin with an overview of digital signal processing and relevant tools
which target reconfigurable implementations. We then describe the word-length
optimisation problem, the solution to which promises rich rewards; an example
of such a solution will be covered. Finally we summarise other domain-specific
design methods which have been proposed for video and image processing and
networking.
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14.4.2.1 Digital signal processing

One of the most successful applications for reconfigurable computing is real-time
Digital Signal Processing (DSP). This is illustrated by the inclusion of hardware
support for DSP in the latest FPGA devices, such as the embedded DSP blocks in
Altera Stratix II chips [24].

DSP problems tend to share the following properties: design latency is usually
less of an issue than design throughput, algorithms tend to be numerically intensive
but have very simple control structures, controlled numerical error is acceptable,
and standard metrics, such as signal-to-noise ratio, exist for measuring numerical
precision quality.

DSP algorithm design is often initially performed directly in a graphical program-
ming environment such as Mathworks’ MATLAB Simulink [84]. Simulink is widely
used within the DSP community, and has been recently incorporated into the Xilinx
System Generator [85] and Altera DSP builder [86] design flows. Design approaches
such as this are based on the idea of data-flow graphs (DFGs) [87].

Tools working with this form of description vary in the level of user intervention
required to specify the numerical properties of the implementation. For example, in
the Xilinx System Generator flow [85], it is necessary to specify the number of bits
used to represent each signal, the scaling of each signal (namely the binary point
location) and whether to use saturating or wrap-around arithmetic [88].

Ideally, these implementation details could be automated. Beyond a standard
DFG-based algorithm description, only one piece of information should be required:
a lower-bound on the output signal to quantisation noise acceptable to the user. Such
a design tool would thus represent a truly ‘behavioural’ synthesis route, exposing
to the DSP engineer only those aspects of design naturally expressed in the DSP
application domain.

14.4.2.2 The word-length optimisation problem

Unlike microprocessor-based implementations where the word-length is defined
a priori by the hard-wired architecture of the processor, reconfigurable com-
puting based on FPGAs allows the size of each variable to be customised to
produce the best trade-offs in numerical accuracy, design size, speed and power
consumption.

Given this flexibility, it is desirable to automate the process of finding a good
custom data representation. The most important implementation decision to automate
is the selection of an appropriate word-length and scaling for each signal [89] in a
DSP system.

It has been argued that, often, the most efficient hardware implementation of
an algorithm is one in which a wide variety of finite precision representations of
different sizes are used for different internal variables [90]. The accuracy observable
at the outputs of a DSP system is a function of the word-lengths used to repre-
sent all intermediate variables in the algorithm. However, accuracy is less sensitive
to some variables than to others, as is implementation area. It is demonstrated in
Reference 89 that by considering error and area information in a structured way using
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analytical and semi-analytical noise models, it is possible to achieve highly efficient
DSP implementations.

In Reference 91 it has been demonstrated that the problem of word-length optimi-
sation is NP-hard, even for systems with special mathematical properties that simplify
the problem from a practical perspective [92]. There are, however, several published
approaches to word-length optimisation. These can be classified as heuristics offering
an area/signal quality trade-off [90,93,94], approaches that make some simplifying
assumptions on error properties [93,95] or optimal approaches that can be applied to
algorithms with particular mathematical properties [96].

Some published approaches to the word-length optimisation problem use an ana-
lytic approach to scaling and/or error estimation [94,97,98], some use simulation
[93,95] and some use a hybrid of the two [99]. The advantage of analytic techniques
is that they do not require representative simulation stimulus, and can be faster, how-
ever they tend to be more pessimistic. There is little analytical work on supporting
data-flow graphs containing cycles, although in Reference 98 finite loop bounds are
supported, while Reference 92 supports cyclic data-flow when the nodes are of a
restricted set of types, extended to semi-analytic technique with fewer restrictions in
Reference 100.

Some published approaches use worst-case instantaneous error as a measure of
signal quality [94,95,97], whereas some use signal-to-noise ratio [90,93].

The remainder of this section reviews in some detail particular research
approaches in the field.

The Bitwise Project [98] proposes propagation of integer variable ranges back-
wards and forwards through data-flow graphs. The focus is on removing unwanted
most-significant bits (MSBs). Results from integration in a synthesis flow indicate
that area savings of between 15 per cent and 86 per cent combined with speed
increases of up to 65 per cent can be achieved compared to using 32-bit integers
for all variables.

The MATCH Project [97] also uses range propagation through data-flow graphs,
except variables with a fractional component are allowed. All signals in the model of
Reference 97 must have equal fractional precision; the authors propose an analytic
worst-case error model in order to estimate the required number of fractional bits.
Area reductions of 80 per cent combined with speed increases of 20 per cent are
reported when compared to a uniform 32-bit representation.

Wadekar and Parker [94] have also proposed a methodology for word-length
optimisation. Like Reference 97, this technique also allows controlled worst-case
error at system outputs, however each intermediate variable is allowed to take a
word-length appropriate to the sensitivity of the output errors to quantisation errors
on that particular variable. Results indicate area reductions of between 15 per cent
and 40 per cent over the optimum uniform word-length implementation.

Kum and Sung [93] and Cantin et al. [95] have proposed several word-length
optimisation techniques to trade-off system area against system error. These tech-
niques are heuristics based on bit-true simulation of the design under various internal
word-lengths.
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In Bitsize [101,102], Abdul Gaffar et al. propose a hybrid method based on
the mathematical technique know as automatic differentiation to perform bitwidth
optimisation. In this technique, the gradients of outputs with respect to the internal
variables are calculated and then used to determine the sensitivities of the outputs to
the precision of the internal variables. The results show that it is possible to achieve an
area reduction of 20 per cent for floating-point designs, and 30 per cent for fixed-point
designs, when given an output error specification of 0.75 per cent against a reference
design.

A useful survey of algorithmic procedures for word-length determination has been
provided by Cantin et al. [103]. In this work, existing heuristics are classified under
various categories. However the ‘exhaustive’ and ‘branch-and-bound’ procedures
described in Reference 103 do not necessarily capture the optimum solution to the
word-length determination problem, due to non-convexity in the constraint space: it
is actually possible to have a lower error at a system output by reducing the word-
length at an internal node [104]. Such an effect is modelled in the MILP approach
proposed in Reference 96.

A comparative summary of existing optimisation systems is provided in
Table 14.4. Each system is classified according to the several defining features
described below.

• Is the word-length and scaling selection performed through analytic or simulation-
based means?

• Can the system support algorithms exhibiting cyclic data flow? (Such as infinite
impulse response filters.)

• What mechanisms are supported for Most Significant Bit (MSB) optimisations?
(Such as ignoring MSBs that are known to contain no useful information, a
technique determined by the scaling approach used.)

• What mechanisms are supported for Least Significant Bit (LSB) optimisations?
These involve the monitoring of word-length growth. In addition, for those sys-
tems which support error-trade-offs, further optimisations include the quantisation
(truncation or rounding) of unwanted LSBs.

• Does the system allow the user to trade-off numerical accuracy for a more efficient
implementation?

14.4.2.3 An example optimisation flow

One possible design flow for word-length optmisation, used in the Right-Size system
[100], is illustrated in Figure 14.9 for Xilinx FPGAs. The inputs to this system
are a specification of the system behaviour (e.g. using Simulink), a specification of
the acceptable signal-to-noise ratio at each output and a set of representative input
signals. From these inputs, the tool automatically generates a synthesisable structural
description of the architecture and a bit-true behavioural VHDL testbench, together
with a set of expected outputs for the provided set of representative inputs. Also
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Figure 14.9 Design flow for the Right-Size tool [100]. The shaded portions are
FPGA vendor-specific

generated is a makefile which can be used to automate the post-Right-Size synthesis
process.

Application of Right-Size to various adaptive filters implemented in a Xilinx
Virtex FPGA has resulted in area reduction of up to 80 per cent, power reduction of
up to 98 per cent, and speed-up of up to 36 per cent over common alternative design
methods without word-length optimisation.

14.4.2.4 Other design methods

Besides signal processing, video and image processing is another area that can bene-
fit from special-purpose design methods. Three examples will be given to provide a
flavour of this approach. First, the CHAMPION system [112] maps designs captured
in the Cantata graphical programming environment to multiple reconfigurable com-
puting platforms. Second, the IGOL framework [113] provides a layered architecture
for facilitating hardware plug-ins to be incorporated in various applications in the
Microsoft Windows operating system, such as Premiere, Winamp, VirtualDub and
DirectShow. Third, the SA-C compiler [114] maps a high-level single-assignment
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language specialised for image processing description into hardware, using various
optimisation methods including loop unrolling, array value propagation, loop-carried
array elimination, and multi-dimensional stripmining.

Recent work indicates that another application area that can benefit from special-
purpose techniques is networking. Two examples will be given. First, a framework
has been developed to enable description of designs in the network policy language
Ponder [115], into reconfigurable hardware implementations [116]. Second, it is
shown [117] how descriptions in the Click networking language can produce efficient
reconfigurable designs.

14.4.3 Other design methods

In the following, we describe various design methods in brief.

1. Runtime customisation: Many aspects of runtime reconfiguration have been
explored [18], including the use of directives in high-level descriptions [118]. Effec-
tive runtime customisation hinges on appropriate design-time preparation for such
customisation. To illustrate this point, consider a runtime customisable system that
supports partial reconfiguration: one part of the system continues to be operational,
while another part is being reconfigured. As FPGAs get larger, partial reconfigu-
ration is becoming increasingly important as a means of reducing reconfiguration
time. To support partial reconfiguration, appropriate circuits must be built at fabrica-
tion time as part of the FPGA fabric. Then at compile time, an initial configuration
bitstream and incremental bitstreams have to be produced, together with runtime
customisation facilities which can be executed, for instance, on a microprocessor
serving as part of the runtime system [119]. Runtime customisation facilities can
include support for condition monitoring, design optimisation and reconfiguration
control.

Opportunities for runtime design optimisation include: (a) runtime constant prop-
agation [120], which produces a smaller circuit with higher performance by treating
runtime data as constant, and optimising them principally by Boolean algebra;
(b) library-based compilation – the DISC compiler [121] makes use of a library
of precompiled logic modules which can be loaded into reconfigurable resources
by the procedure call mechanism; (c) exploiting information about program branch
probabilities [122]; the idea is to promote utilisation by dedicating more resources to
branches which execute more frequently. A hardware compiler has been developed
to produce a collection of designs, each optimised for a particular branch probabil-
ity; the best can be selected at runtime by incorporating observed branch probability
information from a queueing network performance model.

2. Soft instruction processors: FPGA technology can now support one or more soft
instruction processors implemented using reconfigurable resources on a single chip;
proprietary instruction processors, such as MicroBlaze and Nios, are now available
from FPGA vendors. Often such processors support customisation of resources and
custom instructions. Custom instructions have two main benefits. First, they reduce
the time for instruction fetch and decode, provided that each custom instruction
replaces several regular instructions. Second, additional resources can be assigned
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to a custom instruction to improve performance. Bit-width optimisation, described
in Section 14.4.2, can also be applied to customise instruction processors at compile
time. A challenge of customising instruction processors is that the tools for producing
and analysing instructions also need to be customised. For instance, the flexible
instruction processor framework [14] has been developed to automate the steps in
customising an instruction processor and the corresponding tools. Other researchers
have proposed similar approaches [123].

Instruction processors can also run declarative langauges. For instance, a scalable
architecture [12], consisting of multiple processors based on the Warren Abstract
Machine, has been developed to support the execution of the Progol system [124],
based on the declarative language Prolog. Its effectiveness has been demonstrated
using the mutagenesis data set containing 12000 facts about chemical compounds.

3. Multi-FPGA compilation: Peterson et al. [125] have developed a C compiler
which compiles to multi-FPGA systems. The available FPGAs and other units are
specified in a library file, allowing portability. The compiler can generate designs
using speculative and lazy execution to improve performance and ultimately they aim
to partition a single program between host and reconfigurable resource (hardware/
software codesign). Duncan et al. [126] have developed a system with similar
capabilities. This is also retargetable, using hierarchical architecture descriptions.
It synthesises a VLIW architecture that can be partitioned across multiple FPGAs.
Both methods can split designs across several FPGAs, and are retargetable via hard-
ware description libraries. Other C-like languages that have been developed include
MoPL-3, a C extension supporting data procedural compilation for the Xputer archi-
tecture which comprises an array of reconfigurable ALUs [127], and spC, a systolic
parallel C variant for the Enable++ board [128].

4. Hardware/software codesign: Several research groups have studied the prob-
lem of compiling C code to both hardware and software. The Garp compiler [129]
is intended to accelerate plain C, with no annotations to help the compiler, making
it more widely applicable. The work targets one architecture only: the Garp chip,
which integrates a RISC core and reconfigurable logic. This compiler also uses the
SUIF framework. The compiler uses a technique first developed for VLIW architec-
tures called hyperblock scheduling, which optimises for instruction-level parallelism
across several common paths, at the expense of rarer paths. Infeasible or rare paths are
implemented on the processor with the more common, easily parallelisable paths syn-
thesised into logic for the reconfigurable resource. Similarly, the NAPA C compiler
targets the NAPA architecture [130], which also integrates a RISC processor recon-
figurable logic. This compiler can also work on plain C code but the programmer can
add C pragmas to indicate large-scale parallelism and the bit-widths of variables to
the code. The compiler can synthesise pipelines from loops.

5. Annotation-free compilation: Some researchers aim to compile a sequential
program, without any annotations, into efficient hardware design. This requires anal-
ysis of the source program to extract parallelism for an efficient result, which is
necessary if compilation from languages such as C is to compete with traditional
methods for designing hardware. One example is the work of Babb et al. [131], tar-
geting custom, fixed-logic implementation while also applicable to reconfigurable
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hardware. The compiler uses the SUIF infrastructure to do several analyses to find
what computations affect exactly what data, as far as possible. A tiled architec-
ture is synthesised, where all computation is kept as local as possible to one tile.
More recently, Ziegler et al. [132] have used loop transformations in mapping loop
nests onto a pipeline spanning several FPGAs. A further effort is given by the Garp
project [129].

14.4.4 Emerging directions

1. Verification: As designs are becoming more complex, techniques for veri-
fying their correctness are becoming increasingly important. Four approaches are
described: (1) the InterSim framework [133] provides a means of combining soft-
ware simulation and hardware prototyping. (2) The Lava system [134] can convert
designs into a form suitable for input to a model checker; a number of FPGA design
libraries have been verified in this way [135]. (3) The Ruby language [136] supports
correctness-preserving transformations, and a wide variety of hardware designs have
been produced. Fourth, the Pebble [137] hardware design language has been formally
specified [138], so that provably correct design tools can be developed.

2. Customisable hardware compilation: Recent work [139] explains how cus-
tomisable frameworks for hardware compilation can enable rapid design exploration,
and reusable and extensible hardware optimisation. The framework compiles a par-
allel imperative language like Handel-C, and supports multiple levels of design
abstraction, transformational development, optimisation by compiler passes and met-
alanguage facilities. The approach has been used in producing designs for applications
such as signal and image processing, with different trade-offs in performance and
resource usage.

14.4.5 Design methods: main trends

We summarise the main trends in design methods for reconfigurable computing
below.

1. Special-purpose design: As explained earlier, special-purpose design meth-
ods and tools enable both high-level design as well as domain-specific optimisation.
Existing methods, such as those compiling MATLAB Simulink descriptions into
reconfigurable computing implementations [85,86,97,100,101,140], allow applica-
tion developers without electronic design experience to produce efficient hardware
implementations quickly and effectively. This is an area that would assume further
importance in future.

2. Low power design: Several hardware compilers aim to minimise the power
consumption of their generated designs. Examples include special-purpose design
methods such as Right-Size [100] and PyGen [140], and general-purpose methods that
target loops for configurable hardware implementation [9]. These design methods,
when combined with low power architectures [58] and power-aware low-level tools
[56], can provide significant reduction in power consumption.
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3. High-level transformations Many hardware design methods [66,69,114]
involve high-level transformations: loop unrolling, loop restructuring and static sin-
gle assignment are three examples. The development of powerful transformations
for design optimisation will continue for both special-purpose and general-purpose
designs.

14.5 Summary

This chapter surveys two aspects of reconfigurable computing: architectures and
design methods. The main trends in architectures are coarse-grained fabrics, hetero-
geneous functions and soft cores. The main trends in design methods are special-
purpose design methods, low power techniques and high-level transformations. We
wonder what a survey of reconfigurable computing, written in 2015, will cover?
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Chapter 15

CAD tools for embedded analogue circuits in
mixed-signal integrated Systems-on-Chip

Georges G.E. Gielen

15.1 Introduction

With the evolution towards ultra-deep-submicron and nano-meter CMOS tech-
nologies [1], the design of complex Systems on a Chip (SoC) is emerging in
consumer-market applications such as telecom and multimedia. These integrated sys-
tems are increasingly mixed-signal designs, embedding high-performance analogue
or mixed-signal blocks and possibly sensitive RF frontends together with complex
digital circuitry (multiple processors, some logic blocks and several large memory
blocks) on the same chip. In addition, the growth of wireless services and other tele-
com applications increases the need for low-cost highly integrated solutions with very
demanding performance specifications. This requires the development of intelligent
front-end architectures that get around the physical limitations posed by the semi-
conductor technology. But also more traditional application domains like automotive
or instrumentation show an increasing trend in integrating analogue sensor/actuator
interfaces with digital electronics. And the emerging fields of miniaturised and possi-
bly networked biomedical devices as well as sensor networks promises to be an even
larger market for integrated mixed-signal systems.

This chapter addresses the problems and solutions that are posed by the design of
such mixed-signal integrated systems. These include problems in:

• design methodologies and flows;
• simulation and modelling;
• design productivity (synthesis, yield);
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• mixed-signal design verification, including analysis of signal integrity and
crosstalk, for instance problems due to the embedding of analogue/RF blocks
such as supply or substrate noise coupling.

The chapter explains the problems that are posed by these mixed-signal/RF SoC
designs, describes the CAD solutions and their underlying methods already existing
today, and outlines the challenges that still remain to be solved at present. Depending
on how we can solve these problems, single-chip SoC integration will be a stairway to
heaven or a highway to hell. In the latter case, two-chip solutions – possibly fabricated
in different technologies and, maybe with a limited number of extra passives, stacked
together in a System in a Package (SiP) – might economically be a more viable
solution.

The chapter is organised as follows. Section 2 addresses the problems in mixed-
signal design methodologies and describes the need for architectural exploration,
analogue behavioural modelling and power/area estimation. Section 3 focuses on the
issue of analogue design and layout productivity by discussing recent progress in ana-
logue circuit and layout synthesis techniques. Also the issue of yield optimisation and
design for manufacturability is addressed. Section 4 outlines bottlenecks in mixed-
signal design verification, especially the problem of analysing crosstalk between
digital and analogue circuits such as supply or substrate noise. Finally, Section 5
provides conclusions, followed by an extensive list of references.

15.2 Top-down mixed-signal design methodology

The growing complexity of the systems that can be integrated on a single chip today,
in combination with the tightening time-to-market constraints, results in a growing
design productivity gap for SoCs. That is why new design methodologies are being
developed that allow designers to shift to a higher level of design abstraction, such
as the use of platform-based design, object-oriented system-level hierarchical design
refinement flows, hardware–software co-design and IP reuse, on top of the already
established use of CAD tools for logic synthesis and digital place and route. However,
these flows have to be extended to also incorporate the embedded analogue/RF blocks.

A typical top-down design flow for mixed-signal integrated systems may look as
shown in Figure 15.1, where the following distinct phases can be identified: system
specification, architectural design, cell design, cell layout and system layout assembly
[2]. The advantages of adopting a top-down design methodology are:

• the possibility to perform system architectural exploration and a better overall
system optimisation (e.g. finding an architecture that consumes less power) at a
high level before starting detailed circuit implementations;

• the elimination of problems that often cause overall design iterations, like the
anticipation of problems related to interfacing different blocks;

• the possibility to do early test development in parallel to the actual block
design; etc.
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Figure 15.1 Top-down view of the mixed-signal IC design process

The ultimate advantage of top-down design therefore is to catch problems early in
the design flow and as a result have a higher chance of first-time success with fewer
or no overall design iterations, hence shortening the design time, while at the same
time obtaining a better overall system design. The top-down design methodology,
however, does not come for free and requires some investment from the design team,
especially in terms of high-level modelling and setting up a sufficient model library
for the targeted application domain. Even then there remains the risk that also at
higher levels in the design hierarchy low-level details (e.g. matching limitations,
circuit non-idealities, layout effects…) may be important to determine the feasibility
or optimality of a solution. The high-level models used therefore must include such
effects to the extent possible, but it remains difficult in practice to anticipate or model
everything accurately at higher levels. Besides the models, also efficient simulation
methods are needed at the architectural level in order to allow efficient interactive
explorations. The issues of system exploration and simulation, as well as behavioural
modelling and model generation will now be discussed in more detail.

15.2.1 System-level architectural exploration

The general objective of analogue architectural system exploration is twofold [3,4].
First of all, a proper (and preferrably optimal) architecture for the system has to
be decided upon. Second, the required specifications for each of the blocks in the
chosen architecture must be determined, so that the overall system meets its require-
ments at minimum implementation cost (power, chip area, etc.). The aim of a system
exploration environment is to provide the system designer with the platform and the
supporting tool set to explore in a short time different architectural alternatives and
to take the above decisions based on quantified rather than heuristic information.

Consider for instance the digital telecommunication link of Figure 15.2. It is clear
that digital bits are going into the link to be transmitted over the channel, and that the
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Figure 15.2 Digital telecommunication link, indicating a possible receiver frontend
architecture with some building block specifications to be determined
during frontend architectural exploration

received signals are being converted again in digital bits. One of the major consider-
ations in digital telecom system design is the bit error rate, which characterises the
reliability of the link. This bit error rate is impacted by the characteristics of the
transmission channel itself, but also by the architecture chosen for the transmitter and
receiver frontend and by the performances achieved and the non-idealities exhibited
by the analogue/RF blocks in this frontend. For example, the noise figure and non-
linear distortion of the input low-noise amplifier (LNA) are key parameters. Similarly,
the resolution and sampling speed of the used analogue-to-digital converter (ADC)
may have a large influence on the bit error rate, but it also determines the requirements
for the other analogue subblocks: a higher ADC resolution may relax the filtering
requirements in the transceiver, resulting in simpler filter structures, though it will
also consume more power and chip area than a lower-resolution converter. At the
same time, the best trade-off solution, i.e. the minimum required ADC resolution and
therefore also the minimum power and area, depends on the architecture chosen for
the transceiver frontend.

Clearly, there is a large interaction between system-level architectural decisions
and the performance requirements for the different subblocks, which on their turn
are bounded by technological limits that shift with every new technology process
being employed. Hence it is important to offer designers an exploration environment
where they can define different frontend architectures and analyse and compare their
performance quantitatively and derive the necessary building block specifications.
Today the alternative architectures that are explored are still to be provided by the
system designer, but future tools might also derive or synthesise these architectures
automatically from a high-level language description [5].

The important ingredients that are needed to set up such an architectural
exploration environment are [3,4]:

• a fast high-level simulation method that allows us to evaluate the performance
(e.g. SNR or BER) of the frontend;
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• a library of high-level (behavioural) models for the building blocks used in the tar-
geted application domain, including a correct modelling of the important building
block non-idealities (offset, noise, distortion, mirror signals, phase noise, etc.);

• power and area estimation models that, starting from the block specifications,
allow us to estimate the power consumption and chip area that would be consumed
by a real implementation of the block, without really designing the block.

The above ingredients allow a system designer to interactively explore frontend
architectures. Combining this with an optimisation engine would additionally allow
us to optimise the selected frontend architecture in determining the optimal building
block requirements as to meet the system requirements at minimum implementa-
tion cost (power/area). Repeating this optimisation for different architectures then
makes a quantitative comparison between these architectures possible before they
are implemented down to the transistor level. In addition, the high-level exploration
environment would also help in deciding on other important system-level decisions,
such as determining the optimal partitioning between analogue and digital imple-
mentations in a mixed-signal system [6], or deciding on the frequency planning
of the system, all based on quantitative data rather than ad hoc heuristics or past
experiences.

As the above aspects are not sufficiently available in present commercial system-
level simulators, more effective and more efficient solutions are being developed.
To make system-level exploration really fast and interactive, dedicated algorithms can
be developed that speed up the calculations by maximally exploiting the properties
of the system under investigation and using proper approximations where possible.
ORCA for instance is targeted towards telecom applications and uses dedicated signal
spectral manipulations to gain efficiency [7]. A more recent development is the FAST
tool which performs a time-domain dataflow type of simulation without iterations [8]
and which easily allows dataflow co-simulation with digital blocks. Compared to
commercial simulators like SPW, COSSAP, ADS or Matlab/SIMULINK, this simu-
lator is more efficient by using block processing instead of point-by-point calculations
for the different time points in circuits without feedback. In addition, the signals are
represented as complex equivalent baseband signals with multiple carriers. The signal
representation is local and fully optimised as the signal at each node in the circuit
can have a set of multiple carriers and each corresponding equivalent baseband com-
ponent can be sampled with a different time step depending on its bandwidth. Large
feedback loops, especially when they contain non-linearities, are however more dif-
ficult to handle with this approach. A method to efficiently simulate bit error rates
with this simulator has been presented in Reference 9.

15.2.1.1 Example

As an example [3,4], consider a frontend for a cable TV modem receiver, based on
the MCNS standard. The MCNS frequency band for upstream communication on
the CATV network is from 5 to 42 MHz (extended subsplit band). Two architec-
tures are shown in Figure 15.3: (a) an all-digital architecture where both the channel



502 System-on-chip

5–42 MHz

5–42 MHz
Fixed IF
70 MHz

I

I

Q

DSP

Q

DSP

LO1 LO2

ADC

ADC

SAW

(a)

(b)

Figure 15.3 Two possible architectures for a cable TV application: (a) all-digital
architecture, (b) classical architecture

10

5

0

–5

–10

–15

–20

–25

–30

–35

–40
0 5 10 15 20 25

f (MHz)

30 35 40 45 50

ps
d 

(d
B

)

1 2 3 4 5 6 7 8 9 10 11 12

Wanted signal

Channel noise

Figure 15.4 Typical input spectrum for a CATV frontend architecture using 12
QAM-16 channels

selection and the downconversion are done in the digital domain, and (b) the classical
architecture where the channel selection is performed in the analogue domain.

A typical input spectrum is shown in Figure 15.4. For this example we have used
12 QAM-16 channels with a 3 MHz bandwidth. We assume a signal variation of the
different channels of maximally ±5 dB around the average level. The average channel
noise is 30 dB below this level. Figures 15.5 and 15.6 show the spectrum simulated
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by ORCA [7] for the all-digital architecture of Figure 15.3(a). Figure 15.5 shows
the spectrum after the analogue-to-digital converter, whereas Figure 15.6 shows the
spectrum at the output after digital channel selection and quadrature downconversion.
The wanted channel signal and the effects of the channel noise, the ADC quantisation
noise and the second- and third-order distortion are generated separately, provid-
ing useful feedback to the system designer. The resulting SNDR is equal to 22.7
dB in this case, which corresponds to a symbol error rate of less than 10−10 for
QAM-16.

By performing the same analysis for different architectures and by linking the
required subblock specifications to the estimated power and/or chip area required to
implement the subblocks, a quantitative comparison of different alternative architec-
tures becomes possible with respect to (1) their suitability to implement the system
specifications, and (2) the corresponding implementation cost in power consumption
and/or silicon real estate. To assess the latter, high-level power and/or area estimators
must be used to quantify the implementation cost. In this way the system designer
can choose the most promising architecture for the application at hand.

Figure 15.7 shows a comparison between the estimated total power consump-
tion required by the all-digital and by the classical CATV receiver architectures of
Figure 15.3 as a function of the required SNR [10]. These results were obtained
with the simulator FAST [8]. Clearly, for the technology used in the experiment, the
classical architecture still required much less power than the all-digital solution.

Finally, Figure 15.8 shows the result of a BER simulation with the FAST tool
for a 5 GHz 802.11 WLAN architecture [9]. The straight curve shows the result
without taking into account non-linear distortion caused by the building blocks; the
dashed curve takes this distortion into account. Clearly, the BER worsens a lot in the
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Figure 15.8 Simulated BER analysis result for a 5-GHz 802.11 WLAN architec-
ture with (dashed) and without (straight) non-linear distortion of the
building blocks included [9]

presence of non-linear distortion. Note that the whole BER analysis was performed in
a simulation time which is two orders of magnitude faster than traditional Monte-Carlo
analysis performed on a large number of OFDM symbols.

15.2.2 Top-down analogue block design

Top-down design is already heavily used in industry today for the design of complex
analogue blocks like Delta-Sigma converters or PLL. In these cases first a high-
level design of the block is done with the block represented as an architecture of
subblocks, each modelled with a behavioural model that includes the major non-
idealities as parameters, rather than a transistor schematic. This step is often done
using Matlab/Simulink and it allows us to determine the optimal architecture of the
block at this level, together with the minimum requirements for the subblocks (e.g.
integrators, quantisers, VCO, etc.), so that the entire block meets its requirements in
some optimal sense. This is then followed by a detailed device-level (SPICE) design
step for each of the chosen architecture’s subblocks, targeted to the derived subblock
specifications. This is now illustrated for a PLL.

15.2.2.1 Example

The basic block diagram of a PLL is shown in Figure 15.9. If all subblocks like the
phase-frequency detector or the voltage-controlled oscillator (VCO) are represented
by behavioural models instead of device-level circuits, then enormous time savings
in simulation time can be obtained during the design and verification phase of the PLL.
For example, for requirements arising from a GSM-1800 design example (frequency
range around 1.8 GHz, phase noise −121 dBc/Hz at 600 kHz frequency offset, settling
time of the loop for channel frequency changes below 1 ms within 1e − 6 accuracy),
the following characteristics can be derived for the PLL subblocks using behavioural
simulations with generic behavioural models for the subblocks [12]: ALPF = 1,
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Figure 15.9 Basic block diagram of a phase-locked loop analogue block

KVCO = 1e6 Hz/V, Ndiv = 64, fLPF = 100 kHz. These specifications are then the
starting point for the device-level design of each of the subblocks.

For the bottom-up system verification phase of a system, more detailed
behavioural models have to be generated that are tuned towards the actual circuit
design. For example, an accurate behavioural model for a designed VCO is given by
the following equation set:

vout(t) = A0(vin(t))+
k=N∑
k=1

Ak(vin(t)) sin(
k(t))


k(t) = ϕk(vin(t))+ 2π

t∫
t0

k[hstat 2dyn(τ )⊗ fstat(vin(τ ))]dτ
(15.1)

where
k is the phase of each harmonic k in the VCO output, Ak and ϕk characterise
the (non-linear) static characteristic of a VCO, and hstat2dyn characterises the dynamic
voltage-phase behaviour of a VCO, both as extracted from circuit-level simulations
of the real circuit. For example, Figure 15.10 shows the frequency response of both
the original device-level circuit (light line) and the extracted behavioural model (dark
line) for a low-frequency sinusoidal input signal. You can see that this input signal
creates a side lobe near the carrier that is represented by the model within 0.25 dB
accuracy compared to the original transistor-level circuit, while the gain in simulation
time is more than 30× [12].

15.2.3 Analogue behavioural and performance modelling

The major workhorse for every analogue designer is the SPICE circuit simulator,
which numerically solves the system of non-linear differential-algebraic equations
that characterise the circuit by using traditional techniques of numerical analysis.
Many variants of the SPICE simulator are now marketed by a number of CAD vendors
and many IC manufacturers have in-house versions of the SPICE simulator that have
been adapted to their own proprietary processes and designs. SPICE or its many
derivatives have evolved into an established designer utility that is being used both
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during the design phase (often in a designer-guided trial-and-error fashion) and for
extensive post-layout design verification.

The main problem with the standard SPICE simulator is that it is essentially a
structural circuit simulator, and that its CPU time increases fast with the size of
the circuit, making the simulation of really large designs infeasible. This is why in
the past years the need has arisen for higher levels of abstraction to describe and
simulate analogue circuits and mixed-signal systems.

There are three reasons for using higher-level analogue modelling (functional,
behavioural or macro modelling) for systems-on-chip [2]:

• In a top-down design methodology based on hierarchical design refinement (like
Figure 15.1) at higher levels of the design hierarchy, there is a need for higher-
level models describing the pin-to-pin behaviour of the circuits in a mathematical
format rather than representing it as a internal structural netlist of components.
This is unavoidable during top-down design since at higher levels in the design
hierarchy the details of the underlying circuit implementation are simply not yet
known and hence only generic mathematical models can be used.

• A second use of behavioural models is during bottom-up system verification
when these models are needed to reduce the CPU time required to simulate the
block as part of a larger system. The difference is that in this case the underlying
implementation is known in detail, and that peculiarities of the block’s actual
implementation can be incorporated as much as possible in the extracted model
without slowing down the simulation too much.

• Third, when providing or using analogue IP macrocells in a SoC context, the
virtual component (ViC) has to be accompanied by an executable model that
efficiently models the pin-to-pin behaviour of the virtual component. This model
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can then be used in system-level design and verification, by the SoC integrat-
ing company, even without knowing the detailed circuit implementation of the
macrocell [11].

For all these reasons analogue/mixed-signal behavioural models are needed that
describe analogue circuits at a higher level than the circuit level, i.e. that describe the
input–output behaviour of the circuit in a mathematical model rather than as a struc-
tural network of basic devices. These higher-level models must describe the desired
behaviour of the block (like amplification, filtering, mixing or quantisation) and sim-
ulate efficiently, while still including the major nonidealities of real implementations
with sufficient accuracy.

15.2.3.1 Example

For example, the dynamic behaviour (settling time and glitch energy) of a current-
steering DAC as shown in Figure 15.11 can easily be described by superposition of
an exponentially damped sine and a shifted hyperbolic tangent [12]:

iout = Agl sin

(
2π

tgl
(t − t0)

)
exp

(
−sign(t − t0)2π

tgl
(t − t0)

)

+ leveli+1 − leveli
2

tanh

(
2π

tgl
(t − t0)

)
+ leveli+1 + leveli

2
(15.2)

where leveli and leveli+1 are the DAC output levels before and after the consid-
ered transition, and where Agl , t0 and tgl are parameters that need to be determined,
e.g. by regression fitting to simulation results of a real circuit. Figure 15.12 com-
pares the response of the behavioural model (with parameter values extracted from
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Figure 15.11 Typical dynamic behaviour of a current-steering digital-to-analogue
converter output when switching the digital input code
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Figure 15.12 Comparison between the device-level simulation results (on the right)
and the response of the extracted behavioural model (on the left) [12]

SPICE simulations of the original circuit) with SPICE simulation results of the orig-
inal circuit. The speed-up in CPU time is a factor 874 (!!) while the error is below
1 per cent [12].

The industrial use of analogue behavioural modelling is today leveraged by the
availability of standardised mixed-signal hardware description languages such as
VHDL–AMS [13,14] and VERILOG–AMS [15,16], both of which are extensions
of the corresponding digital hardware description languages, and both of which are
supported by commercial simulators today.

15.2.3.2 Behavioural model generation techniques

One of the largest problems today is the lack of systematic methods to create good
analogue behavioural or performance models – a skill not yet mastered by the major-
ity of analogue designers – as well as the lack of any tools to automate this process.
Fortunately, in recent years research has started to develop methods that can automat-
ically create models for analogue circuits, both behavioural models for behavioural
simulation and performance models for circuit sizing. Techniques used here can
roughly be divided into fitting or regression approaches, constructive approaches and
model-order reduction methods.

• In the ‘fitting or regression approaches’ a parameterised model (e.g. a rational
transfer function, a more general set of equations or even an artificial neural
network model) is first proposed by the model developer and the values of the
parameters are then fitted by some least-square error optimisation so that the
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model response matches as closely as possible the response of the real circuit
[17], for example according to:

error =
∫ T

0
‖vout,real(t)− vout,model(t)‖2dt (15.3)

These approaches can be rather generic as they consider the block as a black box
and only look at the input–output behaviour of the block which can easily be
simulated. The problem with such approaches is that first a good model template
must be proposed, which is not always trivial to do in an accurate way without
knowing the details of the circuit. Equation (15.1) is an example of such an
approach where the behaviour is captured in a parameterised analytic equation,
the parameters values of which are fitted to simulation data.

Another possible black-box approach is the use of an artificial neural network
that is being trained with SPICE simulation results of the real circuit until the
response of the network matches closely enough the response of the real circuit. At
that moment the network has become an implicit model of the circuit. Difficulties
with this approach are that it is not trivial to decide on a good neural network
structure for every circuit, that the training set must exercise all possible operating
modes of the circuit and that the resulting model is specific for one particular
implementation of the circuit. To improve these methods, all progress made in
other research areas such as in time series prediction could be applied here as well
and is being explored.

• The second class of methods, the ‘constructive approaches’, try to generate or
build a model from the underlying circuit description. This is then inherently a
white-box model that is specific for the particular circuit at hand, but on the
other hand it offers a higher guarantee of tracking the real circuit behaviour
well in a wider range than the fitting methods. One approach for instance uses
symbolic analysis techniques to first generate the exact set of describing alge-
braic/differential equations of the circuit, which are then simplified within a given
error bound of the exact response using both global and local simplifications [18].
The resulting simplified set of equations then constitutes the behavioural model
of the circuit and tracks nicely the behaviour of the circuit. The biggest drawback,
however, is that the error estimation is difficult and for non-linear circuits heavily
depends on the targeted response. Up till now, the gains in CPU time obtained in
this way are not high enough for practical circuits. More research in this area is
definitely needed.

• The third group of methods, the ‘model-order reduction methods’, are mathe-
matical techniques that take as input a linear, time-invariant set of differential
equations describing a state-space model of the circuit, for example :

dx

dt
= Ax + Bu; y = Cx +Du (15.4)

where x represents the circuit state, u the circuit inputs, y the circuit outputs and
the matrices A, B, C and D determine the circuit properties. As output model-order
reduction methods produce a similar state-space model Ã, B̃, C̃, D̃, but with a state
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vector x̃(thus matrix description) of lower dimensionality, i.e. of lower order:

dx̃

dt
= Ã x̃ + B̃u ; ỹ = C̃x̃ + D̃u (15.5)

These reduced-order models simulate much more efficiently, while approxi-
mating the exact response, for example matching the original model closely up to
some specified frequency. Originally developed to reduce the complexity of lin-
ear interconnect networks for timing analysis [19], techniques such as asymptotic
waveform evaluation (AWE) or related variants such as Padé via Lanczos (PVL),
use moment matching and Padé approximation to generate a lower-order model
for the response of the linear interconnect network. The early AWE efforts used
explicit moment matching techniques which could generate unstable reduced-
order models. Subsequent developments using Krylov-subspace-based iterative
methods resulted in methods like PVL that overcame many of the deficiencies
of the earlier AWE efforts, and passivity is now guaranteed using techniques
like Arnoldi transformations [20], resulting in tools like PRIMA [21]. In recent
years, similar techniques have also been applied to create reduced-order macro-
models for analogue/RF circuits. Originally restricted to linear(ised) circuits,
techniques were later developed or extended to cover also periodically time-
varying circuits (e.g. time-varying Padé [22]), weakly non-linear circuits (e.g.
Volterra-series-based polynomial reduction [23] and the NORM approach [24])
and strongly non-linear circuits (e.g. using trajectory piecewise-linear [25] or
piecewise-polynomial approximations [26]).

Despite the progress made so far, still more research in the area of automatic
or systematic behavioural model generation or model-order reduction is certainly
needed, and the field is a hot research area at the moment.

15.2.3.3 Performance model generation techniques

Note that besides behavioural models that simplify the input–output behaviour of
analogue circuits for purposes of faster simulation or verification, also performance
models are needed. Performance models relate the achieveable performances of a
circuit (e.g. gain, bandwidth, slew rate or phase margin) to the design variables (e.g.
device sizes and biasing). Such performance models are used to speed up circuit
sizing as will be discussed later on: in the circuit optimisation procedure, calls to the
transistor-level simulation are replaced by performance model evaluations, result-
ing in substantial speedups (once the performance models have been created and
calibrated).

Most approaches for performance model generation are based on fitting or regres-
sion methods where the parameters of a template model are fitted to have the model
match as closely as possible a sample set of simulated data points. A recent example
of such a fitting approach is the automatic generation of posynomial performance
models for analogue circuits, that are created by fitting a pre-assumed posynomial
equation template to simulation data created according to some design of experiments
scheme [27]. Such a posynomial model could then for instance be used in the very
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efficient sizing of analogue circuits through convex circuit optimisation. To improve
these methods, all progress made in other research areas such as in time series pre-
diction (e.g. support vector machines [28]) or data mining techniques [29] could be
applied here as well.

Despite the progress made so far, still more research in the area of automatic per-
formance model generation is needed to reduce analogue synthesis times, especially
for hierarchical synthesis of complex analogue blocks. This field is a hot research
area at the moment.

15.2.4 Power/area estimation models

Besides behavioural models, the other crucial element to compare different archi-
tectural alternatives and to explore trade-offs during system-level exploration and
optimisation are accurate and efficient power and area estimators [30]. They allow
one to assess and compare the optimality of different design alternatives. Such esti-
mators are functions that predict the power or area that is going to be consumed by
a circuit implementation of an analogue block (e.g. an analogue-to-digital converter)
with given specification values (e.g. resolution and speed). Since the implementation
of the block is not yet known during high-level system design and considering the
large number of different possible implementations for a block, it is very difficult to
generate these estimators with high absolute accuracy. However, for the purpose of
comparing different design alternatives during architectural exploration, the tracking
accuracy of estimators with varying block specifications is of much more importance.

Such functions can be obtained in two ways:

• A first possibility is the derivation of analytic functions or procedures that
return the power or area estimate given the block’s specifications. An exam-
ple of a general yet relatively accurate power estimator that was derived
based on the underlying operating principles for the whole class of CMOS
high-speed Nyquist-rate analogue-to-digital converters (such as flash, two-step,
pipelined…architectures) is given by [30]:

power = Vdd · Lmin · (Fsample + Fsignal)

10(−0.15·ENOB+4.24)
(15.6)

where Fsample and Fsignal are the clock and signal frequency, respectively, and
where ENOB is the effective number of bits at the signal frequency. The estimator
is technology scalable (Vdd and Lmin are parameters of the model), and has been
fitted with published data of real converters, and for more than 85 per cent of the
designs checked, the estimator has an accuracy better than 2.2×. Similar functions
are developed for other blocks, but of course often a more elaborate procedure is
needed than a simple formula. For example, for the case of high-speed continuous-
time filters [30], a crude filter synthesis procedure in combination with operational
transconductor amplifier behavioural models had to be developed to generate
accurate results, because the implementation details and hence the power and
chip area vary quite largely with the specifications.
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• A second possibility to develop power/area estimators is to extract them from
a whole set of data samples from available or generated designs through inter-
polation or fitting of a predefined function or an implicit function like e.g. a
neural network. As these methods do not rely on underlying operating principles,
extrapolations of the models have no guaranteed accuracy.

In addition to power and area estimators also feasibility functions are needed that
limit the high-level optimisation to realisable values of the building block specifica-
tions. These can be implemented under the form of functions (e.g. a trained neural
network or a support vector machine [31]) that return whether a block is feasible or
not, or of the geometrically calculated feasible performance space of a circuit (e.g.
using polytopes [32] or using radial base functions [33]). These methods are also
useful during automatic topology selection during circuit synthesis.

15.3 Analogue circuit and layout synthesis

Due to the knowledge-intensive nature of analogue design, most analogue designs
today are still handcrafted manually by analogue expert designers, with only a
SPICE-like simulation shell and an interactive layout environment (with parame-
terised procedural device generators) as supporting facilities. This makes the design
cycle for analogue circuits long and error-prone. Therefore, although analogue cir-
cuits typically occupy only a small fraction of the total area of mixed-signal ICs, their
design is often the bottleneck in mixed-signal systems, both in design time and effort
as well as test cost, and they are often responsible for design errors and expensive
reruns. This handcrafting is also increasingly at odds with the shortening time-to-
market constraints of current consumer market products. This explains the growing
need observed in industry today for analogue CAD tools that increase analogue design
productivity by assisting designers with fast and first-time-correct design of analogue
circuits, or even by automating certain tasks or the entire circuit design process where
possible. Moreover, the performance of an analogue circuit is very much dependent
on the characteristics of the technology used, making the use of fixed analogue cell
libraries uneconomical. Therefore, for an analogue or RF design business to be eco-
nomically viable, some form of ‘soft’ IP must be used, where the design knowledge is
embedded in some sort of synthesis or generator tool, that can then spawn optimised
designs in any specified target technology.

While the basic level of design abstraction for analogue circuits is mainly still
the transistor level, commercial CAD tool support for analogue cell-level circuit
and layout synthesis is currently emerging. There has been remarkable progress at
research level over the past decade, and in recent years several commercial offerings
have appeared on the market. Gielen and Rutenbar [2] offer a fairly complete survey
of the area. Analogue synthesis consists of two major steps: (1) circuit synthesis
followed by (2) layout synthesis. Most of the basic techniques in both circuit and
layout synthesis rely on powerful numerical optimisation engines coupled to ‘eval-
uation engines’ that qualify the merit of some evolving analogue circuit or layout
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Figure 15.13 Flow of analogue circuit synthesis for a basic cell: topology selection
and circuit sizing. For more complex cells these steps are repeated in
an hierarchical refinement scheme down to the transistor level

candidate. State-of-the-art techniques in analogue circuit and layout synthesis will
now be discussed in more detail.

15.3.1 Analogue circuit synthesis

The goal of analogue circuit synthesis is to create a sized circuit schematic from
given circuit specifications. Therefore, as shown in Figure 15.13, circuit synthesis
consists of two tasks: topology selection and specification translation/sizing [2]. Cir-
cuit synthesis is a critical step since most analogue designs require a custom optimised
design and the design problem is typically underconstrained with many degrees of
freedom and with many (often conflicting) performance requirements to be taken into
account. Given a specified block performance, first an appropriate topology or circuit
schematic has to be chosen to implement this block (this is the topology selection
step). Subsequently, values for the subblock parameters have to be determined, so that
the final block meets the specified performance constraints, preferrably in some opti-
mised way according to the design criteria used. At the device level this step is called
circuit sizing, in which case the sizes and biasing of all devices have to be determined.
However, for more complex cells, the flow of Figure 15.13 is repeated in an hierar-
chical way with subsequent refinements down to the transistor level. At higher levels
in the design hierarchy this sizing step is then called specification translation where
performance specifications of the subblocks within the selected block topology have
to be determined based on the block’s overall specifications. The complete design
flow is then an alternation of topology selection and specification translation down
the design hierarchy [34]. In many cases the initial sizing produces a near-optimal
design that is further fine-tuned with a circuit optimisation tool, e.g. to improve yield
and design robustness. The performance of the resulting design is then verified using
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detailed circuit simulations with a simulator such as SPICE, and when needed the
synthesis process is iterated to arrive at a close-fit design. We will now discuss the
two basic tasks in more detail.

15.3.1.1 Topology selection

Given a set of performance specifications and a technology process, a designer or a
synthesis tool must first select a circuit schematic that is most suitable to meet the
specifications at minimal implementation cost (power, chip area). This problem can
be solved by selecting a schematic from among a known set of alternative topologies
such as stored in a library (topology selection), or by generating a new schematic,
e.g. by modifying an existing schematic. Although the earliest synthesis approaches
considered topology selection and sizing together, the task of topology selection
has received less attention in recent years, where the focus was primarily on the
circuit sizing. As finding the optimal circuit topology for a given set of performance
specifications brings to bear the real expert knowledge of a designer, it was only
natural that the first topology selection approaches like in OASYS [34], BLADES [35]
or OPASYN [36] were rather heuristic in nature in that they used rules in one format
or another to select a proper topology (possibly hierarchically) out of a predefined
set of alternatives stored in the tool’s library.

Later approaches worked in a more quantitative way in that they calculated the
feasible performance space of each topology which fits the structural requirements,
and then compared that feasible space to the actual input specifications during syn-
thesis to decide on the appropriateness and the ordering of each topology. This can for
instance be done using interval analysis techniques [32] or using interpolation tech-
niques in combination with adaptive sampling [33]. In all these programs, however,
topology selection is a separate step. There are also a number of optimisation-based
approaches that integrate topology selection with circuit sizing as part of one over-
all optimisation loop, but typically only a limited number of predefined topological
choices were allowed in the optimisation [37,38]. An interesting approach that uses
a genetic algorithm to find the best topology choice was presented in DARWIN [39].

Of these methods, the quantitative and optimisation-based approaches are the
more promising developments that address the topology selection task in a deter-
ministic fashion as compared to the rather ad hoc heuristic methods, and they also
open up the possibility for developing computer methods for structural or topolog-
ical synthesis of analogue circuits, possibly leading to novel, yet unknown circuit
structures.

15.3.1.2 Analogue circuit sizing

Once an appropriate topology has been selected, the next step is specification trans-
lation, where the performance parameters of the subblocks in the selected topology
are determined based on the specifications of the overall block. At the lowest level
in the design hierarchy this reduces to circuit sizing where the sizes and biasing
of all devices have to be determined such that the final circuit meets the specified
performance constraints. This mapping from performance specifications into proper,
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preferrably optimal, device sizes and biasing for a selected analogue circuit topology
generally involves solving the set of physical equations that relate the device sizes
to the electrical performance parameters. However, solving these equations explic-
itly is in general not possible, and ‘analogue circuit sizing typically results in an
underconstrained problem with many degrees of freedom’.

The two basic ways to solve for these degrees of freedom in the analogue sizing
process are [2]:

• either by exploiting analogue design knowledge and heuristics;
• or by using today’s powerful and robust optimisation techniques.

The first generation of analogue circuit synthesis systems presented in the mid to
late 1980s like IDAC [40] and OASYS [34] were ‘knowledge-based’: specific heuris-
tic design knowledge about the circuit topology under design (including the design
equations but also the design strategy) was solicited from designers and encoded
explicitly in some computer-executable form (e.g. a design plan), which was then
executed during the synthesis run for a given set of input specifications to directly
and fast obtain the design solution. However, the coverage range of these tools was
found to be too small and the setup effort for introducing new schematics into the
system was too large for real-life industrial practice, hence these tools failed on the
commercial marketplace.

Therefore, starting from the late 1980s and until today, analogue circuit sizing
methods are using robust numerical optimisation techniques to implicitly solve for the
degrees of freedom in analogue design while optimising the performance of the circuit
under the given specification constraints. The basic flow of such an optimisation-
based sizing approach is schematically illustrated in Figure 15.14. At each iteration
of the optimisation routine, i.e. for each set of proposed design variables (typically

Optimiser

Specifications

Proposed design variables

Simulator

Symbolic or
performance
model

Optimal ?

Cost function

Optimal design

Evaluate
performance

Figure 15.14 Basic flow of optimisation-based analogue circuit sizing
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device sizes such as widths and lengths but also biasing currents and voltages of
transistors, values of resistors and capacitors, etc.), the performance of the circuit
has to be evaluated. Depending on which method (simulations, equations or perfor-
mance models) is used for this performance evaluation, two different subcategories
of methods, and recently also a compromise approach, can be distinguished:

• equation-based methods that use analytic equations to evaluate circuit perfor-
mance;

• simulation-based methods that use numerical simulations to evaluate circuit
performance;

• model-based methods that use performance models to evaluate circuit perfor-
mance.

These different approaches are now described in more detail.
In the subcategory of ‘equation-based optimisation approaches’, (simplified) ana-

lytic design equations are used to describe the circuit performance. In approaches like
OPASYN [36] and STAIC [41] the design equations still had to be derived and ordered
by hand, but the degrees of freedom were resolved implicitly by optimisation. The
OPTIMAN tool [42] added the use of a global simulated annealing algorithm, but
also tried to solve the circuit design knowledge derivation problem: symbolic analysis
techniques [43] were developed to automate the derivation of the (simplified) analytic
design equations and constraint satisfaction techniques were used to automatically
generate the design plans needed to evaluate the circuit performance at every iteration
of the optimisation [44]. Together with a separate topology-selection tool based on
boundary checking and interval analysis [32] and the performance-driven layout gen-
eration tool LAYLA [45], all these tools were integrated into the AMGIE analogue
circuit synthesis system [46] that covers the complete design flow from specifications
over topology selection and circuit sizing down to layout generation and automatic
verification.

15.3.1.3 Example

An example of a circuit that has been synthesised with this AMGIE system is the par-
ticle/radiation detector frontend of Figure 15.15, which consists of a charge-sensitive
amplifier (CSA) followed by an n-stage pulse-shaping amplifier (PSA) [46]. All
opamps are complete circuit-level schematics in the actual design as indicated in the
figure. A comparison between the specifications and the performances obtained by
an earlier manual design of an expert designer and by the fully computer-synthesised
circuit is given in Table 15.1. In the experiment, a reduction of the power consump-
tion with a factor of 6 (from 40 to 7 mW) was obtained by the synthesis system
compared to the manual solution. Also the final area is slightly smaller. Clearly,
the computer-generated synthesised approach outperforms the manual design in
power consumption!! The layout generated for this example is shown in Figure 15.16
and is very comparable to manual layout!

The technique of equation-based optimisation has also been applied to the high-
level synthesis of �� modulators in the SD-OPT tool [47]. Recently a first attempt



518 System-on-chip

N INTEGRATORSDIFFCSA

OPAMP ... OPAMP

Gnd

m1

Cf

m2 refin

m7

outibn

m4b

m5b

VDD

m4a

m5b

m3 m6m8b

Biasing Core amplifier Buffer

Rf

m8a

m1a m1b out

m3
m2a m2b

m4m5

cc

in_min in_plus

Miller stageota_p stage

m6

vdd

vss

Biasing

Rint

Rin

VSS

Cint

Rint

Rin

Cint

tpz t1

HV

Q-

E=hv

detector

Rpz

Cdif

Rbias

tr

out-

Rf

Cf

t1

Figure 15.15 Particle/radiation detector frontend as example for analogue circuit
synthesis (The opamp and filter stage symbols represent full circuit
schematics as indicated.)

was presented towards the full behavioural synthesis of analogue systems from an
(annotated) VHDL-AMS behavioural description. The VASE tool follows a hierar-
chical two-layered optimisation-based design-space exploration approach to produce
sized subblocks from behavioural specifications [48].
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Table 15.1 Results of analogue circuit synthesis experiment with
the AMGIE system [46]

Performance Specification Manual design Automated synthesis

Peaking time <1.5 ms 1.1 ms 1.1 ms
Counting rate >200 kHz 200 kHz 294 kHz
Noise <1000 RMS e- 750 RMS e- 905 RMS e-
Gain 20 V/fC 20 V/fC 21 V/fC
Output range >−1..1 V −1..1 V −1.5..1.5 V
Power Minimal 40 mW 7 mW
Area Minimal 0.7 mm2 0.6 mm2

Figure 15.16 Layout of the particle/radiation detector frontend generated with the
LAYLA analogue layout synthesis tool [45]

Recently, it has been shown that the design of CMOS opamps can be formulated
(more precisely, it can be fairly well approximated) as a posynomial convex opti-
misation problem that can then be solved using geometric programming techniques,
producing a close-by first-cut design in an extremely efficient way [49,50]. The initial
optimisation time of minutes literally reduces to seconds. The same approach has been
applied to some other circuits as well [51]. Unfortunately, not all circuit characteris-
tics are posynomial, and approximating them accurately with posynomial functions
is not always a simple task. Mixed solutions can be used as well, but computational
efficiency goes down [52].

In general, the big advantages of the above analytic approaches are their fast eval-
uation time and their flexibility in manipulation possibilities. The latter is reflected in
the freedom to choose the independent input variables, which has a large impact on
the overall evaluation efficiency, as well as the possibility to perform more symbolic
manipulations. The big drawback of the analytic methods, including the geometric
programming ones, however, is that the design equations still have to be derived
and, despite the progress in symbolic circuit analysis, not all design characteristics
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(such as transient or large-signal responses) are easy to capture in analytic equations
with sufficient accuracy. For such characteristics either rough approximations have
to be used, which undermines the sense of the whole approach, or one has to fall
back on numerical simulations. Recent approaches use regression techniques to fit
simulation data to an equation template for any kind of simulatable characteristic.
For example, Daems et al. [27] uses a fitting approach for the automatic generation
of symbolic posynomial performance models for analogue circuits, that are created
by fitting a pre-assumed posynomial equation template to simulation data created
according to some design-of-experiments scheme [27]. The accuracy of the results of
course depends on the equation template that is used. The template not necessarily has
to be posynomial, and in this way symbolic expressions can be generated for large-
signal and transient characteristics. Very recently even a template-free approach has
been presented where no predefined fitting template is used, but where the ‘template’
is evolved dynamically using genetic optimisation with a canonical-form grammar
that adds extra terms or functions to the evolving symbolic expression until suffi-
cient accuracy is obtained for the symbolic results with respect to the reference set
of simulation data [97]. These kind of methods are very promising, since they are
no longer limited to simple device models nor to small-signal characteristics only –
they basically work for whatever characteristic can be simulated – but they still need
further research.

All the above problems with equation-based methods have since the mid
1990s sparked research efforts to try to develop equation-free circuit optimisation
approaches that use plain numerical simulators instead of symbolic models within the
circuit sizing optimisation loop. Facilitated by improving computer power, a second
subcategory of ‘simulation-based optimisation approaches’ towards analogue circuit
synthesis has therefore emerged in recent years. These methods couple robust numer-
ical optimisation with full SPICE simulation, making it possible to synthesise designs
using the same modelling and verification tool infrastructure and accuracy levels that
human experts use for manual design, be it at the expense of large CPU times (hours
or days of optimisation time). These methods perform some form of full numerical
simulation to evaluate the circuit’s performance in the inner loop of the optimisation
(see Figure 15.14). Although the idea of optimisation-based design for analogue cir-
cuits dates back at least 30 years [53], where tools like DELIGHT.SPICE [54] were
used in fine-tuning an already designed circuit to better meet the specifications, the
challenge in automated synthesis is to solve for all degrees of freedom when no good
initial starting point can be provided. It is only recently that the computer power and
numerical algorithms have advanced far enough to make this really practical.

The FRIDGE tool [55] calls a plain-vanilla SPICE simulation at every iteration of
a simulated-annealing-like global optimisation algorithm. To cut down on the large
synthesis time, more efficient optimisation algorithms are used and/or the simula-
tions are executed as much as possible in parallel on a pool of workstations. The
ANACONDA tool [56] for instance uses a global optimisation algorithm based on
stochastic pattern search that inherently contains parallelism and therefore can easily
be distributed over a pool of workstations, to try out and simulate 50 000 to 100 000
circuit candidates in a few hours. These brute-force approaches require very little
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Table 15.2 Comparison between manual design result [59] and DAISY
synthesis result [58] for a time-discrete �� modulator for
ADSL specifications

Building block specifications Published manual [59] Synthesised DAISY [58]

Topology Cascaded 2-1-1- Cascaded-2-1-1
Oversampling ratio 24 24
OTA gain >60 dB >52 dB
OTA GBW >160 MHz >222 MHz
OTA output swing ≥1.8 V >1.86 V
Switch on-resistance <215" <217"
Comparator offset <100 mV <130 mV
Comparator hysteresis <40 mV <19 mV

advance modelling work to prepare for any new circuit topology and have the same
accuracy as SPICE. In Reference 57 ANACONDA/MAELSTROM, in combination
with macromodelling techniques to bridge the hierarchical levels, was applied to an
industrial-scale analogue system (the equaliser/filter frontend for an ADSL CODEC).
Again, the experiments demonstrated that the synthesis results are comparable to or
sometimes better than manual design!

The DAISY tool provides efficient high-level synthesis of discrete-time��mod-
ulators [58] based on a simulation-based optimisation strategy. Simulations are now
not performed at SPICE circuit level but at behavioural level. The high-level optimi-
sation approach determines both the optimum modulator topology and the required
building block specifications, such that the system specifications – mainly accuracy
(dynamic range) and signal bandwidth – are satisfied at the lowest possible power
consumption. A genetic-based differential evolution algorithm is used in combination
with a fast dedicated �� behavioural simulator to realistically analyse and optimise
the modulator performance. Table 15.2 shows the comparison between the results of
a manual design [59] and the DAISY synthesis result [58] for ADSL specifications.
Note that exactly the same modulator topology was decided upon by the tool (a cas-
caded 2-1-1 topology – see Figure 15.17) with the same oversampling ratio, while the
synthesised building block specifications are also very similar to the manual design.
Recently the DAISY tool was also extended to continuous-time�� modulators [60].

Although appealing, these simulation-based circuit optimisation methods still
have to be used with care by designers because the runtimes (and therefore also
the initial debug time) remain long, and because the optimiser may easily produce
improper designs if the right design constraints are not added to the optimisation
problem. Reducing the CPU time remains a challenging area for further research, and
the use of performance models is one possible avenue being explored today to that end
as these so-called ‘model-based optimisation approaches’ offer a good compromise
between equation-based (with its speed) and simulation-based (with accuracy and no
restriction to small-signal) optimisation. As discussed in Section 15.2.3, performance



522 System-on-chip

a1I(z) a2I(z)

c1 b1

y2

b2

y3

c2

1/(a1a2)

1/a3

a3I(z)

x + +
–

+ +
–

+ +
–

+
–

+ –

+
+ –

v y1

a4I(z)+

+

Figure 15.17 Cascaded 2-1-1 �� modulator topology

92
90
88
86
84
82
80
78
76
74

1
0.8

0.6
0.4

0.2
0 0

0.2
0.4

0.6
0.8

1

x9-Ids1

x1-Vgs1

P
ha

se
 m

ar
gi

n

Figure 15.18 Performance model of the phase margin as a function of two design
variables for an opamp (subset of the actual multidimensional
performance model)

models relate the achievable performances of a circuit (e.g. gain, bandwidth, slew rate
or phase margin) to the design variables (e.g. device sizes and biasing). Figure 15.18
for example shows part of such a performance model, displaying the phase margin as a
function of two design variables for an operational amplifier [28]. Such performance
models are used to speed up the circuit optimisation procedure, since calls to the
transistor-level simulation are replaced by evaluations of the performance model,
resulting in substantial speedups (once the performance models have been created
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and calibrated, which is a one-time up-front effort). Techniques to generate such
models have been discussed in Section 15.2.3.

In addition, because of the large CPU times due to the circuit complexity, for
more complex cells a hierarchical approach is needed, which requires behavioural or
macromodels to bridge the different levels. This research is on-going at the moment.
Another trend is the move towards multi-objective optimisation [61], which gener-
ates a set of design solutions, spread over the Pareto-optimal trade-off front, so that
designers can a posteriori decide on the final design point taken instead of entering a
priori weighting coefficients to the lumped cost function.

Although additional research is still needed, especially to reduce the CPU times
for more complex cells, it can be concluded that a lot of research progress has been
achieved over the last 10 years in the field of analogue circuit synthesis using opti-
misation techniques. Based on these results in recent years several commercial tools
have been developed, that are now available or that will be introduced on the market-
place in the very near future, offering to industry the possibility to integrate analogue
circuit optimisation in their design flows.

15.3.1.4 Yield and design for manufacturability

It has to be added that industrial design practice not only calls for fully optimised
nominal design solutions, but also expects high robustness and yield in the light of
varying operating conditions (supply voltage or temperature variations) and statistical
manufacturing tolerances and mismatches [62,63]. Due to these fluctuations, the
device parameters and consequently also the circuit performance characteristics will
show fluctuations. The corresponding parametric yield is the ratio of the number of
acceptable (i.e. functional and meeting all specifications) to all fabricated IC samples.
The yield of course depends on the nominal design point chosen for the circuit, but
unfortunately the relation between the (fluctuating) device parameters and the circuit
performances is in general a non-linear transformation that is not known explicitly but
has to be simulated. All this makes yield estimation a time-consuming task, which in
practice is often obtained by Monte-Carlo simulations. An overview of more efficient
techniques that trade-off accuracy versus CPU time can be found in Reference 2. Note
that in practice not only the yield, but in general the robustness of the design against
variations of both technological and environmental parameters has to be maximised.
This implies techniques for variability minimisation and design centring. Both aspects
can be captured in a characteristic like the capability index Cpk.

Here we briefly describe the efforts to integrate yield and Cpk optimisation in
the analogue circuit synthesis process itself. Yield and robustness precautions were
already hardcoded in the design plans of IDAC [40], but are more difficult to incor-
porate in optimisation-based approaches. Nevertheless, first attempts in this direction
have already been presented. The ASTRX/OBLX tool has been extended with man-
ufacturability considerations and uses a non-linear infinite programming formulation
to search for the worst-case ‘corners’ at which the evolving circuit should be evalu-
ated for correct performance [64]. The approach has been successful in several test
cases but does increase the required CPU time even further (roughly by 4–10×). Also
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the OPTIMAN program has been extended by fully exploiting the availability of the
analytic design equations to generate closed-form expressions for the sensitivities of
the performances to the process parameters [65]. The impact of tolerances and mis-
matches on yield or Cpk can then easily be calculated at each optimisation iteration,
which then allows to synthesise the circuits simultaneously for performance and for
manufacturability (yield or Cpk). The accuracy of the statistical predictions still has
to be improved. The approach in Reference 66 uses parameter distances as robustness
objectives to obtain a nominal design that satisfies all specifications with as much
safety margin as possible for process variations. The resulting formulation is the same
as for design centring and can be solved efficiently using the generalised boundary
curve. Design centring, however, still remains a second step after the nominal design.
Therefore, more research in this direction is still needed, in order to develop tech-
niques that can directly synthesise optimal and robust analogue designs in an efficient
way.

15.3.2 Analogue layout synthesis

The next important step in the top-down mixed-signal design flow of Figure 15.1
after the circuit synthesis is the generation of the layout. The field of analogue layout
synthesis is more mature than circuit synthesis, in large part because it has been able
to leverage ideas from the mature field of digital layout, and several real commercial
solutions have appeared on the market in recent years that can automate analogue lay-
out generation. Below we distinguish analogue circuit-level layout synthesis, which
has to transform a sized transistor-level schematic into a mask layout, and system-
level layout assembly, in which the basic functional blocks are already laid out and
the goal is to floorplan, place and route them, as well as to distribute the power and
ground connections.

15.3.2.1 Analogue circuit-level layout synthesis

The earliest approaches to analogue cell layout synthesis relied on ‘procedural module
generation’ [67], but these methods are mainly interesting at the device level only
(transistors, spiral inductors, capacitor banks, etc.). Every layout engineer today
uses such parameterised procedural device generators to create his or her layouts
manually. To synthesise compact layouts of entire circuits, alternative methods have
to be used. A first group of methods are the ‘template-driven’ approaches. For each
circuit a geometric template (e.g. a sample layout [68] or a slicing tree [36]) is stored
that fixes the relative position and interconnection of the devices. The layout is then
completed by correctly generating the devices and the wires for the actual values of
the design according to this fixed geometric template, thereby trying to use the area
as efficiently as possible. These approaches are relatively fast but work best when the
changes in circuit parameters result in little need for global alterations in the general
circuit layout structure. This is the case for instance during technology migration or
porting of existing layouts, but this is not the case in general. Because of their speed
these methods are also typically used in a combined circuit and layout optimisation
loop, as needed for RF circuits for instance (see below).



Mixed-signal integrated SoC 525

In practice changes in the circuit’s device sizes often require large changes in the
layout structure in order to get the best performance and the best area occupation.
As the performance of an analogue circuit is negatively impacted by the parasitics
introduced by the layout, such as the parasitic wire capacitance and resistance or the
crosstalk capacitance between two neighbouring or crossing wires, it is of utmost
importance to generate analogue circuit layouts such that (1) the resulting circuit still
satisfies all performance specifications, and (2) the resulting layout is as compact
as possible. This requires full-custom optimised layout synthesis, which today is
typically implemented using an ‘optimisation-based microcell-place-and-route layout
generation approach’ [2] where the layout solution is not predefined by some template,
but where both placement and routing of basic devices or groups of devices (the
‘microcells’, e.g. current mirrors) are formulated as optimisation problems driven
by some cost function. This cost function typically contains minimum area and net
length and adherence to a given aspect ratio, but also other terms could be added
(e.g. quantification of important performance degradations such as crosstalk). The
advantage of the optimisation-based approaches is that they always look for the most
optimum layout solution at runtime. The penalty to pay is their larger CPU times, and
the dependence of the layout quality on the set-up of the cost function.

Examples of such tools are ILAC [69] and the different versions of
KOAN/ANAGRAM [70,71]. The device placer KOAN relied on a very small library
of device generators and migrated important layout optimisations into the placer
itself. KOAN, which was based on an efficient simulated annealing algorithm, could
dynamically fold, merge and abut MOS devices and thus discover desirable optimisa-
tions to minimise parasitic capacitance on the fly during optimisation. Its companion,
ANAGRAM II, was a maze-style detailed area router capable of supporting sev-
eral forms of symmetric differential routing, mechanisms for tagging compatible and
incompatible classes of wires (e.g. noisy and sensitive wires), parasitic crosstalk
avoidance and over-the-device routing. Also other device placers and routers oper-
ating in the macrocell-style have appeared (e.g. LADIES [72] and ALSYN [73]).
Results from these tools can be quite impressive. For example, Figure 15.19 shows
two versions of the layout of an industrial 0.25µm CMOS comparator [2]. On the
left is a manually created layout, on the right is a layout generated automically with
a commercial tool operating in the microcell style. The automatic layout compares
well to the manual one.

An important improvement in the next generation of optimisation-based layout
tools was the shift from a rather qualitative consideration of analogue constraints
to an explicit quantitative optimisation of the performance goals, resulting in the
‘performance-driven’ or ‘constraint-driven’ approaches. The degradation of the per-
formance due to layout parasitics is quantified explicitly and the layout tools are
driven such that this extra layout-induced performance degradation is within the mar-
gins allowed by the designer’s performance specifications [74]. In this way, more
optimum solutions can be found as the importance of each layout parasitic is weighed
according to its impact on the circuit performance, and the tools can much better
guarantee by construction that the circuit will meet the performance specifications
also after the layout phase (if possible). Tools that adopt this approach include the
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Figure 15.19 Manual (left) versus automatic (right) layout for an industrial 0.25µm
CMOS analogue comparator [2]

area router ROAD [75], the placement tool PUPPY-A [76] and the compaction tool
SPARCS-A [77]. The routers ROAD [75] and ANAGRAM III [78] have a cost
function which drives them such that they minimise the deviation from acceptable
bounds on wire parasitics. These bounds are provided by designers or derived from
the margins on the performance specifications via sensitivities. The LAYLA system
[45,79] consists of performance-driven analogue placement and routing tools that
minimise the layout area while enforcing typical constraints such as symmetry and
that keep the performance degradation introduced by the layout parasitics within
the margins allowed by the user by penalising excess layout-induced performance
degradation. Effects considered include for instance the impact of device merging,
device mismatches, parasitic capacitance and resistance of each wire, parasitic cou-
pling due to specific proximities, thermal gradients, etc. The router can manage not
just parasitic wire sensititivies, but also yield testability concerns [80]. A layout of a
particle-detector frontend circuit generated by means of the LAYLA tool was shown
in Figure 15.16. In all the above tools, sensitivity analysis is used to quantify the
impact on the final circuit performance of low-level layout decisions [74].

The above constraint-driven and performance-driven optimisation-based layout
synthesis methods for analogue circuits have matured significantly in recent years,
and are currently being offered commercially on the marketplace and can be integrated
in today’s industrial design flows to increase analogue layout productivity.
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Figure 15.20 Full VCO layout generated with CYCLONE [81]

A problem for truly parasitic-sensitive circuits, such as RF circuits, is decou-
pling between circuit synthesis and layout synthesis which can no longer be treated
as separate steps. Circuit sizing of RF circuits needs really accurate estimates of cir-
cuit wiring loads and other parasitics to obtain good sizing results. Therefore, the
only possibility to achieve this is to merge layout synthesis into the circuit synthesis.
To make this computationally tractable, typically template-driven (or procedural) lay-
out generation techniques are used to generate the layout and extract the actual layout
parasitics of the entire RF circuit at each iteration of the circuit sizing optimisation
loop. For example the CYCLONE tool [81] generates optimal CMOS RF LC-tank
VCOs. Both the circuit’s device sizes and the inductor coil geometry parameters are
globally optimised for the specified technology process as to meet the specifications
(centre frequency, tuning range, phase noise) at minimum power consumption. The
tool automatically performs electromagnetic simulations for the on-chip inductor to
accurately calculate its losses during the circuit optimisation. It uses a template-
based layout generation approach to obtain accurate predictions of the actual layout
parasitics. Figure 15.20 shows an automatically generated VCO layout. The results
depend on the characteristics of the target technology, as shown by the optimised coil
parameters in Table 15.3. This tool is perfect for generating customised VCOs as IP
macrocells.

On the other hand, for circuits with a more regular structure, other layout tech-
niques are needed. This is true for the generation of ROMs or RAMs, but also for
array-type analogue circuits like current-steering digital-to-analogue converters, fold-
ing/interpolating analogue-to-digital converters, etc. The MONDRIAAN tool [82]
was developed for this purpose and it translates global layout specifications into a
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Table 15.3 VCO parameters resulting from two CYCLONE syn-
thesis runs for the same set of specifications but in two
different technologies [81]

Technology

Parameter Low-resistive substrate High-resistive substrate

Ls 1.81 nH 2.85 nH
Rs 0.95" 0.74"
Inner rad, W, #Turns 134µm, 22µm, 2 178µm, 18µm, 2
Used metal layers 3 top layers All 4 layers
Power 12.8 mW 8.8 mW

Digital
clock driver

Analogue
clock driver

Full decoder

Swatch array

Current source array

Figure 15.21 Layout of a 14-bit digital-to-analogue converter generated using
MONDRIAAN [82] for the two analogue arrays and commercial digi-
tal place&route tools for the decoder [83]. The entire layout measures
3.2 × 4.1mm2

detailed placement and interconnections of all basic cells in the array. The tool was
used to generate the layouts of the switch/latch array (middle) and the current cell
array (bottom) of the 14-bit current-steering DAC of Figure 15.21 [83]. The block at
the top is the thermodecoder which was synthesised from VDHL code with a logic
synthesis tool and the layout of which was generated with a commercial digital stan-
dard cell place&route tool. Use of tools such as MONDRIAAN resulted in a 3.5×
increase in design productivity for a truly high-performance analogue design [12].

15.3.2.2 Mixed-signal block place and route

After generating the layout of the individual blocks, the next step in the system design
flow (see Figure 15.1) is block place and route to assemble the system’s overall layout.
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For this, commercial tools exist but they still do not include all the constraints typically
needed in mixed-signal designs, such as the handling of arbitrarily shaped blocks and
complex symmetries, as well as the avoidance of signal interactions (crosstalk) and
noise couplings. The academic WREN tool [84] comprises both a mixed-signal global
router and channel router. The tool uses the notion of SNR-style (signal-to-noise ratio)
constraints for incompatible signals, and strives to comply with designer-specified
noise rejection limits on critical signals.

Critical in mixed-signal system layout is also the power grid design. In the mixed-
signal case not only connectivity, ohmic drops and electromigration effects have to be
considered, but also noise constraints (including transient effects like current spikes)
and arbitrary (non-tree) grid topologies. The RAIL tool [85] addresses such concerns
by casting mixed-signal power grid synthesis as a routing problem that uses fast AWE-
based linear system evaluation to electrically model the entire power grid, package
and substrate during layout while trying to satisfy dc, ac and transient performance
constraints.

15.4 Mixed-signal verification and crosstalk analysis

The final step in the design flow is the detailed verification of the entire system layout.
For mixed-signal systems this is today still a very big problem, both at the layout level
and at the electrical level. At the layout level, DRC, ERC and LVS can easily be done
for the different blocks. DRC and ERC can also easily be done for the entire chip,
but due to the different tools typically used for analogue and digital blocks LVS of
complete analogue–digital systems is not at all trivial.

The situation is even worse at the electrical level. After extraction of the para-
sitics from the layout the performance of the individual blocks can be verified using
detailed simulations, but due to the complexity no complete device-level simulation
of the entire system is feasible. Therefore, the performance of individual blocks has
to be abstracted into behavioural models, which are then used to simulate and verify
the system performance. The automatic extraction of analogue behavioural models
that simulate fast, yet include the important non-idealities, is however a hot research
area in full progress at this moment. See Section 15.2.3 for an overview. In indus-
trial practice today, system verification is still merely a check of correct connectivity
than a true proof of functionality and performance, being even far from any formal
verification proof.

A difficult problem in mixed-signal designs, where sensitive analogue and RF
circuits are integrated on the same die with large digital circuitry, is signal integrity
analysis, i.e. the verification of all unwanted signal interactions through crosstalk or
couplings at the system level that can cause parametric malfunctioning of the chip.
Parasitic signals are generated (e.g. digital switching noise) and couple into the sig-
nal of interest, degrading or even destroying the performance of the analogue/RF
circuitry. These interactions can come from capacitive or (at higher frequencies)
inductive crosstalk, from supply line or substrate couplings, from thermal interac-
tions, from coupling through the package, from electromagnetic interference (such
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Figure 15.22 Measured FM modulation due to substrate switching noise cou-
pling [87]

as EMC/EMI), etc. Especially the analysis of digital switching noise that propagates
through the substrate shared by the analogue and digital circuits has received much
attention in recent years [86]. At the instants of switching, digital circuitry can inject
spiky signals into the substrate, which then will propagate to and be picked up by
the sensitive analogue/RF circuits. As an example, consider a VCO at 2.3 GHz and a
digital circuit block (250 k gates) running at 13 MHz. As shown on the measurement
plot of Figure 15.22, the digital clock is visible as FM modulation around the VCO
frequency and may cause conflicts with out-of-band emission requirements [87].

In recent years research has been going on to find efficient yet accurate tech-
niques to analyse these problems, which depend on the geometrical configuration
and therefore are in essence three-dimensional field solving problems. Typically,
finite difference methods or boundary element methods are used to solve for the
substrate potential distribution due to injected noise sources [88–91], allowing to
simulate the propagation of digital switching noise injected in the substrate to sen-
sitive analogue nodes elsewhere in the same substrate. Recently these methods have
been speeded up with similar acceleration techniques as in RF or interconnect simu-
lation, e.g., using an eigendecomposition technique [92]. This propagation analysis,
however, has to be combined with an analysis of the (signal-dependent) digital switch-
ing activity to know the actual (time-varying) injected signals, and with an analysis
of the impact of the local substrate voltage variations on the analogue/RF circuit
performance (e.g. the reduction of the effective number of bits of an embedded
analogue-to-digital converter) in order to cover the entire problem.

The problem on the generation side is that the noise generating sources (i.e. the
switching noise injected by the digital circuitry) are not known accurately but vary
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with time depending on the input signals or the embedded software being executed,
and therefore have to be estimated statistically. Some attempts to solve this problem
characterise every cell in a digital standard cell library by the current they inject in
the substrate due to an input transition, and then calculate the total injection of a com-
plex system by combining the contributions of all switching cells over time [93,94].
In the SWAN methodology [94] an equivalent macromodel of every standard cell
is extracted which consists of capacitances, resistances and two time-varying cur-
rent sources that model the current drawn between the two supplies and the current
injected into the substrate when an input of the cell switches. These current wave-
forms are stored in a database. Once the library has been characterised, SWAN [94]
extracts the actual switching data of a large complex system from VHDL simula-
tions, and calculates the actual time-varying substrate-bounce voltage by combining
the macromodels of all cells used in the design with a model for the package and
external supply, and by efficiently simulating this network over time while applying
the time-varying noise current source waveforms out of the database depending on the
actual switchings of the cells as identified during the VHDL simulation. Figure 15.23
e.g., shows the comparison between time-domain SWAN simulations and measure-
ments on a large experimental WLAN SoC with 220 k gates, that contains a scalable
OFDM-WLAN baseband modem, a low-IF digital IQ (de)modulator, and an 8-bit
embedded analogue-to-digital converter [95] fabricated in a 3.3 V 0.35µm CMOS
2P5M process on an EPI-type substrate. Compared to the measurements, the simu-
lated substrate-noise voltage from zero to 100 ns is within an error of 20 per cent in its
RMS value and within an error of 4 per cent in its peak-to-peak value, which is a very
good result for a difficult crosstalk effect like substrate noise couplings. Techniques
to analyse the impact of this time-varying substrate and supply noise voltage on the
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performance of the embedded analogue blocks are presently also being developed,
but still require further work [96].

15.5 Conclusions

The last few years have seen significant advances in both design methodology and
CAD tool support for analogue, mixed-signal and RF designs, enabling mixed-signal
integrated systems on chip. The emergence of commercial AMS simulators support-
ing analogue behavioural modelling enables top-down design flows in many industrial
scenarios. In addition, there is increasing research going on in system-level modelling
and analysis, allowing architectural exploration of entire systems. Analogue cell syn-
thesis tools, both for circuit sizing and for physical layout generation, all based on
powerful optimisation methods, have appeared commercially on the market in sev-
eral competing formulations. The use of synthesis or generation tools together with
behavioural modelling also enables the soft reuse of analogue and RF blocks, and the
fast migration of analogue blocks from one process to another. In addition, there is
an increasing emphasis in the research community on mixed-signal verification and
in particular on signal integrity analysis, to analyse problems related to embedding
analogue blocks in a digital environment. Especially on the analysis of substrate and
supply noise couplings in mixed-signal ICs a lot of progress has been made, with tech-
niques developed that can predict substrate noise fluctuations in large digital systems
within acceptable accuracy.

Despite this enormous progress in research and commercial offerings that today
enables the efficient design of analogue blocks for embedding in mixed-signal SoCs,
still several problems remain to be solved. Behavioural model generation remains a
difficult art that today is often carried out ad hoc with little systematism, and therefore
more work in model generation methods is needed. The capacity of analogue synthesis
needs to be extended towards more complex blocks, even up to entire frontends, and
synthesis needs to incorporate manufacturability issues such as yield and variability.
There remain phenomena unique to RF systems that are difficult to design for and
hard to model and hence to verify. Chip-level physical assembly for sensitive mixed-
signal designs is essentially unautomated. Chip-level verification is still incompletely
handled, especially some coupling effects for higher-frequency designs, including
electromagnetic couplings such as EMC/EMI. All these problems are roadblocks
ahead that can make the realisation of truly integrated mixed-signal systems on a
single chip difficult, if not impossible, despite the enormous progress that has been
made in recent years and that has resulted in many commercial tool offerings on the
market today.
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Chapter 16

Clock-less circuits and system synthesis

Danil Sokolov and Alex Yakovlev

16.1 Introduction

In 1965 a co-founder of Intel Gordon Moore noticed that the number of transistors
doubled every year since the invention of the integrated circuit. He predicted that
this trend would continue for the foreseeable future [1]. In subsequent years the pace
slowed down and now the functionality of the chip doubles every two years. However,
the growth of circuit integration level is still faster than the increase in the designers’
productivity. This creates a design gap between semiconductor manufacturing capa-
bility and the ability of electronic design automation (EDA) tools to deal with the
increasing complexity, Figure 16.1.

The only way to deal with the increasing complexity of logic circuits is to improve
the efficiency of the design process. In particular, design automation and component
reuse help to solve the problem.

System-on-Chip (SoC) synthesis has proved to be a particularly effective way in
which design automation and component reuse can be facilitated. An important role in
the synthesis of SoCs is given to the aspects of modelling concurrency and timing [2].
These aspects have traditionally been dividing systems into synchronous (or clocked)
and asynchronous (or self-timed). This division has recently become fuzzier because
systems are built in a mixed style: partly clocked and partly clock-less. In fact, the
argument about the way in which the system should be constructed, synchronously
or asynchronously, is moving to another round of evolution. It is accepted that the
timing issue should only be addressed in the context of the particular design criteria,
such as speed, power, security, modularity etc. Given the complexity of the relation-
ship between these criteria in every single practical case, the design of an SoC is
increasingly going to be a mix of timing styles. While industrial designers have a
clear and established notion of how to synthesise circuits with a global clock using
EDA tools, there is still a lot of uncertainty and doubt about synthesis of clock-less
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Figure 16.1 Design complexity and designer productivity

circuits. The latter remains a hot research field captivating many academics and grad-
uate students. In the last two decades there have been dozens of research publications
on asynchronous circuit synthesis, and it would be impossible to embrace them all
in a single review. Readers without prior experience are invited to study them at an
introductory level (e.g. [3] and http://www.cs.man.ac.uk/async/background) while the
more experienced audience can delve into such methods in more detail by addressing
monographs and papers (e.g. [4,5] and http://www.cs.man.ac.uk/async/pubwork).

The main goal of this review is to consider a coherent subset of synthesis methods
for clock-less circuits based primarily on a common underlying model of computation
and using a relatively simple example in which these methods can be compared. Such
a model is Petri nets, used with various interpretations. The Petri nets can play a pivotal
role in future synthesis tools for clock-less systems, exhibiting advanced concurrency
and timing paradigms. This role can be as important as that of a finite state machine
(FSM) in designing clocked systems. To make this review more practically attractive
the use of Petri nets is considered in the context of a design flow with a front-end based
on a hardware description language. Our running example will be a computation of
the greatest common divisor (GCD) of two integers, which is a popular benchmark
in the literature about digital circuit design.

16.1.1 Synchronous systems

The traditional design flow for synchronous systems is supported by design and
verification tools, e.g. Cadence, Mentor Graphics, Synopsys, etc. However, a globally
clocked SoC assembled from existing intellectual property (IP) cores (see Figure 16.2)
suffers from the timing closure problems. Each IP core is designed for a certain clock
period, assuming that the clock signal is delivered at the same time to all parts of the
system. Finding a common clocking mode for the whole system is a very difficult
obstacle on the way to component reuse.

The other problem of synchronous circuits is the clock skew caused by intercon-
nect delays. In the past the transistors were the limiting factor of the circuit speed.
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Figure 16.3 GALS system architecture

The increase of the circuit integration level resulted in the improvement of the transis-
tor size and speed. However, the interconnect speed is not keeping the pace. Narrower
wires have higher resistance for the same length, leading to slower signal edges and
longer interconnect delays. Being proportional to interconnect delay, the clock skew
becomes an increasing portion of the clock period. This means that eventually large
circuits will need to get rid of global clocking in order to provide high speed.

16.1.2 Globally asynchronous locally synchronous systems

A promising method of composing systems from predesigned components is a glob-
ally asynchronous locally synchronous (GALS) approach [6]. In such systems the
components are synchronous IP cores operating at their own clock speed, which
allows the proven synchronous design methodologies to be employed. The interface
between the components is converted to asynchronous style by putting them inside
self-timed wrappers, as shown in Figure 16.3. This eliminates the need for a global
clock with all of its associated problems.

The GALS self-timed wrapper whose basic structure is captured in Figure 16.3 is
proposed in Reference 7. It contains a pausible clock generator and an asynchronous
controller for each port. The data lines between two GALS modules are bundled with
a pair of request-acknowledge signals. Any data transfer is initiated by the locally
synchronous island on the transmitting side by activating the RO[i] request to the
output port controller. The output port controller in turn instructs the clock generator
to delay the next clock edge by using the ROC[i] request. After the clock of the module
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has been frozen, the local clock generator acknowledges it by the AOC[i] signal.
Then the communication partner is notified by the request signal R[i]. Once the other
GALS module has halted its clock using RIC[i + 1] and AIC[i + 1] handshake, it
sets the acknowledge port signal A[i] and enables the input buffer latch L[i]. At this
point, both modules have halted their clocks and can exchange data without any risk of
timing violations. Once the data transfer is complete, the local clocks are released and
the locally synchronous islands continue to operate in a normal synchronous mode.

Note an important timing assumption on the output port controller. The request
ROC[i] for clock pausing must be issued in the same clock cycle when the RO[i]
signal is received from the synchronous island. This is necessary to prevent generation
of an additional clock edge before the data transfer. High-speed IP cores may have
difficulty with this assumption.

The greatest advantages of GALS systems are:

• the possibility to reuse the existing synchronous IP cores;
• the employment of the standard synchronous EDA tools to design and verify new

IP cores;
• the ability to run SoC components at different frequencies, which contributes to

power savings.

However, GALS systems have their own drawbacks, e.g. metastability problem,
when an asynchronous signal is sampled by a clock. In order to avoid metastability
several methods are used.

One of the ways to minimise the probability of metastability is to path each
asynchronous signal through a synchroniser, which is typically a pair of back-to-back
connected flip-flops. Still, in a GALS system the number of connections between
its synchronous blocks is large, which creates a non-negligible probability of system
failure. The synchronisers also add extra latency to the signals which significantly
impacts the system performance.

The other strategy to avoid metastability is the dynamic alteration of the local
clock rate [8,9]. For this, a pausible clock generator is employed in each synchronous
island. The clock generator is a ring oscillator with a control input for its stopping
and starting. If some asynchronous channel of the synchronous island is not ready,
then the inactive phase of the local clock is stretched until all channels are ready.

Several methods to ensure that metastability never occurs in a GALS system with
pausible clocking are proposed in Reference 10. However, the alteration of the local
clock may cause a deadlock when all components are waiting for the output of some
other component. It is not trivial to guarantee that the system is deadlock free. It
should be also noted that pausing the local clock slows down the entire synchronous
island, and the slowdown may be exacerbated with multi-port GALS modules, where
the probability of pausing the clock is higher. Furthermore, the local clock alteration
may cause problems if the dynamic logic is used, as the length of the clock period
becomes important there (as opposed to static logic). Finally, the ring oscillators
which are used to form the pausible clocks (as opposed to crystal oscillators) suffer
from significant jitter and frequency variation, which may result in a performance
degradation.
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There also other approaches to the design of GALS systems, such as module
stalling via clock gating [11,12] and fine-grain synchronous handshaking [13–15].

16.1.3 Self-timed systems

The GALS approach minimises the designer work in the asynchronous domain, but
does not completely escape it. Some of the components, particularly self-timed wrap-
pers, are still asynchronous. At the same time, purely asynchronous circuits whose
architecture is shown in Figure 16.4 offer a set of qualitative advantages which GALS
systems do not have. In addition to better modularity and avoidance of clock distribu-
tion problem, self-timed systems can exhibit higher robustness, greater performance,
power saving, lower electromagnetic noise, etc. [3,16–18].

The major obstacle on the mainstream use of asynchronous design techniques
is the lack of a coherent design flow, compatible with conventional EDA tools and
libraries. The compatibility issue is essential because a large part of the design flow
is the mapping of the circuit netlist into silicon. For this task the traditional place
and route tools can be reused. It is also possible to inherit the timing analysis and
simulation tools. However, synthesis and verification tools intended for synchronous
systems omit important features of asynchronous components. These parts of the
traditional design flow have to be replaced.

The other impediment is that industry adheres to existing specification languages.
The majority of industry designers think in terms of high-level hardware description
languages (HDLs), such as Verilog and VHDL, which were created for synchronous
designs. These languages require much more code to be written in order to specify an
asynchronous component, compared to synchronous logic. Several new languages
were developed for efficient asynchronous design [19–21]. However, adoption of
a unique language in industry involves significant changes in the design flow and
retraining the designers. These procedures are extremely costly and take valuable
time, which makes the new languages difficult to accept for commercial companies.

Finally, all existing synchronous IP cores have to be abandoned in an asyn-
chronous world. It will take years before all those components are replaced by
asynchronous counterparts.

Even though the asynchronous techniques involve significant changes to the con-
ventional design flow, the companies realise that this is the promising route to cover
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the design productivity gap. Such industry giants as IBM, Infineon, Intel, Philips,
Sun etc. invest in synthesis and verification tools for asynchronous circuit design.
They also replace parts of their new systems by asynchronous components, gradually
replenishing design libraries with asynchronous IP cores.

16.1.4 General view on the design flow

For a designer it is convenient to specify the circuit behaviour in the form of a
high-level HDL, such as Verilog, VHDL, Balsa, etc. This initial specification can be
processed in two different ways:

• directly translated into the circuit structure analysing the syntax of the specifica-
tion;

• transformed into an intermediate behavioural format convenient for subsequent
verification and synthesis.

The former approach is the ‘syntax-driven translation’. It is adopted by Tangram [19]
and Balsa [20] design flows. The initial circuit specification for these tools is given
in the languages based on the concept of processes, variables and channels, similar
to communicating sequential processes (CSP) [21].

The latter approach is ‘logic synthesis’. This approach is used in PipeFitter [22],
TAST [23], PN2DCs [24,25], where Petri nets are used for intermediate design repre-
sentation. Other examples are MOODs [26] and CASH [27]. The former starts from
VHDL and uses a hardware assembly language ICODE for intermediate code. The
latter starts from ANSI-C and uses a Pegasus dataflow graph for intermediate rep-
resentation, which is further synthesised into control logic for micropipelines [28].
Some tools do not cover the whole design, but can be combined with the other tools
to support the coherent design flow. For example, gate transfer level (GTL) [24],
VeriMap [30], Theseus Logic NCL-D and NCL-X [31] are developed for synthesis of
asynchronous datapath from register transfer level (RTL) specification. Other tools,
such as Minimalist [32], 3D [33], Petrify [34] and OptiMist [35] are aimed at asyn-
chronous controller synthesis from intermediate behavioural specifications. In turn,
controller synthesis tools, can be combined with decomposition techniques to reduce
the complexity of the specification. The survey focuses on the aspects of the logic
synthesis approach.

The rest of the review is organised as follows. First, an overview of syntax-driven
design flows is given. Then, the logic synthesis methods are discussed, the tools for
synthesis of control and datapath are presented. Finally, the state of the asynchronous
design automation is summarised and the ways of improvement are pointed out.

16.2 Syntax-driven translation

The basic design flow diagram for the syntax-driven approach is shown in Figure 16.5.
The initial system specification is compiled into a parsing tree, which is subsequently
mapped into a network of handshake components. The network can be used for
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behavioural simulation of the asynchronous system. The mapping of the network of
handshake components into a gate netlist is performed by a back-end tool, which may
vary for different technologies. The obtained gate netlist is mapped into silicon by
conventional place and route tools. The timing information extracted from the layout
can be used together with the gate netlist for timing simulation.

The syntax-driven approach was initially used in the Tangram group at Philips
Research [19]. The Tangram design flow depends on a proprietary CSP-based lan-
guage and private tool set. While being successfully used in the Philips research
environment, the proprietary nature of the tools made practical widespread adoption
of this methodology problematic.

The syntax-driven design flow became available for public use after the
Manchester Amulet Group developed the Balsa design kit [36,37]. Similar to
Tangram, it relies on the paradigm of handshake components as an intermediate
representation of an asynchronous system. The Balsa language is created to provide
a source for compiling handshake components and is also very similar to Tangram.
In Balsa the circuits are described by procedures which contain the specification of
processes. Procedures communicate by means of handshake ports. Most procedures
consist of a body command whose behaviour is perpetually repeated using a loop.

Consider the Balsa description for the GCD problem:

01 import [balsa.types.basic]
02 procedure GCD (
03 input x : byte;
04 input y : byte;
05 output z : byte) is
06 local variable a, b : byte
07 begin
08 loop
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09 x -> a || y -> b;
10 loop
11 while a /= b then
12 begin
13 if a > b then a := (a - b as byte)
14 else b := (b - a as byte)
15 end
16 end
17 end;
18 z <- b
19 end
20 end

The line numbers in the left column are shown for reference only and do not
belong to the Balsa language. The first line of the code contains an inclusion of a
pre-compiled module [balsa.types.basic], which only defines some com-
mon types, e.g. byte. The second line starts the procedure declaration with 8-bit
input ports x, y and an 8-bit output port z, which are declared in lines 03–05.
The local 8-bit variables a and b are declared in line 06. The procedure body is
enclosed in an infinitely repeating loop. Inside the loop the concurrent communica-
tion on input channels x and y is expected, line 09. The concurrency is expressed
by means of the || operator. The values of the input channels are saved into
local variables using channel -> variable statements. After that the while-
loop with a x /= y condition is started, where /= means ‘not equal’. Note that
sequential operations are separated by the ; operator. Inside the while-loop the
if ... then ... else ... end statement is exploited, lines 13–15. In both
its branches the assignment of an expression to a variable with type casting to byte
is executed. In line 18, sequentially to the while-loop, the output communication
is synchronised using channel <- variable statement. The handshake circuit
obtained by compilation of this source code is shown in Figure 16.6.

A handshake circuit consists of handshake components (circles with the opera-
tion name inside) linked by channels (solid arcs). Each handshake component has
one or more ports with which it can be connected point-to-point to a port of another
handshake circuit by means of a channel. Each channel carries request and acknowl-
edgement signalling as well as an optional data payload. The requests flow from the
active component ports (filled circles) towards passive component ports (open cir-
cles). Acknowledgements flow in the opposite direction to requests. Where a channel
carries data, the direction of the data is indicated by an arrow on that channel’s arc.
The direction of data may be different from the direction of signalling to support push
and pull ports and channels.

A handshake component can be activated by sending a request to its passive port.
When activated, it sends requests to a subset of its active ports and waits for acknowl-
edgements. The subset of the ports activated by the component is determined by its
function and may be data-dependent. The order in which the component activates its
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Figure 16.6 Handshake circuit for GCD

ports is shown by small numbers next to the ports. The ports of a handshake compo-
nent which are marked with the same number are activated concurrently. When all
activated ports are acknowledged, the handshake component sends an acknowledge-
ment to the passive port from which it was activated and finishes its operation until
the next activation [20].

One can notice correspondence between the syntax of the Balsa program and the
structure of the GCD handshake circuit in Figure 16.6. The operation of the GCD
circuit starts with the request on the channel marked as activate. It activates the
loop-component (#), which in turn sends a request to sequence-component (;).

First, the sequence-component activates the concur-component (||). The concur-
component controls the fetching operation (->) for input channels x and y. The
data from input channels x and y is pushed through the multiplexers (|) to
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the variables a and b respectively. When data is stored, the variables send
acknowledgements back to the sequence-component (;), which then activates the
while-component (do).

The while-component (do) requests the guard, which is the not-equal comparison
(/=) between a and b variables. If the guard returns true, the while-component
sends a request to the sequence-component, which controls the fetching of the
a>b comparison result to the case-component (@ 0;1). If the result is true, the
case-component activates the a-b function. The fetching of the subtraction result
into a variable is performed using an intermediate aux:a variable and two fetch-
components to avoid parallel reading and writing of a. Similarly, if the comparison
returns false, the result of the b-a is fetched into the b variable.

The while-component continues to request the guard and activate the sub-
traction procedure (described in the previous paragraph) until the guard value
becomes false. After that, an acknowledgement is sent back to the sequence-
component, which then activates the fetching (->) of the b variable to the output
channel z.

The syntax-driven translation is attractive from the productivity point of view,
as it avoids computationally hard global optimisation of the logic. Instead some
local peephole optimisation is applied at the level of handshake circuits. Burst Mode
synthesis tools (Minimalist [32], 3D [33]) can be used for the optimisation. However,
the direct translation of the parsing tree into a circuit structure may produce very slow
control circuits. The lack of global optimisation may not meet the requirements for
high-speed circuits.

16.3 Logic synthesis

The design flow diagram for the logic synthesis approach to asynchronous sys-
tem design is shown in Figure 16.7. The initial specification in a high-level HDL
(Verilog or VHDL) is first split into two parts: the specification of control unit and
specification of the datapath. Both parts are synthesised separately and subsequently
merged into the system implementation netlist. An industrial EDA place and route tool
can be used to map the system netlist into silicon. The existing simulation EDA tools
can be reused for the behavioural simulation of the initial system specification. These
tools can also be adopted for timing simulation of the system netlist back-annotated
with timing information from the layout.

The variations in the design flow appear in the way of:

• extracting the specifications of control unit and datapath from the system
specification;

• synthesis of the datapath;
• synthesis of the control unit either by direct mapping or by logic synthesis.

The following sections consider each of these issues separately. They all require
some basic knowledge of the underlying formal model, Petri nets and their
interpretations.
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16.3.1 Petri nets and signal transition graphs

The convenient behavioural models for logic synthesis of asynchronous control
circuits are 1-safe petri net (PN) and signal transition graph (STG). The datapath
operations can be modelled by coloured Petri net (CPN).

A PN is formally defined as a tuple� = 〈P , T ,F ,M0〉 comprising finite disjoint
sets of ‘places’P and ‘transitions’ T , flow relationF ⊆ (P×T )∪(T ×P) and initial
marking M0. There is an arc between x and y if (x, y) ∈ F . The ‘preset’ of a node
x is defined as •x = {y | (y, x) ∈ F }, and the ‘postset’ as x• = {y | (x, y) ∈ F }.
A ‘marking’ is a mappingM : P → N denoting the number of ‘tokens’ in each place
(N = {0, 1} for 1-safe PNs). It is assumed that •t �= ∅ �= t•, ∀t ∈ T . A transition t
is ‘enabled’ if M(p) �= 0, ∀p ∈ •t . The evolution of a PN is possible by ‘firing’ the
enabled transitions. Firing of a transition t results in a new marking. M’:

M ′(p) =


M(p)− 1, ∀p ∈ •t ,
M(p)+ 1, ∀p ∈ t•,
M(p), ∀p /∈ •t ∪ t•

Graphically places of a PN are represented as circles, transitions as boxes, arcs
are shown by arrows, and tokens of the PN marking are depicted by dots in the
corresponding places.

An extension of a PN model is a contextual net [38]. It uses additional elements
such as non-consuming arcs, which only control the enabling of a transition and do
not consume tokens. The reviewed methods use only one type of non-consuming arc,
namely ‘read-arcs’. A set of read-arcs R can be defined as follows: R ⊆ (P × T ).
There is an arc between p and t if (p, t) ∈ R.
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A labelled petri net (LPN) is a PN whose transitions are associated with a labelling
function λ, i.e. LPN = 〈P , T ,F ,R,M0, λ〉 [39].

An STG is an LPN whose transitions are labelled by signal events, i.e. STG =
〈P , T ,F ,R,M0, λ〉, where λ : T → A× {+, −} is a labelling function and A is a set
of signals. A set of signals A can be divided into a set of ‘input signals’ I and a set of
‘output and internal signals’O, I ∪O = A, I ∩O = ∅. Note that a set of read-arcsR
has been included into the model of STG, which is an enhancement w.r.t. Reference 40.

An STG is ‘consistent’ if in any transition sequence from the initial marking,
rising and falling transitions of each signal alternate.

A signal is ‘persistent’ if its transitions are not disabled by transitions of another
signal. An STG is ‘output persistent’ if all its output signals are persistent.

An STG is ‘delay insensitive to inputs’ if no event of input signal is switched by
another event of input signal.

A CPN is a formal high-level net where tokens are associated with data types [41].
This allows the representation of datapath in a compact form, where each token is
equipped with an attached data value.

16.4 Splitting of control and datapath

The first step in the logic synthesis of a circuit is the extraction of datapath and control
specifications from the high-level description of the system. Often the partitioning of
the system is performed manually by the designers. However, this might be imprac-
ticable for a large system or under a pressure of design time constraints. At the same
time, the tools automating the extraction process are still immature and require a lot
of investment to be used outside a research lab.

For example, the PipeFitter tool [22], which is based on Verilog HDL and PNs
as an intermediate format, supports only a very limited subset of Verilog con-
structs (module, function, initial, always, wait, if, case,
fork, join). Any high-level specification which contains a loop or a conditional
jump cannot be processed by this tool. A simple GCD benchmark could not even
be parsed because of the while-loop it contains. An attempt to modify the system
specification so that it uses always-statement as a loop and then to synthesise it has
also been unsuccessful.

The other tool, which works with VHDL high-level system specifications,
is PN2DCs [24,25]. It supports the following language statements: process,
procedure, wait, if, case, loop, call, block.

The VHDL specification is generated during the system-level synthesis. At this
step the PN2DCs tool partitions the system into several subsystems based on their
functionality and schedules them according to their interaction. Each subsystem is
described by a VHDL process. The communication between processes is implemented
using wait-statements over control variables. The relationship between processes is
expressed in the form of a ‘global net’, which is a PN whose transitions are associated
with system processes and the places divide the control into separate stages. Each
global net transition is then refined according to the associated process description.
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An LPN for control unit and a CPN for datapath are derived from the global net.
The interface between control and datapath units is modelled by a ‘local control net’,
which connects the generated LPN and CPN.

The extraction of control and datapath nets using PN2DCs tool is considered on
the GCD benchmark which is described using the VHDL process notation:

01 entry gcd is port (
02 x: in STD_LOGIC_VECTOR (7 downto 0);
03 y: in STD_LOGIC_VECTOR (7 downto 0);
04 z: out STD_LOGIC_VECTOR (7 downto 0))
05 end gcd;
06 architecture gcd_func of gcd is
07 begin
08 process begin
09 wait on x;
10 wait on y;
11 while x< >y loop
12 if x>y then x := x - y;
13 else y := y - x;
14 end if;
15 end;
16 z <= y;
17 end process;
18 end gcd_func;

As the benchmark contains one process only, the global net consists of one
transition representing this process. This transition is refined by parsing the system
specification and using an ASAP scheduling algorithm.

The refined model of the system is shown in Figure 16.8. Two wait-statements
for synchronisation on the x and y channels are scheduled concurrently. It is possible
because both x and y are defined as inputs and are independent. The input operation,
the while-loop and the result output on the z channel are scheduled in sequence.
The while-loop is subject to further refinement together with the nested if-statement,
during which the conditions of while-loop and if-statement are merged. The labels gt,
eq and lt correspond to the result of comparison between x and y values and stand for
‘greater than’, ‘equal’ and ‘less than’ respectively. The assignment of the subtraction
result to a signal is split into the subtraction operation (sub_gt, sub_lt) and storage of
the result (store_x, store_y).

The global net in Figure 16.8 is used to generate the LPN for the control unit.
The transitions of the LPN correspond to the atomic operations and places denote
different stages of the GCD algorithm. Those places are subsequently mapped into
memory elements.

The LPN for the GCD control unit produced by the PN2DCs tool is shown in
Figure 16.9(a) using the solid lines. The dashed arcs and places represent the local
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Figure 16.9 LPN for GCD control unit: (a) LPN generated by the PN2DCs tool and
(b) Manually optimised LPN

control net. One can notice that transitions x, y and z are not connected to the local
control net and therefore are redundant for the control unit. The detection and removal
of such redundant transitions can be automated. However, at the moment of the
experiments this optimisation was not implemented in the PN2DCs tool yet. The
result of manual optimisation applied to the GCD control unit LPN is shown in
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Figure 16.9(b). In this LPN places px1, px2, py1 and py2 are merged into one place
pin, which denotes the stage of data input. Places peq1 and p0 are also merged into
place pout, which denotes the stage of data output. The optimised LPN is four places
smaller than the original one, which results in area saving when LPN places are
mapped into memory elements.

Signals z_ack and z_req compose the handshake interface to the environment.
When set, the z_req signal means the computation is complete and output data is ready
to be consumed. The z_ack signal is set when the output of the previous computation
cycle is consumed and the new input data is ready to be processed.

The datapath CPN generated by PN2DCs is presented in Figure 16.10 using the
solid lines. The dashed arcs and places represent the local control net. Transitions
MUX_x_0 and MUX_x_1 are used for multiplexing input x or output from subtracter
SUB_gt to REG_x. Similarly, MUX_y_0 and MUX_y_1 are multiplexing y or SUB_lt
output to REG_y. The CMP_xy block of the net, framed in the dotted rectangle, is
used for comparing the values of REG_x and REG_y. Depending on the comparison
result one of the transitions x> y, x = y or x< y is fired.

In Figures 16.9, 16.10 the dashed arcs and places belong to the local control net.
All the communication between the control unit and datapath unit is carried out by
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this net, as shown in Figure 16.11. For example, when the z_ack signal is received,
the control generates x_req and y_req, which enable the MUX_x_0 and MUX_y_0
transitions in the datapath. When the multiplexing is finished the values of x and y
are stored using REG_x and REG_y, respectively. The datapath acknowledges this
by x_ack and y_ack. These signals enable the in transition in the control unit.

After that, the control unit requests the comparison operation by means of the
cmp_req signal. When the comparison is complete in the datapath, one of the signals
gt_ack, eq_ack or lt_ack is returned to the control. If gt_ack is received, the control unit
generates sub_gt_req request, which activates SUB_xy transition in the datapath. This
results in subtracting the current value of y from x and storing the difference using
REG_x transition. The datapath acknowledges this by x_ack and the comparison
operation is activated again. If the lt_ack signal is issued by the datapath then the
operation of the system is analogous to that of gt_ack. However, as soon as eq_ack is
generated, the control unit issues the z_req signal to the environment, indicating that
the calculation of GCD is complete.

Note that the local control net x_mux between MUX_x_0 and REG_x does not
leave the datapath unit, thereby simplifying the control unit. Similarly, other signals,
y_mux, x_store and y_store, in the local control net are kept inside the datapath.

16.5 Synthesis of datapath

The method of datapath synthesis employed in PN2DCs is based on the mapping of
CPN fragments into predesigned hardware components. A part of the library of such
components and corresponding CPN fragments is shown in Figure 16.12. The solid
places and arcs in the CPN column correspond to data inputs and outputs; the dashed
arcs and places denote the control signals (request and acknowledgement).

A block diagram for the GCD datapath is presented in Figure 16.13. It is mapped
from the CPN specification shown in Figure 16.10. The CPN is divided into the
following fragments, which have hardware implementations in the library shown
in Figure 16.12: 2 multiplexers, 2 registers, 1 comparator and 2 subtracters. These
hardware components are connected according to the arcs between the corresponding
fragments of the CPN. To save the hardware, the output z is not latched in its own
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register. Instead it is taken from the register y and is valid when the controller sets
the z_req signal.

If the library of datapath components does not have an appropriate block, the
latter should be constructed from RTL. One of the following tools can be used for this
purpose: Theseus NCL [42], GTL [29], VeriMap [30], etc. In particular, the VeriMap
tool is based on the approach of Kondratyev [31] and enriches it with an alternating
spacer protocol for the enhancement of security features.

16.6 Direct mapping of control unit

The direct mapping approach originates from Huffman’s work [43], where a method
of ‘the one-relay-per-row’ realisation of an asynchronous sequential circuit was pro-
posed. This approach was further developed by Unger in Reference 44 and had led
to the ‘1-hot state assignment’ of Hollaar [45], where a method of concurrent circuit
synthesis was described.

The underlying model for Hollaar’s circuits is an augmented finite state machine
(AFSM), which is an FSM with added facilities, including timing mechanisms so that
state changes can be delayed. These circuits have inputs that are logic values (signal
levels as opposed to signal transitions), which is good for low-level interfacing. They
use a separate set–reset flip-flop for every local state, which is set to 1 during a tran-
sition into the state, and which in turn resets to 0 the flip-flops of all its predecessor’s
local states. The main disadvantages of Hollaar’s approach are the fundamental mode
assumptions and the use of local state variables as outputs. The latter are convenient
for implementing event flows but require an additional level of flip-flops if each of
those events controls just one switching phase of an external signal (either from 0 to
1 or from 1 to 0).

The direct mapping method proposed by Patil [46] works for the whole class of
1-safe PNs. However, it produces control circuits whose operation uses a two-phase
(no-return-to-zero) signalling protocol. This results in lower performance than can
be achieved in four-phase circuits.

The approach of Kishinevisky et al. [47] is based on ‘distributors’ and also
uses the 1-hot state assignment, though the implementation of local states is
different. In this method every place of an STG is associated with a David
cell (DC) [48].

A circuit diagram of a DC is shown in Figure 16.14(a). DCs can be coupled using
a four-phase handshake interface, so that the interface 〈r , a1〉 of the previous stage
DC is connected to the interface 〈r1, a〉 of the next stage. The operation of a single
DC is illustrated in Figure 16.14(b). Places p1 and p2 correspond to active levels of
signals r1 and r, respectively. They can be used to model places of a PN as shown in
Figure 16.14(c). The dotted rectangle depicts the transition between p1 and p2. This
transition contains an internal place, where a token ‘disappears’ for the time tr1−→r+.
In most cases this time can be considered as negligible, because it corresponds to a
single gate delay.
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The circuits built of DCs are speed independent (SI) [49] and do not need fun-
damental mode assumptions. On the other hand, these circuits are autonomous
(no inputs/outputs). The only way of interfacing them to the environment is to
represent each interface signal as a set of abstract processes, implemented as request-
acknowledgement handshakes, and to insert these handshakes into the breaks in the
wires connecting DCs. This restricts this method to high-level design.

An attempt to apply the direct-mapping method at a low-level, where inputs and
outputs are signal events of positive or negative polarity, was done in Reference 50,
where DC structures controlled output flip-flops. For this, a circuit converting a hand-
shake event into the logic level was designed. Inputs were, however, still represented
as abstract processes.

In Reference 51 the direct mapping from STGs and the problem of device-
environment interface are addressed. This method converts the initially closed (with
both input and output transitions) system specification into the open system specifica-
tion. The open system specification consists of a ‘tracker’ and ‘bouncer’. The tracker
follows (or tracks) the state of the environment and is used as a reference point by
the outputs. The bouncer interfaces the environment and generates output events in
response to the input events according to the state of the tracker.

Faster and more compact solutions for a DC implementation were developed by
introducing timing assumptions [51]. In DC implementations shown in Figure 16.15
the reset phase of state holding element happens concurrently with the token move
into the next stage DC. An interesting feature of the transistor-level implementation
shown in Figure 16.15(b) is that it internally contains a GasP interface [52], which
uses a single wire to transmit a request in one direction and an acknowledgement in
the other.
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Figure 16.16 Mapping of LPN places into DCs

16.6.1 Direct mapping from LPNs

The PN2DCs tool maps the places of the control unit LPN into DCs. The request
and acknowledgement functions of each DC are generated from the structure of the
LPN in the vicinity of the corresponding place as shown in Figure 16.16. The request
function of the DC is shown in its top-left corner and the acknowledgement function
in the bottom-right conner.

The GCD control unit described by the LPN in Figure 16.9(b) is mapped into the
netlist of DCs shown in Figure 16.17. Each DC in this netlist corresponds to the LPN
place with the same name.

In this netlist the dotted wires can be actually removed thus simplifying the request
functions of p1, pgt1, peq1, plt1 and p0. These wires are redundant because the trig-
ger signals from the environment uniquely identify which DC among them should be
activated even without a context signal from the preceding DCs. However, if the same
set of input signals activates more than one DC, the context signal is required. For
example, the request function for pgt2 must include both x_ack and sub_gt_req sig-
nals, because x_ack can be set in response to x_req and sub_gt_req and the controller
should be able to distinguish between these situations.

16.6.2 Direct mapping from STGs

The method of direct mapping from STGs proposed in Reference 50 is implemented
in the OptiMist software tool [35]. The tool first converts the system STG into a
form convenient for direct mapping. Then it performs optimisation at the level of
specification and finally maps the optimised STG into circuit netlist.

In order to transform the initially closed system specification into the open system
specification, the concepts of ‘environment tracking’ and ‘output exposure’ should be
applied. These concepts can be applied to an STG that is consistent, output persistent
and delay insensitive to inputs.
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The whole method is described on the basic example whose STG is depicted in
Figures 16.18(a).

The first step in constructing the open system specification is splitting the system
into ‘device’ and ‘environment’. For this the original STG is duplicated as shown in
Figure 16.18(b). Then, in the first copy, corresponding to the ‘device’, input events
are replaced by dummies and in the second copy, corresponding to the ‘environment’,
output events are replaced by dummies. The behaviour of the device and environment
is synchronised by means of read-arcs between dummy transitions and successor
places of their prototypes in the counterpart as shown in Figure 16.18(b).

At the second step the outputs of both device and environment are exposed by the
following technique. Every interface signal is associated with a pair of complementary
places representing the low and high levels of the signal. These places are inserted as
transitive places between the positive and negative transitions of the signal, expressing
the property of signal consistency. ‘Trackers’ of the device and environment use these
‘exposed outputs’ to follow (or track) the behaviour of the counterpart as shown in
Figure 16.18(c).

After that, ‘elementary cycles’ are formed and read-arcs are introduced to repre-
sent the signals as shown in Figure 16.18(d). Read-arcs from the predecessor places
of dummies to signal transitions and from the successor places of signal transitions
to dummies preserve the behaviour of the system. The resultant system specification
is ‘weakly bisimular’ [53] to the original. The elementary cycles are subsequently
implemented as set–reset flip-flops (FF) and the places of the tracker as DCs, see
Figure 16.18(e).

It is often possible to control outputs by the directly preceding interface signals
without using intermediate states. Many places and preceding dummies can thus be
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Figure 16.18 Method for the direct mapping from STGs: (a) system, (b) splitting the
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removed, provided that the system behaviour is preserved w.r.t. the input–output
interface (weak bisimulation). Such places are called ‘redundant’. This way the place
p2 is redundant in the considered example, Figure 16.19(a). It can be removed from the
device tracker together with the preceding dummy (in+) as shown in Figure 16.19(b).
Now the input in1 = 1 controls the output out+ transition directly, which results in
latency reduction when the STG is mapped into the circuit, see Figure 16.19(c). Before
the optimisation the output FF was set by the p2_ req signal, which was generated in
response to the input in1, see Figure 16.18(e). In the optimised circuit the output FF
is triggered directly by the in1 input and the context signal p3_ req is calculated in
advance concurrently with the environment action.

The elimination of places is restricted, however, by potential ‘coding conflicts’.
Coding conflicts may cause tracking errors. Consider the system whose STG is
depicted in Figure 16.20(a). The devices specification extracted from this STG by
applying the above method is shown in Figure 16.20(b). The tracker part of the device
can be further optimised. The removal of redundant places p2 and p4 does not cause
any conflicts of the tracker, Figure 16.20(c). However, if the place p3 is eliminated
as shown in Figure 16.20(d), then the tracker cannot distinguish between the output
having not yet been set and the output already reset. Note the specifics of this direct
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mapping approach: only those signals whose switching directly precedes the given
output or tracker transition are used in its support.

Consider the application of the OptiMist tool to the example of the GCD control
unit. Its STG is obtained by refining the LPN generated from the HDL specification
by PN2DCs tool, see Figure 16.8.

In order to produce the control unit STG shown in Figure 16.21 the events of the
LPN are expanded to a four-phase handshake protocol. After that, the GCD datapath
schematic shown in Figure 16.13 is taken into account to manually adjust the STG to
the datapath interface. In the modified STG the request to the comparator cmp_req
is acknowledged in 1-hot code by one of the signals: gt_ack, eq_ack or lt_ack. The
request to the subtracter sub_gt_req is acknowledged by x_ack. This is possible
because the procedure of storing the subtraction result into the register is controlled
directly in the datapath and does not involve the control unit. Similarly sub_lt_req is
acknowledged by ack_y.

When the OptiMist tool is applied to the original STG of GCD controller it
produces the device specification which is divided into a tracker and a bouncer part,
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as shown in Figure 16.22. The bouncer consists of elementary cycles representing the
outputs of the GCD controller, one cycle for each output. The elementary cycles for
the inputs are not shown as they belong to the environment. The tracker is connected
to inputs and outputs of the system by means of read arcs, as it is described in the
procedure of output exposure.

There are two types of places in the tracker part of the system: ‘redundant’
(depicted as small circles) and ‘mandatory’ (depicted as big circles). The redundant
places can be removed without introducing a coding conflict while the mandatory
places should be preserved. OptiMist tool determines the sets of redundant and
mandatory places using the heuristics described in Reference 35.

The first heuristic, most important in terms of latency, states that each place
whose all preceding transitions are controlled by inputs and all successor transi-
tions are controlled by outputs can be removed from the tracker. Removal of such
a place does not cause a coding conflict as the tracker can distinguish the state of
the system before the preceding input-controlled transitions and after the succeed-
ing output-controlled transitions. However, a place should be preserved if any of
its preceding transitions is a direct successor of a choice place. Preserving such a
place helps to avoid the situation when the conflicting transitions (direct successors
of the choice place) are controlled by the same signal. The removal of the redun-
dant places detected by the first heuristic reduces both the size and the latency of the
circuit.

The redundant places detected by the above heuristic in the GCD example are
px1, py1, px3, py3, px5, py5, pgt3, plt3, pgt5, plt5, peq3 and peq5. The places
pgt1, plt1 and peq1 which follow the choice place cmp2 should be preserved. Their
removal would cause an ambiguous situation when the first transitions to the three
conflicting branches are controlled by the same signal cmp_req=0.

The next heuristic for redundant places detection traverses the chains of non-
redundant places between input-controlled transitions. The traversing of a chain starts
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Figure 16.22 Exposure of the outputs and detection of the redundant places

from the place after an input-controlled transition and progresses in the direction of
consuming–producing arcs. For each place in the chain it is checked if its removal
causes a coding conflict. The potency of a coding conflict is checked assuming that
all the places which are currently tagged as redundant are already removed from the
tracker. If the coding conflict does not occur then the place is tagged as redundant.
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The traversing of the chain stops when a non-redundant place is found. After that the
next chain is processed.

The redundant places cmp2, pgt2, plt2 and peq2 are detected by this heuristic
in the GCD example. Place cmp1 can also be tagged as redundant but it is kept
by the OptiMist tool in order to preserve the simplicity of the cmp_req elementary
cycle. Without this place the positive phase of the cmp_req would be controlled by
two context signals from the tracker (read-arcs from px4 and py4) and two trigger
signals from the environment (x_ack = 0 and y_ack = 0). The trade-off between the
complexity of elementary cycles and the number of places in the tracker can be set
as an OptiMist command line parameter.

Removal of any of the other places from the tracker causes the coding conflict
and such places should be preserved.

After the outputs are exposed and the redundant places are detected, the OptiMist
tool optimises the tracker by removing the redundant places and preceding dummy
transitions. The removal of a place involves the change of the STG structure but
preserves the behaviour of the system w.r.t. the input–output interface.

The result of GCD control unit optimisation is presented in Figure 16.23.
This STG can now be used for circuit synthesis. For this each tracker place is

mapped into a DC and each elementary cycle is mapped into an FF. The request and
acknowledgement functions of a DC are mapped from the structure of the tracker in
the vicinity of the corresponding place as shown in Figure 16.24(a). The set and reset
functions of an FF are mapped from the structure of the set and reset phases of the
corresponding elementary cycle as shown in Figure 16.24(b).

The GCD controller circuit obtained by this technique is presented in Figure 16.25.
This circuit will consist of 15 DCs and 6 FFs. If the FFs and DCs are implemented on
transistor level as shown in Figure 16.15(b), then the maximum number of transistor
levels in pull-up and pull-down stacks is four. This transistor stack appears in the
request function of the DC for cmp1 and formed by the signals x_ack = 0, y_ack = 0,
px4_req and py4_req.

The longest latency, which is the delay between an input change and reaction
of the controller by changing some outputs, is exhibited by the cmp_req signal. The
latency of its set and reset phases is equal to the delay of one DC and one FF. The other
outputs are triggered directly by input signals which means that their latencies are
equal to one FF delay plus the delay of one inverter when the trigger signal requires
inversion.

16.7 Explicit logic synthesis

The explicit logic synthesis methods work with the low-level system specifica-
tions which capture the behaviour of the system at the level of signal transitions,
such as STGs. These methods usually derive Boolean equations for the output
signals of the controller using the notion of next state functions obtained from
STGs [54].
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Figure 16.23 Optimisation

An STG is a succinct representation of the behaviour of an asynchronous control
circuit that describes the causality relations among the events. In order to find the
next state functions all possible firing orders of the events must be explored. Such an
exploration may result in a state space which is much larger than the STG specification.
Finding efficient representations of the state space is a crucial aspect in building logic
synthesis tools.
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A synthesis method based on state space exploration is implemented in the Petrify
tool [34]. It represents the system state space in the form of a state graph (SG), which
is a binary encoded reachability graph of the underlying PN. Then the theory of
regions [56] is used to derive the Boolean equations for the output signals.

Figure 16.26 presents the SG for the GCD control unit, whose STG is shown
in Figure 16.21. The SG consists of vertexes and directed arcs connecting them.
Each vertex corresponds to a state of the system and is assigned a binary vector
that represents the value of all signals in that state. The sequence of the signals in
the binary vector is the following: <x_req, y_req, x_ack, y_ack, cmp_req, gt_ack,
eq_ack, lt_ack, sub_gt_req, sub_lt_req, z_req, z_ack>. The initial state is marked
with a box. The directed arcs are assigned with the signal events which are enabled
in the preceding states.

Note that all possible combinations of the events in two concurrent branches
x_req+ → x_ack+ → x_req− → x_ack− and y_req+ → y_ack+ → y_req− →
y_ack− are expressed explicitly in the SG. The explicit representation of concurrency
results in a huge SG for a highly concurrent STG. This is known as the ‘state space
explosion’ problem, which puts practical bounds on the size of control circuits that
can be synthesised using state-based techniques.

The other interesting issue is the unambiguous state encoding. The shadowed
states in Figure 16.26 have the same binary code, but they enable different signal
events. This means that the binary encoding of the SG signals alone cannot determine
the future behaviour of the system. Hence, an ambiguity arises when trying to define
the next-state function. Roughly speaking, this phenomenon appears when the system
does not have enough memory to ‘remember’ in which state it is. When this occurs,
the system is said to violate the complete state coding (CSC) property. Enforcing
CSC is one of the most difficult problems in the synthesis of asynchronous circuits.
The general idea of solving CSC conflicts is the insertion of new signals, which add
more memory to the system. The signal events should be added in such a way that
the values of inserted signals disambiguate the conflicting states.

16.7.1 Automatic CSC conflict resolution

One of the possibilities to resolve the CSC conflicts is to exploit the Petrify tool
and the underlying theory of regions. In Petrify all calculations for finding the states
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Figure 16.26 SG for GCD control unit

in conflict and inserting the new signal events are performed at the level of SG.
The tool relies on the set of optimisation heuristics when deciding how to insert
new transitions. However, the calculation of regions involves the computationally
intensive procedures which are repeated when every new signal is inserted. This may
result in long computation time.
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Figure 16.27 Resolution of CSC conflicts by Petrify

When the system becomes conflict-free, the SG is transformed back into STG.
Often the structure of resultant STG differs significantly from the original STG, which
might be inconvenient for its further manual modification. Actually, the STG look
may change even after simple transformation to SG and back to STG, because the
structural information is lost at the level of SG.

The conflict-free STG for the GCD control unit is shown in Figure 16.27. There
are two changes to the structure of the STG which are not due to new signal insertion.
First, the transition cmp_req+ is split into cmp_req+/1 and cmp_req+/2; second, the
concurrent input of x and y is synchronised on cmp_req+/1 instead of dummy now.

Petrify resolves the CSC conflicts in GCD control unit specification adding five
new signals, namely csc0, csc1, csc2, csc3, csc4. The insertion of signals csc0, csc3
and csc4 is quite predictable. They are inserted in three conflicting branches (one in
each branch) in order to distinguish between the state just before cmp_req+/1 and
just after eq_ack−, gt_ack−, lt_ack−, respectively.

For example, the state of the system before and after the following sequence of
transitions is exactly the same: cmp_req + /1 → eq_ack+ → cmp_req − /1 →
eq_ack−. In order to distinguish between these states csc0+ transition is inserted
inside the above sequence. As the behaviour of the environment must be preserved,
the new transition can only be inserted before the output transition cmp_req−/1.
The are two possibilities for its insertion: sequentially or concurrently. The former
type of insertion is usually (but not always) preferable for the smaller size of circuit,
the latter for lower latency. Relying on its sophisticated heuristics Petrify decides to
insert csc0+ sequentially. Signal csc0 is reset in the same branch outside the above
sequence of transitions.

Similarly, signals csc1 and csc2 are inserted to distinguish the states before and
after the sequence of transitions x_req+ → x_ack+ → x_req− → x_ack− and
y_req+ → y_ack+ → y_req− → y_ack−, respectively. However, the resetting
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of the csc2 is not symmetrical to the reset of csc1 (as is expected) and involves a
significant change of the original STG structure, see Figure 16.27.

The synthesis of the conflict-free specification with logic decomposition into
gates with at most four literals results in the following equations:

[x_req] = z_ack’ (csc0 csc1’ + csc2’);
[y_req] = z_ack’ csc1’;
[z_req] = csc0 eq_ack’ csc1;
[3] = csc4’ + csc3’ + csc0 + csc2’;
[cmp_req] = [3]’ x_ack’ y_ack’ csc1;
[sub_gt_req] = csc3’ gt_ack’;
[sub_lt_req] = csc4’ lt_ack’;
[csc0] = csc2 csc0 + eq_ack;
[csc1] = csc0’ y_ack + z_ack’ csc1;
[9] = csc0’ (csc2 + x_ack);
[csc2] = x_ack’ csc2 y_ack’ + [9];
[csc3] = gt_ack’ (csc3 + x_ack);
[csc4] = lt_ack’ (csc4 + y_ack);

The estimated area is 432 units and the maximum and average delay between the
inputs is 4.00 and 1.75 events, respectively. The worst case latency is between the
input x_ack+/1 and the output x_req−. The trace of the events is x_ack + /1 →
csc_2− → csc_0− → csc_2+ → x_req−. Taking into account that CMOS logic
is built out of negative gates these events correspond to the following sequence of
gates switching: [x_ack ↑] → [x_ack′ ↓] → [csc2′ ↑] → [csc2 ↓] → [csc0′ ↑] →
[9′ ↓] → [9 ↑] → [csc2′ ↓] → [x_req′ ↑] → [x_req ↓]. This gives the latency
estimate equal to the delay of nine negative gates.

16.7.2 Semi-automatic CSC conflict resolution

A semi-automatic approach to CSC conflict resolution is adopted in the ConfRes
tool [56]. The main advantage of the tool is its interactivity with the user during CSC
conflict resolution. It visualises the cause of the conflicts and allows the designer to
manipulate the model by choosing where in the specification to insert new signals.

The ConfRes tool uses STG unfolding prefixes [57] to visualise the coding con-
flicts. An unfolding prefix of an STG is a finite acyclic net which implicitly represents
all the reachable states of the STG together with transitions enabled at those states.
Intuitively, it can be obtained by successive firings of STG transitions under the
following assumptions:

• for each new firing a fresh transition (called an event) is generated;
• for each newly produced token a fresh place (called a ‘condition’) is generated.

If the STG has a finite number of reachable states then the unfolding eventually starts
to repeat itself and can be truncated (by identifying a set of ‘cut-off events’) without
loss of information, yielding a finite and complete prefix.
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In order to avoid the explicit enumeration of coding conflicts, they are visualised
as ‘cores’, i.e. the sets of transitions causing one or more of conflicts. All such cores
must eventually be eliminated by adding new signals.

The process of core resolution in the GCD control unit is illustrated in
Figure 16.28. Actually, there are ten overlapping conflict cores in the STG. The
ConfRes tool shows them in different colours similar to a geographical height-map.
However, all ten cores would be hardly distinguishable on a grey-scale printout. That
is the reason why only those cores whose resolution is currently discussed are shown.
The cores are depicted as gray polygons covering the sets of sequential transitions.
Each core has different brightness and is labelled with a name in rounded box to refer
from the text.

The basic rules for new signal insertion are the following:

• In order to destroy a core one phase of a new signal should be inserted inside the
core and the other phase outside the core.

• A new signal should be inserted into the intersection of several cores whenever
possible, because this minimises the number of inserted signals, and thus the area
and latency of the circuit.

• A new signal transition cannot be inserted before an input signal transition,
because it would change the device–environment interface.

• Usually (but not always) the sequential insertion of a transition is preferable for
smaller circuit size and concurrent insertion is advantageous for lower circuit
latency.

Consider this procedure on the example of a GCD controller, Figure 16.28. Two
experiments are conducted. In the first one the strategy of sequential signal insertion
is exploited in order to compete automatic conflict resolution in circuit size. In the
second experiment the new signals are inserted concurrently (where possible) in order
to achieve lower latency.

In the experiment with sequential signals insertion, first, the cores C1 and C2
shown in Figure 16.28(a) are destroyed by inserting csc_x+ transition sequen-
tially before x_req−. The reset phase of csc_x is inserted between eq_ack+ and
cmp_req−/1 thereby destroying the core C3. Similarly, two other cores, symmetrical
to C1 and C2 (not shown for readability of the diagram), are eliminated by inserting
transition csc_y+ before y_req−. The reset phase of csc_y is inserted the same way
as csc_x− (between eq_ack+ and cmp_req−/1) and destroys the core symmetrical
to C3.

Second, the cores C4 and C5 are eliminated by inserting csc_lt+ sequentially
before cmp_req−/3, see Figure 16.28(b). The reset phase of csc_lt is inserted outside
the cores C4 and C5 sequentially before sub_lt_req−. Likewise, the core which is
symmetrical to C4 (not shown for simplicity) is destroyed by inserting csc_gt+ before
cmp_req+/2 and csc_gt− before sub_gt_req−.

Finally, only one core C6 is left, see Figure 16.28(c). It is destroyed by replacing
the dummy dum1 by csc_eq− transition. The set phase of csc_eq is inserted outside
the core before z_req−. The resultant conflict-free STG of the GCD controller is
shown in Figure 16.29.
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Figure 16.29 Resolution of CSC conflicts by ConfRes

Petrify synthesises this STG with logic decomposition into gates with at most
four literals into the following equations:

[x_req] = csc_x’ z_ack’ csc_eq;
[y_req] = csc_y’ z_ack’ csc_eq;
[z_req] = csc_x’ eq_ack’ csc_eq’;
[3] = csc_y’ csc_x’ + csc_gt + csc_lt;
[cmp_req] = [3]’ y_ack’ x_ack’ csc_eq’;
[sub_gt_req] = csc_gt gt_ack’;
[sub_lt_req] = csc_lt lt_ack’;
[csc_x] = eq_ack’ (x_ack + csc_x);
[csc_y] = csc_y eq_ack’ + y_ack;
[csc_gt] = x_ack’ csc_gt + gt_ack;
[10] = csc_eq (csc_x’ + csc_y’) + z_ack;
[csc_eq] = csc_eq (x_ack + y_ack) + [10];
[csc_lt] = y_ack’ (lt_ack + csc_lt);

The estimated area is 432 units, which is the same as when the coding conflicts
are resolved automatically. However, the maximum and average delays between the
inputs are significantly improved: 2.00 and 1.59 events, respectively.

The worst case latency of the circuit is between gt_ack+ and cmp_req−/2
(or between eq_ack+ and cmp_req−/1). If the circuit is implemented using CMOS
negative gates then this latency corresponds to the following sequence of gates switch-
ing: [gt_ack ↑] → [csc_gt′ ↓] → [csc_gt ↑] → [3′ ↓] → [cmp_req′ ↑] →
[cmp_req ↓]. This gives the latency estimate equal to the delay of five negative
gates, which is significantly better than in the experiment with automatic coding
conflict resolution.



576 System-on-chip

The other experiment with semi-automatic CSC conflict resolution aims at lower
latency of the GCD control circuit. Now the new signal transitions are inserted as
concurrently as possible. Namely, csc_x+ is concurrent to x_ack+/1; csc_y+ is
concurrent to y_ack+/1; csc_gt− is concurrent to x_ack+/2; and csc_lt− is concur-
rent to y_ack+/2. The other transitions are inserted the same way as in the previous
experiment. Synthesis of the constructed conflict-free STG produces the following
equations:

[0] = csc_x’ z_ack’ csc_eq;
[x_req] = x_req map0’ + [0];
[2] = csc_y’ z_ack’ csc_eq;
[y_req] = y_ack’ y_req + [2];
[z_req] = csc_y’ eq_ack’ csc_eq’;
[5] = csc_y’ csc_x’ + map0 + csc_eq;
[cmp_req] = sub_lt_req’ [5]’ (map1 + eq_ack);
[sub_gt_req] = gt_ack’ (sub_gt_req map1 + csc_gt);
[sub_lt_req] = sub_lt_req map1 + csc_lt lt_ack’;
[csc_x] = eq_ack’ (csc_x + x_req);
[csc_y] = eq_ack’ (csc_y + y_req);
[csc_lt] = sub_lt_req’ csc_lt + lt_ack;
[csc_gt] = sub_gt_req’ (gt_ack + csc_gt);
[csc_eq] = map1’ (csc_eq + z_ack);
map0 = sub_gt_req + csc_gt + csc_lt + x_ack;
[15] = csc_x’ + x_req + csc_y’;
map1 = [15]’ y_ack’ y_req’ x_ack’;

Two new signals, map0 and map1, are added by Petrify in order to decompose
the logic into library gates with at most four literals. This results in larger estimated
circuit size, 592 units. The average input-to-input delay of the circuit becomes 1.34
events, which is smaller than in the previous experiment. However, the maximum
latency of the circuit is seven negative gates delay. It occurs, for example, between
gt_ack+ and cmp_req− transitions. The gates switched between these transitions are:
[gt_ack↑]→[csc_gt′↓]→[csc_gt↑]→[map0′↓]→[map0↑]→[5′↓]→[cmp_req′↑]→[cmp_req↓].
The worst case latency in this implementation is greater than the latency in the previous
design due to the internal map0 and map1 signals, which are used for decomposition
of non-implementable functions.

The complex gate implementation of the GCD controller, where CSC conflict is
resolved manually by inserting new signals in series with the existing ones, is shown
in Figure 16.30. This is the best solution (in terms of size and latency) synthesised by
Petrify with the help of the ConfRes tool. It consists of 120 transistors and exhibits
the latency of five negative gates delay.

Clearly, semi-automatic conflict resolution gives the designer a lot of flexibility
in choosing between the circuit size and latency. The visual representation of conflict
cores distribution helps the designer to plan how to insert each phase of a new signal
optimally, thus possibly destroying several cores by one signal. The diagram of core
distribution is updated after every new signal insertion. As all the modifications to
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the system are performed on its unfolding prefix, there is no need to recalculate the
state space of the system, which makes the operation of ConfRes tool extremely fast.

Another approach to CSC conflicts resolution which avoids the expensive com-
putation of the system state space is proposed in References 58 and 59. The approach
is based on the structural methods, which makes it applicable for large STG specifi-
cations. Its main idea is to insert a new set of signals in the initial specification in a
way that unique encoding is guaranteed in the transformed specification. The main
drawback of this approach is that the structural methods are approximate and can only
be exact for well-formed PNs.

16.8 Tools comparison

In this section the tools are compared using GCD benchmarks in two categories:

• system synthesis from high-level HDLs and
• synthesis of the control unit from STGs.

Table 16.1 presents characteristics of asynchronous GCD circuits synthesised by
Balsa and PN2DCs tools from high-level HDLs. Both solutions are implemented
using the AMS-0.35µm technology and dual-rail datapath components. The size of
each circuit is calculated using Cadence Ambit tool and the speed is obtained by
circuit simulation in SPICE analogue simulator.

The benchmark shows that the circuit generated by PN2DCs tool is 16 per cent
smaller and 33–42 per cent faster than the circuit synthesised by Balsa. The size and
speed improvement in PN2DCs comparing to Balsa solution is due to different control
strategies. Note that the intermediate controller specification for the PN2DCs tool is
manually optimised by removing redundant places and transitions. This reduces the
controller unit area by four DCs (732µm2). However, the optimisation algorithm is
straightforward, the redundant places and transitions removal can be automated.

The time spent by Balsa and PN2DCs to generate the circuit netlists is negligible.
This is because both tools use computationally simple mapping techniques, which
allows us to process large system specifications in acceptable time.

The characteristics of the circuits synthesised from STGs are shown in Table 16.2.
For the circuit generated by OptiMist tool, the number of transistors is counted for

Table 16.1 Comparison between Balsa and PN2DCs

Tool Area Computation
(µm2) time (s)

Speed (ns)

x = y x = 12, y = 16

Balsa 119 647 21 188 <1
PN2DCs 100 489 14 109 <1
Improvement 16% 33% 42% 0
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Table 16.2 Comparison between OptiMist and Petrify

Tool Number of Latency Computation
transistors (units) time (s)

OptiMist 174 4.5 <1
Petrify

automatic 116 13.0 18
sequential 120 8.0 2
concurrent 142 11.0 4

the case of places being implemented as fast DCs shown in Figure 16.15(b). The
request-acknowledgement logic of DCs and set–reset logic of FFs are implemented
at transistor level. The number of transistors for the circuits generated by Petrify is
counted for complex gate implementation. The technology mapping into the library
gates with at most four literals is applied.

In all experiments, the latency is counted as the accumulative delay of negative
gates switched between an input and the next output. The following dependency of a
negative gate delay on its complexity is used. The latency of an inverter is associated
with 1 unit delay. Gates which have maximum two transistors in their transistor stacks
are associated with 1.5 units; 3 transistors – 2.0 units; 4 transistors – 2.5 units. This
approximate dependency is derived from the analysis of the gates in AMS 0.35µm
library. The method of latency estimation does not claim to be very accurate. However,
it takes into account not only the number of gates switched between an input and the
next output, but also the complexity of these gates.

The Petrify tool was used to synthesise the circuits with three alternatives of
CSC conflict resolution. In the first circuit the coding conflict is solved by inserting
new signals automatically. In the second and the third circuits the semi-automatic
method of conflict resolution is employed by using the ConfRes tool. In the second
circuit the transitions of new signals are inserted sequentially, and in the third one
concurrently.

The experiments show that the automatic coding conflict resolution may result in
a circuit with high output latency which is due to non-optimal insertion of the new
signals. The smallest circuit is synthesised when the coding conflicts are resolved
manually by inserting the new signals sequentially. This solution also exhibits lower
latency than in the case of automatic and concurrent signal insertion. The circuit with
the new signals inserted concurrently lacks the expected law latency because of its
excessive logic complexity.

The circuit with the lowest latency is generated by the direct mapping technique
using the OptiMist tool. This tool also exhibits the smallest synthesis time which is due
to low algorithmic complexity of the involved computations. This allows processing
large specifications, which cannot be computed by Petrify in acceptable time because
of the state space explosion problem.
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Figure 16.31 Dependency of computation time on STG complexity: (a) Scalable
benchmark STG and (b) Computation time

This can be illustrated on the scalable benchmark whose STG is shown in
Figure 16.31(a). Adding the concurrent branches as shown by dashed lines one can
increase the complexity of the benchmark. When the concurrency increases the Pet-
rify computation time grows exponentially, while the OptiMist computation time
grows linearly on the same benchmark, see Figure 16.31(b).

However, the GCD controller synthesised by the OptiMist tool is about 45 per cent
larger than Petrify’s solutions.

16.9 Conclusions

The state of the art in the synthesis of asynchronous systems from high-level
behavioural specifications has been reviewed. Two main approaches of circuit
synthesis have been considered: syntax-driven translation and logic synthesis.

The syntax-driven approach is studied on the example of Balsa design flow. It uses
a CSP-based language for the initial system specification. Its parsing tree is translated
into a handshake circuit, which is subsequently mapped to the library of hardware
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components. This approach enables the construction of large-size asynchronous
systems in a short time, due to its low computational complexity. However, the speed
and area of the circuit implementations may not be the best possible. Therefore this
approach benefits from peep-hole optimisations, which apply logic synthesis locally,
to groups of components, as was demonstrated in Reference 32.

The logic synthesis approach is reviewed using the PN2DCs, OptiMist, Petrify and
ConfRes tools. The PN2DCs tool partitions the VHDL system specification on control
and datapath. Petri nets are used for their intermediate behavioural representation.
The datapath PN is subsequently mapped into a netlist of datapath components. The
controller PN can be either mapped into a David cell structure or further refined to an
STG. The control unit can be synthesised by one of the above mentioned tools. Logic
synthesis approach is computationally harder than the syntax-based one. The direct
mapping of Petri nets and STGs in PN2DCs and OptiMist, helps to avoid state space
explosion involved in the state encoding procedures used in Petrify. At the same time,
this comes at the cost of more area.

It should be clear that tools like Petrify and ConfRes should be used for rela-
tively small control logic, for instance in interfaces and pipeline stage controllers
(see Reference 4), rather than complex data processing controllers, where PN2DCs
is more appropriate. The latter is however not optimal for speed because it works at a
relatively high-level of signalling. OptiMist, working at the STG level, combines the
advantages of low computational complexity with high-speed due to its latency-aware
implementation architecture with a bouncer and a tracker.

The greatest common divisor benchmark is used to evaluate all of the above
mentioned tools. The size and speed of the resultant circuits are compared. They
demonstrate the various possible enhancements in the design flow, such as the use of
an interactive approach to state encoding in logic synthesis.

In the future a combination of techniques in a single tool flow might prove most
advantageous. For example, at first, each output signal which has a complete state
coding can be synthesised individually by Petrify, with or without use of ConfRes.
Then, all the remaining outputs, whose CSC resolution is hard or impossible, can
be mapped into logic at once by OptiMist. Here, the best trade-off between area and
performance may be achieved.
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Chapter 17

Network-on-chip architectures and design
methods

Luca Benini and Davide Bertozzi

17.1 Introduction

Increasing integration densities made possible by shrinking device geometries will
have to be fully exploited to meet the computational requirements of applications
in domains such as multimedia processing, automotive, ambient intelligence. For
instance, the computational load of typical ambient intelligence tasks will be ranging
from 10 MOPS for lightweight audio processing, 3 GOPS for video processing,
20 GOPS for multilingual conversation interfaces and up to 1 TOPS for synthetic
video generation. These workloads will have to be delivered with tightly constrained
power levels (from a few watts, for wall-plugged appliances, to a few milliwatts,
for portable and wearable devices), affordable cost and high reliability [1]. System
architecture and design technology must adapt to the critical challenges posed by both
the large-scale integration and the small features of elementary devices.

To tackle the application and integration complexity challenges, and the ensuing
design productivity gap, SoCs are and will increasingly be designed by re-using
large-scale programmable components, such as microprocessors, micro-controllers
and media-processors, as well as large embedded memory macros and numerous
standard peripherals and specialised co-processors. Design methodologies have to
support component re-use in a plug-and-play fashion in order to be effective. In this
reuse-dominated context, there is little doubt on the fact that the most critical factor
in system integration will be the scalability of the communication fabric among com-
ponents. This conclusion is further strengthened if we focus on the ‘challenges of the
small’ posed by the unrelenting pace of scaling. Whereas computation and storage
power-delay products (i.e. energy) benefit from device scaling (smaller gates, smaller
memory cells), the energy for global communication does not scale down, hence,
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propagation delays on global wires will greatly exceed the clock period, and the power
consumed to drive wires will dominate the power breakdown. Moreover, estimating
delays accurately will become increasingly harder, as wire geometries may be deter-
mined late in the design flow. Electrical noise due to cross-talk, delay variations and
synchronisation failures will be likely to produce bit upsets. Thus, the transmission
of digital values on wires will be slow, power-hungry and inherently unreliable.

Network-on-chips (NoCs) are viewed by many researchers and designers as a
response to the ‘interconnect showstopper’. The basic premise of the ‘network-on-
chip revolution’ is fundamentally simple: the on-chip interconnect fabric should be
designed using the same guiding principles that drive the development of macroscopic
communication networks, which have demonstrated sustainable scalability, exponen-
tially improving performance, remarkable robustness and reliability over many years
of rapid evolution. The NoC literature has flourished in between 2002 and 2005,
with many strong contributions on development, analysis and implementation. This
chapter does not attempt a complete overview, but it aims at providing a survey on
the evolution of the field, moving from state-of-the art communication fabrics (SoC
buses), to forward-looking NoC research prototypes. We will underline the many
elements of continuity as well as the key differences between SoC buses and NoCs,
in an effort to extract some general guiding principles in a very dynamic landscape.

The chapter is organised as follows. In Section 17.2, on-chip buses and their
evolutions are presented. Section 17.3 provides a quantitative assessment of the
performance of basic on-chip interconnects and their state-of-the-art evolutions.
Section 17.4 and 17.5 focus on network on chip architectures, components and pro-
totypes. Section 17.6 is dedicated to design technology for NoCs. Conclusions and
perspectives for future evolutions are depicted in Section 17.7.

17.2 On-chip buses

On-chip buses have originally been architected to mimic their off-chip counterparts,
relying on the analogy between building a board with commodity components and
building a system-on-chip with IP cores. Ultimately, buses rely on shared communi-
cation channels and on an arbitration mechanism which is in charge of serialising bus
access requests (time division multiplexing). This widely adopted solution obviously
suffers from power and performance scalability limitations, but it has the advantage
of low complexity and reduced area for the interface, communication and control
logic.

Besides scalability, another limitation of early on-chip buses is poor decoupling
between core interfaces and bus protocols, which greatly weakens modularity and
composability of complex designs. To better understand this issue, we can use as an
example LAN/WAN interfaces in traditional computer networks, where the access
protocol to the network is completely standardised (TCP/IP), and independent from
the physical implementation (e.g. a shared medium, as in wireless networks, or com-
plex multistage networks on cable or fibre). In order to test the level of decoupling
between interconnect access protocol and core interfaces, a simple conceptual test
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can be performed, using a communication ‘initiator’ (also called ‘master’) and a
‘target’ (also called ‘slave’). If master and slave can be connected directly to each
other (i.e. with a point-to-point connection), then obviously the topology and internal
protocol of the interconnect are completely decoupled from the core interface. We
call PP (point-to-point) these network interfaces. PP is a very desirable property from
the design integration viewpoint, because it completely decouples communication
fabric design from core design.

On-chip buses have evolved in an effort to address the above-mentioned limita-
tions. We can distinguish three main directions of evolution: (1) enhancements in the
parallelism and efficiency of the bus access protocol, which help in fully exploiting
the bandwidth of the available interconnect resources; (2) enhancements in topology,
to increase the available interconnect bandwidth; (3) re-definition and standardisation
of PP target and initiator interfaces. We will follow these trends with the help of a
case study, namely advanced Micro-Controller Bus Architecture (AMBA), which is
probably the most widely deployed on-chip communication protocol.

17.2.1 Tracking the evolutionary path: the AMBA bus

Advanced micro-controller bus architecture is a bus standard which was originally
conceived by ARM to support communication among ARM processor cores [2].
The AMBA specification provides standard bus protocols for connecting on-chip
components, custom logic and specialised functions.

AMBA defines a segmented bus architecture, where bus segments are connected
with each other via a bridge that buffers data and drives the control sig-
nals across segments. A ‘system bus’ is defined, which provides a high-speed,
high-bandwidth communication channel between embedded processors and high-
performance peripherals. Two system buses are actually specified: the ‘AMBA
High-Speed Bus’ (AHB) and the ‘Advanced System Bus’ (ASB).

Moreover, a low-performance and low power ‘peripheral bus’ (called ‘Advanced
Peripheral Bus’, APB) is specified, which accommodates communication with gen-
eral purpose peripherals and is connected to the system bus via a bridge, acting as the
only APB master. The overall AMBA architecture is illustrated in Figure 17.1.

Even though AMBA defines three bus protocols, we will focus only on the most
advanced one, namely, AMBA AHB. The main features of AMBA AHB can be
summarised as follows:

• Non-tristate implementation: AMBA-AHB implements a separate read and write
data bus in order to avoid the use of tristate drivers. In particular, master and
slave signals are multiplexed onto the shared communication resources (read and
write data buses, address bus, control signals).

• Support for multiple initiators: A control logic block, called arbiter ensures that
only one bus master is active on the bus and also that when no masters request the
bus a default master is granted. A simple request–grant mechanism is implemented
between the arbiter and each bus master.

• Pipelined and burst transfers: Address and data phases of a transfer occur during
different clock periods. In fact, the address phase of any transfer occurs during
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Figure 17.1 AMBA bus architecture

the data phase of the previous transfer. Overlapping of address and data enables
full exploitation of bus bandwidth if slaves are fast enough to respond in a single
clock cycle.

• Wide data bus configurations: Support for high-bandwidth data-intensive appli-
cations is provided using wide on-chip memories. System buses support 32, 64
and 128-bit data-bus implementations with a 32-bit address bus, as well as smaller
byte and half-word designs.

In a normal bus transaction, the arbiter grants the bus to the master until the
transfer completes and the bus can then be handed over to another master. However,
in order to avoid excessive arbitration latencies, the arbiter can break up a burst. In
that case, the master must re-arbitrate for the bus in order to complete the remaining
data transfers.

A basic AHB transfer consists of four clock cycles. During the first one, the
request signal is asserted, and in the best case at the end of the second cycle a grant
signal from the arbiter can be sampled by the master. Then, address and control signals
are asserted for slave sampling on the next rising edge, and during the last cycle the
data phase is carried out (read data bus driven or information on the write data bus
sampled). A slave may insert wait states into any transfer, thus extending the data
phase, and a ready signal is available for this purpose.

Four, eight and sixteen-beat bursts are defined in the AMBA AHB protocol, as
well as undefined-length bursts. During a burst transfer, the arbiter re-arbitrates the
bus when the penultimate address has been sampled, so that the asserted grant signal
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can be sampled by the relative master at the same point where the last address of the
burst is sampled. This makes bus master handover at the end of a burst transfer very
efficient.

For long transactions, the slave can decide to split the operation warning the arbiter
that the master should not be granted access to the bus until the slave indicates it is
ready to complete the transfer. This transfer ‘splitting’ mechanism is supported by all
advanced on-chip interconnects, since it prevents high latency slaves from keeping
the bus busy without performing any actual transfer of data.

As a result, split transfers can significantly improve bus efficiency, i.e. reduce the
number of bus busy cycles used just for control (e.g. protocol handshake) and not for
actual data transfers. Advanced arbitration features are required in order to support
split transfers, as well as more complex master and slave interfaces.

The main limitations of the AHB protocol are (1) no complete support for multiple
outstanding transactions and out-of-order completion, which greatly limit bandwidth
in the case of slow slaves (if a slave is not ready to respond, no other transaction
can bypass the blocked one, and the bus is unused during the wait cycles); (2) no PP
interface definition (for instance, initiators have to drive directly the arbitration request
signals, hence, they are directly exposed to the interconnect-specific time division
multiplexing protocol); (3) limited intrinsic scalability caused by the presence of
shared single master-to-slave and slave-to-master channels.

17.2.2 AMBA evolutions

To address the limitations outlined in the previous section, advanced specifications
of the AMBA bus have been proposed, featuring increased performance and better
link utilisation. In particular, the ‘Multi-Layer AHB’ and the ‘AMBA AXI’ intercon-
nect schemes will be briefly reviewed in the following sub-sections. ‘Multi-Layer
AHB’ can be seen as an evolution of bus topology while keeping the AHB protocol
unchanged. In contrast, ‘AMBA AXI’ represents a significant advancement of the
protocol. It should be observed that all these interconnect performance improvements
can be achieved at the expense of silicon area and complexity.

17.2.2.1 Multi-layer AHB

The multi-layer AHB specification aims at increasing the overall bus bandwidth and
providing a more flexible interconnect architecture with respect to AMBA AHB.
This is achieved by using a more complex interconnection matrix (also called a
crossbar) which enables parallel access paths between multiple masters and slaves in
a system [3].

Therefore, the multi-layer bus architecture allows the interconnection of unmod-
ified standard AHB master and slave modules with an increased available bus
bandwidth. The resulting architecture becomes very simple and flexible: each AHB
layer only has one master and no arbitration and master-to-slave muxing is needed.
Moreover, the interconnect protocol implemented in these layers can be very simple:
it does not have to support request and grant, nor retry or split transactions.
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The additional hardware needed for this architecture with respect to the AHB is a
multiplexer to connect the multiple masters to the peripherals and some arbitration is
also required when more than one master tries to access the same slave simultaneously.

Figure 17.2 shows a schematic view of the multi-layer concept. The interconnect
matrix contains a decode stage for every layer in order to determine which slave is
required during the transfer. The multiplexer is used to route the request from the
specific layer to the desired slave.

The arbitration protocol decides the sequence of accesses of layers to slaves based
on a priority assignment. The layer with lowest priority has to wait for the slave to be
freed by higher priority layers. Different arbitration schemes can be used, and every
slave port has its own arbitration. Input layers can be served in a round-robin fashion,
changing every transfer or every burst transaction, or based on a fixed priority scheme.
It is also interesting to outline the capability of this topology to support multi-port
slaves. Some devices, such as SDRAM controllers, work much more efficiently when
processing transfers from different layers in parallel.

The number of input/output ports on the interconnect matrix is completely flexible
and can be adapted to suit to system requirements. However, as the number of masters
and slaves in the system increases, the complexity of the crossbar interconnect rapidly
becomes unmanageable. In essence, while a shared bus has limited scalability in terms
of available bandwidth, crossbars do not scale well in hardware complexity (which
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impacts silicon area, cycle time and power). To limit crossbar complexity blowup,
some optimisation techniques have to be used, such as defining multiple masters on
a single layer, multiple slaves appearing as a single slave to the interconnect matrix
or defining local slaves to a particular layer.

17.2.2.2 AMBA AXI

AXI is the most recent evolution of the AMBA interface. It significantly enhances
protocol performance and it also includes optional extensions for low power opera-
tion [4]. This high-performance protocol provides flexibility in the implementation of
interconnect architectures while still keeping backward-compatibility with existing
AHB and APB interfaces.

AMBA AXI is a fully PP connection. It decouples masters and slaves from the
underlying interconnect, by defining only ‘master interfaces’ and symmetric ‘slave
interfaces’. This approach, besides allowing backward compatibility and interconnect
topology independence, has the advantage of simplifying the handshake logic of
attached devices, which only need to manage a PP link.

To provide higher parallelism, four different logical monodirectional channels
are provided in AXI interfaces: an address channel, a read channel, a write channel
and a write response channel. Activity on different channels is mostly asynchronous
(e.g. data for a write can be pushed to the write channel before or after the write
address is issued to the address channel), and can be parallelised, allowing multiple
outstanding read and write requests, with out-of-order completion.

Figure 17.3(a) shows how a read transaction uses the read address and read data
channels. The write operation over the write address and write data channels is pre-
sented in Figure 17.3(b). Data is transferred from the master to the slave using a
write data channel, and it is transferred from the slave to the master using a read data
channel. In write transactions, where all the data flows from the master to the slave,
the AXI protocol has an additional write response channel to allow the slave to signal
to the master regarding the completion of the write transaction. The rationale of this
split-channel implementation is based upon the observation that, usually, the required
bandwidth for addresses is much lower than that for data (e.g. a burst requires a single
address but maybe four or eight data transfers). Thus, it might be possible to allocate
more interconnect bandwidth to the data bus than the address bus.

The mapping of channels, as visible by the interfaces, to interconnect resources
is decided by the interconnect designer; single resources might be shared by all
channels of a certain type in the system, or a variable amount of dedicated wires may
be available, up to a full crossbar.

To conclude, we observe that on-chip buses have come a long way. On one
hand, PP protocols act now fully as network interfaces, on the other hand, multi-
layer topologies can provide much higher bandwidth than a single shared channel.
We used AMBA as a case study for these trends, but the landscape of evolutionary
interconnects is very diverse, and many alternatives do exist [5,6].

Still, these evolutionary approaches do not address in full the fundamental scal-
ability limitation of any single-hop interconnect. Networks-on-chip, as described in
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Figure 17.3 Architecture of transfers: (a) Read operation, (b) Write operation

Section 17.4, aim precisely at providing sustainable scalability by making it possible
to define multi-hop topologies and providing efficient support to switching, routing
and flow-control.

17.3 Quantitative analysis

This section focuses on providing some quantitative evidence of the performance
benefits provided by enhanced protocols and high-bandwidth topologies. At first,
scalability of evolving interconnect fabric protocols is assessed. Then, we will focus
on speed enhancements due to multi-channel topologies.

17.3.1 Protocol efficiency

SystemC models of AMBA AHB and AMBA AXI (provided within the Synopsys
CoCentric/Designware® [7] suites) are used within the framework of the MPARM
simulation platform [8–10].
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Figure 17.4 Concept waveforms showing burst interleaving for AMBA AHB and
AXI interconnects. (a) AMBA AHB, (b) AMBA AXI

The simulated on-chip multiprocessor consists of a configurable number of ARM
cores attached to the system interconnect. Traffic workload and pattern can easily
be tuned by running different benchmark code on the cores, by scaling the number
of system processors, or by changing the amount of processor cache, which leads to
different amounts of cache refills.

An AMBA AHB link and a more advanced, but also more expensive, AMBA AXI
interconnect with shared bus topology are tested under heavy load. Figure 17.4 shows
an example of the efficiency improvements made possible by advanced interconnects
in the test case of slave devices having two wait states, with three system processors
and four-beat burst transfers. AMBA AHB has to pay two cycles of penalty per
transferred datum. AMBA AXI is capable of interleaving transfers, by sharing data
channel ownership in time. Under conditions of peak load, when transactions always
overlap, AMBA AHB is limited to a 33 per cent efficiency (transferred words over
elapsed clock cycles), while AMBA AXI can theoretically reach a 100 per cent
throughput.

In order to assess interconnect scalability, a benchmark is independently but con-
currently run on every system processor performing accesses to its private memory
(involving bus transactions). This means that, while producing real functional traffic
patterns, the test setup was not constrained by bottlenecks due to shared slave devices.
Private memories are assumed to introduce one wait state before responses.

Scalability properties of the system interconnects can be observed in Figure 17.5,
reporting the execution time variation with an increasing number of cores attached
to a single shared interconnect under heavy traffic load. Core caches are kept very
small (256 bytes) in order to cause many cache misses and therefore significant
levels of interconnect congestion. Execution times are normalised against those for
a two-processor system, trying to isolate the scalability factor alone. The heavy bus
congestion case is considered here because the same analysis performed under light
traffic conditions (e.g. with 1 kB caches) shows that both interconnects perform very
well, with AHB showing a moderate performance decrease of 6 per cent when moving
from two to eight running processors.
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Figure 17.5 Execution times with 256B caches
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Figure 17.6 Bus busy time with 256B caches

With 256 B caches, the resulting execution times, as Figure 17.5 shows, get
77 per cent worse for AMBA AHB when moving from two to eight cores, while AXI
manages to stay within 12 per cent and 15 per cent. The reason behind the behaviour
pointed out in Figure 17.5 is that under heavy traffic load and with many processors,
interconnect saturation takes place. This is clearly indicated in Figure 17.6, which



NoC architectures and design methods 599

100

90

80

70

60

50

40

30

20

10

0

AHB AXI

In
te

rc
on

ne
ct

 u
sa

ge
 e

ff
ic

ie
nc

y 
%

2 Cores
4 Cores
6 Cores
8 Cores

Figure 17.7 Bus usage efficiency with 256B caches

reports the fraction of cycles during which some transaction was pending on the bus
with respect to total execution time.

In such a congested environment, as Figure 17.7 shows, AMBA AXI can achieve
transfer efficiencies (defined as data actually moved over bus contention time) of up
to 81 per cent, while AMBA AHB reaches 47 per cent only – near to its maximum
theoretical efficiency of 50 per cent (one wait state per data word). These plots stress
the impact that comparatively low-area-overhead optimisations can sometimes have
in complex systems.

It must be pointed out, however, that protocol improvements alone cannot over-
come the intrinsic performance limitations due to the shared nature of the interconnect
resources. While protocol features can push the saturation boundary further, and get
near to a 100 per cent efficiency, traffic loads taking advantage of more parallel
topologies will always exist. The charts reported here already show some traces of
saturation even for the most advanced protocols.

17.3.2 Multi-channel topologies

Topology enhancement can provide additional steam to bandwidth-saturated buses.
To illustrate this point with some experimental evidence, a test based on functional
simulation of a complete multi-processor architecture with an AMBA AHB compliant
interconnect and 8 ARM7 cores will be presented. Two applications were run on the
platform, namely independent matrix multiply and independent matrix multiply with
semaphore synchronisation upon completion. In the first application, each processor
performs matrix multiplication and it is completely independent from the other pro-
cessors. Matrices are stored in different memories, which are connected as slaves to
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Figure 17.8 Application execution time with different topologies

the system interconnect, hence there is no contention among processors for the same
memory slave. However, execution time is heavily impacted by contention for the
shared communication resource. In the second application, data processing is exactly
the same as for the first application, but processors synchronise after computing every
element of the product matrix using a counting semaphore which is contained in a
dedicated slave device.

Two applications were run with different interconnects, namely: a shared bus, a
multi-layer implementation based on a full crossbar, and a bridged solution that splits
the bus in two segments. Results are summarised in Figure 17.8. Data transfers have no
destination conflicts, hence, very significant speedups can be achieved by advanced
topologies. Note that for the independent matrix multiply benchmark, a speedup of
more than a factor of 2 is achieved. The bridged bus gives lower speedup. This is
expected because splitting the bus in two segments gives a maximum theoretical
throughput enhancement of 2, in the case of no traffic between segments, while
theoretical crossbar speedup is N (where N is the number of independent channels).

Speedups are inferior for the synchronised application. This demonstrates that the
application-level speedup provided by a given topology strongly depends on the nature
of the traffic generated by applications. In this case, there is a traffic bottleneck created
by the single counting semaphore in shared memory: all processors will contend for
semaphore access, and this application-level contention significantly impacts both
execution time and speedups. The bottleneck is even more evident for the bridged
solution, because many transactions have to cross the bridge (namely, all semaphore
accesses to processors on the opposite side of the bridge).

As a conclusive note, it is important to stress that these application-level speedups
are achieved at the price of significantly increased cost in crossbar logic. In fact,
crossbar complexity scales quadratically with N , and a full crossbar would not be
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usable in practice forN much larger than 10. The bridged solution, which is the most
commonly used in today’s designs, has even more limited scalability, and it is highly
sensitive to traffic patterns: in fact, it can perform even worse than a single shared
bus if many transactions have to traverse the bridge. Hence, this solution should be
evaluated very carefully for possible traffic mismatches.

17.4 Packet-switched interconnection networks

The previous sections have described evolutionary communication architectures.
We now focus on a more revolutionary approach to on-chip communication, known as
‘Network-on-Chip (NoC)’ [11,12]. NoCs are packet-switched, multi-hop intercon-
nection networks integrated onto a single chip. Cores access the network by means of
PP interfaces, and have their packets forwarded to destinations through a number of
hops (see Figure 17.9). NoCs differ from wide area networks in their local proximity
and because they exhibit less non-determinism. Local, high-performance networks –
such as those developed for large-scale multiprocessors – have similar requirements
and constraints. However, some distinctive features, such as energy constraints and
design-time specialisation, are unique to SoC networks.

The scalable and modular nature of NoCs and their support for efficient on-chip
communication potentially lead to NoC-based multi-core systems characterised by
high structural complexity and functional diversity. On one hand, these features need
to be properly addressed by means of new design methodologies, while on the other
hand more efforts have to be devoted to modelling on-chip communication archi-
tectures and integrating them into a single modelling and simulation environment
combining both processing elements and communication architectures. The develop-
ment of NoC architectures and their integration into a complete MPSoC design flow
is the main focus of an ongoing worldwide research effort [13–15].
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A few critical issues are pushing the development of NoCs.

Technology issues: While gate delays scale down with technology, global wire
delays typically increase or remain constant as repeaters are inserted. It is estimated
that in 50 nm technology, at a clock frequency of 10 GHz, a global wire delay can be
up to 6–10 clock cycles. Therefore, limiting the on-chip distance travelled by critical
signals will be key to guarantee the performance of the overall system, and will be a
common design guideline for all kinds of system interconnects. On the contrary, other
challenges posed by deep sub-micron technologies are leading to a paradigm shift in
the design of SoC communication architectures. For instance, global synchronisation
of cores on future SoCs will be unfeasible due to deep sub-micron effects (clock
skew, power associated with clock distribution tree, etc.), and an alternative scenario
consists of self-synchronous cores that communicate with one another through a
network-centric architecture. Finally, signal integrity issues (cross-talk, power supply
noise, soft errors, etc.) will lead to more transient and permanent failures of signals,
logic values, devices and interconnects, thus raising the reliability concern for on-
chip communication. In many cases, on-chip networks can be designed as regular
structures, allowing electrical parameters of wires to be optimised and well controlled.
This leads to lower communication failure probabilities, thus enabling the use of
low-swing signalling techniques, and to the capability of exploiting performance
optimisation techniques such as wavefront pipelining.

Design productivity issues: It is well known that synthesis and compiler technol-
ogy development do not keep up with IC manufacturing technology development.
Moreover, times-to-market need to be kept as low as possible. Reuse of complex
pre-verified design blocks is an efficient means to increase productivity, and regards
both computation resources and the communication infrastructure. It would be highly
desirable to have processing elements that could be employed in different platforms
by means of a plug-and-play design style. To this purpose, a scalable and modular
on-chip network represents a more efficient communication infrastructure compared
with shared bus-based architectures. However, the reuse of processing elements is
facilitated by the definition of standard network interfaces, which also make the mod-
ularity property of the NoC effective. The Virtual Socket Interface Alliance (VSIA)
has attempted to set the characteristics of this interface industry-wide. OCP is another
example of standard interface sockets for cores. It is worth remarking that such net-
work interfaces also decouple the development of new cores from the evolution of
new communication architectures. The core developer will not have to make assump-
tions about the system, when the core will be plugged into. Similarly, designers of
new on-chip interconnects will not be constrained by the knowledge of detailed inter-
facing requirements for particular legacy SoC components. Finally, let us observe
that NoC components (e.g. switches or interfaces) can be instantiated multiple times
in the same design (as opposed to the arbiter of traditional shared buses, which is
instance-specific) and reused in a large number of products targeting a specific appli-
cation domain. The developments of NoC architectures and protocols is fuelled by
the aforementioned arguments, in spite of the challenges represented by the need for
new design methodologies and an increased complexity in system design.
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17.4.1 NoC basic principles

Next, an overview of NoC basic principles and degrees of freedom for designers will
be provided.

17.4.1.1 Topology

An interconnection network can be viewed as a collection of router nodes connected
by shared channels. The connection pattern of these nodes defines the ‘network
topology’. This latter should be designed so as to meet the bandwidth and latency
requirements of applications at minimum cost. The bandwidth can be maximised by
saturating bisection bandwidth, the bandwidth across the midpoint of the system.

Latency minimisation can be another network design requirement. To achieve low
latency, a topology must balance the desire for a small average distance between nodes
against a low serialisation latency. The hop count between a source and a destination
node is critical with respect to latency: it represents the number of channels and nodes
a packet must traverse on average to reach its destination.

Mesh topology is frequently used for networks-on-chip. It exhibits a regular
structure and is most suitable for tile-based architectures. Regular meshes can be
designed with better control on electrical parameters and therefore on communica-
tion noise sources (e.g. crosstalk), although they might result in link under-utilisation
or localised congestion. In fact, not all computation units have the same commu-
nication requirements, thus leading to mapping inefficiencies on regular topologies.
When considering tile-based architectures [16], another issue is given by the different
physical size of computation units that leads to an inherently irregular floorplanning.
Nostrum NoC architecture [17] makes use of a mesh topology (see Figure 17.10
(top)), wherein each switch is connected to four switches and to one core. Motiva-
tion for this choice was regularity of layout, predictable electrical properties and the
expected locality of traffic. Switch-to-switch connections consist of 256 shielded and
differential data signals.

The SPIN micronetwork [18] is another example of network architecture, making
use of a fat tree topology. Every node has four sons and the father is replicated four
times at any level of the fat tree, as reported in Figure 17.10 (bottom). This topology
is intrinsically redundant, since the four fathers offer four equivalent paths in order
to route a message between two sons of the same father. The shortest path between
two subscribers is the one that goes through by the nearest common ancestor. A fat
tree topology has the following advantages: its diameter (maximum number of links
between two subscribers) remains reasonable (2 × log4n, where n is the number of
layer of network), the topology is scalable and uses a small number of routers for
a given number of subscribers. It has a natural hierarchical structure which can be
useful in many embedded systems.

Irregular topologies have to deal with more complex physical design issues but
are more suitable to implement customised, domain-specific communication architec-
tures. A higher performance and a lower energy dissipation for a specific application
domain are likely to be paid with a higher design complexity (e.g. selection of an
optimised custom topology, deadlock-free efficient routing algorithms, etc.). NoC
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Figure 17.10 Mesh architecture (top) and Fat Tree topology (bottom)

design methodologies supporting irregular topologies require soft macros as basic
network building blocks, which can be customised at instantiation time for a specific
application. For instance, the Proteo NoC [19] consists of a small library of prede-
fined, parameterised components that allow the implementation of a large range of
different topologies, protocols and configurations. ×pipes interconnect [20] and its
synthesiser ×pipesCompiler [21] push this approach to the limit, by instantiating
an application-specific NoC from a library of soft macros (network interface, link and
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switch). The components are highly parameterisable and provide reliable and latency
insensitive operation.

17.4.1.2 Flow control

Flow control determines how network resources (such as channel bandwidth, buffer
capacity and control state) are allocated to packets traversing the network. Inefficient
implementation of flow control has side-effects in terms of wastes of bandwidth and
unproductive resource occupancy, thus leading to the utilisation of a small fraction of
the ideal bandwidth and to a high and variable latency. Flow control can be viewed
both as a resource allocation mechanism (to allow the packet to reach its destination)
or as a contention resolution mechanism.

Circuit switching is the basic solution for flow control, wherein only packet
headers are buffered and traverse the network ahead of any packet payload, reserving
the appropriate resources along the path. The established ‘circuit’ is then torn down
by deallocating resources. This approach requires a lower storage space at the cost
of a lower link utilisation. It is, however, widely adopted for contention-free packet
propagation across the network, resulting in quality-of-service guarantees (latency
and throughput).

On the contrary, when providing support for best effort traffic, buffering plays
a critical role in determining performance. In fact, data can be stored while waiting
to acquire network resources. This buffering can be done either in units of packets,
as with store-and-forward and cut-through flow control, or at the finer granularity
of flits, as in the case of wormhole flow control. By breaking a packet into smaller,
fixed-sized flits, the amount of storage needed at any particular node can be greatly
reduced.

In ‘store-and-forward’ flow control, a packet is forwarded from a switch to the
next one in the network only when this latter has enough storage space for the entire
packet. The packet has to be entirely stored at a switch before being transmitted
forward. Of course, this approach poses the highest buffering requirements to the
network switches and incurs a very high communication latency. This approach is
rarely used for MPSoC communication architectures, but there are exceptions. In
fact, Æthereal routers support both best effort and guaranteed throughput traffic.
For this latter case, output channel utilisation is split into time slots, each of which is
selectively reserved to input ports based on an initial programming phase. During each
slot time, store-and-forward of the input packet is the actual flow control mechanism.

‘Virtual cut-through’ flow control overcomes the latency penalty of store-and-
forward flow control by forwarding a packet as soon as the header is received and
resources (buffer and channel) are acquired, without waiting for the entire packet to
be received. As with store-and-forward, virtual cut-through allocates resources (espe-
cially buffers) at the coarse granularity of packets. This per-packet buffer allocation
accounts for the inefficient utilisation of storage space as well as for an increase of
contention latency. For instance, a high-priority packet colliding with a low-priority
packet must wait for the entire low-priority packet to be transmitted before it can
acquire the channel.
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A workaround for the two above shortcomings consists of a per-flit (rather than
per-packet) resource allocation, and is the strategy followed by ‘wormhole’ flow
control. When the head flit of a packet arrives at a node, it must acquire an output
channel, one flit buffer and one flit of channel bandwidth. Body flits take the same
channel acquired by the head flit and hence need only acquire a flit buffer and a flit
of channel bandwidth to advance. The tail flit of a packet is handled like a body flit,
but also releases the output channel as it passes.

Compared with the previous approaches, wormhole flow control makes far more
efficient use of buffer space, as only a small number of flit buffers are required per
channel. This comes at the cost of some throughput, since wormhole flow control
may block a channel mid-packet. In fact, the channel may be owned by a packet, but
buffers are allocated on a per-flit basis. When a flit cannot acquire a buffer, the channel
goes idle even though there is another packet that could potentially use the channel
bandwidth. Although channel bandwidth is allocated flit-by-flit, it can only be used
by flits of one packet. Wormhole switching is the most widely adopted mechanism
for flow control.

All control flow techniques using buffering need a means to communicate the
availability of buffers to the downstream nodes. This buffer management informs the
upstream nodes when they must stop transmitting flits because all of the downstream
flit buffers are full. There are three such backpressure mechanisms (see Figure 17.11).

In ‘credit-based flow control’ the upstream router keeps a count of the number
of free flit buffers in each channel downstream. Then, each time the upstream router
forwards a flit, thus consuming a downstream buffer, it decrements the appropriate
count. If the count reaches zero, all of the downstream buffers are full and no further
flits can be forwarded until a buffer becomes available. Once the downstream router
forwards a flit and frees the associated buffer, it sends a credit to the upstream router,
causing a buffer count to be incremented. For each flit sent downstream, a corre-
sponding credit is eventually sent upstream. This requires a significant amount of
upstream signalling and, especially for small flits, can represent a large overhead.

‘On-off flow control’ greatly reduces the amount of upstream signalling, since
the upstream state is a single control bit that represents whether the upstream node is
permitted (on) to send or not (off). A signal is sent upstream only when it is necessary
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to change this state (e.g. an off can be sent to indicate that the number of free buffers
falls below a certain threshold). Like credit-based flow control, the on-off mechanism
requires a round-trip delay between the time a buffer becomes empty, triggering a
credit or an on signal, and when a flit arrives to occupy that buffer. However, with an
adequate number of buffers, on/off flow control can operate with very little upstream
signaling.

Finally, ‘ACK/NACK flow control’ reduces the minimum and average buffer
vacancy time. In fact, the upstream node optimistically sends flits whenever they
become available. If the downstream node has a buffer available, it accepts the flit
and acknowledges to the upstream node. If no buffers are available when the flit
arrives, it is dropped and a NACK is notified to the upstream node. This latter holds
each flit until it receives an ACK, therefore it is able to retransmit a NACKed flit.
Although effective in systems with large buffering resources, this mechanism holds
such resources for a longer time with respect to the previous mechanisms, and incurs
useless link utilisation in case of blocking of downstream resources for a long time.

17.4.1.3 Routing

The objective of routing is to find a path from a source node to a destination node on a
given topology. Routing is one of the key components that determine the performance
of the network, and aims at reducing the number of hops and overall latency and at
balancing the load of network channels. In general, performance of routing algorithms
strongly depends on topology.

Let us classify routing algorithms as in Reference 22:

• Deterministic algorithms always choose the same path between two nodes. They
are easy to implement and deadlock issues can be easily solved. On the other
hand, they do not use path diversity and therefore show poor performance with
respect to load balancing.

• Oblivious algorithms always choose a route without considering any information
about the network’s present state. They include deterministic algorithms as a
subset. Random splitting of traffic among different paths is always an oblivious
algorithm.

• Adaptive algorithms adapt to the state of the network, using this state information
to make routing decisions. In theory, adaptive routing should be better than an
oblivious algorithm, however, in practice they are not, since only local information
can be easily accessed. As a result, network load can turn out to be locally balanced
but globally imbalanced. As a workaround, adaptive routing can be coupled with
flow control mechanisms to have access to a broader range of network state
information and to take a course of action with larger impact on the network (e.g.
backpressure). Please note that fully adaptive routing may result in live-lock,
which should be carefully addressed.

The mechanism used to implement any routing algorithm is referred to as ‘routing
mechanics’. Many routers use ‘routing tables’ either at the source or at each hop along
the route to implement the routing algorithm. With a single entry per destination,
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a table is restricted to deterministic routing, but oblivious and adaptive routing can be
implemented by providing multiple table entries for each destination. An alternative
to tables is ‘algorithmic routing’, in which specialised hardware computes the route or
next hop of a packet at runtime. However, algorithmic routing is usually restricted to
simple routing algorithms and regular topologies.

With ‘source routing’, all routing decisions are entirely taken in the source node by
table lookup of a precomputed route. There is at least one table entry per destination,
and the predefined route is embedded into the packet. This allows rapid propagation of
the packet through the network across the selected path since no further computation
has to be carried out at the switches. This routing mechanism is frequently used for its
simplicity and scalability, although it cannot be used to implement adaptive routing
since it cannot take advantage of network state information. Routing tables can also
be stored at the intermediate network nodes (node table routing) in order to make up
for this inconvenience. However, this approach significantly increases the latency for
a packet to pass through a router.

Finally, instead of storing the routing path in a table, it can be computed using
an algorithm, and this is usually done by means of a computational logic circuit. The
algorithmic approach comes at the cost of a loss of generality with respect to the
table-based approach. In fact, the algorithm is only specific to one topology and to
one routing strategy on that topology. On the other side, this mechanism turns out to
be more efficient (area- and performance-wise) than table-based routing.

17.4.2 NoC architecture

Messages that have to be transmitted across the network are partitioned into fixed-
length packets. Packets in turn are often broken into message flow control units called
flits. In the presence of channel width constraints, multiple physical channel cycles can
be used to transfer a single flit. A phit is the unit of information that can be transferred
across a physical channel in a single step. Flits represent logical units of information,
as opposed to phits that correspond to physical quantities. In many implementations,
a flit is set to be equal to a phit. The basic building blocks for packet-switched
communication across NoCs are network link, switch and network interface.

17.4.2.1 The link

The performance of interconnects is a major concern in scaled technologies. As
geometries shrink, gate delay improves much faster than the delay in long wires. It
has been estimated that only a fraction of the chip area (between 0.4 and 1.4 per cent)
will be reachable in one clock cycle [23]. Therefore, the long wires increasingly
determine the maximum clock rate, and hence performance, of the entire design.
The problem becomes particularly serious for domain-specific heterogeneous SoCs,
where the wire structure is highly irregular and may include both short and extremely
long switch-to-switch links.

A solution to overcome the interconnect-delay problem consists of pipelining
interconnects [24]. Wires can be partitioned into segments bounded by relay sta-
tions, which have a function similar to the one of latches on a pipelined data path.
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Segment length satisfies pre-defined timing requirements (e.g. desired clock speed
of the design). In this way, link delay is changed into latency, but data introduction
rate becomes decoupled from the link delay. This requires the system to be made
of modules whose behaviour does not depend on the latency of the communication
channels (latency insensitive operation). As a consequence, the use of interconnect
pipelining can be seen as a part of a new and more general methodology for deep sub-
micron (DSM) designs, which can be envisioned as synchronous distributed systems
composed by functional modules that exchange data on communication channels
according to a latency-insensitive protocol. This protocol ensures that functionally
correct modules behave correctly independently of the channel latencies [24]. The
effectiveness of the latency-insensitive design methodology is strongly related to
the ability of maintaining a sufficient communication throughput in the presence of
increased channel latencies.

The International Technology Roadmap for Semiconductors (ITRS) 2001 [25]
assumes that interconnect pipelining is the strategy of choice in its estimates of
achievable clock speeds. Some industrial designs already make use of interconnect
pipelining. For instance, the NETBURST micro-architecture of Pentium 4 contains
instances of a stage dedicated exclusively to handle wire delays: in fact, a so-called
drive stage is used only to move signals across the chip without performing any
computation and, therefore, can be seen as a physical implementation of a relay
station [26].

As an example, the ×pipesNoC supports pipelined links and latency-insensitive
operation in the implementation of its building blocks, and related design issues
are now briefly reported. Switch-to-switch links are subdivided into basic segments
whose length guarantees that the desired clock frequency (i.e. the maximum speed
provided by a certain technology) can be used. According to the link length, a certain
number of clock cycles is needed by a flit to cross the interconnect. These design
choices are at the basis of latency insensitive operation of the NoC and allow the
construction of an arbitrary network topology and hence support for heterogeneous
architectures, without creating clock cycle bottlenecks on long links.

The link model is equivalent to a pipelined shift register. Pipelining has been
used both for data and control lines, hence also for ACK lines used by ACK flits
to propagate from the destination switch back to the source one. This architecture
impacts the way link-level error control is performed in order to ensure robustness
against communication errors. In fact, multiple outstanding flits propagate across the
link during the same clock cycle. When flits are correctly received at the destination
switch, an ACK is propagated back to the source, and after N clock cycles (where
N is the length of the link expressed in number of repeater stages) the flit will be
discarded from the buffer of the source switch. On the contrary, a corrupted flit is
NACKed and will be retransmitted in due time. The implemented retransmission
policy is GO-BACK-N, to keep the switch complexity as low as possible.

Communication-related power minimisation is another critical NoC design
objective. ‘Dynamic voltage scaling’ has been recently applied to buses [27,28].
In Reference 28 the voltage swing on communication buses is reduced, even though
signal integrity is partially compromised. Encoding techniques can be used to detect
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corrupted data which is then retransmitted. The retransmission rate is an input to a
closed-loop DVS control scheme, which sets the voltage swing at a trade-off point
between energy saving and latency penalty (due to data retransmission).

The ‘On-Chip Network’ (OCN) for low power heterogeneous SoC platforms illus-
trated in Reference 14 employs some advanced techniques for low power physical
interconnect design. OCN consists of global links connecting clusters of tightly con-
nected IPs which are several millimeters long. By using overdrivers, clocked sense
amplifiers and twisted differential signalling, packets are transmitted reliably with
less than 600 mV swing. The size of a transceiver and the overdrive voltage are
chosen to obtain a 200 mV separation at the receiver end. A 5 mm global link of
1.6 µm wire-pitch can carry a packet at 1.6 GHz with 320 ps wire-delay and con-
sumes 0.35 pJ/bit. On the contrary, a full-swing link consumes up to 3× more power
and additional area of repeaters.

An on-chip serialisation technique [29] is also used in OCN, thus significantly
reducing area. However, the number of signal transitions on a link is increased since
the temporal locality between adjacent packets is removed. An ad hoc serialised low-
energy transmission coding scheme was therefore designed as an attempt to exploit
temporal locality between packets. The encoder generates a ‘1’ only when there is
difference between a current packet and a previous packet before it is serialised. The
decoder then uses this encoded packet to reconstruct the original input, using its
previously stored packet. A 13.4 per cent power saving is obtained for a multi-media
application. The power overhead associated with the encoder/decoder is only 0.4 mW.

17.4.2.2 Switch architecture

The task of the switch is to carry packets injected into the network to their final
destination, following a statically defined or dynamically determined routing path.
The switch transfers packets from one of its input ports to one or more of its
output ports. Switch design is usually characterised by a power–performance trade-
off: power-hungry switch memory resources can be required by the need to support
high-performance on-chip communication. A specific design of a switch may include
both input and output buffers or only one type of buffer. Input queuing uses fewer
buffers, but suffers from head-of-line blocking. Virtual output queuing has a higher-
performance, but at the cost of more buffers. Network flow control specifically
addresses the limited amount of buffering resources in switches.

Guaranteeing quality of service in switch operation is another important design
issue, which needs to be addressed when time-constrained (hard or soft real time)
traffic is to be supported. Throughput guarantees or latency bounds are examples
of time-related requirements. Contention-related delays are responsible for large
fluctuations of performance metrics, and a fully predictable system can be obtained
only by means of contention-free routing schemes. With circuit switching, a connec-
tion is set up over which all subsequent data is transported. Therefore, contention
resolution takes place during connection setup, and time-related guarantees dur-
ing data transport can be given. In time division circuit switching, bandwidth is
shared by time division multiplexing connections over circuits. In packet switching,
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contention is unavoidable since packet arrival cannot be predicted. Therefore
arbitration mechanisms and buffering resources must be implemented at each switch,
thus delaying data in an unpredictable manner and making it difficult to provide guar-
antees. Best effort NoC architectures can mainly rely on network oversizing to bound
fluctuations of performance metrics.

17.4.2.3 Network interface

The network interface (NI) is entrusted with several critical tasks: (1) providing a
standardised set of PP transactions to cores, (2) efficient mapping of PP transactions
into a (possibly large) set of network transactions, (3) interfacing with the packet-
based network fabric (packet assembly, delivery and disassembly).

The first objective requires the definition of a standardised PP interface. AMBA
AXI is an example of such an interface, but its definition and evolution is controlled by
a single company. To avoid the captivity risks associated with proprietary standards,
several core interface standardisation initiatives have been promoted. For instance,
the VSIA vision [30] is to specify open standards and specifications that facilitate
the integration of software and hardware virtual components from multiple sources.
Different complexity interfaces are described in the standard, from Peripheral Virtual
Component Interfaces (VCI) to Basic VCI and Advanced VCI. Another example of
standard socket to interface cores to networks is represented by Open Core Protocol
(OCP) [31]. Its main characteristics are a high degree of configurability to adapt to
the core’s functionality and the independence of request and response phases, thus
supporting multiple outstanding requests and pipelining of transfers (VCI and OCP
have recently announced a merger).

Data packetisation is a critical task for the NI, and has an impact on the com-
munication latency, besides the latency of the communication channel. The packet
preparation process consists of building packet header, payload and packet tail. The
header contains the necessary routing and network control information (e.g. source
and destination address). When source routing is used, the destination address is
ignored and replaced with a route field that specifies the route to the destination. This
overhead in terms of packet header is counterbalanced by the simpler routing logic at
the network switches: they simply have to look at the route field and route the packet
over the specified switch output port. The packet tail indicates the end of a packet and
may contain redundant checksum bits for error-detecting or error-correcting codes.

A very critical issue in the design of advanced network interfaces is the degree of
support for multiple outstanding transactions. Given the multi-hop nature of NoCs,
packet delivery latency (even without considering congestion-related latency) can
be high. For instance, even if ×pipes is highly tuned for low-latency operation,
each switch inserts two clock cycles’ latency, and pipelined links can significantly
increase latency. If every PP transaction blocks the core interface until completion,
network latency may seriously impact the bandwidth available to the cores, especially
if cores issue posted transactions (i.e. transactions which do not require a response
phase) or can initiate multiple outstanding transactions. It is important to note, how-
ever, that supporting multiple outstanding transactions significantly increases control



612 System-on-chip

complexity and buffering in the NI, and the hardware cost is justified only when
interfacing with advanced cores.

Before closing this section on NoC architecture and components, we need to men-
tion the important issue of synchronisation. Even though it may be possible to take the
simplifying assumption that an entire SoC is synchronised by a single clock, in reality
there is little doubt that all large-scale SoCs and their communication fabric will need
to support much more flexible synchronisation schemes. In fact, the cost (in terms of
area, power, design effort) of distributing a single clock at the frequency needed to
provide adequate performance is already unmanageable in current technology. Even
though some authors are investigating fully asynchronous communication schemes,
the most likely solution for NoC synchronisation is a ‘globally asynchronous, locally
synchronous’ (GALS) paradigm [32,33]. Flexible GALS synchronisation provides
an additional degree of freedom for NoC optimisation. For instance, if the NoC is
clocked faster than the core, very wide data transfers from cores can be serialised
in time over narrow network links [29]. This approach can greatly help in reducing
wiring congestion, especially for crossbars and for NoCs with reduced number of
hops and switches with a large number of input and output ports.

17.5 Overview of NoC prototypes

17.5.1 ×pipes
×pipes is a SystemC library of highly parameterisable, synthesiseable network
building blocks, optimised for low-latency and high-frequency operation. Communi-
cation is packet switched, with source routing (based upon street-sign encoding) and
wormhole flow control. ×pipes utilises OCP as a means to interface with the SoC
cores.

The ×pipes switch models the basic building block of the NoC switching fab-
ric. It implements a two-cycle-latency, output-queued router that supports fixed and
round robin priority arbitration on the input lines, and a flow control protocol with
ACK/NACK, Go-Back-N semantics.

Allocation of inputs towards specific output lines is handled at the ‘Alloca-
tor’ module. Multiple allocators exist in a switch, each driving one of its output
ports (Oi).

Assuming that one input is currently owning access to Oi , it is maintained in its
state until a tail flit arrives. Arbitration is subsequently performed upon receipt of a
header flit with routing information dictating that the incoming packet should exit
through Oi .

An input flit can be rejected, and therefore NACKed, due to one or more of the
following reasons:

• The output line is occupied by a previous transmitting packet.
• The buffering space for output Oi is already filled.
• Another header flit requesting the same output is concurrently appearing on

another input port, and arbitration is won by the latter.
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Figure 17.12 ×pipes 4 × 3 switch

If a flitA is dropped, then all subsequent incoming flits are dropped as well, until
flit A reappears at the input, adhering to a Go-Back-N flow control mechanism.

After a packet has won the arbitration, its header flit is properly adjusted in
order to prepare for the next switch along the routed path to the slave. More specifi-
cally, routing information pertaining to the current switch is rotated away; this allows
positioning of the per-hop routing bits at a fixed offset within the flits.

The switch is parameterisable in the number of its inputs and outputs, as well as
in the size of the buffering at the outputs. A 4×3 instantiation and the 4×3 allocator
are depicted in Figure 17.12.

The ×pipes NI is designed as a bridge between an OCP interface and the NoC
switching fabric. Its purposes are the synchronisation between OCP and ×pipes
timings, the packeting of OCP transactions into ×pipes flits and vice versa, the
computation of routing information and the buffering of flits to improve performance.

The ×pipesNI is designed to comply with version 2.0 of the OCP specifications.
In addition to the core OCP signals, support includes, e.g. the ability to perform both
non-posted or posted writes (i.e. writes with or without response) and various types of
burst transactions, including reads with single request and multiple responses. This
allows for thorough exploration of bandwidth/latency trade-offs in the design of a
system.

To provide complete deployment flexibility, the NI is parameterisable in both the
width of OCP fields and of ×pipes flits. Depending on the ratio between these
parameters, a variable amount of flits is needed to encode an OCP transaction.

For any given transaction, some fields (such as the OCP MAddr wires, specific
control signals, routing information) can be transmitted just once; in contrast, other
fields (such as the OCP MData or SData wires) need to be transmitted repeatedly,
for example during a burst transaction. Thus, the NI is built around two registers; one
holds the transaction header, while the second one holds the transaction payload. The
first register samples OCP signals once per transaction, while the second is refreshed
on every burst beat.

A set of flits encodes the header register; subsequently, multiple sets of flits are
pushed out, each set encoding one update of the payload register. Sets of payload
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Figure 17.13 ×pipes network interfaces

flits are pushed out until transaction completion. Header and payload content are
never allowed to mix in the same flit, thus simplifying the required logic. Routing
information is attached to the header flit of a packet by checking the transaction
address against a Look-Up Table (LUT).

As shown in Figure 17.13, two NIs are implemented in ×pipes, named ‘ini-
tiator’ (attached to system masters) and ‘target’ (attached to system slaves). A
master–slave device will need two NIs, an initiator and a target, for operation. Each
NI is additionally split in two submodules, one for the request and one for the response
channel. These submodules are loosely coupled: whenever a transaction requiring a
response is processed by the request channel, the response channel is notified; when-
ever the response is received, the request channel is unblocked. The mechanism is
currently supporting only one outstanding non-posted transaction.

The ×pipes interface of the NI is bidirectional; for example, the initiator NI
has an output port for the request channel and one input port for the response channel
(the target NI is dual). The output stage of the NI is identical to that of the ×pipes
switches, for increased performance. The input stage is implemented as a simple
dual-flit buffer with minimal area occupation, but still makes use of the same flow
control used by the switches.

17.5.2 Æthereal

The ‘Philips Æthereal’ NoC addresses the communication needs of consumer elec-
tronics SoCs with real-time requirements, such as those used in digital video set-top
boxes. Conceptually, the Æthereal router module consists of two independent routers.
The best effort router offers uncorrupted lossless (flow controlled) ordered data trans-
port. The guaranteed throughput router adds hard throughput and latency guarantees
over a finite time interval. Combining GT and BE routers ensures efficient resource
utilisation.

The GT router sub-system is based on a time-division multiplexed circuit switch-
ing approach. A router uses a slot table to (1) avoid contention on a link, (2) divide
up bandwidth per link between connections and (3) switch data to the correct output.
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Every slot table T has S time slots (rows), and N router outputs (columns). There is
a logical notion of synchronicity: all routers in the network are in the same fixed-
duration slot. In a slot s at most one block of data can be read/written per input/output
port. In the next slot, the read blocks are written to their appropriate output ports.
Blocks thus propagate in a store-and-forward fashion. The latency a block incurs per
router is equal to the duration of a slot and bandwidth is guaranteed in multiples of
block size per S slots.

The BE router uses packet switching, and it has been shown that both input
queuing with wormhole flow-control or virtual cut-through routing and virtual output
queuing with wormhole flow-control are feasible in terms of buffering cost. The BE
and GT router sub-systems are combined in the Æthereal router architecture. The
GT router offers a fixed end-to-end latency for its traffic, which is given the highest
priority by the arbiter. The BE router uses all the bandwidth (slots) that has not been
reserved or used by GT traffic. GT router slot tables are programmed by means of BE
packets. Negotiations, resulting in slot allocation, can be done at compile time, and
be configured deterministically at run time. The hardware view of the final router is
reported in Figure 17.14. The control paths of the BE and GT routers are separate, yet
interrelated. Moreover, the arbitration unit (including link level flow control for the
BE router) has been merged with the BE router itself. The data path, mainly consisting
of the switch matrix, is shared. In computer network router architectures, the buffers
of BE and GT traffic would be stored in a shared RAM. For the small amount of
buffering in on-chip routers (3 words/GT queue and 24 words/BE queue) using either
RAMs or register file memories would be very area inefficient. By using dedicated
GT and BE hardware first-in first-out buffers, the area of the router is reduced by
two-thirds.

A comparison between the hardware implementation of the ×pipes switch and
the Æthereal switch is quite instructive. Both switches have been targeted to similar
130 nm technologies. A ×pipes switch with 4 ports and 64b flits uses 0.19 mm2 of
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silicon area and can be clocked at 800 MHz. An Æthereal switch with 5 ports (32b
phits) uses 0.26 mm2 of silicon area and is clocked at 500 MHz. The internal buffering
in the ×pipes switch is 6 flits per output port while Æthereal is 24 phits per input
port. We note that the Æthereal switch achieves better buffer density, mainly because
it uses custom-designed FIFO macros, while the ×pipes switch is fully synthesised.
However, ×pipes is faster. This is probably due to the QoS support in Æthereal,
which impacts control complexity and ultimately cycle time.

The network interface is the bridge between a core and a router. It implements
end-to-end flow control, admission control and traffic shaping, connection setup and
teardown, and transaction reordering. Like the router, it contains a slot table, but has
dedicated hardware FIFOs per connection.

17.6 NoC design technology

NoC architectures are pushing the evolution of traditional IC design methodologies
in order to more effectively deal with functional diversity and complexity. At the
application level, the key design challenge is to expose task-level parallelism and
to formally capture concurrent communication in models of computation. Then,
high-level concurrent tasks have to be mapped to the underlying communication
and computation resources. At this level, an abstract model of the hardware architec-
ture is usually exposed to the mapping tool, so that area and power estimates can be
given in the early design stage, and different objective functions (e.g. minimisation
of communication energy) can be considered to evaluate the feasibility of alternative
mappings.

For NoC-based MPSoCs, a critical step in communication mapping is the net-
work topology selection for its significant impact on overall system performance,
which is increasingly communication-dominated. In this area, we can distinguish
two different approaches: namely, mapping onto pre-defined, regular topologies with
homogeneous nodes, and mapping onto ad hoc, application-specific topologies with
heterogeneous nodes. The first approach can leverage a large body of research from
traditional parallel computing, where the key problem is how to effectively map
complex parallel applications on given regular topologies (which are typically used
in highly parallel large-scale multiprocessors), and it is conceptually more tractable,
because it decouples topology definition and instantiation from mapping. A few early
approaches to this problem in a NoC setting have recently been proposed [34].

It is important to note, however, that the individual components of SoCs are
inherently heterogeneous with widely varying functionality and communication
requirements. The communication infrastructure should optimally match commu-
nication patterns among these components accounting for the individual component
needs. As an example, consider the implementation of an MPEG4 decoder [35],
depicted in Figure 17.15(b), where blocks are drawn roughly to scale and links rep-
resent inter-block communication. First, the embedded memory (SDRAM) is much
larger than all other cores and it is a critical communication bottleneck. Block sizes are
highly non-uniform and the floorplan does not match the regular, tile-based floorplan
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as shown in Figure 17.15(a). Second, the total communication bandwidth to/from the
embedded SDRAM is much larger than that required for communication among the
other cores. Third, many neighbouring blocks do not need to communicate. Even
though it may be possible to implement MPEG4 onto a homogeneous fabric, there
is a significant risk of either under-utilising many tiles and links, or, at the oppo-
site extreme, of achieving poor performance because of localised congestion. These
factors motivate the use of an application-specific on-chip network.

With an application-specific network, the designer is faced with the additional
task of designing network components (e.g. switches) with different configurations
(e.g. different I/Os, virtual channels, buffers) and interconnecting them with links
of uneven length. These steps require significant design time and the need to verify
network components and their communications for every design. The library-based
nature of network building blocks seems to be the more appropriate solution to support
domain-specific custom NoCs. The ×pipes NoC takes this approach. As described
in the previous section, its network building blocks have been designed as highly
configurable and design-time composable soft macros described in SystemC at the
cycle-accurate level. An optimal system solution will also require an efficient map-
ping of high-level abstractions on to the underlying platform. This mapping procedure
involves optimisations and trade-offs between many complex constraints, includ-
ing quality of service, real-time response, power consumption, area, etc. Tools are
urgently needed to explore this mapping process, and assist and automate optimisation
where possible. The first challenge for these tools is to bridge the gap in building cus-
tom NoCs that optimally match the communication requirements of the system. The
network components they build should be highly optimised for that particular NoC
design, providing large savings in area, power and latency with respect to standard
NoCs based on regular structures.

17.6.1 NoC synthesis case study: xpipes

The design methodology has to partition the design problem into manageable tasks
and to define the tools and practices for those tasks. In this section, we illustrate the
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challenges of NoC synthesis using an example NoC synthesis flow, called NetChip
[36], for designing domain-specific NoCs and automating most of the complex and
time-intensive design steps. NetChip provides design support for regular and custom
network topologies, and therefore lends itself to the implementation of both homoge-
neous and heterogeneous system interconnects. NetChip assumes that the application
has already been mapped onto cores by using pre-existing tools and the resulting cores
together with their communication requirements represent the inputs to the synthesis
flow.

The tool-assisted design and generation of a customised NoC-based sys-
tem is achieved by means of three major design activities: topology mapping,
topology selection and topology generation. NetChip leverages two tools: SUN-
MAP, which performs the network topology mapping and selection functions, and
×pipesCompiler, which performs the topology generation function. SUNMAP
produces a mapping of cores onto various NoC topologies that are defined in a
topology library. The mappings are optimised for the chosen design objective (such
as minimising area, power or latency) and satisfy the design constraints (such as
area or bandwidth constraints). SUNMAP uses floorplanning information early in
the mapping process to determine the area-power estimates of a mapping and to
produce feasible mappings (satisfying the design constraints). The tool supports var-
ious routing functions (dimension ordered, minimum-path, traffic splitting across
minimum-paths, traffic splitting across all paths) and chooses the mapping onto the
best topology from the library of available ones.

A design file describing the chosen topology is input to the ×pipesCompiler,
which automatically generates the SystemC description of the network components
(switches, links and network interfaces) and their interconnection with the cores. A
custom hand-mapped topology specification can also be accepted by the NoC synthe-
siser, and the network components with the selected configuration can be generated
accordingly. The resulting SystemC code for the whole design can be simulated at
the cycle-accurate and signal-accurate level.

The complete ×pipesCompiler flow is summarised as follows. From the
specification of an application, the designer (or a high-level analysis and exploration
tool, such as SUNMAP) creates a high-level view of the SoC floorplan, includ-
ing nodes (with their network interfaces), links and switches. Based on clock speed
target and link routing, the number of pipeline stages for each link is also speci-
fied. The information on the network architecture is specified in an input file for the
×pipesCompiler. Routing tables for the network interfaces are also specified.
The tool takes as additional input the SystemC library of soft network components,
based on the architectural templates described in Section 17.4.2. The output is a
SystemC hierarchical description, which includes all switches, links, network nodes
and interfaces and specifies their topological connectivity. The final description can
then be compiled and simulated at the cycle-accurate and signal-accurate level. At this
point, the description can be fed to back-end RTL synthesis tools for silicon implemen-
tation. In a nutshell, the ×pipesCompiler generates a set of network component
instances that are custom-tailored to the specification contained in its input network
description file. This tool allows comparison of the effects (in terms of area, power
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and performance) of mapping applications on customised domain-specific NoCs and
regular (e.g, mesh) NoCs.

As an example, let us focus on the MPEG4 decoder. Its core graph representa-
tion together with its communication requirements are reported in Figure 17.16. The
edges are annotated with the average bandwidth requirements of the cores in MB/s.
Customised application-specific NoCs that closely match the application’s commu-
nication characteristics have been manually developed and compared with a regular
mesh topology. The different NoC configurations are reported in Figure 17.17. In the
MPEG4 design considered, many of the cores communicate with each other through
the shared SDRAM. Therefore, a large switch is used for connecting the SDRAM with
other cores (Figure 17.17(b)), while smaller switches are employed for other cores.
An alternate custom NoC is also considered (Figure 17.17(c)): it is an optimised
mesh network, with superfluous switches and switch I/Os removed. Area (in 0.1 µm
technology) and power estimates for the different NoC configurations are reported in
Table 17.1. The area calculations are based on analytical models of ×pipes switch
area, including crossbar area, buffer and logic area. Although all cores communi-
cate with many other cores and therefore many switches are needed, area savings for
custom NoCs are significant.

The power dissipation for the NoC designs has been estimated using the analytical
models proposed in Reference 37. These models account for the hardware complexity
of the switches as well as the traffic passing through them. Power savings for the
custom NoC1 are not relevant, as most of the traffic traverses the larger switches
connected to the memories. As power dissipation on a switch increases non-linearly
with increase in switch size, there is more power dissipation in the switches of custom
NoC1 (that has an 8 × 8 switch) than the mesh NoC. However, most of the traffic
traverses short links in this custom NoC, thereby giving marginal power savings for
the whole design. In contrast, the NoC2 solution is much more power-efficient.

Figure 17.18 reports the variation of average packet latency (for 64B packets, 32
bit flits) with link bandwidth. Custom NoCs, as synthesised by ×pipesCompiler,
have lower packet latencies as the average number of switches and link traversals is
lower. At the minimum plotted bandwidth value, almost 10 per cent savings in latency
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Figure 17.17 NoC configurations for MPEG4 decoder

are achieved. Area, power and performance optimisations by means of custom NoCs
turn out to be more difficult for MPEG4 than for other applications such as Video
Object Plane Decoders and Multi-Window Displayer, where more significant savings
have been obtained [21].

To conclude, we observe that the custom NoC synthesis approach is viable and
competitive only if supported by a complete and robust design flow and toolset. Even
though fully automated NoC synthesis enables re-use of pre-designed components
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Table 17.1 Area and power estimates for NoC config-
urations

Instance Area (mm2) A Ratio Power (mW ) P Ratio

Mesh 1.31 1.00 114.36 1.00
Custom 1 0.86 1.52 110.66 1.03
Custom 2 0.71 1.85 93.66 1.22
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Figure 17.18 Average packet latency as a function of the link bandwidth

(i.e., the soft macros) without compromising flexibility, the quality of components
synthesised starting from soft macros can be lower than that of highly optimised
custom-designed hard macros. Hence, much work has to be done, especially in the
synthesis backend (RTL and logic optimisation, placement and routing), to fully
exploit the advantages of this approach with respect to regular and homogeneous
NoC architectures.

17.7 Conclusions

This chapter reviewed the guiding principles that are driving the evolution of SoC
communication architectures from state-of-the-art shared buses to forward-looking
NoC architectures. It shows how the large gap (in terms of design technology) between
these two solutions is currently being bridged by means of bus protocols, aiming at a
better exploitation of the available bandwidth for on-chip communication, as well as
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bandwidth-enhancing bus topology evolutions. Finally, NoC design issues are dis-
cussed and some early research prototypes are described as case studies, pointing out
the need for new design skills and methodologies in order to fully exploit the benefits
of these architectures.
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Chapter 18

Asynchronous on-chip networks

Manish Amde, Tomaz Felicijan, Aristides Efthymiou,
Douglas Edwards and Luciano Lavagno

18.1 Introduction

The main idea of an SoC design methodology is to ‘divide’ complex chips into several
independent functional blocks and ‘conquer’ each of them using standard synchronous
methodologies and existing CAD tools. These functional blocks are then connected
by the means of an on-chip communication infrastructure to form a functional
system.

Dividing a chip into smaller blocks keeps the technology scaling problems, such
as clock-skew, manageable, however this is only true for each individual block,
while the problems aggravate drastically for the interconnect itself. This is because
the network elements may be scattered all over the chip connected by relatively long
wires which do not scale well in deep sub-micron technologies [1]. Synchronising
such a network with a single clock source is problematic at best.

There are major problems in having various synchronous on-chip communication,
namely:

• Modularity and design reuse: In the synchronous world, a complete redesign on
the chip is needed if a component of the chip is modified or if the frequency
of operation is changed, thus making the design non-modular. Normally, all the
components have to be redesigned at the same new clock frequency or at rationally
related ones. This leads to waste of design effort. Globally asynchronous locally
synchronous (GALS) IP cores with asynchronous interfaces would make them
amenable for design reuse.

• Electromagnetic interference (EMI): All the switching activity in a synchronous
chip takes place at a given clock tick making the circuit prone to EMI effects.
In comparison, switching activity is distributed over time in a clock-less chip.
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• Worst-case performance: The circuit is always designed for the worst-case
performance, since the critical path in the circuit determines the clock period.

• Clock power consumption: Large clock buffer trees present in current design
lead to a high power consumption. Studies show that high-speed processors have
power consumption dominated by clock and the average clock power consumption
by the clock is 45 per cent of the total power consumed [2]. Similar statistics
are reported for high- and medium-speed application-specific integrated circuits
(ASICs) as well.

• Clock skew: The problem of distributing the global clock in a chip with min-
imal clock skew is getting difficult to solve due to the increase in clock
frequencies, smaller feature sizes and growing design complexities. Few ASIC
designers can afford the sophisticated calibration techniques used in leading
edge microprocessors [3], and would like to enjoy the intrinsic robustness
with respect to manufacturing and runtime variability that asynchronous circuits
exhibit.

Due to the above-mentioned problems in using a synchronous design style, efforts
are being made to design chips asynchronously. A significant advantage of asyn-
chronous design is smoother handling of both fabrication-time inter-chip and runtime
intra-chip variability (the latter requires completion detection, the former only delay
matching). Also, all the aforementioned problems associated with the distribution of
global clock over the entire chips like – clock power consumption, clock skew and
EMI – are eliminated. Moreover, the designs become modular since timing assump-
tions are explicit in the hand-shaking protocols. Hence no redesign is needed if an
asynchronous component is modified. Furthermore, the circuit would work faster,
exploiting average case rather than worst-case performance.

There has been a remarkable resurgence of interest in asynchronous design since
the mid-1980s. Since the early to mid-1990s, a number of asynchronous chips and
designs have been successfully fabricated for substantial designs in both industry
and academia. These include an infrared communication chip at HP Laboratories
[4], an instruction-length decoder at Intel [5], a configurable self-timed digital sig-
nal processor (DSP) [6,7], high-speed first-in first-outs (FIFOs) and routing fabric
at Sun Laboratories, and microprocessors at University of Manchester, Caltech and
University of Tokyo (see Reference 8, and the accompanying issue, for more details).
In the late 1990s, Philips Semiconductors introduced asynchronous microcontroller
chips into commercial pagers and cell phones. All of this activity suggests two trends:
(1) a growing acknowledgement by industry and academia of some potential advan-
tages of asynchronous design and (2) the beginnings of maturity in establishing
practical design styles and sound synthesis techniques for asynchronous controllers
and datapaths.

But asynchronous design strategies also come with their own set of problems.
Asynchronous design is a more difficult task compared to synchronous design. Glitch-
free circuits have to be generated as compared to synchronous domain where the data
only has to be stable before the arrival of the clock. Also, asynchronous design suffers
from the absence of industrial tool support. Lack of a mature tool flow has prevented
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Figure 18.1 System level view of GALS

this methodology from being widely adopted by designers in industry. (For more
information on asynchronous synthesis, see Part V, Chapter 16.)

Moreover, several asynchronous circuit implementation techniques have a very
high overhead in terms of area, delay and possibly even power consumption. This is
due to the fact that truly asynchronous datapaths require implementing each signal in
dual rail, and collecting acknowledgements from every gate output in the circuit. In
this chapter we will survey techniques that avoid such large overhead, at the expense
of fewer gains in terms of, e.g. EMI and average case performance.

The GALS and desynchronisation design styles that are described below, are
aimed at filling the gap between the purely synchronous and asynchronous domains.
They consist of synchronous modules communicating asynchronously as shown in
the system-level view in Figure 18.1. These methodologies are promising because
they allow synchronous design of components at their own optimum clock frequency,
but facilitate asynchronous communication between modules. This leads to a design
flow fairly similar to the synchronous flow but with a few additional components
which enable asynchronous communication. It eliminates the global clock leading to a
reduction of power consumption and alleviating the clock skew problem. It facilitates
modular system design which is scalable. Close resemblance to synchronous design
also makes it amenable to attract the attention of synchronous designers who are not
willing to experiment with asynchronous design.

GALS refers to a communication framework in which local clocks are either
unsynchronised or paused. This means that there is a risk of metastability at the
interfaces which is not present in ‘traditional’ speed-independent or delay-insensitive
asynchronous circuits [19]. Metastability is a condition where the voltage level of
signal is at an intermediate level – neither 0 nor 1 – and which may persist for an
indeterminate amount of time.

Desynchronisation bears some similarity to GALS techniques, in that the datapath
remains essentially synchronous and its clocks are locally generated, but it prevents
metastability completely by using handshakes. As such, a desynchronised circuit can
be obtained automatically from a synchronous one. It has approximately the same
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area, power and performance, but lower EMI, due to the spreading over time of clock
edges, and better modularity, due to the explicit handshakes between components that
automatically satisfy local timing constraints.

However, GALS and desynchronisation are not able to provide the designer with
the full power of asynchronous techniques. We thus also review some logic synthesis
methods that have been proposed in the past to deal with asynchronicity at the gate
level. The full domain of asynchronous synthesis techniques is too broad to be covered
in a survey chapter. The interested reader is referred to Reference 8 for a recent
collection of papers.

In this chapter we first present formal frameworks for the analysis of transfor-
mations from synchronous to asynchronous systems, and their implementation in the
desynchronisation flow. Next we discuss speed-independent circuits and their logic
synthesis techniques. We then proceed to explain various schemes for implementing
GALS-based systems. We finally conclude with a discussion on asynchronous NoCs,
and with a case study.

The chapter is organised as follows. Section 18.2 describes formal frameworks for
analysing the relationship between synchronous and asynchronous circuits, as imple-
mented by desynchronisation strategies. Section 18.3 describes speed-independent
asynchronous circuit specification and synthesis methods, which are often used
to synthesise the controllers for the other techniques discussed in this chapter.
Section 18.4 discusses some mixed-mode synchronous and asynchronous strategies,
mostly based on ad hoc approaches. Section 18.5 investigates interfacing schemes
based on pausable clocks. Section 18.6 describes GALS control blocks, their circuit
implementations and key figures such as latency and throughput. Section 18.7 gives
an insight into the state-of-the-art in asynchronous NoCs. Section 18.8 describes
quality of service (QoS) for NoCs. Section 18.9 presents a case study of the NoC
circuitry implemented in the Asynchronous Open Source Processor IP of the DLX
Architecture (ASPIDA) project. Section 18.10 compares and contrasts the various
approaches.

18.2 Formal models

18.2.1 Signal transition graphs and state graphs

Speed-independent circuits are designed at the gate level to be hazard free using
the unbounded gate delay model. The most popular specification style for speed-
independent circuits are signal transition graphs (STGs) [9]. These graphs are a class
of interpreted Petri Nets [10] that allow the designer to comfortably capture the
behaviour of an asynchronous circuit in a manner that is quite similar to timing
diagrams.

As an example consider Figure 18.2(a), which depicts the interface of a device
with a VME bus. The behaviour of the controller is as follows: a request to read from
or write into the device is received by one of the signals DSr or DSw, respectively.
In a read cycle, a request to read is done through signal LDS. When the device has
the data ready (LDTACK), the controller must open the transceiver to transfer data
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Figure 18.2 (a) VME bus controller, (b) timing diagram, (c) STG and (d) SG for the
read cycle

to the bus (signal D). In the write cycle, data is first transferred to the device (D).
Next, a request to write is done (LDS). Once the device acknowledges the reception
of the data (LDTACK), the transceiver must be closed to isolate the device from the
bus. Each transaction must be completed by a return-to-zero of all interface signals,
seeking for a maximum parallelism between the bus and the device operations.

Figure 18.2(b) shows a timing diagram of the read cycle and Figure 18.2(c) the
corresponding STG. All events in this STG are interpreted as signal transitions: rising
and falling edges are labelled with ‘+’ and ‘−’, respectively (we also use the notation
a∗ if we are not specific about the direction of the signal transition).

An STG has two types of vertices: transitions and places (circles). Places can
be marked with tokens (black dots). The set of all places currently marked is called
a marking. A transition is enabled if all its input places contain a token. In the initial
marking of the STG in Figure 18.2(c) only one transition, DSr+, is enabled; LDS+ is
not enabled because its input place p2 does not have a token. Every enabled transition
can fire. Firing removes one token from every input place of the transition and adds
one token to each of its output places. After the firing of transition DSr+ the net moves
to a new marking {p1,p2} and then LDS+ becomes enabled, while other transitions
(none in this case) sharing the same input place(s) may be disabled due to the lack
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of input tokens. Transitions are called concurrent if they both can fire from some
marking without disabling each other. By exhaustively exploring reachable markings
of the STG and associating each of them with a binary code of signal values, one
can generate the ‘state graph’ (SG). Figure 18.2(d) depicts the SG for the read cycle
of the VME bus controller, with binary codes labelling the states (enabled signals in
each state are marked with a prime). State graphs are of primary importance since
they form the basis of logic synthesis for speed-independent circuits.

18.2.2 Multi-clock Esterel

Synchronous design tools have a wide range of tools giving rise to a tried and
tested design flow. Asynchronous circuits suffer from lack of mature design flow
and efforts are being made to capture the asynchronous behaviour of GALS system
in the synchronous domain. One effort in this direction is Multi-clock Esterel [11].

Synchronous languages [12,13] have a significant advantage with their ability
to prove correctness of the hardware circuits before they are actually implemented.
Esterel is a synchronous language used for modelling reactive systems interacting
with the environment. It is an imperative language and hence uses variables which
retain their value until updated. It is used mainly for modelling controller applications
and provides synchronous parallelism. Hence, it could also be used for modelling
hardware systems. Esterel inherently assumes a global clock and it cannot handle a
system with multiple clocks.

Multi-clock Esterel provides a framework for modelling multiple local clocks as
well as enabling asynchronous communication between various components in the
design. It also provides a clean model for integrating Verilog/VHDL features in a
design. It aims to retain the existing features of reactive languages like pre-emption
and more importantly verifiability. It can be considered to satisfy the ‘synchrony
hypothesis’ as its reactions can be associated with local clock ticks.

The asynchronous communication between concurrently running locally clocked
reactive components is based on latches with limited memory. In Reference 11 the
authors show an example design of a Micropipeline in a modular fashion and show
Multi-clock Esterel modules could be composed in a hierarchical fashion.

Multi-clock Esterel could also be used to model a subset of Verilog Hardware
Description Language (VHDL) code enabling the possibility of hardware software
codesign using VHDL while verifying the entire design in the synchronous paradigm
of Multi-clock Esterel.

18.2.3 Signal/Polychrony framework

The goal of this research is to model GALS in a multi-clock synchronous environment
and map it to an asynchronous system preserving all the properties proven in the
synchronous domain.

Signal [12] is a programming framework which provides a formal way of mod-
elling various synchronous components running on different clocks and validating that
the asynchronous composition of the various components would lead to a functionally
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correct behaviour. It achieves this by transforming the asynchronous composition of
the various synchronous components having different clocks to a fully synchronous
multi-clock model preserving behavioural equivalence. The synchronous model takes
advantage of verification tools available for the synchronous languages. The correct
behaviour can thus be checked by extensive simulation and model-checking in the
synchronous domain.

This methodology could be used in integrating various intellectual property (IP)
cores designed at different clock frequencies using a desynchronisation protocol and
formally verifying the functional correctness of this GALS network.

In Reference 14, the authors provided a formal way of capturing asynchrony in
the synchronous framework of Signal. They prove that an ideal asynchronous model
can be completely mapped in Signal with unbounded first-in first-out (FIFOs) for
inter-component communication. They also show that the class of synchronous mod-
els that can be implemented asynchronously without any loss in semantics, i.e. while
preserving the deterministic behaviour which is a key characteristics of synchronous
models, must satisfy the properties of endochrony and isochrony. Roughly speaking,
endochrony means that a component, whose interface is going to be made asyn-
chronous, must be able to tell from the values of its inputs which inputs must be read
next. This approximately corresponds to the sufficient property stated by Kahn [15]
to ensure determinate behaviour for the data flow networks, namely that processes
cannot probe input FIFOs for presence of data. Isochrony, on the other hand, means
that if two components share a variable, they must agree on the values which are
assigned to it at each step. Note that, unfortunately, the identification of bounds to
the size of FIFO channels in Kahn Process Networks is undecidable [16], and hence
the problem of correctly deploying an arbitrary synchronous system onto an asyn-
chronous architecture must be solved by a human, using a lot of simulation, iteration
and guesswork.

The high-level system specification is transformed into a low-level circuit rep-
resentation through a series of steps. At each step, the transformation from a higher
to lower level of abstraction should preserve the correctness across the transforma-
tion. Polychrony [17] is a platform which along with the synchronous programming
framework of Signal provides formal refinement of multi-clocked models from high-
level behavioural specification to the low-level synthesis and implementation of
these models using formal verification techniques. Polychrony takes a high-level
SystemC/SpecC specification and refines it in a semantic-preserving manner towards
a GALS implementation. This allows one to leverage the implementation of various
synchronous components with multiple clocks with assurance of a functionally correct
asynchronous communication between different clocked synchronous components.

The advantage of using Polychrony in a high-level design flow is that it automates
the complex task of formal design verification at each stage of refinement and renders
the low-level implementation formally correct. The polychronous model of Signal
formally captures the behavioural abstractions from SystemC/SpecC programs as
well as behavioural specifications from IP cores. The Polychrony platform aids in
automating the synthesis of behavioural specifications while formally verifying the
correctness of the transformation at each design flow step. Hence, one can rapidly
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Figure 18.3 Synchronous and desynchronised pipelined circuit

codesign hardware/software GALS architectures while being assured of formally
conforming to the original behavioural specifications.

18.2.4 Desynchronisation

Desynchronisation [18] builds upon these theoretical foundations in order to provide
the designer with the option to derive a medium-grained asynchronous implemen-
tation from a traditional synchronous specification. Assuming an initial design
implemented with edge-triggered flip-flops, it requires the following steps:

1 Conversion of the flip-flop-based synchronous circuit into a latch-based one
(M and S latches in Figure 18.3(b)),

2 Generation of matched delays for combinational logic (rounded rectangles in
Figure 18.3(b)) and

3 Interconnection of controllers for local clocks.

The method for desynchronising an arbitrary netlist relies on composition of
the controllers. It requires to identify direct connections, via combinational logic,
between adjacent groups of latches, and then the overall clock generation circuit
is obtained through composition of timing diagrams corresponding to these partial
descriptions.

The specification of a pairwise interaction between even–odd and odd–even
latches for overlapping desynchronisation is shown in Figure 18.4. It models the
communication of data from latch A to latch B. The latches are transparent when the
control signal is high. Initially, only half of the latches contain data (D). Data items
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Figure 18.4 Synchronisation between latches: (a) even → odd, (b) odd → even

Table 18.1 Synchronous vs. desynchronised DLX

Synchronous Desynchronised
DLX DLX

Cycle time 4.4 ns 4.45 ns
Dyn. power cons. 70.9 mW 71.2 mW
Area 372 656 µm2 378 058 µm2

flow in such a way that a latch never captures a new item before its successor latches
have captured the previous one.

Data overwriting can never occur, even though the pulses for the latch control can
overlap. This model is based on the observation that a data item can ripple through
more than one latch, as long as the previous values stored in those rippling latches
have already been captured by the successor latches. As an example, event B+ can
fire as soon as data is available in A (arc A+ → B+) and the previous data in B has
been captured by C (arc C− → B+).

Reference 18 suggests that desynchronisation results in circuits with almost iden-
tical area, performance and power consumption as the original synchronous ones.
Desynchronised circuits, however have smaller EMI, due to the out-of-phase clocks,
and better modularity, due to the explicit handshakes encapsulating timing constraints.
A comparison between a synchronous and a desynchronised version of the same
processor is shown in Table 18.1

The electromagnetic emission advantages can be seen by looking at the spectrum
of the current absorbed by the circuit from the power rails, shown in Figure 18.5.

18.3 Speed-independent circuit implementation

This section describes implementation techniques for asynchronous controllers,
which are used by the other methods described in this chapter. Speed-independent
design techniques use fully asynchronous models for both specification and imple-
mentation, and hence can be used, due to the state explosion problem, only for small
components.
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nised (below) DLX

The following properties must hold in an SG, e.g. derived from an STG, to be
implementable as a speed-independent circuit [19]:

• Consistency holds when rising and falling transitions alternate for each signal.
• Complete state coding ensures that any two states with the same binary code have

the same set of enabled output signals, as discussed below.
• Output-persistency holds when no output signal transition can be disabled by

another signal transition, thus ensuring that no hazard can appear at the gate
outputs.

The latter property is often associated with the notion of ‘acknowledgement’. Infor-
mally, we say that transition b∗ acknowledges transition a∗ if the fact that b∗ fires
after a∗ has been enabled indicates that a∗ has already fired. We say that a∗ is
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acknowledged if any firing sequence starting from a∗ enabled is acknowledged by
some transition.

The main steps in the logic synthesis assume that the SG is consistent and output-
persistent, and are as follows.

1 Encode the SG in such a way that the complete state coding property holds (this
may require the addition of internal signals).

2 Derive the ‘next-state’ functions for each output and internal signal of the circuit.
3 Map the functions onto a netlist of gates.

The next-state function for a signal a maps the binary code of each SG
state s into:

• 1 if the signal has value 0′ or 1 in the binary code of s (it is either excited to go to
1, or stable at 1)

• 0 if the signal has value 1′ or 0 in the binary code of s
• – (don’t care) for all binary codes that do not correspond to any reachable SG

state.

For example, the next-state function of signal LDS in Figure 18.6(a) has value 1 in
states labelled 1000′01 and 10′1111, value 0 in states labelled 0′011′00 and 0′00000,
and value – in states labelled 010100. The set of states in which a signal has value 0′
(resp. 1′) is called the ‘excitation region’ (ER) for its rising (resp. falling) transition.
For example, the excitation region of LDS+ in Figure 18.6(a) is the state labelled
1000′01. The set of states in which a signal has value 1 (resp. 0) is called the ‘quiescent
region’ (QR) for its rising (resp. falling) transition. Thus the next state function for
signal LDS has value 1 in ER (LDS+) ∪ QR (LDS+) and value 0 in ER (LDS−) ∪
QR(LDS−).

This definition, however, has a problem, as shown by the two underlined states
in the SG in Figure 18.2(d). These states correspond to different markings, {p4} and
{p2,p8}, but their binary codes are equal, 10110. Moreover, enabling conditions
in these two states for output signal LDS are different. Therefore, the value of the
next state Boolean function for signal LDS for vector 10110 should be 1 for the first
state and 0 for the second state. A similar problem holds for signal D. The result is
a conflict in the definition of the function. A possible method to solve this problem
is to insert new state signals that disambiguate the encoding conflicts and ensure the
satisfaction of complete state coding. This is the equivalent of the state assignment
step in the case of synchronous circuits. Figure 18.6(a) depicts a new SG in which
a new signal, csc0, has been inserted. Now the next-state functions for signals LDS
and D can be uniquely defined. The insertion of new signals must be done in such a
way that the resulting SG satisfies consistency and output-persistency, as discussed
in References 20 and 21.

Once the next-state function has been derived, Boolean minimisation can be per-
formed to obtain a logic equation that implements the behaviour of the signal. In this
step, it is crucial to make an efficient use of the don’t care conditions. For the example
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of Figure 18.6, the following equations can be obtained:

D = LDTACK · csc0

LDS = D + csc0

DTACK = D

csc0 = DSr · LDTACK + csc0 · (DSr + LDTACK)

The implementability properties of the SG ensure that any circuit implementing
the next-state function of each signal with only one complex gate does not have
any hazard under the unbounded gate delay model [19]. A possible hazard-free gate
implementation for the next-state function of the read cycle example is shown in
Figure 18.6(b), where the sequential gate shown as a circle with ‘C’ is a so-called
C element [19] with next state function c = ab + c(a + b).

The design flow discussed above has an essential problem, because logic func-
tions for signals might be too complex to be mapped into single gates available in
the library, and hence must be decomposed in order to make them implementable.
Unfortunately, this step introduces new internal signals that may cause hazards. On
the other hand, ‘merging gates’ does not cause new hazards in speed-independent (SI)
circuits. Hence, classical methods for combinational logic technology mapping can
be used to combine gates, after an appropriate decomposition has been found [22].

The approach discussed in this section splits the problem of ‘hazard-free logic
decomposition’ of a gate into two subproblems: (1) combinational decomposition
(aiming at decompositions of the following type: C = F ·G+ R), and (2) insertion
of a new hazard-free signal. This process is iterated until all gates of the circuit can be
mapped onto library gates or no more progress can be achieved, e.g. because no
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Figure 18.8 Implementation of the STGs of Figure 18.7

hazard-free decomposition can be found for any of the complex gates. Figure 18.7(a)
and (b) depicts the STG and the SG of the specification of a circuit. A complex gate
implementation of the circuit is shown in Figure 18.8(a).

Let us assume that only two-input gates are available in the library. Thus, signals
a and b are not directly mappable and must be decomposed without violating output-
persistency. To illustrate this point, let us decompose the gate a in Figure 18.8(a) by
extracting the factor y = cb′. The ON- and OFF-sets of the function for y are shown
in Figure 18.7(e) by the shaded areas. When the circuit enters state 0000 (underlined
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in Figure 18.7(e)) two transitions may occur concurrently: c+ and b+. Firing c+ first
will enable gate y = cb′ to make a transition from low to high, while b+ pulls the
output of the gate again to low. In a speed-independent circuit, no assumptions can be
made about the relative speed of concurrent transitions and therefore the considered
situation is a classical illustration of hazardous behaviour on the output of gate y.
Hence, the decomposition y = cb′ is invalid.

Each divisor of C is a candidate function to be implemented as a new signal x of
the circuit. Hazard-freedom is guaranteed for it as follows. Two new events, namely
x+ and x−, are inserted in the SG so that the properties for SI implementability are
preserved. The new events are defined in such a way that the implementation of signal
x corresponds to the selected divisor for decomposition. If x+ and x− can be inserted
under such conditions, x is hazard-free. Now, x can be used as a new input to any
function cover and contribute to derive simpler equations.

Let us consider again the example of Figure 18.7 and look for a hazard-free
decomposition. Among the different factors for a and b, there is one that is especially
interesting for the possible sharing of the logic: x = cd. The insertion of the events
x+ and x− must be done according to the implementation of the signal as x = cd.
The shaded areas in Figure 18.7(b) indicate the sets of states in which the Boolean
function cd is equal to 0 and 1, respectively. x+ must implement the transition from
the states in which cd is equal to 0, to the states in which cd is equal to 1, i.e. x+
must be a successor of d+; whereas x− must implement the opposite transition and
therefore is inserted after c−.

Figure 18.7(c) and (d) depict two possible insertions of signal x at the STG level.
Both insertions result in specifications that are implementable as different SI circuits,
shown in Figure 18.8(b) and (c), respectively. Interestingly, both can be implemented
with only two-input gates. However, the insertion of x− as a predecessor of a− and
d− (Figure 18.7(c)) changes the implementation of signal d, because the fact that x−
triggers d− forces x to be in the support of any realisation of d. A simpler circuit can be
obtained if x− is made concurrent with d− and thus only trigger a− (Figure 18.7(d)).
Therefore, the insertion of new signals for logic decomposition can be performed by
exploring different degrees of concurrency with regard to the behaviour of the rest of
the signals. Finding the best trade-off between concurrency and logic optimisation is
one of the crucial problems in the decomposition of SI circuits.

The interested reader can find further discussion, including decomposition and
matching techniques for ‘sequential’ gates, in Reference 23.

18.4 Mixed synchronous/asynchronous solutions

The Pentium 4™ processor [3] uses 47 different clock domains, whose skew relative to
a global reference clock is programmable. Domain clocks were intentionally skewed
to improve operating frequency and up to one speed bin improvement is reported.
The design uses two phase-locked loops (PLLs) – one for the core and one for the
input/output (I/O) logic. From these, six different clock frequencies are derived. The
Pentium 4™ also has critical portions (e.g. the arithmetic and logic unit (ALU))
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working at twice the clock frequency of the rest of the chip [3]. Non-critical ones
work at half the clock frequency, in order to save area, power and design effort.

The Alpha processor [24] illustrates the need for flexible clocking schemes in
order to enable core reuse in system-on-chip (SoC) designs. The entire chip is parti-
tioned into 11 clock domains, where one domain is a migration of a processor core
from an older design. The existing clock distribution in this embedded core is used
as a reference clock. Four major clocks (one reference and three derived) are used to
clock separate chip sections. Delay-locked loops (DLLs) are used to maintain small
phase alignment errors among major clocks.

An example of mixed synchronous and asynchronous implementation is given in
Reference 25, which presents the design of a digital finite impulse response (FIR)
filter used in read channels of modern disk drives. The degree of pipelining in the
filter is dynamically variable and depends on the input data rate. The performance of
this filter was found to be better than existing read channel filters.

The high-speed asynchronous portion of the chip is sandwiched between two
synchronous portions. The asynchronous datapath in the chip uses dual-rail dynamic
logic and the synchronous datapath in the chip uses single-rail static logic. The asyn-
chronous section relies upon handshakes for communication whereas the synchronous
section is dependent on global clocking. Thus, the interface circuitry between asyn-
chronous and synchronous datapaths is responsible for data conversion. It also needs
to adapt to different control signals on either side of the interface. The first inter-
face requires conversion from synchronous to asynchronous domain and the second
interface requires asynchronous to synchronous conversion. The interface circuitry
achieves this by having special latches for performing data conversion and pulse gen-
erators for implementing the handshaking protocol for the asynchronous section. In
order to resynchronise and avoid metastability at the second interface, a delayed ver-
sion of the Req handshake signal generated at the first interface is passed directly to
the second interface using a programmable delay element. The programmable delay
should be greater than the delay for the correct data computation by the asynchronous
section.

18.5 Pausable clock interfacing schemes

Pausable clocking schemes are proposed as mechanisms for data transmission
between synchronous modules running at different clock frequencies. In this scheme,
the receiver clock is paused whenever the sampling of data lines by the receiver could
lead to potential metastability. The sender clock is paused till the data is correctly
sampled by the receiving module. This avoids synchronisation failure at the receiving
end and flow control at the sender end.

A similar approach is also followed by recent work on the Razor processor [26],
in which a comparator (including a metastability detector) identifies when a register
incorrectly latches a value, due to a critical timing problem. In the next clock cycle the
pipeline is simply restarted with the correct data copied back in every register from a
shadow latch, and processing continues synchronously, with ‘skipped’ clock cycles.
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Pausable clock schemes listed below, on the other hand, generally stretch clock cycles
and do not ensure phase alignment with an external reference clock. Razor is a very
promising approach to tackling variability, in that it allows one to clock a processor
very close to its true speed. However, reliable operation over extended periods of
time, due to inherent risk of metastability, still needs to be demonstrated.

In Reference 27, the authors comment that previously proposed schemes [28] do
not scale well for high clock frequencies of locally synchronous (LS) components
and multiple cycle delay in clock distribution due to large clock buffer trees. Due
to the presence of large clock buffer trees in the LS components, the assumption of
previous schemes of data transfer being stalled within one clock cycle of pausing the
sender clock does not hold and leads to extra transmissions in what the authors call
the ‘clock overrun window’, which denotes the skew between pausing the clock and
actual stopping of data transmission by the sender module.

They propose a circuit for interfacing two high-frequency LS modules using a
partial handshake protocol which achieves high data rates and has small probability of
failure. A partial handshake is used as it provides faster data transfer than a complete
handshake protocol. They propose a ‘direct path’ FIFO to account for long intercon-
nect delay and an additional ‘buffered’ FIFO to capture data transferred in the clock
overrun window. This scheme does not pause the receiver clock for synchronisation
but pauses the sender clock to achieve flow control.

In Reference 27, transistor level sender and receiver interface circuits are given
and the models are verified by SPICE simulation. The timing analysis of the interface
circuits proves that under certain circumstances of bad signal timings of the signal
with respect to sender and receiver clock, the synchronisation circuit would fail with
a small probability of failure thus improving on previous schemes.

Chakraborty et al. in Reference 29 discuss using abstract timing diagrams to
reason about correctness of interfacing techniques between synchronous modules.
They point out that there are various different interfacing techniques available but
it is difficult to compare them due to difference of analysis carried out for each of
them. Reference 29 uses abstract timing diagrams for analysing specific interfacing
schemes and understand why certain schemes work under restricted conditions and
fail otherwise. They further point out that robust asynchronous interfaces could be
built if certain new circuits could be implemented.

18.6 GALS implementations

According to the GALS methodology used in Reference 30, the asynchronous circuits
required to convert LS modules to conform to GALS standard are restricted to imple-
menting ‘self-timed’ wrappers around each module. Each LS module is driven by a
pausable clock in its self-timed wrapper avoiding metastability and data corruption.
The self-timed wrappers consist of a pausable local clock generator, port controllers
and test structures as shown in Figure 18.9. They have implemented five wrapper
elements in technology-independent VHDL. The port controllers are implemented
as asynchronous finite state machines using the extended burst mode paradigm of
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Reference 31. These are synthesised using the 3D tool which results in a synthesisable
AND–OR implementation [32].

In Reference 30 the authors describe two different types of port controllers:

1 Poll-type, or non-blocking, port: This port is used whenever a data item is needed
but computation could proceed without it arriving immediately. The LS modules
keep functioning while the data transfer is handled by the port.

2 Demand-type, or blocking, port: This port is used when the LS module cannot
continue computation till the arrival of data on the port. While waiting for data,
the demand-type port suspends the local clock reducing power consumption of
the module.

Various tunable local-clock generators are compared in Reference 33. The cur-
rent research is directed towards high frequency tunable local oscillators for better
performance of individual GALS modules.

Point to point interconnects have been implemented to allow asynchronous com-
munication between GALS modules [34]. In Reference 34, interface wrapper circuits
are presented for communication between LS modules. The wrapper interface con-
sists of an arbiter and a calibrated delay line. This ensures that a stable local clock
signal is generated. Metastability is avoided as clocking is done only after the data is
ready. Circuits with sleep mode, where the local clock is stopped due to unavailability
of data, are also presented. This could lead to reduced power consumption. FIFOs
with various depths have been used as asynchronous channels between modules. The
simulations show that designing for FIFO depths greater than 2 does not improve
bandwidth of communication between modules.
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Multi-point interconnects are also required for efficient SoC GALS systems. Two
different interconnection topologies have been proposed in Reference 35:

1 GALS bus: In this architecture all port controllers of LS modules(master/slave) in
a design are connected to the same bus as shown in Figure 18.10. The arbitration
and address decoding is central for power efficiency.

2 Ring structure: A transceiver is associated with the port controller of every LS
module as shown in Figure 18.11. The arbitration is done by the transceivers and
it decides which request to grant, either from the previous transceiver or from its
own port controller, when it wants to insert some packets into the ring.

The ring structure leads to higher latency as each packet has to encounter one
or more transceivers. But it leads to lower interconnect length between modules and
possibly reduces power consumption. One aspect that is not discussed by the authors
of Reference 35 is fault tolerance. Failure of one module in a ring architecture would
lead to the failure of communication between all modules, whereas the GALS bus
would be more tolerant to such faults.

A GALS test chip with three million transistors was implemented in 0.25 µm
technology [36]. The chip contains 25 GALS modules and occupies a total area of
25 mm2. A design flow has been presented for automating the design of GALS
chip. This is facilitated by using a library of self-timed elements which can be used
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to convert synchronous modules to GALS modules. The requirement of a pausable
local clock led to the addition of a programmable delay element and Mutex element
to the standard cell library. Timing verification was carried out hierarchically at three
levels:

1 Inside the self-timed wrapper library;
2 Within each GALS module;
3 For the handshake signals between GALS modules.

The authors claim that since their GALS methodology requires a limited number of
self-timed sub-circuits, most of the design process can be handled by using customised
design automation scripts.

In Reference 37, a study has been carried out to measure the performance
and power consumption of the GALS methodology for a hypothetical super-scalar
processor architecture. The results show that GALS design does not lower power con-
sumption appreciably and the overheads of using multi-clocked synchronous blocks
leads to a performance drop in the range of 5–15 per cent. It further says that voltage
scaling techniques for each synchronous block would help bridge the performance
gap. The authors of Reference 38, propose a strategy for optimally partitioning the
synchronous logic into synchronous blocks for maximising power reduction. They
report average power reduction of 30 per cent.
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18.7 Current research in asynchronous NoC

Employing totally self-timed techniques for the interconnect is, as mentioned in
Section 18.1, a promising means to tackle a number of on-chip interconnection issues,
from power and EMI reduction, to clock skew management, to modularity of design.
However, only a few proposals for an asynchronous NoC have been published so
far. This section gives an overview of the state-of-the-art research in asynchronous
on-chip networks.

CHAIN (CHip Area on-chip INterconnect) was designed by Bainbridge at the
University of Manchester, UK [39]. The network is based on narrow delay-insensitive
high-speed links using one-of-five data encoding combined with a return-to-zero
signalling protocol. In a 0.35µm technology the author claims that a single CHAIN
link provides a throughput of around 700 Mbps and more than 1 Gbps in 0.18µm
technology using suitable link lengths to minimise end-to-end latency. To increase
the bandwidth, multiple links can be bundled together to form a wider datapath.

CHAIN does not require a fixed network topology but allows a designer to adapt
the topology of the network to a specific SoC using three basic network elements:
a router, an arbiter and a multiplexer. To further improve the flexibility of the network,
source routing is employed with a variable length packet organisation. The routing
information is encoded in a series of routing symbols at the start of every packet. The
length of a packet is designated by the EOP (end-of-a-packet) symbol which also has
a function to tear down the route set by the header of the packet.

CHAIN implements a split transaction protocol typically employing two separate
networks for the command and response in order to improve the performance of the
interconnect. Also, the network supports atomic sequences of multiple commands.

NEXUS is another asynchronous on-chip network developed at Fulcrum
Microsystems, USA [40]. Their approach is based on a 16-port, 36-bit asynchronous
crossbar that connects synchronous modules through asynchronous channels and
clock-domain converters. Nexus is a quasi delay-insensitive (QDI) on-chip intercon-
nect infrastructure using one-of-four encoding and pre-charge domino logic. It also
supports a split transaction protocol with a request burst going out and a completion
burst returning. Implemented in a 0.13µm low-voltage CMOS process Nexus runs
at 1.35 GHz and exhibits latency of 2 ns.

Liljeberg et al. from the University of Turku, Finland proposed a self-timed
ring architecture as a replacement for on-chip buses [41]. They implemented a
12-stage bi-directional ring network with 36 pipeline sections. The network employs
a two-phase signalling protocol between stages to accommodate relatively long wire
segments with less transitions within a transaction cycle, and a four-phase signalling
protocol for internal control within a stage to enable design of fast and relatively sim-
ple control logic circuitry. The datapath is encoded using a standard single-encoding
scheme.

The authors compared three closely related structures: a bi-directional ring,
a bi-directional folded ring and a bi-directional open ring against different types
of traffic. The simulation results show that the peak throughput of a single segment
in one direction is between 0.8 and 1.0 Gwords/s in 0.18µm technology with the
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segment lengths of 1 and 4 mm, respectively. The maximum measured throughput of
the whole ring is 6.61 Gwords/s.

An asynchronous ring-based network was also proposed in Reference 42.
A related research direction is that of asynchronous communication mecha-

nisms (ACMs [43]), which implement various degrees of synchronisation between
communicating parties, from fully independent to fully interlocked. ACMs are an
important mechanism, especially in the form which does not block the reader nor the
writer of a communication channel, in order to implement hard real-time with asyn-
chronous techniques. In other words they go beyond QoS-based soft real-time, in
order to provide full timing guarantees to safety-critical systems. The cost is slightly
higher than traditional FIFO-based mechanisms, which block the reader when empty
and the writer when full, and the performance is comparable to that of traditional
FIFOs [44].

18.8 QoS for NoCs

A modern SoC may consist of many different components and IP blocks intercon-
nected by an NoC. These components can exhibit disparate traffic characteristics
and constraints, such as requirements for guaranteed throughput and bounded
communication latency.

As an example consider a connection between a video camera and a Motion
Picture Experts Group (MPEG) encoder. Such a connection has to maintain a constant
throughput with bounded jitter (variation in end-to-end latency) in order to support
the required quality of the system. If the camera and the encoder are a part of a
complex SoC interconnected by an on-chip network, the connection has to share the
network bandwidth with the rest of the traffic. In order to maintain the quality of the
system, the network has to provide the required bandwidth for the connection at any
given time.

It is therefore essential for a modern NoC to support QoS in order to accommodate
such components sharing the same communication medium. Furthermore, the ability
of an NoC to provide guaranteed services enables a designer to make critical timing
decisions early in the design process thus avoiding unnecessary design iterations [45].

In synchronous networks QoS is often provided by time division multiplexing
(TDM). TDM partitions the time axis into time-slots where each time-slot presents a
unit of time in which a single flow can transmit data over a physical channel. Guar-
anteed throughput is provided by reserving a proportion of time-slots for a particular
flow. For example, if a connection requires 50 per cent of the available bandwidth, a
network has to ensure that every other time-slot is available for that particular con-
nection. Reserved slots traverse the network in a well-synchronised manner without
having to arbitrate for the output link with the rest of the traffic. The Aethereal NoC
developed at Philips and the Sonics on-chip bus employ a TDM technique to support
guaranteed throughput [46,47].

Although TDM provides a high level of QoS it is unsuitable for asynchronous
implementation because it requires global synchronisation between network elements.
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Another way to provide QoS is to employ a packet scheduling algorithm that will
prioritise input traffic in terms of the level of QoS required. In Reference 48 Felicijan
and Furber proposed a QoS architecture suitable for asynchronous on-chip networks
using virtual channels [49] where a connection with QoS requirements uses a virtual
channel in order to reserve buffer space. The bandwidth of the network is distributed
using a priority-based asynchronous arbiter according to the priority level of each indi-
vidual virtual channel. The same authors also proposed a low latency asynchronous
arbiter suitable for QoS applications [50] which overcomes the problem of allowing a
contender to obtain over 50 per cent of the resource allocation in a self-timed system
by using downstream knowledge to trigger the arbitration.

18.9 Case study: the ASPIDA NoC

ASPIDA is a project which aims to demonstrate the feasibility of designing and
delivering an asynchronous IP in a portable, reusable manner.

With regard to asynchronous networks on chip, one of the main contributions
of this project is the creation of an asynchronous interface specification aiming
to become the asynchronous equivalent of WISHBONE [51], a synchronous SoC
interconnection architecture for reusable IP cores. This interface specification is
heavily influenced from both CHAIN and WISHBONE. Most of the interface sig-
nals are named following the WISHBONE convention. The major difference from
WISHBONE is that the model for inter-core communication is based on split trans-
actions. Thus there are two separate interconnect fabrics: one for commands and
another for responses. The asynchronous request–acknowledge handshake signals
make this interface specification robust and easy to reuse without a need to verify
complex timing assumptions.

ASPIDA will produce a demonstrator chip containing an asynchronous system
on a chip. Figure 18.12 shows its main components, which include an asyn-
chronous open-source DLX processor core (obtained using the desynchronisation
techniques described above), two memories dedicated for instructions (IMEM) and
data (DMEM), a test interface controller (TIC) for initialisation/debugging and three
interfaces with the external world: a synchronous WISHBONE interface for con-
nection to synchronous peripherals (WB), a novel asynchronous, general-purpose
interface (GP) and a ‘bare’ CHAIN interface (BC) for adding more CHAIN networks
and/or debugging the interconnection.

In the ASPIDA system there are three initiators (masters) and five targets (slaves).
The DLX core has a Harvard architecture, so it has two initiators in the interconnec-
tion, one for the instruction port and another for the data port. The remaining initiator
is attached to the TIC so that it can access the memories and the external interfaces,
as well as being able to test the interconnection.

Two of the five targets are the system’s memory: 1K words of SRAM each.
Their main purpose in the system is to provide fast, on-chip memory space for the
DLX so that it can run simple programs at a high speed without the need to access a
slow external memory and without taking-up too much area. The remaining targets
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Figure 18.12 Top-level block diagram of the ASPIDA demonstrator chip

essentially extend the interconnection off-chip, so that synchronous (WB port) or
asynchronous (GP port) ‘peripherals’ can be accessed by the processor.

In the above system the most common situation is that the processor instruction
port will communicate with the instruction memory and the data port with the data
memory. All other initiator–target communications should be made possible by the
interconnect, but their performance is not as crucial. The above observation led
to the interconnection architecture shown in Figure 18.13 which optimises the two
commonly used paths.

18.9.1 Design for testability features of the interconnect

One of the major challenges of the project was to include circuits that guarantee
full test coverage, as a typical synchronous system would. Although well-known
techniques can be applied to the circuits implementing the processor datapaths and
the SRAMs, for the delay insensitive circuits of CHAIN, these techniques would
dramatically increase the area and reduce the circuit speed.

The approach followed for the interconnect fabric is to insert scan-latches in the
acknowledge paths of the CHAIN pipeline stages, so that the common input of the
parallel C elements can be controllable. In comparison, the standard approach would
require a scan-latch for each C element. Thus our approach resulted in considerable
area savings and performance improvement.

The test patterns are manually generated for each of the four basic building blocks
of CHAIN interconnects and a computer program has been developed which, given the
network topology and the patterns for each of the component types, produces a full
test sequence that gives over 99.5 per cent stuck-at fault coverage for the interconnect.
The test strategy is explained in References 52 and 53.
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Figure 18.13 The ASPIDA interconnection network

18.9.2 Implementation

Since one of the aims of ASPIDA is to produce portable, reusable asynchronous IP,
the implementation is standard cell based, using a 0.18-µm technology. It should be
noted that area and performance improvements can be gained by using even a small
number of special asynchronous cells.
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The processor core is built using the desynchronisation techniques described
earlier. The interconnection is drawn as a schematic and later passed on to a standard
synthesis tool to optimise the gate mapping.

For the results presented here, only the network was placed and routed. The
area of the network, including the interfaces, is 0.63 mm2 with the cell density set
at approximately 70 per cent. Actually, most of the above area is taken up by the
interfaces; the actual interconnection fabric occupies less than 15 per cent of the total
core area.

18.9.3 Evaluation

In order to evaluate the performance of the ASPIDA interconnect, two sets of
simulations were conducted creating different traffic scenarios in the network.

Each master interface is connected to a traffic generator programmable to inject
different types of traffic into the network. The masters generate two types of com-
mands: read and write in a proportion of 70 and 30 per cent, respectively. The length
of a write command packet is ten bytes and the length of a read command packet is
six bytes. Similarly, each slave interface is connected to a dummy client to emulate
the behaviour of a slave client. The length of a response packet depends on the type
of the command received from a master and represents six bytes in the case of a read
command and two bytes in the case of a write command. Therefore, the total number
of bytes transferred in a single command–response cycle is 12.

The performance of the network was assessed by measuring throughput and
latency of each individual master. The throughput corresponds to the number of
bytes a single master is able to transmit and receive per unit of time, and the latency
represents the time between when a master sends a command through the network
and when it receives the response back from the client. Note that the dummy clients
exhibit zero service time thus the latency represents only the time packets spend
traversing the network.

As mentioned above, two sets of simulations were conducted in order to evaluate
the performance of the network. The first set was designed to mimic the traffic charac-
teristics of the environment the network was designed for. In this case masters IP and
DP were set to generate commands for slaves IM and DM, respectively, as fast as pos-
sible. Furthermore, master TIC was set to generate commands to IM and DM in order
to disrupt the throughput of the masters IP and DP. The TIC generates commands at
random intervals – according to the exponential distribution function – with an aver-
age packet rate between 0 and 100 per cent of the physical bandwidth. Figure 18.14
shows how the traffic generated by the TIC affects the throughput of the IP.

When there is no TIC traffic present the network dedicates the whole physi-
cal bandwidth to the IP master, however when the TIC traffic is introduced, the IP
throughput decreases almost linearly until it reaches around 50 per cent of the maxi-
mum bandwidth. Figure 18.14 shows that the network guarantees approximately half
of the physical bandwidth to the IP master. In terms of latency Figure 18.15 shows
a similar situation. Note that the masters do not have any buffering capabilities, thus
the results shown in Figure 18.15 do not include any queuing time.
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Figure 18.14 The impact of the TIC load on the throughput of the IP. Note that the
TIC has the same impact on the throughput of the DP master
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Figure 18.15 Latency of the IP master versus the TIC load

The second set of simulations generates a more generic traffic scenario in the
network. In this case all three masters (IP, DP and TIC) were programmed to issue
command packets to randomly chosen slave targets (WB, IM, DM, BC and GP) for
every transaction cycle. Furthermore, each master generates commands exponentially
distributed across the time axis. The throughput and latency of each master was
measured against different traffic loads. Figures 18.16 and 18.17 show the throughput
and the latency of the IP, DP and TIC masters, respectively.

It is interesting to note that the relative ranking of the three masters in this set of
simulations reflects the topology of the network. As the targets are selected randomly,
most of the traffic will follow the main trunk of the fabric, as shown in Figure 18.13. So
IP will be ‘fighting’ with TIC and the combined flow with DP. Thus the performance
of DP is significantly better when the network is congested. Among IP and TIC, the
former is connected to IM through a relatively short route, while the latter does not
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Figure 18.17 Latency of the IP, DP and TIC masters

have such special connections. As in one out of five times the IP sends packets to IM,
it manifests, on aggregate, a somewhat better performance than TIC.

18.10 Conclusions

With the Semiconductor Industry Association (SIA) roadmap pointing to increasing
clock frequencies and smaller feature sizes, distributing a global clock across an
entire chip is becoming less and less feasible. While progress in clocking structures
continues, several research groups convincingly argue that a complete paradigm shift
would ensure significant advantages.

We first surveyed techniques which minimally depart from the synchronous
scheme, or in some sense are loosely coupled synchronous schemes, as in the case
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of desynchronisation. These are the most likely candidates to be picked up first by
design teams. They are very easy to use, fully automated or at least tool-supported,
but also provide little incentive beyond EMI reduction. The latter is a significant issue
only for mixed signal digital and analogue circuits, for very cheap integrated circuits,
due to the reduced packaging cost, and in security applications, due to the reduced
data-correlated emissions.

We then considered stoppable clocks and GALS schemes, which retain a fully syn-
chronous design methodology for the LS blocks, while using standardised wrappers,
produced by module generators, for the interfacing. They provide more independence
between the modules, in that the overall performance need not be determined by the
slowest stage, but may exhibit metastability, thus resulting in potentially unpredictable
performance.

Finally, we looked at truly asynchronous NoCs, which again, due to the need for
standardised design flows, use pre-defined modules and module generators, whose
output is then assembled to determine the overall network logic. These asynchronous
structures have the best power and performance, but are often less efficient in terms
of area, due to the lack of established logic optimisation tools for asynchronous
gate-level netlists.
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Chapter 19

Covalidation of complex
hardware/software systems

Ian G. Harris

19.1 Hardware/software systems

A hardware/software system can be defined as one in which hardware and software
must be designed together, and must interact to properly implement system func-
tionality. To be considered a hardware/software system, the design of hardware and
software components must be dependent on each other. For example, a word proces-
sor application for a desktop computer is not a hardware/software system because the
word processor software design is largely independent of the underlying hardware
platform on which it is executed. The vast majority of practical electronic devices
involve closely interacting hardware and software components and can therefore
be classified as hardware/software. This includes virtually all consumer electronics
(e.g. cellphones, MP3 players, automotive systems), medical electronics (e.g. CT
scanners, heath monitoring devices) and military electronics (e.g. guidance systems,
vehicle control systems).

The main benefit of using both hardware and software components is that using
a variety of components enables tight design constraints to be satisfied by using
components whose properties most exactly match the given design requirements.
Hardware/software systems are built from a wide range of hardware and software
components which are associated with different trade-offs in design characteristics,
such as performance, cost and reliability. Typical computational components used in
hardware/software codesign include the following.

• Interpreted/scripting software: This class includes code in scripting language
such as Perl and CSH, and also interpreted languages such as Java and Matlab.
Components of this type have the advantage of low development costs because
many implementation details are hidden from the programmer and addressed
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by the interpreter (e.g. dynamic memory management). These components are
also portable to many different hardware platforms and they often allow higher
security because the interpreter can evaluate security concerns at runtime. The
main disadvantages of interpreted components is that their execution is slow due to
the overhead of the interpreter. Interpreted components also give the programmer
very little control of resource usage such as memory, power and performance. In
the context of tightly constrained systems, this is a serious weakness.

• Compiled software: This class includes software in languages like C and C++.
Development costs are a bit higher for these languages than for interpreted lan-
guages because details such as dynamic memory management are left to the
programmer. However this also means that the programmer has more direct con-
trol over the resource usage. For this reason, compiled software is very useful in
the development of systems with tight design constraints.

• Assembly code: Assembly coding requires the programmer to write assembly code
directly without the help of a compiler. Assembly coding incurrs a high develop-
ment cost since low-level details of the software execution must be determined by
the programmer. Assembly coding has the great advantage that it enables cycle-
accurate control of processor resourses which is often necessary when interfacing
with hardware components.

• Microprocessor: If any software component is used in the system then at least
one microprocessor is needed to execute the software. Microprocessors come
in several different varieties. General purpose central processing units (CPUs)
have significant resources in terms of performance, memory and instruction set
completeness, but they are also expensive and have large power requirements.
Smaller embedded microprocessors and digital signal processors have sufficient
resources to satisfy most embedded applications and are typically designed to con-
sume less power. Microprocessor design is a difficult task so hardware/software
system designers purchase pre-designed microprocessors to include in their sys-
tems. The microprocessor may also be pre-fabricated so that it only needs to be
installed into a printed circuit board.

• Field-programmable gate array: Field-programmable gate arrays (FPGAs) are
pre-fabricated integrated circuits which contains interconnect and generic func-
tional units which can be ‘programmed’ by blowing fuses or setting memory bits.
FPGAs offer the programming flexibility of software together with much of the
performance advantage of a hardware implementation. Design costs are signifi-
cantly higher for FPGAs than software because hardware design is complex, but
no fabrication cost is required since the FPGA is pre-fabricated.

• Application-specific integrated circuit: An application-specific integrated circuit
(ASIC) is an integrated circuit which is designed and fabricated to perform a
particular task. ASIC development requires not only a complex design process
but also an expensive fabrication process. Developing an ASIC for a hard-
ware/software system is the most expensive implementation option but it enables
the most effective optimisation of performance, power, reliability and cost. The
high cost of ASIC development can be amortised if the system being developed
is a high-volume product. If the task to be implemented is a common one then a
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Figure 19.1 Hardware/software codesign overview

pre-designed core or a pre-fabricated ASIC may be available from an appropriate
vendor.

19.1.1 Codesign stages

In order to understand the errors which appear in hardware/software systems it is use-
ful to understand the basic steps in the codesign process. An overview of the codesign
process is depicted in Figure 19.1. The goal is to generate a hardware/software archi-
tecture from a specification. Figure 19.1 shows a subset of the process for a cell
phone design with video processing features. The figure shows a natural language
specification of the design, an executable specification and a final hardware software
architecture which is the result of the codesign process.

Here we give an outline of the principle stages of the codesign process to provide
context for our discussion of design errors. The ordering of the application of design
stages is not fixed. In fact, design stages are often intertwined in practice. A more
complete survey of the codesign process can be found in Reference 1.

• Natural language specification: This is a description of the system behaviour
which is intended to be read by a human designer. All systems should have
a natural language specification to be used as a reference during the design
process.

• Executable system description: An executable system description is a refinement
of the specification which is complete enough to enable simulation of the system
being designed. The key feature of such a description is that it is written using a
language with precisely defined execution semantics.

• Systempartitioning: The tasks in the system description must be partitioned across
a set of hardware and software components which will be used to implement each
task. For example, suppose we wish to design a cell phone which captures video
and encodes it in moving pictures expects group (MPEG) format in real-time.
MPEG encoding is a compute-intensive task so it might be mapped to an ASIC
designed explicitly for that purpose. Other cell phone tasks like the processing of
the audio data might be implemented as a C program executing on a digital signal
processor.

• Communication synthesis: The different tasks in a system description are never
completely independent of each other, so they must exchange data in order to
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satisfy system functionality. For example, in our cell phone example, the MPEG
encoding block must receive data from a camera and receive control information
from a keypad via a processor. The MPEG encoder block must also send encoded
data to a trasmitter in order to send the data to the cell phone network.

• Memory synthesis: A memory hierarchy must be designed to store intermedi-
ate data while satisfying performance, power and cost goals. This step involves
selecting the type of memories to be used and their configuration.

From the description of the stages of codesign it should be clear that there are
many places where mistakes can be made and design errors can be introduced. Design
errors incur design cost and increase time-to-market because they require effort to
detect and redesign effort to correct. To reduce the impact of design errors covalidation
must be efficient and it must be applied frequently so that errors are detected early in
the process.

19.1.2 Covalidation issues

Several features of the hardware/software problem make it unique and difficult. Each
covalidation technique addresses these issues to different degrees.

19.1.2.1 Component reuse

Component reuse is an established design paradigm in the hardware domain and in
the software domain. Hardware reuse may involve the use of pre-fabricated integrated
circuits which can be general-purpose processors or application-specific components.
The use of pre-designed components has the great advantage that the design and
validation of the components is not the responsibility of the system designer. This
has the potential to greatly reduce the system design and test effort required. The
main disadvantage of reuse is that the system designer must completely understand
the behaviour of components that he/she did not design in order to integrate them into
the system.

19.1.2.2 Varied design styles

There are many different ways to design any component in both the hardware and
software domains. Each different approach to design leads to a different set of likely
errors which must be identified during testing. Each design style also limits test access
in different ways, requiring the use of different testing techniques. In software for
instance code might be written in an object-oriented style or not. Objects often contain
data and functions/methods which are ‘private’ and cannot be accessed externally.
Data privacy must often be eliminated for the purposes of testing in order to observe
incorrect results during testing. A hardware behaviour might be described procedu-
rally as is common in software, or as a finite state machine. The choice of coverage
metric should be guided by the hardware design style, so a transition coverage might
be applied to a state machine while branch coverage might be applied to a procedural
description.
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19.1.2.3 Varied design abstraction levels

Hardware/software components are described at a variety of abstraction levels
to match the need for design quality and flexibility. On the software side, the
bulk of the code might be written in a high-level language such as Java while
performance-critical sections are written in assembly. Behavioural hardware descrip-
tions in Verilog might be used to describe most hardware blocks while power-critical
components are described at the transistor-level to implement dynamic voltage
scaling.

19.1.3 Stages of covalidation

An outline of the steps involved in the covalidation process is shown in Figure 19.2.
The covalidation process starts with a hardware/software design which is to be tested.
Covalidation may be performed on an incomplete design, so the design may be
only an executable specification, or the final architecture may be available. Cov-
alidation involves three major steps, test generation, cosimulation and response
evaluation. The test generation process typically involves a loop in which the test
sequence is progressively evaluated and refined until coverage goals are met. Cosim-
ulation (or emulation) is then performed using the resulting test sequence, and the
cosimulation test responses are evaluated for correctness. A key component of test
generation is the set of coverage metrics used which abstractly describe the testing
goals. The coverage metric is needed to provide detection goals for the automatic
test generation process, and the coverage metric enables the error detection qual-
ities of a test sequence to be evaluated. Response evaluation is also a bottleneck
because it typically requires manual computation of correct responses for all test
stimuli.

In this chapter we describe the stages of covalidation involved with cosimulation,
test generation, response evaluation and the coverage metrics which support the cov-
alidation process. The techniques for cosimulation are summarised in Section 19.2.
We describe coverage metrics used to describe design defects in Section 19.3, as
well as the automatic test generation techniques which are based on those coverage
metrics in Section 19.4. Section 19.5 describes automatic approaches to evaluate test
responses, including assertions and self-checkers. Conclusions and future directions
of the field are discussed in Section 19.6.
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19.2 Cosimulation techniques

Cosimulation is the process of simulating disparate design models together as a single
system [2]. The term ‘cosimulation’ has been used very broadly to encompass the
simulation of not only electrical systems but also of mechanical and even biochemical
systems. In this chapter we will limit our definition to electrical hardware/software
systems.

The goal of cosimulation is to model the behaviour of a hardware/software system
when it is driven by a set of input stimuli. The characteristics of the behaviour which
are modelled determine the cosimulator complexity and accuracy. Cosimulation can
be used to estimate ‘dynamic’ characteristics of the system, those charcteristics which
vary depending on the input sequence applied during execution. Minimally cosimu-
lation should be functionally correct; it should provide the correct output sequence
for a given input sequence. In addition to functional correctness, cosimulation is used
to estimate timing, power, communication bandwidth/latency and memory use.

19.2.1 Timing correctness

The timing correctness of a simulation describes the accuracy with which each
simulation event is known. A functionally correct simulation of an adder will correctly
perform addition and a timing correct simulation will additionally indicate the delay
required to perform addition. The required accuracy of the timing information has
a strong impact on simulator complexity and performance. The timing accuracy of
cosimulation tools can be organised in the following categories.

1 Pico-second accurate simulation: This type of model has the highest accuracy
and the lowest performance.

2 Cycle-accurate simulation: This model provides accurate register contents at
each clock cycle boundary.

3 Transaction-level simulation: In a transaction-level model (TLM), the details of
communication among computation components are separated from the details of
computation components. Details of communication and computation are hidden
in a TLM and may be added at later design stages. TLMs speed up simulation and
allow exploring and validating design alternatives at a higher level of abstraction.

19.2.2 Abstraction level

The modelling ability of cosimulation is strongly influenced by the abstraction level
at which cosimulation is performed. Simulation at a high level of abstraction means
that few internal details about each operation are used during simulation, while a low
level of abstraction means that detailed structural information is available. Low level
simulation has access to more detail which can be used to generate more accurate
estimates of design characteristics such as timing and power. Internal structural detail
is also useful during debugging in order to locate the source of a design error. This is
often the case while debugging embedded software running on a processor. A software
bug may manifest itself as incorrect values in hidden registers inside the processor,
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so that the availability of accurate internal register values is needed. However, the
use of information detail for accurate estimation incurs a performance penalty on the
cosimulation process.

Figure 19.3 shows three abstraction levels at which an adder can be simulated.
Figure 19.3(a) shows a single add instruction. The behaviour of the instruction is clear
but the delay is largely unknown without further information. The documentation for
the processor on which the statement is executed may indicate the number of clock
cycles required to perform an addition, so cycle-accurate simulation is possible at this
level. Figure 19.3(b) shows a register-transfer level (RTL) adder block. Documenta-
tion on this component will provide the maximum delay from an input to an output
in terms of picoseconds. In a ripple-carry adder the carry chain is the longest path, so
the carry chain delay would indicate the worst-case adder delay. The most accurate
simulation is possible using the gate-level description in Figure 19.3(c) which shows
a single full adder stage in a ripple-carry adder. With this level of detail it is possible
to determine the path which is critical for the specific input sequence. Although the
carry chain is the longest path in a ripple-carry adder, an addition which does not
impact the carry chain will have a shorter critical path. If two additions are performed
sequentially, both of which result in no carry chain activity (0 + 1 and 1 + 2 for
instance), then the carry chain does not impact the adder’s performance.

19.2.3 Component simulation methods

A challenge of cosimulation is the efficient management of the interaction between
components which are described with very different computational models. Simu-
lation techniques exist for each type of component found in a hardware/software
system in isolation but fundamental differences in abstraction level make the sim-
ulation techniques difficult to use together. For instance, digital hardware may be
simulated at a relatively low level of abstraction using an event-driven simulator with
pico-second accuracy. On the other hand, software may be written at a high level of
abstraction (possibly in an interpreted language like Java) and a real-time operating
system (RTOS) might be used to abstract performance issues from the programmer.
Software ‘simulation’ could be performed by running the code on any processor
which supports the RTOS and the interpreter for the language.
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Many pure hardware simulators exist which can simulate a generic circuit descrip-
tion. The simulators vary in the level of abstraction used, from analogue circuit-level
simulation up to behavioural simulation from a procedural design description. There
also exist simulators of specific classes of hardware designs including memory simula-
tors and FPGA simulators. These simulators achieve good performance and accuracy
by using structural information which is common to a class of hardware designs.

Software simulation is accomplished by compiling the software for a target pro-
cessor and simulating the processor using a model. The processor is also pre-designed
and usually pre-fabricated intellectual property (IP). In order to preserve the confiden-
tiality of IP design, detailed information required for simulation may not be provided.
The following techniques are often used to model processors with varying levels of
timing accuracy.

• Instruction set simulation: The contents of memory elements are correctly mod-
elled at machine at instruction boundaries. Cycle-to-cycle timing effects such as
pipeline stalls are ignored.

• Host processor: Rather than model the target processor, software can be compiled
to a host processor and simulation is performed by executing the software as
processes which communicate with hardware simulator processes. No processor
model is needed but timing accuracy suffers because the software timing is not
related to the timing of the actual target processor.

• Bus functional model: A bus functional model does not model the complete
behaviour of the processor, but only the different bus cycles the processor can
execute. For this reason it cannot be used to simulate and debug software com-
ponents. Bus functional models are used to debug hardware and its interactions
with the processor by replicating the processor’s bus interactions.

• Hardware modeller: This describes the use of a real processor part as the hard-
ware model. This technique can be applied to model any pre-fabricated hardware
including processors as well as ASICs.

Subsets of the cosimulation problem are well studied [3] and a number of industrial
tools exist which enable the cosimulation of a variety of system types. Managing the
difficult trade-off between performance and timing accuracy is still a problem for
large systems.

19.3 Coverage metrics

A coverage metric provides a fast approximation of the error detection ability of
a given test sequence. When generating a test sequence an empirical evaluation of
an existing test sequence is required to direct the process and to provide a goal for
completion. In order to describe a coverage metric we must first define the concept
of a ‘design error’. A design error is the difference between the designer’s intent and
an executable specification of the design. The designer’s intent is most commonly
expressed as a natural language specification. An executable specification is a precise
description of the design which can be simulated. Executable specifications are often
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expressed using high-level hardware/software languages. Design errors may range
from simple syntax errors confined to a single line of a design description, to a
fundamental misunderstanding of the design specification which may impact a large
segment of the description. The nature of design errors is not well understood but
several studies exist in the hardware domain [4,5] and in the software domain [6,7]
which attempt to classify them.

The purpose of testing is to detect all possible design errors, so the correct way to
evaluate a test sequence is to determine the fraction of all possible design errors which
are detected by the sequence. This fraction, which we will refer to as ‘error coverage’,
can be determined by injecting each possible set of design errors into a design and
simulating the erroneous designs with the test sequence. If the output of an erroneous
design differs from the output of the correct design then the corresponding set of
design errors is detected by the test sequence. The error coverage is not computable
in practice for two reasons. The first reason is the time complexity; the set of all
possible design errors is far too large to consider for any reasonably sized system. The
second reason is the unpredictability of design errors. The source of design errors is
often cognitive, relating to the thought process of individual designers. The cognitive
processes of designers, and humans in general, is not well understood and cannot be
completely predicted. Human factors such as training, experience, intelligence and
even emotional mood all have a bearing on the type and frequency of the design errors
which will be present.

A coverage metric defines a set of ‘coverage goals’ which must be satisfied during
simulation. Ideally, satisfaction of all coverage goals should indicate that all possible
design errors are detected. A coverage metric can be used to evaluate a test sequence
by determining the fraction of coverage goals that are satisfied when the design is
simulated with the test sequence.

The coverage goals defined by a coverage metric are meant to approximate the
detection requirements of potential design errors. The ideal property which a coverage
metric should guarantee is that the satisfaction of all coverage goals during testing
should ensure the detection of all design errors. The degree to which a coverage
metric guarantees this property for is the measure of the effectiveness of the metric.
The relationship between a coverage metric and the set of design errors is depicted
in Figure 19.4. In Figure 19.4 the set of coverage goals is shown to be much smaller
than the set of design errors. This is an essential property for a coverage metric since
the main reason for using a coverage metric is to manage complexity. The mapping
from coverage goals to design errors indicates the design errors which are detected
when the coverage goal is satisfied. The ‘uncovered errors’ are those whose detection
is not guaranteed by any of the coverage goals. A good coverage metric will produce
very few uncovered errors.

19.3.1 Coverage metric classification

The majority of hardware/software codesign systems are based on a top-down design
methodology which begins with a behavioural system description. As a result, the
majority of covalidation fault models are behavioural-level coverage metrics. Existing
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Figure 19.5 Behavioural descriptions: (a) textual description, (b) CDFG

coverage metrics can be classified by the style of behavioural description upon which
the models are based.

Many of the coverage metrics currently applied to hardware/software designs
have their origins in either the hardware [8] or the software [7] domains. As a tool to
describe covalidation coverage metrics we will use the simple system example shown
in Figure 19.5. Figure 19.5(a) shows a simple behaviour, and Figure 19.5(b) shows
the corresponding control-dataflow graph (CDFG). The example in Figure 19.5 is
limited because it is composed of only a single process and it contains no signals
which are used to model real time in most hardware description languages. In spite of
these limitations, the example is sufficient to describe the relevant features of many
coverage metrics.

Table 19.1 presents a taxonomy of covalidation coverage metrics classified
according to the abstraction level of the behaviour on which they operate. Each
class of coverage metrics is described in the following subsections.

19.3.1.1 Textual coverage metrics

A textual coverage metric is one which is applied directly to the original textual
behavioural description. The simplest textual fault model is the statement coverage
metric introduced in software testing [7] which associates a potential error with each
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Table 19.1 Taxonomyof covalidation cover-
age metrics

Model class Coverage metric

Textual Mutation analysis
Statement coverage

Control-dataflow Branch coverage
Path coverage
Domain coverage
OCCOM

State machine State coverage
Transition coverage

Gate-level Stuck-at coverage
Toggle (bit flip) coverage

Application-specific Microprocessor metrics
User-defined

Interface Communication faults
Timing-induced faults

line of code, and requires that each statement in the description be executed during
testing. This metric is very efficient since the number of potential faults is equal to the
number of lines of code. Coverage evaluation for this metric is very low complexity,
requiring only that an array be updated after each statement is executed. However,
this coverage metric is accepted as having limited accuracy in part because fault effect
observation is ignored. In spite of its limitations, statement coverage is well used in
practice as a minimal testing goal.

Mutation analysis is a textual coverage metric which was originally developed in
the field of software testing [6], but has also been applied to hardware validation [9].
In mutation analysis terminology, a ‘mutant’ is a version of a behavioural description
which differs from the original by a single potential design error. A ‘mutation operator’
is a function which is applied to the original program to generate a mutant. A set of
mutation operators describes all expected design errors. Coverage is computed by
simulating all mutants and determining how many have output sequences which are
not correct.

Since behavioural hardware descriptions share many features in common with
procedural software programs, previous researchers [9] have used a subset of the
software mutation operations presented in Reference 6. A typical mutation operation
is ‘arithmetic operator replacement’ (AOR), which replaces each arithmetic operator
with another operator. For example, if we assume the existence of four arithmetic
operators, +, −, ∗, /, then applying AOR to the first line of the design in Figure 19.5(a)
would produce three mutants. Each mutant would correspond to the replacement of
the first line of code with a = in1 + in2, with a = in1 − in2, a = in1 ∗ in2 and
a = in1/in2, respectively. To compute coverage each mutant would be simulated
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with the test data and its results would be compared to the correct results. If the
test data for the design in Figure 19.5(a) assigned the two inputs in1 and in2 to 2
and 0, respectively then the correct final value of ‘out’ would be 2. The three mutants
produce the following final values for ‘out’: 2, 0, and ‘no value’ (a divide-by-zero
error would occur). Of these three results, two are different from the correct result,
so mutation coverage is 67 per cent.

19.3.1.2 Control-dataflow metrics

A number of coverage metrics are based on the traversal of paths through the
CDFG representing the system behaviour. In order to apply these metrics to a hard-
ware/software design, both hardware and software components must be converted
into a CDFG description. The earliest control-dataflow coverage metrics include
branch coverage and path coverage [7] models used in software testing.

The branch coverage metric associates potential faults with each direction of each
conditional in the CDFG. Branch coverage requires that the set of all CDFG paths
covered during covalidation includes both directions of all binary-valued condition-
als. Branch coverage is commonly used in hardware validation and software testing,
but it is also accepted to be insufficient to guarantee correctness alone. The time com-
plexity of computing branch coverage is linear in the number of branch instructions
in the program, and is therefore linear in the size of the description. Branch coverage
evaluation is performed by recording the direction of each branch as it is taken during
simulation.

The path coverage metric is more demanding than the branch coverage metric
because path coverage requires the simulation of paths through the control flow
which involve a number of individual branches. The assumption is that an error is
associated with some path through the control-flow graph and therefore all control
paths must be executed to guarantee error detection. The number of control paths
can be infinite when the CDFG contains a loop as in Figure 19.5(b), so the path
coverage metric may be used with a limit on path length [10]. Since the total number
of control-flow paths grows exponentially with the number of conditional statements,
several researchers have attempted to select a subset of all control-flow paths which
are sufficient for testing. In dataflow testing, each variable occurrence is classified as
either a definition occurrence or a use occurrence. Paths are selected which connect
a definition occurrence to a use occurrence of the same variable. For example in
Figure 19.5(b), node 1 contains a definition of signal a and nodes 2, 5, and 6 contain
uses of signal a. In this example, paths 1, 2, 4, 5 and 1, 2, 4, 6 must be executed in
order to cover both of these definition-use pairs. The dataflow testing criteria have
also been applied to behavioural hardware descriptions [11].

The majority of control-dataflow coverage metrics consider the control-flow paths
traversed with minimal constraints on the values of variables and signals. For example
in Figure 19.5(b), in order to traverse path 1, 2, 3, the value of c must be minimally
constrained to be less than a, but no additional constraints are required. This can be
contrasted with variable/signal-oriented coverage metrics which place more stringent
constraints on signal values to ensure fault detection. The domain analysis technique
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in software testing [7,12] considers not only the control-flow path traversed, but also
the variable and signal values during execution. A domain is a subset of the input
space of a program in which every element causes the program to follow a common
control path. A domain fault causes program execution to switch to an incorrect
domain. Domain faults may be stimulated by test points anywhere in the input space,
but they are most likely to be stimulated by inputs which cause the program to be in
a state which is ‘near’ a domain boundary. An example of this property can be seen
in Figure 19.5(b) in the traversal of path 1, 2, 3. The only constraint required is that
c < a, but if the difference between c and a is small, then there is a greater likelihood
that a small change in the value of c will cause the incorrect path to be traversed.
Researchers have applied this idea to develop a domain coverage metric which can
be applied to hardware and software descriptions [13].

Many control-dataflow coverage metrics consider the requirements for fault
activation without explicitly considering fault effect observability. Researchers have
developed observability-based behavioural coverage metrics [14] to alleviate this
weakness. The observability-based code coverage metric (OCCOM) has been applied
for hardware validation [14] and for software validation [15]. The OCCOM approach
inserts faults called ‘tags’ at each variable assignment which represent a positive
or negative offset from the correct signal value. The sign of the error is known but
the magnitude is not. Observability analysis along a control-flow path is done prob-
abilistically by using the algebraic properties of the operations along the path and
simulation data. As an example, in Figure 19.5 we will assume that a positive tag is
inserted on the value of variable c and we must determine if the tag is propagated
through the condition c < in2 in node 4 of Figure 19.5(b). Since the tag is positive,
it is possible that the conditional statement will execute incorrectly in the presence
of the tag, so the OCCOM approach optimistically assumes tag propagation in this
case. Notice that a negative tag could not affect the execution of the conditional state-
ment. A metric proposed in Reference 16 more accurately determines observability
by exploring tag propagation along all possible control-flow paths which could be
executed as a result of a design error.

19.3.1.3 State machine coverage metrics

Finite state machines (FSMs) are the classic method of describing the behaviour of a
sequential system and fault models have been defined to be applied to state machines.
State machine coverage metrics assume that a design error impacts the structure of
the state machine, the states and the transitions between them. A design error in a
state machine might add or remove states, add or remove edges, or alter the inputs or
outputs associated with existing edges. Any of these changes could only be detected
if the affected portion of the state machine is exercised during test.

The commonly used fault models are the ‘state coverage’ models which require
that all states be reached, and ‘transition coverage’ which requires that all transitions
be traversed. Calculation of coverage using these models requires the update of a
table containing all states and transitions in the behaviour. The act of updating these
tables is not time consuming but the size of these tables will be large for realistic state
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machines. The problems associated with state machine testing are understood from
classical switching theory and are summarised in a thorough survey of state machine
testing [17].

19.3.1.4 Gate-level coverage metrics

A gate-level coverage metric is one which was originally developed for and applied
to gate-level circuits. Manufacturing testing research has defined several gate-level
fault models which are now applied at the behavioural level. For example, the stuck-at
fault model assumes that each wire may be held to a constant value of 0 or 1 due to
an error. The stuck-at fault model has also been applied at the behavioural level for
manufacturing test [18] and for hardware–software covalidation [19]. Behavioural
designs often use variables which are represented with many bits and gate-level fault
models are typically applied to each bit, individually. For example, if we assume
that an integer as declared in Figure 19.5(a) is 32 bits long, then applying the single
stuck-at fault model to a variable would produce 32 stuck-at-1 faults and 32 stuck-at-0
faults. Gate-level fault models have the potential weakness that they are structural
in nature rather than behavioural. Gate-level fault models were intended to describe
physical defects which could occur during the very large scale integration (VLSI)
manufacturing process.

19.3.1.5 Application-specific coverage metrics

A coverage metric which is designed to be generally applicable to arbitrary design
types may not be as effective as a metric which targets the behavioural features
of a specific application. To justify the cost of developing and evaluating an
application-specific coverage metric, the market for the application must be very
large and the error modes of the application must be well understood. For this reason,
application-specific coverage metrics are seen in microprocessor test and validation
[20–22]. Early microprocessor metrics target relatively generic microprocessor fea-
tures. For example, researchers define a metric for instruction-sequencing functions
[20] by describing the fault effects (i.e. activation of erroneous microorders), and
describing the fault detection requirements. More metrics target the modern processor
features such as pipelining [21,22].

Another alternative to the use of a traditional coverage metric is to allow the
designer to define the coverage metric. This option relies on the designer’s expertise
at expressing the characteristics of the metric in order to be effective. The manual
definition of a fault model, also known as functional verification, is best applied
in well-understood domains such as microprocessor validation [23]. Several tools
have been developed which automatically evaluate user-specified properties during
simulation to identify the existence of faults.

19.3.1.6 Interface errors

To manage the high complexity of hardware/software design and covalidation, efforts
have been made to separate the behaviour of each component from the communication
architecture [24]. Interface covalidation becomes more significant with the onset
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of core-based design methodologies which utilise pre-designed, pre-verified cores.
Since each core component is pre-verified, the system covalidation problem focuses
on the interface between the components.

A case study of the interface-based covalidation of an image compression system
has been presented [25]. Researchers classify the interface faults which occurred
during the design process into three groups: (1) COMP2COMP faults involving
communication between pairs of components, (2) COMP2COMM faults involving
the interaction between each component and the communication architecture and
(3) COMM faults involving the coordinated interactions between the communica-
tion architecture and all components. In Reference 25, test benches are developed
manually to target each of these interface fault classes.

Additional interface complexity is introduced by the use of multiple clock domains
in large systems. The interfaces between different clock domains must be essentially
asynchronous. Unless a high-overhead timing-independent circuit implementation is
used (such as differential cascode voltage switch logic), asynchronous interfaces are
particularly vulnerable to timing-induced faults. Timing-induced faults are described
in Reference 26 as faults which cause the definition of a signal value to occur earlier
or later than expected. An example of the occurrence of this type of fault would
be an increased delay on the ‘empty’ status signal of a first-in-first out (FIFO)
buffer.

Interprocess communication using a FIFO is shown in Figure 19.6. Process X
sends data to Process Y through an intervening FIFO which is used to manage inter-
mittent mismatch in the sending and receiving rates of X and Y, respectively. The
FIFO interface contains datain and dataout signals which carry data. The interface
contains two control signals write and read which indicate when new data is placed
into the FIFO and removed from the FIFO. The status signals full and empty are used
to indicate when the FIFO cannot be written to or read from without causing an error.
When the FIFO becomes empty the empty signal should be asserted within a known
amount of time. If the empty signal is issued later than expected, the FIFO may be
read from while it is empty. In Reference 13 a timing coverage metric is presented
and a technique for coverage evaluation is introduced.

19.3.2 Metric accuracy

An ideal coverage metric will accurately reflect the coverage of potential design errors.
In addition, the coverage computation process should be much faster than the process
of computing error coverage through brute-force simulation of erroneous designs.
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The computational complexity of each metric is simple to compute but determining
the accuracy with which it estimates error coverage is difficult. To discuss accuracy it
is helpful to understand that a coverage goal is a constraint on the simulation process
and that coverage constraints may not match the constraints required to detect errors.

We will describe the process of generating state constraints from a coverage
goal. The process of generating coverage constraints from a design and a metric can
be arbitrarily complex depending on the metric used. It is not tractable to generate
coverage constraints in practice but examining coverage constraints is useful in the
context of this chapter to help evaluate metric accuracy.

19.3.2.1 Coverage goals as constraints

In order to understand the strengths and weaknesses of different coverage metrics,
it is useful to see each coverage goal as a constraint on the simulation of the system
under test. Once coverage goals are expressed as constraints, a coverage metric can
be evaluated by determining how closely its coverage goals match the detection
requirements of various design errors. We will describe how each coverage goal can
be viewed as a test constraint and we will evaluate the effectiveness of each constraint
in detecting design errors.

We will describe coverage constraints by considering the application of statement
coverage when testing the design in Figure 19.5. A statement coverage goal for the
design in Figure 19.5 is to ‘execute statement 6, return (a + c)’. This goal can be
stated as a constraint on the variables in the design by examining the control-flow
paths which must be traversed in order to execute the statement. Examining the
control-flow graph in Figure 19.5(b) reveals that all paths which execute statement 6
share the following two properties.

1 At some point the condition at statement 2 must become FALSE.
2 The condition at statement 4 must be FALSE.

Before we can express these constraints formally it is necessary to introduce some
terminology. We cannot discuss the value of variable c statically because c may take
several different values during the course of simulation. To refer to the value of c at a
particular point in simulation we need to describe the statement which most recently
assigned a value to c and the number of times that the assignment statement has
been executed. In Figure 19.5 the variable c is assigned by two statements, c = 0
and c = c + in1. We will refer to the value of c after these two statements are
executed as c1 and c2, respectively. In general a statement can be executed many
times in the presence of a loop, as is the case with statement c = c + in2. To describe
multiple executions of the same statement we will add an index to the c variable
which indicates the iteration of the statement which last assigned a value to c. So
the name c1[i] will refer to the value of variable c immediately after the statement
c = 0 has been executed i+1 times. The name c2[i] is defined similarly for statement
c = c + in2. Notice that statement c = 0 can only be executed once, so c1[0] = 0
and c1[i] is undefined for i > 0.
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Using this terminology we can express the execution of statement 6 with the
constraint on the design variables shown in Equation (19.1),

((c1[0] ≥ in1 + in2) ∩ (c1[0] ≥ in2))||((c2[n] ≥ in1 + in2)

∩ (c2[n] ≥ in2)) (19.1)

where n is a positive integer. Equation (19.1) contains four clauses, each of which
corresponds to a FALSE evaluation of one of the two conditional predicates in the
description. The first two clauses describe the control-flow path which avoids the
while loop completely. Along this path the value of c is only assigned once, by
the first assignment, so the value of c is c1[0]. The second two clauses describe the
paths that enter the while loop and then exit after the nth iteration.

Constraints can be used to describe not only the coverage goals but also the
requirements for detecting individual design errors. Consider the design error for the
design in Figure 19.5 where the statement ‘return(a + c)’ was incorrectly substituted
with the statement ‘return(a − c)’. In order to detect this error it is first necessary that
the statement be executed during simulation; the constraints for that are expressed in
Equation (19.1). Additionally, the incorrect output a − c must not equal the correct
output a + b, so it must be true that a − c �= a + c.

19.3.2.2 Coverage goals and error detection

For an ideal coverage metric, the coverage value achieved by simulating a design with
a test sequence would always equal the fraction of potential design errors detected
by the test sequence. The extent to which a coverage metric satisfies this goal can
be judged by comparing the coverage constraints to the error detection constraints.
A coverage metric satisfies the detection constraints of a design error e if the satisfac-
tion of some coverage goal gmust imply the satisfaction of the detection constraints of
the error e. So the coverage goal constraints g must be ‘more strict’ than the detection
constraints d . In practice, however, coverage goals are often ‘less strict’ than detec-
tion constraints, causing the coverage metric to overestimate the fraction of errors
detected. This is the case for the statement coverage constraint in Equation (19.1)
and the design error where the statement ‘return(a + c)’ was switched with ‘return
(a − c)’. The statement coverage goal ensures that the erroneous statement is exe-
cuted but detection additionally requires that a + c �= a − c. We can infer from the
relationship between detection and coverage constraints that the statement coverage
metric will be optimistic, consistently overestimating the coverage of design errors.

The coverage goals may be insufficiently strict to ensure error detection, but
coverage goals may also be so strict that they cannot be satisfied. In this case the
coverage metric can be pessimistic because coverage can never reach 100 per cent,
even after all design errors are detected. An example of an unsatisfiable coverage goal
can be seen in the satisfaction of a path coverage goal for the design in Figure 19.5. It
is not possible to execute a control path which enters the ‘while’ loop and then follows
the TRUE branch of the following ‘if’ statement. This is because the ‘while’ loop
cannot be exited unless c ≥ in1+ in2 and in1 > 0. It is not possible for c < in2 under
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these conditions. If 100 per cent path coverage is used as a goal for test generation
then test generation will never complete in this case.

19.4 Automatic test generation techniques

Several automatic test generation (ATG) approaches have been developed which
vary in the class of search algorithm used, the coverage metric used, the search
space technique used and the design abstraction level used. In order to perform test
generation for the entire system, both hardware and software component behaviours
must be described in a uniform manner. Although many behavioural formats are
possible, previous ATG approaches have focused on CDFG and FSM behavioural
models.

Table 19.2 presents a taxonomy of covalidation test generation techniques clas-
sified according to the coverage goal of the search algorithm. Each class of test
generation techniques is described in the following subsections.

Two classes of search algorithms have been explored, ‘goal directed’ and ‘cov-
erage directed’. Figure 19.7 shows an outline of both of these classes of algorithms.
Goal directed techniques successively target a specific coverage goal and construct a
test sequence to detect that goal. Each new test sequence is merged with the current
test sequence (typically through concatenation) and the resulting coverage is eval-
uated to determine if test generation is complete. This class of algorithms suffers
in terms of time complexity because it directly solves the test generation problem
for individual goals, requiring a complex search of the space of input sequences.
However, goal directed algorithms have the advantage that they are ‘complete’ in the
sense that a test sequence will be found for a goal if a test sequence exists. Another
class of search algorithms are the coverage directed algorithms which seek to improve
coverage without targeting any specific fault. These algorithms heuristically modify

Table 19.2 Taxonomy of covalidation test generation
techniques

Test gen class Solving technique

Goal directed Linear programming + SAT
Integer linear programming + SAT
Constraint logic programming
Model checking counterexample
Switching theory
Implicit state enumeration

Coverage directed Genetic algorithms
Random mutation hill climbing
Directed-random tests
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Figure 19.7 Classes of test generation algorithms: (a) fault directed, (b) coverage
directed

an existing test set to improve total coverage, and then evaluate the coverage pro-
duced by the modified test set. If the modified test set corresponds to an improvement
in coverage then the modification is accepted. Otherwise the modification is either
rejected or another heuristic is used to determine the acceptability of the modification.
Coverage directed techniques have the potential to be much less time consuming than
goal directed techniques because they may use fast heuristics to modify the test set.
The drawback of coverage directed techniques is that they are not guaranteed to detect
any particular fault although the fault may be detectable.

19.4.1 Goal directed techniques

Section 19.3.2.1 discussed how the coverage goals defined by a coverage metric can
be described as a set of constraints on the system behaviour. Once the constraints have
been identified, the test generation problem is equivalent to the problem of solving the
constraints simultaneously to produce a test sequence at the system inputs. Because
the operations found in a hardware/software description can be either Boolean or arith-
metic, the solution method chosen must be able to handle both types of operations. The
Boolean version of the problem is traditionally referred to as the SATISFIABILITY
(SAT) problem and has been well studied as the fundamental NP-complete problem.
A great deal of work has been done on SAT solving techniques [27,28]. Handling
both Boolean and arithmetic operations poses an efficiency problem because classical
solutions to the two problems have been presented separately.

In Reference 16 researchers define the HSAT problem as a hybrid version of
the SAT problem which considers linear arithmetic constraints together with Boolean
SAT constraints. Researchers in Reference 29 present an algorithm to solve the HSAT
problem which combines a SAT solving technique [28] with a traditional linear
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program solver. The algorithm progressively selects variables and explores value
assignments while maintaining consistency between the Boolean and the arithmetic
domains. Other researchers have solved the problem by expressing all constraints in
a single domain and using a solver for that domain. In Reference 30 researchers for-
mulate Boolean SAT constraints as integer linear arithmetic constraints. This allows
the entire set of constraints to be solved using an integer linear program (ILP) solver.

Constraint logic/satisfaction programming (CSP) techniques [31] have been
employed which can handle a broad range of constraints including non-linear con-
straints on both Boolean and arithmetic variables. CSP techniques are novel in their
use of rapid incremental consistency checking to avoid exploring invalid parts of the
solution space. Different CSP solvers use a variety of constraint description formats
which allow complex constraints to be captured. CSP has also been used to generate
tests for path coverage in a CDFG in Reference 10 where the arithmetic constraints
expressed at each branch point of a path are solved together to generate a test which
traverses the path. In Reference 32 the CSP approach is used to generate tests related
to the synchronisation between concurrent hardware and software processes. Con-
straints are generated which describe the behaviour of the hardware–software system
and which describe the conditions which would activate a potential synchronisation
fault.

State machine testing has been accomplished by defining a ‘transition tour’ which
is a path which traverses each state machine transition at least once [33]. Transition
tours have been generated by iteratively improving an existing partial tour by con-
catenating on to it the shortest path to an uncovered transition [33]. In Reference 34,
a test sequence is generated for each transition by asserting that a given transition
does not exist in a state machine model, and then using a model checking tool to
disprove the assertion. A byproduct of disproving the assertion is a counterexample
which is a test sequence which includes the transition. Since this technique relies
on model checking technology, it shares its performance and memory requirement
characteristics with model checking approaches.

If a fault effect can be observed directly at the machine outputs, then covering
each state and transition during test is sufficient to observe the fault. In general,
a fault effect may cause the machine to be in an incorrect state which cannot be
immediately observed at the outputs. In this case, a ‘distinguishing sequence’ must
be applied to differentiate each state from all other states based on output values.
The testing problems associated with state machines, including the identification of
distinguishing, synchronising and homing sequences, are well understood [17].

19.4.2 Coverage directed techniques

Several techniques have been developed which generate test sequences without tar-
geting any specific coverage goal. Coverage is improved by modifying an existing
test sequence, and then evaluating the coverage of the new sequence. These tech-
niques differ in the method used to modify the test sequence, the cost function used to
evaluate a sequence and the criteria used to accept a new sequence. The modification
method is typically either random or directed random.
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An example of such a technique is presented in Reference 35 and 36 which uses
a genetic algorithm to successively improve the population of test sequences. In the
terminology of genetic algorithms, a ‘chromosome’ describes a test sequence. Many
test sequences are initially generated randomly. Random matings can occur between
the chromosomes which describe the test sequences, but the mating process defines
and restricts the way in which two test sequences are merged. The cost function
(or ‘fitness’ function) used to evaluate a test sequence is the total number of elemen-
tary operations (variable read/write) which are executed. In this technique, the total
number of elementary operations is being used as an approximation of the likelihood
of error detection.

Work presented in Reference 37 uses a random mutation hill climber (RMHC)
algorithm which randomly modifies a test sequence to improve a testability cost
function. The test sequence modification is completely random and the criteria for
accepting a new sequence is that the cost function is improved. The coverage metric
targeted using this approach is the single stuck-at metric applied to the individual bits
of each variable in the behavioural description. The cost function used contains two
parts: (1) the number of statements executed by the sequence, and (2) the number
of outputs which contain a fault effect. Results show that the CPU time required
using this approach is nearly an order of magnitude less than the time required using
commercial gate-level test generation tools.

In Reference 38 researchers generate directed-random pattern sequences to be
used for test. No particular coverage metric is assumed in this approach, so it is up
to the user to provide the directives for pattern generation. Two types of directives
are used: (1) ‘constraints’ which define the boundaries of the space of feasible test
patterns, and (2) ‘biases’ which direct assignments of values to signals in a non-
random way. For example, a constraint might indicate that the following relationship
between variables must hold, in1 < in2. Because this is a constraint, no test can
be generated which violates this condition. A bias expresses the desired probability
distribution for the values of a signal throughout the set of all patterns. For example,
a bias of the form (in2, 0.9) would indicate that the probability that input in2 is equal
to 1 should be 0.9. It is the task of the test engineer to develop a set of constraints and
biases which will reveal a particular class of errors.

19.5 Test response analysis

Detection of errors requires that the test responses gathered during cosimulation be
compared to the correct test responses. Since any signal value can be observed
at any point during simulation, the potential amount of test data is enormous.
Manual evaluation of test responses requires that the correct signal values be pre-
determined. Manually computing correct test results is time consuming and efforts
have been made to automate the process. The use of assertions and self-checkers
to evaluate test responses have been investigated in both the hardware and software
domains.
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19.5.1 Assertions

An assertion is a logical statement which expresses a fact about the system state at
some point during the system’s execution. Assertions have been proposed and used in
both software [39] and hardware domains [40]. The use of assertions is well accepted
and has been integrated into the design proccess of many large-scale systems [41,42].
Assertions are primarily useful in evaluating the correctness of the system state during
simulation but the use of assertions has also extended to supporting functional test
generation [38] and performance analysis [43].

An assertion is typically written as a logical relationship between the values
of different storage elements which would be variables in a software program, but
would also include registers, flip-flops, latches and time-varying signals in a hardware
description. Many languages for the description of assertions have been proposed but
we will use a simple first-order predicate calculus in most of our examples. In this
discussion we are interested in the concepts behind the use of assertions, rather than
any specific implementation details. For this reason our examples will use a generic
syntax which may not match any specific assertion language but is sufficient to
describe the concepts related to assertions. In a system which describes the operation
of traffic lights at an intersection, we might want to express the fact that both lights
cannot be green at the same time as follows:

(colorNS == ‘green′) ∩ (colorEW == ‘green′) (19.2)

In Equation (19.2) variables colourNS and colourEW represent the the colours
of the north–south and east–west signal lights, respectively. The assertion in
Equation (19.2) can be referred to as a ‘positive’ assertion because it expresses a
relationship which must be satisfied. Notice that when Equation (19.2) is negated
then it is a ‘negative’ assertion which expresses a relationship which must not be sat-
isfied. Negative assertions are essentially the same as error handling code, commonly
used in software, which throw an exception when the system enters an incorrect state.
Notice that positive and negative assertions are equivalent in their information con-
tent so we will assume the use of positive assertions through the remainder of this
section, without loss of generality.

Assertions can be evaluated during simulation to determine whether or not an
error occurred which forces the system into a state which is known to be incorrect.
Assertions may be defined ‘globally’ which must be satisfied at all times, or assertions
may be defined ‘locally’ which are only satisfied at the point in the description where
the assertion is placed. The traffic light controller assertion in Equation (19.2) is an
example of a global assertion. A local assertion has the potential to specify more
fine-grained properties because the assertion can be defined to use state information
derived from its position in the description. Figure 19.8 shows an example of a local
assertion in a traffic light controller code segment. The assertion in Figure 19.8 states
that the colour of the north–south light must be yellow. This statement is clearly
not always true in general but the assertion is added just before the statement which
changes the light colour to red. If we assume that the light must be yellow before it is
red, then the assertion must be true at the point in the description where it is asserted.
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An assertion which describes the state of a system at a point in its execution can
be referred to as an ‘instantaneous’ assertion. The assertions in Equation (19.2) and
Figure 19.8 are both instantaneous because they both describe properties at one time
step. Although the assertion in Equation (19.2) is globally true at all time steps, it is
considered to be instantaneous because it expresses a statement about each time step
individually, independent of all other time steps. An assertion is referred to as being
‘temporal’ if it expresses constraints on sequences of time steps. In order to express
temporal constraints a logic must be used which expresses temporal relationships. To
give an example of a temporal assertion we will introduce the ‘next’ operator used
in property specification language (PSL) [44]. The statement p → next q states that
if statement p is true at time step t then statement q must be true at time step t + 1.
Using this temporal operator we can state the fact that the north–south traffic light
must turn red one time step after it becomes yellow with the following expression.

(colorNS == ‘yellow′) → next (colorNS == ‘red′) (19.3)

An assertion defines boundaries on the correct execution of the system. An instan-
taneous assertion defines a subset of the state space and a temporal assertion defines
a subset of the set of all execution sequences. The discussion here will be limited
to instantaneous assertions but the same argument could be extended to temporal
assertions as well. The state space subset defined by an instantaneous assertion must
contain the actual system state at the point in execution where the assertion is evalu-
ated. Figure 19.9 is used to show the state space hierarchy during system execution.
The largest space in Figure 19.9, called the ‘cross-product state space’, is the space



682 System-on-chip

defined by the cross-product of the states of all individual state elements in the sys-
tem. Only a subset of these states, referred to as ‘all feasible states’, may be entered
during the operation of the system if it is free of design errors. At any given point
during the operation of the system there is a subset of the all feasible states set called
‘current states’ which must contain the current system state if the system is error free.
If the system is completely deterministic then the set of current states must have car-
dinality 1. The current states set must be a subset of the all feasible states set because
the current states set is dependent on the input sequence and the point in simulation
being evaluated, while the all feasible states set is the union of feasible states over all
possible test sequences and points in simulation.

An instantaneous assertion defines a subspace referred to as the ‘assertion sub-
space’ which must completely contain the current states as shown in Figure 19.9. Test
response evaluation is performed by checking the satisfaction of each assertion; if an
assertion is not satisfied then a design error exists.

19.5.1.1 Assertion completeness

The main difficulty with the use of assertions is that the satisfaction of all assertions
does not guarantee that errors did not occur during simulation. This is because the
assertion subspace is a superset of the set of current states. In the traffic light controller,
e.g. both north–south and east–west traffic lights may become yellow at the same time
due to a design error without violating the assertion in Equation (19.2). To increase the
chances that errors are detected, the set of assertions must be as ‘complete’ as possible.
In terms of the state space, this means that the assertion subspace must be as small as
possible while still containing the correct states set. This requires that the assertions
be written as strictly as possible to reduce the number of incorrect states which can
satisfy the assertion. For example, the assertion for the traffic light controller in
Equation (19.2) can be replaced by the stronger assertion in Equation (19.4).

(colorNS == ‘red′) ∪ (colorEW == ‘red′) (19.4)

The assertion in Equation (19.4) is stronger than Equation (19.2) because the sub-
space that Equation (19.4) defines is a proper subset of the subspace defined by
Equation (19.2). Notice that the assertion in Equation (19.4) catches the erroneous
condition when both light directions are yellow at the same time.

Defining a set of assertions which is complete is difficult because the task of asser-
tion definition is largely manual, so the completeness of a set of assertions depends
on the abilities of individual designers. Definition of a complete set of assertions is
typically very expensive due to the rigorous and manual nature of the process. The
cost investment is worthwhile for some highly standardised and reused applications
such as floating point division [45] and the peripheral component interface (PCI) bus
protocol [46].

19.5.2 Self-checking

A self-checking component is one which automatically evaluates its correctness by
comparing its results to the results of one or more other redundant components which
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implement the same function. Using only two redundant components enables the
detection of errors but not correction, since it is impossible to know which redundant
version is the one with the correct result. At least three or more components allow
correction as well. If it is assumed that the likelihood of a majority of components pro-
ducing incorrect answers is very small, then correction can be achieved by selecting
the result produced by the majority of redundant components.

Self-checkers are distinguished from assertions in a number of ways including
their description style. While assertions are described declaratively, as logical state-
ments, self-checkers are described ‘procedurally’ as a sequence of operations. Also,
a self-checker does not simply restrict the space of correct results as an assertion
would. A self-checker actually computes the correct result(s). In terms of the state
space hierarchy shown in Figure 19.9, a self-checker computes the set of correct
states, just as an ordinary component would. Defining features of a self-checking
technique include the implementation of the redundant components and the number
of redundant components used.

An important distinction between self-checking techniques is the point in the
system’s lifecycle when they are applied. Self-checking can be applied prior to deploy-
ment of the system in the field for the purpose of ‘validation’. Self-checking can also
be applied post-deployment to enhance ‘reliability’. Self-checking incurs some over-
head in terms of cost, performance and power, which can be difficult to justify in
tightly constrained systems. High overhead is one reason that self-checking is not
well used in standard hardware and software projects today.

A key requirement of any self-checking technique is that the redundant compo-
nents used for comparison must not operate in exactly the same way as the original
component so that they all do not manifest the same errors. One way to accomplish
this is by assigning completely different design teams to implement the same system.
This approach is referred to as N-version programming in the software domain [47].
A significant limitation of this approach is the exorbitant cost of multiple design
teams. The reliability provided using this approach relies on the independence of the
design teams. Such independence is difficult to establish in practice because pro-
grammers are likely to be trained in the same industrial environment and using the
design tools. Designer independence also contradicts the current trend toward design
reuse to reduce design times.

A theoretical framework for self-checking has been developed by Blum and
Kanna [48] and has been applied to several practical programming examples [49].
In Reference 49 a general technique is presented to create a self-checking program
from a non-self-checking program for numerical programs including matrix multipli-
cation and integer division. The self-checking technique exploits a property of many
numerical functions referred to as random self-reducibility. A function f is random
self-reducible if f (x) can always be computed as F(f (a1), . . . , f (ac)) where F is
an easily computable function and the numbers a1, . . . , ac are randomly distributed
and are also easily computable, given x. The key idea is that f (x) can be computed
as a function of f (a1), . . . , f (ac). If the numbers a1, . . . , ac are randomly distributed
then it is very unlikely that the implementation of f would produce an incorrect result
for the majority of values a1, . . . , ac.
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The advantage of the technique presented in Reference 49 is that the self-checking
function is created in a straightforward way from the original program without the need
for alternate design teams. This greatly reduced design cost as compared to N-version
programming, and it simplifies reliability analysis since the level of independence
between different design teams is not an issue.

19.6 Conclusions and future directions

It is clear that the field is maturing as researchers have begun to identify and agree on
the essential problems to be solved. Our understanding of covalidation has developed
to the point that industrial tools are available which provide practical solutions to
test generation, particularly at the state machine level. Although automation tools are
available, they are not fully trusted by designers and as a result, a significant amount
of manual test generation is required for the vast majority of design projects. By
examining the state of previous work we can identify areas which should be studied
in future in order to increase the industrial acceptance of covalidation techniques.

A significant obstacle to the widespread acceptance of available techniques is the
lack of faith in the correlation between covalidation coverage metrics and real design
errors. Automatic test generation techniques have been presented which are applica-
ble to large scale designs, but until the underlying coverage metrics are accepted, the
techniques will not be applied in practice. Coverage metrics must be evaluated by
identifying a correlation between fault coverage and detection of real design errors.
Essential to this evaluation is the compilation of design errors produced by real design-
ers. Research has begun in this direction [50,51] and should be used to evaluate
existing covalidation coverage metrics. Once coverage metrics are empirically eval-
uated we can expect to see large increases in covalidation productivity through the
automation of test generation.

Analysis of test responses is a bottleneck in the covalidation process because the
definition of assertions and self-checkers requires design understanding that only a
designer can have. Assertions, express properties of the design which must be satis-
fied, but developing these properties requires an understanding of the specification.
It is possible to generate assertions which are generically applicable to a class of
designs such as microprocessors (e.g. ‘all RAW hazards are illegal in any pipeline’)
but properties unique to a design must be expressed manually.

A great deal of research in hardware/software covalidation is extended from pre-
vious research in the hardware and software domains, but communication between
hardware and software components is a problem unique to hardware/software coval-
idation. The interfaces between hardware and software introduce many new design
issues which can result in errors. For example, software may be executed on an
embedded processor which is in a different clock domain than other hardware blocks
with which it communicates. Such communication requires the use of some asyn-
chronous communication protocol which must be implemented in hardware and
software. Asynchronous communication is a difficult concept for both hardware
and software designers, so it can be expected to result in numerous design errors.
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Hardware/software communication complexity has also increased because inter-
processor communication is handled very differently in hardware as compared to
software. Hardware description languages typically provide only the most basic
synchronisation mechanisms, such as the ‘wait’ expression in Verilog hardware
description language (VHDL). More complicated protocols (e.g. two-way handshake)
must be implemented manually and are therefore vulnerable to design errors. Inter-
process communication in software tends to use high-level communication primitives
such as monitors (e.g. the ‘synchronised’ statement in Java). Although the implemen-
tation of each primitive may be known to be correct, the primitive itself may be used
incorrectly by the designer, resulting in design errors. Relatively little research has
investigated testing the interfaces between hardware and software components, but
this research area is essential.
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Chapter 20

Hardware/software cosimulation from interface
perspective

Sungjoo Yoo and Ahmed A. Jerraya

20.1 Introduction

20.1.1 HW/SW cosimulation example

HW/SW cosimulation is to validate the functionality and timing of both software (SW)
and hardware (HW) in a single simulation. Figure 20.1 shows an example of HW/SW
cosimulation. Assume a system consisting of two processors (processor A and B)
and an on-chip communication network as shown in Figure 20.1(a). To simulate the
system, we may need two simulators (instruction set simulators, ISSs) for the two
processors and a simulator of communication network as shown in Figure 20.1(b).

HW/SW cosimulation runs as the simulators communicate with each other by
exchanging events (denoted with bold arrows in Figure 20.1(b)). Examples of events
are memory accesses by processors, interrupts from network to processors. In order to
obtain timing-accurate simulation, the simulators need to synchronise their simulation
with each other. For that purpose, they exchange synchronisation events (denoted with
dashed arrows in Figure 20.1(b)) at every clock cycle.

Figure 20.2(a) shows more details of the interface between processor and com-
munication network. We assume ARM processor as the processor (processor A in
Figure 20.1(a)). Figure 20.2(b) illustrates the signal waveforms of the interface.
At time 1, the processor makes a write request to the address 0×1000 with the data
of 0 × 0010 while setting control signals (nMREQ and nRW). The request can be
terminated only when the HW grant (nWait = 1) arrives at time 4. Then, at time 6,
HW interrupt (nIRQ = 0) arrives at the processor.

Figure 20.3 exemplifies an instruction set simulator (ISS A in Figure 20.1(b)) com-
municating with HW simulation. The function SimulateOneCycle( ) is called at every
clock. When called, it exchanges events with HW simulation as shown at line 3. If an
interrupt arrives, it sets the program counter (pc) to the start address of the interrupt
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Figure 20.1 An example of HW/SW communication (a) An example of interrupt-
based inter-processor communication, (b) Lock-step synchronisation
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Figure 20.2 An example of an interface between processor and HW and its wave-
form (a) Interface between processor and HW, (b) Waveform of
interface signals

service routine. Otherwise, it simulates the execution of the current assembly instruc-
tion. If the current (or previous) instruction is a load/store instruction, it may take
more than one cycle depending on when the HW grant arrives. Line 14–20 shows
the case that the current instruction is a store instruction to the address 0×1000 with
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the data, 0×0010. The simulator will set address/data buses and control signals (line
14–17), and wait for the grant (line 18). The simulation of a single cycle continues in
this way.

Most of current commercial HW/SW simulators (e.g. Mentor Graphics Seamless
CVE) have been implemented in this way i.e. exchanging events between SW and
HW simulators at every clock cycle. In this chapter, based on this knowledge, we
will address the current and future issues of HW/SW cosimulation.

20.1.2 Issues of HW/SW cosimulation

As system complexity grows, the validation becomes more and more time-consuming
thereby becoming a bottleneck in shortening time-to-market. One of the effective
ways to speed up HW/SW cosimulation is to raise the abstraction levels of simulation
from the cycle-accurate level. However, while raising abstraction levels of simulation,
designers face a new problem in handling high abstraction levels: mixed abstraction
level (in short, mixed-level) cosimulation. The mixed-level cosimulation problem is
how to manage different abstraction levels of SW and HW models (e.g. OS level SW
model and transaction level HW model, etc.) in HW/SW cosimulation.

In this chapter, we explain mixed-level cosimulation in a unified manner using the
concept of an ‘HW/SW interface’. Then, we introduce a new challenge, i.e. cosim-
ulation for MPSoC. For a survey on traditional issues and techniques of HW/SW
cosimulation, readers are recommended to refer to References 1 and 2.

This chapter is organised as follows. In Section 20.2, we explain abstraction
levels used in SoC design in terms of function, SW interface and HW interface.
We present the concept, applications and techniques of mixed-level cosimulation in
Section 20.3. We address the issue of cosimulation performance in raising abstraction
levels in Section 20.4. We introduce a new challenge of cosimulation for MPSoC in
Section 20.5. We summarise the chapter in Section 20.6.

20.2 Abstraction levels in HW/SW cosimulation

HW/SW cosimulation captures both application behaviour (SW application, HW
design) and architectural component behaviour (bus, network-on-chip, memory,
DMA, interrupt controller, etc.). HW/SW cosimulation is needed at every step of
HW/SW refinement. The refinement is performed in two ways: function and interface
refinement as shown in Figure 20.4.

Figure 20.4(a) illustrates function refinement. Function refinement is to transform
functional specification into implementation in SW or in HW. For instance, SW func-
tionality described in a sequential program (e.g. reference code of H.264 decoder)
may be refined to multiple tasks (e.g. Entropy decoder, deblock filter, etc.) to exploit
the parallelism of underlying hardware (e.g. multi-threaded processor). Functionality
may also be written in a parallel fashion (e.g. multi-task) and can be implemented
as a sequential code to run on a conventional single-threaded processor without a
task scheduler. HW functionality may be refined (manually or by a behavioural syn-
thesis tool) from an architecture-independent description (e.g. synthesisable C code)
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Figure 20.4 (a) Function and (b) interface refinement

to RTL (register transfer level) design which includes functional units (multipliers,
adder/subtractors, etc.), memory elements and control units (as shown in the figure),
and to a gate-level netlist.

Figure 20.4 (b) shows interface refinement. Interface refinement is to allow refined
functionality to run and to communicate with each other. For instance, multiple tasks
may need an operating system (OS) to run on the target processor and device driver
(d/d) to communicate with external HW modules. HW design needs also interface
logic for it to communicate with other HW or SW modules via on-chip communication
network (e.g. on-chip bus). The interface logic can be a simple one to interpret a
communication protocol (e.g. Advance eXtensible Interface (AXI) [3], Open Core
Protocol (OCP) [4]) or a complex one such as a network interface [5].

Both function and interface refinement can take several steps, respectively. Each
step may need an abstraction level. For instance, function refinement can go through
algorithm, task/process, instruction accurate/RTL and cycle accurate levels. Interface
refinement can be performed in two ways depending on the SW or HW side of
interface. We call each side of interfaces ‘SW’ or ‘HW interface’. In the following
subsections, we explain the abstraction levels of the two types of interface.

20.2.1 Abstraction levels of HW interface

The abstraction levels of HW interface are known as transaction level models (TLMs).
There are a few slightly different TLMs, e.g. message, transaction, transfer, and cycle
accurate levels [6] and algorithm, programmer’s view (PV), PV with timing (PVT),
and cycle callable (CC) levels [7]. Figure 20.5 exemplifies the abstraction levels of
HW interface according to the definition in Reference 6.1

Figure 20.5(a) shows an example of two modules (M1 and M2) which are con-
nected with each other at cycle-accurate (C/A) level. Their interconnect has address,
data, control signals and clock. The figure shows also a code section of module M1
to access the interconnect. It shows a cycle-by-cycle behaviour of HW interface. The
address and data bus signals are handled in a bit-by-bit manner.

1 We use transaction level models in Reference 6 only as an example. The arguments described in this
chapter are not limited to the used examples, but include also other TLMs, e.g. Reference 7.
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Figure 20.5 Abstraction levels of HW interface

Figure 20.5(b), denoted by TL1, gives a higher abstraction level than C/A level by
abstracting away the bit-by-bit behaviour of address and data signals (a code section
denoted by an oval in Figure 20.5(a)). In Reference 6, this level is called ‘transfer
level’. Avoiding the bit-by-bit manipulation of address and data signals, this level
gives simulation speed up without losing simulation accuracy since it abstracts only
the representations (i.e. data types in simulation models) of address and data signals.

The simulation model of Figure 20.5(c), denoted by TL2, abstracts away the clock
signal (a code section denoted by an oval in Figure 20.5(b)). The model becomes an
event-driven one. It may give faster simulation than that of Figure 20.5(b) since
event-driven simulation is known to be superior to cycle-based simulation in terms of
simulation performance especially when event activity is low.2 Simulation accuracy
can be still cycle-accurate at this level.

Figure 20.5(d) gives a very different abstraction than the other two ones in
Figure 20.5(b) and (c). Compared with Figure 20.5(c), it gives an abstraction of
control signals (Memory Request (nMREQ) and Read Write (nRW) in this case).
Since the behaviour of control signals specifies a protocol of on-chip interconnect,
e.g. AXI [3] and OCP [4], the abstraction makes the HW interface independent of

2 The performance difference between cycle-based and event-driven simulation is also determined
by the efficiency of the simulation kernel. In other words, an event-driven simulation kernel with high
scheduling overhead may yield worse performance than a highly optimised cycle-based simulation kernel.
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Figure 20.6 Abstraction levels of SW interface

on-chip communication protocol. Thus, the simulation accuracy of this model is not
guaranteed to be cycle-accurate. This level is called the ‘message level’ (TL3). Since
an HW module with its interface at message level is not limited to a specific on-
chip communication protocol, it can be easily reused over different SoC designs with
different on-chip communication protocols.

20.2.2 Abstraction levels of SW interface

Figure 20.6(a) shows an example of SoC architecture which consists of two proces-
sors, on-chip bus, shared memory and a dedicated FIFO (first-in, first-out). SW tasks,
Task 1 and 2 (and associated OS and device drivers) run on one processor and Task 3
on the other processor. The SW code (task, OS, and device driver code) is assumed
to be compiled using a target compiler (e.g. armcc in the case of the ARM processor)
and simulated on an instruction set simulator (ISS). In terms of a simulation model
in HW/SW cosimulation, we call the compiled SW code ‘instruction set architecture
(ISA) level model’. The ISA is a SW interface to the SW code. From the viewpoint of
HW simulation model, the processor may be represented by a bus functional model
(BFM) [8].
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The ISA level model can be obtained only when all the SW code is ready to
be compiled and linked. However, when HW design (e.g. design of an HW device
such as the dedicated HW FIFO) is not yet finished but a current implementation of
SW code is required to be validated,3 the ISA model may not be exploited since the
corresponding SW code, i.e. device driver code for the dedicated HW FIFO, may not
be ready yet.

Figure 20.6(b) shows an abstraction level of SW model (which we call ‘device
driver level model’) which may be useful in such a case. At device driver level,
SW code consists of task and OS code.4 Both codes can call device driver functions
(e.g. rd_dev( ) and wr_dev( )) to access HW devices. Since the HW devices are not
ready, an abstract memory model replaces them. Thus, device driver functions (to
be more specific, functions which emulate the device driver functions) access the
abstract memory model when they are called by task and OS code. For further details
of the device driver level model, refer to References 9–14.

Figure 20.6(c) shows a higher model than the device driver model, called the OS
level model. It consists of SW tasks communicating with each other via OS services
such as FIFO, shared memory, semaphore, etc. Compared with the device driver level
model in Figure 20.6(b), the OS level model assumes that the OS is not yet designed
or selected and only SW tasks are designed. Such a case happens especially when
designers want to design application-specific OSs or to select one suitable OS from
several OS candidates [15–18].

At OS level, the execution of multiple tasks on the same processor is serialised by
an OS simulation model (omitted in Figure 20.6(c) for clarity). In general, accesses
to shared resources (including shared objects such as semaphore) are serialised in
OS level simulation. Multiple tasks may be able to be simulated on a simulation
environment (i.e. functional simulation) such as SystemC [19] without task seriali-
sation which could be enabled by the OS simulation model. However, in this case,
simulation accuracy is inferior to what OS simulation gives. Figure 20.7 exemplifies
the case.

Figure 20.7 illustrates a typical case where OS level simulation helps to reveal
design problems that cannot otherwise be ‘detected’ by a functional simulation of the
system (e.g. simulating multiple tasks in a simulation environment such as SystemC
without OS simulation model). Figure 20.7 (a) shows an example of system speci-
fication composed of three tasks T1, T2 and T3. T1 and T2 access a shared resource
protected by a semaphore. T3 is activated by an external asynchronous event. Upon
the reception of that event, a signal is emitted to T2. Then, T2 executes some com-
putation (using the shared resource) and then sends a signal back to T3 in order to
notify the end of the computation.

Figure 20.7(b) shows an execution trace of the example obtained in functional
simulation. At time t1, task T1 starts to run and acquires the semaphore. At time t2,

3 Recently, such cases are encountered more and more often since SW code is getting more and more
complex and it needs to be validated even before the HW prototype is available.

4 OS code is written on top of API, called the hardware abstraction layer (HAL) or board support
package (BSP) API.
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Figure 20.7 Comparison between functional and OS level simulation

an external event arrives and task T3 starts to run. Since accesses to shared resources
are not serialised in functional simulation, both tasks can run concurrently. At t3,
task T2 receives an event from T3 and starts to run. At t4, T2 tries to acquire the
semaphore. Since the semaphore is already locked by T1, T2 keeps trying to acquire
the semaphore until T1 releases it at t5. T2 acquires the semaphore at t5 and continues
its execution.

Figure 20.7(c) shows the execution trace obtained in the simulation with an OS
simulation model. In this case, we assume that the three tasks are mapped on a single
processor, a static priority-based pre-emptive scheduling is used and task T3 (T1) has
the highest (lowest) priority. The execution is the same with the case of Figure 20.7(b)
by time t2. At t2, due to the external event, the execution of T1 is pre-empted by the
OS simulation model and T3 starts to run. Then, after receiving the signal from
T3, T2 starts to run. At t4, T2 tries to acquire the semaphore. Since the semaphore
is already locked by T1, T2 fails to acquire it. However, since it has the highest
priority, T2 keeps trying to acquire the semaphore holding the processor (forever).
As shown in this example, OS level simulation can reveal design errors (especially,
related to multi-task synchronisation) that might not have been detected in functional
simulation.

20.3 Mixed-level cosimulation

Figure 20.8 exemplifies an HW/SW cosimulation model which consists of SW and
HW simulation models at different abstraction levels. In the figure, an SW task
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running on a processor is at OS level and the processor is modelled at transaction
level (TL) on its HW interface. The on-chip bus is at TL, two HW modules are at TL
and cycle-accurate level (C/A), respectively.

In the case of the processor, we have a special interface for mixed-level cosimu-
lation which is located between SW code and the HW interface of the processor. It
is called the ‘HW/SW interface for mixed-level cosimulation’, in short, the HW/SW
interface in this chapter5 (shaded rectangle in Figure 20.8). It has two interfaces: SW
interface for SW code and HW interface for connection with the other HW parts. In
HW/SW cosimulation, the HW/SW interface serves to enable SW code (e.g. multiple
tasks) to run (e.g. by an OS simulation model) and to communicate with HW modules.

HW/SW interface can be specified by the abstraction levels at both sides of the
HW/SW interface as shown in Figure 20.9. For instance, assuming that the HW inter-
face has four abstraction levels and the SW interface three abstraction levels as shown
in the figure, we may need up to 12 cases for the HW/SW interface. In this regard,
the HW/SW interface is a generalised model of conventional BFM since it covers a
wider range of abstraction levels than the conventional BFM. The conventional BFM

5 In a more precise terminology, the HW/SW interface represents real SW code (OS and device driver)
and HW interface logic which enables SW tasks running on the processor to communicate with HW
modules. In this chapter, we use the terms only in simulation perspective.
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covers only the cases with an SW interface at algorithm level or ISA level and an
HW interface at cycle-accurate level. Each of the existing solutions in mixed-level
HW/SW cosimulation covers only a subset of the total combinations of an HW/SW
interface. For instance, Reference 20 covers only the combinations of device driver
level (SW interface) and TLMs (HW interface) while Reference 17 covers only those
of OS level (SW interface) and TLMs (HW interface).

The mixed-level cosimulation model exemplified in Figure 20.8 is quite common
in current SoC design flows. In this section, we explain how mixed-level cosimulation
models are produced in the design flow and how to simulate those models.

20.3.1 Where do mixed-level HW/SW cosimulation models come from?

Designers encounter various mixed-level cosimulation models in the HW/SW co-
development flow as shown in Figure 20.10. In conventional sequential design flow
(shown in Figure 20.10 (a)) where SW design starts only after HW design is finished,
in HW/SW cosimulation, the abstraction level of HW design is fixed (mostly at C/A
level). Only the abstraction levels of SW (though there are usually only two levels
of SW abstraction, algorithm and ISA levels) can change. In such a case, mixed-
level cosimulation is enabled by a bus functional model (BFM) which transforms
memory accesses from SW code into cycle-accurate events on processor interface
ports (address/data buses and control signals) [8].

Figure 20.10(b) illustrates HW/SW co-development exploiting the TLM concept.
In this flow, first the transaction level model of HW design is created. Then, SW
design can start using the HW TLM as a virtual platform [21–24]. SW design can be
refined from algorithm level down to ISA level. SW code can be compiled, loaded
and executed on the virtual platform. The debugging and optimisation of SW design
can be performed exploiting the virtual platform. In the meantime, HW design can be
refined from TLM to C/A in a simultaneous way. Figure 20.10(b) exemplifies the
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reduction in design cycle obtained by HW/SW co-development. According to recent
industrial applications of TLM, the design cycle can be reduced up to 30 per cent by
early SW development using TLMs [25,26].

In terms of the number of abstraction levels, designers encounter more cases of
mixed-level HW/SW cosimulation model in the HW/SW co-development flow than
in the conventional sequential design flow. Considering a general design flow where
we can encounter all the possibilities of mixed-level cosimulation models, we can
imagine a ‘refinement space’ of function and interface as shown in Figure 20.11(a).

The space has three dimensions: one of SW function refinement and two of HW
and SW interface refinement. Given a processor or HW module, we can imagine
one refinement space like Figure 20.11(a). Figure 20.11(a) represents a refinement
space of a processor on which function f1 runs as shown in the left-hand side of
Figure 20.11(a).

The abstraction levels of the function are shown to be task/process level, instruc-
tion/RT (register transfer) level and cycle-accurate level. SW and HW interface
dimensions in the space represent those of the HW/SW interface6 as the two dashed
arrows in the left-hand side of Figure 20.11(a).

In the space, a point is denoted by a tuple 〈AS, AH, AF〉, where AS, AH and AF
represent the abstraction levels of the SW interface, HW interface and SW function.
The origin of the space represents an algorithm level code (which is not yet partitioned
into HW and SW).

6 In the case of the HW module, the refinement space will be two dimensional since only function and
HW interface dimensions are required.
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A scenario of refinement corresponds to a walk in the refinement space.
Figure 20.11(b) shows a scenario of refinement. Figure 20.11(a) shows the corre-
sponding walk from the space origin to a point, 〈ISA, C/A, C/A〉 denoted with a solid
circle in the figure.

Point a (in both figures) represents the case that the algorithm level code is mapped
to SW and refined to multiple SW tasks. A solid arrow from the space origin to point
a represents the refinement. The figure shows also the projections (shaded arrows)
of the arrow on the sub-space of function and HW interface and that of function and
SW interface. In terms of SW interface abstraction, the multiple tasks are at OS level.
The HW interface (of the processor on which SW tasks will run) is at message level.

Refinement from point a to b represents that an OS is designed or selected for the
multiple tasks. However, device drivers are not yet fixed since HW device design is
not yet finished. Since only the SW interface is refined from OS level to device driver
level, there is no projected arrow on the sub-space of function and HW interface in
this case. The HW interface is still at message level.

Refinement from point b to c represents that the device drivers are designed
(maybe since the corresponding HW devices design is finished). Since all the SW
code is ready, it can be compiled and run on an ISS which provides for instruction
accuracy, e.g. Reference 24. However, the HW interface of the processor is at message
level in this case (maybe since the HW interface of HW module f2 in Figure 20.11 is
not yet refined but remains at message level). The projected arrow on the sub-space
of function and SW interface corresponds to the refinement taken in this step.

Refinement from point c to d represents a new ISS (denoted by ISS′ in the figure)
with cycle accuracy. The HW interface is refined to cycle-accurate level (maybe since
the HW interface of module f2 is refined to cycle-accurate level).

As shown in Figure 20.11, the refinement of function and interface can give
various combinations of mixed-level cosimulation models. In the next sub-section,
we will explain how to simulate mixed-level cosimulation. Before going to the next
sub-section, note that another important application where mixed-level cosimulation
is required is to enhance simulation performance by raising the abstraction levels of
some parts of the system which are already refined to a low level. Section 20.4 will
address the performance issue.

20.3.2 How to simulate mixed-level cosimulation?

First, we will introduce mixed-level HW simulation methods. Then, we explain a key
technology in mixed-level HW/SW cosimulation, simulation of handling interrupts
in OS level simulation.

20.3.2.1 Mixed-level HW simulation

We will handle cases where HW modules with different abstraction levels of interface
communicate with each other. There are two approaches to tackle this issue. One is to
simulate all the abstraction levels of HW interface during simulation [27]. The other is
to design/generate a simulation wrapper that adapts different abstraction levels [28].
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Figure 20.12 shows a case where all the abstraction levels are simulated [27].
In this model called ‘SystemCSV ’, three abstraction levels of the HW interface are
assumed: RTL, message and transaction.7 The figure exemplifies the meaning of
each abstraction level. Assume that the two modules A and B have only a single
interconnection between them and that, as shown in the figure, the HW interface of
module A is at transaction level and that of module B at RTL. We need to make both
sides of transaction level and RTL communicate with each other for the simulation
to work. The method simulates all the three levels of the HW interface though only a
part of the simulation (denoted by the shaded arrow in the figure) is really required.

The advantages of this method are two-fold. One is that the communication pro-
tocol being simulated at high level can be validated against the simulation results
obtained at low levels. The other is that interconnecting modules with different
abstraction levels of the HW interface do not need an additional adaptation since
all the possible abstraction levels are already supported in the HW interface.

In Reference 28, the authors present a method of generating only the necessary
simulation wrapper for an HW interface. Figure 20.13 shows the internal architecture
of the simulation wrapper of an HW interface. It consists of two parts. One is called
‘simulator interface’ which adapts different simulation languages and simulators. The
other is called ‘communication interface’ which adapts different abstraction levels
of HW interface. Communication interface is divided into three parts: port adapter,
channel adapter and internal communication media.

A port adapter is connected to the port(s) of the HW module (via the simulator
interface, if different simulation languages/simulators are used). For each pair of port
of HW module and its abstraction level, a port adapter is pre-designed in a simulation
model library. For each communication protocol, a channel adapter is pre-designed
for each abstraction level of the communication protocol. Internal communication
media does not carry any information on abstraction level between port and channel
adapters. Thus, a port/channel adapter depends only on the abstraction level of HW
module port/communication channel.

7 The names of abstraction levels are different from one model to another. The abstraction levels with
the same name do not correspond to each other, e.g. transaction levels in References 6 and in 7.
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Given an HW module and a set of communication channels, a simulation model
is generated according to the abstraction levels of ports of the HW module and those
of the communication channels. This approach aims at automatically generating sim-
ulation wrappers for mixed-level HW simulation while minimising the number of
required library components.

20.3.2.2 Mixed-level HW/SW cosimulation

As the abstraction level of SW design is raised, integrating OS level simulation of
SW code into HW/SW cosimulation gets more and more attention [11,12,17,18,20].
Even a commercial tool for this purpose has been released [15].

In terms of simulation model composition, in this case, SW simulation model
consists of SW code, OS/device driver simulation model (e.g. VxSim [29], SoCOS
[30], ITRON [31]) and a bus functional model (BFM) which supports TLMs as well
as cycle-accurate level. Figure 20.14(a) exemplifies HW/SW cosimulation model
where SW model consists of SW task code, OS model and BFM.

Compared with conventional simulation with OS models [29] where we use OS
simulators on top of which application tasks run, HW/SW cosimulation with OS sim-
ulation differs in that (1) HW simulation is performed and (2) SW simulation is timed
[18]. Especially, timed SW simulation enables us to validate performance as well as
functionality, which is not allowed in conventional simulation with OS models.

Timed SW simulation is enabled by annotating SW execution delay on the target
processor into the SW task code. Figure 20.14(a) exemplifies the annotation with
function delay( ). Delay values can be estimated using existing methods of estimating
SW execution delay on the target processor [32].

The key technology in HW/SW cosimulation with OS (device driver) models is
the simulation of interrupt handling. Function delay( ) needs to simulate interrupt
handling. Figure 20.14(b) shows how function delay( ) works in a simulation envi-
ronment such as SystemC. When it is called by task code, function wait( )8 is called.
When function wait( ) returns, we can have one of two cases. One is that there was no

8 In this case, we use SystemC wait(event, time) which returns when time elapses without event or
when event occurs before time elapses.
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interrupt event which arrived at the processor on which task code runs during the time
period of delay d. Figure 20.14(c) exemplifies this case. At time t , function delay(10)
is called by task code. There is no interrupt event from time t to t + 10. In this case,
function delay(10) returns after advancing the simulation time of SW, TSW

9 by the
amount of elapsed time, Te (= 10) as Figure 20.14(b) shows.

The other case that function wait( ) returns is when an interrupt event arrived at
the processor before the delay period elapses. Figure 20.14(d) exemplifies this case.
In this case, an interrupt event (e.g. nIRQ changes from ‘1’ to ‘0’ in the case of ARM7
processor) arrives at time t + 5. Upon the interrupt, an interrupt service routine (ISR)
is executed in reality. In HW/SW cosimulation, a simulation model of ISR is executed
as shown in Figure 20.14(b).

After the ISR simulation is finished, function delay( ) needs to continue to com-
plete the remaining delay. To do that, before calling the ISR simulation, the remaining
delay value is calculated (d = d – Te). As Figure 20.14(d) shows, after finishing the
ISR simulation, the remaining time period needs to be elapsed as if a new function
delay( ) is called with the remaining period.

During ISR simulation, the ISR simulation model can invoke OS scheduling (in
the OS model) thereby yielding a task context switch. The ISR simulation can be even
pre-empted by the arrival of another higher priority interrupt (e.g. FIQ in the case of
ARM7 processor). That is, nested interrupts need to be supported. For further details

9 We assume that SW simulation time and HW simulation time are managed separately. They are
synchronised when function delay( ), to be more specific, function wait( ) is called.
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of OS/device driver level simulation in HW/SW cosimulation, refer to References 13
and 14.

20.4 Performance of mixed-level cosimulation

In this section, we address performance issues that designers face while raising the
abstraction levels of HW/SW cosimulation. Simulation performance is determined
by simulation workload (of SW and HW simulation) and simulation kernel overhead.
It is known that simulation workload decreases as the abstraction level is raised. Sim-
ulation kernel overhead is inversely proportional to the number of synchronisations
between SW and HW simulation.

Figure 20.15 illustrates the synchronisation overhead in HW/SW cosimulation.
In the figure, dark rectangles represent simulation workload (Tw) and blank rectan-
gles synchronisation overhead (Ts) in terms of simulation runtime. Synchronisation
overhead may include IPC (inter-process communication) overhead in conventional
multi-process HW/SW cosimulation [33] and scheduler overhead, e.g. SystemC
scheduler overhead in uni-process HW/SW cosimulation [22,23].

20.4.1 Amdahl’s law in HW/SW cosimulation performance

Raising abstraction levels of simulation does not always yield expected speedup. It
is because if one item (e.g. cycle-accurate HW simulation workload) is improved
(by raising the abstraction level to that of algorithm or TLM), speedup is not as high
as expected. It is because the dominance in simulation runtime changes as we raise
the abstraction level of SW and HW simulation. For instance, in the case that SW
simulation is performed by instruction set simulators and HW simulation by cycle-
accurate RTL simulation, HW simulation may dominate total simulation runtime
(while yielding simulation performance, ∼1k cycles/s). If we raise the abstraction
level of HW simulation from cycle-accurate level to cycle-approximate task level
(function) and TLM level (HW interface), then, dominance may move from HW
simulation to SW simulation thereby giving simulation performance (∼100k cycles/s)
which may be inferior to what the simulation speedup in HW simulation alone can
give. In this case, if we raise again the abstraction level of SW simulation from
ISA level to device driver or OS level, then, dominance may move again from SW
simulation to synchronisation overhead while giving higher simulation performance,
e.g. ∼10M cycles/s. The simulation speedup is inferior to what device driver/OS level
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simulation alone gives (e.g. ∼1000 times speedup). The reason why synchronisation
overhead dominates is that HW and SW simulation must synchronise with each other
frequently to check interrupt events going from HW to SW simulation.

20.4.2 Techniques for improving simulation performance

The most powerful way to improve simulation performance is raising abstraction
levels of simulation. However, in each case of possible combinations of abstraction
levels in HW/SW cosimulation, we need techniques to further improve simula-
tion performance. In the following, we explain existing techniques of speeding up
SW simulation and those of reducing synchronisation overhead thereby improving
HW/SW cosimulation performance. In terms of HW simulation speedup, except in
the case of transaction level modelling, there is little work at abstraction levels higher
than RTL, i.e. algorithm or task/process level since existing simulation techniques
[34] which are independent from HW/SW partitioning can be applied to high-level
HW simulation.

Most techniques for SW simulation speed up focus on instruction set simulation
[35–37]. Figure 20.16 illustrates two types of instruction set simulation: interpretive
and compiled simulation.

Interpretive instruction set simulator (ISS) takes as input compiled assembly code.
It interprets each of the assembly instructions. The figure exemplifies the interpre-
tive ISS of a processor with three pipeline stages, e.g. ARM7 processor. The ISS
(e.g. ARMulator) simulates each pipeline stage. In the case of interpretive ISS, the
simulation of the decoding stage takes most of the simulation runtime since it consists
of a very long switch-case statement which interprets each instruction as the figure
shows.

Compiled ISS overcomes the problem of instruction decoding in the inter-
pretive ISS by pre-interpreting assembly instructions (in Code Generation step in
Figure 20.16) and by generating the simulation model of each assembly instruction
in the source code of ISS as shown in the figure [35]. By removing the overhead
of instruction decoding during simulation run, the compiled ISS can improve the
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simulation performance significantly. However, it lacks in supporting the simulation
of self-modifying code and interrupts. It suffers also from the overhead of code size
increase.

There have been several approaches to preserve the speed of compiled ISS while
keeping the capability of interpretive ISS. In Reference 36, SW simulation is based
on an interpretive ISS. The key idea of this method is to reuse the information of
instruction decoding. First, an assembly instruction is simulated by the interpretive
ISS. The information of instruction decoding is stored in a table together with the
address of this instruction. Later, when the same instruction (identified by its address)
needs to be decoded, the saved information of instruction decoding is used instead
of executing the interpretive ISS. Since the instruction decoding is performed only
once (if the table is large enough) during the simulation run, the method is called JIT
(just-in-time) cache compiled simulation.

In Reference 38, a concept called ‘cached simulation’ is presented. The main idea
of this method is to replace the ISS execution in HW/SW cosimulation as often as
possible by that of the source code of the application function. To do that, the delay of
the application function is obtained by executing the ISS when the application function
is called for the first time. Then, the delay value is stored in a table called the ‘delay
cache’ together with the information of execution path in the code of application
function. When the same execution path of the application function is simulated, the
delay value is reused instead of executing the ISS. Thus we can minimise executing
the ISS.

Synchronisation overhead reduction can be achieved by optimistic approaches
[39,40] or by a concept of message grouping [41]. Figure 20.17 shows two types
of synchronisation between SW and HW simulation: lock step and optimistic syn-
chronisation. In lock step synchronisation, at every system clock cycle, both SW
and HW simulation synchronises with each other to exchange events (e.g. memory
read/write request signals from SW to HW simulation and interrupts from HW to SW
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SW simulation

HW simulation

Time
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2

State saving
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Figure 20.17 Reducing synchronisation overhead by optimistic simulation: (a) lock
step synchronisation, (b) optimistic simulation
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simulation) as shown in Figure 20.17(a). The overhead of such a synchronisation is
inhibitively high especially when multiple processes are involved in simulation or
when the abstraction levels of both SW and HW simulation are high (e.g. OS level
for SW simulation and task/process level for HW simulation, respectively).

Optimistic simulation reduces the synchronisation overhead by skipping synchro-
nisation for a certain amount of simulation cycles. In Figure 20.17(b), SW simulation
is assumed to advance its execution by four clock cycles optimistically, i.e. with-
out synchronisation with HW simulation. During that period, it saves its simulation
state (at time 2). At time 4, both simulations synchronise with each other. If there is
an event that should have been exchanged between SW and HW simulation before
time 4, SW simulation rolls back to one of saved simulation states whose timestamp is
earlier than that of the missed event. If not, the simulation continues in the same way.
The figure illustrates simulation speedup by optimistic simulation. In this method,
a key consideration is to decide when to save simulation states since too frequent
state saving may offset the speedup by state saving overhead.

20.5 A challenge: cosimulation for MPSoC

MPSoC is introducing new concepts and problems into SoC design methodology
including network-on-chip [42], parallel processors [43], distributed memory [44],
parallel programming model [43], distributed OS [45], etc. HW/SW cosimula-
tion faces a new challenge in the MPSoC era. Figure 20.18 illustrates HW/SW
cosimulation of MPSoC. A simplified architecture of MPSoC is depicted in the
left-hand side of the figure. It consists of sub-systems (big rectangles in the figure)
and a network connecting sub-systems via routers (small rectangles in the figure).

mP

Mem NI

100 ISSs

Sub-system

Figure 20.18 HW/SW cosimulation of MPSoC
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The interconnection among routers is omitted in the figure for clarity. A sub-system
may consist of processor(s), local interconnect, local memory and network interface
(NI) as exemplified in the figure.

Assume that we perform HW/SW cosimulation of the MPSoC with a cycle-
accurate ISS for each processor. We may need up to 100 ISSs for the simulation as
exemplified in the figure. Such a simulation may suffer from very low speed (less
than ∼1kcycle/s) due to high simulation workload of SW simulation (e.g. 100 ISSs
run) though HW simulation may be performed at a high abstraction level. Such
a low performance may not be acceptable in application software development
and in architecture exploration (e.g. buffer size optimisation for DMA or network
interface, etc.).

To overcome the problem of poor simulation performance, we may need to
apply higher abstraction levels to HW/SW cosimulation (e.g. OS level simulation
[15–18,46,47] instead of cycle-accurate ISS execution) or apply other methods such
as parallel simulation.

In the near future, a slightly higher abstraction level model, e.g. instruction accu-
rate (IA) ISS may be practically applied together with functional/timed models of
peripherals. The performance of IA ISS ranges between 10 and 100 MIPS on high-
performance PCs. Such a high performance even allows for simulating an entire
board consisting of a complex processor, bus and peripherals almost in real time [47].
Embedded software developers will benefit from the simulation model since they can
validate application SW code in real time before the hardware prototype is available.
In the cases that tens of processors need to be simulated, IA ISSs may not give enough
performance to allow for application SW validation. A set of higher abstraction lev-
els for both hardware and software simulation [13–16] may need to be applied in
this case.

In order to improve simulation performance, high-level simulation may not be
always the best solution since it lacks in simulation accuracy (which might be needed
in performance estimation) and visibility of simulated system (which might be needed
in functional validation or in debugging). One desirable solution may be to be able
to change abstraction levels of simulation dynamically during the simulation run.
Figure 20.19 exemplifies this idea.

Assume that we simulate a MPSoC with N processors. The figure shows that the
abstraction levels of simulation of processors change dynamically during simulation
between a high abstraction level (HL), e.g. OS level and a low abstraction level (LL),
e.g. ISA level. The abstraction level may be lowered when a detailed simulation
is needed for debugging purpose (e.g. ISS execution to check stack overflow) or
for simulation accuracy (e.g. ISS execution to simulate interrupt handling at cycle
accuracy). The figure illustrates that the abstraction levels of processors #1 and #N are
lowered between times t2 and t3 to accurately simulate inter-processor communication
(e.g. DMA launch, waiting on interrupt, etc.). After the low-level simulation, the
abstraction levels may be raised to speed up simulation.

Changing the abstraction levels of simulation is not a new idea. However, the
existing technique [48] is limited to changing the abstraction levels of the HW inter-
face. In the case of MPSoC cosimulation, we need a method which enables us to
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Figure 20.19 Dynamic change of abstraction levels in HW/SW cosimulation of
MPSoC

change all the abstraction levels of HW/SW interfaces and function. To the best of
authors’ knowledge, there is little work for this issue.

Considering Amdahl’s law in HW/SW cosimulation explained in Section 20.4,
if both the abstraction levels of SW and HW simulation are raised, synchronisation
overhead may dominate again total HW/SW simulation runtime. For instance, recall-
ing OS level simulation in Figure 20.14, if the granularity of delay annotation is
very small, e.g. a few clock cycles, then the synchronisation overhead by function
delay( ) will dominate the entire simulation runtime, which may give a poor simulation
performance masking off the benefit of high-level simulation.

Possible solutions to overcome this problem will be (1) to increase the granularity
of delay annotation (hundreds or thousands of cycles delay) in order to reduce the
number of synchronisation, (2) to predict timing points only necessary for synchroni-
sation [40], or (3) to apply optimistic simulation approaches [39,41]. More research
is required for novel techniques to reduce synchronisation overhead in high-level
HW/SW cosimulation of MPSoC.

20.6 Conclusions

In this chapter, we explained mixed-level HW/SW cosimulation as the current issue
of HW/SW cosimulation and addressed the performance problem of MPSoC cosim-
ulation. First, we introduced the abstraction levels of function, HW interface and
SW interface. Mixed-level cosimulation is required in HW/SW co-development and
for the purpose of enhancing cosimulation performance. To better understand how
mixed-level cosimulation models are produced in HW/SW co-development, we intro-
duced the concept of refinement space. Techniques of mixed-level cosimulation were
explained for both cases of HW interface and SW interface.
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In terms of cosimulation performance, raising abstraction levels of simulation
may not always give as much performance improvement as expected due to Amdahl’s
law. Thus, in addition to raising abstraction levels, we need techniques to improve
each of SW and HW simulation and to reduce synchronisation overhead in HW/SW
cosimulation. In this chapter, we explained techniques to improve SW simulation
based on instruction set simulation and to reduce synchronisation overhead exploiting
optimistic simulation.

MPSoC prevents a new problem to HW/SW cosimulation. Due to a high number
of processors in MPSoC, current solutions of HW/SW cosimulation based on ISS
execution may not give a sufficient simulation performance. In this chapter, we
addressed the direction of some potential research to devise new techniques to improve
HW/SW cosimulation performance for MPSoC with a trade-off between performance
and accuracy.
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Chapter 21

System-level validation using formal techniques

Rolf Drechsler and Daniel Große

21.1 Introduction

With increasing design complexity, verification becomes a more and more important
aspect of the design flow. Modern circuits contain up to several hundred million
transistors. In the meantime it has been observed that verification becomes the major
bottleneck, i.e. up to 80 per cent of the overall design costs are due to verification.
This is one of the reasons why recently several methods have been proposed as
alternatives to classical simulation, since it cannot guarantee sufficient coverage of
the design. For example, in Reference 1 it has been reported that for the verification
of the Pentium IV more than 200 billion cycles have been simulated, but this only
corresponds to 2 CPU minutes, if the chip is run at 1 GHz.

Formal verification techniques have gained large attention, since they allow us to
prove the correctness of a circuit, i.e. they ensure 100 per cent functional correctness.
Beside being more reliable, formal verification approaches have also been shown to
be more cost effective in many cases, since test bench creation – usually a very time
consuming and error prone task – becomes superfluous [2].

In this chapter, first in Section 21.2 some of the application domains, where formal
techniques have successfully been used, are briefly described. Links to further lit-
erature are given where the interested reader can get more information. Then, as
an example, equivalence checking based on formal techniques is described from an
industrial perspective in Section 21.3. This gives a better understanding of the prob-
lems that should have to be considered while applying formal verification. Aspects
of system level verification are discussed in Section 21.4, where SystemC is used
as the modelling platform. After some preliminaries on SystemC and the property
language used, two approaches for verification at the system level are discussed.
An approach which allows property checking for SystemC descriptions at the block
level is presented in Section 21.5. The design and a property is transformed into a
Boolean satisfiability problem and then SAT techniques are applied for the proof.
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An example is discussed in detail to demonstrate the overall flow. But for very
large systems a formal proof may fail. For the block integration on the system level
the communication needs to be verified. Section 21.6 introduces an approach for
SystemC descriptions which allows the generation of checkers from temporal prop-
erties. By this, it becomes possible to check properties where formal proof methods
fail due to complexity. Furthermore the properties can not only be checked during
simulation but also after fabrication. Together, the two approaches enable a concise
circuit and system verification methodology. In Section 21.7 a list of challenging
problems is given, including an outline of some topics that need further investigation
in the context of formal hardware verification and Section 21.8 concludes the chapter.

21.2 Formal verification

The main idea of formal hardware verification is to prove the functional correctness of
a design instead of simulating some vectors. For the proof process different techniques
have been proposed. Most of them work in the Boolean domain, like binary decision
diagrams (BDDs) or SAT solvers.

The typical hardware verification scenarios, where formal proof techniques are
applied, are

• equivalence checking (EC)
• property checking (PC), also called model checking (MC)

The goal of EC is to ensure the equivalence of two given circuit descriptions.
(This is discussed in more detail in the next section.)

In contrast to EC, where two circuits are considered, for PC a single circuit
is given and properties are formulated in a dedicated ‘verification language’. It is
then formally proven whether these properties hold under all circumstances. While
‘classical’ computational tree logic (CTL)-based model checking [3] can only be
applied to medium sized designs, approaches based on ‘bounded model checking’
(BMC) as discussed in Reference 4 give very good results when used for complete
blocks with up to 100k gates.

Nevertheless, all these approaches can run into problems caused by complexity,
e.g. if the circuit becomes too large or if the function being represented turns out to be
‘difficult’ for formal methods. The second problem often arises in cases of complex
arithmetics, such as multipliers.

Motivated by this, hybrid methods have been proposed, e.g. symbolic simulation
and assertion checking. These methods try to bridge the gap between simulation and
correctness proofs. But these approaches also make use of formal proof techniques.

21.3 Equivalence checking in an industrial environment

This section describes the equivalence checker ‘gatecomp’ that is part of the tool
set CVE developed in the formal verification group of Infineon Technologies as
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Figure 21.1 Synthesis verification flow

presented in [5]. The information on the tool gives the status of the year 2000. In the
meantime more advanced techniques are included, while we restrict ourselves in the
following to the basic concepts.

Most designers will first experience formal verification when using an equivalence
checking tool for sign-off, e.g. to check that the final netlist has the same behaviour as
previous netlists and even the original registered transfer level (RTL). As an example,
the general flow for the synthesis verification, i.e. checking the equivalence of a RTL
description and a netlist, is shown in Figure 21.1. Starting from the RTL description
a netlist is generated by a synthesis tool. Then both descriptions are translated into
an internal gate format that is used by gatecomp to prove functional equivalence.
The translation is done by the frontends. This independence from the synthesis tool
guarantees a further improvement of quality of the overall design. In a similar way
equivalence of RTL versus RTL and netlist versus netlist descriptions is proven. The
steps in general are as follows:

1 Translate both designs to an internal format.
2 Establish the correspondence between the two designs in a matching phase.
3 Prove equivalence or inequivalence.
4 In the case of an inequivalence a counter-example is generated and the debugging

phase starts.

Several powerful features of gatecomp support the user during these steps.
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21.3.1 Advanced equivalence checking

The CVE toolset contains the advanced equivalence checker gatecomp. The algo-
rithms used are highly efficient; a typical performance figure for gatecomp is 100k
gates per minute; many multi-million gate designs have been verified so far. Before
describing the examples in more detail, we first review the main features of the
tool and also show the differences due to more precise modelling compared with
alternative implementations.

Gatecomp is used to compare netlist versus netlist, RTL versus netlist or RTL
versus RTL. While other tools only focus on bug finding, in addition gatecomp is
targeted towards simulation verification, i.e. to check that what is simulated on the
RTL is also simulated on the netlist (reference design).

Gatecomp is an advanced equivalence checker due to the following
differentiators:

• Speed
– An efficient hash based data structure allows it to handle complete designs by

very low memory consumption [6,7].
– Multi-engines with multi-threading guarantee beside the very fast execution,

and also the robustness and quality [8,9].
– The denotational translation schemes on word level in language frontends

support the use of RTL information for the equivalence proof.
• Capacity

– The intelligent control of multi-engines ensures a tight integration of the
different proof engines.

– The frontends make use of compositional translation.
• Language coverage

– The long-term experience with various description formats, such as VHDL
(including VITAL), Verilog (including UDPs) and EDIF, results in robust
frontends and very user-friendly linting tools.

• Debugging
– A graphical user interface (GUI) allows for easy handling of the results (see

Figure 21.2).
– A link to ModelSim and Debussy for source code/netlist debugging is

provided.
– A fast reachability analysis for eliminating spurious sequences is integrated.

• Flexibility
– The multi-engine concept can easily be extended.
– Gatecomp supports full Boolean constraints.
– A third party transistor extraction tool can be accessed.
– Automatical generation of controllability and observability don’t cares.

• Rich set of features
– Multipliers of large bit-length can be handled.
– Matching techniques: name based, simulation and prover based, structural,

user defined, change name file from Synopsys.
– Automatic removal of redundant states.
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Figure 21.2 Graphical user interface

• Support for clock-gating, tri-states, black boxing, compression of counter-
examples, assertions and constraints, scan path insertion, etc.

21.3.2 Precision

The idea is that what you simulate on RTL is also simulated on the netlist. Gatecomp
uses a different approach for the proof algorithms. Instead of a two- a four-valued logic
is used, that allows it to use synthesis and simulation semantics. While other tools
reduce the simulation to two values only, gatecomp can model the precise language
semantics, e.g. 9-valued in VHDL. The main features are

• A formal library qualification tool guarantees conformance of synthesis and simu-
lation view and issues warnings otherwise. The libraries are compiled into simple
functional replacements. This – in addition to being very robust and reliable –
results in very fast runtimes during the equivalence checking phase.

• The simulation/synthesis mismatches are proven/highlighted.
• Gatecomp is independent of the internal workings of the synthesis tools.
• The tool allows a formal handling of internal don’t cares for RTL/RTL and

RTL/netlist comparison.

21.3.3 Experiments

To demonstrate the usage of the tool in equivalence checking of ASICs we report on
three verification scenarios: a netlist versus netlist comparison, a RTL versus netlist
comparison, and a RTL versus RTL comparison.

21.3.3.1 Netlist versus netlist comparison

First, we describe the verification of a synthesised netlist against its description after
test logic insertion. The verified designs contained approximately 2.6 million gates.
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Table 21.1 Information on ASIC complexity

Characteristics Synthesised Final netlist
netlist

Inputs 2843 2843
Outputs 4178 4178
States 150 218 150 215
Gates (million) 2635 2634
Lines of code 222 610 3 861 939

Details are given in Table 21.1. The verification times were <20 CPU minutes on a
four processor machine. Less than 0.5 GByte of main memory were used.

21.3.3.2 RTL versus netlist comparison

This is the typical scenario for synthesis verification as shown in Figure 21.1. In our
example the RTL description had more than 50 000 lines of code and the resulting
netlist consists of over 2 million gates. Gatecomp took <23 CPU minutes and <420
MByte of main memory to prove functional correctness.

21.3.3.3 RTL versus RTL comparison

A Verilog design was automatically translated into a VHDL description. After trans-
lation each module was checked by equivalence checking for functional correctness.
For almost all blocks the verification was done in no time and fully automatic. In only
a few cases – where the Verilog-VHDL-translation was erroneous – the tool took a few
CPU minutes. In the case of a block with more than 600 outputs and over 1000 state
variables the verification took 7 CPU minutes and <80 MByte were used. Based
on the counter-example generated by gatecomp the design bug, that was due to a
wrong assignment of don’t care values, could easily be fixed. In all three cases, this
high performance is to be seen as a result of tight interaction between different tool
components, i.e. the frontends, the proof engine and the debugging environment. The
multi-engine concept used in gatecomp and its intelligent control guarantees high
flexibility and robustness also on large designs with several million gates.

21.3.4 Comparison

Finally, we report about a comparison of various equivalence checking tools. All
experiments were carried out on a SUN Sparc 2 with 256 MByte running SunOS 5.7.
An initial netlist is compared with a post layout netlist including routing that has been
obtained by application of Magma Blast Fusion™, one of the leading physical design
systems that also applies logic synthesis techniques. By this, the comparison often
becomes more difficult. The initial netlist consists of 370 k gate equivalents. The
netlist has more than 4500 outputs and more than 21 000 states bits. The runtimes
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Table 21.2 Information on runtime

Characteristics Tool 1 Tool 2 Tool 3 Gatecomp

Runtime >1 week∗ ≈21 h ≈18 h ≈3.5 h

∗ After a finetuning of the parameters for this tool a reduction of
runtime to 4 h has been achieved. But similar results can be expected
for the other tools by variation of the parameters, e.g. gatecomp can
do the comparison in <1 h, if specialised parameters are chosen.

of gatecomp in comparison to three other commercially available tools1 are given
in Table 21.2. All tools are started with their default settings, i.e. no tuning of the
parameters is done. As can be seen, significant reductions in runtime can be obtained.

The examples described above show the application to real-world examples.
Using the powerful tool gatecomp, equivalence checking of multi-million gate designs
can be performed within minutes, and by this is superior to classical simulation – not
only with respect to quality – but also regarding runtime. This has a direct impact on
the costs of the verification process that can be reduced significantly based on formal
techniques.

21.4 System-level verification

While classical approaches to circuit design make use of ‘Hardware Description
Languages’ (HDLs), such as VHDL or Verilog, there is a strong interest in C-like
description languages for system level modelling [10]. These languages allow for
higher abstraction and fast simulation in an early stage of the design process.
Furthermore, hardware/software co-design can be performed in the same system
environment. One of the most popular languages of this type is SystemC [11].2 But
so far, most verification approaches for SystemC are based on simulation only [12,13].
Of course, due to the reasons discussed in the introduction, it would be desirable to
have formal verification techniques also at the system level.

Before the verification approaches are described in detail, the main features of
SystemC and the property language used are reviewed.

21.4.1 Preliminaries

In the following circuits and systems are modelled in SystemC. Therefore, first a
short overview on SystemC is given. Then the formalism for specification of temporal
properties is described.

1 Names not given to guarantee anonymity.
2 All techniques discussed in the following can also be transferred to other system-level languages,

e.g. SystemVerilog.



722 System-on-chip

21.4.1.1 SystemC

The main features of SystemC for modelling a system are based on the following:

• Modules are the basic building blocks for partitioning a design. A module can
contain processes, ports, channels and other modules. Thus, a hierarchical design
description becomes possible.

• Communication is realised with the concept of interfaces, ports and channels. An
interface defines a set of methods to access channels. Through ports a module
can send or receive data and access channel interfaces. A channel serves as a
container for communication functionality, e.g. to hide communication protocols
from modules.

• Processes are used to describe the functionality of the system, and allow express-
ing concurrency in the system. They are declared as special functions of modules
and can be sensitive to events, e.g. an event on an input signal.

• Hardware specific objects are supplied, e.g. signals, which represent physical
wires, clocks and a set of data-types useful for hardware modelling.

Besides this, SystemC provides a simulation kernel. The functionality is similar to
traditional event-based simulators. Note that a SystemC description can be compiled
with a standard C++ compiler to produce an executable specification. The output of a
system can be textual, using C++ routines such as cout for instance, or waveforms.
As a C++ class library SystemC can easily be extended by using the facilities of C++.

21.4.1.2 Property language

Describing temporal properties for verification can be done in many different ways,
since there exist several languages and temporal logics. We use the notation of the
property checker from Infineon Technologies (e.g. see References 14 and 15 for more
details). A property consists of two parts: a list of assumptions ‘assume part’ and a
list of commitments ‘proof part’. An assumption/commitment has the form

at t+a: expression;
or during[t+a,t+b]: expression;
or within[t+a,t+b]: expression;

where t is a time point, and a, b ∈ N are offsets. If all assumptions hold, all
commitments in the proof part have to hold as well. Since a and b are finite a
property argues only over a finite interval, which is called the ‘observation window’.

Example 21.1 The property test says that whenever signal x becomes 1, two
clock cycles later signal y has to be 2.

theorem test is
assume:

at t: x = 1;
prove:

at t+2: y = 2;
end theorem;
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Figure 21.3 Property checking work flow

In general a property states that whenever some signals have a given value, some
other (or the same) signals assume specified values. Of course, it is also possible to
describe symbolic relations of signals. Furthermore the property language allows to
argue over time intervals, e.g. that a signal has to hold in a specified interval. This is
expressed by using the keywordsduring andwithin; whereasduring states that
the expression has to hold all the time in the interval, with within the expression
has to hold at least once in the specified interval. Also a set of advanced operators
and constructs is provided to allow for expressing complex constraints more easily.

21.5 Property checking

In this section, we present an efficient approach to property checking of SystemC
designs.3 Before a detailed description is given the overall flow is outlined. After
design implementation and formalisation of the specification into temporal properties
the proposed approach works as follows (see also Figure 21.3):

1 The SystemC design is transformed into an internal finite state machine (FSM)
representation by the SystemC frontend.

3 A first approach to property checking of SystemC designs based on BDDs has been presented in
Reference 16. Here an extension of this technique is presented. A larger set of SystemC constructions is
supported and a more powerful prover based on a SAT engine is used.
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2 A single property and the FSM representation is translated into a bounded model
checking problem.

3 The bounded model checking problem is checked for satisfiability to decide if
the property holds or not.

These steps are now discussed in more detail.

21.5.1 SystemC frontend

The frontend is based on a parser for SystemC [17] which has been developed to
be generic in order to allow an application in different areas, e.g. verification or
visualisation.

To build the parser the tool PCCTS (Purdue Compiler Construction Tool Set)
[18] was used. PCCTS enables the description of the syntax of a language by a
grammar, provides facilities for construction of easy-to-process data structures and
finally generates a parser. Specialised for SystemC the parser was built as follows:

• A preprocessor is used to account for directives and to filter out header-files that
are not part of the design, such as system-header-files.

• A lexical analyser splits the input into a sequence of ‘tokens’. These are given
as regular expressions that define keywords, identifiers etc. of SystemC descrip-
tions. Besides C++ keywords also essential keywords of SystemC are added,
e.g. SC_MODULE or sc_int.

• A syntactical analyser checks if the sequence of tokens conforms to the ‘grammar’
that describes the syntax of SystemC. Terminals in this grammar are the tokens.

PCCTS creates the lexical and syntactical analyser from tokens and grammar, respec-
tively. Together they are referred to as the parser. The result of parsing a SystemC
description is an abstract syntax tree (AST). At this stage no semantic checks have
been performed, e.g. for type conflicts. The AST is constructed using a single node
type, that can have a pointer to the list of children and a pointer to one sibling. Addi-
tional tags at each node are used to store the type of a statement, the string for an
identifier and other necessary information.

In the following the overall procedure for the transformation of a SystemC
description into a FSM representation is given (see also Figure 21.4):

• After preprocessing the parser is used to build the AST from the SystemC
description of a design.

• The AST is traversed to build an intermediate representation of the design. All
nodes in an AST have the same type, all additional information is contained in
attached tags. Therefore different cases have to be handled at each node while
traversing the AST. By transforming the AST into the intermediate representa-
tion the information is made explicit in the new representation by the analyser
for further processing. The intermediate representation is built using classes to
represent building blocks of the design, e.g. modules, statements or blocks of
statements. During this traversal semantic consistency checks are carried out. This
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Figure 21.4 Overall procedure for transformation of a SystemC description into a
FSM representation

includes checking for correct typing of operands, consistency of declarations and
definitions, etc.

• The FSM representation is generated by traversing the intermediate representation
recursively. Classes dedicated to certain constructs enable the construction of
output functions and transition functions from the intermediate representation.

The SystemC frontend is restricted to SystemC register transfer level (RTL)
descriptions, i.e. to a subset of possible C++ and SystemC constructs [19]. To prevent
difficulties already known from high-level-synthesis C++ features such as dynamic
memory allocation, pointers, recursions or loops with variable bounds are not allowed.
In the same way some SystemC constructs have no direct correspondence on the RTL
and are excluded, e.g. SystemC channels. For channels that obey certain restrictions
the FSM transformation can be extended by providing a library of RTL realisations.
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Supported are all other constructs that are known from traditional hardware
description languages. This comprises different operators for SystemC-datatypes,
hierarchical modelling or concurrent processes in a module. Additionally, the new-
operator is allowed for instantiation of submodules to allow e.g. for a compact
description of scalable designs.

21.5.2 SystemC property checker

First the translation of a property and the FSM representation of the SystemC design
into a Boolean problem are explained. Then details on the SystemC property checker
are given and an example is provided.

21.5.2.1 Boolean formulation of property checking

The initial sequential property checking problem is converted into a combinational one
by unrolling the design, i.e. the current state variables are identified with the previous
next state variables of the underlying FSM. The process of unrolling is shown in
Figure 21.5. A BMC instance of a property P arguing over the finite interval [t , t+c]
for a design D is given by:

b =
c−1∧
j=0

Tδ(i(t + j), s(t + j), s(t + j + 1))

∧ ¬P(i(t), s(t), o(t), . . . , i(t + c), s(t + c), o(t + c) )

with

• i(t) = (it1, . . . , itm) inputs at time point t
• s(t) = (st1, . . . , stn) states at time point t
• o(t) = λ(i(t), s(t)) outputs at time point t
• Tδ the transition relation

The BMC instance b depends only on the states s(t) and the inputs i(t), . . . , i(t + c).
It is unsatisfiable if for all states s(t) and all input sequences i(t), . . . , i(t + c) the
property P over the interval [t , t + c] holds for the design D. If b is satisfiable a
counter-example for the property P has been found.

s(t)

o(t +1)

C

t+1
i(t +1)

s’(t) s’(t +1)

t
i(t)

o(t)

C

o(t +c)

C

t+c
i(t +c)

Figure 21.5 Unrolling
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The SystemC property checker takes the FSM representation of the SystemC
design and a property as input. Then the property is translated into an expression
using only inputs, states and outputs of the SystemC design annotated with time
points. The unrolled FSM representation and the property expression are converted
into a bit-level representation. Here hashing and merging techniques for minimisation
are used. The bit-level representation is given to the SAT solver zChaff [20] which
has been integrated into the property checker. In the case of a counter-example a
waveform in VCD format is generated to allow for an easy debugging.

21.5.2.2 Example

To illustrate the transformation of a property and the unrolled FSM representation
into a BMC instance we provide a small example.

In Figure 21.6 a SystemC description of a two-bit counter is shown. Besides the
clock input the counter has a reset inputreset and the outputout. The current value
of the counter is stored in count_val. Figure 21.7 shows the underlying FSM of
the counter. Since the output and the state of the counter are identical only the state
is given. Basically, this FSM is the result of the SystemC frontend. Besides the FSM
other information of the SystemC design is stored, e.g. data-types of variables. If
the reset is represented by the Boolean variable r and count_val by the two state

SC_MODULE(counter) {
sc_in_clk clock;
sc_in<bool> reset;
sc_out< sc_uint<2> > out;

// counter value
sc_uint<2> count_val;

void do_count() {
if (reset.read()) {

count_val = 0;
} else {

count_val = count_val + 1;
}
out = count_val;

}

SC_CTOR(counter) {
SC_METHOD(do_count);
sensitive << clock.pos();

}
};

Figure 21.6 A 2-bit counter
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Figure 21.7 FSM of the 2-bit counter

theorem reset is
assume:
at t: reset = 1;

prove:
at t+1: count_val = 0;

end theorem;

Figure 21.8 Property reset for module counter

theorem count is
assume:
at t: reset = 0;
at t: count_val < 3;

prove:
at t+1: count_val = prev(count_val) + 1;

end theorem;

Figure 21.9 Property count for module counter

variables h (high) and l (low), the transition function of the FSM is given by:

δh(r
t ,ht , lt ) = ¬ rt ∧ (ht ⊕ lt )

δl(r
t ,ht , lt ) = ¬ rt ∧ ¬lt

For the counter three properties have been formulated. The first property reset
describes the reset behaviour of the counter (Figure 21.8). With the second property
count the normal operation of the counter is characterised (Figure 21.9). With the
prev operator values of previous time points can be accessed. The last property states
that the counter counts from three to zero (Figure 21.10). Obviously these properties
hold for the two-bit counter.
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theorem modulo is
assume:
at t: reset = 0;
at t: count_val = 3;

prove:
at t+1: count_val = 0;

end theorem;

Figure 21.10 Property modulo for module counter

Now we consider the property modulo in more detail. Since this property argues
over the interval [t , t + 1] the underlying FSM is unrolled only once, i.e. the first part
of the resulting BMC instance is

Tδ( r
t ,ht , lt ,ht+1, lt+1 ) =
ht+1 ≡ ¬ rt ∧ (ht ⊕ lt ) ∧ lt+1 ≡ ¬ rt ∧ ¬lt

Based on this unrolling step the values of variables at time point t + 1 are available
(e.g. count_val at time point t + 1 via ht+1 and lt+1). Then the property modulo
corresponds to the Boolean formulation:

¬( ¬rt︸︷︷︸
reset@t=0

∧ ht ∧ lt︸ ︷︷ ︸
count_val@t=3

) (assume part)

∨ (¬ht+1 ∧ ¬lt+1︸ ︷︷ ︸
count_val@t+1=0

) (prove part)

Finally, as explained above the BMC instance is converted into a SAT instance and
checked for satisfiability.

21.5.3 Experiments

The algorithms have been implemented in C++. All experiments have been carried
out on an Intel Pentium IV 3 GHz with 1 GB RAM running Linux. A runtime limit
of 2 CPU hours has been set.

In a first example we studied a scalable hardware realisation of the bubble sort
algorithm. The SystemC description is shown in Figure 21.11. This module imple-
ments the sort algorithm for eight data words. The bit size of each data word is
determined by a typedef. Note that the approach from Reference 16 did not sup-
port constructs, e.g. typedefs or for-loops. In total the correctness of sorting
has been proven with nine properties. The first property sorted states that the
resulting sequence is ordered correctly, i.e. that the value of an output is greater
or equal compared to values at outputs with smaller indices (see Figure 21.12). In
Table 21.3 the results are given for the property sorted and increasing bit sizes of
data words (column ‘Bit size’). The next two columns provide information about the
SAT instance, i.e. the number of clauses and literals, respectively. In the last column
the overall CPU time needed (CPU seconds) is reported. Due to the heuristic nature of
the SAT solver the proof time might slightly vary as can be seen in case of bit size 8.
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typedef sc_uint<4> T;

SC_MODULE( bubble )
{

sc_in< T > in[8];
sc_out< T > out[8];
T buf[8];

void do_it() {
for(int i = 0; i < 8; i++)

buf[i] = in[i];
for(int i = 0; i < 8-1; i++) {

for(int j = 0;j < (8-i)-1; j++) {
if( buf[j] > buf[j+1] ) {

T tmp;
tmp = buf[j];
buf[j] = buf[j+1];
buf[j+1] = tmp;

}
}

}
for(int i = 0; i < 8; i++)

out[i] = buf[i];
}

SC_CTOR( bubble ) {
SC_METHOD(do_it);
sensitive << in[0] << in[1]
<< in[2] << in[3] << in[4]
<< in[5] << in[6] << in[7];

}
};

Figure 21.11 Bubble sort

But in general the run time needed increases with the bit size and is moderate even
for larger bit sizes.

Finally, another eight properties have been proven for the SystemC module
bubble. These properties formalise that all input values of the module bubble
can be found at the outputs. The summarised results for different bit sizes are shown
in Table 21.4. Again the first column gives the bit size. In the next two columns
details of a single SAT instance are shown. These numbers are identical for each of
the eight properties, since the properties are symmetric, i.e. only the according input
differs within the eight properties. The last column provides the sum of the run times
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theorem sorted is
prove:
at t: out[0] <= out[1];
at t: out[1] <= out[2];
at t: out[2] <= out[3];
at t: out[3] <= out[4];
at t: out[4] <= out[5];
at t: out[5] <= out[6];
at t: out[6] <= out[7];

end theorem;

Figure 21.12 Property sorted for module bubble

Table 21.3 Results for different input
sizes of module bubble and
property sorted

Bit size Clauses Literals Time

4 6390 14 458 17.18
8 12 754 28 894 286.93

16 25 482 57 766 125.25
32 50 938 115 510 560.48

Table 21.4 Results for different bit sizes
of module bubble and input
properties

Bit size Clauses Literals Time

4 6298 14 262 58.49
8 12 570 28 502 681.52

16 25 114 56 982 845.76
32 50 202 113 942 3662.07

for all eight properties. As can be seen, the correctness of the implementation of the
bubble sort algorithm can be proven for up to 32 bits in 1 CPU hour.

While SystemC 1.x is focused more on RTL descriptions, SystemC 2.0 supports
several constructs for system-level modelling. In this context channels are of high
relevance. An important example of a channel provided with the SystemC distribution
are FIFOs. In the refinement step, these FIFOs are then translated to the RTL. In
a second series of experiments synchronous FIFOs with variable depth have been
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Table 21.5 Results for different FIFO depths

Depths Property Clauses Literals Time

8 reset 2708 6264 0.26
8 nochange 11 145 25 631 0.51
8 write 13 302 30 612 0.81

16 reset 5181 12 025 0.52
16 nochange 22 309 51 327 1.78
16 write 26 158 60 248 2.75
32 reset 9958 23 162 1.08
32 nochange 44 557 102 539 7.90
32 write 51 741 119 229 14.24
64 reset 19 343 45 051 2.35
64 nochange 88 865 204 531 40.64
64 write 102 680 236 670 58.63

128 reset 37 944 88 444 6.50
128 nochange 177 377 408 279 247.82
128 write 204 415 471 227 283.74

studied. The FIFO uses a register bank, a read pointer, a write pointer and a counter.
It supports simultaneous read and write. Different properties have been developed
which describe e.g. the behaviour after reset, no change of the FIFO content if no
data is written to the FIFO and more details on the write access to the FIFO. For a bit
size of 32 bits and increasing FIFO depths results are shown in Table 21.5.

In the first and second column the depth of the FIFO and the property are given,
respectively. In the next two columns details on the SAT instance are provided, i.e. the
number of clauses and the literals. Finally, the run time is given in the last column.
The results clearly show that for high depth, i.e. FIFOs with more than 100 registers,
the verification time needed is in the range of a few minutes. This demonstrates that
even though it cannot be expected that complete systems can be checked, also complex
system level constructs can be formally verified using this approach.

21.6 Generation of checkers

On the system level often property checkers may not be able to formally prove a
behaviour due to the complexity of the underlying modules. For this, alternatives
have been proposed that try to combine the techniques of simulation and formal
verification.

There are several approaches to system-level verification which are based on
assertions [21]. The key idea is to describe expected or unexpected behaviour directly
in the device under test. These conditions are checked dynamically during simula-
tion. An approach to check temporal assertions for SystemC has been presented in
[13]. There, the specified properties are translated to a special kind of finite state
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Figure 21.13 Work flow

machines (AR-automata). These automata are then checked during the simulation
run by algorithms, which have been integrated into the SystemC simulation kernel.
In contrast in Reference 22 a method has been proposed to synthesise properties for
circuits into hardware checkers. Properties which have been specified for (formal)
verification are directly mapped onto a very regular hardware layout.

Following the latter idea in this section a method is presented which allows check-
ing of temporal properties for circuits and systems described in SystemC not only
during simulation [24,23]. A property is translated into a synthesisable SystemC
checker and embedded into the circuit description. This enables the evaluation of the
properties during the simulation and after fabrication of the system. Of course, with
this approach a property is not formally proven and only parts of the functionality
are covered. But the proposed method is applicable to large circuits and systems and
supports the checking of properties in the form of an on-line test. This on-line test is
applicable, even if formal approaches fail due to limited resources.

Before the details are given, the work flow of the approach is illustrated in
Figure 21.13. At first the design has to be built and the specification has to be for-
malised into properties. Then the properties are translated to checkers and embedded
into the design description (hatched area in the figure). If all checkers hold during
simulation the next step of the design flow can be entered.

21.6.1 SystemC checker

21.6.1.1 Basic idea of checker generation

The basic idea of the translation of a property into a checker is illustrated by the
following example.
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Figure 21.14 Shift register and logic for property test

Example 21.2 Consider again Example 21.1. For the property test it has to be
checked that whenever signal x is 1, two time frames later y has to be 2. This is
equivalent to ¬(x′′ = 1) ∨ (y = 2), where x′′ is x delayed by two clock cycles. If
the equation evaluates to false the property is violated. Obviously the translation of
the property can be expressed in SystemC. The basic idea of a hardware realisation
is shown in Figure 21.14. If the output of the OR gate is 0 the property fails.

In general the translation of a property works as follows: LetP be a property which
consists of the assumptionsA = (a1, . . . , am) and the commitmentsC = (c1, . . . , cn).
Then the translation algorithm is based on four steps:

1 Parse P and determine the maximum offset omax of the property by analysing the
time points of all ai and cj .

2 For each signal used in P generate a shift register of length omax. Then the values
of a signal at time points t , t + 1, . . . , t + omax are determined by the outputs
of the flip-flops in the corresponding shift register. The offset i of a time point
can directly be identified with the ith flip-flop, if the flip-flops are enumerated in
descending order. This is illustrated in Figure 21.15.

3 Combine the signals of each ai (and cj ) as stated by the logic operations in its
expression. Thereby the variables of the appropriate time points are used. In
the case of the interval operators during and within an AND and an OR of
the resulting expressions is computed. The results of this step are the equations
â1, . . . , âm, ĉ1, . . . , ĉn corresponding to the assumptions and commitments of P .

4 The final equation is checkP = ¬∧m
i=1 âi ∨∧n

j=1 ĉj .

Of course all described transformations from the property description into the
resulting equation checkP have to be performed by using SystemC constructs, i.e. the
use of different data types and operators has to be incorporated. Finally, the property
P can be checked by evaluating checkP in each clock cycle during simulation or
operation. In the next section some details about the transformation into SystemC
code are given.

21.6.1.2 Transformation into SystemC checkers

A property is assumed to use only port variables and signals of a fixed SystemC mod-
ule or from its sub-modules. During the translation for the variables of the properties
shift registers have to be created as described in the previous section (Step 2). For this
purpose a generic register has been modelled as shown in Figure 21.16. The register
delays an arbitrary data type for one clock cycle. If such a templated register is not
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template<class T >
class regT : public sc_module {
public:

sc_in_clk clock;
sc_in<T > in;
sc_out<T > out;

SC_CTOR(regT) {
SC_METHOD(doit);
sensitive_pos << clock;

}
void doit() {

out = in.read();
}

};

Figure 21.16 Generic register

directly supported by the synthesis tool, it is possible to replace every templated reg-
ister with a version where the concrete input and output types are explicitly specified.
The generic register can be used as shown in the example in Figure 21.17. There a
register with an sc_int<8> input and output is declared and instantiated.

During the generation of the shift registers of length omax for a variable, omax

generic registers have to be declared and instantiated. This is done in the constructor
of the considered module. The necessary sc_signals (output variables of the reg-
isters) for the different time points are declared as member variables of the considered
module. Their names are produced by adding the number of delays to the variable



736 System-on-chip

regT<sc_int<8> > *r = new regT<sc_int<8> >("reg");
r->clock(clock);
r->in(a);
r->out(a_d);

Figure 21.17 Usage of generic register

SC_MODULE(module) {
public:

// ports
sc_in_clk clock;
...
// sc_signals for different
// time points
sc_signal<T> x_d1,x_d2;

SC_CTOR(module) {
// shift register
regT<T> rx_d1 = ...
rx_d1->clock(clock);
rx_d1->in(x);
rx_d1->out(x_d1);
regT<T> rx_d2 = ...
rx_d2->clock(clock);
rx_d2->in(x_d1);
rx_d2->out(x_d2);
...

}
};

Figure 21.18 Insertion of a shift register for property test

name. The absolute time points cannot be used, because if a variable is employed in
at least two properties the delay of the same time points may differ.

Example 21.3 Consider again Example 21.1. Let the data type of x be T. Let the
property test be written for the SystemC module module. As has been explained
above x has to be delayed two times. Then the resulting shift register is inserted into
the module as shown in Figure 21.18.

As can be seen in Figure 21.18 the data type of a variable used in a property has
to be known for declaration of the sc_signals and shift registers. Thus, with a
simple parser the considered SystemC module is scanned for the data types of the
property variables.
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// theorem: test
bool check_test = !( ( x_d2.read() == 1 ) ) |

( y.read() == 2 ) ;
if (check_test == false) {

cout<<"@"<<sc_simulation_time()<<
":
THEOREM test FAILS!"<<endl;

}

Figure 21.19 Checker for property test

The resulting code to check a property (equivalent to the equation checkP ) is
embedded into an SC_METHOD process of the module, which is sensitive to the
module clock, i.e. the process is triggered every clock cycle. In the final step of writing
SystemC code for the translated property the following is taken into account:

• The shift register for each variable used in a property is shared between different
checkers.

• In the case of an array access it is necessary to distinguish between an access to
an array of ports and an access to a port which contains an array type. An array of
ports is mapped onto different variables each representing an index of the array.
Furthermore the access operator [] has to be replaced accordingly.

• The operators of the property language have to be mapped onto its counterparts
in C++, e.g. = to ==.

• The resulting checker formula is assigned to a Boolean variable check_
<property name>. If this variable is false during simulation the property
is violated and an output is given using the cout routine. For the synthesis part
an output port for the considered module has to be generated, which assumes zero
if the property fails.

Example 21.4 In Figure 21.19 the translated equation check _test for the
property test is shown. If the property fails, this is prompted directly to the
designer.

21.6.1.3 Optimisations

All shift registers for different properties of one concrete module which are driven by
the same clock, can be integrated into one clocked process. Then in the constructor
SC_CTOR of the module instead of the shift registers only one clocked process has
to be declared. In this process the output variables are written, e.g. in the case of the
property test the process statements are

x_d1.write(x); x_d2.write(x_d1);

So the number of SC_METHODs is reduced and the simulation speed increases (see
also Section 21.6.2.2).
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Figure 21.20 Bus architecture

As explained above if the checkers are synthesised one-to-one for each property
an output port is generated, which assumes the value zero if the property fails. This
leads to a trade-off between good diagnosis and number of output pins. Diagnosis
is easy if each property directly corresponds to an output pin, while many outputs
require more chip area.

21.6.2 Experimental results

The technique described above is experimentally studied by generating checkers that
are included during simulation. For this task a bus architecture has been modelled. In
Figure 21.20 a block diagram of the bus architecture is shown. The bus is described as
a SystemC module, and masters and slaves can connect to the bus. The bus is divided
into a data part, an address part and a flag part. These are all sc_inout-ports and
they have the type sc_uint with a scalable size to allow for variable data width,
number of slaves and number of masters. The address is used by the masters to address
a slave. The flags send_flag and recv_flag are set during a bus transaction
(see below). Furthermore the bus contains a scalable arbiter. Thus the bus also has
a request input and an acknowledge output for each master. The arbiter consists of
n cells (one for each master) and combines priority arbitration with a round robin
scheme. This guarantees that every master will finally get access to the bus. In Figure
21.21 the arbiter is shown. Summarised, the features of the bus are

• Only masters can write to the bus and each master has a unique ID.
• A slave has a unique address. This address is given at instantiation of the slave.
• A bus transaction works as follows:

1 A master requests the bus via its request output. If access is granted see Step 2,
otherwise the master waits for an acknowledgement.



System-level validation using formal techniques 739

Token_out

Token_in

Req_in

Override_in Grant_out

Override_out Grant_in

Ack_out

Token_out

Token_in

Req_in

Override_in Grant_out

Override_out Grant_in

Ack_out

0

Cell 0

Cell n–1

Token_out

Token_in

Req_in

Override_in Grant_out

Override_out Grant_in

Ack_outCell 1

Figure 21.21 The integrated arbiter

2 The master writes the target address and the data to the bus. Furthermore,
the master writes its ID to the send_flag. Then the master waits for an
acknowledgement that the slave has received the data via the recv_flag
(ID of the master at the recv_flag).

3 If a slave detects its address on the bus, the slave reads the data and writes the
ID from the send_flag to the recv_flag of the bus.

4 If the master detects its ID on the bus, the data transmission was successful.

A waveform example of a bus with five masters and eight slaves is shown in
Figure 21.22.

21.6.2.1 Checkers

An informal description of the properties which have been embedded as checkers
into the bus module is given as:

1 Two output signals of the arbiter can never become 1 at the same time (mutual
exclusion).

2 The acknowledge is only set if there has been a request (conservativeness).
3 Each request is confirmed by an acknowledge within 2n time frames (liveness).
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Figure 21.22 Simulation trace of a small bus example

4 If the bus has been granted for a master, the master writes its ID to send_flag
in the next cycle (master ID).

5 If a slave has been addressed, the slave writes the master ID (available at the
send_flag) to the recv_flag (acknowledge master).

21.6.2.2 Simulation results

Again all experiments have been carried out on an Intel Pentium IV 3 GHz with 1 GB
RAM running Linux. Checkers have been generated for all described properties.
For each property the simulation performance in case of no checkers, the simple
approach, and the optimised approach are compared. For this task the bus model has
been simulated for 100 000 clock cycles for various numbers of masters. Note that
the number of masters connected to the bus is equal to the number of arbiter cells.
For the checkers described above we obtained the following results:

1 In Figure 21.23 the performance comparison for the checker mutual exclusion
is shown. As can be seen the simulation time for the simple and the optimised
approach increases with the number of masters. Both approaches behave similar
since the observation window of the mutual exclusion property is 1, so no registers
have to be created. For this reason no optimisation is possible. The total runtime
overhead is moderate, i.e. within a factor of two for 40 cells.

2 The simulation performance with and without the checkers for the conserva-
tiveness properties is nearly identical (see Figure 21.24). This is an expected
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Figure 21.23 Comparison of simulation performance for checker mutual exclusion
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Figure 21.24 Comparison of simulation performance for checker conservativeness

behaviour, because each conservativeness property only argues over two signals
of each arbiter cell.

3 In Figure 21.25 the results for the liveness checkers are shown. The figure shows
that the optimised approach leads to significantly better results than the simple
approach. Since the observation window of the liveness property is 2n (where n is
the number of masters) the number ofSC_METHODs has been reduced effectively
by optimisation. However, the runtime overhead compared with pure simulation
is due to the significantly increasing size of the observation windows of this
properties.
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Figure 21.26 Comparison of simulation performance for checker master ID

4 The results for the checkers of master ID show that there is a small benefit of the
optimised approach over the simple approach (see Figure 21.26). In total these
properties can be checked very quickly during simulation.

5 As expected the acknowledge master property leads to the same performance as
pure simulation, because this property could be described as being very compact.
Figure 21.27 shows the diagram.

The experiments demonstrate that the overhead during simulation for properties
with large observation windows is moderate, and negligible for properties with smaller
observation windows.
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21.7 Challenges

Even though formal verification techniques are very successfully applied and have
become the state-of-the-art in many design flows, still many problems exist. In this
section a list of these problems is given. The list is not complete in the sense that all
difficulties are covered, but many important ones are mentioned. This gives a better
understanding of current problems in hardware verification and shows directions for
future research.

Complexity: According to Moore’s law the complexity of the circuits steadily
increases. For this, the underlying data structures are very important. For EC
and BMC often dedicated data structures are used. For representation of the state
space BDDs have been shown to work well, but if the size of the circuit becomes
too large the BDDs often suffer from ‘memory explosion’.
Proof technology: While BDDs and SAT are the most popular techniques in hard-

ware verification and have also been applied to many domains, there is still a lot of
research going on. Besides the classical monolithic approaches modern EC tools
make use of multi-engine approaches that combine different techniques, such as
SAT, BDD, term rewriting, ATPG and random pattern simulation. How to suc-
cessfully combine these – often orthogonal – approaches is not fully understood
today.
Word-level approaches: Even though most proof techniques today work on the bit-

level, many studies have shown that significant improvements can be achieved if
the proof engine makes use of high-level information or even completely works
on a higher level of abstraction. In this context ILP solvers also showed promise.
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Matching in EC: As described in Section 21.2, before the proof process starts the
correspondence between the circuits has to be established. Here, several tech-
niques exist, such as name-based, structural or prover-based, but still for large
industrial designs these methods often fail. This results in very time-consuming
user-defined matching.
Reachability of counter-examples: In EC and BMC the generated counter-example

might not be reachable in normal circuit operation. This results from the modelling
of the circuit, i.e. instead of a FSM only the combinational part is considered. Thus,
it has to be checked that the counter-example is ‘valid’ after it has been generated,
or the prover has to ensure that it is reachable. Techniques have to be developed
ensure this without a complete reachability analysis of the FSM, which is usually
not feasible due to complexity reasons.
Arithmetic: Industrial practice has shown that today’s proof techniques, such as

BDD and SAT, have difficulties with arithmetic circuits, such as multipliers.
Word-level approaches have been proposed as an alternative, but these methods
often turned out to be difficult to integrate in fully automatic tools. For this,
arithmetic circuits – often occurring in circuit design – are still difficult to handle.
System integration: PC works best on the module level, i.e. for blocks with up to

100k gates. But in multi-chip modules many of these blocks are integrated to
build a system. Due to complexity the modules cannot be verified as one large
block and for this models and approaches are needed.
Hybrid approaches: For complex blocks or on the system level PC might be a very

complex task and for this simpler alternatives have been studied, i.e. techniques
that are more powerful than classical simulation but need less resources than PC.
Techniques, such as symbolic simulation or assertion-based verification, in this
context also make use of formal verification techniques.
Analog/mixed signal: Most EC and PC models assume that the circuit is purely

digital, while in modern system-on-chip designs many analogue components are
integrated. For this, also models and proof mechanisms need to be developed for
analogue and mixed signal devices.
Retiming: For EC retimed circuits are still difficult to handle, since in this case the

state matching cannot be performed. Thus, the problem remains sequential and
by this becomes far too complex.
Multiple clocks: Many circuits have different clocking domains, while verification

tools can often only work with a single clock.
Coverage: To check the completeness of a verification process coverage metrics

have to be defined. While typical methods, such as state coverage, are much too
weak in the context of formal verification, there still does not exist a good measure
that is comfortable to use for PC.
Diagnosis: After a fault has been identified by a formal verification tool a counter-

example is generated. The next step is to identify the fault location or a reason
for the failing proof process. Here, also formal proof techniques can be applied.

Most solutions to these problems are still in a very early stage of development,
but these fields have to be addressed to make formal hardware verification successful
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in industrial applications. To orient the reader, some recent references are provided
to give a starting point for further studies: see References 15, 21, 22 and 25–50.

21.8 Conclusions

In this chapter formal verification with a special focus on system-level verification
has been discussed. While EC works very well on complete designs with several
million transistors, PC approaches are so far mainly applicable at the block level.

For a solution for complete systems, still many problems have to be solved, where
some of the most important solutions were given in the previous section.

In future design projects verification will become more and more important and
the creation of a concise verification methodology decides about successful tape-outs.
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Chapter 22

Efficient modular testing and test resource
partitioning for core-based SoCs

Krishnendu Chakrabarty

22.1 Introduction

Shrinking process technologies and increasing design sizes have led to billion-
transistor integrated circuits (ICs). To reduce IC design and manufacturing costs,
test development and test application must be quick as well as effective. High transis-
tor counts in ICs result in large test data sets, long test development and application
times and the need for expensive test equipment. Effective test development tech-
niques that enhance the utilisation of test data, testing time and test equipment are
therefore necessary to increase production capacity and reduce test cost.

Test resource partitioning (TRP) deals with the partitioning and optimisation of
test resources to enhance test effectiveness and reduce test cost. This chapter describes
the use of TRP for complex ICs and presents recent advancements in test access
mechanisms, test scheduling and test data compression.

This chapter begins with an introduction to the latest IC design philosophy –
system-on-a-chip (SoC). Increasing SoC sizes lead to greater test resource require-
ments for manufacturing test. This growth in test resource requirements motivates
the need for efficient TRP techniques during SoC test development.

22.1.1 SoC design

SoCs are crafted by system designers who purchase intellectual property (IP) circuits,
known as embedded cores, from core vendors and integrate them into large designs.
Embedded-cores are complex, pre-designed and pre-verified circuits that can be pur-
chased off-the-shelf and reused in designs. While SoCs have become popular as a
means to integrate complex functionality into designs in a relatively short amount of
time, there remain several roadblocks to rapid and efficient system integration. Pri-
mary among these is the lack of core interface and testability standards upon which
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core design and system development can be based. Importing core designs from dif-
ferent IP sources and stitching them into designs often entails cumbersome format
translation. Testing SoCs is equally challenging in the absence of standardised test
structures. Hence a number of SoC and core development working groups have been
formed, notable among these being the Virtual Socket Interface Alliance (VSIA) [1]
and the IEEE P1500 working group on embedded-core test [2].

The VSIA was formed in September 1996 with the goal of establishing a unifying
vision for the SoC industry, and the technical standards required to facilitate system
integration. VSIA specifies interface standards, which will allow cores to fit quickly
into ‘virtual sockets’ on the SoC, at both the architectural level and the physical
level [1]. This will allow core vendors to produce cores with a uniform set of interface
features, rather than having to support different sets of features for each customer.
SoC integration is in turn simplified since cores may be imported and plugged into
standardised ‘sockets’ on SoCs with relative ease.

The IEEE P1500 working group was established to draft a test standard for digital
logic and memory cores. The activities of the P1500 working group include the devel-
opment of (1) a standardised core test language, (2) a test wrapper interface from cores
to on-chip test access mechanisms and (3) guidelines for the test of mergeable cores.

22.1.2 Testing a system-on-a-chip

An SoC test is essentially a composite test composed of the individual tests for
each core, the user defined logic (UDL) tests and interconnect tests. Each individual
core or UDL test may involve surrounding components and may imply operational
constraints (e.g. safe mode, low power mode, bypass mode) which necessitate special
isolation modes.

The SoC test development is especially challenging because of several reasons.
Embedded-cores represent intellectual property and core vendors are reluctant to
divulge structural information about their cores to users. Thus, users cannot access
core netlists and insert design-for-testability (DFT) hardware that can ease test appli-
cation from the surrounding logic. Instead, a set of test patterns is provided by the
core vendor that guarantees a specific fault coverage. These test patterns must be
applied to the cores in a given order, using a specific clocking strategy. Care must
often be taken to ensure that undesirable patterns and clock skews are not introduced
into these test streams. Furthermore, cores are often embedded in several layers of
user-designed or other core-based logic, and are not always directly accessible from
chip I/Os. Propagating test stimuli to core inputs may therefore require dedicated test
transport mechanisms. Moreover, translation of test data is necessary at the inputs
and outputs of the embedded-core into a format or sequence suitable for application
to the core.

A conceptual architecture for testing embedded-core-based SoCs is shown in
Figure 22.1 [3]. It consists of three structural elements:

1 Test pattern source and sink. The test pattern source generates the test stimuli
for the embedded-cores, and the test pattern sink compares the response(s) to the
expected response(s).
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Figure 22.1 Overview of the three elements in an embedded-core test approach:
(1) test pattern source and sink, (2) test access mechanism and (3) core
test wrapper [3]

2 Test access mechanism (TAM). The TAM transports test patterns. It is used for on-
chip transport of test stimuli from test pattern source to the core under test, and
for the transport of test responses from the core under test to a test pattern sink.

3 Core test wrapper. The core test wrapper forms the interface between the
embedded-core and its environment. It connects the terminals of the embedded-
core to the rest of the IC and to the TAM.

Once a suitable test data transport mechanism and test translation mechanism
have been designed, the next major challenge confronting the system integrator is
test scheduling. This refers to the order in which the various core tests and tests for
user-designed interface logic are applied. A combination of BIST and external testing
is often used to achieve high fault coverage [4, 5], and tests generated by different
sources may therefore be applied in parallel, provided resource conflicts do not arise.
Effective test scheduling for SoCs is challenging because it must address several
conflicting goals: (1) SoC testing time minimisation, (2) resource conflicts between
cores arising from the use of shared TAMs and on-chip BIST engines, (3) precedence
constraints among tests and (4) power constraints.

The increasing complexity of core-based SoCs has led to an enormous rise in the
test data volume necessary to attain the desired test coverage for the SoC. For exam-
ple, the test data volume can be as high as several Gbits for an industrial ASIC [6].
Since automatic test equipment (ATE) costs range in the millions of dollars, most IC
manufacturers do not replace ATEs with each new SoC design. However, the memory
and channel bandwidth of older ATEs are limited; hence storing the entire test for a
new-generation SoC in tester memory is often infeasible. Furthermore, the additional
memory add-on capability for older ATEs is often limited. Hence a small increase in
test data volume can result in either having to purchase a new tester that costs millions
of dollars, or executing several test data ‘load-apply-reload’ sessions, thus adversely
affecting testing time and test cost. Test set compression techniques that can reduce
tester memory requirements are therefore highly desirable [7, 8]. However, decom-
pressing compressed test data on-chip often requires additional hardware overhead,
and SoC designers may be reluctant to provide large decompression circuits. Test
data compression methods, whose corresponding decompression circuits are small,
form an important area of research in SoC test.

Finally, analogue and mixed-signal cores are increasingly being integrated onto
SoCs with digital cores. Testing mixed-signal cores is challenging because their failure
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mechanisms and testing requirements are not as well modelled as they are for digital
cores. It is difficult to partition and test analogue cores, because they may be prone
to crosstalk across partitions. Capacitance loading and complex timing issues further
exacerbate the mixed-signal test problem.

This chapter presents a survey of modular test methods for SoCs that enhance the
utilisation of test resources such as test data, testing time and test hardware.

22.2 Test resource partitioning

The new modular IC design paradigm partitions the SoC design process into a step-by-
step procedure that can be spread out over several organisations, thus exploiting their
individual core competencies. This design paradigm naturally extends to a modular
test development approach for SoCs, in which test resources are partitioned and
optimised to achieve robust, high quality and effective testing at low cost.

TRP refers to the process of partitioning monolithic test resources, such as the test
data set or the top-level TAM into sub-components that can be optimised to achieve
significant gains in test resource utilisation [9]. For example, large test data sets can
be partitioned into subsets, some of which can be generated by on-chip hardware, thus
reducing ATE complexity and cost. The top-level TAM can be partitioned into several
sub-TAMs that fork out to test cores in parallel, thus increasing test concurrency and
reducing testing time. Finally, a modular test schedule for the SoC can be crafted
such that idle time on each test data delivery component is minimised, thus leading
to improved test hardware utilisation and a lower vector memory requirement for the
tester.

SoC test resources are of three main types: (1) test hardware, (2) testing time
and (3) test data. ‘Test hardware’ refers to special-purpose hardware used for test
generation and application. This can be either on- or off-chip. Off-chip test hardware
refers to external test equipment such as ATE, wafer probes, analogue instrumen-
tation, etc., while on-chip hardware refers to test wrappers for cores, TAMs and
DFT structures such as LFSRs, boundary scan and test points. ‘Testing time’ refers to
the time required for manufacturing test. This includes the time for wafer test, contact
test, digital vectors and DC/AC parametrics. The time required to apply digital vec-
tors includes test data download time from workstations to the ATE across a network.
Finally, ‘test data’ refers to the sequences of test patterns, test responses and control
signals that are applied to the SoC. These may be in the form of either digital signals
or analogue waveforms.

TRP techniques that address each SoC test resource can be classified as shown in
Figure 22.2. These are briefly described here.

22.2.1 TRP techniques to optimise test hardware

The external test equipment required to test a $100 SoC can cost of the order of
millions of dollars; efforts to reduce dependence on expensive external test equipment
have therefore gained considerable importance. On-chip test hardware overhead must
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Figure 22.2 A classification of TRP techniques [9]

also remain below acceptable levels (generally of the order of a few per cent of
total chip area) to keep SoC costs competitive. There is thus a compelling need for
techniques that bolster the utilisation of test hardware, while providing a high level
of test coverage. Test hardware partitioning techniques are described below.

Design for test: DFT techniques involve the addition of optimised test logic within
the cores and at the chip level to enhance testability. Test logic includes scan chains,
test access ports, test points, boundary scan, structures that partition large modules,
IDDQ support logic and test clock support circuitry. DFT logic facilitates test pattern
generation and application, and also assists in the support test environments such
as wafer probe, functional test, burn-in and life-cycle test [10]. The dependence on
external test equipment is therefore significantly reduced. Test application is facili-
tated by the availability of scan chains. The organisation of these scan chains is an
important TRP issue because it affects test data volume and testing time.
Scan chain organisation: Scan design can be used for TRP to support external test
equipment and simplify test generation. Effective scan chain organisation is required
to address issues such as contention-free shifting and sampling, clock skew in multiple
time domains, scan chain balancing and power constraints [10].
Test access mechanisms: TAMs and test wrappers have been proposed as important
components of an SoC test access architecture [3]. Test wrapper and TAM design is
a critical TRP technique in SoC system integration since it directly impacts test
cost. This is because a TAM architecture that minimises the idle time spent by
TAMs and wrappers during test directly reduces the number of don’t-care bits in
vectors stored on the tester, thereby reducing ATE vector memory depth and testing
time [11].

22.2.2 TRP techniques to minimise testing time

Testing time is a major contributor to test cost, which is now widely believed to be
close to 50 per cent of the SoC manufacturing cost. Efficient means of downloading
and scheduling tests that can identify faulty components quickly are therefore vital to
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reduce manufacturing cost and time-to-market. TRP methods to reduce testing time
are described as follows.

Test data transfer: TRP methods based on data compression can be used to address the
issue of reducing test data download time [12] between workstations and ATE. New
generation ATE includes several test heads, memory modules and add-on devices on
the ATE to address the test of SoCs that contain digital, analogue and memory cores.
This reduces the time required to switch between different ATE or download different
test programs during test application.
Test scheduling: Test scheduling is an important TRP technique that enhances the
utilisation of the testing time resource. This directly impacts product quality and
time-to-market, and is directly related to the manufacturer’s economic performance.
The testing time can be reduced by increasing test parallelism, aborting the test of
SoCs as soon as the first failing pattern is detected, and ensuring that power constraints
are not violated during test application.

22.2.3 TRP techniques to reduce test data volume

Test data sets for large SoCs now require of the order of several gigabytes of tester
memory, thus contributing significantly to overall test cost. TRP techniques that
address test data volume reduction are described as follows.

Test compaction: This technique reduces test data volume by compacting the partially
specified test cubes generated by automatic test pattern generation (ATPG) algorithms.
It requires no additional hardware investment. The test set is compacted through
dynamic or static compaction procedures [13, 14].
Test data compression: Test data volume can be significantly reduced through sta-
tistical data compression techniques such as run-length, Golomb [7], VIHC [15],
exponential Golomb and subexponential Golomb [16], and frequency-directed run-
length (FDR) codes [17]. These techniques compress the precomputed test set TD
provided by the core vendor into a much smaller test set TE , which is stored in ATE
memory. An on-chip decoder performs pattern decompression to generate TD from
TE during pattern application.
Built-in self test (BIST): BIST offers several advantages when used for TRP. It lets
precomputed test sets be embedded in test sequences generated by on-chip hardware,
supports test reuse and at-speed testing, and protects IP.

Figure 22.3 illustrates the use of TRP approaches for SoC test. The figure presents
an ATE applying tests to an SoC composed of several cores. The test schedule for
the SoC is also illustrated. The test data for the SoC has been transformed into
(1) a compressed data set stored in ATE memory, and (2) a test pattern decoder
implemented on-chip to decompress test patterns for application to the cores. In this
way, test resources available in one form (data) can be partitioned into several sub-
components of differing types (data and time) to enhance test resource utilisation.
The TAM in Figure 22.3 delivers test patterns to each core according to the test
schedule. The TAM includes the on-chip test generation logic for BISTed cores. The
test schedule shown presents the start and end times for the test for each core. Each
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Figure 22.3 SoC test based on TRP [9]

rectangle in the test schedule represents a test for a core. The height of the rectangle
corresponding to each test in the schedule represents the width of the TAM that is
used for that test. The CPU and the embedded RAM each require only a part of the
total TAM width; hence they can be tested in parallel. In this manner, the test schedule
can be used to represent the different TAM partitions at various instants of time.

Finally, sophisticated test control mechanisms are often needed during the appli-
cation of compressed patterns to the SoC and on-chip decompression. Test control is
an often overlooked issue in the literature on test compression and on-chip pattern
decompression. In order to concurrently test multiple embedded-cores with different
test requirements (bandwidth, data rates, capture clock frequencies, etc.), a set of
ATE channels must be used exclusively for control, or preferably, additional control
logic must be implemented on the SoC.

22.3 Modular testing of SoCs

Modular testing of embedded-cores in an SoC is being increasingly advocated
to simplify test access and test application [3]. To facilitate modular test, an
embedded-core must be isolated from surrounding logic, and test access must be
provided from the I/O pins of the SoC. Test wrappers are used to isolate the core,
while TAMs transport test patterns and test responses between SoCs pins and core
I/Os [3].
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Effective modular test requires efficient management of the test resources for
core-based SoCs. This involves the design of core test wrappers and TAMs, the
assignment of test pattern bits to ATE channels, the scheduling of core tests and the
assignment of ATE channels to SoCs. The challenges involved in the optimisation of
SoC test resources for modular test can be divided into three broad categories.

1. Wrapper/TAM co-optimisation. Test wrapper design and TAM optimisation are
of critical importance during system integration since they directly impact hardware
overhead, testing time and tester data volume. The issues involved in wrapper/TAM
design include wrapper optimisation, core assignment to TAM wires, sizing of the
TAMs and routing of TAM wires. As shown in References 11, 18 and 19, most of
these problems are NP-hard. Figures 22.4(a) and (b) illustrate the position of TAM
design and test scheduling in the SoC design for test and test generation flows.
2. Constraint-driven test scheduling. The primary objective of test scheduling is to
minimise testing time, while addressing one or more of the following issues: (1)
resource conflicts between cores arising from the use of shared TAMs and BIST
resources, (2) precedence constraints among tests and (3) power dissipation con-
straints. Furthermore, testing time can often be decreased further through the selective
use of test pre-emption [21]. As discussed in References 4 and 21, most problems
related to test scheduling for SoCs are also NP-hard.
3. Minimising ATE re-load under memory depth constraints. Given test data for the
individual cores, the entire test suite for the SoC must be made to fit in a minimum
number of ATE memory loads (preferably one memory load). This is important
because, while the time required to apply digital vectors is relatively small, the time
required to load several gigabytes of data to the ATE memory from workstations is
significant [22, 23]. Therefore, to avoid splitting the test into multiple ATE load-apply
sessions, the number of bits required to be stored on any ATE channel must not exceed
the limit on the channel’s memory depth.
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Figure 22.4 The (a) DFT generation flow and (b) test generation flow for SoCs [20]
(©IEEE, 2002)
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In addition, the rising cost of ATE for SoC devices is a major concern [24]. Due to
the growing demand for pin counts, speed, accuracy and vector memory, the cost of
high-end ATE for full-pin, at-speed functional test is predicted to rise to over $20M
by 2010 [24]. As a result, the use of low-cost ATEs that perform structural rather
than at-speed functional test is increasingly being advocated for reducing test costs.
Multi-site testing, in which multiple SoCs are tested in parallel on the same ATE,
can significantly increase the efficiency of ATE usage, as well as reduce testing time
for an entire production batch of SoCs. The use of low-cost ATE and multi-site test
involve test data volume reduction and test pin count (TAM width) reduction, such
that multiple SoC test suites can fit in ATE memory in a single test session [23, 25].

As a result of the intractability of the problems involved in test planning, test
engineers have adopted a series of simple ad hoc solutions in the past [23]. For
example, the problem of TAM width optimisation is often simplified by stipulating
that each core on the SoC has the same number of internal scan chains, sayW ; thus,
a TAM of width W bits is laid out and cores are simply daisy-chained to the TAM.
However, with the growing size of SoC test suites and rising cost of ATE, more
aggressive test resource optimisation techniques that enable effective modular test of
highly complex next-generation SoCs using current-generation ATE is critical.

22.3.1 Wrapper design and optimisation

A core test wrapper is a layer of logic that surrounds the core and forms the interface
between the core and its SoC environment. Wrapper design is related to the well-
known problems of circuit partitioning and module isolation, and is therefore a more
general test problem than its current instance (related to SoC test using TAMs). For
example, earlier proposed forms of circuit isolation (precursors of test wrappers)
include boundary scan and BILBO [13].

The test wrapper and TAM model of SoC test architecture was presented in
Reference 3. In this paper, three mandatory wrapper operation modes listed were
(1) normal operation, (2) core-internal test and (3) core-external test. Apart from the
three mandatory modes, two optional modes are ‘core bypass’ and ‘detach’.

Two proposals for test wrappers have been the ‘test collar’ [26] and TestShell [27].
The test collar was designed to complement the Test Bus architecture [26] and the
TestShell was proposed as the wrapper to be used with the TestRail architecture [27].
In Reference 26, three different test collar types were described: combinational,
latched and registered. For example, a simple combinational test collar cell consisting
of a 2-to-1 multiplexer can be used for high-speed signals at input ports during parallel,
at-speed test. The TestShell described in Reference 27 is used to isolate the core and
perform TAM width adaptation. It has four primary modes of operation: function
mode, IP test mode, interconnect test mode and bypass mode. These modes are
controlled using a test control mechanism that receives two types of control signals:
pseudo-static signals (that retain their values for the duration of a test) and dynamic
control signals (that can change values during a test pattern).

An important function of the wrapper is to adapt the TAM width to the core’s I/O
terminals and internal scan chains. This is done by partitioning the set of core-internal
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scan chains and concatenating them into longer wrapper scan chains, equal in number
to the TAM wires. Each TAM wire can now directly scan test patterns into a single
wrapper scan chain. TAM width adaptation directly affects core testing time and has
been the main focus of research in wrapper optimisation. Note that to avoid problems
related to clock skew, internal scan chains in different clock domains must either not
be placed on the same wrapper scan chain, or anti-skew (lock-up) latches must be
placed between scan FFs belonging to different clock domains.

The issue of designing balanced scan chains within the wrapper was addressed in
Reference 28; see Figure 22.5. The first techniques to optimise wrappers for test time
reduction were presented in Reference 19. To solve the problem, the authors proposed
two polynomial-time algorithms that yield near-optimal results. The LPT (largest
processing time) algorithm is taken from the multi-processor scheduling literature and
solves the wrapper design problem in very short computation times. At the expense
of a slight increase in computation time, the COMBINE algorithm yields even better
results. It uses LPT as a start solution, followed by a linear search over the wrapper
scan chain length with the first fit decreasing heuristic.

To perform wrapper optimisation, Iyengar et al. [11] proposed ‘Design_wrapper’,
an algorithm based on the best fit decreasing heuristic for the bin packing problem.
The algorithm has two priorities: (1) minimising core testing time and (2) minimising
the TAM width required for the test wrapper. These priorities are achieved by balanc-
ing the lengths of the wrapper scan chains designed, and identifying the number of
wrapper scan chains that actually need to be created to minimise testing time. Priority
(2) is addressed by the algorithm since it has a built-in reluctance to create a new
wrapper scan chain, while assigning core-internal scan chains to the existing wrapper
scan chains [11].
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Wrapper design and optimisation continue to attract considerable attention.
Recent work in this area has focused on ‘light wrappers’, i.e. the reduction of the
number of register cells [29], and the design of wrappers for cores and SoCs with
multiple clock domains [30].

22.3.2 TAM design and optimisation

Many different TAM designs have been proposed in the literature. TAMs have been
designed based on direct access to cores multiplexed onto the existing SoC pins
[31], reusing the on-chip system bus [32], searching transparent paths through and/or
around neighbouring modules [33–35], and one-bit boundary scan rings around cores
[36, 37].

Recently, the most popular appear to be the dedicated, scalable TAMs such as
Test Bus [26] and TestRail [27]. Despite the fact that their dedicated wiring adds
to the area costs of the SoC, their flexible nature and guaranteed test access have
proven successful. Three basic types of such scalable TAMs have been described in
Reference 38 (see Figure 22.6): (a) the ‘Multiplexing’ architecture, (b) the ‘Daisy-
chain’ architecture and (c) the ‘Distribution’ architecture. In the Multiplexing and
Daisychain architectures, all cores get access to the total available TAM width, while
in the Distribution architecture, the total available TAM width is distributed over the
cores.

In the Multiplexing architecture, only one core wrapper can be accessed at a time.
Consequently, this architecture only supports serial schedules, in which the cores are
tested one after the other. An even more serious drawback of this architecture is that
testing the circuitry and wiring in between cores is difficult with this architecture;
interconnect test requires simultaneous access to multiple wrappers. The other two
basic architectures do not have these restrictions; they allow for both serial as well as
parallel test schedules, and also support interconnect testing.
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Figure 22.7 The (a) fixed-width Test Bus architecture, (b) fixed-width TestRail
architecture and (c) flexible-width Test Bus architecture [20] (©IEEE,
2002)

The ‘Test Bus’ architecture [26] (see Figure 22.7(a)) is a combination of the
Multiplexing and Distribution architectures. A single Test Bus is in essence the same
as what is described by the Multiplexing architecture; cores connected to the same Test
Bus can only be tested sequentially. The Test Bus architecture allows for multiple Test
Buses on one SoC that operate independently, as in the Distribution architecture. Cores
connected to the same Test Bus suffer from the same drawback as in the Multiplexing
architecture, i.e. their wrappers cannot be accessed simultaneously, hence making
core-external testing difficult or impossible.

The ‘TestRail’ architecture [27] (see Figure 22.7(b)) is a combination of the Daisy-
chain and Distribution architectures. A single TestRail is in essence the same as what
is described by the Daisychain architecture: scan-testable cores connected to the same
TestRail can be tested simultaneously, as well as sequentially. A TestRail architecture
allows for multiple TestRails on one SoC, which operate independently, as in the
Distribution architecture. The TestRail architecture supports serial and parallel test
schedules, as well as hybrid combinations of those.

In most TAM architectures, the cores assigned to a TAM are connected to all
wires of that TAM. This is referred to as ‘fixed-width’ TAMs. A generalisation of
this design, is one in which the cores assigned to a TAM each connect to a (possibly
different) subset of the TAM wires [39]. The core–TAM assignments are made at
the granularity of TAM wires, instead of considering the entire TAM bundle as one
inseparable entity. These are referred to as flexible-width TAMs. This concept can be
applied to both Test Bus as well as TestRail architectures. Figure 22.7(c) shows an
example of a flexible-width Test Bus architecture.

Most SoC test architecture optimisation algorithms proposed have concentrated
on fixed-width Test Bus architectures and assume cores with fixed-length scan chains.
In Reference 18, the author describes a Test Bus architecture optimisation approach
that minimises testing time using ILP. ILP is replaced by a genetic algorithm in
Reference 40. In Reference 41, the authors extend the optimisation criteria of Refer-
ence 18 with place-and-route and power constraints, again using ILP. In References 42
and 43, Test Bus architecture optimisation is mapped to the well-known problem of



Test resource partitioning for core-based SoCs 763

two-dimensional bin packing and a Best Fit algorithm is used to solve it. Wrapper
design and TAM design both influence the SoC testing time, and hence their opti-
misation needs to be carried out in conjunction in order to achieve the best results.
The authors in Reference 11 were the first to formulate the problem of integrated
wrapper/TAM design; despite its NP-hard character, it is addressed using ILP and
exhaustive enumeration. In Reference 44, the authors presented efficient heuristics
for the same problem.

Idle bits exist in test schedules when parts of the test wrapper and TAM are under-
utilised leading to idle time in the test delivery architecture. In Reference 45, the
authors first formulated the testing time minimisation problem both for cores having
fixed-length as well as cores having flexible-length scan chains. Next, they presented
lower bounds on the testing time for the Test Bus and TestRail architectures and then
examined three main reasons for under-utilisation of TAM bandwidth, leading to idle
bits in the test schedule and testing times higher than the lower bound [45]. The
problem of reducing the amount of idle test data was also addressed in Reference 46.

The optimisation of a flexible-width Multiplexing architecture (i.e. for one TAM
only) was proposed in Reference 39. This work again assumes cores with fixed-length
scan chains. The paper describes a heuristic algorithm for co-optimisation of wrap-
pers and Test Buses based on rectangle packing. In Reference 39, the same authors
extended this work by including precedence, concurrency and power constraints,
while allowing a user-defined subset of the core tests to be pre-empted.

Fixed-width TestRail architecture optimisation was investigated in Reference 47.
Heuristic algorithms have been developed for the co-optimisation of wrappers and
TestRails. The algorithms work both for cores with fixed-length and flexible-length
scan chains. TR-Architect, the tool presented in Reference 47, is currently in actual
industrial use.

22.3.3 Test scheduling

Test scheduling for SoCs involving multiple test resources and cores with multiple
tests is especially challenging, and even simple test scheduling problems for SoCs
have been shown to be NP-hard [4]. In Reference 5, a method for selecting tests from
a set of external and BIST tests (that run at different clock speeds) was presented.
Test scheduling was formulated as a combinatorial optimisation problem. Re-ordering
tests to maximise defect detection early in the schedule was explored in Reference 48.
The entire test suite was first applied to a small sample population of ICs. The fault
coverage obtained per test was then used to arrange tests that contribute to high fault
coverage earlier in the schedule. The authors used a polynomial-time algorithm to
re-order tests based on the defect data as well as execution time of the tests [48]. A
test scheduling technique based on the defect probabilities of the cores has recently
been reported [49].

Macro Test is a modular testing approach for SoC cores in which a test is broken
down into a ‘test protocol’ and list of test patterns [50]. A test protocol is defined at the
terminals of a macro and describes the necessary and sufficient conditions to test the
macro [51]. The test protocols are expanded from the macro-level to the SoC pins and
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can either be applied sequentially to the SoC, or scheduled to increase parallelism. In
Reference 51, a heuristic scheduling algorithm based on pairwise composition of test
protocols was presented. The algorithm determines the start times for the expanded
test protocols in the schedule, such that no resource conflicts occur and test time is
minimised [51].

System-on-chips in test mode can dissipate up to twice the amount of power
they do in normal mode, since cores that do not normally operate in parallel may be
tested concurrently [52]. ‘Power-constrained’ test scheduling is therefore essential
in order to limit the amount of concurrency during test application to ensure that the
maximum power budget of the SoC is not exceeded. In Reference 53, a method based
on approximate vertex cover of a resource-constrained test compatibility graph was
presented. In Reference 54, the use of list scheduling and tree-growing algorithms
for power-constrained scheduling was discussed. The authors presented a greedy
algorithm to overlay tests such that the power constraint is not violated. A constant
additive model is employed for power estimation during scheduling [54]. The issue
of re-organising scan chains to trade-off testing time with power consumption was
investigated in Reference 55. The authors presented an optimal algorithm to parallelise
tests under power and resource constraints. The design of test wrappers to allow for
multiple scan chain configurations within a core was also studied.

In Reference 21, an integrated approach to test scheduling was presented. Optimal
test schedules with precedence constraints were obtained for reasonably sized SoCs.
For precedence-based scheduling of large SoCs, a heuristic algorithm was developed.
The proposed approach also includes an algorithm to obtain pre-emptive test schedules
in O(n3) time, where n is the number of tests [21]. Parameters that allow only a
certain number of pre-emptions per test can be used to prevent excessive BIST and
sequential circuit test pre-emptions. Finally, a new power-constrained scheduling
technique was presented, whereby power-constraints can be easily embedded in the
scheduling framework in combination with precedence constraints, thus delivering
an integrated approach to the SoC test scheduling problem.

22.3.4 Integrated TAM optimisation and test scheduling

Both TAM optimisation and test scheduling significantly influence the testing time,
test data volume and test cost for SoCs. Furthermore, TAMs and test schedules are
closely related. For example, an effective schedule developed for a particular TAM
architecture may be inefficient or even infeasible for a different TAM architecture.
Integrated methods that perform TAM design and test scheduling ‘in conjunction’ are
therefore required to achieve low-cost, high-quality test.

In Reference 56, an integrated approach to test scheduling, TAM design, test set
selection and TAM routing was presented. The SoC test architecture was represented
by a set of functions involving test generators, response evaluators, cores, test sets,
power and resource constraints, and start and end times in the test schedule modelled
as Boolean and integral values [56]. A polynomial-time algorithm was used to solve
these equations and determine the test resource placement, TAM design and routing,
and test schedule, such that the specified constraints are met.
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The mapping between core I/Os and SoC pins during the test schedule was
investigated in Reference 42. TAM design and test scheduling was modelled as two-
dimensional bin-packing, in which each core test is represented by a rectangle. The
height of each rectangle corresponds to the testing time, the width corresponds to
the core I/Os and the weight corresponds to the power consumption during test. The
objective is to pack the rectangles into a bin of fixed width (SoC pins), such that the
bin height (total testing time) is minimised, while power constraints are met. A heuris-
tic method based on the Best Fit algorithm was presented to solve the problem [42].
The authors next formulated constraint-driven pin mapping and test scheduling as the
chromatic number problem from graph theory and as a dependency matrix partition-
ing problem [43]. Both problem formulations are NP-hard. A heuristic algorithm
based on clique partitioning was proposed to solve the problem.

The problem of TAM design and test scheduling with the objective of min-
imising the ‘average’ testing time was formulated in Reference 57. The problem
was reduced to one of minimum-weight perfect bipartite graph matching, and a
polynomial-time optimal algorithm was presented. A test planning flow was also
presented.

In Reference 39, a new approach for wrapper/TAM co-optimisation and
constraint-driven test scheduling using rectangle packing was described. Flexible-
width TAMs that are allowed to fork and merge were designed. Rectangle packing
was used to develop test schedules that incorporate precedence and power constraints,
while allowing the SoC integrator to designate a group of tests as pre-emptable.
Finally, the relationship between TAM width and tester data volume was studied to
identify an effective TAM width for the SoC.

The work reported in Reference 39 was extended in Reference 58 to address the
minimisation of ATE buffer re-loads and include multi-site test. The ATE is assumed
to contain a pool of memory distributed over several channels, such that the memory
depth assigned to each channel does not exceed a maximum limit. Furthermore, the
sum of the memory depth over all channels equals the total pool of ATE memory. Idle
bits appear on ATE channels whenever there is idle time on a TAM wire. These bit
positions are filled with don’t-cares if they appear between useful test bits; however,
if they appear only at the end of the useful bits, they are not required to be stored in
the ATE.

The SoC test resource optimisation problem for multi-site test was stated as fol-
lows. Given the test set parameters for each core, and a limit on the maximum memory
depth per ATE channel, determine the wrapper/TAM architecture and test schedule
for the SoC, such that (1) the memory depth required on any channel is less than
the maximum limit, (2) the number of TAM wires is minimised and (3) the idle bits
appear only at the end of each channel. A rectangle packing algorithm was developed
to solve this problem.

A new method for representing SoC test schedules using k-tuples was discussed
in Reference 59. The authors presented ap-admissible model for test schedules that is
amenable to several solution methods such as local search, two-exchange, simulated
annealing and genetic algorithms that cannot be used in a rectangle-representation
environment.
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Finally, recent work on TAM optimisation has focused on the use of ATEs with
port scalability features [60–62]. In order to address the test requirements of SoCs,
ATE vendors have recently announced a new class of testers that can simultaneously
drive different channels at different data rates. Examples of such ATEs include the
Agilent 93000 series tester based on port scalability and the test processor-per-pin
architecture [63] and the Tiger system from Teradyne [64] in which the data rate can be
increased through software for selected pin groups to match SoC test requirements.
However, the number of tester channels with high data rates may be constrained
in practice due to ATE resource limitations, the power rating of the SoC and scan
frequency limits for the embedded-cores. Optimisation techniques have been devel-
oped to ensure that the high data-rate tester channels are efficiently used during SoC
testing [62].

The availability of dual-speed ATEs was also exploited in References 60 and 61,
where a technique was presented to match ATE channels with high data rates to
core scan chain frequencies using virtual TAMs. A ‘virtual TAM’ is an on-chip
test data transport mechanism that does not directly correspond to a particular ATE
channel. Virtual TAMs operate at scan-chain frequencies; however, they interface
with the higher-frequency ATE channels using bandwidth matching. Moreover, since
the virtual TAM width is not limited by the ATE pin-count, a larger number of TAM
wires can be used on the SoC, thereby leading to lower testing times. A drawback of
virtual TAMs, however, is the need for additional TAM wires on the SoC as well as
frequency division hardware for bandwidth matching. In Reference 62, the hardware
overhead is reduced through the use of a smaller number of on-chip TAM wires;
ATE channels with high data rates directly drive SoC TAM wires, without requiring
frequency division hardware.

22.3.5 Modular testing of mixed-signal SoCs

Prior research on modular testing of SoCs has focused almost exclusively on the digital
cores in an SoC. However, most SoCs in use today are mixed-signal circuits containing
both digital and analogue cores [65–67]. Increasing pressure on consumer products
for small form factors and extended battery life is driving single-chip integration,
and blurring the lines between analogue/digital design types. As indicated in the
2001 International Technology Roadmap for Semiconductors [24], the combination
of these circuits on a single die compounds the test complexities and challenges
for devices that fall in an increasing commodity market. Therefore, an effective
modular test methodology should be capable of handling both digital and analogue
cores, and it should reduce test cost by enabling test reuse for reusable embedded
modules.

In traditional mixed-signal SoC testing, tests for analogue cores are applied either
from chip pins through direct test access methods, e.g. via multiplexing, or through a
dedicated analogue test bus [68, 69], which requires the use of expensive mixed-signal
testers. For mid- to low-frequency analogue applications, the data is often digitised
at the tester, where it is affordable to incorporate high quality data converters. In
most mixed-signal ICs, analogue circuitry accounts for only a small part of the total
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silicon (‘big-D/small-A’). However, the total production testing cost is dominated
by analogue testing costs. This is because of the fact that expensive mixed-signal
testers are employed for extended periods of time resulting in high overall test costs.
A natural solution to this problem is to implement the data converters on-chip. Since
most SoC applications do not push the operational frequency limits, the design of
such data converters on-chip appears to be feasible. Until recently, such an approach
has not been deemed desirable due to its high hardware overhead. However, as the
cost of on-chip silicon is decreasing and the functionality and the number of cores
in a typical SoC are increasing, the addition of data converters on-chip for testing
analogue cores now promises to be cost-efficient. These data converters eliminate the
need for expensive mixed-signal test equipment.

Recently, results have been reported on the optimisation of a unified test access
architecture that is used for both digital and analogue cores [70]. Instead of treating the
digital and analogue portions separately, a global test resource optimisation problem
is formulated for the entire SoC. Each analogue core is wrapped by a DAC–ADC
pair and a digital configuration circuit. Results show that for ‘big D/small A’ SoCs,
the testing time and test cost can be reduced considerably if the analogue cores are
wrapped, and the test access and test scheduling problems for the analogue and digital
cores are tackled in a unified manner.

Each analogue core is provided with a test wrapper where the test information
includes only digital test patterns, clock frequency, the test configuration and pass/fail
criteria. This analogue test wrapper converts the analogue core to a virtual digital core
with strictly sequential test patterns, which are the digitised analogue signals. In order
to utilise test resources efficiently, the analogue wrapper needs to provide sufficient
flexibility in terms of required resources with respect to all the test needs of the
analogue core. One way to achieve this uniform test access scheme for analogue
cores is to provide an on-chip ADC–DAC pair that can serve as an interface between
each analogue core and the digital surroundings, as shown in Figure 22.8.

Analogue test signals are expressed in terms of a signal shape, such as sinusoidal
or pulse, and signal attributes, such as frequency, amplitude and precision. These
tests are provided by the core vendor to the system integrator. In the case of analogue
testers, these signals are digitised at the high precision ADCs and DACs of the tester.
In the case of on-chip digitisation, the analogue wrapper needs to include the lowest
cost data converters that can still provide the required frequency and accuracy for
applying the core tests. Thus, on-chip conversion of each analogue test to digital
patterns imposes requirements on the frequency and resolution of the data converters

DAC ADCAnalogue

f

from TAM to TAM

Nclk

Figure 22.8 On-chip digitisation of analogue test data for uniform test access [70]
(©IEEE, 2003)
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of the analogue wrapper. These converters need to be designed to accommodate all
the test requirements of the analogue core.

Analogue tests may also have a high variance in terms of their frequency and
test time requirements. While tests involving low-frequency signals require low
bandwidth and high test times, tests involving high-frequency signals require high
bandwidth and low test time. Keeping the bandwidth assigned to the analogue core
constant results in under-utilisation of the precious test resources. The variance of
analogue test needs have to be fully exploited in order to achieve an efficient test
plan. Thus, the analogue test wrapper has to be designed to accommodate multiple
configurations with varying bandwidth and frequency requirements.

Figure 22.9 shows the block diagram of an analogue wrapper that can accommo-
date all the abovementioned requirements. The control and clock signals generated
by the test control circuit are highlighted in this figure. The registers at each end of
the data converters are written and read in a semi-serial fashion depending on the
frequency requirement of each test. For example, for a digital TAM clock of 50 MHz,
12-bit DAC and ADC resolution and an analogue test requirement of 8 MHz sampling
frequency, the input and output registers can be updated with a serial-to-parallel ratio
of 6. Thus, the bandwidth requirement of this particular test is only 2 bits. The digital
test control circuit selects the configuration for each test. This configuration includes
the divide ratio of the digital TAM clock, the serial to parallel conversion rate of the
input and output registers of the data converters and the test modes.

‘Analogue test wrapper modes’ – In the normal mode of operation, the analogue
test wrapper is completely by-passed; the analogue circuit operates on its analogue
input/output pins. During testing, the analogue wrapper has two modes, a ‘self-test’
mode and a ‘core-test’ mode. Before running any tests on the analogue core, the
wrapper data converters have to be characterised for their conversion parameters,
such as the non-linearity and the offset voltage. The self-test mode is enabled through
the analogue multiplexer at the input of the wrapper ADC, as shown in Figure 22.9.
The parameters of the DAC–ADC pair are determined in this mode and are used to
calibrate the measurement results. Once the self-test of the test wrapper is complete,
core test can be enabled by turning off the ‘self-test’ bits.
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Figure 22.9 Block diagram of the analogue test wrapper [70] (©IEEE, 2003)
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For each analogue test, the encoder has to be set to the corresponding serial-to-
parallel conversion ratio (cr), where it shifts the data from the corresponding TAM
inputs into the register of the ADC. Similarly, the decoder shifts data out of the DAC
register. The update frequency of the input and output registers, fupdate = fs × cr ,
is always less than the TAM clock rate, fTAM. For example, if the test bandwidth
requirement is two bits and the resolution of the data converters is 12 bits, the input
and output registers of the data converters are clocked at a rate six times less than
the clock of the encoder, and the input data is shifted into the encoder and out of
the decoder at a two-bits/cycle rate. The complexity of the encoder and the decoder
depends on the number of distinct bandwidth and TAM assignments (the number
of possible test configurations). For example, for a 12-bit resolution, the bandwidth
assignments may include 1, 2, 3, 4, 6 and 12 bits, where in each case the data may come
from distinct TAMs. Clearly, in order to limit the complexity of the encoder–decoder
pair, the number of such distinct assignments has to be limited. This requirement can
be imposed in the test scheduling optimisation algorithm.

The analogue test wrapper transparently converts the analogue test data to the
digital domain through efficient utilisation of the resources, thus this obviates the
need for analogue testers. The processing of the collected data can be done in the
tester by adding appropriate algorithms, such as the FFT algorithm. Further details
and experimental results can be found in References 70 and 71.

22.3.6 Modular testing of hierarchical SoCs

A hierarchical SoC is designed by integrating heterogeneous technology cores at
several layers of the hierarchy [24]. The ability to re-use embedded-cores in a hier-
archical manner implies that ‘today’s SoC is tomorrow’s embedded-core’ [72]. Two
broad design transfer models are emerging in hierarchical SoC design flows.

1 Non-interactive. The non-interactive design transfer and hand-off model is one
in which there is limited communication between the core vendor and the SoC
integrator. The hard cores are taken off-the-shelf and integrated into designs as
optimised layouts.

2 Interactive. The interactive design transfer model is typical of larger companies
where the business units producing IP cores may be part of the same organisation
as the business unit responsible for system integration. Here, there is a certain
amount of communication between the core vendor and core user during system
integration. The communication of the core user’s requirements to the core vendor
can play a role in determining the core specifications.

Hierarchical SoCs offer reduced cost and rapid system implementation; however,
they pose difficult test challenges. Most TAM design methods assume that the SoC
hierarchy is flattened for the purpose of test. However, this assumption is often
unrealistic in practice, especially when older-generation SoCs are used as hard cores
in new SoC designs. In such cases, the core vendor may have already designed a TAM
within the ‘mega-core’ that is provided as an optimised and technology-mapped layout
to the SoC integrator.
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A ‘mega-core’ is defined as a design that contains non-mergeable embedded-
cores. In order to ensure effective testing of an SoC based on mega-cores, the top-level
TAM must communicate with lower level TAMs within mega-cores. Moreover, the
system-level test architecture must be able to reuse the existing test architecture within
cores; redesign of core test structures must be kept to a minimum and it must be con-
sistent with the design transfer model between the core designer and the core user [73].

A TAM design methodology that closely follows the design transfer model in use
is necessary because if the core vendor has implemented ‘hard’ (i.e. non-alterable)
TAMs within mega-cores, the SoC integrator must take into account these lower-level
TAM widths while optimising the widths and core assignment for higher-level TAMs.
On the other hand, if the core vendor designs TAMs within mega-cores in consultation
with the SoC integrator, the system designer’s TAM optimisation method must be
flexible enough to include parameters for lower-level cores. Finally, multi-level TAM
design for SoCs that include reused cores at multiple levels is needed to exploit ‘TAM
reuse’ and ‘wrapper reuse’ in the test development process.

It is only recently that the problem of designing test wrappers and TAMs of
multi-level TAMs for the ‘cores within cores’ design paradigm [74, 75] has been
considered. Two design flows have been considered for the scenario in which mega-
cores are wrapped by the core vendor prior to delivery. In an alternative scenario, the
mega-cores can be delivered to the system integrator in an unwrapped fashion, and the
system integrator appropriately designs the mega-core wrappers and the SoC-level
TAM architecture to minimise the overall testing time.

Figure 22.10 illustrates a mega-core that contains four embedded-cores and addi-
tional logic external to the embedded-cores. The core vendor for this mega-core has
wrapped the the four embedded-cores, and implemented a TAM architecture to acess
the embedded-cores. The TAM architecture consists of two test buses of widths 3 bits
and 2 bits, respectively, that are used to access the four embedded-cores. It is assumed
here that the TAM inputs and outputs are not multiplexed with the functional pins.
Next, Figure 22.11 shows how a two-part wrapper (Wrapper 1 and Wrapper 2) for the
mega-core can be designed to drive not only the TAM wires within the mega-core,
but also to test the logic that is external to the embedded-cores. In this design, the
TAM inputs for Wrapper 1 and Wrapper 2 are multiplexed in time, such that the
embedded-cores within the mega-core are tested before the logic external to them, or
vice versa. Test generation for the top-level logic is done by the mega-core vendor
with the wrappers for the embedded-cores in functional mode. During the testing of
the top-level logic in the mega-core using Wrapper 1, the wrappers for the embedded-
cores must therefore be placed in functional mode to ensure that the top-level logic
can be tested completely through the mega-core I/Os and scan terminals.

Mega-cores may be supplied by core vendors in varying degrees of readiness for
test integration. For example, the IEEE P1500 proposal on embedded-core test defines
two compliance levels for core delivery: 1500-wrapped and 1500-unwrapped [51].
Here we describe three other scenarios, based in part on the P1500 compliance levels.
These scenarios refer to the roles played by the system integrator and the core vendor
in the design of the TAM and the wrapper for the mega-core. For each scenario, the
design transfer model refers to the type of information about the mega-core that is
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Figure 22.10 An illustration of a mega-core with a pre-designed TAM architecture

provided by the core vendor to the system integrator. The term ‘wrapped’ is used to
denote a core for which a wrapper has been pre-designed, as in Reference 51. The
term ‘TAM-ed’ is used to denote a mega-core that contains an internal TAM structure.

1 Scenario 1: Not TAM-ed and not wrapped: In this scenario, the system integrator
must design a wrapper for the mega-core as well as TAMs within the mega-core.
The mega-cores are therefore delivered either as soft cores or before final netlist and
layout optimisation, such that TAMs can be inserted within the mega-cores.
2 Scenario 2: TAM-ed and wrapped: In this scenario, we consider TAM-ed mega-
cores for which wrappers have been designed by the core vendor. This scenario
is especially suitable for a mega-core that was an SoC in an earlier generation. It
is assumed that such mega-cores are wrapped by the core vendors prior to design
transfer and test data for the mega-core cannot be further serialised or parallelised
by the SoC integrator. This implies that the system integrator has less flexibility in
top-level TAM partitioning and core assignment. At the system level, only structures
that facilitate normal/test operation, interconnect test and bypass are created. This
scenario includes both the interactive and non-interactive design transfer models.
3 Scenario 3: TAM-ed but not wrapped: In this scenario, the mega-core contains
lower-level TAMs, but it is not delivered in a wrapped form; therefore, a wrapper for
it must be designed by the system integrator. In order to design a wrapper as sketched
in Figure 22.11, the core vendor must provide information about the number of
functional I/Os, the number and lengths of top-level scan chains in the mega-core,
the number of TAM partitions and the size of each partition, and the testing time
for each TAM partition. Compared to the non-interactive design transfer model in
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Scenario 2, the system integrator in this case has greater flexibility in top-level TAM
partitioning and core assignment. Compared to the interactive design transfer model
in Scenario 2, the system integrator here has less influence on the TAM design for a
mega-core; however, this loss of flexibility is somewhat offset by the added freedom
of being able to design the mega-core wrapper. Width adaptation can be carried out
in the wrapper for the mega-core such that a narrow TAM at the SoC-level can be
used to access a mega-core that has a wider internal TAM.

Optimisation techniques for these scenarios are described in detail in References
74–76. As hierarchical SoCs become more widespread, it is expected that more
research effort will be devoted to this topic.

22.4 Test data compression

The increased density of SoCs and the need to test for new types of defects in nanome-
ter technologies have resulted in a tremendous increase in test data volume and test
application time. The test data volume for ICs in 2014 is projected to be as much as
150 times the test data volume in 1999 [77].

In addition to the increasing density of ICs, today’s SoC designs also exacerbate
the test data volume problem. The increase in test data volume not only leads to the
increase of testing time, but the high test data volume may also exceed the limited
memory depth of ATE. Multiple ATE reloads are time-consuming since data transfer
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from a workstation to the ATE hard disk or from the ATE hard disk to ATE channels
are relatively slow; the upload time ranges from tens of minutes to hours [78]. While
test application time for scan vectors can be reduced by using a large number of
internal scan chains, the number of internal scan chains that can be driven by an ATE
is limited in practice due to pin count constraints.

As discussed in Section 22.2, test data volume for IP cores can be reduced by com-
pressing the precomputed test set TD provided by the core vendor to a much smaller
data set TE , which is stored in ATE memory. An on-chip decoder is used for pattern
decompression to generate TD from TE during pattern application [15,17,79–81].
Such techniques are typically based on run-length codes and their variants, e.g. FDR
codes. However, most methods based on compression codes target single scan chains
and they require complex synchronisation between the ATE and the circuit under
test. Test data volume reduction techniques based on on-chip linear decompression
hardware [82, 83], multiplexer-based switches [84], ATE/EDA synergies [85], as
well as BIST [86] and hybrid BIST [87] have also been presented. Test data com-
pression is now a mature research area and commercial tools for ‘embedded test’
such as TestKompress and OPMISR are now available [88]. However, to achieve
high compression, these tools and techniques utilise structural information about the
circuit under test, which limits their applicability for IP cores.

22.4.1 Use of data compression codes

In this subsection, we describe the use of exponential-Golomb codes and subexpo-
nential codes for compressing scan test data [16]. These codes often provide greater
compression of test data than other codes proposed for test data compression. More-
over, only a small amount of hardware is required for on-chip decompression of test
data encoded using exponential-Golomb and subexponential codes. (The decompres-
sion logic synthesised using Synopsys tools requires less than 50 gates and less than
100 gates, respectively.) The decompression logic is independent of the core under
test and the test set. The proposed compression/decompression scheme requires no
modifications to the core under test.

The underlying assumption here is that a single data channel is used to deliver
the compressed test patterns from the tester to the core under test. This approach
is therefore targeted towards a reduced pin-count test and low-cost DFT tester
[89] environment, where a narrow interface between the tester and the SoC is
desired.

In the following description, we assume that the precomputed SoC test data
consists of n test patterns t1, t2, . . . , tn. The don’t-care bits in the test set are set
to 0s. The test patterns are suitably reordered and serialised before compression. The
reordered and serialised test set is denoted as TD , which is then compressed using
these codes.

Exponential-Golomb code: The exponential-Golomb code provides a variable-to-
variable encoding method, i.e. the runs of 0s are encoded as variable-length
codewords. A run of 0s is divided into successive sub-runs of length 2k , 2k+1,
2k+2, . . . , 2k+i−1, until the number of remaining 0s is less than 2k+i , where k is
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Table 22.1 Codewords of the exponential-Golomb code

Run-length k = 0 k = 1 (FDR) k = 2

i Codeword i Codeword i Codeword

0 0 0 0 00 0 000
1 1 100 01 001
2 101 1 1000 010
3 2 11000 1001 011
4 11001 1010 1 10000
5 11010 1011 10001
6 11011 2 110000 10010
7 3 1110000 110001 10011
8 1110001 110010 10100
9 1110010 110011 10101
10 1110011 110100 10110

the code parameter of the exponential-Golomb code. The rest of the run is encoded
as a (k + i)-bit binary number. The power of the exponential-Golomb code lies in
the fact that it can encode both short and long runs efficiently because the successive
sub-runs grow exponentially. Let l denote the run-length to be encoded. The encoding
steps are as follows.

1 Determine i such that
∑i−1
j=0 2j+k ≤ l <

∑i
j=0 2j+k , i ≥ 0;

2 Form the prefix of i 1s;
3 Insert the separator 0;
4 Form the tail: express the value of (l−∑i−1

j=0 2j+k) as a (k+ i)-bit binary number.

Table 22.1 shows the codewords of the exponential-Golomb code for run-lengths
varying from 0 to 10 with code parameter k = 0, 1 and 2. Note that the FDR code
described in Reference 17 corresponds to a special case of the exponential-Golomb
code (k = 1). In the table, we have separated the codewords into groups. The group
index i is also the number of 1s in the prefix. From the table, we note the following
properties of the exponential-Golomb code:

1 The length of prefix in group Ai is i (excluding the separator 0);
2 In group Ai , the run-length represented by the prefix is lprefix = ∑i−1

j=0 2k+j =
2k(2i − 1), which is the value of the continuous 1s in the prefix shifted left by k
bits;

3 The length of tail in group Ai is (k + i);
4 In group Ai , the run-length represented by the tail is between 0 to 2k+i − 1;
5 The size of group Ai is 2k+i .

Based on these properties, it is straightforward to derive the decoding algorithm
as follows:
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Table 22.2 Codewords of the subexponential code

Run-length k = 0 k = 1 k = 2

i Codeword i Codeword i Codeword

0 0 0 0 00 0 000
1 1 10 01 001
2 2 1100 1 100 010
3 1101 101 011
4 3 111000 2 11000 1 1000
5 111001 11001 1001
6 111010 11010 1010
7 111011 11011 1011
8 4 11110000 3 1110000 2 110000
9 11110001 1110001 110001

10 11110010 1110010 110010

1 Let i be the number of leading 1s (prefix) in the codeword;
2 Form a run of 0s of length

∑i−1
j=0 2j+k;

3 Skip the next 0 (separator);
4 The next (k + i) bits make up the tail. Form a run of 0s of length represented by

the tail;
5 Append 1 to the run of 0s;
6 Go to step 1 to process the next codeword.

Subexponential code: As in the case of the exponential-Golomb code, the codewords
of the subexponential code can also be divided into groups and we use the number of 1s
in the prefix as the group index. Table 22.2 shows the codewords of the subexponential
code for run-lengths varying from 0 to 10 with the code parameter k = 0, 1, 2. From
the table, we can find that the size of groupA0 is 2k . For i ≥ 1, the size of groupAi is
2(k+i−1). This property is closely tied to the encoding procedure, which is described
as follows. Let l denote the run-length to be encoded.

1 Determine the group index i using the following rules:
• if l < 2k , then i = 0.
• if l ≥ 2k , then determine i such that 2i+k−1 ≤ l < 2i+k .

2 Form the prefix of i 1s;
3 Insert the separator 0;
4 Form the tail: express the value of (l−2i+k−1) as a (i+k−1)-bit binary number.

We can see that A0 is a special group in the subexponential code. Its size is
the same as that of group A1. This property makes the encoding and decoding for
the subexponential code a little more complex than that for the exponential-Golomb
code. A few additional steps are needed during encoding and decoding. The decoding
procedure for the subexponential code is as follows.
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1 Let i be the number of leading 1s (prefix) in the codeword;

2 Form a run of 0s of length

{
0, if i = 0
2i+k−1, otherwise

3 Skip the next 0 (separator);
4 Compute the length of the tail, ctail, as{

k, if i = 0
k + i − 1, if i ≥ 1

5 The next ctail bits are the tail. Form a run of 0s of length represented by the tail;
6 Append 1 to the run of 0s;
7 Go to step 1 to process the next codeword.

Information-theoretic analysis: We next use basic principles of information theory
to explain why the exponential-Golomb and subexponential codes are more suitable
than the conventional run-length code and Golomb codes for test data compression.
The entropy of a data source is expressed asH = ∑n

i=1 −pi log2 pi , where pi is the
probability of occurrence of symbol i, and n is the number of different symbols that
can appear in the data. During the compression of an SoC test set, we are encoding
runs of 0s. Hence we can regard the runs of 0s in the test data as different symbols,
for which we can compute probabilities of occurrence, and thereby obtain the entropy
of this test set. Since entropy denotes the average amount of information carried by a
single symbol and the unit of entropy is a binary bit, we can consider the product of
the entropy and the total number of runs in the test set as a theoretical lower bound
on the size of the compressed test set TE .

While the entropy bound is a useful measure, we can get additional guidelines
from information theory on how to select the best compression code for a given
test set. Suppose the probability of occurrence of run-length i is pi , and a ci-bit
codeword is used to encode this run. The amount of information carried by this
run-length is − log2 pi bits. In order to obtain optimum compression, we should
use a (− log2 pi)-bit codeword to encode this run-length, i.e. the ideal value of ci
is − log2 pi . In this way, we can compare the compression effectiveness of various
codes (e.g. FDR, exponential-Golomb and subexponential) relative to an ideal code
that assigns a codeword of size − log2 pi bits to a run of length i.

Figure 22.12 shows the codeword length for run-lengths 0 to 100 for a number of
compression codes, as well as the codeword length for an ideal code. The test set used
in Figure 22.12 is that of the s13207 ISCAS-89 benchmark circuit. The results show
that the codeword sizes for the Golomb code (parameterm = 4) and the conventional
run-length code (block size b = 4) are significantly different from the ideal codeword
sizes; in particular, they diverge significantly for large run lengths. On the other hand,
the codeword sizes for the exponential-Golomb code with k = 1 (FDR) and the
subexponential code with k = 1 are quite close to the ideal codeword size; thus we
can expect these codes to outperform Golomb and run-length codes. Similar results
are observed for the test sets of other benchmark circuits (Figure 22.13 shows the
comparison for s38584). Note that the ideal code is ‘ideal’ when the symbols are runs
of 0s. If the symbols are formed in other ways, the ideal code should also be modified
accordingly. Note also that for certain values of the run-length, the ideal code does
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Figure 22.12 The comparison of codeword length between various codes and the
ideal codeword length for circuit s13207
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Figure 22.13 The comparison of codeword length between various codes and the
ideal codeword length for circuit s38584

worse than some of the coding methods. This is not unexpected, since the ideal code
is optimal over the set of all the run-lengths in the test data, and it provides greater
compression for the given test data set.

Experimental results and details of the decompression architectures for these
codes are described in Reference 16.
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Figure 22.14 Illustration of dictionary-based compression/decompression for a
single ATE channel [90] (©ACM, 2003)

22.4.2 Dictionary-based compression

Next we review a dictionary-based test data compression method for IP cores that
provides significant compression for precomputed test sets. The dictionary uses
fixed-length indices, and its entries are carefully selected such that the dictionary
is efficiently utilised. The proposed method is based on the use of a small number
of ATE channels to drive a large number of internal scan chains in the core under
test; see Figure 22.14. This technique does not require a gate-level circuit model
for fault simulation or test generation; this is in contrast to BIST methods and com-
mercial test data compression tools that interleave test cube compression with test
generation [82, 83].

Unlike coding techniques, this approach does not require multiple clock cycles
to determine the decompressed test pattern after the last bit of the corresponding
compressed data packet is transferred from the ATE to the chip. The dictionary-based
approach therefore not only reduces testing time but it also eliminates the need for
additional synchronisation and handshaking between the SoC and the ATE.

Dictionary-based data compression: Dictionary-based methods are quite common in
the data compression domain [92]. While statistical methods use a statistical model
of the data and encode the symbols using variable-size codewords according to their
frequencies of occurrence, dictionary-based methods select strings of the symbols
to establish a dictionary, and then encode them into equal-size tokens using the dic-
tionary. The dictionary stores the strings, and it may be either static or dynamic
(adaptive). The former is permanent, sometimes allowing for the addition of strings
but no deletions, whereas the latter holds strings previously found in the input stream,
allowing for additions and deletions of strings as new input is processed.

A simple example of a static dictionary is an English dictionary used to encode
English text that consists of words. A word in the input text is encoded as an index to
the dictionary if it appears in the dictionary. Otherwise it is encoded as the size of the
word followed by the word itself. In order to distinguish between the index and the
raw word, a flag bit needs to be added to each codeword. We present an example next
to illustrate the encoding of a word. Suppose the dictionary contains 220 words and
thus needs a 20-bit index to specify an entry. A value of 0 for the flag bit indicates
that this codeword is composed of the size of the word and the word itself following
the flag bit. A value of 1 for the flag bit implies that the 20 bits of data following it
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Figure 22.16 An example of formatting the test data for multiple scan chains [90]
(©ACM, 2003)

is a dictionary index. Suppose a 5-bit field is used to specify the size of the word.
As shown in Figure 22.15, the word ‘chip’, which is present in the dictionary with
index 2048, is encoded as 1|00000000100000000000. The word ‘soc’, which is not
in the dictionary, is encoded as 0|00011|01110011|01101111|01100011, where the
5-bit field 00011 indicates that three more bytes follow it.
Dictionary-based compression of test data: In the following description, we assume
that the precomputed SoC test data TD consists of n test patterns t1, t2, . . . , tn. The
scan elements of the core under test are divided into m scan chains in as balanced a
manner as possible. Each test vector can therefore be viewed asm subvectors. If one
or more subvectors are shorter than the others, don’t-cares are padded to the end of
these subvectors so that all the subvectors have the same length, which is denoted by l.
Them-bit data at the same position of each subvector constitute anm-bit word. A total
of nl m-bit words thus are formed and encoded during the compression procedure.
Figure 22.16 illustrates the formatting of the given test data for multiple scan chains.
During test application, after a codeword is shifted into the decoder, an m-bit word
u1, u2, . . . , um is immediately generated by the decoder and fed into the scan chains
(one bit for each scan chain).

In a representative dictionary-based test data compression method [90], each
codeword is composed of a prefix and a stem. The prefix is a 1-bit identifier that
indicates whether the stem is a dictionary index or a word of uncompressed test data.
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If it equals 1, the stem is viewed as a dictionary index. On the other hand, if the prefix
equals 0, the stem is an uncompressed word and it is m bits long. The length of the
dictionary index depends on the size of the dictionary. If D is the set of the entries
in the dictionary, the length of the index lindex = [log2 |D|], where |D| is the size
of the dictionary. Since lindex is much smaller than m, the compression efficiency is
greater if more test data words can be obtained from the dictionary. However, the
dictionary must be reasonably small to keep the hardware overhead low. Fortunately,
since there are many don’t-care bits in scan test data for typical circuits, we can
appropriately map these don’t-care bits to binary values and carefully select the entries
for the dictionary, so that as many words as possible are mapped to the entries in the
dictionary.

An important step in the compression procedure is that of selecting the entries in
the dictionary. This problem can be easily mapped to a variant of the clique partitioning
problem from graph theory [91,92]. We next describe the clique partitioning problem
and then show how the problem of determining dictionary entries can be mapped
to this problem. We then present a heuristic algorithm for generating the dictionary
entries.

An undirected graph G consists of a set of vertices V and a set of edges E,
where each edge connects an unordered pair of vertices. Given an undirected graph
G = (V ,E), a ‘clique’ of the graph is a subset V ′ ⊆ V of vertices, each pair of which
is connected by an edge in E [91]. Given a positive integerK , the clique partitioning
problem refers to the partitioning of V into k cliques, where k ≤ K . The clique
partitioning problem is NP-hard [93],1 hence heuristic approaches must be used to
solve it in reasonable time for large problem instances.

Recall that in dictionary-based data compression, we obtain nl m-bit words after
placing the test set in a multiple scan chain format. Two words u1u2 · · · um and
v1v2 · · · vm are defined to be ‘compatible’ to each other if for any position i, ui and vi
are either equal to each other or at least one of them is a don’t-care bit. A undirected
graph G is constructed to reflect the compatible relationships between the words
as follows. First, a vertex is added to the graph for each word. Then we examine
each pair of words. If they are mutually compatible, an edge is added between the
corresponding pair of vertices. A clique inG refers to a group of test data words that
can be mapped to the same dictionary entry. If the dictionary can have at most |D|
entries and the total number of words is nl, the goal of the compression procedure is
to find the largest subset of G that can be partitioned into |D| cliques; the remaining
vertices inG denote test data words that are not compressed. This problem can easily
be shown to be NP-hard by contradiction. If the compression can be optimally solved
in polynomial time then it provides a yes/no answer to the decision version of the
clique partitioning problem in polynomial time. The following heuristic procedure
has been used in Reference 90.

1 Copy the graph G to a temporary data structure G′;
2 Find the vertex v with the maximum degree in G′;

1 The decision version of the clique partitioning problem is NP-complete.
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Table 22.3 An example of test data for multiple scan
chains [90] (©ACM, 2003)

Scan Word index
chain
index 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 0 1 1 1 1 0 0 0 X X 0 X 0 1
2 X 0 1 1 0 0 1 X X X 1 X X 0 1 0
3 X X X X 0 X 0 1 0 0 1 1 0 X X X
4 X 0 X 0 X X 0 X 0 0 0 0 0 X 0 1
5 0 0 0 0 X 0 X 0 X X X 0 X 1 0 X
6 0 X 1 0 1 0 X X 1 X 0 0 X 0 X X
7 1 0 1 X X X X 1 1 0 X 1 0 0 1 0
8 1 X 0 X 0 1 X 1 0 X X X X X X 1

3 Establish a subgraph that consists of all the vertices connected to v. Copy this
subgraph to G′ and add v to a set C (the subgraph thus formed does not include
the vertex v);

4 IfG′ is not empty, go to Step 2. Otherwise, a cliqueC has been formed consisting
of all the vertex found in Step 2;

5 Remove the vertices in the clique C fromG and copyG−C toG′. Go to Step 2
and repeat until |D| cliques are found.

The complexity of this procedure is O(N3), where N = nl is the number of
vertices in the graph. Table 22.3 shows an example of test data formatted for multiple
scan chains. The number of scan chains m is 8 in this example. There are a total of
16 words, each of which has 8 bits. Figure 22.17 shows the corresponding graph G
for the test data. Let us assume that a dictionary of size four is to be formed, i.e.
|D| = 4. Using the greedy algorithm described above, we obtain four cliques: {5, 6,
13, 16}, {2, 8, 14}, {3, 4, 7} and {1, 11}. (Here we use the word indices of Table 22.3
to represent the vertices.) After finding the cliques, we obtain the corresponding
dictionary entry for each clique by merging the words in this clique. In this example,
the four dictionary entries are {11100011, 01000110, 0000100X, 10X10001}. Three
bits are then needed to encode the words in the cliques; an additional 1 bit is needed
for the prefix, and 2 bits are required for the dictionary index. For words that are not
in any clique, a total of 9 bits each must be transferred from the ATE. Since there
are 12 words that can be generated from the dictionary, the size of the compressed
data is 3 × 12 + 9 × 4 = 72 bits, which corresponds to a compression of 43.75%.
Moreover, the dictionary entries still contain some don’t-care bits, which can reduce
the hardware for the decoder.

The clique partitioning procedure introduces a certain degree of randomness in the
way the don’t-care bits in TD are filled; the resulting ‘random fill’ can be expected
to increase the fortuitous detection of non-modelled faults. This is in contrast to
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Figure 22.17 The graph G for the example of Table 22.3 [90] (©ACM, 2003)

coding methods in which the don’t-cares are all mapped to 0s. Further details about
the compression procedure, decompression architecture and results for benchmark
circuits are presented in Reference 90.

22.5 Conclusions

Rapid advances in test development techniques are needed to reduce the test cost of
million-gate SoC devices. This survey chapter has presented a number of state-of-
the-art techniques for reducing test time and test data volume, thereby decreasing test
cost. Modular test techniques for digital, mixed-signal and hierarchical SoCs must
develop further to keep pace with design complexity and integration density. The
test data bandwidth needs for analogue cores are significantly different than those
for digital cores, therefore unified top-level testing of mixed-signal SoCs remains a
major challenge. Most SoCs today include embedded-cores that operate in multiple
clock domains. Since the forthcoming P1500 standard does not address wrapper
design for at-speed testing of such cores, research is needed to develop wrapper
design techniques for multi-frequency cores. There is also a pressing need for test
planning methods that can efficiently schedule tests for these multi-frequency cores.
The work reported in Reference 30 is a promising first step in this direction. In
addition, compression techniques for embedded-cores also need to be developed and
refined. Of particular interest are techniques that can combine TAM optimisation and
test scheduling with test data compression. Some preliminary studies on this problem
have been reported recently [94, 95].
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Chapter 23

On-chip test infrastructure design for optimal
multi-site testing

Sandeep Kumar Goel and Erik Jan Marinissen

23.1 Introduction

The manufacturing test costs of subsequent generations of systems-on-chip (SoCs)
threaten to increase beyond what is acceptable, if no proper countermeasures are
taken. Factors that drive the digital test costs up are the increases in pin count, test data
volume, speed and corresponding required automatic test equipment (ATE) accuracy.
Especially the test data volume has risen dramatically, due to a combination of growth
in transistor count and new advanced test methods (such as delay-fault testing) which
add significantly to the test set size. As a consequence, testing of ‘monster chips’ [1]
requires expensive ATEs with a large channel count and deep test vector memory [2].

Several methods are applied to reduce the test costs. With built-in self test (BIST),
SoCs test (parts of ) themselves and hence eliminate the need for ATE altogether.
BIST for embedded memories has become a mainstream approach [3]. For logic,
however, BIST is expensive to implement on chip, and hence its usage is typically
limited to applications which require in-field testing [4]. Test data compression (TDC)
techniques still require the presence of an ATE, but reduce the demands on both vector
memory and test application time by exploiting the many ‘don’t care’ bits in the test
set to compress that test set [5, 6].

Another effective approach to reduce test cost is ‘multi-site testing’, in which
multiple instances of the same SoC are tested in parallel on a single ATE [7–11].
More ‘sites’ means more devices are tested in parallel. Multi-site testing amortises
the ATE’s fixed costs over multiple SoCs. It can be used in addition to BIST or TDC.
Rivoir [12] showed that multi-site testing is more effective in reducing the overall test
cost than simply using low-cost ATEs, because it reduces all test cost contributors
and not just the capital cost of ATE.

Efficient multi-site testing requires effective management of test resources such
as the number and depth of ATE channels and the on-chip DfT, while taking into
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account parameters such as test time, index time, contact yield, etc. One way to allow
an increase in the number of sites is to increase the number of ATE channels. However,
this solution not only brings substantial extra costs, but also is not scalable to SoCs
with high pin counts. The other way to increase the number of sites is to narrow
down the SoC–ATE test interface, i.e. the number of SoC terminals that need to be
contacted during testing. Reduced-pin-count-test (RPCT) [8, 13, 14] is a well-known
DfT technique that exactly does this.

In this chapter, we propose to optimise the throughput for both wafer test and final
test by means of multi-site testing. For wafer test, we maximise the throughput by
testing a relatively large number of sites through a narrow enhanced-RPCT (E-RPCT)
[14] interface. For final test, we contact all SoC pins, and hence the number of multi-
sites is limited. We present a generic throughput model for multi-site testing, valid
for both wafer test and final test, which considers the effects of test time, index time,
abort-on-fail and re-test after contact fails. Subsequently, we present an algorithm that
for a given SoC with a fixed target ATE and a probe station, designs and optimises
an on-chip test infrastructure, DfT, that allows for maximal-throughput wafer-level
multi-site testing. In case the given SoC uses a flattened top-level test, our algorithm
determines the design of an E-RPCT [14]. In case the given SoC uses a modular
test approach [15], in addition to the E-RPCT wrapper, the algorithm determines
the on-chip test architecture consisting of test access mechanisms (TAMs) and core
wrappers [16, 17]. Next, we present a second algorithm that for a given fixed ATE
and SoC handler, and for the SoC with DfT optimised for wafer testing, determines
the multi-site number for maximal throughput at final test.

The number of sites at which the test throughput is maximum, is referred to as
‘optimal multi-site’. These numbers can be (and typically are) different for wafer test
and final test. Note that maximal throughput is a different optimisation criterion from
simply maximising the number of multi-sites. For wafer test, a large number of sites
means less ATE channels per SoC, which in turn increases the test application time
per SoC. For final test, a large number of sites means that more SoCs need be handled
in parallel, which can increase the handling time. Consequently, in order to minimise
test costs through multi-site testing, the number of sites should be tuned such that the
test throughput is maximised.

The outline of this chapter is as follows. Section 23.2 reviews the prior work in this
domain. Section 23.3 describes our multi-site test flow. Section 23.4 details our model
for multi-site test throughput. Section 23.5 formally defines the problems of optimal
multi-site testing of SoCs for wafer and final test, while Section 23.6 describes two
algorithms to solve them. Section 23.7 contains experimental results for the Philips
SoC PNX8550 [1] and SoCs taken from the ‘ITC’02 SoC Test Benchmarks’ [18].
Finally, Section 23.8 concludes the chapter.

23.2 Prior work

Reduced-pin-count testing is a DfT technique used to reduce the number of integrated
circuit (IC) pins that need to be contacted by the ATE. RPCT assumes the presence
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Figure 23.1 Example of (a) an RPCT wrapper and (b) an E-RPCT wrapper

of internal and boundary-scan. The basic principle of RPCT is that only the input and
output terminals of the scan chains (including the boundary-scan chain), test control
pins and clock pins need to be connected to the ATE channels. Access to all other
functional pins is achieved via the boundary-scan chain. An RPCT wrapper around
the SoC converts m internal test inputs and outputs into n external test inputs and
outputs, for all integers n,m with 2s < n < m and n even, where s denotes the
number of internal-scan chains. Figure 23.1(a) shows an example RPCT wrapper. In
this example, m = 13 and s = 3, and consequently, n ≥ 8.

First use of RPCT with level-sensitive scan design (LSSD) boundary-scan was
reported by IBM to enable the use of low-cost ATE for application specific inte-
grated circuits (ASICs) [13]. Since then, several extensions have been made to
the basic RPCT technique. Two such extensions are reconfigurable RPCT [8] and
E-RPCT [14]. In Reference 8, a technique to design a reconfigurable RPCT wrapper
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around an SoC is presented, i.e. an n-to-m RPCT wrapper for which n is not fixed
at design time, but can be determined by the user instead. At the expense of extra
silicon area for the reconfigurability, this allows the RPCT wrapper to be designed
without any knowledge of the target ATE. The width of the RPCT interface, and the
number of scan chains and their lengths, can be programmed by the user over a range
of values.

The basic idea behind E-RPCT [14], as shown in Figure 23.1(b), is to provide
boundary-scan access not only to the functional terminals, but also to the internal
scan chains, in order to enable even further scalability of the SoC–ATE test interface.
The E-RPCT wrapper truly convertsm internal test inputs and outputs into n external
test inputs and outputs, for all integers n,m with 0 < n < m, and n even. For the
example in Figure 23.1, for RPCT, n ≥ 8, while for E-RPCT, n ≥ 2; in the example
of Figure 23.1(b), n = 4. Our chapter is based on the usage of E-RPCT.

Multi-site testing reduces the test cost per SoC, by amortising the fixed costs
of the ATE and the rest of the ‘test cell’ over multiple SoCs. However, as shown
in Reference 12, increasing multi-site also has negative cost effects. Examples of
such negative effects are (1) increased cost of ATE and probe cards, (2) lack of
independent ATE resources for all sites, (3) change-over time between production
lots, (4) increased test time due to reduced effectiveness of abort-on-fail and (5) more
contact failures causing more re-test. Hence, effective multi-site testing involves
careful economic modelling, in order to find the optimal number of multi-sites for
which the corresponding test costs are minimal. Most papers on multi-site testing
indeed model the economics of multi-site testing for test cost reduction [7, 9, 10, 12].
Rivoir [12] argues that multi-site test is a more effective test cost reduction method
than simply reducing the cost of the ATE; even for free ATEs, multi-site testing yields
test cost reduction! In this chapter, we present a simple yet effective multi-site test
cost model. Our model considers only those parameters that are influenced by the
design of on-chip test infrastructure.

The only paper that presents techniques to design and optimise on-chip test
hardware to enable multi-site testing is Reference 11. It presents a rectangle
bin-packing-based technique to design the test architecture (consisting of TAMs
and core wrappers) for a modularly tested SoC with a target ATE, such that
the test architecture requires a minimum number of ATE channels and the SoC
test data volume fits on the given ATE. A minimum number of ATE channels
per device enables the maximum multi-site testing possible for the given SoC.
While this paper was the first one in this domain, it has several limitations.
The paper only discusses the design of core wrappers and TAMs for modularly
tested, core-based SoCs, and ignores the design of a chip-level E-RPCT wrap-
per. It maximises the number of sites that can be tested in parallel, while we
show in this chapter that this does not always yield maximum throughput. To max-
imise the number of sites, the paper assumes that a common set of input channels
can be used to broadcast test stimuli to all sites, which is often not practical (see
Section 23.4.1). And finally, Reference 11 considers test time only, and does not
take into account the effects of index time, abort-on-fail and re-test rate due to
contact fails.
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23.3 Multi-site test flow

Multi-site testing can be done at wafer test as well as at final (‘packaged IC’) test. In
this chapter, we assume the following two-step test flow.

1 During ‘wafer test’, the internal circuitry of the SoC die in question is tested. This
is done through a narrow E-RPCT interface, in order to enable a large number of
sites, as well as to reduce the chances for contact test fails. The non-E-RPCT pins
of the SoC are not contacted.

2 During ‘final test’, the IOs of the packaged SoC are tested. For this purpose,
‘all’ pins of the SoC are contacted. The SoC-internal circuitry is tested again;
we assume that this is done through the same E-RPCT interface designed for
wafer test.

The pins of the SoC need to be contacted for test at least once during the test
flow. We propose to do that during the final test, as then also the bonding wire and
assembly result can be included in the test. Consequently, the number of sites during
final test is limited by the number of available ATE channels divided by the number
of pins of the SoC. In addition, this number is limited by the maximum number of
multi-sites possible on the available device handler.

Multi-site testing during wafer test does not have the restrictions described above
for final test. Today’s high channel-count ATEs and corresponding high pin-count
probe technologies enable massive multi-site testing for wafer test by using a narrow
E-RPCT interface. The only limitation at wafer test is that full multi-site testing is
not possible at the periphery of the wafer, due to its circular shape. However, in
our calculations in this chapter we ignore this effect. We focus on the design of test
infrastructure to maximise the multi-site test throughput during wafer testing.

We assume that for testing the internals of the SoC, during final test the same
narrow E-RPCT interface that was designed for enabling optimal multi-site dur-
ing wafer testing is reused again. An alternative could have been to allow the final
test to use all available SoC pins for the SoC-internal tests. However, this would
have required an area-expensive reconfigurable E-RPCT wrapper [8], as well as
reconfigurable test wrappers [19] around all cores. Moreover, it would require regen-
eration of the tests over the new, wider SoC–ATE interface. Note that a negative
consequence of our assumption is that the SoC-internal test during final test requires
deeper ATE vector memory and takes more clock cycles than strictly necessary.
In Section 23.7, we evaluate the impact of our choice on test throughput during
final test.

23.4 Multi-site test throughput model

In this section, we present a test throughput model for multi-site testing. We take
into account the effects of test time, index time, abort-on-fail and re-test rate due to
contact fails.
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Figure 23.2 Multi-site test example (a) ‘without’ and (b) ‘with’ stimuli broadcast

23.4.1 Stimuli broadcast discussion

For an SoC that requires k channels for its test, an ATE with N channels can do at
most nmax multi-sites, with

nmax =
⌊
N

k

⌋
(23.1)

A technique to increase the maximum number of multi-sites on a given, fixed ATE
is to apply ‘stimuli broadcast’ [11]. The probe card or load board are prepared such
that a single set of ATE stimulus channels is used to provide stimuli to all instances
of an SoC. Figure 23.2 shows an example ATE with N = 16 and an SoC with k = 8.
Figure 23.2(a) shows that two instances of the SoC can be tested on this ATE ‘without’
stimuli broadcast, while Figure 23.2(b) depicts that ‘with’ stimuli broadcast the same
ATE can test three instances of the SoC.

For an SoC with i test inputs and o test outputs (with i + o = k), with stimuli
broadcast the maximum amount of multi-sites nmax becomes

nmax =
⌊
N − i
o

⌋
(23.2)

In the case of (E-)RPCT, the test interface is formed by scan chains only, and hence
i = o = k/2, and hence

nmax =
⌊
N − k/2
k/2

⌋
=
⌊

2N

k

⌋
− 1 (23.3)

The benefit of stimuli broadcast for multi-site testing is obvious: it almost doubles
the amount of multi-sites possible for a given SoC–ATE combination. However, next
to the cost of probe card or load board adaptation, stimuli broadcast is not always
practical. Some ATEs simply do not support broadcasting; they assign a channel to a
site, and, if that site fails, no more stimuli are sent to the SoC under test. Furthermore,
broadcasting can cause undesired side effects, such as a fault at the bonding pad of
one site causing incorrect test results on other sites.
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Figure 23.3 Wafer testing time consists of index time ti and test time ta

In this chapter, our solution approach accommodates explicitly both cases, i.e.
‘without’ and ‘with’ stimuli broadcast.

23.4.2 Wafer test

In the case of the wafer test, the complete wafer is located near the ATE, and the
E-RPCT bonding pads of the SoCs under test are physically probed. The total time
spent on a set of SoCs to be tested in parallel is the sum of the index time ti and the
test application time ta, as depicted in Figure 23.3.

The ‘index time’ ti is the time required to position the probe interface in order to
make contact with the bonding pads of the SoC(s) under test. We assume the index
time to be a constant, dependent on the type of probe station, but ‘not’ on the multi-site
number. A typical value is ti = 0.7 s.

The test consists of a contact test and a manufacturing test. In the ‘contact test’, it
is checked whether all terminals required for the subsequent manufacturing test are
properly connected to the ATE. If one or more of these terminals are not properly
connected, the SoC fails the contact test. The probability pc of a single terminal to
pass the contact test, also referred to as the ‘contact yield’, needs to be high to be
able to successfully test high pin-count SoCs. All terminals undergo their contact test
simultaneously, and hence the contact test time tc is a constant. A typical value is
tc = 10 ms.

During the ‘manufacturing test’, the SoC is checked for manufacturing defects.
In this chapter, we only consider digital tests that can be applied through an E-RPCT
scan chain; examples of such tests are logic and memory tests. The probability pm

of a single SoC to pass the manufacturing test is also referred to as the ‘yield’. The
manufacturing test time tm depends on the width of the E-RPCT test interface, the
test data volume and how well the various SoC tests can be scheduled.

The total test time can now be written as

t = ti + ta = ti + tc + tm (23.4)

In high-volume production testing, where faulty chips are often not analysed, but
simply discarded, it is possible to abort the test as soon as the first failing test vector is
observed. This ‘abort-on-fail’ strategy can significantly reduce the average test time
per device, especially in the case of low yield. As shown in Section 23.7.6, multi-site
testing reduces the effect of the abort-on-fail strategy on the average test time; in a
multi-site testing environment, tests can only be aborted if all n sites have started
failing, which is simply less likely to happen. For an SoC with k pins involved in its
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test, the probability Pc that at least one out of n SoCs will pass the contact test is

Pc = 1 − (1 − pkc )n (23.5)

Similarly, the probability Pm that at least one out of n SoCs will pass the
manufacturing test is

Pm = 1 − (1 − pm)
n (23.6)

We assume that the failing SoCs do not take any test time (tm = 0). Based on
this, a theoretical lower bound on the total test application time for a set of n devices
can be written as

ta = tc + Pc × Pm × tm (23.7)

In reality, a failing device does take some test time (tm > 0) before a fault is found
in it. The choice for the obviously unrealistic assumption that tm = 0 for a failing
SoC is motivated by the fact that it allows us to make a strong conclusion about the
reduced effectiveness of abort-on-fail in multi-site testing in Section 23.7.6.

Assuming a full utilisation of the ATE, the total number of devices tested per hour
Dth for n multi-site testing can be written as

Dth = 3600 × n
ti + ta (23.8)

In this equation, both ti and ta are in seconds. Furthermore, ta can be either the original
test application time, or, when abort-on-fail is used, the reduced test application time
of Equation (23.7).

In many companies, it is common practice to re-test those devices that failed on
their contact test. The premise of re-testing is that the chances are high that the failure
was caused by a wrong probe contact, rather than that the SoC itself was faulty. If that
is indeed the case, it would be a waste to discard basically good devices. Excluding the
unlikely event of multiple failing terminal contacts per SoC,Dth SoCs with k terminals
each and a contact yieldpc per terminal, will requireDr = (1−pc)×k×Dth SoCs/h to
be re-tested. While the number of devices tested per hourDth remains unaffected, re-
testing has an impact on the number of unique devices tested per hourDu

th. Assuming
at most one failing terminal contact per SoC, and that devices are re-tested at most
once, Du

th can be written as

Du
th = Dth −Dr = (1 − (1 − pc)× k)×Dth (23.9)

23.4.3 Final test

A device handler for final test has the following main components: an ‘input rail’,
‘loader’, ‘unloader’, ‘sockets’ and ‘bins’. Figure 23.4(a) shows a handler for final test.
Figures 23.4(b) and (c) show a conceptual view of the handling and contacting during
multi-site testing for final test, in this case for four sites (also referred to as ‘quad-site’
testing). Basically, the handling consists of two alternating steps. In Step 1, shown
in Figure 23.4(b), devices are moved serially from the input rail to the loading arm
(‘loader’) of the device handler. Simultaneously, devices that are already placed in the
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Figure 23.4 Example of (a) a handler and (b + c) a conceptual representation of
its two-step quad-site operation

sockets are tested, and already tested devices (if any) are moved from the unloader
to their respective bins. Examples of bins are ‘good’, ‘bad contact’ and ‘functional
failure’. Subsequently, in Step 2, shown in Figure 23.4(c), untested devices are moved
in parallel from the loader to the sockets, while tested devices are moved from the
sockets to the unloader. Steps 1 and 2 are repeated in a (virtually) endless iteration.

In our approach, during final test, all SoC pins need to be contacted and the full
contact test is carried out. This limits the amount of multi-site to at most the number
of available ATE channels divided by the number of pins K per SoC. Please note
that variables K and k are different. For a given SoC, K represents the total number
of functional pins at the SoC boundary, while k (with k ≤ K) is the width of the
E-RPCT interface for the SoC.

For multi-site testing at final test, the device handler for packaged SoCs might also
be a limiting factor. Currently, for logic ICs, handlers up to eight sites are available in
the market. For memory ICs, where massive multi-site testing is common due to their
very large test times, handlers up to 128 sites are available. These handlers require
multiple pick-ups, such that the index time increases in a step-wise fashion with the
number of sites. Alternatively, large multi-site can also be achieved by so-called strip
handlers [20], where ICs are tested while still in their lead frame strips, i.e. before
being singulated into individual units. For strip handlers, the handling time does not
vary with the number of sites. Figure 23.5 shows the variation in index time with
multi-site for both types of handlers.

A generic expression for the index time ti as a function of the number of sites n
can be written as follows

ti(n) = t1 +
⌊
n− 1

σ

⌋
× τ (23.10)

where t1 is the minimum index time (considering only single-site testing), σ is the
‘pick-up size’, i.e. the number of ICs that can be picked up at once and τ is the ‘pick-
up time’, i.e. the time per individual pick-up. For memory handlers, typical values of
these parameters are t1 = 0.4 s, σ = 4, and τ = 0.2 s. For strip handlers, τ = 0.
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Figure 23.5 Variation in index time for (a) multiple pick-up handlers and (b) strip
handlers

With the assumption that both contact and manufacturing tests are executed for
the packaged devices, the total test time for final test can now be written as

t = ti(n)+ tc + tm (23.11)

Assuming a full utilisation of the ATE, the total number of devices tested per hour
Dth for n multi-site testing for the final test can be written as

Dth = 3600 × n
ti(n)+ tc + tm (23.12)

Similarly, with the assumptions that there is at most one failing terminal contact
per SoC, and the failing devices are re-tested at most once, the number of unique
devices tested per hour Du

th can be written as

Du
th = (1 − (1 − pc)×K)×Dth (23.13)

23.5 Problem definitions

For wafer test, we distinguish between the problems of test infrastructure design for
flat and modularly tested, core-based SoCs. For flat SoCs, we design an E-RPCT
wrapper around the SoC. For modularly tested SoCs, in addition to the E-RPCT
wrapper, we also design TAMs and core wrappers.

The problem of test infrastructure design for optimal multi-site testing (i.e. with
maximal throughput) of flat SoCs for wafer test can be formally defined as follows.

Problem 1 [Test infrastructure design for flat SoCs]. Given an SoC with a number
of test patterns p, a number of functional input terminals i, a number of functional
output terminals o, a number of functional bidirectional terminals b, a number of scan
chains s and for each scan chain j , the length of the scan chain in flip flops l(j). Also
given a target ATE with N channels, each with vector memory depth V . Further-
more are given the test clock frequency f and a target SoC probe station with index
time ti.
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Determine the number of multi-sites n, the number of ATE channels per site k
(with k even), and a k-to-x E-RPCT wrapper for the SoC (with x = i + o+ 2b+ 2s
and k ≤ x), resulting in T (k) test clock cycles per SoC and tm = T (k)/f , such that
during n multi-site testing

1 the number of required ATE channels does not exceed the number of available
ATE channels, i.e.

(a) without stimuli broadcast: n× k ≤ N
(b) with stimuli broadcast: (n+ 1)× k/2 ≤ N ,

2 the required ATE vector memory depth does not exceed the available depth, i.e.
T (k) ≤ V ,

3 the test application time is calculated as follows

(a) without abort-on-fail: ta = tc + tm
(b) with abort-on-fail: ta = tc + Pc × Pm × tm,

4 the test throughput is maximum, i.e.

(a) without re-test: Dth ‘is maximum’
(b) with re-test: Du

th ‘is maximum’. �

For the example SoC shown in Figure 23.6(a), an example E-RPCT wrapper
that needs to be designed in Problem 1 is shown in Figure 23.6(b). The example
SoC contains three scan chains, three functional input terminals and four functional
output terminals. For clarity, control and clock terminals are not shown in the figure.
Without E-RPCT wrapper, in total 13 ATE channels, i.e. six input and seven output
ATE channels, are required to test this SoC. However, the E-RPCT wrapper shown
in Figure 23.6(b) only requires four ATE channels (k = 4), i.e. two input and two
output channels.

Next, we discuss the problem of test infrastructure design for modularly tested,
core-based SoCs. Modular testing of an SoC requires a test infrastructure consisting
of wrappers and TAMs [16, 17]. Therefore, for modularly tested SoCs, in addition to
the E-RPCT wrapper, we also design core wrappers and TAMs. The problem of test
infrastructure design for optimal multi-site testing of core-based SoCs for wafer test
can be formally defined as follows.

Problem 2 [Test infrastructure design for core-based SoCs]. Given all parameters
as specified in Problem 1. Furthermore is given a set of modules M in the SoC, and
for each module m ∈ M the number of test patterns p(m), the number of functional
input terminals i(m), the number of functional output terminals o(m), the number of
functional bidirectional terminals b(m), the number of scan chains s(m) and for each
scan chain j , the length of the scan chain in flip flops l(m, j).

Determine the number of multi-sites n, the number of ATE channels per site
k (with k even and k = u + 2w), an u-to-x E-RPCT wrapper for the SoC (with
x = i+o+2b+2s and u ≤ x) such that u channels are used for testing the top-level
SoC itself and a test architecture withw TAM wires for testing the embedded modules
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Figure 23.6 An example of (a) a flat SoC and (b) the E-RPCT wrapper around this
SoC

(i.e. determine the number of TAMs, the width of these TAMs, the assignment of
modules to TAMs and the core wrapper design per module such that the summed TAM
width is w [16, 17]), resulting in T (k) test clock cycles for the entire SoC including
embedded modules and tm = T (k)/f , such that during n multi-site testing

1 the number of required ATE channels does not exceed the number of available
ATE channels, i.e.

(a) without stimuli broadcast: n× k ≤ N
(b) with stimuli broadcast: (n+ 1)× k/2 ≤ N ,

2 the required ATE vector memory depth does not exceed the available depth, i.e.
T (k) ≤ V ,
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3 the test application time is calculated as follows

(a) without abort-on-fail: ta = tc + tm
(b) with abort-on-fail: ta = tc + Pc × Pm × tm,

4 the test throughput is maximum, i.e.

(a) without re-test: Dth ‘is maximum’
(b) with re-test: Du

th ‘is maximum’. �

For the example modularly tested SoC shown in Figure 23.7(a), an example DfT
solution that needs to be designed in Problem 2 is shown in Figure 23.7(b). Like
the flat SoC in the previous example, this example SoC contains three scan chains,
three functional input terminals and four functional output terminals. This SoC also
contains an embedded Core A, which has two scan chains and two input and output
terminals. We need to design an E-RPCT wrapper, as well as a wrapper [21] for
Core A, and assign TAMs to it. In the test infrastructure shown in Figure 23.7(b),
four ATE channels are used to connect Core A, while another four ATE channels are
used in the E-RPCT wrapper around the core. Therefore, for this case k = 8.

Problem 2 is actually a generalised version of Problem 1. For a flat SoC, we simply
deal with zero embedded modules, i.e. M = ∅. Hence, if we address Problem 2,
Problem 1 is implicitly solved.

As mentioned earlier we use the test infrastructure that is designed and optimised
for wafer test also for final test. Therefore, Problems 1 and 2 do not require solutions
tailored for final test. However, for final test also, we need to find the number of sites
for which the test throughput is maximum. Therefore, for final test, we solve another
optimisation problem as described in Problem 3.

Problem 3 [Optimal multi-site testing for final test]. Given an SoC with I func-
tional input pins, O functional output pins and the DfT infrastructure (i.e. E-RPCT
wrapper for the SoC, and the TAMs and wrappers for the internal modules) with the
corresponding test length T (in test clock cycles) and manufacturing test time tm. Also
given a target ATE withN channels, each with vector memory depth V . Furthermore
given a target SoC handler with minimum index time t1, pick-up size σ and pick-up
time τ .

Determine the number of multi-sites n, such that during n multi-site testing

1 the number of used ATE channels does not exceed the number of available ATE
channels, i.e.

(a) without stimuli broadcast: n× (I +O) ≤ N
(b) with stimuli broadcast: (n×O + I ) ≤ N ,

2 the required ATE vector memory depth does not exceed the available depth, i.e.
T ≤ V ,

3 the test application time is calculated as follows:

(a) without abort-on-fail: ta = tc + tm
(b) with abort-on-fail: ta = tc + Pc × Pm × tm,
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Figure 23.7 An example of (a) a modularly tested SoC, and (b) the example DfT for
this SoC

4 the test throughput is maximum, i.e.

(a) without re-test: Dth ‘is maximum’
(b) with re-test: Du

th ‘is maximum’. �

23.6 Proposed solutions

23.6.1 Optimal multi-site testing for wafer test

In this section, we present a two-step algorithm for Problem 2. In Step 1 of the
algorithm, we determine the maximum multi-site nmax and the corresponding test
infrastructure for the given SoC and ATE. In Step 2, we use linear search to find the
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Figure 23.8 Fitting SoC test data on the target ATE with as few ATE channels as
possible (a) in order to allow the maximum number of multi-sites (b)

number of sites nopt (nmax ≥ nopt ≥ 1) for which the test throughput is maximum
and we modify the test infrastructure accordingly.

In the algorithm, we use the notion of ‘channel group’. A channel group is a group
of ATE channels, that belong together because they exclusively serve one on-chip
TAM. In our algorithm G denotes the set of channel groups. For all g ∈ G, m(g)
denotes the set of modules connected to channel group g, k(g) denotes the number of
channels assigned to group g, V (g) denotes the maximum vector memory filling over
all k(g) channels of group g and Vfree(g) denotes the summed free vector memory
over all k(g) channels of group g.

Step 1: In this step, we first assign channels to all internal modules and then
assign separate channels to the top-level SoC. While determining nmax, we use two
optimisation criteria, as illustrated in Figure 23.8(a). Criterion 1 is the minimisation
of the number of ATE channels k utilised by one SoC, such that the test still fits into
the vector memory depth V of the ATE. Criterion 2 is the minimisation of the actual
filling of the vector memory. Criterion 1 has priority, as it maximises the number of
sites, as shown in Figure 23.8(b). Criterion 2 is meant to reduce the test application
time per SoC.

In this step, we first calculate the minimum number of ATE channels kmin(m)

required for every module m ∈ M such that the module’s test time t(m, kmin) does
not exceed the ATE vector memory depth per channel V . To calculate the test time
for a module, we need to design a wrapper around the module. To design the wrapper
around a module m for a given number of ATE channels k, we use the Combine
algorithm presented in Reference 21. If for any m ∈ M , kmin(m) > N then the SoC
cannot be tested on the target ATE and the procedure is exited. Otherwise, modules
are sorted in decreasing order of their kmin(m). Initially, there are no channel groups,
i.e. G = ∅. Now we start with the assignment of modules to channel groups. For
every module, we first try to find out whether the module can be assigned to an already
existing channel group without exceeding its vector memory depth limit. For the very
first module, there are no existing channel groups, therefore it is assigned kmin(m)

number of channels and a channel group of width kmin(m) is formed. Iteratively,
we move to the next module. If more than one channel group is found to which a
module can be assigned, then the module is assigned to the group g∗ that requires
the smallest vector memory depth, i.e. V (g∗) is minimum after assignment of the
module.
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If the module cannot be assigned to any existing channel group, we consider two
options: (1) create a new channel group, or (2) increase the width of an existing
channel group such that the module can be assigned without exceeding the vector
memory limit. We select the best of the two options, i.e. the option in which the total
free memory Vfree available on all used channels is maximum. This minimises the
test application time for the SoC considering the same number of channels. In both
options, we take into account that the total number of used channels does not exceed
N ; if the assignment of a module leads to the violation of this constraint, then the SoC
cannot be tested on the ATE and the procedure is exited. The procedure is repeated
until all modules are assigned.

Next, we assign ATE channels to the top-level SoC. We first calculate the min-
imum number of ATE channels kmin(SoC) required for the top-level SoC test such
that the test time for the top-level test does not exceed the ATE channel depth. If
the sum of already assigned ATE channels

(∑
g∈G k(g)

)
for the internal cores tests

and these new channels kmin(SoC) exceed the total available number of channels,
then the SoC cannot be tested on this tester and the procedure is exited. Otherwise,
a new channel group is formed and the top-level SoC is assigned to the channel
group.

The summed width of all channel groups determines the total number of channels
k for the SoC. The test application time for the SoC corresponds to the maximum
of the filled vector memory (maxg∈G V (g)) over all channel groups. Based on the
test clock frequency f , actual test application time tm can be calculated as tm =
maxg∈G V (g)/f s. The maximum multi-site possible is nmax = 
N/k� in the case
without stimuli broadcast, and nmax = 
2N/k�−1 in the case with stimuli broadcast.

An example with one iteration of Step 1 is illustrated in Figure 23.9. Figure 23.9(a)
shows a situation in which Cores A and B have already been assigned to a channel
group that requires k1 ATE channels, while Core C is assigned to another channel
group that requires k2 ATE channels. Figure 23.9(b) corresponds to the case, in
which the algorithm tries to add Core D to either one of the two already existing
channel groups. Unfortunately, both alternatives exceed the vector memory depth
limit V . Hence, the algorithm is forced to start using more ATE channels in order
to add Core D. In Figure 23.9(c), the three alternatives considered are depicted.
Alternative (1) is to add a new channel group for Core D, in this case with k3 =
kmin(D) ATE channels. Alternative (2) extends channel group 1 iteratively from
k1 to k1 + k3 channels, and is only valid if Core D can now be added without
exceeding the vector memory depth V . Similarly, Alternative (3) extends channel
group 2 iteratively from k2 to k2 + k3 channels. The alternative which yields the
smallest vector memory filling is selected.

Step 2: In this step, we identify the number of sites nopt for which the throughput
Dth orDu

th is maximum. Here, we only considerDth; in case of maximisingDu
th,Dth

can be replaced by Du
th.

We use linear search from nmax down to 1 to calculate the corresponding Dth

value. In every iteration, we try to redistribute the ATE channels kfree freed-up by
giving up one site over the remaining sites. Only if kfree ≥ 2n (for the case without
stimuli broadcast) or kfree ≥ n+1 (for the case with stimuli broadcast), redistribution
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Figure 23.9 Illustrative example of one iteration of Step 1 for an SoC with four
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Figure 23.10 Example illustrating the operation of the proposed two-step algorithm
for Philips SoC PNX8550

makes sense. If so, for each site, we assign iteratively free channels to the channel
group that is maximally filled. This can reduce the test application time per site. We
record the throughput for the value of n. Finally, after the linear search, we find nopt

as the number of sites for which the throughput Dth is maximum.
Figure 23.10 illustrates the operation of the proposed two-step algorithm for the

Philips SoC PNX8550 [1], for both the cases with and without stimuli broadcast. For
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the target ATE, we assumed N = 512 channels and V = 14M vector memory per
channel. Furthermore, we consider a test clock speed f = 5 MHz, an index time
ti = 0.5 s and a contact test time tc = 10 ms.

For the case ‘without’ broadcast, Step 1 already yielded the optimal result, i.e.
nmax = nopt = 15, and the corresponding throughput is Dth = 15 780 SoCs/h.
However, for the case ‘with’ broadcast, Step 1 results in nmax = 24 multi-sites,
with a throughput Dth = 27 270 SoCs/h, whereas Step 2 finds nopt = 21, with a
corresponding maximum throughput Dth = 28 062 SoCs/h. At nmax = 24, only
40 channels per site are used. As we decrease the number of sites, channels get
freed-up. Initially there are insufficient freed-up channels to be able to increase
the channel width to the remaining sites, i.e. kfree < n + 1, and hence, through-
put Dth only decreases. Dth starts to increase again at n = nopt = 21. The
straight, dashed line shows, again for the stimuli broadcast case, which through-
puts would have been obtained for various multi-sites, based on Step 1 only. If
for some reason (e.g. a limited probe interface), the multi-site is restricted to, say,
n ≤ 16, Steps 1 + 2 together result in 34 per cent more throughput than Step 1
alone.

23.6.2 Optimal multi-site testing for final test

In this section, we solve Problem 3, i.e. the problem of optimal multi-site testing for
final test. In the proposed multi-site test flow, the only parameter that changes with
the number of sites at final test, is the handler index time. Due to this, the optimal
number of sites can be different from the maximum number of sites. Therefore, by
doing a linear search from the maximum multi-site down to one, Problem 3 can be
solved optimally.

In the proposed algorithm, first, based on the number of ATE channels N and the
number of functional pins (I andO) for the SoC, we calculate the maximum number
of sites nmax possible for the final test. For nmax multi-site testing, we record the test
throughputD∗

th. Next, we use a linear search from nmax down to 1 to find the number
of sites nopt for which the test throughput D∗

th is maximum.
Figure 23.11 illustrates the operation of the proposed algorithm for SoC p22810

taken from the ‘ITC’02 SoC Test Benchmarks’ [18]. For the target ATE, we assumed
N = 1024 channels and V = 1M vector memory per channel. Furthermore, we
consider a test clock speed f = 5 MHz, a contact test time tc = 10 ms, handler
index time t1 = 0.4 s, pick-up size σ = 4 and pick-up time τ = 0.2 s. For the given
ATE and without stimuli broadcast, the on-chip test infrastructure design algorithm
presented in Section 23.6.1 results in a DfT infrastructure with a manufacturing test
time tm = 0.204 s. For SoC p22810, we take the number of terminals of the top-level
SoC module (referred to as Module 0 in Reference 18) as the number of functional
pins to be contacted during final test. Therefore,K = 173 for SoC p22810. Based on
this, maximum five (nmax = 5) multi-site testing can be done on the given ATE during
final test. For nmax = 5, the test throughput is Dth = 22 113 SoCs/h. However, the
algorithm presented in this section finds nopt = 4, with a corresponding maximum
throughput Dth = 23 453 SoCs/h.
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Figure 23.11 Example illustrating the operation of the proposed algorithm for SoC
p22810 [18]

23.7 Experimental results

This section presents experimental results for the proposed approach and how it
compares to the prior work in Reference 11 . Subsequently, we use our throughput
model and algorithm to evaluate the effects of index time, ATE parameters, contact
yield and abort-on-fail on multi-site test throughput.

For most of our experiments, we consider a ‘small’ and a ‘large’ SoC. The small
SoC is the Philips SoC p22810, taken from the ‘ITC’02 SoC Test Benchmarks’
[18]. It embeds 22 logic and six memory modules. The large SoC is the Philips
PNX8550 [1]. PNX8550 is based on the Philips Nexperia™ Home Platform and
embeds 62 logic and 212 memory modules. Unless specified otherwise, we assume a
test clock f = 5 MHz, contact test time tc = 10 ms, wafer-level index time ti = 0.7 s,
and ‘no’ stimuli broadcast.

23.7.1 Algorithmic performance

First, we compare the performance of the proposed algorithm to the results published
by Iyengar et al. [11] for three large ‘ITC’02 SoC Test Benchmarks’ [18]. Iyengar
et al. [11] did not include the top-level SoC module in their calculations, assumed
stimuli broadcast and calculated nmax instead of nopt. In order to compare the two
algorithms on a fair and equal basis, for this comparison we also ignored the top-level
SoC module, assumed stimuli broadcast and have only applied Step 1 of Algorithm 1
in order to calculate nmax.

Table 23.1 lists for four SoCs the number of ATE channels k used for a single
SoC, and the maximum multi-site nmax. For each SoC, an ATE with a fixed number
of channels N and a range of vector memory depths V were considered, just as in
Reference 11. For k, Table 23.1 presents a theoretical lower bound value LB for k
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Figure 23.12 For wafer test, variation in manufacturing test time tm with the number
of sites n for (a) SoC p22810 and (b) PNX8550

from Reference 11 and the actual value of k obtained by our approach. For nmax,
Table 23.1 presents the values obtained by Reference 11 and our new approach. In
all cases, except for SoC p93791 with V =1.768M channel depth, our algorithm
obtains a higher multi-site than that in Reference 11. Furthermore, in most cases, our
algorithm matches the lower bound on the number of ATE channels for a single SoC.
This shows that our algorithm is very effective and usually achieves the maximum
multi-site possible for the given SoC.

23.7.2 Index time

Next, we analyse the impact of index time on multi-site test throughput for both wafer
test and final test. For wafer testing, our test throughput model assumes the index
time to be constant, independent from the number of multi-sites. The relative impact
of the index time ti on the test throughputDth depends on the ratio between ti and the
manufacturing test time tm. A small SoC will have a small tm, such that t and hence
Dth are dominated by index time ti. A large SoC will have a large tm, such that t and
henceDth are dominated by tm. In the latter case, the impact of a varying index time
ti is reduced.

This point is illustrated by Figures 23.12 and 23.13. Figure 23.12(a) shows the
manufacturing test time tm for SoC p22810 for a varying number of multi-sites on a
fixed ATE with N = 512 channels and V = 1M vector memory depth per channel.
Figure 23.12(b) shows a similar graph for PNX8550 and a fixed ATE with N = 512
channels and V = 7M vector memory depth per channel. The figures show that
manufacturing test times of SoC p22810 are relatively small, while the manufacturing
test times of PNX8550 are relatively large, compared to the typical probe station
index time ti = 0.7 s. Figure 23.13(a) and (b) shows the variation in wafer-level test
throughputDth with the number of sites n for varying index times ti for the same two
cases.
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For final testing, our approach assumes that the manufacturing test is executed
via the E-RPCT interface designed for wafer testing. Therefore, during final test, the
manufacturing test time tm is constant, and independent from the number of multi-
sites. However, our test throughput model assumes the index time ti to increase with
the number of multi-sites in a step-wise fashion.

Figure 23.14 depicts both tm and ti for a varying number of multi-sites n for
SoC p22810 (Figure 23.14(a)) and PNX8550 (Figure 23.14(b)). For SoC p22810,
tm = 0.204 s, corresponding to the optimal multi-site number in Figures 23.12(a)
and 23.13(a). For PNX8550, tm = 1.464 s, corresponding to the optimal multi-site
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Figure 23.15 For final test, variation in test throughputDth with the number of sites
n for (a) SoC p22810 and (b) SoC PNX8550

number in Figures 23.12(b) and 23.13(b). In both graphs, ti increases in a step-wise
fashion with t1 = 0.4 s, pick-up size σ = 4 and pick-up time τ = 0.2 s.

For final test, the number of multi-sites n is limited to at most the ratio of ATE
channels N and the number of functional pins K per SoC. For SoC p22810 and
PNX8550, K = 173 and 584, respectively. Hence, even for an ATE with N =
1024 channels, the maximal number of multi-site is very limited. Consequently, it
is difficult to show the impact of the increasing index time in final test on the test
throughput of these two SoCs. In order to still be able to do so, we (unrealistically)
assume that we have an ATE with sufficient channels to allow up to 64 multi-sites
for both SoCs. Under that assumption, Figure 23.15 shows the variation in the test
throughput Dth for a varying number of multi-sites n. Unlike the throughput graphs
for wafer test in Figure 23.13, the throughput curve for the final test in Figure 23.15
starts to saturate at large multi-site numbers. This is especially true for a small SoC
like p22810, for which, due to the multiple pick-ups of the handler, the index time
becomes very large compared to the manufacturing test time. The conclusion is that
multi-site testing in final test does pay off for smaller multi-site numbers and for final
test with strip handlers. Massive multi-site testing with a multiple pick-up handler
does not pay off in terms of test throughput.

23.7.3 Reusing the on-chip infrastructure for final test

Next, we consider the effect of designing and optimising the on-chip test infrastructure
for maximum wafer test throughput on the test throughput for final test.

For SoC p22810, wafer testing reaches maximal throughput for nopt = 32 multi-
sites, with a manufacturing test time tm = 0.204 s. Due to the fact that all K = 173
pins need to be contacted, we can only do quad-site testing in final test, whereas
we reuse the same narrow SoC–ATE test interface that allows for 32 multi-sites in
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Figure 23.16 For both wafer and final test, variation in test throughput with number
of sites at wafer level for (a) SoC p22810 and (b) SoC PNX8550

wafer test. Consequently, the test time in final test is also tm = 0.204 s, which
yields a final test throughput Dth = 23 512 SoCs/h. If the test infrastructure would
have been optimised for four sites, the manufacturing test time would have been
tm = 0.040 s and the corresponding final test throughput would have been Dth =
31 934 SoCs/h. Hence, our (well-motivated) choice to reuse the on-chip wafer test
infrastructure for final test has a negative impact of 26 per cent on the final test
throughput.

A similar story is true for PNX8550. The optimal final test throughput
Dth = 2259 SoCs/h, for an SoC–ATE interface optimised for single-site testing.
The actual final test throughput Dth = 1921 SoCs/h, as the SoC–ATE interface
is optimised for octal-site testing. This amounts to a negative impact of 15 per cent.
Figure 23.16 shows the test throughput during both wafer test and final test as a
function of the number of wafer test multi-sites for which the SoC–ATE interface
is designed. Despite the negative impact of reusing the wafer test interface during
final test, the figure shows that the summed benefit of multi-site testing is clearly a
positive one.

In the remaining part of experimental results, we focus on wafer consider SoC
PNX8550 only.

23.7.4 Economical ATE extensions

Next, we examine what happens to the wafer test throughput Dth of PNX8550 if we
extend its ‘basic’ ATE (with N = 512 and V = 7M) with either more channels or
deeper vector memory.

Figure 23.17(a) shows the increase in test throughputDth for an increasing number
of ATE channels N . The figure illustrates that the test throughput increases linearly
with the number of ATE channels; by doubling the number of ATE channels, the test
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throughput can be doubled. This is due to the fact that the number of sites increases
linearly with the number of channels, while the test time remains constant.

Figure 23.17(b) shows the increase in test throughput Dth for increasing deeper
vector memory per ATE channelV . The figure shows that the test throughput does not
increase linearly with the vector memory depth. This is due to the fact that an increase
in test vector memory depth not only leads to an increase in multi-site, but also to
an increase in test application time. Therefore, doubling the test vector memory does
‘not’ result in a double throughput.

Based on the results shown above, it seems that increasing the number of ATE
channels is more attractive than increasing the vector memory depth, in order to get
the test throughput up. However, the cost of increasing the vector memory depth is
small compared to the cost of increasing the number of ATE channels. According to
standard market prices, buying 16 additional ATE channels with 7M memory depth
would cost roughly $8000; upgrading test vector memory for 16 channels from 7M
to 14M would cost only $1500. Therefore, if we double the test vector memory for
all 512 channels, it will cost around (512/16) × $1500 = $48 000. For this money,
the increase in test throughput is 27 per cent, as shown in Figure 23.18. For the same
amount of money, we can buy about 96 channels. This will result in an 18 per cent
increase in test throughput, as shown in Figure 23.18. Therefore, for the same cost,
increasing the test vector memory depth is more economical than increasing the
number of ATE channels; if only and if we are allowed to change the DfT.

23.7.5 Contact yield and re-test rate

Next, we analyse the impact of the contact yield on the unique test throughput during
wafer test. Figure 23.19 shows, for PNX8550, the unique test throughput Du

th as a
function of the vector memory depth V for varying contact yield pc. As expected,
a decreasing contact yield results in more re-testing, and hence a lower unique test
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throughput. However, the figure shows that the negative impact of the contact yield
on Du

th is worsened for small vector memory depths. This can be explained as fol-
lows. With small vector memory depths, the E-RPCT interface needs to be wider, in
order to fit the test data volume into the ATE vector memories. Consequently, the
number of pins k to be contacted grows. Contacting more pins increases the chances
for contact failure. Hence the re-test rate increases and the unique test throughput
decreases. Therefore, it can be concluded that deep vector memories are useful,
not only to increase the regular test throughput, but also to increase the unique test
throughput.
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23.7.6 Abort-on-fail

Finally, we demonstrate the influence of multi-site testing on the effectiveness of
applying abort-on-fail. For single-site testing, abort-on-fail reduces the average
manufacturing test time tm; the actual reduction depends on the SoC yield pm. In
Figure 23.20, we show the average manufacturing test time tm as a function of the
number of multi-sites n, for varying SoC yieldspm. The figure illustrates that increas-
ing multi-site testing quickly reduces the positive effect of applying abort-on-fail.
Even at a low yield of pm = 70 per cent (and under the overly optimistic assumption
that for failing devices tm = 0, see Equation (23.7)), the effectiveness of abort-on-fail
becomes invisible for n ≥ 5. This is due to the fact that if five or more SoCs are tested
in parallel, the probability is quite low that all SoCs will fail their test.

23.8 Conclusions

To reduce test cost, multi-site testing is popularly used. In this chapter, we considered
multi-site testing for both wafer and final test, and modelled the test throughput
considering the effects of test time, index time, abort-on-fail and re-test after contact
fails. We showed that, for a given, fixed ATE, multi-site testing requires optimisation
of the on-chip test infrastructure and it should be test throughput and ‘not’ the amount
of sites that should be maximised.

We presented an algorithm that for a given SoC with a fixed target ATE and
probe station, designs and optimises an on-chip test infrastructure, DfT, that allows
for maximal-throughput wafer-level multi-site testing. In case the given SoC uses a
flattened top-level test, our algorithm determines the design of an E-RPCT wrapper. In
case the given SoC uses a modular test approach, in addition to the E-RPCT wrapper,
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the algorithm determines the on-chip test architecture consisting of TAMs and core
wrappers. Subsequently, we presented a second algorithm, that for a given fixed ATE,
SoC handler, and for the SoC with DfT optimised for wafer testing, determines the
multi-site number for maximal throughput at final test.

We presented experimental results for the ‘ITC’02 SoC Test Benchmarks’ as well
as for the complex Philips SoC PNX8550. The proposed algorithms outperform other
published approaches and often achieve the maximum multi-site possible. Experi-
mental results also show that index time has a large impact on the test throughput
for small SoCs, while the design and optimisation of test infrastructure for optimal
wafer-level multi-site testing has a negative impact of up to 26 per cent on the final test
throughput. Furthermore, experimental results show that to increase the test through-
put, increasing the vector memory depth can be more economical than increasing
the number of ATE channels, if the DfT can be optimised. Finally, we conclude that
benefits of the abort-on-fail technique are rather limited when used in combination
with multi-site testing.
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Chapter 24

High-resolution flash time-to-digital conversion
and calibration for system-on-chip testing

Peter M. Levine and Gordon W. Roberts

24.1 Introduction

Temporal uncertainty in modern digital and mixed-signal complementary metal oxide
semiconductor (CMOS) integrated circuits (ICs) can have detrimental effects on
system-on-chip (SoC) performance. For example, fluctuations in global clock edge
placement in microprocessors can cause timing failures along the critical path. In
addition, uncertainty in the timing of sampling clock edges in analogue-to-digital
converters (ADCs) can reduce the signal-to-noise ratio of the converted signal [1].

Verification of the timing performance of very large scale integration (VLSI)
parts in a manufacturing environment is usually carried out using a production tester
like that shown in Figure 24.1. With this instrument, the device-under-test (DUT) is
attached to a device-interface board (DIB), which in turn sits on the test head. Pin
electronics present in the test head excite the DUT with analogue and digital signals
and capture its output. Additional hardware located in the tester mainframe supplies
power to the DUT, stores test vectors and processes the received output.

Production testers are capable of performing very accurate timing measurement
of signals received from the DUT. This is because the electronics in these instruments
are often constructed using technologies that have traditionally outperformed the
speed and noise performance of CMOS, such as silicon bipolar and gallium arsenide.
However, the massive integration and increased performance of CMOS components
in recent years due to technology scaling has introduced limitations in the effective-
ness of traditional production testing. For example, bandwidth limitations due to the
growing electrical distance between the DUT and test head electronics cause attenua-
tion and additional phase delay in high-speed signals. In addition, routing the outputs
from deeply buried IC components to the chip boundary for observation by the tester
is often impractical and can skew timing results.
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Figure 24.1 A modern mixed-signal VLSI production tester

To address these issues, various paradigms have been established over the years
to improve the methods used in evaluating IC timing performance. The first, set
forth in Reference 2, is represented in Figure 24.2(a) and involves integrating the
timing measurement electronics of a VLSI functional tester on a silicon IC. This
was intended to alleviate some of the issues surrounding functional testing, including
the rising cost of testers and the worsening electrical problems due to the increasing
distance between the tester electronics and DUT.

The second paradigm, proposed in Reference 3, is shown in Figure 24.2(b) and
involves placing a single high-resolution timing measurement ‘core’ directly on the
chip being tested. This effectively reduced the electrical distance between tester and
DUT even more, making high-frequency timing measurement a reality.

The latest paradigm, developed in Reference 4, sought to improve the testability
of integrated intellectual-property (IP) cores in an SoC environment. As is displayed
in Figure 24.2(c), each IP core has an associated test system. In addition, each of
these systems communicates with the outside world via a digital bus (not shown).
One of the main advantages that this test system has over external instrumentation is
improved accessibility to the buried IP cores. This is because many cores in an SoC
environment interface with each other, rather than the external pins of the IC.

Despite the advantages inherent in these test paradigms, elimination of external
testers altogether will not likely occur in the near future. This is mainly due to indus-
trial momentum and resistance to altering test procedures for high-volume production
parts [5]. However, it is expected that these techniques will be used to augment the
capabilities of pre-existing testers so that high-performance SoCs can still be validated
without a complete overhaul of the test infrastructure.

24.1.1 The need for high-resolution on-chip timing measurement

Timing uncertainty in ICs is most often expressed as jitter and skew. The synchronous
optical network (SONET) standard defines jitter as the ‘short term phase variation
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Figure 24.2 VLSI test paradigms. (a) Stand-alone tester IC, (b) integration of a
single tester on chip, (c) integration of numerous testers on chip in an
SoC environment

of the significant instants of a digital signal from their ideal positions in time’ [6]. In
this definition, ‘significant instants’ refer to edges while the system reference clock
can be used to define what the ‘ideal positions in time’ are [7]. Skew, on the other
hand, refers to spatial variations in the arrival time of a clock edge at one location in
an IC compared to another.

It has been demonstrated experimentally in Reference 8 that it is possible
to achieve reliable 10-GHz clock frequency operation in a standard 0.18-µm
CMOS technology. At such speeds, a peak-to-peak jitter of only 10 ps translates
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to a ten per cent uncertainty in clock edge placement. Although processors running at
these speeds have not yet been mass produced, this reality is not far off. As a result,
verification of the timing uncertainty in such a device will become an issue in the
not-so-distant future.

In keeping with the latest test paradigm discussed in the previous section, jitter
measurement devices must be integrated onto the same die as the DUT. Unfortunately,
the resolutions of on-chip jitter measurement devices in use today are too low to char-
acterise the timing performance required for circuits running at speeds near 10 GHz.
For example, the highest reported temporal resolution achieved experimentally from
an on-chip time measurement device in a 0.18-µm CMOS process was 19 ps [9].
To accurately characterise jitter and skew in the future, resolutions below 10 ps are
required.

While it is true that the resolution of many on-chip measurement systems
reported in the literature will increase with technology scaling (like that described
in Reference 10), this will undoubtedly come at the expense of greater power con-
sumption, area and complexity. To combat these trends, novel algorithms and circuit
architectures for on-chip timing measurement are required.

24.1.2 The importance of calibration

Calibration is an important procedure that every measurement instrument must
undergo before use. Calibration of timing measurement circuitry is normally carried
out by exciting the circuit with a series of known time intervals and then correlating the
output with the input each time. However, such a scheme becomes more difficult as
the desired resolution falls below 10 ps. This is because the accuracy of on-chip timing
generators (often implemented using delay- or phase-locked loops) is limited by the
jitter and mismatch of the circuitry itself. Conversely, off-chip pulse generators can
produce such time intervals accurately, but these may be too costly to implement in a
production-test environment. Furthermore, it may also be very expensive to upgrade
or replace existing production testers with new machines that have higher temporal
resolution specifications. As a result, novel methods are now required to calibrate
the high-resolution time measurement devices to ensure measurement accuracy. Up
to this point, only a small body of work has dealt with this issue [11,12].

24.1.3 Chapter organisation

This chapter is organised as follows. Section 24.2 presents a literature review of
electronic time measurement techniques and discusses their applicability to on-chip
testing. Section 24.3 describes the development of a high-resolution flash TDC that
exploits the temporal offsets present in flip-flops or arbiters for time quantisation.
Also, a novel calibration method for this measurement device, based on additive
temporal noise, is described and experimentally verified using a programmable-logic
device. Implementation details of a custom flash TDC, constructed in the Taiwan
Semiconductor Manufacturing Company (TSMC) 0.18-µm CMOS process, are pre-
sented in Section 24.4. In addition, experimental results from calibration of the
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converter, as well as jitter measurement using this device, are also included. The
chapter is concluded in Section 24.5.

24.2 Review of time measurement techniques

This section reviews the most popular circuit architectures for performing timing
measurement of electronic signals. These can be grouped into three broad categories:
homodyne mixing, signal amplitude sampling and time-domain analysis. Each will
be discussed and their suitability for SoC timing measurement elucidated.

24.2.1 Homodyne mixing

Homodyne mixing involves using an analogue multiplier, such as a Gilbert cell,
followed by a lowpass filter to convert the phase difference between two periodic
signals, equal in frequency, to a DC voltage [8] as shown in Figure 24.3. This system
is part of a broader class of circuits known as time-to-voltage converters (TVCs).

Given two sinusoids with amplitudeA, radial frequency ω, and phases φ1 and φ2,
respectively, the output T from the mixer in Figure 24.3 is

T = A2 cos(ωt + φ1) cos(ωt + φ2) (24.1)

= A2

2
(cos(φ1 − φ2)+ cos(2ωt + φ1 + φ2)) (24.2)

The cosine term at 2ω is removed by lowpass filtering, leaving only the DC term
which is proportional to the cosine of the phase difference multiplied by a constant.

The DC transfer characteristic of the filtered mixer output is shown in Figure 24.4.
At the location of maximum sensitivity, the multiplied signals are in quadrature.
The phase difference in seconds can then be determined by first using a calibra-
tion technique to find the slope of the graph around the quadrature region. With
this information, a measured DC level can be mapped to a corresponding time
difference.

f2

f1

2p/v < 2v0

0

2p/v

Mixer

A2cos(f1 – f2)/2
T

A

0

A

Figure 24.3 Schematic of the homodyne mixing technique
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Figure 24.4 Transfer characteristic of the filtered mixer output

Due to the ease of integration of Gilbert-cell mixers and passive filters, this
technique is amenable to on-chip time measurement. In addition, it has been used to
determine the jitter and skew in a high-frequency clock distribution network [8].

24.2.2 Signal amplitude sampling

Signal amplitude sampling involves sampling a signal at an appropriate rate and using
the time of occurrence and amplitude of each sample to obtain phase information about
the signal. The eye-diagram method and such frequency-domain techniques as phase
noise measurement fall into this category.

This method of time measurement can be implemented on chip by sampling
a signal well above the Nyquist rate using high-speed, high-resolution ADCs [13].
However this may be impractical as these devices tend to consume a large die area and
can be quite sensitive to process variation. Fortunately, recent research has shown that
undersampling techniques can be used to gain sufficient information about a signal
using circuits that are more area efficient and robust [14,15].

24.2.3 Time-domain analysis

Time-domain analysis uses a set of signal threshold crossings only to estimate timing
characteristics [13]. The most popular type of circuit for implementing this is the
TDC, which is similar to a TVC except that the output is quantised. TDCs can be
implemented in a number of different ways and these will be discussed next.

24.2.3.1 Single counter

Perhaps the simplest of the TDC architectures is that shown in Figure 24.5. In this
converter, the time interval �T between the rising edge of a start pulse and that of
a stop pulse is measured by a counter running on a high-frequency reference clock.
The AND gate ensures that the counter is enabled only when ‘Start’ and ‘Stop’ are
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Figure 24.6 Interpolator-based TDC

logically different. The resolution of this device is constrained by the speed of the
reference clock and can be no higher than a single clock period. Limitations in the
frequency and stability of on-chip clocks makes high-resolution SoC testing difficult
using this architecture.

24.2.3.2 Interpolation

The interpolator shown in Figure 24.6 operates by discharging the voltage on a pre-
charged capacitor C using the constant current source I [16,17]. The final voltage on
the capacitorVstop is proportional to the duration of the input pulse�T and is digitised
using an ADC. Switch S is used to charge up the capacitor between measurements.
This implementation has a wide dynamic range but requires a very-high-resolution
ADC to perform picosecond timing measurement. As a result, its integration in an
on-chip testing system is challenging.
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24.2.3.3 Pulse stretching

In this technique, two voltage ramps are used to ‘stretch’ the small time interval�T so
that a separate low-resolution time measurement device can easily digitise the interval
as shown in Figure 24.7 [18]. The charge and discharge rates of the capacitor C are
made different using two separate current sources. The ramp voltage is compared to
reference voltage Vref and the amount of time that the comparator output is high can
then be measured using, e.g. a simple counter.

24.2.3.4 Vernier oscillator

In the Vernier oscillator shown in Figure 24.8, two ring oscillators produce ple-
siochronous square waves (set by buffer delays τs and τf ) to quantise a time interval
[9]. The ‘Start’ and ‘Stop’ pulses enable the oscillators and the time interval is mea-
sured by the phase detector and counter. The latter devices are effectively triggered
when one oscillator ‘catches up’ to the other. Due to its small size and relatively high
temporal resolution, the Vernier oscillator is amenable for use in on-chip test systems.
In addition, the use of the oscillators reduces the matching requirements on the delay
buffers used to quantise a time interval. This feature is used to overcome the temporal
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Figure 24.9 MUTEX-based time amplifier

uncertainties caused by component variation in the delay lines of Vernier delay flash
TDCs, which will be described later.

One negative aspect of this architecture, however, is that it takes many cycles
to complete a single measurement (i.e. has a long dead-time). Compared to flash
converters that can make a measurement every cycle, the Vernier oscillator requires a
long test time. Such a feature can be cost-prohibitive in a production-test environment.

24.2.3.5 Time amplification

The principle of time amplification involves comparing the phase of two inputs and
then producing two outputs that differ in time by a multiple of the input phase dif-
ference. The first implementation of a time amplifier was proposed in Reference 19
and uses the mutual exclusion (MUTEX) circuit shown in Figure 24.9. Here, the
cross-coupled NAND gates form a bistable while the output transistors switch only
when the difference in voltage between nodes V1 and V2 reach a certain value [20].
The OR gate connected to the output is used to detect this switching action.

Time amplification is provided by the response time of the bistable when the
input time difference is small enough to cause the bistable to exhibit metastability.
The difference �V in voltages V1 and V2 in Figure 24.9 is approximately given by

�V ≈ θ ·�t · et/τ , (24.3)

where θ is the conversion factor from time to initial voltage at nodes V1 and V2, �t
is the time difference between the rising edges of the signal and reference and τ is the
device time constant. By measuring the time t between the moment that the inputs
switch to when the OR gate switches, �t can be found.

A second implementation of a time amplifier was proposed in Reference 21. This
device is displayed in Figure 24.10 and consists of two cross-coupled differential
pairs with passive RC loads attached as shown. Upon arrival of the rising edges of
φ1 and φ2, the amplifier bias current is steered around the differential pairs and into
the passive loads. This causes the voltage at the drains of transistors M1 and M2 to
be equal at a certain time and that at M3 and M4 to coincide a short time later. This



830 System-on-chip

RL

CL CL CLCL

M1

Itail Itail

M2 M3 M4

RL RL RL

f1 f2

Figure 24.10 Time amplifier constructed with two cross-coupled differential pairs

effectively produces a time interval proportional to the input time difference which
can then be detected by a voltage comparator.

Although both of these time amplifiers output an analogue voltage rather than a
digital code, they are meant to be used in conjunction with a relatively low-resolution
TDC, as was done in the pulse-stretching technique described previously. Such
systems may therefore be quite conducive for use in on-chip testing environments.

24.2.3.6 Flash conversion

Flash TDCs are analogous to flash ADCs for voltage amplitude encoding and operate
by comparing a signal edge to various reference edges, all displaced in time. The
elements which compare the input signal to the reference are usually flip-flops or
arbiters (note that an arbiter is a circuit that decides which of the two input signals
arrived first). For simplicity, flip-flops and arbiters will be referred to interchangeably
herein.
Delay chain flash converter: In the single delay chain flash TDC shown in
Figure 24.11, each buffer produces a delay equal to τ [22]. To ensure that τ is known
reasonably accurately, the delay chain is often implemented using voltage-controlled
buffers stabilised by a delay-locked loop (DLL) [24].

Suppose it is desired to determine the time difference�T between the rising edges
of pulses Pstart and Pstop using the 8-level delay chain converter in Figure 24.12. Each
flip-flop compares the displacement in time of the delayed Pstart to that of Pstop. The
thermometer-encoded output indicates the value of �T , assuming the flip-flops are
given sufficient time to resolve. The drawback to this implementation is that the
temporal resolution can be no higher than the delay through a single gate in the
semiconductor technology used.
Vernier delay flash converter: To achieve sub-gate temporal resolution, the flash
converter can be constructed with a Vernier delay line as shown in Figure 24.13 [24].
This architecture achieves a resolution of τ1 − τ2, where τ1 > τ2.
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Figure 24.13 Vernier delay flash converter

These converters are well suited for use in on-chip timing measurement sys-
tems because they are capable of performing a measurement on every clock cycle
and can be operated at relatively high speeds. In addition, they can be easily con-
structed in any standard CMOS process because they are composed solely of digital
components.

However, to obtain a wide dynamic range from a flash TDC, many buffer stages
must be built. As a result, these converters tend to consume a very large chip area.1

Also, the numerous buffers can consume a great deal of power.
The Vernier delay flash converter constructed in Reference 23 was experimen-

tally verified to have a resolution of 30 ps. This particular implementation made
use of a DLL to stabilise one of the delay lines. Although scaling such a design to
a higher-performance CMOS technology could increase the resolution somewhat,
at some point, jitter in the DLL controlling the delay line will cause τ to deviate
substantially from its ideal value. This, in turn, severely limits the accuracy of the
converter.

In addition, buffer matching is extremely important in achieving good accuracy
from the measurement device. This, however, becomes quite difficult as the length
of the delay chain increases.

One way to overcome the above issues, and to obtain very high resolution, is to
remove the delay buffers completely and use only the temporal offsets on the flip-
flops themselves for time quantisation. This type of flash TDC has been shown to
have resolutions which vary from a few picoseconds to tens of picoseconds [25]. The
development of such a converter is described in the next section.

1 For example, the flash TDC built in Reference 23 occupied a total area of 5.5 mm2 in a 0.35-µm
CMOS technology.
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24.3 Development and calibration of a high-resolution flash TDC

24.3.1 Sampling offset TDC

A flash converter that relies solely on flip-flop transistor mismatch can be used to
obtain fine time resolution without separate delay buffers. This type of converter is
known as a ‘sampling offset’ TDC (SOTDC) [26] and Figure 24.14 shows how such
a converter is related to the basic Vernier delay TDC. As the diagram shows, the
Vernier delay flash converter is first represented as a single delay chain in which each
buffer has delay �τ = τ1 − τ2. Note that all flip-flops are assumed to be ideal (i.e.
they possess no transistor mismatch). An alternative form of the delay chain flash, in
which each buffer has a cumulative delay, can then be drawn. Finally, the latter model
can be replaced by the SOTDC, in which each ideal flip-flop has been substituted
for one with transistor mismatch. Note that the offsets of the non-ideal flip-flops will
be random, and not monotonic or multiples of a fundamental offset as Figure 24.14
might seem to suggest.

Simulations and experiments conducted in References 25 and 20 confirm that
mismatches due to process variation can produce time offsets from 30 ps down to
2 ps, depending on the flip-flop architecture and semiconductor technology used. Of
course, calibration is required to determine these offsets before the flip-flops can be
used for time measurement. Common calibration procedures are described next.

24.3.2 Traditional TDC calibration

The goal of calibration is to determine the time offset tos of each flip-flop or arbiter
in the TDC. For purposes of analysis, a flip-flop model is defined first.

24.3.2.1 Flip-flop model

An ideal rising-edge-triggered flip-flop has tos = 0 and is free from noise. A non-
ideal flip-flop can be modelled as an ideal flip-flop with tos �= 0 as well as a source
of thermal noise as shown in Figure 24.15(a) [27]. The noise voltage Vnoise follows
a Gaussian distribution with zero mean and standard deviation σ .

An alternative flip-flop model, which is more appropriate in the context of time
measurement, is shown in Figure 24.15(b). Here, the ideal flip-flop takes a time
difference �Teff as input and produces a ‘1’ if �Teff > 0 and a ‘0’ otherwise. The
input �T is equal to tclock − tdata, where tclock and tdata are the times of the rising
edges of φclock and φdata in Figure 24.15(a), respectively. In addition, Vnoise in the
original model is expressed as the temporal noise tnoise. Assuming a linear relationship
between these two variables, tnoise follows a Gaussian distribution with zero mean
and standard deviation σFF.

24.3.2.2 Indirect calibration

An indirect calibration technique, involving the use of uncorrelated signals to find
the relative offsets of the flip-flops in an SOTDC, was proposed in Reference 25. An
implementation of this is displayed in Figure 24.16(a), where φ1 and φ2 are square
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Figure 24.14 Relationship of sampling offset flash TDC to basic Vernier delay TDC.
(1) Vernier delay flash converter, (2) single delay chain flash con-
verter, (3) alternative representation of delay chain flash converter,
(4) sampling offset flash converter

waves with constant frequencies f1 and f2. These are input to two flip-flops having
offsets tos1 and tos2 . The relative flip-flop offset is given by �12 = tos1 − tos2 and it
is assumed that �12 � tnoise.

Figure 24.16(b) shows how �12 can be found empirically. Assuming that f2 is
only slightly greater than f1, φ1 will appear to ‘move past’ φ2 in time. This ensures
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that the rising edge of φ1 is uniformly distributed over the interval defined by the
period of φ2. Therefore, the probability P12 that the circled rising edge of φ1 in
Figure 24.16(b) will land in the shaded interval �12 is given by

P12 = �12

1/f2
(24.4)

When this occurs, flip-flop output Q1 in Figure 24.16(a) will be ‘0’ while Q2 will
be ‘1’. Furthermore, measurements with the circled edge of φ1 residing in �12 will
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Figure 24.17 Transfer curve of a TDC determined using an indirect calibration

occur with a frequency fp of

fp = �12

1/f2
f1 = �12f1f2 (24.5)

Therefore, the periodic output from the AND gate in Figure 24.16(a) will have a
frequency given by Equation (24.5). This equation can then be solved for �12 to
obtain the relative time offsets of the flip-flops.

Knowledge of the relative flip-flop offsets can be used to obtain a TDC transfer
function like that shown for a hypothetical five-level converter in Figure 24.17. In this
curve, the flip-flop offsets are all expressed relative to the same flip-flop. However,
the time from the absolute reference [which is φ2 in Figure 24.16(a)] to the first offset
cannot be surmised from the indirect calibration. Consequently, if it is desired to
measure jitter having a Gaussian distribution using an SOTDC calibrated this way,
only the standard deviation (or equivalently, the rms value) of the jitter can be found.
Furthermore, no information about the mean value of the jitter (i.e. how much the
jittery clock deviates, on average, from the reference signal) can be surmised.

However, to acquire both the mean and standard deviation of the timing uncer-
tainty, the absolute values of the offsets must be found. To determine the absolute
offsets using the indirect calibration, some information about the offset statistics must
be known. Although it could be assumed that the mean offset of a large number of
flip-flops constructed on the same die will be zero, this assumption is invalid unless
care is taken in the layout to ensure that all flip-flops experience similar process vari-
ation. Since this may be difficult to achieve in practice for a large number of devices,
the direct calibration technique described next can be used instead.

24.3.2.3 Direct calibration

In a direct calibration, tos of a single flip-flop is found by setting �T to M different
values in the range (−∞, +∞) and recording the flip-flop output each time as shown
in Figure 24.18. This process is then repeated N times.
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For simplicity, assume that a flip-flop under calibration has tos = 0. The data
collected from each of the N trials may appear as in Figure 24.19. Note that the
presence of thermal noise causes the flip-flop output to be different on each trial. By
summing the number of times, n, the output from the flip-flop is ‘1’ for each�T , the
histogram in Figure 24.20 can be plotted. Next, the histogram can be expressed as a
cumulative distribution function (cdf ) by dividing each n byN and then curve fitting,
as shown in Figure 24.21(a). In the cdf, the probability P of the event {�τ ≤ �T }
is given by

P(�τ ≤ �T ) = �

[
�T − (−tos)

σFF

]
(24.6)
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where �τ is a random time and �(·) is the standard Gaussian cdf. Inspection of the
cdf reveals that P(�τ ≤ �T ) = 0.5 for a flip-flop having tos = 0.

Now consider the calibration of a flip-flop for which tos �= 0. Figure 24.21(b)
shows the cdf of such a device and it is apparent that P(�τ ≤ 0) �= 0.5.

It should be noted that the histogram cdf obtained by calibrating a flip-flop violates
the theoretical definition of the cdf, in whichP(�τ ≤ �T ) = 0 only as�T → −∞,
and where P(�τ ≤ �T ) = 1 only as �T → +∞. These deviations occur because
flip-flop inputs that are far enough apart in time (i.e. much greater than ±3σFF) will
cause a constant flip-flop output for all N trials. This violation, however, can be
ignored for purposes of calibration.

The main drawback to this calibration method is that to accurately produce the
cdf in Figure 24.21(b) and obtain tos,�T may have to be set to values of the order of a
few picoseconds. Such accuracy is difficult to achieve with on-chip signal generators.
Furthermore, use of high-resolution off-chip generators may be too impractical or
expensive. Therefore, an improved direct calibration method is described next.

24.3.3 Improved TDC calibration based on added noise

Performing a direct calibration on a flip-flop with a tos of a few picoseconds and a
σFF of a few hundred femtoseconds is difficult because �T cannot be made small
enough to accurately produce a cdf curve. It would be helpful if σFF was much
larger, say in the order of tens, or even hundreds, of picoseconds, so that points on
the cdf could be measured accurately. With this data, tos could be found by curve
fitting.

Fortunately, it is possible to increaseσFF by adding a temporal noise to that already
present on the flip-flop inputs. A model for this is shown in Figure 24.22, where
tnoiseadded is a noise source with zero mean and standard deviation σadded and tnoiseFF

is the thermal noise of the flip-flop. Assuming that the summed random variables are
independent, the total noise on the flip-flop will have a mean of zero and a standard
deviation that is the square root of the sum of squares of σadded and σFF. Furthermore,
if σadded � σFF, the total noise standard deviation will be very close to σadded.
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The sum of the time �T and the noise tnoiseadded is simply a set of times which
follow a Gaussian distribution with mean�T and standard deviation σadded. A picto-
rial representation of this is displayed in Figure 24.23. Calibration using these times
is performed just like a traditional direct calibration, however the need to set �T to
very small values is eliminated. To see why, consider the upper graph in Figure 24.24
where each set of input times is expressed as a probability density function (pdf ).
As �T is increased in discrete steps from −∞ to +∞, a certain number of input
times cross the offset threshold of the flip-flop, forcing the output to ‘1’. If N points
are collected from each set of distribution, a histogram can be produced as before.
Fitting a Gaussian cdf to the data, the standard deviation of the curve will equal
σadded, while the mean will correspond to −tos, as shown in the lower graph in
Figure 24.24.

24.3.3.1 Simulation results

Simulations were carried out to demonstrate the viability of the proposed calibration
technique. The flip-flop model in Figure 24.22 was built using MATLAB with σFF =
0.35 ps (this was the measured value reported in Reference 25). The value of σadded

was set to 250 ps while�T was moved from −400 to +400 ps in steps of 40 ps. Such
time resolutions can be handled with good accuracy by modern pulse generators or
on-chip DLLs. Time tos was set to various values in the range (−40 ps,+40 ps) and
N = 100 000.
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Figure 24.25 shows the result from a single flip-flop calibration. A χ2 fitting
algorithm [28] was used and it is clear that the fitted cdf and the actual flip-flop curve
described by Reference 6 nearly coincide at the value of �T for which P = 0.5.

Table 24.1 compares the actual tos of a flip-flop to that determined through cal-
ibration. The results for each calibrated tos are within acceptable percentage error
levels. Note that the fitted σ values (not shown) were very close to 250 ps in all cases.
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Table 24.1 Comparison of calibrated to actual
offset from simulation

Actual offset (ps) Calibrated offset (ps) Error (%)

−35.0 −34.6 −1.1
−2.2 −2.3 4.5
5.0 5.3 6.0
17.4 17.1 −1.7

Table 24.2 Comparison of mean of
absolute value of percent-
age errors from calibration
of a flip-flop for different
values of N

N Error (%) (mean of 30 runs)

106 2.83
105 12.2
104 34.3
103 85.2

24.3.3.2 Calibration time

Calibration of the SOTDC using the method based on added noise depends on the
number of values of �T used, denoted by M , the number of trials N run for each
of these values and the rate f at which the trials are executed. Since all levels of the
SOTDC can be characterised simultaneously for each�T , the calibration time tcal is
given by

tcal = MN/f (24.7)

As an example, a calibration with M = 21, N = 105 and f = 25 MHz, takes
84.0 ms. Of course, additional time is needed to perform the curve-fitting procedure.

Since the calibration technique is based on a statistical method, decreasing the test
time by reducingN will also reduce the accuracy in finding tos. This fact is revealed in
Table 24.2, in which the mean of the absolute value of the percentage errors from the
simulated calibration of a flip-flop having tos = 2.0 ps is determined for N varying
from 106 down to 103.

Of course, test time can also be reduced by decreasingM . The minimum value of
M required to accurately fit a Gaussian curve and find tos is 2. In addition, practically
speaking, these two points must occur within a ±3σadded range about the mean. This
is because the extremities of the Gaussian cdf will equal exactly 0 or 1 as the absolute
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Figure 24.26 Single-level SOTDC synthesised on a CPLD

value of �T becomes large. Therefore, having points outside the ±3σadded region
will produce a poor fit.

24.3.3.3 Preliminary experimental results

To gain preliminary experimental evidence in support of the proposed calibration
technique, one level of an SOTDC was synthesised using an Altera EPM7128SLC84-
7 complex programmable-logic device (CPLD). As shown in the schematic circuit in
Figure 24.26, the left-most flip-flop performs the timing measurement by comparing
the highly accurate reference φclock with the jittery signal φdata. The two additional
flip-flops attached in series to the main flip-flop are used to reduce the probability
that a metastable value is latched by the counter. The 20-bit counter is enabled when
the output from the third flip-flop is high.

To perform the direct calibration discussed in Section 24.3.2.3, the apparatus
shown in Figure 24.27(a) was constructed. The CPLD containing the synthesised
TDC resided on a multi-layer Altera UP1 development board. Bayonet nut coupling
(BNC) connectors and 50-� terminating resistors were soldered onto the expansion
slots of the board so that it could be interfaced with an Agilent 81334A dual-channel
pulse/pattern generator. The latter device was used to produce two calibration clocks
and highly control their phase relationship in order to generate the necessary �T . It
should also be noted that the generator has a delay resolution of 1 ps, a delay accuracy
of ±20 ps and a typical total jitter of 2 ps rms [29] (although the latter specification
was experimentally verified to be somewhat lower).

Calibration involving added noise was performed using the experimental setup in
Figure 24.27(b). This is similar to that in (a), however an Agilent 33120A function
generator was connected to the delay control input of the pulse generator. This allowed
the phase of the clock signal to be varied according to the amplitude of a white
Gaussian noise signal created by the function generator.

Under both calibration techniques, the clock and data frequencies were set to
20 MHz. The number of cycles considered for each value of�T wasN = 1 048 575.
In the direct calibration technique, �T was adjusted in 1-ps increments in order to
find the flip-flop offset. In the technique based on added noise, �T was adjusted
in increments of 40 ps. Finally, in the proposed technique, σadded was found to be
around 250 ps according to an external oscilloscope.
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Figure 24.28 Experimental results from calibration of a single-level SOTDC
synthesised on a CPLD

Results from the calibration techniques are shown in Figure 24.28. A tos of −81 ps
was found using the basic direct calibration while an offset of −71 ps was determined
from the technique based on added noise. This results in an error of −12.3 per cent.
The larger error compared to the simulation results is likely due to non-linearities in
the delay control circuitry of the pulse generator. Such non-linearities can cause the
variation in �T to not be perfectly Gaussian, which in turn can produce a bias error
in the results. The fitted value of σadded was 264 ps, which is within the expected
range. In addition, the fitted value of σFF was approximately 0.75 ps.
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Figure 24.29 Calibrated offsets from a 32-level SOTDC synthesised on an FPGA

Figure 24.28 also clearly demonstrates just how high the resolution of the pulse
generator needs to be in order to determine tos using the traditional direct calibration.
Since at least two points are required within a ±3σFF range about the mean on the
Gaussian noise curve of the flip-flop, the generator used in the above experiment had
to possess a resolution of no less than 4.5 ps.
Offset spread in a programmable-logic device. To gain some insight into how the
offsets of a SOTDC implemented in a PLD are distributed, 32 levels of the SOTDC
shown in Figure 24.26 were synthesised on the Altera EPF10K20RC240-4 field-
programmable gate array (FPGA). These were calibrated using the technique based
on added noise and Figure 24.29 shows the resulting offsets sorted from most negative
to most positive.

As can be seen from the figure, the offsets are distributed over a range of about
−1.8 to +1.2 ns. The minimum offset achieved is approximately +700 ps. These
rather large offsets are mainly due to routing delays from cell placement within
the FPGA. Although modern FPGA software tools allow the designer to have some
control over the location of cells within the device, this is nowhere near the control
that can be had from a custom silicon implementation. Such an implementation will
be described in the next section.

24.4 Custom IC implementation of a sampling offset TDC

To obtain better timing resolution than can be achieved using a PLD, a custom
SOTDC was designed and fabricated in a standard TSMC 0.18-µm CMOS pro-
cess. This chapter provides implementation details of the custom IC and includes
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Figure 24.30 Single level of custom flash SOTDC

experimental results from calibration of this device. In addition, results from Gaussian
jitter measurement are included.

24.4.1 Single level of the custom IC

Each level of the SOTDC was built as shown in Figure 24.30. The arbiter in the figure
compares the phase of the highly stable reference clock φref to that of the signal under
test φdata. Since the output from the arbiter is not held constant throughout the entire
φref cycle, a flip-flop is required to latch and hold the resulting arbiter decision. Clock
φFF, which must be delayed in relation to φref in order to give the arbiter sufficient
time to settle, is used to clock the flip-flops. Note that a serial chain of three flip-
flops has been placed after the arbiter in order to reduce the probability of metastable
failure.

The output from the flip-flops is used to enable the 20-bit counter. A multiplexer
has been placed between the last flip-flop of the serial chain and counter so that
the source of the enable signal can be toggled. Signal Ext_LFSR_Enable is driven
externally and is used to control the counter when its contents are being shifted out
during calibration and measurement modes. The counter is clocked by signal φLFSR,
which is in phase with φFF. These two clocks were physically separated on the IC
so that greater control of the circuit was possible. More detailed descriptions of the
arbiter and counter are described next.

24.4.1.1 Arbiter design

The arbiter displayed in Figure 24.31 [25] is used to compare the rising edge of
the highly accurate reference signal φref to that of φdata. If φdata arrives before φref ,
positive feedback causes the output Q to go to ‘1’; otherwise it goes to ‘0’.

Dimensions of the arbiter transistors are shown in Table 24.3. All transistors were
designed to have a length of 0.18 µm so that circuit speed was maximised. In addition,
because transistor mismatches (and therefore temporal offsets) are exacerbated when
smaller devices are used, the widths of the input transistors M1 and M2 were kept
relatively small.

This particular arbiter architecture was chosen for the application at hand because
of its inherent symmetry and simple structure. Other arbiter architectures used in
single-ended time measurement systems may require, e.g. both φdata and its comple-
ment to be present [10,22]. Since an extra inverter in the signal path is required for
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Figure 24.31 Arbiter used in custom SOTDC

Table 24.3 Arbiter transistor sizes

Transistor Width (µm)

M1/M2 1.45
M3/M4 1.45
M5/M6 0.90

this, instantaneous delay variations in the inverter due to power supply fluctuations
could skew the phases of this signal, leading to erroneous measurements even after
calibration. In addition, the added inverter may cause the offsets to favour one of the
inputs more than the other on average, instead of being distributed evenly around
zero offset (assuming that this property is desired).
Effects of process variation: To gain some insight into how process variation affects
the arbiter offset, the schematic arbiter was simulated as the width and length of
transistor M1 in Figure 24.31 were varied compared to its nominal values shown in
Table 24.3. Table 24.4 displays the offset of the arbiter as the width of M1 is increased
relative to M2. Note that these simulations were run with the data input connected to
φ1 and the reference connected to φ2.

As the width of M1 becomes larger, relative to M2, Table 24.4 shows that the
φ1 input is favoured. This is expected, as a larger width causes M1 to have a higher
current drive than M2 for the same input voltage level.

Table 24.5 shows the simulated arbiter offset as the length of M1 is varied. The
offset now favours φ2 because the increased length of M1 reduces the current drive
of this transistor.
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Table 24.4 Simulated arbiter offset as the width of M1 is varied

Width of M1 (µm) Width of M2 (µm) % Variation tos (ps)

1.49 1.45 2.5 +0.6
1.52 1.45 5 +1.1
1.60 1.45 10 +2.1
1.74 1.45 20 +3.7

Table 24.5 Simulated arbiter offset as the length of M1 is varied

Length of M1 (µm) Length of M2 (µm) % Variation tos (ps)

0.1845 0.1800 2.5 −0.5
0.1890 0.1800 5 −1.1
0.1980 0.1800 10 −2.1
0.2160 0.1800 20 −4.3

Although informative, the above simulations cannot fully predict the behaviour
of the arbiter under process variation. Obviously, size aberrations of the other arbiter
transistors also affect the offset. Therefore, a more extensive Monte Carlo analysis
would have to be done to determine the offset contributed from these transistors.
In addition, effects on transistor sizing due to such process phenomena as lateral
diffusion and overetching [30] can only be fully characterised after a large number
of devices have been manufactured and tested.
Arbiter layout: The arbiter was laid out as shown in Figure 24.32. Attempts were
made to make the arbiter as symmetric as possible so that the offsets would be dis-
tributed around zero. This was done so that phase variation on both sides of φref

could be detected by the arbiter. However, guaranteeing such symmetry was not
always possible due to routing constraints. The total area consumed by the arbiter is
approximately 250 µm2.

Because the arbiter layout is not perfectly symmetric about its horizontal axis,
some offset will be present due to differences in transistor parasitics. To determine
the extent of this offset, the arbiter layout was simulated with extracted capacitive
parasitics. Figure 24.33 shows the output from the arbiter as �T is swept from 0 to
+1 ps in steps of 0.1 ps. Inspection of the figure reveals that the offset is located
somewhere between −0.2 and −0.3 ps. Therefore, the intrinsic offset due to layout
asymmetries is not substantial.

24.4.1.2 Counter design

The 20-bit counter shown in Figure 24.30 is implemented as a linear feedback shift
register (LFSR) [31]. To achieve maximal length (i.e. 220 − 1 distinct combination
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of 20 bits in this case) using only two feedback taps, the primitive polynomial x19 +
x16 + 1 was implemented. This results in the architecture shown in Figure 24.34, in
which the output from the 20th and 17th flip-flops are input to the XOR gate in the
feedback path.

The multiplexer shown in the feedback path of the LFSR is used to select the
source of the feedback signal. During regular operation, this signal comes from the
XOR gate. However, when the data must be serially read out from the counter to
analyse the measurements, the feedback signal originates from the Count_Out in the
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Figure 24.35 A 64-level SOTDC implemented in a TSMC 0.18-µm CMOS process

previous level of the SOTDC. This allows all the counters in the SOTDC to be daisy-
chained together, forming a serial scan chain which can be read out via a single pin
on the IC.

An LFSR was implemented instead of a regular ripple-carry counter because the
former employs fewer logic gates and has a simpler routing complexity. In addition,
the 20-bit LFSR can be operated at a higher speed than a ripple-carry counter because
its critical path consists of only a single XOR gate (neglecting the presence of the
feedback multiplexer). The drawback to the LFSR implementation is that the counter
output must be decoded using a lookup table containing all LFSR states. Fortunately,
for the purposes of production testing, this table can exist on an external computer.

24.4.1.3 Chip layout

The fabricated layout of the custom SOTDC chip is displayed in Figure 24.35. The
IC contains two identical sections, each consisting of 32 converter levels. These
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are distinguished by the dotted outlines in the figure. Since the SOTDC was built
using relatively large fully static flip-flops and combinational logic gates, each level
occupies an area of approximately 0.024 mm2. However, in a separate layout of the
SOTDC composed of smaller proprietary standard-cell flip-flops (not shown), the
area was reduced to only 0.0032 mm2.

Because the arbiters are more sensitive to supply fluctuations than the static CMOS
logic gates used in the latching flip-flops and counters, supply lines powering the
arbiters were physically separated from those driving the purely digital circuitry. In
addition, to further ensure that current spikes and large voltage transients due to
CMOS circuit switching did not affect the arbiters, the latter devices were referenced
to ‘analogue’ ground while the counters were connected to a separate ‘digital’ ground.
Finally, guard rings were placed around the arbiters on the IC to reduce interference
through the substrate caused by the switching digital counters.

24.4.2 Calibration of the custom IC

The custom IC was mounted on a two-layer printed-circuit board (PCB) and was
calibrated using a test apparatus similar to that shown in Figure 24.27. A Teradyne
A567 mixed-signal production tester was used to assert digital control signals and
store output from the IC.

For the calibration based on added noise,�T was increased from −100 to +100 ps
in steps of 20 ps. This was done by controlling the phase difference between two clocks
running at 25 MHz. The standard deviation of added noise was approximately 29.8 ps
(as measured using an external oscilloscope) and N = 105. Both the step size of�T
and σFF were reduced compared to the test setup in Section 24.3.3.3 because the linear
range of the delay control circuitry in the current apparatus was found to be smaller.

Figure 24.36 shows the calibration results for one level of the SOTDC. The tra-
ditional calibration, in which �T was incremented in steps of 5 ps, gives a tos of
9.78 ps while the proposed method produces a tos of 9.80 ps. Best-fit σ using the for-
mer method is 9.28 ps and that for the latter is 30.38 ps. Note that the larger σ present
in the traditional calibration in the current test setup, compared to the CPLD results,
is due to the presence of noise and interference on the PCB. These should be signifi-
cantly reduced when the IC is tested on a multi-layer board (as in Section 24.3.3.3),
in which the signal, supply and ground planes are isolated.

Figure 24.37 displays the calibrated offsets for 32 levels in one section of the
custom IC. Results from both calibration methods are included and these are ordered
from the smallest to the largest. From the technique based on added noise, the offsets
are distributed from about +3 to +16 ps, giving a dynamic range of 13 ps.

The percentage error between each offset, calibrated in the traditional way and
using the proposed technique, is shown in Figure 24.38. The error on only two offsets
exceeds 30 per cent and the average of the absolute value of the percentage errors is
14 per cent. Such an error is reasonable considering the fact that direct measurements
using a source without picosecond resolution would produce much higher errors.

It would have been desirable to have the arbiter offsets distributed around zero.
This is so that deviations in the edge placement of φdata on both sides of the φref edge
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could be detected by the SOTDC. Unfortunately, asymmetries in the original arbiter
layout, produced while designing the IC, likely caused all the offsets to favour the
same input.

24.4.3 Jitter measurement using the custom IC

The custom SOTDC was used to measure Gaussian jitter. Jitter was produced
by varying the phase difference between two 25-MHz clocks according to a
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Gaussian distribution having a mean of 9.4 ps and a peak-to-peak value of
79.2 ps. These measurements were verified by first connecting the clock genera-
tor directly to a LeCroy SDA 6000 serial data analyser having a jitter noise floor of
1 ps rms [32].

The rms value of the jitter measured by the analyser was 9.8 ps, however, as
discussed in Section 24.4.2, noise and interference on the PCB adds a jitter component
to this. Assuming that this contribution has a mean of zero and adds directly to, and
is uncorrelated with, the jitter produced by the pulse generator, the jitter under test
has an actual σ of

√
9.82 + 9.282 = 13.5 ps.

Figure 24.39 shows the jitter histogram determined using the custom SOTDC.
The measured mean of 105 samples was 11.0 ps, while the rms value was 14.5 ps.
These values are in agreement with those measured by the serial data analyser.

Accurate measurement of the peak-to-peak jitter was not possible because the
dynamic range of the SOTDC was limited to only 13 ps. This is the main drawback
of the SOTDC architecture in its current form.

24.4.3.1 Test time

Test time for jitter measurement is equal to N/f . Therefore, the measurement car-
ried out in Section 24.4.3 took only 4.0 ms. This short test time is characteristic of
flash TDCs.

24.4.4 Performance limitations

Noise coupled in from the PCB ground planes affects the accuracy of the SOTDC. This
is because an increase in such noise raises the value of σFF of each arbiter. For arbiters
that have small differences in tos, the Gaussian curves describing their switching
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characteristics might start to overlap, causing the converter to output an incorrect
code for a particular value of �T . Fortunately, averaging over many cycles of �T
can help reduce the error caused by the added noise. This shows the fundamental
trade-off between accuracy and test time inherent in the SOTDC.

The accuracy of the SOTDC is also affected by power supply fluctuations. When
these occur, variations in current drive in the arbiter transistors can cause the effective
arbiter offset to shift slightly from its nominal value. This is why supply decoupling
and the use of regulated power supplies is important when calibrating and using the
SOTDC.

Finally, the ability of the SOTDC to measure jitter accurately is also limited
by the stability of the reference clock. A clock displaying a high degree of phase
variation will undoubtedly introduce errors in the measurement of the signal under
test. The availability of a highly controlled reference clock is therefore a fundamental
constraint when using the SOTDC.

24.5 Conclusions

On-chip measurement of electrical phenomena using custom IC test cores is an attrac-
tive method for overcoming the bandwidth limitations and interconnect timing-related
uncertainties common in traditional off-chip test systems. However, to accurately
characterise jitter in today’s high-performance SoCs, the resolution of on-chip
measurement devices must be significantly increased from that of the current state-of-
the-art. In addition, new calibration techniques are required to ensure high accuracy
in these measurement systems.
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To address these issues, this work has presented a high-resolution flash TDC for
on-chip timing measurement systems. A novel technique to calibrate this converter
using additive temporal noise has also been described. Simulation results and experi-
mental data obtained from a PLD and custom IC indicate that this method can be used
to calibrate the measurement device down to picoseconds. Gaussian jitter having a
mean and standard deviation below 14 ps was also verified experimentally using a
custom flash SOTDC implemented in a TSMC 0.18-µm CMOS process.
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Chapter 25

Yield and reliability prediction for
DSM circuits

Thomas S. Barnett and Adit D. Singh

25.1 Introduction

Yield models for integrated circuits have been in use since the beginning of the
semiconductor industry. These models not only allow us to estimate the number
of functional integrated circuits before these circuits are manufactured, but also to
monitor and improve the manufacturing process. Accurate yield projection is essential
in order to ensure that an adequate number of circuits are produced for the customer
in a timely fashion. As such, successful yield models play a key role in determining
the economic success of semiconductor manufacturers.

From the customer’s perspective, it is the continued functionality, or reliability, of
the integrated circuit that is of primary importance. Indeed, because integrated circuits
are generally built into larger systems, the failure of a single component may result
in the failure of the entire system [1–4]. If the individual component that caused the
failure cannot be identified and replaced, then the entire system must be replaced.
The cost of a reliability failure can therefore be significantly greater than the cost of
the individual integrated circuit or circuits that caused the failure. For this reason,
companies that produce an unreliable product are not likely to stay in business very
long. Integrated circuit manufacturers will therefore go to great lengths to ensure that
customer reliability requirements are met.

One way to ensure highly reliable integrated circuits is to subject them to acceler-
ated life tests. For integrated circuits the most common accelerated life test is known
as burn-in. Burn-in is a test that attempts to age a device by subjecting it to high-
stress conditions such as high temperature and high voltage. Under these conditions,
manufacturing defects, too subtle for detection at initial testing, will tend to become
more severe and produce circuit failures. Moreover, the population of devices that
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survive burn-in conditions are unlikely to contain manufacturing defects, and thus,
the product shipped to the customer should be of high quality.

Unfortunately, burn-in has become prohibitively expensive for modern integrated
circuits. Indeed, the burn-in boards (BIBs) that apply voltage to the IC during burn-in
testing are generally in the range of $100 000–$200 000 per set, and burn-in ovens
can approach $1 000 000 each. Since several sets of BIBs and several ovens may be
required for each product, the overall capital cost can easily run into the millions
of dollars, even for relatively low volume products. Moreover, since BIBs cannot
generally be used on multiple products, new BIBs often must be purchased with
the introduction of each new product. The enormous financial implications of burn-
in have left the semiconductor industry aggressively searching for alternatives to
burn-in and/or methods to reduce burn-in.

Note that the traditional burn-in methodology treats all die as equal. Thus, once a
burn-in duration is determined, all die are subjected to the same burn-in. If, however,
the reliability of a die could be identified prior to stress testing, then die that present the
greatest reliability risk could be subjected to longer burn-in durations. Conversely, the
burn-in duration for the most reliable die could be significantly reduced or elimi-
nated entirely. This approach would significantly reduce overall burn-in durations
and therefore dramatically reduce testing costs while maintaining outgoing reliability
requirements.

The key to the burn-in methodology described above is in the identification
and quantification of a die’s reliability. Indeed, while anecdotal evidence has long
suggested a connection between yield and reliability, yield and reliability mod-
els were never explicitly connected until Huston and Clarke’s [5] work in the
early 1990s. Therein the authors suggest that those defects that cause wafer probe
failures are essentially the same types of defects that cause early-life reliabil-
ity failures; these defects can be distinguished only by size and location. This
has since been verified with large experimental studies by several independent
researchers [6–9].

Over the last few years, the modelling for yield and reliability has matured, and
now accounts for the clustering of defects over semiconductor wafers [10]. As this
chapter will show, incorporating defect clustering resulted in an integrated yield-
reliability model that is completely consistent with long-standing yield models, and,
at the same time, accurately predicts the early-life reliability of individual die. Appli-
cations of the model will be presented that allow one to identify die of varying
reliability. When used to reduce burn-in, this information can have very significant
financial implications for the semiconductor industry.

25.2 Defect-based yield models

Defect-based yield models for integrated circuits have been used within the semi-
conductor industry since the early 1960s. These models attempt to describe the
distribution of defects over the semiconductor wafer. Once the defect distribution is
specified, one can calculate the probability that an individual die contains 0, 1, 2, . . .
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defects. The yield is then given by the probability of 0 defects.1 While many different
models have been proposed [11–13], only the Poisson model and the negative bino-
mial model are commonly in use today.2 Of the two models, the Poisson model is
the simplest in that it can be described by a single parameter λ, which denotes the
average number of defects per chip. The negative binomial distribution, on the other
hand, requires the specification of two parameters: the average number of defects
per chip, λ, and the clustering parameter α. As the name implies, the clustering
parameter describes the degree to which defects over the wafer cluster or group
together.

25.2.1 Poisson statistics

The Poisson distribution is used widely to model many different physical phenomena.
Examples include radioactive decay, the incoming calls at a telephone exchange and
the distribution of bombs dropped on London during the Second World War [14]. The
utility of the Poisson distribution lies in its ability to describe the occurence of random
events. Here the term random simply denotes the fact that the occurence of one event
does not affect the outcome or occurrence of future events. In the radioactive decay
of Helium, for example, the number of alpha particles ejected from the nucleus per
unit time is random in the sense that the number ejected in one time interval does not
depend on the number obtained in previous time intervals. From the point of view
of yield statistics, the event of interest is the number of physical defects present on
a wafer or an individual die. Thus, if one describes the distribution of these defects
with a Poisson distribution, one is assuming the number of defects on one die is
independent of the number on any other die.

Mathematically, the Poisson distribution specifies the probability that a die con-
tains a certain number of defects. In particular, if N is a random variable denoting
the number of defects present in a die, then the event of exactly q defects in a die,
written N(q), has the probability given by

P [N(q)] = λq

q! exp(−λ) (25.1)

where λ denotes the average number of defects per chip. From this equation the yield
is defined as the probability of 0 defects. If the yield is denoted by Y , then

Y = P [N(0)] = exp(−λ) (25.2)

Figure 25.1 shows the Poisson distribution for various values of yield. Note that
while these curves are shown as continuous, actual defect counts must be discrete.

1 An exception to this occurs for defect tolerant integrated circuits. Such designs can tolerate a certain
number of defects and still function. This will be discussed in detail in Section 25.5.

2 It should be noted that the Poisson model is actually a limiting case of the negative binomial model.
However, the yield literature often treats them as separate models, and this approach is taken here.
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Further, each curve corresponds to a different value ofλ; the lower the yield, the higher
the value of λ. Thus, λ is 1.2, 0.92, 0.69 and 0.51 when the yield is 0.30, 0.40, 0.50 and
0.60, respectively. Moreover, the lower the yield, the more likely it is that a die con-
tains multiple defects. For example, the probability of three defects on a die is 0.087,
0.051, 0.028 and 0.013 when the yield is 0.30, 0.40, 0.50 and 0.60, respectively.

The simplicity of the Poisson equation makes it very easy to use for calculation.
Of course, the value of any model rests in its ability to represent experimental data. In
this respect, the Poisson model, while simple, has long been known to underestimate
the yield. The reason for this lies in the fact that defects over semiconductor wafers
are not randomly distributed but have a tendency to cluster. To illustrate the effect
of defect clustering, suppose that 100 defects are distributed over a wafer containing
100 die. The average number of defects per chip is simply λ = 100/100 = 1.0.
According to Poisson statistics the yield is exp(−1) = 0.37. If these 100 defects are
highly clustered together, however, the yield can be drastically different. For example,
if the 100 defects are contained within 10 die and the remaining 90 die are defect-free,
then λ is still 1.0, but the yield is now 90 per cent. Defect clustering can therefore
significantly impact yield. This fact has led researchers to explore distributions that
can account for such behaviour. The most successful of these has been the negative
binomial distribution.

25.2.2 Negative binomial statistics

The use of the negative binomial distribution for projecting die yields was introduced
in the early 1980s by Charles Stapper of IBM [11]. It was specifically introduced
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for its ability to describe the clustering of defects. To describe this effect, however,
requires an additional parameter, appropriately called the clustering parameter.

Assuming defects get distributed according to negative binomial statistics, the
probability that there are exactly q defects over a die is given by

P [N(q)] = �(α + q)

q!�(α)
(λ/α)q

(1 + λ/α)α+q (25.3)

where �(x) is the Gamma function, λ is the average number of defects per die and
α is the clustering parameter. Values of α typically range from 0.5 to 5 for different
fabrication processes; the smaller values indicate increased clustering. Asα → ∞ the
negative binomial distribution becomes a Poisson distribution, which is characterised
by no clustering [11,15–17].

Figure 25.2 shows the negative binomial distribution for the clustering parameters
α = 0.5, 1.0, 2 and ∞. The yield is 0.40 in each case. α = 2 represents a typical value
that may be seen in industry today. Notice that the greater the clustering (lower α), the
less likely a die is to have a small number of defects. For example, the probability of
exactly one defect is 0.17, 0.24, 0.29 and 0.37 for α = 0.5, 1.0, 2 and ∞. However,
the probability that a die contains a large number of defects increases with a high
degree of clustering. Thus, the probability of exactly four defects is 0.054, 0.052,
0.036 and 0.012 for α = 0.5, 1.0, 2 and ∞. This is consistent with an intuitive notion
of clustering; when defects are highly clustered together, a faulty die is more likely
to contain multiple defects, rather than a small number of defects. Conversely, with
weak clustering, most die contain about the same number of defects, and few die will
have defect counts that differ significantly from the mean.
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25.3 Integrating yield-reliability modelling

The modelling presented in this section and the application sections that follow were
original developed in References 18–21.

25.3.1 Defect types and their distribution: killer and latent defects

As mentioned in the previous section, defect-based yield models for integrated circuits
require the specification of the average number of defects per chip, generally denoted
by λ. Traditionally, these models have focused on those defects that cause failures
detectable at wafer probe testing, while neglecting those defects that cause early-life
or reliability failures. One can, however, think of defects to be of three possible types:
killer defects, latent defects and defects that cause no failures at all. The latter of the
three is of no consequence with regard to actual circuit failures, and can therefore be
neglected. Thus, one can write

λ = λK + λL (25.4)

whereλK is the average number of killer defects andλL is the average number of latent
defects. An example of both defect types is shown in Figure 25.3, where a particle
defect obstructs a metal line. If the particle completely obstructs the line, an open
circuit results. This can be detected at wafer test. If however, the particle only partially
obstructs the line, then the metal wire may function sufficiently at initial wafer probe
testing. Under stress conditions, however, current densities in the thinned wire may
grow large enough to ‘blow’ the line, much like an electrical fuse. Figure 25.3 implies
that defects that cause failures detectable at wafer probe are fundamentally the same
in nature as those which cause early-life reliability failures; size and placement being
the primary distinguishing features. This has led researchers to assume that λL is

Latent defect

Killer defect

Figure 25.3 A metal wire is obstructed by two types of defects. The first type, called
a killer defect, causes an open circuit. This defect is detectable at wafer
probe. The second type, called a latent defect, only partially obstructs
the metal line. Such a defect may pass wafer probe but cause an early
life failure
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linearly related to λK [5–9]. Under this assumption one may write

λL = γ λK (25.5)

where γ is a constant. This has recently been shown to agree well with experiments
conducted at Intel over a wide range of yield values [8]. In this study, γ was shown to
fall within the range of 0.01–0.02. That is, for every 100 killer defects, one expects, on
average, 1–2 defects to result in latent faults. While the actual value of γ is expected
to be process dependent, these values provide a useful order of magnitude estimate.

Now imagine that an experiment consists of placing a single defect on an integrated
circuit. The outcome of this experiment is either a killer or latent defect. If these defects
occur with probabilities pK and pL, respectively, then a series of q such experiments
will follow a binomial distribution. Thus, if K(m) denotes the event of exactly m
killer defects and L(n) the event of exactly n latent defects, then, given a total of q
defects, the probability of m killer and n latent defects is given by

P [K(m),L(n)|N(q)] =
(
q

m

)
pmK pnL (25.6)

where q = m + n and pK + pL = 1. Note that Equation (25.6) implies that the
average number of latent defects is λL = qpL. Similarly, λK = qpK . Thus, λL =
(pL/pK)λK . But from Equation (25.5), λL = γ λK . It follows that γ = pL/pK .
Combining this with the equation pK + pL = 1 relates the probabilities for latent
and killer defects to the parameter γ . That is,

pL =
(

γ

1 + γ

)
and pK =

(
1

1 + γ

)
(25.7)

Thus, for γ = 0.01, pL ≈ 0.0099 and pK ≈ 0.9901.
Equation (25.6) specifies the probability of m killer and n latent defects given

q defects. If the value of q is not known, one must specify its probability as well.
To do this, and to account for the observed clustering of defects, one assumes that
the defects are distributed according to negative binomial statistics [11,15–17,22,23].
P [N(q)] is therefore given by Equation (25.3).

Combining Equations (25.6) and (25.3) gives the probability of exactly m killer
and n latent defects. Specifically, with P [K(m),L(n)] = P [K(m),L(n)|N(q)]
×P [N(q)] one can write

P [K(m),L(n)] = �(α +m+ n)

m! n!�(α)
(λK/α)

m(λL/α)
n

(1 + λ/α)α+m+n (25.8)

where λK = pKλ, λL = pLλ and λ = λK + λL. Thus, the probability that a chip
contains zero killer and zero latent defects is given by

Y = P [K(0),L(0)] =
(

1 + λ

α

)−α
(25.9)

This is the fraction of chips that are functional following both wafer probe and stress
testing.
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25.3.2 Wafer probe yield

Although Equation (25.8) gives the probability of m killer and n latent defects, it is
often convenient to consider killer defects separately. Thus, to obtain the probability
of exactly m killer defects, P [K(m)], regardless of the number of latent defects, one
can sum P [K(m),L(n)] over n. That is,

P [K(m)] =
∞∑
n=0

P [K(m),L(n)] (25.10)

Substituting Equation (25.8) into (25.10) and using the identity (�(β + n))/

(n!�(β)) = (−1)n
(−β
n

)
allows one to write the summation as a power series of the

form A
∑∞
n=0

(−β
n

)
(x)n = A(1 − x)−β . The probability of exactly m killer defects

can then be written as

P [K(m)] = �(α +m)

m!�(α)
(λK/α)

m

(1 + λK/α)α+m (25.11)

where λK = pKλ. Thus, the number of killer defects follows a negative binomial
distribution with parameters (λK ,α). For m = 0 Equation (25.11) gives

YK = P [K(0)] =
(

1 + λK

α

)−α
(25.12)

This formula is the semiconductor industry standard for predicting wafer probe yields
of modern integrated circuits.

25.3.3 Reliability yield

After defining the wafer probe yield as YK = P [K(0)], one may be tempted to
define the reliability yield similarly as the probability of zero latent defects, YL =
P [L(0)]. This definition, however, is not correct. Indeed, while P [L(0)] does give
the probability of zero latent defects, it says nothing about the number of killer
defects. Thus, a die containing zero latent defects may still contain one or more
killer defects. Such a die will be discarded following wafer testing and not subject to
stress testing. To incorporate killer defect information when defining reliability yield,
one can calculate the probability of n latent defects given m killer defects, denoted
by P [L(n)|K(m)]. Using Bayes’ Rule P [K(m),L(n)] = P [L(n)|K(m)]P [K(m)]
along with Equations (25.8) and (25.11), one can write

P [L(n)|K(m)] = �(α +m+ n)

n!�(α +m)

[λL(m)/(α +m)]n
[1 + λL(m)/(α +m)]α+m+n (25.13)

whereλL(m) = ((α +m)/α)γ λK/(1+(λK/α)) = ((α +m)/α)λL(0) is the average
number of latent defects given that there are m killer defects. Thus, P [L(n)|K(m)]
follows a negative binomial distribution with parameters (λL(m),α+m). Defining the
reliability yield YL as the number of die that are functional following stress divided by
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the number of die that passed wafer probe testing, one can write YL = P [L(0)|K(0)].
Thus,

YL =
(

1 + λL(0)

α

)−α
(25.14)

This is the fraction of die that survive stress testing. Using λL = γ λK and solv-
ing Equation (25.12) for λK allows one to write λL(0) = γα(1 − Y

1/α
K ). Thus,

Equation (25.14) may be rewritten as

YL = [1 + γ (1 − Y
1/α
K )]−α (25.15)

Note that YK and α are obtained from the results of wafer probe testing, and thus γ is
the only unknown parameter in Equation (25.15). γ may be obtained either from the
statistical analysis of stress data or from direct calculation. A direct calculation of γ
is carried out by considering the details of the circuit layout. This method relies on
the calculation of a reliability critical area [5]. In all but the simplest cases, analytical
solutions are not possible, and the critical area is obtained through Monte Carlo
simulation [13].

An important limiting case of Equation (25.14) occurs for α → ∞. In this limit
YK → exp(−λK), YL → exp(−λL(0)) and λL(0) → λL = γ λK . Thus,

YL → exp(−λL) = exp(−γ λK) = Y
γ

K (25.16)

This is the expected reliability yield when defects follow a Poisson distribution.

25.4 Numerical results

Figure 25.4 shows the stress failure probabilityPf = (1−YL) in per cent as a function
ofα for various values of YK . The parameter γ = 0.015. Note that clustering can have
a significant impact on the probability of failure, particularly for the lower values of
YK . For example, when YK = 0.30 and α = 0.5, the stress failure probability
is 0.676 per cent. Yet when α = ∞ (no clustering), Equation (25.16) implies a
failure probability of 1.79 per cent. Thus, the number of stress failures predicted by
the Poisson model (α = ∞) is 1.79/0.676 = 2.65 times greater than the number
predicted with α = 0.5 (highly clustered). Note, however, that this ratio decreases as
clustering decreases (α increases). Hence, for the more typical value of α = 2 and
the same wafer probe yield, YK = 0.30, this ratio falls to 1.79/1.34 = 1.34.

The effect of defect clustering is also seen to diminish as YK increases. For
example, consider the case when YK = 0.70. For α = 2, this gives a stress failure
probability of 0.488, while for α = ∞, the value is 0.534. The ratio is therefore
0.534/0.488 = 1.09, and the Poisson model prediction is only slightly different than
that of the clustering model.

It is also of interest to consider how the stress failure probability varies with the
parameter γ . This is illustrated in Figure 25.5 for YK = 0.50 and various values of
the clustering parameter α. Note that each curve exhibits nearly linear behaviour with
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Figure 25.4 Stress failure probability Pf = (1 − YL) in per cent as a function of α
for various values of wafer probe yield YK . The parameter γ = 0.015

a slope that increases with increasing α. To understand the linearity of the curves in
Figure 25.5 one needs to take a closer look at Equation (25.14). In particular, when
λL(0)/α << 1 this equation can be written as

YL =
(

1 + λL(0)

α

)−α

≈ 1 − λL(0) (25.17)

The stress failure probability, Pf = (1 − YL), is therefore

Pf ≈ λL(0)

= γ λK

(1 + λK/α)

= γα(1 − Y
1/α
K ) (25.18)

This is the equation of a line with slope α(1 − Y
1/α
K ) and a vertical intercept of 0.

As mentioned above, the accuracy of this approximation is based on the assumption
that λL(0)/α << 1, where λL(0) = γ λK/(1 + (λK/α)). With λK ∼ 0.5–3 and
α ∼ 1–4 for reasonable wafer probe yields, the accuracy of the approximation depends
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Figure 25.5 Stress failure probability Pf in per cent as a function of γ for various
values of α. The wafer probe yield is YK = 0.50

primarily on the value of γ . For the recently reported values of γ ∼ 0.01–0.02 [8],
this approximation is very good. For significantly larger values of γ , the accuracy
will of course decrease, and the curves will not be so linear in nature.

The integrated yield-reliability model presented thus far forms the underlying
framework for the applications presented in sections to come. In the next section the
reliability implications for repaired die will be addressed, while in Section 25.6 the
influence of local region yield on the reliability of a die is discussed. These sections
will show how wafer test information can be used to identify integrated circuits of
varying reliability.

25.5 Application to defect tolerant memory circuits

In this section, the integrated yield-reliability model will be extended to estimate the
early-life reliability of repaired and unrepaired memory die, and therefore quantify
the effect of repairs on early-life reliability. Specifically, the model will be used to
calculate the probability that a die with a given number of repairs results in a stress test
failure. It will be shown that a die that has been repaired can present a far greater reli-
ability risk than a die with no repairs. The physical reason for this is defect clustering;
a die that has been repaired is known a priori to contain defects and is therefore more
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likely to contain additional latent defects. The statement will be validated with exper-
imental data from SRAM and embedded DRAM memory products manufactured by
IBM Microelectronics in Burlington, Vermont. Both voltage stress and burn-in data
will be presented.

25.5.1 Overview of memory circuits

In this work the term memory will refer specifically to random access memories
or RAMs.3 The term random access denotes the fact that these memories allow
individual memory bits to be programmed (written) or accessed (read) directly. RAMs
can be further divided depending on the way they store logic states (‘1’s or ‘0’s).
Static RAMs (SRAMs) store logic states through the use of a bistable flip-flop while
Dynamic RAMs (DRAMs) store logic states through the charging and discharging of
capacitors. SRAMs maintain their logic states as long as power is maintained, while
the capacitors that hold the logic states in DRAMs lose charge with time and need to
be periodically refreshed. Both types of RAM offer their own advantages: SRAMs
offer increased performance while DRAMs offer increased density, and therefore,
cost less per bit [24].

SRAM and DRAM memory chips are available as stand-alone memory or as
embedded memory. Excepting a small degree of control circuitry, stand-alone mem-
ory chips consist entirely of memory arrays. These products serve as individual
components of larger systems such as personal computers. Embedded memories,
on the other hand, are built on the same chip with surrounding logic circuits and
are a step in the direction of so-called ‘Systems-on-a-chip’ or SoCs. The vision of
SoCs is to fully integrate diverse systems into a single integrated circuit. Thus, a
SoC may consist of digital circuitry, analogue circuitry and memory, all on the same
integrated circuit. The close proximity of the various components on an SOC can
result in significant size reduction as well as enhanced performance. Because of these
advantages, individual logic circuits with embedded memory are becoming com-
monplace in applications once employing separate logic and stand-alone memory
units.

Memory circuits, whether SRAM or DRAM, embedded or stand-alone, differ
from standard logic circuits in that they generally offer extensive defect tolerance in
order to boost yield. This simply means that many of the killer defects identified at
wafer probe test can be repaired. While defect tolerance is employed on virtually all
large RAM circuitry, it is not commonly employed for logic designs. This is due to the
fact that memories, in contrast to complex logic, have very simple, regular structures
and architectures. This allows defect tolerance to be easily integrated into memory
designs. The net result is often a significant increase in overall yield. Indeed, it is not
uncommon for repairability to increase memory yield by a factor of ten or more. Of
course, it is the purpose of this section to show that the increase in yield resulting
from repairability comes at the price of decreased early-life reliability.

3 See Reference 24 for a detailed account of semiconductor memories.
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Figure 25.6 A typical memory architecture. An N bit row address allows for 2N

possible word line selections, whileM column address bits allows 2M

bit line selections. The total number of single cells is therefore 2N+M

25.5.1.1 Memory architecture

Figure 25.6 shows a simple schematic of a memory array architecture. It consists of
anN bit row address and anM bit column address. The row bits get decoded to select
1 of the 2N possible cell array rows. These are known as word lines. Similarly, the
M column bits get decoded to select 1 of the 2M possible columns. Each column is
known as a bit line. The word and bit lines form a grid with a single cell located at
each intersection point. Selection of a given word line and bit line therefore allows
a single cell to be accessed. Once accessed, the logic state of the cell can be read or
a new value loaded through the Data In/Out port. Since there are 2N word lines and
2M bit lines, there are a total of 2N+M single cells or bits.

Defect tolerance is generally added to this memory architecture with the addition
of spare word lines and bit lines. Such an arrangement is shown in Figure 25.7. The
figure shows the replacement of a defective word line with a spare word line. Spare
bit lines are also available to replace defective bit lines. In the case of a single cell
failure, the cell’s word line and a bit line both get replaced. The number of word lines,
bit lines or single cells that can be replaced therefore depends on the number of spares
available.

It should be noted that defect tolerance for memory circuits is generally limited to
the memory cell array. Defects that occur within the control circuitry (e.g. decoders,
read/write enable lines), cannot generally be repaired; these regions remain vulnerable
to killer defects.

25.5.2 Yield-reliability modelling for redundant memory circuits

This section extends the yield-reliability model to incorporate situations in which the
product under consideration contains memory circuits. Such an extension requires
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one to compensate for the fact that some of the killer defects can now be repaired.
This means that the wafer test yield, defined previously as the probability that a chip
contains 0 killer defects, must be altered to include those chips with killer defects
that could be repaired. While this is a relatively simple modification, repairability can
drastically affect the early-life reliability of a chip. Indeed, it will be shown that chips
that have been repaired are more likely to fail stress tests than chips with no repairs.
Moreover, the more repairs a chip has, the greater its stress test failure probability.

25.5.2.1 Wafer probe yield with repair

To incorporate repairability one must consider the probability that a killer defect can
be repaired. If it is assumed that a given defect is just as likely to land anywhere
within the chip’s critical area,4 then the probability that a killer defect lands within
the non-repairable critical area, ANR, is given by the ratio pNR = ANR/AT , where
AT = AR + ANR is the total critical area of the chip. Similarly, the probability that
a given defect is repairable is given by pR = AR/AT , where AR is the amount of
critical area that is repairable. Note that pR + pNR = 1.

Now, let G(i) be the event that a chip is functional and contains i killer defects.
As the chip is functional, the i killer defects must have been repairable. Thus,

P [G(i)] = piRP [K(i)] (25.19)

4 The critical area denotes the physical area that is susceptible to defects.



Yield and reliability prediction 871

where as before, P [K(i)] denotes the probability of exactly i killer defects. The
effective wafer probe yield with repair, YKeff , is therefore

YKeff =
∞∑
i=0

P [G(i)] =
∞∑
i=0

piRP [K(i)] (25.20)

The summation in Equation (25.20) shows thatYKeff is simply the generating function
for P [K(i)]. This generating function, denoted T (z), is given by [16]

T (z) =
[

1 + (1 − z)
λK

α

]−α
(25.21)

YKeff can therefore be written as

YKeff =
[

1 + λKeff

α

]−α
(25.22)

where λKeff = (1 − pR)λK = pNRλK . Thus, repairability has the effect of reducing
the average number of killer defects from λK to pNRλK . Note that extending the sum
to infinity assumes that there is no limit to the number of repairs that can be made.
This is justified by the fact that the probability of more than ∼25 repairs is negligibly
small for most products employing redundancy.

Note that one must now differentiate between YKeff and YK . To do this, YK
is often termed the ‘perfect’ wafer probe yield to distinguish it from the effective
yield achievable with repairable or redundant circuits [15,17,23]. YK is simply the
probability of zero killer defects.

As a numerical example, suppose that 90 per cent of the chip’s critical area is
repairable. This implies that pNR = 0.10. If λK = 1 and α = 2, then YKeff = 0.91.
With no repair capabilities, pNR = 1, and the yield is YK = 0.44. Thus, repairability
can have a very significant impact on wafer probe yield.

It is also of interest to determine the fraction of functional die with exactly i
repaired defects. This can be obtained as follows:

f (i) = P [G(i)]∑∞
i=0 P [G(i)] = piRP [K(i)]

YKeff
(25.23)

This equation, when compared to repair data, can be used to obtain the yield
parameters α and λK .

25.5.2.2 Reliability yield with repair

Equation (25.13) of Section 25.1 gives an expression for the probability of n latent
defects givenm killer defects. This was denoted by P [L(n)|K(m)]. For logic circuits
with no redundancy, one is only interested in the case when no killer defects are
present. This corresponds to m = 0. For redundant circuits, however, one needs
to consider the more general case of m ≥ 0. Setting n = 0 in the expression for



872 System-on-chip

Alpha

F
ai

lu
re

 p
ro

ba
bi

lit
y 

(p
er

 c
en

t)

0 Repairs 

1 Repair 

2 Repairs 

3 Repairs

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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repairs. The value of α ranges from 0.5 to 5. The perfect wafer probe
yield is YK = 0.30, γ = 0.015 and pNR = 0.10

P [L(n)|K(m)] and defining YL(m) = P [L(0)|G(m)] = P [L(0)|K(m)] gives

YL(m) =
[

1 + λL(m)

α +m

]−(α+m)
(25.24)

This gives the early-life reliability yield of a chip which has been repaired exactlym
times. Equation (25.24) is an important result because it shows that YL(m) arises
from a negative binomial distribution with parameters (α + m) and λL(m) =
(α +m/α)λL(0). Chips withm repairs therefore contain, on average, (α+m) times
as many latent defects as chips with 0 repairs.

25.5.2.3 Numerical results

Figure 25.8 shows the stress test failure probability Pf (m) = 1 − YL(m) in per cent
as a function of the clustering parameter α. Note that while α can certainly range
from 0.5 to 7 in practice, a typical value may be around 2.0. The figure shows four
curves corresponding tom = 0, 1, 2 and 3 repairs. The perfect wafer probe yield was
assumed to be YK = 0.30, γ = 0.015 and pNR = 0.10. Note also that this implies
that the effective wafer probe yield, YKeff , varies from 0.71 when α = 0.5 to 0.88
when α = 5.
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repairs. The value of α ranges from 0.5 to 5. The perfect wafer probe
yield is YK = 0.40, γ = 0.015 and pNR = 0.10

The figure shows that chips that have been repaired can have a probability of
failure that is significantly greater than chips with no repairs. This is particularly
apparent when there is a high degree of clustering (low value of α). Indeed, for
α = 0.5, the probability of failure is 0.68, 2.01, 3.33 and 4.63 per cent for 0, 1, 2
and 3 repairs, respectively. This means that a chip with 1 repair is 2.01/0.68 = 2.96
times more likely to fail than a chip with no repairs. Furthermore, chips with 2 and 3
repairs are 4.90 and 6.81 times more likely to fail than a chip with no repairs. Note,
however, that as α increases, the reliability improvement for chips with no repairs
decreases. Thus, for α = 2, chips with 1 repair are 1.50 times more likely to fail,
while chips with 2 and 3 repairs are 1.99 and 2.48 times more likely to fail than chips
with no repairs. This trend continues as α increases. In particular, as α → ∞ (no
clustering), the probability of failure becomes independent of the number of repairs.
In such a case, repaired memory chips are just as reliable as memory chips with no
repairs.

Figures 25.9 and 25.10 show the stress test failure probability as a function of α
with 0, 1, 2 and 3 repairs for a perfect wafer probe yield of YK = 0.40 and YK = 0.50,
respectively. Comparison of Figures 25.8–25.10 indicates that the failure probability
decreases as YK increases. For example, suppose that α = 2 and a chip has been
repaired twice. Then the failure probability is 2.67 per cent for YK = 0.30, 2.18
per cent for YK = 0.40 and 1.74 per cent for YK = 0.50. This decrease in failure
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Figure 25.10 Stress test failure probability Pf (m) in per cent form = 0, 1, 2 and 3
repairs. The value of α ranges from 0.5 to 5. The perfect wafer probe
yield is YK = 0.50, γ = 0.015 and pNR = 0.10

probability with increasing YK follows from the fact that, for a given clustering
parameter α, the average number of killer defects decreases as YK increases. Since
the average number of latent defects, λL, is proportional to λK , λL also decreases as
YK goes up. The result is a decrease in the number of stress test failures.

Let us now consider more closely how the stress test failure probability depends
on the number of repairs and the clustering parameter. This dependence is shown
in Figure 25.11, where the stress test failure probability is plotted versus the num-
ber of repairs for various values of α. Note that the curves are very linear with
a slope that increases with decreasing α. In particular, note that the slope goes
to zero when α = ∞. This corresponds to a Poisson distribution and implies no
clustering.

To understand the linearity of the curves in Figure 25.11 one needs to take a
closer look at Equation (25.24). In particular, when λL(0)/α << 1 this equation can
be written as

YL(m) =
(

1 + λL(0)

α

)−(α+m)

≈ 1 − (α +m)
λL(0)

α
(25.25)
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Figure 25.11 Stress test failure probability Pf (m) in per cent as a function of the
number of repairs. Various values of α are shown. The perfect wafer
probe yield is YK = 0.30, γ = 0.015 and pNR = 0.10

The stress test failure probability for a chip with m repairs, Pf (m), is therefore

Pf (m) = 1 − YL(m)

≈ (α +m)
λL(0)

α

= λL(0)

α
m+ λL(0) (25.26)

This is the equation of a line with slopeλL(0)/α and vertical interceptλL(0) = Pf (0).
As a measure of the stress test failure probability for chips with m repairs as

compared with chips with no repairs, one may define the relative failure probability
Rf (m) = Pf (m)/Pf (0). Thus, from Equation (25.26) it follows that

Rf (m) = Pf (m)

Pf (0)
≈ m

α
+ 1 (25.27)

Note that Rf (m) provides a simple way to validate the proposed model. Indeed,
according to Equation (25.27), a plot of Rf (m) versus m yields a straight line with
slope 1/α and a vertical intercept of 1. Further, since Equation (25.27) depends only
on the clustering parameter α, one can estimate the relative failure probability for
repaired memory chips once the clustering parameter α is known. This is generally
known following wafer probe testing.
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The accuracy of the approximations given in Equations (25.25)–(25.27) based
on the assumption that λL(0)/α � 1, where λL(0) = γ λK/(1 + (λK/α)). With
λK ∼ 0.5–3 and α ∼ 1–4 for reasonable wafer probe yields, the accuracy of the
approximation depends primarily on the value of γ . For the recently reported values
of γ ∼ 0.01–0.02 [8], this approximation is very good. For significantly larger values
of γ , the accuracy will of course decrease.

25.5.3 Model verification

This section presents data from a 32 Mbit SRAM product and a product with 8 Mbits of
embedded DRAM (eDRAM). In both cases, predictions based on the yield-reliability
model are shown to be in excellent agreement with observed data.

25.5.3.1 A 32 Mbit SRAM product with voltage screen

This section presents data from 15 054 SRAM chips from a 0.18 µm CMOS process
technology. These chips were functional following wafer test and repair. The repair
distribution for these chips is shown in Figure 25.12. Note that this distribution
can be easily calculated from Equation (25.23). The parameters for the negative
binomial distribution, namely the clustering parameter α and the average number of
killer defects per chip, λK , can then be determined by fitting Equation (25.23) to
the distribution obtained from data. This is done using a standard non-linear least
squares method such as that available through the statistical software package SAS
[25]. Thus, Figure 25.12 shows that the negative binomial statistics can accurately
model the repair distribution.

To test the yield-reliability model one must compare model predictions to stress
fail data. Recall that the relative failure probability Rf (m) is just the failure prob-
ability for m repairs divided by the failure probability for 0 repairs. According to
Equation (25.27), a plot of Rf (m) versus the number of repaired defects m yields
a straight line with slope 1/α and a vertical intercept of 1. Such a plot is shown
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Figure 25.13 Voltage screen failures as a function of the number of defects repaired
following wafer probe testing. Numerical values are proprietary and
have therefore been excluded

in Figure 25.13, where the failures refer to voltage screen failures. Note that the volt-
age screen relative failure probabilities are in excellent agreement with the predicted
line. Indeed, fitting the data with a linear regression model gives a slope nearly iden-
tical to the predicted slope of 1/α. Moreover, the R2 value of the fitted line was 0.87,
indicating excellent agreement between the data and the linear model.

Similar data from other SRAM products manufactured by IBM have also been
closely examined for this study. Unfortunately, for proprietary reasons, only a limited
amount of data was available for publication. It can be said, however, that the failure
probability for SRAM products with voltage screen as well as burn-in shows the
same dependence; the failure probability linearly increases with the number of killer
defects repaired. In particular, as shown in Equation (25.27), the slope of this line is
1/α in both cases.

25.5.3.2 An embedded DRAM product with burn-in data

The previous subsection demonstrates that the yield-reliability model can accurately
predict the repair distribution as well as voltage stress fall-out for SRAM products.
In this subsection data will be presented that shows the model predictions hold for
products with embedded DRAM as well. This will be demonstrated with 2485 burn-in
failures from a 0.25 µm CMOS process with 8 Mbits of embedded DRAM.

As with the SRAM product, the clustering parameter α and the average number of
killer defects λK are determined by fitting Equation (25.23) to the repair distribution.
The result of this procedure is shown in Figure 25.14. Once again, the model provides
an excellent fit to the data.

Figure 25.15 shows the relative failure probability Rf (m) for 2485 burn-in fail-
ures. Note that the curve is again linear. In this case the R2 value is 0.903, indicating
excellent agreement between the model and observed data.
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lowing wafer probe testing. Numerical values are proprietary and
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This section has extended the integrated yield-reliability model to include inte-
grated circuits containing redundant memory circuits. The model has been validated
on production data manufactured by IBM Microelectronics in Burlington, Vermont.
The model was shown to be valid for SRAM as well as DRAM products. Specifi-
cally, it has been shown that the stress test failure probability is a linear function of
the number of repairs. Moreover, since the slope of this curve is simply related to the
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clustering parameter α, early-life reliability estimates can be made following wafer
probe testing, when the clustering parameter α is known.

25.6 Local region yield

The previous sections have demonstrated that defect clustering can significantly
impact both wafer test yield and early-life reliability. It is the purpose of this sec-
tion to show that the effects of defect clustering can stretch beyond the boundaries
of an individual chip and affect the reliability of neighbouring die. Indeed, it will be
shown mathematically and demonstrated experimentally that a chip’s local yield can
be a strong indicator of chip reliability; chips that test good at wafer probe yet come
from regions with many faulty neighbours are greater reliability risks than chips from
high yielding regions. Again, this follows from the fact that defects on semiconduc-
tor wafers are not uniformly distributed but have a tendency to cluster. Thus, if a
die comes from a region where there are many defects, it is more likely to contain a
‘smaller’ reliability defect than a chip from a high yielding region.

Using the local yield of a chip as an indicator of its quality was proposed in the
technical literature as early as 1993 [26], and can easily be extended to incorpo-
rate reliability estimation through the use of the integrated yield-reliability model.
Although many definitions are possible,5 a simple definition of local region consists
of a central die and its eight adjacent neighbours. This is shown in Figure 25.16. The
local yield of a given die can then be determined simply by counting the number of
faulty neighbours it has. Die that pass wafer probe testing are then separated into
one of nine bins depending on the number of faulty neighbours; die with 0 faulty
neighbours go into bin 0, die with 1 faulty neighbour go into bin 1, and so on, until
bin 8, where all neighbours were faulty. Since latent defects tend to cluster with killer
defects, one expects the die in the higher numbered bins to be more likely to contain
a latent defect than those in the lower numbered bins. Thus, the probability that a
die fails a stress test should increase as one moves from bin 0 to bin 8. Indeed, as
shown in Figure 25.17, this is consistent with actual production data. Figure 25.17
shows the fraction of good die in each bin that eventually fail burn-in. As expected,
the general trend is for the burn-in failure probability to increase as one moves up
in bin number. Thus, the more faulty neighbours a die has, the more likely it is to
fail burn-in. Similar results have been obtained when observing voltage stress data.
Moreover, the yield-reliability model allows one to accurately determine the fraction
of die and the number of stress failures in each bin. Such calculations have been
validated experimentally on several different products manufactured at IBM Micro-
electronics in Burlington, Vermont. These products had various yields, chip sizes and
technologies. Data from one of these products, consisting of 77 000 microprocessor

5 In work done at Intel [8], for example, local region yield is determined as a weighted average of
neighbour yields; die closest to the die in question are weighted more heavily than die farther away.
The surrounding 24 die have also been considered [9]. Experience at IBM has shown that most of the
neighbourhood information is captured with the simple definition given here.
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units that underwent burn-in testing, will be presented here. The results of this study
will be described in the following sections of this section, and the burn-in data will be
compared to model predictions. It will be shown that the model accurately predicts
both the yield and the early-life reliability of the chips in each bin.

25.6.1 Bin distribution calculations

This section provides the mathematical results required to calculate bin distribu-
tions. Specifically, the number of good die in each bin and the number of stress test
fails in each bin will be calculated. While the calculations presented here should be
sufficiently detailed for most purposes, a review of the fundamental mathematical
principles (e.g. the principle of inclusion–exclusion) can be found in Reference 14.
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25.6.1.1 Chips free of killer defects

Consider a central die and its N − 1 adjacent neighbours (N = 9 for the 9-die
neighbourhood shown in Figure 25.16). Furthermore, let XK be a random variable
denoting the number of chips in the N -die neighbourhood with zero killer defects.
According to the inclusion–exclusion principle [14], the probability that exactly k
chips are free of killer defects is given by [15]

P [XK(k)] =
(
N

k

) N−k∑
q=0

(−1)q
(
N − k

q

)
yk+q (25.28)

where

yk+q =
[

1 + (k + q)λK

α

]−α
(25.29)

Now, let CK denote the event that the central die is free of killer defects. Then the
probability that the central die passes wafer probe, given that there are a total of k
killer defect-free chips in the N -die neighbourhood, is given by

P [CK |XK(k)] =
(
N−1
k−1

)
(
N
k

) = k

N
(25.30)

Thus, the fraction of good chips with k − 1 good neighbours is P [CK |XK(k)]
P [XK(k)]/YK . To write this in terms of the number of faulty neighbours, note
that, if the central chip has r good neighbours, then it must have N − r faulty
neighbours. The fraction of good die with exactly r bad neighbours is therefore
P [CK |XK(N−r)]P [XK(N−r)]/YK . Using Equation (25.30), this can be written as

f (r) = (1 − (r/N))P [XK(N − r)]
YK

(25.31)

where r = 0, 1, . . . ,N − 1. This equation gives the fraction of good chips in each bin
following wafer probe testing.

25.6.1.2 Chips free of both killer and latent defects

When both killer and latent defects are considered one can easily extend the concepts
developed in the previous subsection. In particular, one can define P [XK(k),XL(l)]
as the probability that exactly k chips are free of killer defects and l chips are free of
latent defects. This probability can be written as

P [XK(k),XL(l)] =
(N−k)∑
q1=0

(N−l)∑
q2=0

a(q1, q2, k, l)yk+q1,l+q2 (25.32)

where

a(q1, q2, k, l) =
(
N

k

)(
N

l

)
(−1)q1+q2

(
N − k

q1

)(
N − l

q2

)
(25.33)
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and

yn1,n2 =
[

1 + n1λK

α
+ n2λL

α

]−α
(25.34)

Note that while P [XK(k),XL(l)] gives the probability of k killer defect-free chips
and l latent defect-free chips, it says nothing about which chips are free of both killer
and latent defects. Towards this end, let CK and CL denote the events that the central
die is free of killer and latent defects, respectively. Then C = CK ∩ CL denotes the
compound event that the central die is free of both killer and latent defects. Thus, given
k killer defect-free chips and l latent defect-free chips in the N die neighbourhood,
the probability that the central die is free of both defect types is

P [C|XK(k),XL(l)] =
(
N−1
k−1

)(
N−1
l−1

)
(
N
k

)(
N
l

) = kl

N2
(25.35)

Multiplying Equation (25.35) by P [XK(k),XL(l)] and summing over l gives
P [C|XK(k)]P [XK(k)]. That is,

P [C|XK(k)]P [XK(k)] =
N∑
l=0

P [C|XK(k),XL(l)]P [XK(k),XL(l)]

= k

N2

N∑
l=0

lP [XK(k),XL(l)] (25.36)

But from Bayes’ Rule P [XK(k),XL(l)] = P [XL(l)|XK(k)]P [XK(k)]. Therefore
the above equation can be written as

P [C|XK(k)] = k

N2

N∑
l=0

lP [XL(l)|XK(k)] (25.37)

where P [XL(l)|XK(k)] = P [XK(k),XL(l)]/P [XK(k)] is obtained from Equations
(25.28) and (25.32). Equation (25.37) is the probability that a central die passes both
wafer probe and early life testing, given that k of the N die in the neighbourhood
have passed wafer probe. Since P [C|XK(k)] = P [CL|CK ,XK(k)]P [CK |XK(k)],
dividing Equation (25.37) by P [CK |XK(k)] = k/N gives the probability that a chip
passes early life testing, given that it and (k− 1) of its neighbours have passed wafer
probe. If one definesYL(q) as the probability that a good chip with q faulty neighbours
passes early life testing, then YL(q) = P [CL|CK ,XK(N − q)]. Hence,

YL(q) = 1

N

N∑
l=0

l P [XL(l)|XK(N − q)] (25.38)

where q = 0, 1, . . . ,N − 1. This is the stress test yield (e.g. burn-in yield) for a chip
that has passed wafer probe and has q faulty neighbours.
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25.6.1.3 Numerical results

Figure 25.18 shows the reliability failure probability [1−YL(i)] for die in each bin for
various values of the clustering parameter α, YK = 0.50 and γ = 0.015. Recall that a
lower value of α indicates increased clustering, while α = ∞ implies no clustering.
Further, for a value γ = 0.015, one expects, on average, 1.5 latent defects for every
100 killer defects.

As expected, the figure shows that the probability of failure increases as one
moves from the lower numbered bins to the higher numbered bins. An exception
to this is the case of α = ∞, which corresponds to no clustering. In this case, the
probability of failure is constant for each bin number. Thus, binning based on local
region yield provides no advantage when defects follow a Poisson distribution.

Consider now the particular case of α = 0.5. Note that the probability of failure
in the best bin (i.e. bin number 0) is significantly lower than in the other bins. In
particular, die from bin 8 have a failure probability of 3.16 per cent compared with
0.08 per cent in bin 0. This means that a die selected from bin 8 is∼39 times more likely
to fail burn-in than a die selected from bin 0. Further, compared to the average proba-
bility of failure of 0.558 per cent achieved without binning (see Equation (25.38)), bin
0 represents a factor of ∼7 improvement. Note, however, that these benefits decrease
as the clustering parameter increases. Thus, for α = 2 and α = 4 the best bin shows
a factor of 3.33 and 2.26 improvement over the no binning case, respectively.

Although Figure 25.18 indicates the potential of binning for improved reliability,
it is important to realise that the usefulness of this technique depends significantly on
the fraction of die in each bin. This is illustrated in Figure 25.19 where the fraction of
die in each bin is shown forα = 0.5, 2.0, 4.0 and ∞. Withα = 0.5, most of the defects
will be clustered together and there will be many neighbourhoods with few, if any,
defects. The result is a large number of die in the lower numbered bins. In particular,
bin 0 contains ∼40 per cent of the die. When clustering decreases (α increases),
however, the defects get distributed more evenly among the neighbourhoods. For
the more realistic value of α = 2.0, this results in fewer die in the best bin with the
maximum number of die in bin 2. For α = 4 this effect is accentuated and the higher
numbered bins become more heavily populated. Thus, as clustering decreases, fewer
die are present in the lower numbered bins. Note that the bin variation for α = ∞
is quite irrelevant since the probability of failure is the same in each bin when no
clustering is present. Indeed, the bin variation for α = ∞ is based solely on the wafer
probe yield YK . This illustrates the important point that Figures 25.18 and 25.19 must
be examined together to accurately evaluate the effectiveness of binning.

Finally, it is important to consider how the above results depend on the wafer probe
yield YK . For a fixed value of α and γ , low yields imply that, on average, a greater
number of defects (both killer and latent) get distributed over each neighbourhood.
Thus, as the yield decreases, one expects a higher failure probability in each bin and
a lower fraction of die in the lower numbered bins. These effects are illustrated in
Figure 25.20 for γ = 0.015,α = 2.0 and YK ranging from 0.10 to 0.90. Note that the
bottom curve shows the probability of failure in the best bin divided by the average
probability of failure obtained without binning. This ratio indicates the reliability
improvement one sees in the best bin as compared to the lot taken as a whole. Note
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Figure 25.18 Reliability failure probability [1 −YL(i)] in each bin in per cent. The
value of α ranges from 0.5 to ∞. The wafer probe yield is YK = 0.50
and γ = 0.015

that while this ratio is maximum for low yields, the fraction of die present in the best
bin under these circumstances is generally quite small.

25.6.2 Burn-in results from 77 000 IBM Microprocessor units

In this section, the predictions of the yield-reliability model will be compared to indus-
try data. It should be noted that, while data from a single product will be presented
here, similar results have been observed on many products manufactured by IBM
Microelectronics in Burlington, Vermont. This information is proprietary, however,
and only a subset of this work was available for publication.

25.6.2.1 Parameter estimation

The use of the negative binomial distribution requires the specification of its two
parameters λ and α. This can be accomplished through a technique known as
windowing [16]. One begins with the equation

YK(n) =
(

1 + nλK

α

)−α
(25.39)
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Figure 25.19 Fraction of die in each bin in per cent. Various values of α are shown.
The wafer probe yield is YK = 0.50 and γ = 0.015

whereYK(n) is the wafer probe yield for chips taken in groups ofn. Thus, YK(1) = YK
is the ordinary wafer probe yield, YK(2) is the yield with chips taken in pairs, YK(4)
is the yield with chips taken in groups of four, and so on. Once data is obtained for
several values of n, a non-linear least squares algorithm is performed to obtain the
values of α and λK . This can be carried out, for example, using the statistical analysis
software SAS and its NLIN procedure.

Having obtained values for α and λK , one need only determine γ . This can be
obtained from stress data. That is, if a sample of chips is subjected to a stress test (e.g.
burn-in, voltage stress), YL can be determined experimentally. Equation (25.14) can
then be inverted to obtain the value of γ .

Note that these parameter will generally change with time. Experience indicates
that fluctuations in the clustering parameter, α, are small, while the average number
of killer defects per chip, λK , decreases as yield learning progresses. For mature
products, these parameters are very stable.

25.6.2.2 Model verification

The data presented in this subsection came from 77 000 microprocessor units from a
0.25 µm CMOS process that were subjected to burn-in. Die that tested good at wafer
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Figure 25.20 Reliability failure probability in bin 0 fraction of die in bin 0 and the
improvement ratio as a function of wafer probe yield YK . All values
are given in per cent. Here α = 2 and γ = 0.015

probe were binned based on the number of faulty neighbours they had. The fraction
of good chips in each bin following wafer probe and the fraction of stress failures
in each bin were then obtained from the data and compared to model predictions.
As this section will show, model predictions matched observed data. Indeed, dif-
ferences between projected and observed reliability were negligible for all practical
purposes.

Figure 25.21 shows the bin distribution of those die that passed wafer probe. Note
that bin 0 has been excluded as no chips were present in this bin. This was due to a
systematic problem; a particular reticle location had zero-yield. The regularity of this
defect made it impossible for a chip to have 0 faulty neighbours. Thus, for calculation
purposes, the nine-die neighbourhood was reduced to eight-die.

Edge chips that lacked complete neighbourhood information were treated in two
different ways. In the data shown in Figure 25.21, missing die were treated as if
they were faulty. A die with three missing neighbours, for example, could never
appear in a bin <3. An alternative method was considered that involved replacing
missing neighbours with die a distance of two die away from the central die rather than
one. In this case, a die with three missing neighbours would choose the next three
closest neighbours with complete wafer test information. In cases where multiple
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Figure 25.21 Fraction of good die in each bin. Note that bin 0 is excluded as no chips
had 0 faulty neighbours. This was due to a systematic problem with a
reticle, causing a particular reticle location to zero-yield. Numerical
values are proprietary and have therefore been excluded

replacement possibilities exist, the one with the most faulty die was chosen. Applying
this method to the data only minutely changed the results of Figure 25.21. Experience
with multiple products indicates that both methods can be used successfully; the latter
method being more effective when a large fraction of the good chips are on the edge.

Although they-axis values are not shown, it is clear that the predicted and observed
values track closely. Note that for the purpose of obtaining the bin distribution of good
chips, only the yield model is needed. Thus, the main conclusion from this figure
is that the negative binomial statistics can accurately describe the bin distribution of
good chips.

To test the accuracy of the integrated yield-reliability model, one must compare
the fraction of stress failures observed in each bin to model predictions. This is shown
in Figure 25.22. Note that the predicted and observed values track closely. Again, the
difference between the predicted and observed reliability is small.

Note that the largest fraction of burn-in fails comes from bin 5. This is often a
source of confusion, since many expect bin 8 to contribute the largest fraction of
fails. However, even though the chips in bin 8 have the greatest failure probability,
the number of good chips in bin 8 following wafer probe is relatively small. This
emphasises the important point that the stress test failure probability (Figure 25.17)
must be considered alongside the bin distribution of good chips (Figure 25.21). Indeed,
it is the product of these two figures that gives the fraction of fails in each bin
(Figure 25.22). As a numerical example, suppose that the burn-in failure probabilities
in bin 0 and 8 are 0.01 and 0.1, respectively. Thus, chips in bin 8 are ten times more
likely to fail than chips in bin 0. Suppose further that there are 1000 chips in bin 0
and 100 chips in bin 8 following wafer probe. Then the number of failures from bin
8 is 0.1 × 100 = 10 and the number of fails in bin 0 is also 0.01 × 1000 = 10.
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Figure 25.22 Fraction of failures in each bin. Note that bin 0 is excluded as no chips
had 0 faulty neighbours. This was due to a systematic problem with a
reticle, causing a particular reticle location to zero-yield. Numerical
values are proprietary and have therefore been excluded

25.7 Conclusions

This chapter has presented a unified approach to yield and reliability modelling.
Fundamentally, the successful integration of yield and early-life reliability results
from the fact that latent early-life reliability defects, while smaller and placed differ-
ently, are essentially the same in nature as those killer defects that cause wafer probe
failures. Yield models that accurately describe the distribution of killer defects will
therefore also describe the distribution of latent defects.

Any successful defect distribution must account for the fact that defects over
semiconductor wafers tend to cluster. The negative binomial distribution, known for
two decades to describe killer defect distributions, accurately describes latent defects
distributions as well. Defect clustering information can be used to identify the most
reliable die, or conversely, those die most likely to contain a latent defect and fail
during the early-life period. This information allows the semiconductor manufacturer
to optimise stress tests such as burn-in, and can result in significant cost reductions
when compared to traditional methods.
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Click software design 234–6
concurrency and time issues 224–5,

226–31
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embedded software, concurrent models of
computation (contd.)

CSDF (Cyclo-Static DataFlow) 245
dataflow model of computation 243
deadlock issues 231
decidable dataflow models 245
declarative concurrent models 238–46
DE (Discrete-Event) semantics 229–30
Dennis dataflow model of computation

244–5
differences to general software 224
discrete-event models 241
flaw detection 225–6
functionality improvement 229
HDF (Heterochronous DataFlow) 245
IDF (Integer-Controlled DataFlow) 245
imperative concurrent models 231–8
Kahn process networks 243–4
Koala model 236–8
Lustre synchronous language 241–2
multi-threaded programs 225
nesC/TinyOS 232–4
non-determinism 227
PECOS model 245–6
PN (Process Network) semantics 229
reliability aspects 225
resource limitation issues 223–4
SCADE (Safety Critical Application

Development Environment) 241–2
SDF (Synchronous Dataflow) 245
Simulink 238–40

with Real-Time Workshop 239–40
SSDF (Statically Schedulable Dataflow)

245
synchronous languages 241–2

embedded system design
about embedded systems 3–5
abstraction layers 4
constraints 3–4
and exploration and estimation 4–5
programmable architectures 4
see also PISA; real-time heterogeneous

embedded systems, analysis and
optimisation

equivalence checking
about equivalence checking 716–17
advanced equivalence checking 718–19
comparisons with RTL and netlist

719–21
Gatecomp equivalence checker 718–19
netlists 717, 718
precision 719

RTLs (Registered Transfer Levels) 717,
718

see also Validation, system level
E-RPCT (Enhanced-RPCT), multi-site

testing 792, 793–4, 795
ETCs (Event-Triggered Clusters), in

multi-cluster systems 87–9, 92,
103–7

ET (Event-Triggered) approach activities
80, 83

event models: see SymTA/S formal
system-level performance and timing
analysis tool

event stream adaptation, with SymTA/S 39
evolutionary optimiser 60–1
exponential-Golomb compression code

773–5
EXPO variation process, and PISA 21–3
EXPRESSION ADL 200–2

FDR (Frequency-Directed Run-length)
codes 756

feedback loops in MoC models 166–8
flash conversion TDCs 830–2
flash time-to-digital conversion and

calibration: see SOTDC (Sampling
offset Time-to-Digital Converter);
TDC (Time-to-Digital converters);
time measurement techniques

FlexWare CAD system 198
flits 605–7
FPGAs (Field-Programmable Gate Arrays)

161, 363
for hardware/software system codesign

660
and reconfigurable computing 451, 455,

458–64
with SOTDCs 844

FPS (Fixed Priority Scheduling) 79
frame packing, multi-cluster systems 97–9,

108–12
FRIDGE tool 520
FSM (Finite State Machine) based model

and computational kernels 396–8
and heterogeneous models of

computation 170
and property checking 725
for validation of ADL specification 211

GALS (Globally Asynchronous Locally
Synchronous) system/paradigm
543–5, 612, 627–8, 640–3

Gatecomp equivalence checker 718–19
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gated clocks, and RTL power management
395–6

GCD (Greatest Common Divisor)
problem/benchmark algorithm
547–50, 552–7, 563–6, 573–7,
578–80

GNU C compiler 267
GT router sub-system 614–15
guarded evaluation technique, and RTL

power management 399–400
GUI (Graphical User Interface)

with δ framework 125–6
energy characterisation 376–9

hardware/software cosimulation: see
cosimulation, HW/SW
(Hardware/Software)

hardware/software system codesign: see
codesign of hardware/software
systems

hardware/software system covaluation: see
covaluation of hardware/software
systems

HDL (Hardware Description Language)
file generation example 126–7
MIMOLA 265–6
with MoCs 176
Verilog 124, 176

high-resolution flash time-to-digital
conversion and calibration: see
SOTDC (Sampling offset
Time-to-Digital Converter); TDC
(Time-to-Digital converters); time
measurement techniques

HMDES machine description language
198–9

homodyne mixing 825–6
H-safe sequence/state, deadlock avoidance

131–2
HW/SW: see hardware/software......

IDF (Integer-controlled DataFlow) 245
IEEE P1500 working group 752
ILAC tool 525
ILP (Instruction Level Parallelism) 195,

261–2
instruction scheduling 261–4
inter event stream context 51–3

worst-case response time calculation
52–3

International Technology Roadmap for
Semiconductors 29

interpolation for time measurement 827–8

interpreted/scripting software for
hardware/sofware codesign 659–60

interrupt handling simulation 703–4
intra event stream context 49–51
I/O (Input/Output) 121
IPCP (Immediate Priority Ceiling Protocol)

128
IP (Intellectual Property) cores 121–2
IR (Intermediate Representation)

IR generators 254–5
IR mapping 257
IR of source code 254–7

ISA (Instruction Set Architecture) level
model 695–6

ISDL (Instruction Set Description
Language) 195–7

ISE (Instruction-Set Extraction) 193
ISS (Instruction Set Simulator) 695
ITRS (International Technology Roadmap

for Semiconductors) 609

JIT-CCS (Just-In-Time Cache Compiled
Simulation) 208

Kahn process networks 168, 243–4
Kingsley Allocator DM manager 353
Koala embedded system model 236–8
KOAN tool 525

λ-RTL 197
layer concept: see design space exploration
LAYLA tool 526
Lea Allocator DM manager 353
leakage current analysis for CMOS

nano-scale circuits
about leakage currents 415–17
body effect 421
BTBT (Band-to-Band Tunnelling)

current 418–20, 430
direct tunnelling 425–8
gate tunnelling major components

428–9
junction band-to-band tunnelling current

418–20
modelling gate tunnelling current 425–9
narrow-width effect 424–5
quantum-confinement effect 423–4
short-channel effect 422–3
subthreshold current 419–25
technology scaling effects 429–30
temperature effects 430–1
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leakage current/power reduction techniques
about leakage power reduction 404–5,

430–2, 443–4
active leakage reduction 439–40
active/stanby leakage 431–2
cache memory techniques 440–3
channel length increases 434
design time techniques 432–4
domino logic 432–3
doping profile changes 433
dual/multi-threshold CMOS cells 407,

432–4
increasing transistor channel lengths 409
MLV (Minimum Leakage Vector)

method 407–9
oxide thickness changes 433–4
power gating 405–6
runtime techniques 434–40
SCE (Short Channel Effect) 409
standby leakage reduction 434–9

forward/reverse body biasing
438–9

natural transistor stacks 434–6
sleep transistors 436–8

transistor sizing with threshold and
supply voltage assignment 409–10

leakage power 362
LFSR (Linear Feedback Shift Register)

847–9
LIN (Local Interconnection Network) 78
LISA (Language for Instruction Set

Architecture) 202–3
LISA-to-VHDL model translation 274

LISATek ASIP design tool suite
about LISATek 272–5
code quality results 282–4
code selector 279–82
concept as a retargetable C compiler

275–7
register allocator and scheduler 277–9

LockCache description lists 127
see also SoCLC

low power systems
about low power systems 361, 381–2
see also low power interactive systems;

low power system scheduling; low
power system synthesis

low power interactive systems
about interactive systems 376
display-related power reduction 380–1
DVS/DPM for interactive systems

379–80
GUI (Graphical User Interface)

energy characterisation 376–8
energy-efficient design 378–9

low power system scheduling
about scheduling low power systems

361–4
ABB (Adaptive Body Biasing) 361,

365–6
ASICs (Application-Specific Integrated

Circuits) 363
battery-aware techniques 368
communication link power optimisation

368–71
DPM (Dynamic Power Management)

364
DVS (Dynamic Voltage Scaling) for

distributed systems 364–8, 368–9
dynamic power 362
FPGAs (Field Programmable Gate

Arrays) 363
leakage power 362
periodic and aperiodic tasks 363
PEs (Processing Elements) 363

low power system synthesis
about system synthesis 371
distributed system synthesis 373–5

constructive algorithm 374
genetic algorithm 374–5
iterative improvement algorithm
373

joint energy optimisation 375
QoS driven system synthesis 375

low-energy network-on-chip
architectures 375

SoC synthesis 371–3
MOCSYN 372

task graph generation 376
LPN (Labelled Petri Net) 553–5, 560
LSSD (Level-Sensitive Scan Design),

multi-site testing 793
Lustre synchronous language 241–2

machine code generation
about machine code generation 257
code selection 257–60
DFG (Data Flow Graph) 258, 261, 262–3
DFTs (Data Flow Trees) 258–61
ILP (Instruction-Level Parallelism)

261–2
instruction scheduling 261–4
IR mapping 257
MAC (Multiply and Accumulate)

instruction 258
NOPs (No-Operations) 262
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register allocation 260–1
VLIW machines 261–4

MAC (Multiply and Accumulate) instruction
258

Macro Test modular testing 763–4
MDES (Machine DEscription System)

198–9
MEDL (Message Descriptor List), in

multi-cluster systems 88–91
memory bandwidth optimisation for power

reduction
about memory bandwidth optimisation

323
local memory layer

access order impact 328–30
data layout based techniques 327–8
limitations 329–30

multi-threaded applications 330–1
runtime memory management 331–3

runtime policies 332–3
SDRAM bandwidth 324–7

data assignment techniques 325
data layout transformations 324–5
dynamism problems 327
limitations 329–30
memory access reordering 325–7

memory bandwidth optimisation for power
reduction for platform based design
333–44

local memory layer 337–44
access conflicts 337–9
assignment-constraints 338
global schedule 339–44
loop morphing/fusion 339–44
modulo scheduling 337

shared layer 333–7
data assignment across tasks’
boundaries 334–5

energy/performance trade-off with
task ordering 335–7

memory aware task scheduling 336
page misses with multi-threading
333–4

selfishness factor 334–5
microprocessors for hardware/software

system codesign 660
MIMOLA programming/hardware

description language 191–3, 265–6
mixed-level cosimulation: see cosimulation,

HW/SW (Hardware/Software),
mixed-level

mixed-signal (analogue/digital) embedded
integrated SoCs

about complex SoCs 497–8, 532
cable TV modem receiver example

501–5
CAD for complex SoCs 498
design methodology for top-down design

498–9
digital telecommunications link example

499–500
frontend architecture design 500–1
modular testing 766–9
noise considerations 500
simulation/simulator design tools 501
SWAN simulations 531
system-level architectural exploration

499–501
top-down analogue block design 505–6

PLL (Phase Lock Loop) example
505–6

verification and crosstalk analysis
529–32

VHDL simulations 531
see also analogue behavioural and

performance modelling; analogue
circuit synthesis; analogue layout
synthesis

MLV (Minimum Leakage Vector) method
for power reduction 407–9

MoC (Model of Computation)
about MoCs 161–4, 182–3
about MoCs in the design flow 171–2,

174–5
continuous time models 164–5, 172
data flow process networks 168–9
discrete time models 165, 172–3
feedback loops 166–8
forbid zero-delays 167
FSMs (Finite State Machines) 170
heterogeneous models 170–1

FunState representation 170–1
SPI (system property interval) 170

Kahn process network 168
microstep concept 167
relation based approach 168
rendezvous-based models 169
and SDF (synchronous data flow) 169
synchronous models 165–6, 173–4
unique fixed-point 167–8
untimed models 168–9, 174

MoC (Model of Computation) design
activities

about synthesis 175, 179–80, 181–2
ASAP (As-Soon-As-Possible) scheduling

178
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MoC (Model of Computation) design
activities (contd.)

formal verification 180–1
high-level synthesis 178–9
RTL (Register Transfer Level) synthesis

176–7
simulation 180
VHDL/Verilog-based simulation and

synthesis 176–7
MOCSYN 372
modular testing of SoCs

about modular testing 757–9
ATE (Automatic Test Equipment) cost

issues 759
ATE (Automatic Test Equipment) re-load

minimising 758
BIST (Built-in Self Test) 763
constraint-driven test scheduling 758
hierarchical SoCs 769–72

and TAM design methodology
770–2

Macro Test 763–4
mixed-signal (analogue/digital) SoCs

766–9
power issues 764
test scheduling 763–4
wrapper design and optimisation 759–61
wrapper/TAM co-optimisation 758
see also TAM (Test Access Mechanism)

molecular microelectronics 465
MONDRIAAN tool 527–8
Moore’s law 223, 387, 541
MPARM simulation platform 596
MPEG4 decoder 619–20
MPSoC (MultiProcessor System-on-Chip)

designs
about MPSoC 121–2
and performance analysis 29
and system integration 29
see also deadlock/deadlock avoidance;

RTOS (Real-Time Operating
Systems)

Multi-clock Esterel 630
multi-cluster heterogeneous real-time

systems
about multi-cluster systems 87
application model 91–3
ETCs (Event-Triggered Clusters) 87–9,

92, 103–7
hardware architecture 88–9
IFD (Inter-Frame Delimiters) 89
MEDL (MEssage Descriptor List) 88–91
optimisation 93–9

frame packing 97–9
partitioning and mapping 94–7

scheduling/schedulability 99–107
frame scheduling 103
list scheduling algorithm 102
methods for analysis 104–6
multi cluster scheduling algorithm
100–1

response time analysis 99–100, 104
worst-case queuing delays 106–7

software architecture 87–91
TDMA (Time-Division Multiple Access)

88, 108–9
TTCs (Time-Triggered Clusters) 87–92,

94–7, 99–103
multiple-voltage chip design 388–92

CDFG (Control-Data Flow Graph) 391
common voltage scaling 388
CVS (Clustered Voltage Scaling) 389–90
ECVS (Extended CVS) 390
level-converter free approach 391
level converters 388–9
polynomial time algorithm for

multiple-voltage performance 389
resource-and latency-constrained

scheduling 390–1
multi-site testing

about multi-site testing 791–2, 817–18
ATE (Automatic Test Equipment) 791,

792–4, 795
BIST (Built-in Self Test) 791
E-RPCT (Enhanced-RPCT) 792, 793–4,

795
experimental results

abort-on-fail 817
algorithmic performance 809–11
contact yield and re-test rate
815–17

economical ATE (Automatic Test
Equipment) extensions 814–15

index time 811–13
re-using on-chip infrastructure for
final test 813–14

final test 795, 798–800, 803–4, 808–9
LSSD (Level-Sensitive Scan Design)

793
problem definitions 800–4
RPCT (Reduced-Pin-Count-Test) 792–4
stimuli broadcast 796–7
TAM (Test Access Mechanism) 794
TDC (Test Data Compression) 791
test infrastructure for core based SoCs

801–3
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test infrastructure design for flat SoCs
800–1

throughtput model 795–800
wafer test 795, 797–8, 804–8

mutation analysis 669

negative binomial statistics, and yield 860–1
nesC/TinyOS 232–4
NetChip 618
network arbitration 30
NEXUS 644
NI (Network Interface) 611–12
nML instruction-set oriented ADL 194–5,

272
NoC (Network-on-Chip) architectures and

design technology
about NoC architectures 589–90, 601,

621–2
Ætheral 614–16
BE router 615
design productivity issues 602
design technology 616–21
GT router sub-system 614–15
with MPSoCs (MultiProcessor SoCs)

616
NetChip 618
power dissipation 619
SUNMAP 618
technology issues 602
VSIA (Virtual Socket Interface Alliance)

602
xpipes 612–14, 617–21
see also AMBA (Advanced

Micro-Controller Bus Architecture);
asynchronous NoCs
(Networks-on-chips); buses on-chip

NoC (Network-on-Chip) packet-switched
interconnecting networks

DSM (Deep Sub-Micron) designs 609
fat tree topology 603–4
flits 605–7
flow control 605–7
ITRS (International Technology

Roadmap for Semiconductors) 609
latency minimisation 603
links 608–10

pipelining 609
mesh topology 603–4
NI (Network Interface) 611–12

Advanced VCI (Virtual Component
Interface) 611

AMBA AXI 611
Basic VCI 611

OCP (Open Core Protocol) 611,
612–13

Peripheral VCI 611
with xpipes 612–14

on-chip serialisation 610
ONC (On-Chip network) 610
Proteo NoC 604
routing 607–8

adaptive algorithms 607
deterministic algorithms 607
oblivious algorithms 607
source routing 608

SPIN micronetwork 603
switch architecture 610–11
topology 603–5

noise with mixed-signal SoCs 500
NOPs (No-OPerations) 262
NPU (Network Processing Unit) 264

Obstacks custom DM manager 353–4
OCCOM (Observability-based Code

Coverage Metric) 671
OCP (Open Core Protocol) 611, 612–13,

693
on-chip buses: see buses on-chip
on-chip testing

about on-chip testing 821–5
ADCs (Analogue-to-Digital Converters)

821
calibration, need for 824
DIB (Device-Interface Board) 821
DUT (Device-Under-Test) 821, 824
temporal uncertainty 821
timing measurement on-chip need 822–4
see also SOTDC (Sampling offset

Time-to-Digital Converter); TDC
(Time-to-Digital converters); time
measurement techniques

ONC (On-Chip Network) 610
optimisation of systems: see memory

bandwidth optimisation for power
reduction; multi-cluster
heterogeneous real-time systems;
real-time heterogeneous embedded
systems, analysis and optimisation;
software power optimisation

optimisation of systems with design space
exploration

about optimisation 55–6
chromosomes, defining 59–60
design space exploration loop 60–2
dynamic configurability of the search

space 60
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optimisation of systems with design space
exploration (contd.)

evolutionary optimiser 60–1
exploration control 60
optimisation controller 60–1
optimisation objectives 57–9
Pareto-optimal solutions 58
scheduling analysis 60
search space 56–7
search space defining 59–60
SPEA2 60
and SymTA/S 62
SymTA/S usage 57–9
traffic shaping 56

OS (Operating Systems), RTOS (Real-Time
Operating Systems) 121–2

packet switched interconnecting networks:
see NoC (Network-on-Chip)
packet-switched interconnecting
networks

Pareto, and SPEA2 60
Pareto-dominance concept 7
Pareto-optimal points/solutions 7, 8

and PISA 21
with power reduction 336
system-on-chip example 68–9

Pareto set, and selection for survival 13
parsers, on retargetable compilers 253–4
PBAU (Parallel Banker’s Algorithm Unit)

126, 139–45
PCCTS (Purdue Compiler Construction Tool

Set) 724
PC (Property Checking) 716
PECOS embedded software model 245–6
performance analysis: see complex

embedded applications, performance
analysis; SymTA/S formal
system-level performance and timing
analysis tool; system-level
performance analysis and
verification

periodic and aperiodic tasks 363
PEs (Processing Elements) 363
Petri Net (PN) model

and clock-less circuits 551–2
CPN (Coloured Petri Net) 551–2, 556–7
LPN (Labelled Petri Net) 553–5, 560

PISA (Platform and Programming language
independant Interface for Search
Algorithms)

data transfers 19–20
and design space exploration 4, 8, 9

design space exploration example 20–3
EXPO variation process 21–3
optimisation process 18
and Pareto-optimal solutions 21
protocol description 17–20
SPEA2 usage 20–1
states for protocol 18–19
synchronisation 19

platform-based design, for power efficiency
319–20

PLLs (Phase-Locked Loops)
example of mixed-signal integrated SoC

505–6
with mixed asynchronous/asynchronous

solutions 638–9
PN (Petri Net) model

and clock-less circuits 551–2
CPN (Coloured Petri Net) 551–2, 556–7
LPN (Labelled Petri Net) 553–5, 560

PN (Process Network) semantics 229
Poisson statistics, and yield 859–60
polychrony framework/platform 630–2
power-efficient data management for

dynamic applications
about power saving for mobile devices

319, 355–6
DM (Dynamic Memory) management

about DM management 349–52
Kingsley Allocator DM manager
353

Lea Allocator DM manager 353
low power custom DM manager
creation 354–5

Obstacks custom DM manager
353–4

dynamic behaviour problems
about dynamism 344–5
design-time techniques 346
energy constraints and runtime
decisions 345–6

scenario-based approach for best
operating point 346–9

storage bandwidth optimisation
349

generic target architecture 322–3
media-rich services demands

closed systems 320–1
data-dominated tasks 321
multi-threaded systems 320
tasks are control/data flow graphs
321

time-constraints 321
memory considerations 321–2



Index 905

platform-based design 319–20
see also memory bandwidth optimisation

power minimisation/reduction/optimisation
and management

about power minimisation/optimisation
387–8, 410

see also DVS (Dynamic Voltage
Scaling); leakage current/power
reduction techniques; low power
interactive systems; low power
system scheduling; low power
system synthesis; multiple-voltage
chip design; RTL (Register Transfer
Level), power management;
sequential logic synthesis for low
power; software power optimisation

precomputational logic, and RTL power
management 394–5

pre-emptive scheduling 81–2
programmable architectures 4
property checking

about property checking 723–4
SystemC frontend 724–6

AST (Abstract Syntax Tree) 724–5
FSM (Finite State Machine) 725
PCCTS (Purdue Compiler
Construction Tool Set) 724

SystemC property checker 726–9
BMC instance 726–9
Boolean formulation of 726–9
bubble sort experiment 729–32
example 727–9

pulse stretching 828
PUPPY-A placement tool 526

QoS (Quality of Service)
asynchronous NoCs 645–6
low power system synthesis 375

RADL ADL language 203
RAG (Resource Allocation Graph),

deadlock detection 133
RAIL tool 529
Razor logic and DVS 392–4
real-time heterogeneous embedded systems,

analysis and optimisation
about embedded real-time systems 75–6,

115
automotive electronics 76–7
design optimisation

architecture selection and mapping
84

calibration, testing, verification 86

functional analysis and design 84
function/architecture co-design 86
integration 85–6
scheduling and scheduability
analysis 85

software design and implementation
84–5

traditional design methodology
83–6

VCC (Virtual Component
Co-design) 86

distributed safety-critical applications
80–1

ET (Event-Triggered) approach activities
80, 83

experimental results
about evaluations 112–14
vehicle cruise controller 114–15

frame-packing optimisation strategy
107–12
about frame packing 107–8
greedy heuristic 110–12
with simulated annealing 108–10

hardware architecture 77–8
body electronics 78
ECUs (Electronic Control Units)
78

system electronics 78
heterogeneous communication protocols

78–9
CAN (Controller Area Network)
78–9

LIN (Local Interconnection
Network) 78

TTP (Time Triggered Protocol) 79,
88

heterogeneous scheduling policies 79–80
EDF (earliest deadline first)
scheduling 79

FPS (fixed priority scheduling) 79
static cyclic scheduling 79

schedulability analysis 81–3
CAN (Control Area Network)
protocol 83

non-pre-emptive scheduling 82
pre-emptive scheduling 81–2

TT (time-triggered) approach activities
79–80, 83

see also multi-cluster heterogeneous
real-time systems

reconfigurable computing architectures
about reconfigurable computing 451–5
and ASICs 454–5
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reconfigurable computing architectures
(contd.)

and FPGAs 451, 455
main trends

course-grained fabrics 466
heterogeneous functions 466–7
soft cores 467

reconfigurable fabric 458–66
asynchronous architectures 465
emerging directions 465–6
fabric/device comparisons 459
fine/course-grained functional units
458–65

FPGA applications 458–64
functional units 458–68
interconnects 464–5
low power techniques 465
molecular microelectronics 465

system-level 456–8
reconfigurable computing design methods

about reconfigurable computing 451–5
annotation-free compilation 478–9
commercial tools

Celoxica’s DK design suite 452
Synplicity Synplify Pro 452
Xilinx’s ISE 452

emerging directions
customisable hardware compilation
479

verification 479
general-purpose design 467–9

annotation and constraint-driven
467–8

hardware compiler summary 470
source-directed compilation 468–9

hardware/software codesign 478
main trends

high-level transformations 480
low power design 479
special purpose design 479

mult-FPGA compilation 478
runtime customisation 477
soft instruction processors 477–8
special purpose design 469–77

DSP (Digital Signal Processing)
471

methods/systems comparison chart
474–5

optimisation flow example 473,
476

word-length optimisation problem
471–3

RECORD retargetable compiler 266

response time analysis, multi-cluster systems
104

retargetable compilers
about retargetable compilers 251–3,

284–5
ASIP design 270–2
behavioural modelling languages 264–5
CFG (Control Flow Graph) 255–6, 261
CGD machine description format

268–70
construction background 253–64
control flow analysis 255–6
CoSy system 268–70
DFG (Data Flow Graph) 255–7
efficiency requirements 252, 284–5
GNU C compiler 267
IR (Intermediate Representation)

IR generators 254–5
IR of source code 254–7

little C compiler 267–8
MIMOLA programming/hardware

description language 265–6
parsers 253–4
RECORD 266
source language frontend 253–4
source-level code optimisation 285
see also ADL (Architecture Description

Language); LISATek ASIP design
tool suite; machine code generation

RMHC (Random Mutation Hill Climber)
679

ROAD area router 526
RPCT (Reduced-Pin-Count-Test), multi-site

testing 792–4
RTL (Register Transfer Level)

power management 394–400
complete input-disabling
architecture 394

computational kernals 395–8
gated clocks 395–6
guarded evaluation technique
399–400

precomputational logic 394–5
state machine decomposition
398–9

synthesis 176–7, 265
power minimisation at RT-level and
below 387–410

in system-level validation 717, 718, 725
RTOS (Real-Time Operating Systems)

about RTOS 121–2, 156–7
CS (Critical Section) 127
δ framework 124–7
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execution time comparisons
base MPSoCs 146–7
between RTOS1 and RTOS2 147–8
between RTOS1 and RTOS3 148–9
between RTOS4 and RTOS5
149–50

between RTOS6 and RTOS7 150–2
between RTOS8 and RTOS9 152–6

GUI (Graphical User Interface) 125–6
hardware/software design 122–9
IPCP (Immediate Priority Ceiling

Protocol) 128
RTOS/MPSoC target 122–4
SoCDMMU (SoC Dynamic Memory

Management Unit) 125–6, 128–9
SoCLC (SoC Lock Cache) 125–8
see also MPSoC (MultiProcessor

System-on-Chip) designs

safety, distributed safety-critical applications
80–1

sampling offset TDC: see SOTDC (Sampling
offset Time-to-Digital Converter)

SCADE (Safety Critical Application
Development Environment) 241–3

SCE (Short Channel Effect), CMOS gates
409

schedulability analysis 81–3
SDF (Synchronous Dataflow) 163, 245

and MoCs 169
SD-OPT tool 517–18
SDRAM bandwidth 324–7
self-timed systems 545–6

see also asynchronous NoCs
(Networks-on-chips); clock-less
circuits and system synthesis

sensitivity analysis, system-level
performance 62–4

sequential logic synthesis for low power
retiming 401–4

fixed-phase retiming 402–4
heuristic retiming 402
hybrid retiming 404

state encoding/assignment 400–1
set-top-box system 48–9
SGs (State Graphs) 630
SIA (Semiconductor Industry Association)

roadmap 651
signal amplitude sampling 826
simulation, and performance analysis 29–31
Simulink program for embedded software

238–40

SLED (Specific Language for Encoding and
Decoding) 197

SoCDMMU (SoC Dynamic Memory
Management Unit) 125–6, 128–9

SoCLC (SoC Lock Cache) 125–8
SoC (System-on-Chip)

design process 161–3
possible architecture 162
see also MoC (Model of Computation);

modular testing of SoCs; NoC
(Network-on-Chip); testing SoCs

software power optimisation
about power optimisation 289–92
algorithms influence 292–4
cache performance influence 294–5, 299
CDCP (Compiler-Directed Cache

Polymorphism) 299–302
CMOS power consumption 291
compiler code optimisation 294–5
compiler-directed resource

reconfiguration 297–302
compiler optimisation for partitioned

memory architectures 309–11
array allocation algorithm 310
array renaming 311
cache leakage control 312–13
loop fission and splitting 310–11
loop fission transformation 312

compiler techniques 291
data/code restructuring 309–13
data locality optimisation techniques 291
DVS (Dynamic Voltage Scaling) 295–7
dynamic resources reconfiguration 298
linear loop transformations 294–5
loop unrolling/fusion/fission 295
OS/JVM techniques 291
power modes control

cache leakage power modes 304–8
conservative strategy 306–7
functional unit leakage mode
control 308–9

memory mode control 302–4
optimistic strategy 307–8

voltage scaling 295–7
SONET (Synchronous Optical NETwork)

standard 822–3
SOTDC (Sampling offset Time-to-Digital

Converter)
about SOTDCs 833, 853–4
calibration, with added noise 838–44

calibration time 841–2
experimental results 842–4
simulation results 839–41
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SOTDC (Sampling offset Time-to-Digital
Converter) (contd.)

calibration, traditional 833–8
direct 836–8
flip-flop model 833
indirect 833–6

CPLD (Complex Programmable-Logic
Device) 842–3

custom IC implementation 844–53
arbiter design 845–7

calibration 850–1
chip layout 849–50
jitter usage 851–2
performance limitations 852–3

arbiter layout 847–8
counter design 847–9
LFSR (Linear Feedback Shift
Register) 847–9

single level of the custom IC
845–50

SPEA2 (Strength Pareto Evolutionary
Algorithm)

and design space exploration 60
and PISA 20–1

SPICE circuit simulator, for analogue
modelling/synthesis 506–7, 510,
520

SSDF (Statically Schedulable DataFlow)
245

state encoding/assignment 400–1
state machine decomposition, and RTL

power management 398–9
static cyclic scheduling 79
STGs (Signal Transition Graphs) 551–2,

560–6, 628–30
stimuli broadcast, multi-site testing 796–7
subexponential compression code 775–6
SUNMAP 618
SymTA/S formal system-level performance

and timing analysis tool
about SymTA/S 33–4, 70–2
analysis composition 37–9

analysis composition using standard
event models 38–9

with global system analysis 39
output event model calculation 38
system with cyclic scheduling
dependency example 38

application model 34–5
event models/functions 35–7

minimum/maximum distance
functions 36

periodic with jitter event model
36–7

sporadic events 37
upper/lower event functions 35

event stream adaptation 39
intra event stream context 50
optimisation of design space 57–9
sensitivity analysis 62–4
system model example 34–5
task concept 34
see also system-level performance

analysis and verification
synchronous systems 542–3
Synplicity Synplify Pro 452
syntax-driven translation/design flow

546–50
see also clock-less circuits and system

synthesis
SystemC 722

frontend 724–6
System electronics, and real time

heterogeneous embedded systems
78

system-level performance analysis and
verification

about formal approaches 32–3
about performance analysis 29–32, 48,

70–2
compositional approach 33
context blind analysis 48–9
event vector system 33
example

about the example 64–6
analysis 66–7
BCET (Best-Case Execution Time)
70

constraint values 68
optimisations 67–9
Pareto optimal solutions 68–9
sensitivity analysis 69–70
WCET (Worse-Case Execution
Time) 69–70

holistic approach 32
inter event stream context 51–3

worst-case response time
calculation 52–3

intra event stream context 49–51
intra/inter combinational event stream

context 53–5
and network arbitration 30
and resource sharing 30
sensitivity analysis 62–4

deadlines 63
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and resource utilisation 64
task execution/communication
times 63

variation of resource speed 63–4
and simulation 29–31
and system integration 29
transient runtime effects 30–1
WCET (Worst-Case Execution Time)

49, 69–70
see also complex embedded applications,

performance analysis; SymTA/S
formal system-level performance
and timing analysis tool

system optimisation: see optimisation of
systems with design space
exploration

system synthesis: see low power system
synthesis

TAM (Test Access Mechanism)
and ATE (Automatic Test Equipment)

with port scalability 766
design and optimisation 761–3
with embedded-core test approach 753
and hierarchical SoCs 770–2
integrated TAM and test scheduling

764–6
mixed-signal SoCs 769
multiplexing architecture 761
and multi-site testing 794
Test Bus architecture 762
TestRail architecture 762, 763
and test resource partitioning 754, 755,

757
and wrapper design 759–60
see also modular testing of SoCs

TDC (Test Data Compression)
multi-site testing 791
see also test data compression

TDC (Time-to-Digital converters)
interpolator-based 826–7
single counter 826–7
see also on-chip testing; SOTDC

(Sampling offset Time-to-Digital
Converter); time measurement
techniques

TDL (Target Description Language)
199–200

TDMA (Time-Division Multiple Access)
31, 88, 108–9

deterministic TDMA networks 32
temporal uncertainty 821
test data compression

about compression of test data 772–3
codes, use of 773–8
codeword length comparisons 776–7
dictionary-based compression

778–82
clique partitioning procedure
781–2

exponential-Golomb code 773–5
information-theroretic analysis

776–7
and multi-site testing 791
subexponential code 775–6

testing SoCs
about testing SoCs 751–4, 782
ATE (Automatic Test Equipment)

753
BIST (Built-In Self Test) 756, 763
conceptual test architecture 752–3
core test wrapper 753
DfT (Design-for-Testability) 752
IEEE P1500 working group 752
integrated TAM and test scheduling

764–6
TAM (Test Access Mechanism) 753
test scheduling 763–4
UDL (User Defined Logic) tests 752
VSIA (Virtual Socket Interface Alliance)

752
see also mixed-signal (analogue/digital)

embedded integrated SoCs; modular
testing of SoCs; multi-site testing;
on-chip testing; SOTDC (Sampling
offset Time-to-Digital Converter);
TAM (Test Access Mechanism);
TDC (Time-to-Digital converters);
time measurement techniques; TRP
(Test Resource Partitioning)

textual coverage metrics 668–70
time-domain analysis 826–7
time measurement techniques

ADCs (Analogue-to-Digital Converters)
826

delay chain flash converter 830–1
flash conversion 830–2
homodyne mixing 825–6
interpolation 827–8
pulse stretching 828
signal amplitude sampling 826
time amplification 829–30
time-domain analysis 826–7
TVCs (Time-to-Voltage Converters)

825
Vernier delay flash converter 830–2
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time measurement techniques
(contd.)

Vernier oscillators 828–9
see also SOTDC (Sampling offset

Time-to-Digital Converter); TDC
(Time-to-Digital converters)

time-to-digital convertion/converters: see
TDC (Time-to-Digital converters)

TinyOS 232–4
TLM (Transaction Level Model) 693,

698–700
top-down design for mixed SoCs: see

mixed-signal (analogue/digital)
embedded integrated SoCs

traffic shaping 56
TRP (Test Resource Partitioning)

about TRP 754
BIST (Built-In Self Test) 756
and DfT (Design-for-testability)

755
TAM (Test Access Mechanism) 754,

755, 757
test data transfer and scheduling

756
test data volume reduction

(compaction/compression) 756–7
test hardware optimising techniques

754–5
for test time minimising 755–6

TTCs (Time-Triggered Clusters), in
multi-cluster systems 87–92, 94–7,
99–103

TTP (Time Triggered Protocol) 79, 88
TT (Time-Triggered) approach activities

79–80, 83
TVCs (Time-to-Voltage Converters) 825

UDL/I (Unified Design Language) 193
UDL (User Defined Logic) tests 752

Valen-C behavioural ADL 197
validation, system-level

about validation 715–16
challenges/problems 743–5
formal verification 716
see also checker generation; equivalence

checking; property checking;
verification

VASE tool 518
VCC (Virtual Component Co-design) 86
VCI (Virtual Component Interface)

611

VCO (Voltage-Controlled Oscillator)
example of mixed-signal integrated
SoC 505–6

vehicle cruise controller, experimental
results 114–15

verification
formal 716
system level

about system level verification 721
property language 722–3
SystemC 722

see also validation, system-level
Verilog HDL 124

VPP (Verilog PreProcessor) 125
Vernier delay flash converter

830–2
Vernier oscillators 828–9
VHDL/Verilog-based simulation and

synthesis 176–7
VLIW (Very Long Instruction Word)

machines/architectures
261–4, 298

VLSI (Very Large Scale Integration)
822–3

voltage scaling: see DVS (Dynamic Voltage
Scaling)

VSIA (Virtual Socket Interface Alliance)
602, 752

wafer test 795, 797–8
WCET (Worst-Case Execution Time) 49,

69–70
word-length optimisation, with

reconfigurable computing 471–3
wrappers, core test

design and optimisation 759–61
wrapper/TAM co-optimisation 758,

759–60
WREN tool 529

Xilinx’s ISE reconfigurable vendor
tool 452

xpipes NoC building blocks 612–14,
617–21

yield, local region 879–88
bin distribution calculations 880–8
burn-in results from 77 000 IBM

Microprocessor units 884–8
model verification 885–8
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parameter estimation 884–5
chips free of both killer and latent defects

881–2
chips free of killer defects 881
numerical results 883–4

Yield and reliability
about yield for ICs 857–8, 888
burn-in methodology 857–8
defect-based yield models 858–61

negative binomial statistics 860–1

Poisson statistics 859–60
integrating yield-reliability modelling

862–5
killer defects 862–3
latent defects 862–3
reliability yield 864–5
wafer probe yield 864

numerical results 865–7
see also defect tolerant memory circuits
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