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Preface

System-on-chip (SoC) is widely believed to represent the next major market for
microelectronics, and there is considerable interest world-wide in developing effec-
tive methods and tools to support the SoC paradigm. The work presented in this book
grew out of a special issue ‘Embedded Microelectronic Systems: Status and Trends’,
IEE Proceedings: Computers and Digital Techniques, April/June 2005.

Recently, a number of excellent books on SoC have been published, most of
which have focused on a particular area of SoC research. The field of SoC is broad
and expanding, and the prime objective of this book is to provide a timely and coherent
account of the recent advances in some of the SoC key research areas in one volume.
In order to achieve this, 25 international research groups were invited to contribute
to the book. Each contribution has an up-to-date research survey highlighting the
key achievements and future trends. To facilitate the understanding of the numerous
research topics covered in the book, each chapter has some background covering the
basic principles, and an extensive up-to-date list of references. To enhance the book’s
readability, the 25 chapters have been grouped into eight parts, each part examining
a particular theme of SoC research in depth.

In general, complete SoC designs consist of hardware and software components,
which are traditionally developed separately and combined at a later stage of the
design. This, however, increases time-to-market and system cost which is in contrac-
tion with some of the SoC drivers. To address such difficulties and to cope with the
continuing increased design complexity, new design methodologies that support SoCs
are needed. Part I of the book contains six chapters (1 to 6) dealing with the systematic
and concurrent design, analysis and optimisation of SoC-based embedded systems.
Software plays a very important role in the design of SoC; Part II has three chapters
devoted to embedded software characterisation (Chapter 7), retargetable compilation
(Chapter 8) and power-aware software generation (Chapter 9).

Excessive power dissipation in SoC does not only limit their applications in
portable devices, but also results in increased packaging and cooling costs. Managing
the power issue is fundamental to successfully expending Moore’s law. Until recently,
dynamic power has been the dominant source of power consumption, however, leak-
age power is becoming a significant fraction of the total power in deep-submicron
designs. Part III contains four chapters (9 to 13) describing effective techniques
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for reducing the dynamic and leakage power consumption. These techniques can
be applied at various levels of the design hierarchy to allow designers to meet the
challenging power constraints in SoC. There are some compelling advantages of
employing reconfigurable devices in SoC in terms of speed, power, cost and time-to-
market. Architectures and design methods for reconfigurable computing are discussed
in Part IV of the book (Chapter 14).

Telecomm and multimedia applications require mixed-signal SoCs; Chapter 15
of Part V describes methods and tools that automate the process of modelling and
generating analogue/RF cores for such SoCs. The International Technology Roadmap
on Semiconductors (ITRS — http://public.itrs.net/) predicts that the use of clock-less
designs will be increased in future SoCs to cope with timing issues. Chapter 16 of
Part five is concerned with the synthesis and design automation of asynchronous
systems. A key element in achieving functional design is the on-chip communication
that interconnects the SoC cores. Bus-based interconnections provide the current SoC
communication. However, SoCs complexity is increasing with the continuing scaling
down of CMOS feature sizes. According to [TRS’03, an average SoC will contain >50
processing and memory blocks in 2008 and 100 such blocks in 2012. Consequently,
it may not be viable to continue to effectively employ bus-based communication
in future SoC. To address this concern, and improve performance of future SoCs,
different interconnection technologies are being developed. Part VI (Chapters 17
and 18) is devoted to network-on-chip, a new interconnection technology where SoC
cores communicate with each other by sending packets over an on-chip network.

Part VII of the book contains three chapters investigating functional design val-
idation and verification, which are important factors that contribute to the ultimate
costs of an SoC. Chapters 19 and 20 focus on simulation-based techniques that have
been developed to validate complex hardware/software systems, whilst Chapter 21
considers formal verification as a way of verifying system correctness. The high level
of integration is making the cost of testing SoC expensive, mainly due to the volume
of test data and limited test access to embedded cores. The ITRS’03 predicts that if the
current trends are maintained, by 2015 the cost of testing a transistor will approach
or even exceed the cost of manufacturing. Therefore, low-cost design-for-test tech-
niques for SoCs are required, which is the subject of the final part (Part VIII) of
the book. This part has four chapters, test-resource partitioning (Chapter 22), multi-
site testing (Chapter 23), on-chip timing measurement (Chapter 24) and yield and
reliability (Chapter 25).

Book audience

It is the intention of this book to contain a diverse coverage of SoC main research
themes, each theme is discussed in depth and therefore the book will appeal to broader
readership. SoC is a popular PhD research topic and is appearing as part of the
syllabus for both undergraduate and postgraduate Electronics and Computer Engi-
neering courses at many universities, and I hope that this book will complement the
research and teaching that is taking place in this area. Also, the book should serve as
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a valuable reference for designers and managers interested in various aspects of SoC
design and test.
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Chapter 1

Multi-criteria decision making in
embedded system design

Simon Kiinzli, Lothar Thiele and Eckart Zitzler

1.1 Introduction

Embedded systems are usually evaluated according to a large variety of criteria such
as performance, cost, flexibility, power and energy consumption, size and weight.
As these kinds of non-functional objectives are very often conflicting, there is no
single optimal design but a variety of choices that represent different design trade-
offs. As a result, a designer is not only interested in one implementation choice but
in a well-chosen set that best explores these trade-offs.

In addition, embedded systems are often complex in that they consist of het-
erogeneous subcomponents such as dedicated processing units, application-specific
instruction set processors, general-purpose computing units, memory structures and
communication means like buses or networks. Therefore, the designer is faced with
a huge design space.

Embedded systems are resource constrained because of tight cost bounds. There-
fore, there is resource sharing on almost all levels of abstraction and resource types
that makes it difficult for a designer to assess the quality of a design and the final
effect of design choices. This combination of a huge design space on the one hand and
the complexity in interactions on the other hand makes automatic or semi-automatic
(interactive) methods for exploring different designs important.

Besides the above-mentioned multiple objectives in the design of embedded sys-
tems, there are tight constraints on the design time. One possibility to accommodate
late design changes and a short time-to-market is to choose a very flexible design,
close to a general-purpose computing system. On the other hand, this approach sac-
rifices almost all other quality criteria of a design. As a consequence, embedded
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systems are usually domain-specific and try to use the characteristics of the partic-
ular application domain in order to arrive at competitive implementations. In order
to achieve acceptable design times though, there is a need for automatic or semi-
automatic (interactive) exploration methods that take into account the application
domain, the level of abstraction on which the exploration takes place and that can
cope with conflicting criteria.

Following the usual hierarchical approach to embedded system design, there
are several layers of abstraction on which design choices must be taken. Above
the technology layer one may define the abstraction levels ‘logic design and high-
level synthesis’, ‘programmable architecture’, ‘software compilation’, ‘task level’
and ‘distributed operation’. These terms are explained in more detail in Section 1.2.
Design space exploration takes place on all these layers and is a generic tool within
the whole design trajectory of embedded systems.

A simplified view on the integration into an abstraction layer is shown in
Figure 1.1. For example, if the layer of abstraction is the ‘programmable archi-
tecture’, then the generation of a new design point may involve the choice of a cache
architecture. The estimation of non-functional properties may be concerned with the
performance of task execution on the underlying processor architecture, the size of
the cache or the total energy consumption. The estimation may either be done using
analytic methods or by a suitable simulator by use of suitable input stimuli, e.g. mem-
ory access traces. In any case, properties of the sub-components (from logic design)
are necessary, e.g. the relations among area, power consumption, structure and size
of the cache. The generation of new design points has to satisfy various constraints
e.g. in terms of feasible cache sizes or structures. The choice of a cache will then lead
to refined constraints for the design of its sub-components (digital design layer).

Figure 1.1 makes also apparent the interplay between exploration on the one
hand and estimation on the other. The methods and tools applied to the estimation of
non-functional properties very much depend on the particular abstraction layer and
the design objectives. For example, if the average timing behaviour is of concern,
very often simulation-based approaches are used. On the other hand, worst-case tim-
ing usually requires analytic methods. Estimation is particularly difficult as only a
limited knowledge about the properties of sub-components and the system environ-
ment in terms of input stimuli is available. For example, on the system-level, the
sub-components to be used are not designed yet and the individual tasks of the appli-
cation may not be fully specified. This chapter mainly focuses on the generation of
new design points and the decision process that finally leads to a design decision,
estimation will not be covered.

The purpose of the chapter is to review existing approaches to design space
exploration of embedded systems and to describe a generic framework that is based
on multi-objective decision making, black-box optimisation and randomised search
strategies. The framework is based on the PISA (Platform and Programming language
independent Interface for Search Algorithms) protocol that specifies a problem-
independent interface between the search/selection strategies on the one hand and
the domain-specific estimation and variation operators on the other. It resolves the
current problem that state-of-the-art exploration and search strategies are not (easily)
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Figure 1.1 Embedding of exploration in a hierarchical design trajectory for
embedded systems

accessible to solve the domain-specific exploration problems in embedded systems
design. The main questions the chapter would like to answer can be phrased as fol-
lows. How can one apply efficient design space exploration to a new design problem
in embedded systems design? How can one integrate a new estimation methodology
into a complete design space exploration in a simple and efficient way?

In Section 1.2 existing approaches to design space exploration in embedded sys-
tems are reviewed and classified. Section 1.4 describes the proposed framework that
is based on strategies that select promising design points (Section 1.4.1), implementa-
tion of domain-specific variation operators to determine a suitable neighbourhood of
current set of design points (Section 1.4.2), and the implementation based on the PISA
protocol (Section 1.4.3). A simple running example for cache exploration is used to
illustrate the different steps. Finally, Section 1.4.4 shortly describes a more complex
application, i.e. the system-level exploration of a stream processing architecture.

1.2 Approaches to design space exploration

There are a vast number of approaches available that make use of an automated or
semi-automated design space exploration in embedded systems design. Therefore,
only a representative subset will be discussed with an emphasis on the exploration
strategies, whereas the different estimation methods for non-functional properties
will not be discussed further.
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As described in Section 1.1, exploration of implementation alternatives happens

at various levels of abstraction in the design. These various layers are described next
and existing design space exploration approaches are classified accordingly:

Logic design and high-level synthesis: Here one is concerned with the synthesis
of digital logic starting from either a register-transfer specification or a more
general imperative program. Here, the manual design of dedicated computing
units is also included. Typical design choices concern speed vs. implementation
area vs. energy consumption, see References 1 and 2.

Programmable architecture: The programmable architecture layer contains all
aspects below the instruction set. For example, it contains the instruction set def-
inition, the microprocessor architecture in terms of instruction level parallelism,
the cache and memory structures. There are numerous examples of exploration
on this level of abstraction; they concern different aspects such as caches and
memories [3-5], or the whole processor architecture especially the functional
unit selection [6-8].

Software compilation: This layer concerns all ingredients of the software develop-
ment process for a single task such as code synthesis from a model-based design or
a high-level program specification. Within the corresponding compiler, possible
exploration tasks are code size vs. execution speed vs. energy consumption. There
are attempts to perform a cross-layer exploration with the underlying processor
architecture, see References 9 and 10.

Task Level: If the whole application is partitioned into tasks and threads, the
task level refers to operating system issues like scheduling, memory management
and arbitration of shared resources. Therefore, typical trade-offs in choosing the
scheduling and arbitration methods are energy consumption vs. average case vs.
worst case timing behaviour, e.g. Reference 11.

Distributed operation: Finally, there exist applications that run on distributed
resources. The corresponding layer contains the hardware aspects of distributed
operation (such as the design of communication networks) as well as methods
of distributed scheduling and arbitration. On this level of abstraction, which is
sometimes called system level, one is interested in the composition of the whole
system that consists of various computing and communication resources. System-
level design not only refers to the structure of the system, but also involves
the mapping of application to the architecture and the necessary (distributed)
scheduling and arbitration methods. This highest level of abstraction seems to be
especially suited for exploration methods, see e.g. results on the communication
infrastructure [12,13], on distributed systems [14] or multiprocessor systems and
systems-on-chip [15-19].

The above approaches combine several important aspects such as the integration of

the exploration into the whole design process, the specific estimation method used to
evaluate the properties of design points and finally the method that is used to perform
the actual exploitation. Following the focus of the chapter, the existing approaches can
be classified in a way that is orthogonal to the abstraction layers, namely the methods
that are applied to perform the exploration itself. This way it becomes apparent that
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the exploration process is largely independent of the abstraction level. This property
will be used later on in defining the new generic framework.

If only a single objective needs to be taken into account in optimisation, the design
points are totally ordered by their objective value. Therefore, there is a single optimal
design (if all have different objective values). The situation is different if multiple
objectives are involved. In this case, design points are only partially ordered, i.e. there
is a set of incomparable, optimal solutions. They reflect the trade-offs in the design.
Optimality in this case is usually defined using the concept of Pareto-dominance:
A design point dominates another one if it is equal or better in all criteria and strictly
better in at least one. In a set of design points, those are called Pareto-optimal which
are not dominated by any other.

Using this notion, available approaches to the exploration of design spaces can
be characterised as follows.

1 Exploration by hand: The selection of design points is done by the designer
himself. The major focus is on efficient estimation of the selected designs,
e.g. Reference 16.

2 Exhaustive search: All design points in a specified region of the design parameters
are evaluated. Very often, this approach is combined with local optimisation in
one or several design parameters in order to reduce the size of the design space,
see References 4 and 20.

3 Reduction to a single objective: For design space exploration with multiple con-
flicting criteria, there are several approaches available that reduce the problem
to a set of single criterion problems. To this end, manual or exhaustive sampling
is done in one (or several) directions of the search space and a constraint optimi-
sation, e.g. iterative improvement or analytic methods, is done in the other, see
References 2, 3, 8 and 12.

4 Black-box randomised search: The design space is sampled and searched via
a black-box optimisation approach, i.e. new design points are generated based
on the information gathered so far and by defining an appropriate neighbour-
hood function (variation operator). The properties of these new design points
are estimated which increases the available information about the design space.
Examples of sampling and search strategies used are Pareto Simulated Annealing
[21] and Pareto Tabu Search [7,10], evolutionary multi-objective optimisation
[13,14,18,22] or Monte Carlo methods improved by statistical estimation of
bounds [1]. These black-box optimisations are often combined with local search
methods that optimise certain design parameters or structures [11].

5 Problem-dependent approaches: In addition to the above classification, one can
also find a close integration of the exploration with a problem-dependent char-
acterisation of the design space. Several possibilities have been investigated
so far.

e Use the parameter independence in order to prune the design space,
e.g. References 17 and 23.
e Restrict the search to promising regions of design space, e.g. Reference 6.
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e Investigate the structure of the Pareto-optimal set of design points, e.g.
using hierarchical composition of sub-component exploration and filtering,
e.g. References 5 and 15.

e Explicitly model the design space, use an appropriate abstraction, derive a
formal characterisation by symbolic techniques and use pruning techniques,
e.g. Reference 24.

Finally, usually an exhaustive search or a black-box randomised search is carried
out for those parts of the optimisation that are inaccessible for tailored techniques.

From the above classification, one can state that most of the above approaches
use randomised search techniques one way or the other, at least for the solution of
sub-problems. This observation does not hold for the exploration by hand or the
exhaustive search, but these methods are only feasible for small design spaces with
a few choices of the design parameters. Even in the case of a reduction to a single
objective or in the case of problem-dependent approaches, sub-optimisation tasks
need to be solved, either single objective or multi-objective and randomised (black-
box) search techniques are applied.

While constructing tools that perform design space exploration of embedded sys-
tems at a certain level of abstraction, the question arises, how to apply exploration to
anew design problem. How does one connect the problem-specific parts of the explo-
ration with a randomised black-box search engine? What is an appropriate interface
between the generic and problem-dependent aspects? Which search strategy should
one use? How can one achieve a simple implementation structure that leads to a
reliable exploration tool? Section 1.4 is devoted to this problem.

The basis of the proposed solution is the protocol PISA, see Reference 25. It is
tailored towards black-box randomised search algorithms and is characterised by the
following properties. (1) The problem-specific and the generic parts of the exploration
method are largely independent from each other, i.e. the generic search and selec-
tion should be treated as a black-box (separation of concerns). (2) The framework
itself should not depend on the machine types, operating systems or programming
languages used (portability). (3) The protocol and framework should be tailored
towards a reliable exploration. The main components of the proposed framework in
Figure 1.2 are a refinement of Figure 1.1. It shows the separation into the problem-
specific variation and estimation part on the one hand and generic black-box search
on the other.

1.3 A simple example: design space exploration of
cache architectures

Before the PISA framework is described in more detail (in Section 1.4.3), this
section introduces a simple example application that will be used throughout the
remainder of this chapter for illustration purposes. Note, that it is not the purpose of
the example to present any new results in cache optimisation.

The example problem to solve is to optimise the architecture of a cache for a
predefined benchmark application. The solution space for the problem is restricted to
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Table 1.1  Parameters determining a cache architecture

No. Parameter Range

1 No. of cache lines 2k, withk =6...14

2 Block size 2k bytes, withk =3...7
3 Associativity 2K withk =0...5

4 Replacement strategy LRU or FIFO

L1 data caches only, i.e. the design choices include the cache size, the associativity
level, the block size and the replacement strategy. The goal is to identify a cache
architecture that (1) maximises the overall computing performance with respect to the
benchmark under consideration and (2) minimises the chip area needed to implement
the cache in silicon.

In Table 1.1, all parameters and possible values for the cache architecture are
given. A design point is therefore determined by three integer values and a Boolean
value. The integers denote the number of cache lines, the cache block size and
the cache associativity; the Boolean value encodes the replacement strategy: ‘false’
denotes FIFO (first-in-first-out), ‘true’ denotes LRU (least recently used). Figure 1.3
graphically depicts the design parameters. The values for the number of cache lines,
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Figure 1.3 Illustration of the considered design choices for an L1 data cache
architecture

block size and associativity have to be powers of 2, due to restrictions in the tools
used for evaluation of the caches.

The first objective according to which the cache parameters are to be optimised is
the CPI (cycles per instruction) achieved for a sample benchmark application and the
second objective is the chip area needed to implement the cache on silicon. To estimate
the corresponding objective values, two tools were used, namely Si m out or der
of SimpleScalar [26] and CACTI [27] provided by Compaq. The first tool served to
estimate the CPI for the benchmark compress95 running on the plain text version of
the GNU public licence as application workload. The smaller the CPI for compress95
for a particular solution, the better is the solution for this objective. The second tool
calculated an estimate for the silicon area needed to implement the cache. The smaller
the area, the better is the cache for the area objective.

1.4 A general framework for design space exploration

As discussed in Section 1.2, the proposed general framework for design space explo-
ration separates application-specific aspects from the optimisation strategy. The
resulting two parts are implemented as independent processes communicating via
text files, as will be detailed in Section 1.4.3. This concept (Figure 1.2) reflects the
working principle of black-box randomised search algorithms.

Black-box methods are characterised by the fact that they do not make any assump-
tions about the objective functions, and in this sense they treat the design criteria
as black-boxes which can contain arbitrarily complex functionalities. Initially, they
create one or several designs at random, which are then evaluated with respect to
the objective functions under consideration. Afterwards, the information about the
already considered design(s) is used in order to generate one or several different
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designs that are then evaluated as well. This process is repeated until a certain num-
ber of iterations has been carried out or another stopping condition is fulfilled. The
goal here is to exploit structural properties of the design space such that only a frac-
tion of the design space needs to be sampled to identify optimal and nearly optimal
solutions, respectively. This implies that different search space characteristics require
different search strategies, and accordingly various black-box optimisers such as ran-
domised local search, simulated annealing, evolutionary algorithms, etc. and variants
thereof are available, see Reference 28.

Two principles form the basis for all randomised search algorithms: selection
and variation. On the one hand, selection aims at focusing the search on promising
regions of the search space as will be discussed in Section 1.4.1. This part is usually
problem independent. On the other hand, variation means generating new designs
by slightly modifying or combining previously generated ones. Although standard
variation schemes exists — details can be found in Section 1.4.2 — the generation of
new designs based on existing ones is strongly application dependent, similarly to
the internal representation and the evaluation of designs.

1.4.1 Selection

The selection module implements two distinct phases: selection for variation and
selection for survival. The former type of selection chooses the most promising
designs from the set of previously generated designs that will be varied in order
to create new designs. For practical reasons, though, not all of the generated designs
will be kept in memory. While, e.g. simulated annealing and tabu search only store
one solution in the working memory (in this case, selection for variation simply
returns the single, stored solution), evolutionary algorithms operate on a population
of solutions, which is usually of fixed size. As a consequence, another selection phase
is necessary in order to decide which of the currently stored designs and the newly
created ones will remain in the working memory. This phase is often called selection
for survival or environmental selection, in analogy to the biological terminology used
in the context of evolutionary algorithms.

1.4.1.1 Selection for variation

Selection for variation is usually implemented in a randomised fashion. One possi-
bility to choose N out of M designs is to hold tournaments between two solutions
that are picked at random from the working memory based on a uniform probability
distribution. For each tournament, the better design is copied to a temporary set which
is also denoted as a mating pool — again a term mainly used within the field of evolu-
tionary computation. By repeating this procedure, several designs can be selected for
variation, where high-quality designs are more likely to have one or multiple copies
in the mating pool. This selection method is known as binary tournament selection;
many alternative schemes exist as well (see Reference 29).

Most of these selection algorithms assume that the usefulness or quality of a
solution is represented by a scalar value, the so-called fitness value. While fitness
assignment is straight forward in the case of a single objective function, the situation
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Figure 1.4  Illustration of the weighted-sum approach for two objectives. The left-

hand side shows how a particular weight combination (w1, wy) uniquely
identifies one Pareto-optimal design. The right-hand side demonstrates
that not for all Pareto-optimal designs such a weight combination exists

is more complex in a multi-objective scenario. Here, one can distinguish between
three conceptually different approaches.

e Aggregation: Traditionally several optimisation criteria are aggregated into a sin-

gle objective by, e.g. summing up the distinct objective function values, where
weight coefficients are used to control the influence of each criterion. The dif-
ficulty with this approach, though, is the appropriate setting of the weights.
This usually requires more knowledge about the design space than is actually
available. Furthermore, optimising a particular weight combination yields one
Pareto-optimal solution. To obtain several optimal trade-off designs, multiple
weight combinations need to be explored either in parallel or subsequently. Nev-
ertheless, not necessarily all Pareto-optimal designs can be found as illustrated in
Figure 1.4. The weighted-sum approach is only able to detect all solutions if the
front of Pareto-optimal solutions is convex. Similar problems occur with many
other aggregation methods, see Reference 30.

Objective switching: The first papers using evolutionary algorithms to approxi-
mate the Pareto set suggested to switch between the different objectives during
the selection step. For instance, Schaffer [31] divided selection for variation into
n selection steps where n corresponds to the number of optimisation criteria; in
the ith step, designs in the working memory were chosen according to their ith
objective function value.

Dominance-based ranking: Nowadays, most popular schemes use fitness assign-
ments that directly make use of the dominance relation or extensions of it.
By pairwise comparing all the designs in the working memory, different types
of information can be extracted. The dominance rank gives the number of solu-
tions by which a specific solution is dominated, the dominance count represents
the number of designs that a particular design dominates and the dominance
depth denotes the level of dominance when the set of designs is divided into
non-overlapping non-dominated fronts (see Reference 28 for details).
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These fitness assignment schemes can also be extended to handle design con-
straints. For dominance-based approaches, the dominance relation can be modified
such that feasible solutions by definition dominate infeasible ones, while among
infeasible designs the one with the lower constraint violation is superior — for feasible
solutions, the definition of dominance remains unchanged [28]. An alternative is the
penalty approach which can be used with all of the above schemes. Here, the overall
constraint violation is calculated and summarised by a real value. This value is then
added to the original fitness value (assuming that fitness is to be minimised), thereby,
infeasible solutions are penalised.

Finally, another issue that is especially important in the presence of multiple
objectives is maintaining diversity among the designs stored. If the goal is to identify
a set of Pareto-optima, special techniques are necessary in order to prevent the search
algorithm from converging to a single trade-off solution. Most modern multi-objective
optimisers integrate some diversity preservation technique that estimates the density
of solutions in the space defined by the objective functions. For instance, the density
around a solution can be estimated by calculating the Euclidean distance to the next
closest solution. This density information can then be incorporated into the fitness,
e.g. by adding original fitness value and density estimate. Again, there is variety of
different methods that cannot be discussed here in detail.

1.4.1.2 Selection for survival

When approximating the Pareto set, it is desirable not to lose promising designs due to
random effects. Therefore, selection for survival is usually realised by a deterministic
algorithm. Similar issues as with selection for variation come into play here; however,
almost all search methods make sure that designs not dominated among those in the
working memory are preferred over dominated ones with respect to environmental
selection. If there are too many non-dominated solutions, then additional diversity
information is used to further discriminate among these designs. Furthermore, as
many randomised search algorithms only keep a single solution in the working mem-
ory, often a secondary memory, a so-called archive (see also Figure 1.2), is maintained
that stores the current approximation of the Pareto set. For instance, PAES [32], a
randomised local search method for multi-objective optimisation, checks for every
generated design whether it should be added to the archive, i.e. whether it is dom-
inated by any other archive member. If the design was inserted, dominated designs
are removed. If the archive size is exceeded after insertion, a design with the highest
density estimate is deleted.

A theoretical issue that has been investigated recently by different researchers
[33,34] addresses the loss in quality per iteration. Optimally, the current set of designs
represents the best Pareto set approximation among all solutions ever considered dur-
ing the optimisation run — given the actual memory constraints. This goal is difficult
to achieve in general, but Laumanns et al. [33] proposed an archiving method by
which the loss can be bound and kept arbitrarily small by adjusting the memory
usage accordingly.
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1.4.1.3 Multi-objective optimisers

The above discussion could only touch the aspects involved in the design of the
selection process for a multi-objective randomised search algorithm. In fact, a vari-
ety of methods exist [28], which over the time have become more complex [35]. In
the evolutionary computation field, even a rapidly growing sub-discipline emerged
focusing on the design of evolutionary algorithms for multiple criteria optimisa-
tion [36]. However, an application engineer who would like to carry out a design
space exploration is not necessarily an expert in the optimisation field. He is rather
interested in using state-of-the-art multi-objective optimisers. For this reason, the
proposed design space exploration framework separates the general search strategy
from the application-specific aspects such as variation. Thereby, it is possible to use
precompiled search engines without any implementation effort.

1.4.2 Variation

In this subsection the application-specific part of the proposed design space explo-
ration framework is described. In particular, the variation module encapsulates the
representation of a design point and the variation operators, see also the overview
in Figure 1.2. It is the purpose of this component in the design space exploration
framework to generate suitable new design points from a given set of selected ones.
Therefore, the variation is problem-specific to a large extent and provides a major
opportunity in including domain knowledge.

1.4.2.1 Representation

A formal description of a design needs to be appropriately encoded in the opti-
misation algorithm. The main objectives for suitable design representations are as
follows.

e The encoding should be designed in a way that enables an efficient generation of
design points in an appropriate neighbourhood, see also the next subsection on
variation operators.

e Therepresentation should be able to encode all relevant design points of the design
space. In particular, if the design space has been pruned using problem-dependent
approaches, the chosen representation should reflect these constraints in a way
that enables efficient variation for the determination of a neighbourhood.

e The design parameters should be independent of each other as much as possible
in order to enable a suitable definition of variation operators.

A representation of a solution can, e.g., consist of real or integer values, or vectors
thereof to encode clock speeds, memory size, cache size, etc. Bit vectors can be used
to describe the allocation of different resources. Another class of representations
could be the permutation of a vector with fix elements to represent, e.g., a certain task
scheduling. Furthermore, variable length data structures such as trees or lists can be
used for the representation of, e.g., graphs (see Reference 29 for an overview).

All parameters for the representation have to lie inside the problem specification
that spans the design space of possible solutions. A solution parameter could therefore
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be, e.g., a real value in the range given in the specification, an integer value in a list
of possible integers or a selected edge in a problem specification graph.

The cache example uses integer values to represent the number of cache lines in
the solution cache, the block size and the associativity. The integer values are the
actual cache parameters, such that these lie in the range specified in Table 1.1. The
cache line replacement strategy is represented by a Boolean value.

1.4.2.2 Variation operators

The purpose of the variation operators is to determine new design points given a
set of selected, previously evaluated, design points. There are several objectives for
selecting appropriate variation operators.

e The variation operators operate on the design representation and generate a local
neighbourhood of the selected design points. These new design points will be
evaluated by the estimation, see Figure 1.1. Therefore, the construction of the vari-
ation operators is problem-dependent and a major possibility to include domain
knowledge.

e The constructed neighbourhood should not contain infeasible design points, if
possible.

e Inthe case of infeasible design points where non-functional properties are outside
of given constraints, one may use a feedback loop shown in Figure 1.1 in order
to correct.

e The variation operator may also involve problem-dependent local search (e.g. by
optimising certain parameters or hidden optimisation criteria) in order to relieve
the randomised search from optimisation tasks that can better be handled with
domain knowledge.

In principle, different variation operators can be distinguished according to the
number of solutions they operate on. Most randomised search algorithms generate
a single new design point by applying a randomised operator to a known design
point. For simulated annealing and randomised local search algorithms this operator is
called the neighbourhood function, whereas for evolutionary algorithms this operator
is denoted as the mutation operator. The term mutation will be used in the remainder
of this section.

In the context of evolutionary algorithms there also exists a second type of varia-
tion, in addition to mutation. Since evolutionary algorithms maintain a population of
solutions, it is possible to generate one or more new solutions based on two or more
existing solutions. The existing designs selected for variation are often referred to as
parents, whereas the newly generated designs are called children. The operator that
generates >1 children based on >2 parents is denoted as recombination.

Mutation: The assumption behind mutation is that it is likely to find better solutions
in the neighbourhood of good solutions. Therefore, mutation operators are usually
designed in such a way that the probability of generating a specific solution decreases
with increasing distance from the parent. There exist several approaches to imple-
ment mutation. It is, e.g., possible to always change exactly one parameter in the
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representation of a solution and keep all other parameters unchanged. A different
mutation operator changes each of n parameters with probability 1/n, which leads to
the fact that one parameter is changed in expectation. This approach is also used in
the cache example.

Changing a parameter means changing its value, i.e. flipping a bit in a binary
representation, or choosing new parameter values according to some probability dis-
tribution for an integer- or real-valued representation. For representations based on
permutations of vector elements the mutation operator changes the permutation by
exchanging two elements. If the specification is based on lists of possible values, the
mutation operator selects a new element according to some probability distribution.

In general, a mutation operator should on the one hand produce a new solution
that is ‘close’ to the parent solution with a high probability, but on the other hand be
able to produce any solution in the design space, although with very small probability.
This is to prevent the algorithm from being stuck in a local optimum.

The cache example uses the following mutation operator. Each of the design
parameters is mutated with probability 0.25 (as there are four different parameters).
The change that is applied to each of the parameters is normally distributed, i.e., the
value of a parameter is increased by a value that is normally distributed around 0
inside the ranges given in Table 1.1, e.g. the block size parameter change is normally
distributed between —4 and +4. Note, that in the example changes of size 0 are also
allowed, i.e. the parameter remains unchanged.

Recombination: Recombination takes two or more solutions as input and then gen-
erates new solutions that represent combinations of the parents. The idea behind
recombination is to take advantage of the good properties of each of the parents to
produce even better children. In analogy to the mutation operator, a good recombina-
tion vector should produce solutions that lie ‘between’ the parents either with respect
to the parameter space or to the objective space.

For vectors in general, recombination of two parents can be accomplished by
cutting both solutions at randomly chosen positions and rearranging the resulting
pieces. For instance, one-point crossover creates a child by copying the first half
from the first parent and the second half from the second parent. If the cut is made
at every position, i.e. at each position randomly either the value from the first or the
second parent is copied, the operator is called uniform recombination.

A further approach for real-valued parameters is to use the average of the two
parents’ parameter values, or some value between the parents’ parameter values.
A detailed overview of various recombination operators for different representation
data structures can be found in Reference 29.

For the cache example uniform recombination was used, i.e. for each of the
parameters, like cache block size, it was randomly decided from which parent solution
the parameter for the first child solution should be used, while all unused parameters
of the parent solutions are then used for the second child solution. See Figure 1.5 on
the right-hand side for a graphical representation of uniform recombination.

Infeasible solutions: It can happen that after mutation or recombination a generated
solution is not feasible, i.e. the solution represented by the parameters does not
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Figure 1.5 Variation operators used in the cache example: mutation (left), recom-
bination (right)

describe a valid system. To solve this problem there are different possibilities. First,
one could ensure that the variation operators do not create infeasible solutions by
controlling the construction of new solutions, one can call this approach ‘valid by
construction’. Second, one could implement a repair method that turns constructed
solutions that are infeasible into feasible ones by fixing the infeasible parameters.
The third possibility is to introduce an additional constraint and to penalise infeasible
designs in the way as described in Section 1.4.1. Finally, one can use the concept of
penalty functions in order to guide the search away from areas with infeasible design
points.

1.4.3 Implementation issues

In this section the protocol used in PISA is briefly introduced, see also Reference 25.
It is the purpose of PISA to make state-of-the-art randomised search algorithms
for multi-objective optimisation problems readily available. Therefore, for a new
design space exploration task in embedded system design, one can concentrate
on the problem-dependent aspects, where the domain knowledge comes in. The
protocol has to be implemented by any design space exploration tool that would
like to benefit from precompiled and ready-to-use search algorithms available at
http://www.tik.ee.ethz.ch/pisa. Besides, the website also contains a set of applica-
tion problems and benchmark applications for the development of new randomised
search algorithms. The detailed protocol including file formats and data type defini-
tions is given in Reference 25. In the protocol description, the application-specific
part is called ‘variator’ and the search algorithm is denoted ‘selector’, according to
Figure 1.6. The variator also contains the estimation of non-functional properties.
The details of the protocol have been designed with several objectives in mind.

e Small amounts of data that need to be communicated between the two different
processes (selector and variator).

e The communicated data should be independent of the problem domain in order
to enable a generic implementation of the selector process.

e Separation into problem-independent (selector) and problem-dependent (variator)
processes.
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Figure 1.6 Communication between modules through text files as defined by the
PISA protocol. The files contain sample data

e The implementation of the protocol should be as much as possible independent of
the programming languages, hardware platforms and operating systems. It should
enable a reliable (delay-independent) execution of the design space exploration.

The protocol defines the sequence of actions performed by the selector and variator
processes. The communication between the two processes is done by exchange of
text files over a common file system. The handshake protocol is based on states
and ensures that during the optimisation process only one module is active at any
time. During the inactive period a process polls the state file for changes. Whenever a
module reads a state that requires some action on its part, the operations are performed
and the next state is set.

The core of the optimisation process consists of state 2 and state 3. In each iteration
the selector chooses a set of parent individuals and passes them to the variator. The
variator generates new child solutions on the basis of the parents, computes the
objective function values of the new individuals and passes them back to the selector.

In addition to the core states two more states are necessary for normal operation.
State 0 and state 1 trigger the initialisation of the variator and the selector, respectively.
In state O the variator reads the necessary parameters. Then, the variator creates
an initial population, determines the objective values of the individuals and passes
the initial population to the selector. In state 1, the selector also reads the required
parameters, then selects a sample of parent individuals and passes them to the variator.

The four states 0—3 provide the basic functionality of the PISA protocol. To add
some flexibility the PISA protocol defines a few more states which are mainly used to
terminate or reset both the variator process and the selector process. Table 1.2 gives
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Table 1.2 States for the PISA protocol

State Action Next state
State 0 Variator reads parameters and creates initial solutions State 1
State 1 Selector reads parameters and selects parent solutions  State 2
State 2 Variator generates and evaluates new solutions State 3
State 3 Selector selects solutions for variation State 2
State 4 Variator terminates State 5
State 6 Selector terminates State 7
State 8 Variator resets. (Getting ready to start in state 0) State 9
State 10 Selector resets. (Getting ready to start in state 0) State 11

The main states of the protocol are printed in bold face.

an overview of all defined states. The additional states 4—11 are not mandatory for a
basic implementation of the protocol.

The data transfer between the two modules introduces some overhead compared
to a traditional monolithic implementation. Thus, the amount of data exchange for
each individual should be minimised. Since all representation-specific operators are
located in the variator, the selector does not have to know the representation of the
individuals. Therefore, it is sufficient to convey only the following data to the selector
for each individual: an identifier and its objective vector. In return, the selector only
needs to communicate the identifiers of the parent individuals to the variator. The
proposed scheme allows to restrict the amount of data exchange between the two
modules to a minimum.

For PISA-compliant search algorithms to work correctly, a designer has to ensure,
that all objectives are to be ‘minimised’. In addition the variator and selector have
to agree on a few common parameters: (1) the population size «, (2) the number
of parent solutions u, (3) the number of child solutions A and (4) the number of
objectives di m These parameters are specified in the parameter file with suffix cf g,
an example file is shown in Figure 1.6.

The selector and the variator are normally implemented as two separate processes.
These two processes can be located on different machines with possibly different
operating systems. This complicates the implementation of a synchronisation method.
Most common methods for interprocess communication are therefore not applicable.

In PISA, the synchronisation problem is solved using a common state variable
which both modules can read and write. The two processes regularly read this state
variable and perform the corresponding actions. If no action is required in a certain
state, the respective process sleeps for a specified amount of time and then rereads
the state variable. The state variable is an integer number stored to a text file with
suffix st a. The protocol uses text files instead of, e.g. sockets, because file access
is completely portable between different platforms and familiar to all programmers.

All other data transfers between the two processes besides the state are also per-
formed using text files. The initial population is written by the variator to the file with
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suffix i ni , the population is written by the selector to a file with suffix arc. In a
text file with suffix sel the selector stores the parent solutions that are selected for
variation. The newly generated solutions are passed from the variator to the selector
through a file with suffix var . All text files for data transfer have to begin with the
number of elements that follow and to end with the keyword END.

Once the receiving process has completely read a text file, it has to overwrite the
file with 0, to indicate that it successfully read the data.

1.4.4 Application of PISA for design space exploration

For the cache example presented in Section 1.3, the variator part was written in
Java. The mutation and recombination operator were implemented as described in
Section 1.4.2, and the combination with a selector is PISA-compliant as described
in Section 1.4.3. The selector was downloaded from the PISA website. The design
space exploration for L1 data caches was performed using strength Pareto evolu-
tionary algorithm (SPEA2), an evolutionary multi-objective optimiser described in
Reference 35.

The solutions selected by SPEA2 for variation were pairwise recombined with
probability 0.8 and the resulting solutions were then mutated with probability 0.8.
Afterwards the generated solutions were added to the population and passed to the
search algorithm for selection.

The design space with all solutions is shown in Figure 1.7. These design points
have been generated using exhaustive search in order to compare the heuristic search
with the Pareto front of optimal solutions. The front of non-dominated solutions found

0.59

¢ O 40 generations

0.58
« All design points

]
3
0_57§; :

0.56 f—>e—

0.55 TS

0.54

CPI for compress95

053 1> 8888e® s0e®® o @ o408 . e o oo

0.52 T T T T T T )
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Silicon area (cm?)

Figure 1.7  All 540 possible design points determined using exhaustive search and
the design points found by the multi-objective search algorithm SPEA2
after 40 generations
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Table 1.3  Details of ten non-dominated solutions for the simple example of a cache
exploration found after a typical design space exploration run

No. CPI Area Design parameters
1 0.5774 0.001311 LRU 27 cache lines Block size 8 d. m.
2 0.5743 0.001362 LRU 27 cache lines Block size 8 2 sets
3 0.5622 0.022509 FIFO 28 cache lines Block size 64 8 sets
4 0.5725 0.002344 LRU 27 cache lines Block size 16 2 sets
5 0.5488  0.024018  LRU  21%cachelines  Blocksize 32 8 sets
6 0.5319  0.027122  LRU 210 cache lines  Block size 32 16 sets
7 0.5666 0.002898 LRU 26 cache lines Block size 32 2 sets
8 0.5653 0.003629 FIFO 2% cache lines Block size 64 d. m.
9 0.5307  0.044902  FIFO  2'%cachelines  Block size 64 8 sets

10 0.5626 0.004907 LRU 26 cache lines Block size 64 2 sets

These solutions are marked with circles in Figure 1.7.

for the cache example with SPEA2 after a typical optimisation run with 40 generations
for a population size of six solutions is marked with circles. The details of the solutions
in the population after 40 generations are represented in Table 1.3.

Although the cache design space exploration problem is simple in nature, one can
make some observations which also hold for more involved exploration problems.
The two objectives, namely the minimisation of the silicon area and the minimisation
of the CPI, are conflicting, resulting in an area vs. performance trade-off. This results
in the fact that there is not a single optimal solution, but a front of Pareto-optimal
solutions. All points on this front represent different promising designs, leaving the
final choice for the design of the cache up to the designer’s preference. Further, one
can observe in Figure 1.7 that the evolutionary algorithm found solutions close to the
Pareto-optimal front.

The reduction of the problem to a single objective optimisation problem, e.g. using
a weighted-sum approach, is difficult already for this simple example, because it
represents a true multi-objective problem. It is not at all clear how to relate area to
performance, which would be needed for the weighted-sum approach.

As a more involved example, the design space exploration of complex stream
processor architectures on the system level has been performed using the PISA
framework. To this end, a variator process ‘EXPO’ has been implemented which
is available on the website of PISA also (Figure 1.8). The representation of design
points, the variation operators, the local search method to reduce the design space and
the way in which infeasible design points are avoided or repaired are all specific to
the application domain of stream processors. These methods are based on models for
stream processing tasks, a specification of the workload generated by traffic flows
and a description of the feasible space of architectures involving computation and
communication resources.
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Figure 1.8 On the PISA website, many different ready-to-use evolutionary search
algorithms can be downloaded. Additionally, a design space exploration
tool is offered for download at the website. The only steps needed for a
first design space exploration using the PISA framework are shown: (1)
just download a variator, e.g. the exploration tool EXPO and one of the
search algorithms on the right-hand side of the website, (2) unpack the
tools and then (3) run them

the evaluation of a single design point, the tool makes use of a new method
to estimate end-to-end packet delays and queueing memory, taking task scheduling
policies and bus arbitration schemes into account. The method is analytical and is
based on a high level of abstraction, where the goal is to quickly identify interesting
architectures, which may then be subjected to a more detailed evaluation, e.g. using
simulation. The approach used in EXPO and results are described in much more detail
in Reference 22.

For the simple cache example the design space could have been explored using
exhaustive search instead of employing evolutionary algorithms, which actually was
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done to determine all solutions shown in Figure 1.7. For larger design spaces, as
the one explored with EXPO, exhaustive search is prohibitive, and only randomised
search algorithms can be used. It has been shown in many studies (e.g. in Reference 28)
that evolutionary algorithms perform better on multi-objective optimisation problems
than do other simpler randomised search algorithms.

PISA enables the use of different evolutionary algorithms without having to
change the implementation of the exploration tools. A recent study [37] has shown
that for EXPO the quality of the approximation of the Pareto-optimal front may dif-
fer between different evolutionary algorithms. With a modular framework based on
the PISA protocol it is possible to test the design space exploration performance of
different randomised search algorithms to find the search algorithm most suitable to
the exploration problem.

1.5 Conclusions

This chapter introduced a framework for design space exploration of embedded sys-
tems. It is characterised by (1) multiple optimisation criteria, (2) randomised search
algorithms and (3) a software interface that clearly separates problem-dependent and
problem-independent parts of an implementation. In particular, the interface PISA
formally characterises this separation. It is implemented in a way that is independent
of programming language used and the underlying operating system. As a result, it is
easily possible to extend any existing method to estimate non-functional properties
with an effective multi-objective search.

It should be pointed out, that effective automatic or semi-automatic (inter-
active) exploration needs deep knowledge about the specific optimisation target,
i.e. the level of abstraction, the optimisation goals, efficient and accurate estima-
tion methods. Nevertheless, the PISA framework separates the problem-dependent
variation and estimation from the generic search and selection. Therefore, the user
is relieved from dealing with the complex and critical selection mechanisms in
multi-objective optimisation. On the other hand, his specific domain knowledge will
be important when designing the variation operators that determine a promising local
neighbourhood of a given search point.

Finally, it is common knowledge that the class of randomised search algorithms
described in the chapter does not guarantee to find the optimal solutions. In addi-
tion, if there is domain knowledge available that allows problem-specific exploration
methods to be applied, then there is little reason to use a generic approach. But usu-
ally, those analytic methods do not exist for complex optimisation scenarios as found
in embedded system design.
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Chapter 2

System-level performance analysis — the
SymTA/S approach

Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu,
Kai Richter and Rolf Ernst

2.1 Introduction

With increasing embedded system complexity, there is a trend towards heterogeneous,
distributed architectures. Multiprocessor system-on-chip designs (MpSoCs) use
complex on-chip networks to integrate multiple programmable processor cores,
specialised memories and other intellectual property (IP) components on a single
chip. MpSoCs have become the architecture of choice in industries such as net-
work processing, consumer electronics and automotive systems. Their heterogeneity
inevitably increases with IP integration and component specialisation, which design-
ers use to optimise performance at low power consumption and competitive cost.
Tomorrow’s MpSoCs will be even more complex, and using IP library elements in a
‘cut-and-paste’ design style is the only way to reach the necessary design productivity.
Systems integration is becoming the major challenge in MpSoC design. Embed-
ded software is increasingly important to reach the required productivity and flexibil-
ity. The complex hardware and software component interactions pose a serious threat
to all kinds of performance pitfalls, including transient overloads, memory overflow,
data loss and missed deadlines. The International Technology Roadmap for Semicon-
ductors, 2003 Edition (http://public.itrs.net/Files/2003ITRS/Design2003.pdf) names
system-level performance verification as one of the top three codesign issues.
Simulation is state-of-the-art in MpSoC performance verification. Tools from
many suppliers support cycle-accurate cosimulation of a complete hardware and soft-
ware system. The cosimulation times are extensive, but developers can use the same
simulation environment, simulation patterns and benchmarks in both function and



30  System-on-chip

. ® Y

3

/ = Byorst case
P, ---

—
@
fyuoug

v v i f I tl
‘Buffering
NAAPAS

Burst

A 4
Worst-case
K HW j K | Input events | Output events e j

Figure2.1 CPU subsystem

performance verification. Simulation-based performance verification, however, has
conceptual disadvantages that become disabling as complexity increases.

MpSoC hardware and software component integration involves resource sharing
that is based on operating systems and network protocols. Resource sharing results in
a confusing variety of performance runtime dependencies. For example, Figure 2.1
shows a central processing unit (CPU) subsystem executing three processes. Although
the operating system activates T, To and T3 strictly periodically (with periods P;
P, and Ps, respectively), the resulting execution sequence is complex and leads to
output bursts.

As Figure 2.1 shows, T can delay several executions of T3. After T{ completes,
T3 — with its input buffers filled — temporarily runs in burst mode with the execution
frequency limited only by the available processor performance. This leads to transient
T3 output burst, which is modulated by T ’s execution.

Figure 2.1 does not even include data-dependent process execution times, which
are typical for software systems, and operating system overhead is neglected. Both
effects further complicate the problem. Yet finding simulation patterns — or use cases —
that lead to worst-case situations as highlighted in Figure 2.1 is already challenging.

Network arbitration introduces additional performance dependencies. Figure 2.2
shows an example. The arrows indicate performance dependencies between the CPU
and digital signal processor (DSP) subsystems that the system function does not
reflect. These dependencies can turn component or subsystem best-case performance
into system worst-case performance — a so-called scheduling anomaly. Recall the T3
bursts from Figure 2.1 and consider that T3’s execution time can vary from one
execution to the next. There are two critical execution scenarios, called corner cases:
The minimum execution time for T3 corresponds to the maximum transient bus load,
slowing down other components’ communication, and vice versa.

The transient runtime effects shown in Figures 2.1 and 2.2 lead to complex
system-level corner cases. The designer must provide a simulation pattern that
reaches each corner case during simulation. Essentially, if all corner cases satisfy
the given performance constraints, then the system is guaranteed to satisfy its con-
straints under all possible operation conditions. However, such corner cases are
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extremely difficult to find and debug, and it is even more difficult to find simulation
patterns to cover them all. Reusing function verification patterns is not sufficient
because they do not cover the complex non-functional performance dependencies that
resource sharing introduces. Reusing component and subsystem verification patterns
is not sufficient because they do not consider the complex component and subsystem
interactions.

The system integrator might be able to develop additional simulation patterns,
but only for simple systems in which the component behaviour is well understood.
Manual corner-case identification and pattern selection is not practical for complex
MpSoCs with layered software architectures, dynamic bus protocols and operating
systems. In short, simulation-based approaches to MpSoC performance verification
are about to run out of steam, and should essentially be enhanced by formal techniques
that systematically reveal and cover corner cases.

Real-time systems research has addressed scheduling analysis for processors and
buses for decades, and many popular scheduling analysis techniques are available.
Examples include rate-monotonic scheduling and earliest deadline first [1], using
both static and dynamic priorities; and time-slicing mechanisms like time division
multiple access (TDMA) or round robin [2]. Some extensions have already found
their way into commercial analysis tools, which are being established, e.g. in the
automotive industry to analyse individual units that control the engine or parts of the
electronic stability program.

The techniques rely on a simple yet powerful abstraction of task activation and
communication. Instead of considering each event individually, as simulation does,
formal scheduling analysis abstracts from individual events to event streams. The
analysis requires only a few simple characteristics of event streams, such as an event
period or amaximum jitter. From these parameters, the analysis systematically derives
worst-case scheduling scenarios, and timing equations safely bound the worst-case
process or communication response times.

It might be surprising that — up to now — only very few of these approaches have
found their way into the SoC (system-on-chip) design community by means of tools.
Regardless of the known limitations of simulation such as incomplete corner-case
coverage and pattern generation, timed simulation is still the preferred means of
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performance verification in MpSoC design. Why then is the acceptance of formal
analysis still very limited?

One of the key reasons is a mismatch between the scheduling models assumed in
most formal analysis approaches and the heterogenous world of MpSoC scheduling
techniques and communication patterns that are a result of (a) different application
characteristics; (b) system optimisation and integration which is still at the beginning
of the MpSoC development towards even more complex architectures.

Therefore, anew configurable analysis process is needed that can easily be adapted
to such heterogeneous architectures. We can identify different approaches: the holistic
approach that searches for techniques spanning several scheduling domains; and
hierarchical approaches that integrate local analysis with a global flow-based analysis,
either using new models or based on existing models and analysis techniques.

In the following section, the existing analysis approaches from the literature on
real-time analysis are reviewed and key requirements for their application to MpSoC
design are identified. In Section 2.3, the fundamentals and basic models of the
SymTA/S technology are introduced. Section 2.4 surveys a large number of exten-
sions that enable the analysis of complex applications. Section 2.5 shows how the
overall analysis accuracy can be deliberately increased when designers specify few
additional correlation information. Automatic optimisations using evolutionary algo-
rithms is explained in Section 2.6, while Section 2.7 introduces the idea of sensitivity
analysis. An experiment is carried out in Section 2.8 and conclusions are drawn in
Section 2.9

2.2 Formal techniques in system performance analysis

Formal approaches to heterogeneous systems are rare. The ‘holistic’ approach [3,4]
systematically extends the classical scheduling theory to distributed systems.
However, because of the very large number of dependencies, the complexity of
the equations underlying the analysis grows with system size and heterogeneity.
In practice, the holistic approach is limited to those system configurations which
simplify the equations, such as deterministic TDMA networks. However, there is,
up to now, no general procedure to set-up and solve the holistic equations for arbitrary
systems. This could explain why such holistic approaches are largely ignored by the
SoC community even though there are many proposals for multiprocessor analysis
in real-time computing.

Gresser [5] and Thiele [6] established a different view on scheduling
analysis. The individual components or subsystems are seen as entities which
interact, or communicate, via event streams. Mathematically speaking, the
stream representations are used to capture the dependencies between the equations
(or equations sets) that describe the individual component’s timing. The difference to
the holistic approach (that also captures the timing using system-level equations) is
that the compositional models are well structured with respect to the architecture. This
is considered a key benefit, since the structuring significantly helps designers to under-
stand the complex dependencies in the system, and it enables a surprisingly simple
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solution. In the ‘compositional’ approach, an output event stream of one component
turns into an input event stream of a connected component. Schedulability analysis,
then, can be seen as a flow-analysis problem for event streams that, in principle, can
be solved iteratively using event stream propagation.

Both approaches use a highly generalised event stream representation to tame the
complexity of the event streams. Gresser uses a superpositional ‘event vector system’,
which is then propagated using complex event dependency matrices. Thiele ef al. use
a more intuitive model. They use ‘numerical’ upper and lower bound event ‘arrival
curves’ for event streams, and similar ‘service curves’ for execution modelling.

This generality, however, has its price. Since they introduced new stream
models, both Thiele and Gresser had to develop new scheduling analysis algo-
rithms for the local components that utilise these models; the host of existing work
in real-time systems can not be reused. Furthermore, the new models are far less
intuitive than the ones known from the classical real-time systems’ research, e.g. the
model of rate-monotonic scheduling with its periodic tasks and worst-case execution
times. A system-level analysis should be simple and comprehensible, otherwise its
acceptance is extremely doubtful.

The compositional idea is a good starting point for the following considerations.
It uses some event stream representation to allow component-wise local analysis.
The local analysis results are, then, propagated through the system to reach a global
analysis result. We do not necessarily need to develop new local analysis tech-
niques if we can benefit from the host of work in real-time scheduling analysis.
For example, in Figure 2.1, even if input and output streams seem to have totally
different characteristics, the number of T3’s output events can be easily bounded
over a longer time interval. The bursts only occur temporarily, representing a tran-
sient overload within a generally periodic event stream. In other words, some key
characteristics of the original periodic stream remain even in the presence of heavy
distortion.

A key novelty of the SymTA/S approach is that it uses intuitive ‘standard event
models’ (Section 2.3.2) from real-time systems’ research rather than introducing
new, complex stream representations. Periodic events or event streams with jitter
and bursts [7] are examples of standard models that can be found in literature. The
SymTA/S technology allows us to extract this information from a given schedule and
automatically interface or adapt the event stream to the specific needs within these
standard models, so that designers can safely apply existing subsystem techniques of
choice without compromising global analysis.

2.3 The SymTA/S approach

SymTA/S [8] is a formal system-level performance and timing analysis tool for
heterogeneous SoCs and distributed systems. The application model of SymTA/S
is described in Section 2.3.1. The core of SymTA/S is a technique to couple local
scheduling analysis algorithms using event streams [9,10]. Event streams describe
the possible input/output (I/O) timing of tasks. Input and output event streams are
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described by standard event models which are introduced in detail in Section 2.3.2.
The analysis composition using event streams is described in Section 2.3.3. A second
key property of the SymTA/S compositional approach is the ability to adapt the
possible timing of events in an event stream. The event stream adaptation concept is
described in Section 2.3.4.

2.3.1 SymTA/S application model

A task is activated due to an activating event. Activating events can be generated in a
multitude of ways, including expiration of a timer, external or internal interrupt and
task chaining. Each task is assumed to have one input first in first out (FIFO). A task
reads its activating data from its input FIFO and writes data into the input FIFO of a
dependent task. A task may read its input data at any time during one execution. The
data is therefore assumed to be available at the input during the whole execution of
the task. SymTA/S also assumes that input data is removed from the input FIFO at
the end of one execution.

A task needs to be mapped on to a ‘computation’ or ‘communication’ resource to
execute. When multiple tasks share the same resource, then two or more tasks may
request the resource at the same time. In order to arbitrate request conflicts, a resource
is associated with a ‘scheduler’ which selects a task to which it grants the resource out
of the set of active tasks according to some scheduling policy. Other active tasks have
to wait. ‘Scheduling analysis’ calculates worst-case (sometimes also best-case) task
response times, i.e. the time between task activation and task completion, for all tasks
sharing a resource under the control of a scheduler. Scheduling analysis guarantees
that all observable response times will fall into the calculated (best-case, worst-case)
interval. Scheduling analysis is therefore conservative. A task is assumed to write its
output data at the end of one execution. This assumption is standard in scheduling
analysis.

Figure 2.3 shows an example of a system modelled with SymTA/S. The system
consists of two resources each with two tasks mapped on it. Ry and Ry are both
assumed to be priority scheduled. Srcl and Src2 are the sources of the external

Ry Ry

El . E2

Srel T, T,
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il = ||

Src2 T Ty

A4

Figure2.3  System modelled with SymTA/S
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activating events at the system inputs. The possible timing of activating events is
captured by so-called ‘event models’, which are introduced in Section 2.3.2.

2.3.2 SymTA/S standard event models

Event models can be described by sets of parameters. For example, a ‘periodic with
jitter’event model has two parameters (P, J) and states that each event generally
occurs periodically with period P, but that it can jitter around its exact position within
a jitter interval 7. Consider an example where (P, J) = (4, 1). This event model is
visualised in Figure 2.4. Each gray box indicates a jitter interval of length 7 = 1.
The jitter intervals repeat with the event model period P = 4. The figure additionally
shows a sequence of events which satisfies the event model, since exactly one event
falls within each jitter interval box, and no events occur outside the boxes.

| An event model can also be expressed using two ‘event functions’ n"(At) and
n' (Atr).

Definition 2.1 (Upper event function) The upper ‘event function’ n" (At) specifies
the maximum number of events that can occur during any time interval of length At.

Definition 2.2 (Lower event function) The lower ‘event function’ n'(At) specifies
the minimum number of events that have to occur during any time interval of length At.

Event functions are piecewise constant step functions with unit-height steps, each
step corresponding to the occurrence of one event. Figure 2.5 shows the event func-
tions for the event model (P = 4, 7 = 1). Note that at the points where the functions
step, the smaller value is valid for the upper event function, while the larger value is
valid for the lower event function (indicated by dark dots). For any time interval of
length At, the actual number of events is bound by the upper and lower event func-
tions. Event functions resemble arrival curves [11] which have been successfully used
by Thiele et al. for compositional performance analysis of network processors [12].
In the following, the dependency of 1" and ' on At is omitted for brevity.
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A ‘periodic with jitter’event model is described by the following event functions
Ny g and np, 7 [13]:

u At+J
"prg = [T—‘ 2.1)
Al —
Np. g = max (0, LITJD 2.2)

To get a better feeling for event functions, imagine a sliding window of length
At that is moved over the (infinite) length of an event stream. Consider Ar = 4
(grey vertical bar in Figure 2.5). The upper event function indicates that at most
two events can be observed during any time interval of length At = 4. This corre-
sponds, e.g. to a window position between 7y + 8.5 and 79 + 12.5 in Figure 2.4. The
lower event function indicates that no events have to be observed during Ar = 4.
This corresponds, e.g. to a window position between 79 + 12.5 and 79 + 16.5 in
Figure 2.4.

In addition, ‘distance’ functions §™2(N > 2) and §™®*(N > 2), are defined to
return, respectively, the minimum and maximum distance between N > 2 consecutive
events in an event stream.

Definition 2.3 (Minimum distance function) The minimum distance function
S™M(N > 2) specifies the minimum distance between N > 2 consecutive events
in an event stream.

Definition 2.4 (Maximum distance function) 7The maximum distance function
SMX(N > 2) specifies the maximum distance between N > 2 consecutive events
in an event stream.
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For ‘periodic with jitter’ event models the following distance functions are
obtained

SMN(N >2) =max{0, (N—1)x P —J} (2.3)

SMX(N >2)=(N—1)xP+J (2.4)

For example, the minimum distance between two events in a ‘periodic with jitter’event
model with (P = 4, J = 1) is three time units, and the maximum distance between
two events is five time units.

Periodic with jitter event models are well suited to describe generally peri-
odic event streams, which often occur in control, communication and multimedia
systems [14]. If the jitter is zero, then the event model is strictly periodic. If the
jitter is larger than the period, then two or more events can occur at the same
time, leading to bursts. To describe a ‘bursty’ event model, the ‘periodic with jit-
ter’ event model can be extended with a dpi, parameter that captures the minimum
distance between events within a burst. A more detailed discussion can be found in
Reference 13.

Additionally, ‘sporadic’ events are also common [14]. Sporadic event streams
are modelled with the same set of parameters as periodic event streams. The differ-
ence is that for sporadic event streams, the lower event function nt(At) is always
zero. The maximum distance function §™*(N > 2) approaches infinity for all
values of N [13]. Note that ‘jitter’ and dp,j, parameters are also meaningful in spo-
radic event models, since they allow us to accurately capture sporadic transient load
peaks.

Event models with this small set of parameters have several advantages. First,
they are easily understood by a designer, since period, jitter, etc. are familiar event
stream properties. Second, the corresponding event functions and distance functions
can be evaluated quickly, which is important for scheduling analysis to run fast. Third,
as will be shown in Section 2.3.3.2, compositional performance analysis requires the
modelling of possible timing of output events for propagation to the next scheduling
component. Event models as described above allow us to specify simple rules to
obtain output event models (Section 2.3.3.1) that can be described with the same set
of parameters as the activating event models. Therefore, there is no need to depart from
these event models whatever the size and structure of the composed system (hence
the term ‘standard’). This makes the compositional performance analysis approach
very general.

2.3.3  Analysis composition

In the compositional performance analysis methodology [13,14], local scheduling
analysis and event model propagation are alternated, during system-level analysis.
This requires the modelling of possible timing of output events for propagation to the
next scheduling component. In the following, first the output event model calculation
is explained. Then the compositional analysis approach is presented.
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2.3.3.1 Output event model calculation

The SymTA/S standard event models allow us to specify simple rules to obtain output
event models that can be described with the same set of parameters as the activating
event models. The output event model period obviously equals the activation period.
The difference between maximum and minimum response times (the response time
jitter) is added to the activating event model jitter, yielding the output event model
jitter (Equation (2.5)).

Jout = Jact + (tresp,max - tresp,min) (2-5)

Note that if the calculated output event model has a larger jitter than period, this
information alone would indicate that an early output event could occur before a late
previous output event, which obviously cannot be correct. In reality, output events
cannot follow closer than the minimum response time of the producer task. This is
indicated by the value of the ‘minimum distance’ parameter.

2.3.3.2 Analysis composition using standard event models

In the following, the compositional analysis approach is explained using the system
example in Figure 2.3. Initially, only event models at the external system inputs are
known. Since an activating event model is available for each task on R, a local
scheduling analysis of this resource can be performed and output event models are
calculated for T; and T3 (Section 2.3.3.1). In the second phase, all output event
models are propagated. The output event models become the activating event models
for T, and T4. Now, a local scheduling analysis of R, can be performed since all
activating event models are known.

However, it is sometimes impossible to perform system-level scheduling analysis
as explained above. This is shown in the system example in Figure 2.6.

Figure 2.6 shows a system consisting of two resources, R; and Ry, each with two
tasks mapped on to it. Initially, only the activating event models of T; and T3 are
known. At this point the system cannot be analysed, because on every resource an
activating event model for one task is missing, i.e. response times on R; need to be
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Figure 2.6  Example of a system with cyclic scheduling dependency
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calculated to be able to analyse R,. On the other hand, R cannot be analysed before
analysing R,. This problem is called ‘cyclic scheduling dependency’.

One solution to this problem is to initially propagate all external event models
along all system paths until an initial activating event model is available for each
task [15]. This approach is safe since on one hand scheduling cannot change an event
model period. On the other hand, scheduling can only ‘increase’ an event model
jitter [7]. Since a smaller jitter interval is contained in a larger jitter interval, the
minimum initial jitter assumption is safe.

After propagating external event models, global system analysis can be performed.
A global analysis step consists of two phases [13]. In the first phase local schedul-
ing analysis is performed for each resource and output event models are calculated
(Section 2.3.3.1). In the second phase, all output event models are propagated. It is
then checked if the first phase has to be repeated because some activating event mod-
els are no longer up-to-date, meaning that a newly propagated output event model
is different from the output event model that was propagated in the previous global
analysis step. Analysis completes if either all event models are up-to-date after the
propagation phase or if an abort condition, e.g. the violation of a timing constraint,
has been reached.

2.3.4 Event stream adaptation

A key property of the SymTA/S compositional performance analysis approach is the
ability to adapt the possible timing of events in an event stream (expressed through
the adaptation of an event model [13]). There are several reasons to do this. It may be
that a scheduler or a scheduling analysis for a particular component requires certain
event stream properties. For example, rate-monotonic scheduling and analysis [1]
require strictly periodic task activation. Alternatively, an integrated IP component
may require certain event stream properties. External system outputs may also impose
event model constraints, e.g. a minimum distance between output events or a maxi-
mum acceptable jitter. Such a constraint may be the result of a performance contract
with an external subsystem [16]. Event stream adaptation can also be done for the
sole purpose of ‘traffic shaping’ [13]. Traffic shaping can be used, e.g. to reduce tran-
sient load peaks, in order to obtain more regular system behaviour. Practically, event
model ‘adaptation’ is distinguished from event model ‘shaping’ in SymTA/S [17].
Adaptation is required to satisfy an event model constraint, while shaping is volun-
tary to obtain more regular system behaviour. Two types of event adaptation functions
(EAF) are currently implemented in SymTA/S: a ‘periodic’ EAF produces a periodic
event stream from a ‘periodic with jitter’ input event stream. A dp,i,-EAF enforces a
minimum distance between output events.

2.4 Complex embedded applications

Compositional performance analysis as described so far is not applicable to embed-
ded applications with complex task dependencies. This is because it uses a simple
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activation model where the completion of one task directly leads to the activation of a
dependent task. However, activation dependencies in realistic embedded applications
are usually more complex. A consumer task may require a different amount of data
per execution than produced by a producer task, leading to multi-rate systems. Task
activation may also be conditional, leading to execution-rate intervals. Furthermore,
a task may consume data from multiple task inputs. Then, task activation timing is a
function of the possible arrival timing of all required input data. Tasks with multiple
inputs also allow us to form cyclic dependencies (e.g. in a control loop).

In this section, the focus is on multiple inputs (both AND- and OR-activation)
and functional cycles [18]. Multi-rate systems and conditional communication are
not considered, since these features have not yet been incorporated into SymTA/S.
The theoretical foundations can be found in Reference 19.

2.4.1 Basic thoughts

The activation function of a consumer task C with multiple inputs is a Boolean function
of input events at the different task inputs. An imposed restriction is that activation
must not be invalidated due to the arrival of additional tokens [20]. This means that
negation is not allowed in the activation function. Consequently, the only acceptable
Boolean operators are AND and OR, since an input is negated in all other commonly
used Boolean operators (NOT, XOR, NAND, NOR).

In order to perform scheduling analysis on the resource to which task C is mapped,
activating event functions for task C have to be calculated from all input event func-
tions. In the following it is shown how to do this for AND- and OR-activation using
standard event models (Section 2.3.2). An extended discussion covering event models
in general can be found in Reference 19.

2.4.2 AND-activation

For a consumer task C with multiple inputs, AND-activation implies that C is activated
after an input event has occurred at each input i. An example of an AND-activated
task with three inputs is shown in Figure 2.7.

Note that AND-activation requires input data buffering, since at some inputs
data may have to wait until data has arrived at all other inputs for one consumer

FIFO,

Figure2.7 Example of an AND-activated task C
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activation. The term ‘AND-buffering’ is used to refer to this source of buffering. The
term ‘token’ [21] is used to refer to the amount of data required for one input event.

2.4.2.1 AND-activation period
To ensure bounded AND-buffer sizes, the period of all input event models must be
the same. The period of the activating event model equals this period.

P; =P iL,j=1l...k =
Panxp=Pi; i=1...k (2.6)

2.4.2.2 AND-activation jitter

In order to obtain the AND-activation jitter, consider how often activation of the
AND-activated task can occur during any time interval A¢. Obviously, during any
time interval Af, the port with the smallest minimum number of available tokens
determines the minimum number of AND-activations. Likewise, the port with the
smallest maximum number of available tokens determines the maximum number of
AND-activations.

The number of available tokens at port i during a time interval A¢ depends on both
the number of tokens arriving during A¢, and on the number of tokens that arrived
earlier, but did not yet lead to an activation because tokens at one or more other ports
are still missing. This is illustrated in the following example. Assume that the task
in Figure 2.7 receives tokens at each with the following ‘periodic with jitter’ input
event models:

Pir=4, J1=0
Pr=4, D=2
P3=4, J3=3

Figure 2.8 shows a possible sequence of input events that adhere to these event
models, and the resulting AND-activation events. The numbering of events in the
figure indicates which events together lead to one activation of AND-activated task C.
As can be seen, the minimum distance between two AND-activations (activations 3
and 4 in Figure 2.8) equals the minimum distance between two input events at input 3,
which is the input with the largest input event model jitter. Likewise, the maximum
distance between two AND-activations (activations 1 and 2 in Figure 2.8) equals the
maximum distance between two input events at input 3. It is not possible to find a
different sequence of input events leading to a smaller minimum or a larger maximum
distance between two AND-activations. From this it results that the input with the
largest input event jitter determines the activation jitter of the AND-activated task, i.e.

JaNp = max{Ji}; i=1...k 2.7)

This statement also remains true if the first set of input events does not arrive at the
same time (as is the case in Figure 2.8). A proofis given in Reference 19. Calculation
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Figure 2.8 AND-activation timing example

of the worst-case delay and backlog at each input due to AND-buffering can also be
found in Reference 19.

Note that in some cases it may be possible to calculate phases between the arrivals
of corresponding tokens in more detail, e.g. through the use of inter-event stream
contexts (Section 2.5.3). It may then be possible to calculate a tighter activating jitter
if it can be shown that a certain input cannot (fully) influence the activation timing
of an AND-activated task, because tokens at this input arrive relatively early. This is
particularly important for the analysis of functional cycles (Section 2.4.4).

2.4.3  OR-activation

For a consumer task C with multiple inputs, OR-activation implies that C is activated
each time an input event occurs at any input of C. Contrary to AND-activation, input
event models are not restricted, and no OR-buffering is required, since a token at one
input never has to wait for tokens to arrive at a different input in order to activate C.
Of course, activation buffering is still required.

An example of an OR-activated task with two inputs is shown in Figure 2.9.
Assume the following ‘periodic with jitter’event models at the two inputs of task C:

Pr=4, J1=2
Pr=3, =2

The corresponding upper and lower input event functions are shown in Figure 2.10.
Since each input event immediately leads to one activation of task C, the upper and
lower activating event functions are constructed by adding the respective input event
functions. The result is shown in Figure 2.11(a).

Recall a key requirement of compositional performance analysis, namely, that
event streams are described in a form that can serve both as input for local scheduling
analysis, and can be produced as an output of local scheduling analysis for propagation
to the next analysis component (Section 2.3.3.2). Due to the irregularly spaced steps
(visible in Figure 2.11(a)), the ‘exact’ activating event functions cannot be described
by a ‘periodic with jitter’event model, and thus cannot serve directly as input for
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Figure2.9 Example of an OR-activated task C
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Figure2.10 Upper and lower input event functions in the OR-example. (a) OR input
1(Pr=4,71=2); (b) ORinput2 (P, =3,72>=2)
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Figure2.11 Upper and lower activating event functions in the OR-example.
(a) Exact; (b) periodic with jitter approximation

local scheduling analysis. Furthermore, after local scheduling analysis a ‘periodic
with jitter’output event model has to be propagated to the next analysis component.
An activation jitter is required in order to calculate an output jitter (Section 2.3.3.1).
Therefore, conservative approximations for the exact activating event functions that
can be described by a ‘periodic with jitter’event model (Por, Jor) need to be found.
The intended result is shown in Figure 2.11 (the exact curves appear as dotted lines).
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2.4.3.1 OR-activation period

The period of OR-activation is the least common multiple LCM(P;) of all input event
model periods (the ‘macro period’), divided by the sum of input events during the
macro period assuming zero jitter for all input event streams.

LCM(P) 1

Por = - 2.8
R =S LCM(P)/Pi . S (/P 28)

2.4.3.2 OR-activation jitter

A conservative approximation for the exact activating event functions with a ‘periodic
with jitter’event model implies the following inequations.

At + Jor [ A+ T
’7 Por —‘22’7 Pi —‘ @9

([ 2555]) Fem o[ 252])

In order to be as accurate as possible, the minimum jitter that satisfies in
Equations (2.9) and (2.10) must be found. It can be shown that the minimum jitter that
satisfies in Equation (2.9) and the minimum jitter that satisfies in Equation (2.10) are
the same [19]. In the following, the upper approximation (in Equation (2.9)) is used to
calculate the OR-activation jitter. Since the left and right sides of this inequation are
only piecewise continuous, the inequation cannot be simply transformed to obtain the
desired minimum jitter. The solution used here is to evaluate in Equation (2.9) piece-
wise for each interval [At;, At; 1], during which the right side of the inequation has a
constant value k; € N. For each constant piece of the right side, a condition for a ‘local
jitter’ Jog j is obtained that satisfies the inequation for all Az : At; < At < Atjyy.
For each constant piece of the right side, in Equation (2.9) becomes

[ At + Jor,j
Por
Since the left side of this inequation is monotonically increasing with A¢, it is

sufficient to evaluate it for the smallest value of At, which approaches At;, i.e.
) "At,' + € + Jorj
lim | ———=
Por
. Atj+e+ Jor;
& lim —————=
€e—>+0 Por
< lim (jOR,j +e€) > (kj — 1) x Por — At;
e—>+0

]zkj; Atj < At < Atjy,kj €N

>ki; kieN
e—+0 —‘_ 7 i<

>kj—1

& Jorj = (kj — 1) x Por — At (2.11)

The global minimum jitter is then the smallest value which satisfies all local jitter
conditions. As already said, gy displays a pattern of distances between steps which



System-level performance analysis 45

Figure2.12 Example of a cyclic dependency

repeats periodically every macro period. Therefore, it is sufficient to perform the
above calculation for one macro period. An algorithm can be found in Reference 22.

2.4.4 Cyclic task dependencies

Tasks with multiple inputs allow us to build cyclic dependencies. A typical application
is a control loop, where one task represents the controller and the other represents a
model of the controlled system. A task graph with a cycle is shown in Figure 2.12.

Tasks with multiple inputs in cycles are assumed to be AND-activated, and to
produce one token at each output per execution. This implies that at least one initial
token must be present inside the cycle to avoid deadlock [21], and that the number
of tokens inside the cycles remains constant. Consequently, the period of the cycle-
external event model determines the period of all cycle tasks. Finally, exactly one
cycle task with one cycle-external and one cycle-internal input is assumed to exist in
acycle. All other cycle tasks only have cycle-internal inputs. These restrictions allow
us to concisely discuss the main issues resulting from functional cycles. A much more
general discussion can be found in Reference 19.

In Section 2.4.2 it was established that the activation jitter of an AND-activated
task is bounded by the largest input jitter. As was the case for cyclic scheduling
dependencies (Section 2.3.3.2), system analysis starts with an initial assumption
about the cycle-internal jitter of the AND-activated task, since this value depends
on the output jitter of that task, which has not been calculated yet. A conservative
starting point is to initially assume zero internal jitter. Now analysis and event model
propagation can be iterated around the cycle, hoping to find a fix-point.

However, if only one task along the cycle has a response time which is an interval,
then after the first round of analysis and event model propagation the internal input
jitter of the AND-activated task will be larger than the external input jitter. In the
SymTA/S compositional performance analysis approach, this larger jitter will be
propagated around the cycle again, resulting in an even larger jitter at the cycle-
internal input of the AND-activated task (Section 2.3.3.2). It is obvious that the jitter
appears unbounded if calculated this way.
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The problem boils down to the fact that event model propagation as presented
so far captures neither correlations between the timing of events in different event
streams nor the fact that the number of tokens in a cycle is fixed. Therefore, the
activation jitter for the AND-activated task is calculated very conservatively.

2.4.5 Analysis idea

Cycle analysis requires detailed consideration of the possible phases between tokens
arriving at the cycle-external and the cycle-internal inputs of the AND-activated
task. The solution proposed in the following has the advantage to require only
minor modifications to the feed-forward system-level analysis already supported by
SymTA/S. The idea is as follows: initially, the cycle-internal input is assumed not to
increase the activation jitter of the AND-activated task. This allows to ‘cut’ the cycle-
internal edge, rendering a feed-forward system which can be analysed as explained in
Section 2.3.3.2. Then the time it takes a token to travel around the cycle is calculated,
and the validity of the initial assumption is verified.

In the following, the idea is explained for cycles with one initial tokens. Assume
an external ‘periodic with jitter’event model with period Pext and jitter Jex:. Let t?n
and 17 be, respectively, the minimum and maximum sum of worst-case response
times of all tasks belonging to a cycle (the ‘time around the cycle’) as obtained through
analysis of the corresponding feed-forward system. Let us further assume that after
analysis of the corresponding feed-forward system, 75 < Peys.

At system startup, the first token arriving at the cycle-external input will imme-
diately activate the AND-concatenated task together with the initial token already
waiting at the cycle-internal input. No further activation of the AND-activated task
is possible until the next token becomes available at the cycle-internal input of that
task. If feed-forward analysis was valid, then this will take between tgin and 1™
time units.

The maximum distance between two consecutive external tokens is §g (2) =
Pext + Jext (Equation (2.4)). From #5® < Pey, it follows that it is not possible that
the ‘2nd’ external token arriving as ‘late’ as possible after the ‘1st’ external token has
to wait for an internal token.

The ‘3rd’ external token can arrive at most 8§35 (3) = 2 X Pext + Jext after the
‘1st’ external token. Therefore, if both the ‘2nd’ and the ‘3rd’ external tokens arrive
as late as possible, then the ‘3rd” arrives Pex; after the ‘2nd’. From #5®* < Pex
it follows that the ‘3rd’ external token arriving as ‘late’ as possible after the ‘1st’
external token cannot wait for an internal token, even if the ‘2nd’ external token
also arrived as ‘late’ as possible. This argument can be extended to all further
tokens. Thus, no external token arriving as late as possible has to wait for an internal
token.

Activation of task b also cannot happen earlier than the arrival of an external
token. Therefore, the activating event model of task b is conservatively captured by
the external input event model (Equation (2.12)). This approach is therefore valid for
a cycle with M = 1 initial token, for which /£ < Pex;.

Pact = Pext;  Jact = Text (2.12)
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Figure2.13  Possible event sequence for the cycle example. Grey boxes indicate jit-
ter intervals during which an event can occur. Note that line 2 displays
the possible timing of internal events depending on the previous acti-
vating event, while lines 1 and 3 display the possible timing of events
independent of previous events

For example, assume that in the system in Figure 2.12 task b is activated externally
with (Ppext = 4, Jbext = 3). Let us further assume that feed-forward analysis has
determined the time around the cycle to be [tgf” ", t§™] = [2,3],1.e. each internal input
event follows between [2,3] time units after the previous activating event. Figure 2.13
shows a snapshot of a sequence of external, internal and activating events for task b
(numbers indicate corresponding input events and the resulting activating event). The
first internal event is due to the initial token. As can be seen, activating event timing
can be described by the same event model as external input event timing. If on the other
hand analysis of the corresponding feed-forward system determines 75 > Pext,
then this statement is no longer true, since for example the ‘3rd’ internal event could
occur later than the latest possible ‘3rd’ external event.

In Figure 2.13 it can also be seen that an ‘early’ external token may have to wait
for an internal token since two token arrivals at the cycle-internal input of task b
cannot follow closer than t?in, and thus

Smin(z); tfr?in < Smin )

min ext ext
Sact (2) = . . . (2.13)
(min ;o gmin 5 gmin ()

Effectively, if 70 > St (2), then the cycle acts like a dmin-EAF with dpin = 210
(Section 2.3.4). This additional effect of the cycle does not ‘require’ a new scheduling
analysis, since the possible activation timing is only tightened. All possible event tim-
ing in the tighter model is already included in the wider model. Therefore, the results
in Equation (2.12) remain valid. However, it is worthwhile to perform scheduling
analysis again with the tighter activating event model for the AND-concatenated

task, since results will be more accurate.
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In Reference 19 it is shown that the approach presented in this section is also valid
fora cycle with M > 1 initial tokens, for which (M — 1) X Pext < g™ < M X Pext.
In Reference 19 it is also shown how to extend the approach to nested cycles. In
SymTA/S, the feed-forward analysis is performed for every cycle, and the required
number of initial tokens is calculated from #®*. This number is then compared against
the number of cycle-tokens specified by the user in the same manner as any other
constraint is checked.

2.5 System contexts

Performance analysis as described so far can be unnecessarily pessimistic, because it
ignores certain correlations between consecutive task activations or assumes a very
pessimistic worst-case load distribution over time.

In SymTA/S, advanced performance analysis techniques taking correlations
between successive computation or communication requests as well as correlated
load distribution into account, have been added in order to yield tighter analysis
bounds. Cases where such correlations have a large impact on system timing are
especially difficult to simulate and, hence, are an ideal target for formal performance
analysis. Such correlations are called ‘system contexts’.

In Section 2.5.1, using an example of a hypothetical set-top box, the assumptions
made by a typical performance analysis, called ‘context-blind’ analysis, are reviewed.
Then, the analysis improvements that can be obtained when considering two different
types of system contexts separately and also in combination are shown: ‘intra event
stream contexts’, which consider correlations between successive computation or
communication requests (Section 2.5.2), and ‘inter event stream contexts’, which
consider possible phases between events in different event streams (Section 2.5.3).
The combination of both system contexts is explained in Section 2.5.4.

2.5.1 Context-blind analysis

The SoC implementation of a hypothetical set-top box shown in Figure 2.14 is
used as an example throughout this section. The set-top box can process Motion
Pictures Expert Group-2 (MPEG-2) video streams arriving from the RF-module
(rf _video) and sent via the bus (BUS) to the TV (¢tv). In addition, a decryption
unit (DECRYPTION) allows us to decrypt encrypted video streams. The set-top box
can additionally process IP traffic and download web-content via the bus (ip) to the
hard-disk (hd).

The focus will be on worst-case response time calculation for the system bus.
Assume ‘static priority-based scheduling’ on the bus. The priorities are assigned as
follows: enc > dec > ip. MPEG-2 video frames are assumed to arrive periodically
from the RF-module. The arrival period is normalised to 100. The core execution and
communication times of the tasks are listed in Table 2.1.

The worst-case response time of ip, calculated by a context-blind analysis, is
170. As can be seen in Figure 2.15, even though a data dependency exists between
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Figure2.14  Hypothetical set-top-box system

Table2.1 Core  execution

times
Task CET
enc [10,30]
dec [10,30]
ip [50,50]
Decryption [40,40]

enc and dec, which may even out their simultaneous activation, a context-blind
analysis assumes that in the worst-case all communication tasks are activated at the
same instant. Furthermore, even though MPEG-2 frames may have different sizes
depending on their type, a context-blind analysis assumes that every activation of
enc and dec leads to a maximum transmission time of one MPEG-2 frame.

2.5.2 Intra event stream context

Context-blind analysis assumes that in the worst case, every scheduled task executes
with its worst-case execution time for each activation. In reality, different events
often activate different behaviours of a computation task with different worst-case
execution time (WCET), or different bus loads for a communication task. Therefore,
alower maximum load (and a higher minimum load) can be determined for a sequence
of successive activations of a higher-priority task if the types of the activating events
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Figure2.15 Worst-case response time calculation for ‘ip without’ contexts, using
SymTA/S

are considered. This in turn leads to a shorter calculated worst-case response time
(and a longer best-case response time) of lower-priority tasks. The correlation within
a sequence of different activating events is called an ‘intra event stream context’.

Mok and Chen introduced this idea in Reference 23 and showed promising results
for MPEG-streams where the average load for a sequence of I-, P- and B-frames is
much smaller than in a stream that consists only of large I-frames, which is assumed
by a context-blind worst-case response time analysis. However, the periodic sequence
of types of activating events was supposed to be completely known.

In reality, intra event stream contexts can be more complicated. If no complete
information is available about the types of the activating events, it is no longer possible
to apply Mok’s and Chen’s approach. Mok and Chen also do not clearly distinguish
between different types of events on one hand, and different task behaviours, called
‘modes’ [24], on the other. However, this distinction is crucial for subsystem integra-
tion and compositional performance analysis. Different types of events are a property
of the sender, while modes are a property of the receiver. Both can be specified
separately from each other and later correlated. Furthermore, it may be possible to
propagate intra event stream contexts along a chain of tasks. It is then possible to also
correlate the modes of consecutive tasks.

In SymTA/S, intra event stream contexts are extended by allowing minimum and
maximum conditions for the occurrence of a certain type of event in a sequence of a
certain length n, in order to capture partial information about an event stream, 7 is an
arbitrary integer value. A single worst-case and a single best-case sequence of events
with length n can be determined from the available min- and max-conditions that can
be used to calculate the worst- and best-case load due to any number of consecutive
activations of the consumer task. In Reference 25, the static-priority preemptive
response-time calculation is extended to exploit this idea.

In the following, this approach is applied to the set-top box example. Suppose that
the video stream, sent from the RF to the bus, is encoded in one of several patterns of
I-, P- and B-frames (IBBBBB, IBBPBB, IPBBBB...), or that several video streams
are interleaved. Therefore, it is impossible to provide a fixed sequence of successive
frame types in the video stream. However, it may be possible to determine min- and
max-conditions for the occurrence of each frame type.
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Figure2.16 Worst-case response time calculation for ip considering ‘intra’
contexts

The communication times of tasks enc and dec depend on the received frame type.
I-frames have the largest size and lead to the longest execution time, P-frames have the
middle size and B-frames have the smallest size. Therefore, the mode corresponding
to the transmission of an I-frame has the largest communication time and the mode
corresponding to the transmission of a B-frame has the lowest communication time.

Having both intra event stream context information and modes of the consumer
tasks, a weight-sorted worst-case sequence of frame types with length n can be
determined. The reader interested in knowing the algorithm to exploit min- and
max-conditions is referred to Reference 25.

Now the worst-case load produced on the bus can be determined for / successive
activations of enc and dec. This is performed, by iterating through the weight-sorted
sequence starting from the first event and adding up loads until the worst-case load
for [ activations has been calculated. If / is bigger than n, the sequence length, the
algorithm goes only through / mod n events and adds the resulting load to the load
of the whole sequence multiplied by / div n.

In Figure 2.16, assuming that the worst-case sequence of frame types with length
2 is IP; and that the transmission time for an I-frame is 30 and for a P-frame is 20, the
calculated worst-case response time of i p, when considering the available intra event
stream context information, is shown. As can be seen, for both tasks enc and dec, the
produced load on the bus due to a transmission of two successive MPEG-2 frames is
smaller than in the context-blind case (see Figure 2.15). This leads to a reduction of
the calculated worst-case response time of i p: 150 instead of 170.

2.5.3 Inter event stream context

Context-blind analysis assumes that all scheduled tasks sharing a resource are inde-
pendent and that in the worst case all tasks are activated simultaneously. In reality,
activating events are often time-correlated, which rules out simultaneous activation
of all tasks. This in turn may lead to a lower maximum number (and higher minimum
number) of interrupts of a lower-priority task through higher-priority tasks, resulting
in a shorter worst-case response time (and longer best-case response time) of the
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lower-priority task. The correlation between time-correlated events in different event
streams is called an ‘inter event stream context’.

Tindell introduced this idea for tasks scheduled by a static priority preemptive
scheduler [26]. His work was later generalised by Palencia and Harbour [27]. Each
set of time-correlated tasks is grouped into a so-called ‘transaction’. Each transaction
is activated by a periodic sequence of external events. Each task belonging to a
transaction is activated when a relative time, called ‘offset’, elapses after the arrival
of the external event.

To calculate the worst-case response time of a task, a worst-case scenario for
its execution must be build. Tindell [26] showed that the worst-case interference of
a transaction on the response time of a task occurs at the ‘critical instant’ which
corresponds to the most-delayed activation of a higher-priority task belonging to the
transaction. The activation times of the analysed task and all higher-priority tasks
have to happen as soon as possible after the critical instant.

Since all activation times of all higher-priority tasks belonging to a transaction are
candidates for the critical instant of the transaction, the worst-case response time of
a lower-priority task has to be calculated for all possible combinations of all critical
instants of all transactions that contain higher-priority tasks, to find the absolute
worst case.

In the following, Tindell’s approach is applied to the set-top box example. Due to
the data dependency among enc, decryption and dec, these tasks are time-correlated.
The offset between the activations of enc and decryption corresponds to the exe-
cution time of enc. Based on this offset and the execution time of decryption, the
offset between the activations of enc and dec can be calculated.

In order to show the analysis improvement due to inter event stream contexts
in isolation, assume for now that all video-frames are I-frames. Figure 2.17 shows
for the inter event stream context case the calculated worst-case response time of ip
due to interrupts by enc and dec. As can be seen, a gap exists between successive
executions of enc and dec. Since ip executes during this gaps, one interrupt less of
ip is calculated (in this case through enc). This leads to a reduction of the calculated
worst-case response time of ip: 140 instead of 170.

enc
Priority 1 \ 4 v

P(100)+7(0) +d(0) 30 30

dec
Priority 2
P(100)+7(20) +d(0)

A4
p  jwl o [30 ] .
Priority 3
P (1000) +7(0)+d(0)

H

I
|
0 20 40 60 80 100 120

Figure2.17 Worst-case response time calculation for ‘ip’ considering ‘inter’
contexts
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Figure2.18 Improved worst-case response time calculation due to ‘inter’ contexts

InFigure 2.18, analysis improvements with inter event stream context information
in relation to the context-blind case are shown as a function of the offset between enc
and dec, which is equal to the execution time of the decryption unit.

Curve a shows the reduction of the calculated worst-case response time of dec.
Depending on the offset, dec is either partially (offset value less than 30), completely
(offset value more than 70) or not interrupted at all by enc (offset value between 30
and 70). The latter case yields a maximum reduction of 50 per cent.

Curves b—g show the reduction in the calculated worst-case response time of ip
for different IP traffic sizes. The reduction is visible in the curves as dips. If no gaps
exists between two successive executions of enc and dec, no worst-case response
time reduction of i p can be obtained (offset value less than 30 or more than 70). If a
gap exists, then sometimes one interrupt less of ip can be calculated (either through
enc or dec), or there is no gain at all (curves d and f). Since the absolute gain that can
be obtained equals the smaller worst-case execution time of enc and dec, the relative
worst-case response time reduction is bigger for shorter IP traffic.

An important observation is that inter event stream context analysis reveals the
dramatic influence that a small local change, e.g. the speed of the decryption unit
reading data from the bus and writing the results back to the bus, can have on system
performance, e.g. the worst-case transmission time of lower-priority IP traffic.

2.5.4 Combination of contexts

‘Inter’ event stream contexts allow us to calculate a tighter number of interrupts
of a lower-priority task through higher-priority tasks. ‘Intra’ event stream contexts
allow us to calculate a tighter load for a number of successive activations of a
higher-priority task. The two types of contexts are orthogonal: the worst-case response
time of a lower-priority task is reduced because fewer high-priority task activations
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Figure2.19 Worst-case response time calculation for ‘ip’ with ‘combination’ of
contexts

can interrupt its execution during a certain time interval, and also because the time
required to process a sequence of activations of each higher-priority task is reduced.
Therefore, performance analysis can be further improved if it is possible to consider
both types of contexts in combination. This is shown in Figure 2.19 for the worst-case
response time calculation of ip: 130 instead of 170.

In Figure 2.20, analysis improvements considering both inter and intra event
stream contexts in relation to the context-blind case are shown as a function of the
offset between enc and dec. Curve a shows the reduction of the calculated worst-case
response time of dec. Since dec is interrupted at most once by enc, and the worst-case
load produced due to one activation of enc is the transmission time of one I-frame,
no improvement is obtained through the context combination in comparison to curve
a in Figure 2.18.

Curves b—g show the reduction of the calculated worst-case response time of ip
for different IP traffic sizes. When comparing curves b and ¢ (IP traffic sizes of 5 and
10) to curves b and ¢ in Figure 2.18, it can be seen that no improvement is obtained
through the context combination. This is due to the fact that i p is interrupted at most
once by enc and at most once by dec. Therefore, as in case a, the calculated worst-
case load produced by the video streams is the same no matter whether the available
intra event stream context information is considered or not.

Curve d shows that for an IP traffic size of 30, no improvements are obtained
through the context combination in comparison to the ‘context-blind’ case. This is
due to the fact that for all offset-values, ip is interrupted exactly once by enc and
exactly once by dec, and that the calculated worst-case load produced by the video
streams due to one activation is the same no matter if intra event stream contexts are
considered or not.

Curves e and f show that for IP traffic sizes of 50 and 70 improvements are
obtained as a result of the context combination in comparison to both the intra and
inter event stream context analysis. Since intra and inter event stream contexts are
orthogonal, the reduction of the calculated worst-case response time of ip due to the
intra event stream context is constant for all offset values. Since no reduction due
to inter event stream context can be obtained for an offset value of 0 (equivalent to
the inter event stream context-blind case), the reduction shown in the curve for this
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Figure 2.20 Analysis improvement due to the ‘combination of intra and inter’
contexts

offset value can only be a result of the intra event stream context. On the other hand,
the additional reduction between the offset values 25 and 75 is obtained due to the
inter event stream context.

Curve g shows that for an IP traffic size of 90, even though the inter event stream
context leads to an improvement (see curve g in Figure 2.18), the improvement due
to the intra event stream context dominates, since no dip exists in the curve, i.e. no
additional improvements are obtained due to the context combination in comparison
to the intra event stream context case.

This example shows that considering the combination of system contexts can
yield considerably tighter performance analysis bounds compared with a context-
blind analysis. Equally important, this example reveals the dramatic influence that
a small local change can have on system performance. Systematically identifying
such system-level influences of local changes is especially difficult using simulation
due to the large number of implementations that would have to be synthesised and
executed. On the other hand, formal performance analysis can systematically and
quickly identify such corner cases. All these results took a couple of milliseconds to
compute using SymTA/S.

2.6 Design space exploration for system optimisation

This section gives an overview of the compositional design space exploration
framework used in SymTA/S which is based on evolutionary optimisation techniques.
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First, system parameters which can be subject to optimisation, i.e. the search
space, are described. Then some examples of metrics expressing desired or undesired
system properties used as optimisation objectives in the exploration framework are
presented. Afterwards, we will explain how the search space can be defined and
dynamically modified during exploration in order to allow the designer to guide
the search process. Finally, the iterative design space exploration loop performed in
SymTA/S is explained in detail.

2.6.1 Search space

The entire system is seen as a set of independent ‘chromosomes’, each representing
a distinct subset of system parameters. A chromosome carries variation operators
necessary for combination with other chromosomes of'its type. Currently in SymTA/S,
the standard operator’s mutation and crossover which are independently applied to
the chromosomes, are used. The scope of a chromosome is arbitrary, it reaches from
one single system parameter to the whole system.

The search space and the optimisation objectives can be multidimensional, which
means that several system parameter can be explored simultaneously to optimise
multiple objectives. Possible search parameter include:

mapping of tasks onto different resources

changing priorities on priority-scheduled resources

changing time slot sizes and time slot order on TDMA or round robin scheduled
resources

changing the scheduling policy on a resource

modifying resource speed

traffic shaping

Traffic shaping is included in the search space because it increases the design space
and allows us to find solutions which are not possible without traffic modulation. This
shall be shown with a small example.

Consider the task set in Table 2.2 scheduled according to the static-priority pre-
emptive policy. All tasks are activated periodically except To which has a very large
jitter leading to the simultaneous arrival of three activations in the worst case.

Two experiments are conducted. The first one with the original activating event
models and the second one using a shaper at the input of Ty extending the minimum

Table 2.2 Simple task set

Name Activating event model CET Deadline
To P(100) + J(200) +d(10) 4 8
T P(100) + J(0) +d(0) 8 12
Ty P(100) + J(0) + d(0) 5 21
T3 P(100) + J(0) + d(0) 3 24
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Figure2.21 WC scheduling scenarios Ty > T1 > To > Tj. (a) minimum distance
10, (b) minimum distance 12

distance to 12. In the first experiment no priority assignment leading to a system
fulfilling all constraints is found. However, in the second experiment the priority
assignment To > T > T, > T3 leading to a working system is found. The reason for
this is that extending the minimum distance of successive activations of Ty relaxes
the impact of the burst and leads to more freedom for the lower-priority tasks to
execute. This results in less preemption and thus earlier completion for T;, T, and
T3. Figures 2.21(a) and (b) visualise this effect by showing the worst-case scheduling
scenarios for the priority assignment Tgp > T; > T, > T3 with minimum distances
10 and 12.

Note that in the general case concerning distributed systems with complex per-
formance dependencies, optimisation through traffic shaping is not applicable in
such a straight forward manner. Nevertheless, traffic shaping can broaden consider-
ably the solution-space by restricting event streams, leading to increased freedom on
cross-related event streams.

2.6.2 Optimisation objectives

The SymTA/S exploration framework is capable of performing a multi-objective
optimisation of several concurrent optimisation objectives, leading usually to the
discovery of several ‘Pareto-optima’.
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Pareto-optimal solutions represent a certain trade-off between two or more
optimisation objectives, leaving it to the designer to decide which solution to adopt.
More precisely, given a set V of k-dimensional vectors v € R¥. A vectorv € V
dominates a vector w € V if for all elements 0 < i < k we have v; < w; and for
at least one element / we have v; < w;. A vector is called Pareto-optimal if it is not
dominated by any other vector in V.

Optimisation objectives can be any kind of metric, defined on desired or undesired
properties of the considered system. Note that some metrics only make sense in com-
bination with constraints. Each design alternative considered during the exploration
process is associated with a fitness vector containing one entry for every concurrent
optimisation objective.

In the following some example optimisation objectives used in the SymTA/S
exploration framework will be introduced using the following notation:

R maximum response time of a task or
maximum end-to-end latency along a path
D  deadline (task or end-to-end)
constant weight > 0
number of tasks or
number of constrained tasks/paths in the system

=8

1 minimisation of the (weighted) sum of completion times

k
Zwi X R;

i=1

2 minimisation of the maximum lateness
max(Ry — D1,...,Rr — Dy)

3 maximisation of the minimum earliness
min(D; — Ry,...,Dy — Ry)

4 minimisation of the (weighted) average lateness

k
Y i x (Ri — Dy)

i=1

5 maximisation of the (weighted) average earliness

k
Za)i x (Di — R;)

i=1

6 minimisation of end-to-end latencies
minimisation of jitters
8 minimisation of the sum of communication buffer sizes

2
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Figure2.22  Search space definition

The choice of the metric for optimisation of a specific system is very important to
obtain satisfying results. Example metrics 4 and 5, for instance, express the average
timing behaviour of a system with regard to its timing constraints. They might mislead
an evolutionary algorithm and prevent it from finding system configurations fulfilling
all timing constraints, since met deadlines compensate linearly for missed deadlines.
For systems with hard real-time constraints, metrics with higher penalties for missed
deadline and fewer rewards for met deadlines can be more appropriate, since they lead
to amore likely rejection of system configurations violating hard deadline constraints.
The following example metric penalises violated deadlines in an exponential way
and can be used to optimise the timing properties of a system with hard real-time
constraints:

k
Zci’ ‘., ¢; > 1 constant
=0

2.6.3 Defining the search space and controlling the exploration

The designer defines the current search space, by selecting and configuring a set
of chromosomes representing the desired search space. System parameters not
included inside the selected chromosomes remain immutable during the exploration.
Figure 2.22 shows this principle.

The set of chromosomes representing the search space serves as a blueprint for
specific individuals (phenotypes) used during exploration. The variation operators
(i.e. crossover and mutation) for these individuals are applied chromosome-wise.

The chromosomes are encoded and varied independently. There are two reasons
why independent encoding and variation have been chosen. First, it is easier to estab-
lish a constructively correct encoding on a small subset of design decisions. Such
an encoding scheme ensures that all chromosome values correspond to valid deci-
sions such that any chromosome variation is constructively valid. This improves the
optimisation process as it greatly reduces the effort of checking a generated design
for validity. It allows using the analysis engine of SymTA/S which requires correct
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design parameters to apply analysis (e.g. sum of time slots no longer than the period,
legal priority setting, etc.). Second, it is easy to add and remove design parameters
to the optimisation process, even dynamically, which is exploited in the exploration
framework.

Chromosomes can be defined arbitrarily as fine or coarse grain. This enables the
designer to define the search space very precisely. The designer can limit certain
parameters locally while giving others a more global scope. This way of defining
the search space represents a compositional approach to optimisation and allows us
to scale the search process. The designer can conduct several well-directed exploration
steps providing insight into the system’s performance dependencies. Based on this
knowledge she can then identify interesting design sub-spaces, worthy to be searched
in-depth or even completely. An a priori global exploration does not permit such
a flexibility and neglects the structure of the design space, giving the designer no
possibility to modify and select the exploration strategy. In the worst case, when
the composition of the design space is unfavourable, this can lead to non-satisfying
results with no possibility for the designer to intervene. In many approaches the only
possibility for the designer in such a case consists in restarting the exploration, hoping
for better results.

One important precondition for this approach to design space exploration is the
dynamic configurability of the search space. The exploration framework allows
the designer to redirect the exploration in a new direction without discarding
already obtained results. She can for example downsize the search space by fix-
ing parameters having the same values in (nearly) all obtained Pareto-optimal
solutions, or expand it with parameters not yet considered. Note that this method-
ology is more flexible than separate local parameter optimisation and subsequent
recombination.

2.6.4 Design space exploration loop

Figure 2.23 shows the design space exploration loop performed in the exploration
framework [28]. The ‘Optimisation controller’ is the central element. It is connected
to the ‘Scheduling analysis’ and to an ‘Evolutionary optimiser’. The ‘Scheduling
analysis’ checks the validity of a given system parameter set, that is represented by
an individual, in the context of the overall heterogeneous system. The ‘Evolution-
ary optimiser’ is responsible for the problem-independent part of the optimisation
problem, i.e. elimination of individuals and selection of interesting individuals for
variation. Currently, SPEA2 (Strength Pareto Evolutionary Algorithm 2) [29] and
FEMO (fair evolutionary multi-objective optimiser) [30] are used for this part. They
are coupled via PISA (Platform and Programming Language Independent Interface
for Search algorithms) [31], discussed in the previous chapter by Kiinzli.

Note that the selection and elimination strategy depends on the used multi-
objective optimiser. For instance FEMO [30], eliminates all dominated individuals
in every iteration and pursue a fair sampling strategy, i.e. each parent participates in
the creation of the same number of offspring. This leads to a uniform search in the
neighbourhood of elitist individuals.
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The problem-specific part of the optimisation problem is coded in the chromo-
somes and their variation operators.

Before the exploration loop can be started the designer has to select the desired
search space (see Section 2.6.1) and the optimisation objectives (see Section 2.6.2)
she wants to optimise. The chromosomes representing the search space are included in
the evolutionary optimisation, while all other system parameters remain immutable.
After the designer has selected the search space and the optimisation task, SymTA/S
is initialised with the immutable part of the system and the selected chromosomes are
used as blueprints to create the initial population.

For each individual in the population the following is done:

e Step 1.1: The chromosomes of the considered individual are applied to the
SymTA/S engine. This completes the system and it can be analysed.

e Step 1.2 + 1.3: Each optimisation objective requests the necessary system
properties of the analysed system to calculate its fitness value.

e Step 1.4: The fitness values are communicated to the ‘Optimisation controller’.

Once these four steps are performed for each individual inside the population
the ‘Optimisation controller’ sends a list of all individuals and their fitness values to
the ‘Evolutionary optimiser’ (step 2). Based on the fitness values the ‘Evolutionary
optimiser’ creates two lists: a list of individuals which are to be deleted and a list of
individuals selected for variation and sends them back to the ‘Optimisation controller’
(step 3). Based on the two lists the ‘Optimisation controller’ then manipulates the
population, i.e. she deletes the according individuals and creates new offspring based
on the individuals selected for variation and adds them to the population (step 4).



62  System-on-chip

This completes the processing of one generation. The whole loop begins again
with the new created population.

After each iteration the designer can choose to modify the search space. This
consists, as explained in Section 2.6.3, in adding/removing chromosomes to/from the
individuals. The re-evaluation of the fitness values is performed automatically and
the next exploration iteration is then started.

The performance of the search procedure in SymTA/S is affected by the search
strategy of the optimiser, the coding of the chromosomes and their variation opera-
tions as well as the choice of the optimisation objectives. As far as the optimiser is
concerned, it is known that no general purpose optimisation algorithm exists that is
able to optimise effectively all kinds of problems [32].

2.7 Sensitivity analysis

Most analysis techniques known from literature give a pure ‘Yes/No’ answer regarding
the timing behaviour of a specific system with respect to a set of timing constraints
defined for that system. Usually, the analyses consider a predefined set of input
parameters and determine the response times, and thus, the schedulability of the
system.

However, in a realistic system design process it is important to get more infor-
mation with respect to the effects of parameter variations on system performance,
as such variations are inevitable during implementation and integration. Capturing
the bounds within which a parameter can be varied without violating the timing con-
straints offers more flexibility for the system designer and supports future changes.
These bounds shows how ‘sensitive’ the system or system parts are to system
configuration changes.

Liu and Layland [1] defined a maximum load bound on a resource that guar-
antees the schedulability of that resource when applying a rate-monotonic priority
assignment scheme. The proposed algorithm is limited to specific system configura-
tions: periodically activated tasks, tasks with deadlines at the end of their periods
and tasks that do not share common resources (like semaphores) or that do not
inter-communicate.

Later on, Lehoczky [33] extended this approach to systems with arbitrary task
priority assignment. However, his approach does not go beyond the limitations
mentioned above. Steve Vestal [34] proposed a fixed-priority sensitivity analysis for
tasks with linear computation times and linear blocking time models. His approach
is still limited to tasks with periodic activation patterns and deadlines equal to the
period. Punnekkat [35] proposed an approach that uses a combination of a binary
search algorithm and a slightly modified version of the response time schedulability
tests proposed by Audsley and Tindell [7,36].

In the following is presented a brief overview about the sensitivity analysis algo-
rithm and the analysis models and metrics used in SymTA/S. As already mentioned
above, different approaches were proposed for the sensitivity analysis of different sys-
tem parameters. However, these approaches can perform only single resource analysis
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as they are bounded by local constraints (tasks deadlines). Due to a fast increase of
system complexity and heterogeneity, the current distributed systems usually have
to satisfy global constraints rather than local ones. End-to-end deadlines or global
buffer limits are an example of such constraints. Hence, the formal sensitivity anal-
ysis approaches used at resource level cannot be transformed and applied at system
level, as this implies huge effort and less flexibility.

The sensitivity analysis framework used in SymTA/S combines a binary search
technique and the compositional analysis model implemented in SymTA/S. As
described in Section 2.3, SymTA/S couples the local scheduling analysis algorithms
into a global analysis model.

Since deadlines are the major constraints in real-time systems it makes sense to
measure the sensitivity of path latencies. As the latency of a path is determined by
the response times of all tasks along that path, and the response time of a task directly
depends on its core execution time, the following represent important metrics for the
sensitivity analysis.

1. Maximum variation of the core execution time of a task without violating the
system constraints or the system schedulability. If the system is not schedulable
or constraints are violated then find the maximum value of the task core execution
time that leads to a conforming system.

2. Minimum speed of a resource. The decrease of a resource speed directly affects
the core execution times of all tasks mapped on that resource but also reduces
the energy required by that resource. If the system is currently not schedulable or
constraints are violated then find the minimum resource speed that determines a
conforming system.

Variation of task execution/communication times: The search interval is determined
by the current WCET value fcore,max and the value corresponding to the maximum
utilisation bound of the resource holding the analysed task. If the current utilisation
of resource R is denoted by Rjoag and the maximum utilisation bound of resource R
is denoted by Rjoad,max, then the search interval is determined by:

[tcore,maXQ fcore,max 1 P x (Rload,max — Rioad)]

where P represents the activation period in the case of periodic tasks or the minimum
inter-arrival time in the case of sporadic tasks. If, for the current system configuration,
the constraints are violated or the system is not schedulable then the search interval
is determined by [0; fcore,max -

The algorithm selects the interval middle value and verifies whether or not the
constraints are satisfied for the configuration obtained by replacing the task WCET
value with the selected value. If ‘yes’, then the upper half of the interval becomes
the new search interval, otherwise the lower half of the interval is searched. The
algorithm iterates until the size of the search interval becomes smaller than a specific
predefined value (abort condition).

Variation of resource speed: The same algorithm is applied to find the minimum speed
at which a resource can operate. If, for the current configuration, the constraints
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Figure2.24  System-on-chip example

are satisfied and the system is schedulable then the search space is determined
by [Rspeed,min; Rspeed] Where Rgpeeq is the current speed factor (usually 1) and
Rspeed,min 18 the speed factor corresponding to the maximum resource utilisation
bound. Otherwise, the search space is [Rspeed; Rspeed,max] Where Rgpeed,max is the
speed factor corresponding to the maximum operational speed of that resource.

The ideal value for the maximum resource utilisation bound is 100 per cent. How-
ever, the experiments performed on different system models show that, for utilisation
values above 98 per cent, the run-time of the sensitivity analysis algorithm drastically
increases. This is due to an increase of the analysed period (busy period) in case of
local analysis scheduling algorithms. Moreover, a resource load above 98 per cent
is not realistic in practice due to variations of the system clock frequency or other
distorting elements.

2.8 System-on-chip example

In this section, using SymTA/S, the techniques from the previous sections are applied
to analyse the performance of a system-on-chip example shown in Figure 2.24.

The embedded system in Figure 2.24 represents a hypothetical SoC consisting ofa
micro-controller (uC), a ‘DSP’ and dedicated hardware (‘HW”), all connected via an
on-chip bus (‘BUS’). ‘DSP’ and uC are equipped with local memory. The ‘HW” acts
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Table2.3 Core execution and communication times

Computation task C Communication task C

mon [10,12] ¢l [8,8]
sys_if [15,15] «¢2 [4,4]
Sftr [12,15] ¢3 [4,4]
upd [5,5] c4 [4,4]
ctrl [20,23] ¢5 [4,4]

Table 2.4 Event models at exter-
nal system inputs

Input sp Pin  Tin 9dminin

sensl s 1000 O 0
sens2 s 750 0 0
sens3 s 600 O 0
sigin p 60 0 0
tmr p 70 0 0

as an interface to a physical system. It runs one task (sys_if) which issues actua-
tor commands to the physical system and collects routine sensor readings. sys_if is
controlled by task ctrl, which evaluates the sensor data and calculates the necessary
actuator commands. ctr/ is activated by a periodic timer ( ‘#mr’) and by the arrival of
new sensor data (AND-activation in a cycle). Two initial tokens are assumed in the
cycle.

The physical system is additionally monitored by three sensors (sensl—sens3),
which produce data sporadically as a reaction to irregular system events. This data
is registered by an OR-activated monitor task (mon) on the uC, which decides how
to update the control algorithm. This information is sent to task upd on the ‘DSP’,
which updates parameters into shared memory.

The DSP additionally executes a signal-processing task (fItr), which filters a
stream of data arriving at input sig_in, and sends the processed data via output sig_out.
All communication, except for shared-memory on the ‘DSP’, is carried out by com-
munication tasks c/—c5 over the on-chip ‘BUS’. Core execution times for each task
are shown in Table 2.3.

The event models in Table 2.4 are assumed at system inputs.

In order to function correctly, the system has to satisfy a set of path latency
constraints (Table 2.5). Constraints 1 and 3 have been explicitly specified by the
designer. The ‘2nd’ constraint implicitly follows from the fact that the cycle con-
tains two initial tokens. Constraint 3 is defined for causally dependent tokens [20].
Additionally, a maximum jitter constraint is imposed at output sig out (Table 2.6).
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Table 2.5  Path latency constraints

Constraint # Path Maximum latency

—_

sensl, sens2, sens3 — upd 70
2 sig_in— sig_out 60
3 cycle (ctrl — ctrl) 140

Table 2.6  Output jitter constraint

Constraint # Output Event model period Event model jitter

4 sig_out /Psigiout =60 Jvigiout,max =18

Table 2.7  Scheduling analysis results on uC

Task s/p Activating EM T s/p Output EM

mon s P (250)7 (500)d(0) [10,36] s P (250) T (526) d(10)

2.8.1 Analysis

Static priority scheduling is used both on the DSP and the BUS. The priorities on the
BUS and DSP, respectively, are assigned as follows: c1 > ¢2 > ¢3 > ¢4 > ¢5 and
fltr > upd > ctrl.

Performance analysis results were obtained using SymTA/S [8]. In the first step,
SymTA/S performs OR-concatenation of the output event models of sens [—sens3 and
obtains the following ‘sporadic’ activating event model for task mon:

73act = 7DOR = 250, x7act = jOR =500

The large jitter is due to the fact that input events happening at the same time lead to
a burst of up to three activations (no correlation between sensl—sens3 is assumed).
Since task ‘mon’ is the only task mapped onto uC, local scheduling analysis can
now be performed for this resource, in order to calculate the minimum and maximum
response times, as well as the output event model of task mon. The results of this
analysis are shown in Table 2.7.

The worst-case response time of task mon increases compared to its worst-case
core execution time, since later activations in a burst have to wait for the completion
of the previous activations. The output jitter increases by the difference between
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Table 2.8  Context-blind and sensitive analysis

Computation Respplind Respsens Communication Resppjing Respsens

task tasks

mon [10,36] [10,36] cl [8,8] [8,8]
sys_if [15,17] [15,15] c2 [4,12] [4,4]
fitr [12,15] [12,15] c3 [4,16] [8,12]
upd [5,22] [5,22] c4 [4,28] [8,20]
ctrl [20,53] [20,53] c5 [4,32] [8,32]

maximum and minimum core execution times compared to the activation jitter. The
minimum distance between output events equals the minimum core execution time.

At this point, the rest of the system cannot be analysed, because on every resource
activating event models for at least one task are missing. SymTA/S therefore gen-
erates a conservative starting-point by propagating all output event models along
all paths until an initial activating event model is available for each task. SymTA/S
then checks that the system cannot be overloaded in the long term. This calculation
requires only activation periods and worst-case core execution times and thus can be
done before response-time calculation.

System-level analysis can now be performed by iterating local scheduling anal-
ysis and event model propagation. SymTA/S determines that task ctr/ belongs to
a cycle, checks that AND-concatenation is selected and then proceeds to analyse
the corresponding feed-forward system. SymTA/S executes until a fix-point for the
whole system has been reached, and then compares the calculated performance values
against performance constraints.

Table 2.8 shows the calculated response times of the computation and communi-
cation tasks with and without taking into account inter contexts. As can be observed,
the exploitation of context information leads to much tighter response time intervals
in the given example. This in turn reduces the calculated worst-case values for the
constrained parameters. Table 2.9 shows that, in contrast to the inter context-blind
analysis, all system constraints are satisfied when performance analysis takes inter
context into account. In other words, a context-blind analysis would have discarded
a solution which in reality is valid.

2.8.2 Optimisations

In this section, the architecture optimisation of the system-on-chip example is shown.
Optimisation objectives are the four defined constraints. We try to minimise the
latencies on paths 1-3 and the jitter at output sig_out.

In the first experiment the search space consists of the priority assignments on the
BUS and the DSP. Table 2.10 shows the existing Pareto-optimal solutions. In the first
two columns, tasks are ordered by priority, highest priority on the left. In the last four
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Table2.9 Constraint values for context-blind and sensitive analysis

# Constraint Inter context-blind Inter context-sensitive
1 sensl, sens2, sens3 — upd 74 70
2 sig in — sig out 35 27
3 cycle (ctrl — ctrl) 130 120
4 »lfsigiout,max =18 11 3

Table 2.10  Pareto optimal solutions

# Bus tasks DSP tasks Constrained values

1 2 3 4

cl,c2,c3,c4,¢5 wupd, fltr,ctrl 55 42 120 18
cl,c2,c4,c3,¢5 wupd, fltr,ctrl 59 42 112 18
c2,cl,c4,c5,¢3 wupd, fltr,ctrl 63 42 96 18
cl,c2,¢3,c4,¢5 fltryupd, ctrl 70 27 120 3

B W N =

columns, the actual value for all four constrained values is given. The best reached
values for each constraint are emphasised.

As can be observed there are several possible solutions, each with its own advan-
tages and disadvantages. We also observe that in each solution one constraint is only
barely satisfied. A designer might want to find some alternative solutions where all
constraints are fulfilled with a larger margin to the respective maximum values.

The search space is now extended by using a shaper at the output of task mon. It
is making sense to perform traffic shaping at this location, because the OR-activation
of mon can lead, in the worst-case scenario, to bursts at its output. That is, if all three
‘sensors’ trigger at the same time, mon will send three packets over the BUS with a
distance of 10 time units, which is its minimum core execution time. This transient
load peak affects the overall system performance in a negative way. A shaper is able to
increase this minimum distance in order to weaken the global impact of the worst-case
burst.

Table 2.11 shows Pareto-optimal solutions using a shaper at the output of mon
extending the minimum distance of successive events to 12 time units, and thus
weakening the global impact of the worst-case burst. The required buffer for this
shaper is minimal, because at most one packet needs to be buffered at any time.

We observe that several new solutions are found. Not all best values for each
constraint from the first attempt are reached, yet configurations 3 and 5 are interesting
since they are more balanced regarding the constraints.
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Table 2.11  Pareto optimal solutions: shaper at mon
output

# BUS tasks DSP tasks Constrained values

c2,cl,c3,c4,¢c5 wupd fitrcrtl 59 42 120 18
cl,c2,c4,c3,¢5 wupd fitr, ctrl 63 42 112 18
c3,c2,cl, c4,¢c5 fltr,upd, ctrl 64 35 120 11
c2,cl, c5, c4,c3 wupd fitr, ctrl 67 42 96 18
c2,c3,cl, c5 c4 fltr, upd, ctrl 68 31 134 7

wm AW -

Table2.12  Sensitivity analysis of tasks
WCETs

Task  Current WCET Max WCET Slack

cl 8 8 0

c2 4 4 0
c3 4 7.65 3.65
c4 4 10.65 6.65
c5 4 22.5 18.5
upd 5 5 0
Sfltr 15 15 0
ctrl 23 30 7
sys_if 15 36 21
mon 12 15.66 3.66

2.8.3 Sensitivity analysis

This section presents the results of the sensitivity analysis algorithms described in
Section 2.7 applied to system configuration #2 shown in Table 2.10. Table 2.12 shows
the current WCET, the maximum WCET allowed as well as the free WCET slack
obtained for the particular configuration.

The bar diagrams in Figure 2.25 show the system flexibility with respect to
variations of tasks WCETs. It can be easily stated that the tasks and channels along
the filter path (c1, c2, fltr) are very inflexible due to the jitter constraint defined at
sig_out.

Table 2.13 presents the minimum resource speed factors that still guarantee that
the system meets all its constraints. A particular observation can be made considering
the speed of BUS. The results in Table 2.12 show that c1 and c2 are totally inflex-
ible. However, Table 2.13 shows that the DSP can be speed-down with maximum
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Figure2.25  Sensitivity analysis results. (a) Tasks WCETS; (b) speed factors

26 per cent. By applying the sensitivity analysis for c1 and c2 only the WCET has
been modified, the best-case execution time (BCET) remaining constant. Contrary,
by changing the BUS speed both values, WCET and BCET, were changed. This led
to a smaller jitter at channel output and to a higher flexibility for the BUS speed.

Figure 2.25(b) shows the results presented in Table 2.13. The timing constraints
of filter-path (c1, c2, fltr) and system-reactive-path (mon, c3, upd) lead to rigid DSP
properties with respect to later system changes.

2.9 Conclusions

The component integration step is critical in MpSoC design since it introduces com-
plex component performance dependencies, many of which cannot be fully overseen
by anyone in a design team. Finding simulation patterns covering all corner cases
will soon become virtually impossible as MpSoCs grow in size and complexity, and
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Table2.13  Sensitivity analysis of resource
speed factors

Resource Current factor Min factor Slack

HW 1 0.42 0.58
DSP 1 1 0

BUS 1 0.74 0.26
uC 1 0.77 0.23

performance verification is increasingly unreliable. In industry, there is an urgent
need for systematic performance verification support in MpSoC design.

The majority of work in formal real-time analysis can be nicely applied to indi-
vidual, local components or subsystems. However, the well-established view on
scheduling analysis has been shown to be incompatible with the component inte-
gration style which is common practice in MpSoC design due to heavy component
reuse. The recently adopted event stream view on component interactions represents
a significant improvement for all kinds of system performance related issues.

First, the stream model elegantly illustrates the consequences of (a) resource shar-
ing and (b) component integration, two of the main sources of complexity. This helps
to identify previously unknown global performance dependencies, while tackling the
scheduling problem itself locally where it can be overseen.

Second, the use of intuitive stream models such as periodic events, jitter, burst
and sporadic streams, allows us to adopt existing local analysis and verification
techniques. Essentially, SymTA/S provides automatic interfacing and adaptation
among the most popular and practically used event stream models. In other words,
SymTA/S is the enabling technology for the reuse of known local component design
and verification techniques without compromising global analysis.

In this chapter, the basic ideas underlying the SymTA/S technology are presented.
SymTA/S has a large variety of features that enable the analysis of complex embed-
ded applications which can be found in practice. This includes multi-input tasks with
complex activation functions, cyclic functional dependencies between tasks, systems
with mutually exclusive execution modes and correlated task execution (intra and
inter contexts). These powerful concepts make SymTA/S a unique performance anal-
ysis tool that verifies end-to-end deadlines, buffer over-/underflows, and transient
overloads. SymTA/S eliminates key performance pitfalls and systematically guides
the designer to likely sources of constraint violations.

And the analysis with SymTA/S is extremely fast (10 s for the system in
Section 2.8, including optimisation). The turn-around times are within seconds. This
opens the door to all sorts of explorations, which is absolutely necessary for system
optimisation. SymTA/S uses genetic algorithms to automatically optimise systems
with respect to multiple goals such as end-to-end latencies, cycles, buffer memory
and others. Exploration is also useful for sensitivity analysis in order to determine
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slack and other popular measures of flexibility. This is specifically useful in systems
which might experience later changes or modifications, a design scenario often found
in industry. A large set of experiments demonstrates the application of SymTA/S and
the usefulness of the results.

The SymTA/S technology was already applied in case studies in telecommuni-
cation, multimedia and automobile manufacturing projects. The cases had a very
different focus. In one telecommunications project, a severe transient-fault sys-
tem integration problem, that not even prototyping could solve, was resolved. In
the multimedia case study, a complex two-stage dynamic memory scheduler was
modelled and analysed to derive maximum response times for buffer sizing and pri-
ority assignment. In several automotive studies, it was shown how the technology
enables a formal software certification procedure. The case studies have demon-
strated the power and wide applicability of the event flow interfacing approach. The
approach scales well to large, heterogeneous embedded systems including MpSoC.
And the modularity allows us to customise SymTA/S libraries to specific industrial
needs.

The SymTA/S approach can be used as a serious alternative or supplement to
performance simulation. The unique technology allows comprehensive system inte-
gration and provides much more reliable performance analysis results at far less
computation time.
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Chapter 3

Analysis and optimisation of
heterogeneous real-time embedded systems

Paul Pop, Petru Eles and Zebo Peng

3.1 Introduction

Embedded real-time systems have to be designed such that they implement correctly
the required functionality. In addition, they have to fulfil a wide range of
competing constraints: development cost, unit cost, reliability, security, size, perfor-
mance, power consumption, flexibility, time-to-market, maintainability, correctness,
safety, etc. Very important for the correct functioning of such systems are their timing
constraints: ‘the correctness of the system behaviour depends not only on the logical
results of the computations, but also on the physical instant at which these results are
produced’ [1].

Real-time systems have been classified as ‘hard’ real-time and ‘soft’ real-time
systems [1]. Basically, hard real-time systems are systems where failing to meet
a timing constraint can potentially have catastrophic consequences. For example,
a brake-by-wire system in a car failing to react within a given time interval can result
in a fatal accident. On the other hand, a multi-media system, which is a soft real-
time system, can, under certain circumstances, tolerate a certain amount of delays
resulting maybe in a patchier picture, without serious consequences besides some
possible inconvenience to the user.

Many real-time applications, following physical, modularity or safety constraints,
are implemented using ‘distributed architectures’. Such systems are composed of
several different types of hardware components, interconnected in a network. For
such systems, the communication between the functions implemented on different
nodes has an important impact on the overall system properties such as performance,
cost, maintainability, etc.
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The analysis and optimisation approaches presented are aimed towards
heterogeneous distributed hard real-time systems that implement safety-critical appli-
cations where timing constraints are of utmost importance to the correct behaviour
of the application.

The chapter is organised in ten sections. Section 3.2 presents the heterogeneous
real-time embedded systems addressed, and the type of applications considered.
Sections 3.3 and 3.4 introduce the current state-of-the-art on the analysis and optimisa-
tion of such systems. The rest of the chapter focuses in more detail on some techniques
for multi-cluster systems. The hardware and software architecture of multi-clusters,
together with the application model, are outlined in Section 3.5. Section 3.6 iden-
tifies partitioning and mapping and frame packing as design optimisation problems
characteristic to multi-clusters. We present an analysis for multi-cluster systems in
Section 3.7, and show, in Section 3.8, how this analysis can be used to drive the
optimisation of the packing of application messages to frames. The last two sections
present the experimental results of the frame packing optimisation and conclusions.

3.1.1 Automotive electronics

Although the discussion in this chapter is valid for several application areas, it is
useful, for understanding the distributed embedded real-time systems evolution and
design challenges, to exemplify the developments in a particular area.

If we take the example of automotive manufacturers, they were reluctant, until
recently, to use computer controlled functions onboard vehicles. Today, this attitude
has changed for several reasons. First, there is a constant market demand for increased
vehicle performance, more functionality, less fuel consumption and less exhausts, all
of these at lower costs. Then, from the manufacturers’ side, there is a need for
shorter time-to-market and reduced development and manufacturing costs. These,
combined with the advancements of semiconductor technology, which is delivering
ever-increasing performance at lower and lower costs, has led to the rapid increase
in the number of electronically controlled functions onboard a vehicle [2].

The amount of electronic content in an average car in 1977 had a cost of $110.
Currently, the cost is $1341, and it is expected that this figure will reach $1476 by
the year 2005, continuing to increase because of the introduction of sophisticated
electronics found until now only in high-end cars [3,4]. It is estimated that in 2006
the electronics inside a car will amount to 25 per cent of the total cost of the vehicle
(35 per cent for the high-end models), a quarter of which will be due to semiconductors
[3,5]. High-end vehicles currently have up to 100 microprocessors implementing and
controlling various parts of their functionality. The total market for semiconductors
in vehicles is predicted to grow from $8.9 billions in 1998 to $21 billion in 2005,
amounting to 10 per cent of the total worldwide semiconductors market [2,3].

At the same time with the increased complexity, the type of functions imple-
mented by embedded automotive electronics systems has also evolved. Thanks to the
semiconductors revolution, in the late 1950s, electronic devices became small enough
to be installed on board vehicles. In the 1960s the first analogue fuel injection system
appeared, and in the 1970s analogue devices for controlling transmission, carburetor,
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and spark advance timing were developed. The oil crisis of the 1970s led to the
demand of engine control devices that improved the efficiency of the engine, thus
reducing fuel consumption. In this context, the first microprocessor-based injection
control system appeared in 1976 in the United States. During the 1980s, more sophis-
ticated systems began to appear, such as electronically controlled braking systems,
dashboards, information and navigation systems, air conditioning systems, etc. In the
1990s, development and improvement have concentrated in the areas such as safety
and convenience. Today, it is not uncommon to have highly critical functions like
steering or braking implemented through electronic functionality only, without any
mechanical backup, as is the case in drive-by-wire and brake-by-wire systems [6,7].

The complexity of electronics in modern vehicles is growing at a very high pace,
and the constraints — in terms of functionality, performance, reliability, cost and
time-to-market — are getting tighter. Therefore, the task of designing such systems
is becoming increasingly important and difficult at the same time. New design
techniques are needed, which are able to

successfully manage the complexity of embedded systems
meet the constraints imposed by the application domain
shorten the time-to-market

reduce development and manufacturing costs

The success of such new design methods depends on the availability of analysis and
optimisation techniques, beyond those corresponding to the state-of-the-art, which
are presented in the next section.

3.2 Heterogeneous real-time embedded systems

3.2.1 Heterogeneous hardware architecture

Currently, distributed real-time systems are implemented using architectures where
each node is dedicated to the implementation of a single function or class of functions.
The complete system can be, in general, composed of several networks, intercon-
nected with each other (see Figure 3.1). Each network has its own communication

Sensors/actuators .
= -

1/O interface

=1
- =

CPU

ASIC

Comm. controller

Figure 3.1 Distributed hard real-time systems
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protocol, and inter-network communication is via a gateway which is a node
connected to both networks. The architecture can contain several such networks,
having different types of topologies.

A network is composed of several different types of hardware components, called
‘nodes’. Typically, every node, also called ‘electronic control unit’ (ECU), has a
communication controller, CPU, RAM, ROM and an I/O interface to sensors and
actuators. Nodes can also have ASICs in order to accelerate parts of their functionality.

The microcontrollers used in a node and the type of network protocol employed
are influenced by the nature of the functionality and the imposed real-time, fault-
tolerance and power constraints. In the automotive electronics area, the functionality
is typically divided in two classes, depending on the level of criticalness:

e Body electronics refers to the functionality that controls simple devices such as
the lights, the mirrors, the windows, the dashboard. The constraints of the body
electronic functions are determined by the reaction time of the human operator that
is in the range of 100-200 ms. A typical body electronics system within a vehicle
consists of a network of 10-20 nodes that are interconnected by a low bandwidth
communication network such as LIN. A node is usually implemented using a
single-chip 8-bit microcontroller (e.g. Motorol-a 68HC05 or Motorola 68HC11)
with some hundred bytes of RAM and kilobytes of ROM, I/O points to con-
nect sensors and to control actuators, and a simple network interface. Moreover,
the memory size is growing by more than 25 per cent each year [6,8].

o System electronics are concerned with the control of vehicle functions that are
related to the movement of the vehicle. Examples of system electronics appli-
cations are engine control, braking, suspension, vehicle dynamics control. The
timing constraints of system electronic functions are in the range of a couple of
milliseconds to 20 ms, requiring 16- or 32-bit microcontrollers (e.g. Motorola
68332) with about 16 kB of RAM and 256 kB of ROM. These microcontrollers
have built-in communication controllers (e.g. the 68HC11 and 68HC12 automo-
tive family of microcontrollers have an on-chip CAN controller), I/O to sensors
and actuators, and are interconnected by high bandwidth networks [6,8].

Section 3.5 presents more details concerning the hardware and software architecture
considered by our analysis and optimisation techniques.

3.2.2 Heterogeneous communication protocols

As the communications become a critical component, new protocols are needed that
can cope with the high bandwidth and predictability required.

There are several communication protocols for real-time networks. Among the
protocols that have been proposed for vehicle multiplexing, only the Controller Area
Network (CAN) [9], the Local Interconnection Network (LIN) [10] and SAE’s J1850
[11] are currently in use on a large scale. Moreover, only a few of them are suitable
for safety-critical applications where predictability is mandatory [12]. Rushby [12]
provides a survey and comparison of communication protocols for safety-critical
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embedded systems. Communication activities can be triggered either dynamically, in
response to an event, or statically, at predetermined moments in time.

e Therefore, on one hand, there are protocols that schedule the messages statically
based on the progression of time, for example, the SAFEbus [13] and SPIDER
[14] protocols for the avionics industry, and the TTCAN [15] and Time-Triggered
Protocol (TTP) [1] intended for the automotive industry.

e On the other hand, there are several communication protocols where message
scheduling is performed dynamically, such as CAN used in a large number of
application areas including automotive electronics, LonWorks [16] and Profibus
[17] for real-time systems in general, etc. Out of these, CAN is the most well
known and widespread event-driven communication protocol in the area of
distributed embedded real-time systems.

e However, there is also a hybrid type of communication protocols, such as Byte-
flight [18] introduced by BMW for automotive applications and the FlexRay
protocol [19], that allows the sharing of the bus by event-driven and time-driven
messages.

The time-triggered protocols have the advantage of simplicity and predictability,
while event-triggered protocols are flexible and have low cost. Moreover, protocols
such as TTP offer fault-tolerant services necessary in implementing safety-critical
applications. However, it has been shown [20] that event-driven protocols such as
CAN are also predictable, and fault-tolerant services can also be offered on top of
protocols such as the TTCAN. A hybrid communication protocol such as FlexRay
offers some of the advantages of both worlds.

3.2.3 Heterogeneous scheduling policies

The automotive suppliers will select, based on their own requirements, the scheduling
policy to be used in their ECU. The main approaches to scheduling are

e Static cyclic scheduling algorithms are used to build, off-line, a schedule table with
activation times for each process, such that the timing constraints of processes
are satisfied.

e Fixed priority scheduling (FPS). In this scheduling approach each process has a
fixed (static) priority which is computed off-line. The decision on which ready
process to activate is taken on-line according to their priority.

e Earliest deadline first (EDF). In this case, that process will be activated which
has the nearest deadline.

Typically, processes scheduled off-line using static cyclic scheduling are non-pre-
emptable, while processes scheduled using techniques such as FPS and EDF are
pre-emptable. Another important distinction is between the event- and time-triggered
approaches.

e Time-triggered. In the time-triggered approach activities are initiated at prede-
termined points in time. In a distributed time-triggered system it is assumed
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that the clocks of all nodes are synchronised to provide a global notion of time.
Time-triggered systems are typically implemented using ‘non-pre-emptive static
cyclic scheduling’, where the process activation or message communication is
done based on a schedule table built off-line.

e Event-triggered. In the event-triggered approach activities happen when a signif-
icant change of state occurs. Event-triggered systems are typically implemented
using ‘pre-emptive fixed-priority-based scheduling’, or ‘earliest deadline first’,
where, as response to an event, the appropriate process is invoked to service it.

There has been a long debate in the real-time and embedded systems communities
concerning the advantages of each approach [1,21,22]. Several aspects have been
considered in favour of one or the other approach, such as flexibility, predictability,
jitter control, processor utilisation and testability.

Lonn and Axelsson [23] have performed an interesting comparison of ET
and TT approaches from a more industrial, in particular automotive perspective.
The conclusion is that one has to choose the right approach, depending on the
particularities of the application.

For certain applications, several scheduling approaches can be used together. Effi-
cient implementation of new, highly sophisticated automotive applications, entails
the use of time-triggered process sets together with event-triggered ones implemented
on top of complex distributed architectures.

3.2.4 Distributed safety-critical applications

Considering the automotive industry, the way functionality has been distributed on
an architecture has evolved over time. Initially, distributed real-time systems were
implemented using architectures where each node is dedicated to the implementation
of a single function or class of functions, allowing the system integrators to purchase
nodes implementing required functions from different vendors, and to integrate them
into their system [24]. There are several problems related to this restricted mapping
of functionality:

e Thenumber of such nodes in the architecture has exploded, reaching, for example,
more than 100 in a high-end car, incurring heavy cost and performance penalties.

e The resulting solutions are sub-optimal in many aspects, and do not use the avail-
able resources efficiently in order to reduce costs. For example, it is not possible to
move a function from one node to another node where there are enough available
resources (e.g. memory, computation power).

e Emerging functionality, such as brake-by-wire in the automotive industry, is inher-
ently distributed, and achieving an efficient fault-tolerant implementation is very
difficult in the current setting.

This has created a huge pressure to reduce the number of nodes by integrating
several functions in one node and, at the same time, to distribute certain functionality
over several nodes (see Figure 3.2). Although an application is typically distributed
over one single network, we begin to see applications that are distributed across
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@ Functions of the second application
@ Functions of the third application

Figure 3.2  Distributed safety-critical applications

several networks. For example, in Figure 3.2, the third application, represented as
black dots, is distributed over two networks.

This trend is driven by the need to further reduce costs, improve resource usage,
but also by application constraints such as having to be physically close to particular
sensors and actuators. Moreover, not only are these applications distributed across
networks, but their functions can exchange critical information through the gateway
nodes.

3.3 Schedulability analysis

There is a large quantity of research [1,25,26] related to scheduling and schedulability
analysis, with results having been incorporated in analysis tools such as TimeWiz [27],
RapidRMA [28], RTA-OSEK Planner [29] and Aires [30]. The tools determine if the
timing constraints of the functionality are met, and support the designer in exploring
several design scenarios, and help to design optimised implementations.

Typically, the timing analysis considers independent processes running on single
processors. However, very often functionality consists of distributed processes that
have data and control dependencies, exclusion constraints, etc. New schedulability
analysis techniques are needed which can handle distributed applications, data and
control dependencies, and accurately take into account the details of the communica-
tion protocols that have an important influence on the timing properties. Moreover,
highly complex and safety-critical applications can in the future be distributed across
several networks, and can use different, heterogeneous, scheduling policies.

Pre-emptive scheduling of independent processes with static priorities running
on single-processor architectures has its roots in the work of Liu and Layland [31].
The approach has been later extended to accommodate more general computational
models and has also been applied to distributed systems [32]. Several surveys
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on this topic have been published [25,26,33]. Static cyclic scheduling of a set of
data dependent software processes on a multiprocessor architecture has also been
intensively researched [1,34].

Lee et al [35] has proposed an earlier deadline first strategy for non-pre-emptive
scheduling of process with possible data dependencies. Pre-emptive and non-pre-
emptive static scheduling are combined in the cosynthesis environment proposed
by Dave et al [36,37]. In many of the previous scheduling approaches researchers
have assumed that processes are scheduled independently. However, processes can be
sporadic or aperiodic, are seldom independent and normally they exhibit precedence
and exclusion constraints. Knowledge regarding these dependencies can be used
in order to improve the accuracy of schedulability analyses and the quality of the
produced schedules [38].

It has been claimed [22] that static cyclic scheduling is the only approach that
can provide efficient solutions to applications that exhibit data dependencies. How-
ever, advances in the area of fixed priority pre-emptive scheduling show that such
applications can also be handled with other scheduling strategies [39].

One way of dealing with data dependencies between processes in the context
of static priority-based scheduling has been indirectly addressed by the extensions
proposed for the schedulability analysis of distributed systems through the use of the
‘release jitter’ [32]. Release jitter is the worst-case delay between the arrival of a
process and its release (when it is placed in the ready-queue for the processor) and
can include the communication delay due to the transmission of a message on the
communication channel.

In References 32 and 40 time ‘offset’ relationships and ‘phases’, respectively,
are used in order to model data dependencies. Offset and phase are similar concepts
that express the existence of a fixed interval in time between the arrivals of sets of
processes. The authors show that by introducing such concepts into the computational
model, the pessimism of the analysis is significantly reduced when bounding the time
behaviour of the system. The concept of ‘dynamic offsets’ has been later introduced
and used to model data dependencies [41].

Currently, more and more real-time systems are used in physically distributed
environments and have to be implemented on distributed architectures in order to
meet reliability, functional, and performance constraints.

Researchers have often ignored or very much simplified the communication
infrastructure. One typical approach is to consider communications as processes with
a given execution time (depending on the amount of information exchanged) and to
schedule them as any other process, without considering issues such as communica-
tion protocol, bus arbitration, packaging of messages, clock synchronisation, etc. [40].

Tindell and Clark [32] integrate processor and communication scheduling and
provide a ‘holistic’ schedulability analysis in the context of distributed real-time
systems. The validity of the analysis has been later confirmed in Reference 42.

In the case of a distributed system the response time of a process also depends on
the communication delay due to messages. In Reference 32 the analysis for messages
is done in a similar way as for processes: a message is seen as a non-pre-emptable
process that is ‘running’ on a bus. The response time analyses for processes and
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messages are combined by realising that the ‘jitter’ (the delay between the ‘arrival’
of a process — the time when it becomes ready for execution — and the start of its
execution) of a destination process depends on the ‘communication delay’ (the time
it takes for a message to reach the destination process, from the moment it has been
produced by the sender process) between sending and receiving a message. Several
researchers have provided analyses that bound the communication delay for a given
communication protocol:

CAN protocol [20];

time-division multiple access protocol [32];
asynchronous transfer mode protocol [43];
token ring protocol [44],

fiber distributed data interface protocol [45].
time-triggered protocol [46];

FlexRay protocol [47].

Based on their own requirements, the suppliers choose one particular scheduling
policy to be used. However, for certain applications, several scheduling approaches
can be used together.

One approach to the design of such systems, is to allow ET and TT processes to
share the same processor as well as static (TT) and dynamic (ET) communications
to share the same bus. Bus sharing of TT and ET messages is supported by protocols
which support both static and dynamic communication [19]. We have addressed the
problem of timing analysis for such systems [47].

A fundamentally different architectural approach to heterogeneous TT/ET
systems is that of heterogeneous multi-clusters, where each cluster can be either TT
or ET. In a ‘time-triggered cluster’ processes and messages are scheduled according
to a static cyclic policy, with the bus implementing a TDMA protocol, for example,
the time-triggered protocol. On ‘event-triggered clusters’ the processes are scheduled
according to a priority-based pre-emptive approach, while messages are transmitted
using the priority-based CAN bus. In this context, we have proposed an approach
to schedulability analysis for multi-cluster distributed embedded systems [48]. This
analysis will be outlined in Section 3.7.

When several event-driven scheduling policies are used in a heterogeneous
system, another approach [49] to the verification of timing properties is to couples
the analysis of local scheduling strategies via an event interface model.

3.4 Design optimisation

3.4.1 Traditional design methodology

There are several methodologies for real-time embedded systems design. The aim
of a design methodology is to coordinate the design tasks such that the time-to-
market is minimised, the design constraints are satisfied and various parameters are
optimised.
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The main design tasks that have to be performed are described in the following
sections.

3.4.1.1 Functional analysis and design

The functionality of the host system, into which the electronic system is embedded,
is normally described using a formalism from that particular domain of application.
For example, if the host system is a vehicle, then its functionality is described in terms
of control algorithms using differential equations, which are modelling the behaviour
of the vehicle and its environment. At the level of the embedded real-time system
which controls the host system, the functionality is typically described as a set of
functions, accepting certain inputs and producing some output values.

The typical automotive application is a control application. The controller reads
inputs from sensors, and uses the actuators to control the physical environment (the
vehicle). A controller can have several modes of operation, and can interact with
other electronic functions, or with the driver through switches and instruments.

During the functional analysis and design stage, the desired functionality is spec-
ified, analysed and decomposed into sub-functions based on the experience of the
designer. Several suppliers and manufacturers have started to use tools such as State-
mate [50], Matlab/Simulink [51], ASCET/SD [52] and SystemBuild/ MatrixX [53]
for describing the functionality, in order to eliminate the ambiguities and to avoid
producing incomplete or incoherent specifications.

At the level of functional analysis the exploration is currently limited to evaluat-
ing several alternative control algorithms for solving the control problem. Once the
functionality has been captured using tools such as Matlab/Simulink, useful explo-
rations can involve simulations of executable specifications in order to determine the
correctness of the behaviour, and to assess certain properties of chosen solutions.

3.4.1.2 Architecture selection and mapping

The architecture selection task decides what components to include in the hardware
architecture and how these components are connected.

According to current practice, architecture selection is an ad hoc process, based
on the experience of the designer and previous product versions.

The mapping task has to decide what part of the functionality should be
implemented on which of the selected components.

The manufacturers integrate components from suppliers, and thus the design space
is severely restricted in current practice, by the fact that the mapping of functionality
to an ECU is fixed.

3.4.1.3 Software design and implementation

This is the phase in which the software is designed and the code is written.
The code for the functions is developed manually for efficiency reasons, and thus
the exploration that would be allowed by automatic code generation is limited.
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At this stage the correctness of the software is analysed through simulations,
but there is no analysis of timing constraints, which is left for the scheduling and
schedulability analysis stage.

3.4.1.4 Scheduling and schedulability analysis

Once the functions have been defined and the code has been written, the scheduling
task is responsible for determining the execution strategy for the functions ‘inside an
ECU’, such that the timing constraints are satisfied.

Simulation is extensively used to determine if the timing constraints are satisfied.
However, simulations are very time consuming and provide no guarantees that the
timing constraints are met.

In the context of static cyclic scheduling, deriving a schedule table is a complex
design exploration problem. Static cyclic scheduling of a set of data-dependent soft-
ware processes on a multiprocessor architecture has received a lot of attention [1,34].
Such research has been used in commercial tools such as TTP-Plan [54] which derives
the static schedules for processes and messages in a time-triggered system using the
time-triggered protocol for communication.

If fixed priority pre-emptive scheduling is used, exploration is used to determine
how to allocate priorities to a set of distributed processes [55]. Their priority assign-
ment heuristic is based on the schedulability analysis from Reference 32. For earliest
deadline first the issue of distributing the global deadlines to local deadlines has to
be addressed [56].

3.4.1.5 Integration

In this phase the manufacturer has to integrate the ECUs from different suppliers.

There is a lack of tools that can analyse the performance of the interacting
functionality, and thus the manufacturer has to rely on simulation runs using the
realistic environment of a prototype car. Detecting potential problems at such a late
stage requires time-consuming extensive simulations. Moreover, once a problem is
identified it takes a very long time to go through all the previous stages in order to
fix it. This leads to large delays on the time-to-market.

In order to reduce the large simulation times, and to guarantee that potential vio-
lations of timing constraints are detected, manufacturers have started to use in-house
analysis tools and commercially available tools such as Volcano Network Architect
(for the CAN and LIN buses) [57].

Volcano makes inter-ECU communication transparent for the programmer. The
programmer only deals with ‘signals’ that have to be sent and received, and the details
of the network are hidden. Volcano provides basic API calls for manipulating signals.
To achieve interoperability between ECUs from different suppliers, Volcano uses a
‘publish/subscribe’ model for defining the signal requirements. Published signals are
made available to the system integrator by the suppliers, while subscribed signals
are required as inputs to the ECU. The system integrator makes the publish/subscribe
connections by creating a set of CAN frames, and creating a mapping between the data
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in frames and signals [58]. Volcano uses the analysis by Tindell ez al [20] for bounding
the communication delay of messages transmitted using the CAN bus.

3.4.1.6 Calibration, testing, verification

These are the final stages of the design process. Because not enough analysis, testing
and verification has been done in earlier stages of the design, these stages tend to be
very time consuming, and problems identified here lead to large delays in product
delivery.

3.4.2 Function architecture co-design and platform-based design

New design methodologies are needed, which can handle the increasing complexity
of heterogeneous systems, and their competing requirements in terms of performance,
reliability, low power consumption, cost, time-to-market, etc. As the complexity of
the systems continues to increase, the development time lengthens dramatically, and
the manufacturing costs become prohibitively high. To cope with this complexity,
it is necessary to reuse as much as possible at all levels of the design process, and to
work at higher and higher abstraction levels.

‘Function/architecture co-design’ is a design methodology proposed in
References 59 and 60, which addresses the design process at higher abstraction
levels. Function/architecture co-design uses a top-down synthesis approach, where
trade-offs are evaluated at a high level of abstraction. The main characteristic of this
methodology is the use, at the same time with the top-down synthesis, of a bottom-up
evaluation of design alternatives, without the need to perform a full synthesis of the
design. The approach to obtaining accurate evaluations is to use an accurate mod-
elling of the behaviour and architecture, and to develop analysis techniques that are
able to derive estimates and to formally verify properties relative to a certain design
alternative. The determined estimates and properties, together with user-specified
constraints, are then used to drive the synthesis process.

Thus, several architectures are evaluated to determine if they are suited for the
specified system functionality. There are two extremes in the degrees of freedom
available for choosing an architecture. At one end, the architecture is already given,
and no modifications are possible. At the other end of the spectrum, no constraints are
imposed on the architecture selection, and the synthesis task has to determine, from
scratch, the best architecture for the required functionality. These two situations are,
however, not common in practice. Often, a ‘hardware platform’ is available, which
can be ‘parameterised’ (e.g. size of memory, speed of the buses, etc.). In this case,
the synthesis task is to derive the parameters of the platform architecture such that
the functionality of the system is successfully implemented. Once an architecture is
determined and/or parameterised, the function/architecture co-design continues with
the mapping of functionality onto the instantiated architecture.

This methodology has been used in research tools such as Polis [61] and Metropo-
lis [62], and has also led to commercial tools such as the Virtual Component Co-design
(VCC) [63].
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In order to reduce costs, especially in the case of a mass market product, the
system architecture is usually reused, with some modifications, for several product
lines. Such a common architecture is denoted by the term ‘platform’, and consequently
the design tasks related to such an approach are grouped under the term ‘platform-
based design’ [64]. The platform consists of a hardware infrastructure together with
software components that will be used for several product versions, and will be shared
with other product lines, in the hope to reduce costs and the time-to-market.

Keutzer et al [64] have proposed techniques for deriving such a platform for
a given family of applications. Their approach can be used within any design
methodology for determining a system platform that later on can be parameterised
and instantiated to a desired system architecture.

Considering a given application or family of applications, the system platform has
to be instantiated, deciding on certain parameters, and lower level details, in order to
suit that particular application(s). The search for an architecture instance starts from
a certain platform, and a given application. The application is mapped and compiled
on an architecture instance, and the performance numbers are derived, typically using
simulation. If the designer is not satisfied with the performance of the instantiated
architecture, the process is repeated.

In the remainder of the chapter we will consider a platform consisting
of event- and time-triggered clusters, using the CAN and TTP protocols for
communication, respectively. We will discuss analysis and optimisation techniques
for the configuration of the platform such that the given application is schedulable.

3.5 Multi-cluster systems

One class of heterogeneous real-time embedded systems is that of ‘multi-cluster’
systems. We consider architectures consisting of two clusters, one time-triggered and
the other event-triggered, interconnected by gateways (see Figure 3.2):

e Ina ‘time-triggered cluster’ (TTC) processes and messages are scheduled accord-
ing to a static cyclic policy, with the bus implementing a TDMA protocol such
as, e.g. the time-triggered protocol (TTP) [65].

e On ‘event-triggered clusters’ (ETC) the processes are scheduled according to a
priority-based pre-emptive approach, while messages are transmitted using the
priority-based CAN bus [9].

The next two sections present the hardware and software architecture of a two-cluster
system, while Section 3.5.3 presents the application model used. Section 3.6 will
introduce design problems characteristic for multi-cluster systems composed of time-
triggered clusters interconnected with event-triggered clusters: the partitioning of
functionality between the TT and ET clusters, the mapping of functionality to the
nodes inside a cluster and the packing of application message to frames on the TTP
and CAN buses. Then, Section 3.8 will present two optimisation strategies for the
frame packing problem.
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3.5.1 Hardware architecture

A “cluster’ is composed of nodes which share a broadcast communication channel. Let
Nt (NE) be the set of nodes on the TTC (ETC). Every ‘node’ N; € Ny UNE includes
a communication controller and a CPU, along with other components. The gateways,
connected to both types of clusters, have two communication controllers, for TTP
and CAN. The communication controllers implement the protocol services, and run
independently of the node’s CPU. Communication with the CPU is performed through
a ‘Message Base Interface’ (MBI); see Figure 3.5.

Communication between the nodes on a TTC is based on the TTP [65]. The
TTP integrates all the services necessary for fault-tolerant real-time systems. The bus
access scheme is time-division multiple access (TDMA), meaning that each node N;
on the TTC, including the gateway node, can transmit only during a predetermined
time interval, the TDMA slot S;. In such a slot, a node can send several messages
packed in a frame. A sequence of slots corresponding to all the nodes in the archi-
tecture is called a TDMA round. A node can have only one slot in a TDMA round.
Several TDMA rounds can be combined together in a cycle that is repeated period-
ically. The sequence and length of the slots are the same for all the TDMA rounds.
However, the length and contents of the frames may differ.

The TDMA access scheme is imposed by a message descriptor list (MEDL) that
is located in every TTP controller. The MEDL serves as a schedule table for the TTP
controller which has to know when to send/receive a frame to/from the communication
channel.

There are two types of frames in the TTP. The initialisation frames, or I-frames,
which are needed for the initialisation of a node, and the normal frames, or N-frames,
which are the data frames containing, in their data field, the application messages.
A TTP data frame (Figure 3.3) consists of the following fields: start of frame bit
(SOF), control field, a data field of up to 16 bytes containing one or more messages,
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Figure 3.3  Time-triggered protocol
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Figure 3.4 Controller area network data frame (CAN 2.04)

and a cyclic redundancy check (CRC) field. Frames are delimited by the inter-frame
delimiter (IDF, 3 bits).

For example, the data efficiency of a frame that carries 8 bytes of application data,
i.e. the percentage of transmitted bits which are the actual data bits needed by the appli-
cation, is 69.5 per cent (64 data bits transmitted in a 92-bit frame, without considering
the details of a particular physical layer). Note that no identifier bits are necessary,
as the TTP controllers know from their MEDL what frame to expect at a given point
in time. In general, the protocol efficiency is in the range of 60—80 per cent [66].

On an ETC, the CAN [9] protocol is used for communication. The CAN bus is
a priority bus that employs a collision avoidance mechanism, whereby the node that
transmits the frame with the highest priority wins the contention. Frame priorities
are unique and are encoded in the frame identifiers, which are the first bits to be
transmitted on the bus.

In the case of CAN 2.0A, there are four frame types: data frame, remote frame,
error frame and overload frame. We are interested in the composition of the data
frame, depicted in Figure 3.4. A data frame contains seven fields: SOF, arbitration
field that encodes the 11 bits frame identifier, a control field, a data field up to 8 bytes,
a CRC field, an acknowledgement (ACK) field and an end of frame field (EOF).

In this case, for a frame that carries 8 bytes of application data, we will have an
efficiency of 47.4 per cent [67]. The typical CAN protocol efficiency is in the range
of 25-35 per cent [66].

3.5.2 Software architecture

A real-time kernel is responsible for activation of processes and transmission of
messages on each node. On a TTC, the processes are activated based on the local
schedule tables, and messages are transmitted according to the MEDL. On an ETC,
we have a scheduler that decides on activation of ready processes and transmission
of messages, based on their priorities.

In Figure 3.5 we illustrate our message passing mechanism. Here we concen-
trate on the communication between processes located on different clusters. We have
previously presented the message passing within a TTC [68], and the infrastructure
needed for communications in an ETC [20].

Letus consider the example in Figure 3.5, where we have an application consisting
of four processes and four messages (depicted in Figure 3.5(b)) mapped on the two
clusters in Figure 3.5(c). Processes P; and P4 are mapped on node N of the TTC,
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Figure3.5 A message passing example

while P, and P3 are mapped on node N; of the ETC. Process P; sends messages 1]
and m to processes P, and P3, respectively, while P, and P; send messages m3 and
msto P4. All messages have a size of one byte.

The transmission of messages from the TTC to the ETC takes place in the fol-
lowing way (see Figure 3.5). P;, which is statically scheduled, is activated according
to the schedule table, and when it finishes it calls the send kernel function in order
to send m; and m,, indicated in the figure by the number (1). Messages m1 and m,
have to be sent from node N to node N,. At a certain time, known from the schedule
table, the kernel transfers m and m» to the TTP controller by packing them into a
frame in the MBI. Later on, the TTP controller knows from its MEDL when it has to
take the frame from the MBI, in order to broadcast it on the bus. In our example, the
timing information in the schedule table of the kernel and the MEDL is determined in
such a way that the broadcasting of the frame is done in the slot S; of round 2 (2). The
TTP controller of the gateway node Ng knows from its MEDL that it has to read a
frame from slot S; of round 2 and to transfer it into its MBI (3). Invoked periodically,
having the highest priority on node N, and with a period which guarantees that no
messages are lost, the gateway process 7' copies messages m and m, from the MBI
to the TTP-to-CAN priority-ordered message queue Outcan (4). Let us assume that
on the ETC messages m; and m, are sent independently, one per frame. The highest
priority frame in the queue, in our case the frame f] containing m, will tentatively
be broadcast on the CAN bus (5). Whenever f; will be the highest priority frame on
the CAN bus, it will successfully be broadcast and will be received by the interested
nodes, in our case node N, (6). The CAN communication controller of node N,
receiving f1 will copy it in the transfer buffer between the controller and the CPU,
and raise an interrupt which will activate a delivery process, responsible to activate
the corresponding receiving process, in our case P,, and hand over message m that
finally arrives at the destination (7).

Message m3 (depicted in Figure 3.5 as a grey rectangle labelled ‘m3’) sent by
process P, from the ETC will be transmitted to process P4 on the TTC. The transmis-
sion starts when P, calls its send function and enqueues m3 in the priority-ordered
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Outy, queue (8). When the frame f3 containing m3 has the highest priority on the
bus, it will be removed from the queue (9) and broadcast on the CAN bus (10). Sev-
eral messages can be packed into a frame in order to increase the efficiency of data
transmission. For example, m3 can wait in the queue until m4 is produced by Ps, in
order to be packed together with m4 in a frame. When f3 arrives at the gateway’s
CAN controller it raises an interrupt. Based on this interrupt, the gateway transfer
process T is activated, and m3 is unpacked from f3 and placed in the Outttp FIFO
queue (11). The gateway node Ng is only able to broadcast on the TTC in the slot
Sc of the TDMA rounds circulating on the TTP bus. According to the MEDL of the
gateway, a set of messages not exceeding sizes of the data field of the frame travel-
ling in slot S¢ will be removed from the front of the Outttp queue in every round,
and packed in the S; slot (12). Once the frame is broadcast (13) it will arrive at node
Nj (14), where all the messages in the frame will be copied in the input buffers of the
destination processes (15). Process P4 is activated according to the schedule table,
which has to be constructed such that it accounts for the worst-case communication
delay of message m3, bounded by the analysis in Section 3.7.1, and, thus, when Py
starts executing it will find m3 in its input buffer.

As part of our frame packing approach, we generate all the MEDLSs on the TTC
(i.e. the TT frames and the sequence of the TDMA slots), as well as the ET frames
and their priorities on the ETC such that the global system is schedulable.

3.5.3 Application model

The functionality of the host system, into which the electronic system is embedded,
is normally described using a formalism from that particular domain of application.
For example, if the host system is a vehicle, then its functionality is described in
terms of control algorithms using differential equations, which are modelling the
behaviour of the vehicle and its environment. At the level of the embedded system
which controls the host system, viewed as the system level for us, the functionality is
typically described as a set of functions, accepting certain inputs and producing some
output values.

There is a lot of research in the area of system modelling and specification, and
an impressive number of representations have been proposed. Edward, [69] presents
an overview, classification and comparison of different design representations and
modelling approaches.

The scheduling and mapping design tasks deal with sets of interacting pro-
cesses. A ‘process’ is a sequence of computations (corresponding to several building
blocks in a programming language) which starts when all its inputs are available.
When it finishes executing, the process produces its output values. Researchers
have used, for example, ‘dataflow process networks’ (also called ‘task graphs’, or
‘process graphs’) [70] to describe interacting processes, and have represented them
using directed acyclic graphs, where a node is a process and the directed arcs are
dependencies between processes.

Thus, we model an application I as a set of process graphs G; € I' (see Figure 3.6).
Nodes in the graph represent processes and arcs represent dependency between the
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Figure 3.6 Application model

connected processes. A ‘process’ is a sequence of computations (corresponding to
several building blocks in a programming language) which starts when all its inputs
are available. When it finishes executing, the process produces its output values.
Processes can be pre-emptable or non-pre-emptable. ‘Non-pre-emptable’ processes
are processes that cannot be interrupted during their execution, and are mapped on the
TTC. ‘Pre-emptable’ processes can be can be interrupted during their execution, and
are mapped on the ETC. For example, a higher priority process has to be activated to
service an event, in this case, the lower priority process will be temporarily pre-empted
until the higher priority process finishes its execution.

A process graph is polar, which means that there are two nodes, called source and
sink, that conventionally represent the first and last process. If needed, these nodes
are introduced as dummy processes so that all other nodes in the graph are successors
of the source and predecessors of the sink, respectively.

The communication time between processes mapped on the same processor is
considered to be part of the process worst-case execution time and is not modelled
explicitly. Communication between processes mapped to different processors is per-
formed by message passing over the buses and, if needed, through the gateway.
Such message passing is modelled as a communication process inserted on the arc
connecting the sender and the receiver process (the black dots in Figure 3.6).

Potential communication between processes in different applications is not part
of the model. Technically, such a communication is implemented by the kernels
based on asynchronous non-blocking send and receive primitives. Such messages
are considered non-critical and are not affected by real-time constraints. Therefore,
communications of this nature will not be addressed.

Each process P; is mapped on a processor M (P;) (mapping represented by hash-
ing in Figure 3.6), and has a worst-case execution time C; on that processor (depicted
to the left of each node). The designer can provide manually such worst-case times,
or tools can be used in order to determine the worst-case execution time of a piece of
code on a given processor [71].

For each message we know its size (in bytes, indicated to its left), and its period,
which is identical with that of the sender process. Processes and messages activated
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based on events also have a uniquely assigned priority, priorityp; for processes and
priority,; for messages.

All processes and messages belonging to a process graph G; have the same period
T; = Tg; which is the period of the process graph. A deadline Dg; is imposed on
each process graph G;. Deadlines can also be placed locally on processes. Release
times of some processes as well as multiple deadlines can be easily modelled by
inserting dummy nodes between certain processes and the source or the sink node,
respectively. These dummy nodes represent processes with a certain execution time
but which are not allocated to any processing element.

3.6 Multi-cluster optimisation

Considering the types of applications and systems described in the previous section,
and using the analysis outlined in Section 3.7, several design optimisation problems
can be addressed.

In this section, we present problems which are characteristic to applications
distributed across multi-cluster systems consisting of heterogeneous TT and ET
networks:

e Section 3.6.1 briefly outlines the problem of partitioning the processes of an
application into time- and event-triggered domains, and their mapping to the
nodes of the clusters.

e Section 3.6.2 presents the problem of packing of messages to frames, which is
of utmost importance in cost-sensitive embedded systems where resources, such
as communication bandwidth, have to be fully utilised [58,72,73]. This problem
will be discussed in more detail in Section 3.8.

The goal of these optimisation problems is to produce an implementation which meets
all the timing constraints (i.e. the application is schedulable).

In order to drive our optimisation algorithms towards schedulable solutions, we
characterise a given frame packing configuration using the degree of schedulability
of the application. The ‘degree of schedulability’ [74] is calculated as:

n

c1 = Zmax(O, ri —D;), ifc; >0
o = =1 3.1

= Z(ri - Dy), ifc; =0

i=1
where n is the number of processes in the application, r; is the worst-case response
time of a process P; and D; its deadline. The worst-case response times are calculated
by the MultiClusterScheduling algorithm using the response time analysis presented
in Section 3.7.

If the application is not schedulable, the term ¢ will be positive, and, in this case,

the cost function is equal to c¢;. However, if the process set is schedulable, ¢c; =0 and
we use ¢ as a cost function, as it is able to differentiate between two alternatives,
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both leading to a schedulable process set. For a given set of optimisation parameters
leading to a schedulable process set, a smaller ¢, means that we have improved
the worst-case response times of the processes, so the application can potentially
be implemented on a cheaper hardware architecture (with slower processors and/or
buses). Improving the degree of schedulability can also lead to an improvement in
the quality of control for control applications.

3.6.1 Partitioning and mapping

By partitioning, we denote the decision whether a certain process should be assigned
to the TT or the ET domain (and, implicitly, to a TTC or an ETC, respectively).
Mapping a process means assigning it to a particular node inside a cluster.

Very often, the partitioning decision is taken based on the experience and prefer-
ences of the designer, considering aspects such as the functionality implemented by
the process, the hardness of the constraints, sensitivity to jitter, legacy constraints,
etc. Let P be the set of processes in the application I'. We denote with Py C P the
subset of processes which the designer has assigned to the TT cluster, while Pr € P
contains processes which are assigned to the ET cluster.

Many processes, however, do not exhibit certain particular features or require-
ments which obviously lead to their implementation as TT or ET activities. The subset
PT = P\(Pr UPE) of processes could be assigned to any of the TT or ET domains.
Decisions concerning the partitioning of this set of activities can lead to various trade-
offs concerning, for example, the schedulability properties of the system, the amount
of communication exchanged through the gateway, the size of the schedule tables, etc.

For part of the partitioned processes, the designer might have already decided
their mapping. For example, certain processes, due to constraints such as having to
be close to sensors/actuators, have to be physically located in a particular hardware
unit. They represent the sets 77%/[ C Pr and Pg’l C P of already mapped TT
and ET processes, respectively. Consequently, we denote with P3 = Pr \77%’1 the
TT processes for which the mapping has not yet been decided, and similarly, with
P = Pp\PY the unmapped ET processes. The set P* = P; U Pi U P then
represents all the unmapped processes in the application.

The mapping of messages is decided implicitly by the mapping of processes. Thus,
a message exchanged between two processes on the TTC (ETC) will be mapped on
the TTP bus (CAN bus) if these processes are allocated to different nodes. If the
communication takes place between two clusters, two message instances will be
created, one mapped on the TTP bus and one on the CAN bus. The first message is
sent from the sender node to the gateway, while the second message is sent from the
gateway to the receiving node.

Let us illustrate some of the issues related to partitioning in such a context. In the
example presented in Figure 3.7 we have an application! with six processes, P; to
P, and four nodes, N1 and N on the TTC, N3 on the ETC and the gateway node Ng.
The worst-case execution times on each node are given to the right of the application

' Communications are ignored for this example.
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Figure 3.7 Partitioning example

graph. Note that N, is faster than N3, and an ‘X’ in the table means that the process
is not allowed to be mapped on that node. The mapping of P; is fixed on Ny, Pz and
Pg are mapped on N, P, and Ps are fixed on N3, and we have to decide how to
partition P4 between the TT and ET domains. Let us also assume that process Ps is
the highest priority process on N3. In addition, Ps and Pg have each a deadline, D5
and Dg, respectively, as illustrated in the figure by thick vertical lines.

We can observe that although P3; and P4 do not have individual deadlines, their
mapping and scheduling has a strong impact on their successors, Ps and Pg, respec-
tively, which are deadline constrained. Thus, we would like to map P4 such that not
only P; can start on time, but P4 also starts soon enough to allow Pg to meet its
deadline.

As we can see from Figure 3.7(a), this is impossible to achieve by mapping P4 on
the TTC node N;. It is interesting to observe that, if pre-emption would be allowed
in the TT domain, as in Figure 3.7(b), both deadlines could be met. This, however,
is impossible on the TTC where pre-emption is not allowed. Both deadlines can be
met only if P4 is mapped on the slower ETC node N3, as depicted in Figure 3.7(c).
In this case, although P4 competes for the processor with Ps, due to the pre-emption
of P4 by the higher priority Ps, all deadlines are satisfied.

For a multi-cluster architecture the communication infrastructure has an important
impact on the design and, in particular, the mapping decisions. Let us consider the
example in Figure 3.8. We assume that P; is mapped on node N and P3 on node N3
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Figure 3.8 Mapping example

on the TTC, and we are interested to map process P. P, is allowed to be mapped on
the TTC node N3 or on the ETC node N4, and its execution times are depicted in the
table to the right of the application graph.

In order to meet the deadline, one would map P, on the node it executes fastest,
N; onthe TTC, see Figure 3.8(a). However, this will lead to a deadline miss due to the
TTP slot configuration which introduces communication delays. The application will
meet the deadline only if P, is mapped on the slower node, i.e. node N4 in the case
in Figure 3.8(b).2 Not only is N4 slower than N>, but mapping P, on N4 will place
P, on a different cluster than P; and P, introducing extra communication delays
through the gateway node. However, due to the actual communication configuration,
the mapping alternative in Figure 3.8(b) is desirable.

Using the notation introduced, the partitioning and mapping problem can be
described more exactly as follows. As an input we have an application I given
as a set of process graphs and a two-cluster system consisting of a TT and an ET
cluster. As introduced previously, Pr and Pg are the sets of processes already par-
titioned into TT and ET, respectively. Also, 73%’[ C Pr and Pg” C Pg are the
sets of already mapped TT and ET processes. We are interested to find a partition-
ing for processes in P = P\(Pr U Pg) and decide a mapping for processes in
P* = PLUP;UPT, where Py = Pr\P¥, and P} = Pg\P¥ such that imposed

2 Process T in Figure 3.8(b) executing on the gateway node N; is responsible for transferring messages
between the TTP and CAN controllers.
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deadlines are guaranteed to be satisfied. We have highlighted a possible solution to
this problem [75].

3.6.2 Frame packing

In both the TTP and CAN protocols messages are not sent independently, but several
messages having similar timing properties are usually packed into frames. In many
application areas, such as automotive electronics, messages range from one single bit
(e.g. the state of a device) to a couple of bytes (e.g. vehicle speed, etc.). Transmitting
such small messages one per frame would create a high communication overhead,
which can cause long delays leading to an unschedulable system. For example, 65 bits
have to be transmitted on CAN for delivering one single bit of application data.
Moreover, a given frame configuration defines the exact behaviour of a node on the
network, which is very important when integrating nodes from different suppliers.

Let us consider the motivational example in Figure 3.9, where we have the process
graph from Figure 3.9(d) mapped on the two-cluster system from Figure 3.9(e): P;
and P4 are mapped on node N; from the TTC, while P, and P3 are mapped on N, from
ETC. The data field of the frames is represented with a black rectangle, while the other
frame fields are depicted with a grey colour. We consider a physical implementation
of the buses such that the frames will take the time indicated in the figure by the
length of their rectangles. We are interested to find a frame configuration such that
the application is schedulable.

In the system configuration of Figure 3.9(a) we consider that, on the TTP bus,
the node N transmits in the first slot (S1) of the TDMA round, while the gateway
transmits in the second slot (S ). Process Ps has a higher priority than process P,
hence P, will be interrupted by P3 when it receives message m,. In such a setting,
P, will miss its deadline, which is depicted as a thick vertical line in Figure 3.9.
Changing the frame configuration as in Figure 3.9(b), so that messages m and m;
are packed into frame fjand slot S of the gateway comes first, processes P, and P3
will receive m and mj sooner and thus reduce the worst-case response time of the
process graph, which is still larger than the deadline. In Figure 3.9(c), we also pack
m3 and m4 into f>. In such a situation, the sending of m3 will have to be delayed until
my is queued by P,. Nevertheless, the worst-case response time of the application is
further reduced, which means that the deadline is met, thus the system is schedulable.

However, packing more messages will not necessarily reduce the worst-case
response times further, as it might increase too much the worst-case response times
of messages that have to wait for the frame to be assembled, this is the case with
message m3 in Figure 3.9(c).

This design optimisation problem can be formulated more exactly as follows. As
input to the frame-packing problem we have an application I" given as a set of process
graphs mapped on an architecture consisting of a TTC and an ETC interconnected
through a gateway. We consider that the partitioning and mapping of processes has
been already decided.

We are interested to find a mapping of messages to frames (a frame packing
configuration) denoted by a 4-tuple ¥ = («, 7, B, 0) such that the application I' is
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schedulable. Once a schedulable system is found, we are interested to further improve
the ‘degree of schedulability’ so the application can potentially be implemented on a
cheaper hardware architecture (with slower buses and processors).

Determining a frame configuration y» means deciding on:

e The mapping of application messages transmitted on the ETC to frames (the set
of ETC frames «), and their relative priorities, 7. Note that the ETC frames «
have to include messages transmitted from an ETC node to a TTC node, messages
transmitted inside the ETC cluster, and those messages transmitted from the TTC
to the ETC.

e The mapping of messages transmitted on the TTC to frames, denoted by the set of
TTC frames f, and the sequence o of slots in a TDMA round. The slot sizes are
determined based on the set 8, and are calculated such that they can accommodate
the largest frame sent in that particular slot. We consider that messages transmitted
from the ETC to the TTC are not statically allocated to frames. Rather, we will
dynamically pack messages originating from the ETC into the ‘gateway frame’,
for which we have to decide the data field length (see Section 3.5.2).

Several details related to the schedulability analysis were omitted from the discussion
of the example. These details will be discussed in the next section.

3.7 Multi-cluster analysis and scheduling

Once a partitioning and a mapping is decided, and a frame packing configuration
is fixed, the processes and messages have to be scheduled. For the TTC this means
building the schedule tables, while for the ETC the priorities of the ET processes have
to be determined and their schedulability has to be analysed.

The analysis presented in this section works under the following assumptions:

e All the processes belonging to a process graph G have the same period 7g.
However, process graphs can have different periods.

e The offsets are static (as opposed to dynamic [42]), and are smaller than the
period.

e The deadlines are arbitrary, i.e. can be larger than the period.

The basic idea is that on the TTC an application is schedulable if it is possible to build
a schedule table such that the timing requirements are satisfied.

On the ETC, the answer whether or not a system is schedulable is given by a
‘schedulability analysis’. Thus, for the ETC we use a ‘response time analysis’, where
the schedulability test consists of the comparison between the worst-case response
time r; of a process P; and its deadline D;. Response time analysis of data dependent
processes with static priority pre-emptive scheduling has been proposed in [39,40,42],
and has been also extended to consider the CAN protocol [20]. The authors use the
concept of ‘offset’ in order to handle data dependencies. Thus, each process P; is
characterised by an offset O;, measured from the start of the process graph, that
indicates the earliest possible start time of P;. Such an offset is, for example, O3 in
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Figure 3.9(a), as process P, cannot start before receiving m . The same is true for
messages, their offset indicating the earliest possible transmission time. The response
time analysis employed is presented in Section 3.7.1.

However, determining the schedulability of an application mapped on a multi-
cluster system cannot be addressed separately for each type of cluster, since the inter-
cluster communication creates a circular dependency: the static schedules determined
for the TTC influence through their offsets the worst-case response times of the
processes on the ETC, which in turn influence the schedule table construction on the
TTC. In Figure 3.9(b) packing m; and m; in the same frame leads to equal offsets
for P, and Ps3. Because of this, P; will delay P, (which would not be the case if m;
sent to P3 would be scheduled in round 3, e.g.) and thus the placement of P4 in the
schedule table has to be accordingly delayed to guarantee the arrivals of m3 and mg4.

In our analysis we consider the influence between the two clusters by making the
following observations:

e The start time of process P; in a schedule table on the TTC is its offset O;.

The worst-case response time r; of a TT process is its worst-case execution time,
i.e. r; = C; (TT processes are not pre-emptable).

e The worst-case response times of the messages exchanged between two clus-
ters have to be calculated according to the schedulability analysis described in
Section 3.7.1.

e The offsets have to be set by a scheduling algorithm such that the precedence
relationships are preserved. This means that, if process Pp depends on process
Py, the following condition musthold: Op > O4+r4. Note that for the processes
on a TTC which receive messages from the ETC this translates to setting the start
times of the processes such that a process is not activated before the worst-case
arrival time of the message from the ETC. In general, offsets on the TTC are set
such that all the necessary messages are present at the process invocation.

The MultiClusterScheduling algorithm in Figure 3.10 receives as input the appli-
cation I', the frame configuration v, and produces the offsets ¢ and worst-case
response times p.

The algorithm sets initially all the offsets to 0 (line 1). Then, the worst-case
response times are calculated using the ResponseTimeAnalysis function (line 4)
using the analysis presented in Section 3.7.1. The fixed-point iterations that calculate
the response times at line 3 will converge if processor and bus loads are smaller than
100 per cent [39]. Based on these worst-case response times, we determine new values
@™V for the offsets using a list scheduling algorithm (line 6). We now have a schedule
table for the TTC and worst-case response times for the ETC, which are pessimistic.
The following loop will reduce the pessimism of the worst-case response times.

The multi-cluster scheduling algorithm loops until the degree of schedulability
dr of the application I" cannot be further reduced (lines 8—20). In each loop iteration,
we select a new offset from the set of "V offsets (line 10), and run the response
time analysis (line 11) to see if the degree of schedulability has improved (line 12).
If 8 has not improved, we continue with the next offset in ¢"%.
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MultiClusterScheduling(T", M, ¥)
- - determines the set of offsets ¢ and worst-case response times p

1 for each O; € ¢ do O; = 0 end for - - initially all offsets are zero

2  -- determine initial values for the worst-case response times

3 --according to the analysis in Section 3.7.1

4  p=ResponseTimeAnalysis(I', M, ¥, ¢)

5 -- determine new values for the offsets, based on the response times p
6 ¢"" = ListScheduling(I", M, ¥, p)

7 6r = oo -- consider the system unschedulable at first

8 repeat - - iteratively improve the degree of schedulability Sy

9 for each 0" € ¢"*" do - - for each newly calculated offset

10 Ol.”ld = ¢.0;;¢.0; = ¢"°" O!'°" -- set the new offset, remember old
11 p"e” = ResponseTimeAnalysis(I', M, ¥, @)

12 53¢ = SchedulabilityDegree(T", p)

13 if §{°¥ < ér then - - the schedulability has improved

14 - - offsets are recalculated using p"¢"

15 ¢"? = ListScheduling(T', M, ¥, p"¢")

16 break - - exit the for-each loop

17 else - - the schedulability has not improved

18 ¢.0; = Oi”[d - - restore the old offset

19 end for

20 until 61 has not changed
21 return p, ¢, 1
end MultiClusterScheduling

Figure3.10  The MulticlusterScheduling algorithm

When a new offset O]'*" leads to an improved o1 we exit the for-each loop 9-19
that examines offsets from ¢"". The loop iteration 8-20 continues with a new set of
offsets, determined by ListScheduling at line 15, based on the worst-case response
times p™" corresponding to the previously accepted offset.

In the multi-cluster scheduling algorithm, the calculation of offsets is performed
by the list scheduling algorithm presented in Figure 3.11. In each iteration, the algo-
rithm visits the processes and messages in the ReadyList. A process or a message in
the application is placed in the ReadyList if all its predecessors have been already
scheduled. The list is ordered based on the priorities [76]. The algorithm terminates
when all processes and messages have been visited.

In each loop iteration, the algorithm calculates the earliest time moment (offser)
when the process or message node; can start (lines 5—7). There are four situations:

1 Thevisited node is an ET message. The message m; is packed into its frame f (line
9), and the offset O of the frame is updated. The frame can only be transmitted
after all the sender processes that pack messages in this frame have finished
executing. The offset of message m; packed to frame f is equal to the frame
offset Oy.
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ListScheduling(T", M, W, p) - - determines the set of offsets ¢

1 ReadylList= source nodes of all process graphs in the application
2 while ReadylList # @ do

3 node; = Head(ReadyList)

4 offset = 0 - - determine the earliest time when an activity can start

5 for each direct predecessor node; of node; do

6 offset = max(offset, O; + r;)

7 end for

8 if node; is a message m; then

9 PackFrame(m;, f) - - pack each ready message m into its frame f
10 Oy =max(Oy, offset) - - update the frame offset

11 if f is complete then - - the frame is complete for transmission

12 if f ex then -- fis an ET frame

13 - - the offset of messages is equal to the frame offset

14 for eachm; € f do O; = Oy end for

15 else -- f isa TT frame

16 <round, slot>= ScheduleTTFrame(f, offset, ¥ )

17 - - set the TT message offsets based on the round and slot
18 for eachm; € f do O; =round* Tr DM A + Oy, end for

19 endif; endif
20 else - - node; is a process P;
21 if M(P;) € Ng then --if process P; is mapped on the ETC

22 O; = offset — the ETC process can start immediately

23 else - - process P; is mapped on the TTC

24 - - P; has to wait also for the processor M (P;) to become available
25 O; = max(offset, ProcessorAvailable(M(FP;)))

26 end if; end if;

27 Update(ReadyList)
28 end while

29 return offsets

end ListScheduling

Figure 3.11 ListScheduling algorithm

2 Thenode is a TT message. In this case, when the frame is ready for transmission,
it is scheduled using the ScheduleTTFrame function (presented in Figure 3.12),
which returns the round and the slot where the frame has been placed (line 16
in Figure 3.11). In Figure 3.12, the round immediately following offset is the
initial candidate to be considered (line 2). However, it can be too late to catch
the allocated slot, in which case the next round is considered (line 4). For this
candidate round, we have to check if the slot is not occupied by another frame. If
so, the communication has to be delayed for another round (line 7). Once a frame
has been scheduled, we can determine the offsets and worst-case response times
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ScheduleTTFrame (f, offset, V)

- - returns the slot and the round assigned to frame f
1 slot = the slot assigned to the node sending f - - the frame slot

2 round = offset | Trpp4 - - the first round which could be a candidate
3 if offset — round * Trpprq > Ogyyt then - - the slot is missed

4 round = round + 1 - - if yes, take the next round

5 endif

6 while slot is occupied do

7 round = round + 1

8 end while

9 return round, slot

end ScheduleTTFrame

Figure3.12 Frame scheduling on the TTC

(Figure 3.11, line 18). For all the messages in the frame the offset is equal to the
start of the slot in the TDMA round, and the worst-case response time is the slot
length.

3 The algorithm visits a process P; mapped on an ETC node. A process on the ETC
can start as soon as its predecessors have finished and its inputs have arrived,
hence O; = offset (line 22). However, P; might experience, later on, interference
from higher priority processes.

4 Process P; is mapped on a TTC node. In this case, besides waiting for the prede-
cessors to finish executing, P; will also have to wait for its processor M (P;) to
become available (line 25). The earliest time when the processor is available is
returned by the ProcessorAvailable function.

Let us now turn the attention back to the multi-cluster scheduling algorithm in
Figure 3.10. The algorithm stops when the or of the application I' is no longer
improved, or when a limit imposed on the number of iterations has been reached.
Since in a loop iteration we do not accept a solution with a larger ér, the algorithm
will terminate when in a loop iteration we are no longer able to improve 61 by
modifying the offsets.

3.7.1 Schedulability analysis for the ETC

Forthe ETC we use aresponse time analysis. A ‘response time analysis’ has two steps.
In the first step, the analysis derives the worst-case response time of each process (the
time it takes from the moment is ready for execution, until it has finished executing).
The second step compares the worst-case response time of each process to its deadline
and, if the response times are smaller or equal to the deadlines, the system is schedu-
lable. The analysis presented in this section is used in the ResponseTimeAnalysis
function (line 4 of the algorithm in Figure 3.10).
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Thus, the response time analysis [77] uses the following equation for determining
the worst-case response time 7; of a process P;:
Ti

r =C; + T
J

les (3.2)
VP;jehp(P;)

where C; is the worst-case execution time of process P;, T is the period of pro-
cess P; and hp(P;) denotes the set of processes that have a priority higher than the
priority of P;.

The summation term, representing the interference /; of higher priority processes
on P;, increases monotonically in r;, thus solutions can be found using a recurrence
relation. Moreover, the recurrence relations that calculate the worst-case response
time are guaranteed to converge if the processor utilisation is under 100 per cent.

The previously presented analysis assumes that the deadline of a process is smaller
or equal to its period. This assumption has later been relaxed [32] to consider ‘arbitrary
deadlines’ (i.e. deadlines can be larger than the period). Thus, the worst-case response
time r; of a process P; becomes:

ri= max_(Ji +wi(q) —qT;) (33)
q=0, 1, 2...
where J; is the jitter of process P; (the worst-case delay between the arrival of a process
and the start of its execution), g is the number of busy periods being examined and
wi(q) is the width of the level-i busy period starting at time ¢7;. The level-i busy
period is defined as the maximum time a processor executes processes of priority
greater than or equal to the priority of process P;, and is calculated as [32]:

wi(‘i)-l-fj“cj (3.4)

wi(q) =(q+DCi+Bi+ Y -
J

VP;jehp(P;)

The pessimism of the previous analysis can be reduced by using the information
related to the precedence relations between processes. The basic idea is to exclude
certain worst-case scenarios, from the critical instant analysis, which are impossible
due to precedence constraints.

Methods for schedulability analysis of data dependent processes with static prior-
ity pre-emptive scheduling have been proposed [39,40,41,42]. They use the concept
of ‘offset’ (or ‘phase’), in order to handle data dependencies. Tindell [39] shows
that the pessimism of the analysis is reduced through the introduction of offsets. The
offsets have to be determined by the designer.

In their analysis [39], the response time of a process P; is:

ri = max (max <w,-(q)—|—0j+Jj—TG
q=0,1,2.. \VP;eG

(o[22 )
Tg

where T the period of the process graph G, O; and O are offsets of processes P; and
P;, respectively, and J; and J; are the release jitters of P; and P;. In Equation (3.5),
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the level-i busy period starting at time ¢7 is
wi(g) =(@q@+DC—i+Bi+1 (3.6)

In the previous equation, the blocking term B; represents interference from lower
priority processes that are in their critical section and cannot be interrupted, and C;
represents the worst-case execution time of process P;. The last term captures the
interference /; from higher priority processes in the application, including higher
priority processes from other process graphs. Tindell [39] presents the details of the
interference calculation.

Although this analysis is exact (both necessary and sufficient), it is computa-
tionally infeasible to evaluate. Hence, Tindell [39] proposes a feasible but not exact
analysis (sufficient but not necessary) for solving Equation (3.5). Our implementa-
tions use the feasible analysis provided in Tindell [39] for deriving the worst-case
response time of a process P;.

We are now interested to determine the worst-case response time of frames and
the worst-case queuing delays experienced by a frame in a communication controller.

Regarding the worst-case response time of messages, we have extended the CAN
analysis from messages [20] and applied it in the contest of frames on the CAN bus:

ry= max Jr+Wr(g)+ A +q)Cy) 3.7
q=0,1,2...
In the previous equation J is the jitter of frame fwhich in the worst case is equal
to the largest worst-case response time rg(;)of a sender process S(/nm) which sends
message m packed into frame f:

Jr = max (rs,) (3.8

In Equation (3.7), Wy is the ‘worst-case queuing delay’ experienced by fat the
communication controller, and is calculated as:

Welg) =wy(g) —qTy (3.9)

where ¢ is the number of busy periods being examined, and ws(q) is the width of
the level- f busy period starting at time gT's.

Moreover, in Equation (3.7), C is the worst-case time it takes for a frame fto
reach the destination controller. On CAN, C; depends on the frame configuration
and the size of the data field, s s, while on TTP it is equal to the slot size in which f
is transmitted.

The worst-case response time of message m packed into a frame f can be
determined by observing that r,,, =7 .

The worst-case queueing delay for a frame (W in Equation (3.7)) is calculated
differently for each type of queue:

1 The output queue of an ETC node, in which case W represents the worst-case
time a frame f has to spend in the Outy, queue on ETC node N;. An example of
such a frame is the one containing message m3 in Figure 3.9(a), which is sent by
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process P, from the ETC node N, to the gateway node N, and has to wait in the
Outy, queue.

2 The TTP-to-CAN queue of the gateway node, in which case is the worst-
case time a frame f has to spend in the Outcan queue of node Ng. In Figure 3.9(a),
the frame containing m is sent from the TTC node N to the ETC node N, and
has to wait in the Outcan queue of gateway node Ng before it is transmitted on
the CAN bus.

3 The CAN-to-TTP queue of the gateway node, where W}TP captures the time
f has to spend in the Outttp queue node Ng. Such a situation is present in
Figure 3.9(a), where the frame with m3 is sent from the ETC node N3 to the TTC
node N through the gateway node N where it has to wait in the Outytp queue
before it is transmitted on the TTP bus, in the S slot of node Ng.

WCAN

On the TTC, the synchronisation between processes and the TDMA bus config-
uration is solved through the proper synthesis of schedule tables, hence no output
queues are needed. The frames sent from a TTC node to another TTC node are taken
into account when determining the offsets, and are not involved directly in the ETC
analysis.

The next sections show how the worst queueing delays are calculated for each of
the previous three cases.

3.7.1.1 Worst-case queuing delays in the Outy; and Outcan queues

The analyses for W2 and WSANare similar. Once f is the highest priority frame in
the Outcan queue, 1t will be sent by the gateway’s CAN controller as a regular CAN
frame, therefore the same equation for w s can be used:

wr(q) + Jj
wi@) =B+ Y [%l C; (3.10)
v fiehp(f) J

The intuition is that f has to wait, in the worst case, first for the largest lower
priority frame that is just being transmitted (B ) as well as for the higher priority
fi € hp(f) frames that have to be transmitted ahead of f(the second term). In the
worst case, the time it takes for the largest lower priority frame f; € p(f) to be
transmitted to its destination is:

Br = max (Cy) 3.1
FE e @3.11)
Note thatin our case, [p(f) and hp( f) also include messages produced by the gateway
node, transferred from the TTC to the ETC.

3.7.1.2 Worst-case queuing delay in the OuttTp queue

The time a frame f has to spend in the Outttp queue in the worst case depends on
the total size of messages queued ahead of f (Outrrp is a FIFO queue), the size Sg
of the data field of the frame fitting into the gateway slot responsible for carrying
the CAN messages on the TTP bus, and the period Ttpma With which this slot Sg is
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MultiClusterConfiguration(I")

- - determine an initial partitioning and mapping M,

-- and an initial frame configuration y°

<M, %> = PartitioningAndMapping(I")

- - the frame packing optimization algorithm

¥ = FramePackingOptimization(T", M, ¥)

- - test if the resulted configuration leads to a schedulable application

if MultiClusterScheduling(I", M, ¢/) returns schedulable then
return M,

else

10 return unschedulable

11 endif

end MultiClusterConfiguration

0NN AW~

o

Figure3.13  The general frame packing strategy

circulating on the bus [46]:

(g +Dsy+ If(wf(CI))J T
So TDMA

wi''(q) = By + { (3.12)
where [ is the total size of the frames queued ahead of f. Those frames f; ehp(f)
are ahead of f, which have been sent from the ETC to the TTC, and have higher
priority than f:

=Y [W—MW 5 (3.13)

T]
¥ fiehp(f)

where the frame jitter J; is given by Equation (3.8).

The blocking term B s is the time interval in which f'cannot be transmitted because
the slot S of the TDMA round has not arrived yet. In the worst case (i.e. the frame
f has just missed the slot S ), the frame has to wait an entire round Ttppa for the
slot S in the next TDMA round.

3.8 Frame-packing optimisation strategy

The general multi-cluster optimisation strategy is outlined in Figure 3.13. The
MultiClusterConfiguration strategy has two steps:

1 In the first step, line 3, the application is partitioned on the TTC and ETC
clusters, and processes are mapped to the nodes of the architecture using the
PartitioningAndMapping function. The partitioning and mapping can be done
with an optimisation heuristic [75]. As part of the partitioning and mapping pro-
cess, an initial frame configuration wo = (ao, 79, ,3000) is derived. Messages
exchanged by processes partitioned to the TTC will be mapped to TTC frames,
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while messages exchanged on the ETC will be mapped to ETC frames. For each
message sent from a TTC process to an ETC process, we create an additional mes-
sage on the ETC, and we map this message to an ETC frame. The sequence ¢° of
slots for the TTC is decided by assigning in order nodes to the slots (S; = N;). One
message is assigned per frame in the initial set 8% of TTC frames. For the ETC,
the frames in the set o initially hold each one single message, and we calculate
the message priorities I1° based on the deadlines of the receiver processes.

2 The frame packing optimisation, is performed as the second step (line 5 in
Figure 3.13). The FramePackingOptimization function receives as input the
application I', the mapping M of processes to resources and the initial frame
configuration ¥°, and it produces as output the optimised frame packing config-
uration ¥. Such an optimisation problem is NP complete [78], thus obtaining the
optimal solution is not feasible. We present two frame packing optimisation strate-
gies, one based on a simulated annealing approach, presented in Section 3.8.1,
while the other, outlined in Section 3.8.2, is based on a greedy heuristic that
uses intelligently the problem-specific knowledge in order to explore the design
space.

If after these steps the application is unschedulable, we conclude that no satisfactory
implementation could be found with the available amount of resources.

Testing if the application I is schedulable is done using the MultiClusterSchedul-
ing (MCS) algorithm (line 7 in Figure 3.13). The multi-cluster scheduling algorithm,
presented in Figure 3.10, takes as input an application I", a mapping M and an ini-
tial frame configuration v/, builds the TT schedule tables, sets the ET priorities for
processes, and provides the global analysis.

3.8.1 Frame packing with simulated annealing

The first algorithm we have developed is based on a simulated annealing (SA) strategy
[78], and is presented in Figure 3.14. The algorithm takes as input the application
I', a mapping M and an initial frame configuration 1/°, and determines the frame
configuration 1 which leads to the best degree of schedulability §r (the smaller the
value, the more schedulable the system, see Section 3.6).

Determining a frame configuration 1 means finding the set of ETC frames o and
their relative priorities i, and the set of TTC frames B, including the sequence o of
slots in a TDMA round.

The main feature of a SA strategy is that it tries to escape from a local optimum by
randomly selecting a new solution from the neighbours of the current solution. The
new solution is accepted if it is an improved solution (lines 9—10 of the algorithm in
Figure 3.14). However, a worse solution can also be accepted with a certain probability
that depends on the deterioration of the cost function and on a control parameter called
temperature (lines 12—13).

In Figure 3.14 we give a short description of this algorithm. An essential com-
ponent of the algorithm is the generation of a new solution ey starting from the
current one Yeyrrent. The neighbours of the current solution Ycyrrent are obtained by
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SimulatedAnnealing(I", M, ¥°)

1 -- given an application I" finds out if it is schedulable and produces

2  --the configuration (¥, w, 8,0) leading to the smallest 5p

3 --initial frame configuration

4 I//current = 1//0

5 temperature = initial temperature 77

6 repeat

7 for i = 1 to temperature length 7L do

8 generate randomly a neighboring solution ¥,ey, of Weyrrent

9 8 = MultiClusterScheduling(I", M, ¥yew) -
MultiClusterScheduling(T", M, Yeyrrent)

10 if § < 0 then Yeurrent = Ynew

11 else

12 generate ¢ = Random (0, 1)

13 ifg < gO/temperature thep Yeurrent = Ynew end if

14 end if

15 end for

16 temperature = ¢ * temperature

17 wuntil stopping criterion is met

18 return SchedulabilityTest(T", M, Ypest), solution ¥ best
corresponding to the best degree of schedulablity 5p

end SimulatedAnnealing

Figure3.14 The SimulatedAnnealing algorithm

performing transformations (called moves) on the current frame configuration ¥¢yrrent
(line 8). We consider the following moves:

e moving a message m from a frame f] to another frame f, (or moving m into a
separate single-message frame);
swapping the priorities of two frames in «;
swapping two slots in the sequence o of slots in a TDMA round.

For the implementation of this algorithm, the parameters 77 (initial temperature),
TL (temperature length), ¢ (cooling ratio) and the stopping criterion have to be
determined. They define the ‘cooling schedule’ and have a decisive impact on the
quality of the solutions and the CPU time consumed. We are interested to obtain
values for 77, TL and ¢ that will guarantee the finding of good quality solutions in a
short time.

We performed long runs of up to 48 h with the SA algorithm, for ten synthetic pro-
cess graphs (two for each graph dimension of 80, 160, 240 320, 400, see Section 3.9)
and the best ever solution produced has been considered as the optimum. Based on
further experiments we have determined the parameters of the SA algorithm so that
the optimisation time is reduced as much as possible but the near-optimal result is
still produced. For example, for the graphs with 320 nodes, 77 is 700, TL is 500 and
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¢ is 0.98. The algorithm stops if for three consecutive temperatures no new solution
has been accepted.

3.8.2 Frame packing greedy heuristic

The OptimizeFramePacking greedy heuristic (Figure 3.15) constructs the solution
by progressively selecting the best candidate in terms of the degree of schedulability.

We start by observing that all activities taking place in a multi-cluster system
are ordered in time using the offset information, determined in the StaticScheduling
function based on the worst-case response times known so far and the application
structure (i.e. the dependencies in the process graph). Thus, our greedy heuristic
outlined in Figure 3.15, starts with building two lists of messages ordered according
to the ascending value of their offsets, one for the TTC, messagesg, and one for ETC,
messages,. Our heuristic is to consider for packing in the same frame messages
which are adjacent in the ordered lists. For example, let us consider that we have
three messages, m1 of 1 byte, m, of 2 bytes and m3 of 3 bytes, and that messages
are ordered as ms3, m, my based on the offset information. Also, assume that our
heuristic has suggested two frames, frame f1 with a data field of 4 bytes, and f, with
a data field of 2 bytes. The PackMessages function will start with m3 and pack it in
frame f]. It continues with m,, which is also packed into fi, since there is space left
for it. Finally, m3 is packed in f3, since there is no space left for it in f7.

The algorithm tries to determine, using the for-each loops in Figure 3.15, the best
frame configuration. The algorithm starts from the initial frame configuration v, and
progressively determines the best change to the current configuration. The quality of a
frame configuration is measured using the MultiClusterScheduling algorithm, which
calculates the degree of schedulability ér (line 13). Once a configuration parameter
has been fixed in the outer loops it is used by the inner loops:

e Lines 10-15: The innermost loops determine the best size S, for the currently
investigated frame f,, inthe ETC frame configuration ocyrrent. Thus, several frame
sizes are tried (line 11), each with a size returned by RecomendedSizes to see if
it improves the current configuration. The RecomendedSizes(messagese) list is
built recognising that only messages adjacent in the messages, list will be packed
into the same frame. Sizes of frames are determined as a sum resulted from adding
the sizes of combinations of adjacent messages, not exceeding 8 bytes. For the
previous example, with m, my and m3, of 1, 2 and 3 bytes, respectively, the
frame sizes recommended will be of 1, 2, 3, 4, and 6 bytes. A size of 5 bytes will
not be recommended since there are no adjacent messages that can be summed
together to obtain 5 bytes of data.

e Lines 9-16: This loop determines the best frame configuration «. This means
deciding on how many frames to include in « (line 9), and which are the best
sizes for them. In « there can be any number of frames, from one single frame
to ny frames (in which case each frame carries one single message). Once a
configuration apeg¢ or the ETC, minimising dr, has been determined (saved in
line 16), the algorithm looks for the frame configuration § which will further
improve dr.
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o Lines 7-17: The best size for a frame f§ is determined similarly to the size for a
frame f,.

e Lines 6-18: The best frame configuration Spes is determined. For each frame
configuration S tried, the algorithm loops again through the innermost loops to
see if there are better frame configurations « in the context of the current frame
configuration Beyrrent-

e Lines4-19: After a Bycq has been decided, the algorithm looks for a slot sequence
o starting with the first slot and tries to find the node which, when transmitting in
this slot, will reduce ér. Different slot sequences are tried by swapping two slots
within the TDMA round (line 5).

For the initial message priorities 7 (initially, there is one message per frame)
we use the ‘heuristic optimised priority assignment’ (HOPA) approach [55], where
priorities in a distributed real-time system are determined, using knowledge of the
factors that influence the timing behaviour, such that the degree of schedulability of
the system is improved (line 1). The ETC message priorities set at the beginning of
the algorithm are not changed by our greedy optimisation loops. The priority of a
frame f, € « is given by the message m € f, with the highest priority.

The algorithm continues in this fashion, recording the best ever pst configura-
tions obtained, in terms of -, and thus the best solution ever is reported when the
algorithm finishes.

3.9 Experimental results

For the evaluation of our frame-packing optimisation algorithms we first used process
graphs generated for experimental purpose. We considered two-cluster architectures
consisting of 2, 4, 6, 8 and 10 nodes, half on the TTC and the other half on the ETC,
interconnected by a gateway. Forty processes were assigned to each node, resulting
in applications of 80, 160, 240, 320 and 400 processes.

We generated both graphs with random structure and graphs based on more regular
structures such as trees and groups of chains. We generated a random structure graph
deciding for each pair of two processes if they should be connected or not. Two
processes in the graph were connected with a certain probability (between 0.05 and
0.15, depending on the graph dimension) on the condition that the dependency would
not introduce a loop in the graph. The width of the tree-like structures was controlled
by the maximum number of direct successors a process can have in the tree (from 2
to 6), while the graphs consisting of groups of chains had 2 to 12 parallel chains of
processes. Furthermore, the regular structures were modified by adding a number of
3 to 30 random cross-connections.

The mapping of the applications to the architecture has been done using a simple
heuristic that tries to balance the utilisation of processors while minimising commu-
nication. Execution times and message lengths were assigned randomly using both
uniform and exponential distribution within the 10-100 ms and 1-2 bytes ranges,
respectively. For the communication channels we considered a transmission speed of
256 kbps and a length below 20 meters. All experiments were run on a SUN Ultra 10.
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Table 3.1  Evaluation of the frame-packing optimisation algorithms

No. of Straightforward solution (SP)  OptimizeFramePacking (OFP)  SimulatedAnnealing

processes (SA)
average max time average max time time
(%) (%) ) (%) (%) () (s)

80 2.42 17.89 0.09 0.40 1.59 4.35 235.95
160 16.10 4228 022 2.28 8.32 12.09 732.40
240 40.49 126.4 0.54 6.59 21.80 49.62 2928.53
320 70.79 153.08 0.74 13.70 30.51 172.82 7585.34
400 97.37 24431 0.95 31.62 95.42 248.30 22099.68

The first result concerns the ability of our heuristics to produce schedulable
solutions. We have compared the degree of schedulability Sr obtained from our
OptimizeFramePacking (OFP) heuristic (Figure 3.15) with the near-optimal values
obtained by SA (Figure 3.14). Obtaining solutions that have a better degree of schedu-
lability means obtaining tighter worst-case response times, increasing the chances of
meeting the deadlines.

Table 3.1 presents the average percentage deviation of the degree of schedulabil-
ity produced by OFP from the near-optimal values obtained with SA. Together with
OFP, a straightforward approach (SF) is presented. The SF approach does not con-
sider frame packing, and thus each message is transmitted independently in a frame.
Moreover, for SF we considered a TTC bus configuration consisting of a straightfor-
ward ascending order of allocation of the nodes to the TDMA slots; the slot lengths
were selected to accommodate the largest message frame sent by the respective node,
and the scheduling has been performed by the MultiClusterScheduling algorithm in
Figure 3.10.

In Table 3.1 we have one row for each application dimension of 80—400 processes,
and a header for each optimisation algorithm considered. For each of the SF and
OFP algorithms we have three columns in the table. In the first column, we present
the average percentage deviation of the algorithm from the results obtained by SA.
The percentage deviation is calculated according to the formula:

approach 05 A
deviation = —— T 100 (3.14)
oA

The second column presents the maximum percentage deviation from the SA
result, and the third column presents the average execution time of the algorithm, in
seconds. For the SA algorithm we present only its average execution times.

Table 3.1 shows that when packing messages to frames, the degree of schedula-
bility improves dramatically compared to the straightforward approach. The greedy
heuristic OptimizeFramePacking performs well for all the graph dimensions, having,
e.g., run-times which are on average under 50 for applications with 240 processes.
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Figure 3.16 Hardware architecture for the cruise controller

When deciding on which heuristic to use for design space exploration or system
synthesis, an important issue is the execution time. On average, our optimisation
heuristics needed a couple of minutes to produce results, while the simulated annealing
approach had an execution time of up to 6 h.

3.9.1 The vehicle cruise controller

A typical safety-critical application with hard real-time constraints, is a vehicle cruise
controller (CC). We have considered a CC system derived from a requirement spec-
ification provided by the industry. The CC delivers the following functionality: it
maintains a constant speed for speeds over 35 km/h and under 200 km/h, offers an
interface (buttons) to increase or decrease the reference speed and is able to resume
its operation at the previous reference speed. The CC operation is suspended when
the driver presses the brake pedal.

The specification assumes that the CC will operate in an environment consisting
of two clusters. There are four nodes which functionally interact with the CC system:
the Anti-lock Braking System (ABS), the Transmission Control Module (TCM),
the Engine Control Module (ECM) and the Electronic Throttle Module (ETM) (see
Figure 3.16).

It has been decided to map the functionality (processes) of the CC over these four
nodes. The ECM and ETM nodes have an 8-bit Motorola M68HC11 family CPU with
128 kbytes of memory, while the ABS and TCM are equipped with a 16-bit Motorola
M68HC12 CPU and 256 kbytes of memory. The 16-bit CPUs are twice as fast than
the 8-bit ones. The transmission speed of the communication channel is 256 kbps and
the frequency of the TTP controller was chosen to be 20 MHz.

We have modelled the specification of the CC system using a set of 32 processes
and 17 [72] where the mapping of processes to the nodes is also given. The period
was chosen 250 ms, equal to the deadline.

In this setting, the straightforward approach SF produced an end-to-end worst-
case response time of 320 ms, greater than the deadline, while both the OFP and SA
heuristics produced a schedulable system with a worst-case response time of 172 ms.
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This shows that the optimisation heuristic proposed, driven by our schedulabil-
ity analysis, is able to identify that frame packing configuration which increases
the schedulability degree of an application, allowing the developers to reduce the
implementation cost of a system.

3.10 Conclusions

Heterogeneous distributed real-time systems are used in several application areas to
implement increasingly complex applications that have tight timing constraints. The
heterogeneity is manifested not only at the hardware and communication protocol
levels, but also at the level of the scheduling policies used. In order to reduce costs
and use the available resources more efficiently, the applications are distributed across
several networks.

We have introduced the current state-of-the-art analysis and optimisation tech-
niques available for such systems, and addressed in more detail a special class of
heterogeneous distributed real-time embedded systems called multi-cluster systems.

We have presented an analysis for multi-cluster systems and outlined several char-
acteristic design problems, related to the partitioning and mapping of functionality
and the optimisation of the access to the communication infrastructure. An approach
to schedulability-driven frame packing for the synthesis of multi-cluster systems
was presented as an example of solving such a design optimisation problem. We
have developed two optimisation heuristics for frame configuration synthesis which
are able to determine frame configurations that lead to a schedulable system. We
have shown that by considering the frame packing problem, we are able to synthesise
schedulable hard real-time systems and to potentially reduce the overall cost of the
architecture.

The main message of the presented research is that efficient analysis and optimi-
sation methods are needed and can be developed for the efficient implementation of
applications distributed over interconnected heterogeneous networks.
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4.1 Introduction

Primitive operating systems were first introduced in the 1960s in order to relieve
programmers of common tasks such as those involving Input/Output (I/O). Grad-
ually, scheduling and management of multiple jobs/programs became the purview
of an Operating System (OS). Many fundamental advances, such as multithreading
and multiprocessor support, have propelled both large companies and small to the
forefront of software design.

Recent trends in chip design press the need for more advanced operating systems
for System-on-a-Chip (SoC). However, unlike earlier trends where the focus was on
scientific computing, today’s SoC designs tend to be driven more by the needs of
embedded computing. While it is hard to state exactly what constitutes embedded
computing, it is safe to say that the needs of embedded computing form a superset of
scientific computing. For example, real-time behaviour is critical in many embedded
platforms due to close interaction with non-humans, e.g. rapidly moving mechan-
ical parts. In fact, the Application-Specific Integrated Circuits (ASICs) preceding
SoC did not integrate multiple processors with custom hardware, but instead were
almost exclusively digital logic specialised to a particular task and hence very timing
predictable and exact. Therefore, we predict that advances in operating systems for
SoC focusing on Real-Time Operating System (RTOS) design provide a more natural
evolution for chip design as well as being compatible with real-time systems.

Furthermore, thanks to the recent trends in the technologies of MultiProcessor SoC
(MPSoC) and reconfigurable chips, many hardware Intellectual Property (IP) cores
that implement software algorithms have been developed to speed up computation.
However, efforts to fully exploit these innovative hardware IP cores have encountered
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many difficulties such as interfacing IP cores to a specific system, modifying IP cores
to fulfil requirements of a system under consideration, porting device drivers and
finally integrating both IP cores and software seamlessly. Much work of interfacing,
modifying and/or porting IP cores and device drivers has relied on human resources.
Hardware/software codesign frameworks can help reduce this burden on designers.

This chapter focuses on such research in the design of OS, especially RTOSes.
We have implemented and upgraded the § hardware/software RTOS/MPSoC design
framework (shown in Figure 4.1). Since we have already described key aspects of
our approach in References 1-5, in this chapter we first briefly explain the § frame-
work and then focus more on an exposition of deadlock issues. We believe deadlock
issues are on the horizon due to the rapid evolution in MPSoC technology and the
introduction of many innovative IP cores. We predict that future MPSoC designs
will have hundreds of processors and resources (such as custom FFT hardware) all
in a single chip; thus, systems will handle much more functionality, enabling a much
higher level of concurrency and requiring many more deadlines to be satisfied. As a
result, we predict there will be resource sharing problems among the many processors
desiring the resources, which may result in deadlock more often than designers might
realise.

The remainder of this chapter is organised as follows. Section 4.2 presents our
target MPSoC architecture and then explains the § hardware/software RTOS design
framework version 2.0 including a description of two hardware RTOS components:
a ‘lock’ cache and a dynamic memory allocator. Section 4.3 motivates deadlock
issues and provides background about deadlock problems. Section 4.4 focuses on
several new software/hardware solutions to such deadlock problems. Section 4.5
addresses experimental setup and shows various comparison results with applications
that demonstrate how the § framework could impact hardware/software partition-
ing in current and future RTOS/MPSoC designs. Finally, Section 4.6 concludes this
chapter.

4.2 Hardware/software RTOS design

4.2.1 RTOS/MPSoC target

Figure 4.2 shows our primary target MPSoC consisting of multiple processing
elements with L1 caches, a large L2 memory, and multiple hardware IP compo-
nents with essential interfaces such as a memory controller, an arbiter and a bus
system. The target also has a shared memory multiprocessor RTOS (Atalanta [6]
developed at the Georgia Institute of Technology), which is small and configurable.
The code of Atalanta RTOS version 0.3 resides in shared memory, and all processing
elements (PEs) execute the same RTOS code and share kernel structures as well as
the states of all processes and resources. Atalanta supports priority scheduling with
priority inheritance as well as round-robin; task management such as task creation,
suspension and resumption; various Inter Process Communication (IPC) primitives
such as semaphores, mutexes, mailboxes, queues and events; memory management;
and interrupts. As shown in Figure 4.2, hardware IP cores can be either integrated
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Figure4.2 Future MPSoC

into the reconfigurable logic or implemented as custom logic. Besides, specialised IP
cores such as DSP processors and wireless interface cores can also be integrated into
the chip.

4.2.2 The § framework

The § hardware/software RTOS generation framework (shown in Figure 4.1) for
MPSoC has been proposed to enable automatic generation of different mixes of pre-
designed hardware/software RTOS components that fit the target MPSoC a user is
designing so that RTOS/MPSoC designers can explore crucial decisions early in the
design phase of their target product(s) [1-5]. Thus, the § framework helps users
explore which configuration is most suitable for users’ target and application or set
of applications. In other words, the § framework is specifically designed to pro-
vide a solution to rapid RTOS/MPSoC (both hardware and software) design space
exploration so that users can easily and quickly find a few optimal RTOS/MPSoC
architectures that are most suitable to their design goals. The § framework gener-
ates a configured RTOS/MPSoC design that is simulatable in a hardware/software
cosimulation environment after the generated design is compiled. Hardware designs
are described in a Hardware Description Language (HDL) such as Verilog. Software
designs could be described in any language although we have only used C in our
designs.

From the initial implementation [1, 2], we have extended the § framework to
include parameterised generators of hardware IP components (i.e. automatically con-
figurable to fit a desired target architecture) as well as the generation of various types
of bus systems. This section gives an overview of parameterised generators for a
customised RTOS/MPSoC design including a bus configurator, a dynamic memory
management unit generator and a custom ‘lock’ cache generator, and explains such
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Figure4.3 GUI of the § framework

available IP components briefly. Many low-level details — e.g. details of the bus sys-
tem generation — are not repeated in this chapter but instead are available in referenced
works [1-22].

Figure 4.3 shows a Graphical User Interface (GUI) for the § framework ver-
sion 2.0, which now integrates four parameterised generators we have and generates
an RTOS/MPSoC system. The GUI generates a top-level architecture file plus addi-
tional configuration files, used as input parameter files to generate specific hardware
component files (i.e. modules) either using a dedicated generator or via Verilog
PreProcessor (VPP [23]).

Here we summarise each generator briefly. For more information, please see
specific references. When users want to create their own specific bus systems, by
clicking ‘Bus configuration’ (shown at the top right of Figure 4.3), users can specify
address and data bus widths as well as detailed bus topology for each subsystem in
case a system has a hierarchical bus structure. After the appropriate inputs are entered,
the tool will generate a user-specified bus system with the specified hierarchy. Further
details about bus system generation are described in References 7 to 10.

At the bottom of Figure 4.3, there are several options for ‘Hardware
RTOS Components’: the SoC Lock Cache (SoCLC), multiple deadlock detec-
tion/ avoidance solutions, and the SoC Dynamic Memory Management Unit
(SoCDMMU). The details of these hardware RTOS components will be described in
Section 4.2.3.

In addition to selecting hardware RTOS components, the § framework version 2.0
can also manipulate the size and type of each RTOS component by use of input
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Figure 4.4 GUI for automatic generation of a hardware deadlock solution

parameters. For instance, when users want to include SoCLC, they specify the num-
ber of short locks (short locks are held for a very short time, e.g. 100 cycles or
less) and the number of long locks (equivalent to semaphores) according to the
expected requirements for their specific target (or goal). Detailed parameterised
SoCLC generation is discussed in References 11 and 18.

For deadlock hardware components, after a user selects either the Deadlock Detec-
tion Unit (DDU), the Deadlock Avoidance Unit (DAU) or the Parallel Banker’s
Algorithm Unit (PBAU), the GUI tool shown in Figure 4.3 directs the generation
at the specified deadlock IP component with the designated type and specific size
according to the number of tasks and resources specified in the Target Architecture
window (see upper left of Figure 4.3) [7]. Figure 4.4 shows a separate deadlock
hardware solution generator [7]. The generation process is the same as we explained
above. In the screen shot shown in Figure 4.4, the user has selected four PEs all of
the same type, namely, MPC755.

For the SoOCDMMU IP component, users specify the number of memory blocks
(available for dynamic allocation in the system) and several additional parameters,
and then the GUI tool generates a user-specified SOCDMMU. Details regarding
parameterised SOCDMMU generation are addressed in References 13 and 14.

We briefly describe our approach to HDL file generation in the following
example.

Example 4.1 Top-level architecture file generation in the § framework

This example briefly describes a specific portion of the § framework that generates a
top-level design file of a particular MPSoC with the SOCLC hardware IP component.
Figure 4.5 illustrates that the GUI tool (shown in Figure 4.3) generates a top-level
architecture file (i.e. a top-level file for the system being designed, where the top-level
file instantiates any number of additional modules needed in an overall hierarchy)
according to the description of a user-specified system with hardware IP components.
Let us assume that a user selects a system having three PEs and an SoCLC for eight
short locks and eight long locks. Then, the generation process starts with a description
of a system having an SoCLC (i.e. LockCache description) in the description library.
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Figure4.5 Top file generation in the § framework

The LockCache description lists modules necessary to build a system containing an
SoCLC, such as PEs, L2 memory, a memory controller, a bus arbiter, an interrupt
controller and an SoCLC with the specified locks. The Verilog top file generator,
which we call Archi_gen, writes all instantiation code for each module in the list
of the LockCache description to a file. In case that a system contains multiple units of
the same type of module (e.g. multiple PEs), Archi_gen also automatically includes
multiple instantiation code of the same type IP with distinct identification numbers
since some modules need to be instantiated multiple times. Then, Archi_gen writes
necessary wires described in the LockCache description, and then writes initialisation
routines necessary to execute simulation. Later by compiling Top .V, a specified
target hardware architecture will be ready for exploration via standard simulation
tools (in our case, Seamless CVE [37]) [2]. ]

4.2.3 Hardware RTOS components

This subsection briefly summarises two available hardware IP components presented
previously: SoOCLC and SoCDMMU.

4.2.3.1 SoCLC

Synchronisation has always been a critical issue in multiprocessor systems. As multi-
processors execute a multitasking application on top of an RTOS, any important shared
data structure, also called a Critical Section (CS), may be accessed for inter-process
communication and synchronisation events occurring among the tasks/processors in
the system.
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Previous work has shown that the SoOCLC, which is a specialised custom hardware
unit realising effective lock-based synchronisation for a multiprocessor shared-
memory SoC as shown in Figure 4.6, reduces on-chip memory traffic, provides a
fair and fast lock hand-off, simplifies software, increases the real-time predictability
of the system and improves performance as well [15-18].

Akgul et al. [17] extended the SOCLC mechanism with a priority inheritance sup-
portimplemented in hardware. Priority inheritance provides a higher level of real-time
guarantees for synchronising application tasks. The authors present a solution to the
priority inversion problem in the context of an MPSoC by integrating an Immedi-
ate Priority Ceiling Protocol (IPCP) [24] implemented in hardware. The approach
also provides higher performance and better predictability for real-time applications
running on an MPSoC.

Experimental results indicate that the SoOCLC hardware mechanism with priority
inheritance achieves a 75 percent speedup in lock delay (i.e. average time to access
a lock during application execution [17]). The cost in terms of additional hardware
area for the SoOCLC with 128 locks supporting priority inheritance is approximately
10000 NAND?2 gates in TSMC .25 chip fabrication technology [18].

4.2.3.2 SoCDMMU

The System-on-a-Chip Dynamic Memory Management Unit shown in Figure 4.7 is
a hardware unit that allows a fast and deterministic way to dynamically allocate/
de-allocate global (L2) memory among PEs [12]. The SoOCDMMU is able to convert
the PE address (virtual address) to a physical address. The memory mapped address
or I/O port to which the SOCDMMU is mapped is used to send commands to the
SoCDMMU (writing data to the port or memory-mapped location) and to receive
the results of the command execution (reading from the port or memory-mapped
location).
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As shown in References 12 and 14, the SOCDMMU achieves a 4.4x over-
all speedup in memory management during application transition time of several
examples when compared with conventional memory allocation/deallocation tech-
niques, i.e. malloc() and free(). The SoOCDMMU is synthesisable and has been
integrated into a system example including porting SoOCDMMU functionality to an
RTOS (so that the user can access SOCDMMU functionality using standard software
memory management APIs) [12]. Also, the SoOCDMMU-crossbar switch Generator
(DX-Gt [13]) can configure and optimise the SOCDMMU and associated crossbar
switch to suit a specific system (e.g. for a particular memory configuration and num-
ber of PEs). In this way, DX-Gt automates the customisation and the generation of
the hardware memory management functionalities with associated crossbar support.
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4.3 Background and prior work for deadlock

In this section we motivate the development of deadlock-related software and hard-
ware IP components and then introduce definitions and prior work related to our
deadlock research.

4.3.1 Motivation for the design of deadlock-related hardware components

In most current embedded systems in use today, deadlock is not a critical issue due to
the use of only a few (e.g. two or less) processors and a couple of custom hardware
resources (e.g. direct memory access hardware plus a video decoder). However, in the
coming years future chips may have five to twenty (or more) processors and ten to a
hundred resources all in a single chip. This is the way we predict MPSoC will rapidly
evolve. Even in the platform design area, Xilinx already has been able to include
multiple PowerPC processors in the Virtex-II Pro and Virtex-IV FPGA [25]. Given
current technology trends, we predict that MPSoC designers and users are going to
start facing deadlock problems more and more often. That is, deadlock problems are
on the horizon.

How can we efficiently and timely cope with deadlock problems in such an
MPSoC? Although dynamic resource allocation in an MPSoC may produce dead-
lock problems, MPSoC architectures can be modified to provide efficient hardware
solutions to deadlock. Before describing such solutions, we first introduce some
definitions and our target system model in the following section.

4.3.2 Background

4.3.2.1 Definitions

Definitions of ‘deadlock’, ‘livelock’ and ‘avoidance’ in our context can be stated as
follows:

Definition 4.1 A system has a deadlock if and only if the system has a set of pro-
cesses, each of which is blocked (e.g. preempted), waiting for requirements that can
never be satisfied.

Definition 4.2 Livelock is a situation where a request for a resource is repeatedly
denied and possibly never accepted because of the unavailability of the resource,
resulting in a stalled process, while the resource is repeatedly made available for
other process(es) which make progress.

Definition 4.3 Deadlock avoidance is a way of dealing with deadlock where
resource usage is dynamically controlled not to reach deadlock (i.e. on the fly, resource
usage is controlled to ensure that there can never be deadlock).

In addition, we define two kinds of deadlock: request deadlock (R-dl) and grant
deadlock (G-dl).
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Definition 4.4 For a given system, if a request from a process directly causes
the system to have a deadlock at that moment, then we denote this case as request
deadlock or R-dl [7].

Definition 4.5 For a given system, if the grant of a resource to a process directly
causes the system to have a deadlock at that moment, then we denote this case as
grant deadlock or G-dlI [7].

While a request deadlock (R-dl) example is described in Example 4.4 of
Section 4.4.3, a grant deadlock (G-dl) example is described in the example pre-
sented in Section 4.5.6.1. Please note that we differentiate between R-dl and G-dl
because our deadlock avoidance algorithm in Section 4.4.3 requires the distinction
to be made. The distinction is required because some actions can only be taken for
either R-dl or G-dl; e.g. for G-dl it turns out that perhaps deadlock can be avoided by
granting the released resource to a lower priority process.

We now define ‘single-instance resource’ and ‘multiple-instance resource’.

Definition 4.6 A single-instance resource is a resource that services no more than
one process at a time. That is, while the resource is processing a request from a
process, all other processes requesting to use the resource must wait [26].

Definition 4.7 A4 multiple-instance resource is a resource that can service two or
more processes at the same time, providing the same or similar functionality to all
serviced processes [20).

Example 4.2 An example of a multiple-instance resource

The SoC Dynamic Memory Management Unit dynamically allocates and deallocates
segment(s) of global level two (L2) memory between PEs with very fast and deter-
ministic time (e.g. four clock cycles) [12]. In a system having an SoOCDMMU and 16
segments of global L2 memory, which can be considered as a 16-instance resource,
rather than having each PE (or process) keep track of each segment, PEs request seg-
ment(s) from the SOCDMMU (which keeps track of the L2 memory). In this way, not
only can the overhead of tracking segments for each PE be reduced but also interfaces
between PEs and segments can be simplified because PEs request segment(s) from
one place (i.e. the SoOCDMMU). ]

We also introduce the definitions of an ‘H-safe sequence’ and an ‘H-safe state’
used to clarify the Parallel Banker’s Algorithm. Please note that the notion of ‘safe’
was first introduced by Dijkstra [27] and was later formalised into ‘safe sequence’,
‘safe state’ and ‘unsafe state’ by Habermann [28]. We refer to Habermann’s ‘safe
sequence’ as an ‘H-safe sequence’, to Habermann’s ‘safe state’ as an ‘H-safe state’
and to Habermann’s ‘unsafe state’ as an ‘H-unsafe state’ where the ‘H’ stands for
Habermann.
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Definition 4.8 An H-safe sequence is an enumeration pi, pa,...,pn of all the
processes in the system, such that for each i = 1,2,...,n, the resources that p;
may request are a subset of the union of resources that are currently available and
resources currently held by p1, p2, ..., pi—1 [27,28].

Theorem 4.1 A system of processes and resources is in an H-safe state if and only
if there exists an H-safe sequence {pi, p2, ..., pn}. If there is no H-safe sequence,
the system is in an H-unsafe state [28)].

4.3.2.2 System model in the view of deadlock

To address deadlock issues, we first show a modified MPSoC from Figure 4.2 in the
following example:

Example 4.3 A future Request-Grant MPSoC

We introduce the device shown in Figure 4.8 as a particular MPSoC example. This
MPSoC consists of four PEs and four resources: a Video and Image capturing interface
(VI), an MPEG encoder/decoder, a DSP and a Wireless Interface (WI), which we
refer to as g1, q2, g3 and g4, respectively, as shown in Figure 4.8(b). The MPSoC
also contains memory, a memory controller and a DAU. In the figure, we assume that
each PE has only one active process; i.e. each process p1, p2, p3 and pa, as shown
in Figure 4.8(b), runs on PE1, PE2, PE3 and PE4, respectively. In the current state,
resource ¢ is granted to process p1, which in turn requests g;. In the meantime, ¢
is granted to p3, which requests g4, while g4 is granted to process p4. The DAU in
Figure 4.8 receives all requests and releases, decides whether or not the request or
grant can cause a deadlock and then permits the request or grant only if no deadlock
results. ]
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We consider this kind of request-grant system with many resources and processes
as shown in Figure 4.8 as our system model in the view of deadlock. Based on our
system model, we first introduce prior work in deadlock research and then describe
new approaches for such MPSoCs.

4.3.3 Prior work in deadlock research

4.3.3.1 Overview of prior deadlock research

Researchers have put tremendous efforts into deadlock research, three well-known
areas of which are deadlock detection, prevention and avoidance [26, 27, 29, 30].
Among them, deadlock detection provides more freedom for a system since deadlock
detection does not typically restrict the behaviour of a system, facilitating full concur-
rency. Deadlock detection, however, usually requires a recovery once a deadlock is
detected. In contrast, deadlock prevention prevents a system from reaching deadlock
by typically restraining request orders to resources in advance, implying restrictions
on concurrency. One such method is the Priority Ceiling Protocol (PCP [24]), which is
only a solution for a single processor system, though. Another method is the collective
request method, which, however, tends to cause resource under-utilisation as well as
process starvation [26]. Deadlock avoidance, by contrast, generally sits in-between;
that is, deadlock avoidance normally gives more freedom with less restrictions than
deadlock prevention [26]. As implemented in known algorithms, deadlock avoidance
essentially requires knowledge about the maximum necessary resource requirements
for all processes in a system, which unfortunately makes the implementation of
deadlock avoidance difficult in real systems with dynamic workloads [27-30].

4.3.3.2 Deadlock detection

All software deadlock detection algorithms known to the authors to date have a run-
time complexity of at least O (m x n), where m is the number of resources and n is
the number of processes. In 1970, Shoshani et al. [29] proposed an O (m x n?) run-
time complexity detection algorithm, and about two years later, Holt [30] proposed
an O(m x n) algorithm to detect a knot that tells whether deadlock exists or not.
Both of the aforementioned algorithms (of Shoshani et al. and of Holt) are based
on a Resource Allocation Graph (RAG) representation. Leibfried [31] proposed a
method of describing a system state using an adjacency matrix representation and
a corresponding scheme that detects deadlock with matrix multiplications but with
a run-time complexity of O(m?). Kim and Koh [32] proposed an algorithm with
O (m x n) time for ‘detection preparation’; thus an overall time for detecting deadlock
(starting from a system description that just came into existence, e.g. due to multiple
grants and requests occurring within a particular time or clock cycle) of at least
O(m X n).

4.3.3.3 Deadlock avoidance

A traditional well-known deadlock avoidance algorithm is the Banker’s Algorithm
(BA) [27]. The algorithm requires each process to declare the maximum requirement
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(claim) of each resource it will ever need. In general, traditional deadlock avoidance
(i.e. based on some variant of BA) is more expensive than deadlock detection and may
be impractical because of the following disadvantages: (1) an avoidance algorithm
must be executed for every request prior to granting a resource, (2) deadlock avoidance
tends to restrict resource utilisation, which may degrade normal system performance
and (3) the maximum resource requirements (and thus requests) might not be known
in advance [27,33].

In 1990, Belik [34] proposed a deadlock avoidance technique in which a path
matrix representation is used to detect a potential deadlock before the actual allo-
cation of resources. However, Belik’s method requires O (m x n) time complexity
for updating the path matrix in releasing or allocating a resource and thus an overall
complexity for avoiding deadlock of O (m x n), where m and n are the numbers of
resources and processes, respectively. Furthermore, Belik did not mention any solu-
tion to livelock although livelock is a possible consequence of his deadlock avoidance
algorithm.

4.4 New approaches to deadlock problems

In this section, we describe in detail deadlock related IP components, i.e. the Dead-
lock Detection hardware Unit (DDU), the DAU and the Parallel Banker’s Algorithm
Unit (PBAU).

4.4.1 Introduction

All of the algorithms referenced in Section 4.3 assume an execution paradigm of
one instruction or operation at a time. With a custom hardware implementation of a
deadlock algorithm, however, parallelism can be exploited.

Detection of deadlock is extremely important since any request for or grant of
a resource might result in deadlock. Invoking software deadlock detection on every
resource allocation event would typically cost too much computational power; thus,
using a software implementation of deadlock detection and/or avoidance would per-
haps be impractical in terms of the performance cost. A promising way of solving
deadlock problems with small compute power is to implement deadlock detection
and/or avoidance in hardware.

To handle this possibility, the DDU [19,20], the DAU [21] utilising the DDU and
the PBAU [22] have recently been proposed. These three hardware deadlock solutions
improve the reliability and timeliness of applications running on an MPSoC under an
RTOS. Of course, adding a centralised module on MPSoC may lead to a bottleneck.
However, since resource allocation and deallocation are preferably managed by an
OS (which already implies some level of centralised operation), adding hardware can
potentially reduce the burden on software rather than becoming a bottleneck.

4.4.2 New deadlock detection methodology: the DDU

The DDU manipulates a simple Boolean representation of the types of each edge: the
request edge of a process requesting a resource, the grant edge of a resource granted
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to a process, or no activity (neither a request nor a grant) [7]. Since the DDU is
implemented in a small amount of hardware, the designed deadlock detection unit
hardly affects system performance (and potentially has no negative impact whatso-
ever) yet provides the basis for an enhanced deadlock detection methodology. The
DDU has been proven to have a run-time complexity of O (min(m, n)) using custom
hardware [7].

The DDU consists of three parts as shown in Figure 4.9: matrix cells (part 1),
weight cells (part 2) and a decide cell (part 3). Part 1 of the DDU is a realisation of
the system state matrix M;; (shown in Equation (4.1)) via use of an array of matrix
cells that represents an array of o, entries where 1 < s <m and 1 <t < n. Since
each matrix element o, represents one of the following: g;_.; (a grant edge), r;—
(a request edge) or Oy; (no edge) (i.e. oy is ternary-valued), o5, can be minimally
defined as a pair of two bits s, = (a;, af). If an entry «, is a grant edge g, bit al
is set to 0, and «f, is set to 1; if an entry oy, is a request edge r, bit al, issetto 1, and
o, is set to 0; otherwise, both bits ', and «?, are set to 0. Hence, an entry o, can be
only one of the following binary encodings: 01 (a grant edge), 10 (a request edge) or
00 (no edge).

(a{l,tx‘fl) ((x;t,aft) (a{n,afn)
Mij=| (f,0f) .. (@uad) .. (@) (4.1)
(1> ail) s (g O{;it) e (s i)

On top of the matrix, terminal edges (i.e. edges connected to a node with only
incoming edges or only outgoing edges and thus provably not involved in deadlock)
are iteratively found and removed to detect deadlock (i.e. edges are still remaining by
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the end of iterations). Such discoveries and removals of terminal edges are performed
in part 2, which consists of two weight vectors: (1) a column weight vector W¢ below
the matrix cells and (2) a row weight vector W’ on the right-hand side of the array of
matrix cells. Each element w,,, 1 <t < n,in W€ is called a column weight cell, and
each element w,, 1 < s < m, in W’ is called a row weight cell. Both w., and w,,
represent whether the corresponding node has terminal edges, non-terminal edges
or neither. At the bottom right corner of the DDU is one decide cell (part 3) which
calculates at each iteration whether there exist terminal edges (if none, all iterations
are done) or whether there exist non-terminal edges (in order to check deadlock).

Figure 4.9 specifically illustrates the DDU for three processes and three resources.
This DDU has nine matrix cells (3 x 3) for each edge element (o}, afl) of M;j, six
weight cells (three for column processing and three for row processing), and one
decide cell for deciding whether or not deadlock has been detected. The details of
each cell are described in Reference 7. The area of Figure 4.9 mapped to a 0.3 um
standard cell library from AMIS [35] is 234 in units equivalent to minimum-sized
two-input NAND gates in the library [19,20].

An RTOS/MPSoC system example with the DDU achieves approximately a
1400X speedup in deadlock detection time and a 46 percent speedup in applica-
tion execution time over an RTOS/MPSoC system with a deadlock detection method
in software (please see details in Section 4.5.5) [19,20].

4.4.3 New deadlock avoidance methodology: the DAU

The Deadlock Avoidance Unit, our new approach to deadlock avoidance, not only
detects deadlock but also avoids possible deadlock within a few clock cycles and with
a small amount of hardware. The DAU, if employed, tracks all requests and releases
of resources and avoids deadlock by not allowing any grant or request that leads to a
deadlock.

The disadvantages (1), (2) and (3) mentioned in Section 4.3.3.3 unfortunately
make the implementation of deadlock avoidance difficult in real systems. Our novel
DAU approach to mixing deadlock detection and avoidance (thus, not requiring
advanced, a priori knowledge of resource requirements) contributes to easier adapta-
tion of deadlock avoidance in an MPSoC by accommodating both maximum freedom
(i.e. maximum concurrency of requests and grants depending on a particular execution
trace) with the advantage of deadlock avoidance. Note that the DAU only supports
systems with single-instance resources.

Algorithm 1 shows our deadlock avoidance approach. Rather than give an
overview of Algorithm 1, we illustrate actual operation with Example 4.4.

Algorithm 1 Deadlock Avoidance Algorithm (DAA)

DAA (event) {

1 case (event) {

2 arequest:

3 if the resource is available
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4 grant the resource to the requester

5 else if the request would cause request deadlock (R-dl)

6 if the priority of the requester greater than that of the owner

7 make the request be pending

8 ask the current owner of the resource to release the resource
9 else

10 ask the requester to give up resource(s)

11 end-if

12 else

13 make the request be pending

14 end-if

15 break

16 a release:

17 if any process is waiting for the released resource

18 if the grant of the resource would cause grant deadlock
19 grant the resource to a lower priority process waiting
20 else

21 grant the resource to the highest priority process waiting
22 end-if

23 else

24 make the resource become available

25 end-if

26 } end-case

}

Example 4.4 Avoidance of request deadlock

Figure 4.10 illustrates the DAU, implemented in Verilog HDL. The DAU consists
of four parts: a DDU [19,20], command registers, status registers and DAA logic
(implementing Algorithm 1) with a finite state machine. The command registers
receive request and grant commands from each PE. The processing results of the DAU
are stored into status registers read by all PEs. The DAA logic mainly controls DAU
behaviour, i.e. DAA logic interprets and executes commands (requests or releases)
from PEs as well as returns processing results back to PEs via status registers.

We now show a sequence of requests and grants that would lead to R-dl as shown
inFigure 4.11 and Table 4.1. In this example, we assume the following. (1) Process p;
requires resources g1 (VI) and g (IDCT) to complete its job. (2) Process p; requires
resources g and g3 (DSP). (3) Process p3 requires resources g3 and ¢ .

The detailed sequence is shown in Table 4.1. At time 7], process p; requests
q1. Then the DAU checks for the availability of the resource requested, i.e. the
DAU checks if no other process either holds or is requesting the resource (line 3 of
Algorithm 1). Since g is available, g is granted to p; immediately (line 4). Similarly,
at time fp, process pp requests and acquires g» (line 4), and, at time 73, process p3
requests and acquires g3 (line 4). After that, at time 74, process p; requests g3; since
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g3 is unavailable because it was already granted to p3, the DAU checks the possibility
of request deadlock (R-dl) (line 5). The request edge py — g3 is temporarily written
inside the DDU. Then, deadlock detection check is performed. Since the request does
not cause R-dl (line 12), the request is valid and becomes pending (line 13). At time
15, process p3 requests g1; since g1 was already granted to pp, and since the request
does not cause R-dl, this request also becomes pending (lines 5, 12 and 13).

At time 76, process pp requests go; since ¢ is unavailable, the DAU checks (via
the DDU) whether the request would cause R-dl (line 5). Since at this time the request
p1 — q2 indeed will cause R-dl, the DAU identifies the potential R-dl. Thus, the
DAU next compares the priority of p; with that of the current owner of g (line 6).
Since the priority of p; is higher than that of p, (i.e. the current owner of ¢,), the
DAU makes the request be pending for p; (line 7) and then asks p, to give up g so
that p; can proceed (line 8).
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Table 4.1 A sequence of requests and grants that would lead to R-dI

Time Events

to The application starts

14 p1 requests g1; g1 is granted to p

153 P2 requests ¢o; g is granted to py

13 p3 requests g3; g3 is granted to pj3

7 P2 requests g3, which becomes pending

t5 p3 requests g1, which also becomes pending

16 p1 requests go, which is about to lead to R-dl. However, the DAU detects the
possibility of R-dl. Thus, the DAU asks p, to give up resource ¢,

t7 P releases gp, which is granted to p;. A moment later, p, requests g, again

13 p1 uses and releases g1 and gy. Then, while ¢ is granted to p3, ¢, is granted to py

tg p3 uses and releases g1 and g3, g3 is granted to p;

1o p> finishes its job, and the application ends

As a result, the DAU avoids the potential R-dl, and, at time 77, p, gives up and
releases ¢ (line 16). Then, since p; is waiting for ¢g» (line 17), g» needs to be granted
to p1. However, there could be potential grant deadlock (G-dl) when any process
is waiting for released resources (line 17); thus, the DAU checks potential G-dl
before actually granting via use of the DDU (see References 7, 19 and 20). The DAU
temporarily marks a grant of go — p; inside the DDU, and then to check potential
G-dl, the DAU initiates the DDU to execute its deadlock detection algorithm. Since
the temporary grant does not cause G-dl (line 20), it becomes a fixed grant; thus ¢»
is granted to p; (line 21) (of course, p; has to request ¢ again at a later time in order
for p; to continue making progress).

After using g1 and g3, p releases g1 and g, at time #g. Then, while ¢ needs to be
granted to p3, ¢g» needs to be granted to p,. However, there could also be potential
G-dl, the DAU again checks potential G-dl. Since a grant of g; — p3 does not cause
G-dl (line 20), ¢; is safely granted to p3 (line 21). Similarly, ¢, is granted to p»
(lines 17, 20 and 21). Thus, p3 uses ¢; and g3 and at time #9 releases ¢g; and ¢3; next
q3 is granted to py, which then uses g, and g3 and finishes its job at time 7;¢. [

The DAU not only provides a solution to both deadlock and livelock but is
also up to 312X faster than an equivalent software solution (please see details in
Section 4.5.6) [21]. A more complete DAU description is available in References 7
and 21.

4.4.4 Parallel banker s algorithm

The DAU in Section 4.4.3 can only be used for systems exclusively with single-
instance resources because the algorithm employed assumes all resources are single-
instance resources. No easy way is known to extend the algorithm employed by the
DAU to handle multiple-instance resources. However, a well-known solution exists
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for multiple-instance resources: the BA [27,28]. Thus, we have devised the Parallel
Banker’s Algorithm Unit (PBAU), which can be used not only for a system with
single-instance resources but also for a system with multiple-instance resources as
well [22].

We now explain the main concept of our novel Parallel Banker’s Algorithm (PBA)
and its hardware implementation in the PBA Unit (PBAU). Algorithm 2 shows PBA
for multiple-instance multiple-resource systems. PBA executes whenever a process
is requesting resources and returns the status of whether the request is successfully
granted or is rejected due to the possibility of deadlock. PBA decides if the system is
still going to be sufficiently safe after the grant, i.e. if there exists at least one H-safe
sequence of process executions after some allocation of resources that the process
requested.

Before explaining the details of PBA, let us first introduce both notation used
as shown in Table 4.2 and data structures used as shown in Table 4.3. In Table 4.2,
array[], array[i][] and array[][j] mean ‘all elements of the array’, ‘all elements of
row i of the array’, and ‘all elements of column j of the array’, respectively. In
Table 4.3, Request[i][j] is a request for resource j from process i. If resource j is
a single-instance resource, Request[i][j] is either ‘0’ or ‘1’; otherwise, if resource j

Table 4.2  Notations for PBA

Notation Explanation

Di A process

qj A resource

array[][] or array[]  All elements of the array

array[i][] All elements of row i of the array
array[][j] All elements of column j of the array

Table 4.3  Data structures for PBA

Name Notation Explanation
Request[i][j] Rij Request from process i for resource j
Maximum[i][j] Xij Maximum demand of process i for resource j
Available[j] Vi Current number of unused resource j
Allocation[i][j] Gij Process i’s current allocation of j
Need[i][j] Nij Process i’s potential for more j
(Need[i][j] = Maximum[i][j] — Allocation[i][j])
Work[j] W; A temporary storage (array) for Available[j]
Finish[i] F; Whether process i may potentially complete successfully
Wait_count[i] C; Wait count for process i; used to help break livelock
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is a multiple-instance resource, Request[i][j] can take on values greater than one.
Maximum[i][j] represents the maximum instance demand of process i for resource j.
Available[j] indicates the number of available instances of resource j. Allocation[i][j]
records the number of instances of resource j allocated to process i. Need[i][j] con-
tains the number of additional instances of resource j that process i may need. Note
that Need[i][j] = Maximum[i][j] — Allocation[i][j]. Work[] (i.e. Work([j] for all j)
is a temporary storage for Available[] (i.e. Available[j] for all j). Finish[i] denotes
whether or not process i can potentially complete successfully (we utilise the notion of
an H-safe sequence to compute Finish[i]). Wait_count[i] is a counter for each process
and is incremented by one each time a request is denied; proper use of Wait_count[i]
can enable some potential livelock situations to be broken.

Algorithm 2 Parallel Banker’s Algorithm (PBA)

PBA (Process p; sends Request[i][] for resources) {

STEP 1:
1 if (Vj, (Request[i][j] < Need[i][j])) /* V means for all */
2 goto STEP 2

3 else deny p;’s request
STEP 2:
4 if (Vj, (Request[i][j] < Available[j]))
5 goto STEP 3
6 else deny p;’s request, increment Wait_count[i] by one and return

STEP 3: pretend to allocate requested resources

7 Vj, Available[j] := Available[j] — Request[i][j]
8 Vj, Allocation[i][j] := Allocation[i][j] + Request[i][j]
9 Vj, Need[i][j] := Maximum[i][j] — Allocation[i][j]

STEP 4: prepare for the H-safety check
10 Vj, Work[j] := Available[j]
11 Vi, Finish[i] := false
STEP 5: H-safety check
12 Let able-to-finish(i) be ((Finish[i] == false) and (Vj, Need[i][j] < Work[j]))
13 Find all i such that able-to-finish(i)

14 if such i exists,

15 vV j, Work[j] := Work{[j] + X; such that able-to-finish() Allocation[i][j]
16 Vi, if able-to-finish(i) then Finish[i] := true

17 repeat STEP 5

18 else (i.e. no such i exists) goto STEP 6 (end of iteration)
STEP 6: H-safety decision
19 if (Vi, (Finish[i] == true))

20 then pretended allocations anchor; p; proceeds (i.e. H-safe)
21 else
22 restore the original state and deny p;’s request (i.e. H-unsafe)
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Parallel Banker’s Algorithm takes as input the maximum requirements of each
process and guarantees that if the system began in an H-safe state, the system will
always remain in an H-safe state. Tables (data structures or arrays) are maintained
of available resources, maximum requirements, current allocations of resources and
resources needed, as shown in Table 4.3. PBA uses these tables/matrices to deter-
mine whether the state of the system is either H-safe or H-unsafe. When resources are
requested by a process, the tables are updated pretending the resources were allocated.
If the tables will result in an H-safe state, then the request is actually granted; other-
wise, the request is not granted, and the tables are returned to their previous states.
Please note that possible livelock situations must be detected by alternate methods
not part of PBA, e.g. via use of Wait_count[i].

Let us explain Algorithm 2 step by step. A process can request multiple resources
at a time as well as multiple instances of each resource. In Step 1, when process i
requests resources, PBA first checks if the request (i.e. Request[i][]) does not exceed
the maximum claims (i.e. Need[i][]) for process i. If the request is within p;’s pre-
declared claims, PBA continues to Step 2; otherwise, if the request is not within p;’s
maximum claims, the request is denied with an error code.

In Step 2, PBA checks if there are sufficient available resources for this request. If
sufficient resources exist, PBA continues to Step 3; otherwise, the request is denied.

In Step 3, it is pretended that the request could be fulfilled, and the tables are
temporarily modified according to the request.

In Step 4, PBA prepares for the H-safety check, i.e. initialises variables Finish[]
and Work[]. Work[] is used to search for processes that can finish their jobs by
acquiring (if necessary) both resources currently Available[] and resources that will
become available during the execution of an H-safe sequence (i.e. resources currently
held by previous processes in an H-safe sequence, please see Definition 4.8).

At each iteration of Step 5, PBA tries to find processes that can finish their jobs
by acquiring some or all resources available according to Work[] (please see the
previous paragraph). If one or more such processes exist, PBA adds all resources
that these processes hold to Work([], then declares these processes to be able-to-finish
(i.e. Finish[i] := true for each process i), and finally repeats Step 5. On the other
hand, if no such process exists — meaning either all processes became able-to-finish
or no more processes can satisfy the comparison (i.e. Need[i][j] < Work[j] for all j) —
PBA moves to Step 6 to decide whether or not the pretended allocation state is
H-safe.

In Step 6, if all processes have been declared to be able-to-finish, then the
pretended allocation state is in an H-safe state (meaning there exists at least one
identifiable H-safe sequence by which all processes can finish their jobs in the order
of processes having been declared to be able-to-finish in the iterations of Step 5); thus,
the requester can safely proceed. However, in Step 6, if there remain any processes
unable to finish, the pretended allocation state may cause deadlock; thus, PBA denies
the request, restores the original allocation state before the pretended allocation and
also increases Wait_count[i] for the requester (process i).

The following example illustrates how PBA works in a simple yet general case.
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Table 4.4 A resource allocation state

Maximum Allocation Need Available
q1 92 q1 92 q1 92 q1 492
121 3 2 1 1 2 1 1 1
o 2 1 1 0 11
p3 12 0 0 1 2

Table4.5 Initial resource allocation state for case (1)

Maximum Allocation Need Available
q1 492 q1 92 q1 92 q1 42
D1 3 2 1 1 2 1 0 1
2 1 2 0 0 1
3 1 2 0 0 1 2

Example 4.5 Resource allocation controlled by PBA

Consider a system with three processes p;, p» and p3 as well as two resources
g1 and g, where g has three instances and g, has two instances. Table 4.4 shows a
possible current resource allocation status in the system as well as maximum resource
requirements for each process. Notice that Need[i][j] = Max[i][j] — Allocation[i][j].

Currently one instance of g; and one instance of g, are given to p;, and another
instance of g; is given to p,. Thus, only one instance of ¢; and one instance of ¢;
are available. At this moment, let us consider two cases. (1) When p; requests one
instance of g1, will it be safely granted? (2) When p; requests one instance of ¢,
will it be safely granted? First, considering case (1), let us pretend to grant ¢ to p>;
then the allocation table would be changed as shown in Table 4.5.

Now PBA checks if the resulting system stays in an H-safe state (please see
Theorem 4.1). That is, there must exist an H-safe sequence even if all processes
were to request up to their maximum needs after the pretended grant [27,28,30].
The following corresponds to Step 5 of PBA. From Table 4.5, if p, requests one
more instance of ¢, (i.e. up to py’s maximum claim), since g3 is available, ¢, is going
to be granted to py, which will enable p to finish its job and release all resources.
Then, the available resources will be two instances of ¢; and one instance of ¢, as
shown in Table 4.6.

Next, p; can acquire these available resources, finish its job and release all
resources; the available resources will be three instances of g; and two instances
of g2 as shown in Table 4.7.
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Table 4.6 Resource allocation state in case (1) after

D2 finishes
Maximum Allocation Need Available
q1 492 q1 492 q1 92 q1 92
p1 3 2 1 1 2 1 2 1
2 1 0 0 2 1
s 1 2 0 0 1 2

Table 4.7 Resource allocation state in case (1) after

p1 finishes
Maximum Allocation Need Available
q1 92 q1 42 q1 42 q1 492
p1 3 2 0o 0 3 2 3 2
2 1 0 0 2 1
3 1 2 0o 0 1 2

Table 4.8 A resource allocation state in case (2)

Maximum Allocation Need Available
q1 492 q91 92 q1 92 q1 492
p1 3 2 1 2 2 0 1 0
D2 2 1 1 0 1 1
P3 1 2 0 0 1 2

Similarly, p3 can acquire these available resources and finally finish its job. As
a result, an H-safe sequence exists in the order p;, p; and p3. That is, after the grant
of one instance of g1 to p», the system remains in an H-safe state.

Now considering case (2), let us pretend to grant one instance of g, to pp; then
the allocation table would be changed as shown in Table 4.8 (which is appropriately
altered from Table 4.4). From this moment on, neither processes pi, pp nor p3 can
acquire up to its declared maximum unless another process releases resources that
the process holds. Thus, the system will not remain in any H-safe state. As a result,
the algorithm will deny the request in case (2). ]
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Figure4.12 PBAU architecture

4.4.5 PBAU architecture

Figure 4.12 illustrates the PBAU architecture. The PBAU is composed of element
cells, process cells, resource cells and a safety cell in addition to a Finite State Machine
(FSM) and a processor interface.

The Processor Interface (PI) consists of command registers and status registers.
PI receives and interprets commands (requests or releases) from processes as well as
accomplishes simple jobs such as setting up the number of maximum claims and avail-
able resources as well as adjusting the number of allocated and available resources in
response to a release of resources. PI also returns processing results back to PEs via
status registers as well as activates the FSM in response to a request for resources from
aprocess. Details of each cell are in Reference 7. For exact area estimation, instead of
the PBAU shown in Figure 4.12, which is for three processes and three resources, we
implemented a PBAU for five processes and five resources (as well as several larger
PBAUs [7,22]). For a PBAU with five processes and five resources, when mapped to
a 0.25 um standard cell library from QualCore Logic [36], the resulting area is 1303
in units equivalent to minimum-sized two-input NAND gates in the library; similarly,
for a PBAU with twenty processes and twenty resources, the area is 19753 NAND
gates in the same technology.
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4.4.6 Trade-offs between the DAU and the PBAU

As we mentioned in the beginning of Section 4.4.4, one disadvantage of the DAU
(in Section 4.4.3) is that it can only be used for systems exclusively with single-
instance resources. However, some advantages are (i) the DAU does not require
maximum resource claims in advance and (ii) it restricts resource usage minimally
since the DAU does not limit the system to remain in an H-safe state (note that
an H-unsafe state may possibly not result in deadlock). Also note that a multiple-
instance resource can be redefined as a group of multiple single-instance resources.
For instance, a set of two Input/Output (I/O) buffers can be considered as two distinct
I/O buffers, each a single-instance resource; thus, a trade-off exists in potentially
converting multiple-instance resources into multiple single-instance resources at a
cost of increased DAU size and greater complexity (e.g. now a process requiring
I/O buffers may have to check several times, i.e. for several single-instance I/O
resources).

Conversely, while the PBAU can be used not only for a system with single-instance
resources but also for a system with multiple-instance resources as well [22], the
disadvantages mentioned in the first paragraph of Section 4.3.3.3 apply to the PBAU
(but not to the DAU).

In terms of area trade-offs between the DAU and the PBAU, for five processes and
five resources, the DAU takes 1597 NAND gates whereas the PBAU takes 1303 gates,
and for twenty processes and twenty resources, the DAU takes 15247 NAND gates
whereas the PBAU takes 19753 gates. Overall, the area of PBAU grows a little faster
with respect to the total number of processes multiplied by resources. The reason is
that the PBAU in our implementation supports up to 16 instances (4 bits assigned) for
each resource while the DAU supports only single-instance resources (2 bits assigned
for each matrix element).

4.5 Experimentation and results

In this section, we first explain the detailed base MPSoC for experimentation and
various configured RTOS/MPSoCs. Then, we demonstrate performance comparisons
among the RTOS/MPSoC systems with applications.

4.5.1 Base MPSoC for experimentation

Prior to inclusion of any hardware RTOS components, all configured RTOS/MPSoC
experimental simulations presented in this chapter have exactly the same base sys-
tem consisting of four Motorola MPC755s and four resources as introduced in
Section 4.3.2.2. We implemented most of the base system in Verilog HDL; how-
ever, please note that we did not implement the MPC755 in Verilog (PE cores and
corresponding simulation models are typically provided by vendors, e.g. Seamless
CVE [37] provides processor support packages). Each MPC755 has separate instruc-
tion and data L1 caches each of size 32 kB. Four resources available are a video
interface (VI) device, a DSP, an IDCT unit and a wireless interface (WI) device.
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Table 4.9  Configured RTOS/MPSoCs

System Configured components on top of base pure software RTOS

RTOS!1 Pure software RTOS with priority inheritance support in software (Section 4.2.1)
RTOS2 SoCLC with immediate priority ceiling protocol in hardware (Section 4.2.3.1)
RTOS3 SoCDMMU in hardware (Section 4.2.3.2)

RTOS4 Pure software RTOS with a software deadlock detection algorithm

RTOSS5 DDU in hardware (Section 4.4.2)

RTOS6 DAA (i.e. Algorithm 1) in software (Section 4.4.3)

RTOS7 DAU in hardware (Section 4.4.3)

RTOS8 PBA (i.e. Algorithm 2) in software (Section 4.4.4)

RTOS9 PBAU in hardware (Section 4.4.5)

These four resources have timers, interrupt generators and input/output ports as nec-
essary to support proper simulation. The base system also has a bus arbiter, a clock
driver, amemory controller and 16 MB of shared memory. The master clock rate of the
bus system is 10 ns (the minimum external clock period for MPC755 [38], which was
designed in .22 u technology). Code for each MPC755 runs on an instruction-accurate
(not cycle-accurate) MPC755 simulator provided by Seamless CVE [37].

The experimental simulations were carried out using Seamless Co-Verification
Environment (CVE) [37] aided by Synopsys VCS [39] for Verilog HDL simulation
and XRAY [40] for software debugging. We have used Atalanta RTOS version 0.3 [6],
a shared-memory multiprocessor RTOS, introduced in Section 4.2.1.

4.5.2 Configured RTOS/MPSoCs for experimentation

Using the § hardware/software RTOS design framework, we have specified various
RTOS/MPSoC configurations as shown in Table 4.9. All RTOS/MPSoC configura-
tions are generated primarily based on the base MPSoC described in the previous
section.

4.5.3 Execution time comparison between RTOS1 and RTOS2

This section presents the performance comparison between SoCLC (please see
Section 4.2.3.1 and References 15-18 for more detail) with priority inheritance in
hardware versus the full software Atalanta RTOS with priority inheritance in software.
In this comparison, the application used is an algorithmic model of a robot control
application with an MPEG decoder. Five tasks in the application represent recognis-
ing objects, avoiding obstacles, moving, displaying robot trajectory and recording
data. More details are described in Reference 18.

For performance comparison, lock delay and overall execution time for each
architecture were measured. The first architecture does not include SoCLC and is
named as the ‘RTOS1’ case; the second architecture includes SoCLC and is named
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Table 4.10  Simulation results of the robot application

(Time in clock cycles) RTOS1 RTOS2 Speedup®

Lock delay* 6701 3834 1.75x
Overall execution™® 112170 78226 1.43x

* The time unit is a bus clock, and the values are averaged.
& The speedup is calculated according to the formula by Hennessy and
Patterson [41].

Table4.11 Execution Time of some SPLASH-2 benchmarks
using glibc malloc() and free()

Benchmark Total Memory Percentage of
exe. time management time used
(cycles) time (cycles) for memory
management
LU 318307 31512 9.90
FFT 375988 101998 27.13
RADIX 694333 141491 20.38

as the ‘RTOS2’ case. As seen from Table 4.10, RTOS2 (the SoCLC with priority
inheritance in hardware) achieves a 75 percent speedup (i.e. 1.75x) in lock delay
and a 43 percent speedup (i.e. 1.43x) in overall execution time when compared to
RTOS1 (Atalanta RTOS with priority inheritance in software).

4.5.4 Execution time comparison between RTOSI and RTOS3

This section demonstrates a performance comparison between RTOS1 and RTOS3.
For the performance comparison, several benchmarks taken from the SPLASH-2
application suite have been used: Blocked LU Decomposition (LU), Complex 1D
FFT (FFT) and Integer Radix Sort (RADIX) [42,43].

Table 4.11 shows the execution time of the benchmarks in clock cycles and the total
number of cycles consumed in memory management when the benchmarks use con-
ventional memory allocation/deallocation techniques (gl 1bc [44,45] malloc()
and free()).

Table 4.12 shows the same information introduced in Table 4.11 but with
the benchmarks using the SOCDMMU for memory allocation/deallocation. Also,
Table 4.12 shows the reduction in memory management execution time due to using
the SOCDMMU instead of using gl ibc malloc() and free() functions. This
reduction in the memory management execution time yields speedups in the bench-
mark execution time. As we can see in Table 4.12, using the SoOCDMMU tends to
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Table 4.12  Execution time of some SPLASH-2 benchmarks using the SoCDMMU

Benchmark  Total Memory  Percentage of  Percentage of Percentage of
time mgmt. time used reduction in reduction in
(cycles)  time for memory time used to benchmark
(cycles) mgmt. manage memory  exe. time
LU 288271 1476 0.51 95.31 9.44
FFT 276941 2951 1.07 97.10 26.34
RADIX 558347 5505 0.99 96.10 19.59
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speed up application execution time and this speedup is almost equal to the percentage
of time consumed by conventional software memory management techniques. For
more details, please see Reference 14.

4.5.5 Execution time comparison between RTOS4 and RTOS5

In this experiment, we wanted to identify the performance difference in an appli-
cation executing using the DDU versus a software deadlock detection algorithm. In
RTOSS, the MPSoC has a DDU for five processes and five resources. We devised an
application example inspired by the Jini lookup service system [46], in which client
applications can request services through intermediate layers (i.e. lookup, discovery
and admission). In this experiment, we invoked one process on each PE and priori-
tised all processes, p; being the highest and p4 being the lowest. The video frame
we use for the experiment is a test frame whose size is 64 by 64 pixels. The IDCT
processing time of the test frame takes approximately 23 600 clock cycles.

We show a sequence of requests and grants that finally leads to a deadlock as
shown in Figure 4.13 and Table 4.13. When the IDCT is released by p; at time 4,
the IDCT is granted to p; since py has a higher priority than p3. This last grant will
lead to a deadlock in the SoC. More details are described in References 7 and 20.

With the above scenario, we measured both deadlock detection time A and appli-
cation execution time from the application start (7o) until the detection of a deadlock
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Table 4.13 A sequence of requests and grants

Time Number Events

1o eo The application starts

f el p1 requests IDCT and VI; IDCT and VI are granted to p; immediately
t e p3 requests IDCT and WI; WI is granted to p3 immediately

13 e3 p> requests IDCT and WI. Both pj and p3 wait IDCT

7 e4 IDCT is released by pi

ts5 es IDCT is granted to p; since p; has a higher priority than pj

Table 4.14  Deadlock detection time and application execution time

Method of Algorithm Application Speedup
implementation run time™* run time*

PDDA software 1830 40523 40523 — 27714 469
DDU(hardware) 1.3 27714 27714 e

* The time unit is a bus clock, and the values are averaged.

in two cases: (1) on top of RTOS4 (a software parallel deadlock detection algorithm
(PDDA)) and (2) RTOSS (the DDU). Note that the RTOS initialisation time was
excluded (i.e. the RTOS is assumed to be fully operational at time 7¢). Table 4.14
shows that (1) in average the DDU achieved a 1408 x speedup over the PDDA in
software and that (2) the DDU gave a 46 percent speedup in application execution
time over the PDDA. The application invoked deadlock detection ten times. Note that
a different case where deadlock does not occur so early would of course not show
a 46 percent speedup, but instead would show a potentially far lower percentage
speedup; nonetheless, for critical situations where early deadlock detection is crucial,
our approach can help significantly.

4.5.6 Execution time comparison between RTOS6 and RTOS7

In this experiment, we wanted to identify the performance difference in an application
executing on top of RTOS6 (DAA, i.e. Algorithm 1 in software) versus on top of
RTOS7 (i.e. the MPSoC with a DAU for five processes and five resources).

4.5.6.1 Application example I

This application performs the same job briefly described in Section 4.5.5. We show
a sequence of requests and grants that would lead to grant deadlock (G-dl) as shown
in Figure 4.14 and Table 4.15.
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Table4.15 A sequence of requests and grants that could lead to grant
deadlock (G-dl)

Time Events

fo The application starts

1 p1 requests g1 and gp, which are granted to p; immediately

1) p3 requests gy and g4; only g4 is granted to p3 since g is not available

3 P2 also requests g, and g4

14 q1 and g, are released by p

t5 Then, the DAU tries to grant g, to py (see an arc from g, to p; in the middle graph

of Figure 4.14) since p, has a priority higher than p3. However, the DAU detects
potential G-dl. Thus, the DAU grants ¢ to p3, which does not lead to a deadlock

t6 qo and g4 are used and released by p3
t7 qo and g4 are granted to py
13 p> finishes its job, and the application ends

Recall that there is no constraint on the ordering of the resource usage. That
is, when a process requests a resource and the resource is available, it is granted
immediately to the requesting process. At time ¢, process pi, running on PEl,
requests both VI and IDCT, which are then granted to p;. After that, p; starts receiving
a video stream through VI and performs some IDCT processing. At time t,, process
p3, running on PE3, requests IDCT and W1 to convert a frame to an image and to send
the image through WI. However, only W1 is granted to p3 since IDCT is unavailable.
At time 73, pp running on PE2 also requests IDCT and WI, which are not available
for pp. When IDCT is released by p; at time 74, IDCT would typically (assuming
the DAU is not used) be granted to p, since p, has a priority higher than ps3; thus,
the system would typically end up in deadlock (i.e. consider the right-side graph in
Figure 4.13 where p» — ¢ is changed to g — p2). However, the DAU discovers
the potential G-dl (see the middle graph in Figure 4.14) and then avoids the G-dl by
granting IDCT to p3 even though p3 has a priority lower than p, (see the right-side
graph in Figure 4.14). Then, p3 uses and releases IDCT and WI at time 7¢. After that,
IDCT and WI are granted to p; at time #7; p; then finishes its job at time 7g.
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Table 4.16  Execution time comparison example with G-dl possible

Method of Algorithm Application Speedup
implementation runtime™ runtime™

DAA in software 2188 47704 47704 —34791 379
DAU (hardware) 7 34791 34791 =2

* The time unit is a bus clock, and the values are averaged.

With the above scenario, we wanted to measure two figures, average execution
time of deadlock avoidance algorithms and total execution time of the application in
two cases: (1) on top of RTOS6 (using DAA, i.e. Algorithm 1 in software) versus
(2) on top of RTOS7 (using the DAU in hardware).

4.5.6.2 Experimental result I

Table 4.16 shows that the DAU achieves a 312 x speedup in average algorithm execu-
tion time and gives a 37 percent speedup in application execution time over avoiding
deadlock with DAA in software. Note that the application invoked deadlock avoid-
ance 12 times (since every request and release results in deadlock avoidance algorithm
invocation).

4.5.6.3 Application example II

We also carried out another experiment in the case of request deadlock (R-dl), which
is already introduced in Example 4.4 of Section 4.4.3. This application also performs
a job very similar to the job briefly described in Section 4.5.5, but in this execution
trace the order of requests is different (see Table 4.1 in Section 4.4.3 for the trace; see
Reference 7 for even more detail). We similarly measured two figures, average dead-
lock avoidance algorithm execution time and total execution time of the application
in two cases: (1) on top of RTOS6 versus (2) RTOS7.

4.5.6.4 Experimental result II

Table 4.17 demonstrates that the DAU achieves a 294 x speedup in average algorithm
execution time and gives a 44 percent speedup in application execution time over
avoiding deadlock with DA A in software. Note that the application invoked deadlock
avoidance 14 times.

4.5.7 Execution time comparison between RTOS8 and RTOS9

To measure the performance difference between RTOS8 (using the BA in soft-
ware) and RTOS9 (exploiting the PBAU), we execute a sample robotic application
which performs the following: recognising objects, avoiding obstacles and display-
ing trajectory requiring DSP processing; robot motion and data recording involving
accessing 10 buffers; and proper real-time operation (e.g. maintaining balance) of



Hardware/software partitioning of OS 153

Table 4.17  Execution time comparison example with R-dl possible

Method of Algorithm Application Speedup
implementation runtime™ runtime*

DAA in software 2102 55627 55627 — 38508 449,
DAU (hardware)  7.14 38508 38508 -

* The time unit is a bus clock, and the values are averaged.

Table 4.18 A sequence of requests and releases

Time Events

fo The application starts, and the numbers of available resources in the system are set

t] ~ts p1 ~ ps set their maximum claims for resources as shown in Table 4.19

16 p1 requests one instance of r

t7 P2 requests two instances of rq

tg p3 requests three instances of r; and two instances of 3

t9 P4 requests two instances of rq, one instance of r, and one instance of 3

o ps requests two instances of 73

11 p1 requests two instances of r, and one instance of r3

12 ps5 requests one instance of r1. So far, granting all requests results in a system in an
H-safe state

13 ps again requests one more instance of rj, which results in an H-unsafe state. Thus,
this request is denied. The wait count for ps is increased

114 p3 releases two instances of 71 and two instances of 73

s p3 initiates a faulty request (i.e. it requests five instances of r{, 5 and r3,
respectively), which of course is denied

e ps again requests one more instance of 71, which now results in an H-safe state.
Thus, this request is granted. The wait count for ps is cleared

17 p1 finishes its job and releases three instances of r, and one instance of 3

s P2 releases two instances of rq

o p3 releases one instance of rq

1o D4 releases two instances of rq, one instance of ) and one instance of r3

1 ps releases two instances of | and two instances of r3, the application ends

the robot demanding fast and deterministic allocation and deallocation of memory
blocks. This application invokes a sequence of requests and releases. In a specific
trace, the sequence has ten requests, six releases and five claim settings as shown
in Table 4.18 with one faulty request that violates a pre-declared maximum claim
(e.g. Request[i][j] > Need[i][j]) and one additional request that leads to an H-unsafe
state. Please note that every command is processed by an avoidance algorithm (either
PBAU or BA in software).
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Table 4.19  Initial resource allocation state at time ts

Maximum Allocation Need Available
q1 42 43 91 42 43 q1 492 43 q1 492 43
P1 7 5 3 0 0 0 7 5 3 0 5 7
P2 3 2 2 0 0 0 3 2 2
P3 9 0 2 0 0 0 9 0 2
P4 2 2 2 0 0 0 2 2 2
ps 4 3 3 0 0 0 4 3 3

Table 4.20 Resource allocation states

Allocation Need Available
r r r rn rn rn rn
At time #19
P1 0 1 0 7 4 3 3 3 2
P 2 0 0 1 2 2
3 3 0o 2 6 0 0
Pa 2 1 1 0 1 1
s 0 0 2 4 3 1
At time #17
121 0 3 1 7 2 2 2 1 1
P 2 0 0 1 2 2
P3 30 2 6 0 0
D4 2 1 1 0 1 1
D5 1 0o 2 3 3 1

Detailed sequence explanation is as follows. There are five processes and three
resources in the system. Table 4.19 shows the available resources and maximum
claims of each process in the system at time #5 (‘Maximum’ equals ‘Need’ currently).

Table 4.20 shows the resource allocation state at time 719 as processes are using
resources. After two more requests, Table 4.20 shows the resource allocation state at
time #17. So far, all requests result in H-safe states. However, at time 713 in Table 4.18,
when ps requests one additional instance of resource rq, the system would result in
an H-unsafe state if granted. Thus, PBAU rejects the request; Wait_count[5] (see
Table 4.3 and Section 4.4.4) for ps is incremented, and ps needs to re-request rq later.

At time 114, p3 releases two instances of r| and two instances of r3, and the
resulting allocation state is shown in Table 4.21. At time t14, ps5 re-requests one
additional instance of resource rq, and the request is granted as shown Table 4.21.
Wait_count[5] for ps is cleared (set to zero).
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Table 4.21  Resource allocation states

Allocation Need Available
ry ry r3 ry ry r3 ry ry r3
At time t14
P 0 3 1 7 2 2 4 1 3
P2 2 0 0 1 2 2
D3 1 0 0 8 0 2
P4 2 1 1 0 1 1
s 1 0 2 33 1
At time 114
P 0 3 1 7 2 2 31 3
D2 2 0 0 1 2 2
D3 1 0 0 8 0 2
P4 2 1 1 0 1 1
D5 2 0 2 2 3 1

Table 4.22  Application execution time comparison for PBAU test

Method of Algorithm PBAU speedup Application Application speedup
implementation execution execution

time time
BA in software 5398.4 53984 —3.32 1625 221259 221259 — 185716 19%
PBAU (hardware) 3.32 332 - X 185716 185716 -

* The time unit is a clock cycle, and the values are averaged.

After time 16, as time progresses, all processes finish their jobs and release
allocated resources.

With the above scenario, summarised in Tables 4.18-4.21, we measure two
figures, average deadlock avoidance algorithm execution time and total application
execution time in two cases: (1) on top of RTOSS8 (using BA in software) versus
(2) on top of RTOS9 (exploiting the PBAU).

Table 4.22 shows that PBAU achieves approximately a 1600 x speedup in average
deadlock avoidance algorithm execution time and gives a 19 percent speedup in
application execution time over avoiding deadlock with BA in software. Please note
that during the run-time of the application, each avoidance method (PBAU or BA in
software) is invoked 22 times in both cases, respectively (since every request and every
release invokes a deadlock avoidance calculation). Table 4.23 represents the average
algorithm execution time distribution in terms of different types of commands.

Thus, while BA in software spends roughly 5400 clock cycles on average at each
invocation in this experiment, PBAU only spends 3.32 clocks on average.
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Table 4.23  Algorithm execution time comparison between PBAU vs. BA in software

Set Set Request Release Faulty
available max claim command command command
# of commands 1 5 9 6
BA in software 416 427 11337 2270 560
PBAU (hardware) 1 1 6.5 1 2

* The time unit is a clock cycle, and the values are averaged if there are multiple commands of the same
type. ‘#’ denotes ‘the number of’.

4.6 Conclusions

This chapter presents a methodology for hardware/software partitioning of operating
systems among pre-designed hardware and software RTOS pieces. The § hard-
ware/software RTOS/MPSoC codesign framework has been used to configure and
generate simulatable RTOS/MPSoC designs having both appropriate hardware and
software interfaces for each specified system architecture. The § framework is specifi-
cally designed to help RTOS/MPSoC designers more easily and quickly explore their
design space with available hardware and software modules so that they can effi-
ciently search and discover a few optimal solutions matched to the specifications and
requirements of their design.

We have configured, generated and simulated various RTOS/MPSoC systems
with available hardware/software RTOS components such as SoOCLC, SoCDMMU,
DDU, DAU, PBAU and equivalent software modules, respectively. From the
simulations using Seamless CVE from Mentor Graphics, we show that our method-
ology is a viable approach to rapid hardware/software partitioning of OS. In addition,
we demonstrated the following with experiments. (i) A system with the SOCLC shows
a 75 percent speedup in lock delay and a 43 percent speedup in overall execution time
when compared to a system implementing priority inheritance and lock handling
in software. (ii) A system with the SOCDMMU reduced benchmark execution time
by 9.44 percent or more as compared to a system without the SOCDMMU. (iii) An
RTOS/MPSoC system with the DDU achieved approximately a 1400X speedup in
deadlock detection time and a 46 percent speedup in application execution time over
an RTOS/MPSoC system with a deadlock detection method in software. (iv) A sys-
tem with the DAU reduced deadlock avoidance time by 99 percent (about 300X) and
application execution time by 44 percent as compared to a system with a deadlock
avoidance algorithm in software. (v) The PBAU achieved a roughly 1600X speedup
in average deadlock avoidance algorithm execution time and a 19 percent speedup
in application execution time over avoiding deadlock with a version of the Bankers
Algorithm in software.

In summary, we present recent updates to the § hardware software RTOS
partitioning framework. We focus on the DAU and the PBAU, the first work
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known to the authors on hardware support for deadlock avoidance in MPSoC/RTOS
hardware/software codesign.
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Chapter 5
Models of computation in the design process

Axel Jantsch and Ingo Sander

5.1 Introduction

A system-on-chip (SoC) can integrate a large number of components such as
microcontrollers, digital signal processors (DSPs), memories, custom hardware and
reconfigurable hardware in the form of field programmable gate arrays (FPGAs)
together with analogue-to-digital (A/D) and digital-to-analogue (D/A) converters on
a single chip (Figure 5.1). The communication structures become ever more sophis-
ticated consisting of several connected and segmented buses or even packet switched
networks. In total there may be dozens or hundreds of such components on a single
SoC. These architectures offer an enormous potential but they are heterogeneous
and tremendously complex. This also applies to embedded software. Moreover, the
overall system complexity grows faster than system size due to the component interac-
tion. In fact, intra-system communication is becoming the dominant factor for design,
validation and performance analysis. Consequently, issues of communication, syn-
chronisation and concurrency must play a prominent role in all system design models
and languages.

The design process for SoCs is complex and sophisticated. From abstract models
for requirements definition and system specification more and more refined models
are derived leading eventually to low level implementation models that describe the
layout and the assembler code. Most of the models are generated and processed either
fully automatically or with tool support. Once created models have to be verified to
check their consistency and correctness.

Figure 5.2 depicts a few of the models typically generated and transformed during
a design project. Different design tasks require different models. A system level
feasibility study and performance analysis needs key performance properties of the
architecture, components and functions but not a full behavioural model. Schedul-
ing and schedulability analysis need abstract task graphs, timing requirements and an
abstract model of the scheduler in the operating system. Synthesis and verification
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Figure 5.2 A SoC design process involves many models

tools need behavioural models at a proper abstraction level. Noise, EMC analysis, test
pattern generators and many other tools have their own requirements on the models
they use.

Since all design tasks put specific requirements on a model, we may ask, how
strong the influence of a model of computation is on the potential and efficiency of
design techniques. The answers are dependent on the specific design tasks and tools.
We consider only a small selection of tasks, namely HW synthesis, simulation and
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formal verification. For models of computation for embedded software, see Part II,
Chapter 7. Also, we cannot take all possible models into account, but we restrict the
discussion to three specific MoC classes: untimed MoCs, synchronous MoCs, discrete
and continuous time MoCs. They are distinguished by their abstraction of time and
their synchronisation behaviour which will allow us to analyse design techniques
with respect to these aspects. Other aspects such as data representation will not be
covered.

In the next section we introduce the MoCs under consideration and review some
of their important properties. In Section 5.3 we trace MoCs in different design phases
and in Section 5.4, we discuss the importance of MoCs for synthesis, simulation and
verification techniques.

5.2 Models of computation

We use the term ‘Model of Computation’ (MoC) to focus on issues of concurrency
and time. Consequently, even though it has been defined in different ways by different
authors (see for instance References 1-5), we use it to define the time representa-
tion and the semantics of communication and synchronisation between processes in
a process network. Thus, a MoC defines how computation takes place in a struc-
ture of concurrent processes, hence giving semantics to such a structure [6,7]. These
semantics can be used to formulate an abstract machine that is able to execute a
model. ‘Languages’ are not computational models, but have underlying computa-
tional models. For instance the languages VHDL, Verilog and SystemC share the
same discrete time, event driven computational model. On the other hand, languages
can be used to support more than one computational model. In ForSyDe [8] the func-
tional language Haskell [9] is used to express several models of computation. Libraries
have been created for synchronous, untimed and discrete time models of computa-
tion. Standard ML has been used similarly [10]. SystemC has also been extended to
support SDF (synchronous dataflow) and CSP (communicating sequential processes)
MoCs in addition to its native discrete time MoC [11].

To choose the right model of computation is of utmost importance, since each
MoC has certain properties. As an example consider a process network modelled as a
discrete time system in SystemC. In the general case automatic tools will not be able
to compute a static schedule for a single processor implementation, even if the process
network would easily allow it. For this reason Patel and Shukla [11] have extended
SystemC to support an SDF MoC. The same process network expressed as an SDF
can then easily be statically scheduled by a tool.

Skillicorn and Talia [12] discuss models of computation for parallel architec-
tures. Their community faces similar problems as those in design of embedded
systems. In fact all typical parallel computer structures (SIMD, MIMD!) can be imple-
mented on a SoC architecture. Recognising that programming of a large number of

1 Flynn has classified typical parallel data structures in Reference 15 where SIMD is an abbreviation
for Single Instruction, Multiple Data and MIMD for Multiple Instruction, Multiple Data.
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communicating processors is an extremely complex task, they try to define properties
for a suitable model of parallel computation. They emphasise that a model should
hide most of the details (decomposition, mapping, communication, synchronisation)
from programmers, if they are able to manage intellectually the creation of software.
The exact structure of the program should be inserted by the translation process rather
than by the programmer. Thus models should be as abstract as possible, which means
that the parallelism has not even been made explicit in the program text. They point
out that ad hoc compilation techniques cannot be expected to work on problems of
this complexity, but advocate building software that is correct by construction rather
than by verifying program properties after construction. Programs should be archi-
tecture independent to allow reuse. The model should support cost measures to guide
the design process and should have guaranteed performance over a useful variety of
architectures.

In the following sections, we present a number of important models of com-
putations and give their key properties. Following References 1 and 7 we organise
them according to their time abstraction. We distinguish between discrete time mod-
els, synchronous models where a cycle denotes an abstract notion of time, and
untimed models. This is consistent with the tagged-signal model proposed by Lee
and Sangiovanni-Vincentelli [2]. There each event has a time tag and different time
tag structures result in different MoCs. For example, if the time tags correspond to
real numbers we have a continuous time model; integer time tags result in discrete
time models; time tags drawn from a partially ordered set result in an untimed MoC.

Models of computation can be organised along other criteria, e.g. along with
the kinds of elements manipulated in a MoC which leads Paul and Thomas [3] to
a grouping of MoCs for hardware artefacts, for software artefacts and for design
artefacts. However, an organisation along properties that are not inherent is of limited
use because it changes when MoCs are used in different ways.

A consequence of an organisation along the time abstraction is that all strictly
sequential models such as finite state machines and sequential algorithms are not
distinguished. All of them can serve for modelling individual processes, while the
semantics of the MoC defines the process interaction and synchronisation.

5.2.1 Continuous time models

When time is represented by a continuous set, usually the real numbers, we talk of
a continuous time MoC. Prominent examples of continuous time MoC instances are
Simulink [13], VHDL-AMS and Modelica [14]. The behaviour is typically expressed
as equations over real numbers. Simulators for continuous time MoCs are based on
differential equation solvers that compute the behaviour of a model including arbitrary
internal feedback loops.

Due to the need to solve differential equations, simulations of continuous time
models are very slow. Hence, only small parts of a system are usually modelled with
continuous time such as analogue and mixed signal components.

To be able to model and analyse a complete system that contains analogue com-
ponents, mixed-signal languages and simulators such as VHDL-AMS have been
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developed. They allow us to model the pure digital parts in a discrete time MoC and
the analogue parts in a continuous time MoC. This allows for complete system sim-
ulations with acceptable simulation performance. It is also a typical example where
heterogeneous models based on multiple MoCs have clear benefits.

5.2.2 Discrete time models

Models where all events are associated with a time instant and the time is represented
by a discrete set, such as the natural numbers, are called discrete time models.>

Discrete time models are often used for the simulation of hardware. Both
VHDL [16] and Verilog [17] use a discrete time model for their simulation
semantics. A simulator for discrete time MoCs is usually implemented with a
global event queue that sorts occurring events. Discrete time models may have
causality problems due to zero-delay in feedback loops, which are discussed in
Section 5.2.4.

5.2.3 Synchronous models

In synchronous MoCs time is also represented by a discrete set, but the elementary
time unit is not a physical unit but more abstract due to two abstraction mechanisms:

1 Each event occurs in a specific evaluation cycle (also called time slot or clock
cycle). The occurrence of evaluation cycles is globally synchronised even for
independent parts of the system. But the relative occurrence of events within the
same evaluation cycle is not further specified. Thus, events within an evaluation
cycle are only partially ordered as defined by causality and data dependences only.

2 Intermediate events that are not visible at the end of an elementary evaluation
cycle are irrelevant and can be ignored.

In each evaluation cycle all processes evaluate once and all events occurring
during this process are considered to occur simultaneously.

The synchronous assumption can be formulated according to Reference 19. The
synchronous approach considers ‘ideal reactive systems that produce their outputs
synchronously with their inputs, their reaction taking no observable time’. This
implies that the computation of an output event is instantaneous. The synchronous
assumption leads to a clean separation between computation and communica-
tion. A global clock triggers computations that are conceptually simultaneous and

2 Sometimes this group of MoCs is denoted as ‘discrete event MoC’. However, strictly speaking
‘discrete event’ and ‘discrete time’ are independent, orthogonal concepts. The first denotes a model where
the set of the event values is a discrete set while the second denotes a model with time values drawn from
a discrete set, e.g. integers. In contrast, ‘continuous time’ and ‘continuous event’ models use continuous
sets for time and event values, respectively, e.g. the real numbers. All four combinations occur in practice:
continuous time/continuous event models, continuous time/discrete event models, discrete time/continuous
event models and discrete time/discrete event models. See for instance Reference 18 for a good coverage
of discrete event models.



166 System-on-chip

instantaneous. This assumption frees the designer from the modelling of complex
communication mechanisms and provides a solid base for formal methods.

A synchronous design technique has been used in hardware design for clocked
synchronous circuits. A circuit behaviour can be described deterministically inde-
pendent of the detailed timing of gates by separating combinational blocks from each
other with clocked registers. An implementation will have the same behaviour as the
abstract circuit under the assumption that the combinational blocks are ‘fast enough’
and that the abstract circuit does not include zero-delay feedback loops.

The synchronous assumption implies a simple and formal communication model.
Concurrent processes can easily be composed together. However, feedback loops
with zero-delay may cause causality problems which are discussed next.

5.2.4 Feedback loops in discrete time and synchronous models

Discrete time models allow zero-delay computation; in perfectly synchronous models
this is even a basic assumption. As a consequence, feedback loops may introduce
inconsistent behaviour. In fact, feedback loops as illustrated in Figure 5.3 may have
no solution, may have one solution or may have many solutions.

Figure 5.3(a) shows a system with a zero-delay feedback loop that does not have a
stable solution. If the output of the Boolean AND function is Tr ue then the output of
the NAND function is Fal se. But this means that the output of the AND function has
to be Fal se, which is in contradiction to the starting point of the analysis. Starting
with the value Fal se on the output of AND does not lead to a stable solution either.
Clearly there is no solution to this problem.

Figure 5.3(b) shows a system with a feedback loop with multiple solutions. Here
the system is stable, if both AND functions have Fal se or if both AND functions
have Tr ue as their output value. Thus the system has two possible solutions.

Figure 5.3(c) shows a feedback loop with only one solution. Here the only solution
is that both outputs are Tr ue.

It is crucial for the design of safety-critical systems that feedback loops with
no solution as in Figure 5.3(a) are detected and eliminated, since they result in an
oscillator. Also feedback loops with multiple solutions imply a risk for safety-critical
systems, since they lead to non-determinism. Non-determinism may be acceptable,
if it is detected and the designer is aware of its implications, but may have serious
consequences, if it stays undetected.

(c) True

Figure 5.3 A feedback loop in a synchronous system. System (a) has no solutions,
(b) has multiple solutions and (c) has a single solution
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Since feedback loops in discrete time and synchronous models are of such
importance there are several approaches which address this problem [6].

Microstep: In order to introduce an order between events that are produced and
consumed in an event cycle, the concept of microsteps has been introduced into
languages such as VHDL. VHDL distinguishes between two dimensions of time.
The first one is given by a time unit, e.g. a picosecond, while the second is given
by a number of delta-delays. A delta-delay is an infinitesimal small amount of
time. An operation may take zero time units, but it takes at least one delta-delay.
Delta-delays are used to order operations within the same time unit.

While this approach partly solves the zero-delay feedback problem, it introduces
another problem since delta delays will never cause the advance of time measured
in time units. Thus during an event cycle there may be an infinite amount of delta-
delays. This would be the result, if Figure 5.3(a) would be implemented in VHDL,
since each operation causes time to advance with one delta-delay. An advantage of
the delta-delay is that simulation will reveal that the composite function oscillates.
However, a VHDL simulation would not detect that Figure 5.3(b) has two solutions,
since the simulation semantics of VHDL would assign an initial value for the output
of the AND gates (Fal se?) and thus would only give one stable solution, concealing
the non-determinism from the designer. Another serious drawback of the microstep
concept is that it leads to more complicated semantics, which complicates formal
reasoning and synthesis.

Forbid zero-delays: The easiest way to cope with the zero-delay feedback problem
is to forbid them. In case of Figures 5.3(a) and 5.3(b) this would mean the insertion
of an extra delay function, e.g. after the upper AND function. Since a delay function
has an initial value the systems will stabilise. Assuming an initial value of Tr ue,
Figure 5.3(a) will stabilise in the current event cycle with the values Fal se for
the output of the NAND function and Fal se for the value of the AND function.
Figure 5.3(b) would stabilise with the output value Tr ue for both AND functions.
A possible problem with this approach is that a stable system such as Figure 5.3(c) is
rejected, since it contains a zero-delay feedback loop. This approach is adopted in the
synchronous language Lustre [20] and in synchronous digital hardware design. When
used in a synchronous MoC the resulting MoC variant is sometimes called ‘clocked
synchronous MoC’ [1].

Unique fixed-point: The idea of this approach is that a system is seen as a set
of equations for which one solution in the form of a fixed-point exists. There is a
special value L (‘bottom”) that allows it to give systems with no solution or many
solutions a fixed-point solution. The advantage of this method is that the system
can be regarded as a functional program, where formal analysis will show if the
system has a unique solution. Also systems that have a stable feedback loop as in
Figure 5.3(c) are accepted, while the systems of Figures 5.3(a) and 5.3(b) are rejected

3 VHDL defines the data type Bool ean by means of t ype Bool ean is (Fal se, True).At
program start variables and signals take the leftmost value of their data type definitions; in case of the
boolean data type the value Fal se is used.
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(the result will be the value L as the solution for the feedback loops). Naturally, the
fixed-point approach demands more sophisticated semantics, but the theory is well
understood [21]. Esterel has adopted this approach and the constructive semantics of
Esterel are described in Reference 22.

Relation based: This approach allows the specification of systems as relations.
Thus a system specification may have zero solutions, one solution or multiple solu-
tions. Though an implementation of a system usually demands a unique solution,
other solutions may be interesting for high-level specifications. The relation-based
approach has been employed in the synchronous language Signal [23].

5.2.5 Untimed models

In untimed models there is no global notion of time. If one event does not depend
directly or indirectly on another event, it is undefined if one event occurs at the
same time as, earlier or later than the other event. Hence, the only ordering on the
occurrence of events is determined by causal relationships. If one event depends on
another event, it must occur after the other event.

5.2.5.1 Data flow process networks

Data flow process networks [24] are a special variant of Kahn process net-
works [25,26]. In a Kahn process network processes communicate with each other
via unbounded FIFO channels. Writing to these channels is ‘non-blocking’, i.e. they
always succeed and do not stall the process, while reading from these channels is
‘blocking’, i.e. a process that reads from an empty channel will stall and can only
continue when the channel contains sufficient data items (‘tokens’). Processes in
a Kahn process network are ‘monotonic’, which means that they only need partial
information of the input stream to produce partial information of the output stream.
Monotonicity allows parallelism, since a process does not need the whole input signal
to start the computation of output events. Processes are not allowed to test an input
channel for existence of tokens without consuming them. In a Kahn process network
there is a total order of events inside a signal. However, there is no order relation
between events in different signals. Thus Kahn process networks are only partially
ordered which classifies them as an untimed model.

A data flow program is a directed graph consisting of nodes (‘actors’) that repre-
sent communication and arcs that represent ordered sequences (‘streams’) of events
(‘tokens’) as illustrated in Figure 5.4. Empty circles denote nodes, arrows denote

OO0
©

Figure 5.4 A data flow process network



MoC in the design process 169

streams and the filled circles denote tokens. Data flow networks can be hierarchical
since a node can represent a data flow graph.

The execution of a data flow process is a sequence of ‘firings’ or ‘evaluations’.
For each firing tokens are consumed and tokens are produced. The number of tokens
consumed and produced may vary for each firing and is defined in the ‘firing rules’
of a data flow actor.

Data flow process networks have been shown to be very valuable in digital signal
processing applications. When implementing a data flow process network on a single
processor, a sequence of firings, also called a ‘schedule’, has to be found. For general
data flow models it is undecidable whether such a schedule exists because it depends
on the input data.

Synchronous data flow (SDF) [27,28] puts further restrictions on the data flow
model, since it requires that a process consumes and produces a fixed number of
tokens for each firing. With this restriction it can be tested efficiently, if a finite static
schedule exists. If one exists it can be effectively computed. Figure 5.5 shows an
SDF process network. The numbers on the arcs show how many tokens are produced
and consumed during each firing. A possible schedule for the given SDF network is
{A,A,C,C,B,D}.

SDF is an excellent example of a MoC that offers useful properties by restricting
the expressive power. There exists a variety of different data flow models each repre-
senting a different trade-off between interesting formal properties and expressiveness.
For an excellent overview see Reference 24.

5.2.5.2 Rendezvous-based models

A rendezvous-based model consists of concurrent sequential processes. Processes
communicate with each other only at synchronisation points. In order to exchange
information, processes must have reached this synchronisation point, otherwise they
have to wait for each other. Each sequential process has its own set of time tags.
Only at synchronisation points processes share the same tag. Thus there is a partial
order of events in this model. The process algebra community uses rendezvous-based
models. The CSP model of Hoare [29] and the CCS (Calculus of Communicating
Systems) model of Milner [30,31] are prominent examples. The language Ada [32]
has a communication mechanism based on rendezvous.

il
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Figure5.5 A synchronous data flow process network
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5.2.6 Heterogeneous models of computation

A lot of effort has been spent to mix different models of computation. This approach
has the advantage, that a suitable model of computation can be used for each part
of the system. On the other hand, as the system model is based on several compu-
tational models, the semantics of the interaction of fundamentally different models
has to be defined, which is no simple task. This even amplifies the validation prob-
lem, because the system model is not based on a single semantics. There is little
hope that formal verification techniques can help and thus simulation remains the
only means of validation. In addition, once a heterogeneous system model is speci-
fied, it is very difficult to optimise systems across different models of computation.
In summary, while heterogeneous MoCs provide very general, flexible and useful
simulation and modelling environment, cross-domain validation and optimisation
will remain elusive for many years for any heterogeneous modelling approach. In the
following an overview of related work on mixed models of computation is given.

In *charts [33] hierarchical finite state machines are embedded within a variety of
concurrent models of computations. The idea is to decouple the concurrency model
from the hierarchical FSM semantics. An advantage is that modular components,
e.g. basic FSMs, can be designed separately and composed into a system with the
model of computation that best fits to the application domain. It is also possible to
express a state in an FSM by a process network of a specific model of computation.
*charts has been used to describe hierarchical FSMs that are composed using data
flow, discrete event and synchronous models of computations.

The composite dataflow [34] integrates data and control flow. Vectors and the
conversion from scalar values to vectors and vice versa are integral parts of the model.
This allows us to capture the timing effects of these conversions without resorting to
a synchronous or discrete time MoC. Timing of processes is represented only to the
level to determine if sufficient data are available to start a computation. In this way
the effects of control and timing on dataflow processing are considered at the highest
possible abstraction level because they only appear as data dependency problems.
The model has been implemented to combine Matlab and SDL into an integrated
system specification environment [35].

Internal representations like the system property intervals (SPI) model [36] and
FunState [37] have been developed to integrate a heterogeneous system model into
one abstract internal representation. The idea of the SPI model is to allow for global
system analysis and system optimisation across language boundaries, in order to
allow reliable and optimised implementations of heterogeneously specified embed-
ded real-time systems. All synthesis relevant information, such as resource utilisation,
communication and timing behaviour, is extracted from the input languages and trans-
formed into the semantics of the SPI model. An SPI model is a set of parameterised
communicating processes, where the parameters are used for the adaptation of dif-
ferent models of computation. SPI allows us to model non-determinism through the
use of behavioural intervals. There exists a software environment for SPI that is
called the SPI workbench and which is developed for the analysis and synthesis of
heterogeneous systems.
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The FunState representation refines the SPI model by adding the capability of
explicitly modelling state information and thus allows the separation of data flow
from control flow. The goal of FunState is not to provide a unifying specification, but
it focuses only on specific design methods, in particular scheduling and validation.
The internal FunState model shall reduce design complexity by representing only the
properties of the system model relevant to these design methods.

The most well-known heterogeneous modelling and simulation framework is
Ptolemy [6,38]. It allows us to integrate a wide range of different MoCs by defining
the interaction rules of different MoC domains.

5.3 MoCs in the design flow

From the previous sections it is evident that different models fundamentally have
different strengths and weaknesses. There is no single model that can satisfy all
purposes and thus models of computation have to be chosen with care.

Let us revisit the discussed MoCs while considering the different design phases
and the design flow. For the sake of simplicity we only identify five main design tasks
as illustrated in Figure 5.6. Early on, the feasibility analysis requires detailed studies
of critical issues that may concern performance, cost, power or any other functional

Feasibility analysis

Functional specification Architecture definition

Task graph
Q

Figure 5.6  Suitability of MoCs in different design phases. ‘C’ stands for continuous
time MoC; ‘D’ for discrete time MoC; ‘S’ for synchronous MoC; and
‘U’ for untimed MoC. More than one label on a design phase means,
that all of the MoCs are required since no single MoC is sufficient by
itself
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or non-functional property. The functional specification determines the entire system
functionality (at a high abstraction level) and constitutes the reference model for
the implementation. Independent of the functional specification is the architecture
specification, which may come with performance and functional models of proces-
sors, buses and other resources. The task graph breaks the functionality in concurrent
activities (tasks), which are mapped onto architecture resources. Once resource bind-
ing and scheduling has been performed, the detailed implementation for the resources
is created.

The essential difference of the four main computational models that we introduced
in the previous section, is the representation of time. This feature alone weighs heavily
with respect to their suitability for design tasks and development phases.

5.3.1 Continuous time models

Continuous time MoCs are mostly used to accurately model and analyse existing or
prospective devices. They reflect detailed electrical and physical properties with high
precision. Hence, they are ideal to study and model tiny entities in great detail but
they are unsuitable to analyse and simulate large collections and complex systems
due to the overwhelming amount of detail. They are usually not used to specify
and constrain behaviour but may serve as reference models for the implementation.
Thus, they are frequently used in feasibility studies, to analyse critical issues, and
in architectural models to represent analogue or mixed signal components in the
architecture. Analogue synthesis is still not well automated and hence continuous
time models are rarely used as input to synthesis tools.

5.3.2 Discrete time models

The discrete time MoC constitutes a very general basis for modelling and simulation
of almost arbitrary systems. With the proper elementary components it can serve to
model digital hardware consisting of transistors and gates; systems-on-chip consisting
of processors, memories, and buses; networks of computers, clients and servers; air
traffic control systems; evolution of prey—predator populations; and much more [18].
In fact it is most popular and widely used in an enormous variety of engineering,
economic and scientific applications.

However, it cannot be used for everything. In the context of hardware and soft-
ware design the discrete time model has the drawback that a precise delay information
cannot be synthesised. To provide a precise delay model for a piece of computation
may be useful for simulation and may be appropriate for an existing component, but
it hopelessly over-specifies the computation for synthesis. Assume a multiplication is
defined to take 5 ns. Shall the synthesis tool try to get as close to this figure as possible?
What deviation is acceptable? Or should it be interpreted as ‘max 5 ns’? Different tools
will give different answers to these questions and synthesis for different target tech-
nologies will yield very different results and none of them will match the simulation
of the discrete time model. The situation becomes even worse, when a delta-delay
based model is used. As we discussed in Section 5.2.4 the delta-delay model elegantly
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solves the problem of non-determinism for simulation, but it requires a mechanism
for globally ordering the events. Essentially, a synthesis system had to synthesise a
similar mechanism together with the target design, which is an unacceptable overhead.
These problems notwithstanding, synthesis systems for both hardware and
software have been developed for languages based on time models. VHDL and
Verilog-based tools are the most popular and successful examples. They have
avoided these problems by ignoring the discrete time model and interpreting the
specification according to a clocked synchronous model. Specific coding rules and
assumptions allow the tool to identify a clock signal and infer latches or registers
separating the combinatorial blocks. The drawbacks of this approach are that one has
to follow special coding guidelines for synthesis, that specification and implemen-
tation may behave differently, and in general that the semantics of the language is
complicated by distinguishing between a simulation and a synthesis semantics. The
success of this approach illustrates that mixing different MoCs in the same language
is practical. It also demonstrates the suitability of the clocked synchronous model for
synthesis but underscores that the discrete time model is not synthesisable.

5.3.3  Synchronous models

The synchronous models represent a sensible compromise between untimed and dis-
crete time models. Most of the timing details can be ignored but we can still use an
abstract time unit, the evaluation or clock cycle, to reason about the timing behaviour.
Therefore it has often a natural place as an intermediate model in the design process.
Lower level synthesis may start from a synchronous model. Logic and RTL synthesis
for hardware design and the compilation of synchronous languages for embedded
software are prominent examples. The result of certain synthesis steps may also
be represented as a synchronous description such as scheduling and behavioural
synthesis.

It is debatable if a synchronous model is an appropriate starting point for higher
level synthesis and design activities. It fairly strictly defines that activities occur-
ring in the same evaluation cycle but in independent processes are simultaneous.
This imposes an unnecessarily strong coupling between unrelated processes and may
restrict early design and synthesis activities too much.

On the other hand in many systems timing properties are an integral part of the
system functionality and are therefore an important part of a system specification
model. Complex control structures typically require a fine control over the relative
timing of events and activities. As single chip systems increase in complexity, this
feature becomes more common. Already today there is hardly any SoC design that
does not exhibit complex control.

Synchronous models constitute a very good compromise for dealing with time at
an abstract level. While they avoid the nasty details of low-level timing problems, they
allow us to represent and analyse timing relations. In essence the clock or evaluation
cycle defines ‘abstract time budgets’ for each block. The time budgets turn into timing
constraints for the implementation of these blocks. The abstract time budgets constrain
the timing behaviour without over-constraining it. Potentially there is a high degree
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of flexibility in this approach if the evaluation cycles of a synchronous MoC are not
considered as fixed-duration clock cycles but rather as abstract time budgets, which
do not have to be of identical duration in different parts of the design. Their duration
could also change from cycle to cycle if required. Re-timing techniques exploit this
flexibility [39, 40].

This feature of offering an intermediate and flexible abstraction level of time
makes synchronous MoCs suitable for a wide range of tasks as indicated in Figure 5.6.

5.3.4 Untimed models

Untimed models have an excellent track record in modelling, analysing and designing
signal processing systems. They are invaluable in designing digital signal processing
algorithms and analysing their key performance properties such as signal-to-noise
ratio.

Furthermore, they have nice mathematical features, which facilitate certain syn-
thesis tasks. The tedious scheduling problem for software implementations is well
understood and efficiently solvable for synchronous data flow graphs. The same can
be said for determining the right buffer sizes between processes, which is a neces-
sary and critical task for hardware, software and mixed implementations. How well
the individual processes can be compiled to hardware or software depends on the
language used to describe them. The data flow process model does not restrict the
choice of these languages and is therefore not responsible for their support. For what
it is responsible, i.e. the communication between processes and their relative timing,
it provides excellent support due to a carefully devised mathematical model.

5.3.5 Discussion

Figure 5.6 illustrates this discussion and indicates in which design phases the different
MoCs are most suitable. Note that several MoCs placed on a design phase bubble
means that in general a single MoC does not suffice for that phase but several or all
of them may be required.

No single MoC serves all purposes equally well. The emphasis is on ‘equally
well’ because all of them are sufficiently expressive and versatile to be used in a
variety of contexts. However, their different focus makes them more or less suitable
for specific tasks. For instance a discrete time, discrete event model can be used to
model and simulate almost anything. But it is extremely inefficient to use it to simu-
late and analyse complex systems when detailed timing behaviour is irrelevant. This
inefficiency concerns both tools and human designers. Simulation of a discrete time
model takes orders of magnitude longer than simulation of an untimed model. Formal
verification is orders of magnitude more efficient for perfectly synchronous models
than for discrete time models. Human designers are significantly more productive in
modelling and analysing a signal processing algorithm in an untimed model than in
a synchronous or discrete time model. They are also much more productive to model
a complex, distributed system when they have appropriate and high-level communi-
cation primitives available, than when they have to express all communication with
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unprotected shared variables and semaphores. Hardware engineers working on the
RT level (synchronous MoC) design many more gates per day than their counterparts
not using a synchronous design style. Analogue designers are even less productive in
terms of designed transistors per day because they deal with the full range of details
at the physical and electrical level. Unfortunately, good abstractions at a higher level
have not been found yet for analogue design with the consequence that analogue
design is less automated and less efficient than digital design.

MoCs impose different restrictions which, if selected carefully, can lead to signif-
icant improvements in design productivity and quality. A strict finite state machine
model can never have unbounded memory requirements. This property is inherent in
any FSM model and does not have to be proved for every specific design. The amount
of memory required can be calculated by static analysis and no simulation is required.
This is in contrast to models with dynamic memory allocation where it is in general
impossible to prove an upper bound for the memory requirement and long simulations
have to be used to obtain a high level of confidence that the memory requirements are
indeed feasible. FSM models are restrictive but if a problem suits these restrictions,
the gain in design productivity and product quality can be tremendous.

A similar example is synchronous dataflow. If a system can be naturally expressed
as an SDF graph, it can be much more efficiently analysed, scheduled and designed
than the same system modelled as a general dataflow graph.

As a general guideline we can state that ‘the productivity of tools and designers
is highest if the least expressive MoC is used that still can naturally be applied to the
problem’.

Thus, all the different computational models have their place in the design flow.
Moreover, several different MoCs have to be used in the same design model because
different sub-systems have different requirements and characteristics. This leads
naturally to heterogeneous MoCs which can either be delayed within one language or
with several languages under a coordination framework as will be discussed below.

5.4 Design activities

Next we investigate specific design tasks and their relation to MoCs. We do not
intend to present an exhaustive list of activities, but we hope to illustrate the strong
connection and interdependence of design tasks and models on which they operate.

5.4.1 Synthesis

Today several automatic synthesis steps are part of the standard design flow of ASICs
and SoCs. Register Transfer Level (RTL) synthesis, technology mapping, placement
and routing, logic and FSM synthesis are among those. Other techniques that have
been researched and developed but not successfully commercialised are high-level
synthesis, system level partitioning, resource allocation and task mapping. We take a
closer look at RTL and high-level synthesis because they are particularly enlightening
examples.
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PRCCESS (cl k, reset)
BEG N
IF reset = 0" THEN
state <= 0;
ELSIF cl k’event AND clk = “1° THEN
state <= nextstate;
END | F;
END PRCCESS

Figure 5.7 A VHDL process encoding the P_reg block of Figure 5.8

5.4.1.1 RTL synthesis

Register transfer level synthesis takes as input an HDL (Hardware Description
Language) model of a process, for instance written in VHDL or Verilog, and gener-
ates a netlist of gates that adheres to a synchronous design style. Since VHDL and
Verilog are simulation not synthesis languages, some of their constructs cannot be
synthesised. Every RTL synthesis tool defines a synthesisable subset of the input
language.* This subset definition has two objectives. First, constructs that cannot
be synthesised into HW are excluded. Obvious examples are file I/O operations
and dynamic memory management. Second, typical and efficient HW structures are
encoded in the language subset. Synthesis tools will identify FSMs, memories, reg-
isters and combinatorial logic in the source model and translate them efficiently onto
corresponding HW structures. For example, VHDL processes have to be written in
a specific style with only one clock signal such that the synthesis tool can extract a
combinatorial netlist with registers at the outputs. Figure 5.7 shows a VHDL process
that would be interpreted as a FSM state register by most synthesis tools. If two other
combinatorial processes are provided and properly modelled, the tool would derive
a FSM structure as shown in Figure 5.8. P_reg reacts to a reset signal to go into the
initial state, and to a clock signal to make a state transition.

The definition of a synthesisable subset and the particular interpretation of syn-
thesis tools lead to a divergence of simulation semantics and synthesis semantics.
There are three main motivations for this.

1 Some language constructs are pure simulation devices and there is no reason why
anybody would want to synthesise them. Examples are file access and assertions.

2 Some language constructs are too expensive to implement in hardware and the
current state of the art suggests that they should not be synthesised. Examples are
multi-dimensional arrays and dynamic memory allocation. When future engineers
conclude that such constructs should also be available to hardware designers, these
restrictions may disappear.

4 There are different subsets imposed by different tools, but they are not very essential and concern
mostly issues of user convenience and synthesis performance rather than the semantics. There exists even
an IEEE standard for a synthesisable subset.
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Figure 5.8 A VHDL synthesis tool derives a state machine when the VHDL
description contains three properly modelled processes. P_nextis a com-
binatorial process defining the nextstate transition function. P_reg is a
register storing the state. P_out models the output encoding function.

3 The timing model of the simulation semantics is ill-suited for synthesis. The
simulation semantics is based on a discrete time model and allows us to express
delays in terms of nano- and picoseconds. In contrast the synthesised model is a
clock synchronous MoC that simply cannot express physical time delays.

The last item interests us most because it shows that VHDL/Verilog-based sim-
ulation and synthesis use different models of computation, according to our scheme
in Section 5.2. The simulation semantics is based on a discrete time MoC which is
unsuitable for synthesis. Even if a delay of e.g. 2 ns could be accurately synthesised,
it would over-constrain the following technology mapping, placement and routing
steps and lead to a hopelessly inefficient implementation. Accurate synthesis of the
delta-delay concept is even more elusive.

In contrast, the clocked synchronous MoC? allows us to separate synthesis of the
behavior from timing issues. Since the clock structure and the scheduling of compu-
tations in clock cycles is already part of the input model, the RTL synthesis focuses
on optimising the combinatorial blocks between registers. In an analysis step separate
from synthesis the critical paths can be identified and the overall system performance
can be assessed. Re-timing techniques, that move gates and combinatorial blocks
across clock cycle boundaries, can shorten critical paths and increase overall per-
formance. If all this proves insufficient the input model to RTL synthesis has to be
modified.

In conclusion, for RTL synthesis a clocked synchronous MoC is the best choice
because it reflects efficient hardware structures and allows for an effective separa-
tion of behavioural synthesis from timing optimisation. A lower level, discrete time
MoC is entirely inadequate since it over-constrains the synthesis. Starting synthesis
with a model based on a higher time abstraction, an untimed MoC, imposes fewer
constraints on the synthesis process but consequently requires the synthesis task to
include scheduling of operations as will be discussed next.

5 Recall from Section 5.2.4 that a clocked synchronous MoC is a synchronous MoC variant where no
feedback loops are allowed within the same clock cycle. Therefore the feedback loop in Figure 5.8 has to
be broken by the P_reg register process.
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5.4.1.2 High-level synthesis

High-level synthesis, later also called behavioural synthesis, as defined and
researched heavily [41], includes the tasks of resource allocation, operation bind-
ing and operation scheduling. The input is an algorithm described in a sequential
language such as C or as a VHDL process. ‘Resource allocation’ estimates the type
and number of HW resources required to implement the algorithm, e.g. how many
multipliers, adders, ALUs, etc. ‘Operation binding’ binds operations of the algorithm
to allocated resources. ‘Scheduling’ assigns the operations to specific clock steps, thus
determining when they will be executed. Figure 5.9 illustrates the scheduling proce-
dure. From the algorithmic specification in Figure 5.9(a) the dataflow graph 5.9(b)
is extracted to represent the data dependences. Figure 5.9(c) shows the scheduled
dataflow graph by using the As-Soon-As-Possible (ASAP) scheduling principle.
The natural MoC for the input to high-level synthesis is an untimed MoC.
Synchronous or discrete time MoCs are unsuitable because they both determine the
execution time of individual operations, rendering the scheduling step superfluous. In
fact the untimed model was the MoC chosen by all groups that developed high-level
synthesis systems. This was either done by defining a dedicated language that could
only express an untimed MoC, or by sub-setting a general purpose design language
such as VHDL or Verilog. Resource allocation and operation binding concerns the
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Figure5.9 An algorithmic specification and its scheduled dataflow graph
(a) algorithmic specification, (b) dataflow graph and (c) scheduled
dataflow graph (from Reference 42)
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refinement of computation. The abstraction level of the computation and the operators
are not defined by the MoCs in Section 5.2. Thus, the untimed MoC is a suitable input
to high-level synthesis independent of the kind of operations involved, simple adders
and half-adders or highly complex processing elements.

5.4.1.3 Discussion

Other synthesis procedures also have their natural input and output MoC. Hence,
each synthesis method has to be provided with input models that match its natural
MoC, e.g. a clocked synchronous MoC for RTL and an untimed MoC for high-level
synthesis. In practice this is accomplished in one of two ways. The obvious approach
is to choose an input language that matches well with the natural MoC. If this is
not desirable due to other constraints, a language subset and interpretation rules are
established, that approximate the MoC required by the synthesis method. We call
this technique the ‘projection’ of an MoC into a design language. It is illustrated in
Figure 5.10.

Taking a step back we can contemplate the relation between synthesis methods
and MoCs. They are mutually dependent and equally important. While it is in general
correct that every synthesis method has ‘natural MoCs’ defining its input and output,
we can also observe that the major synthesis steps follow naturally from the definition
of the MoCs. For every significant difference between two MoCs we can formulate
a synthesis step transforming one MoC into the other. On the other hand, the MoCs
represent useful abstractions only if we can identify efficient synthesis methods that
use them as input and output.

Our treatment of MoCs does not cover other relevant issues such as abstraction
and refinement of computation and data types. We have focused foremost on time and
therefore we could discuss the scheduling problem of high-level synthesis convinc-
ingly while we barely mentioned the allocation and binding tasks. We believe there
are good arguments for using time as the primary criteria for categorising MoCs while
other domains such as computation, communication and data lead to variants within
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projection

MoC
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Synthesis
tool

Input design language Output design language

Figure 5.10 MoC projection into design languages
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the same MoC. For a more thorough discussion of this question see Reference 43
or 7. For a further elaboration of domains and abstractions see Reference 44.

5.4.2 Simulation

All MoCs that we have discussed can be simulated. So the question that we have to
ask is not, which MoC is suitable for simulation, but how efficiently a given MoC
can be simulated. Also, we may want to distinguish different purposes of simula-
tion and then we can ask if, for a given purpose, we should prefer one MoC to
another.

It is obvious that discrete time MoC simulations are slower than synchronous
MoC simulations which in turn are slower than untimed MoC simulations, because
MoCs at lower abstraction levels require the computation of many more details. It has
been reported that simulations of clock cycle true models, which correspond to our
clocked synchronous MoCs, are 1-2 orders of magnitude faster than discrete event
simulations, which correspond to our discrete time MoC [45]. Moving to an untimed
MoC, e.g. functional or transaction level simulations, can further speed-up simulation
by 1 to 2 orders of magnitude [45,46]. Higher abstraction in any of the domains
time, data, computation and communication, improves simulation performance, but
the time abstraction seems to be play a dominant role [47], because a higher time
abstraction significantly reduces the number of events in a simulation uniformly in
all parts of a model.

The disadvantage with abstract MoCs is the loss of accuracy. Detailed timing
behaviour and the clock cycle period cannot be analysed in a synchronous MoC sim-
ulation. Transaction level models cannot unveil problems in the details of the interface
and low-level protocol implementation. In an untimed MoC no timing related prop-
erties can be investigated and arithmetic overflow effects cannot be observed when
using ideal, mathematical data types. Clearly, a trade-off between accuracy and sim-
ulation performance, as illustrated in Figure 5.11, demands that a design is simulated
at various abstractions during a design project from specification to implementation.

5.4.3 Formal verification

Formal verification techniques experience a similar trade-off to simulation. If there
are too many details in a model, the run-time and memory requirements of most
verification tools become prohibitive. Consequently, most techniques are specialised
on a particular MoC and sometimes also on a restricted set of properties. They follow
the MoCs established by synthesis and design methods, because these have turned
out to be useful MoCs for several formal verification techniques as well.

An example formal technique is model checking [48]. It requires a finite state
machine (FSM) based model of the design and allows to express and verify various
properties such as that a particular variable assignment will never occur in any of the
possible states reachable from an initial state. Model checking essentially explores
the state space of the FSM until it either finds a counter-example or it can prove the
given property, e.g. by exploring the entire reachable state space.
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Figure5.11  The trade-off between accuracy and simulation performance

Multiple, communicating FSMs can be handled but only by merging them into
a single, flat FSM. This often leads to serious state space explosion problems. Due
to clever algorithms and highly efficient data representations model checking can be
applied to realistic designs and proves useful in practice.

The natural MoC for property checking is a synchronous MoC, just as for RTL
synthesis, since it corresponds to a finite state machine and its evolution. Detailed
timing information below the granularity of synchronous MoCs cannot be handled by
model checking unless they are encoded in a way fitting into the MoC. On the other
hand an untimed MoC would in principle be compatible with model checking but it
would allow for infinitely many ways to merge multiple FSMs into a single one, thus
magnifying the state space explosion problem even further.

Just as in the case of synthesis techniques, we can also observe that all formal
verification techniques require specific MoCs as input descriptions. The basic princi-
ples, such as theorem proving, are often much more general but have to be specialised
for a specific problem domain, and thus for a specific MoC, to make them useful in
practice. Hence, a MoC serves by dramatically restricting the problem space and, if
selected carefully, allows for efficient verification tools.

5.4.4 Summary

Table 5.1 summarises the discussed tasks and gives their respective MoCs.

As mentioned earlier, we have chosen to distinguish the MoCs according to their
time abstraction. Therefore we can naturally analyse design tasks that have a strong
relation to a particular time abstraction such as scheduling or cycle-true simulation.
For an analysis of all other design tasks in a similar satisfactory way we would
have to introduce MoC variants based on computation, data and communication
abstractions.



182 System-on-chip

Table 5.1 Design activities with their respective MoCs
(U-MoC = Untimed MoC, S-MoC = Syn-
chronous MOC, D-MoC = Discrete time
MoC, C-MoC = Continuous time MoC)

Input MoC Design task Output MoC
U-MoC High-level synthesis S-MoC
S-MoC RTL synthesis D-MoC
U-MoC Transaction level simulation

S-MoC Cycle-true simulation

D-MoC Discrete-event simulation

C-MoC Analogue simulation

S-MoC Model and property checking

5.5 Conclusions

We have analysed the relation between some inherent properties of computational
models and various design tasks and phases. Since this is an endeavour far beyond
a single article we have taken time as our primary parameter and have defined
four MoC classes based on the time abstraction: continuous time, discrete time,
synchronous time and untimed MoC. This is justified because the chosen repre-
sentation of time has a critical influence on synchronisation, communication and
the overall system behaviour for systems described by communicating concurrent
processes. For a more elaborate study that encompasses all design activities and
phases we suggest to still use time abstraction as the primary criterion for defining
MoCs but to use other abstractions and domains to introduce more MoC variants as
suitable.

We have not carefully illuminated the relation between MoCs and design
languages since it is an intricate one with many subtle connections and implica-
tions that requires a chapter of its own. For more, but not an exhaustive, elaboration
of this issue see Reference 43.

The main targets of our study, complex, heterogeneous, embedded systems,
require the use of all presented MoCs. But each MoC has a very specific place
and role in the design process as illustrated by Figure 5.6 and Table 5.1. The usage of
MoCs should be a conscious choice based on their inherent properties and the given
objective and design task. Using them for the wrong purpose will lead to poor results
that cannot be rectified by improving a synthesis or simulation algorithm.

But MoCs are not just predefined and given to us and we merely have to pick
the right one. Rather, they have to be properly developed and defined for a particular
purpose. This is a delicate task because we face a difficult trade-off. To simplify
the overall design process and support tool interoperability we would like to have as
few different MoCs as possible. However, if we aim at the best possible MoC for a
specific task, we will have to integrate many, specialised MoCs in the design flow.
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History shows, that the process of identifying, accepting and establishing MoCs is
tedious and slow. The successful introduction of a new MoC is typically bound to a
major paradigm change, such as the move from schematic entry design to RTL-based
synthesis.
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Chapter 6

Architecture description languages for
programmable embedded systems

Prabhat Mishra and Nikil Dutt

6.1 Introduction

Embedded systems are everywhere — they run the computing devices hidden inside
a vast array of everyday products and appliances such as cell phones, toys, handheld
PDAs, cameras and microwave ovens. Cars are full of them, as are airplanes, satellites
and advanced military and medical equipments. As applications grow increasingly
complex, so do the complexities of the embedded computing devices. Figure 6.1
shows an example embedded system, consisting of programmable components
including a processor core, coprocessors and memory subsystem. The programmable
components are used to execute the application programs. Depending on the appli-
cation domain, the embedded system can have application specific hardwares,
interfaces, controllers and peripherals. The programmable components, consist-
ing of a processor core, coprocessors and memory subsystem, are referred to as
‘programmable embedded systems’. They are also referred to as ‘programmable
architectures’.

As embedded systems become ubiquitous, there is an urgent need to facilitate
rapid design space exploration (DSE) of programmable architectures. This need for
rapid DSE becomes even more critical given the dual pressures of shrinking time-
to-market and ever-shrinking product lifetimes. Architecture Description Languages
(ADLSs) are used to perform early exploration, synthesis, test generation and validation
of processor-based designs as shown in Figure 6.2. ADLs are used to specify pro-
grammable architectures. The specification can be used for generation of a software
toolkit including the compiler, assembler, simulator and debugger. The application
programs are compiled and simulated, and the feedback is used to modify the ADL
specification with the goal of finding the best possible architecture for a given set
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of applications. The ADL specification can also be used for generating hardware
prototypes under design constraints such as area, power and clock speed. Several
researches have shown the usefulness of ADL-driven generation of functional test
programs and test interfaces. The specification can also be used to generate device
drivers for real-time operating systems (RTOS) [1].

Previously, researchers have surveyed architecture description languages for retar-
getable compilation [2], and systems-on-chip design [3]. Qin and Malik [2] surveyed
the existing ADLs and compared the ADLSs to highlight their relative strengths and
weaknesses in the context of retargetable compilation. Tomiyama et al. [3] classi-
fied existing ADLs into four categories based on their main objectives: synthesis,
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compiler generation, simulator generation and validation. This chapter presents a
comprehensive survey of existing ADLs and the accompanying methodologies for
programmable embedded systems design.

The rest of the chapter is organised as follows: Section 6.2 describes how ADLs
differ from other modelling languages. Section 6.3 surveys the existing ADLs.
Section 6.4 presents the ADL-driven methodologies on software toolkit generation,
hardware synthesis, exploration and validation of programmable embedded systems.
This study forms the basis for comparing the relative merits and demerits of the exist-
ing ADLs in Section 6.5. Finally, Section 6.6 concludes this chapter with a discussion
on expected features of future ADLs.

6.2 ADLs and other languages

The phrase ‘architecture description language’ has been used in the context of
designing both software and hardware architectures. Software ADLs are used for
representing and analysing software architectures [4,5]. They capture the behavioural
specifications of the components and their interactions that comprises the software
architecture. However, hardware ADLs capture the structure (hardware components
and their connectivity) and the behaviour (instruction-set) of processor architectures.
This chapter surveys hardware ADLs.

The concept of using machine description languages for specification of archi-
tectures has been around for a long time. Early ADLs such as ISPS [6] were used
for simulation, evaluation and synthesis of computers and other digital systems. This
chapter surveys contemporary ADLs.

How do ADLs differ from programming languages, hardware description lan-
guages, modelling languages and the like? This section attempts to answer this
question. However, it is not always possible to answer the following question: given
a language for describing an architecture, what are the criteria for deciding whether
it is an ADL or not?

In principle, ADLs differ from programming languages because the latter bind
all architectural abstractions to specific point solutions, whereas ADLs intentionally
suppress or vary such binding. In practice, architecture is embodied and recoverable
from code by reverse engineering methods. For example, it might be possible to anal-
yse a piece of code written in C and figure out whether it corresponds to Fetch unit
or not. Many languages provide architecture level views of the system. For example,
C++ offers the ability to describe the structure of a processor by instantiating objects
for the components of the architecture. However, C++ offers little or no architecture-
level analytical capabilities. Therefore, it is difficult to describe architecture at a
level of abstraction suitable for early analysis and exploration. More importantly,
traditional programming languages are not a natural choice for describing architec-
tures due to their inability in capturing hardware features such as parallelism and
synchronisation.

Architecture description languages differ from modelling languages (such as
UML) because the latter are more concerned with the behaviours of the whole
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rather than the parts, whereas ADLs concentrate on representation of components.
In practice, many modelling languages allow the representation of cooperating com-
ponents and can represent architectures reasonably well. However, the lack of an
abstraction would make it harder to describe the instruction-set of the architecture.

Traditional Hardware Description Languages (HDLs), such as VHDL and Verilog,
do not have sufficient abstraction to describe architectures and explore them at the
system level. It is possible to perform reverse-engineering to extract the structure
of the architecture from the HDL description. However, it is hard to extract the
instruction-set behaviour of the architecture. In practice, some variants of HDLs
work reasonably well as ADLs for specific classes of programmable architectures.

There is no clear line between ADLs and non-ADLs. In principle, programming
languages, modelling languages and hardware description languages have aspects
in common with ADLs, as shown in Figure 6.3. Languages can, however, be dis-
criminated from one another according to how much architectural information they
can capture and analyse. Languages that were born as ADLs show a clear advan-
tage in this area over languages built for some other purpose and later co-opted
to represent architectures. Section 6.5 will re-visit this issue in light of the survey
results.

6.3 The ADL survey

Figure 6.4 shows the classification of ADLs based on two aspects: ‘content’ and
‘objective’. The content-oriented classification is based on the nature of the infor-
mation an ADL can capture, whereas the objective-oriented classification is based
on the purpose of an ADL. Contemporary ADLs can be classified into six cate-
gories based on the objective: simulation-oriented, synthesis-oriented, test-oriented,
compilation-oriented, validation-oriented and operating-system-oriented.
Architecture description languages can be classified into four categories based
on the nature of the information: structural, behavioural, mixed and partial. The
structural ADLs capture the structure in terms of architectural components and their



ADLs for programmable embedded systems 191

Architecture description languages

Structural ADLs Mixed ADLs Behavioural ADLs Partial ADLs
(MIMOLA, UDL/I)  (EXPRESSION, LISA) (ISDL, nML) (4IDL)
Synthesis Test Validation Simulation =~ Compilation (M)
oriented oriented oriented oriented oriented oriented

Figure 6.4 Taxonomy of ADLs

connectivity. The behavioural ADLs capture the instruction-set behaviour of the pro-
cessor architecture. The mixed ADLs capture both structure and behaviour of the
architecture. These ADLs capture complete description of the structure or behaviour
or both. However, the partial ADLs capture specific information about the architec-
ture for the intended task. For example, an ADL intended for interface synthesis does
not require internal structure or behaviour of the processor.

Traditionally, structural ADLs are suitable for synthesis and test-generation. Sim-
ilarly, behavioural ADLs are suitable for simulation and compilation. It is not always
possible to establish a one-to-one correspondence between content and objective
based classification. For example, depending on the nature and amount of information
captured, partial ADLs can represent any one or more classes of the objective-based
ADLs. This section presents the survey using content-based classification of ADLs.

6.3.1 Structural ADLs

Architecture description language designers consider two important aspects: level of
abstraction versus generality. It is very difficult to find an abstraction to capture the
features of different types of processors. A common way to obtain generality is to
lower the abstraction level. Register transfer level (RT-level) is a popular abstraction
level — low enough for detailed behaviour modelling of digital systems, and high
enough to hide gate-level implementation details. Early ADLs were based on RT-level
descriptions. This section briefly describes two structural ADLs: MIMOLA [7] and
UDL/I [8].

6.3.1.1 MIMOLA

MIMOLA [7] is a structure-centric ADL developed at the University of Dortmund,
Germany. It was originally proposed for micro-architecture design. One of the major
advantages of MIMOLA is that the same description can be used for synthesis,
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simulation, test generation and compilation. A tool chain including the MSSH hard-
ware synthesiser, the MSSQ code generator, the MSST self-test program compiler,
the MSSB functional simulator and the MSSU RT-level simulator were developed
based on the MIMOLA language [7]. MIMOLA has also been used by the RECORD
[9] compiler.

MIMOLA description contains three parts: the algorithm to be compiled, the target
processor model and additional linkage and transformation rules. The software part
(algorithm description) describes application programs in a PASCAL-like syntax. The
processor model describes micro-architecture in the form of a component netlist. The
linkage information is used by the compiler in order to locate important modules such
as program counter and instruction memory. The following code segment specifies
the program counter and instruction memory locations [7]:

LOCATION_FOR_PROGRAMCOUNTER PCReg;
LOCATION_FOR_INSTRUCTIONS IM[O..1023];

The algorithmic part of MIMOLA is an extension of PASCAL. Unlike other high-
level languages, it allows references to physical registers and memories. It also allows
use of hardware components using procedure calls. For example, if the processor
description contains a component named MAC, programmers can write the following
code segment to use the multiply-accumulate operation performed by MAC:

|res 1= MAC(X, Y, Z);

The processor is modelled as a net-list of component modules. MIMOLA permits
modelling of arbitrary (programmable or non-programmable) hardware structures.
Similar to VHDL, a number of predefined, primitive operators exist. The basic entities
of MIMOLA hardware models are modules and connections. Each module is specified
by its port interface and its behaviour. The following example shows the description
of a multi-functional ALU module [7]:

MODULE ALU
(IN inpl, inp2: (31:0);
OUT outp: (31:0);
IN ctrl: (1:0);
)
CONBEGIN
outp <- CASE ctrl OF
T inpl + inp2 ;
inpl - inp2 ;
inpl AND inp2 ;
inpl ;
ND;

mwNEFEO

CONEND;
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The CONBEGIN/CONEND construct includes a set of concurrent assignments.
In the example a conditional assignment to output port outp is specified, which
depends on the two-bit control input ctrl. The netlist structure is formed by con-
necting ports of module instances. For example, the following MIMOLA description
connects two modules: ALU and accumulator ACC.

CONNECTIONS ALU.outp -> ACC.inp
ACC.outp -> ALU.inp

The MSSQ code generator extracts instruction-set information from the module
netlist. It uses two internal data structures: connection operation graph (COG) and
instruction tree (I-tree). It is a very difficult task to extract the COG and I-trees
even in the presence of linkage information due to the flexibility of an RT-level
structural description. Extra constraints need to be imposed in order for the MSSQ
code generator to work properly. The constraints limit the architecture scope of MSSQ
to micro-programmable controllers, in which all control signals originate directly
from the instruction word. The lack of an explicit description of processor pipelines
or resource conflicts may result in poor code quality for some classes of VLIW or
deeply pipelined processors.

6.3.1.2 UDL/MI

Unified design language, UDL/I [8] is developed as a hardware description language
for compiler generation in COACH ASIP design environment at Kyushu Univer-
sity, Japan. UDL/I is used for describing processors at an RT-level on a per-cycle
basis. The instruction-set is automatically extracted from the UDL/I description [10],
and then it is used for generation of a compiler and a simulator. COACH assumes
simple RISC processors and does not explicitly support ILP or processor pipelines.
The processor description is synthesisable with the UDL/I synthesis system [11].
The major advantage of the COACH system is that it requires a single description
for synthesis, simulation and compilation. Designer needs to provide hints to locate
important machine states such as program counter and register files. Due to difficulty
in instruction-set extraction (ISE), ISE is not supported for VLIW and superscalar
architectures.

Structural ADLs enable flexible and precise micro-architecture descriptions. The
same description can be used for hardware synthesis, test generation, simulation and
compilation. However, it is difficult to extract the instruction-set without restrictions
on description style and target scope. Structural ADLs are more suitable for hardware
generation than retargetable compilation.

6.3.2 Behavioural ADLs

The difficulty of instruction-set extraction can be avoided by abstracting behavioural
information from the structural details. Behavioural ADLs explicitly specify



194 System-on-chip

the instruction semantics and ignore detailed hardware structures. Typically, there is
aone-to-one correspondence between behavioural ADLs and instruction-set reference
manual. This section briefly describes four behavioural ADLs: nML [12], ISDL [13],
Valen-C [14] and CSDL [15,16].

6.3.2.1 nML

nML is an instruction-set oriented ADL proposed at Technical University of
Berlin, Germany. nML has been used by code generators CBC [17] and CHESS
[18], and instruction set simulators Sigh/Sim [19] and CHECKERS. Currently,
CHESS/CHECKERS environment is used for automatic and efficient software
compilation and instruction-set simulation [20].

nML developers recognised the fact that several instructions share common prop-
erties. The final nML description would be compact and simple if the common
properties are exploited. Consequently, nML designers used a hierarchical scheme to
describe instruction sets. The instructions are the topmost elements in the hierarchy.
The intermediate elements of the hierarchy are partial instructions (PIs). The rela-
tionship between elements can be established using two composition rules: AND-rule
and OR-rule. The AND-rule groups several PIs into a larger PI and the OR-rule enu-
merates a set of alternatives for one PI. Therefore, instruction definitions in nML can
be in the form of an AND-OR tree. Each possible derivation of the tree corresponds
to an actual instruction.

To achieve the goal of sharing instruction descriptions, the instruction set is enu-
merated by an attributed grammar [21]. Each element in the hierarchy has a few
attributes. A non-leaf element’s attribute values can be computed based on its chil-
dren’s attribute values. Attribute grammar is also adopted by other ADLs such as ISDL
[13] and TDL [22]. The following nML description shows an example of instruction
specification [12]:

op numeric_instruction(a:num_action, src:SRC, dst:DST)

action {
temp_src = src;
temp_dst = dst;
a.action;
dst = temp_dst;
s
op num_action = add | sub
op add()

action = {
temp_dst = temp_dst + temp_src

}

The definition of numeric_instruction combines three Pls with the
AND-rule: num_action, SRC and DST. The first PI, num_action, uses the
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OR-rule to describe the valid options for actions: add or sub. The number of
all possible derivations of numeric_instruction is the product of the size
of num_action, SRC and DST. The common behaviour of all these options is
defined in the action attribute of numeric_instruction. Each option for
num_action should have its own action attribute defined as its specific behaviour,
which is referred by the a.action line. For example, the above code segment has
action description for add operation. Object code image and assembly syntax can
also be specified in the same hierarchical manner.

nML also captures the structural information used by instruction-set architecture
(ISA). For example, storage units should be declared since they are visible to the
instruction-set. nML supports three types of storages: RAM, register and transitory
storage. Transitory storage refers to machine states that are retained only for a limited
number of cycles, e.g. values on buses and latches. Computations have no delay in
nML timing model — only storage units have delay. Instruction delay slots are modelled
by introducing storage units as pipeline registers. The result of the computation is
propagated through the registers in the behaviour specification.

nML models constraints between operations by enumerating all valid combina-
tions. The enumeration of valid cases can make nML descriptions lengthy. More
complicated constraints, which often appear in DSPs with irregular instruction level
parallelism (ILP) constraints or VLIW processors with multiple issue slots, are hard to
model with nML. For example, nML cannot model the constraint that operation 11
cannot directly follow operation 10. nML explicitly supports several addressing
modes. However, it implicitly assumes an architecture model which restricts its
generality. As aresultitis hard to model multi-cycle or pipelined units and multi-word
instructions explicitly. A good critique of nML is given by Hantoog et al [23].

6.3.2.2 ISDL

Instruction Set Description Language (ISDL) was developed at MIT and used by the
Aviv compiler [24] and GENSIM simulator generator [25]. The problem of constraint
modelling is avoided by ISDL with explicit specification. ISDL is mainly targeted
towards VLIW processors. Similar to nML, ISDL primarily describes the instruction-
set of processor architectures. ISDL consists mainly of five sections: instruction
word format, global definitions, storage resources, assembly syntax and constraints.
It also contains an optimisation information section that can be used to provide certain
architecture specific hints for the compiler to make better machine dependent code
optimisations.

The instruction word format section defines fields of the instruction word. The
instruction word is separated into multiple fields each containing one or more sub-
fields. The global definition section describes four main types: tokens, non-terminals,
split functions and macro definitions. Tokens are the primitive operands of instruc-
tions. For each token, assembly format and binary encoding information must be
defined. An example token definition of a binary operand is:

Token X[0..1] X_R ival {yylval.ival = yytext[1l] - 07;}
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In this example, following the keyword Token is the assembly format of the
operand. X_R is the symbolic name of the token used for reference. The ival is
used to describe the value returned by the token. Finally, the last field describes
the computation of the value. In this example, the assembly syntax allowed for the
token X_R is XO or X1, and the values returned are 0 or 1, respectively.

The value (last) field is used for behavioural definition and binary encoding assign-
ment by non-terminals or instructions. Non-terminal is a mechanism provided to
exploit commonalities among operations. The following code segment describes a
non-terminal named XYSRC:

Non_Terminal ival XYSRC: X D {$$
Y_D {$%

0} |1
Y D+ 1;};

The definition of XYSRC consists of the keyword Non_Terminal, the type
of the returned value, a symbolic name as it appears in the assembly and an action
that describes the possible token or non-terminal combinations and the return value
associated with each of them. In this example, XYSRC refers to tokens X_Dand Y_D
as its two options. The second field (ival) describes the returned value type. It
returns 0 for X_D or incremented value for Y_D.

Similar to nML, storage resources are the only structural information modelled
by ISDL. The storage section lists all storage resources visible to the programmer.
It lists the names and sizes of the memory, register files and special registers. This
information is used by the compiler to determine the available resources and how
they should be used.

The assembly syntax section is divided into fields corresponding to the separate
operations that can be performed in parallel within a single instruction. For each field,
a list of alternative operations can be described. Each operation description consists
of a name, a list of tokens or non-terminals as parameters, a set of commands that
manipulate the bitfields, RTL description, timing details and costs. RTL description
captures the effect of the operation on the storage resources. Multiple costs are allowed
including operation execution time, code size and costs due to resource conflicts. The
timing model of ISDL describes when the various effects of the operation take place
(e.g. because of pipelining).

In contrast to nML, which enumerates all valid combinations, ISDL defines
invalid combinations in the form of Boolean expressions. This often leads to a simple
constraint specification. It also enables ISDL to capture irregular ILP constraints. The
following example shows how to describe the constraint that instruction 11 cannot
directly follow instruction 10. The ‘[1]’ indicates a time shift of one instruction
fetch for the 10 instruction. The “* is a symbol for NOT and ‘&’ is for logical AND.

“(1 ¥y & ([11 10 *, )
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ISDL provides the means for compact and hierarchical instruction set
specification. However, it may not be possible to describe instruction sets with
multiple encoding formats using the simple tree-like instruction structure of ISDL.

6.3.2.3 Valen-C

Valen-C is an embedded software programming language proposed at Kyushu
University, Japan [14,26]. Valen-C is an extended C language which supports explicit
and exact bit-width for integer type declarations. A retargetable compiler (called
Valen-CC) has been developed that accepts C or Valen-C programs as an input
and generates the optimised assembly code. Although Valen-CC assumes simple
RISC architectures, it has retargetability to some extent. The most interesting feature
of Valen-CC is that the processor can have any datapath bit-width (e.g. 14 bits or
29 bits). The Valen-C system aims at optimisation of datapath width. The target pro-
cessor description for Valen-CC includes the instruction set consisting of behaviour
and assembly syntax of each instruction as well as the processor datapath width.
Valen-CC does not explicitly support processor pipelines or ILP.

6.3.2.4 CSDL

Computer system description languages (CSDL) is a family of machine descrip-
tion languages developed for the Zephyr compiler infrastructure at the University of
Virginia. CSDL consists of four languages: SLED [16], A-RTL, CCL and PLUNGE.
SLED describes assembly and binary representations of instructions [16], while
A-RTL describes the behaviour of instructions in the form of register transfers [15].
CCL specifies the convention of function calls [27]. PLUNGE is a graphical notation
for specifying the pipeline structure.

Similar to ISDL, SLED (Specification Language for Encoding and Decoding)
uses a hierarchical model for machine instruction. SLED models an instruction
(binary representation) as a sequence of tokens, which are bit vectors. Tokens
may represent whole instructions, as on RISC machines, or parts of instructions,
as on CISC machines. Each class of token is declared with multiple fields. The
construct patterns help to group the fields together and to bind them to binary val-
ues. The directive constructors help to connect the fields into instruction words.
Similar to nML, SLED enumerates legal combinations of fields. There is neither a
notion of hardware resources nor explicit constraint descriptions. Therefore, with-
out significant extension, SLED is not suitable for use in VLIW instruction word
description [2].

To reduce description effort, A-RTL was developed. A A-RTL description will
be translated into register-transfer lists for the use of vpo (very portable optimiser).
According to the developers [15], A-RTL is a high order, strongly typed, polymorphic,
pure functional language based largely on Standard ML [28]. It has many high-level
language features such as name space (through the module and import directives) and
function definition. Users can even introduce new semantics and precedence to basic
operators.
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In general, the behavioural languages have one feature in common: hierarchical
instruction set description based on attribute grammar [21]. This feature simplifies
the instruction set description by sharing the common components between
operations. However, the capabilities of these models are limited due to the lack
of detailed pipeline and timing information. It is not possible to generate cycle accu-
rate simulators without certain assumptions regarding control behaviour. Due to lack
of structural details, it is also not possible to perform resource-based scheduling using
behavioural ADLs.

6.3.3 Mixed ADLs

Mixed languages captures both structural and behavioural details of the architec-
ture. This section briefly describes five mixed ADLs: FlexWare, HMDES, TDL,
EXPRESSION and LISA.

6.3.3.1 FlexWare

FlexWare is a CAD system for DSP or ASIP design [29]. The FlexWare system
includes the CodeSyn code generator and the Insulin simulator. Both behaviour and
structure are captured in the target processor description. The machine description
for CodeSyn consists of three components: instruction set, available resources (and
their classification) and an interconnect graph representing the datapath structure.
The instruction set description is a list of generic processor macro instructions to
execute each target processor instruction. The simulator uses a VHDL model of
a generic parameterisable machine. The parameters include bit-width, number of
registers, ALUs and so on. The application is translated from the user-defined target
instruction set to the instruction set of the generic machine. Then, the code is executed
on the generic machine.

6.3.3.2 HMDES

Machine description language HMDES was developed at the University of Illinois at
Urbana-Champaign for the IMPACT research compiler [30]. C-like pre-processing
capabilities such as file inclusion, macro-expansion and conditional inclusion are
supported in HMDES. An HMDES description is the input to the MDES machine
description system of the Trimaran compiler infrastructure, which contains IMPACT
as well as the Elcor research compiler from HP Labs. The description is first pre-
processed, then optimised and translated to a low-level representation file. A machine
database reads the low-level files and supplies information for the compiler backend
through a pre-defined query interface.

MDES captures both structure and behaviour of target processors. Information
is broken down into sections such as format, resource usage, latency, operation and
register. For example, the following code segment describes register and register
file. It describes 64 registers. The register file describes the width of each register and
other optional fields such as generic register type (virtual field), speculative, static and
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rotating registers. The value ‘1’ implies speculative and ‘0O’ implies non-speculative.

SECTION Register {
ROQ); R1Q; --- R63Q);
'RIOI7O: --- "RI63170;

}
SECTION Register_ File {

RF_i(width(32) virtual (i) speculative(l)
static(RO...R63) rotating(’R[0]”..."R[63]7));

,

MDES allows only a restricted retargetability of the cycle-accurate simulator to
the HPL-PD processor family [31]. MDES permits description of memory systems,
but limited to the traditional hierarchy, i.e. register files, caches and main memory.

6.3.3.3 TDL

Target description language TDL [22] was developed at Saarland University,
Germany. The language is used in a retargetable postpass assembly-based code opti-
misation system called PROPAN [32]. A TDL description contains four sections:
resource, instruction set, constraints and assembly format.

TDL offers a set of pre-defined resource types whose properties can be described
by a pre-defined set of attributes. The pre-defined resource types comprise functional
units, register sets, memories and caches. Attributes are available to describe the
bit-width of registers, their default data type, the size of a memory, its access width
and alignment restrictions. The designer can extend the domain of the pre-defined
attributes and declare user-defined attributes if additional properties have to be taken
into account.

Similar to behavioural languages, the instruction-set description of TDL is based
on attribute grammar [21]. TDL supports VLIW architectures, so it distinguishes oper-
ation and instruction. The instruction-set section also contains definition of operation
classes that groups operations for the ease of reference. TDL provides a non-terminal
construct to capture common components between operations.

Similar to ISDL, TDL uses Boolean expressions for constraint modelling. A con-
straint definition includes a premise part followed by a rule part, separated by a colon.
The following code segment describes constraints in TDL [22]:

op in {CO}: op.dstl = op.srcl;
opl in {C1} & op2 in {C2}: '(opl &&op2);

The first one enforces the first source operand to be identical to the destina-
tion operand for all operations of the operation class CO. The second rule prevents
any operation of operation class C1 to be executed in parallel with an operation of
operation class C2.
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The assembly section deals with syntactic details of the assembly language such
as instruction or operation delimiters, assembly directives and assembly expressions.
TDL is assembly oriented and provides a generic modelling of irregular hardware
constraints. TDL provides a well-organised formalism for VLIW DSP assembly code
generation.

6.3.3.4 EXPRESSION

The above-mixed ADLs require explicit description of Reservation Tables (RT). Pro-
cessors that contain complex pipelines, large amounts of parallelism and complex
storage sub-systems, typically contain a large number of operations and resources
(and hence RTs). Manual specification of RTs on a per-operation basis thus becomes
cumbersome and error-prone. The manual specification of RTs (for each configura-
tion) becomes impractical during rapid architectural exploration. The EXPRESSION
ADL [33] describes a processor as a netlist of units and storages to automatically
generate RTs based on the netlist [34]. Unlike MIMOLA, the netlist representation
of EXPRESSION is coarse grain. It uses a higher level of abstraction similar to
block-diagram level description in architecture manual.

EXPRESSION ADL was developed at University of California, Irvine. The
ADL has been used by the retargetable compiler (EXPRESS [35]) and simulator
(SIMPRESS [36]) generation framework. The framework also supports a graphical
user interface (GUI) and can be used for design space exploration of programmable
architectures consisting of processor cores, coprocessors and memories [37].

An EXPRESSION description is composed of two main sections: behaviour
(instruction-set) and structure. The behaviour section has three subsections: opera-
tions, instruction and operation mappings. Similarly, the structure section consists of
three subsections: components, pipeline/data-transfer paths and memory subsystem.

The operation subsection describes the instruction-set of the processor. Each oper-
ation of the processor is described in terms of its opcode and operands. The types
and possible destinations of each operand are also specified. A useful feature of
EXPRESSION is operation group that groups similar operations together for the ease
oflater reference. For example, the following code segment shows an operation group
(alu_ops) containing two ALU operations: add and sub.

(OP_GROUP alu_ops
(OPCODE add
(OPERANDS (SRC1 reg) (SRC2 reg/imm) (DEST reg))
(BEHAVIOR DEST = SRC1 + SRC2)

)
(OPCODE sub

(OPERANDS (SRC1 reg) (SRC2 reg/Z/imm) (DEST reg))
(BEHAVIOR DEST = SRC1 - SRC2)
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Figure 6.5 The DLX architecture

The instruction subsection captures the parallelism available in the architecture.
Each instruction contains a list of slots (to be filled with operations), with each
slot corresponding to a functional unit. The operation mapping subsection is used
to specify the information needed by instruction selection and architecture-specific
optimisations of the compiler. For example, it contains mapping between generic and
target instructions.

The component subsection describes each RT-level component in the architecture.
The components can be pipeline units, functional units, storage elements, ports and
connections. For multi-cycle or pipelined units, the timing behaviour is also specified.

The pipeline/data-transfer path subsection describes the netlist of the processor.
The ‘pipeline path description’ provides a mechanism to specify the units which
comprise the pipeline stages, while the ‘data-transfer path description’ provides a
mechanism for specifying the valid data-transfers. This information is used to both
retarget the simulator, and to generate reservation tables needed by the scheduler
[34]. An example path declaration for the DLX architecture [38] (Figure 6.5) is
shown below. It describes that the processor has five pipeline stages. It also describes
that the Execute stage has four parallel paths. Finally, it describes each path, e.g. it
describes that the FADD path has four pipeline stages.

(PIPELINE Fetch Decode Execute MEM WriteBack)
(Execute (ALTERNATE IALU MULT FADD DIV))
(MULT (PIPELINE MUL1 MUL2 ... MUL7))

(FADD (PIPELINE FADD1 FADD2 FADD3 FADD4))
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The memory subsection describes the types and attributes of various storage
components (such as register files, SRAMs, DRAMs and caches). The memory netlist
information can be used to generate memory aware compilers and simulators [39,40].
Memory aware compilers can exploit the detailed information to hide the latency of
the lengthy memory operations [41].

In general, EXPRESSION captures the data path information in the processor.
The control path is not explicitly modelled. Also, the VLIW instruction composition
model is simple. The instruction model requires extension to capture inter-operation
constraints such as sharing of common fields. Such constraints can be modelled by
ISDL through cross-field encoding assignment.

6.3.3.5 LISA

LISA (Language for Instruction Set Architecture) [42] was developed at Aachen
University of Technology, Germany with a simulator centric view. The language has
been used to produce production quality simulators [43]. An important aspect of LISA
language is its ability to capture control path explicitly. Explicit modelling of both
datapath and control is necessary for cycle-accurate simulation. LISA has also been
used to generate retargetable C compilers [44,45].

LISA descriptions are composed of two types of declarations: resource and opera-
tion. The resource declarations cover hardware resources such as registers, pipelines
and memories. The pipeline model defines all possible pipeline paths that opera-
tions can go through. An example pipeline description for the architecture shown in
Figure 6.5 is as follows:

PIPELINE in
PIPELINE fl

{Fetch; Decode; IALU; MEM; WriteBack}
{Fetch; Decode; FADD1; FADD2;
FADD3; FADD4; MEM; WriteBack}
PIPELINE mul = {Fetch; Decode; MUL1; MUL2; MUL3; MUL4;
MUL5; MUL6; MUL7; MEM; WriteBack}
PIPELINE div = {Fetch; Decode; DIV; MEM; WriteBack}

t =
Tt =

Operations are the basic objects in LISA. They represent the designer’s view of
the behaviour, the structure, and the instruction set of the programmable architecture.
Operation definitions capture the description of different properties of the system
such as operation behaviour, instruction set information and timing. These operation
attributes are defined in several sections:

The COD ING section describes the binary image of the instruction word.

The SYNTAX section describes the assembly syntax of instructions.

The SEMANT ICS section specifies the instruction-set semantics.

The BEHAVIOR section describes components of the behavioural model.

The ACTIVATION section describes the timing of other operations relative to
the current operation.

e The DECLARE section contains local declarations of identifiers.
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LISA exploits the commonality of similar operations by grouping them into one.
The following code segment describes the decoding behaviour of two immediate-type
(i_type) operations (ADDI and SUBI) in the DLX Decode stage. The complete
behaviour of an operation can be obtained by combining its behaviour definitions in
all the pipeline stages.

OPERATION i_type IN pipe_int.Decode {
DECLARE {
GROUP opcode={ADDI || SUBI}
GROUP rsl1, rd = {fix_register};
}
CODING {opcode rsl rd immediate}
SYNTAX {opcode rd ““,”” rsl ““,”” immediate}
BEHAVIOR { reg_a = rsl; imm = immediate; cond = O;
3
ACTIVATION {opcode, writeback}

A language similar to LISA is RADL. RADL [46] was developed at Rockwell,
Inc. as an extension of the LISA approach that focuses on explicit support of detailed
pipeline behaviour to enable generation of production quality cycle-accurate and
phase-accurate simulators.

6.3.4 Partial ADLs

The ADLs discussed so far capture a complete description of the processor’s structure,
behaviour or both. There are many description languages that capture partial infor-
mation of the architecture needed to perform a specific task. This section describes
two such ADLs.

AIDL is an ADL developed at the University of Tsukuba for design of high-
performance superscalar processors [47]. It seems that AIDL does not aim at datapath
optimisation but aims at validation of the pipeline behaviour such as data-forwarding
and out-of-order completion. In AIDL, timing behaviour of the pipeline is described
using interval temporal logic. AIDL does not support software toolkit generation.
However, AIDL descriptions can be simulated using the AIDL simulator.

PEAS-I is a CAD system for ASIP design supporting automatic instruction set
optimisation, compiler generation and instruction level simulator generation [48]. In
the PEAS-I system, the GNU C compiler is used, and the machine description of
GCC is automatically generated. Therefore, there exists no specific ADL in PEAS-I.
Inputs to PEAS-I include an application program written in C and input data to the
program. Then, the instruction set is automatically selected in such a way that the
performance is maximised or the gate count is minimised. Based on the instruction
set, GNU CC and an instruction level simulator are automatically retargeted.
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6.4 ADL driven methodologies

The survey of ADLs is incomplete without a clear understanding of the supported
methodologies. This section investigates the contribution of the contemporary ADLs
in the following methodologies:

e software toolkit generation and exploration
e generation of hardware implementation
e top-down validation

6.4.1 Software toolkit generation and exploration

Embedded systems present a tremendous opportunity to customise designs by
exploiting the application behaviour. Rapid exploration and evaluation of candidate
architectures are necessary due to time-to-market pressure and short product lifetimes.
ADLs are used to specify processor and memory architectures and generate software
toolkit including compiler, simulator, assembler, profiler and debugger. Figure 6.6
shows a traditional ADL-based design space exploration flow. The application pro-
grams are compiled and simulated, and the feedback is used to modify the ADL
specification with the goal of finding the best possible architecture for the given set
of application programs under various design constraints such as area, power and
performance.

An extensive body of recent work addresses ADL driven software toolkit gen-
eration and design space exploration of processor-based embedded systems, in both
academia: ISDL [13], Valen-C [14], MIMOLA [9], LISA [42], nML [12], Sim-nML
[49], EXPRESSION [33], and industry: ARC [50], Axys [51], RADL [46], Target
[20], Tensilica [52], MDES [31].

One of the main purposes of an ADL is to support automatic generation of a
high-quality software toolkit including at least an ILP compiler and a cycle-accurate
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( English document )
— Automatic y
....... » Manual ( ADL description
---» Feedback
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Figure 6.6 ADL driven design space exploration
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simulator. However, such tools require detailed information about the processor,
typically in a form that is not concise and easily specifiable. Therefore, it becomes
necessary to develop procedures to automatically generate such tool-specific informa-
tion from the ADL specification. For example, RTs are used in many ILP compilers to
describe resource conflicts. However, manual description of RTs on a per-instruction
basis is cumbersome and error-prone. Instead, it is easier to specify the pipeline
and datapath resources in an abstract manner and generate RTs on a per-instruction
basis [34].

This section describes some of the challenges in automatic generation of software
tools (focusing on compilers and simulators) and surveys some of the approaches
adopted by current tools.

6.4.1.1 Compilers

Traditionally, software for embedded systems was hand-tuned in assembly. With
increasing complexity of embedded systems, it is no longer practical to develop
software in assembly language or to optimise it manually except for critical sections of
the code. Compilers which produce optimised machine specific code from a program
specified in a high-level language (HLL) such as C/C++ and Java are necessary in
order to produce efficient software within the time budget. Compilers for embedded
systems have been the focus of several research efforts recently [53].

The compilation process can be broadly broken into two steps: analysis and syn-
thesis [54]. During analysis, the program (in HLL) is converted into an intermediate
representation (IR) that contains all the desired information such as control and data
dependences. During synthesis, the IR is transformed and optimised in order to gen-
erate efficient target specific code. The synthesis step is more complex and typically
includes the following phases: instruction selection, scheduling, resource allocation,
code optimisations/transformations and code generation [55]. The effectiveness of
each phase depends on the algorithms chosen and the target architecture. A further
problem during the synthesis step is that the optimal ordering between these phases
is highly dependent on the target architecture and the application program. As a
result, traditionally, compilers have been painstakingly hand-tuned to a particular
architecture (or architecture class) and application domain(s). However, stringent
time-to-market constraints for SOC designs no longer make it feasible to manu-
ally generate compilers tuned to particular architectures. Automatic generation of
an efficient compiler from an abstract description of the processor model becomes
essential.

A promising approach to automatic compiler generation is the ‘retargetable com-
piler’ approach (see Part II embedded software, Chapter 8). A compiler is classified
as retargetable if it can be adapted to generate code for different target processors with
significant reuse of the compiler source code. Retargetability is typically achieved
by providing target machine information (in an ADL) as input to the compiler along
with the program corresponding to the application.

The complexity in retargeting the compiler depends on the range of target proces-
sors it supports and also on its optimising capability. Due to the growing amount of ILP
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features in modern processor architectures, the difference in quality of code generated
by a naive code conversion process and an optimising ILP compiler can be enormous.
Recent approaches on retargetable compilation have focused on developing opti-
misations/transformations that are ‘retargetable’ and capturing the machine-specific
information needed by such optimisations in the ADL. The retargetable compilers
can be classified into three broad categories, based on the type of the machine model
accepted as input.

Architecture template based: Such compilers assume a limited architecture
template which is parameterisable for customisation. The most common param-
eters include operation latencies, number of functional units, number of registers,
etc. Architecture template based compilers have the advantage that both optimi-
sations and the phase ordering between them can be manually tuned to produce
highly efficient code for the limited architecture space. Examples of such com-
pilers include the Valen-C compiler [14] and the GNU-based C/C++ compiler from
Tensilica Inc. [52]. The Tensilica GNU-based C/C++ compiler is geared towards
the Xtensa parameterisable processor architecture. One important feature of this
system is the ability to add new instructions (described through an Instruction
Extension Language) and automatically generate software tools tuned to the new
instruction-set.

Explicit behavioural information based: Most compilers require a specification
of the behaviour in order to retarget their transformations (e.g. instruction selection
requires a description of the semantics of each operation). Explicit behavioural infor-
mation based retargetable compilers require full information about the instruction-set
as well as explicit resource conflict information. Examples include the AVIV [24]
compiler using ISDL, CHESS [18] using nML and Elcor [31] using MDES. The
AVIV retargetable code generator produces machine code, optimised for mini-
mal size, for target processors with different instruction-set. It solves the phase
ordering problem by performing a heuristic branch-and-bound step that performs
resource allocation/assignment, operation grouping and scheduling concurrently.
CHESS is a retargetable code generation environment for fixed-point DSP proces-
sors. CHESS performs instruction selection, register allocation and scheduling as
separate phases (in that order). Elcor is a retargetable compilation environment for
VLIW architectures with speculative execution. It implements a software pipelin-
ing algorithm (modulo scheduling) and register allocation for static and rotating
register files.

Behavioural information generation based: Recognising that the architecture
information needed by the compiler is not always in a form that may be well
suited for other tools (such as synthesis) or does not permit concise specifica-
tion, some research has focused on extraction of such information from a more
amenable specification. Examples include the MSSQ and RECORD compiler using
MIMOLA [9], retargetable C compiler based on LISA [44] and the EXPRESS com-
piler using EXPRESSION [33]. MSSQ translates Pascal-like HLL into microcode
for micro-programmable controllers, while RECORD translates code written in
a DSP-specific programming language, called data flow language (DFL), into
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machine code for the target DSP. The retargetable C compiler generation using
LISA is based on reuse of a powerful C compiler platform with many built-in code
optimisations and generation of mapping rules for code selection using the instruc-
tion semantics information [44]. The EXPRESS compiler tries to bridge the gap
between explicit specification of all information (e.g. AVIV) and implicit specifi-
cation requiring extraction of instruction-set (e.g. RECORD), by having a mixed
behavioural/structural view of the processor.

6.4.1.2 Simulators

Simulators are critical components of the exploration and software design toolkit for
the system designer. They can be used to perform diverse tasks such as verifying
the functionality and/or timing behaviour of the system (including hardware and
software), and generating quantitative measurements (e.g. power consumption) which
can be used to aid the design process.

Simulation of the processor system can be performed at various abstraction levels.
At the highest level of abstraction, a functional simulation of the processor can be
performed by modelling only the instruction-set (IS). Such simulators are termed
instruction-set simulators (ISS) or instruction-level simulators (ILS). At lower levels
of abstraction are the cycle-accurate and phase-accurate simulation models that yield
more detailed timing information. Simulators can be further classified based on
whether they provide bit-accurate models, pin-accurate models, exact pipeline models
and structural models of the processor.

Typically, simulators at higher levels of abstraction (e.g. ISS, ILS) are faster
but gather less information as compared to those at lower levels of abstraction
(e.g. cycle-accurate, phase-accurate). Retargetability (i.e. ability to simulate a wide
variety of target processors) is especially important in the arena of embedded system
design with emphasis on exploration and co-development of hardware and software.
Simulators with limited retargetability are very fast but may not be useful in all aspects
of the design process. Such simulators typically incorporate a fixed architecture tem-
plate and allow only limited retargetability in the form of parameters such as number
of registers and ALUs. Examples of such simulators are numerous in the industry and
include the HPL-PD [31] simulator using the MDes ADL.

The model of simulation adopted has significant impact on the simulation speed
and flexibility of the simulator. Based on the simulation model, simulators can be
classified into three types: interpretive, compiled and mixed.

Interpretation based: Such simulators are based on an interpretive model of the
processor’s instruction-set. Interpretive simulators store the state of the target proces-
sor in host memory. It then follows a fetch, decode and execute model: instructions
are fetched from memory, decoded and then executed in serial order. Advantages
of this model include ease of implementation, flexibility and the ability to collect
varied processor state information. However, it suffers from significant performance
degradation as compared with the other approaches primarily due to the tremendous
overhead in fetching, decoding and dispatching instructions. Almost all commercially
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available simulators are interpretive. Examples of research interpretive retargetable
simulators include SIMPRESS [36] using EXPRESSION and GENSIM/XSIM [25]
using ISDL.

Compilation based: Compilation-based approaches reduce the runtime overhead
by translating each target instruction into a series of host machine instructions which
manipulate the simulated machine state. Such translation can be done either at compile
time (static compiled simulation) where the fetch—decode—dispatch overhead is com-
pletely eliminated, or at load time (dynamic compiled simulation) which amortises
the overhead over repeated execution of code. Simulators based on the static compi-
lation model are presented by Zhu and Gajski [56] and Pees et al. [43]. Examples of
dynamic compiled code simulators include the Shade simulator [57] and the Embra
simulator [58].

Interpretive + Compiled: Traditional interpretive simulation is flexible but
slow. Instruction decoding is a time-consuming process in a software simulation.
Compiled simulation performs compile time decoding of application programs to
improve the simulation performance. However, all compiled simulators rely on
the assumption that the complete program code is known before the simulation
starts and is furthermore run-time static. Due to the restrictiveness of the compiled
technique, interpretive simulators are typically used in embedded systems’ design
flow. Two recently proposed simulation techniques (JIT-CCS [59] and IS-CS [60])
combine the flexibility of interpretive simulation with the speed of the compiled
simulation.

The ‘just-in-time cache compiled simulation’ (JIT-CCS) technique compiles an
instruction during run-time, just-in-time before the instruction is going to be exe-
cuted. Subsequently, the extracted information is stored in a simulation cache for
direct reuse in a repeated execution of the program address. The simulator recognises
if the program code of a previously executed address has changed and initiates a
re-compilation. The ‘instruction set compiled simulation’ (IS-CS) technique performs
time-consuming instruction decoding during compile time. In this case, an instruc-
tion is modified at run-time, the instruction is re-decoded prior to execution. It also
uses an ‘instruction abstraction’ technique to generate aggressively optimised decoded
instructions that further improve simulation performance [60,61].

6.4.2 Generation of hardware implementation

Recent approaches on ADL-based software toolkit generation enable performance
driven exploration. The simulator produces profiling data and thus may answer ques-
tions regarding the instruction set, the performance of an algorithm and the required
size of memory and registers. However, the required silicon area, clock frequency
and power consumption can only be determined in conjunction with a synthesisable
HDL model.

There are two major approaches in the literature for synthesisable HDL generation.
The first one is a parameterised processor core-based approach. These cores are bound
to a single processor template whose architecture and tools can be modified to a certain
degree. The second approach is based on processor specification languages.
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6.4.2.1 Processor template based

Examples of processor template-based approaches are Xtensa [52], Jazz [62] and
PEAS [63]. Xtensa [52] is a scalable RISC processor core. Configuration options
include the width of the register set, caches and memories. New functional units and
instructions can be added using the Tensilica Instruction (TIE) language. A synthe-
sisable hardware model along with software toolkit can be generated for this class of
architectures. Improv’s Jazz [62] processor is supported by a flexible design method-
ology to customise the computational resources and instruction set of the processor.
It allows modifications of data width, number of registers, depth of hardware task
queue and addition of custom functionality in Verilog. PEAS [63] is a GUI-based
hardware/software codesign framework. It generates HDL code along with software
toolkit. It has support for several architecture types and a library of configurable
resources.

6.4.2.2 Specification language based

Figure 6.7 shows a typical framework of processor description language-driven
HDL generation. Structure-centric ADLs such as MIMOLA are suitable for hard-
ware generation. Some of the behavioural languages (such as ISDL and nML) are
also used for hardware generation. For example, the HDL generator HGEN [25]
uses ISDL description, and the synthesis tool GO [20] is based on nML. Itoh
et al. [64] have proposed a micro-operation description-based synthesisable HDL
generation.
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Mixed languages such as LISA and EXPRESSION capture both structure and
behaviour of the processor. The synthesisable HDL generation approach based on
LISA language [65] produces an HDL model of the architecture. The designer has the
choice to generate a VHDL, Verilog or SystemC representation of the target architec-

ture [66]. The HDL generation methodology presented by Mishra et al. [67] combines
the advantages of the processor template-based environments and the language-based

specifications using EXPRESSION ADL.

6.4.3 Top-down validation
Validation of microprocessors is one of the most complex and important tasks in the
current System-on-Chip (SoC) design methodology. Figure 6.8 shows a traditional
architecture validation flow. The architect prepares an informal specification of the
microprocessor in the form of an English document. The logic designer implements
the modules in the RTL. The ‘RTL design’ is validated using a combination of simu-
lation techniques and formal methods. One of the most important problems in today’s
processor design validation is the lack of a golden reference model that can be used
for verifying the design at different levels of abstraction. Thus, many existing val-
idation techniques employ a ‘bottom-up approach’ to pipeline verification, where
the functionality of an existing pipelined processor is, in essence, reverse-engineered

from its RTL implementation.
Mishra [68] has presented an ADL-driven validation technique that is com-

plementary to these bottom-up approaches. It leverages the system architects’
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knowledge about the behaviour of the programmable embedded systems through
ADL constructs, thereby allowing a powerful ‘top-down approach’ to microproces-
sor validation. Figure 6.9 shows an ADL-driven top-down validation methodology.
This methodology has two important steps: validation of ADL specification, and
specification-driven validation of programmable architectures.

6.4.3.1 Validation of ADL specification

It is important to verify the ADL specification to ensure the correctness of the architec-
ture specified and the generated software toolkit. Both static and dynamic behaviour
need to be verified to ensure that the specified architecture is well formed. The static
behaviour can be validated by analysing several static properties such as, connect-
edness, false pipeline and data-transfer paths and completeness using a graph-based
model of the pipelined architecture [69,70].

The dynamic behaviour can be validated by analysing the instruction flow in the
pipeline using a Finite State Machine (FSM) based model to verify several important
architectural properties such as determinism and in-order execution in the presence
of hazards and multiple exceptions [71,72].

6.4.3.2 Specification-driven validation

The validated ADL specification can be used as a golden reference model for top-down
validation of programmable architectures. The top-down validation approach has
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been demonstrated in two directions: functional test program generation, and design
validation using a combination of equivalence checking and symbolic simulation.

Test generation for functional validation of processors has been demonstrated
using MIMOLA [7], EXPRESSION [73] and nML [20]. A model checking based
approach is used to automatically generate functional test programs from the proces-
sor specification using EXPRESSION ADL [73]. It generates a graph model of the
pipelined processor from the ADL specification. The functional test programs are
generated based on the coverage of the pipeline behaviour.

ADL-driven design validation using equivalence checking has been demonstrated
using EXPRESSION ADL [74]. This approach combines ADL-driven hardware gen-
eration and validation. The generated hardware model (RTL) is used as a reference
model to verify the hand-written implementation (RTL design) of the processor. To
verify that the implementation satisfies certain properties, the framework generates
the intended properties. These properties are applied using symbolic simulation [74].

6.5 Comparative study

Table 6.1 compares the features of contemporary ADLs in terms of their support
for compiler generation, simulator generation, test generation, synthesis and formal
verification. Also, information captured by the ADLs is compared.

Since MIMOLA and UDL/I are originally HDLs, their descriptions are synthesis-
able and can be simulated using HDL simulators. MIMOLA appears to be successful
for retargetable compilation for DSPs with irregular datapaths. However, since its
abstraction level is rather low, MIMOLA is laborious to write. COACH (uses UDL/T)
supports generation of both compilers and simulators. nML and ISDL support ILP
compiler generation. However, due to the lack of structural information, it is not
possible to automatically detect resource conflicts between instructions. MDES sup-
ports simulator generation only for the HPL-PD processor family. EXPRESSION has
ability to automatically generate ILP compilers, reservation tables and cycle-accurate
simulators. Furthermore, description of memory hierarchies is supported. LISA and
RADL were originally designed for simulator generation. AIDL descriptions are
executable on the AIDL simulator, and do not support compiler generation.

From the above comparison it is obvious that ADLs should capture both behaviour
(instruction set) and structure (netlist) information in order to generate high-quality
software toolkit automatically and efficiently. Behaviour information which is nec-
essary for compiler generation should be explicitly specified for mainly two reasons.
First, instruction-set extraction from netlists described in synthesis-oriented ADLs
or HDLs does not seem to be applicable to a wide range of processors. Second,
synthesis-oriented ADLs or HDLs are generally tedious to write for the purpose of
DSE. Also, structure information is necessary not only to generate cycle-accurate
simulators but also to generate ILP constraints which are necessary for high-quality
ILP compiler generation.

ADLs designed for a specific domain (such as DSP or VLIW) or for a specific
purpose (such as simulation or compilation) can be compact and it is possible to
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automatically generate efficient (in terms of area, time and power) tools/hardwares.
However, it is difficult to design an ADL for a wide variety of architectures to
perform different tasks using the same specification. Generic ADLs require the
support of powerful methodologies to generate high-quality results compared with
domain-specific/task-specific ADLs.

6.6 Conclusions

In the past, an ADL was designed to serve a specific purpose. For example,
MIMOLA and UDLI have features similar to a hardware description language and
were used mainly for synthesis of processor architectures. Similarly, LISA and
RADL were designed for simulation of processor architectures. Likewise, MDES
and EXPRESSION were designed mainly for generating retargetable compilers.

The early ADLs were either structure-oriented (MIMOLA, UDL/I), or behaviour-
oriented (nML, ISDL). As a result, each class of ADLs is suitable for specific tasks.
For example, structure-oriented ADLs are suitable for hardware synthesis, and unfit
for compiler generation. Similarly, behaviour-oriented ADLs are appropriate for gen-
erating compiler and simulator for instruction-set architectures, and unsuited for
generating cycle-accurate simulator or hardware implementation of the architecture.
The later ADLs (LISA and EXPRESSION) adopted the mixed approach where the
language captures both structure and behaviour of the architecture.

At present, the existing ADLs are getting modified with the new features
and methodologies to perform software toolkit generation, hardware generation,
instruction-set synthesis, and test generation for validation of architectures. For exam-
ple, nML is extended by Target Compiler Technologies [20] to perform hardware
synthesis and test generation. Similarly, LISA language has been used for hardware
generation [66,75], instruction encoding synthesis [76] and JTAG interface gener-
ation [77]. Likewise, EXPRESSION has been used for hardware generation [67],
instruction-set synthesis [78], test generation [73,79] and specification validation
[70,74].

The majority of the ADLs were designed mainly for processor architectures.
MDES have features for specifying both processor and memory architectures.
EXPRESSION allows specification of processor, memory and co-processor archi-
tectures [80]. Similarly, the language elements of LISA enable the description of
processor, memory, peripherals and external interfaces [77,81].

In the future, the existing ADLs will go through changes in two dimensions. First,
ADLs will specify not only processor, memory and co-processor architectures but also
other components of the system-on-chip architectures including peripherals and exter-
nal interfaces. Second, ADLs will be used for software toolkit generation, hardware
synthesis, test generation, instruction-set synthesis, and validation of microproces-
sors. Furthermore, multiprocessor SoCs will be captured and various attendant tasks
will be addressed. The tasks include support for formal analysis, generation of RTOS,
exploration of communication architectures and support for interface synthesis. The
emerging ADLs will have these features.
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Chapter 7

Concurrent models of computation for
embedded software

Edward Lee and Stephen Neuendorffer

7.1 Introduction

Embedded software has traditionally been thought of as ‘software on small com-
puters’. In this traditional view, the principal problem is resource limitations (small
memory, small data word sizes and relatively slow clocks). The solutions emphasise
efficiency; software is written at a very low level (in assembly code or C), operating
systems with a rich suite of services are avoided and specialised computer architec-
tures such as programmable DSPs and network processors are developed to provide
hardware support for common operations. These solutions have defined the practice
of embedded software design and development for the last 25 years or so.

Of course, thanks to the semiconductor industry’s ability to follow Moore’s law,
the resource limitations of 25 years ago should have almost entirely evaporated. Why
then has embedded software design and development changed so little? It may be
because extreme competitive pressure in products based on embedded software, such
as consumer electronics, rewards only the most efficient solutions. This argument is
questionable, however, since there are many examples where functionality has proven
more important than efficiency. We will argue that resource limitations are not the
only defining factor for embedded software, and may not even be the principal factor
now that the technology has improved so much.

Resource limitations are an issue to some degree with almost all software. So
generic improvements in software engineering should, in theory, also help with
embedded software. There are several hints, however, that embedded software is
different in more fundamental ways. For one, object-oriented techniques such as
inheritance, dynamic binding and polymorphism are rarely used in practice with
embedded software development. In another example, processors used for embedded
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systems often avoid the memory hierarchy techniques that are used in general purpose
processors to deliver large virtual memory spaces and faster execution using caches.
In a third example, automated memory management, with allocation, deallocation
and garbage collection, are largely avoided in embedded software. To be fair, there
are some successful applications of these technologies in embedded software, such as
the use of Java in cell phones, but their application remains limited and is largely con-
fined to providing the services in embedded systems that are actually more akin with
general purpose software applications (such as database services in cell phones).

There are further hints that the software solutions for embedded software may
ultimately differ significantly from those for general purpose software. We point
to four recent cases where fundamentally different software design techniques have
been applied to embedded software. All four define concurrency models, component
architectures and management of time-critical operations in ways that are significantly
different from prevailing software engineering techniques. The first two are nesC with
TinyOS [1,2], which was developed for programming very small programmable sen-
sor nodes called ‘motes’, and Click [3,4], which was created to support the design
of software-based network routers. These first two have an imperative flavour, and
components interact principally through procedure calls. The next two are Simulink
with Real-Time Workshop (from The MathWorks), which was created for embedded
control software and is widely used in the automotive industry, and SCADE (from
Esterel Technologies, see Reference 5), which was created for safety-critical embed-
ded software and is used in avionics. These next two have a more declarative flavour,
where components interact principally through messages rather than procedure calls.
There are quite a few more examples that we will discuss below. The amount of
experimentation with alternative models of computation for embedded software is
yet a further indication that the prevailing software abstractions are inadequate.

Embedded systems are integrations of software and hardware where the software
reacts to sensor data and issues commands to actuators. The physical system is an
integral part of the design and the software must be conceptualised to operate in
concert with that physical system. Physical systems are intrinsically concurrent and
temporal. Actions and reactions happen simultaneously and over time, and the metric
properties of time are an essential part of the behaviour of the system.

Software abstracts away time, replacing it with ordering. In the prevailing soft-
ware abstraction, that of imperative languages such as C, C++ and Java, the ‘order’
of actions is defined by the program, but not by their ‘timing’. This prevailing imper-
ative abstraction is overlaid with another abstraction, that of threads or processes,1
typically provided by the operating system, but occasionally by the language (as
in Java).

We will argue that the lack of timing in the core abstraction is a flaw, from
the perspective of embedded software, and that threads as a concurrency model are a
poor match to embedded systems. They are mainly focused on providing an illusion of

' Threads are processes that can share data. The distinction between the two is not important in our
discussion, so we will use the term ‘threads’ generically to refer to both.
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concurrency in fundamentally sequential models, and they work well only for modest
levels of concurrency or for highly decoupled systems that are sharing resources,
where best-effort scheduling policies are sufficient.

Of the four cases cited above, not one uses threads as the concurrency model. Of
the four, only one (Simulink) is explicit about timing. This may be a reflection of how
difficult it is to be explicit about timing when the most basic notion of computation
has abstracted time away. To be fair, the others do provide mechanisms to manage
time-critical events. TinyOS and Click both provide access to hardware timers, but
this access is largely orthogonal to the semantics. It is treated as an I/O interaction.

There are, of course, software abstractions that admit concurrency without
resorting to threads. In functional languages (e.g. see Reference 6), programs are
compositions of declarative relationships, not specifications of an order of opera-
tions. But although declarative techniques have been used in embedded software
(e.g. Simulink and SCADE), functional languages have found almost no usage in
embedded software. Thus, whether a language is imperative or declarative probably
has little bearing on whether it is useful for embedded software.

Embedded software systems are generally held to a much higher reliability stan-
dard than general purpose software. Often, failures in the software can be life
threatening (e.g. in avionics and military systems). We argue that the prevailing
concurrency model based on threads does not achieve adequate reliability. In this
prevailing model, interaction between threads is extremely difficult for humans to
understand. The basic techniques for controlling this interaction use semaphores and
mutual exclusion locks, methods that date back to the 1960s [7]. These techniques
often lead to deadlock or livelock conditions, where all or part of a program cannot
continue executing. In general purpose computing, this is inconvenient, and typically
forces a restart of the program (or even a reboot of the machine). However, in embed-
ded software, such errors can be far more than inconvenient. Moreover, software is
often written without sufficient use of these interlock mechanisms, resulting in race
conditions that yield non-deterministic program behaviour.

In practice, errors due to misuse (or no use) of semaphores and mutual exclu-
sion locks are extremely difficult to detect by testing. Code can be exercised in
deployed form for years before a design flaw appears. Static analysis techniques can
help (e.g. Sun Microsystems’ LockLint), but these methods are often thwarted by
conservative approximations and/or false positives.

It can be argued that the unreliability of multi-threaded programs is due at least in
part to inadequate software engineering processes. For example, better code reviews,
better specifications, better compliance testing and better planning of the develop-
ment process can help solve the problems. It is certainly true that these techniques
can help. However, programs that use threads can be extremely difficult for program-
mers to understand. If a program is incomprehensible, then no amount of process
improvement will make it reliable. For example, development schedule extensions
are as likely to degrade the reliability of programs that are difficult to understand as
they are to improve it.

Formal methods can help detect flaws in threaded programs, and in the process can
improve the understanding that a designer has of the behaviour of a complex program.
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But if the basic mechanisms fundamentally lead to programs that are difficult to
understand, then these improvements will fall short of delivering reliable software.

All four of the cases cited above offer concurrency models that are much easier
to understand than threads that interact via semaphores and mutual exclusion locks.

Simulink and SCADE are based on a synchronous abstraction, where components
conceptually execute simultaneously, aligned with one or more interlocked clocks.
SCADE relies on an abstraction where components appear to execute instantaneously,
whereas Simulink is more explicit about the passage of time and supports definition
of tasks that take time to execute and execute concurrently with other tasks. In both
cases, every (correctly) compiled version of the program will execute identically, in
that if it is given the same inputs, it will produce the same outputs. In particular, the
execution does not depend on extraneous factors such as processor speed. Even this
modest objective is often hard to achieve using threads directly.

TinyOS and Click offer concurrency models that are closer to the prevailing
software abstractions, since they rely on procedure calls as the principle component
interaction mechanism. However, neither model includes threads. The key conse-
quence is that a programmer can rely on the atomicity of the execution of most
program segments, and hence does not usually need to explicitly deal with mutual
exclusion locks or semaphores. The result again is more comprehensible concurrent
programs.

7.2 Concurrency and time

In embedded software, concurrency and time are essential aspects of a design. In this
section, we outline the potential problems that software faces in dealing with these
aspects.

Time is a relatively simple issue, conceptually, although delivering temporal
semantics in software can be challenging. Time is about the ordering of events. Event
x happens before event y, for example. But in embedded software, time also has a
metric. That is, there is an amount of time between events x and y, and the amount
of time may be an important part of the correctness of a system.

In software, it is straightforward to talk about the order of events, although in
concurrent systems it can be difficult to control the order. For example, achieving
a specified total ordering of events across concurrent threads implies interactions
across those threads that can be extremely difficult to implement correctly. Research
in distributed discrete-event simulation, for example, underscores the subtleties that
can arise (e.g. see References 8 and 9).

It is less straightforward to talk about the metric nature of time. Typically, embed-
ded processors have access to external devices called timers that can be used to
measure the passage of time. Programs can poll for the current time, and they can
set timers to trigger an interrupt at some time in the future. Using timers in this way
implies immediately having to deal with concurrency issues. Interrupt service rou-
tines typically pre-empt currently executing software, and hence conceptually execute
concurrently.
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Concurrency in software is a challenging issue because the basic software abstrac-
tion is not concurrent. The basic abstraction in imperative languages is that the
memory of the computer represents the current state of the system, and instructions
transform that state. A program is a sequence of such transformations. The problem
with concurrency is that from the perspective of a particular program, the state may
change on its own at any time. For example, we could have a sequence of statements:

that results in printing the number ‘6’ instead of ‘5°. This could occur, e.g., if after
execution of the first statement an interrupt occurred, and the interrupt service routine
modified the memory location where x was stored. Or it could occur if the computer
is also executing a sequence of statements:

X = 6;
print Xx;

and a multitasking scheduler happens to interleave the executions of the instructions of
the two sequences. Two such sequences of statements are said to be ‘non-determinate’
because, by themselves, these two sequences of statements do not specify a single
behaviour. There is more than one behaviour that is consistent with the specification.

Non-determinism can be desirable in embedded software. Consider for example
an embedded system that receives information at random times from two distinct
sensors. Suppose that it is the job of the embedded software to fuse the data from
these sensors so that their observations are both taken into account. The system as
a whole will be non-determinate since its results will depend on the order in which
information from the sensors is processed. Consider the following program fragment:

y = getSensorData(); // Block for data
X =0.9 *x + 0.1 *y; // Discounted average
print x; // Display the result

This fragment reads data from a sensor and calculates a running average using a
discounting strategy, where older data has less effect on the average than newer data.

Suppose that our embedded system uses two threads, one for each sensor, where
each thread executes the above sequence of statements repeatedly. The result of
the execution will depend on the order in which data arrives from the sensors, so
the program is non-determinate. However, it is also non-determinate in another
way that was probably not intended. Suppose that the multitasking scheduler happens
to execute the instructions from the two threads in interleaved order, as shown here:

y = getSensorData(); // From thread 1
y = getSensorData(); // From thread 2
X =0.9*x + 0.1 *y; // From thread 1
X =0.9*x+0.1*y; // From thread 2
print x; // From thread 1
print Xx; // From thread 2
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The result is clearly not right. The sensor data read by thread 1 is ignored. The
discounting is applied twice. The sensor data from thread 2 is counted twice. And the
same (erroneous) result is printed twice.

A key capability for preventing such concurrency problems is ‘atomicity’.
A sequence of instructions is ‘atomic’ if during the execution of the sequence, no
portion of the state that is visible to these instructions changes unless it is changed by
the instructions themselves.

Atomicity is provided by programming languages and/or operating systems
through ‘mutual exclusion’ mechanisms. These mechanisms depend on low-level
support for an indivisible ‘test and set’. Consider the following modification:

acquireLock(); // Block until acquired
y = getSensorData(); // Block for data

X =0.9 * x + 0.1 *y; // Discount old value
print x; // Display the result
releaselLock(); // Release the lock

The first statement calls an operating system primitive’ that tests a shared,
Boolean-valued variable, and if it is false, sets it to true and returns. If it is true,
then it blocks, waiting until it becomes false. It is essential that between the time this
primitive tests the variable and the time it sets it to true, that no other instruction in
the system can access that variable. That is, the test and set occur as one operation,
not as two. The last statement sets the variable to false.

Suppose we now build a system with two threads that each execute this sequence
repeatedly to read from two sensors. The resulting system will not exhibit the problem
above because the multitasking scheduler cannot interleave the executions of the
statements. However, the program is still not correct. For example, it might occur
that only one of the two threads ever acquires the lock, and so only one sensor is read.
In this case, the program is not ‘fair’. Suppose that the multitasking scheduler is forced
to be fair, say by requiring it to yield to the other thread each time re leaseLock()
is called. The program is still not correct, because while one thread is waiting for
sensor data, the other thread is blocked by the lock and will fail to notice new data
on its sensor.

This seemingly trivial problem has become difficult. Rather than trying to fix it
within the threading model of computation (we leave this an exercise), we will show
that alternative models of computation make this problem easy.

Suppose that the program is given by the diagram in Figure 7.1.> Suppose that
the semantics are those of Kahn process networks (PN) [10,11] augmented with a
non-deterministic merge [12,13]. In that figure, the components (blocks) are called
‘actors’. They have ports (shown by small triangles), with input ports pointing into

2 Mutual exclusion locks may also be provided as part of a programming language. The ‘synchronised’
keyword in Java, e.g. performs the same function as our ‘acquireLock’ command.

3 We give this program using a visual syntax to emphasise its concurrent semantics, and because visual
syntaxes are commonly used for languages with similar semantics, such as SCADE and Simulink. But the
visual syntax makes this no less a program.
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Figure 7.1 Process network realisation of the sensor fusion example

the blocks and output ports pointing out. Each actor encapsulates functionality that
reads input values and produces output values.

In PN semantics, each actor executes continually in its own thread of control.
The Sensorl and Sensor2 actors will produce an output whenever the corresponding
sensors have data (this could be done directly by the interrupt service routine, e.g.).
The connections between actors represent sequences of data values. The Merge actor
will non-deterministically interleave the two sequences at its input ports, preserving
the order within each sequence, but yielding arbitrary ordering of data values across
sequences. Suppose it is ‘fair’ in the sense that if a data value appears at one of the
inputs, then it will ‘eventually’ appear at the output [14]. The remaining actors simply
calculate the discounted average and display it. The SampleDelay actor provides an
initial ‘previous average’ to work with (which prevents this program from deadlocking
for lack of data at the input to the Expression actor). This program exhibits none of
the difficulties encountered above with threads, and is both easy to write and easy to
understand.

We can now focus on improving its functionality. Notice that the discounting
average is not ideal because it does not take into account ‘how old’ the old data is.
That is, there is no time metric. Old data is simply the data previously observed,
and there is no measure of how long ago it was read. Suppose that instead of Kahn
process networks semantics, we use ‘discrete-event’ (DE) semantics [8,15]. A mod-
ified diagram is shown in Figure 7.2. In that diagram, the meaning of a connection
between actors is slightly different from the meaning of connections in Figure 7.1.
In particular, the connection carries a sequence of data values as before, but each
value has a ‘time stamp’. The time stamps on any given sequence are non-decreasing.
A data value with a time stamp is called an ‘event’.

The Sensorl and Sensor2 actors produce output events stamped with the time
at which their respective interrupt service routines are executed. The merge actor
is no longer non-deterministic. Its output is a chronological merge of the two input
sequences.* The TimeGap actor produces on its output an event with the same time

4 A minor detail is that we have to decide how to handle simultaneous input events. We could e.g. produce
them both at the output with the one from the top input port preceding the one at the bottom input port.
The semantics of simultaneous events is considered in detail in Reference 15.
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Figure 7.2  Discrete event realisation of an improved sensor fusion example

stamp as the input but whose value is the elapsed time between the current event and
the previous event (or between the start of execution and the current event if this is
the first event). The expression shown in the next actor calculates a better discounted
average, one that takes into account the time elapsed. It implements an exponential
forgetting function.

The Register actor in Figure 7.2 has somewhat interesting semantics. Its output is
produced when it receives a trigger input on the bottom port. The value of the output
is that of a ‘previously observed’ input (or a specified initial value if no input was
previously observed). In particular, at any given time stamp, the value of the output
does not depend on the value of the input, so this actor breaks what would otherwise
be an unresolvable causality loop.

Even with such a simple problem, threaded concurrency is clearly inferior. PN
offers a better concurrency model in that the program is easier to construct and
to understand. The DE model is even better because it takes into account metric
properties of time, which matter in this problem.

In real systems, the contrast between these approaches is even more dramatic.
Consider the following two program fragments:

acquireLockAQ);
acquireLockB(Q);
X = 5;

print x;
releaseLockB();
releaseLockAQ);

and

acquireLockB(Q);
acquireLockAQ);
X = 5;

print x;
releaseLockA(Q);
releaseLockB();



Concurrent models of computation for embedded software 231

If these two programs are executed concurrently in two threads, they could
deadlock. Suppose the multitasking scheduler executes the first statement from the
first program followed by the first statement from the second program. At this point,
the second statement of both programs will block! There is no way out of this. The
programs have to be aborted and restarted.

Programmers who use threads have tantalising simple rules to avoid this problem.
For example, ‘always acquire locks in the same order’ [16]. However, this rule is
almost impossible to apply in practice because of the way programs are modularised.
Any given program fragment is likely to call methods or procedures that are defined
elsewhere, and those methods or procedures may acquire locks. Unless we examine
the source code of every procedure we call, we cannot be sure that we have applied
this rule.’

Deadlock can, of course, occur in PN and DE programs. If in Figure 7.1 we had
omitted the SampleDelay actor, or in Figure 7.2 we had omitted the Register actor, the
programs would not be able to execute. In both cases, the Expression actor requires
new data at all of its input ports in order to execute, and that data would not be able
to be provided without executing the Expression actor.

The rules for preventing deadlocks in PN and DE programs are much easier to
apply than the rule for threads. For certain models of computation, whether deadlock
occurs can be checked through static analysis of the program. This is true of the
DE model used above for the improved sensor fusion problem, for example. So, not
only was the model of computation more expressive in practice (i.e. it more readily
expressed the behaviour we wanted), but it also had stronger formal properties that
enabled static checks that prove the absence of certain flaws (deadlock, in this case).

We will next examine a few of the models of computation that have been used
for embedded systems.

7.3 Imperative concurrent models

As mentioned above, TinyOS and Click have an imperative flavour. What this means
is that when one component interacts with another, it gives a command, ‘do this’. The
command is implemented as a procedure call. Since these models of computation are
also concurrent, we call them ‘imperative concurrent’ models of computation.

In contrast, when components in Simulink and SCADE interact, they simply
offer data values, ‘here is some data’. It is irrelevant to the component when
(or even whether) the destination component reacts to the message. These models
of computation have a declarative flavour, since instead of issuing commands, they
declare relationships between components that share data. We call such models of
computation ‘declarative concurrent’ models of computation.

We begin with the imperative concurrent models of computation.

5 In principle, it might be possible to devise a programming language where the locks that are acquired
by a procedure are part of the type signature of the procedure, much as in Java where the exceptions that
are thrown by a procedure are part of its type signature. However, we know of no language that does this.
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Figure 7.3 A representation of a nesC/TinyOS configuration

7.3.1 nesC/TinyOS

TinyOS is a specialised, small-footprint operating system for use on extremely
resource-constrained computers, such as 8-bit microcontrollers with small amounts
of memory [1]. It is typically used with nesC, a programming language that describes
‘configurations’, which are assemblies of TinyOS components [2].

A visual rendition of a two-component configuration is shown in Figure 7.3,
where the visual notation is that used in Reference 2. The components are grey
boxes with names. Each component has some number of interfaces, some of which
it ‘uses’ and some of which it ‘provides’. The interfaces it provides are put on top of
the box and the interfaces it uses are put on the bottom. Each interface consists of a
number of methods, shown as triangles. The filled triangles represent methods that are
called ‘commands’ and the unfilled triangles represent ‘event handlers’. Commands
propagate downwards, whereas events propagate upwards.

After initialisation, computation typically begins with events. In Figure 7.3, Com-
ponent 2 might be a thin wrapper for hardware, and the interrupt service routine
associated with that hardware would call a procedure in Component 1 that would
‘signal an event’. What it means to signal an event is that a procedure call is made
upwards in the diagram via the connections between the unfilled triangles. Compo-
nent 1 provides an event handler procedure. The event handler can signal an event
to another component, passing the event up in the diagram. It can also call a com-
mand, downwards in the diagram. A component that provides an interface provides
a procedure to implement a command.

Execution of an event handler triggered by an interrupt (and execution of any com-
mands or other event handlers that it calls) may be pre-empted by another interrupt.
This is the principle source of concurrency in the model. It is potentially problematic
because event handler procedures may be in the middle of being executed when an
interrupt occurs that causes them to begin execution again to handle a new event.
Problems are averted through judicious use of the ‘atomic’ keyword in nesC. Code
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that is enclosed in an atomic block cannot be interrupted (this is implemented very
efficiently by disabling interrupts in the hardware).

Clearly, however, in a real-time system, interrupts should not be disabled for
extensive periods of time. In fact, nesC prohibits calling commands or signalling
events from within an atomic block. Moreover, no mechanism is provided for an
atomic test-and-set, so there is no mechanism besides the atomic keyword for imple-
menting mutual exclusion. The system is a bit like a multithreaded system but with
only one mutual exclusion lock. This makes it impossible for the mutual exclusion
mechanism to cause deadlock.

Of course, this limited expressiveness means that event handlers cannot perform
non-trivial concurrent computation. To regain expressiveness, TinyOS has tasks. An
event handler may ‘post a task’. Posted tasks are executed when the machine is idle
(no interrupt service routines are being executed). A task may call commands through
the interfaces it uses. It is not expected to signal events, however. Once task execution
starts, it completes before any other task execution is started. That is, task execution
is atomic with respect to other tasks. This greatly simplifies the concurrency model,
because now variables or resources that are shared across tasks do not require mutual
exclusion protocols to protect their accesses. Tasks may be pre-empted by event
handlers, however, so some care must be exercised when shared data is accessed
here to avoid race conditions. Interestingly, it is relatively easy to statically analyse a
program for potential race conditions [2].

Consider the sensor fusion example from above. A configuration for this is
sketched in Figure 7.4. The two sensors have interfaces called ‘reading’ that accept
a command, a signal, an event. The command is used to configure the sensors. The
event is signalled when an interrupt from the sensor hardware is handled. Each time
such an event is signalled, the Fuser component records the sensor reading and posts
a task to update the discounted average. The task will then invoke the command in the
print interface of the Printer component to display the result. Because tasks execute
atomically with respect to one another, in the order in which they are posted, the only
tricky part of this implementation is in recording the sensor data. However, tasks in
TinyOS can be passed arguments on the stack, so the sensor data can be recorded
there. The management of concurrency becomes extremely simple in this example.

Fuser
Reading Reading Print
Reading Reading Print
Sensorl Sensor2 Printer

Figure 7.4 A sketch of the sensor fusion problem as a nesC/TinyOS configuration
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In effect, in nesC/TinyOS, concurrency is much more disciplined than with
threads. There is no arbitrary interleaving of code execution, there are no block-
ing operations to cause deadlock and there is a very simple mechanism for managing
the one non-deterministic pre-emption that can be caused by interrupts. The price paid
for this, however, is that applications must be divided into small, quickly executing
procedures to maintain reactivity. Since tasks run to completion, a long-running task
will starve all other tasks.

7.3.2  Click

Click was originally developed for designing software implementations of network
routers on general purpose computers running Linux [3,4]. It has been recently adapted
for designing software for specialised network processors [17], and has proven to offer
effective abstractions for this style of embedded software, at least. The abstractions
have a great deal of potential for any embedded software that deals with multiple
converging asynchronous streams of stimuli.

As with nesC/TinyOS, in the Click model, connections between components rep-
resent method bindings. Click does not have the bidirectional interfaces of TinyOS,
but it has its own twist that can be used to accomplish similar objectives. In Click,
connections between ports can be ‘push’ or ‘pull’. In a push connection, the method
call originates with the source of the data. That is, the producer component calls
the consumer component. In a pull connection, the method call originates with
the consumer. That is, the consumer component calls the producer component to
demand data. It is worth noting that there are middleware frameworks with similar
push/pull semantics, such as the CORBA event service [18,19]. These, however, are
aimed at distributed computation rather than at managing concurrency within a sin-
gle CPU. Click executes in a single thread, and we will see that this simplifies the
design of Click applications compared with what would be required by distributed
models.

Figure 7.5 shows a Click model using the visual notation from Reference 4. Boxes
again represent components, and ports are shown either as rectangles (for output ports)
or triangles (for input ports). If a port is filled in black, then it is required to link to a
push connection. If it is filled in white, then it is required to link to a pull connection.

/ Push output port _p,q output port

Sensorl 4 [ Agnostic output port

Queues Expr |j— Sink
Sensorl 47

O Pull input port /
Push input port

Agnostic input port

v

Figure 7.5 A representation of a Click program
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If it has a double outline, then it is agnostic, and can be linked to either type of
connection.

A component with just a push output port, like Sensor1 and Sensor2 in Figure 7.5,
can function as a thin wrapper around hardware that will produce data. Conceptually,
the component autonomously?® initiates a reaction by pushing data on its output port,
which means calling a method in a downstream component. That method in the
downstream component may itself trigger further reactions by either pushing data to
output ports or pulling data from input ports.

In the example shown in Figure 7.5, the components downstream of Sensor1 and
Sensor2 are Queues. They have push inputs and pull outputs. When a method is called
to push data into them, that method simply stores the data on a queue. When a method
is called to pull data from their outputs, either a datum is provided or a null value is
provided to indicate that no data are available.

Click runs in a single thread, so the push and pull methods of the queue component
will be atomic with respect to one another. Thus, no special care needs to be taken to
manage the fact that callers from the left and from the right will both access the same
(queue) data structure.

Click maintains a task queue and executes tasks from this queue whenever the
main loop becomes idle. Polling the sensors for data, for example, is accomplished by
tasks that are always present on the task queue. In the example shown in Figure 7.5,
the Sink component has a single pull input. This component would, e.g., have
a task on the Click task queue that is repeatedly executed and pulls data from the
input port. The upstream component, labelled Expr, has agnostic input and output
ports. Because of the way it is connected, these ports will be used as pull ports.
A pull from the Sink will cause the Expr component to pull data from the queues.
Note that the Expr component can implement a scheduling strategy (such as round
robin) to access the queues fairly. Generally, scheduling can be accomplished by
components that have pull inputs and/or push outputs and that post tasks on the event
queue.

It is easy to see how the example in Figure 7.5 could be adapted to implement
the sensor fusion problem. Once again, the representation is simple and clear, with
no particular difficulties due to concurrency. The primary mechanism for avoiding
deadlock is the style that a pull should return nul l if no data are available. The
danger of livelock is largely eliminated by avoiding feedback loops, although several
interesting models include feedback loops that do not livelock because of the logic
contained in components (see Reference 4, section 2.6). Data races do not occur
accidentally because methods execute atomically. Nonetheless, on a coarser level,
non-deterministic interactions like those in the sensor fusion example are easy to
define. Indeed, these kinds of interactions are common in the application domain that
Click targets, network routers.

6 Currently, Click accomplishes this by repeatedly executing a task that polls the hardware, instead
of an interrupt service routine, but it does not seem hard to adapt the model to leverage interrupt service
routines, if desired.
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7.3.3 Others

There are many other models with imperative concurrent semantics. Here, we briefly
mention some that have been applied to the design of embedded systems.

7.3.3.1 Bluespec

In a Bluespec [20,21] model, components not only contain methods, but also ‘activa-
tion rules’ and ‘execution constraints’. Each activation rule describes an atomic state
update in the system, which can be performed whenever the associated execution
constraints are satisfied. Bindings between methods enable complex state updates to
be specified compositionally as a group of methods.

Conceptually, state updates in a Bluespec system occur sequentially. However,
in some cases activation rules operate on independent portions of the system state,
in which case they are called ‘conflict free’. These ‘conflict-free’ rules repre-
sent parallelism in a system and can be executed concurrently. Bluespec discovers
conflict-free rules through static program analysis and generates run-time scheduling
logic.

Livelock in Bluespec models is prevented by a requirement that no method can
cause itself to be executed through a sequence of method invocations. This require-
ment is guaranteed through static analysis of component compositions. Deadlock in
Bluespec models cannot generally be avoided, since it is possible that a state in exe-
cution is reached where there are no activation rules whose execution constraints can
be satisfied.

Bluespec has seen significant application in the specification of digital logic cir-
cuits [22,23]. Current compilers map a composition to a synchronous circuit that
executes an activation rule in a single cycle. Methods are converted into combina-
tional logic, which is guaranteed to be acyclic given the constraints on re-entrant
methods. In each cycle every rule executes concurrently, but the results are gated so
that only the state updates corresponding to a set of conflict-free rules are committed
to the system state.

Bluespec models can also be synthesised directly into sequential software, which
can be used to efficiently simulate synthesised digital logic systems. In software, it
is more efficient to make scheduling decisions for activation rules initially and to
only execute code corresponding to a single activation rule at a time. In comparison
with direct simulation of synthesised digital logic, this technique offers significant
speedup for many applications, since only committed activation rules are actually
executed. Additionally, given coarse-grained activation rules, it seems possible to
execute more than one rule in software concurrently.

7.3.3.2 Koala

Koala [24,25] is a model and language for components with procedure-call interfaces
and a visual syntax with ‘provides’ and ‘requires’ ports that get connected. It has been
proposed for use in the design of consumer electronics software specifically. As with
nesC/TinyOS and Click, in a Koala model, connections between components repre-
sent method bindings. Communication occurs through method arguments and return
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values and the interaction between communicating components is primarily sequen-
tial. Koala allows components to contain arbitrary code and perhaps to encapsulate
arbitrary operating system threads.

A ‘configuration’ is an interconnection of components plus configuration-specific
code in something called a ‘module’. To get hierarchy, the configuration can export
its own requires and provides interfaces, and these can be mediated by the module.
For example, the module can translate a particular provided method into a sequence
of calls to provided methods of the components (e.g. to initialise all the components).
The module is configuration specific, and is not itself a component, so it does not
pollute the component library. The module can also provide services that are required
by the components. For example, a component may require values for configuration
parameters, and the module can provide those values. Partial evaluation is used to
avoid introducing overhead in doing things this way.

Modules offer a much richer form of hierarchical abstraction than either nesC
or Click provide. Modules are also used to implement primitive components, thus
providing the leaf cells of the hierarchy.

Each ‘requires’ interface must be connected to either a module or a ‘provides’
interface (input port). A ‘provides’ interface, however, can be connected to zero
or more ‘requires’ interfaces. An example is given in Reference 24 where compo-
nents require a particular hardware interface (an 12C bus) that must be provided by
a configuration. Operating system and scheduling services also interact with com-
ponents through requires and provides interfaces. Thus, the language provides clean
mechanisms for relating hardware requirements to software services.

A limited form of dynamic binding is provided in the form of ‘switches’, which
work together with a module to direct procedure calls. These can be used at run
time to direct a method call to one or another component. Switches can also be used
with ‘diversity interfaces’ (see below), in which case, partial evaluation will likely
lead to static binding and the elimination of some components from a configuration
(components that are not used).

‘Diversity” means one definition, multiple products. Koala’s features support
this well, particularly through its partial evaluation and static binding, which avoid
the overhead often incurred by making components flexible. The authors compare
the use of ‘requires’ interfaces to property lists in more conventional component
architectures with set () and get () methods, and point out that set () and get ()
make it more difficult to optimise when properties are set at design time. Instead of
‘providing’ interfaces that must be filled in by the configuration (e.g. set()), Koala
components have ‘required’ interfaces that the configuration must provide. These are
called ‘diversity interfaces’.

Koala components can provide ‘optional interfaces’ (fashioned after COM’s query
interface mechanism), which are automatically extended with an isPresent func-
tion, which the component is required to implement. For example the presence of
an interface may depend on the hardware configuration. A component may also
require an ‘optional interface’ (which is, to be sure, odd terminology), in which
case the component can query for whether a configuration has a matching ‘provides’
interface.
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The hierarchical structure, components with provides and requires interfaces and
bindings concepts come from the architecture description language Darwin [26], but
the modules and diversity schemes are new.

7.4 Declarative concurrent models

As mentioned above, Simulink and SCADE have a declarative flavour. The interac-
tions between components are not ‘imperative’ in that one component does not ‘tell
the other what to do’. Instead, a ‘program’ is a declaration of the relationships among
components. In this section, we examine a few of the models of computation with
this character.

7.4.1 Simulink

Simulink was originally developed as a modelling environment, primarily for control
systems. It is rooted in a continuous-time semantics, something that is intrinsically
challenging for any software system to emulate. Software is intrinsically discrete, so
an execution of a Simulink ‘program’ often amounts to approximating the specified
behaviour using numerical integration techniques.

A Simulink ‘program’ is an interconnection of blocks where the connections
are the ‘variables’, but the value of a variable is a function, not a single value. To
complicate things, it is a function defined over a continuum. The Integrator block
e.g., takes as input any function of the reals and produces as output the integral of that
function. In general, any numerical representation in software of such a function and
its integral is an approximation, where the value is represented at discrete points in
the continuum. The Simulink execution engine (which is called a ‘solver’) chooses
those discrete points using sometimes quite sophisticated methods.

Although initially Simulink focused on simulating continuous dynamics and
providing excellent numerical integration, more recently it acquired a discrete capa-
bility. Semantically, discrete signals are piecewise-constant continuous-time signals.
A piecewise constant signal changes value only at discrete points on the time line.
Such signals are intrinsically easier for software, and more precise approximations
are possible.

In addition to discrete signals, Simulink has discrete blocks. These have a
‘sampleTime’ parameter, which specifies the period of a periodic execution. Any
output of a discrete block is a piecewise constant signal. Inputs are sampled at
multiples of the sampleTime.

Certain arrangements of discrete blocks turn out to be particularly easy to exe-
cute. An interconnection of discrete blocks that all have the same sampleTime
value, for example, can be efficiently compiled into embedded software. But even
blocks with different sampleTime parameters can yield efficient models, when the
sampleTime values are related by simple integer multiples.

Fortunately, in the design of control systems (and many other signal processing
systems), there is a common design pattern where discrete blocks with harmonically
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Figure 7.6 A representation of a Simulink program

related sampleTime values are commonly used to specify the software of embedded
control systems.

Figure 7.6 shows schematically a typical Simulink model of a control system.
There is a portion of the model that is a model of the physical dynamics of the
system to be controlled. There is no need, usually, to compile that specification into
embedded software. There is another portion of the model that represents a discrete
controller. In this example, we have shown a controller that involves multiple values
of the sampleTime parameter, shown as numbers below the discrete blocks. This
controller is a specification for a program that we wish to execute in an embedded
system.

Real-Time Workshop is a product from The MathWorks associated with Simulink.
It takes models as shown in Figure 7.6 and generates code. Although it will generate
code for any model, it is intended principally to be used only on the discrete controller,
and indeed, this is where its strengths come through.

The discrete controller shown in Figure 7.6 has fast running components (with
sampleTime values of 0.02 or 20 ms) and slow running components (with sample-
Time values of 0.1 or 1/10 of a second). In such situations, it is not unusual for
the slow running components to involve much heavier computational loads than the
fast running components. It would not do to schedule these computations to execute
atomically, as is done in TinyOS and Click (and SCADE, as discussed below). This
would permit the slow running component to interfere with the responsivity (and time
correctness) of the fast running components.

Simulink with Real-Time Workshop uses a clever technique to circumvent this
problem. The technique exploits an underlying multitasking operating system with
pre-emptive priority-driven multitasking. The slow running blocks are executed in a
separate thread from the fast running blocks, as shown in Figure 7.7. The thread for
the fast running blocks are given higher priority than that for the slow running blocks,
ensuring that the slow running code cannot block the fast running code. So far, this
just follows the principles of rate-monotonic scheduling [27].

But the situation is a bit more subtle than this, because data flows across the rate
boundaries. Recall that Simulink signals have continuous-time semantics, and that
discrete signals are piecewise constant. The slow running blocks should ‘see’ at their
input a piecewise constant signal that changes values at the slow rate. To guarantee
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Figure 7.7 A simplified representation of a Simulink schedule

that, the model builder is required to put a zero-order hold (ZOH) block at the point of
the rate conversion. Failure to do so will trigger an error message. Cleverly, the code
for the ZOH runs at the rate of the slow block but at the priority of the fast block. This
makes it completely unnecessary to do semaphore synchronisation when exchanging
data across these threads.

When rate conversions go the other way, from slow blocks to fast blocks, the
designer is required to put a UnitDelay block, as shown in Figure 7.6. This is because
the execution of the slow block will typically stretch over several executions of the
fast block, as shown in Figure 7.7.7 To ensure determinacy, the updated output of
the block must be delayed by the worst case, which will occur if the execution stretches
over all executions of the fast block in one period of the slow block. The unit delay
gives the software the slack it needs in order to be able to permit the execution of the
slow block to stretch over several executions of the fast one. The UnitDelay executes
at the rate of the slow block but at the priority of the fast block.

This same principle has been exploited in Giotto [28], which constrains the pro-
gram to always obey this multirate semantics and provides (implicitly) a unit delay on
every connection. In exchange for these constraints, Giotto achieves strong formal
structure, which results in, among other things, an ability to perform schedulabil-
ity analysis (the determination of whether the specified real-time behaviour can be
achieved by the software).

The Simulink model does have some weaknesses, however. The sensor fusion
problem that we posed earlier does not match its discrete multitasking model very
well. While it would be straightfoward to construct a discrete multitasking model that
polls the sensors at regular (harmonic) rates, reacting to stimulus from the sensors at
random times does not fit the semantics very well. The merge shown in Figure 7.2
would be challenging to accomplish in Simulink, and it would not benefit much from
the clever code generation techniques of Real-Time Workshop.

7 This schedule is simplified, showing only the invocations of the methods associated with the blocks
that produce outputs.
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7.4.2 Discrete-event

In Figure 7.2, we gave a discrete-event model of an improved sensor fusion algorithm
with an exponential forgetting function. Discrete-event modelling is widely used
in electronic circuit design (VHDL and Verilog are discrete-event languages), in
computer network modelling and simulation (e.g. OPNET Modeler® and Ns-2°), and
in many other disciplines.

In discrete-event models, the components interact via signals that consist of
‘events’, which typically carry both a data payload and a time stamp. A straight-
forward execution of these models uses a centralised event queue, where events are
sorted by time stamp, and a runtime scheduler dispatches events to be processed in
chronological order. Compared with the Simulink/RTW model, there is much more
flexibility in DE because discrete execution does not need to be periodic. This fea-
ture is exploited in the model of Figure 7.2, where the Merge block has no simple
counterpart in Simulink.

A great deal of work has been done on efficient and distributed execution of such
models, much of this work originating in either the so-called ‘conservative’ technique
of Chandy and Misra [29] or the speculative execution methods of Jefferson [9].
Much less work has been done in adapting these models as an execution platform
for embedded software, but there is some early work that bears a strong semantic
resemblance to DE modelling techniques [30,31]. A significant challenge is to achieve
the timed semantics efficiently while building on software abstractions that have
abstracted away time.

7.4.3  Synchronous languages

SCADE [5] (Safety Critical Application Development Environment), a commercial
product of Esterel Technologies, builds on the synchronous language Lustre [32],
providing a graphical programming framework with Lustre semantics. Of the flagship
synchronous languages, Esterel [33], Signal [34] and Lustre, Lustre is the simplest
in many respects. All the synchronous languages have strong formal properties that
yield quite effectively to formal verification techniques, but the simplicity of Lustre
in large part accounts for SCADE achieving certification for use in safety critical
embedded avionics software. !

The principle behind synchronous languages is simple, although the consequences
are profound [35]. Execution follows ‘ticks’ of a global ‘clock’. At each tick, each
variable (represented visually by the wires that connect the blocks) may have a value
(it can also be absent, having no value). Its value (or absence of value) is defined
by functions associated with each block. That is, each block is a function from input
values to output values. In Figure 7.8, the variables x and y at a particular tick are

8 http://opnet.com/products/modeler/home.html

9 http://www.isi.edu/nsnam/ns

10 The SCADE tool has a code generator that produces C or ADA code that is compliant with the DO-
178B Level A standard, which allows it to be used in critical avionics applications (see http://www.rtca.org).
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Figure7.8 A simple feedback system illustrating the fixed point principles of
synchronous languages

related by

x=f(y) and y=gx)

The task of the compiler is to synthesise a program that, at each tick, solves these
equations. Perhaps somewhat surprisingly, this turns out to be not difficult, well-
founded and reasonably efficient.

An interesting issue with Lustre is that it supports multiple rates. That is, the
master clock can be ‘divided down’ so that certain operations are performed on only
some ticks of the clock. There is a well-developed formal ‘clock calculus’ that is used
by the compiler to analyse systems with such multirate behaviour. Inconsistencies
are detected by the compiler.

In SCADE, the functions associated with blocks can be defined using state
machines. They can have behaviour that changes with each tick of the clock. This
offers an expressive and semantically rich way to define systems, but most interest-
ingly, it also offers opportunities for formal verification of dynamic behaviour. As long
as the state machines have a finite number of states, then in principle, automated tools
can explore the reachable state space to determine whether safety conditions can be
guaranteed.

The non-deterministic merge of Figure 7.1 is not directly supported by Lustre. The
synchronous language Signal [34] extends the principles of Lustre with a ‘default’
operator that supports such non-deterministic merge operations. The timed behaviour
of Figure 7.2 is also not directly supported by Lustre, which does not associate any
metric with the time between ticks. Without such a metric, the merging of sensor
inputs in Figure 7.2 cannot be done deterministically. However, if these events are
externally merged (e.g. in the interrupt service routines, which need to implement the
appropriate mutual exclusion logic), then Lustre is capable of expressing the rest of
the processing. The fact that there is no metric associated with the time between ticks
means that Lustre programs can be designed to simply react to events, whenever they
occur. This contrasts with Simulink, which has temporal semantics. Unlike Simulink,
however, Lustre has no mechanisms for multitasking, and hence long running tasks
will interfere with reactivity. A great deal of research has been done in recent years in
‘desynchronising’ synchronous languages, so we can expect in the future progress in
this direction.
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Figure 7.9 A diagram representing dataflow-oriented components

7.4.4 Dataflow

As with the other models of computation considered here, components in a dataflow
model of computation also encapsulate internal state. However, instead of interacting
through method calls, continuous-time signals, or synchronously defined variables,
components interact through the asynchronous passing of data messages. Each mes-
sage is called a ‘token’. In this section, we will deal only with models where messages
are guaranteed to be delivered in order and not lost. For these models it is common
to interpret the sequence of tokens communicated from one port to another as a
(possibly infinite) ‘stream’. It is not uncommon to use visual representations for
dataflow systems, as in Figure 7.9. In that figure, the wires represent streams, the
blocks represent dataflow ‘actors’, and the triangles represent ‘ports’. Input ports
point into the block, and output ports point out. Feedback is supported by most
variants of dataflow semantics, although when there is feedback, there is risk of
deadlock. There are many variants of dataflow semantics. We consider a few of
them here.

7.4.4.1 Kahn process networks

Figure 7.1, discussed above, has the semantics of Kahn process networks [10,11] aug-
mented with a non-deterministic merge [12,13]. In PN semantics, each actor executes
(possibly forever) in its own thread of control. The connections between actors rep-
resent streams of tokens. In Kahn/MacQueen semantics [10], the way that threads
interact with the ports has a key constraint that guarantees determinacy. Specifi-
cally, a thread is not permitted to ‘ask’ an input port whether there are available
tokens to read. It must simply read from the port, and if no tokens are available,
the thread blocks until tokens become available. This behaviour is called ‘block-
ing reads’. Correspondingly, when the thread produces an output token, it simply
sends it to the output port and continues. It is not permitted to ask the output port
whether there is room for the token, or whether the ultimate recipient of the token
is ready to receive it. These simple rules turn out to sufficient to ensure that actors
implement ‘monotonic’ functions over streams, which in turn guarantees determinacy
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[36]. Determinacy in this case means that every execution of the PN system yields
the same stream on tokens on each connection. That is, the PN system ‘determines’
the streams.

In Figure 7.1, the Merge actor will non-deterministically interleave the two
sequences at its input ports, preserving the order within each sequence, but yielding
arbitrary ordering of data values across sequences. This behaviour is not mono-
tonic. In fact, it cannot be implemented with blocking reads in a single actor thread.
Extensions of PN that support such non-deterministic operations turn out to be
especially useful for embedded software, and have been an active area of research
[12,13].

A key issue with PN models is that they may deadlock. They may also consume
unbounded memory buffering tokens between actors. It turns out that it is undecidable
whether a PN model deadlocks or executes in bounded memory. This means that no
algorithm exists that can always answer these questions in finite time. Nonetheless,
there are simple execution policies that guarantee that if a particular PN system
can be executed without deadlock in bounded memory, then it will be executed
without deadlock in bounded memory [37]. The undecidable problem is solved by a
runtime policy, which does not need to solve the problem in bounded time. A practical
implementation of this policy is available in the Ptolemy II system [38].

7.4.4.2 Dennis dataflow

In a distinct family of dataflow models of computation, instead of executing a (possi-
bly infinite) thread, a component executes a sequence of distinct ‘firings’. This style
of dataflow model was introduced by Dennis in the 1970s [39], and was applied to the
design of high-performance computer architectures for several years. Semantically,
the sequence of firings, of course, can be considered to be a thread with a limited
mechanism for storing state, so at a fundamental level, the distinction between PN
and Dennis dataflow is not great [11]. But it turns out to be particularly convenient
to formulate dataflow systems in terms of firings. A great deal of formal analysis of
the system is enabled by this abstraction.

A firing is enabled by satisfaction of a ‘firing rule’. The formal structure of firing
rules has considerable bearing on the formal properties of the model as a whole [40].
Each firing reads a short sequence of input tokens and produces a short sequence of
output tokens. The firing of a dataflow component might also update the internal state
of a component, affecting the behavior of the component in future firings.

There are two common ways of implementing dataflow models. One possi-
bility is to implement a centralised run-time scheduler that selects and executes
actors whose firing rules are satisfied. A second possibility is to statically anal-
yse the dataflow graph and construct a static, finite description of the schedule. The
latter approach is preferable for embedded software, since the static analysis also
yields execution time and memory usage information. However, for general dataflow
models, it turns out to be undecidable whether such static schedules can be con-
structed [41]. A suite of decidable special cases of dataflow have been developed over
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the years, however, and some of these are quite promising for embedded software
systems.

7.4.4.3 Decidable dataflow models

A simple special case of dataflow models restricts actors so that on each port, they
produce and consume a fixed, pre-specified number of tokens. This model of com-
putation has been called ‘synchronous dataflow’ (SDF) [42], but to avoid confusion
with the (significantly different) synchronous languages (e.g. see Reference 32), it
would perhaps better be called ‘statically schedulable dataflow’ (SSDF). Indeed, the
key feature of this model of computation is that simple static analysis either yields
a static schedule that is free of deadlock and consumes bounded memory, or proves
that no such schedule exists [42].

Because of the constraint that actors produce and consume only fixed, pre-
specified numbers of tokens on each firing, SSDF by itself cannot easily describe
applications with data-dependent control structure. A number of extensions enrich
the semantics in various ways.

Boolean dataflow [41,43] (BDF) and integer-controlled dataflow [44] (IDF) aug-
ment the model by permitting the number of tokens produced or consumed at a port
to be symbolically represented by a variable. The value of this variable is permitted to
change during execution, so data-dependent control flow can be represented. Static
analysis can often still be performed, but in principle, it is undecidable whether a BDF
or IDF program can execute without deadlock in bounded memory. Nonetheless, for
many practical programs, static analysis often yields a proof that it can, and in the
process also yields a ‘quasi-static schedule’, which is a finite representation of a
schedule with data-dependent control flow.

The fact that BDF and IDF are undecidable formalisms, however, is inconve-
nient. Static analysis can fail to find a schedule even when such a schedule exists.
Cyclo-static dataflow (CSDF) [45] offers slightly more expressiveness than SSDF
by permitting the production and consumption rates at ports to vary periodically.
SSDF can also be combined hierarchically with finite state machines (FSMs), and
if the state transitions are constrained to occur only at certain disciplined times, the
model remains decidable. This combination has been called heterochronous dataflow
(HDF) [46]. Parameterised SSDF [47] offers similarly expressive variability of pro-
duction and consumption rates while remaining within a decidable formalism. Most
of these variants of dataflow are available in the Ptolemy II system [38] or in Ptolemy
Classic [48].

74.5 PECOS

A final model that we consider shares a number of features with the previous, but
also has some unique properties. In a PECOS [49-51] model, there are three types
of components: ‘active’, ‘event’ and ‘passive’. These components are composed
hierarchically with the constraint that an active component must occur at the root
of the tree. Active components are associated with an independent thread that is
periodically activated. Event components are similar to active components, except
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they are triggered by aperiodic events occurring in the system. Event components are
generally associated with sensors and actuators in the system and are triggered when
a sensor has data or an actuator requires data. Passive components are executed by
the element that contains them.

Connections between components represent a variable in shared memory that is
read and written by the components connecting to it. Each passive component is
specified by a single execute () method that reads the appropriate input variables
and writes the correct output variables. The simplest PECOS model consists of an
active component at the toplevel, containing only passive components. The entire
execution occurs in the single thread, and consists of sequenced invocations of the
execute () methods.

Active and event components are specified by a synchronise() method,
in addition to the execute() method. In order to avoid data races, variables
for communicating with active and event components are double buffered. The
synchronise() method is executed by the component’s container to copy
the input and output variables. The execute() method that actually performs
processing only accesses the variable copies.

7.5 Conclusions

The diversity and richness of semantic models for embedded software is impressive.
This is clearly a lively area of research and experimentation, with many innovative
ideas. It is striking that none of the concurrent models of computation considered in
this chapter rely on threads as the principle concurrency mechanism. Yet prevailing
industrial practice in embedded software often does, building the software by creat-
ing concurrent threads and using the mutual exclusion and semaphore mechanisms
of a real-time operating system to manage concurrency issues. We argue that these
mechanism are too difficult for designers to understand, and that, except in very
simple systems, should not be used in raw form. At a minimum, a design pattern
corresponding to a clean concurrent model of computation (such as process networks
or synchronous component composition) is required to achieve truly reliable systems.
But better than informal use of such design patterns is the use of languages or frame-
works that enforce the pattern and provide proven implementations of the low-level
details. We have outlined the key features of a few such promising languages and
frameworks.
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