
Lecture Notes in Electrical Engineering 294

Valery Sklyarov
Iouliia Skliarova
Alexander Barkalov
Larysa Titarenko

Synthesis and
Optimization
of FPGA-Based
Systems

For further volumes:
http://www.springer.com/series/7818

Lecture Notes in Electrical Engineering

Board of Series Editors

Leopoldo Angrisani, Napoli, Italy
Marco Arteaga, Coyoacán, México
Samarjit Chakraborty, München, Germany
Jiming Chen, Hangzhou, P.R. China
Tan Kay Chen, Singapore, Singapore
Rüdiger Dillmann, Karlsruhe, Germany
Gianluigi Ferrari, Parma, Italy
Manuel Ferre, Madrid, Spain
Sandra Hirche, München, Germany
Faryar Jabbari, Irvine, USA
Janusz Kacprzyk, Warsaw, Poland
Alaa Khamis, New Cairo City, Egypt
Torsten Kroeger, Stanford, USA
Tan Cher Ming, Singapore, Singapore
Wolfgang Minker, Ulm, Germany
Pradeep Misra, Dayton, USA
Sebastian Möller, Berlin, Germany
Subhas Mukhopadyay, Palmerston, New Zealand
Cun-Zheng Ning, Tempe, USA
Toyoaki Nishida, Sakyo-ku, Japan
Federica Pascucci, Roma, Italy
Tariq Samad, Minneapolis, USA
Gan Woon Seng, Nanyang Avenue, Singapore
Germano Veiga, Porto, Portugal
Junjie James Zhang, Charlotte, USA

Volume 294

http://www.springer.com/series/7818

About this Series

“Lecture Notes in Electrical Engineering (LNEE)” is a book series which reports
the latest research and developments in Electrical Engineering, namely:

•	 Communication, Networks, and Information Theory
•	 Computer Engineering
•	 Signal, Image, Speech and Information Processing
•	 Circuits and Systems
•	 Bioengineering

LNEE publishes authored monographs and contributed volumes which pre-
sent cutting edge research information as well as new perspectives on classical
fields, while maintaining Springer’s high standards of academic excellence. Also
considered for publication are lecture materials, proceedings, and other related
materials of exceptionally high quality and interest. The subject matter should be
original and timely, reporting the latest research and developments in all areas of
electrical engineering.

The audience for the books in LNEE consists of advanced level students,
researchers, and industry professionals working at the forefront of their fields.
Much like Springer’s other Lecture Notes series, LNEE will be distributed through
Springer’s print and electronic publishing channels.

Valery Sklyarov · Iouliia Skliarova
Alexander Barkalov · Larysa Titarenko

1 3

Synthesis and Optimization
of FPGA-Based Systems

Valery Sklyarov
Iouliia Skliarova
Department of Electronics,

Telecommunications and Informatics
University of Aveiro
Aveiro
Portugal

Library of Congress Control Number: 2013958443

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance
Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

ISSN  1876-1100	 ISSN  1876-1119  (electronic)
ISBN 978-3-319-04707-2	 ISBN 978-3-319-04708-9  (eBook)
DOI 10.1007/978-3-319-04708-9
Springer Cham Heidelberg New York Dordrecht London

Alexander Barkalov
Larysa Titarenko
Institute of Informatics and Electronics
University of Zielona Góra
Zielona Góra
Poland

v

Preface

Field-Programmable Gate Arrays (FPGAs) were invented by Xilinx in 1985, i.e.,
less than 30 years ago. The influence of FPGAs on many directions in engineer-
ing is growing continuously and rapidly. There are many reasons for such progress
and the most important are the inherent configurability of FPGAs and their rela-
tively cheap development cost. Forecasts suggest that the impact of FPGAs will
continue to grow and the range of applications will increase considerably in the
future. Recent field-configurable microchips incorporate multicore processors and
reconfigurable logic appended with a number of frequently used devices such as
digital signal processing slices and block memories. FPGA-based systems can
be synthesized and implemented in general-purpose computers using integrated
design environments. Experiments and explorations of such systems are com-
monly based on prototyping boards linked to the same environment.

It is widely known and proven that FPGAs can be applied efficiently in a
vast variety of engineering applications. One reason for this is that growing sys-
tem complexity makes it very difficult to ship designs without errors. Hence, it is
essential to be able to fix errors after fabrication, which can be done significantly
easier with customizable devices.

The complexity of contemporary chips is increasing exponentially with time
and the number of available transistors grows faster than the ability to design
meaningfully with them. This situation is a well-known design productivity gap,
which is increasing continuously. Therefore, design productivity will be the
real challenge for future systems. Although in unit production volumes and rev-
enue, Application-Specific Integrated Circuits (ASICs) and Application-Specific
Standard Products (ASSPs) surpass FPGAs, forecasts of FPGA design start num-
bers are currently ahead of ASIC/ASSP design starts. Thus, the high involvement
of FPGAs in new designs of circuits and systems and the need for better design
productivity undoubtedly require huge engineering resources, which are the major
output of technical universities, and this book is intended to provide assistance for
the relevant courses.

FPGAs still operate at lower clock frequencies than general-purpose computers
and ASICs. The cost of the most advanced devices is high. Cheaper microchips
operate at clock frequencies that are lower than in inexpensive computers that are
widely used. One of the most important applications of FPGAs is improving the

Prefacevi

performance of implemented systems. To achieve acceleration with devices that
are generally slower, parallelism needs to be applied extensively.

The book pursues two main objectives and is composed of two parts. The first
part with appendices A and B (written by Valery Sklyarov and Iouliia Skliarova)
introduces the concepts of the design of digital systems using contemporary Field-
Programmable Gate Arrays and presents the recent results of the authors in FPGA-
based high-performance accelerators. This part is composed of five chapters with
the main objective of extending topics that are traditionally included within digital
systems in a way that enables FPGA-based design to be discussed, illustrated by
examples, and supported by experiments with relatively cheap prototyping boards
that are widely available. The second part of the book (written by Alexander
Barkalov and Larisa Titarenko) includes four chapters and covers more theoretical
aspects of finite state machines (FSMs) with the main objective of reducing FPGA
basic resources (slices or look-up tables), minimizing delays in the circuits, and
achieving greater optimization of fundamental components in FPGAs.

The following features set the book apart from others in the field:

1.	 It provides easily understandable introductory sections (appropriate even for
the first-year students in the area) that are gradually extended to more advanced
topics covering the novel techniques that are proposed and disseminated by the
authors and demonstrated in numerous examples from practical applications.

2.	 Fully synthesizable hardware-description language specifications (VHDL, in
particular) for the majority of the circuits and systems described are presented
ready to be tested and incorporated in practical engineering designs, which is
indispensable for both undergraduate and postgraduate university students.

3.	 A number of practical designs based on the proposed models and methods for
complete applications are discussed from areas such as data processing, combi-
natorial search, and computations relying on the model of a hierarchical finite
state machine.

4.	 Exploring models and methods that involve not only core reconfigurable logi-
cal elements but also a number of embedded blocks (e.g., memories and digital
signal processing slices) and template-based circuits.

The book provides the following additional features:

1.	 The design examples have been tested in three prototyping boards with Xilinx
and Altera FPGAs. The latest Nexys-4 board from Digilent with the recent
Artix-7 FPGA from the Xilinx 7 series and the well-known Digilent Atlys
board with the Xilinx Spartan-6 FPGA were used for the majority of the exam-
ples. Many projects were also tested in the DE2-115 board with the Altera
Cyclon-IVe FPGA that was developed especially for education and is popular
in university courses.

2.	 All the VHDL examples from the book are available online at http://sweet.ua.
pt/skl/Springer2014.html. The website also provides the latest updated projects.
These projects can be downloaded and tested and evaluated immediately. Each
example includes a brief description, the VHDL code, a user constraints file,
and a bitstream for the selected FPGA.

http://sweet.ua.pt/skl/Springer2014
http://sweet.ua.pt/skl/Springer2014

Preface vii

The chapters in the book contain the following material:
Chapter 1 introduces FPGA architectures by presenting the general structure of

modern devices and explaining the core elements and the most important embed-
ded blocks, such as memory and digital signal processing slices. A few typical
FPGA-based design scenarios are discussed that cover the phases of specification,
supplying physical constraints, implementation, configuration, and finally, testing.
In this introductory chapter, design specifications are presented at the schematic
level, where a circuit is constructed either from components available in vendor-
specific libraries, user-defined blocks, or from properly customized intellectual
property cores. A number of simple examples are given that are ready to be tested
in FPGA-based prototyping boards. The three prototyping boards used in the book
are characterized briefly and the general ideas for interaction with circuits and sys-
tems implemented in FPGAs are introduced. All the processing steps are explained
through numerous examples.

Chapter 2 presents a concise introduction to synthesizable VHDL that is suf-
ficient for the design methods and examples given in subsequent chapters to be
understood without much background knowledge. The main objective of this
chapter is to explain the basis of VHDL modules and their specification capabili-
ties without going into detail. There are many excellent books dedicated to VHDL
that may be used to complement this book. Our primary target is the synthesis and
optimization of FPGA-based circuits and systems and VHDL is just an instrument
that is used in the book to describe the desired functionalities and structures. Thus
this chapter only provides the minimum necessary to allow subsequent chapters to
be read without additional material, and to enable all the proposed examples to be
understood and tested with the FPGA-based prototyping boards.

Chapter 3 begins with a brief description of widely used simple combina-
tional and sequential circuits. Many examples are given with implementations of
the circuits in FPGAs. Next, various optimization techniques are discussed with
special emphasis on broad parallelism, which is very important for FPGA-based
applications. More complicated digital circuits and systems are introduced, such
as parallel networks for sorting and searching, hamming weight counters/compara-
tors, concurrent vector processing units, and advanced finite state machines. The
circuits are designed so that operations over multiple data items can be executed
concurrently. Network-based solutions, such as sorting and counting networks
in particular, and the efficient mapping of circuits to FPGA primitives (look-up
tables) are examples. A number of alternative competing methods are discussed
and evaluated. All the circuits and systems are described in VHDL, implemented
and tested in FPGAs, and finally evaluated by applying various criteria. Many of
the novel solutions proposed are parameterized, which permits very complex pro-
jects to be developed in FPGAs for solving advanced problems in several areas,
such as data processing and combinatorial search.

Chapter 4 begins with examples that demonstrate how commercially avail-
able intellectual property cores can be embedded in different designs. In particu-
lar, arithmetical circuits constructed from digital signal processing slices, and
parameterized memory blocks that provide support for data buffering (such as

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_2
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_4

Prefaceviii

FIFO—first input first output), are described. More details on digital signal pro-
cessing slices are then given and it is shown how these may be used efficiently in
practical circuits such as hamming weight counters/comparators. The major part
of this chapter is dedicated to interactions between a host computer and FPGA-
based prototyping boards through the Digilent enhanced parallel port and the
UART (Universal Asynchronous Receiver and Transmitter) interfaces. Complete
details of the communication modules are described, including both software for
general-purpose computers that was developed in the C++ language, and hard-
ware for FPGAs. The next section makes use of the designed modules for projects
that involve such interactions for different purposes. A more complicated design
for a network-based iterative data sorter from Chap. 3 is implemented and tested
in this way as a complete fully functioning example. The chapter concludes with
a brief description of programmable systems-on-chip (PSoC) that combine an
embedded processing system with a reconfigurable logic, which can lead to more
efficient implementations of the applications. Proposals for mapping the designs
from Chap. 3 to the PSoC are given and discussed.

Chapter 5 gives an overview of the design techniques based on hierarchical and
parallel specifications. First, hierarchical graph-schemes (HGSs) are introduced
that enable complex digital control algorithms to be decomposed and described
efficiently. A module, described by an HGS, is the fundamental entity that pro-
vides the basis for the technique, and is an autonomous, complete, and potentially
reusable component. A module has to be designed such that: (1) it can be veri-
fied independently of other modules; (2) it possesses a well-defined external inter-
face so it can be reused in different specifications. It is shown that a set of HGSs
(modules) can be implemented in a hierarchical finite state machine (HFSM) with
a stack memory. Many VHDL examples are given that demonstrate that HFSMs
permit the execution of hierarchical algorithms and provide support for recursion
if required. Various types of HFSMs are described and synthesizable VHDL tem-
plates for these are given that can be customized for particular problems. Parallel
specifications and parallel HFSMs are also discussed. Many fully functioning
VHDL examples for all the types of HFSMs above are presented and evaluated. It
is also shown how software programs can be mapped to hardware with the aid of
HFSM models. Finally, a variety of HFSM optimization techniques are proposed.

Chapter 6 is devoted to the problems of optimization of Moore FSM’s logic
circuits implemented with FPGAs. The general characteristic is given for meth-
ods of functional and structural decomposition. Distinctive features of FPGA are
analyzed allowing the number of look-up table (LUT) elements in logic circuits
of Moore FSMs to be decreased. The classification of optimization methods are
given for Moore FSM including: (1) the transformation of state codes into codes
of the classes of pseudo-equivalent states (PES); (2) presentation of state codes as
concatenations of codes of PES and collections of microoperations; (3) replace-
ment of logical conditions (input variables of FSM) with additional variables. All
discussed methods are illustrated by examples.

Chapter 7 deals with design of Moore FSMs based on using embedded memory
blocks (EMB). The methods of trivial EMB-based implementation of logic circuits

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_5
http://dx.doi.org/10.1007/978-3-319-04708-9_6
http://dx.doi.org/10.1007/978-3-319-04708-9_7

Preface ix

of both Moore and Mealy FSMs are discussed. In this case, only one EMB is
enough for implementing the circuit. Next, the optimization methods are discussed
based on replacement of logical conditions as well as encoding of the collections
of microoperations. The considered methods are based on encoding the rows of
FSM’s structure table. All these methods lead to two-level models of Mealy FSMs
and to three-level models of Moore FSMs. Next, these methods are combined
together for further optimization of hardware in FSM logic circuits. The last sec-
tion considers applying PES-based methods in EMB-based Moore FSMs. All dis-
cussed methods are illustrated by examples.

Chapter 8 is devoted to optimization of logic circuits of EMB-based FSMs.
First of all, the design methods based on the replacement of logical conditions
are discussed for both Moore and Mealy FSMs. Next, the proposed optimization
methods are presented. These methods are based on splitting the set of logical con-
ditions. This approach allows decreasing the number of LUTs in the circuit of the
block of replacement of logical conditions. In the case of Moore FSM, the optimi-
zation methods are based on optimal state assignment, as well as the transforma-
tion of state codes into codes of the classes of PES. All discussed methods are
illustrated by examples.

Chapter 9 is devoted to using the datapath for decreasing the number of LUTs
in logic circuits of FPGA-based Moore FSMs. Firstly, the principle of operational
implementation of interstate transitions is proposed. It is based on the usage of
operational elements (adders, counters, shifters, and so on) for calculating codes
the states of transitions. Next, the organization of FSM with operational imple-
mentation of interstate transitions is discussed. An example is given for applica-
tion of the proposed method. Next, the base structure of synthesis process is
proposed for Moore FSM with operational implementation of interstate transi-
tions. The structure of the synthesis process depends on initial conditions such as
set of operations or codes of FSM states. The typical structures are discussed for
the operational automaton executing the transitions. Next, the method is shown
based on mixture of traditional and proposed approaches for calculation of the
codes of states of transitions. The last part of the chapter discusses the efficiency
of the proposed solutions.

Appendix A contains a short description used in the book synthesizable VHDL
constructions and reserved words in alphabetical order with examples.

Appendix B offers a number of synthesizable VHDL specifications that provide
support for many projects in the part I of the book. All the examples are presented
so that they can be tried out and examined directly.

The book can be used as supporting material for university courses that involve
FPGA-based design, such as “Digital design,” “Computer architecture,” “Electronics,”
“Embedded systems,” “Reconfigurable computing,” “Communications,” and “FPGA-
based systems.” It will also be helpful in engineering practice and research activity in
areas where FPGA-based circuits and systems are planned to be designed and inves-
tigated. It is important to note that the presented fully functioning VHDL projects
(that are also available online at http://sweet.ua.pt/skl/Springer2014.html) can be used
directly in many research and engineering applications.

http://dx.doi.org/10.1007/978-3-319-04708-9_8
http://dx.doi.org/10.1007/978-3-319-04708-9_9
http://sweet.ua.pt/skl/Springer2014

xi

Part I  Design of Digital Circuits and Systems on the Basis of FPGA

1	 FPGA Architectures, Reconfigurable Fabric, Embedded Blocks
and Design Tools . 	 3
1.1	 Introduction to FPGA. 	 3
1.2	 The Basis of FPGA Devices. 	 8

1.2.1	 Configurable Logic Blocks of Xilinx FPGAs. 	 8
1.2.2	 Logic Elements of Altera FPGAs. 	 12

1.3	 Embedded Blocks . 	 13
1.3.1	 Embedded Memories. 	 13
1.3.2	 Embedded DSP Slices . 	 17

1.4	 Clock Distributions and Resets . 	 20
1.5	 Design Tools. 	 21
1.6	 Implementation and Prototyping . 	 27
1.7	 Interaction with FPGA-Based Circuits and Systems. 	 34
References. 	 40

2	 Synthesizable VHDL for FPGA-Based Devices. 	 43
2.1	 Introduction to VHDL . 	 43
2.2	 Data Types, Objects and Operators . 	 50
2.3	 Combinational and Sequential Processes. 	 55

2.3.1	 Combinational Processes. 	 56
2.3.2	 Sequential Processes. .	 59

2.4	 Functions, Procedures, and Blocks. .	 63
2.5	 Generics and Generates . 	 70
2.6	 Libraries, Packages, and Files . 	 76
2.7	 Behavioral Simulation. 	 81
2.8	 Prototyping. 	 85
References. 	 88

Contents

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1#Sec1
http://dx.doi.org/10.1007/978-3-319-04708-9_1#Sec2
http://dx.doi.org/10.1007/978-3-319-04708-9_1#Sec3
http://dx.doi.org/10.1007/978-3-319-04708-9_1#Sec4
http://dx.doi.org/10.1007/978-3-319-04708-9_1#Sec5
http://dx.doi.org/10.1007/978-3-319-04708-9_1#Sec6
http://dx.doi.org/10.1007/978-3-319-04708-9_1#Sec7
http://dx.doi.org/10.1007/978-3-319-04708-9_1#Sec8
http://dx.doi.org/10.1007/978-3-319-04708-9_1#Sec9
http://dx.doi.org/10.1007/978-3-319-04708-9_1#Sec10
http://dx.doi.org/10.1007/978-3-319-04708-9_1#Sec11
http://dx.doi.org/10.1007/978-3-319-04708-9_1#Bib1
http://dx.doi.org/10.1007/978-3-319-04708-9_2
http://dx.doi.org/10.1007/978-3-319-04708-9_2#Sec1
http://dx.doi.org/10.1007/978-3-319-04708-9_2#Sec2
http://dx.doi.org/10.1007/978-3-319-04708-9_2#Sec3
http://dx.doi.org/10.1007/978-3-319-04708-9_2#Sec4
http://dx.doi.org/10.1007/978-3-319-04708-9_2#Sec5
http://dx.doi.org/10.1007/978-3-319-04708-9_2#Sec6
http://dx.doi.org/10.1007/978-3-319-04708-9_2#Sec7
http://dx.doi.org/10.1007/978-3-319-04708-9_2#Sec8
http://dx.doi.org/10.1007/978-3-319-04708-9_2#Sec9
http://dx.doi.org/10.1007/978-3-319-04708-9_2#Sec10
http://dx.doi.org/10.1007/978-3-319-04708-9_2#Bib1

xii Contents

3	 Design Techniques. 	 89
3.1	 Combinational Circuits . 	 89

3.1.1	 Encoders. 	 92
3.1.2	 Decoders. 	 93
3.1.3	 Multiplexers. 	 94
3.1.4	 Comparators. 	 95
3.1.5	 Arithmetical Circuits . 	 95
3.1.6	 Barrel Shifters. .	 96

3.2	 Sequential Circuits. 	 97
3.2.1	 Registers. 	 97
3.2.2	 Shift Registers . 	 98
3.2.3	 Counters. 	 98
3.2.4	 Arithmetical Circuits with Accumulators. 	 99

3.3	 Finite State Machines. 	 100
3.4	 Optimization of FPGA-Based Circuits and Systems. 	 104

3.4.1	 Highly Parallel Network-Based Solutions. 	 105
3.4.2	 Hardware Accelerators. 	 110
3.4.3	 Parallel Modular Algorithms Running

in Hierarchical FSMs. 	 111
3.5	 Design Examples for Parallel Sort. 	 112
3.6	 Design Examples for Parallel Search. 	 118
3.7	 Design Examples for Parallel Counters. 	 123
3.8	 Design Examples for Counting Networks. 	 127
3.9	 Design Examples for LUT-Based Hamming Weight

Counters/Comparators. 	 130
3.10	 Design Examples for Operations Over Vectors. 	 137
References. 	 141

4	 Embedded Blocks and System-Level Design . 	 143
4.1	 Using IP Cores. 	 143
4.2	 Design with Embedded DSP Slices. 	 153
4.3	 Interaction with FPGA. 	 158

4.3.1	 Digilent Parallel Port Interface. 	 159
4.3.2	 UART Interface . 	 167

4.4	 Software/Hardware Co-design and Co-simulation. 	 179
4.4.1	 Software-Hardware Co-design with Digilent

Parallel Port Interface. 	 181
4.4.2	 Software-Hardware Co-design with UART Interface 	 188

4.5	 Programmable Systems-on-Chip. 	 197
References. 	 202

5	 Design Technique Based on Hierarchical and Parallel Specifications . . . 	 205
5.1	 Modular Hierarchical Specifications . 	 205
5.2	 Hierarchical Finite State Machines . 	 210

5.2.1	 HDL Template for HFSM with Explicit Modules. 	 211

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec1
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec2
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec3
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec4
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec5
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec6
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec7
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec8
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec9
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec10
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec11
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec12
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec13
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec14
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec15
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec16
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec17
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec17
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec18
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec19
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec20
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec21
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec22
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec22
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Sec23
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Bib1
http://dx.doi.org/10.1007/978-3-319-04708-9_4
http://dx.doi.org/10.1007/978-3-319-04708-9_4#Sec1
http://dx.doi.org/10.1007/978-3-319-04708-9_4#Sec2
http://dx.doi.org/10.1007/978-3-319-04708-9_4#Sec3
http://dx.doi.org/10.1007/978-3-319-04708-9_4#Sec4
http://dx.doi.org/10.1007/978-3-319-04708-9_4#Sec7
http://dx.doi.org/10.1007/978-3-319-04708-9_4#Sec10
http://dx.doi.org/10.1007/978-3-319-04708-9_4#Sec11
http://dx.doi.org/10.1007/978-3-319-04708-9_4#Sec11
http://dx.doi.org/10.1007/978-3-319-04708-9_4#Sec12
http://dx.doi.org/10.1007/978-3-319-04708-9_4#Sec13
http://dx.doi.org/10.1007/978-3-319-04708-9_4#Bib1
http://dx.doi.org/10.1007/978-3-319-04708-9_5
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec1
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec2
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec3

xiiiContents

5.2.2	 HDL Template for HFSM with Implicit Modules. 	 220
5.3	 Synthesis of HFSMs. 	 221

5.3.1	 Synthesis of HFSMs with Explicit Modules 	 222
5.3.2	 Synthesis of HFSMs with Implicit Modules 	 229

5.4	 Parallel Specifications and Parallel HFSMs. 	 230
5.5	 Hardware Implementations of Software Programs

Based on HFSM Models . 	 239
5.6	 Using Stacks Based on Embedded or Distributed Memories. 	 242
5.7	 Optimization Techniques. 	 245

5.7.1	 Execution of Hierarchical Returns. 	 245
5.7.2	 Providing Multiple Entry Points to HGSs. 	 246
5.7.3	 Fast Stack Unwinding . 	 247

5.8	 Practical Applications. 	 247
References. 	 254

Part II � Methods for Optimization of Finite State Machines
for FPGA-Based Circuits and Systems

6	 Hardware Reduction in Logic Circuits of Moore FSM. 	 259
6.1	 General Characteristic of Existing Methods 	 259
6.2	 Object Transformation in Moore FSM. 	 266
6.3	 Expansion of State Codes for Moore FSM . 	 271
6.4	 Synthesis of Moore FSM with Replacement of

Logical Conditions. 	 279
References. 	 283

7	 Design of FSMs with Embedded Memory Blocks 	 285
7.1	 Trivial Implementation of Mealy and Moore FSMs 	 285
7.2	 Structural Decomposition of FSMs. 	 291
7.3	 Design of Mealy FSM with Encoding of the

Collections of Microoperations . 	 295
7.4	 Design of Mealy FSM with Encoding of the

Fields of Compatible Microoperations. 	 298
7.5	 Design of Mealy FSM with Encoding of the Rows

of Structure Table. 	 300
7.6	 Optimization of BIMF Based on Pseudoequivalent

States of Moore FSM. 	 305
References. 	 310

8	 Optimization of FSMs with Embedded Memory Blocks. 	 313
8.1	 Trivial Implementation of MP Mealy FSMs 	 313
8.2	 Optimization of LUTer. 	 321
8.3	 Optimization of LUTer Based on Pseudoequivalent States. 	 325
8.4	 Optimization of LUTer Based on Encoding of

Collections of Microoperations . 	 334
References. 	 341

http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec4
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec5
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec6
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec7
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec8
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec9
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec9
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec10
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec11
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec12
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec13
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec14
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Sec15
http://dx.doi.org/10.1007/978-3-319-04708-9_5#Bib1
http://dx.doi.org/10.1007/978-3-319-04708-9_6
http://dx.doi.org/10.1007/978-3-319-04708-9_6#Sec1
http://dx.doi.org/10.1007/978-3-319-04708-9_6#Sec2
http://dx.doi.org/10.1007/978-3-319-04708-9_6#Sec3
http://dx.doi.org/10.1007/978-3-319-04708-9_6#Sec4
http://dx.doi.org/10.1007/978-3-319-04708-9_6#Sec4
http://dx.doi.org/10.1007/978-3-319-04708-9_6#Bib1
http://dx.doi.org/10.1007/978-3-319-04708-9_7
http://dx.doi.org/10.1007/978-3-319-04708-9_7#Sec1
http://dx.doi.org/10.1007/978-3-319-04708-9_7#Sec2
http://dx.doi.org/10.1007/978-3-319-04708-9_7#Sec3
http://dx.doi.org/10.1007/978-3-319-04708-9_7#Sec3
http://dx.doi.org/10.1007/978-3-319-04708-9_7#Sec4
http://dx.doi.org/10.1007/978-3-319-04708-9_7#Sec4
http://dx.doi.org/10.1007/978-3-319-04708-9_7#Sec5
http://dx.doi.org/10.1007/978-3-319-04708-9_7#Sec5
http://dx.doi.org/10.1007/978-3-319-04708-9_7#Sec6
http://dx.doi.org/10.1007/978-3-319-04708-9_7#Sec6
http://dx.doi.org/10.1007/978-3-319-04708-9_7#Bib1
http://dx.doi.org/10.1007/978-3-319-04708-9_8
http://dx.doi.org/10.1007/978-3-319-04708-9_8#Sec1
http://dx.doi.org/10.1007/978-3-319-04708-9_8#Sec2
http://dx.doi.org/10.1007/978-3-319-04708-9_8#Sec3
http://dx.doi.org/10.1007/978-3-319-04708-9_8#Sec4
http://dx.doi.org/10.1007/978-3-319-04708-9_8#Sec4
http://dx.doi.org/10.1007/978-3-319-04708-9_8#Bib1

xiv Contents

9	 Finite State Machines with Operational Implementation
of Transitions. 	 343
9.1	 Conception of Operational Implementation of Transitions. 	 343
9.2	 Organisation of FSM with Operational Generation of Transitions . . 	 346
9.3	 Example of FSM Design . 	 349
9.4	 Structural Representation of Synthesis Process for FSM with OAT. 	 353

9.4.1	 Base Structure of Synthesis Process for FSM with OAT. . . . 	 354
9.4.2	 Refinement of Basic Structure of Synthesis Process. 	 355

9.5	 Organization of Operational Automaton of Transitions. 	 359
9.5.1	 Typical Structure Models of Operational Automata. 	 359
9.5.2	 Organizational Specifics of OAT. 	 360
9.5.3	 Organization of Combinational Part of OAT. 	 360

9.6	 Synthesis Method for FSM with Supplemented Set of
Operations of Transitions. 	 363

9.7	 Investigation of Efficiency of FSM with OAT. 	 367
References. 	 373

Appendix A: �VHDL Constructions Used in the Book and
Additional Support Materials. 	 375

Appendix B: Coding Examples . 	 403

Index. 	 429

http://dx.doi.org/10.1007/978-3-319-04708-9_9
http://dx.doi.org/10.1007/978-3-319-04708-9_9
http://dx.doi.org/10.1007/978-3-319-04708-9_9#Sec1
http://dx.doi.org/10.1007/978-3-319-04708-9_9#Sec2
http://dx.doi.org/10.1007/978-3-319-04708-9_9#Sec3
http://dx.doi.org/10.1007/978-3-319-04708-9_9#Sec4
http://dx.doi.org/10.1007/978-3-319-04708-9_9#Sec5
http://dx.doi.org/10.1007/978-3-319-04708-9_9#Sec6
http://dx.doi.org/10.1007/978-3-319-04708-9_9#Sec7
http://dx.doi.org/10.1007/978-3-319-04708-9_9#Sec8
http://dx.doi.org/10.1007/978-3-319-04708-9_9#Sec9
http://dx.doi.org/10.1007/978-3-319-04708-9_9#Sec10
http://dx.doi.org/10.1007/978-3-319-04708-9_9#Sec11
http://dx.doi.org/10.1007/978-3-319-04708-9_9#Sec11
http://dx.doi.org/10.1007/978-3-319-04708-9_9#Sec12
http://dx.doi.org/10.1007/978-3-319-04708-9_9#Bib1

xv

ACP	 Accelerator Coherency Port
ALM	 Adaptive Logic Modules
API	 Application Programming Interface
APSoC	 All Programmable System-on-Chip
ARM	 Advanced RISC Machine
ASCII	 American Standard Code for Information Interchange
ASIC	 Application-Specific Integrated Circuit
ASMBL	 Advanced Silicon Modular Block
ASSP	 Application-Specific Standard Product
AXI	 Advanced eXtensible Interface
BCD	 Binary-Coded Decimal
BCT	 Block of Code Transformer
BIMF	 Block of Input Memory Functions
BMO	 Block of MicroOperations
BOT	 Block of Operations of Transitions
BRLC	 Block of Replacement of Logical Conditions
BST	 Block of State Transformer
BV	 Binary Vector
CAD	 Computer-Aided Design
CC	 Combinational Circuit
CLB	 Configurable Logic Block
CMO	 Collection of Microoperations
CMT	 Clock Management Tiles
CN	 Carry Network
CNB	 Carry Network Block
CPLD	 Complex Programmable Logic Device
CT	 Counter
DCM	 Digital Clock Manager
DDR	 Double Data Rate
DSP	 Digital Signal Processing
EG	 Equivalent Gate
EMB	 Embedded Memory Block
EMBer	 Logic Circuit Consisting of EMBs

Abbreviations

Abbreviationsxvi

EPP	 Enhanced Parallel Port
FA	 Full Adder
FIFO	 First Input First Output
FPGA	 Field-Programmable Gate Array
FPLD	 Field-Programmable Logic Device
FSM	 Finite State Machine
FSMD	 Finite State Machine with Data path
GFT	 General Formula of Transitions
GPI	 General-Purpose Interface
GSA	 Graph-Scheme of Algorithm
HA	 Half Adder
HDL	 Hardware Description Language
HDMI	 High-Definition Multimedia Interface
HFSM	 Hierarchical Finite State Machine
HGS	 Hierarchical Graph-Scheme
HID	 Human Interface Device
HW	 Hamming Weight
HWC	 Hamming Weight Comparator
IGCD	 Iterative Greatest Common Divisor
IP	 Intellectual Property
ISE	 Integrated Software Environment
JTAG	 Joint Test Action Group
LAB	 Logic Array Block
LC	 Logical Condition
LCC	 Linear Chain of Classes of PES
LCS	 Linear Chain of States
LE	 Logic Element
LED	 Light Emitting Diode
LSB	 Least Significant Bit
LUT	 Look-Up Table
LUTer	 Logic Circuit Consisting of LUTs
MI	 Microinstruction
MLAB	 Memory Logic Array Block
MMCM	 Mixed-Mode Clock Manager
MO	 Microoperation
MSB	 Most Significant Bit
OA	 Operational Automaton
OAT	 Operational Automaton of Transitions
OLC	 Operational Linear Chain
OP	 Operational Part
PAL	 Programmable Array Logic
PB	 Parallel Branch
PC	 Personal Computer
PEO	 Pseudoequivalent Outputs

Abbreviations xvii

PES	 Pseudoequivalent States
PHFSM	 Parallel Hierarchical Finite State Machine
PL	 Programmable Logic
PLA	 Programmable Logic Arrays
PLD	 Programmable Logic Device
PLL	 Phase-Locked Loop
PLR	 PipeLine Register
Pmod	 Peripheral Module
PROM	 Programmable Read-Only Memory
PS	 Processing System
PSoC	 Programmable Systems-on-Chip
RAM	 Random-Access Memory
RG	 Register
RGCD	 Recursive Greatest Common Divisor
RISC	 Reduced Instruction Set Computer
ROM	 Read-Only Memory
RTL	 Register-Transfer Level
SBF	 System of Boolean Functions
SDC	 Sequential Digital Circuit
SDK	 Software Development Kit
SIMD	 Single Instruction Multiple Data
SHWC	 Simplest Hamming Weight Counter
SOP	 Sum-Of-Products
SPI	 Serial Peripheral Interface
ST	 Structure Table
STT	 Synthesizable Table of Transitions
UART	 Universal Asynchronous Receiver/Transmitter
UCF	 User Constraints File
USB	 Universal Serial Bus
VHDL	 VHSIC Hardware Description Language
VHSIC	 Very High Speed Integrated Circuits
XDC	 Xilinx Design Constraints
XST	 Xilinx Synthesis Technology

xix

1.	 VHDL keywords are shown in bold font.
2.	 VHDL comments are shown in the following font: -- this is a comment.
3.	 The most important concepts are shown in italic font.
4.	 VHDL is not case sensitive language and thus UPPERCASE and lowercase

letters may be used interchangeably.
5.	 Many examples in the book need libraries which are not explicitly shown and

have to be included (see details in Sect. 2.6 and library in appendix A).

Xilinx®, Artix®, ISE®, LogiCore®, Spartan®, Virtex®, Vivado®, Zynq® are registered
trademarks of Xilinx Inc. Chipscope, CORE Generator are trademarks of Xilinx
Inc. Adept, Atlys, and Nexys-4 are trademarks of Digilent, Inc. Altera®, Stratix®
and Cyclone® are registered trademarks of Altera Corp. Other product and com-
pany names mentioned may be trademarks of their respective owners.

The research results reported in this book were supported by the European
Union through the European Regional Development Fund, FEDER through
the Operational Program Competitiveness Factors—COMPETE, and
National Funds through FCT—Foundation for Science and Technology in
the context of the projects FCOMP-01-0124-FEDER-022682 (FCT reference
PEst-C/EEI/UI0127/2011) and Incentivo/EEI/UI0127/2013.

Conventions

http://dx.doi.org/10.1007/978-3-319-04708-9_2

Part I
Design of Digital Circuits and Systems on

the Basis of FPGA

3

Abstract  This chapter introduces FPGA architectures by presenting the general
structure of modern devices and explaining the core elements and the most impor-
tant embedded blocks, such as memory and digital signal processing slices. A few
typical FPGA-based design scenarios are discussed that cover the phases of speci-
fication, supplying physical constraints, implementation, configuration and finally,
testing. In this introductory chapter, design specifications are presented at the sche-
matic level, where a circuit is constructed either from components available in ven-
dor-specific libraries, user-defined blocks, or from properly customized intellectual
property cores. A number of simple examples are given that are ready to be tested
in FPGA-based prototyping boards. The three prototyping boards used in the book
are characterized briefly and the general ideas for interaction with circuits and sys-
tems implemented in FPGAs are introduced. All the processing steps are explained
through numerous examples.

1.1 � Introduction to FPGA

Field-Programmable Gate Arrays (FPGAs) were invented less than 30 years ago
and their influence on different directions in engineering is growing continu-
ously and extremely fast. There are many reasons for such progress and the most
important of them is an inherent configurability and relatively cheap develop-
ment cost.

In accordance with forecasts, the impact of FPGAs on different develop-
ment directions will continue to grow and the number of such directions will be
extended in future. When FPGAs were first proposed, they were predominantly
used for implementing simple random and glue logic [1]. Nowadays, even under-
graduate students are capable of constructing complex digital devices on the basis
of FPGAs.

The world’s first FPGA XC2064™ was introduced and shipped in 1985 by
Xilinx. It offered 800 gates (85,000 transistors, 128 logic cells, 64 Configurable

Chapter 1
FPGA Architectures, Reconfigurable
Fabric, Embedded Blocks and Design Tools

V. Sklyarov et al., Synthesis and Optimization of FPGA-Based Systems,
Lecture Notes in Electrical Engineering 294, DOI: 10.1007/978-3-319-04708-9_1,
© Springer International Publishing Switzerland 2014

4 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

Logic Blocks—CLBs with two 3-input look-up tables, max clock frequency
50 MHz). The chip was sold for $55 and produced on a 2.0 μ process [2]. Recent
field-configurable micro-chips can be seen as a mixture of traditional gate arrays
and ASIC (Application-Specific Integrated Circuit) components (such as ARM
dual-core Cortex-A9) where the development of software and hardware can be
done relatively independent of each other (e.g. Zynq all programmable system-
on-chip [3]). FPGA complexity has reached 6.8 billion transistors [4], clock fre-
quency exceeds gigahertz, and the most advanced technology is 20 nm [5] (14 and
10 nm processes are expected to be announced in 2014 [5]).

FPGA-targeted Computer-Aided Design (CAD) systems permit different speci-
fications, tools, and components (such as hardware and system-level description
languages, design templates, intellectual property (IP) cores, soft/hard build-in
blocks) to be linked and combined within a single project. The relevant circuits
can be synthesized, implemented, and tested in the same environment installed on
a general-purpose computer with connected through standard interfaces (e.g. USB,
PCI express, wireless) FPGA-based prototyping boards/systems.

Nowadays, the way to evolve higher performance systems from a general-
purpose computer, proposed more than 50 years ago [6], has been finally imple-
mented in reality. Advances in FPGA technologies and architectures are clearly
shown in [7]. From 1985 to 2013 FPGAs grew 100,000 times in capacity and
became significantly faster. Two largest companies Altera and Xilinx continue to
dominate on the market [8].

Figure 1.1 depicts the recent 7 series Xilinx FPGA column-based ASMBL
(Advanced Silicon Modular Block) architecture [9]. The core configurable ele-
ments are slices that contain look-up tables (LUT), flip-flops and supplemen-
tary logic. A CLB consists of two slices and will be described in more detail in
Sect. 1.2. DSP blocks are efficient for digital signal processing. They execute
multiplication, addition, subtraction, logical and other operations over up to 48 bit
operands. Some of FPGA columns contain block memories, hard intellectual prop-
erty (IP) cores, input/output blocks, clock distributers and mixed signal managers.
We will describe these blocks later on in this chapter.

Different FPGA elements can be:

1.	 Configured to implement the desired functionality.
2.	 Flexibly interconnected with each other.

Fig. 1.1   Basic architecture
of the 7 series Xilinx FPGA

5

For example, an available 6-input/1-output slice LUT enables any Boolean
function of 6 variables to be implemented. Configuration permits a particular
function to be realized. A DSP block can be configured to implement a variety
of arithmetic and logic operations. Besides it provides many additional useful
features for digital signal and other types of processing that will be discussed
later. Interconnections set up links between internal pins of different elements.
Customization (configuring elements and interconnections) is done through
reloading a bitstream to FPGA. The details will be given on examples below.
Since the development of circuits and systems does not involve complex techno-
logical processes, FPGA are very appropriate for prototyping and verifying differ-
ent design ideas.

Figure 1.2 illustrates one possible scenario of FPGA-based design using Xilinx
Integrated Software Environment (ISE release version 14.7), Digilent Adept soft-
ware [10] and Atlys prototyping board [11] containing xc6slx45 FPGA of Xilinx
Spartan-6 family.

Different sources for the project are available in the ISE and we will use sche-
matic editor (see point 1 in Fig. 1.2) and describe a circuit with 3 inputs (x1,
x2, x3) and 1 output (y) detecting exactly one value ‘1’ in a 3-bit input vector
(“x1x2x3”). Thus, y = ‘1’ for any vector from the set {“001”,“010’,“100”}, oth-
erwise y = ‘0’. The circuit is saved in the file SimpleSchematic.sch. Let us con-
nect three inputs (x1, x2, x3) and one output (y) of the circuit with external FPGA
pins that are in turn connected with switches Sw0, Sw1, Sw2, and LED (Light-
Emitting Diode) Led0 on the Atlys board. Such connections are indicated in a
user constraints (implementation constraints) file (UCF) which is entitled Atlys.ucf

Fig. 1.2   One possible scenario of FPGA-based design

1.1  Introduction to FPGA

6 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

and shown in point 2 of Fig. 1.2, where A10, D14, C14, and U18 are names of
FPGA external pins connected with the switches and the LED (see point 5 in
Fig. 1.2). The NET keyword is used to apply constraints to specific signals (to the
input and output signals in our case). The LOC keyword defines where a design
element can be placed within the device. The detailed information about con-
straints can be found in [12]. Our ISE project (shown in between points 1 and 2
in Fig. 1.2) indicates the chosen FPGA (xc6slx45-3csg324), the top-level module
(SimpleSchematic.sch) and the UCF (Atlys.ucf) which specifies pin assignment for
the top-level module.

At the next phase synthesis, implementation and generate programming file
steps are applied to our project (see point 3 in Fig. 1.2). The generated file simple-
schematic.bit may now be used to configure the FPGA, which can be done either
directly from the ISE or in board-targeted software, such as Digilent Adept [10]
(see point 4 in Fig. 1.2). At the last step (see point 5 in Fig. 1.2) we verify the
circuit functionality in FPGA using the onboard switches Sw0, Sw1, Sw2 to sup-
ply values of inputs x1, x2, x3 and the onboard Led0 to examine the result (i.e. the
value of y). The circuit is so simple that it is implemented in just one slice LUT
and there are totally 27,288 such LUTs available in the chosen FPGA.

The designed circuit can be taken as a component for new projects and thus,
a hierarchy will be involved. Suppose, we would like to analyze three groups of
signals (x1,x2,x3), (x4,x5,x6), and (x7,x8,x9) and detect that exactly one group con-
tains exactly one value ‘1’. The circuit that implements such functionality from the
schematic editor of ISE is shown in Fig. 1.3.

At the beginning we create a component that contains the circuit shown
in Fig. 1.2 (see point 1). This can be done in the ISE using the option Create
Schematic Symbol. Since the name of the entity in point 1 of Fig. 1.2 is
SimpleSchematic, the name of the component is the same (see Fig. 1.3). The com-
ponent has to be connected within the new designed circuit much like it is done for
library primitives (gates) in point 1 of Fig. 1.2. Thus, the desired functionality is
described. The Atlys.ucf needs to be modified as follows:

Here the symbol # permits comments to be provided and the comments shown
above characterize links of the circuit pins with the FPGA external pins connected
to the onboard switches and the button. The available onboard components and
FPGA pins are connected in the printed circuit of the board and information about
such connections is available from the Atlys board documentation [11].

7

Point 1 in Fig. 1.3 illustrates the project structure with the top-level module
Top.sch. It is clearly seen that the structure is hierarchical in which the top-level
module (Top.sch) is composed of four lower level modules (SimpleSchematic.sch).
A dashed arrow line a points to the circuit Top.sch copied from the ISE schematic
editor. Point 2 refers to the ISE design steps that have already been briefly dis-
cussed. In the Design Summary/Reports (see point b in Fig. 1.3) different charac-
teristics of the circuit are summarized, particularly the used resources (now three
LUTs are required in two FPGA slices), and delays (the maximum combinational
path delay is 9.1 ns). We can use many other options, for example, View RTL
Schematic (RTL is a Register Transfer Level). For our project schematic is taken
as a design entry and it is the same as in the schematic editor (see the circuit indi-
cated by dashed arrow line c). However, schematic can also be built by ISE tools
from specifications in hardware description languages (HDL), which are gener-
ally considered to be more productive and efficient than schematic descriptions.
Configuring (programming) the FPGA is provided in point 3. Verification of the
designed circuit on the Atlys board is done in point 4.

Although the two projects in Figs. 1.2 and 1.3 are indeed trivial, they demon-
strate the essential steps for FPGA-based design, which are also common for com-
plex systems. A similar technique can be used for Altera Quartus environment (later

Fig. 1.3   Hierarchical design and analysis of the results

1.1  Introduction to FPGA

8 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

on we will demonstrate some examples in Quartus 13 Web edition software for
Altera FPGAs). For example, the block editor of Quartus enables schematic of the
design to be created. Note, that although diagrams, such as in point 1 of Fig. 1.2,
are illustrative for simple circuits, they become confused, difficult for verification
and error prone for complex designs, for which HDL becomes more preferable. We
will make an introduction to VHDL—Very-high speed integrated circuit HDL in
Chap. 2. Now let us characterize basic FPGA components with more details.

1.2 � The Basis of FPGA Devices

Configurable logic blocks (CLBs) are the main logic resources for implementing
digital circuits. We will discuss such blocks that are used in recent FPGAs of the
major two companies: Altera and Xilinx.

1.2.1 � Configurable Logic Blocks of Xilinx FPGAs

We consider CLBs for the recent 7 series FPGAs that are also very similar to the
popular Spartan-6 family of FPGAs. A CLB is composed of 2 slices that are con-
nected to a switch matrix for access to the general routing matrix [9]. Every slice
contains: (1) four LUTs; (2) eight edge-triggered D-type flip-flops, four of which
can also be configured as level-sensitive latches; (3) multiplexers; and (4) carry
logic for arithmetic circuits. Up to 16:1 multiplexer can be implemented in one
slice using built in multiplexers and LUTs.

There are two types of slices: SLICEL and SLICEM. Each CLB has either two
SLICELs or a SLICEL and a SLICEM. SLICEM provides support for two addi-
tional operations: storing data in the slice that in this case may be used to compose
a distributed RAM; and shifting up to 32-bit data.

Each slice LUT has 6 independent inputs (x0,…,x5), 2 independent outputs O5
and O6 and can be configured to implement: (1) any Boolean function of up to 6
variables x0,…,x5; (2) any two Boolean functions of up to 5 shared variables x0,…,x4
and x5 has to be set to high level; (3) any two Boolean functions of up to 3 and 2 sep-
arate variables. The propagation delay is independent of the function implemented in
the LUT.

Let us consider an example of LUT(6,1) with 6 inputs x5,x4,x3,x2,x1,x0
and 1 output y. The LUT will be used to implement a parity function for 6-bit
binary vector x5x4x3x2x1x0 in such a way that the Hamming weight of the vector
x5x4x3x2x1x0y is odd (the Hamming weight of a binary vector is the number of
values ‘1’ in the vector). The truth table for the function y is given in Table 1.1.

The column Hex contains hexadecimal vector that is used for INIT attribute
in the ISE environment (it is accessed through the Object Properties described
below). The vector begins with the value marked with an asterisk in Table 1.1:

http://dx.doi.org/10.1007/978-3-319-04708-9_2

9

(i.e. the first digit is 916): 966969966996966916 and it represents the binary vec-
tor for the output y: 1001 0110 0110 1001 0110 1001 1001 0110 0110 1001 1001
0110 1001 0110 0110 10012 (for easier comparison of hexadecimal and binary
vectors, digits 9 are shown in bold and digits 6 are shown in a normal font).

Figure 1.4 demonstrates configuring the LUT(6,1) in the schematic edi-
tor of the ISE. The vector 966969966996966916 is assigned to the INIT attribute
accessed through the Object Properties (point mouse to the LUT in the schematic
editor and right mouse button click to change Object Properties). Figure 1.5 dem-
onstrates configuring LUT(5,2) to implement the functions y0 and y1 shown in
Table 1.1.

Now hexadecimal vector composed of 16 hexadecimal digits is split in two
8-digit sub-vectors in such a way that the first sub-vector configures the first

Table 1.1   Truth tables for configuring LUT(5, 2) and LUT(6, 1)

x4x3x2x1x0 y1y0 Hex x5x4x3x2x1x0 y Hex x5x4x3x2x1x0 y Hex

00000 00 ca 000000 1 9 100000 0 6
00001 01 000001 0 100001 1
00010 10 000010 0 100010 1
00011 11 000011 1 100011 0
00100 11 35 000100 0 6 100100 1 9
00101 10 000101 1 100101 0
00110 01 000110 1 100110 0
00111 00 000111 0 100111 1
01000 01 a5 001000 0 6 101000 1 9
01001 10 001001 1 101001 0
01010 01 001010 1 101010 0
01011 10 001011 0 101011 1
01100 11 59 001100 1 9 101100 0 6
01101 00 001101 0 101101 1
01110 10 001110 0 101110 1
01111 01 001111 1 101111 0
10000 01 a5 010000 0 6 110000 1 9
10001 10 010001 1 110001 0
10010 01 010010 1 110010 0
10011 10 010011 0 110011 1
10100 01 ab 010100 1 9 110100 0 6
10101 11 010101 0 110101 1
10110 00 010110 0 110110 1
10111 11 010111 1 110111 0
11000 01 65 011000 1 9 111000 0 6
11001 10 011001 0 111001 1
11010 11 011010 0 111010 1
11011 00 011011 1 111011 0
11100 01 ab* ** 011100 0 6 111100 1 9 *
11101 11 011101 1 111101 0
11110 00 011110 1 111110 0
11111 11 011111 0 111111 1

1.2  The Basis of FPGA Devices

10 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

function and the second sub-vector configures the second function. For our exam-
ple in Table 1.1 the following vector is built: a6aa5a3cb5b5955a16. The first sub-
vector a6aa5a3c16 enables the function y1 to be configured. The second sub-vector
b5b5955a16 enables the function y0 to be configured.

An asterisk (*) in Table 1.1 indicates the beginning of the first sub-vector and
two asterisks (**) in Table 1.1 indicate the beginning of the second sub-vector.
The circuits in Figs. 1.4 and 1.5 can easily be verified supplying inputs from
switches and displaying values of the functions on LEDs. In Fig. 1.5 a 6-input
LUT is taken but the most significant input is set to high (‘1’) by supplying VCC
signal and configuring the LUT(5,2) to implement two different Boolean functions
of 5 shared variables.

LUTs in SLICEMs can implement a synchronous (distributed) RAM/ROM
with single, dual or quad ports. We can also configure SLICEM as up to 32-bit
shift register not requiring slice flip-flops. The register enables serial data on its
input to be delayed on its output from 1 to 32 clock cycles. The number of clocks
for delay is controlled by a dedicated 5-bit input vector. Figure 1.6 gives an exam-
ple of a circuit that contains a LUT-based 256 × 1 ROM and a shift register with
variable size (from 1 to 32).

The Xilinx primitive ROM256x1 is programmed with the following INIT
attribute: 0f070301013731.
Now the value ‘1’ is written at the address 0 (see the right part of the vec-
tor above), the value ‘0’ at the address 1, etc. The block clock_divider outputs
a clock signal with frequency approximately equal to 1 Hz and the VHDL code
for such divider is presented in Appendix B. The Xilinx primitive CB8CE is an
8-bit binary counter, which generates addresses for the ROM, incrementing them

Fig. 1.4   Configuring
LUT(6,1) using Xilinx
primitive LUT6

Fig. 1.5   Configuring
LUT(5,2) using Xilinx
primitive LUT6_2

11

approximately every second. Connections between the bus Q(7:0) and the lines
Q(7),…,Q(0) are provided by names much like it is done for the lines clk1 Hz and
high (i.e. non-shown in Fig. 1.6 wires with equal names are, in fact, connected).
The project has been tested in the Atlys board. Onboard switches Sw4,…,Sw0 are
used to set the shift register size which can be defined from 1 (“00000”) to 32
(“11111”). All necessary connections with FPGA pins (see grey rectangular areas)
are shown in Fig. 1.6 in form of lines of the file Atlys.ucf. The onboard button
BTND supplies the reset signal (just for the counter, because the shift register does
not need to be cleared). Three onboard LEDs (Led2, Led1, and Led0) are used
for verification of the project. Led1 gets the clk1Hz signal (clock with a frequency
approximately equal to 1 Hz). Thus, all other signals can be verified sequen-
tially relatively to the low-frequency clock (see waveforms in Fig. 1.7). Switches
Sw4,…,Sw0 permit delay of the Led2 (shift register output s_out) relatively to the
Led0 (shift register input s_in) to be set. For example, if Sw4,…,Sw0 are assigned
to the value “00111” then the delay is 8 clock cycles and waveforms for such a
case are shown in Fig. 1.7. The project is implemented on 12 slices from which

Fig. 1.6   Using LUT-based (distributed) memory (Xilinx primitive ROM256x1) and a shift regis-
ter (Xilinx primitive SRLC32E)

Fig. 1.7   Waveforms of signals displayed on the LEDs Led1 (clock with frequency 1 Hz), Led0
(data from the ROM), Led2 (data from the shift register)

1.2  The Basis of FPGA Devices

12 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

one slice is used for the ROM and one slice is used for the shift register. A number
of other useful LUT configurations are considered in [9]. It is important to note
that LUT-based memories can be used as configurable combinational circuits ena-
bling functionality to be changed during execution time.

The number of slices in Spartan-6 family FPGAs varies from 600 to 23,038.
The number of slices in 7 series FPGAs varies from 10,250 to 305,400.

1.2.2 � Logic Elements of Altera FPGAs

We consider logic elements for recent Stratix-V series FPGAs with core reconfig-
urable fabric called logic array block (LAB) [13] composed of adaptive logic mod-
ules (ALM), which can be configured to implement logic, arithmetic, and memory
functions. Half of the available LABs may be used as memory LAB (MLAB).

Each ALM contains different LUT-based resources and can implement any
Boolean function of up to six variables. Besides, a number of other types of
Boolean functions F(n,m) describing circuits with n inputs and m outputs can be
implemented such as F(4,3) and F(5,2).

ALMs operate in four possible modes [13]:

1.	 Normal mode enables two Boolean functions of up to 5 variables or one
Boolean function of up to 6 variables to be implemented. Besides, 8 available
data inputs allow certain Boolean functions with more than 6 variables to be
realized.

2.	 Extended mode permits the result of the implemented Boolean function to be
registered.

3.	 Arithmetic mode uses four 4-input LUTs for pre-adder logic connected with
two dedicated full adders.

4.	 Shared arithmetic mode permits 3 input additions to be implemented. The
details are given in [13].

Each ALM in an MLAB can be programmed as either a 64 × 1 or a 32 × 2
block. Since each MLAB supports a maximum of 640 bits it can be configured as
either a 64 × 10 or a 32 × 20 simple dual-port static RAM.

For some examples of this book we will use the DE2-115 prototyping board
with Altera Cyclone-IV FPGA [14]. LABs of this FPGA contain groups of logic
elements (LE) and one LAB consists of 16 LEs. Each LE contains: 4-input LUT
which can implement any Boolean function of 4 variables; a flip-flop, which in
[14] is called a programmable register; a carry and a register (a flip-flop) chains
connections.

LEs operate in normal and arithmetic modes. The first mode is efficient for
general logic applications and combinational functions. The second mode is more
appropriate for adders, counters, accumulators, and comparators.

Thus, the primary reconfigurable resources of Xilinx and Altera FPGAs
are based on LUTs. The simplest element of Altera FPGAs is LE/ALM and it

13

contains fewer resources than a Xilinx FPGAs slice, which is the simplest element
in Xilinx FPGAs. The most advanced recent devices of both companies include
6-input LUTs, which can be configured for implementing logic, memory, and
arithmetic functions.

The number of LEs in Cyclone-IV FPGAs varies from 6,725 to 149,760. The
number of LEs in Stratix-V FPGAs is from 236K to 952K. In this book we will
mainly use Xilinx FPGA of Spartan-6 and Artix-7 families. The majority of exam-
ples can easily be converted to Altera FPGAs and we will consider some examples
for Altera Cyclone-IVe devices.

1.3 � Embedded Blocks

In addition to basic reconfigurable logic described in the previous section con-
temporary FPGAs contain numerous embedded blocks which can be observed in
the basic architecture of the Xilinx 7 series FPGA in Fig. 1.1 (similar embedded
blocks are available for Altera FPGAs [13]). We will discuss such blocks and their
use in different projects on examples of embedded memories and DSP slices for
Spartan-6 family and 7 series of Xilinx FPGAs.

1.3.1 � Embedded Memories

Embedded memory blocks, or Block RAMs, are widely available in modern
FPGAs and are used for efficient data storage and buffering. FPGAs of Spartan-6
family contain from 12 to 268 Block RAMs each of which stores up to 18 Kb of
data and can be configured as either two independent 9 Kb RAMs or one 18 Kb
RAM. Each RAM is addressable through two ports, but can also be configured
as a single-port RAM. The width of the two ports of a 18 Kb RAM is configur-
able independently of each other as 16K × 1, 8K × 2, 4K × 4, 2K × 8, 1K × 16,
512 × 32 (when no parity bits are used) or 16K × 1, 8K × 2, 4K × 4, 2K × 9,
1K × 18, 512 × 36 (when parity bits are used). Data can be written to either or
both ports and can be read from either or both ports [15]. Each port has its own
address, data in (input data), data out (output data), clock, clock enable, and write
enable. The read and write operations are synchronous and require an active
clock edge. Block RAMs are organized in columns within an FPGA device (see
Fig. 1.1) and can be interconnected to create wider and deeper memory structures.
It is possible to specify Block RAMs characteristics and to initialize memory con-
tent in VHDL code, which will be shown in the next chapter. Intellectual Property
(IP) core generator and schematic library primitives can also be used (Chap. 4
gives some examples).

The 7 series FPGAs contain from 135 to 1,880 Block RAMs each of which
stores up to 36 Kb of data. FPGAs provide support for 36 and 18 Kb block RAMs

1.2  The Basis of FPGA Devices

http://dx.doi.org/10.1007/978-3-319-04708-9_4

14 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

[16] with built-in FIFO (first input first output) logic. Each 36 Kb block RAM can
be configured as 32K × 1, 16K × 2, 8K × 4, 4K × 8, 2K × 16, 1K × 32, or
512× 64 (when no parity bits are used) or 32K × 1, 16K × 2, 8K × 4, 4K × 9,
2K × 18, 1K × 36, or 512 × 72 (when parity bits are used). An additional Block
RAM features in the 7 series devices is an opportunity to use output registers. A
simplified structure of block RAM is presented in Fig. 1.8, where nA/nB is the size
of input data for the port A/B, mA/mB is the size of output data for the port A/B,
kA/kB is the size of address for the port A/B.

Each block RAM contains two completely independent ports that share the
same memory array for write and read operations (i.e. true dual-port memory can
be built). Potential conflicts during write operations need to be avoided and this
issue is addressed in [16].

We have already mentioned that Block RAM (36 Kb for the 7 series devices or
18 Kb for the Spartan-6 family devices) can be decomposed into two independ-
ent block RAMs (18 Kb for the 7 series devices or 9 Kb for the Spartan-6 family
devices), each of which behaves similarly to the initial block. Several block RAMs
can compose larger memory if required.

Each memory access (a read or a write) in the devices [15, 16] is controlled by
a clock. All inputs, data, address, clock enables, and write enables are registered.
Clocking the address means that data remain unchanged until the next clock cycle.

Let us consider now two simple examples of using single and dual-port embed-
ded memories for Spartan-6 FPGA available on the Atlys prototyping board.
Block RAMs will be created by the Xilinx LogiCore block memory generator
[17]. First we add a new source in the Xilinx ISE (option Project → New Source)
and then select IP and a name SinglePort. The core generator will be launched.
Let us leave all the options (listed in 6 steps) unchanged except the following:
Memory type (step 2) has to be defined as Single Port RAM, Write Width (step 3)
is assigned to 8, Write Depth (step 3) is assigned to 65536 (i.e. we would like
to create a memory from several block RAMs with the total size of 64 KB) and
Load Init File option (step 4) is checked (i.e. we would like to upload an initiali-
zation file of type COE). A COE is a text file (created, for instance, in Notepad)
indicating memory_initialization_radix (valid values are 2, 10, or 16) and

Fig. 1.8   A simplified
structure of block RAM

15

memory_initialization_vector which contains values for each memory element
(that in our case is an 8-bit word). Any value has to be written in radix defined by
the memory_initialization_radix. The following example presents a valid COE file
which will be used for our project (additional details can be found in [17]):

Coefficients are separated by a space, a comma, or by placing one value in each
line with a carriage return. A semicolon indicates the end of specification line such
as memory_initialization_radix = 16;. In our example the first 48 bytes of memory will be
filled in from the COE file above and the remaining bytes are assigned to FF16 (the
option Fill Remaining Memory Locations available at step 4 is checked and the
value FF is chosen). The button Show permits the contents of the COE file to be
displayed and examined.

After generation a primitive for the single port memory can be used in the ISE
schematic editor much like any other Xilinx library primitive. Figure 1.9 gives an
example of a trivial circuit which permits to read from RAM and to display on the
Atlys onboard LEDs the sequence partially shown in Fig. 1.10 (much like Fig. 1.6
the relevant constraints of the Atlys.ucf are given in Fig. 1.9).

The sequence in Fig. 1.10 was specified in the first (00, 18, 3c, 7e, ff, 7e, 3c, 18, 00)
and in the second (80, 40, 20, 10, 08, 04, 02, 01, 00) lines of the COE file above. If the
button BTND is pressed data from the onboard switches are written to the RAM

Fig. 1.9   Simple example with memory built from a single port block RAMs (CC16CE is the
Xilinx library primitive for a 16-bit binary counter)

1.3  Embedded Blocks

16 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

and displayed on the LEDs. Thus, we can examine both write and read operations.
From the ISE Design Summary we can see that 32 RAM blocks have been allo-
cated. A similar memory can be defined as an HDL component.

Let us build now a simple dual-port memory. The steps are similar to the steps
for the single port memory. The majority of options of the LogiCore generator are
unchanged except the following: Memory type (step 2) has to be defined as Simple
Dual Port RAM, Write Width for the port A (step 3) is assigned to 8, Write Depth
for the port A (step 3) is assigned to 8192 (i.e. we would like to create memory
from several block RAMs with the total size 8 KB), Write Width for the port B
(step 3) is assigned to 1, and Load Init File option (step 4) is checked. Thus, the
first port A is configured as 8,192 × 8 and the second port B—as 65,536 × 1. The
following COE file is used (note that now the radix is chosen to be 2):

Figure 1.11 gives an example of a trivial circuit which permits to initialize
8,192 × 8 RAM by byte values from the COE file above through the first port A
and then to read from RAM and to display on the rightmost Atlys onboard LED
Led0 signals from the single output of the second port B of 65,536 × 1 RAM.

In our example the first 8 bytes of memory will be filled in from the COE file
above and the remaining bytes are assigned to FF16 (the option Fill Remaining
Memory Locations available at step 4 is checked and the value FF is chosen). The
clock signal with the reduced frequency (approximately 1 Hz) is displayed on
Led1. Thus we can see changes of Led0 (i.e. the second port B output) relatively
to Led1 (i.e. relatively to clock with the reduced frequency) and these changes
are shown in Fig. 1.12. The desired sequence has been specified in the COE file
above by binary 8-bit vectors. From the ISE Design Summary we can see that 4
RAM blocks have been allocated. The second example clearly demonstrates that
two ports of the same block RAMs can have different aspect ratio (8,192 × 8 for
the port A and 65,536 × 1 for the port B). Data are written to the memory by

Fig. 1.10   Initialization (COE) file specifies visual sequence on the LEDs

17

bytes and read by bits. Thus, many useful converters can be created directly in
memory without the need for additional logic. All necessary details can be found
in [15–17].

1.3.2 � Embedded DSP Slices

Devices of Spartan-6 family include from 8 to 180 digital signal processing slices
DSP48A1 which support several functions, including multiplier, multiplier–
accumulator, pre-adder/subtracter followed by a multiply accumulator, multiplier
followed by an adder, wide bus multiplexers, magnitude comparator, and wide
counter [18]. These types of functions are frequently required in DSP applications.
It is also possible to connect multiple DSP48A1 slices to form wide math func-
tions, DSP filters, and complex arithmetic without the use of general FPGA logic

Fig. 1.11   Example with memory to be built from simple dual-port block RAMs (CC16CE is the
Xilinx library primitive for a 16-bit binary counter)

Fig. 1.12   Initialization (COE) file specifies visual sequence on the LED Led0

1.3  Embedded Blocks

18 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

which leads to lower power consumption and higher performance. Basically, the
DSP48A1 slice contains an 18-bit input pre-adder followed by an 18 × 18 two’s
complement multiplier and a 48-bit sign-extended adder/subtracter/accumulator.
A simplified architecture of the slice [18] is presented in Fig. 1.13, where A, B,
D are 18-bit operands, C is a 48-bit operand and P is a 48-bit result. The gray-
colored multiplexers M are configurable and they block or unblock registers Rg
that can be used in a pipeline. Concatenated lines D[11:0], A[17:0], B[17:0] can
be taken directly as an operand of the right-hand adder/subtracter controlled by
a multiplexor that is not shown in Fig. 1.13. The result P can also be used as an
operand of the adder/subtracter. The slice DSP48A1 has a mode input which per-
mits to specify the desired function of individual components, such as whether the
adders realize an addition operation, a subtraction operation, or are disabled, how
to connect carry signals, how to build a pipeline and others. DSP slices are organ-
ized in vertical DSP columns (see Fig. 1.1) and can be easily interconnected with-
out the use of general routing resources. These components can be instantiated and
configured with the aid of the ISE tools as will be illustrated in Sects. 4.1, 4.2 of
the book. IP LogiCore generator can also be used.

The DSP48E1 slice [19] (see Fig. 1.14) extends functionality of the DSP48A1
slice and improves characteristics. There are from 240 to 3,600 such slices avail-
able in the 7 series FPGAs. The multiplier is organized as 25 × 18. The register
A is extended up to 30 bits. The adder/subtracter was replaced with an arithmetic
logic unit and, thus, many bitwise logical functions can be executed over up to
48-bit operands. Besides a pattern detector and 17-bit shifter are added.

Let us consider a simple example demonstrating potential use of DSP slices for
the Spartan-6 FPGA available on the Atlys prototyping board. DSP will be cre-
ated and configured by the Xilinx LogiCore DSP48 macro [17]. Much like it was
done in the previous section, first we add a new source in the Xilinx ISE (option
Project → New Source) and then select IP and indicate the name DSP_slice.
The core generator will be launched. At the first step let us specify arithmetic

Fig. 1.13   A simplified architecture of the DSP48A1 slice [18]

http://dx.doi.org/10.1007/978-3-319-04708-9_4
http://dx.doi.org/10.1007/978-3-319-04708-9_4

19

instructions shown in Fig. 1.15 inside the block DSP_slice. They can be selected
by codes on the inputs sel(1:0) in which the left and the right bits are provided by
the buttons BTNL and BTNR, accordingly.

Let us define the size 3 for all four operands A, B, C, and D. The most sig-
nificant bit (2) represents signal and if it is equal to ‘0’ the number is positive oth-
erwise negative. Since D(2) is always equal to 0 in Fig. 1.15, the value of D is
assigned to be always positive. Other operands A, B, and C can be either positive
or negative and the sign may be chosen by the onboard buttons BTNU, BTNC, and
BTND, respectively (see Fig. 1.15). For any button shown in Fig. 1.15 the value ‘1’
is produced when the button is pressed. Two-bit operands without signs are taken
from the onboard switches as it is shown in Fig. 1.15. The result is displayed on
the LEDs Led6,…,Led0. Thus, if all the switches are ON then the results are equal
to the following values:

•	 “0010101” when sel = “00” because (3 + 3)*3 + 3 = 2110 = 00101012;
•	 “0000110” when sel = “01” because 3 + 3 = 610 = 00001102;
•	 “0010010” when sel = “10” because (3 + 3)*3 = 1810 = 00100102;
•	 “0001001” when sel = “11” because (3 + 3) + 3 = 910 = 00010012.

If the button BTND is pressed then the operand C becomes negative with the
value −1 (two’s complement code is used). Thus, when sel = “00”, the result is
“00010001”: (3 + 3)*3−1 = 1710 = 000100012. From the ISE Design Summary
we can see that one DSP slice is used. The Sects. 4.1, 4.2 and Appendix B will give
more complicated examples which will explore many additional DSP slice capabili-
ties. It will be shown that DSP slices can be more effectively used as components
in HDL code. Since for the 7 series FPGAs DSP slices can execute bitwise logical
operations, they are effective for solving combinatorial problems over binary vectors
and matrices. Besides, arithmetic operations over 48-bit operands can be presented
in one DSP slice in form of four independent operations over 12-bit operands.

Fig. 1.14   A simplified architecture of the DSP48E1 slice [19]

1.3  Embedded Blocks

http://dx.doi.org/10.1007/978-3-319-04708-9_4
http://dx.doi.org/10.1007/978-3-319-04708-9_4

20 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

1.4 � Clock Distributions and Resets

To guarantee efficient clock distribution FPGAs include dedicated clock inputs,
buffers, and routing. These resources are used automatically by CAD tools.

To provide for high-performance clocking, devices of Spartan-6 family include
from 2 to 6 Clock Management Tiles (CMT). Every CMT is composed of 2
Digital Clock Managers (DCMs) and one Phase-Locked Loop (PLL). CMTs are
used to phase shift a clock signal, to eliminate the clock skew (difference between
arrival times of a clock edge to various devices that compose a given circuit), to
multiply or divide clock frequency, to synthesize a new clock frequency, and to
convert an incoming clock signal to a different I/O standard [20].

Some features of clocking for Spartan-6 FPGAs are unique to the relevant
architecture and they have been replaced with the new 7 series FPGAs clocking
structures [21]. The PLL is a subset of the mixed-mode clock manager (MMCM).
Some clocking primitives for Spartan-6 FPGAs were removed and some were
replaced. The details are given in [21].

Reset is a synchronous or asynchronous signal that sets necessary storage ele-
ments to a desired state. It is noted in [22] that regardless of the type (synchronous
or asynchronous) the reset signal needs to be synchronized with the clock. This per-
mits potential metastable state of flip-flops to be avoided. Besides, in some circuits
(such as state machines and counters) reset of all flip-flops has to be deasserted on
the same clock edge to eliminate eventual transitions to illegal states. According to
[22] active-high resets enable better device utilization and improve performance.

The reset bridge circuit [22] shown in Fig. 1.16 provides a mechanism to assert
reset asynchronously (and it properly functions even without a valid clock) and to
deassert reset synchronously.

When a Xilinx FPGA is configured or reconfigured, every cell (including flip-
flops and block RAMs) is initialized much like it is done on a global reset, i.e. all
storage will be set to their specified initial states. Thus, global reset is not always
required. From [22] we can see that the design tools synthesize initialization of

Fig. 1.15   Trivial use of a DSP slice for Spartan-6 FPGA

21

signals, such as in the following VHDL line, which assigns the values 0 to all eight
elements of the signal rg (the details will be given in the next chapter):

The initialization value of the rg signal (that is all zeros above) becomes the
INIT value loaded into the relevant flip-flops during configuration. Similarly block
RAMs are initialized and it was shown with the COE files in Sect. 1.3.1 above.
Since many embedded components use just synchronous reset capabilities, syn-
chronous resets enhance FPGA utilization. Thus, almost always synchronous
resets should be used rather than asynchronous resets [22].

1.5 � Design Tools

A typical FPGA-based design flow is illustrated in Fig. 1.17.
We start with the design entry which can be accomplished using a variety of

methods such as the considered above schematic and HDL which will be dis-
cussed in Chap. 2. Once the desired functionality of a given circuit or system is

Fig. 1.16   Generation of the reset signal synchronized with the clock

Fig. 1.17   Typical FPGA-based design flow

1.4  Clock Distributions and Resets

http://dx.doi.org/10.1007/978-3-319-04708-9_2

22 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

specified, we can model its behavior through functional simulation. This means
that the circuits can be checked for correct functionality assuming that all their
components react instantly to changes on their inputs, i.e. functional simulation
does not take into account the timing characteristics of electronic elements that
will be used to implement the circuits. If a problem is detected the designer has to
return back to the circuit specification and provide the required changes.

During the simulation process of simple circuits it is possible to generate and
apply inputs and to observe outputs manually. For larger designs, test benches are
usually created. A test bench is a program/specification, normally developed in the
same language as the circuit under test that automatically applies inputs to the cir-
cuit and eventually compares the circuit’s outputs with the expected values.

Once the design has simulated correctly, we can advance to the circuit synthe-
sis. At this level, all the characteristics of a specific device (such as package, speed
grade, etc.) have to be provided to the relevant CAD tool so that the synthesis
could be done. The synthesis is performed by CAD tools and converts the design
entry into a set of components (such as LUTs, flip-flops, memories, DSP slices,
etc.) that can be assembled in the target technology. As a result, an architecture-
specific design netlist is generated.

The translate phase merges all the synthesized netlists and the physical and tim-
ing constraints to produce a generic database file. The map phase groups logical
symbols from the netlists into physical components. The output is stored in a cir-
cuit description format and contains information about switching delays. The map
phase reports an error if the design exceeds the available resources or the user-
specified timing constraints are violated. The place and route phase performs the
placement and routing of the mapped symbols on the physical FPGA device and
verifies the timing constraints once again. Translation, mapping, placement and
routing compose the design implementation phase which converts the synthesized
logical design into available device resources. It may mean selecting and program-
ming individual LUTs and finding ways to connect them within the physical con-
straints of the target FPGA. The output of this stage is a bitstream file that can be
uploaded to the selected device.

After implementation, the circuit can be analyzed for timing performance,
device resource utilization, and power consumption. The results of this analysis
may force the designer to go back and make changes either in the circuit speci-
fication, design constraints, or synthesis strategies and optimization goals in the
relevant CAD tools. Afterwards synthesis and/or implementation need to be rerun.

Once you are satisfied with the results of implementation, the generated bit-
stream file can be uploaded to the FPGA to configure the device properly. Then,
the resulting physical circuit undergoes final in-circuit tests.

In this book, we will mainly use the release version 14.7 of Xilinx ISE for ful-
filling all the design steps, from circuit specification to simulation, synthesis, and
implementation. Other CAD tools can also be involved in a similar manner since
the underlying ideas are exactly the same, just the relevant software environments
are different. For some examples we will also use the Quartus II 13 Web edition
software for Altera FPGAs.

23

To summarize the design flow that has already been discussed in the previous
sections let us consider once again all the steps that need to be accomplished in
the ISE in order to implement a simple full adder (FA) and test it in the Atlys pro-
totyping board. Note that there is a free version of ISE called WebPACK available
for download from the Xilinx website [23].

We start with creating a new project (option File → New Project) by specify-
ing its name, location, and then all the characteristics of the target FPGA. Please
note that we have selected “Spartan6” as the FPGA family and also indicated the
device XC6SLX45 and package CSG324. These data can be found in the docu-
mentation that accompanies your device [11] and are also written on the proper
microchip. Schematic is again chosen as a top-level source type (design entry).

Once you create a new project, a default ISE interface appears which is divided
in 4 areas (see Fig. 1.18):

•	 Design hierarchy is used to display files associated with the current project and
their hierarchical organization. We have not created any file yet, therefore this
area is initially empty.

•	 Processes area is context-sensitive and always shows processes that are avail-
able for the currently selected source. A process can be started by double click
on its name. The processes permit us to synthesize a particular design entry file,
to specify user constraints, to generate programming file and so on.

•	 Editor area on the right-hand side provides support for design entry in a variety
of forms, such as schematic editor, text editor for VHDL, etc.

•	 Transcript window shows progress of processes and error/warning messages
that might appear during synthesis/implementation phases.

To specify a schematic file for a full adder let us add a new design entry to our
project. It can be done choosing options: Project → New Source… → Schematic
and specifying a name, for example, FA. Suppose we would like to create a sim-
ple hierarchical design and to compose the FA of two half adders (HA) and an OR
gate. Thus, let us create another schematic source with the name HA. Figure 1.19a
depicts a circuit for the HA described with the aid of the ISE library primitives
XOR2 and AND2 (see [24] for details). At the next step we create a schematic
symbol for the half adder which can be used as a user-library primitive much like

Fig. 1.18   Default interface
of the ISE

1.5  Design Tools

24 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

the ISE library primitives. Figure 1.19b describes the full adder composed of two
half adders (i.e. our previously created primitives) and an OR2 gate (the existing
ISE library primitive).

To test our adder in the Atlys prototyping board we need to route the adder’s
inputs and outputs to some board components that would allow us to interact with
the circuit. For instance, we could specify inputs with three switches and observe
the output values on two LEDs as exemplified in Fig. 1.20. Lines of the Atlys.ucf
file with the necessary constraints are given directly in Fig. 1.19b. The exact pin
locations can be found by consulting the Atlys prototyping board’s documenta-
tion [11]. Please note that the complete UCF file for the Atlys board is available
online [25]. When you would like to implement your design on a different board
or with a different FPGA, you will need to modify not only the target FPGA but
also the UCF file accordingly. In the UCF file all lines that start with the symbol

Fig. 1.19   Using schematic editor to describe a full adder: half-adder (a); full adder (b)

Fig. 1.20   Providing inputs
and observing outputs of the
full adder

25

“#” are comments and the syntax of the remaining lines for the Atlys board is the
following:

Now the steps shown in Fig. 1.17 are executed and a bitstream for the project
is generated. Uploading the bitstream to the Atlys board can be done in the Adept
software [10] (see Fig. 1.2 as an example) or directly from the ISE selecting the
option Configure Target Device in the processes area. In the last case iMPACT is
launched which enables the generated bitstream to be uploaded to the Atlys board.
Finally the project can be tested in hardware. From the ISE Design Summary we
can see that the circuit in Fig. 1.19b occupies just 2 FPGA slices (from 6,822
available slices).

Simulation can be accomplished with the aid of a test bench. Since a test bench
can efficiently be described in HDL we will consider this feature in the next
chapter (see Sect. 2.7).

It is not strictly necessary to run Synthesize, Implement Design, and Generate
Programming File processes one by one sequentially. Instead you can pro-
ceed in the ISE directly to the Generate Programming File (or to the Configure
Target Device) option which will execute all the required previous processes
automatically.

For the Atlys board [11] (and further for the Nexys-4 board [26]) we will
mainly use the design steps (1–8) briefly illustrated in Fig. 1.21 and described in
the corresponding points below:

1.	 The name, location and working directory of the project are introduced.
2.	 FPGA family (such as Spartan-6), FPGA device (e.g. XC6SLX45), pack-

age (e.g. CSG324), speed (e.g. −3) and preferred language (e.g. VHDL) are
selected

3.	 New or existing project sources (design entries) are specified. In this book we
will use the main project sources indicated in Fig. 1.21.

4.	 Basically a project specifies design hierarchy in which a top-level module
invokes lower-level modules created from different sources. We can apply at
this step top-down, bottom-up or mixed design strategy.

5.	 Optional functional simulation is executed at different hierarchical levels. We
will discuss this feature in the next chapter.

6.	 Activating Generate Programming File (or Configure Target Device) process
executes sequentially all the major design steps and finally (if the project is cor-
rect) generates a bitstream (see Fig. 1.21).

7.	 The generated bitstream is uploaded to the FPGA. Different opportunities can
be used for such purposes and we will discuss them in the next section. An
important feature of reconfigurable systems is a possibility of prototyping, eval-
uation of the implemented designs, experiments and comparisons with the aid
of numerous available FPGA-based boards.

8.	 The project is tested in hardware much like it has been done in the previous
sections. In the subsequent chapters we will use prototyping boards briefly

1.5  Design Tools

http://dx.doi.org/10.1007/978-3-319-04708-9_2

26 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

discussed in the next section. Verification of the implemented circuits can be
done with the aid of different methods and tools, such as run-time signal ana-
lyzers (e.g. the Xilinx ChipScope), onboard and externally attached peripheral
devices, existing interfaces that enable communications with higher-level com-
putational systems, and others. Some of such methods and tools used in the
book will be briefly described in Sect. 1.7.

The majority of projects described in the book were also implemented and
tested in Xilinx Vivado design suite (version 2013.4). Each VHDL project avail-
able online at http://sweet.ua.pt/skl/Springer2014.html contains a compressed file
that may include: (1) only Atlys files for ISE (if only the UCF file containing the
word Atlys is given); (2) only Nexys-4 files for ISE (if only the UCF file containing
the word Nexys is given); (3) Atlys and Nexys-4 files for ISE (if there is a direc-
tory ISE and Atlys/Nexys4 sub-directories in the directory ISE); (4) Vivado Nexys-4
files (if there is a directory Vivado). At the beginning, the compressed file needs to be
decompressed into a set of components that may include: (1) schematic file(s) *.sch;
(2) generated by IP core *.xco file(s) in sub-directory ipcore_dir; (3) *.vhf file(s) that
are VHDL specifications generated by ISE from schematic(s); (4) user constraints
file *.ucf for ISE; (5) Xilinx design constraints file *.xdc for Vivado; (6) VHDL
file(s) *.vhd; (7) bitstreams *.bit for programming FPGA.

Any project in ISE may be built as follows: (1) create a new project; (2) add
copy of sources such as *.sch, *.vhd, *.ucf, and *.xco files and the latter is taken

Fig. 1.21   Design steps used in the book

http://sweet.ua.pt/skl/Springer2014.html

27

from the directory ipcore_dir; (3) copy available initialization files (such as coe
and txt) in the project directory; (4) if there is a schematic file then open this file
and update if requested; (5) run synthesis, implementation and generate program-
ming file; (6) configure target device (upload bitstream to the target device) and
test the design in FPGA. Please note, that peripheral components (switches, but-
tons, LEDs) for Atlys and Nexys-4 boards are frequently not the same (check cor-
respondence between the design ports and pre-connected FPGA pins).

Any project in Vivado may be built as follows: (1) create a new project; (2) add
copy of sources such as *.vhf, *.vhd, *.xdc, and *.xco files; (3) right mouse click
on *.xco file (if this file is available) and upgrade IP; (4) run synthesis, imple-
mentation and generate programming file; (5) configure target device (upload bit-
stream to the target device using hardware manager) and test the design in FPGA.
Please note that a few small changes are done in VHDL files for Vivado projects,
which can be seen at http://sweet.ua.pt/skl/Springer2014.html.

An example demonstrating migration of ISE projects to Vivado projects can be
found at the end of Appendix B. The most important points for such migration are:

•	 All the described in the book source files may be added to Vivado pro-
jects with the exception of schematic (*.sch) files. However the files *.vhf
generated by ISE from schematic files can be used instead of *.sch files.
Thus, all the projects from Chap. 1 may also be tested in Vivado;

•	 ISE UCF files have to be converted to XDC (Xilinx Design
Constraints) format which may be done for the examples in the
book as follows: (1) open PlanAhead for ISE Design Suite; (2) in
PlanAhead open ISE project for Nexys-4 (if the design is in sche-
matic you need to add *.vhf file(s) manually); (3) run synthesis and
open synthesized design; (4) in Tcl Console of the PlanAhead run
command write_xdc <directory>/<name>.xdc (for example, write_xdc
c:/tmp/Nexys4.xdc where the sub-directory tmp has to be previously
created in the directory c:); (5) use the generated *.xdc file (from
c:/tmp) in Vivado. Additional details are given in Appendix B. Note
that the complete XDC file for the Nexys-4 board can be down-
loaded from Digilent Web site: http://www.digilentinc.com/Data/
Products/NEXYS4/Nexys4_Master_xdc.zip.

1.6 � Implementation and Prototyping

There are a number of FPGA-based prototyping boards available in the market
that simplify the process of FPGA configuration and provide support for test-
ing user circuits and systems in hardware. All the examples in the first chapter
of the book were prepared for the Atlys prototyping board [11] manufactured by
Digilent, which includes one Xilinx FPGA xc6slx45 of Spartan-6 family [27].
Examples in subsequent chapters will use 3 prototyping boards: the Nexys-4 [26],
the Atlys [11], and the DE2-115 [28] that are briefly characterized below.

1.5  Design Tools

http://sweet.ua.pt/skl/Springer2014.html
http://www.digilentinc.com/Data/Products/NEXYS4/Nexys4_Master_xdc.zip
http://www.digilentinc.com/Data/Products/NEXYS4/Nexys4_Master_xdc.zip

28 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

The Nexys-4 board manufactured by Digilent [26] contains one FPGA Artix-7
xc7a100t from the 7 series of Xilinx [29]. Almost all examples in the Chaps. 2–5
and appendices A, B have been implemented and tested in the Nexys-4. VHDL
codes, user constraints files, and bitstreams for all projects of the book are avail-
able online at http://sweet.ua.pt/skl/Springer2014.html. The following onboard
devices will be involved (all necessary details about these devices can be found in
[26]):

1.	 Xilinx Artix-7™ FPGA xc7a100t-csg324 [29];
2.	 USB-JTAG and USB-UART;
3.	 100 MHz clock oscillator;
4.	 Eight 7-segment displays;
5.	 16 slide switches;
6.	 16 user LEDs;
7.	 5 user buttons;
8.	 Pmod expansion connectors;
9.	 USB host connector.

The FPGA on the Nexys-4 board can be configured using methods [26]. In this
book we will configure the board with the aid of the following two modes:

•	 From the ISE environment (the option Configure Target Device) and iMPACT
tools through the USB JTAG/UART;

•	 From a USB memory stick attached to the USB host connector.

Please note that configuration of the board from Adept software is not sup-
ported and the Digilent component IOExpansion [30] (considered below for some
examples with the Atlys board) cannot be used.

Many examples in the Chaps. 2–5 will also be tested in the Atlys prototyping
board [11]. The following onboard devices will be involved (all necessary details
about these devices can be found in [11]):

1.	 Xilinx Spartan-6 xc6slx45-csg324 FPGA [27];
2.	 USB-UART and USB port for programming and data transfer;
3.	 100 MHz clock oscillator;
4.	 8 slide switches;
5.	 8 user LEDs;
6.	 5 user buttons;
7.	 Reset button.

In this book we will configure the Atlys board with the aid of the following two
modes:

•	 From the ISE environment (the option Configure Target Device) and iMPACT
tools through the USB JTAG/UART;

•	 From the Digilent Adept software [10] through the USB JTAG/UART.

The Atlys board has a limited number of onboard user switches and LEDs but
it is supported by the Adept software and may interact with a host PC through

http://dx.doi.org/10.1007/978-3-319-04708-9_2 10.1007/978-3-319-04708-9_5
http://sweet.ua.pt/skl/Springer2014
http://dx.doi.org/10.1007/978-3-319-04708-9_2 10.1007/978-3-319-04708-9_5

29

a virtual window enabling many virtual peripheral elements to be attached [11],
which is convenient for simple tests of the developed circuits. Availability of the
virtual devices is the main point in favor of the Atlys board for some subsequent
examples of the book.

Almost all examples from Chap. 2 and some examples from Chaps. 3–5 have
also been tested in the DE2-115 board [28] containing one Altera Cyclone-IVe
EP4CE115 FPGA. The main objective is to demonstrate that the majority of the
projects are technology independent and may be implemented in FPGAs of dif-
ferent companies. The following onboard devices will be involved (all necessary
details about these devices can be found in [28]):

1.	 Altera Cyclone-IV EP4CE115F29C7 FPGA [14];
2.	 USB Blaster port for FPGA programming;
3.	 50 MHz clock oscillator;
4.	 Eight 7-segment displays;
5.	 18 slide switches;
6.	 26 user LEDs (18 red and 8 green);
7.	 4 user buttons.

The only method of FPGA programming from a host computer that has been
used in the book is through the USB Blaster port.

In Sect. 4.5 we will also briefly describe the Xilinx all programmable sys-
tems-on-chip (APSoC) and, in particular, Zynq family. One of such microchips
(xc7z020) is available on the ZedBoard [31]. Since the device xc7z020 incorpo-
rates the Xilinx Artix-7 FPGA, all the examples of the book can directly be used
and, besides, the majority of them have been tested in the ZedBoard. However, we
will not consider in the subsequent chapters the relevant implementations.

Tables 1.2 and 1.3 give some details about Xilinx (see Table 1.2) and Altera
(see Table 1.3) FPGAs available on the referenced above boards. Here: Ns is the
number of FPGA slices; NLUT is the number of FPGA LUTs; Nff is the number
of FPGA flip-flops; NDSP is the number of DSP slices DSP48A1/DSP48E1 for
xc6slx45/(xc7a100t/xc7z020) microchip; NBR is the number of 18/36 Kb block
RAMs for xc6slx45/(xc7a100t/xc7z020) microchip; MKb is the size of embedded
block RAM memory in Kb; NLE is the number of logic elements; NEB is the num-
ber of embedded multipliers with 18-bit operands (i.e. 18 × 18).

Table 1.2   Characteristics of the Xilinx FPGAs on the Atlys, Nexys-4, and ZedBoard

Board FPGA/APSoC Ns NLUT Nff NDSP NBR MKb

Atlys xc6slx45 6,822 27,288 54,576 58 116 2,088
ZedBoard xc7z020 13,300 53,200 106,400 220 140 5,040
Nexys-4 xc7a100t 15,850 63,400 126,800 240 135 4,860

Table 1.3   Characteristics of the Altera FPGA on the DE2-115 board

Board FPGA NLE MKb NEB

DE2-115 4CE115 114,480 3,888 266

1.6  Implementation and Prototyping

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_5
http://dx.doi.org/10.1007/978-3-319-04708-9_4

30 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

The projects for Xilinx FPGAs will be created in the Xilinx ISE 14.7 soft-
ware. The total number of available components and the number of components
used in a particular project can be found from the ISE Design Summary/Reports.
If you check projects that have already been developed in the previous sections
you can see that the number of occupied FPGA resources was negligible com-
paring with the total number of available resources. Thus, the selected boards
(although being low-cost) enable complex circuits and systems to be developed.
Design projects for Altera FPGA will be created in the Quartus II version 13
Web Edition software.

The methods and projects described in the subsequent chapters cover a few
areas that are outlined in Fig. 1.22 with indication of the chapters where the rel-
evant topics have been discussed. Special attention will be paid to features shown
on the right-hand side of Fig. 1.22.

Each project will be verified in hardware with the aid of different methods and
tools that will be described in the next section.

Since two prototyping boards, Atlys [11] and Nexys-4 [26] from Digilent,
will be used for all the examples in the book, let us overview these boards
with more details. Besides of the described above onboard devices, there
are many additional components that permit the developed projects to be
expanded and new more advanced circuits and systems to be designed. This
feature is especially valuable for education. We briefly describe below the
basic capabilities and layouts of the Atlys and Nexys-4 boards (with permis-
sion of Digilent Inc.).

Fig. 1.22   Methods and projects described in the book

31

The Atlys [11] has the following main components and connectors (see
Fig. 1.23):

	 1.	 Xilinx Spartan-6 xc6slx45 FPGA;
	 2.	 128 MB DDR2 (Double Data Rate) with 16-bit wide data;
	 3.	 16 MB (× 4) SPI (Serial Peripheral Interface) Flash for configuration and

data storage;
	 4.	 10/100/1000 Ethernet;
	 5.	 USB2 (Universal Serial Bus) port for programming and data transfer;
	 6.	 USB-UART (Universal Asynchronous Receiver/Transmitter) and USB-HID

(Human Interface Device) port (for mouse/keyboard);
	 7.	 HDMI (High-Definition Multimedia Interface) video input and output ports;
	 8.	 AC-97 Codec (coder-decoder) with line-in, line-out, mic, and headphone;
	 9.	 100 MHz oscillator clock source;
	10.	 8 user LEDs;
	11.	 5 push buttons;
	12.	 8 slide switches;
	13.	 Power connector and power-on LED indicator;
	14.	 2 × 7 programming JTAG (Joint Test Action Group) connector;
	15.	 Pmod (Peripheral module) expansion connector (2 × 6);
	16.	 High-speed expansion connector;
	17.	 Reset button.

Fig. 1.23   The simplified layout of the Atlys prototyping board from Digilent

1.6  Implementation and Prototyping

32 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

The FPGA on the board can be configured using one of the following three
methods [11]:

•	 from a USB-connected PC via Adept USB-JTAG port (see 5 in Fig. 1.23) or
directly from the JTAG connector (see 14 in Fig. 1.23);

•	 from the SPI Flash (see 3 in Fig. 1.23), provided the configuration file has been
previously stored in the flash memory;

•	 from a USB memory stick connected to the USB HID port (see 6 in Fig. 1.23).

The onboard jumpers (not shown in Fig. 1.23) permit the required configuration
mode to be selected (the details can be found in [11]).

The Nexys-4 [26] includes one Artix-7 xc7a100t FPGA from the 7 series of
Xilinx. The main components and connectors are the following (see Fig. 1.24):

	 1.	 Xilinx Artix-7™ FPGA xc7a100t-csg324;
	 2.	 128 Mb = 16 MB cellular RAM;
	 3.	 128 Mb = 16 MB SPI (quad-SPI) Flash;
	 4.	 10/100 Ethernet;
	 5.	 USB-JTAG programming and USB-UART;
	 6.	 Microphone;
	 7.	 Audio connector;

Fig. 1.24   The simplified layout of the Nexys-4 board from Digilent

33

	 8.	 100 MHz clock oscillator;
	 9.	 16 user LEDs;
	10.	 Two 3-color user LEDs;
	11.	 5 user buttons;
	12.	 16 slide switches;
	13.	 Power connector and power-on LED indicator;
	14.	 JTAG port;
	15.	 5 Pmod expansion connectors (2 × 6);
	16.	 Two reset buttons;
	17.	 Micro SD card slot;
	18.	 VGA connector;
	19.	 USB host connector;
	20.	 Microcontroller;
	21.	 Eight 7-segment displays;
	22.	 Temperature sensor;
	23.	 Accelerometer.

The FPGA on the Nexys-4 board can be configured using one of the follow-
ing four methods: Quad-SPI, SD Card, USB JTAG, or USB memory stick. The
onboard jumpers shown in Fig. 1.24 permit the required configuration mode to be
selected. The details are given in [26].

Fig. 1.25   Different types of interactions with external devices/systems used in the book

1.6  Implementation and Prototyping

34 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

1.7 � Interaction with FPGA-Based Circuits and Systems

Circuits and systems implemented in FPGA need to communicate with external
devices which supply initial data, use the results and are frequently involved in
different types of run-time co-execution. The latter is needed when the problem
solvers are partially implemented in the FPGA and partially in external devices.
Fig. 1.25 shows different types of interactions that will be used in the book.

The most frequently concerned external devices are onboard components 1 in
Fig. 1.25 (see also Figs. 1.23 and 1.24). Since the number and the availability of
such devices vary for different prototyping boards, some difficulties might appear
in using generic constructions and constants. Besides, the circuits that provide
support for simple digital control may also be different. For example, 7-segment
displays in the DE2-115 board are managed individually and in the Nexys-4 all
segments with the same name (number/index) are connected. It means that the dis-
play controller (described, in particular, in VHDL code given in Appendix B) can
be used for the Nexys-4 board, may be slightly modified for other Digilent boards
with segment displays (e.g. Nexys-2/Nexys-3) and is not required (with an excep-
tion of the segment decoder) for the DE2-115 board.

Taking into account the boards’ particular characteristics, it is not always pos-
sible to provide universal parameterizable specifications in the subsequent chap-
ters of the book. When the developed circuits and systems interact with onboard
peripheral devices they are dependent on the chosen prototyping board. The men-
tioned dependability does not mean that the developed circuits and systems are
technology-oriented and cannot be used for other boards. They can but some mod-
ifications (mainly in input/output port specifications and, of course, in pin assign-
ments) have to be done. That is why in the subsequent chapters we often point to
the board for which the design module is intended to be used.

Higher-level systems (see point 2 in Fig. 1.25) are very helpful for interaction,
experiments and evaluation of the results. For the majority of practical applications

Nexys-4 prototyping
board from Digilent

Atlys prototyping
board from Digilent

Interaction through a virtual
window managed by the
Digilent Adept software

The developed hardware
modules and software tools

that are based on the
Digilent parallel port

interface communication
modules and DPCUTIL API

software

For boards that do not provide
support for Digilent Enhanced
Parallel Port data transferring
capability (such as Nexys-4)

The developed
software and
hardware for

UART interface
supporting serial
communication

protocol

1 2

3

Fig. 1.26   Types of interaction with higher-level systems used in the book

35

FPGAs cannot be used as hardware accelerators in such types of interactions
because of significant communication overheads. However many useful setups can
be seen as very adequate. For instance, a higher-level system, such as a host PC, may
supply initial data for further processing in FPGAs, evaluate timing characteristics of
the implemented in FPGA circuits, receive and verify the processing results, etc. We
will use the interactions 2 in Fig. 1.25 exactly for such purposes.

We will only recur to files (see point 3 in Fig. 1.22) for reading preliminary
saved sets of data in text formats that might be useful to fill in arrays and embed-
ded memories. Files may also be written from hardware descriptions and used for
keeping constant values that might be helpful for debugging.

External peripheral devices (see point 4 in Fig. 1.22) can be attached through
onboard connectors (such as PMod for Digilent products [11]). We rare apply this
opportunity and it has been mainly used for connections of prototyping boards
with each other enabling the number of peripheral components (e.g. slide switches
and LEDs) to be increased since the components of the attached board may also be
employed.

Parameterization in the developed circuits and systems is achieved through the
usage of constants and generic parameters with such values that can be changed
easily causing modification and, finally, customization of complex designs. As a
result, the designs may be adjusted in such a way that they become applicable to

(a)

(b) (c)

Fig. 1.27   Interaction between the Atlys prototyping board and a host PC using the Adept software:
virtual window on the host PC display (a); onboard devices on the Atlys board (b); interaction (c)

1.7  Interaction with FPGA-Based Circuits and Systems

36 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

problems with different dimensions. Although such technique is very requested it
is not always possible especially when devices with different incompatible archi-
tectures are used. Indeed, many generic characteristics established for FPGAs of
one company that involve dedicated libraries, primitives and embedded blocks are
not equally applicable (or not applicable at all) to FPGAs of another company that
involve dedicated libraries, primitives and embedded blocks of different types. In
the subsequent chapters all projects that involve Xilinx primitives and libraries can
only be implemented in FPGAs from Xilinx with compatible architectures. They
can also be used for other FPGAs but necessary modifications have to be provided.
Besides, effectiveness of resources and performance for the implemented circuits
may become different.

It is clear from Sect. 1.6 that the number of onboard peripheral devices is lim-
ited. In the subsequent chapters we would like to implement and evaluate such
circuits and systems that require significantly larger number of inputs and out-
puts that often exceed the number of available FPGA pins. The following two
techniques will be applied: (1) the designs are evaluated with the aid of auxiliary
circuits that supply the input signals and analyze the output signals (e.g. random
number generators, comparators and counters); (2) through an interaction with a
higher-level system (e.g. a host PC).

Let us discuss the point 2 with a bit more details. Three types of interactions
will be explored and they are shown in Fig. 1.26 for Digilent prototyping boards.

The first type is targeted to such prototyping boards that do not provide
support for the Digilent Enhanced parallel port (EPP) data transferring
capability. The developed software and hardware modules are described in
Sects. 4.3 and 4.4.

The second type may be used for prototyping boards that do provide support
for the Digilent EPP data transferring capability (see Sects. 4.3 and 4.4).

The third type enables interactions through a virtual window managed by the
Digilent Adept software, involving the relevant Digilent IOExpansion component
described in VHDL. Since this type is entirely based on the Digilent products [30]

Fig. 1.28   Project for interaction with a host PC

http://dx.doi.org/10.1007/978-3-319-04708-9_4
http://dx.doi.org/10.1007/978-3-319-04708-9_4
http://dx.doi.org/10.1007/978-3-319-04708-9_4
http://dx.doi.org/10.1007/978-3-319-04708-9_4

37

and will be needed for some examples in the subsequent chapters with the Atlys
board, we will present here a bit more details.

The primary objective is to expand the number of available input/output
devices. This feature is offered by any Digilent board which provides support for
EPP [10]. For example, Atlys, Nexys-2 and Nexys-3 boards do support this feature
but the Nexys-4 does not.

The expanded input/output controls include:

•	 24 light bars;
•	 8 LEDs;
•	 16 buttons;
•	 16 slide switches;
•	 32-bit data to be sent from a host PC to the FPGA (can be specified in either

binary, hexadecimal, or decimal both signed and unsigned formats);
•	 32-bit data to be received in the host PC from the FPGA (can be displayed in

either binary, hexadecimal, or decimal both signed and unsigned formats).

In this section we will demonstrate two simple projects that use the Digilent
IOExpansion VHDL component and the latter can be downloaded from [30]. The
first project executes the following operations (see Fig. 1.27 for additional details):

1.	 Receives a 32-bit data item from the host PC virtual window and sends it
back to the host PC.

2.	 Receives a 16-bit vector from the virtual window buttons and displays the
vector on the first 16 light bars (they are yellow and red) located on the
right-hand side of 24 light bars in the virtual window.

3.	 Receives an 8-bit vector from the PC window lower switches and displays
the vector on the LEDs available on the Atlys board.

4.	 Receives an 8-bit vector from the PC window upper switches and displays
the vector on the last 8 light bars (they are green) located on the left-hand
side of 24 light bars in the PC window.

5.	 Receives an 8-bit vector from the switches available on the Atlys board and
displays the vector on the PC window LEDs.

The top-level design entry of the project can be prepared in the schematic
editor of the ISE as it is shown in Fig. 1.28. At the beginning, VHDL file of the
IOExpansion component has to be downloaded from [30] and a schematic symbol
IOExpansion has to be created in the ISE. Other components (OBUF8 and BUF)
are the Xilinx library primitives.

The project requires the following user constraints file:

1.7  Interaction with FPGA-Based Circuits and Systems

38 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

To test the circuit the following steps have to be carried out:

1.	 Generate the bitstream (see the steps indicated in Fig. 1.21), connect the Atlys
board to the host PC through the appropriate USB socket and upload the gener-
ated bitstream to the board using the Adept software.

2.	 Select I/O Ex tab available in the virtual window.
3.	 Press Start I/O button (see Fig. 1.27a).
4.	 Interact with the board. Some examples are shown in Fig. 1.27a and 1.27b.

It is assumed that the black button in the virtual window is pressed with the
mouse.

The second project (see Fig. 1.29) enables the full adder (described in Sect. 1.5)
to be tested in the virtual window.

At the beginning, a schematic symbol FA has been created in the ISE for the
circuit of the full adder in Fig. 1.19b. Since now we do not need the onboard
LEDs and switches, 16 lines have to be removed from the UCF file above
(they are marked with comments # remove for the second project). The same steps
1–4 as before have to be done. The functionality of the full adder is tested
using the virtual window switches and LEDs as it is shown in Fig. 1.30. Note
that some connections between unused in the project ports are actually done in
Fig. 1.29 (for example virtual LED2 is always OFF because it is connected to
the ground).

Adept software provides also support for interaction of prototyping boards with
a host PC using some other options [10, 11].

39

Schematic design entries were chosen for the first chapter just to provide an
introduction to FPGA-based circuit without describing many supplementary top-
ics that are normally required. Capabilities of schematic diagrams are limited. All
the used components including those from the LogiCore can be described in HDL
in a more compact and understandable form. Hierarchical design may similarly
be applied. Editing HDL files is easier and the languages permit to work not only
with structural (this form is used by schematic editors) but also with behavioral
and mixed (behavioral plus structural) specifications. Besides, HDL and schematic
diagrams can be combined within the same project if required. The next chapter
gives a brief introduction to VHDL and all circuits and systems in the subsequent
chapters will be described in this language.

Fig. 1.30   Elements of the
virtual window for testing the
full adder

Fig. 1.29   Project for testing the full adder from Sect. 1.5 in the virtual window

1.7  Interaction with FPGA-Based Circuits and Systems

40 1  FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools

References

	 1.	Hauck S (1998) The roles of FPGAs in reprogrammable systems. Proc IEEE 86(4):615–638
	 2.	Roelandts W (1999) 15 years of innovation. Xcell J 32(2):4–8
	 3.	Santarini M (2011) Zynq-7000 EPP sets stage for new era of innovations. Xcell J 75(2):8–13
	 4.	Xilinx Press Releases (2011) Xilinx ships world’s highest capacity FPGA and shatters

industry record for number of transistors by 2X. http://press.xilinx.com/2011-10-25-Xilinx-
Ships-Worlds-Highest-Capacity-FPGA-and-Shatters-Industry-Record-for-Number-of-Tran-
sistors-by-2X. Accessed 10 Oct 2013

	 5.	Altera Corp. (2013) Expect a breakthrough advantage in next-generation FPGAs. http://www.
altera.com/literature/wp/wp-01199-next-generation-FPGAs.pdf. Accessed 10 Oct 2013

	 6.	Estrin G (1960) Organization of computer systems—the fixed plus variable structure com-
puter. In: Proceedings of the western joint computer conference, New York, 1960

	 7.	Skliarova I, Sklyarov V, Sudnitson A (2012) Design of FPGA-based circuits using hierarchi-
cal finite state machines. TUT Press, Tallinn

	 8.	SourceTech411 (2013) Top FPGA companies for 2013. http://sourcetech411.com/2013/04/
top-fpga-companies-for-2013/. Accessed 10 Oct 2013

	 9.	Xilinx Inc. (2012) 7 series FPGAs configurable logic block. http://www.xilinx.com/support/
documentation/user_guides/ug474_7Series_CLB.pdf. Accessed 10 Oct 2013

	10.	Digilent Inc. (2010) Digilent Adept software. http://www.digilentinc.com/Products/Detail.cf
m?NavPath=2,66,828&Prod=ADEPT2. Accessed 10 Oct 2013

	11.	Digilent Inc. (2013) Atlys™ board reference manual. http://www.digilentinc.com/Data/
Products/ATLYS/Atlys_rm.pdf. Accessed 19 Nov 2013

	12.	Xilinx Inc. (2013) Constraints guide (UG625). http://www.xilinx.com/support/documentation/sw_
manuals/xilinx14_5/cgd.pdf. Accessed 10 Oct 2013

	13.	Altera Corp. (2013) Stratix V device handbook. http://www.altera.com/literature/hb/stratix-
v/stratix5_handbook.pdf. Accessed 10 Oct 2013

	14.	Altera Corp. (2013) Cyclone-IV devices handbook. http://www.altera.com/literature/hb/
cyclone-iv/cyclone4-handbook.pdf. Accessed 10 Oct 2013

	15.	Xilinx Inc. (2011) Spartan-6 FPGA block RAM resources user guide. http://www.xilinx.com/
support/documentation/user_guides/ug383.pdf. Accessed 10 Oct 2013

	16.	Xilinx Inc. (2012) 7 series FPGAs memory resources user guide. http://www.xilinx.com/sup-
port/documentation/user_guides/ug473_7Series_Memory_Resources.pdf. Accessed 10 Oct
2013

	17.	Xilinx Inc. (2012) LogiCORE IP block memory generator v7.3 product guide.
http://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v7_3/
pg058-blk-mem-gen.pdf. Accessed 10 Oct 2013

	18.	Xilinx Inc. (2011) Spartan-6 FPGA DSP48A1 slice user guide. http://www.xilinx.com/sup-
port/documentation/user_guides/ug369.pdf. Accessed 10 Oct 2013

	19.	Xilinx Inc. (2013) 7 series DSP48E1 slice user guide. http://www.xilinx.com/support/docu-
mentation/user_guides/ug479_7Series_DSP48E1.pdf. Accessed 10 Oct 2013

	20.	Xilinx Inc. (2013) Spartan-6 FPGA clocking resources user guide. http://www.xilinx.com/
support/documentation/user_guides/ug382.pdf. Accessed 10 Oct 2013

	21.	Xilinx Inc. (2013) 7 series FPGAs clocking resources user guide. http://www.xilinx.com/sup-
port/documentation/user_guides/ug472_7Series_Clocking.pdf. Accessed 10 Oct 2013

	22.	Srikanth E (2011) How do i reset my FPGA? Xcell J 76(3):44–49
	23.	Xilinx Inc. (2013) ISE WebPACK design software. http://www.xilinx.com/products/design-

tools/ise-design-suite/ise-webpack.htm. Accessed 10 Oct 2013
	24.	Xilinx Inc. (2012) ISE in-depth tutorial. http://www.xilinx.com/support/documentation/sw_

manuals/xilinx14_3/ise_tutorial_ug695.pdf. Accessed 10 Oct 2013
	25.	Digilent Inc. (2010) Master UCF file for Atlys. http://www.digilentinc.com/Data/

Products/ATLYS/AtlysGeneralUCF.zip. Accessed 10 Oct 2013

http://press.xilinx.com/2011-10-25-Xilinx-Ships-Worlds-Highest-Capacity-FPGA-and-Shatters-Industry-Record-for-Number-of-Transistors-by-2X
http://press.xilinx.com/2011-10-25-Xilinx-Ships-Worlds-Highest-Capacity-FPGA-and-Shatters-Industry-Record-for-Number-of-Transistors-by-2X
http://press.xilinx.com/2011-10-25-Xilinx-Ships-Worlds-Highest-Capacity-FPGA-and-Shatters-Industry-Record-for-Number-of-Transistors-by-2X
http://www.altera.com/literature/wp/wp-01199-next-generation-FPGAs.pdf
http://www.altera.com/literature/wp/wp-01199-next-generation-FPGAs.pdf
http://sourcetech411.com/2013/04/top-fpga-companies-for-2013/
http://sourcetech411.com/2013/04/top-fpga-companies-for-2013/
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2
http://www.digilentinc.com/Data/Products/ATLYS/Atlys_rm.pdf
http://www.digilentinc.com/Data/Products/ATLYS/Atlys_rm.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/cgd.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/cgd.pdf
http://www.altera.com/literature/hb/stratix-v/stratix5_handbook.pdf
http://www.altera.com/literature/hb/stratix-v/stratix5_handbook.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf
http://www.xilinx.com/support/documentation/user_guides/ug383.pdf
http://www.xilinx.com/support/documentation/user_guides/ug383.pdf
http://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
http://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
http://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v7_3/pg058-blk-mem-gen.pdf
http://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v7_3/pg058-blk-mem-gen.pdf
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/support/documentation/user_guides/ug382.pdf
http://www.xilinx.com/support/documentation/user_guides/ug382.pdf
http://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
http://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/ise_tutorial_ug695.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/ise_tutorial_ug695.pdf
http://www.digilentinc.com/Data/Products/ATLYS/AtlysGeneralUCF.zip
http://www.digilentinc.com/Data/Products/ATLYS/AtlysGeneralUCF.zip

41

	26.	Digilent Inc. (2013) Nexys-4™ reference manual. http://www.digilentinc.com/Data/
Products/NEXYS4/Nexys4_RM_VB1_Final_3.pdf. Accessed 9 Nov 2013

	27.	Xilinx Inc. (2011) Spartan-6 family overview. http://www.xilinx.com/support/documentation/
data_sheets/ds160.pdf. Accessed 10 Oct 2013

	28.	Terasic technologies Inc. (2010) DE2-115 user manual. http://www.terasic.com.tw/cgi-bin/
page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=4. Accessed 10
Oct 2013

	29.	Xilinx Inc. (2013) 7 series FPGAs overview. http://www.xilinx.com/support/documentation/
data_sheets/ds180_7Series_Overview.pdf. Accessed 10 Oct 2013

	30.	Digilent Inc. (2009) Adept I/O expansion reference design. http://www.digilentinc.com/
Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2. Accessed 9 Nov 2013

	31.	Avnet Inc. (2013) ZedBoard (Zynq™ evaluation and development) hardware user’s guide.
http://www.zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v1_9.pdf.
Accessed 10 Oct 2013

References

http://www.digilentinc.com/Data/Products/NEXYS4/Nexys4_RM_VB1_Final_3.pdf
http://www.digilentinc.com/Data/Products/NEXYS4/Nexys4_RM_VB1_Final_3.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=4
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=4
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2
http://www.zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v1_9.pdf

43

Abstract  This chapter presents a concise introduction to synthesizable VHDL that
is sufficient for the design methods and examples given in subsequent chapters to
be understood without much background knowledge. The main objective of this
chapter is to explain the basis of VHDL modules and their specification capabili-
ties without going into detail. There are many excellent books dedicated to VHDL
that may be used to complement this book. Our primary target is the synthesis and
optimization of FPGA-based circuits and systems and VHDL is just an instrument
that is used in the book to describe the desired functionalities and structures. Thus
this chapter only provides the minimum necessary to allow subsequent chapters to
be read without additional material, and to enable all the proposed examples to be
understood and tested with the FPGA-based prototyping boards.

2.1 � Introduction to VHDL

VHSIC (Very High Speed Integrated Circuits) Hardware Description Language
(VHDL) was created as a result of USA government sponsored program in 1980s [1].
The language has been standardized in 1987 (with revisions done in 1993, 2002, and
2008) and is widely adopted by designers.

The target of this section is to provide a brief introduction to VHDL through
simple examples. The main objective is to describe such constructions that will
be used for FPGA projects in the book. VHDL is a complex language with wide-
ranging specifications not all of which are synthesizable. Subsequent sections of
this chapter will present just a basis for using VHDL in FPGA design. For deeper
study of the language the books [1, 2] are recommended.

A specification of a digital circuit in VHDL includes two major parts: an entity
declaration which is a definition of the circuit interface (where all the external
circuit connections are declared), and an architecture body where a description
of internal functionality is given. There are three types of architecture: structural,
behavioral, and mixed.

Chapter 2
Synthesizable VHDL for FPGA-Based
Devices

V. Sklyarov et al., Synthesis and Optimization of FPGA-Based Systems,
Lecture Notes in Electrical Engineering 294, DOI: 10.1007/978-3-319-04708-9_2,
© Springer International Publishing Switzerland 2014

44 2  Synthesizable VHDL for FPGA-Based Devices

Structural architecture provides all necessary internal connections between the
circuit components that are either library primitives or previously developed cir-
cuits. Figure 2.1 demonstrates a structural VHDL description of the circuit firstly
shown as a schematic entry in Fig. 1.2.

The first two lines of VHDL code identify a standard library, IEEE, and a pack-
age, std_logic_1164, which contains important definitions needed for our speci-
fication. In particular, we would like to use the type std_logic and the associated
operations defined in that package. The type std_logic includes 9 values (‘U’—
uninitialized, ‘X’—unknown, ‘0’—0, ‘1’—1, ‘Z’—high impedance, ‘W’—weak
unknown, ‘L’—weak 0, ‘H’—weak 1, ‘−’—don‘t care) that allow signals to be
modeled with strong, weak and high-impedance strengths. For now, from these 9
values we need just two: ‘0’ and ‘1’ (logic values are enclosed in quotation marks
to distinguish them from the numbers 0 and 1). VHDL is not case sensitive lan-
guage. That is why we can use the name STD_LOGIC instead of std_logic.

The second two lines of VHDL code identify a library, UNISIM.vcomponents, (with
the package vcomponents) which contains the component declarations for the Xilinx
primitives and defines models needed for simulation.

As you can see from Fig. 2.1 there are three sections in VHDL code:

1.	 Specification of libraries and packages that are intended to be used.
2.	 Specification of interface (entity).
3.	 Specification of architecture.

Fig. 2.1   Structural VHDL for the circuit shown in Fig. 1.2

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1

45

The components OR3 and AND3B2 are Xilinx library primitives and they
correspond to the relevant schematic symbols in Fig. 1.2. The declared internal
signals out_and1, out_and2, and out_and3 are needed to describe internal connec-
tions between the library primitives (there are totally 3 instances and1_circuit,
and2_circuit and and3_circuit of the primitive AND3B2 and one instance or_circuit of the
primitive OR3). Connections are shown by comma delimited lines in parenthe-
sis after the port map keywords, for example, port map (I0=>×3, I1=>x2, I2=>x1,
O=>out_and1). The component AND3B2 is defined in the UNISIM library (the file
unisim_VCOMP.vhd) as follows:

The VHDL keyword signal permits signals to be declared in the declarative
part of an architecture (between the head of the architecture and the key-
word begin). Signals in VHDL are similar to wires in hardware circuits.

Keywords (reserved words) here and later in the book are shown in bold
font. In VHDL two successive hyphens (–) denote a single-line comment and they are shown in
such font. Each port is given a name (e.g. O, I0, I1, I2) and is either an input (in)
or an output (out). Other types (namely inout and buffer) are also allowed
and they are described in Appendix A. For every port we specify the associ-
ated type which states the range of values that can be used on that port. In the
example above each port is of type std_ulogic. Please note that the specification
of each port is followed by a semicolon except for the last port. A signal of
the type std_ulogic is similar to std_logic but it does not contain predefined reso-
lution functions (the details can be found in [1, 3]). The names O, I0, I1, I2 of
the interface signals in the component declaration above appear in the mapping
line: port map (I0=>x3, I1=>x2, I2=>x1, O=>out_and1). The latter involves a named
association where each component port I0, I1, I2, O (see the component AND3B3
above) is associated with x3, x2, x1 and out_and1 signals from the entity where
the component is used (see the StructuralVHDL entity in Fig. 2.1). Internal signals
(used for connections just within the entity StructuralVHDL) are explicitly declared
as (Fig. 2.1):

Besides of the named association a positional association can be used, which
will be considered in another example of structural specification below and is also
described in Appendix A (see Aggregate).

Behavioral architecture represents the desired functionality of a circuit in
an abstract way similar to general-purpose programming languages. However,
VHDL statements differ in many aspects mainly because of inherent to hardware

component AND3B3
port (O : out std_ulogic; -- std_ulogic is unresolved type [1] similar to std_logic

 I0, I1, I2 : in std_ulogic);
end component;

signal out_and1 : std_logic; -- signal and component declarations appear in the declarative
signal out_and2 : std_logic; -- part of architecture which is between the keywords
signal out_and3 : std_logic; -- architecture…of…is and begin (see example in Fig. 2.1)

2.1  Introduction to VHDL

http://dx.doi.org/10.1007/978-3-319-04708-9_1

46 2  Synthesizable VHDL for FPGA-Based Devices

description languages concurrency and advanced operations manipulating individ-
ual bits and sets of bits.

For the considered above structural architecture an equivalent behavioral speci-
fication can be done as follows:

Functionality of the synthesized circuit is exactly the same. Structural and behav-
ioral specifications complement each other and may have different effectiveness for
different projects. Thus, it is reasonable to combine them within a mixed architec-
ture, which is composed of both behavioral and structural specifications. For com-
plex projects such mixed architecture can often be seen as the most frequently used.

Figure 2.2 gives a simplified structure of elements for a VHDL module (design
entry in VHDL) which nevertheless is sufficient for an introductory level.

library ieee; -- note that the UNISIM library is not needed now
use ieee.std_logic_1164.all;
entity BehavioralVHDL is -- the entity name (such as BehavioralVHDL) is chosen by the designer

port (x1, x2, x3 : in std_logic;
y : out std_logic);

end BehavioralVHDL;

architecture behavioral of BehavioralVHDL is
begin -- and/not/or are VHDL logical operators for AND/NOT/OR logical operations
y <= (x1 and not x2 and not x3) or (not x1 and x2 and not x3) or

(not x1 and not x2 and x3); -- <= is VHDL signal assignment operator
end behavioral;

Fig. 2.2   A simplified structure of elements for a VHDL module

47

Up to now we have not described yet many keywords shown in Fig. 2.2:

•	 generic enables compact scalable and parameterizable designs to be described
(see Sect. 2.5 for details and Appendix A);

•	 constant permits objects with unchangeable values to be declared (see
Sect. 2.2 for details and Appendix A);

•	 type is used to declare new types including arrays and enumerations (see
Sect. 2.2 for details and Appendix A);

•	 function and procedure (subprograms) allow pieces of code to be used mul-
tiple times in a design (see Sect. 2.4 for details and Appendix A);

•	 shared variable is an extension of variable, allowing inter-process communi-
cation. Note that variable cannot be declared directly in architecture and it is
declared in a process or in a subprogram (function or procedure). Variable is
assigned using the := operator.

•	 process is a concurrent statement with such behavior that is described by
sequential statements (see also Sect. 2.3 and Appendix A).

Subsequent sections of this chapter will present details about indicated above
and other VHDL keywords (reserved words). A summary about the use of differ-
ent reserved words is given in Appendix A.

A code below demonstrates a behavioral VHDL specification for a half-adder
discussed in Sect. 1.5. The external interface and the truth table of the half-adder
are shown in Fig. 2.3.

Each port of the half-adder is given a name (A, B, carry_out, sum). The architec-
ture is entitled half_adder_behavior and is associated with the half_adder entity. These
names can be chosen arbitrary but have to respect VHDL syntax rules, i.e. a user
identifier can only include alphanumerical symbols and the underline character _
must start with a letter, may not include two consecutive underline characters, and
may not have an underline character at the end.

The next example presents the complete mixed VHDL specification of a full
adder composed of two structural components (half-adders) and a behavioral
description of a two-input OR gate: carry_out <= s2 or s3; (see also Fig. 1.19b).

library IEEE;
use IEEE.std_logic_1164.all;
entity half_adder is

port (A : in std_logic;
 B : in std_logic;

carry_out : out std_logic;
sum : out std_logic); -- there is no semicolon following the specification

end half_adder; -- of the last port

architecture half_adder_behavior of half_adder is
begin

sum <= A xor B; -- xor is a VHDL keyword for XOR logical operation
carry_out <= A and B; -- and is a VHDL keyword for AND logical operation

end half_adder_behavior;

2.1  Introduction to VHDL

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1

48 2  Synthesizable VHDL for FPGA-Based Devices

The component half_adder is described explicitly using the VHDL keyword
component. If we comment the lines:

library IEEE;
use IEEE.std_logic_1164.all;
entity FULLADD is
port (A, B, carry_in : in std_logic;

sum, carry_out : out std_logic);
end FULLADD;

architecture STRUCT of FULLADD is
signal s1, s2, s3 : std_logic;

component half_adder
port(A,B : in std_logic;

carry_out, sum : out std_logic);
end component;
begin

u1: half_adder port map(A, B, s2, s1);
u2: half_adder port map(s1, carry_in, s3, sum);
carry_out <= s2 or s3;

end STRUCT;

component half_adder
port(A,B : in std_logic;

carry_out, sum : out std_logic);
end component;

library IEEE;
use IEEE.std_logic_1164.all;

entity half_adder is
port (A : in STD_LOGIC;

B : in STD_LOGIC;
carry_out : out STD_LOGIC;
sum : out STD_LOGIC);

end half_adder;

architecture half_adder_behavior of half_adder is
begin

sum <= A xor B;
carry_out <=

end half_adder_behavior;

In
te

rf
ac

e
A

rc
hi

te
ct

ur
e

use of libraries and packages1

2

3

A B carry_out sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

From
Fig. 1.19

HA

carry_out

sum

A

B

A and B;

Fig. 2.3   Specification in VHDL and the truth table of a half-adder

49

the following error appears: <half_adder> is not declared. However, since all
VHDL modules are compiled (by default) to a library with the name work we can
use the half-adder component directly from the library as follows:

Now the code does not have errors and the resulting circuit works exactly
the same as the circuit in Fig. 1.19b. The connections of the components are
done through the respective external (A, B, carry_in, sum, carry_out) and internal
(s1, s2, s3) signals that are associated with components‘ ports by positions (i.e.
a positional association has been used). For example, the half adder has 4 ports
A, B, carry_out, sum. In the component u1 they are connected with external sig-
nals A, B and internal signals s2, s1, accordingly. In the component u2 they are
connected with s1 (internal), carry_in (external), s3 (internal), and sum (exter-
nal) signals. All other details should be understandable from Fig. 2.4 (see also
Appendix A).

The examples above illustrate the general organization of structural, behav-
ioral, and mixed VHDL specifications. In the next sections of this chapter we

architecture STRUCT of FULLADD is
signal s1, s2, s3 : std_logic;

begin -- getting the half_adder from the library work in the construction: entity work.half_adder
u1: entity work.half_adder port map(A, B, s2, s1);
u2: entity work.half_adder port map(s1, carry_in, s3, sum);
carry_out <= s2 or s3;

end STRUCT;

Fig. 2.4   Structural VHDL description of a full adder

2.1  Introduction to VHDL

http://dx.doi.org/10.1007/978-3-319-04708-9_1

50 2  Synthesizable VHDL for FPGA-Based Devices

will present more details about different VHDL constructions paying the main
attention to comprehensive examples that can be directly synthesized, imple-
mented and tested in FPGA-based circuits.

There are two appendices A and B in this book. Appendix A explains infor-
mally a variety of synthesizable constructions and VHDL keywords listed alpha-
betically. Appendix B includes some coding examples for frequently needed
modules.

To conclude this section we would like to explicitly indicate that the book is not
about VHDL and only a subset of this language is used to describe functionality
of the considered FPGA-targeted circuits and systems. There are some limitations
assumed in the book and they are listed below:

1.	 Only two values ‘0’ and ‘1’ from the allowed values of std_logic type are used.
2.	 For the majority of examples unsigned vectors with element values ‘0’ and ‘1’

are used and their type is declared as std_logic_vector. There are just a few exam-
ples with the types signed and unsigned (see the next section and Appendices).

3.	 Taking into account the assumptions 1 and 2, in many examples below the type
std_logic_vector is used in the same way as an unsigned type although the latter
might be more correct, for instance, for such operations as comparison, arith-
metical, and some others. This way does not give rise to any problem for the
resulting (synthesized and implemented) circuits that are presented in the book
and it permits the number of conversion functions to be minimized. This is done
because we would like to pay the primary attention to the design methods and
the described circuits but not to supplementary constructions, which often make
the code more difficult to analyze and understand.

4.	 Many design methods described in the book are equally applicable to signed
vectors and if required the necessary (minimal) changes can easily be done
assuming that the given examples are firstly well understood and tested.

2.2 � Data Types, Objects and Operators

We consider the following VHDL basic data types: (1) enumerated (including pre-
defined and user-defined); (2) bit vector; (3) integer; and (4) record.

Pre-defined enumerated types are: (1) bit (with possible values ‘0‘ and ‘1‘);
boolean (with possible values false and true); and (3) std_logic defined in the IEEE
std_logic_1164 package (with 9 possible values ‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’,
‘-’ described in the previous section).

User-defined enumerated types are frequently introduced for naming states of
finite state machines, for example:

Bit vector is (1) a standard bit_vector type with elements of the type bit, and (2)
defined in the IEEE std_logic_1164 package std_logic_vector with elements of type

type FSM_states is (begin, run, end); -- begin, run, end are user-defined names of FSM states

51

std_logic. Std_logic and std_logic_vector are the most frequently used types in the book.
Two examples are given below:

The first example declares a vector sw with 4 elements: sw(3), sw(2), sw(1), sw(0).
If, for example, sw <= “1100” then sw(3) is ‘1’, sw(2) = ‘1’, sw(1) = ‘0’, sw(0) = ‘0’. If
for the second example my_bit <= “01” then my_bit(2) is ‘0’, and my_bit(3) is ‘1’. Single-
bit values are written in between single quotes while multi-bit values are specified
with double quotes.

Integer type enables an integer to be declared. The range of the integer val-
ues can explicitly be defined, for example:

Record type permits a set of data with different types to be combined in a
named structure, for example:

Data types can form an array. Although any number of dimensions can be cho-
sen it is frequently recommended to limit them, for example, by 3 in [3]. The fol-
lowing type declares an array named my_array of 16 integers with possible values 0,
1, 2, 3, 4:

The following line declares a two dimensional array containing 4 sets of
integers:

We consider here three VHDL objects that are signals, variables and constants.
Signals are declared in the declarative part of architecture (shown in Fig. 2.2

between the lines architecture… and begin) with the keyword signal and
used within that architecture.

Variables are declared in the declarative part of a process or a sub-program
(function or procedure) with the keyword variable and used within that process
or sub-program. We will discuss processes and sub-programs a bit later in this
section.

Constants are declared in the declarative part of architecture, process, or sub-
program (function or procedure) with the keyword constant. Declarative part
of a process, a function or a procedure is placed between the lines process…
/function…/procedure… and begin).

signal sw : std_logic_vector(3 downto 0);
signal my_bit : bit_vector(2 to 3);

signal my_int : integer range 3 to 8; -- allowed values now are only 3, 4, 5, 6, 7, and 8

type user_defined_record is record -- the name of the structure is user_defined_record
data1 : std_logic_vector(7 downto 0); -- record fields
data2 : integer range 0 to 7; -- a field can also be of type record

end record;

type my_array is array (0 to 15) of integer range 0 to 4;

type my_table is array (3 downto 0) of my_array; -- the type my_array is declared above

2.2  Data Types, Objects and Operators

52 2  Synthesizable VHDL for FPGA-Based Devices

Let us consider a complete example:

Here, conv_integer (casting std_logic_vector type to integer type) and conv_std_logic_
vector (casting integer type to std_logic_vector type of size n where n is the second argu-
ment) are conversion functions for which we need to include additional packages
indicated in the code above. The line:

declares and initializes a constant Hamming_weight which is a one-dimensional array
of integers. Each integer with index i10 is a Hamming weight of i2, i.e. the number
of values ‘1’ in the binary vector i2. Indeed, if i10 = 5, then my_array(5) = 2, and
i2 = “0101” contains 2 digits ‘1’. The one-dimensional array is a new type my_array
declared in the line: type my_array is array (0 to 15) of integer range 0 to 4;.
Figure 2.5 demonstrates the user constraints file (UCF) for our project and the pro-
ject functionality.

library IEEE; -- in future VHDL modules we will assume including these libraries
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_ARITH.all; -- see also appendix A and section 2.6
use IEEE.STD_LOGIC_UNSIGNED.all; -- for conversion functions

entity types_and_objects is -- sw and led are signals from switches and to LEDs
port (sw : in std_logic_vector(3 downto 0);

led : out std_logic_vector(7 downto 1));
end types_and_objects;

architecture Behavioral of types_and_objects is
type my_array is array (0 to 15) of integer range 0 to 4;
constant Hamming_weight : my_array := (0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4);
signal index : integer range 0 to 15;

begin
led(4 downto 1) <= sw;
index <= conv_integer(sw(3 downto 0));
led(7 downto 5) <= conv_std_logic_vector(Hamming_weight(index), 3);

end Behavioral;

constant Hamming_weight : my_array := (0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4);

Fig. 2.5   UCF and functionality of the project with the entity types_and_objects for the Atlys board

53

In subsequent VHDL modules we will also use the following derived data types
(they are also described in Appendix A):

•	 natural that declares integers with nonnegative values (0,1,2,…);
•	 positive which is the same as natural without the value 0 (1,2,…);
•	 unsigned declares unsigned vectors based on std_logic type and is defined, for

example, in the VHDL package std_logic_arith (see also Sect. 2.6);
•	 signed declares signed vectors based on std_logic type and is defined, for example,

in the VHDL package std_logic_arith (see also Sect. 2.6);
•	 character is a 7-bit ASCII code;
•	 string(positive) is an array of characters.

The following two lines give declaration examples for a character and a string:

The following lines give examples of assignments which can be done in an
architecture body:

The last line finds position of my_char in ASCII table (character’pos(my_char)),
then converts the position to an 8-element unsigned vector of std_logic (conv_
unsigned(<position>,8)) and finally converts the unsigned vector to std_logic_vector (std_logic_
vector(<unsigned vector>)) which is assumed to be displayed on eight onboard LEDs.

The following operators will be used in examples of this book:

1.	 Arithmetical: + (addition), − (subtraction), * (multiplication), / (division).
Often, division is supported only if the right operand is a power of 2 [3].

2.	 Assignment: <= (for signals) and := (for variables).
3.	 Concatenation: &.
4.	 Logical: and, nand, nor, not, or, xor, xnor (see appendix A for details).
5.	 Relation: = (equal to), /= (not equal to), < (less than), <= (less than or equal

to), > (greater than), > = (greater than or equal to).
6.	 Shift: sll (logic shift left), srl (logic shift right), sla (arithmetic shift left),

sra (arithmetic shift right), rol (rotate left), ror (rotate right). Examples and
additional explanations are given in Appendix A. We would prefer to use logi-
cally equivalent operators (see Shift operators in Appendix A).

7.	 Others: abs (absolute value), rem (remainder), mod (modulo), ** (power if the
left operand is 2). Frequently, the operations rem and mod are supported only if
the right operand is a constant power of 2 [3].

signal my_string : string(1 to 3); -- declaration of signal my_string of type string(1 to 3)
signal my_char : character; -- declaration of signal my_char of type character

my_char <= '3'; -- my_char receives the ASCII code of digit 3
my_string(1) <= '5'; -- my_string(1) receives the ASCII code of digit 5
my_string(2) <= my_char; -- my_string(2) receives the value of my_char
my_string(3) <= '9'; -- my_string(3) receives the ASCII code of digit 9
led <= std_logic_vector(conv_unsigned(character'pos(my_char), 8));

2.2  Data Types, Objects and Operators

54 2  Synthesizable VHDL for FPGA-Based Devices

Using the majority of the operators is clear. So, we will consider below just a
part of them. The first VHDL module is given below:

We introduced here when … else conditional signal assignment which allows
more operators to be described in a compact code. The conditional assignment has
the following general form:

which can be repeated any number of times. For example mod operator will be
applied if and only if but = “00001”, i.e. only one BTNR button is pressed. Indeed,
the signal but is a concatenation (&) of 5 signals from the onboard buttons (BTNU
& BTNC & BTND & BTNL & BTNR). Some operations are explained in comments above
and some others are shown in Table 2.1. For example, using a modulo (A mod B)
operator permits the result to be changed from A = 0 up to the value B–1 and then
again from 0 to the value B–1 until the final allowed value A is reached (exact
definition of the described above operators is given in [1]). As you can see from
Table 2.1 division (/) and remainder (rem) give correct results in the Xilinx ISE
14.7 for any integer operands (the document [3] indicates that the respective oper-
ations are only supported if the second operand is a power of 2 or both operands
are constants). The operator with an asterisk in Table 2.1 (mod*, rem*, and /*) are
applied to the first positive and to the second negative arguments:

entity abs_rem_mod is -- the project was tested in the ISE 14.7 and Atlys board
port (sw : in std_logic_vector(7 downto 0);

led : out std_logic_vector(7 downto 0);
BTNU, BTNC, BTND, BTNL, BTNR : in std_logic); -- onboard buttons in the Atlys

end abs_rem_mod;

architecture Behavioral of abs_rem_mod is
signal result : integer range 0 to 16;
signal but : std_logic_vector(4 downto 0);

begin
but <= BTNU & BTNC & BTND & BTNL & BTNR; -- concatenation of five signals

 result <= 16 when conv_integer(sw(3 downto 0)) = 0 else -- 16 indicates "divide by 0"
conv_integer(sw(7 downto 4)) mod conv_integer(sw(3 downto 0))
when but = "00001" else -- only BTNR is pressed
conv_integer(sw(7 downto 4)) rem conv_integer(sw(3 downto 0))
when but = "00010" else -- only BTNL is pressed
conv_integer(sw(7 downto 4)) / conv_integer(sw(3 downto 0))
when but = "00100" else -- only BTND is pressed
abs(-10) when but = "01000" else -- abs(-10) = 10 (only BTNC is pressed)
abs(5) when but = "10000" else 0; -- abs(5) = 5 (only BTNU is pressed

led <= conv_std_logic_vector(result, 8);
end Behavioral;

<name> <= <expression> when <condition> else <expression>;

conv_integer(sw(7 downto 4)) mod (-conv_integer(sw(3 downto 0)))
conv_integer(sw(7 downto 4)) rem (-conv_integer(sw(3 downto 0)))
conv_integer(sw(7 downto 4)) / (-conv_integer(sw(3 downto 0)))

55

Since the result of (A mod B) has the same sign as B and abs(result)<abs(B),
the result of (A mod B) is different from (A mod (−B)). The result of (A rem B)
has the same sign as A and, thus, (A rem B) = (A rem (−B)). Clearly (A/B) ≠ (A/
(−B)). Table 2.1 (where two’s complement codes are used for negative numbers
and for positive numbers just the absolute values are given) presents various exam-
ples for different values of the first operand (A) and B = 510 with different signs
for the latter one (positive: 510 and negative: −510). The column / (/*) contains
only decimal values. Additional details are given in Appendix A.

2.3 � Combinational and Sequential Processes

VHDL process is a concurrent statement which is described by sequential state-
ments. Almost always in this book we consider processes with a sensitivity list
that appears within parentheses after the process keyword (it is recommended
for greater flexibility, in particular, by the document [3]). A few examples of pro-
cesses without a sensitivity list are given in Appendix A (see on and until). A pro-
cess is activated if any of sensitivity list signals is changed (i.e. in case of event
on these signals). For simulation purposes (see Sect. 2.7) processes with wait
statement without a sensitivity list will also be used (it is not allowed to include
both a sensitivity list and a wait statement). Additional details can be found in
Appendix A.

Table 2.1   The results of mod, rem and division (/) operations

A = sw(7:4) B = sw(3:0) Mod mod* rem (rem*) / (/*)

00002 (010) mod, rem, / : (00002) 010 (000002) 010 (00002) 010 0 (0)
00012 (110) 01012 (510) (00012) 110 (111002) −410 (00012) 110 0 (0)
00102 (210) (00102) 210 (111012) −310 (00102) 210 0 (0)
00112 (310) mod*, rem*, /* (00112) 310 (111102) −210 (00112) 310 0 (0)
01002 (410) (−510), (01002) 410 (111112) −110 (01002) 410 0 (0)
01012 (510) i.e. the sign is forced

to be changed
(00002) 010 (000002) 010 (00002) 010 1 (−1)

01102 (610) (00012) 110 (111002) −410 (00012) 110 1 (−1)
01112 (710) (00102) 210 (111012) −310 (00102) 210 1 (−1)
10002 (810) (00112) 310 (111102) −210 (00112) 310 1 (−1)
10012 (910) (01002) 410 (111112) −110 (01002) 410 1 (−1)
10102 (1010) (00002) 010 (000002) 010 (00002) 010 2 (−2)
10112 (1110) (00012) 110 (111002) −410 (00012) 110 2 (−2)
11002 (1210) (00102) 210 (111012) −310 (00102) 210 2 (−2)
11012 (1310) (00112) 310 (111102) −210 (00112) 310 2 (−2)
11102 (1410) (01002) 410 (111112) −110 (01002) 410 2 (−2)
11112 (1510) (00002) 010 (000002) 010 (00002) 010 3 (−3)

2.2  Data Types, Objects and Operators

56 2  Synthesizable VHDL for FPGA-Based Devices

2.3.1 � Combinational Processes

A process is a combinational when all signals/variables assigned in the process
explicitly receive new values every time the process is executed [3]. Thus, the
sensitivity list must contain: (1) all signals in conditional statements, and (2) all
signals on the right-hand side of assignment operators (<= or :=). If any value
needs to be stored from the previous execution of the process the latter cannot be
combinational.

There are a number of VHDL constructions that can be used in a process. Some
of them (primarily needed for this book) will be described on examples below. The
following combinational process tests if the value of an input vector sw is between
the given low and high bounds (if (sw > low) and (sw < high) then led <= sw;) or less
than the low bound (elsif sw < low then led <= not sw;):

If the value of sw is greater than low and less than high then this value is
displayed on the onboard LEDs. If sw<low then the values of all sw elements are
inverted (applying the not operator) and displayed on the LEDs. Otherwise all
LEDs are OFF. The statement led <= (others => ‘0’); assigns to zero all elements
of the signal led (corresponding to all LEDs OFF). The following conditional
assignments (either the first or the second) directly used in the architecture body
instead of the cp1 process execute exactly the same operations:

entity TestCombProc is -- simplified syntax rules for processes are given in appendix A
port (sw : in std_logic_vector(7 downto 0); -- onboard switches

led : out std_logic_vector(7 downto 0)); -- onboard LEDs
end TestCombProc;

architecture Behavioral of TestCombProc is
constant low : integer := 5;
constant high : integer := 10;

begin
cp1: process(sw) -- cp1 (combinational process 1) is an optional label
begin -- A simplified syntax rule for if…elsif…else…end if statement is given in appendix A

if (sw > low) and (sw < high) then led <= sw;
elsif sw < low then led <= not sw;
else led <= (others => '0');
end if;

end process cp1; -- cp1 (combinational process 1) is an optional label

end Behavioral;

led <= sw when (sw > low) and (sw < high) else -- the first conditional assignment
not sw when sw < low else (others => '0'); -- see also Appendix A

with conv_integer(sw) select -- the second (alternative) conditional assignment
led <= sw when low+1 to high-1,
not sw when low-1 downto 0,

 (others => '0') when others; -- see also Appendix A

57

If statement can be replaced with case statement in the following process cp2
below which implements similar to the process cp1 functionality:

The next combinational process cp3 can be used to find out the Hamming
weight—HW (i.e. the number of ones) in the sw.

The line for i in sw’range loop begins a loop that is implemented combi-
nationally and causes replication of the logic described in the loop body. Index
i does not need to be declared and it is incremented in a range of the vector sw
(i.e. 7 downto 0 in the order: 7,6,5,4,3,2,1,0). Besides of range we will use some
other VHDL attributes shown in Appendix A (see Attribute). Let us consider some
examples:

The following combinational process cp4 demonstrates using the exit state-
ment that allows the subsequent index values in the loop to be skipped:

cp2: process(sw) -- A simplified syntax rule for case statement is given in Appendix A
begin

case conv_integer(sw) is
when low+1 to high-1 => led <= sw;
when low-1 downto 0 => led <= not sw;
when others => led <= (others => '0');

end case;
end process cp2;

cp3: process(sw) -- numerous examples with for statement are given in appendix A
variable HammingWeightCount : integer range 0 to 8;
begin

HammingWeightCount := 0;
for i in sw'range loop -- HW for sw(7), sw(6), … , sw(0)

if sw(i) = '1' then HammingWeightCount := HammingWeightCount+1;
end if;

end loop;
led <= conv_std_logic_vector(HammingWeightCount,8);

end process cp3;

for i in sw'left downto sw'right+4 loop -- HW for sw(7 downto 4): i.e. for i values 7,6,5,4
for i in sw'reverse_range loop -- the order of i values is: 0,1,2,3,4,5,6,7
for i in sw'length-4 downto 0 loop -- HW for sw(4 downto 0), because the length is 8
for i in 5 downto 3 loop -- the order of i values is: 5,4,3

cp4: process(sw)
variable left_1, right_1 : integer range 0 to 8;

begin
left_1 := 8; right_1 := 8; -- the value 8 is chosen to indicate all zeros in the sw
for i in sw'range loop -- exit as soon as the first '1' from the left is encountered

if sw(i) = '1' then left_1 := i; exit;
end if;

end loop;
for i in sw'reverse_range loop -- exit as soon as the first '1' from the right is found

if sw(i) = '1' then right_1 := i; exit; -- see also exit in Appendix A
end if;

end loop;
led(7 downto 4) <= conv_std_logic_vector(left_1, 4);
led(3 downto 0) <= conv_std_logic_vector(right_1, 4);

end process cp4;

2.3  Combinational and Sequential Processes

58 2  Synthesizable VHDL for FPGA-Based Devices

The keyword next permits to terminate the loop with the current index value
and to continue the loop with the next index value. Note that any iteration with a
particular index value is not a cycle in a sequential circuit. Each iteration replicates
the logic in the loop body described between the loop and end loop lines. The
loop while (also available in VHDL) can be used similarly to the loop for. The
details are given in Appendix A.

A process may use signals and variables. There is an important difference
between them. Assignments (:=) of variables are done immediately (without
delays) unlike signal assignments (<=) that are done when the process suspends.
The statements in the process are executed sequentially (from the top to the bot-
tom). If there are some mutually reassigned signals in a process they are not
updated immediately. For example if A, B are integer signals initialized with the
values A = 10 and B = 20:

then at the end of the process (with single invocation) B = 10 (but not 5) because
the above assignments of A and B are done at the same time at the end of the pro-
cess (i.e. when the process suspends). Thus, B = 10 (the initial value of A) and A = 5
(the assigned value in the statement A <= 5 above).

In some practical applications iterative invocations of the same statement
are required, for example, the statement A <= A + 1 can be executed in a combi-
national process with a loop such as for or while. The results are obviously
wrong with the signal A because of the following: (1) the signal A has to be
included in the process sensitivity list (because it appears on the right-hand side
in the expression above); (2) any change of A (any event on A) forces reinvoca-
tion of the same process; (3) a combinational loop is created and this is a wrong
for our example. Since variables are assigned immediately, a similar process
with variables does not give rise to any problem. Let us consider the following
example:

A <= 5; -- initialized before with the value 10
B <= A; -- initialized before with the value 20

entity TestLoops is
port (led_signal : out std_logic_vector (3 downto 0);

led_variable : out std_logic_vector (3 downto 0);
sw : in std_logic_vector(7 downto 0));

end TestLoops;

architecture Behavioral of TestLoops is
signal count_sig : integer range 0 to 15;

begin
use_of_signals: process(sw, count_sig) -- this process gives definitely wrong results
begin -- warnings in ISE about a combinational loop are displayed

count_sig <= 0;
optional_label: for i in sw'range loop -- DO NOT USE SIGNALS IN SUCH LOOPS

if(sw(i) = '1') then count_sig <= count_sig+1; -- this is definitely wrong
end if;

end loop optional_label;
led_signal <= conv_std_logic_vector(count_sig, 4);

end process use_of_signals;
use_of_variables: process(sw) -- this process gives correct results
variable count_var : integer range 0 to 15;
begin

count_var := 0;
optional_label: for i in sw'range loop -- this loop is correct

if(sw(i) = '1') then count_var := count_var+1; -- now this line is correct
end if;

end loop optional_label;
led_variable <= conv_std_logic_vector(count_var, 4);

end process use_of_variables;

end Behavioral;

cp4: process(sw)
variable left_1, right_1 : integer range 0 to 8;

begin
left_1 := 8; right_1 := 8; -- the value 8 is chosen to indicate all zeros in the sw
for i in sw'range loop -- exit as soon as the first '1' from the left is encountered

if sw(i) = '1' then left_1 := i; exit;
end if;

end loop;
for i in sw'reverse_range loop -- exit as soon as the first '1' from the right is found

if sw(i) = '1' then right_1 := i; exit; -- see also exit in Appendix A
end if;

end loop;
led(7 downto 4) <= conv_std_logic_vector(left_1, 4);
led(3 downto 0) <= conv_std_logic_vector(right_1, 4);

end process cp4;

59

It is easy to examine that the first process use_of_signals gives wrong results and
the second process use_of_variables gives correct results.

2.3.2 � Sequential Processes

A process is sequential if some previously assigned signals keep their previous
values and, thus, are not explicitly assigned in a new process execution [3]. We
mainly consider clock-edge-triggered sequential processes with a sensitivity
list and with an eventual synchronous reset that can be described as follows:

The rising_edge statement can be replaced with a falling_edge statement:

begin
 if rising_edge(clock) then -- the same as: if clock'event and clock = '1' then

<sequential (possibly conditional) statements>
end if;

end process <optional label>;

<optional label:> process(clock) -- clock is the name of the clock signal
< optional declarative part>

if falling_edge(clock) then -- the same as: if clock'event and clock = '0' then

entity TestLoops is
port (led_signal : out std_logic_vector (3 downto 0);

led_variable : out std_logic_vector (3 downto 0);
sw : in std_logic_vector(7 downto 0));

end TestLoops;

architecture Behavioral of TestLoops is
signal count_sig : integer range 0 to 15;

begin
use_of_signals: process(sw, count_sig) -- this process gives definitely wrong results
begin -- warnings in ISE about a combinational loop are displayed

count_sig <= 0;
optional_label: for i in sw'range loop -- DO NOT USE SIGNALS IN SUCH LOOPS

if(sw(i) = '1') then count_sig <= count_sig+1; -- this is definitely wrong
end if;

end loop optional_label;
led_signal <= conv_std_logic_vector(count_sig, 4);

end process use_of_signals;
use_of_variables: process(sw) -- this process gives correct results
variable count_var : integer range 0 to 15;
begin

count_var := 0;
optional_label: for i in sw'range loop -- this loop is correct

if(sw(i) = '1') then count_var := count_var+1; -- now this line is correct
end if;

end loop optional_label;
led_variable <= conv_std_logic_vector(count_var, 4);

end process use_of_variables;

end Behavioral;

2.3  Combinational and Sequential Processes

60 2  Synthesizable VHDL for FPGA-Based Devices

The following example demonstrates communication between several sequential
processes. The first process sp1 together with a conditional assignment (marked
with --**) describe a circuit that reduces the frequency of the clock (clk):

The following declarations have to be done in the architecture declarative part:

Since internal_clock is a 31-bit unsigned vector (std_logic_vector can also be used)
and the signal divided_clk takes (internal_clock’left - conv_integer(sw)) bit in the vector
internal_clock, the frequency of the clock clk is divided by 2 how_fast+1-conv_integer(sw). If
conv_integer(sw) = 0 then the base frequency for the Atlys board (which is 100 MHz)
is divided by 231 = 2,147,483,648. Thus, the clock period of the divided_clk
becomes ~21.5 s. If conv_integer(sw) = 7 then the base frequency is divided by
231−7 = 16,777,216. Thus, the clock period becomes ~0.16 s. The greater the
value of sw the higher frequency (the shorter period) of the divided_clk is provided.

Conditional signal assignment (marked with –** in the code above) can be
replaced by the following lines in the sp1 process body:

The next sequential process sp2 describes functionality of a binary counter:

Here, count_enable is the enable signal for the counter and increment permits either
the counter increment (increment = ‘1’) or decrement (increment = ‘0’) to be selected.

sp1: process(clk)
begin
 if rising_edge(clk) then internal_clock <= internal_clock+1; end if;
end process sp1; -- sw is a 3-bit vector (2 downto 0)
divided_clk <= internal_clock(internal_clock'left - conv_integer(sw)) --**

when falling_edge(clk); --**

signal internal_clock : unsigned(how_fast downto 0); -- how_fast = 30
signal positive_reset : std_logic; -- this signal will be needed in examples below
signal divided_clk : std_logic;

if falling_edge(clk) then
divided_clk <= internal_clock(internal_clock'left - conv_integer(sw));

end if;

sp2: process (divided_clk) -- signal count keeps the result of the counter
begin

if rising_edge(divided_clk) then -- using divided_clk enables the results to be observed visually
if positive_reset = '1' then count <= (others=>'0'); -- synchronous reset of the counter
else

if count_enable = '1' then -- increment/decrement of the counter
if increment='1' then count <= count + 1;
else count <= count - 1;
end if;

end if;
end if;

end if;
end process sp2;

61

The last sequential process sp3 describes functionality of a shift register:

Here, load_enable is the enable signal for the register (allowing the value of the
count from the counter to be loaded) and the signal right permits either the shift right
(right = ‘1’) or the shift left (right = ‘0’) to be selected.

The code below includes all the processes described above:

sp3: process (divided_clk) -- signal shift keeps the result of the register
begin -- the size of shift is chosen to be (6 downto 0)

if rising_edge(divided_clk) then -- using divided_clk enables the results to be observed visually
if positive_reset = '1' then shift <= (others=>'0'); -- reset of the register
else

if load_enable = '1' then shift <= count; -- loading the register
elsif right = '1' then -- shift right/left of the register

shift <= shift(0) & shift(5 downto 1);
else

shift <= shift(4 downto 0) & shift(5);
end if;

end if;
end if;

end process sp3;

architecture Behavioral of sequential_processes is
signal internal_clock : unsigned(how_fast downto 0);
signal positive_reset : std_logic;
signal divided_clk : std_logic;
signal shift, count : std_logic_vector(5 downto 0);

begin
positive_reset <= not rst; -- the onboard RESET button for the Atlys produces 0 when pressed
-- the described above sp1 process
-- the described above sp2 process
-- the described above sp3 process

led(7 downto 2) <= count when count_shift = '1' else shift; -- the results of count or shift
led(1) <= '0'; -- LED1 is set to OFF
led(0) <= divided_clk; -- divided_clk with the selected by sw frequency
divided_clk<=internal_clock(internal_clock'left-conv_integer(sw))

when falling_edge(clk);
end Behavioral;

entity sequential_processes is -- pins are given below for the Atlys board
generic (how_fast: integer := 30); -- generic how_fast constant with the default value 30

port (clk : in std_logic; -- clock 100 MHz – pin L15
load_enable : in std_logic; -- signal from sw(6) – pin T5
count_enable : in std_logic; -- signal from sw(7) – pin E4
increment : in std_logic; -- signal from sw(3) – pin P15
right : in std_logic; -- signal from sw(4) – pin P12
count_shift : in std_logic; -- signal from sw(5) – pin R5
sw : in std_logic_vector(2 downto 0); -- pins C14, D14, A10
rst : in std_logic; -- RESET button – pin T15
led : out std_logic_vector(7 downto 0)); -- see pins in Fig. 2.5 above

end sequential_processes;

2.3  Combinational and Sequential Processes

62 2  Synthesizable VHDL for FPGA-Based Devices

Figure 2.6 demonstrates how the results of the project above can be tested.
We already mentioned in the previous section that a process may use signals

and variables and that there is an important difference between them. Figure 2.7
gives an additional example of a sequential process in which the block marked
with 1 is executed just once. There are two signals A and B in the process test_
assign. These signals are updated only when the process suspends. Thus, in the if
statement within the process test_assign the signals led(1) and led(2) are assigned the
previous values of A and B, which is perhaps not the result that you might expect.

If variables would be used instead of signals they would be assigned immedi-
ately and, thus, led(1) would receive the updated value of A and led(2) would receive
the updated value of B.

In conclusion let us consider a complete example with two processes: test_vari-
able with a variable vA; and test_signal (looking similarly) with a signal sA.

if B = '1' then A <= B; B <= A;
led(1) <= A; led(0) <= B;

end if;

test_variable: process(divided_clk)
variable vA : std_logic_vector(3 downto 0) := (others =>'0');

begin -- the functionality of the test_variable and the test_signal processes is not the same
 if rising_edge(divided_clk) then

vA := sw(3 downto 0); -- a new value is assigned without delay
led(7 downto 4) <= vA; -- the new value is displayed

end if;
end process test_variable;

test_signal: process(divided_clk)
begin

if rising_edge(divided_clk) then
sA <= sw(3 downto 0); -- a new value is assigned
led(3 downto 0) <= sA; -- the new value is delayed until the next activation

end if; -- of the test_signal process
end process test_signal;

low_freq: entity work.clock_divider
port map (clk, divided_clk);

end Behavioral;

entity TestProc is
port (clk : in std_logic;

sw : in std_logic_vector(3 downto 0);
led : out std_logic_vector(7 downto 0));

end TestProc;

architecture Behavioral of TestProc is
signal sA : std_logic_vector(3 downto 0) := (others =>'0');
signal divided_clk : std_logic;

begin -- the lines of the test_variable process are similar to the lines of the test_signal process

(a) (b)

Fig. 2.6   Test of the project with sequential processes: Links with the board components a and
the results of the test (b)

63

If values of the switches sw3, sw2, sw1, sw0 are changed then these changes first
appear on LEDs 7,6,5,4 and only after one period of the clock signal divided_clk —
on LEDs 3,2,1,0. Such functionality can easily be examined because the clock fre-
quency is divided (by the clock_divider) up to a visual scale (1 Hz or so).

As follows from the previous examples and explanations, using signals in loops
might give problems. For example, if the variable HammingWeightCount is replaced
with a signal in the combinational process sp3 in Sect. 2.3 then the functionality
will be different from what we might expect (and eventually wrong). Many poten-
tial problems of such kind in combinational processes are recognized by synthesis
tools which produce warnings about combinatorial (combinational) loops. Thus,
the designers are informed. For sequential processes (like shown above and in
Fig. 2.7) there is no reason for warnings but in many cases the functionality is dif-
ferent from what we might expect.

2.4 � Functions, Procedures, and Blocks

Functions and procedures are used for blocks of codes that need to be invoked
multiple times in the design. They permit such functionality to be described that is
similar to combinatorial processes. A function is always terminated with a return
statement and enables a single value to be computed and returned. Simplified syn-
tax rules for functions and procedures are given in Appendix A. Note, that input

test_variable: process(divided_clk)
variable vA : std_logic_vector(3 downto 0) := (others =>'0');

begin -- the functionality of the test_variable and the test_signal processes is not the same
 if rising_edge(divided_clk) then

vA := sw(3 downto 0); -- a new value is assigned without delay
led(7 downto 4) <= vA; -- the new value is displayed

end if;
end process test_variable;

test_signal: process(divided_clk)
begin

if rising_edge(divided_clk) then
sA <= sw(3 downto 0); -- a new value is assigned
led(3 downto 0) <= sA; -- the new value is delayed until the next activation

end if; -- of the test_signal process
end process test_signal;

low_freq: entity work.clock_divider
port map (clk, divided_clk);

end Behavioral;

entity TestProc is
port (clk : in std_logic;

sw : in std_logic_vector(3 downto 0);
led : out std_logic_vector(7 downto 0));

end TestProc;

architecture Behavioral of TestProc is
signal sA : std_logic_vector(3 downto 0) := (others =>'0');
signal divided_clk : std_logic;

begin -- the lines of the test_variable process are similar to the lines of the test_signal process

2.3  Combinational and Sequential Processes

64 2  Synthesizable VHDL for FPGA-Based Devices

parameters can be unconstrained, i.e. they do not have bounds. Let us describe a
function HammingWeight that implements operations of the process sp3 in Sect. 2.3:

The code of the function (such as that is shown above) needs to be defined in
the declarative part of architecture.

A function can have more than one argument and may activate another func-
tion. For example, the following function HammingWeightComparator has three argu-
ments and calls the first function HammingWeight:

function HammingWeight (input: std_logic_vector) return integer is
variable HammingWeightCount : integer range 0 to input'length;

begin -- the "input" parameter is unconstrained above because bounds are not declared
HammingWeightCount := 0;
for i in input'range loop

if input(i) = '1' then HammingWeightCount := HammingWeightCount+1;
end if;

end loop;
return HammingWeightCount;

end HammingWeight;

function HammingWeightComparator (input: std_logic_vector;
thresholdLow: integer; thresholdHigh: integer) return Boolean is

begin
if HammingWeight(input) < thresholdLow then return false;
elsif HammingWeight(input) > thresholdHigh then return false;
else return true;
end if;

end HammingWeightComparator;

se
qu

en
tia

l s
ta

te
m

en
ts

 e
xe

cu
tio

n

updates the
used signals

entity TestCombProc is
port (clk : in std_logic;

BTND : in std_logic;
led : out std_logic_vector(1 downto 0) := (others=> '0'));

end TestCombProc;

architecture Behavioral of TestCombProc is

signal B : std_logic := '1';
signal A : std_logic := '0';

begin

test_assign: process(clk)
begin

if rising_edge(clk) then
if BTND = '1' then led <= A & B;
else

if B = '1' then
A <= B;
B <= A;
led(1) <= A;
led(0) <= B;

end if;
end if;

end if;
end process test_assign;

end Behavioral;

The results might be
wrong without initial

values

Initially, LED
1

is OFF and LED
0

is ON.
When BTND is pressed for the first
time, values A and B are swapped and
thus LED

1
is ON and LED

0
is OFF

Since now B = ‘0’, the signals A and B
will not change any more.

BTND
Pin: P3

LE
D 0

P
in

: U
18

LE
D 1

P
in

: M
14

de
cl

ar
at

io
n

an
d

in
iti

al
iz

at
io

n

S
eq

ue
nt

ia
l p

ro
ce

ss

sy
nc

hr
on

iz
ed

 b
y

ris
in

g
ed

ge
 o

f t
he

 c
lo

ck
 (

cl
k)

if B = '1' then
A <= B;
B <= A;
led(1) <= A;
led(0) <= B;

end if;
these statements are executed just

once when B is initialized with 1

LE
D

0
P

in
: U

18

LE
D

1
P

in
: M

14

After uploading
the bitstream

1

1

Fig. 2.7   An example demonstrating how a process test_assign is executed

65

The code below presents a complete description of a module that invokes the
functions HammingWeight and HammingWeightComparator.

It is allowed for a function to use signals that do not appear in the list of the
function arguments. However, in such case the function has to be declared as
impure (all functions are pure by default). Let us remove the first argument from
the function HammingWeightComparator and examine the following code:

The line for led(7) in the TestFunctions entity above has to be also changed
(because now there are just 2 arguments) as follows: led(7) <=‘1’ when HammingWeig
htComparator(3,6) = true else‘0’;. Now the functionality is exactly the same as before.

The keyword impure is an option for a function that extends the scope of var-
iables and signals declared outside of the function that become available in the
function. Thus, an impure function (in contrast to a pure function) may return differ-
ent values for the same arguments (much like it is shown in the example above).

A function can receive and return values with user-defined types. Let us con-
sider the following example:

entity TestFunctions is
port (BTND : in std_logic; -- signals from the onboard BTND

sw : in std_logic_vector(7 downto 0); -- signals from the onboard switches
led : out std_logic_vector(7 downto 0)); -- signals to the onboard LEDs

end TestFunctions;

architecture Behavioral of TestFunctions is
-- the code of the function HammingWeight given above
-- the code of the function HammingWeightComparator given above

begin -- invocations of the functions are shown below on simple examples
led(6 downto 0)<=conv_std_logic_vector(HammingWeight(sw),7) when BTND='0'

else conv_std_logic_vector(HammingWeight(not sw(7 downto 4)), 7);
led(7) <= '1' when HammingWeightComparator(sw, 3, 6) = true else '0';

end Behavioral;

impure function HammingWeightComparator -- error without the use of the impure keyword
(thresholdLow: integer; thresholdHigh: integer) return Boolean is
begin

-- the lines from the function HammingWeightComparator given above
end HammingWeightComparator;

end loop;
 if data_l2(1) > data_l2(2) then

Data_out(1) := data_l2(1); Data_out(2) := data_l2(2);
else Data_out(1) := data_l2(2); Data_out(2) := data_l2(1);
end if;
return Data_out;

end sort;
begin
my_array <= (sw(15 downto 12), sw(11 downto 8), sw(7 downto 4), sw(3 downto 0));

(led(15 downto 12), led(11 downto 8), led(7 downto 4), led(3 downto 0)) <=
sort(my_array);

end Behavioral;

entity FunctionSort is -- this function was tested for the Nexys-4 board
port (sw : in std_logic_vector(15 downto 0); -- the onboard switches

led : out std_logic_vector(15 downto 0)); -- the onboard LEDs
end FunctionSort;

architecture Behavioral of FunctionSort is
type array4vect is array (0 to 3) of std_logic_vector(3 downto 0); -- user-defined type
signal my_array : array4vect;

function sort (Data_in : in array4vect) return array4vect is
variable data_l1 : array4vect;
variable data_l2 : array4vect;

: array4vect;variable Data_out

begin
for i in 0 to 1 loop

if data_in(i*2) <= data_in(i*2+1) then
Data_l1(i*2) := data_in(i*2+1); Data_l1(i*2+1) := data_in(i*2);

else Data_l1(i*2) := data_in(i*2); Data_l1(i*2+1) := data_in(i*2+1);
end if;

end loop;
for i in 0 to 1 loop

if data_l1(i) <= data_l1(i+2) then
Data_l2(i) := data_l1(i+2); Data_l2(i+2) := data_l1(i);

else Data_l2(i) := data_l1(i); Data_l2(i+2) := data_l1(i+2);
end if;

Data_out(i*3) := data_l2(i*3);

2.4  Functions, Procedures, and Blocks

66 2  Synthesizable VHDL for FPGA-Based Devices

The function implements a combinational even–odd merge sorting network for
four 4-bit data items. It is not important now how the even–odd merge sorting net-
work is coded in the function. Such networks will be described in Sect. 3.4.1. We
would only like to demonstrate how to use input and return parameters of user-
defined type (e.g. array4vect type in the code above). The presented example is
ready to be tested in the Nexys-4 board with 16 onboard switches and 16 onboard
LEDs. Data items are taken from groups of 4 switches as it is shown above in
the assignment to my_array. The results are displayed on LEDs divided in similar
groups (4 LEDs in each group shown in the statement above where the function
sort is called. Data items are displayed in descending order (the maximum value on
led(15 downto 12) and the minimum value on led(3 downto 0)).

Procedures differ from functions because they permit more than one object to
be produced. The following example demonstrates the use of a procedure left1_
right1 which finds the first and the last position ‘1’ in the supplied vector (sw). The
number of each position is indicated relatively to the right-hand switch starting
with 1 (i.e. the right-hand switch is assumed to be 1 and not 0 to avoid all zeros on
the LEDs when this switch is ON) (see Fig. 2.8).

end loop;
 if data_l2(1) > data_l2(2) then

Data_out(1) := data_l2(1); Data_out(2) := data_l2(2);
else Data_out(1) := data_l2(2); Data_out(2) := data_l2(1);
end if;
return Data_out;

end sort;
begin
my_array <= (sw(15 downto 12), sw(11 downto 8), sw(7 downto 4), sw(3 downto 0));

(led(15 downto 12), led(11 downto 8), led(7 downto 4), led(3 downto 0)) <=
sort(my_array);

end Behavioral;

entity FunctionSort is -- this function was tested for the Nexys-4 board
port (sw : in std_logic_vector(15 downto 0); -- the onboard switches

led : out std_logic_vector(15 downto 0)); -- the onboard LEDs
end FunctionSort;

architecture Behavioral of FunctionSort is
type array4vect is array (0 to 3) of std_logic_vector(3 downto 0); -- user-defined type
signal my_array : array4vect;

function sort (Data_in : in array4vect) return array4vect is
variable data_l1 : array4vect;
variable data_l2 : array4vect;

: array4vect;variable Data_out

begin
for i in 0 to 1 loop

if data_in(i*2) <= data_in(i*2+1) then
Data_l1(i*2) := data_in(i*2+1); Data_l1(i*2+1) := data_in(i*2);

else Data_l1(i*2) := data_in(i*2); Data_l1(i*2+1) := data_in(i*2+1);
end if;

end loop;
for i in 0 to 1 loop

if data_l1(i) <= data_l1(i+2) then
Data_l2(i) := data_l1(i+2); Data_l2(i+2) := data_l1(i);

else Data_l2(i) := data_l1(i); Data_l2(i+2) := data_l1(i+2);
end if;

Data_out(i*3) := data_l2(i*3);

http://dx.doi.org/10.1007/978-3-319-04708-9_3

67

begin -- initially the leftmost and the rightmost positions of '1' are assigned to be 0

 first_right := 0; first_left := 0;
for i in sw'range loop -- the first loop finds the leftmost position of '1' (from N-1 downto 0)

if sw(i) = '1' then first_left := i+1; exit; -- the range of first_left is from N downto 1
end if;

end loop; -- f_left below receives the value of the leftmost '1' in the given vector

f_left <= conv_std_logic_vector(first_left, 4);
for i in sw'reverse_range loop -- the second loop finds the rightmost '1' (from 0 to N-1)

if sw(i) = '1' then first_right := i+1; exit; -- the range of first_right is from 1 to N
end if;

end loop; -- f_right below receives the value of the rightmost '1' in the given vector

f_right <= conv_std_logic_vector(first_right,4);
end left1_right1; -- end of the procedure

signal first_left, first_right : std_logic_vector(3 downto 0);

begin
 left1_right1(sw, first_left, first_right); -- use of the procedure left1_right1

led(7 downto 4) <= first_left; -- in this example the vector is taken from 8 switches and the
led(3 downto 0) <= first_right; -- results are displayed on groups of LEDs (7,6,5,4) and (3,2,1,0)

end Behavioral;

entity TestProcedure is -- see Fig. 2.8 for additional explanations
port (sw : in std_logic_vector(7 downto 0); -- the onboard switches

led : out std_logic_vector(7 downto 0)); -- the onboard LEDs
end TestProcedure;

architecture Behavioral of TestProcedure is
procedure left1_right1
 (signal sw : in std_logic_vector;

-- sw is an input vector (all parameters are unconstrained; see appendix A)
signal f_left : out std_logic_vector; -- f_left is the first result (the leftmost value 1 in the sw)
signal f_right : out std_logic_vector) is
-- f_right is the second result (the rightmost value 1 in the sw)

variable first_left, first_right : integer range 0 to 8;

Fig. 2.8   An example
demonstrating how to test the
procedure

2.4  Functions, Procedures, and Blocks

68 2  Synthesizable VHDL for FPGA-Based Devices

If we declare the procedure like the following:

then the synthesis tools will report an error saying that the output arguments must
be variables whereas the parameters supplied to the procedure sw, first_left and first_
right were declared as signals in the entity TestProcedure above. However, the proce-
dure may be called in a process for the parameters first_left and first_right declared as
variables like the following:

Let us consider another example in which a procedure finds the minimum and
the maximum values in a set of data items used for the function FunctionSort above:

procedure left1_right1 (sw : in std_logic_vector;
-- sw is an input vector (all parameters are unconstrained; see appendix A)

 f_left: out std_logic_vector;
-- f_left is the first result (the leftmost value 1 in the sw))

f_right: out std_logic_vector) is
-- f_right is the second result (the rightmost value 1 in the sw)

process (sw) -- note that the signal sw does not appear on the left-hand side of assignments in the
-- procedure left1_right1 and the signal declaration does not give rise to any problem

variable first_left, first_right : std_logic_vector(3 downto 0);
begin -- pay attention to the correct use of operators <= and := in the procedure left1_right1
 left1_right1(sw, first_left, first_right);

led(7 downto 4) <= first_left;
led(3 downto 0) <= first_right;

end process;

entity ProcMaxMin is -- this function was tested for the Nexys-4 board
port (sw : in std_logic_vector(15 downto 0); -- the onboard switches

led : out std_logic_vector(7 downto 0)); -- the onboard LEDs
end ProcMaxMin;

architecture Behavioral of ProcMaxMin is
type array4vect is array (0 to 3) of std_logic_vector(3 downto 0);
signal my_array : array4vect;
procedure max_min (signal Data_in : in array4vect;

signal max_v : out std_logic_vector;
signal min_v : out std_logic_vector) is

variable data_out : array4vect;

begin
for i in 0 to 1 loop

if data_in(i*2) <= data_in(i*2+1) then
Data_out(i*2) := data_in(i*2+1); Data_out(i*2+1) := data_in(i*2);

else Data_out(i*2) := data_in(i*2); Data_out(i*2+1) := data_in(i*2+1);
end if;

end loop;
if Data_out(0) > Data_out(2) then max_v <= Data_out(0);
else max_v <= Data_out(2);
end if;
if Data_out(3) < Data_out(1) then min_v <= Data_out(3);
else min_v <= Data_out(1);
end if;

end max_min;
begin
my_array <= (sw(15 downto 12), sw(11 downto 8), sw(7 downto 4), sw(3 downto 0));

max_min(my_array, led(7 downto 4), led(3 downto 0));

end Behavioral;

69

The method used to find the maximum and the minimum values in a combinational
circuit is described in Sect. 3.6 (see Fig. 3.16). We would only like to demonstrate
here how to use different types of procedures. The presented example is ready to be
tested in prototyping boards with 16 onboard switches and 8 onboard LEDs. Data
items are taken similarly to the function FunctionSort above. The results are displayed on
LEDs divided in groups: led(7 downto 4) for the maximum value and led(3 downto 0)
for the minimum value.

Blocks are concurrent statements that enable designs to be partitioned. They
are intended to clarify hierarchical structure of VHDL modules and (although
are not widely used) may be helpful for some projects. A simplified syntax rule
for block statements is given in appendix A. We will not use blocks in the sub-
sequent chapters and only minimum details about them are given below. Let
us partition the described above module with two functions HammingWeight
and HammingWeightComparator in two blocks labeled block_with_one_function and
block_with_another_function.

entity TestBlock is
port (sw : in std_logic_vector(7 downto 0); -- onboard switches

led : out std_logic_vector(7 downto 0)); -- onboard LEDs
end TestBlock;

architecture Behavioral of TestBlock is
signal HW : integer range 0 to 8;

begin
block_with_one_function: block is -- the first line of the first block
-- code of the function HammingWeight given above

begin
led(6 downto 0) <= conv_std_logic_vector(HammingWeight(sw), 7);
HW <= HammingWeight(sw);

end block block_with_one_function; -- the last line of the first block

block_with_another_function: block is -- the first line of the second block
-- code of the impure function HammingWeightComparator given above

begin -- see example available at the Internet (http://sweet.ua.pt/skl/Springer2014.html)
led(7) <= '1' when HammingWeightComparator(3,6) = true else '0';

end block block_with_another_function; -- the last line of the second block
end Behavioral;

entity ProcMaxMin is -- this function was tested for the Nexys-4 board
port (sw : in std_logic_vector(15 downto 0); -- the onboard switches

led : out std_logic_vector(7 downto 0)); -- the onboard LEDs
end ProcMaxMin;

architecture Behavioral of ProcMaxMin is
type array4vect is array (0 to 3) of std_logic_vector(3 downto 0);
signal my_array : array4vect;
procedure max_min (signal Data_in : in array4vect;

signal max_v : out std_logic_vector;
signal min_v : out std_logic_vector) is

variable data_out : array4vect;

begin
for i in 0 to 1 loop

if data_in(i*2) <= data_in(i*2+1) then
Data_out(i*2) := data_in(i*2+1); Data_out(i*2+1) := data_in(i*2);

else Data_out(i*2) := data_in(i*2); Data_out(i*2+1) := data_in(i*2+1);
end if;

end loop;
if Data_out(0) > Data_out(2) then max_v <= Data_out(0);
else max_v <= Data_out(2);
end if;
if Data_out(3) < Data_out(1) then min_v <= Data_out(3);
else min_v <= Data_out(1);
end if;

end max_min;
begin
my_array <= (sw(15 downto 12), sw(11 downto 8), sw(7 downto 4), sw(3 downto 0));

max_min(my_array, led(7 downto 4), led(3 downto 0));

end Behavioral;

2.4  Functions, Procedures, and Blocks

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

70 2  Synthesizable VHDL for FPGA-Based Devices

Functionality of the partitioned design is the same as before. New signal HW in
the architecture declarative part is used to supply the result of the first block to the
second block.

A block statement may include a guarded signal assignment that allows the
assignment only when the guard condition in the block is true. Let us consider an
example:

If the onboard button BTND is pressed the states of the onboard switches are
copied to the shift_rg; if, in addition, the onboard button BTNU is pressed the cop-
ied values are shifted left on each rising edge of the divided_clk.

2.5 � Generics and Generates

Generic statements provide support for scalable designs through supplying such
parameters as sizes of vectors, ranges of values, and numbers of repetitive ele-
ments. Generics are declared with default values in the entity declarative part. The
first example shows the use of different types of generics.

entity TestBlockGuarded is
port (clk : in std_logic;

enableBTND : in std_logic; -- the onboard BTND button
BTNU : in std_logic; -- the onboard BTNU button
sw : in std_logic_vector(7 downto 0); -- onboard switches
led : out std_logic_vector(7 downto 0)); -- onboard LEDs

end TestBlockGuarded;

architecture Behavioral of TestBlockGuarded is
signal shift_rg : std_logic_vector(7 downto 0);
signal divided_clk : std_logic;

begin
-- the block below copies sw to LEDs when BTND=1 and shifts the copied values left
-- when BTND=BTNU=1

my_block: block (enableBTND='1' and rising_edge(divided_clk)) is
begin -- the guarded assignment below is done only if the condition above is true

 shift_rg <= guarded sw when BTNU = '0' else shift_rg(6 downto 0) & shift_rg(7);
end block my_block; -- the end of the block

led <= shift_rg; -- the value of shift_rg is displayed on the onboard LEDs

-- the clock divider below reduces the clock frequency to observe the changes of the LEDs visually
low_freq: entity work.clock_divider port map(clk, divided_clk); -- see appendix B

end Behavioral;

my_char9 : character := '9';
MSL : integer := 4;
bool_value : Boolean := true);

port (led : out std_logic_vector(2*MSL-1 downto 0));
end TestGenerics;

architecture Behavioral of TestGenerics is
signal tmp : Boolean := false;
begin
assert (MSL <= 4) -- if MSL > 4 the message "wrong size for LEDs" is displayed
report "wrong size for LEDs" -- the message indicated here is displayed if MSL > 4
severity FAILURE; -- severity can be NOTE, FAILURE, WARNING and ERROR
assert position <= name'length -- check the position
report "position is wrong"
severity FAILURE; -- severity FAILURE terminates the synthesis
assert name'length <= max_length -- check the maximal length
report "max length is wrong"
severity WARNING; -- for severity WARNING the warning message "max length is wrong"

-- (if activated) appears in the Design Summary/Reports
led(2*MSL-1 downto MSL) <=std_logic_vector(conv_unsigned

((character'pos(name(position))-character'pos(my_char0)), MSL));
tmp <= bool_value when character'pos(name(position)) >

character'pos(my_char9) else not bool_value;
led(MSL-1) <= '1' when tmp else '0';
led(MSL-2 downto 0) <= conv_std_logic_vector(name'length,MSL-1); -- name'length =7

end Behavioral;

entity TestGenerics is -- it is assumed to be used for the Atlys board
generic(name : string := "7954321";-- generic parameters with default values

position : integer := 2; -- indicated after the characters ":="
max_length : integer := 7;
my_char0 : character := '0';

71

The result on the LEDs is the value 10010111. The first 4 digits (1001) is the
difference in the positions in the ASCII table of the characters ‘9’ and ‘0’. The
next bit is 0 because the position of ‘9’ is not greater than the position of ‘9’ (the
second character in the string “7954321” is ‘9’ and my_char9 is ‘9’). The last 3 bits
(111) represent the length of the string “7954321”.

The generic line name: string : = “7954321”; defines a generic parameter name
which is a string with the default value “7954321” (see literal in appendix A).
The leftmost character ‘7’ in “7954321” has the position 1 and the rightmost
character ‘1’ has the position 7. The part character’pos(name(position)) in the expres-
sion above uses the pos attribute (see attribute in appendix A). For our example
with the default value of the position (i.e. 2) the result of character’pos(name(2)) = cha
racter’pos(‘9’) returns the position of the character ‘9’ in the ASCII table, which is
5710 = 3916. It can be verified in the following statement:

displaying on the LEDs the value “00111001” which is a binary equivalent of
5710 = 3916. The conv_unsigned and std_logic_vector provide the necessary conversion
and casting. The similar result can also be obtained in the following statement:

led(2*MSL-1 downto 0) <=
std_logic_vector(conv_unsigned((character'pos(name(2))), 8));

led(2*MSL-1 downto 0) <= conv_std_logic_vector(character'pos(name(2)), 8);

my_char9 : character := '9';
MSL : integer := 4;
bool_value : Boolean := true);

port (led : out std_logic_vector(2*MSL-1 downto 0));
end TestGenerics;

architecture Behavioral of TestGenerics is
signal tmp : Boolean := false;
begin
assert (MSL <= 4) -- if MSL > 4 the message "wrong size for LEDs" is displayed
report "wrong size for LEDs" -- the message indicated here is displayed if MSL > 4
severity FAILURE; -- severity can be NOTE, FAILURE, WARNING and ERROR
assert position <= name'length -- check the position
report "position is wrong"
severity FAILURE; -- severity FAILURE terminates the synthesis
assert name'length <= max_length -- check the maximal length
report "max length is wrong"
severity WARNING; -- for severity WARNING the warning message "max length is wrong"

-- (if activated) appears in the Design Summary/Reports
led(2*MSL-1 downto MSL) <=std_logic_vector(conv_unsigned

((character'pos(name(position))-character'pos(my_char0)), MSL));
tmp <= bool_value when character'pos(name(position)) >

character'pos(my_char9) else not bool_value;
led(MSL-1) <= '1' when tmp else '0';
led(MSL-2 downto 0) <= conv_std_logic_vector(name'length,MSL-1); -- name'length =7

end Behavioral;

entity TestGenerics is -- it is assumed to be used for the Atlys board
generic(name : string := "7954321";-- generic parameters with default values

position : integer := 2; -- indicated after the characters ":="
max_length : integer := 7;
my_char0 : character := '0';

2.5  Generics and Generates

72 2  Synthesizable VHDL for FPGA-Based Devices

which produces the LEDs value “00111001”.
It is clearly seen from the code above that the design is scalable. Indeed, it is

sufficient to change generic parameters to customize the module for the proper needs.
For example, the tmp signal indicates if a character in the name is below the position of
the character ‘9’ in the ASCII table. If we change the default value of my_char9 from 9 to,
for instance, 5 then a character is checked relatively to the position of the character ‘5’.

The assert statement ensures that some constraints are satisfied. For example in
the following fragment:

it is checked if the position is less than or equal to the name’length. If the con-
dition (less or equal: <=) is not satisfied then synthesis is terminated (because of
the option severity FAILURE;) and the message “position is wrong” is displayed.
Similarly other errors and warnings may be discovered and they are shown in the
comments above.

We can now use the entity TestGenerics as a component of a higher level entity,
for instance:

assert position <= name'length -- check position
report "position is wrong"
severity FAILURE;

entity NowForNexys4Board is -- it is assumed to be used for the Nexys-4 board
generic (name : string := "FBCD"; -- the default value "7954321" was changed to "ABCD"

new_position : integer := 3; -- the default value 2 was changed to 3
max_length : integer := "FBCD"'length; -- the default value 7 was changed to 4
my_char_F : character := 'F'; -- the default value '0' was changed to 'F'
-- the default value '9' for the my_char9 was unchanged
MSL : integer := 8); -- the default value '4' was changed to '8'
-- the default value true for the bool_value was unchanged

port (led : out std_logic_vector(2 * MSL-1 downto 0));
end NowForNexys4Board;
architecture Behavioral of NowForNexys4Board is -- the code is adjusted for the Nexys-4
begin

assert (MSL <= 8) -- now the MSL is tested for the value 8
report "wrong size for LEDs"
severity FAILURE;
assert new_position <= name'length -- the name new_position is used instead of the position
report "position is wrong"
severity FAILURE;
assert name'length <= max_length
report "max length is wrong"
severity WARNING;
To_test: entity work.TestGenerics -- unchanged generics my_char9 and bool_value are

-- not used in the generic map statement below
generic map (name => name, position=> new_position,

max_length => max_length, my_char0 => my_char_F, MSL => MSL)
port map (led => led);

end Behavioral;

73

As you can see the code above is now used for the Nexys-4 board and the
onboard LEDs show the following values: 1111110110000100 (the construction
generic map permits the default generic values to be replaced with new generic
values). The first eight bits 11111101 represent two’s complement representation
of −310 that is the difference in the positions of ‘C’ (i.e. 6710) and ‘F’ (i.e. 7010)
in the ASCII table (i.e. position of ‘C’ minus position of ‘F’). Please note, that
all the generic names that were not used in the generic map statement were left
unchanged.

The second example uses generic parameters for the HammingWeight function
described in the Sect. 2.4. Let us create a schematic symbol for the project shown
in Fig. 1.6 in Chap. 1. At the beginning we need to add a copy of schematic source
from Sect. 1.2.1 (see Fig. 1.6) to a new project, i.e. create a new project and select
options Project → Add Copy of Source… in the ISE and add the file DistTop.sch
from the previous project. At the next step let us add a new source that is a top
level module. Then under the Design Utilities option double click on View HDL
Instantiation Template and copy the following code to the top module:

Finally the top-level module TestGenerics1Top needs the following code:

UUT: DistTop port map (-- UUT is a label and we remind that VHDL is not case sensitive
s_in => ,
clk1Hz => ,
Sw => ,
s_out => ,
clock => ,
BTND =>);

begin
process(clk1Hz) -- the process takes bits from the output s_out of the project from Fig. 1.6
begin -- and pushes them to the shift register RG
 if rising_edge(clk1Hz) then

if limit <= (max_bits + conv_integer(bits_sr)) then -- less than or equal operator <=
 limit <= limit+1; -- assignment operator <=

Rg <= Rg(number_of_bits-2 downto 0) & s_out;
else Rg <= Rg;
end if; -- after (max_bits+conv_integer(bits_sr)) clock periods the Rg will contain max_bits

end if; -- shifted values. Note that bits_sr bits are skipped because the LUT-based shift register
end process; -- involves the bits_sr delay (see details in Fig. 1.7: sw(4 downto 0) = bits_sr)

led(7 downto 3) <= conv_std_logic_vector(HammingWeight(Rg), 5);

led(2) <= s_out; led(1) <= clk1Hz;

UUT: entity work.DistTop
port map(s_in => led(0), -- see also map in Appendix A

clk1Hz => clk1Hz, Sw => bits_sr, s_out => s_out, clock => clk, BTND => rst);
end Behavioral;

entity TestGenerics1Top is
generic(number_of_bits : integer := 48; -- generic parameters with default values

max_bits : integer := 52;
bits_sr : std_logic_vector(4 downto 0) := (4 downto 2 => '0', others=>'1');
rst : std_logic := '0');

port (clk : in std_logic;
led : out std_logic_vector(7 downto 0));

end TestGenerics1Top;

architecture Behavioral of TestGenerics1Top is
signal Rg : std_logic_vector(number_of_bits-1 downto 0):=(others=> '0');
signal s_in, clk1Hz, s_out : std_logic;
signal limit : integer range 0 to max_bits + conv_integer(bits_sr) := 0;
-- code of the function HammingWeight given above in section 2.4

2.5  Generics and Generates

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1

74 2  Synthesizable VHDL for FPGA-Based Devices

As can be seen from Fig. 1.6 the LUT-based 256 × 1 ROM is initialized with the
INIT value: 0f070301013731.
These 64 hexadecimal digits represent 64 × 4 = 256 binary digits (bits). We want
to consider max_bits = 52 least significant bits (they are shown above in bold font)
and extract the last number_of_bits = 48 bits (i.e. the most recently copied bits to the
register Rg underlined in the INIT value above). The module counts the Hamming
weight in the underlined digits and copies the result to the led(7 downto 3). All
the remaining LEDs are used exactly the same as in Fig. 1.6. Thus, for our default
generic values the result is: led(7 downto 3) = 10010, i.e. 18 values 1 in f070301
0137316 = 1111000001110000001100000001000000010011011100112. Changing
generic parameters number_of_bits and max_bits permits the Hamming weights to be
computed for different sub-vectors within the indicated above INIT value.

The generic parameter

involves a named association in which the elements 4, 3, 2 receive the value
‘0’ and the remaining elements receive the value ‘1’ (the details can be found in
appendix A).

The generate construction is employed to instantiate an array of components.
The following code presents an example in which a ripple adder with a generic
size N is created from the full adders described in Sect. 2.1.

bits_sr : std_logic_vector(4 downto 0) := (4 downto 2 => '0', others=>'1');

port(Op1 : in std_logic_vector(N-1 downto 0);
Op2 : in std_logic_vector(N-1 downto 0);
led : out std_logic_vector(N downto 0));

end Top;

architecture Behavioral of Top is
assert N <= 4
report "cannot be used for the Atlys board because there are just 8 switches"
severity FAILURE;
signal carry_in : std_logic_vector(N downto 0);
signal carry_out : std_logic_vector(N-1 downto 0);
signal sum : std_logic_vector(N-1 downto 0);

begin
carry_in(0) <= '0'; -- carry in signal for the least significant full adder is zero

generate_adder: -- an initial line with the label generate_adder at the beginning
for i in 0 to N-1 generate -- "for" is used to generate a network from connected full adders
FA: entity work.FULLADD -- connections are provided through indexed links

port map(Op1(i), Op2(i), carry_in(i), sum(i), carry_out(i));
carry_in(i+1) <= carry_out(i);

end generate generate_adder;
led <= carry_out(N-1) & sum; -- the results are displayed on the onboard LEDs

end Behavioral;

entity Top is -- it is assumed to be used for the Atlys board
generic(N : integer := 4); -- the default value of N is 4

begin
process(clk1Hz) -- the process takes bits from the output s_out of the project from Fig. 1.6
begin -- and pushes them to the shift register RG
 if rising_edge(clk1Hz) then

if limit <= (max_bits + conv_integer(bits_sr)) then -- less than or equal operator <=
 limit <= limit+1; -- assignment operator <=

Rg <= Rg(number_of_bits-2 downto 0) & s_out;
else Rg <= Rg;
end if; -- after (max_bits+conv_integer(bits_sr)) clock periods the Rg will contain max_bits

end if; -- shifted values. Note that bits_sr bits are skipped because the LUT-based shift register
end process; -- involves the bits_sr delay (see details in Fig. 1.7: sw(4 downto 0) = bits_sr)

led(7 downto 3) <= conv_std_logic_vector(HammingWeight(Rg), 5);

led(2) <= s_out; led(1) <= clk1Hz;

UUT: entity work.DistTop
port map(s_in => led(0), -- see also map in Appendix A

clk1Hz => clk1Hz, Sw => bits_sr, s_out => s_out, clock => clk, BTND => rst);
end Behavioral;

entity TestGenerics1Top is
generic(number_of_bits : integer := 48; -- generic parameters with default values

max_bits : integer := 52;
bits_sr : std_logic_vector(4 downto 0) := (4 downto 2 => '0', others=>'1');
rst : std_logic := '0');

port (clk : in std_logic;
led : out std_logic_vector(7 downto 0));

end TestGenerics1Top;

architecture Behavioral of TestGenerics1Top is
signal Rg : std_logic_vector(number_of_bits-1 downto 0):=(others=> '0');
signal s_in, clk1Hz, s_out : std_logic;
signal limit : integer range 0 to max_bits + conv_integer(bits_sr) := 0;
-- code of the function HammingWeight given above in section 2.4

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1

75

Figure 2.9 demonstrates how the ripple adder for N = 4 has been generated.
The figure also gives the user constraints file and shows how the adder can be
tested.

Nested generates are also allowed and many examples of networks created with
the aid of nested generates will be discussed in the next chapter. Any VHDL com-
ponent may be generic and the default generic parameters can be replaced with
new values by supplying a generic map construction. We have already explained
such an opportunity when described the entity NowForNexys4Board above. For exam-
ple, we can consider the following higher level component:

The construction generic map permits the default generic (N = 4 in our
example for the Top entity) to be replaced with the new generic (New_N = 3 in our
example).

entity higher_level is
generic(New_N : integer := 3);

port(A : in std_logic_vector(New_N-1 downto 0);
 B : in std_logic_vector(New_N-1 downto 0);
 result : out std_logic_vector(New_N downto 0));
end higher_level;

architecture Behavioral of higher_level is
begin
-- other statements
h_level: entity work.Top -- generic map permits default generics to be replaced with new generics

generic map(N=> New_N) -- now N = New_N = 3
port map(Op1=>A, Op2=>B, led=>result);

-- other statements
end Behavioral;

port(Op1 : in std_logic_vector(N-1 downto 0);
Op2 : in std_logic_vector(N-1 downto 0);
led : out std_logic_vector(N downto 0));

end Top;

architecture Behavioral of Top is
assert N <= 4
report "cannot be used for the Atlys board because there are just 8 switches"
severity FAILURE;
signal carry_in : std_logic_vector(N downto 0);
signal carry_out : std_logic_vector(N-1 downto 0);
signal sum : std_logic_vector(N-1 downto 0);

begin
carry_in(0) <= '0'; -- carry in signal for the least significant full adder is zero

generate_adder: -- an initial line with the label generate_adder at the beginning
for i in 0 to N-1 generate -- "for" is used to generate a network from connected full adders
FA: entity work.FULLADD -- connections are provided through indexed links

port map(Op1(i), Op2(i), carry_in(i), sum(i), carry_out(i));
carry_in(i+1) <= carry_out(i);

end generate generate_adder;
led <= carry_out(N-1) & sum; -- the results are displayed on the onboard LEDs

end Behavioral;

entity Top is -- it is assumed to be used for the Atlys board
generic(N : integer := 4); -- the default value of N is 4

2.5  Generics and Generates

76 2  Synthesizable VHDL for FPGA-Based Devices

2.6 � Libraries, Packages, and Files

A library is a location with project’s design units (entities or architectures and
packages). The default library has the name work and contains all synthesizable
source files of the project. For example, for the last project of the previous section
the work panel displays the following five files: Atlys.ucf, Full_adder.vhd, Half_
adder.vhd, higher_level.vhd, and Top.vhd. For the entity TestGenerics1Top, consid-
ered in the previous section, four files are displayed and one of them contains
schematic: Atlys.ucf, Clock_divider.vhd, DistTop.sch, and GenericsAndAssert.vhd.
If required, a user-defined library can be created, for example, with the name
MyLibrary. In this case in the ISE the following steps can be done: (1) select
Project → New VHDL library → < specify the name MyLibrary and location
(directory) of the library >; (2) move necessary files to the MyLibrary (select the
module and options Source → Move to Library → MyLibrary). Now the new
library MyLibrary needs to be declared, for example:

and the library work in the line like: h_level: entity work.Top needs to be replaced
with a new line: h_level: entity MyLibrary.Top.

A package permits functions, procedures, constants, types, and components to
be described in a (shared) separate file. It provides a way of grouping a collection
of related declarations that serve a common purpose [1]. We consider the follow-
ing three groups: (1) predefined standard packages; (2) predefined IEEE pack-
ages; and (3) user-defined packages. The group (1), included by default, is defined

library MyLibrary; -- the default library work does not need to be declared
use MyLibrary.all;

Fig. 2.9   Functionality of the ripple adder

77

in the std and IEEE standard libraries and describes the basic types: bit, bit_vector,
integer, natural, real (real is frequently not fully supported by synthesis tools), and
boolean. The group (2) is defined in the IEEE packages (that have to be declared)
and describes common data types, functions, and procedures. We consider here the
following packages supported by the XST [3]: std_logic_1164 (describing std_logic,
std_ulogic, std_logic_vector, and std_ulogic_vector types and the relevant conversion func-
tions); std_logic_arith (describing unsigned and signed vectors based on the std_logic
type and the relevant arithmetic operations and functions); std_logic_unsigned
(describing unsigned arithmetic operators for the std_logic and std_logic_vector types);
std_logic_signed (describing signed arithmetic operators for the std_logic and std_
logic_vector types); and std_logic_textio (providing support for text-based file input/
output). Note, that another available package numeric_std is similar to the std_
logic_arith. The package std.textio (defined in the std standard library) provides
support for a simple text-based file input/output.

A user-defined package (group 3) enables access to shared definitions from pro-
ject’s modules. A simplified syntax rule is given in Appendix A. A package needs
to be declared and its body needs to be defined. Let us consider an example:

The package is created selecting a new source in the ISE (Project → New
Source…) and then VHDL Package. Now the package can be used in other mod-
ules something like the following:

library IEEE;
use IEEE.STD_LOGIC_1164.all;
package MyPackage is -- declarative part of the package MyPackage

constant limit : integer := 10;
type my_array is array (0 to limit-1) of std_logic_vector(1 downto 0);
function HammingWeight (input: std_logic_vector) return integer;
component clock_divider

port(clk : in std_logic; divided_clk : out std_logic);
end component;

end MyPackage;
package body MyPackage is -- body of the package MyPackage
-- code of the function HammingWeight given above in section 2.4
end MyPackage;

use IEEE.STD_LOGIC_ARITH.all;
use work.MyPackage.all; -- this line is required

entity UsesPackage is -- we would like to use MyPackage from the work library
port (clk : in std_logic;

sw : in std_logic_vector(7 downto 0);
led : out std_logic_vector(7 downto 0));

end UsesPackage;

architecture Behavioral of UsesPackage is
signal divided_clk : std_logic;

begin
-- other eventual statements that might use objects declared in the MyPackage
led <= conv_std_logic_vector(HammingWeight(sw),8) when divided_clk = '1'

else (others => '0');
my_divider : clock_divider port map (clk, divided_clk); -- positional association

end Behavioral;

library IEEE;
use IEEE.STD_LOGIC_1164.all;

2.6  Libraries, Packages, and Files

78 2  Synthesizable VHDL for FPGA-Based Devices

Since the component clock_divider is declared in the MyPackage, an explicit library
indication (such as my_divider : entity work.clock_divider) is now not needed.

In Sect. 1.7 we described an interaction of the Atlys board with a host computer
using the IOExpansion component from Digilent [4]. The module IOExpansion
can be taken either from a library, for example:

or, alternatively, be declared in a package, for instance:

Let us demonstrate the same interactions as shown in Fig. 1.27 (see Sect. 1.7):

IO_interface : entity work.IOExpansion
port map(EppAstb, EppDstb, EppWr, EppDB, EppWait, MyLed,

MyLBar, MySw, MyBtn, data_from_PC, data_to_PC);

package InteractionWithPC is
component IOExpansion is -- all the names have to be taken from the IOExpansion [4]

port (EppAstb: in std_logic; EppDstb: in std_logic; EppWr : in std_logic;
EppDB : inout std_logic_vector(7 downto 0); EppWait: out std_logic;
Led : in std_logic_vector(7 downto 0); -- 8 LEDs on the PC side
LBar : in std_logic_vector(23 downto 0); -- 24 light bars on the PC side
Sw : out std_logic_vector(15 downto 0); -- 16 switches on the PC side
Btn : out std_logic_vector(15 downto 0); -- 16 buttons on the PC side
dwOut : out std_logic_vector(31 downto 0); -- 32-bit user-data from PC side
dwIn : in std_logic_vector(31 downto 0)); -- 32-bit user-data to PC side

end component;
end InteractionWithPC;
package body InteractionWithPC is -- the package body is empty
end InteractionWithPC;

use work.InteractionWithPC.all;

entity TestIntPC is
port (sw : in std_logic_vector(7 downto 0); -- onboard switches

led : out std_logic_vector(7 downto 0); -- onboard LEDs
EppAstb : in std_logic; -- signals for the IOExpansion component
EppDstb : in std_logic;
EppWr : in std_logic;
EppDB : inout std_logic_vector(7 downto 0);
EppWait : out std_logic);

end TestIntPC;

architecture Behavioral of TestIntPC is
signal MyLed : std_logic_vector(7 downto 0); -- declarations of user signals
signal MyLBar : std_logic_vector(23 downto 0);
signal MySw : std_logic_vector(15 downto 0);
signal MyBtn : std_logic_vector(15 downto 0);
signal data_to_PC : std_logic_vector(31 downto 0);
signal data_from_PC : std_logic_vector(31 downto 0);

begin
data_to_PC <= data_from_PC; -- data received from the host PC are sent back to the PC
MyLed <= sw; -- onboard switches are displayed on virtual LEDs (PC side)
led <= MySw(7 downto 0); -- 8 switches (PC side) are displayed on the board LEDs
MyLBar <= MySw(15 downto 8) & MyBtn; -- 8 switches and MyBtn are displayed

IO_interface : IOExpansion
port map(EppAstb, EppDstb, EppWr, EppDB, EppWait, MyLed,

MyLBar, MySw, MyBtn, data_from_PC, data_to_PC);

end Behavioral;

use IEEE.STD_LOGIC_ARITH.all;
use work.MyPackage.all; -- this line is required

entity UsesPackage is -- we would like to use MyPackage from the work library
port (clk : in std_logic;

sw : in std_logic_vector(7 downto 0);
led : out std_logic_vector(7 downto 0));

end UsesPackage;

architecture Behavioral of UsesPackage is
signal divided_clk : std_logic;

begin
-- other eventual statements that might use objects declared in the MyPackage
led <= conv_std_logic_vector(HammingWeight(sw),8) when divided_clk = '1'

else (others => '0');
my_divider : clock_divider port map (clk, divided_clk); -- positional association

end Behavioral;

library IEEE;
use IEEE.STD_LOGIC_1164.all;

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1

79

Alternatively the line use work.InteractionWithPC.all can be removed and the line IO_
interface : IOExpansion needs to be replaced with: IO_interface : entity work.IOExpansion.

The XST (Xilinx Synthesis Technology) provides a limited support for working
with files, which is described in [3]. We consider here only one example demon-
strating how to read 8-bit words from a file data.txt and to record these words in
an array my_array.

architecture Behavioral of TestTextFile is
type my_array is array(0 to 15) of std_logic_vector(7 downto 0);
impure function read_array (input_data : in string) return my_array is

file my_file : text is in input_data;
variable line_name : line;
variable a_name : my_array;

begin
for i in my_array'range loop

readline (my_file, line_name); -- reading a line from the file my_file
read (line_name, a_name(i)); -- reading std_logic_vector from the line line_name

end loop;
return a_name;

end function;
signal array_name : my_array:=read_array("data.txt"); -- initializing the signal array_name

signal divided_clk : std_logic; -- a low-frequency clock

begin
process(divided_clk) -- changes are done with a low frequency and can be appreciated visually

variable address : integer range 0 to 15 := 0;
begin
 if rising_edge(divided_clk) then

led <= array_name(address); -- displaying on the LEDs lines from the file data.txt
address := address+1; -- incrementing the address to get the next vector

end if;
end process;

divider: entity work.clock_divider port map (clk, divided_clk);

end Behavioral;

use std.textio.all; -- this package has to be used
use ieee.std_logic_textio.all; -- this package has to be used

entity TestTextFile is -- text file data.txt has to be recorded in the same directory
port (clk : in std_logic; -- ports can be initialized if required (see below)

led : out std_logic_vector(7 downto 0) := (others=>'0'));
end TestTextFile;

use work.InteractionWithPC.all;

entity TestIntPC is
port (sw : in std_logic_vector(7 downto 0); -- onboard switches

led : out std_logic_vector(7 downto 0); -- onboard LEDs
EppAstb : in std_logic; -- signals for the IOExpansion component
EppDstb : in std_logic;
EppWr : in std_logic;
EppDB : inout std_logic_vector(7 downto 0);
EppWait : out std_logic);

end TestIntPC;

architecture Behavioral of TestIntPC is
signal MyLed : std_logic_vector(7 downto 0); -- declarations of user signals
signal MyLBar : std_logic_vector(23 downto 0);
signal MySw : std_logic_vector(15 downto 0);
signal MyBtn : std_logic_vector(15 downto 0);
signal data_to_PC : std_logic_vector(31 downto 0);
signal data_from_PC : std_logic_vector(31 downto 0);

begin
data_to_PC <= data_from_PC; -- data received from the host PC are sent back to the PC
MyLed <= sw; -- onboard switches are displayed on virtual LEDs (PC side)
led <= MySw(7 downto 0); -- 8 switches (PC side) are displayed on the board LEDs
MyLBar <= MySw(15 downto 8) & MyBtn; -- 8 switches and MyBtn are displayed

IO_interface : IOExpansion
port map(EppAstb, EppDstb, EppWr, EppDB, EppWait, MyLed,

MyLBar, MySw, MyBtn, data_from_PC, data_to_PC);

end Behavioral;

2.6  Libraries, Packages, and Files

80 2  Synthesizable VHDL for FPGA-Based Devices

The file my_file is declared as follows: file myfile : text is in input_data; where
input_data is a string with the file name (data.txt in our example) supplied to the
function read_array as an argument (see: signal array_name:my_array: = read_array
(“data.txt”);). Two functions readline (text, line) (defined in the package std.textio) and read
(line, std_logic_vector) (defined in the package std_logic_textio) are used to get data from
the file data.txt, where the variables my_file and line_name have the types text and line,
respectively. The variable a_name is an array of 16 vectors of type std_logic_vector(7
downto 0). Thus, firstly a line line_name is read: readline (my_file, line_name); and then
a vector a_name(i) of type std_logic_vector(7 downto 0) is taken by the function read
(line_name, a_name(i)); and returned from the function read_array. A similar technique
is used in [3] to initialize embedded memories from files like data.txt. Figure 2.10
shows how the TestTextFile can be tested in the Atlys prototyping board (the file
data.txt can be prepared in any text editor and saved in the same directory with the
project). Additional examples are given in Appendix A (see file).

architecture Behavioral of TestTextFile is
type my_array is array(0 to 15) of std_logic_vector(7 downto 0);
impure function read_array (input_data : in string) return my_array is

file my_file : text is in input_data;
variable line_name : line;
variable a_name : my_array;

begin
for i in my_array'range loop

readline (my_file, line_name); -- reading a line from the file my_file
read (line_name, a_name(i)); -- reading std_logic_vector from the line line_name

end loop;
return a_name;

end function;
signal array_name : my_array:=read_array("data.txt"); -- initializing the signal array_name

signal divided_clk : std_logic; -- a low-frequency clock

begin
process(divided_clk) -- changes are done with a low frequency and can be appreciated visually

variable address : integer range 0 to 15 := 0;
begin
 if rising_edge(divided_clk) then

led <= array_name(address); -- displaying on the LEDs lines from the file data.txt
address := address+1; -- incrementing the address to get the next vector

end if;
end process;

divider: entity work.clock_divider port map (clk, divided_clk);

end Behavioral;

use std.textio.all; -- this package has to be used
use ieee.std_logic_textio.all; -- this package has to be used

entity TestTextFile is -- text file data.txt has to be recorded in the same directory
port (clk : in std_logic; -- ports can be initialized if required (see below)

led : out std_logic_vector(7 downto 0) := (others=>'0'));
end TestTextFile;

Fig. 2.10   Testing the project, which reads data from the file data.txt

81

Reading from a file can be useful to fill in a memory/array during synthesis
which is similar to initialization. Writing to a file cannot be done from a working
project (since it is done during synthesis). It may be used for debugging, writing
specific constants or generic values [3]. Some examples can be found in [3] and
one example is given in Appendix A (see file).

2.7 � Behavioral Simulation

This section presents a brief introduction to a behavioral (functional) simulation
that can be done before an implementation of the project to verify that the logic in
the project modules is correct. Additional details can be found in [5, 6]. We will
use the Xilinx ISim simulator which is automatically installed with the ISE (and
selected when needed in the Design Properties dialog box of the ISE).

Figure 2.11 explains how a behavioral simulation is organized for which two
types of files are required: (1) the modules which we would like to examine
(VHDL or schematic for our examples); (2) a test bench file created for the mod-
ules. Besides, simulation libraries for environment specific components (such as
libraries for Xilinx primitives and IP cores) have to be included if the primitives/
cores are used in the design. A test bench file is created for a particular project and
supplies stimulus to the modules. The creation can be done in the ISE by adding a
new source (of type VHDL Test Bench) and associating it with the verified module.

We consider below three examples. The first one demonstrates behavio-
ral simulation for the full adder (FULLADD) described in VHDL in Sect. 2.1,
which is a combinational circuit. The second example illustrates simulation of a
sequential circuit that is an up/down binary counter with clock enable and syn-
chronous active-high reset. The counter was taken from the ISE templates avail-
able through selection Edit → Language Templates… → VHDL → Synthesis
Constructs → Coding Examples → Counters → Binary → Up/Down Counters.
The last example enables the behavior of the circuit created in the ISE schematic
editor (see Fig. 1.6 in Chap. 1) with Xilinx library primitives to be tested.

All the steps (a, b, and c), needed for the first example, are shown in Fig. 2.11. At
the first step (a) we create a project for simulation, i.e. we add a test bench (named
TestBenchFA) and associate the test bench with the FULLADD module described in
Sect. 2.1. A template for the test bench is proposed by the ISE but we will change the
code as it is shown at the right-hand part of Fig. 2.11. The entity FULLADD is instanti-
ated in the architecture and the project structure is shown in Fig. 2.11 near the label
a. There is one process (stim_proc) in the architecture body which generates stimulus
(inputs of the FULLADD that are changed every 50 ns until the final wait statement is
reached). At the second step b the test bench is checked for errors. In our case there is
no error and we proceed to the last step c where the Simulate Behavioral Model option
is activated. As a result, the ISim window with simulation waveforms is opened. For
better analysis the waveforms need to be zoomed (see Fig. 2.11). A cursor permits to
check values in a particular time (after 77 ns in our example depicted in Fig. 2.11).

2.6  Libraries, Packages, and Files

http://dx.doi.org/10.1007/978-3-319-04708-9_1

82 2  Synthesizable VHDL for FPGA-Based Devices

The following module will be simulated in the second example:

clock_enable : in std_logic;
inc_dec : in std_logic;
outputs : out std_logic_vector (3 downto 0));

end Counter;

architecture Behavioral of Counter is
signal count : std_logic_vector(3 downto 0);

begin

process (clock)
begin

if rising_edge(clock) then
if reset='1' then count <= (others => '0'); -- synchronous reset
elsif clock_enable='1' then

if inc_dec='1' then count <= count + 1; -- if inc_dec=1 then increment the counter
else count <= count - 1; -- if inc_dec=0 then decrement the counter
end if;

end if;
end if;

end process;

outputs <= count;

end Behavioral;

entity Counter is
port (reset, clock : in std_logic;

Fig. 2.11   An example of behavioral simulation for the full adder

83

The following test bench for_counter is added and associated with the Counter:

wait for clock_period/2;
end process clock_generator ;

stim_proc: process -- stimulus process
begin

reset <= '1'; -- the first line **reset<='1'**
wait for 30 ns; -- set the reset signal to '1' and wait for 30 ns
reset <= '0'; clock_enable <= '0'; inc_dec <= '1';
wait for 20 ns; -- change signals as it is indicated above and wait for 20 ns
reset <= '0'; clock_enable <= '1'; inc_dec <= '1';
wait for 150 ns; -- change signals as it is indicated above and wait for 150 ns
reset <= '0'; clock_enable <= '1'; inc_dec <= '0';
wait for 55 0 ns; -- change signals as it is indicated above and wait for 550 ns

end process; -- begin from the line **reset<='1'** after 30+20+150+550=750 ns

end behavior;

entity for_counter is
end for_counter;

architecture behavior of for_counter is
signal reset : std_logic := '0';
signal clock : std_logic := '0';
signal clock_enable : std_logic := '0';
signal inc_dec : std_logic := '0';
signal outputs : std_logic_vector(3 downto 0);

 constant clock_period : time := 30 ns; -- clock period definitions (valid for simulation only)
begin
uut: entity work.Counter port map -- instantiate the unit under test (uut)

 (reset => reset, clock => clock, clock_enable => clock_enable,
inc_dec => inc_dec, outputs => outputs);

clock_generator : process -- clock process definitions
begin -- the process generates clock pulses

clock <= '0';
wait for clock_period/2; -- duty cycle for the clock is 50%
clock <= '1';

Since the Counter is a sequential circuit the test bench needs to supply clock
signal and it is done in the clock_generator process. The simulation results with addi-
tional details are given in Fig. 2.12.

The last simulation is done for the circuit in Fig. 1.6 from which the clock_divider
has been removed (see Fig. 2.13). Indeed, for simulation purposes a low frequency
clock is not needed. All the required steps are exactly the same as for VHDL mod-
ules (see Fig. 2.11). The only difference is the association of the added test bench
with the top-level schematic entity (DistTop.sch in our example).

2.7  Behavioral Simulation

http://dx.doi.org/10.1007/978-3-319-04708-9_1

84 2  Synthesizable VHDL for FPGA-Based Devices

The following test bench is created:

signal sw :std_logic_vector (4 downto 0);
signal BTND :std_logic;
signal clock :std_logic;
constant clock_period : time := 30 ns;

begin
module_to_test: entity work.DistTop port map

(s_in => s_in, sw => sw, s_out => s_out, BTND => BTND, clock => clock);
clock_generation: process -- clock process definitions
begin -- the process generates clock pulses

clock <= '0';
wait for clock_period/2;
clock <= '1';
wait for clock_period/2;

end process clock_generation;
-- a stimulus process is not needed because we would like the values
-- of sw and BTND to be permanently assigned in the line below
sw <= (4 downto 3 => '0', others=>'1'); BTND <= '0'; -- settings are the same as in Fig. 1.7
-- if required the values of sw and BTND may be changed in the relevant stimulus process, which
-- will be used instead of the line above

end behavioral;

library unisim; -- include other libraries before this line
use unisim.Vcomponents.all; -- this package is needed for Xilinx primitives used in the schematics

entity DistTop_DistTop_sch_tb is
end DistTop_DistTop_sch_tb;

architecture behavioral of DistTop_DistTop_sch_tb is
signal s_in, s_out :std_logic;

Fig. 2.12   Simulation results for the Counter with additional details

Fig. 2.13   The circuit in Fig. 1.6 without the clock_divider

http://dx.doi.org/10.1007/978-3-319-04708-9_1

85

The results of simulation are exactly the same as in Fig. 1.7. To show it clearer
Fig. 2.14 depicts the waveforms from Fig. 1.7 and the results of behavioral simula-
tion that uses the test bench given above.

There are many options and modes of simulation which are not described here
and can be found in [5, 6].

2.8 � Prototyping

The majority of the considered in this chapter examples can be implemented and tested
in different prototyping boards described in Sect. 1.6. Clearly, the user constraints file
(i.e. pin assignments) and the FPGA part number have to be changed properly.

The following example has been tested in the DE2-115 board (the Xilinx user
constraints file has been changed to the proper Altera setting file [7]):

signal sw :std_logic_vector (4 downto 0);
signal BTND :std_logic;
signal clock :std_logic;
constant clock_period : time := 30 ns;

begin
module_to_test: entity work.DistTop port map

(s_in => s_in, sw => sw, s_out => s_out, BTND => BTND, clock => clock);
clock_generation: process -- clock process definitions
begin -- the process generates clock pulses

clock <= '0';
wait for clock_period/2;
clock <= '1';
wait for clock_period/2;

end process clock_generation;
-- a stimulus process is not needed because we would like the values
-- of sw and BTND to be permanently assigned in the line below
sw <= (4 downto 3 => '0', others=>'1'); BTND <= '0'; -- settings are the same as in Fig. 1.7
-- if required the values of sw and BTND may be changed in the relevant stimulus process, which
-- will be used instead of the line above

end behavioral;

library unisim; -- include other libraries before this line
use unisim.Vcomponents.all; -- this package is needed for Xilinx primitives used in the schematics

entity DistTop_DistTop_sch_tb is
end DistTop_DistTop_sch_tb;

architecture behavioral of DistTop_DistTop_sch_tb is
signal s_in, s_out :std_logic;

Fig. 2.14   Comparing the results of physical tests in Fig. 1.7 (the upper part) and behavioral
simulation (the lower part)

2.7  Behavioral Simulation

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1

86 2  Synthesizable VHDL for FPGA-Based Devices

signal divided_clk : std_logic;
begin

process (divided_clk)
begin

if rising_edge(divided_clk) then
if not reset ='1' then count <= 0; -- when the key0 is pressed then count is zero
else -- if HammingWeight(sw)>0 then count is changed from 1 to HammingWeight(sw)

count <= (count mod HammingWeight(sw))+1; -- mod is the VHDL modulo operator
end if;

end if;
end process;

ledr <= conv_std_logic_vector(count, n_LEDs);

ledg <= conv_std_logic_vector(HammingWeight(sw), n_LEDs);

divider: entity work.clock_divider
port map (clock, divided_clk);

end Behavioral;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_ARITH.all;
entity AlteraProject is -- all names (except clock and reset) are the same as in [7]
generic(size : integer := 18;-- the size of vectors for the HammingWeight function

n_LEDs : integer := 5);-- the number of the used LEDs

port (clock : in std_logic; -- PIN_Y2
reset : in std_logic; -- PIN_M23 for key0
sw : in std_logic_vector(size-1 downto 0);
ledr : out std_logic_vector(n_LEDs-1 downto 0);
ledg : out std_logic_vector(n_LEDs-1 downto 0));

end AlteraProject;

architecture Behavioral of AlteraProject is
-- code of the function HammingWeight from section 2.4 without any change

signal count : integer range 0 to size-1;

If one or more switches are ON (HammingWeight(sw) > 0) then the count is changed
cyclically from 1 to the HammingWeight(sw). If reset is active (key0 button is pressed)
then count = 0. The value of the HammingWeight(sw) is displayed on green LEDs
(ledg) and the value of count is displayed on red LEDs (ledr). The reset signal is
active low (that is why the not operation is applied to this signal).

Some projects of the book use vendor-specific libraries and technology-depend-
ent components. The following VHDL code gives an example:

LUT6_inst2 : LUT6 -- Xilinx LUT primitive LUT6
generic map (INIT => X"8117177e177e7ee8") -- LUT Contents
port map (ThreeBitOutput(1), SixBitInput(0), SixBitInput(1), SixBitInput(2),

SixBitInput(3), SixBitInput(4), SixBitInput(5));
LUT6_inst3 : LUT6 -- Xilinx LUT primitive LUT6

generic map (INIT => X"6996966996696996") -- LUT Contents
port map (ThreeBitOutput(0), SixBitInput(0), SixBitInput(1), SixBitInput(2),

SixBitInput(3), SixBitInput(4), SixBitInput(5));

end Behavioral;

library IEEE; -- Xilinx LUT-based computation of the Hamming weight (see
use IEEE.STD_LOGIC_1164.all; -- the simplest Hamming weight counter in section 3.9)
library UNISIM; -- Xilinx library UNISIM for LUT primitives that are used below
use UNISIM.VComponents.all;
entity LUT_6to3 is

port (SixBitInput : in std_logic_vector (5 downto 0); -- 6-bit input vector
ThreeBitOutput : out std_logic_vector (2 downto 0)); -- 3-bit Hamming weight

end LUT_6to3;
architecture Behavioral of LUT_6to3 is -- Xilinx LUTs below are configured in such a way that
begin -- permits the Hamming weight of 6-bit input vector to be produced in a combinational circuit

LUT6_inst1 : LUT6 -- Xilinx LUT primitive LUT6
generic map (INIT => X"fee8e880e8808000") -- LUT Contents
port map (ThreeBitOutput(2), SixBitInput(0), SixBitInput(1), SixBitInput(2),

SixBitInput(3), SixBitInput(4), SixBitInput(5));

LUT6_inst2 : LUT6 -- Xilinx LUT primitive LUT6
generic map (INIT => X"8117177e177e7ee8") -- LUT Contents
port map (ThreeBitOutput(1), SixBitInput(0), SixBitInput(1), SixBitInput(2),

SixBitInput(3), SixBitInput(4), SixBitInput(5));
LUT6_inst3 : LUT6 -- Xilinx LUT primitive LUT6

generic map (INIT => X"6996966996696996") -- LUT Contents
port map (ThreeBitOutput(0), SixBitInput(0), SixBitInput(1), SixBitInput(2),

SixBitInput(3), SixBitInput(4), SixBitInput(5));

end Behavioral;

library IEEE; -- Xilinx LUT-based computation of the Hamming weight (see
use IEEE.STD_LOGIC_1164.all; -- the simplest Hamming weight counter in section 3.9)
library UNISIM; -- Xilinx library UNISIM for LUT primitives that are used below
use UNISIM.VComponents.all;
entity LUT_6to3 is

port (SixBitInput : in std_logic_vector (5 downto 0); -- 6-bit input vector
ThreeBitOutput : out std_logic_vector (2 downto 0)); -- 3-bit Hamming weight

end LUT_6to3;
architecture Behavioral of LUT_6to3 is -- Xilinx LUTs below are configured in such a way that
begin -- permits the Hamming weight of 6-bit input vector to be produced in a combinational circuit

LUT6_inst1 : LUT6 -- Xilinx LUT primitive LUT6
generic map (INIT => X"fee8e880e8808000") -- LUT Contents
port map (ThreeBitOutput(2), SixBitInput(0), SixBitInput(1), SixBitInput(2),

SixBitInput(3), SixBitInput(4), SixBitInput(5));

87

If one or more switches are ON (HammingWeight(sw) > 0) then the count is changed
cyclically from 1 to the HammingWeight(sw). If reset is active (key0 button is pressed)
then count = 0. The value of the HammingWeight(sw) is displayed on green LEDs
(ledg) and the value of count is displayed on red LEDs (ledr). The reset signal is
active low (that is why the not operation is applied to this signal).

Some projects of the book use vendor-specific libraries and technology-depend-
ent components. The following VHDL code gives an example:

LUT6_inst2 : LUT6 -- Xilinx LUT primitive LUT6
generic map (INIT => X"8117177e177e7ee8") -- LUT Contents
port map (ThreeBitOutput(1), SixBitInput(0), SixBitInput(1), SixBitInput(2),

SixBitInput(3), SixBitInput(4), SixBitInput(5));
LUT6_inst3 : LUT6 -- Xilinx LUT primitive LUT6

generic map (INIT => X"6996966996696996") -- LUT Contents
port map (ThreeBitOutput(0), SixBitInput(0), SixBitInput(1), SixBitInput(2),

SixBitInput(3), SixBitInput(4), SixBitInput(5));

end Behavioral;

library IEEE; -- Xilinx LUT-based computation of the Hamming weight (see
use IEEE.STD_LOGIC_1164.all; -- the simplest Hamming weight counter in section 3.9)
library UNISIM; -- Xilinx library UNISIM for LUT primitives that are used below
use UNISIM.VComponents.all;
entity LUT_6to3 is

port (SixBitInput : in std_logic_vector (5 downto 0); -- 6-bit input vector
ThreeBitOutput : out std_logic_vector (2 downto 0)); -- 3-bit Hamming weight

end LUT_6to3;
architecture Behavioral of LUT_6to3 is -- Xilinx LUTs below are configured in such a way that
begin -- permits the Hamming weight of 6-bit input vector to be produced in a combinational circuit

LUT6_inst1 : LUT6 -- Xilinx LUT primitive LUT6
generic map (INIT => X"fee8e880e8808000") -- LUT Contents
port map (ThreeBitOutput(2), SixBitInput(0), SixBitInput(1), SixBitInput(2),

SixBitInput(3), SixBitInput(4), SixBitInput(5));

The code above cannot be synthesized in the Quartus environment for Altera
FPGAs. However, an alternative code below that uses constants instead of the Xilinx
LUT6 primitive can be synthesized and works fine for both Altera and Xilinx FPGAs:

library IEEE; -- the code below is tested in the DE2-115 board
use IEEE.STD_LOGIC_1164.all; -- with the Altera Cyclone-IVE FPGA
use IEEE.STD_LOGIC_UNSIGNED.all; -- this package is needed for type conversions below

entity LUT_6to3 is
port (SixBitInput : in std_logic_vector (5 downto 0);

ThreeBitOutput : out std_logic_vector (2 downto 0));
end LUT_6to3;

architecture Behavioral of LUT_6to3 is
type LUT is array (2 downto 0) of std_logic_vector(63 downto 0);
-- array below contains the same constants as used in the INIT statements in the code with LUTs above
constant conf_LUT : LUT := (X"fee8e880e8808000", -- array of constants

X"8117177e177e7ee8", -- is used here
X"6996966996696996");

begin -- Hamming weight is found in the statements below

ThreeBitOutput <= conf_LUT(2)(conv_integer(SixBitInput)) &
conf_LUT(1)(conv_integer(SixBitInput)) &
conf_LUT(0)(conv_integer(SixBitInput));

-- alternatively the following generate statement can be used:
-- gen: for i in conf_LUT'range generate
-- ThreeBitOutput(i) <= conf_LUT(i)(conv_integer(SixBitInput));
--end generate gen;

end Behavioral; -- the same code can be used for Xilinx FPGAs without any change

2.8  Prototyping

88 2  Synthesizable VHDL for FPGA-Based Devices

The two given above VHDL codes describe similar functionalities and permit
the Hamming weight of 6-bit input vectors to be calculated in combinational
circuits. The first code explicitly configures the Xilinx LUTs and the second code
implicitly configures actually the same LUTs but without the need for vendor-
specific libraries. The circuit built by Altera Quartus occupies 8 logic elements and
the circuit built by Xilinx ISE for the Nexys-4 board occupies 3 LUTs. Such way
enables the projects of the book to be also implemented and tested in FPGAs of
other companies.

Similarly the majority of other modules described in this chapter have been
tested in the DE2-115 board.

Many additional examples can be found in [8, 9].

References

1.	Ashenden PJ (2008) The designer’s guide to VHDL, 3rd edn. Morgan Kaufmann
2.	Ashenden PJ (2008) Digital design: an embedded systems approach using VHDL. Morgan

Kaufmann
3.	Xilinx Inc (2013) XST user guide for Virtex-6, Spartan-6, and 7 series devices.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/xst_v6s6.pdf. Accessed
17 Nov 2013

4.	Digilent Inc (2009) Adept I/O expansion reference design. http://www.digilentinc.com/
Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2. Accessed 9 Nov 2013

5.	Xilinx Inc (2011) ISE In-Depth Tutorial. http://www.xilinx.com/support/documentation/sw_
manuals/xilinx13_1/ise_tutorial_ug695.pdf. Accessed 17 Nov 2013

6.	Xilinx Inc (2009) Synthesis and simulation design guide. http://www.xilinx.com/support/
documentation/sw_manuals/xilinx11/sim.pdf. Accessed 17 Nov 2013

7.	Altera Inc (2013) Quartus II setting file with pin assignments for DE2-115.
http://www.altera.com/education/univ/materials/boards/de2-115/unv-de2-115-board.html.
Accessed 17 Nov 2013

8.	Skliarova I, Sklyarov V, Sudnitson A (2012) Design of FPGA-based circuits using hierarchical
finite state machines. TUT Press, Tallinn

9.	Sklyarov V, Skliarova I (2013) Parallel processing in FPGA-based digital circuits and systems.
TUT Press, Tallinn

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/xst_v6s6.pdf
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/ise_tutorial_ug695.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/ise_tutorial_ug695.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/sim.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/sim.pdf
http://www.altera.com/education/univ/materials/boards/de2-115/unv-de2-115-board.html

89

Abstract  This chapter begins with a brief description of widely used simple combi-
national and sequential circuits. Many examples are given with implementations of
the circuits in FPGAs. Next, various optimization techniques are discussed with spe-
cial emphasis on broad parallelism, which is very important for FPGA-based applica-
tions. More complicated digital circuits and systems are introduced, such as parallel
networks for sorting and searching, Hamming weight counters/comparators, concurrent
vector processing units and advanced finite state machines. The circuits are designed so
that operations over multiple data items can be executed concurrently. Network-based
solutions, such as sorting and counting networks in particular, and the efficient map-
ping of circuits to FPGA primitives (look-up tables) are examples. A number of alterna-
tive competing methods are discussed and evaluated. All the circuits and systems are
described in VHDL, implemented and tested in FPGAs, and finally evaluated by apply-
ing various criteria. Many of the novel solutions proposed are parameterized, which per-
mits very complex projects to be developed in FPGAs for solving advanced problems in
several areas, such as data processing and combinatorial search.

3.1 � Combinational Circuits

A combinational circuit (CC) does not have memory and, thus, output values of
the circuit depend only on its current input values. This section briefly character-
izes widely used (group 1) and application-specific (group 2) CCs with description
of their functionality in behavioral VHDL.

The first group includes encoders, decoders, multiplexers, arithmetical circuits,
and logical shifters. The second group is composed of such circuits that are syn-
thesized from given systems of Boolean functions, such as

y0 = f0(xn−1, . . . , x1, x0);

y1 = f1(xn−1, . . . , x1, x0);

. ..

ym−1 = fm−1(xn−1, . . . , x1, x0);

Chapter 3
Design Techniques

V. Sklyarov et al., Synthesis and Optimization of FPGA-Based Systems,
Lecture Notes in Electrical Engineering 294, DOI: 10.1007/978-3-319-04708-9_3,
© Springer International Publishing Switzerland 2014

90 3  Design Techniques

where y0,y1,…,ym-1 are binary outputs of the circuit that depend on binary inputs
xn-1,…,x1,x0 and f0,f1,…,fm-1 is a system F of m Boolean functions that describe
how to convert input values to output values, i.e. how to construct an output vec-
tor Yi = (y0,y1,…,ym-1) for any input vector Xj = (xn-1,…,x1,x0): Yi = F(Xj). For
m = 1 there are 2 in power 2n Boolean functions of n variables and if m > 1, the
number of different Boolean functions is rapidly increased. Table 3.1 below shows
some of 28=2 in power 3 = 256 Boolean functions F255, F254, …, F2, F1, F0 of n = 3
variables.

The rightmost four functions from Table 3.1 can be described as follows:

Note that the function y3 has been simplified using the combining theorem [1].
Methods of minimization (simplification) of Boolean functions are presented in [1, 2]
and they will not be considered here. The functions y0, y1, y2, y3 above or (similar
functions) can be described in VHDL and available synthesizers will take care about
the optimization of the relevant circuits.

Table 3.2 demonstrates Boolean functions Fort and Fint for two frequently used
operations: orthogonality and intersection that are defined in the following general
form:

where the rightmost symbol not requires an inversion operation. From Table 3.2
we can see the results for different pairs of 2-bit vectors. Bit values in the column
orthogonality are grouped in sets of 4 bits in order to show their association with
the respective hexadecimal digits that will be needed later in this section.

y0 = F0(x2, x1, x0) = 0; y1 = F1(x2, x1, x0) = x2 and x1 and x0;

y2 = F2(x2, x1, x0) = x2 and x1 and not x0;

y3 = F3(x2, x1, x0) = (x2 and x1 and x0) or (x2 and x1 and not x0) = x1 and x2;

yort =

n−1∨

i=1

(ai xor bi); yint = not yort;

Table 3.1   Different Boolean functions of 3 variables (n = 3, m = 1)

x2 x1 x0 F255 F254 ……. F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

0 0 0 1 1 … … 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 … … 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 … … 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 … … 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 … … 1 1 1 1 0 0 0 0 0 0 0 0
1 0 1 1 1 … … 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 1 1 … … 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 … … 1 0 1 0 1 0 1 0 1 0 1 0

91

The following VHDL function describes the orthogonality operation:

Orthogonality and/or intersection can be tested by evaluating the returned value
from the function ort(A,B) and the statement not ort(A,B).

The following VHDL combinational process gives another specification:

function ort (A : std_logic_vector; B : std_logic_vector) return std_logic is
variable result : std_logic := '0';

begin
for i in A'range loop

 result := result or (A(i) xor B(i));
end loop;

return result;

process(A,B) -- A and B are two input vectors with equal generic sizes (size)
begin

intersected <= '1'; -- intersected and orthogonal are output ports: intersected : out std_logic;
orthogonal <= '0'; -- orthogonal : out std_logic;

for i in size-1 downto 0 loop -- size is a generic parameter
if A(i) /= B(i) then orthogonal <= '1'; intersected <= '0'; exit;
end if;

end loop;

end process;

Table 3.2   Boolean functions for orthogonality and intersection operations

Vector A = {a1,a0} Vector B = {b1,b0} Orthogonality Intersection

a1 a0 b1 b0 yort = Fort (A,B) yint = Fint (A,B)

0 0 0 0 0 E 1
0 0 0 1 1 0
0 0 1 0 1 0
0 0 1 1 1 0
0 1 0 0 1 D 0
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 1 0
1 0 0 0 1 B 0
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 1 1 0
1 1 0 0 1 7 0
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 0 1

3.1  Combinational Circuits

92 3  Design Techniques

Any arbitrary Boolean function can directly be described in VHDL. For exam-
ple, the function y3 from Table 3.1 can be described as y3 = x1 and x2. Alternatively
truth tables (like Tables 3.1, 3.2) can directly be mapped to FPGA look-up
tables—LUTs (see Sect. 1.2.1). For example the following VHDL code uses pre-
liminary configured LUT (4,1) to test for orthogonality of 2-bit vectors A and B:

Other potential descriptions will be shown on examples of widely used circuits
from the group 1. More details about these circuits can be found in [1].

3.1.1 � Encoders

The following VHDL code (that can be used directly in the architecture body) pre-
sents an example of a combinational binary encoder:

Two-bit codes on the left-hand side indicate index of the value ‘1’ in four-bit
codes on the right-hand side. For example, the code ‘‘01’’ indicates position 1 of the
value ‘1’ in the code ‘‘0010’’.

use IEEE.STD_LOGIC_1164.all;
library UNISIM;
use UNISIM.vcomponents.all; -- for using LUT primitives this library has to be included

entity TestOrt is
generic (size : integer := 2);
port (A : in std_logic_vector (size-1 downto 0);

B : in std_logic_vector (size-1 downto 0);
 orthogonal : out std_logic);
end TestOrt;

architecture Behavioral of TestOrt is
LUT4_inst : LUT4 -- LUT instantiation from the ISE Devise Primitive templates
generic map (INIT => X"7BDE") -- the initialization constant 7BDE is taken from Table 3.2
port map (

O => orthogonal, -- LUT general output
I0 => B(0), -- LUT input
I1 => B(1), -- LUT input
I2 => A(0), -- LUT input
I3 => A(1) -- LUT input

);
end Behavioral;

library IEEE;

encoder_result <= "00" when encoder_input = "0001" else
"01" when encoder_input = "0010" else
"10" when encoder_input = "0100" else
"11" when encoder_input = "1000" else "00";

http://dx.doi.org/10.1007/978-3-319-04708-9_1

93

Similarly, circuits that handle larger number of bits can be created. Much like
the previous example an encoder (and also other circuits described below) can be
mapped to FPGA LUTs.

3.1.2 � Decoders

The following VHDL code presents an example of a combinational binary
decoder:

Four-bit codes on the left-hand side contain the value ‘1’ in position indicated
by two-bit codes on the right-hand side. For example, the code ‘‘0100’’ on the left-
hand side is used because of the value ‘‘10’’ in the code on the right-hand side.

Besides of common binary decoders, other circuits may be needed. For exam-
ple, to show a decimal digit on a display (see Fig. 3.1a) a seven-segment decoder
can be designed. It has four inputs that receive binary codes and seven outputs that
control individual display segments (from a to g) as illustrated in Fig. 3.1a.

Decimal digits can be written in the BCD (Binary Coded Decimal) code which
includes 4-bit combinations from 0000 through 1001 representing decimal digits
0–9 as shown in Fig. 3.1b (combinations 1010 through 1111 are not used).

The decoder can be described in VHDL as follows:

Here, the individual segments a…g are assumed to be active high and are grouped
in a single 7-bit output vector segments (where the symbol a corresponds to the most
significant bit in the vector and the symbol g—to the least significant bit).

-- the next lines can be used in architecture body
decoder_result <= "0001" when decoder_input = "00" else

 "0010" when decoder_input = "01" else
 "0100" when decoder_input = "10" else
 "1000" when decoder_input = "11" else
 "1111";

with BCD select -- the segment is active when the corresponding bit in 7-bit vector below is one
segments <= "1111110" when "0000", -- digit 0

 "0110000" when "0001", -- digit 1
 "1101101" when "0010", -- digit 2
 "1111001" when "0011", -- digit 3
 "0110011" when "0100", -- digit 4
 "1011011" when "0101", -- digit 5
 "1011111" when "0110", -- digit 6
 "1110000" when "0111", -- digit 7
 "1111111" when "1000", -- digit 8
 "1111011" when "1001", -- digit 9
 "0000000" when others; -- not valid input combinations
end Behavioral;

3.1  Combinational Circuits

94 3  Design Techniques

The following constant can be used instead of the code above:

Decoding of segment is done in the following additional line:

Since for some prototyping boards segments are active low, the following line
need to be added:

Note that Appendix B contains VHDL code for the decoder that enables all
hexadecimal digits (0,…, 9, A, B, C, D, E, F) to be shown on a 7-segment display.

3.1.3 � Multiplexers

A combinational process below describes functionality of a 4:1 multiplexer which
selects on the output O one of four inputs A, B, C, D.

type my_array is array (0 to 15) of std_logic_vector (6 downto 0);
constant converter : my_array := ("1111110", "0110000", "1101101", "1111001",
 "0110011", "1011011", "1011111", "1110000",
 "1111111", "1111011", "0000000", "0000000",
 "0000000", "0000000", "0000000", "0000000");

segmentsP <= converter(conv_integer(BCD));

segments <= not segmentsP; -- segments are active low

(a)

(b)

Fig. 3.1   Identification of segments in a seven-segment display (a), and the truth table of a BCD
to seven-segment decoder (b)

95

Similarly, circuits that handle larger number of bits may be created.

3.1.4 � Comparators

A combinational comparator is described as follows (if the value of A is greater
than or equal to the value of B then the result is ‘1’, otherwise—‘0’):

A similar comparator may be described in a combinational process:

Later in this chapter we will use comparators/swappers in sorting networks and
they can be described similarly, for example:

3.1.5 � Arithmetical Circuits

Arithmetical circuits have already been discussed in Sect. 2.1. We will give here
one more example that demonstrates the use of operations for addition (+), sub-
traction (-), multiplication (*), division (/) and the rest of division (rem).

architecture Mux of Entity_for_Mux is
begin -- 2-bit signal sel_ect permits one of four inputs (A,B,C,D) to be selected

process (A, B, C, D, sel_ect)
begin

case sel_ect is
when "00" => O <= A; -- input A is sent to output O
when "01" => O <= B; -- input B is sent to output O
when "10" => O <= C; -- input C is sent to output O
when "11" => O <= D; -- input D is sent to output O
when others => O <= A;

end case;
end process;

end Mux;

-- the next line can be used in architecture body
comparator_result <= '1' when A >= B else '0';

process(A,B)
begin
 if (A >= B) then comparator_result <= '1';

else comparator_result <= '0';
end if;

end process;

maximum_of_A_B <= A when A >= B else B; -- signal maximum_of_A_B keeps the maximum
minimum_of_A_B <= B when A >= B else A; -- signal minimum_of_A_B keeps the minimum

3.1  Combinational Circuits

http://dx.doi.org/10.1007/978-3-319-04708-9_2

96 3  Design Techniques

Different signals are declared as follows:

Initial data can be taken from the onboard switches dip and buttons BTNU, BTNC,
BTND, BTNL, and BTNR (see Figs. 1.23 and 1.24):

and the results can be displayed and checked on onboard LEDs:

3.1.6 � Barrel Shifters

Let us describe a 4-bit barrel shifter which has 4 data inputs—D3..D0, 4 data out-
puts—Y3..Y0, and two control inputs—C1C0. The output vector Y3..Y0 equals to the
input vector D3..D0, rotated by a number of bit positions specified by the control
inputs. For example, if the input vector is ABCD (each letter represents one bit), and
the control inputs are 10, then the output vector is CDAB. The code below describes
the barrel shifter functionality:

Similarly, circuits that handle larger number of bits can be created. Many addi-
tional examples of CC can be found in [3, 4].

result <= 255 when (B = 0) and (but = "01000") else -- "divide by 0" (only BTNC is pressed)
 A + B when but = "00001" else -- only BTNR is pressed

A - B when (but = "00010") and (A>=B) else -- only BTNL is pressed
B - A when (but = "00010") and (A<B) else -- only BTNL is pressed

 A * B when (but = "00100" else -- only BTND is pressed
 A / B when but = "01000" else -- only BTNC is pressed

A rem B when but = "10000" else -- only BTNU is pressed
0;

signal result : integer range 0 to 255;
signal but : std_logic_vector(4 downto 0);
signal A,B : integer range 0 to 15;

but <= BTNU & BTNC & BTND & BTNL & BTNR;
A <= conv_integer(dip(7 downto 4));
B <= conv_integer(dip(3 downto 0));

led <= conv_std_logic_vector(result, 8);

Y <= D when C="00" else
D(2) & D(1) & D(0) & D(3) when C="01" else
D(1) & D(0) & D(3) & D(2) when C="10" else
D(0) & D(3) & D(2) & D(1);

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1

97

3.2 � Sequential Circuits

The majority of digital systems are sequential and they include combinational
blocks as components. A fundamental notion in a sequential digital circuit (SDC)
is a state that depends not only on the current inputs but also on the functionality
of the SDC in the past. The state is kept in a storage allocated in the circuit and
can be changed either by special signals that are clocks (in case of synchronous
behavior) or by events most often on the inputs (in case of asynchronous behav-
ior). We will discuss in the book only synchronous SDCs.

Much like combinational circuits SDCs can be divided in two groups that
include widely used (group 1) and application-specific (group 2) SDCs. The lat-
ter can be further divided in numerous sub-groups many of which are not clearly
identified. For example, we can point to such devices that have some common
features as finite state machines (FSM), interfaces, and application-specific
accelerators. One common representation of a system is called register-transfer
level (RTL) that defines how data are transferred between registers/memories
passing through combinational logic and driven by a sequential control cir-
cuit. The latter may be an FSM, dedicated asynchronous blocks, etc. Generally,
it is difficult or even impossible to describe all potentially existing SDCs. So,
we focus in Sect. 3.2 on simple devices from the first group, namely registers,
shift registers, counters, and arithmetical devices with accumulators. SDCs
from application-specific group will be discussed in the subsequent sections and
chapters.

3.2.1 � Registers

A SDC that is composed of R flip-flops (such as D flip-flops) with a common
clock (and possibly with a common reset) input is called a register, which can be
described in VHDL as follows:

Alternatively the following code can be used:

process (clk) -- D is an input vector and Q is an output vector
begin -- clk is a clock and rst is a synchronous reset with active high value

if rising_edge(clk) then
if rst = '1' then Q <= (others => '0');
else Q <= D;
end if;

end if;
end process;

Q <= (others => '0') when rising_edge(clk) and (rst = '1') else
D when rising_edge(clk);

3.2  Sequential Circuits

98 3  Design Techniques

3.2.2 � Shift Registers

A shift register is an R-bit register which permits stored data to be shifted by one
(or possibly more) bit position in each clock cycle. VHDL code below describes
parallel-in, parallel-out shift register. The parallel input to_set supplies a new vec-
tor that will be written to all flip-flops of the register in parallel. Then the vector in
the register can be shifted one bit position at every clock cycle (divided_clk) either to
the right or to the left depending on the value of the signal shift_direction.

The following line enables the vector from the register to be read:

Shift can be done by more than one bit position if needed. For example, the fol-
lowing code enables shift to be done by three bit positions in each clock cycle:

3.2.3 � Counters

A counter is a sequential circuit which iterates through a fixed cycle of states. A
synchronous counter connects all of its flip-flop clock inputs to the same common
clock signal, forcing in this manner all the flip-flop outputs to change at the same

process (divided_clk)
begin

if rising_edge(divided_clk) then
 if rst = '1' then

 reg <= (others => '0'); -- setting all flip-flops of the register to zero
elsif set = '1' then

 reg <= to_set; -- copying data to the register
elsif clock_enable='1' then -- shift dependently on direction

if shift_direction='1' then -- if shift_direction is 1 then shift right
reg <= reg(0) & reg(7 downto 1); -- shifting right

else -- if shift_direction is 0 then shift left
reg <= reg(6 downto 0) & reg(7); -- shifting left

end if;
end if;

end if;
end process;

led <= reg; -- to display the result from the register

if shift_direction='1' then -- if shift_direction is 1 then shift right
reg <= reg(2 downto 0) & reg(7 downto 3); -- shifting right

else -- if shift_direction is 0 then shift left
 reg <= reg(4 downto 0) & reg(7 downto 5); -- shifting left

end if;

99

time. The most popular are binary counters which are composed of R flip-flops
and basically ‘‘count’’ in binary from 0 to 2R-1, returning to 0 afterwards and start-
ing the counting process again. VHDL code below describes a counter with clock_
enable and count_direction signals (all necessary explanations are given in comments):

The results of counting can be displayed much like in the previous example
with the shift register. If required incrementing/decrementing the value in the
counter can be done by more than one. For example, the following code enables an
increment by 2 and a decrement by 3 to be done;

3.2.4 � Arithmetical Circuits with Accumulators

The considered circuit enables any operation accu+B to be executed over an oper-
and B and the value of accu that was saved in a special register (called accumulator
and set to 0 before the first operation) holding the result of the previous operation.
For example, if B = 3, then the signal accu may accumulate sequentially the follow-
ing values: 3,6,9,12,…. Let us consider the following declarations:

process (divided_clk)
begin
 if rising_edge(divided_clk) then
 if rst='1' then

 count <= (others => '0'); -- setting all flip-flops of the counter to zero
elsif clock_enable='1' then -- counting dependently on direction

if count_direction='1' then -- if count_direction is 1 then increment the counter
count <= count + 1; -- incrementing the counter

else -- if count_direction is 0 then decrement the counter
count <= count - 1; -- decrementing the counter

end if;
end if;

end if;
end process;

if count_direction='1' then -- if count_direction is 1 then increment the counter
count <= count + 2; -- incrementing the counter by 2

else -- if count_direction is 0 then decrement the counter
count <= count - 3; -- decrementing the counter by 3

end if;

signal B, accu : integer range 0 to 255; -- declaration of operand and accumulator
signal divided_clk : std_logic; -- clocks from a clock divider
signal accu_enable : std_logic; -- signal enable for the accumulator
signal op_sel : std_logic_vector(1 downto 0); -- op_sel selects an operation

3.2  Sequential Circuits

100 3  Design Techniques

VHDL code below describes an arithmetical circuit with accumulator accu with
signals reset and accu_enable (all necessary explanations are given in the comments):

The results from accu can be displayed using the following line:

Descriptions for some other sequential and combinational circuits can be found
in ISE/Quartus language templates.

3.3 � Finite State Machines

Finite state machines (FSM) are probably the most widely used application-spe-
cific SDC in digital systems. That is why almost all the available automatic design
tools that are included in industrial computer-aided design systems allow FSMs
to be synthesized from their formal specifications. Since an FSM is a sequential
circuit it can be characterized by a set of states a0,…,aM-1, transitions between the
states, and operations (in states and during state transitions). The number of states
is finite.

Basically, FSMs are needed for two kinds of applications that are:

1.	 Autonomous sequential modules that are components of more complicated dig-
ital systems. For example, an FSM can read a sequence of bits and detect in the
sequence two or more successive ones. Many similar examples, such as rising
edge detector, debouncing circuit, etc., are given in [4, 5].

2.	 Control circuits. For example, an FSM-based unit for a combinatorial processor
is suggested in [6]. Many other examples are given in [7, 8].

 if rising_edge(divided_clk) then -- low frequency clock to observe the functionality visually
if (reset = '0') then accu <= 0; -- on active reset (zero) the accu is filled with zeros
else

if accu_enable = '1' then -- arithmetical operation is allowed if accu_enable = '1'
case op_sel is -- op_sel selects the desired arithmetical operation

when "00" => accu <= accu + B; -- accumulating the results of addition
when "01" => accu <= accu - B; -- accumulating the results of subtraction
when "10" => accu <= accu * B; -- accumulating the results of multiplication
-- if B is not zero accumulating the results of division in the next line
when "11" => if B /= 0 then accu <= accu / B; else null; end if;
when others => null; -- each element of op_sel may have

end case; -- any from 9 values of std_logic type
end if;

end if;
end if;

end process;

process (divided_clk)
begin

led <= conv_std_logic_vector(accu, 8);

101

Figure 3.2 depicts a general structure of an FSM, which is composed of a register
(keeping the FSM state) and a combinational circuit (providing state transitions
and generating outputs).

The most common FSM models are Mealy and Moore, which differ in the
method of generating outputs. In Mealy FSM, the output signals directly depend
on both the current state and the current inputs:

Here ψ0,…, ψR-1 are transition functions and φ0,…, φN-1 are output functions;
x0,…,xL-1 are input signals, and y0,…, yN-1 are output signals; signals T0,…,TR-1 repre-
sent current states (C_S) and signals D0,…, DR-1—next states (N_S).

In Moore FSM, the output signals directly depend only on the current state:

Both models can be structurally described in a way shown in Fig. 3.2. So, the
main difference is in the representation of the combinational circuit (CC) although
synchronization mechanisms can also be diverse.

Very often an FSM has a single initial state. The signal rst in Fig. 3.2 sets
(resets) FSM to this state, for example, as soon as the power is switched on. The
signal clk synchronizes state transitions in which the FSM changes one state to
another one. Usually such transitions are executed either on a rising or on a falling
edge of the signal clk.

There are many different ways to describe FSM functionality, such as state
transition diagrams, state transition tables, graph-schemes, etc.

D0 = ψ0(T0,…,TR-1, x0,…,xL-1);
……………………………….
DR-1 = ψR-1(T0,…,TR-1, x0,…,xL-1);
y0 = ϕ0(T0,…,TR-1, x0,…,xL-1);
……………………………….
yN-1 = ϕN-1(T0,…,TR-1, x0,…,xL-1);

y0 = ϕ0(T0,…,TR-1);
…………………
yN-1 = ϕN-1(T0,…,TR-1);

Fig. 3.2   General structure of a conventional FSM

3.3  Finite State Machines

102 3  Design Techniques

An FSM with datapath (FSMD) [5] combines an FSM with components of an
execution unit, such as registers, counters, etc. and deals with operations at a reg-
ister-transfer level (RTL). Let us consider how to design an FSMD on an example
of a circuit that enables the maximum common divisor of two non-negative integer
operands to be found. The following C function IGCD [4] gives a feasible iterative
implementation for unsigned integers:

Figure 3.3a depicts the FSM functionality similar to the function IGCD (see also
Fig. 3.3b where a visual comparison is easier). Figure 3.3c shows VHDL code for the
FSMD that calculates the greatest common divisor of two unsigned integers. There are
two processes in the code. The first sequential process describes state transitions and
changes states of three registers (FSM_A, FSM_B and Res) enabling data, altered in the
combinational processer, to be transferred between the registers. For example, data in
the registers may be swapped (FSM_A_next <= FSM_B, FSM_B_next <= FSM_A) or the rest of
division is found out (FSM_B_next <=FSM_A rem FSM_B).

unsigned int IGCD(unsigned int A, unsigned int B)
{ unsigned int tmp;

while (B > 0)
 { if (B > A) { tmp = A; A = B; B = tmp; }

else { tmp = B; B = A%B; A = tmp; } }
return A;

 }

(a)

(b)

(c)

Fig. 3.3   Implementation in FPGA of an iterative algorithm for calculating the greatest common
divisor: state transition diagram (a), C language code (b), FSM in VHDL code (c)

103

The numbers enclosed in circles indicate similar operations in the state
transition diagram (Fig. 3.3a), in C code (Fig. 3.3b), and in VHDL code
(Fig. 3.3c).

Note that FSM in Fig. 3.3a and 3.3b is built in accordance with the Mealy
model. Operations in all state transitions depend on both the states of the FSM and
on some tested values such as (FSM_B > 0 and FSM_B > FSM_A).

The following VHDL code describes a project that can easily be adapted to
any prototyping board referenced in Sect. 1.6. It reads 8+8 bit data from onboard
switches, calculates the greatest common divisor of the data items, and displays the
result on LEDs.

Let us consider an example of FSM that is built in accordance with the Moore
model (see Fig. 3.4). Numbers 1 and 2 enclosed in circles show where outputs are
formed. As we can see the outputs do not depend on inputs and depend only on the
state (count and final_state). Letters a, b and c enclosed in circles indicate possible
transitions in the state transition diagram (see Fig. 3.4a) and in the VHDL code
(see Fig. 3.4b). The following signals and types are declared for the considered
example:

and number_of_bits is a generic parameter. The number of values ‘1’ (i.e. the
Hamming weight) is counted for 16-bit vector from onboard switches of the

entity FSM_OneEdge_GCD is -- circuit with synchronization by one clock edge
port (clk : in std_logic;

rst : in std_logic; -- BTNC button
 Ain : in std_logic_vector(15 downto 0); -- two 8-bit operands

 Result : out std_logic_vector(7 downto 0)); -- 8-bit result (on LEDs)
end FSM_OneEdge_GCD;
architecture Behavioral of FSM_OneEdge_GCD is -- the circuit was tested in Nexys-4 board

signal A, B, FSM_A, FSM_B, FSM_A_next, FSM_B_next : integer range 0 to 255;
type state_type is (init, run_state); -- enumeration type for the FSM states
signal C_S, N_S : state_type;
signal Res, Res_next : integer range 0 to 255;

begin
A <= conv_integer(Ain(15 downto 8)); -- the first 8-bit operand from onboard switches
B <= conv_integer(Ain(7 downto 0)); -- the second 8-bit operand from onboard switches
-- copy here the FSM description from Fig. 3.3c

Result <= conv_std_logic_vector(Res, 8);
end Behavioral;

signal index, next_index : integer range 0 to number_of_bits-1;
signal A : std_logic_vector(number_of_bits-1 downto 0);
signal Res, next_Res, n_o_ones, next_n_o_ones

: integer range 0 to number_of_bits;
type state_type is (count, final_state); -- enumeration type for the FSM states
signal C_S, N_S : state_type;
signal rst : std_logic;

3.3  Finite State Machines

http://dx.doi.org/10.1007/978-3-319-04708-9_1

104 3  Design Techniques

Nexys-4 board. Such circuits might be interesting to compare combinational
(see Chap. 2) and sequential Hamming weight counters. Our sequential cir-
cuit occupies 8 slices of Artix-7 FPGA and has the maximum attainable clock
frequency 560 MHz (these details are taken from Xilinx ISE 14.7 Design
Summary/Reports). From Fig. 3.4b we can see that 16 clock cycles are needed
to find out the Hamming weight of a 16-bit binary vector. Thus, the delay is
about 28.6 ns.

If required an FSM that combines Mealy and Moore models can also be built
[4, 7]. Many supplementary examples will be given in Chap. 5 that is dedicated to
advanced FSMs.

3.4 � Optimization of FPGA-Based Circuits and Systems

FPGAs still operate on a lower clock frequency than non-configurable application-
specific integrated circuits and application-specific standard products and broad
parallelism is evidently required to compete with potential alternatives. Many
research works have been dedicated to this problem focusing on applying concur-
rency at different levels. We describe here several techniques that enable highly
parallel circuits and systems to be designed and implemented in FPGAs. The fol-
lowing three major areas will be discussed:

(a) (b)

Fig. 3.4   An example of a Moore FSM that counts the number of values ‘1’ in a given binary
vector: state transition diagram (a), the FSM in VHDL code (b)

http://dx.doi.org/10.1007/978-3-319-04708-9_2
http://dx.doi.org/10.1007/978-3-319-04708-9_5

105

1.	 Network-based solutions that are described in subsequent sections of this chap-
ter and used in:
•	 Combinational circuits with massive parallel conversions to be done simulta-

neously (e.g. sorting [9] and counting [10] networks).
•	 Partially combinational and partially sequential circuits with highly parallel

reusable segments. Such approach permits a better compromise to be found
between the resources required and performance (e.g. sequential circuits with
reusable combinational segments executing massive parallel conversions are
described in [9]).

•	 Pipelines composed of registers and highly parallel combinational circuits in
between the registers (e.g. pipelined sorting and counting networks [9, 10]).

•	 Highly parallel circuits that execute concurrent operations over large binary
and ternary vectors (e.g. finding the maximum number of consecutive ones/
zeros in binary vectors [9]).

2.	 On-chip systems that enable application-specific software to be run in paral-
lel with hardware accelerators implementing solutions listed in point (1) (e.g.
merging in software of sorted in hardware subsets, accelerating in hardware
operations over large vectors [11]). We will consider software/hardware interac-
tion in Chap. 4.

3.	 Application-specific sequential circuits executing multiple branches of imple-
mented algorithms simultaneously (e.g. parallel hierarchical FSMs described in
[12]). We will discuss such technique in Chap. 5.

Subsequent Sects. 3.4.1–3.4.3 give more details about the listed above areas
and present examples of practical applications that are efficient for FPGA-based
implementations.

3.4.1 � Highly Parallel Network-Based Solutions

Highly parallel network-based solutions enable simultaneous operations to be exe-
cuted over large sets of data items. For example, one of the fastest known paral-
lel sorting methods is based on the even-odd merge and bitonic merge networks
[13, 14]. The first type of network is shown in Fig. 3.5.

There are 6 vertical lines of comparators/swappers (they are numbered at the
top) and each comparator can be described in VHDL as follows:

Given data (ex.: 144, 119, 150, 96, 39, 55, 17, 21) are sorted in descending
order. Each vertical line is composed of some comparators/swappers and there are
totally C(N = 2p) = (p2−p + 4) × 2p−2−1 such components [13, 15], where N
is the number of items that have to be sorted. If data items are swapped they are
shown in Fig. 3.5 in italic and underlined. Note that the decision about the result
can be taken earlier than after propagation through all the vertical lines (see an

MaxValue <= A when A >= B else B; -- A and B are input data items
MinValue <= B when A >= B else A;

3.4  Optimization of FPGA-Based Circuits and Systems

http://dx.doi.org/10.1007/978-3-319-04708-9_4
http://dx.doi.org/10.1007/978-3-319-04708-9_5

106 3  Design Techniques

example in Fig. 3.5). Unfortunately, we cannot benefit from an earlier result (i.e.
from the results that can be produced before propagating through the all vertical
lines) because the network is hardwired.

Let us analyze the network in Fig. 3.5. Four parallel comparisons/swappers can
be executed in parallel for the leftmost vertical line. All such operations do not
have any data dependency, i.e. the result from any of them is not required for the
remaining operations. The depth D(N) of a network that sorts N data items is the
minimal number of data dependent steps 1, …, D(N) that have to be executed one
after another. For Fig. 3.5 D(N) = 6 and the numbers np

s of parallel operations in
steps s = 1,…,6 are: np

1 = 4; np
2 = 4; np

3 = 2; np
4 = 4; np

5 = 2; np
6 = 3. The time

of sorting is equal to D(N) × t, where t is the delay of any vertical line, i.e. the
delay of one comparator/swapper. It is known that for even-odd merge networks
D(N = 2p) = p × (p + 1)/2 [15]. For our network in Fig. 3.5 p =

⌈
log2N

⌉
= 3

and D(N) = 6. Thus, even-odd merge networks are very fast. For example, if
N = 1024 then D(N) is only 55.

The following structural VHDL code demonstrates how the network in Fig. 3.5
can be described:

use work.set_of_data_items.all;-- the package where the type set_of_8items is declared
entity EvenOddMerge8Sort is
 generic (M : integer := 4;
 N : integer := 8); -- cannot be changed for this project

port (unsorted_items : in set_of_8items; -- the type set_of_8items is declared in
 sorted_items : out set_of_8items); -- the package set_of_data_items
end EvenOddMerge8Sort;

architecture Behavioral of EvenOddMerge8Sort is
signal out1_in2, out2_in3, out3_in4 : set_of_8items;
signal out4_in5, out5_in6, sorted : set_of_8items;

begin
-- even-odd merging network
merge1: -- see the fragment Merge 1 in Fig. 3.5
for i in N/2-1 downto 0 generate -- the first two parameters of the comparator are two operands

group1merge1: entity work.Comparator
generic map (M => M)
port map(unsorted_items(i*2), unsorted_items(i*2+1),

out1_in2(i*2), out1_in2(i*2+1));
end generate merge1; -- the last two parameters of the comparator are the maximum and the minimum

merge2: -- see the fragment Merge 2 in Fig. 3.5
for i in 0 to N/4-1 generate

incide_merge2: -- the first data independent segment in merge 2
for j in 0 to N/4-1 generate

group1merge2: entity work.Comparator
generic map (M => M)
port map(out1_in2(i*4+j), out1_in2(i*4+j+2), out2_in3(i*4+j), out2_in3(i*4+j+2));
out3_in4(i*4+j*3) <= out2_in3(i*4+j*3);

end generate incide_merge2;
group2merge2: entity work.Comparator -- the second data independent segment in merge 2

generic map (M => M)
port map(out2_in3(i*4+1), out2_in3(i*4+2), out3_in4(i*4+1), out3_in4(i*4+2));

end generate merge2;
merge3: -- see the fragment Merge 3 in Fig. 3.5
for i in N/2-1 downto 0 generate -- the first data independent segment in merge 3

group1merge3: entity work.Comparator
generic map (M => M)
port map(out3_in4(i), out3_in4(i+4), out4_in5(i), out4_in5(i+4));

step1merge3: if (i >= 2 and i <= 3) generate
 group2merge3: entity work.Comparator -- second data independent segment in merge 3

generic map (M => M)

Fig. 3.5   Even-odd merge
sorting network for N = 8
(scalable for any N): the
network (a); comparator/
swapper (b)

(a)

(b)

107

step2merge3: if (i < 2) generate
out5_in6(i) <= out4_in5(i);
out5_in6(i+6) <= out4_in5(i+6);
sorted_items(i*7) <= out5_in6(i*7);

end generate;
step3merge3: if (i < N/2-1) generate -- the third data independent segment in merge 3

Comp2merge3 : entity work.Comparator
generic map (M => M)
port map(out5_in6(2*i+1), out5_in6(2*i+2), sorted_items(2*i+1),

sorted_items(2*i+2));
end generate;

end generate merge3;
end Behavioral;

port map(out4_in5(i), out4_in5(i+2), out5_in6(i), out5_in6(i+2));
end generate;

use work.set_of_data_items.all;-- the package where the type set_of_8items is declared
entity EvenOddMerge8Sort is
 generic (M : integer := 4;
 N : integer := 8); -- cannot be changed for this project

port (unsorted_items : in set_of_8items; -- the type set_of_8items is declared in
 sorted_items : out set_of_8items); -- the package set_of_data_items
end EvenOddMerge8Sort;

architecture Behavioral of EvenOddMerge8Sort is
signal out1_in2, out2_in3, out3_in4 : set_of_8items;
signal out4_in5, out5_in6, sorted : set_of_8items;

begin
-- even-odd merging network
merge1: -- see the fragment Merge 1 in Fig. 3.5
for i in N/2-1 downto 0 generate -- the first two parameters of the comparator are two operands

group1merge1: entity work.Comparator
generic map (M => M)
port map(unsorted_items(i*2), unsorted_items(i*2+1),

out1_in2(i*2), out1_in2(i*2+1));
end generate merge1; -- the last two parameters of the comparator are the maximum and the minimum

merge2: -- see the fragment Merge 2 in Fig. 3.5
for i in 0 to N/4-1 generate

incide_merge2: -- the first data independent segment in merge 2
for j in 0 to N/4-1 generate

group1merge2: entity work.Comparator
generic map (M => M)
port map(out1_in2(i*4+j), out1_in2(i*4+j+2), out2_in3(i*4+j), out2_in3(i*4+j+2));
out3_in4(i*4+j*3) <= out2_in3(i*4+j*3);

end generate incide_merge2;
group2merge2: entity work.Comparator -- the second data independent segment in merge 2

generic map (M => M)
port map(out2_in3(i*4+1), out2_in3(i*4+2), out3_in4(i*4+1), out3_in4(i*4+2));

end generate merge2;
merge3: -- see the fragment Merge 3 in Fig. 3.5
for i in N/2-1 downto 0 generate -- the first data independent segment in merge 3

group1merge3: entity work.Comparator
generic map (M => M)
port map(out3_in4(i), out3_in4(i+4), out4_in5(i), out4_in5(i+4));

step1merge3: if (i >= 2 and i <= 3) generate
 group2merge3: entity work.Comparator -- second data independent segment in merge 3

generic map (M => M)

3.4  Optimization of FPGA-Based Circuits and Systems

108 3  Design Techniques

The package set_of_data_items contains the following lines:

Now the component EvenOddMerge8Sort can be used in the network for N = 16
(see Fig. 3.6). An example of such circuit is given in Appendix B.

Once again the new component EvenOddMerge16Sort (see Appendix B) can be
created and used in the network for N = 32 (see Fig. 3.7). Similarly, a network of
any size N may be constructed. However, there is a problem. When N is increased,
the complexity of the networks (the number of comparators C(N)) grows rapidly
(see Fig. 3.8). Merging is executed incrementally, as shown in Fig. 3.9a for the
even-odd merge network. Initially, each 2-item subset is merged. Then pairs of
the resulting 2-item sorted subsets are merged to compose 4-item sorted subsets.
Pairs of the 4-item sorted subsets are merged again and so on, until the complete
sorted set of data is produced. The number of comparators/swappers required in
any block is shown in the rectangles. The table in Fig. 3.9b gives the number of
comparators/swappers at the last stage where the sorted subsets are merged, and
the number of comparators at all stages for N varying from 8 to 2048.

Propagation delays through long combinational paths in FPGA networks are
also increased and they are caused, not only by the comparators/swappers, but also
by multiplexers that have to be inserted even in partially regular circuits [16], and
by interconnections. Such routing overhead may be significant. The bitonic merge
networks are also as fast as the even-odd merge network but the latter are slightly
less resource consuming (see Fig. 3.8).

constant N : integer := 8; -- cannot be changed for this project
constant M : integer := 4;
type set_of_8items is array (N-1 downto 0) of std_logic_vector (M-1 downto 0);

Fig. 3.6   Even-odd merge sorting network for N = 16 (see also Appendix B)

109

Partially combinational and partially sequential circuits permit a better compro-
mise to be found between the resources required and performance and they will
be described on examples in Sects. 3.5, 3.6, where pipelined solutions will also be
discussed. Similar parallel operations can be executed over large binary and ter-
nary vectors and they will also be considered on examples in Sect. 3.10.

Fig. 3.7   Even-odd merge sorting network for N = 32

Fig. 3.8   Number of
comparators for different
values N of data items

3.4  Optimization of FPGA-Based Circuits and Systems

110 3  Design Techniques

3.4.2 � Hardware Accelerators

From Figs. 3.8, 3.9 it is easy to conclude that sorting networks can be imple-
mented in FPGA only for relatively small number N of items while practical appli-
cations require millions of such items to be processed. One possible way is to sort
small subsets of larger sets in an FPGA and then to merge the subsets in software
of a higher level system (see Fig. 3.10). The initial set of data that is to be sorted
is divided into Z subsets of N items. Each subset is sorted in an FPGA using the
networks discussed in the previous section. Merging is executed as shown in
Fig. 3.10, in a host system/processor that interacts with the FPGA.

We will discuss in Chap. 4 two types of higher-level (host) systems (see
Fig. 3.11): (1) a host PC communicating with FPGA through available ports (such
as USB), and (2) a processing system (PS) in the all programmable system-on-
chip (APSoC) Zynq [17] interacting with a programmable logic (PL) with the aid
of on-chip high-performance interfaces.

For the considered above problem an FPGA enables sorting subsets of data to
be accelerated while a host system/processor merges the sorted subsets. Thus, data
need to be transferred to and from the FPGA and communication overhead may be
significant especially for systems shown in Fig. 3.11a. However, such systems are
also efficient in different types of experiments to support necessary data exchange.
Besides systems similar to shown in Fig. 3.11b are very fast because data can be
transferred through several very high speed 32/64-bit internal interfaces.

(a) (b)

Fig. 3.9   The structure of the even-odd merge network (a), and the number of comparators for
different values of N (b)

http://dx.doi.org/10.1007/978-3-319-04708-9_4

111

3.4.3 � Parallel Modular Algorithms Running in Hierarchical
FSMs

A hierarchical FSM (HFSM) [18] enables control algorithms composed of hier-
archical modules to be implemented. A module is described by an autonomous
state transition diagram that looks similar to Figs. 3.3a and 3.4a. Let us consider
an example of using HFSMs for traversing N -ary trees.

An N -ary tree is a rooted connected graph that does not contain cycles and
for which any internal node has at most N children [19]. Figure 3.12 depicts
an example of an N -ary tree (N = 4) that can be seen as a graph representing
operations A, B, C, D, E, …,M associated with the tree nodes a, b, c, d, e, …,m.
Relationships between the operations are shown by tree edges. Alternatively, this
tree can represent a set of data that are linked in accordance with given relation-
ships. In this case the symbols A, B, C, D, E, …, M are considered to be subsets of
data and edges indicate relationships between the subsets.

Fig. 3.10   Merging of sorted sub-sets in a software of a higher-level system

Fig. 3.11   Two types of
interactions with a higher-
level system: through external
ports (such as USB) (a), and
on-chip (b)

(a) (b)

3.4  Optimization of FPGA-Based Circuits and Systems

112 3  Design Techniques

It is known that such a tree can be built, and traversed by applying either an
iterative or a recursive procedure. For example, the following recursive C function
from [12] does the traversal:

where treenode is a C structure which can be described as follows (N is a constant
N in the C program):

Similarly, an iterative function void iterative_traverse_tree(treenode* root, int depth)
may be built for which the treenode structure has an additional field with a pointer
to the parent node of the tree.

In Chap. 5 we will show how functions like the traverse_tree can be described as
hardware modules and implemented in an HFSM. It is allowed several functions
(HFSM modules) to be activated in parallel, for example, for local roots shown in
Fig. 3.12 and, thus, faster tree traversing may be done. Different types of HFSMs
(including parallel HFSMs) will be described in Chap. 5.

3.5 � Design Examples for Parallel Sort

Sorting is a procedure that is needed in numerous computing systems [13]. For
many practical applications, sorting throughput is very important. Two of the most
frequently investigated parallel sorters are based on sorting [13] and linear [20]

void traverse_tree(treenode* root, int depth)
{ depth++;
if (root == 0) { depth--; return; } // if root (node) does not exist it is equal to 0
if (depth == max_depth) { executing_leaf_operation (root); depth--; return; }
for (int i = 0; i < N; i++)

traverse_tree(root->node[i],depth);
depth--; }

struct treenode {
 // other declarations -- other declarations are collections of data or operations associated with the node

treenode* node[N]; }; -- array of pointers to children (an element is equal to 0 if a child does not exist)

Fig. 3.12   An example of an N -ary tree (N = 4)

http://dx.doi.org/10.1007/978-3-319-04708-9_5
http://dx.doi.org/10.1007/978-3-319-04708-9_5

113

networks. A sorting network is a set of vertical lines composed of comparators that
can swap data to change their positions in the input multi-item vector. The data
propagate through the lines from left to right to produce the sorted multi-item vec-
tor on the outputs of the rightmost vertical line. Three types of such networks have
been studied: pure combinational (e.g. [3, 15, 21]), pipelined (e.g. [3, 15, 21]), and
combined (partially combinational and partially sequential) [e.g. 3, 16].

We have already mentioned in Sect. 3.4.1 that the majority of sorting networks
implemented in hardware use Batcher’s even-odd and bitonic mergers [14]. Suppose
N data items, each of size M bits, need to be sorted. The results of [15, 21] show that
the referenced above sorting networks cannot be built for N > 64 (M = 32), even in
the relatively advanced FPGA FX130T from the Xilinx Virtex-5 family, because the
hardware resources are not sufficient. When N is increased, the complexity of the
circuits (the number of comparators C(N)) grows rapidly (see Fig. 3.8). We com-
pared the even-odd merge and bitonic merge sorting networks (which are among the
fastest known) with the even-odd transition network [22], which is often character-
ized as significantly slower and more resource consuming. However it is one of the
most regular networks and can be implemented very efficiently in FPGA

Figure 3.13 depicts the even-odd transition network for sorting the same data
that are shown in Fig. 3.5a.

The network in Fig. 3.13 contains C(N) = N × (N-1)/2 comparators/swap-
pers and the maximum depth D(N) of the network for sorting N data items is N
[22]. For example, for N = 8 C(N) = 28 and D(N) = 8. Note, that for the alterna-
tive even-odd merge circuit (see Sect. 3.4.1) C(N) = 19 and D(N) = 6. However,
for the circuit in Fig. 3.13 sub-circuits composed of two lines (even and odd) of
comparators are exactly the same and can be reused iteratively in such a way that
is shown in Fig. 3.14. This permits the number of comparators/swappers to be
reduced by a factor of N/2 (i.e. now C(N) = 7) and the fully combinational circuit
becomes sequential with two reusable lines executing highly parallel operations.
Thus, N/2 iterations are required to sort data with N items but the delay of the
two-line sub-circuit is smaller than the total delay (see Fig. 3.13) and, thus, clock
frequency for executing iterations is high.

The circuit in Fig. 3.14 is very regular, easily scalable, and does not require
any additional components when input data are written to and sorted output data

Fig. 3.13   Even-odd
transition sorting network for
N = 8 (scalable for any N)

3.5  Design Examples for Parallel Sort

114 3  Design Techniques

are read from the register R sequentially, applying a shift operation. To transfer
data to the register R in parallel would require N multiplexers at the register inputs
to receive data from outside before processing and from the comparators during
processing. Besides, the number of clock cycles (N/2) in the even-odd transi-
tion network in Fig. 3.14 can be less than N/2. Let us introduce an enable signal
which is zero at any second vertical line of the circuit in Fig. 3.14 when there is
no exchange of data. As soon as enable = 0, all data have been sorted. Suppose
we need to sort data that are occasionally received in the sorted order, let us say:
8,7,6,5,4,3,2,1. The sequential circuit (Fig. 3.14) concludes that the data have
already been sorted in time 2 × t, where t is the delay of a vertical line in Fig. 3.14
(i.e. the delay of one comparator/swapper). The combinational circuits in Figs. 3.5
and 3.13 still need time D(N) × t because they are hardwired. So, the simple cir-
cuit in Fig. 3.14 permits the number of steps to be reduced, which cannot be done
for the circuits in Figs. 3.5 and 3.13. Chapter 5 will give an example.

A pipeline can be used for all the networks shown in Figs. 3.5 (see Fig. 3.15a),
3.13 (see Fig. 3.15b) and 3.14 (see Fig. 3.15c). In case of pipelining, the resources
required are almost the same because FPGA slice flip-flops can be used without
the need for additional components. The positions of pipeline registers (PLR) are
shown in Fig. 3.15a–c. Figure 3.15d depicts the sequence of vectors recorded in
the register R and in the PLR for the worst and the best cases in the network in
Fig. 3.15c. The latter involves the enable signal (see Fig. 3.14) and a simple frag-
ment of a finite state machine shown in Fig. 3.15e that tests this signal. VHDL
codes for complete examples with the enable signal are given in Sect. 5.3.1. Clock
frequency can be increased for all the circuits in Fig. 3.15a–c. Once again, the cir-
cuit in Fig. 3.15c is the least resource consuming.

At first glance, the even-odd merge networks seem to be faster than the circuit
in Fig. 3.14. Besides, pipelining permits even better results to be obtained for these
networks. However, in practice, even if the even-odd/bitonic mergers are faster, we
cannot take advantage of such high speeds. The reasons for this conclusion are the
following. Even simple experiments show that the routing overhead for the circuit

Fig. 3.14   The even-odd transition sorting network with reusable even and odd lines (VHDL
code IC on the right-hand side will be referenced later on)

http://dx.doi.org/10.1007/978-3-319-04708-9_5
http://dx.doi.org/10.1007/978-3-319-04708-9_5

115

in Fig. 3.14 is lower. Very high throughputs cannot be achieved in practical applica-
tions because of communication overheads. Indeed, initial data need to be supplied
to the sorter, the results have to be taken from the sorter, and the speed of commu-
nications is a bottleneck. The latter is more critical for networks that process small
sets of data and, thus, more frequent data exchange is involved (since the number of
transmitted data is actually very small it is difficult to apply full burst mode capa-
bilities). Intensive communications between the processing system and the pro-
grammable logic in hybrid sorters that are implemented partially in software and
partially in hardware do not allow the desired performance to be achieved because
the processing system is frequently interrupted for necessary data exchange.

The following example gives the complete VHDL code enabling the circuit in
Fig. 3.14 to be verified in the Atlys board for N = 16 and M = 4. The functionality
can be tested in a host PC (in a virtual window). The details are given in Sects. 1.7 and
2.6. Additional examples with Nexys-4 board will be given in Sects. 4.1 and 4.4.2.

entity EvenOddTransitionIterative is -- this code is for the Atlys board
generic (M : integer := 4;
 N : integer := 16);

port (clk : in std_logic;
 BTNC, BTNU, BTND, BTNL, BTNR : in std_logic;

Sw : in std_logic_vector(7 downto 0);
 EppAstb : in std_logic; -- for the component IOExpansion from Digilent
 EppDstb : in std_logic;
 EppWr : in std_logic;
 EppDB : inout std_logic_vector(7 downto 0);
 EppWait : out std_logic);
end EvenOddTransitionIterative;
architecture Behavioral of EvenOddTransitionIterative is

signal MyLed : std_logic_vector(7 downto 0);
signal MyLBar : std_logic_vector(23 downto 0);
signal MySw : std_logic_vector(15 downto 0);
signal MyBtn : std_logic_vector(15 downto 0);
signal data_to_PC : std_logic_vector(31 downto 0);
signal data_from_PC : std_logic_vector(31 downto 0);
signal unsortedSwBtn : std_logic_vector(31 downto 0);
type set_of_16items is array (N-1 downto 0) of std_logic_vector (M-1 downto 0);
signal input_items : set_of_16items;
signal sorted : set_of_16items;
signal out1_in2, out2_in3 : set_of_16items;

begin
-- 32-bit signal unsortedSwBtn contains values from virtual (MySw, MyBtn) and onboard (Sw, BTN) components
unsortedSwBtn <= MySw & Sw & BTNU & BTND & BTNL & BTNR &

MyBtn(3 downto 0);
MyLBar <= MySw & MyBtn(15 downto 8); -- these two lines are for tests only and can
MyLed <= MyBtn(7 downto 0); -- be removed

process(sorted, BTNC) -- displaying the results of sorting in virtual window (signal data_to_PC)
begin
 if BTNC = '0' then -- onboard button BTNC enables different 32-bit data (8 items) to be sent to PC

for i in N/2-1 downto 0 loop
data_to_PC((i+1)*M-1 downto i*M) <= sorted(i);

end loop;
else

for i in N/2-1 downto 0 loop
data_to_PC((i+1)*M-1 downto i*M) <= sorted(i+8);

end loop;
end if;

end process;

(a) (c) (e)

(d)(b)

Fig. 3.15   Pipelined implementations: for even-odd merge sorter in Fig. 3.5 (a), even-odd transi-
tion sorter in Fig. 3.13 (b), the circuit in Fig. 3.14 (c), the sequence of vectors recorded in the
register R and in the PLR (d), a fragment of the state transition diagram to control the circuit in
Fig. 3.14 (e)

3.5  Design Examples for Parallel Sort

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_2
http://dx.doi.org/10.1007/978-3-319-04708-9_4
http://dx.doi.org/10.1007/978-3-319-04708-9_4

116 3  Design Techniques

entity EvenOddTransitionIterative is -- this code is for the Atlys board
generic (M : integer := 4;
 N : integer := 16);

port (clk : in std_logic;
 BTNC, BTNU, BTND, BTNL, BTNR : in std_logic;

Sw : in std_logic_vector(7 downto 0);
 EppAstb : in std_logic; -- for the component IOExpansion from Digilent
 EppDstb : in std_logic;
 EppWr : in std_logic;
 EppDB : inout std_logic_vector(7 downto 0);
 EppWait : out std_logic);
end EvenOddTransitionIterative;
architecture Behavioral of EvenOddTransitionIterative is

signal MyLed : std_logic_vector(7 downto 0);
signal MyLBar : std_logic_vector(23 downto 0);
signal MySw : std_logic_vector(15 downto 0);
signal MyBtn : std_logic_vector(15 downto 0);
signal data_to_PC : std_logic_vector(31 downto 0);
signal data_from_PC : std_logic_vector(31 downto 0);
signal unsortedSwBtn : std_logic_vector(31 downto 0);
type set_of_16items is array (N-1 downto 0) of std_logic_vector (M-1 downto 0);
signal input_items : set_of_16items;
signal sorted : set_of_16items;
signal out1_in2, out2_in3 : set_of_16items;

begin
-- 32-bit signal unsortedSwBtn contains values from virtual (MySw, MyBtn) and onboard (Sw, BTN) components
unsortedSwBtn <= MySw & Sw & BTNU & BTND & BTNL & BTNR &

MyBtn(3 downto 0);
MyLBar <= MySw & MyBtn(15 downto 8); -- these two lines are for tests only and can
MyLed <= MyBtn(7 downto 0); -- be removed

process(sorted, BTNC) -- displaying the results of sorting in virtual window (signal data_to_PC)
begin
 if BTNC = '0' then -- onboard button BTNC enables different 32-bit data (8 items) to be sent to PC

for i in N/2-1 downto 0 loop
data_to_PC((i+1)*M-1 downto i*M) <= sorted(i);

end loop;
else

for i in N/2-1 downto 0 loop
data_to_PC((i+1)*M-1 downto i*M) <= sorted(i+8);

end loop;
end if;

end process;
process(clk) -- control of iterations in the network in Fig. 3.14 without the enable signal

variable index : integer range 0 to N := 0;
begin -- the signal input_items is used instead of the register in Fig. 3.14
 if rising_edge(clk) then
 if (index < N) then index := index+1;
 input_items <= out2_in3;

else index := 0; sorted <= out2_in3;
for i in N/2-1 downto 0 loop -- input_items keeps 16 4-bit unsorted items

input_items(i) <= data_from_PC((i+1)*M-1 downto i*M);
input_items(i+N/2) <= unsortedSwBtn((i+1)*M-1 downto i*M);

end loop;
end if;

end if;
end process;
IO_interface : entity work.IOExpansion -- link with the IOExpansion component from Digilent

port map(EppAstb, EppDstb, EppWr, EppDB, EppWait, MyLed,
 MyLBar, MySw, MyBtn, data_from_PC, data_to_PC);
-- even-odd transition sequential circuit shown in Fig. 3.14 (see also VHDL code IC on the right-hand side)

117

generate_even_comparators:

generate_odd_comparators:

The comparator is described as follows:

The synthesized circuit occupies 132 FPGA slices (from 6822 available slices)
and the equivalent even-odd merge network requires 196 slices. The results of syn-
thesis and implementation of circuits for M = 32 show that the even-odd merge
network can be realized in the considered FPGA for only up to N = 32 (due to not
sufficient resources) while the circuit in Fig. 3.14 can be customized and imple-
mented for significantly greater number of N. Note that the generic values in the

for i in N/2-1 downto 0 generate
EvenComp : entity work.Comparator

generic map (M => M) -- the signal out1_in2 below provides connections between even and odd lines
port map(input_items(i*2), input_items(i*2+1), out1_in2(i*2), out1_in2(i*2+1));

end generate generate_even_comparators;

for i in N/2-2 downto 0 generate
OddComp : entity work.Comparator

generic map (M => M) -- the signal out2_in3 below provides connections with the register
port map(out1_in2(2*i+1), out1_in2(2*i+2), out2_in3(i*2+1), out2_in3(i*2+2));

end generate generate_odd_comparators;
out2_in3(0) <= out1_in2(0); -- signals from the even line (because there are
out2_in3(N-1) <= out1_in2(N-1); -- no passes through the odd line)

end Behavioral;

entity Comparator is
generic (M : integer := 4);
port(Op1, Op2 : in std_logic_vector(M-1 downto 0);

 MaxValue : out std_logic_vector(M-1 downto 0);
 MinValue : out std_logic_vector(M-1 downto 0));
end Comparator;

architecture Behavioral of Comparator is
begin
process(Op1,Op2)
begin

if Op1 >= Op2 then MaxValue <= Op1; MinValue <= Op2;
else MaxValue <= Op2; MinValue <= Op1;
end if;

end process;
end Behavioral;

process(clk) -- control of iterations in the network in Fig. 3.14 without the enable signal
variable index : integer range 0 to N := 0;

begin -- the signal input_items is used instead of the register in Fig. 3.14
 if rising_edge(clk) then
 if (index < N) then index := index+1;
 input_items <= out2_in3;

else index := 0; sorted <= out2_in3;
for i in N/2-1 downto 0 loop -- input_items keeps 16 4-bit unsorted items

input_items(i) <= data_from_PC((i+1)*M-1 downto i*M);
input_items(i+N/2) <= unsortedSwBtn((i+1)*M-1 downto i*M);

end loop;
end if;

end if;
end process;
IO_interface : entity work.IOExpansion -- link with the IOExpansion component from Digilent

port map(EppAstb, EppDstb, EppWr, EppDB, EppWait, MyLed,
 MyLBar, MySw, MyBtn, data_from_PC, data_to_PC);
-- even-odd transition sequential circuit shown in Fig. 3.14 (see also VHDL code IC on the right-hand side)

3.5  Design Examples for Parallel Sort

118 3  Design Techniques

entity EvenOddTransitionIterative are dependent on the available virtual and onboard
peripheral devices and generally cannot be changed. However, the even-odd transi-
tion iterative network is customizable, i.e. it can be used with different values N
and M as will be shown in Sect. 4.4.

3.6 � Design Examples for Parallel Search

Let us look at Fig. 3.16 where the network finds the items with the maximum and
minimum values for N = 8 [3, 23].

Much like the network in Fig. 3.13, the circuit in Fig. 3.16 can be implemented
either combinationally or sequentially in a way shown in Fig. 3.17 [3, 23]. In the
last case the hardware resources are obviously decreased. Indeed, the circuit in

Fig. 3.16 requires N +
(log2N)−2∑

n=1

2n comparators/swappers whereas the circuit in

Fig. 3.16   A network for
discovering the minimum and
maximum values for N = 8
(scalable for any N)

Fig. 3.17   A circuit for
discovering the minimum and
maximum values

http://dx.doi.org/10.1007/978-3-319-04708-9_4

119

Fig. 3.17—N/2 comparators/swappers. The implementation in Fig. 3.17 is very
regular, easily scalable for any N and does not involve complex interconnec-
tions. The minimum and maximum values can be found in Tf clock cycles and
Tf =

⌈
log2N)

⌉
− 1. Indeed, at the last iteration (Tf) the results are already on the

outputs of the comparators/swappers.
It is shown in [23] that a slightly modified circuit in Fig. 3.17 can search for the

maximum and minimum values in very large sets (that exceed millions of items).
Besides, such circuits can also be helpful for certain types of sorting that are also
discussed in [23].

VHDL code below describes the fully combinational circuit in Fig. 3.16 that
enables only the maximum value to be found (generic parameters M, L, and N
have default values 4, 4, and 16, respectively: L is the number of levels shown in
Fig. 3.16 and they are 0, 1, 2, and 3 for the code below):

Since N = 2L then in the code above the generic line for N can be removed and
symbol N can be replaced with 2**L. Discovering the minimum value is done trivi-
ally. It is sufficient to swap two lines in the Comparator (see Sect. 3.5), i.e. supplying

-- the same ports as for the entity EvenOddTransitionIterative in the example above without clk and BTNC signals
architecture Behavioral of MaxCombinational is -- the name of the entity now is MaxCombinational

-- the same first 7 lines as in the architecture above (for the entity EvenOddTransitionIterative)
type set_of_16items is array (N-1 downto 0) of std_logic_vector (M-1 downto 0);
type set_of_levels is array (0 to L) of set_of_16items;
signal to_level, from_level : set_of_levels; -- input/output signals for each level in Fig. 3.16

begin -- this code is for the Atlys board

-- concurrent assignments for unsortedSwBtn, MyLBar and MyLed are the same as in the architecture above

data_to_PC <= (31 downto 4 => '0') & to_level(L)(0);

process(data_from_PC, unsortedSwBtn)
begin -- preparing input data for the circuits in Fig. 3.16

for i in N/2-1 downto 0 loop
 to_level(0)(i) <= data_from_PC((i+1)*M-1 downto i*M);
 to_level(0)(i+N/2) <= unsortedSwBtn((i+1)*M-1 downto i*M);

end loop;
end process;
-- declaration of the component IOExpansion is the same as in the architecture above
generate_comparators: -- generation of the circuit in Fig. 3.16 to find out the maximum value
for j in 1 to L generate

one_level: -- the code below is fully parameterized and can be used for any values of N and L
for i in N/2**j-1 downto 0 generate -- for a given L, N= 2**L

EvenComp : entity work.Comparator -- the comparator is generic
generic map (M => M)
port map(to_level(j-1)(i*(2**j)), to_level(j-1)(i*(2**j)+2**(j-1)),

 from_level(j-1)(i*(2**j)), from_level(j-1)(i*(2**j)+2**(j-1)));
end generate one_level;
to_level(j) <= from_level(j-1); -- connects outputs of a previous level with inputs of the next level

end generate generate_comparators;

end Behavioral;

3.6  Design Examples for Parallel Search

120 3  Design Techniques

to the third port MinValue and to the fourth port MaxValue (instead of MaxValue and
MinValue in Sect. 3.5).

The following VHDL code describes the circuit in Fig. 3.17 that enables both
the maximum and minimum values to be found. Just two generic parameters M, L
with default values 4, 4 are declared and N is replaced with 2**L.

All the projects in Sects. 3.5, 3.6 and also in the subsequent sections can be
tested in a virtual window (the details are given in Sects. 1.7 and 2.6).

Let us look again at Fig. 3.16. Assuming that indices of the first and of the
last data items are Ifirst = 0 and Ilast = N-1, the circuit in Fig. 3.16 might be
used as follows [23]: (1) discovering the maximum and the minimum values; (2)
incrementing Ifirst and decrementing Ilast and repeating the steps (1), (2) while
Ifirst < Ilast. Clearly, such a way permits data items to be sorted as it is shown on a
simple example in Fig. 3.18.

-- the same ports as for the entity EvenOddTransitionIterative in the example above without the BTNC signal
architecture Behavioral of MaxMinIterative is -- the name of the entity now is MaxMinIterative

-- the same first 7 lines as in the architecture above (for the entity EvenOddTransitionIterative)
type set_of_16items is array (2**L-1 downto 0) of std_logic_vector (M-1 downto 0);
signal MyRegister, from_comparators : set_of_16items;
signal ResultMax, ResultMin : std_logic_vector(M-1 downto 0);

begin
-- concurrent assignments for unsortedSwBtn, MyLBar and MyLed are the same as in section 3.5
data_to_PC <= (31 downto 8 => '0') & ResultMin & ResultMax;

process(clk)
variable iterations : integer range 0 to L-1 := 0;

begin
 if rising_edge(clk) then
 if iterations < L-1 then
 MyRegister <= from_comparators;
 iterations := iterations+1;

else iterations := 0; ResultMax <= from_comparators(0);
ResultMin <= from_comparators(2**L-1);
for i in 2**L/2-1 downto 0 loop

 MyRegister(i) <= data_from_PC((i+1)*M-1 downto i*M);
 MyRegister(i+2**L/2) <= unsortedSwBtn((i+1)*M-1 downto i*M);

end loop;
end if;

end if;
end process;
-- declaration of the component IOExpansion is the same as in the architecture above (in section 3.5)
single_line: -- generating a single line of comparators shown in Fig. 3.17
for i in 2**L/2-1 downto 0 generate -- the code is parameterized and can be used for any value of L

Comp: entity work.Comparator -- the comparator is generic
generic map (M => M)
port map(MyRegister(i*2), MyRegister(i*2+1),
from_comparators(i), from_comparators(i+2**L/2));

end generate single_line;

end Behavioral;

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_2

121

As you can see the network in Fig. 3.18 is slightly changed at each subsequent
step. Figure 3.19 presents an example in which the same network for discovering
the maximum value is entirely reused.

Each step (executing during one clock cycle) enables the maximum value in
input data set to be found. After that data are shifted up and the next step is exe-
cuted (see Fig. 3.20). The Register R is clocked and each new sorted data item is
produced in each clock cycle. As soon as there is no data exchange in the com-
parators all the items are sorted. Hence, a new sorted data item is ready after one
clock cycle and the depth of the network with N-1 comparators is only

⌈
log2N)

⌉

where N is the number of data items. Besides, sorting may be concluded earlier
than after N clock cycles. For example, in Fig. 3.19 the results are ready after
4 clock cycles and N = 8. The experiments have demonstrated that if we need
to sort all data items before outputting the result, then the previously described

Fig. 3.18   Sorting in the network in Fig. 3.16

Fig. 3.19   Sorting with the aid of the network that enables the maximum value to be found

Fig. 3.20   Sorting by the
circuit is Fig. 3.19

3.6  Design Examples for Parallel Search

122 3  Design Techniques

circuits (see Sect. 3.5) should be faster. However, if we need to output the sorted
data as soon as possible, the considered here circuit is better and it is very fast.
Clearly, the circuit from Fig. 3.17 may directly be used and it permits the number
of comparators to be additionally reduced up to N/2. Throughput is also reduced
and each new sorted item is ready after Tf clock cycles.

Let us return back again to the search problem. From Fig. 3.17 we can see that
at each clock cycle N/2 data items, which include the maximum/minimum value,
will be copied to the top/bottom segment of the Register R. Thus, the remaining
(either bottom or top) part of the Register R can be reused to load a new portion
of data. This technique enables the maximum/minimum values in very large data
sets to be found even in low-cost FPGAs. Figure 3.21 gives necessary details. The
circuit in Fig. 3.21a copies the even outputs of the network containing the maxi-
mum value (see Fig. 3.17) to the upper N/2 M-bit words of the Register R. The
bottom N/2 M-bit words of the Register R cannot contain the maximum value and
may be reused to load a new portion of data items (such as 127, 511, 87, and 3
shown in the example in Fig. 3.21b). Since a new portion can be loaded at each
clock cycle, the maximum value for data sets containing Θ items can be discov-
ered in τ = 2 × (Θ − N)/N +

⌈
log2N

⌉
 clock cycles. For instance, if Θ = 220 =

1048 576, N = 512 then τ = 4103. Such circuit is not resource consuming and
can be implemented even in low-cost FPGAs with external memory supplying
input data. In Sect. 4.5 we will describe All Programmable Systems-on-Chip. We
believe that the circuit in Fig. 3.21 would allow applications implemented on the
basis of APSoCs and requiring searching in large sets of data items to be acceler-
ated significantly.

The circuit in Fig. 3.22a discovers the maximum and the minimum values in
τ = 4 × (Θ − N)/N +

⌈
log2N

⌉
 clock cycles [23]. At the beginning, two cycles

are needed to produce (in the Register R) the upper N/4 M-bit words with the
maximum value and the bottom N/4 M-bit words with the minimum value. After
that the middle N/2 M-bit words (of the Register R) can be reused to load a new

(a) (b)

Fig. 3.21   Using the circuit in Fig. 3.17 for large scale data sets: discovering the maximum value
(a), an example (b)

http://dx.doi.org/10.1007/978-3-319-04708-9_4

123

portion of N/2 data items and once again the maximum and the minimum values
will be transferred to the upper and to the bottom quarters of the Register R in
2 clock cycles. Thus, 2 × (Θ − N)/(N/2) = 4 × (Θ − N)/N cycles are required
to process (to upload) all data and

⌈
log2N

⌉
 cycles to propagate the last portion

through the max–min circuit (see Fig. 3.17). If Θ = 220 = 1 048 576, N = 512
then τ = 8197. Thus, the technique [23] enables large data sets to be handled.

3.7 � Design Examples for Parallel Counters

Parallel computations frequently involve operations over elements of long binary
and ternary vectors [3, 10, 24]. Examples include calculating the Hamming
weight of a binary vector (i.e. the number of ones in the vector) [25, 26], compar-
ing Hamming weights [25, 26], operations over ternary vectors in combinatorial
search [24], and data processing [27]. In many practical applications, the execu-
tion time for operations over vectors has a significant impact on performance.

Let us consider address-based sorting [10, 27]. The basic idea is very sim-
ple. When a new data item is received, its value V is used as the memory address
at which a flag (1) is recorded. We assume that all memory is zero initially and
there are no duplicate input values. Once all the input data have been recorded
in memory in the form of a long binary vector, the sorted sequence can be pro-
duced by sequentially reading the addresses of locations containing ‘1’ flags. This
process can be accelerated significantly if we know how many data items are
recorded in each memory segment [10]. The sizes of segments can be from tens
of bits to thousands of bits, or even more. Thus, we need to find a fast way to
count the number of ones in a long binary vector (i.e. its Hamming weight). There

(a) (b)

Fig. 3.22   Finding the maximum and the minimum values (a), an example (b)

3.6  Design Examples for Parallel Search

124 3  Design Techniques

are several ways to solve this task. The simplest relies on sequential counting (see
an example in Fig. 3.4) and is time consuming. Non-sequential circuits are fre-
quently constructed as parallel counters [25], which are circuits based on a tree of
full adders (FA). Figure 3.23 depicts a fixed-threshold Hamming weight compara-
tor from [25], which uses a parallel counter for N = 15 (HW15) and a carry net-
work (CN) circuit. The result of comparison is obtained as HW15-κ or the same as
HW15 plus the 2’s-complement of the threshold κ.

The circuit in Fig. 3.23 is scalable for any value of N. Formulae that deter-
mine the number of elements C(N) in Fig. 3.23 and the throughput D(N)
are given in [25]: C(N) = (N − log2N − 1) × γFA + log2N; D(N) = (log2N −
1) × (δsum + δcarry) + 1 where γFA is the cost of a full adder (FA) relative to a gate
(in [25] γFA = 9 was chosen), and δsum/δcarry are the FA delay parameters (the delay
of FA relative to a gate and in [25] the value δsum = δcarry = 2 were taken). It is
shown in [10] that the chosen values γFA, δsum, and δcarry are not appropriate for
FPGAs. We found [10] that Hamming weight comparators based on parallel coun-
ters [25] are almost always less resource consuming than the networks [26, 28, 29]
and they can benefit from highly optimized components supporting arithmetic oper-
ations in general-purpose FPGA slices. Thus, they are also fast.

VHDL code below describes the parallel counter for N = 16 and Hamming
weight comparator with fixed 4-bit threshold κ. The relevant circuit has been
designed for the Nexys-4 prototyping board (Artix-7 FPGA) and occupies 9 slices
with the maximum combinational path delay 5.1 ns.

Fig. 3.23   Combinational parallel counter for N = 15 and Hamming weight comparator with
4-bit fixed threshold κ (from [25])

125

Full adder is described as follows:

entity ParallelCounterComparator is
port (sw : in std_logic_vector(15 downto 0);

 led : out std_logic_vector(4 downto 0);
 ledC : out std_logic);
end ParallelCounterComparator;

architecture Behavioral of ParallelCounterComparator is
signal R1, R2, R3, R4, R2_1, R2_2, R2_3, R2_4, R3_1, R3_2, R3_3 : std_logic;
signal COut1, COut2, COut3, COut4 : std_logic;
signal COut2_1, COut2_2, COut2_3, COut2_4 : std_logic;
signal COut3_1, COut3_2, COut3_3 : std_logic;
signal B : std_logic_vector(15 downto 0); -- represents 16-bit input vector
signal PC_out : std_logic_vector(3 downto 0); -- represents 4-bit output for HW15

signal threshold : std_logic_vector(3 downto 0); -- fixed threshold
signal k_two_comp : std_logic_vector(3 downto 0); -- 2's-complement of the threshold
signal HW_comp : std_logic; -- the result of the comparison

begin
B <= sw; -- input data are taken from 16 onboard (Nexys-4) switches
threshold <= (1 => '1', 3 => '1', others => '0'); -- threshold that is 10 is chosen as an example
k_two_comp <= (not threshold) + 1; -- 2's-complement of the threshold (of the value 10)

-- structural code below allows direct mapping for the circuit in Fig. 3.23
FA0 : entity work.FullAdder port map(B(0), B(1), B(2), R1, COut1);
FA1 : entity work.FullAdder port map(B(3), B(4), B(5), R2, COut2);
FA2 : entity work.FullAdder port map(B(6), B(7), B(8), R3, COut3);
FA3 : entity work.FullAdder port map(B(9), B(10), B(11), R4, COut4);
FA2_0: entity work.FullAdder port map(R1, R2, B(12), R2_1, COut2_1);
FA2_1: entity work.FullAdder

port map(COut1, COut2, COut2_1, R2_2, COut2_2);
FA2_2: entity work.FullAdder port map(R3, R4, B(13), R2_3, COut2_3);
FA2_3: entity work.FullAdder

port map(COut3, COut4, COut2_3, R2_4, COut2_4);
FA3_0: entity work.FullAdder port map(R2_1, R2_3, B(14), R3_1, COut3_1);
FA3_1: entity work.FullAdder port map(R2_2, R2_4, COut3_1, R3_2, COut3_2);
FA3_2: entity work.FullAdder

port map(COut2_2, COut2_4, COut3_2, R3_3, COut3_3);

led <= PC_out + ("0000" & B(15));
PC_out <= COut3_3 & R3_3 & R3_2 & R3_1;

CN: entity work.carry_network
port map (PC_out, B(15), k_two_comp, HW_comp);

ledC <= HW_comp; -- the result of the comparison
end Behavioral;

entity FullAdder is
port(A : in std_logic;

B : in std_logic;
 CarryIn : in std_logic;
 Result : out std_logic;
 CarryOut : out std_logic);
end FullAdder;

architecture Behavioral of FullAdder is
begin
CarryOut <= (A and B) or (A and CarryIn) or (B and CarryIn);
Result <= A xor B xor CarryIn;
end Behavioral;

3.7  Design Examples for Parallel Counters

126 3  Design Techniques

VHDL code below describes the carry network from [25].

It is easy to check that the circuit in Fig. 3.23 is indeed very efficient but there
are also other alternatives that permit even faster and less resource consuming
solutions to be developed (see Sects. 3.8, 3.9 and 4.2).

HW_comp <= HW(3);

end Behavioral;
entity CN_element is -- entity for elements of the carry network from [25]

port (BitFromPC : in std_logic;
BitFromThreshold : in std_logic;
CarryIn : in std_logic;
CarryOut : out std_logic);

end CN_element;

architecture Behavioral of CN_element is
signal and_out : std_logic;
signal or_out : std_logic;
signal second_and_out : std_logic;

begin
and_out <= BitFromThreshold and BitFromPC; -- exact mapping of the circuit from Fig. 4 in [25]
or_out <= BitFromThreshold or BitFromPC;
second_and_out <= or_out and CarryIn;
CarryOut <= second_and_out or and_out;

end Behavioral;

entity carry_network is -- entity for 4-bit carry network from [25]
port (PC_out : in std_logic_vector(3 downto 0); -- see names in Fig. 3.23
 carry_in : in std_logic;
 threshold : in std_logic_vector(3 downto 0); -- two's complement of threshold
 HW_comp : out std_logic); -- the result of the comparison
end carry_network;

architecture Behavioral of carry_network is
signal HW : std_logic_vector(3 downto 0);

begin
first_element: entity work. CN_element

port map(PC_out(0), threshold(0), carry_in, HW(0));

generate_CN: for i in 1 to 3 generate
CN_element: entity work.CN_element

port map(PC_out(i), threshold(i), HW(i-1), HW(i));
end generate generate_CN;

entity FullAdder is
port(A : in std_logic;

B : in std_logic;
 CarryIn : in std_logic;
 Result : out std_logic;
 CarryOut : out std_logic);
end FullAdder;

architecture Behavioral of FullAdder is
begin
CarryOut <= (A and B) or (A and CarryIn) or (B and CarryIn);
Result <= A xor B xor CarryIn;
end Behavioral;

http://dx.doi.org/10.1007/978-3-319-04708-9_4

127

3.8 � Design Examples for Counting Networks

Unlike the circuits described in Sects. 3.5, 3.6, counting networks [10] do not
contain conventional comparators. Instead, each basic component is either a half-
adder or an XOR gate (see Fig. 3.24a). To distinguish such components from
conventional comparators in Fig. 3.5b, we will use rhombs instead of circles (see
Fig. 3.24a) and we will remove such rhombs at any connection with a horizontal
line if this line ends, i.e. if it does not have further connections to the right (see the
upper block in Fig. 3.24a). Figure 3.24b shows an example of a counting network
for N = 2p = 8 inputs where p is a non-negative integer and in the example p = 3.

The data independent segments of the network (see Fig. 3.24b) are composed
of vertical lines that do not have any data dependency between the used compo-
nents; thus all necessary operations can be executed concurrently and are charac-
terized by a single one-component delay. Hence, the total delay of the circuit in
Fig. 3.24b is equal to 6. MSB is the most significant bit and LSB is the least sig-
nificant bit.

The levels of the network (each composed of one or more segments) in
Fig. 3.24b calculate the Hamming weights of: 2-bit (level 1—segment 1); 4-bit
(level 2—segments 2–3); 8-bit (level 3—segments 4–6) binary vectors. An exam-
ple with the input data 01100011 is shown in Fig. 3.24b. Level 1 calculates the
Hamming weights in four 2-bit input vectors: 01, 10, 00, and 11; level 2 calculates
the Hamming weights in two 4-bit input vectors: 0110, and 0011; and, finally, level
3 calculates the Hamming weight in one 8-bit input vector: 01100011 in which
there are four values 1. Thus, the final result is 01002 (the binary code of 410).

The circuit in Fig. 3.24b is very simple and fast. It is composed of just 16 trivial
components that are shown in Fig. 3.24a, which are characterized by negligible
delay. General rules for designing similar circuits for very large numbers of inputs

(a) (b)

Fig. 3.24   Components of a counting network (a), and an example for calculating the Hamming
weight of an 8-bit binary vector (b)

3.8  Design Examples for Counting Networks

128 3  Design Techniques

N are given in [10] together with the proof that such circuits function as intended.
In [10] it is shown, in particular, that counting networks for any N (i.e. where it is
not necessary to satisfy the condition N = 2p) can easily be constructed (see an
example in Fig. 3.25a).

Much like the parallel counters from the previous section the counting network
might be used in Hamming weight comparators (HWC) that take the result from
the output of a network such as that in Fig. 3.25a and compare it with either a
fixed threshold κ, or with the result of a similar to Fig. 3.25a circuit. Thus, the
problem description is exactly the same as in [25]. We consider here two methods
for the final comparison and these are outlined in Fig. 3.25b, c. The first method
involves a carry network (CN) described in VHDL above (see the previous sec-
tion and Fig. 3.25b where a CN is given for the example in Fig. 3.25a). The sec-
ond method is the LUT-based circuit depicted in Fig. 3.25c for the example in
Fig. 3.25a and κ = 3. Since a LUT(n,m) can implement any Boolean function of
n variables, a similar circuit can easily be configured for any value of κ < 2n. If N
is greater (or even significantly greater) than n, the circuit can be built as shown
in Fig. 3.25d. The NOR gate α tests if there are no ‘1’ values in the MSBs of the
Hamming weight that do not include n the LSB. The AND gate β forms the result
of the comparison. The majority of currently available FPGAs contain LUTs(6,1).
Thus, any value of κ < 64 can be chosen. If κ ≥ 64 then the LUT can be replaced
with either a set of LUTs or an embedded memory block (9 ≤ n≤15 for the

(a)
(b)

(c)

(d)

Fig. 3.25   An example of a counting network for N ≠ 2p (a), a carry network composed of carry
network blocks (CNB) from [25] (b), and LUT-based circuits that form the result of comparison
(c, d)

129

majority of contemporary FPGAs). Since all memories (both distributed or LUT-
based and embedded) are run-time configurable, the circuits in Fig. 3.25c, d are
not threshold-dependent (i.e. they may be dynamically customized for any value
of κ < 2n).

Another important feature of LUT-based circuits in Fig. 3.25b, c is an oppor-
tunity to use more than one threshold. For instance, one threshold κl may be the
lower bound and another threshold κu may be the upper bound. We will demon-
strate how to describe such circuits in the next section.

It is shown in [10] that for Hamming weight counters/comparators based on
sorting networks (such as [26]), the number of elements is significantly greater
than the number of elements in the counting networks whereas both types of ele-
ments have practically equal complexity. This is because in contrast to sorting
networks, the number of horizontal lines in counting networks is incrementally
reduced. The number of segments is the same as the number of segments in the
best sorting networks but due to the significantly reduced complexity, counting
networks implemented on a microchip can be employed for much bigger values
of N than sorting networks [26] built on the same microchip. In general, count-
ing networks can be seen as a bridge between the circuits [26, 28, 29] and [25].
Indeed, on the one hand they look like sorting networks, and on the other hand
they form a tree of levels (see Fig. 3.24b) much like parallel counters [25].

We found that if we rely on VHDL generate statements to construct a scalable
counting network then the resources and delays might be worse than for the cir-
cuits from [25]. However, there is a better way. The network can be mapped to
FPGA LUTs as it is shown in Fig. 3.26 for N = 16 [10].

The circuit is Fig. 3.26 was implemented and tested in the Nexys-4 prototyp-
ing board. It occupies 8 FPGA slices with the maximum combinational path delay

Fig. 3.26   Mapping the network fragments onto FPGA LUTs

3.8  Design Examples for Counting Networks

130 3  Design Techniques

4.7 ns. So, it is faster and less resource consuming than the circuits from the previ-
ous section. However, there is an even better way described in the next section (see
also Sect. 4.2).

If bitwise operations can be applied to large binary vectors, then the net-
works might be more economical. For example, contemporary FPGAs contain
up to thousands embedded digital signal processing (DSP) slices which can be
used in addition to the general-purpose FPGA slices (see Sect. 4.2 for additional
details). For example, in Xilinx 7 series devices each slice [30] may be configured
to implement bitwise operations over two 48-bit vectors. Thus, two such slices
enable all operations for data independent segments to be executed combination-
ally for up to N = 96. This opportunity can be used for the networks and cannot
be used for parallel counters. However, the latter can also benefit from the avail-
able DSP slices because the 48-bit operational unit of DSP slice can be split into
smaller data segments (either 12 or 24 bit each) where the internal carry propaga-
tion between segments is blocked to ensure independent operation for all the seg-
ments [30]. This feature is favorable for parallel counters.

Pipelining for networks (see Fig. 3.15) and parallel counters (examples are
given in [10]) permits even faster solutions to be found. However, the delays in the
described above circuits are so small that for the majority of practical applications
an additional acceleration is not required and if nevertheless it is desirable then the
results of [10] can be used.

3.9 � Design Examples for LUT-Based Hamming Weight
Counters/Comparators

Let us firstly implement such a simplest Hamming weight counter (SHWC) that
can be optimally mapped onto FPGA LUTs and then let us take this SHWC as
a base allowing Hamming weight comparators of any required complexity to
be constructed. Besides, we will analyze building blocks in the known HWCs
(e.g. FAs) in order to evaluate an opportunity to use some of them in the dis-
cussed solutions in case if it gives any benefit. Clearly, h LUTs(n,m) can trivi-
ally be configured to calculate the Hamming weight of A = {a0,…,an-1}, where
h =

⌈(
log2(n + 1)

)
/m

⌉
. Thus, h LUTs may be chosen for the SHWC. The idea

is to build a network from SHWCs that can compute the Hamming weight for an
arbitrary vector of size N. Figure 3.27 presents a complete solution for n = 6 (i.e.
for SHWC) and N = 36 as an example. All LUTs in any layer execute multiple
logic operations in parallel. For example, all SHWCs of the first layer count the
Hamming weights in the 6-bit vectors on their inputs concurrently. Similarly the
LUTs(6,3) in the layer 2 output the results with just one LUT delay.

All LUT blocks are configured identically. Any block (i.e. SHWC)
counts the Hamming weight of 6-bit vector on the input and is composed
of CSHWC =

⌈(
log2(n + 1)

)
/ m

⌉
 physical LUTs(n,m). The circuit in Fig. 3.27

http://dx.doi.org/10.1007/978-3-319-04708-9_4
http://dx.doi.org/10.1007/978-3-319-04708-9_4

131

contains CSHWC × (⌈N / n⌉ + ⌈(N /2)/n⌉) LUTs(n, m). Even for m = 1 (the
worst case when any physically implemented in FPGA LUT has just one output)
and n = 6 we need only 27 LUTs for N = 36. This is negligible, because, for
example, the FPGA xc7a100t (used for experiments) incorporates 15,850 slices
and each slice contains 4 LUTs(6,1). However, we still need to implement the out-
put block that forms the result of comparison. Figure 3.28 depicts a LUT-based
solution.

There are two circuits in Fig. 3.28. The first one (Fig. 3.28a) takes output sig-
nals α1α2α3β1β2β3χ1χ2χ3 from Fig. 3.27 and calculates the Hamming weight
of the input vector A =

(
ai

0, . . . , ai
35

)
. The second circuit (Fig. 3.28b) compares

the Hamming weight with a threshold κ preliminary uploaded to the LUTs (in
Fig. 3.28b κ = 15: the output C is ‘0’ when the Hamming weight of A is less than
15, otherwise C is ‘1’). If reconfigurable LUTs are not desirable then the outputs
of the circuit in Fig. 3.28a are connected to the carry network [25]. Figure 3.28
includes INIT statements [31] to configure all the LUTs. The circuit in Fig. 3.28a
is in fact a multi-bit adder (with 2-bit carry signals ρ0 and ρ1), which adds the fol-
lowing three vectors: (1) α1α2α3 shifted two bits left; (2) β1β2β3 shifted one bit
left; and (3) χ1χ2. This was done because the vector α1α2α3 contains the num-
ber N4 of values 4, the vector β1β2β3—the number N2 of values 2, and the vector
χ1χ2χ3—the number N1 of values 1 (see Fig. 3.27). In the final Hamming weight
the value α1α2α3 has to be multiplied by 4 (or shifted left by two bits) and the

Fig. 3.27   A complete HWC for N = 36

3.9  Design Examples for LUT-Based Hamming Weight Counters/Comparators

132 3  Design Techniques

value β1β2β3 has to be multiplied by 2 (or shifted left by one bit), which is done in
the shift operations. Clearly, the value χ3 can be taken directly.

For N < 36 some LUTs can be removed from the circuit in Fig. 3.27. For exam-
ple, for N = 32 the left-hand bottom LUT can be taken off and the lines a30, a31
will be connected directly to the LUTs of the second layer. This change reduces the
number of LUTs but makes the circuit less regular. Since the number of occupied
LUTs is indeed very small, the simplest way is to assign zeros to 4 unused inputs.

If for LUT(n,m) n < 6, the hierarchy is built similarly. Thus, if n = 5 we need
5 LUT groups at the layer 1 (each handling 5 signals), then 3 groups at the layer 2
(each also handling 5 signals). Finally, the same circuit as shown in Fig. 3.28 out-
puts the results.

A complete synthesizable VHDL specification of the circuits in Figs. 3.27 and
3.28 ready for immediate tests and assessments in many available FPGA-based
prototyping boards is given in Appendix B.

For larger values N the general structure of the HWC is the same as in
Fig. 3.27. An example for N = 216 is given in [3].

Our preliminary analysis has shown that the described above LUT-based cir-
cuits, parallel counters [25] and counting networks [10] are the best in resources
and performance. Let us attempt to discover even better solutions combining capa-
bilities of different designs. The circuit in Fig. 3.29 realizes such a combination
for typical physical LUTs(6,1)/LUTs(5,2) from the libraries [31] and N = 18. Any
LUT on the left hand side is an SHWC. Later on we will show how to build simi-
lar circuits for N = 2 g (g = 5,6,…).

The full adders FA1, FA2, and FA3 in Fig. 3.29 calculate in the Hamming
weight the number of values one (N1), the number of values 2 (N2) and the

(a) (b)

Fig. 3.28   Output circuit (see Fig. 3.27) to count the Hamming weight (a), and for HWC (b)

133

number of values 4 (N4), accordingly. Let us consider an example of an input vec-
tor B = “101101_011111_110001” in which 6-bit sub-vectors are separated for
better visibility. The LUTs on the left hand side output the following 3-bit vectors
‘‘100’’ (because there are 4 values ‘1’ in the sub-vector ‘‘101101’’), ‘‘101’’ (because
there are 5 values ‘1’ in the sub-vector ‘‘011111’’), and ‘‘011’’ (because there are 3
values ‘1’ in the sub-vector ‘‘110001’’). FA1, FA2, and FA3 calculate a sum of the
least significant, the middle and the most significant bits in the produced 3-bit vec-
tors and, thus, N1 = ‘0’ + ‘1’ + ‘1’ = “10”, N2 = ‘0’ + ‘0’ + ‘1’ = “01”, and
N4 = ‘1’ + ‘1’ + ‘0’ = “10”. The final result is calculated as ‘‘10’’ (i.e. the vector
‘‘10’’ – N1) + “10” (i.e. the vector ‘‘01’’ (N2) shifted left by 1) + “1000” (i.e. the vec-
tor ‘‘10’’ (N4) shifted left by 2) = “1100” giving the Hamming weight 11002 or 1210
for the input vector B. The right-hand LUT(6,1) compares inputs with preconfigured
values and outputs the result of comparison. The basic idea is similar to the described
above (see Fig. 3.27) but we benefit from two new features: (1) the circuits can now
efficiently be scaled by 3, i.e. not by 6 as in the previous section or by 2 in [25]) and
(2) the HWCs may take advantage of highly optimized arithmetic circuits (such as
FA) normally offered in commercially available FPGAs. Another important charac-
teristic is a nonexistence of carry propagation signals between the FAs (see Fig. 3.29).
The total delay in the circuit is composed of only two LUTs delay and an FA delay.

The circuit in Fig. 3.29a possesses a distinctive feature. It permits more than
one threshold (bound) to be used. Some examples are given in Fig. 3.30.

(a)

(b)

Fig. 3.29   Hamming weight comparator based on LUTs and full adders (a), verification of the
circuit (b)

3.9  Design Examples for LUT-Based Hamming Weight Counters/Comparators

134 3  Design Techniques

Figure 3.30a demonstrates the most frequently considered comparator with
one threshold. However, we can also indicate a lower and upper bounds (see
Fig. 3.30b) and even variable bounds (see Fig. 3.30c). Such feature cannot be pro-
vided for HWC [25] based on parallel counters.

VHDL code below is a complete synthesizable specification of the circuit in
Fig. 3.29a.

entity HammingWeightComparator is -- The code below has been tested for Nexys-4
port (Data_in : in std_logic_vector (17 downto 0); -- the vector B0,…,B17 in Fig. 3.29a

LedC : out std_logic); -- the result of comparison
end HammingWeightComparator;
-- names of the signals are the same as in Fig. 3.29

architecture Behavioral of HammingWeightComparator is
signal Upper, Middle, Bottom : std_logic_vector(2 downto 0);
signal ToComp : std_logic_vector(5 downto 0);
begin

LUT_6_3_upper: entity work.LUT_6to3
port map(Data_in(17 downto 12), Upper);

LUT_6_3_middle: entity work.LUT_6to3
port map(Data_in(11 downto 6), Middle);

LUT_6_3_bottom: entity work.LUT_6to3
port map(Data_in(5 downto 0), Bottom);

LUT6_1_comp:entity work.LUT6_1
port map (ToComp, LedC);

FA_generate: for i in 0 to 2 generate
FA: entity work.FullAdder

port map(Bottom(i), Middle(i), Upper(i), ToComp(2*i), ToComp(2*i+1));
end generate FA_generate;

end Behavioral;

(a)

(b)

(c)

Fig. 3.30   Hamming weight comparator with a fixed threshold (a), lower/upper bounds (b), and
variable bounds (c)

135

There are two new components (LUT_6to3 and LUT6_1) and they are described as
follows:

This is the code for the LUT6_1 component:

The circuit synthesized from the code above for Artix-7 FPGA (Nexys-4) has
the maximum combinational path delay equal to 2.5 ns and occupies 6 logical
slices.

library IEEE; -- all necessary libraries are explicitly shown here because this
use IEEE.STD_LOGIC_1164.all; -- code has to be directly copied to an example in Appendix B
library UNISIM; -- (HammingWeightCounter36bits for N=36)
use UNISIM.vcomponents.all;
entity LUT_6to3 is -- Xilinx library UNISIM [31] for LUT primitives has to be included

port (Data_in : in std_logic_vector (5 downto 0); -- 6-bit input vector
HW : out std_logic_vector (2 downto 0)); -- the Hamming weight

end LUT_6to3;

architecture Behavioral of LUT_6to3 is
begin -- for non-Xilinx FPGAs, constants can be used instead of the LUT primitives (see Sect. 2.8)

LUT6_inst1 : LUT6
generic map (INIT => X"fee8e880e8808000") -- LUT Contents
port map (HW(2), Data_in(0), Data_in(1), Data_in(2), Data_in(3),

Data_in(4), Data_in(5));

LUT6_inst2 : LUT6
generic map (INIT => X"8117177e177e7ee8") -- LUT Contents
port map (HW(1), Data_in(0), Data_in(1), Data_in(2), Data_in(3),

Data_in(4), Data_in(5));

LUT6_inst3 : LUT6
generic map (INIT => X"6996966996696996") -- LUT Contents
port map (HW(0), Data_in(0), Data_in(1), Data_in(2), Data_in(3),

Data_in(4), Data_in(5));

end Behavioral;

entity LUT6_1 is -- Xilinx library UNISIM [31] for LUT primitives has to be included
port (Data_in : in std_logic_vector (5 downto 0); -- 6-bit input vector

 Comp : out std_logic); -- Comp is the result of comparison
end LUT6_1;

architecture Behavioral of LUT6_1 is
begin

LUT6_inst0 : LUT6 -- this LUT is used just for the final comparator (see the right-hand LUT in Fig. 3.29a)
-- LUT Contents for the upper bound 10 and for the lower bound 4: (0-3: 1; 4-10: 0; 10-17: 1)
generic map (INIT => X"fffffffcfc00003f") -- configuring such LUTs is explained in Appendix B
port map (Comp, Data_in(0), Data_in(1), Data_in(2), Data_in(3),

Data_in(4), Data_in(5));
end Behavioral;

3.9  Design Examples for LUT-Based Hamming Weight Counters/Comparators

136 3  Design Techniques

The HWC in Fig. 3.29 is easily modifiable for other close values of N.
Figure 3.31a gives an example for N = 15 and Fig. 3.31b—for N = 16. The circuit
in Fig. 3.31a occupies just 3 Artix-7 FPGA slices and the complete synthesizable
VHDL description for such circuit is given in Appendix B. For 6 < N<15 some
inputs can be connected to zero. Clearly for N ≤ 6 just the SHWC (see Fig. 3.27)
is sufficient.

The HWCs for larger number N of bits can be created from the HWCs shown
in Figs. 3.29 and 3.31 interconnected with some others LUT-based circuits (such
as SHWC) and eventually involving additional FAs. For example, Fig. 3.32 gives
a solution for N = 32 based on the circuit in Fig. 3.31a. The blocks A and B are
the circuits shown in Fig. 3.31a in which the right hand LUT(6,1) depicted in
Fig. 3.29 is replaced with a LUT(6,4) that outputs 4-bit Hamming weight of 15-bit
input vectors. The block C produces the sum of two most significant bits (MSB)
of the blocks A and B and the block D produces the sum of two least significant
bits (LSB) of the blocks A and B. Since the maximum value on the outputs of
the block D is 6 (i.e. 112 + 112 = 1102 = 610) we can add one more input for the
bit B30. Thus, now the maximum value becomes 7 (i.e. 1102 + 12 = 710) and the
number of outputs is the same (i.e. 3).

The outputs of the block C represent the number of values 4 in the Hamming
weight (additional details and explanations are given in Appendix B). Finally,
the block E outputs the result of comparison. Let us look at the example shown
in Fig. 3.32. Suppose the blocks A and B output the values 1101 and 0110

(a) (b)

Fig. 3.31   Hamming weight comparators for N = 15 (a), and N = 16 (b)

137

respectively. The MSBs shown in bold font are added in the block C giving the
result 100 (11 + 01 = 100) denoting four values 4. The block D outputs 011 (i.e.
01 + 10 = 011) plus the value of bit B30. If B30 = 0 then the number for com-
parison is 100011 which corresponds to the decimal value 19 (four values 4 plus
three values 1). If B30 = 1 then the number for comparison is 20. Clearly, the
block E that is built on a LUT(6,1) can easily produce the results of comparison
for 31-bit vector B = {B0,…,B14,B15,…,B29,B30}. The block E that is built on a
LUT(6,4) enables the Hamming weight for B to be calculated. If 32-bit vectors are
to be used then an additional input with a bit B31 is appended to the block E (see
Fig. 3.32). Clearly more physical FPGA primitives will be needed for the LUT
that is now LUT(7,4).

A complete synthesizable VHDL code for the circuit in Fig. 3.32 is given in
Appendix B. Scaling for larger values of N can be done similarly.

3.10 � Design Examples for Operations Over Vectors

Suppose we have a set of N sorted data items (produced, for example, by a
sorter in Sect. 3.5) which eventually include repeated items and we need the
most frequently repeated item to be found. One possible solution for this
problem proposed in [9] is shown in Fig. 3.33 where N-1 comparators form
a binary vector. The most frequently repeated item can be discovered if we
find the maximum number of consecutive ones in the vector and take the item
from any input of the comparators that forms the sub-vector with the maxi-
mum number of successive ones.

Fig. 3.32   The Hamming weight comparator for N = 32

3.9  Design Examples for LUT-Based Hamming Weight Counters/Comparators

138 3  Design Techniques

The binary vector that represents the result of comparison is saved in the
feedback register R. The right-hand circuit in Fig. 3.33 implements the method
described above (see Sects. 3.5, 3.6 and Figs. 3.14, 3.17) which enables the same
combinational unit (such as that composed of AND gates in Fig. 3.33) to be reused
iteratively in each subsequent clock cycle. This forces any intermediate binary
vector that is formed on the outputs of the AND gates to be stored in the register
R. Hence, any new clock cycle reduces the maximum number of consecutive ones
Omax in the vector by one and as soon as all outputs of the AND gates are set to 0
we can conclude that Omax = ξ+1, where ξ is the number of the last clock cycle.
Indeed, when there is just one value 1 in the register R, all the outputs of the AND
gates are set to 0 and an additional clock cycle is not required to reach a conclu-
sion. The index of the single 1 in the register is the index (position) of the first
value 1 (from the top) in the set with Omax. The feedback from the outputs of the
AND gates enables any intermediate binary vector to be stored in the register R.
Not all the gates are entirely reused. At the first step there are N-1 active gates. In
each subsequent clock the number of such gates is decremented because the lower
gate is blocked by 0 to be written to the bottom bit of the register R. In each new
clock cycle, this zero always propagates to an upper position and blocks another
gate. The circuit in Fig. 3.33 is very simple and fast. It is composed of just N-1
AND gates, the register R, and minimal supplementary logic. Thus the maximum
attainable clock frequency is high.

VHDL code below describes the part of the circuit shown in gray in Fig. 3.33.
The remainder can easily be implemented using the examples in Sect. 3.4.1 (see,
for instance, the entity EvenOddMerge8Sort and also the entity EvenOddMerge16Sort in
Appendix B) and Sect. 3.5 (see the entity EvenOddTransitionIterative).

Fig. 3.33   Most frequent data
item computation in a given
sorted set of data

139

entity SucOnesEncounter is -- this project has been tested in the Atlys board
generic (N : integer := 48); -- number of bits in the binary vector (see Fig. 3.33)

port (clk : in std_logic;
 EppAstb : in std_logic; -- for the component IOExpansion from Digilent
 EppDstb : in std_logic;
 EppWr : in std_logic;
 EppDB : inout std_logic_vector(7 downto 0);

EppWait : out std_logic);
end SucOnesEncounter;
architecture Behavioral of SucOnesEncounter is

signal MyLed : std_logic_vector(7 downto 0);
signal MyLBar : std_logic_vector(23 downto 0);
signal MySw : std_logic_vector(15 downto 0);
signal MyBtn : std_logic_vector(15 downto 0);
signal data_to_PC : std_logic_vector(31 downto 0);
signal data_from_PC : std_logic_vector(31 downto 0);
signal max_number_of_successive_ones : integer range 0 to N;
signal max_number : integer range 0 to N;
signal vector_with_ones, new_vector : std_logic_vector(N-1 downto 0);
signal Reg : std_logic_vector(N-1 downto 0);

begin
MyLBar <= MyBtn & data_from_PC(7 downto 0); -- these two lines are for tests only
MyLed <= data_from_PC(31 downto 24); -- and can be removed
data_to_PC <= conv_std_logic_vector(max_number_of_successive_ones, 32);

process (Reg) -- this process describes AND gates and feedback to the register in Fig. 3.33
begin -- this process is combinational

for i in 0 to N-2 loop – new_vector is formed on outputs of AND gates in Fig. 3.33
new_vector(i) <= Reg(i) and Reg(i+1);

end loop; -- the register changes its state in the next sequential process
new_vector(N-1) <= '0'; -- the bottom bit is always zero (see Fig. 3.33)

end process;

process(clk)
begin -- this process is sequential
 if rising_edge(clk) then

if ((data_from_PC = 0) and (MySw = 0)) then -- there are no ones in input binary vector
 max_number_of_successive_ones <= 0; -- thus, the number of ones is zero

else Reg <= data_from_PC & MySw; -- a vector is taken from virtual window
 max_number <= 1; -- since the vector is not zero then there is at least one value one

if new_vector /= 0 then
-- if a new vector is not zero then the number of ones has to be incremented
Reg <= new_vector;
max_number <= max_number+1;

else max_number_of_successive_ones <= max_number;
end if;

end if;
end if;
end process;
IO_interface : entity work.IOExpansion

port map(EppAstb, EppDstb, EppWr, EppDB, EppWait, MyLed, MyLBar,
MySw, MyBtn, data_from_PC, data_to_PC);

end Behavioral;

3.10  Design Examples for Operations Over Vectors

140 3  Design Techniques

A new vector is taken from the virtual window (from To FPGA field and virtual
Switches). The result can be seen in the virtual field From FPGA (see Sect. 1.7 and
Fig. 1.27).

The following VHDL code was tested in the Nexys-4 board.

Much like the previous examples, the code above can equally be synthesized,
and implemented in either ISE or Vivado (see the final part of Sect. 1.5). The only
difference is in the supplied constraints file (UCF for ISE and XDC for Vivado).
All the examples are available at http://sweet.ua.pt/skl/Springer2014.html for ISE
and many of the examples for Vivado.

In sections above (beginning from the Sect. 3.4) we described different types
of FPGA-based processing which permit broad parallelism to be supported. Many
other circuits and systems can benefit from highly parallel implementations that
are realizable in FPGAs and are more difficult for general-purpose and application-
specific processors that impose some constraints such as the size of operands, the

entity SucOnesEncounter is
generic (N : integer := 16);
port (clk : in std_logic;

sw : in std_logic_vector(15 downto 0); -- binary vector from 16 switches

led : out std_logic_vector(4 downto 0)); -- the result on LEDs
end SucOnesEncounter;

architecture Behavioral of SucOnesEncounter is
signal max_number_of_successive_ones : integer range 0 to N;
signal max_number : integer range 0 to N;
signal vector_with_ones, new_vector : std_logic_vector(N-1 downto 0);
signal Reg : std_logic_vector(N-1 downto 0);
begin
process (Reg)
begin

for i in 0 to N-2 loop
new_vector(i) <= Reg(i) and Reg(i+1);

end loop;
new_vector(N-1) <= '0';

end process;

process(clk)
begin
if rising_edge(clk) then

if (sw = 0) then max_number_of_successive_ones <= 0;
else Reg <= sw; max_number <= 1;

if new_vector /= 0 then
Reg <= new_vector; max_number <= max_number+1;

else max_number_of_successive_ones <= max_number;
end if;

end if;
end if;

end process;
led <= conv_std_logic_vector(max_number_of_successive_ones, 5);
end Behavioral;

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://sweet.ua.pt/skl/Springer2014.html

141

number of processing cores limiting parallelism and the predefined set of instruc-
tions. Note that processor-based technique still have many advantages over FPGAs
particularly when complex problems need to be solved. For example, widely used
systems for solving the Boolean satisfiability problem are still better implemented
in general-purpose computers. However, solving some lower-level tasks that are
needed for the Boolean satisfiability might be more advantageous in FPGA, which
is shown, in particular, in [32]. Such frequently explored problems as stream pro-
cessing are often solved partially in hardware (e.g. implementing sorting networks)
and partially in software (e.g. merging pre-sorted sub-sets). Thus, it is practical to
combine general-purpose or application-specific software with hardware accelera-
tors implemented in reconfigurable logic. The latter is intended to be used in such
a way that permits time-consuming operations of software (better implemented in
FPGA hardware) to be speeded up. In the next chapter we will discuss such issues.

References

	 1.	Wakerly JF (2006) Digital design. Principles and practices. Pearson Prentice Hall, Upper
Saddle River

	 2.	De Micheli G (1994) Synthesis and optimization of digital circuits. McGraw-Hill, Inc, New York
	 3.	Sklyarov V, Skliarova I (2013) Parallel processing in FPGA-based digital circuits and sys-

tems. TUT Press, Tallinn
	 4.	Skliarova I, Sklyarov V, Sudnitson A (2012) Design of FPGA-based circuits using hierarchi-

cal finite state machines. TUT Press, Tallinn
	 5.	Chu PP (2008) FPGA prototyping using VHDL examples: Xilinx Spartan-3 version. John

Willey & Sons Inc, New Jersey
	 6.	Skliarova I, Ferrari A (2001) Design and implementation of reconfigurable processor for

problems of combinatorial computations. In: Proceedings of the Euromicro symposium on
digital system design, Warsaw, 2001

	 7.	Baranov S (1994) Logic synthesis for control automata. Kluwer Academic Publishers, Dordrecht
	 8.	Baranov S (2008) Logic and system design of digital systems. TUT Press, Tallinn
	 9.	Sklyarov V, Skliarova I (2013) Digital hamming weight and distance analyzers for binary

vectors and matrices. Int J Innovative Comput Inf Control 9(12):4825–4849
	10.	Sklyarov V, Skliarova I (2013) Design and implementation of counting networks.

Computing. doi: 10.1007/s00607-013-0360-y
	11.	Sklyarov V, Skliarova I, Rjabov A, Sudnitson A (2013) Implementation of parallel operations

over streams in extensible processing platforms. In: Proceedings of the IEEE 56th interna-
tional Midwest symposium on circuits & systems, Columbus, Ohio, 2013

	12.	Sklyarov V, Skliarova I (2013) Hardware implementations of software programs based on
HFSM models. Comput Electr Eng 39(7):2145–2160

	13.	Knuth DE (2011) The art of computer programming. Sorting and searching, vol 3. Addison-
Wesley, New York

	14.	Batcher KE (1968) Sorting networks and their applications. In: Proceedings of AFIPS spring
joint computer conference, USA, 1968

	15.	Mueller R, Teubner J, Alonso G (2012) Sorting networks on FPGAs. Int J Very Large Data
Bases 21(1):1–23

	16.	Zuluada M, Milder P, Puschel M (2012) Computer generation of streaming sorting networks.
In: Proceedings of the 49th design automation conference, San Francisco, 2012

	17.	Xilinx Inc. (2013) Zynq-7000 All Programmable SoC Overview. http://www.xilinx.com/sup-
port/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf. Accessed 21 Nov 2013

3.10  Design Examples for Operations Over Vectors

http://dx.doi.org/10.1007/s00607-013-0360-y
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

142 3  Design Techniques

	18.	Sklyarov V (1999) Hierarchical finite-state machines and their use for digital control. IEEE
Trans VLSI Syst 7(2):222–228

	19.	Rosen KH, Michaels JG, Gross JL, Grossman JW, Shier DR (eds) (2000) Handbook of dis-
crete and combinatorial mathematics. CRC Press, Florida

	20.	Ortiz J, Andrews D (2010) A configurable high-throughput linear sorter system. In: Proceedings
of IEEE international symposium on parallel & distributed processing, Phoenix, 2010

	21.	Mueller R (2010) Data stream processing on embedded devices. Ph.D. dissertation, Swiss
Federal Institute of Technology

	22.	Kipfer P, Westermann R (2005) Improved GPU sorting. In: Pharr M, Fernando R (eds)
GPU gems 2: programming techniques for high-performance graphics and general-pur-
pose computation. Addison-Wesley. http://developer.nvidia.com/GPUGems2/gpugems2_
chapter46.html. Accessed 21 Nov 2013

	23.	Sklyarov V, Skliarova I (2013) Fast regular circuits for network-based parallel data process-
ing. Adv Electr Comput Eng 13(4):47–50

	24.	Zakrevskij A, Pottosin Y, Cheremisiniva L (2008) Combinatorial algorithms of discrete math-
ematics. TUT Press, Tallinn

	25.	Parhami B (2009) Efficient hamming weight comparators for binary Vectors based on
accumulative and up/down parallel counters. IEEE Trans Circuits Syst II: Express Briefs
56(2):167–171

	26.	Piestrak SJ (2007) Efficient hamming weight comparators of binary vectors. Electron Lett
43(11):611–612

	27.	Sklyarov V, Skliarova I, Mihhailov D, Sudnitson A (2011) Implementation in FPGA of
address-based data sorting. In: Proceedings of the 21st international conference on field-
programmable logic and applications, Crete, 2011

	28.	Pedroni VA (2003) Compact fixed-threshold and two-vector Hamming comparators. Electron
Lett 39(24):1705–1706

	29.	Pedroni VA (2004) Compact Hamming-comparator-based rank order filter for digital VLSI
and FPGA implementations. In: Proceedings of the IEEE international symposium on cir-
cuits and systems, Vancouver, 2004

	30.	Xilinx Inc. (2013) 7 Series DSP48E1 Slice User Guide. http://www.xilinx.com/support/docu-
mentation/user_guides/ug479_7Series_DSP48E1.pdf. Accessed 16 Nov 2013

	31.	Xilinx Inc. (2011) Xilinx 7 series FPGA libraries guide for HDL designs.
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/7series_hdl.pdf.
Accessed 21 Nov 2013

	32.	Davis JD, Tan Z, Yu F, Zhang L (2008) A practical reconfigurable hardware accelerator for
Boolean satisfiability solvers. In: Proceedings of the 45th ACM/IEEE design automation con-
ference, Anaheim, California, June 2008

http://developer.nvidia.com/GPUGems2/gpugems2_chapter46.html
http://developer.nvidia.com/GPUGems2/gpugems2_chapter46.html
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/7series_hdl.pdf

143

Abstract  This chapter begins with examples that demonstrate how commercially
available intellectual property cores can be embedded in different designs. In par-
ticular, arithmetical circuits constructed from digital signal processing slices, and
parameterized memory blocks that provide support for data buffering (such as
FIFO—first input first output), are described. More details on digital signal pro-
cessing slices are then given and it is shown how these may be used efficiently in
practical circuits such as Hamming weight counters/comparators. The major part
of this chapter is dedicated to interactions between a host computer and FPGA-
based prototyping boards through the Digilent enhanced parallel port and the
UART (Universal Asynchronous Receiver and Transmitter) interfaces. Complete
details of the communication modules are described, including both software for
general-purpose computers that was developed in the C++ language, and hard-
ware for FPGAs. The next section makes use of the designed modules for projects
that involve such interactions for different purposes. A more complicated design
for a network-based iterative data sorter from Chap. 3 is implemented and tested
in this way as a complete fully functioning example. The chapter concludes with
a brief description of programmable systems-on-chip (PSoC) that combine an
embedded processing system with a reconfigurable logic which can lead to more
efficient implementations of the applications. Proposals for mapping the designs
from Chap. 3 to the PSoC are given and discussed.

4.1 � Using IP Cores

Intellectual Property (IP) cores are preconfigured blocks that can be included in
the design. For example, Xilinx ISE supplies a wide selection of IPs for memories
(both embedded and distributed), digital signal processing, math functions, bus
interfaces, clock distribution, etc. A block can be chosen, customized and attached
to the design with the aid of the Xilinx CORE Generator™ tools. We consider in

Chapter 4
Embedded Blocks and System-Level Design

V. Sklyarov et al., Synthesis and Optimization of FPGA-Based Systems,
Lecture Notes in Electrical Engineering 294, DOI: 10.1007/978-3-319-04708-9_4,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

144 4  Embedded Blocks and System-Level Design

this section a few examples and show how to use IP cores for our previous designs
from Chap. 3.

The first example demonstrates how to include a DSP-based adder-subtractor
to the project. The project has been created in Xilinx ISE 14.7 and a New Source
named arithmetic with the type IP Core has been added from the Math Functions
and Adders & Subtractors groups. We requested to use the DSP48 slice (availa-
ble for Xilinx FPGAs), 8-bit unsigned operands, 9-bit result, Add Subtract mode,
Latency 0, and active high carry in signal. After that the core was generated and
included in the project as follows (mapping is done in accordance with details
given in the ISE HDL Instantiation Template):

entity TopForInteractingWitIPCores is
port (Sw : in std_logic_vector (15 downto 0);

mode : in std_logic; -- the BTNC button is used (for addition it has to be pressed)
led : out std_logic_vector (8 downto 0));

end TopForInteractingWitIPCores;

architecture Behavioral of TopForInteractingWitIPCores is
begin
Arith: entity work.arithmetic

port map (a => Sw(15 downto 8), b => Sw(7 downto 0), add => mode,
c_in => '0', s => led);

end Behavioral;

(a) (b)

Fig. 4.1   The structure of the project with IP core (a) and demonstration (b)

Figure 4.1a depicts the structure of the project. The file arithmetic.xco was cre-
ated by the Xilinx CORE Generator. Figure 4.1b shows how to test the project in
the Nexys-4 board. Two operands are taken from the 8 leftmost (a) and 8 rightmost
(b) switches. The result is displayed on 9 LEDs. The mode is chosen by the button
BTNC (addition if the button is pressed and subtraction if the button is released).
In Fig. 4.1b a = 000011112 = 1510, b = 000010112 = 1110. Thus, if BTNC is
pressed then a + b = 2610 = 0000110102 (see Fig. 4.1b). If BTNC is released then
a-b = 410 = 0000001002 which can be easily examined in the Nexys-4 board. The
circuit occupies 0 logical slices and just 1 DSP48E1 slice (from 240 available
slices). Similar projects can be created and tested in the Atlys prototyping board.

http://dx.doi.org/10.1007/978-3-319-04708-9_3

145

The next example will use IP core for multiplication operation which can be taken
from Multipliers in the ISE group of Math functions. Figure 4.2a depicts the struc-
ture of the project. The file Multiplier.xco was created by the Xilinx CORE Generator.
From this project we will use available in the Nexys-4 eight onboard segment displays.
The displays are managed by two components EightDisplayControl and segment_decoder
(their VHDL codes are given in Appendix B). The project (see Fig. 4.2a) also uses
components BinToBCD8 and BinToBCD16 which convert 8-bit and 16-bit binary vectors to
their BCD representation that is needed to display decimal numbers on segment dis-
plays. VHDL code for these components is also given in Appendix B.

The project has been created in Xilinx ISE 14.7 and a New Source named
Multiplier with the type IP Core has been added from the Math Functions and
Multipliers groups. We requested to use the DSP48 slice, 8-bit unsigned operands
and 16-bit result. After that the core was generated and included in the project as
follows (as before, mapping is done in accordance with the details given in the ISE
HDL Instantiation Template):

entity TopForInteractingWitIPCores is -- this project is for the Nexys-4 board
port (clk : in std_logic;

seg : out std_logic_vector(6 downto 0); -- segments
sel_disp : out std_logic_vector(7 downto 0); -- display selections
Sw : in std_logic_vector (15 downto 0); -- onboard switches
BTNC : in std_logic; -- onboard BTNC button
reset : in std_logic); -- onboard BTND button

end TopForInteractingWitIPCores;

architecture Behavioral of TopForInteractingWitIPCores is
signal BCD4, BCD3, BCD2, BCD1, BCD0 : std_logic_vector(3 downto 0);
signal BCD2_L, BCD1_L, BCD0_L : std_logic_vector(3 downto 0);
signal BCD2_R, BCD1_R, BCD0_R : std_logic_vector(3 downto 0);
signal BCD3_D, BCD2_D, BCD1_D, BCD0_D : std_logic_vector(3 downto 0);
signal BCD7_D, BCD6_D, BCD5_D, BCD4_D : std_logic_vector(3 downto 0);
signal To_BCD : std_logic_vector(15 downto 0);
begin -- see the simplified components diagram in Fig. 4.2c

Mult: entity work.Multiplier -- DSP-based multiplier
port map (a=>Sw(15 downto 8), b=>Sw(7 downto 0), p=>To_BCD);

DispCont: entity work.EightDisplayControl -- display controller (see Appendix B)
port map(clk, BCD7_D, BCD6_D, BCD5_D, BCD4_D, BCD3_D, BCD2_D,

BCD1_D, BCD0_D, sel_disp, seg);
binTO_BCD1: entity work.BinToBCD8 -- binary to BCD converter (see Appendix B)

port map (clk, reset, open, Sw(15 downto 8), BCD2_L, BCD1_L, BCD0_L);
binTO_BCD2: entity work.BinToBCD8 -- binary to BCD converter (see Appendix B)

port map (clk, reset, open, Sw(7 downto 0), BCD2_R, BCD1_R, BCD0_R);
binTO_BCD3: entity work.BinToBCD16 -- binary to BCD converter (see Appendix B)

port map (clk, reset, open, To_BCD, BCD4, BCD3, BCD2, BCD1, BCD0);
process(BTNC, BCD4, BCD3, BCD2, BCD1, BCD0, -- combinational process

BCD2_L, BCD1_L, BCD0_L, BCD2_R, BCD1_R, BCD0_R)
begin -- this process selects either operands (if BTNC=0) or the result (if BTNC=1) to display

BCD7_D <= (others => '0'); BCD6_D <= (others => '0');
BCD5_D <= (others => '0'); BCD4_D <= (others => '0');
BCD3_D <= (others => '0'); BCD2_D <= (others => '0');
BCD1_D <= (others => '0'); BCD0_D <= (others => '0');

 if (BTNC = '0') then -- display mode selection
BCD7_D <= (others => '0'); BCD6_D <= BCD2_L;
BCD5_D <= BCD1_L; BCD4_D <= BCD0_L;
BCD3_D <= (others => '0'); BCD2_D <= BCD2_R;
BCD1_D <= BCD1_R; BCD0_D <= BCD0_R;

else BCD7_D <= (others => '0'); BCD6_D <= (others => '0');
BCD5_D <= (others => '0'); BCD4_D <= BCD4;
BCD3_D <= BCD3; BCD2_D <= BCD2;
BCD1_D <= BCD1; BCD0_D <= BCD0;

end if;
end process;

end Behavioral;

(a) (b)

(c)

Fig. 4.2   The structure of the project with IP core (a), demonstration (b), and a simplified com-
ponent diagram (c)

4.1  Using IP Cores

146 4  Embedded Blocks and System-Level Design

Figure 4.2b shows how to test the project in the Nexys-4 board. Two operands
are taken from the 8 leftmost (a) and 8 rightmost (b) switches. The result is con-
verted to a BCD representation and then is shown on the segment displays (see
Fig. 4.2b). If the button BTNC is released then a decimal value of a is shown
on 4 leftmost displays and a decimal value of b—on 4 rightmost displays (see

entity TopForInteractingWitIPCores is -- this project is for the Nexys-4 board
port (clk : in std_logic;

seg : out std_logic_vector(6 downto 0); -- segments
sel_disp : out std_logic_vector(7 downto 0); -- display selections
Sw : in std_logic_vector (15 downto 0); -- onboard switches
BTNC : in std_logic; -- onboard BTNC button
reset : in std_logic); -- onboard BTND button

end TopForInteractingWitIPCores;

architecture Behavioral of TopForInteractingWitIPCores is
signal BCD4, BCD3, BCD2, BCD1, BCD0 : std_logic_vector(3 downto 0);
signal BCD2_L, BCD1_L, BCD0_L : std_logic_vector(3 downto 0);
signal BCD2_R, BCD1_R, BCD0_R : std_logic_vector(3 downto 0);
signal BCD3_D, BCD2_D, BCD1_D, BCD0_D : std_logic_vector(3 downto 0);
signal BCD7_D, BCD6_D, BCD5_D, BCD4_D : std_logic_vector(3 downto 0);
signal To_BCD : std_logic_vector(15 downto 0);
begin -- see the simplified components diagram in Fig. 4.2c

Mult: entity work.Multiplier -- DSP-based multiplier
port map (a=>Sw(15 downto 8), b=>Sw(7 downto 0), p=>To_BCD);

DispCont: entity work.EightDisplayControl -- display controller (see Appendix B)
port map(clk, BCD7_D, BCD6_D, BCD5_D, BCD4_D, BCD3_D, BCD2_D,

BCD1_D, BCD0_D, sel_disp, seg);
binTO_BCD1: entity work.BinToBCD8 -- binary to BCD converter (see Appendix B)

port map (clk, reset, open, Sw(15 downto 8), BCD2_L, BCD1_L, BCD0_L);
binTO_BCD2: entity work.BinToBCD8 -- binary to BCD converter (see Appendix B)

port map (clk, reset, open, Sw(7 downto 0), BCD2_R, BCD1_R, BCD0_R);
binTO_BCD3: entity work.BinToBCD16 -- binary to BCD converter (see Appendix B)

port map (clk, reset, open, To_BCD, BCD4, BCD3, BCD2, BCD1, BCD0);
process(BTNC, BCD4, BCD3, BCD2, BCD1, BCD0, -- combinational process

BCD2_L, BCD1_L, BCD0_L, BCD2_R, BCD1_R, BCD0_R)
begin -- this process selects either operands (if BTNC=0) or the result (if BTNC=1) to display

BCD7_D <= (others => '0'); BCD6_D <= (others => '0');
BCD5_D <= (others => '0'); BCD4_D <= (others => '0');
BCD3_D <= (others => '0'); BCD2_D <= (others => '0');
BCD1_D <= (others => '0'); BCD0_D <= (others => '0');

 if (BTNC = '0') then -- display mode selection
BCD7_D <= (others => '0'); BCD6_D <= BCD2_L;
BCD5_D <= BCD1_L; BCD4_D <= BCD0_L;
BCD3_D <= (others => '0'); BCD2_D <= BCD2_R;
BCD1_D <= BCD1_R; BCD0_D <= BCD0_R;

else BCD7_D <= (others => '0'); BCD6_D <= (others => '0');
BCD5_D <= (others => '0'); BCD4_D <= BCD4;
BCD3_D <= BCD3; BCD2_D <= BCD2;
BCD1_D <= BCD1; BCD0_D <= BCD0;

end if;
end process;

end Behavioral;

147

Fig. 4.2c). If the button BTNC is pressed then a decimal value of the result is
shown on 8 displays (see Fig. 4.2b). The circuit occupies 63 logical slices (from
15,850 available slices) and just 1 DSP48E1 slice. Similar projects can be created
and tested in the Atlys prototyping board.

We did not discuss above how to control segment displays, which is described
in detail in [1]. The binary to BCD converters implement the algorithm explained
in [2] and they are based on VHDL code from [3]. The only difference is immedi-
ate conversion without the need for additional signals that have to be used in [2,
3]. This means that as soon as inputs of the converter are changed, the result is
ready after a few clock cycles delay. Since we examine the results visually, such
delay cannot give rise to any problem and interface with the converter becomes
very simple. Let us look at Fig. 4.2. The result of multiplication 000011112 ×
000010112 = 101001012 in binary format is converted (by the component binTO_
BCD3 in Fig. 4.2c) to three least significant BCD digits 00012, 01102, and 01012.
The latter can directly be decoded to decimal format giving the result 165. Five
most significant digits are 00002 giving five decimal zeros on the leftmost segment
displays (see Fig. 4.2b). Complete VHDL codes for all the used components are
given in Appendix B.

The next example demonstrates how to construct FIFO (First Input First
Output) block based on embedded memory. A simplified component diagram for
the first project is shown in Fig. 4.3.

The project has been created in Xilinx ISE 14.7 and a New Source named
FIFO_mem with the type IP Core has been added from the Memories & Storage
Elements and FIFOs groups. We requested to use independent read/write clocks
for block RAM, write width 8, write depth 64, read width 32, read depth 16, and
write/read data count slice. Note that the width for the input (8 bit) differs from the
width for the outputs (32 bits). Finally, the core has been generated and included
in the project as follows:

seg : out std_logic_vector(6 downto 0);
sel_disp : out std_logic_vector(7 downto 0);
BTNC : in std_logic); -- to read data from FIFO

end TestFIFO;

architecture Behavioral of TestFIFO is
signal divided_clk : std_logic; -- low frequency clock (~1 Hz)
signal random_8bit : std_logic_vector(data_in_size-1 downto 0);
signal wr_en : std_logic; -- write enable to FIFO
signal rd_en : std_logic; -- read enable from FIFO
signal to_rg : std_logic_vector(data_out_size-1 downto 0);
signal full : std_logic; -- FIFO is full
begin

led_div_clk <= divided_clk;
led_full <= full;

enables_gen: process(full, BTNC) -- support for FIFO write/read modes
begin

if (full /= '1') then wr_en <= '1'; -- if FIFO is not full then new data can be written
else wr_en <= '0'; end if;

 if (BTNC = '1') then rd_en <= '1'; -- data are read from FIFO when BTNC is pressed
else rd_en <= '0'; end if;

end process enables_gen;
FIFO: entity work.FIFO_mem -- see Fig. 4.5

port map (wr_clk => clk, rd_clk => divided_clk, din => random_8bit,
wr_en => wr_en, rd_en => rd_en, dout => to_rg, full => full,
empty => led_empty, rd_data_count => led_rd_data_count,
wr_data_count => led_wr_data_count);

Random: entity work.RanGen -- the code is available in Appendix B
generic map(width => data_in_size)
port map (clk, random_8bit);

DispCont: entity work.EightDisplayControl -- the code is available in Appendix B
port map(clk, to_rg(31 downto 28), to_rg(27 downto 24), to_rg(23 downto 20),

to_rg(19 downto 16), to_rg(15 downto 12), to_rg(11 downto 8),
to_rg(7 downto 4), to_rg(3 downto 0), sel_disp, seg);

div: entity work.clock_divider -- the code is available in Appendix B
port map(clk, '0', divided_clk);

end Behavioral;

entity TestFIFO is -- Fig. 4.4 demonstrates how to test this project
generic (data_in_size : integer := 8; -- width of FIFO input data

data_out_size : integer := 32); -- width of FIFO output data
port (clk : in std_logic; -- clock 100 MHz

led_full : out std_logic; -- ON if FIFO is full
led_empty : out std_logic; -- ON if FIFO is empty
led_rd_data_count : out std_logic_vector (3 downto 0);
led_wr_data_count : out std_logic_vector (5 downto 0);
led_div_clk : out std_logic; -- low frequency clock (~1 Hz)

Fig. 4.3   Testing FIFO memory

4.1  Using IP Cores

148 4  Embedded Blocks and System-Level Design

The project can be tested in the Nexys-4 board as it is shown in Fig. 4.4. The
process enables_gen above enables writing when the FIFO is not full and reading
when the onboard button BTNC is pressed. Data are written to the FIFO from a
random number generator (see VHDL code in Appendix B) and are read from the
FIFO and shown on eight 7-segment displays when the button BTNC is pressed
(see Fig. 4.5). The output vector is split in 8 4-bit segments and a hexadecimal
code corresponding to each segment is shown on the associated display (the most
significant segment is associated with the leftmost display).

Two additional projects in this section demonstrate how to link the FIFO mem-
ory with inputs of the 32-bit Hamming weight counter (see Sect. 3.9) and the

seg : out std_logic_vector(6 downto 0);
sel_disp : out std_logic_vector(7 downto 0);
BTNC : in std_logic); -- to read data from FIFO

end TestFIFO;

architecture Behavioral of TestFIFO is
signal divided_clk : std_logic; -- low frequency clock (~1 Hz)
signal random_8bit : std_logic_vector(data_in_size-1 downto 0);
signal wr_en : std_logic; -- write enable to FIFO
signal rd_en : std_logic; -- read enable from FIFO
signal to_rg : std_logic_vector(data_out_size-1 downto 0);
signal full : std_logic; -- FIFO is full
begin

led_div_clk <= divided_clk;
led_full <= full;

enables_gen: process(full, BTNC) -- support for FIFO write/read modes
begin

if (full /= '1') then wr_en <= '1'; -- if FIFO is not full then new data can be written
else wr_en <= '0'; end if;

 if (BTNC = '1') then rd_en <= '1'; -- data are read from FIFO when BTNC is pressed
else rd_en <= '0'; end if;

end process enables_gen;
FIFO: entity work.FIFO_mem -- see Fig. 4.5

port map (wr_clk => clk, rd_clk => divided_clk, din => random_8bit,
wr_en => wr_en, rd_en => rd_en, dout => to_rg, full => full,
empty => led_empty, rd_data_count => led_rd_data_count,
wr_data_count => led_wr_data_count);

Random: entity work.RanGen -- the code is available in Appendix B
generic map(width => data_in_size)
port map (clk, random_8bit);

DispCont: entity work.EightDisplayControl -- the code is available in Appendix B
port map(clk, to_rg(31 downto 28), to_rg(27 downto 24), to_rg(23 downto 20),

to_rg(19 downto 16), to_rg(15 downto 12), to_rg(11 downto 8),
to_rg(7 downto 4), to_rg(3 downto 0), sel_disp, seg);

div: entity work.clock_divider -- the code is available in Appendix B
port map(clk, '0', divided_clk);

end Behavioral;

entity TestFIFO is -- Fig. 4.4 demonstrates how to test this project
generic (data_in_size : integer := 8; -- width of FIFO input data

data_out_size : integer := 32); -- width of FIFO output data
port (clk : in std_logic; -- clock 100 MHz

led_full : out std_logic; -- ON if FIFO is full
led_empty : out std_logic; -- ON if FIFO is empty
led_rd_data_count : out std_logic_vector (3 downto 0);
led_wr_data_count : out std_logic_vector (5 downto 0);
led_div_clk : out std_logic; -- low frequency clock (~1 Hz)

http://dx.doi.org/10.1007/978-3-319-04708-9_3

149

sorting network shown in Fig. 3.5. A simplified component diagram for the first
project is given in Fig. 4.6. As soon as a 32-bit vector is available on the outputs of
the FIFO, the entity HW31_HWC32 computes the Hamming weight for 31-bit vector

BTNC
Pressed (To read data from FIFO)

Led0Led15

Number of
data to read:
led_rd_data_count

Lo
w

 fr
eq

ue
nc

y
cl

oc
k

(1
 H

z)

Number of
data to be written:
led_wr_data_count

F
IF

O
 is

 e
m

pt
y:

le

d_
em

pt
y

F
IF

O
 is

 fu
ll:

le

d_
fu

ll

Fig. 4.4   Testing the project with FIFO memory

Fig. 4.5   Interface with FIFO memory

Fig. 4.6   A simplified component diagram and an example for the project that links the
Hamming weight counter (Fig. 3.24a) with the FIFO memory (Fig. 4.3)

4.1  Using IP Cores

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

150 4  Embedded Blocks and System-Level Design

that is shown on 5 LEDs (LED9,…, LED5). The most significant bit of the input
vector is added in the line (see appendix B for details):

HW_led <= (“00000” & to_rg(data_out_size-1)) + (‘0’ & bits4_0);
Figure 4.6 shows an example where the random number 8103060C16 (which

contains 8 “ones”) is displayed on the LEDs as 0010002 = 810.
The following VHDL code describes the functionality of the circuit shown in

Fig. 4.6.

-- insert here the process enables_gen from the previous project

FIFO: entity work.FIFO_mem -- FIFO memory component
port map (wr_clk => clk, rd_clk => divided_clk, din => random_8bit,

wr_en => wr_en, rd_en => rd_en, dout => to_rg, full => full,
empty => led_empty, rd_data_count => open,
wr_data_count => open);

Random: entity work.RanGen -- random number generator (see appendix B)
generic map(width => data_in_size)
port map (clk, random_8bit);

DispCont: entity work.EightDisplayControl -- display controller (see appendix B)
port map(clk, to_rg(31 downto 28), to_rg(27 downto 24), to_rg(23 downto 20),
to_rg(19 downto 16), to_rg(15 downto 12), to_rg(11 downto 8),
to_rg(7 downto 4), to_rg(3 downto 0), sel_disp, seg);
div: entity work.clock_divider -- clock divider (see appendix B)

port map (clk, '0', divided_clk); -- reset is always deasserted (‘0’)

HW31: entity work.HW31_HWC32 -- the code of this component is given in appendix B
port map (Data_in => to_rg, led => bits4_0, LedC => LedC);

end Behavioral;

entity TestFIFO is -- the project was tested in the Nexys-4 board
generic (data_in_size : integer := 8;

data_out_size : integer := 32);
port (clk : in std_logic; -- system clock is 100 MHz

led_full : out std_logic; -- ON if FIFO is full
led_empty : out std_logic; -- ON if FIFO is empty
HW_led : out std_logic_vector (5 downto 0); -- 6-bit Hamming weight
LedC : out std_logic; -- the result of comparison (see appendix B)
led_div_clk : out std_logic; -- low frequency clock (1 Hz)
seg : out std_logic_vector(6 downto 0); -- see appendix B
sel_disp : out std_logic_vector(7 downto 0); -- see appendix B
BTNC : in std_logic); -- onboard button BTNC

end TestFIFO;

architecture Behavioral of TestFIFO is
signal divided_clk : std_logic; -- low frequency clock (1 Hz)
signal random_8bit : std_logic_vector(data_in_size-1 downto 0);
signal wr_en : std_logic; -- FIFO write enable
signal rd_en : std_logic; -- FIFO read enable
signal to_rg : std_logic_vector(data_out_size-1 downto 0);
signal full : std_logic; -- '1' if FIFO is full
signal bits4_0 : std_logic_vector(4 downto 0); -- bits 4…0 for Hamming weight

begin
HW_led <= ("00000" & to_rg(data_out_size-1)) + ('0' & bits4_0); -- handling an additional bit
led_div_clk <= divided_clk;
led_full <= full;

151

The project above can be tested in the Nexys-4 board as, for example, it is
shown in Fig. 4.6. The circuit occupies 50 logical slices (from 15,850 available
slices) and 1 block RAMB36E1 (from 135 available blocks).

A simplified component diagram for the second project is given in Fig. 4.7. As
soon as a 32-bit vector is available on the outputs of the FIFO, the block sorter sorts
eight 4-bit data items in the vector. Eight hexadecimal digits are read from FIFO
and shown on the segment displays when the button BTNC is pressed for a few
seconds (until zeros shown on the segment displays are replaced with non-zero
values) and then released. If the button BTND is pressed then the data previously
shown on the segment displays are put in the sorted (ascending) order. For exam-
ple, data from Fig. 4.6 will be displayed as shown in Fig. 4.7. If the button BTNC
is pressed once again then new random items will be displayed and they will be
sorted as soon as the button BTND is pressed.

VHDL code for the project is almost the same as shown above. The ports
HW_led and LedC are no longer needed and they are removed. The component
HW31_HWC32 is replaced with the sorter:

The sorted data (sorted_data) are displayed when the button BTND is pressed:

This button has to be added to the ports:

sorter : entity work.EvenOddMerge8Sort -- see the code of the sorter in section 3.4.1
port map (input_data => to_rg, sorted_data => sorted_data);

-- displaying either randomly generated data to_rg or sorted_data
data_to_display <= to_rg when BTND = '0' else sorted_data;

BTND : in std_logic;

Fig. 4.7   A simplified component diagram and an example for the project that links the sorting
network (Fig. 3.5) with the FIFO memory (Fig. 4.3)

-- insert here the process enables_gen from the previous project

FIFO: entity work.FIFO_mem -- FIFO memory component
port map (wr_clk => clk, rd_clk => divided_clk, din => random_8bit,

wr_en => wr_en, rd_en => rd_en, dout => to_rg, full => full,
empty => led_empty, rd_data_count => open,
wr_data_count => open);

Random: entity work.RanGen -- random number generator (see appendix B)
generic map(width => data_in_size)
port map (clk, random_8bit);

DispCont: entity work.EightDisplayControl -- display controller (see appendix B)
port map(clk, to_rg(31 downto 28), to_rg(27 downto 24), to_rg(23 downto 20),
to_rg(19 downto 16), to_rg(15 downto 12), to_rg(11 downto 8),
to_rg(7 downto 4), to_rg(3 downto 0), sel_disp, seg);
div: entity work.clock_divider -- clock divider (see appendix B)

port map (clk, '0', divided_clk); -- reset is always deasserted (‘0’)

HW31: entity work.HW31_HWC32 -- the code of this component is given in appendix B
port map (Data_in => to_rg, led => bits4_0, LedC => LedC);

end Behavioral;

entity TestFIFO is -- the project was tested in the Nexys-4 board
generic (data_in_size : integer := 8;

data_out_size : integer := 32);
port (clk : in std_logic; -- system clock is 100 MHz

led_full : out std_logic; -- ON if FIFO is full
led_empty : out std_logic; -- ON if FIFO is empty
HW_led : out std_logic_vector (5 downto 0); -- 6-bit Hamming weight
LedC : out std_logic; -- the result of comparison (see appendix B)
led_div_clk : out std_logic; -- low frequency clock (1 Hz)
seg : out std_logic_vector(6 downto 0); -- see appendix B
sel_disp : out std_logic_vector(7 downto 0); -- see appendix B
BTNC : in std_logic); -- onboard button BTNC

end TestFIFO;

architecture Behavioral of TestFIFO is
signal divided_clk : std_logic; -- low frequency clock (1 Hz)
signal random_8bit : std_logic_vector(data_in_size-1 downto 0);
signal wr_en : std_logic; -- FIFO write enable
signal rd_en : std_logic; -- FIFO read enable
signal to_rg : std_logic_vector(data_out_size-1 downto 0);
signal full : std_logic; -- '1' if FIFO is full
signal bits4_0 : std_logic_vector(4 downto 0); -- bits 4…0 for Hamming weight

begin
HW_led <= ("00000" & to_rg(data_out_size-1)) + ('0' & bits4_0); -- handling an additional bit
led_div_clk <= divided_clk;
led_full <= full;

4.1  Using IP Cores

http://dx.doi.org/10.1007/978-3-319-04708-9_3

152 4  Embedded Blocks and System-Level Design

All other lines in VHDL code are the same as in the previous project. The circuit
can be tested in the Nexys-4 prototyping board. It occupies 84 logical slices
and 1 block RAMB36E1. Note that there are a number of additional examples
in subsequent Sects. 4.3 and 4.4 that involve embedded memory blocks using
IP cores.

The last example here demonstrates the use of clocking circuit. The project has
been created in Xilinx ISE 14.7 and a New Source named clock_mult with the type
IP Core has been added from the FPGA Features & Design and Clocking groups.
We requested to use input frequency 100 MHz and 6 output clocks with frequen-
cies 150, 200, 300, 400, 50, and 25 MHz. Finally, the core has been generated and
included in the project as follows:

The respective project can be tested in the Nexys-4 board. Clock frequen-
cies from the component clock_mult are additionally divided by a factor of 2how_
fast+1 = 229 = 536,870,912 (see the code of clock divider in Appendix B). Thus,
the LED 0 changes the states from ON to OFF and vice versa every 21.5 s
(i.e. 536,870,912/25,000,000), the LED 1 changes the states two times faster,
etc. Switching frequency for the LEDs 0,…,6 is increased from LED 0 to LED
6. The frequency of LED 15 is controlled by the switch 0 and can be increased or
decreased with a factor of 4.

entity TopForClockGenerator is
port (clk : in std_logic;

clock_sel : in std_logic; -- switch 1 for the Nexys-4 board
led25, led50, led100, led150, led200, led300, led400

 : out std_logic; -- LEDs 0,1,2,3,4,5,6 for the Nexys-4 board
variable_clock : out std_logic); -- LED 15 for the Nexys-4 board

end TopForClockGenerator;

architecture Behavioral of TopForClockGenerator is
signal clk25, clk50, clk100, clk150, clk200, clk300, clk400, var_clk : std_logic;

begin
clk_man: entity work.clock_mult -- this core has been generated by the Xilinx IP core generator

port map(CLK_IN1=>clk, CLK_OUT1=>clk100, CLK_OUT2=>clk150,
CLK_OUT3=>clk200, CLK_OUT4=>clk300, CLK_OUT5=>clk400,
CLK_OUT6=>clk50, CLK_OUT7=>clk25);

div100 : entity work.clock_divider -- generic parameter how_fast in the clock_
port map(clk100, '0', led100); -- parameter how_fast is set to 28 (see appendix B for details)

-- similar to div100 clock dividers for signals clk150, clk200, clk300, clk400, clk 50, clk25
div_var: entity work.clock_divider

port map(var_clk, '0', variable_clock); -- reset is always deasserted (‘0’)

var_clk <= clk100 when clock_sel = '1' else clk400;

end Behavioral;

153

4.2 � Design with Embedded DSP Slices

The majority of contemporary FPGAs have embedded DSP slices (ex. DSP48E1
slice for Xilinx FPGAs [4]) and they can be employed to implement arithmetical and
logical operations. For example, segments of counting networks described in Sect. 3.8
and in [5] may benefit from available bitwise operations. Indeed, the operations “and”
and “xor” (see Fig. 3.24a) can be executed concurrently in two DSP slices (the “and”
operation in the first slice and the “xor” operation in the second slice) for N ≤ 2 × ξ,
where ξ is the size of the operands for a DSP slice (for the DSP48E1 ξ = 48 and the
most advanced FPGAs contain thousands of such slices). For N > 2 × ξ the network
can be decomposed in fragments implemented in different slices.

We consider in this section only a few examples that illustrate using DSP
slices to solve some problems discussed earlier in the book, such as the design
of Hamming weight counters/comparators. Exhaustive material about DSPs can
be found in guides of the relevant companies, such as [4]. Let us consider at the
beginning a part of DSP48E1 slice including only components that will be used
for the examples below (see Fig. 4.8). Inputs and outputs that will be needed for
our circuits are shown in Fig. 4.8 by thick lines.

The following simple example demonstrates how to test different bitwise
operations. The language template for 48-bit multi-functional arithmetic block
DSP48E1 may be chosen (through the path in Xilinx ISE: VHDL → Device
Primitive Instantiation → Artix-7 → Arithmetic Functions) and customized. The
DSP multiplier that is not shown in Fig. 4.8 is bypassed by setting in the DSP48E1
generic map USE_MULT attribute to NONE (i.e. USE_MULT => “NONE”) [4]. Now bitwise
logic operations (indicated by letter L in Fig. 4.8) over two 48-bit binary vectors
can be executed and they may be controlled dynamically changing the ALUMODE
control signals (see Fig. 4.8). Figure 4.9 shows how the indicated above template
for the block DSP48E1 has been customized, which was done in accordance with
the Xilinx guide [4].

Fig. 4.8   Part of DSP48E1
[4] that will be used in
examples below

4.2  Design with Embedded DSP Slices

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

154 4  Embedded Blocks and System-Level Design

Now the following VHDL code can be examined:

Bitwise operations are selected by OPMODE bits 3 and 2 and by
ALUMODE. Examples of such operations are: “xor” for OPMODE(3:2) = “00” and
ALUMODE = “0100”; “and” for OPMODE(3:2) = “00” and ALUMODE = “1100”; and
“or” for ALUMODE = “1100” and OPMODE(3:2) = “10” (further details can be found
in [4]).

In Single Instruction, Multiple Data (SIMD) mode the 48-bit adder/subtractor/
accumulator can be split into either 4 independent 12-bit or 2 independent 24-bit
adders/subtractors/accumulators performing the same function specified by the
ALUMODE. USE_SIMD option in the DSP48E1 generic map has to be changed appro-
priately to either USE_SIMD => “FOUR12” (for four operations over 12-bit operands)
or USE_SIMD => “TWO24” (for two operations over 24-bit operands). OPMODE controls
multiplexer outputs in the DSP48E1 and enables different operands to be selected
(see Fig. 4.8). For the considered above VHDL code OPMODE is the same

DSP: entity work.TesDSP48E1_bitwise -- link with the template DSP48E1 component
port map (Op1, Op2, mode, Y); -- the library UNISIM is included in the template

end Behavioral;

entity Test_bitwise_with_DSP is
port (Sw : in std_logic_vector (15 downto 0); -- 8+8 bits for two vectors

mode : in std_logic_vector(3 downto 0); -- this is ALUMODE for DSP48E1
led : out std_logic_vector (15 downto 0)); -- the result of bitwise operations

end Test_bitwise_with_DSP;

architecture Behavioral of Test_bitwise_with_DSP is
signal Op1, Op2, Y : std_logic_vector(47 downto 0);

begin
Op1 <= (47 downto 8 => '0') & Sw(15 downto 8); -- the first vector
Op2 <= (47 downto 8 => '0') & Sw(7 downto 0); -- the second vector
led <= Y(15 downto 0); -- the result

Fig. 4.9   Changes in the template for DSP48E1

155

(“0110011”) where the first three bits (“011”) select our second operand (Op2) on
the outputs of Z-multiplexer [4], the second two bits (“00”) set zeros on the out-
puts of Y-multiplexer [4] and the last two bits (“11”) select our first operand (Op1)
on the outputs of X-multiplexer [4]. All necessary details can be found in [4]. For
the examples below we will need addition operations with carry in and carry out
signals. Let us implement the Hamming weight counter and comparator consid-
ered in Sects. 3.7–3.9 in a way shown in Fig. 4.10.

At the beginning all eight pairs of bits in 16-bit binary vectors are added. The
size of sum is 2 bits with possible values 00, 01 and 10. The produced pairs of
sums are again added giving 3-bit results with possible values 000, 001, 010, 011,
100. Any similar operations in subsequent steps give results with the size n + 1,
where n is the size of used operands.

This feature was taken into account in the DSP-based implementation shown
in Fig. 4.11. Only one DSP48E1 slice is required. The outputs of 48-bit adder are
taken as inputs for the next stage selecting the proper number of bits that have to
be used for operands and results at each stage. For example, for additions at the
first stage even bits of 48-operands (A0,A2,…,B0,B2,…,) are set to zero. Two-bit
results (n = 2) were taken from associated even and odd bits and they are used
again as inputs with indices 16,17; 19,20, 22,23, 25,26. The most significant bits
in each group of inputs with n + 1 bits (i.e. 18, 21, 24, 27) are again not used and
set to zero. The result of comparison is formed similarly to [6] (see also Sect. 3.7).
As in Sect. 3.9, a LUT-based comparator can also be used to support features
shown in Fig. 3.30.

We found that the considered method permits quite complex Hamming weight
counters/comparators to be implemented with very small resources. For example,
the circuit in Fig. 4.11 requires just one DSP48E1 slice. For N = 32 the number

Fig. 4.10   Computing the
Hamming weight and the
result of comparison with a
fixed threshold for a 16-bit
binary vector

4.2  Design with Embedded DSP Slices

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

156 4  Embedded Blocks and System-Level Design

of such slices is 2 and for N = 64 the number is 4. Complete synthesizable VHDL
codes for DSP-based counters/comparators are given in Appendix B. Similar
circuits can also be built for the DSP48A1 slice in previous families of Xilinx
FPGAs (such as that are available in Spartan-6 FPGA of the Atlys board).

Let us consider now the synthesizable VHDL code for Hamming weight
counter/comparator shown in Figs. 4.10 and 4.11.

entity Test_HW16 is -- the circuit occupiers 1 DSP slice and 0 logical slices
port (Sw : in std_logic_vector (15 downto 0); -- 16-bit input vector

led : out std_logic_vector (4 downto 0); -- the Hamming weight and the result
led_comp: out std_logic); -- of comparison with fixed threshold

end Test_HW16;

architecture Behavioral of Test_HW16 is
signal A, B, Y: std_logic_vector(47 downto 0); -- DSP operands (A,B) and the result (Y)
signal threshold : std_logic_vector(4 downto 0);

begin
threshold <= not "01010" + 1; -- threshold two's complement

process(Sw, Y, threshold)
begin
 A <= (others => '0'); -- the first 48-bit DSP operand
 B <= (others => '0'); -- the second 48-bit DSP operand

for i in 7 downto 0 loop -- the first stage in Fig. 4.10
A(2*i) <= Sw(i);
B(2*i) <= Sw(i+8);

end loop;
for i in 3 downto 0 loop -- the second stage in Fig. 4.10

A(16+3*i+1 downto 16+3*i) <= Y(2*i+1 downto 2*i);
B(16+3*i+1 downto 16+3*i) <= Y(2*i+1+8 downto 2*i+8);

end loop;
for i in 1 downto 0 loop -- the third stage in Fig. 4.10

A(28+4*i+2 downto 28+4*i) <= Y(16+3*i+2 downto 16+3*i);
B(28+4*i+2 downto 28+4*i) <= Y(16+3*i+2+6 downto 16+3*i+6);

end loop;
A(39 downto 36) <= Y(31 downto 28); -- the fourth stage in Fig. 4.10
B(39 downto 36) <= Y(35 downto 32);
A(45 downto 41) <= Y(40 downto 36); -- Hamming weight comparison
B(45 downto 41) <= threshold;

end process;
led <= Y(40 downto 36); -- the resulting Hamming weight
led_comp <= Y(46); -- the result of Hamming weight comparison
DSP: entity work.TesDSP48E1_HW16

port map (A, B, "0000", Y);
end Behavioral;

Fig. 4.11   Implementation of Hamming weight counter/comparator for 16-bit binary vectors in
one DSP48E1 slice

157

The entity TesDSP48E1_HW16 is described as follows:

The component TesDSP48E1_HW16 has the shown below changes comparing
with the template:

1.	 The following two lines are used in the architecture body

2.	 The following lines have been changed in the port map:

3.	 The other changes are shown in Fig. 4.9

entity TesDSP48E1_HW16 is
port (A_conc_B : in std_logic_vector (47 downto 0);

C : in std_logic_vector (47 downto 0);
mode : in std_logic_vector(3 downto 0);
Result : out std_logic_vector (47 downto 0));

end TesDSP48E1_HW16;

A <= A_conc_B(47 downto 18); -- A is 30-bit operand
B <= A_conc_B(17 downto 0); -- B is 18-bit operand

P => Result, -- see Fig. 4.8
A => A, -- 30-bit input: A data input
B => B, -- 18-bit input: B data input
C => C, -- 48-bit input: C data input
OPMODE => "0001111", -- Mux X and Mux Y are used (see Fig. 4.8)
ALUMODE => mode, -- mode = "0000": addition operation is chosen

entity Test_HW16 is -- the circuit occupiers 1 DSP slice and 0 logical slices
port (Sw : in std_logic_vector (15 downto 0); -- 16-bit input vector

led : out std_logic_vector (4 downto 0); -- the Hamming weight and the result
led_comp: out std_logic); -- of comparison with fixed threshold

end Test_HW16;

architecture Behavioral of Test_HW16 is
signal A, B, Y: std_logic_vector(47 downto 0); -- DSP operands (A,B) and the result (Y)
signal threshold : std_logic_vector(4 downto 0);

begin
threshold <= not "01010" + 1; -- threshold two's complement

process(Sw, Y, threshold)
begin
 A <= (others => '0'); -- the first 48-bit DSP operand
 B <= (others => '0'); -- the second 48-bit DSP operand

for i in 7 downto 0 loop -- the first stage in Fig. 4.10
A(2*i) <= Sw(i);
B(2*i) <= Sw(i+8);

end loop;
for i in 3 downto 0 loop -- the second stage in Fig. 4.10

A(16+3*i+1 downto 16+3*i) <= Y(2*i+1 downto 2*i);
B(16+3*i+1 downto 16+3*i) <= Y(2*i+1+8 downto 2*i+8);

end loop;
for i in 1 downto 0 loop -- the third stage in Fig. 4.10

A(28+4*i+2 downto 28+4*i) <= Y(16+3*i+2 downto 16+3*i);
B(28+4*i+2 downto 28+4*i) <= Y(16+3*i+2+6 downto 16+3*i+6);

end loop;
A(39 downto 36) <= Y(31 downto 28); -- the fourth stage in Fig. 4.10
B(39 downto 36) <= Y(35 downto 32);
A(45 downto 41) <= Y(40 downto 36); -- Hamming weight comparison
B(45 downto 41) <= threshold;

end process;
led <= Y(40 downto 36); -- the resulting Hamming weight
led_comp <= Y(46); -- the result of Hamming weight comparison
DSP: entity work.TesDSP48E1_HW16

port map (A, B, "0000", Y);
end Behavioral;

4.2  Design with Embedded DSP Slices

158 4  Embedded Blocks and System-Level Design

The following VHDL code shows changes needed to implement Hamming weight
counter for N = 19 in one DSP slice:

The following additional change is done in the DSP template (in the port map):
CARRYIN => BTNC,

Both projects were tested in the Nexys-4 board. Projects for N = 32 and
N = 64 are given in Appendix B, where an additional signal CarryOutBit is used
which is the most significant bit (bit 3) of 4-bit CARRYOUT signal shown in
Fig. 4.8. It keeps the carry out signal for 48-bit operational unit in DSP48E1.

4.3 � Interaction with FPGA

Up to now we interacted with all the developed circuits with the aid of periph-
eral components (such as push buttons, switches, LEDs and 7-segment displays)
available on prototyping boards. This type of interaction permits to test simple
projects but is inappropriate for more complicated designs. Moreover capabili-
ties of onboard components to supply (large) input data for processing in FPGA
are limited. That is why a random number generator was used in some of the
examples above. So, when considerable amounts of data have to be transferred
from software running on a host computer to a circuit implemented in an FPGA
and back, we need to provide support for interaction between the computer and
the FPGA.

We will explore two types of interaction: Digilent parallel port interface and
UART (Universal Asynchronous Receiver and Transmitter) and illustrate how to
develop communicating modules in both PC software and FPGA hardware.

entity Test_HW19 is -- the circuit occupiers 1 DSP slice and 0 logical slices
port (Sw : in STD_LOGIC_VECTOR (15 downto 0); -- 16 bit input vector

led: out STD_LOGIC_VECTOR (15 downto 0); -- The Hamming weight
BTNL, BTNR, BTNC : in std_logic); -- additional 3 bits for input vector

end Test_HW19;
-- below only changes comparing to the previous project are shown

process(Sw,Y,BTNL,BTNR)
A(41) <= BTNL;
B(41) <= BTNR;
A(44 downto 43) <= Y(42 downto 41);
B(47 downto 43) <= Y(40 downto 36);

end process;

led <= (15 downto 5 => '0') & Y(47 downto 43);
DSP: entity work.TesDSP48E1_HW19

port map (A, B, "0000", Y, BTNC);

159

4.3.1 � Digilent Parallel Port Interface

The Digilent Parallel port interface follows the EPP (Enhanced Parallel Port)
mode of parallel communications. This interface can only be used in Digilent pro-
totyping boards equipped with Digilent EPP data transferring capability (such as
Nexys-2, Nexys-3, and Atlys; please note that the Nexys-4 board does not support
this interface).

EPP is a half-duplex bi-directional interface which means that a receiver and
a transmitter share a single parallel data bus but not at the same time. Data bus is
8-bit wide and there are 6 handshaking lines to control the data transfer (only 4
handshaking lines are used by Digilent EPP). The logic in FPGA has to include a
single 8-bit address register and up to 256 8-bit data registers which can be read
and written by the host PC. Individual data registers are addressable through the
value specified in the address register. The functions of all the Digilent EPP inter-
face lines are the following:

•	 EppDB—8-bit bi-directional data bus.
•	 EppAstb—address strobe driven by the host PC which causes data to be read

from or written to the address register.
•	 EppDstb—data strobe driven by the host PC which causes data to be read from or

written to a data register.
•	 EppWait—synchronization signal driven by the FPGA, which is used to indicate

when the FPGA is ready to transmit or receive data.
•	 EppWr—direction of data transfer chosen by the host PC (when high—PC

reads data from an FPGA register, when low—PC writes data to an FPGA
register).

Access to the registers is done through transfer cycles and four types of transac-
tions are possible: read the address register, write the address register, read a data
register, and write a data register. The direction of the data transfer is controlled
by the host PC through the EppWr signal. Timing diagrams from Fig. 4.12 illustrate
read and write transfer cycles. More details are available in [7].

4.3.1.1 � Digilent EPP Communication Module

Let us support three data registers in the EPP communication module:

•	 Register 0x00—will hold an address for memory transactions (for example
when we would like to fill in a memory block with data supplied from the PC
it would be helpful to specify memory locations to which these data are to be
written; the same technique can be used during read cycles to enable the host to
read from a specific memory address).

•	 Register 0x01—holds 8-bit user data received from the PC.
•	 Register 0x05—holds 8-bit data to be sent to the PC.

4.3  Interaction with FPGA

160 4  Embedded Blocks and System-Level Design

Please note that the data register addresses (i.e. 0x00, 0x01, and 0x05) were cho-
sen arbitrary and other addresses could be equally applied. If needed, more regis-
ters (up to 256) can easily be added to the communication module (see an example
in [8] where 16 data registers are involved).

The following entity EPP_interface implements the address register and the listed
above data registers and interacts with the parallel port bus according to the timing
diagrams in Fig. 4.12. Besides of communication signals, the block includes three
additional output ports and one input port:

•	 data_to_PC is an 8-bit value supplied by a circuit implemented in the FPGA
which holds data to be sent to the host PC over the Digilent EPP interface.

•	 data_from_PC is an 8-bit value received from the host PC over the Digilent EPP
interface, which is further transferred to other logic circuits implemented in the
FPGA.

•	 data_ready is a 1-bit signal which indicates that data have just been received from
the PC and are ready for further processing.

•	 address—is an 8-bit signal which holds an address for memory transactions, this
address is set by the host PC.

library ieee;
use ieee.std_logic_1164.all;
entity EPP_interface is

port (-- EEP handshaking signals and data bus
EppAstb: in std_logic; -- address strobe
EppDstb: in std_logic; -- data strobe
EppWr : in std_logic; -- direction of data transfer
EppDB : inout std_logic_vector(7 downto 0); -- parallel data bus
EppWait: out std_logic; -- synchronization wait signal
-- user extended signals
-- address for memory access operations (stored in the data register 0x00)
address : out std_logic_vector (7 downto 0);
-- signal which indicates that data are ready to be used in other design blocks
data_ready : out std_logic;
-- 8-bit user data received from the PC (stored in the data register 0x01)
data_from_PC: out std_logic_vector(7 downto 0);
-- 8-bit data to send to the PC (held in the data register 0x05)
data_to_PC : in std_logic_vector(7 downto 0));

end EPP_interface;

architecture Behavioral of EPP_interface is
signal EppAddressRegister: std_logic_vector (7 downto 0); -- Epp address register
signal EppInternalBus: std_logic_vector(7 downto 0); -- internal bus

begin
--activate EppWait when either address strobe or data strobe is asserted
EppWait <= '1' when EppAstb = '0' or EppDstb = '0' else '0';
--write to the data bus during PC read cycles
EppDB <= EppInternalBus when (EppWr = '1') else (others => 'Z');
--write address or data to the bus
EppInternalBus <= EppAddressRegister when (EppAstb = '0') else data_to_PC;

address_register: process (EppAstb)
begin

(a
)

(b
)

Fig. 4.12   Timing diagrams for write (a) and read (b) transfer cycles of Digilent EPP interface

161

if rising_edge(EppAstb) then --end of address access cycle
 if EppWr = '0' then --this is address write cycle

EppAddressRegister <= EppDB; --update the address register
end if;

end if;
end process address_register;

data_registers: process (EppDstb)
begin
 if rising_edge(EppDstb) then --end of data access cycle
 if EppWr = '0' then --this is data write cycle

data_ready <= '0';
if EppAddressRegister = x"00" then --memory address register

address <= EppDB;
elsif EppAddressRegister = X"01" then--register holding user data received from PC

data_from_PC <= EppDB;
data_ready <= '1';

end if;
end if;

end if;
end process data_registers;

end Behavioral;

library ieee;
use ieee.std_logic_1164.all;
entity EPP_interface is

port (-- EEP handshaking signals and data bus
EppAstb: in std_logic; -- address strobe
EppDstb: in std_logic; -- data strobe
EppWr : in std_logic; -- direction of data transfer
EppDB : inout std_logic_vector(7 downto 0); -- parallel data bus
EppWait: out std_logic; -- synchronization wait signal
-- user extended signals
-- address for memory access operations (stored in the data register 0x00)
address : out std_logic_vector (7 downto 0);
-- signal which indicates that data are ready to be used in other design blocks
data_ready : out std_logic;
-- 8-bit user data received from the PC (stored in the data register 0x01)
data_from_PC: out std_logic_vector(7 downto 0);
-- 8-bit data to send to the PC (held in the data register 0x05)
data_to_PC : in std_logic_vector(7 downto 0));

end EPP_interface;

architecture Behavioral of EPP_interface is
signal EppAddressRegister: std_logic_vector (7 downto 0); -- Epp address register
signal EppInternalBus: std_logic_vector(7 downto 0); -- internal bus

begin
--activate EppWait when either address strobe or data strobe is asserted
EppWait <= '1' when EppAstb = '0' or EppDstb = '0' else '0';
--write to the data bus during PC read cycles
EppDB <= EppInternalBus when (EppWr = '1') else (others => 'Z');
--write address or data to the bus
EppInternalBus <= EppAddressRegister when (EppAstb = '0') else data_to_PC;

address_register: process (EppAstb)
begin

4.3  Interaction with FPGA

162 4  Embedded Blocks and System-Level Design

Let us use the developed communication module to design a simple circuit
which receives from the host PC a randomly generated 8-bit value and displays
it on LEDs of the Atlys board. Similarly, the 8-bit value selected on the board’s
switches is sent to the host PC. The circuit is organized as shown in Fig. 4.13.

This circuit can be described in VHDL as follows:

Note that data transfers in this example are trivial, that is why, for now, signals
address and data_ready, which are generated in the communication module, are not

EppWr : in std_logic;
EppDB : inout std_logic_vector(7 downto 0);
EppWait : out std_logic;
sw : in std_logic_vector(7 downto 0);
LED : out std_logic_vector(7 downto 0));

end main;

architecture Behavioral of main is
signal data_from_PC, data_to_PC : std_logic_vector(7 downto 0);

begin
EPP: entity work.EPP_interface port map (EppAstb => EppAstb,

EppDstb => EppDstb, EppWr => EppWr, EppDB => EppDB,
EppWait => EppWait, address => open, data_ready => open,
data_to_PC => data_to_PC, data_from_PC => data_from_PC);

LED <= data_from_PC;
data_to_PC <= sw;
end Behavioral;

library ieee;
use ieee.std_logic_1164.all;
entity main is

port (EppAstb : in std_logic;
EppDstb : in std_logic;

Fig. 4.13   Structure of a circuit which receives an 8-bit value from the host PC via the Digilent
EPP interface, displays this value on the LEDs of Atlys board, and sends the 8-bit value selected
on board’s switches to the host PC

163

required and were left unconnected. In more complicated examples from Sect. 4.4
these signals will be used intensively.

All ports of the main entity have to be connected to appropriate FPGA pins. The
respective pin locations can be found in the master user constraints file (UCF)
available in the board’s documentation.

To test the designed circuit, the second communication module has to be devel-
oped in PC software. The following section gives the necessary explanations and
an example.

4.3.1.2 � Application Software

Once the required hardware modules are developed, to test them and to appreci-
ate the data transfer facilities we need to design application software that would
interact with the FPGA logic. We will perform data transfer over USB with the
aid of Adept SDK (software development kit) which provides an Application
Programming Interface (API) DPCUTIL allowing EPP-equipped Digilent proto-
typing boards to communicate with application software running under Microsoft
Windows on a host computer [9]. The API requires a parallel port interface to be
implemented in FPGA in a way described in Sect. 4.3.1.1. The API is composed
of a number of C functions and can be used with programs written in C/C++ [9].
The available API functions allow for accessing (both reading and writing) a sin-
gle register or a set of registers. The detailed description of the API can be found
in the reference manual [9].

In order to use DPCUTIL API functions, a program must be linked with dpcutil
library (available at [9]) and include the following header files:

C++ code below illustrates the interaction between a software program run-
ning on a host PC and an EPP-equipped Digilent prototyping board:

#include <windows.h>
#include "dpcdefs.h"
#include "dpcutil.h"

return INITIALIZATION_FAILED; //error occurred while initializing
//obtain the index of the default device in the Device Table
int idDevice = DvmgGetDefaultDev(&error_code);
if (idDevice == -1) //no devices in the Device Table

 { cerr << "No default device"<< endl;
 cerr << "Run Digilent Adept and modify the Device Table" <<

" (Settings tab, Device Manager option)" << endl;
return NO_DEFAULT_DEVICE;

 }
else //get the default device name

DvmgGetDevName(idDevice, nameDevice, &error_code);

unsigned data, result;
const int range_min = 0, range_max = 0xff;
srand (static_cast<unsigned>(time(0)));
char operation;

do
 { cout << "Select an operation (r - read switches, s - send a value, e - exit)\n";

cin >> operation;
switch (operation)

 { case 'r': ReceiveResultFromFPGA(result);
 cout << "The result from FPGA is: " << hex << result << endl;

break;
case 's': //randomly generate an 8-bit number

data = static_cast<unsigned>((double)rand() / (RAND_MAX + 1) *
(range_max - range_min) + range_min);

SendDataToFPGA(data); //send data to the FPGA
break;

//The following header files are required to use the DPCUTIL API
//The program must be linked with the dpcutil.lib library.
#include <windows.h>
#include "dpcdefs.h"
#include "dpcutil.h"
#include <iostream>
#include <ctime>

const int INITIALIZATION_FAILED = 1;
const int NO_DEFAULT_DEVICE = 2;
const int INTERNAL_ERROR = 3305; //internal error in DPCUTIL
const int devNameLength = 16;
char nameDevice[devNameLength+1];
void SendDataToFPGA(unsigned data);
bool WriteData(HANDLE hif, unsigned data);
void ReceiveResultFromFPGA(unsigned& data);
bool ReadData(HANDLE hif, unsigned& data);

using namespace std;

int main(int argc, char* argv[])
{ ERC error_code;

if (!DpcInit(&error_code)) //before using DPCUTIL API functions, call DpcInit

4.3  Interaction with FPGA

164 4  Embedded Blocks and System-Level Design

case 'e' : break;
default: cout << "Wrong parameter" << endl;

 }
 }

while (operation != 'e');
return 0;

}
void SendDataToFPGA(unsigned data) //sends an 8-bit data item to the FPGA
{ ERC error_code;

HANDLE hif;
TRID trid; //transaction ID type
//before using data transfer functions, connect to a communication device

if (!DpcOpenData(&hif, nameDevice, &error_code, &trid))
 { cerr << "DpcOpenData failed." << endl;

return;
 }

//wait for the last (trid) transaction to be completed
if (!DpcWaitForTransaction(hif, trid, &error_code))

 { DpcCloseData(hif, &error_code); // close the communications module
 cerr << "DpcOpenData failed." << endl;

return;
 }

if (!WriteData(hif, data)) return; //data transfer

error_code = DpcGetFirstError(hif); //search for the first transaction with an error
if ((error_code == ercNoError) || (error_code == INTERNAL_ERROR))

 { DpcCloseData(hif, &error_code); //close the communications module
cout << "Value " << hex << data << " successfully written to the FPGA." << endl;

 }
else

 { DpcCloseData(hif, &error_code); //close the communications module
 cerr << "An error occurred while setting the register" << endl;

 }
}

bool WriteData(HANDLE hif, unsigned data)
{ ERC error_code;

unsigned char idData;
unsigned idReg;
idReg = 0x01;
idData = data;
//send a single data byte (idData) to the register idReg
if (!DpcPutReg(hif, idReg, idData, &error_code, 0))

 { DpcCloseData(hif, &error_code); //close the communications module
 cerr << "DpcPutReg failed." << endl;

return false;
 }

return true;
}

return INITIALIZATION_FAILED; //error occurred while initializing
//obtain the index of the default device in the Device Table
int idDevice = DvmgGetDefaultDev(&error_code);
if (idDevice == -1) //no devices in the Device Table

 { cerr << "No default device"<< endl;
 cerr << "Run Digilent Adept and modify the Device Table" <<

" (Settings tab, Device Manager option)" << endl;
return NO_DEFAULT_DEVICE;

 }
else //get the default device name

DvmgGetDevName(idDevice, nameDevice, &error_code);

unsigned data, result;
const int range_min = 0, range_max = 0xff;
srand (static_cast<unsigned>(time(0)));
char operation;

do
 { cout << "Select an operation (r - read switches, s - send a value, e - exit)\n";

cin >> operation;
switch (operation)

 { case 'r': ReceiveResultFromFPGA(result);
 cout << "The result from FPGA is: " << hex << result << endl;

break;
case 's': //randomly generate an 8-bit number

data = static_cast<unsigned>((double)rand() / (RAND_MAX + 1) *
(range_max - range_min) + range_min);

SendDataToFPGA(data); //send data to the FPGA
break;

//The following header files are required to use the DPCUTIL API
//The program must be linked with the dpcutil.lib library.
#include <windows.h>
#include "dpcdefs.h"
#include "dpcutil.h"
#include <iostream>
#include <ctime>

const int INITIALIZATION_FAILED = 1;
const int NO_DEFAULT_DEVICE = 2;
const int INTERNAL_ERROR = 3305; //internal error in DPCUTIL
const int devNameLength = 16;
char nameDevice[devNameLength+1];

void SendDataToFPGA(unsigned data);
bool WriteData(HANDLE hif, unsigned data);
void ReceiveResultFromFPGA(unsigned& data);
bool ReadData(HANDLE hif, unsigned& data);

using namespace std;

int main(int argc, char* argv[])
{ ERC error_code;

if (!DpcInit(&error_code)) //before using DPCUTIL API functions, call DpcInit

165

 cout << "Values successfully received from the FPGA." << endl;
 }

else
 { DpcCloseData(hif, &error_code); //close the communications module
 cerr << "An error occurred while reading the register" << endl;
 }
}

bool ReadData(HANDLE hif, unsigned& data)
{ ERC error_code;

unsigned char idData;
unsigned idReg;
data = 0;
idReg = 0x05;
//get a single data byte (idData) from the register idReg
if (!DpcGetReg(hif, idReg, &idData, &error_code, 0))

 { DpcCloseData(hif, &error_code); //close the communications module
 cerr << "DpcGetReg failed." << endl;

return false;
 }

data = idData;
return true;

}

void ReceiveResultFromFPGA(unsigned& data)
{ ERC error_code;

HANDLE hif;
//before using data transfer functions, connect to a communication device
if (!DpcOpenData(&hif, nameDevice, &error_code, 0))

 { cerr << "DpcOpenData failed." << endl;
return;

 }
if (!ReadData(hif, data)) return; //data transfer

error_code = DpcGetFirstError(hif); //search for the first transaction with an error
if ((error_code == ercNoError) || (error_code == INTERNAL_ERROR))

 { DpcCloseData(hif, &error_code); //close the communications module

case 'e' : break;
default: cout << "Wrong parameter" << endl;

 }
 }

while (operation != 'e');
return 0;

}
void SendDataToFPGA(unsigned data) //sends an 8-bit data item to the FPGA
{ ERC error_code;

HANDLE hif;
TRID trid; //transaction ID type
//before using data transfer functions, connect to a communication device

if (!DpcOpenData(&hif, nameDevice, &error_code, &trid))
 { cerr << "DpcOpenData failed." << endl;

return;
 }

//wait for the last (trid) transaction to be completed
if (!DpcWaitForTransaction(hif, trid, &error_code))

 { DpcCloseData(hif, &error_code); // close the communications module
 cerr << "DpcOpenData failed." << endl;

return;
 }

if (!WriteData(hif, data)) return; //data transfer

error_code = DpcGetFirstError(hif); //search for the first transaction with an error
if ((error_code == ercNoError) || (error_code == INTERNAL_ERROR))

 { DpcCloseData(hif, &error_code); //close the communications module
cout << "Value " << hex << data << " successfully written to the FPGA." << endl;

 }
else

 { DpcCloseData(hif, &error_code); //close the communications module
 cerr << "An error occurred while setting the register" << endl;

 }
}

bool WriteData(HANDLE hif, unsigned data)
{ ERC error_code;

unsigned char idData;
unsigned idReg;
idReg = 0x01;
idData = data;
//send a single data byte (idData) to the register idReg
if (!DpcPutReg(hif, idReg, idData, &error_code, 0))

 { DpcCloseData(hif, &error_code); //close the communications module
 cerr << "DpcPutReg failed." << endl;

return false;
 }

return true;
}

4.3  Interaction with FPGA

166 4  Embedded Blocks and System-Level Design

The program starts by initializing dpcutil and obtaining the index of the default
device in the Device Table. The Device Table is managed by the Digilent Adept util-
ity (Settings tab, Device Manager option). If there is a problem during the initiali-
zation phase, ensure that the dpcutil is visible to the linker and that the connected
board appears in the Device Table. Afterwards the program iteratively suggests the
user to choose one of 3 available options: “r”—read the value of the board’s switches
and print it on the screen, “s”—send a randomly generated 8-bit value to the board
and show it on LEDs, and “e”—exit. The functions SendDataToFPGA and WriteData
send an 8-bit data item to the FPGA (by writing to the data register 0x01). The
function ReceiveResultFromFPGA and ReadData get an 8-bit value from the communica-
tion module implemented in the FPGA (by reading the data register 0x05).

The following dpcutil functions are used in the code above:

•	 DpcInit—must be called before using any dpcutil API function. The function
returns true value if initialization was successful, otherwise false value is
returned.

•	 DvmgGetDefaultDev—permits to get the index of the default device in the Digilent
Device Table. The function returns -1 if there is no default device. In this case
the user has to set a default device in the Device Table managed through the
Digilent Adept utility (Settings tab, Device Manager option).

•	 DvmgGetDevName—gets the name of the selected default device.
•	 DpcOpenData—establishes connection with the default device. This function cre-

ates a handle to be used in subsequent data transfer cycles.
•	 DpcWaitForTransaction—waits for a transaction to be complete.
•	 DpcCloseData—closes the device.
•	 DpcGetFirstError—searches for the first transaction with error and returns the

respective error code. Error codes are detailed in [9].

 cout << "Values successfully received from the FPGA." << endl;
 }

else
 { DpcCloseData(hif, &error_code); //close the communications module
 cerr << "An error occurred while reading the register" << endl;
 }
}

bool ReadData(HANDLE hif, unsigned& data)
{ ERC error_code;

unsigned char idData;
unsigned idReg;
data = 0;
idReg = 0x05;
//get a single data byte (idData) from the register idReg
if (!DpcGetReg(hif, idReg, &idData, &error_code, 0))

 { DpcCloseData(hif, &error_code); //close the communications module
 cerr << "DpcGetReg failed." << endl;

return false;
 }

data = idData;
return true;

}

void ReceiveResultFromFPGA(unsigned& data)
{ ERC error_code;

HANDLE hif;
//before using data transfer functions, connect to a communication device
if (!DpcOpenData(&hif, nameDevice, &error_code, 0))

 { cerr << "DpcOpenData failed." << endl;
return;

 }
if (!ReadData(hif, data)) return; //data transfer

error_code = DpcGetFirstError(hif); //search for the first transaction with an error
if ((error_code == ercNoError) || (error_code == INTERNAL_ERROR))

 { DpcCloseData(hif, &error_code); //close the communications module

167

•	 DpcPutReg—sends one byte to a specified data register. In the code above the
only register that is written is 0x01.

•	 DpcGetReg—gets one byte from a specified data register. In the code above the
only register that is read is 0x05.

Finally, the code above and the circuit described in Sect. 4.3.1.1 permit an FPGA
and a host PC to communicate as depicted in Fig. 4.14. The explored communica-
tion scenario is very simple but serves as a base to develop more complex interac-
tion models as will be shown in Sect. 4.4.

4.3.2 � UART Interface

For boards that do not provide support for Digilent EPP data transferring capabil-
ity (such as the Nexys-4) other communication interfaces need to be explored. Let

Fig. 4.14   An example of communication of an FPGA and a host PC

4.3  Interaction with FPGA

168 4  Embedded Blocks and System-Level Design

us consider the UART interface which implements a very simple serial communi-
cation protocol.

The Nexys-4 board includes a USB-UART bridge that permits a host PC to
communicate with the board using standard Windows COM (Communication
port) commands [1]. To establish a communication, USB-COM port drivers [10]
are required to convert USB packets to UART data. Four pins of the onboard
FPGA are connected to four lines of the USB controller: RXD (pin C4)—for data
transmission from a host PC to the FPGA, TXD (pin D4)—for data transmission
from the FPGA to a host PC, and RTS/CTS (pins E5/D3) are the handshaking con-
trol signals. In this way the board supports a full duplex bi-directional interface,
i.e. both the FPGA and the PC can transmit data at the same time using separate
lines (RXD and TXD).

Since the FPGA has to transmit data to a host PC as well as to receive data
from the host PC, both a transmitter and a receiver circuits have to be imple-
mented. Basically, a transmitter gets parallel data and shifts them to the communi-
cation line bit by bit at a special rate. The receiver executes the opposite task, i.e.
it extracts data bit by bit from the serial line (also at a special rate) and converts
the result to a parallel representation. The rate of data (bit) sampling is called a
baud rate and, for UART, this is essentially the number of bits transmitted per sec-
ond over a serial communication line. For the interface to work properly both the
receiver and the transmitter must function at the same baud rate. The serial line is
always ‘1’ when idle. The transmission begins with a start bit, which is always ‘0’,
followed by several data bits and an optional parity bit, and ends with one or sev-
eral stop bits, which are ‘1’. The number of data bits transmitted is typically equal
to 8 (i.e. one byte). The parity bit might be used by the receiver to detect errors in
the transmitted data. Only odd number of errors can be detected. Once again both
the receiver and the transmitter must agree on the presence of the parity bit and the
number of stop bits.

In this section we will consider a simple UART communication module which
transmits 8 data bits, without parity bits and with one stop bit. The respective
frame structure is shown in Fig. 4.15.

4.3.2.1 � UART Communication Module

We will design a UART communication module which operates at the baud rate
9600 and whose frame structure is depicted in Fig. 4.15. We will target our design

Fig. 4.15   An example of a frame containing one start bit, 8 data bits, and one stop bit

169

to the Nexys-4 prototyping board, which includes a 100 MHz crystal oscillator.
The external interface of the communication module will be the following:

Here, clk is the board’s clock signal. The communication lines TXD and RXD are
used for serial data transmission in both directions. DIN is the byte to be transmit-
ted from the FPGA to the host PC (or other device). DOUT is the data byte received
from the host PC (or other device). WR is an input signaling that data on DIN
bus are ready and have to be transmitted. The outputs TX_ready and RX_ready are
asserted when the module has finished the last communication cycle and is ready
to transmit more data (TX_ready) or that data have just been received and are ready
for processing (RX_ready). The module will not provide any buffering of data, so
other FPGA logic has to guarantee that new data are not supplied if TX_ready is not
asserted.

To support the selected baud rate (9600 bits per second), the input clock signal
(100 MHz) has to be divided by 108/9600 ≈ 10416 and the communication lines
have to be sampled/written at the middle of a bit period. The operation of the mod-
ule will be controlled by the original 100 MHz clock signal.

Let us start with designing a transmitter, which is simpler than a receiver. The
flowchart, which describes the control operations, is shown in Fig. 4.16 (outputs
are specified in VHDL). The control finite state machine (FSM) includes 3 states:
READY, LOAD_BIT, and SEND_BIT. The FSM is in the state READY when it is ready
to receive more data from other FPGA logic and to transmit them over UART.
Essentially, this is a waiting state which constantly drives the TXD communication
line with logic value ‘1’ (i.e. the line is idle). The signal TX_bitIndex stores the index
of the next bit to be transmitted over the TXD line; it ranges from 0 (for the start
bit) to 9 (for the stop bit). The signal TX_div is a counter which permits bits to be
sent over TXD line with the established baud rate; it counts from 0 to 10416 (the
maximum value is stored in a constant CLK_DIV). In the READY state the counter is
reset to 0. Once the transmission request comes through the WR signal, the FSM
composes the frame to be transmitted and changes its state to the LOAD_BIT. The
frame is stored in a 10-bit signal TX_frame and includes 1 start bit (‘0’), 8 data bits
from DIN input and 1 stop bit (‘1’), according to Fig. 4.15. In the LOAD_BIT state the
FSM deasserts the TX_ready signal and drives the TXD communication line with one
bit from the frame. The bit to send is indicated by TX_bitIndex. At the same time,
TX_bitIndex is incremented to point to the next bit in the frame to be transmitted.
Finally, the state SEND_BIT continues to drive the TXD line with the selected in the

entity UART_comm is
port (clk : in std_logic; -- board's clock (100 MHz)

WR : in std_logic; -- write strobe (to send data to PC)
DIN : in std_logic_vector (7 downto 0); -- data to send
DOUT : out std_logic_vector (7 downto 0); -- data received
TX_ready : out std_logic; -- ready to transmit
RX_ready : out std_logic; -- received data are available
TXD : out std_logic; -- transmission line
RXD : in std_logic); -- reception line

end UART_comm;

4.3  Interaction with FPGA

170 4  Embedded Blocks and System-Level Design

previous state bit until CLK_DIV clock cycles (with the frequency 100 MHz) have
passed. By this time, the next bit might be extracted from the frame and driven to
the TXD line in the state LOAD_BIT. Once the last (stop) bit from the frame is trans-
mitted, the FSM returns to the READY state and waits for new data to arrive from
other FPGA circuits.

The receiver is a bit more complex. Essentially, it has to permanently monitor
the RXD line until a transition from ‘1’ (idle) to ‘0’ (start bit) is detected. Once the
start of a new arriving frame is identified, the receiver has to wait for half a baud
rate period and then sample the first (start) bit. Afterwards the remaining 9 bits (8
data bits and a stop bit) have to be read from the RXD line with intervals equal to
the period for the selected baud rate. The flowchart that describes behavior of the
receiver is shown in Fig. 4.17.

The receiver control FSM includes six states: READY, DETECT_START_BIT, PUT_
BIT, READ_BIT, DATA_READY, and DONE. The FSM is in the state READY when it is
waiting for new data to arrive on the RXD line. The signal RX_ready is deasserted
indicating that no data have been received so far. The signal RX_div is a counter,

Fig. 4.16   Flowchart for the UART transmitter

171

similar to TX_div described above, which permits bits to be received over the RXD
line with the established baud rate; it counts either from 0 to 5208 (10416/2,
half the baud rate period, stored in a constant CLK_DIV_HALF) or from 0 to 10416
(the baud rate period stored in a constant CLK_DIV). In the READY state the coun-
ter is reset to 0. The signal RX_bitIndex stores the frame index of the next bit to be
received from the RXD line; it ranges from 0 (for the start bit) to 9 (for the stop bit).
In the state READY the RXD signal is constantly sampled until a transition from ‘1’
to ‘0’ is detected.

Once the start bit is detected, the FSM changes its state to the DETECT_START_
BIT. In this state RX_div counter is incremented once every (100 MHz) clock cycle
until it reaches value CLK_DIV_HALF (which means that half a baud rate period has
elapsed, the RXD line is to be sampled for the start bit) and the FSM changes its
state to the PUT_BIT. In the PUT_BIT state the FSM samples the RXD communication

Fig. 4.17   Flowchart for the UART receiver

4.3  Interaction with FPGA

172 4  Embedded Blocks and System-Level Design

line and stores the extracted bit in the receiver frame RX_frame at the position indi-
cated by RX_bitIndex. At the same time, RX_bitIndex is incremented to point to the
next bit in the frame to be received. The next state is the READ_BIT which is a wait-
ing state counting until CLK_DIV (100 MHz) clock cycles have passed after the last
bit had been sampled from the RXD line. By this time, the next bit might be sam-
pled from the RXD line in the state PUT_BIT. Once the last (stop) bit is extracted, the
FSM changes to the DATA_READY state, where information bits from the frame are
driven to the output DOUT, which is to be used by other FPGA circuits. The start
and stop bits (with indices 0 and 9, respectively) are discarded. The last FSM state
is DONE where the signal RX_ready is asserted indicating that new data have been
received and are available on DOUT output. Afterwards the FSM returns to the state
READY and waits for new data to arrive over the RXD line.

VHDL code describing both the transmitter and the receiver is shown below.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
--9600 baud rate, 8 data bits, no parity, 1 stop bit
entity UART_comm is

port (clk : in std_logic; -- board's clock (100 MHz)
WR : in std_logic; -- write strobe (to send data to PC)
DIN : in std_logic_vector (7 downto 0); -- data to send
DOUT : out std_logic_vector (7 downto 0); -- data received
TX_ready : out std_logic; -- ready to transmit
RX_ready : out std_logic; -- received data are available
TXD : out std_logic; -- transmission line
RXD : in std_logic); -- reception line

end UART_comm;
architecture Behavioral of UART_comm is
--CLOCK
--100 MHz/9600 = 10416 = 0x28B0
constant CLK_DIV : std_logic_vector(13 downto 0) := "10" & x"8B0";
--100 MHz/9600/2 = 5208 = 0x1458
constant CLK_DIV_HALF : std_logic_vector(12 downto 0) := "1" & x"458";
--TRANSMISSION
signal TX_div : std_logic_vector(13 downto 0) := (others => '0');
--frame = 1 start + 8 data + 1 stop = 10 bits
signal TX_frame : std_logic_vector(9 downto 0) := '1' & x"ff" & '0';
type TX_TYPE is (READY, LOAD_BIT, SEND_BIT);
signal TX_state, TX_next_state : TX_TYPE := READY;
signal TX_bitIndex : natural; -- index of the next bit in TX_frame to be transferred

--RECEPTION
signal RX_div : std_logic_vector(13 downto 0) := (others => '0');
signal RX_frame : std_logic_vector(9 downto 0); --1 start + 8 data + 1 stop = 10 bits
type RX_TYPE is (READY, DETECT_START_BIT, READ_BIT, PUT_BIT,

DATA_READY, DONE);
signal RX_state, RX_next_state : RX_TYPE := READY;
signal RX_bitIndex : natural; -- index of the next bit in the RX_frame to be received

begin
--
--- TRANSMISSION
--
TX_state_transition: process (clk)
begin

if (rising_edge(clk)) then
TX_state <= TX_next_state;

end if;
end process TX_state_transition;

TX_output_logic: process (clk)
begin
 if (rising_edge(clk)) then

173

case TX_state is
when READY =>

TX_ready <= '1';
TX_bitIndex <= 0;
TXD <= '1'; -- idle
TX_div <= (others => '0');
if (WR = '1') then

TX_frame <= '1' & DIN & '0';
end if;

when LOAD_BIT =>
TX_ready <= '0';
TX_div <= (others => '0');
TX_bitIndex <= TX_bitIndex + 1;

 TXD <= TX_frame(TX_bitIndex);
when SEND_BIT =>

TX_ready <= '0';
TX_div <= TX_div + 1;

end case;
end if;

end process TX_output_logic;

TX_next_state_logic: process (TX_state, WR, TX_div, TX_bitIndex)
begin

case TX_state is
when READY =>

if (WR = '1') then
TX_next_state <= LOAD_BIT;

else
TX_next_state <= READY;

end if;
when LOAD_BIT =>

TX_next_state <= SEND_BIT;
when SEND_BIT =>

if (TX_div >= CLK_DIV) then
if (TX_bitIndex = TX_frame'length) then

TX_next_state <= READY;
else

TX_next_state <= LOAD_BIT;
end if;

else
TX_next_state <= SEND_BIT;
end if;

when others => -- should never be reached
TX_next_state <= READY;

end case;
end process TX_next_state_logic;
--
--- RECEPTION--
RX_state_transition: process (clk)
begin
 if (rising_edge(clk)) then

RX_state <= RX_next_state;
end if;

end process RX_state_transition;

RX_output_logic: process (clk)

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
--9600 baud rate, 8 data bits, no parity, 1 stop bit
entity UART_comm is

port (clk : in std_logic; -- board's clock (100 MHz)
WR : in std_logic; -- write strobe (to send data to PC)
DIN : in std_logic_vector (7 downto 0); -- data to send
DOUT : out std_logic_vector (7 downto 0); -- data received
TX_ready : out std_logic; -- ready to transmit
RX_ready : out std_logic; -- received data are available
TXD : out std_logic; -- transmission line
RXD : in std_logic); -- reception line

end UART_comm;
architecture Behavioral of UART_comm is
--CLOCK
--100 MHz/9600 = 10416 = 0x28B0
constant CLK_DIV : std_logic_vector(13 downto 0) := "10" & x"8B0";
--100 MHz/9600/2 = 5208 = 0x1458
constant CLK_DIV_HALF : std_logic_vector(12 downto 0) := "1" & x"458";
--TRANSMISSION
signal TX_div : std_logic_vector(13 downto 0) := (others => '0');
--frame = 1 start + 8 data + 1 stop = 10 bits
signal TX_frame : std_logic_vector(9 downto 0) := '1' & x"ff" & '0';
type TX_TYPE is (READY, LOAD_BIT, SEND_BIT);
signal TX_state, TX_next_state : TX_TYPE := READY;
signal TX_bitIndex : natural; -- index of the next bit in TX_frame to be transferred

--RECEPTION
signal RX_div : std_logic_vector(13 downto 0) := (others => '0');
signal RX_frame : std_logic_vector(9 downto 0); --1 start + 8 data + 1 stop = 10 bits
type RX_TYPE is (READY, DETECT_START_BIT, READ_BIT, PUT_BIT,

DATA_READY, DONE);
signal RX_state, RX_next_state : RX_TYPE := READY;
signal RX_bitIndex : natural; -- index of the next bit in the RX_frame to be received

begin
--
--- TRANSMISSION
--
TX_state_transition: process (clk)
begin

if (rising_edge(clk)) then
TX_state <= TX_next_state;

end if;
end process TX_state_transition;

TX_output_logic: process (clk)
begin
 if (rising_edge(clk)) then

4.3  Interaction with FPGA

174 4  Embedded Blocks and System-Level Design

begin
 if (rising_edge(clk)) then

case RX_state is
when READY =>

RX_ready <= '0';
RX_div <= (others => '0');
RX_bitIndex <= 0;

when DETECT_START_BIT =>
RX_ready <= '0';
RX_div <= RX_div + 1;

when PUT_BIT =>
RX_ready <= '0';
RX_bitIndex <= RX_bitIndex + 1;
RX_frame(RX_bitIndex) <= RXD;
RX_div <= (others => '0');

when READ_BIT =>
RX_ready <= '0';
RX_div <= RX_div + 1;

when DATA_READY =>
RX_ready <= '0';
DOUT <= RX_frame(8 downto 1); --extract only data bits
RX_div <= (others => '0');

when DONE =>
RX_ready <= '1';
RX_div <= (others => '0');

end case;
end if;

end process RX_output_logic;

RX_next_state_logic: process (RX_state, RXD, RX_div, RX_bitIndex)
begin

case RX_state is
when READY =>

if (RXD = '1') then --idle
RX_next_state <= READY;

else
RX_next_state <= DETECT_START_BIT; --start bit detected

end if;
when DETECT_START_BIT =>

if (RX_div = CLK_DIV_HALF) then
RX_next_state <= PUT_BIT;

else
RX_next_state <= DETECT_START_BIT;

end if;
when PUT_BIT =>

if (RX_bitIndex = RX_frame'left) then
RX_next_state <= DATA_READY;

else
RX_next_state <= READ_BIT;

end if;
when READ_BIT =>

if (RX_div = CLK_DIV) then
RX_next_state <= PUT_BIT;

case TX_state is
when READY =>

TX_ready <= '1';
TX_bitIndex <= 0;
TXD <= '1'; -- idle
TX_div <= (others => '0');
if (WR = '1') then

TX_frame <= '1' & DIN & '0';
end if;

when LOAD_BIT =>
TX_ready <= '0';
TX_div <= (others => '0');
TX_bitIndex <= TX_bitIndex + 1;

 TXD <= TX_frame(TX_bitIndex);
when SEND_BIT =>

TX_ready <= '0';
TX_div <= TX_div + 1;

end case;
end if;

end process TX_output_logic;

TX_next_state_logic: process (TX_state, WR, TX_div, TX_bitIndex)
begin

case TX_state is
when READY =>

if (WR = '1') then
TX_next_state <= LOAD_BIT;

else
TX_next_state <= READY;

end if;
when LOAD_BIT =>

TX_next_state <= SEND_BIT;
when SEND_BIT =>

if (TX_div >= CLK_DIV) then
if (TX_bitIndex = TX_frame'length) then

TX_next_state <= READY;
else

TX_next_state <= LOAD_BIT;
end if;

else
TX_next_state <= SEND_BIT;
end if;

when others => -- should never be reached
TX_next_state <= READY;

end case;
end process TX_next_state_logic;
--
--- RECEPTION--
RX_state_transition: process (clk)
begin
 if (rising_edge(clk)) then

RX_state <= RX_next_state;
end if;

end process RX_state_transition;

RX_output_logic: process (clk)

175

Let us show how the developed UART transmitter/receiver can be used in a cir-
cuit which receives an 8-bit value from the host PC and displays this value on the
Nexys-4 board rightmost LEDs. Similarly, the 8-bit value selected on the board’s
rightmost switches is sent to the host PC. The circuit is organized as shown in
Fig. 4.18.

This circuit can be described in VHDL as follows:

else
RX_next_state <= READ_BIT;

end if;
when DATA_READY =>

RX_next_state <= DONE;
when DONE =>

RX_next_state <= READY;
when others => -- should never be reached

RX_next_state <= READY;
end case;

end process RX_next_state_logic;

end Behavioral;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity main is

port (clk : in std_logic;
TXD : out std_logic;
RXD : in std_logic;
sw : in std_logic_vector(7 downto 0);
LED : out std_logic_vector(7 downto 0));

end main;
architecture Behavioral of main is
signal data_from_PC, data_to_PC : std_logic_vector(7 downto 0);
signal WR : std_logic;
constant CLK_DIV : std_logic_vector(23 downto 0) := x"98967F"; --10 times per second
signal div : std_logic_vector(23 downto 0) := (others => '0');

begin
UART: entity work. UART_comm port map (clk => clk, WR => WR,

DIN => data_to_PC, DOUT => data_from_PC, TX_ready => open,
RX_ready => open, TXD => TXD, RXD => RXD);

process (clk)
begin

if (rising_edge(clk)) then
if (div = CLK_DIV) then div <= (others => '0'); WR <= '1';
else div <= div + 1; WR <= '0';
end if;

end if;
end process;

LED <= data_from_PC;
data_to_PC <= sw;

end Behavioral;

begin
 if (rising_edge(clk)) then

case RX_state is
when READY =>

RX_ready <= '0';
RX_div <= (others => '0');
RX_bitIndex <= 0;

when DETECT_START_BIT =>
RX_ready <= '0';
RX_div <= RX_div + 1;

when PUT_BIT =>
RX_ready <= '0';
RX_bitIndex <= RX_bitIndex + 1;
RX_frame(RX_bitIndex) <= RXD;
RX_div <= (others => '0');

when READ_BIT =>
RX_ready <= '0';
RX_div <= RX_div + 1;

when DATA_READY =>
RX_ready <= '0';
DOUT <= RX_frame(8 downto 1); --extract only data bits
RX_div <= (others => '0');

when DONE =>
RX_ready <= '1';
RX_div <= (others => '0');

end case;
end if;

end process RX_output_logic;

RX_next_state_logic: process (RX_state, RXD, RX_div, RX_bitIndex)
begin

case RX_state is
when READY =>

if (RXD = '1') then --idle
RX_next_state <= READY;

else
RX_next_state <= DETECT_START_BIT; --start bit detected

end if;
when DETECT_START_BIT =>

if (RX_div = CLK_DIV_HALF) then
RX_next_state <= PUT_BIT;

else
RX_next_state <= DETECT_START_BIT;

end if;
when PUT_BIT =>

if (RX_bitIndex = RX_frame'left) then
RX_next_state <= DATA_READY;

else
RX_next_state <= READ_BIT;

end if;
when READ_BIT =>

if (RX_div = CLK_DIV) then
RX_next_state <= PUT_BIT;

4.3  Interaction with FPGA

176 4  Embedded Blocks and System-Level Design

In this example the status of the board’s switches is sent over UART with the
frequency 10 times per second. The timing is controlled by a simple counter which
counts from 0 to the maximum value (equal to 1/10th of a second) defined in the
CLK_DIV constant; once the maximum value is reached the counter is reset and the
WR signal is asserted starting the transfer cycle. As soon as data are received from
the host PC they are immediately shown on the board’s LEDs. Since the involved
processing and data transfers in this example are trivial, the signals RX_ready

Fig. 4.18   Structure of a circuit which receives an 8-bit value from the host PC via the UART
interface, displays this value on the Nexys-4 board rightmost LEDs and sends the 8-bit value
selected on the board’s rightmost switches to the host PC. The value from the switches is sent to
the host PC 10 times per second

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity main is

port (clk : in std_logic;
TXD : out std_logic;
RXD : in std_logic;
sw : in std_logic_vector(7 downto 0);
LED : out std_logic_vector(7 downto 0));

end main;
architecture Behavioral of main is
signal data_from_PC, data_to_PC : std_logic_vector(7 downto 0);
signal WR : std_logic;
constant CLK_DIV : std_logic_vector(23 downto 0) := x"98967F"; --10 times per second
signal div : std_logic_vector(23 downto 0) := (others => '0');

begin
UART: entity work. UART_comm port map (clk => clk, WR => WR,

DIN => data_to_PC, DOUT => data_from_PC, TX_ready => open,
RX_ready => open, TXD => TXD, RXD => RXD);

process (clk)
begin

if (rising_edge(clk)) then
if (div = CLK_DIV) then div <= (others => '0'); WR <= '1';
else div <= div + 1; WR <= '0';
end if;

end if;
end process;

LED <= data_from_PC;
data_to_PC <= sw;

end Behavioral;

177

and TX_ready, which are generated in the UART communication module, are not
required and were left unconnected. In the more complicated examples from
Sect. 4.4 these signals will be used intensively.

All ports of the main entity have to be connected to appropriate FPGA pins.
The respective pin locations can be found in the master UCF file available in the
board’s documentation.

4.3.2.2 � Application Software

Once the required hardware modules are developed, we have to design soft-
ware functions that would connect to the host PC serial port (to which the board
is attached) and interact with the FPGA through UART interface. The following
C++ code gives an example for Windows system:

#include <windows.h>
#include <iostream>
#include <ctime>

void set_up_serial_port(HANDLE& h);
bool get_data_from_serial_port(unsigned& data);
bool write_data_to_serial_port(unsigned data);

const int NO_DEFAULT_DEVICE = 2;

using namespace std;

int main(int argc, char* argv[])
{ unsigned data, result;

const int range_min = 0, range_max = 0xff;
srand (static_cast<unsigned>(time(0)));

char operation;
do { cout << "Select operation (r - read switches, s - send a value, e - exit)" << endl;

 cin >> operation;
switch (operation)

 { case 'r':
if (get_data_from_serial_port(result))

 cout << "The result from FPGA is: " << hex << result << endl;
break;

case 's':
//randomly generate an 8-bit number
data = static_cast<unsigned>((double)rand() / (RAND_MAX + 1) *

(range_max - range_min) + range_min);
//send data to the FPGA
if (write_data_to_serial_port(data))

 cout << "The data " << hex << data <<
" have been successfully transmitted to the FPGA" << endl;

break;
case 'e' :

break;
default:

 cout << "Wrong parameter" << endl;
 }
 } while (operation != 'e');

return 0;
}

void set_up_serial_port(HANDLE& serial_port)
{ const long baud_rate = 9600; //baud rate

char port_name[] = "COM9:"; //name of serial port (consult the Device Manager)
//open up a handle to the serial port

serial_port = CreateFile(port_name, GENERIC_READ | GENERIC_WRITE, 0, 0,
OPEN_EXISTING, 0, 0);

4.3  Interaction with FPGA

178 4  Embedded Blocks and System-Level Design

if (serial_port == INVALID_HANDLE_VALUE) //make sure the port was opened
 { cerr << "Error opening port" << endl;

CloseHandle(serial_port);
 }

//set up the serial port
DCB properties; //properties of serial port
GetCommState(serial_port, &properties); //get the properties
properties.BaudRate = baud_rate; //set the baud rate
//set the other properties
properties.Parity = NOPARITY;
properties.ByteSize = 8;
properties.StopBits = ONESTOPBIT;

 SetCommState(serial_port, &properties);
}

bool get_data_from_serial_port(unsigned& data)
{ unsigned long bytes_to_receive = 1; //number of bytes to receive from COM

unsigned long bytes_received; //number of bytes actually received from COM
HANDLE serial_port = 0; set_up_serial_port(serial_port);
//receive data from the serial port

ReadFile(serial_port,static_cast<void *>(&data),bytes_to_receive,&bytes_received, 0);
if (bytes_received != bytes_to_receive)

 { cerr << "Error reading file" << endl;
CloseHandle(serial_port);
return false;

 }
CloseHandle(serial_port);
data = *data & 0xff;
return true;

}

bool write_data_to_serial_port(unsigned data)
{ unsigned long bytes_to_send = 1; //number of bytes to send to COM

unsigned long bytes_sent; //number of bytes actually sent to COM
data = data & 0xff;
HANDLE serial_port = 0; set_up_serial_port(serial_port);
//send data to the serial port
WriteFile(serial_port, static_cast<void *>(&data), bytes_to_send, &bytes_sent, 0);
if (bytes_sent != bytes_to_send)

 { cerr << "Error writing file" << endl;
CloseHandle(serial_port);
return false;

 }
CloseHandle(serial_port);
return true;

}

#include <windows.h>
#include <iostream>
#include <ctime>

void set_up_serial_port(HANDLE& h);
bool get_data_from_serial_port(unsigned& data);
bool write_data_to_serial_port(unsigned data);

const int NO_DEFAULT_DEVICE = 2;

using namespace std;

int main(int argc, char* argv[])
{ unsigned data, result;

const int range_min = 0, range_max = 0xff;
srand (static_cast<unsigned>(time(0)));

char operation;
do { cout << "Select operation (r - read switches, s - send a value, e - exit)" << endl;

 cin >> operation;
switch (operation)

 { case 'r':
if (get_data_from_serial_port(result))

 cout << "The result from FPGA is: " << hex << result << endl;
break;

case 's':
//randomly generate an 8-bit number
data = static_cast<unsigned>((double)rand() / (RAND_MAX + 1) *

(range_max - range_min) + range_min);
//send data to the FPGA
if (write_data_to_serial_port(data))

 cout << "The data " << hex << data <<
" have been successfully transmitted to the FPGA" << endl;

break;
case 'e' :

break;
default:

 cout << "Wrong parameter" << endl;
 }
 } while (operation != 'e');

return 0;
}

void set_up_serial_port(HANDLE& serial_port)
{ const long baud_rate = 9600; //baud rate

char port_name[] = "COM9:"; //name of serial port (consult the Device Manager)
//open up a handle to the serial port

serial_port = CreateFile(port_name, GENERIC_READ | GENERIC_WRITE, 0, 0,
OPEN_EXISTING, 0, 0);

179

The program starts by printing a menu of options: “r”—to read the value of the
board’s switches and display it on the screen, “s”—to send a randomly generated
8-bit value to the board and show it on the LEDs, and “e”—to exit. The functions
get_data_from_serial_port and write_data_to_serial_port provide for read/write interface to
the serial port. Both functions start by setting up the port with the aid of set_up_
serial_port function. The latter creates a handle to the serial port (whose name port_
name can be found in the Device Manager) with the OpenFile function and sets all
the required communication parameters, such as the baud rate, the number of data
bits, stop bits, and parity bits. Once the communication is set up, the attached input/
output device can be read and written through ReadFile and WriteFile functions and,
when finished, the handle is closed. The user interface is the same as in Fig. 4.14.
We will show in Sect. 4.4 a more complex example where many data (i.e. not just a
single byte) are transferred to and received from the FPGA through UART.

4.4 � Software/Hardware Co-design and Co-simulation

Developing efficient and reliable digital systems demands hardware/software co-
design and co-simulation. There are different aspects that motivate co-design and
co-simulation. First of all, the majority of methods of designing digital (and espe-
cially embedded) systems rely on a separation of software and hardware parts of
the future system at early stages (usually during the specification phase). Once the
separation is done, software and hardware are developed independently and, typi-
cally, by different people/teams. Such a priori separation has a number of limita-
tions (e.g. time to market, suboptimal designs) which are better addressed if the
interrelated software and hardware are developed simultaneously [11]. Second, co-
simulation permits different design strategies to be explored more easily to detect
most critical system parts that have to be assigned to hardware for acceleration,
while the sequential control-oriented parts are more efficiently implemented in
software.

Let us illustrate how co-design can be done with a PC computer running a
software program and a standalone FPGA-based prototyping board executing a
computationally intensive algorithm. We will explore communication through the
Digilent EPP and UART on the example of a sorting system depicted in Fig. 4.19.
The system executes the following actions:

1.	 Randomly generates in software 16 32-bit data items.
2.	 Sends them to the FPGA.

if (serial_port == INVALID_HANDLE_VALUE) //make sure the port was opened
 { cerr << "Error opening port" << endl;

CloseHandle(serial_port);
 }

//set up the serial port
DCB properties; //properties of serial port
GetCommState(serial_port, &properties); //get the properties
properties.BaudRate = baud_rate; //set the baud rate
//set the other properties
properties.Parity = NOPARITY;
properties.ByteSize = 8;
properties.StopBits = ONESTOPBIT;

 SetCommState(serial_port, &properties);
}

bool get_data_from_serial_port(unsigned& data)
{ unsigned long bytes_to_receive = 1; //number of bytes to receive from COM

unsigned long bytes_received; //number of bytes actually received from COM
HANDLE serial_port = 0; set_up_serial_port(serial_port);
//receive data from the serial port

ReadFile(serial_port,static_cast<void *>(&data),bytes_to_receive,&bytes_received, 0);
if (bytes_received != bytes_to_receive)

 { cerr << "Error reading file" << endl;
CloseHandle(serial_port);
return false;

 }
CloseHandle(serial_port);
data = *data & 0xff;
return true;

}

bool write_data_to_serial_port(unsigned data)
{ unsigned long bytes_to_send = 1; //number of bytes to send to COM

unsigned long bytes_sent; //number of bytes actually sent to COM
data = data & 0xff;
HANDLE serial_port = 0; set_up_serial_port(serial_port);
//send data to the serial port
WriteFile(serial_port, static_cast<void *>(&data), bytes_to_send, &bytes_sent, 0);
if (bytes_sent != bytes_to_send)

 { cerr << "Error writing file" << endl;
CloseHandle(serial_port);
return false;

 }
CloseHandle(serial_port);
return true;

}

4.3  Interaction with FPGA

180 4  Embedded Blocks and System-Level Design

3.	 Sorts the data in the FPGA with an iterative even-odd transition network
(see Sect. 3.5).

4.	 Sends the results back to the host PC.
5.	 Displays the sorted data.

We examine a scenario where the FPGA receives data from the PC with the aid
of either Digilent EPP or UART communication module and stores them in the input
memory module. Then the received data are sorted by the EvenOddTransitionIterative
block described in Sect. 3.5. The block EvenOddTransitionIterative is parameterizable
with the number of data items (N) and the width of each item in bits (M). For our
example we set N = 16 and M = 32. The block requires the input data to be sup-
plied in a single N × M-bit register input_data and generates the result of sorting also
in a single N × M(16 × 32 = 512)-bit register sorted_data. To begin sorting the input
signal sort_en must be asserted and once sorting is finished the output signal ready
goes high.

The input memory module is a simple dual-port RAM where the port A permits
8-bit data to be written (by the host PC) and port B allows 512-bit data to be read
(by the block EvenOddTransitionIterative). The input memory module has been created
with the aid of Xilinx CORE Generator, where the port A width is set to 8 (since
we are only able to transfer 8-bit values from the PC), port A depth is set to 64, and
port B width is set to 256 (the maximum allowed). Since we need to read 512 bits
at once, two input memories are required.

The 512-bit result of sorting is written to an output memory. The output mem-
ory module is also a simple dual-port RAM where the port A permits 512-bit data
to be written (by the sorting block) and the port B allows 8-bit data to be read (by
the host PC). The output memory module can be created with the aid of Xilinx
CORE Generator, where the port A width is set to 256, port A depth is set to 2 (the
minimum allowed), and the port B width is set to 8 (because we are only able to

Fig. 4.19   Structure of a co-design project for data sort

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

181

transfer 8-bit values to the PC). Since we need to write 512 bits at once, two out-
put memories are required.

If we target our designs to Spartan-6 or Artix-7 FPGA (either Atlys or Nexys-4
prototyping boards) then both input and output memory modules require 16
embedded Block RAMs each. This is because in the CORE Generator we used
the algorithm optimized for minimum area which leads to the instantiation of 16
Block RAMs (that allow at most 32 bits to be read/written) for each type of mem-
ory, while we need 512 bits to be processed. Other available options for Artix-7
FPGA permit fixed primitives with data widths of up to 72 bits.

4.4.1 � Software-Hardware Co-design with Digilent Parallel
Port Interface

Let us consider software-hardware co-design on the example of data sort described
above and in Chap. 3 assuming the following functionality. The main hardware
module communicates with the host PC through USB port according to the
Digilent EPP protocol, fills in the input memory, starts the sorting module, and,
when sorting is finished, writes the results to the output memory to be further read
by the PC. The flowchart that describes behavior of the main module is shown in
Fig. 4.20 (inputs and outputs are specified in VHDL).

In the WAIT_FOR_DATA state the control FSM waits for new data to arrive
through the EPP data bus. Once new 8-bit data are received (which is indicated by
the asserted data_ready signal) the FSM changes its state to the WRITE_INPUT where
either the signal write_enable_in1 or the signal write_enable_in2 is asserted depend-
ing on the value of the bit 5 in the PC_address. The PC_address signal is controlled
by the address output of the EPP communication module, which, as described in
Sect. 4.3.1.1, holds an address for memory transactions, set by the host PC. When
the bit 5 is equal to ‘0’, the circuit is processing the first 32 bytes from 64 bytes
that have to be received from the PC (since there are 16 data items 4-bytes each).
In this case all the received data bytes are stored in the first input memory by
asserting the signal write_enable_in1. If the bit 5 of PC_address is ‘1’, the circuit is
processing the last 32 data bytes (i.e. the remaining 8 data items) and these have
to be stored in the second input memory by asserting the signal write_enable_in2. At
the same time in the WRITE_INPUT state the FSM checks whether the last data item
(whose address is 0x3f = 63) has been received. If so, the FSM changes its state
to the START_PROC. Otherwise the state WAIT_NEXT_ADDRESS is activated where
the FSM simply waits for the end of the current EPP data transfer cycle and then
returns to the WAIT_FOR_DATA state to look for the next data item to be received
over the EPP data bus.

In the START_PROC state the start_processing signal is asserted which activates the
sorting module EvenOddTransitionIterative. In this state the FSM first checks if pro-
cessing has been started (i.e. the ready signal from the block EvenOddTransitionIterative

4.4  Software/Hardware Co-design and Co-simulation

http://dx.doi.org/10.1007/978-3-319-04708-9_3

182 4  Embedded Blocks and System-Level Design

has been deasserted) and if so, advances to the DO_PROC state. In this state the
output ready of the module EvenOddTransitionIterative is monitored and, once asserted,
which indicates that sorting has finished, the FSM changes its state to the GET_
RES. By this moment the results of sorting are stored in the output memory (by
asserting the write_enable_out signal) and the FSM returns to the WAIT_FOR_DATA
state to be able to receive a new set of data for sorting. Please note that sorting
starts immediately, once data are written to the last memory position (0x63).

Fig. 4.20   Flowchart for the main module in the data sort co-design project (using EPP interface)

183

The following VHDL code shows how the hardware part of the system has
been specified.

library ieee;
use ieee.std_logic_1164.all;
entity main is

port (clk : in std_logic;
EppAstb : in std_logic;
EppDstb : in std_logic;
EppWr : in std_logic;
EppDB : inout std_logic_vector(7 downto 0);
EppWait : out std_logic);

end main;

architecture Behavioral of main is
--communication signals
signal data_from_PC, data_to_PC1, data_to_PC2, data_to_PC :

std_logic_vector(7 downto 0);
signal data_ready : std_logic;
--processing signals
signal start_processing : std_logic := '0'; --signal that starts the processing block
signal ready : std_logic := '0'; --signal that reports that processing block has finished
type PROC_TYPE is (WAIT_FOR_DATA, WRITE_INPUT, WAIT_NEXT_ADDRESS,

START_PROC, DO_PROC, WRITE_RES, GET_RES);
signal next_proc_state, proc_state : PROC_TYPE := WAIT_FOR_DATA;
--memory signals
signal PC_address: std_logic_vector(7 downto 0);
signal write_enable_in1, write_enable_in2, write_enable_out : std_logic;
signal FPGA_write_address, FPGA_read_address: std_logic;
signal PC_read_write_address: std_logic_vector(5 downto 0);
signal write_item, read_item: std_logic_vector(511 downto 0);

begin
--
---Interface with dual-port memory
--
memory_from_PC_1: entity work.INPUT_MEMORY port map(CLKA => clk,

WEA(0) => write_enable_in1, ADDRA => PC_read_write_address,
DINA => data_from_PC, CLKB => clk, ADDRB(0) => FPGA_read_address,
DOUTB => read_item(255 downto 0));

memory_from_PC_2: entity work.INPUT_MEMORY port map(CLKA => clk,
WEA(0) => write_enable_in2, ADDRA => PC_read_write_address,
DINA => data_from_PC, CLKB => clk, ADDRB(0) => FPGA_read_address,
DOUTB => read_item(511 downto 256));

memory_to_PC_1 : entity work.OUTPUT_MEMORY port map (CLKA => clk,
WEA(0) => write_enable_out, ADDRA(0) => FPGA_write_address,
DINA => write_item(255 downto 0), CLKB => clk,
ADDRB => PC_read_write_address, DOUTB => data_to_PC1);

memory_to_PC_2 : entity work.OUTPUT_MEMORY port map (CLKA => clk,
WEA(0) => write_enable_out, ADDRA(0) => FPGA_write_address,
DINA => write_item(511 downto 256), CLKB => clk,
ADDRB => PC_read_write_address, DOUTB => data_to_PC2);

data_to_PC <= data_to_PC1 when PC_address(5) = '0' else data_to_PC2;
PC_read_write_address <= '0' & PC_address(4 downto 0);

FPGA_read_address <= '0';
FPGA_write_address <= '0';
--
---Interface with PC
--
EPP: entity work.EPP_interface port map (EppAstb => EppAstb, EppDstb => EppDstb,

EppWr => EppWr, EppDB => EppDB, EppWait => EppWait,
address => PC_address, data_ready => data_ready,
data_to_PC => data_to_PC, data_from_PC => data_from_PC);

--
---Processing block (the control FSM)
--
state_transition: process (clk)
begin

if (rising_edge(clk)) then
proc_state <= next_proc_state;

end if;
end process state_transition;

output_logic: process (clk)
begin

if (rising_edge(clk)) then
start_processing <= '0';
write_enable_in1 <= '0';
write_enable_in2 <= '0';
write_enable_out <= '0';
case proc_state is

when WAIT_FOR_DATA =>
when WRITE_INPUT =>

if PC_address(5) = '0' then
write_enable_in1 <= '1';

else
write_enable_in2 <= '1';

end if;
when WAIT_NEXT_ADDRESS =>
when START_PROC =>

4.4  Software/Hardware Co-design and Co-simulation

184 4  Embedded Blocks and System-Level Design

start_processing <= '1';
when DO_PROC =>

start_processing <= '1';
when GET_RES =>

write_enable_out <= '1';
when others => --should never be reached

end case;
end if;

end process output_logic;
next_state_logic: process (proc_state, data_ready, PC_address, ready)
begin

case proc_state is
when WAIT_FOR_DATA =>

if (data_ready = '1') then
next_proc_state <= WRITE_INPUT;

else next_proc_state <= WAIT_FOR_DATA;
end if;

when WRITE_INPUT =>
if (PC_address = x"3f") then --last address, input data transfer completed

next_proc_state <= START_PROC;
else next_proc_state <= WAIT_NEXT_ADDRESS;
end if;

when WAIT_NEXT_ADDRESS =>
if data_ready = '0' then

next_proc_state <= WAIT_FOR_DATA;
else next_proc_state <= WAIT_NEXT_ADDRESS;
end if;

when START_PROC =>
if (ready = '0') then --processing started

next_proc_state <= DO_PROC;
else next_proc_state <= START_PROC;
end if;

when DO_PROC =>
if (ready = '1') then --processing finished

next_proc_state <= GET_RES;
else next_proc_state <= DO_PROC;
end if;

when GET_RES =>
next_proc_state <= WAIT_FOR_DATA; --write the result to the output memory

when others => --should never be reached
next_proc_state <= WAIT_FOR_DATA;

end case;
end process next_state_logic;

sort: entity work.EvenOddTransitionIterative
generic map (M => 32, N => 16)

DINA => write_item(255 downto 0), CLKB => clk,
ADDRB => PC_read_write_address, DOUTB => data_to_PC1);

memory_to_PC_2 : entity work.OUTPUT_MEMORY port map (CLKA => clk,
WEA(0) => write_enable_out, ADDRA(0) => FPGA_write_address,
DINA => write_item(511 downto 256), CLKB => clk,
ADDRB => PC_read_write_address, DOUTB => data_to_PC2);

data_to_PC <= data_to_PC1 when PC_address(5) = '0' else data_to_PC2;
PC_read_write_address <= '0' & PC_address(4 downto 0);

FPGA_read_address <= '0';
FPGA_write_address <= '0';
--
---Interface with PC
--
EPP: entity work.EPP_interface port map (EppAstb => EppAstb, EppDstb => EppDstb,

EppWr => EppWr, EppDB => EppDB, EppWait => EppWait,
address => PC_address, data_ready => data_ready,
data_to_PC => data_to_PC, data_from_PC => data_from_PC);

--
---Processing block (the control FSM)
--
state_transition: process (clk)
begin

if (rising_edge(clk)) then
proc_state <= next_proc_state;

end if;
end process state_transition;

output_logic: process (clk)
begin

if (rising_edge(clk)) then
start_processing <= '0';
write_enable_in1 <= '0';
write_enable_in2 <= '0';
write_enable_out <= '0';
case proc_state is

when WAIT_FOR_DATA =>
when WRITE_INPUT =>

if PC_address(5) = '0' then
write_enable_in1 <= '1';

else
write_enable_in2 <= '1';

end if;
when WAIT_NEXT_ADDRESS =>
when START_PROC =>

185

From the software side, the main function gives a user two options: (1) to ran-
domly generate 16 32-bit unsigned data, send them to the FPGA, sort, receive the
result and display, or (2) to exit. C++ code of the main function is shown below.

port map (clk => clk, sort_en => start_processing, ready => ready,
input_data => read_item, sorted_data => write_item);

end Behavioral;

#include <windows.h>
#include "dpcdefs.h"
#include "dpcutil.h"
#include <iostream>
#include <ctime>

const int INITIALIZATION_FAILED = 1;
const int NO_DEFAULT_DEVICE = 2;
const int INTERNAL_ERROR = 3305; //internal error in DPCUTIL
const int devNameLength = 16;
char nameDevice[devNameLength+1];

void SendDataToFPGA(unsigned* data, unsigned size);
bool WriteData(HANDLE hif, unsigned address, unsigned data);
void ReceiveResultFromFPGA(unsigned* data, unsigned size);
bool ReadData(HANDLE hif, unsigned address, unsigned& data);

const unsigned N = 16;
const unsigned M = 32;

using namespace std;

int main(int argc, char* argv[])
{ ERC error_code;

if (!DpcInit(&error_code)) //before using DPCUTIL API functions, call DpcInit
return INITIALIZATION_FAILED; //error occurred while initializing

//obtain the index of the default device in the Device Table
int idDevice = DvmgGetDefaultDev(&error_code);
if (idDevice == -1) //no devices in the Device Table

 { cerr << "No default device"<< endl;
 cerr << "Run Digilent Adept and modify the Device Table (Settings tab, "<<

"Device Manager option)"<< endl;
return NO_DEFAULT_DEVICE;

 }
else //get the default device name

DvmgGetDevName(idDevice, nameDevice, &error_code);

unsigned* data = new unsigned[N];
unsigned* result = new unsigned[N];
const unsigned range_min = 0, range_max = RAND_MAX;
srand (static_cast<unsigned>(time(0)));

start_processing <= '1';
when DO_PROC =>

start_processing <= '1';
when GET_RES =>

write_enable_out <= '1';
when others => --should never be reached

end case;
end if;

end process output_logic;

next_state_logic: process (proc_state, data_ready, PC_address, ready)
begin

case proc_state is
when WAIT_FOR_DATA =>

if (data_ready = '1') then
next_proc_state <= WRITE_INPUT;

else next_proc_state <= WAIT_FOR_DATA;
end if;

when WRITE_INPUT =>
if (PC_address = x"3f") then --last address, input data transfer completed

next_proc_state <= START_PROC;
else next_proc_state <= WAIT_NEXT_ADDRESS;
end if;

when WAIT_NEXT_ADDRESS =>
if data_ready = '0' then

next_proc_state <= WAIT_FOR_DATA;
else next_proc_state <= WAIT_NEXT_ADDRESS;
end if;

when START_PROC =>
if (ready = '0') then --processing started

next_proc_state <= DO_PROC;
else next_proc_state <= START_PROC;
end if;

when DO_PROC =>
if (ready = '1') then --processing finished

next_proc_state <= GET_RES;
else next_proc_state <= DO_PROC;
end if;

when GET_RES =>
next_proc_state <= WAIT_FOR_DATA; --write the result to the output memory

when others => --should never be reached
next_proc_state <= WAIT_FOR_DATA;

end case;
end process next_state_logic;

sort: entity work.EvenOddTransitionIterative
generic map (M => 32, N => 16)

4.4  Software/Hardware Co-design and Co-simulation

186 4  Embedded Blocks and System-Level Design

char operation;
do

 { cout << "Select an operation (s - sort data in FPGA, e - exit)" << endl;
cin >> operation;
switch (operation)

 { case 's':
for(int j = 0; j < N; j++) //randomly generate N M-bit numbers

 { data[j] = static_cast<unsigned>((double)rand() / (RAND_MAX) *
(range_max - range_min) + range_min);

 data[j] = data[j] << M/2 | static_cast<unsigned>((double)rand() /
(RAND_MAX) * (range_max - range_min) + range_min);

 }
SendDataToFPGA(data, N); //send data to the FPGA

 cout << "Original data: " << endl;
for(unsigned j = 0; j < N; j++)

 { cout.width(8); cout << hex << data[j] << endl;
 }

ReceiveResultFromFPGA(result, N);
 cout << "The result in FPGA is: " << endl;

for(unsigned j = 0; j < N; j++)
 { cout.width(8); cout << hex << result[j] << endl;
 }

break;
case 'e' : break;
default : cout << "Wrong parameter" << endl;

 }
 } while (operation != 'e');

delete [] data; delete [] result;
return 0;

}

#include <windows.h>
#include "dpcdefs.h"
#include "dpcutil.h"
#include <iostream>
#include <ctime>

const int INITIALIZATION_FAILED = 1;
const int NO_DEFAULT_DEVICE = 2;
const int INTERNAL_ERROR = 3305; //internal error in DPCUTIL
const int devNameLength = 16;
char nameDevice[devNameLength+1];

void SendDataToFPGA(unsigned* data, unsigned size);
bool WriteData(HANDLE hif, unsigned address, unsigned data);
void ReceiveResultFromFPGA(unsigned* data, unsigned size);
bool ReadData(HANDLE hif, unsigned address, unsigned& data);

const unsigned N = 16;
const unsigned M = 32;

using namespace std;

int main(int argc, char* argv[])
{ ERC error_code;

if (!DpcInit(&error_code)) //before using DPCUTIL API functions, call DpcInit
return INITIALIZATION_FAILED; //error occurred while initializing

//obtain the index of the default device in the Device Table
int idDevice = DvmgGetDefaultDev(&error_code);
if (idDevice == -1) //no devices in the Device Table

 { cerr << "No default device"<< endl;
 cerr << "Run Digilent Adept and modify the Device Table (Settings tab, "<<

"Device Manager option)"<< endl;
return NO_DEFAULT_DEVICE;

 }
else //get the default device name

DvmgGetDevName(idDevice, nameDevice, &error_code);

unsigned* data = new unsigned[N];
unsigned* result = new unsigned[N];
const unsigned range_min = 0, range_max = RAND_MAX;
srand (static_cast<unsigned>(time(0)));

187

The function SendDataToFPGA was modified to include 2 parameters: array of
input 32-bit data and the size of the array. The FPGA circuit is designed in such
a way that permits sorting to be started when the last data item is written to the
address 0x3f in the input memory (i.e. when 64th 8-bit word is received from the
PC). That is why, if less than 16 32-bit data items are to be processed, the soft-
ware simply fills the remaining memory positions with 0. As a result, the function
SendDataToFPGA is almost the same as shown above, but the line marked as “data
transfer” in Sect. 4.3.1.2 is changed to the following code (i.e. instead of a single
byte an array of size 32-bit values are transferred to the FPGA):

The function WriteData sends a 32-bit data item to FPGA in 8-bit fractions.
This function firstly specifies an address to which a data item will be sent and
saved. The memory address is stored in the register 0x00 in the communication
module. Then one byte of a data item is written to the register 0x01. Note that 4
address/data write cycles are needed to transfer a 32-bit data item. The code is the
following:

for (unsigned n = 0; n < size; n++)
if (!WriteData(hif, n, data[n])) return;

if (size*4*8 < N*M) //fill in the remaining memory positions with 0 and finish writing
for (unsigned n = size; n < N*M/8/4; n++)

if (!WriteData(hif, n, 0)) return;

bool WriteData(HANDLE hif, unsigned address, unsigned data)
{ ERC error_code; unsigned char idData; unsigned idReg;

for (int b = 0; b < M/8; b++) //M/8 transactions are needed to send an M-bit data item
 { idData = address * M/8 + b; //specify address to which to write to

idReg = 0x00; //send address
//send a single data byte (idData) to the register idReg
if (!DpcPutReg(hif, idReg, idData, &error_code, 0))

 { DpcCloseData(hif, &error_code); // close the communications module
 cerr << "DpcPutReg failed." << endl;

return false;
 }

idReg = 0x01; idData = (data >> b*8) & 0xff;
//send a single data byte (idData) to the register idReg
if (!DpcPutReg(hif, idReg, idData, &error_code, 0))

 { DpcCloseData(hif, &error_code); //close the communications module
 cerr << "DpcPutReg failed." << endl;

return false;
 }
 }

return true;
}

char operation;
do

 { cout << "Select an operation (s - sort data in FPGA, e - exit)" << endl;
cin >> operation;
switch (operation)

 { case 's':
for(int j = 0; j < N; j++) //randomly generate N M-bit numbers

 { data[j] = static_cast<unsigned>((double)rand() / (RAND_MAX) *
(range_max - range_min) + range_min);

 data[j] = data[j] << M/2 | static_cast<unsigned>((double)rand() /
(RAND_MAX) * (range_max - range_min) + range_min);

 }
SendDataToFPGA(data, N); //send data to the FPGA

 cout << "Original data: " << endl;
for(unsigned j = 0; j < N; j++)

 { cout.width(8); cout << hex << data[j] << endl;
 }

ReceiveResultFromFPGA(result, N);
 cout << "The result in FPGA is: " << endl;

for(unsigned j = 0; j < N; j++)
 { cout.width(8); cout << hex << result[j] << endl;
 }

break;
case 'e' : break;
default : cout << "Wrong parameter" << endl;

 }
 } while (operation != 'e');

delete [] data; delete [] result;
return 0;

}

4.4  Software/Hardware Co-design and Co-simulation

188 4  Embedded Blocks and System-Level Design

The ReceiveResultFromFPGA function is the same as shown in Sect. 4.3.1.2 except
two changes: the list of parameters was modified to be able to receive an array
(data) of size sorted data items and the data transfer is done with the following loop:

The code for ReadData function is given below. Once again several data read
cycles are required to get a 32-bit data item back from the FPGA.

Once both software and hardware are developed, the project can be tested. An
example of user interface is given in Fig. 4.21 where the randomly generated input
data are sorted in descending order.

4.4.2 � Software-Hardware Co-design with UART Interface

The functionality of the top hardware module is very similar to that described
in the previous section. The only difference is that instead of the Digilent EPP

for (unsigned n = 0; n < size; n++)
if (!ReadData(hif, n, data[n])) return;

idReg = 0x00; //send address
//send a single data byte (idData) to the register idReg
if (!DpcPutReg(hif, idReg, idData, &error_code, 0))

 { DpcCloseData(hif, &error_code); //close the communications module
 cerr << "DpcPutReg failed." << endl;

return false;
 }

idReg = 0x05;
//get a single data byte (idData) from the register idReg
if (!DpcGetReg(hif, idReg, &idData, &error_code, 0))

 { DpcCloseData(hif, &error_code); //close the communications module
 cerr << "DpcGetReg failed." << endl;

return false;
 } data = data | (idData << b*8);
 }

return true;
}

bool ReadData(HANDLE hif, unsigned address, unsigned& data)
{ ERC error_code; unsigned char idData; unsigned idReg;

data = 0;
//M/8 transactions are needed to receive an M-bit data item
for (int b = 0; b < M/8; b++)

 { //specify address which to read from
idData = address * M/8 + b;

bool WriteData(HANDLE hif, unsigned address, unsigned data)
{ ERC error_code; unsigned char idData; unsigned idReg;

for (int b = 0; b < M/8; b++) //M/8 transactions are needed to send an M-bit data item
 { idData = address * M/8 + b; //specify address to which to write to

idReg = 0x00; //send address
//send a single data byte (idData) to the register idReg
if (!DpcPutReg(hif, idReg, idData, &error_code, 0))

 { DpcCloseData(hif, &error_code); // close the communications module
 cerr << "DpcPutReg failed." << endl;

return false;
 }

idReg = 0x01; idData = (data >> b*8) & 0xff;
//send a single data byte (idData) to the register idReg
if (!DpcPutReg(hif, idReg, idData, &error_code, 0))

 { DpcCloseData(hif, &error_code); //close the communications module
 cerr << "DpcPutReg failed." << endl;

return false;
 }
 }

return true;
}

189

communication module the UART communication module will be used. The flow-
chart that describes behavior of the main module is shown in Fig. 4.22 (inputs and
outputs are specified in VHDL).

The sequence of steps required to fill in the input memory modules as well as
to send the result of sorting back to the PC is more complicated because there is
no dedicated address register as in the case of the EPP communication module.
Therefore all the received over UART data bytes are written to input memory
sequentially, starting with the address 0x00, until the last address 0x3f (64th data
byte) is reached.

In the RESET state the module initializes the signal PC_address to 0x00 and
advances to the WAIT_FOR_DATA state. In the WAIT_FOR_DATA state the module waits
for new data to arrive through the RXD line. Once a new 8-bit data item is received
(which is indicated by the asserted RX_ready signal) the control FSM changes its
state to the WRITE_INPUT where either the signal write_enable_in1 or the signal write_
enable_in2 is asserted depending on the value of the bit 5 in the PC_address. When
the bit 5 is ‘0’ the circuit is processing the first 32 bytes from 64 bytes that have
to be received from the PC (since there are 16 data items 4-bytes each). In this

Fig. 4.21   The result of sorting in the FPGA communicating with the host PC through Digilent
EPP

4.4  Software/Hardware Co-design and Co-simulation

190 4  Embedded Blocks and System-Level Design

case all the received data bytes are stored in the first input memory by asserting
the signal write_enable_in1. If the bit 5 of PC_address is ‘1’, the circuit is processing
the last 32 data bytes and these are stored in the second input memory by asserting
the signal write_enable_in2. The next state is INC_ADDRESS where the PC_address sig-
nal is incremented and a test is done whether the last data item (whose address is
0x3f = 63) has already been received. If so, the FSM changes to the START_PROC
state, otherwise the state WAIT_FOR_DATA is activated once again to look for the
next data item to be received.

Fig. 4.22   Flowchart for the main module in the data sort co-design project (using the UART
interface)

191

In the START_PROC state the start_processing signal is asserted which activates the
sorting module EvenOddTransitionIterative. In this state the FSM first checks if sort-
ing has been started (i.e. the ready signal from the block EvenOddTransitionIterative has
been deasserted) and if so, advances to the DO_PROC state. In this state the output
ready of EvenOddTransitionIterative is monitored and, once asserted, which indicates
that sorting has finished, the FSM state is changed to the GET_RES which activates
the write_enable_out signal allowing the results of sorting to be stored in the output
memory. The FSM changes to the WRITE_RES state which monitors the TXD_ready
signal to check whether the transmission line TXD is available. If so, the FSM state
is changed to the SEND_RES which activates the signal WR indicating that a new
data byte is ready to be sent. Once sending of a data byte over the TXD line has
started, the FSM advances to the WRITE_OUTPUT state, deasserts the WR signal and
waits for the transmission to be finished. Once the transmission is finished, the PC_
address signal is incremented in the INC_OUT_ADDRESS state. If the last result from
the address 0x3f has been transmitted to the PC, the FSM returns to the RESET
state, otherwise the state SEND_RES is activated and the next result data item is dis-
patched over the UART TXD line.

The following VHDL code shows specification of the top module which con-
nects all the hardware components of the system and controls the flow of opera-
tions in accordance with Fig. 4.22.

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity main is

port (clk : in std_logic;
TXD : out std_logic;
RXD : in std_logic);

end main;

architecture Behavioral of main is
--communication signals
signal data_from_PC, data_to_PC1, data_to_PC2, data_to_PC :

std_logic_vector(7 downto 0);
signal WR : std_logic;
signal TX_ready, RX_ready_prev, RX_ready : std_logic := '1';
--processing signals
signal start_processing : std_logic := '0'; --signal that starts the processing block
signal ready : std_logic := '0'; --signal that reports that processing block has finished
type PROC_TYPE is (RESET, WAIT_FOR_DATA, WRITE_INPUT, INC_ADDRESS,

START_PROC, DO_PROC, WRITE_RES, GET_RES,
SEND_RES, WRITE_OUTPUT, INC_OUT_ADDRESS);

signal next_proc_state, proc_state : PROC_TYPE := RESET;
--memory signals
signal PC_address: std_logic_vector(7 downto 0);
signal write_enable_in1, write_enable_in2, write_enable_out : std_logic;
signal FPGA_write_address, FPGA_read_address: std_logic;
signal PC_read_write_address: std_logic_vector(5 downto 0);
signal write_item, read_item: std_logic_vector(511 downto 0);

begin
--
---Interface with dual-port memory
--
memory_from_PC_1: entity work.INPUT_MEMORY port map(CLKA => clk,

WEA(0) => write_enable_in1, ADDRA => PC_read_write_address,
DINA => data_from_PC, CLKB => clk, ADDRB(0) => FPGA_read_address,
DOUTB => read_item(255 downto 0));

memory_from_PC_2: entity work.INPUT_MEMORY port map(CLKA => clk,
WEA(0) => write_enable_in2, ADDRA => PC_read_write_address,
DINA => data_from_PC, CLKB => clk, ADDRB(0) => FPGA_read_address,
DOUTB => read_item(511 downto 256));

memory_to_PC_1 : entity work.OUTPUT_MEMORY port map (CLKA => clk,
WEA(0) => write_enable_out, ADDRA(0) => FPGA_write_address,

4.4  Software/Hardware Co-design and Co-simulation

192 4  Embedded Blocks and System-Level Design

DINA => write_item(255 downto 0), CLKB => clk,
ADDRB => PC_read_write_address, DOUTB => data_to_PC1);

memory_to_PC_2 : entity work.OUTPUT_MEMORY port map (CLKA => clk,
WEA(0) => write_enable_out, ADDRA(0) => FPGA_write_address,
DINA => write_item(511 downto 256), CLKB => clk,
ADDRB => PC_read_write_address, DOUTB => data_to_PC2);

data_to_PC <= data_to_PC1 when PC_address(5) = '0' else data_to_PC2;
PC_read_write_address <= '0' & PC_address(4 downto 0);
--
---Interface with PC
--
UART: entity work.UART_comm port map (clk => clk, WR => WR,

DIN => data_to_PC, DOUT => data_from_PC, TX_ready => TX_ready,
RX_ready => RX_ready, TXD => TXD, RXD => RXD);

FPGA_read_address <= '0';
FPGA_write_address <= '0';
--
---Processing block (the control FSM)
--
state_transition: process (clk)
begin

if (rising_edge(clk)) then
proc_state <= next_proc_state;

end if;
end process state_transition;

output_logic: process (clk)
begin

if (rising_edge(clk)) then
start_processing <= '0';
write_enable_in1 <= '0';
write_enable_in2 <= '0';
write_enable_out <= '0';
WR <= '0';
case proc_state is
--START FILL IN INPUT MEMORY

when RESET =>
PC_address <= (others => '0');

when WAIT_FOR_DATA =>
when WRITE_INPUT =>

if (PC_address(5) = '0') then
write_enable_in1 <= '1';

else

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity main is

port (clk : in std_logic;
TXD : out std_logic;
RXD : in std_logic);

end main;

architecture Behavioral of main is
--communication signals
signal data_from_PC, data_to_PC1, data_to_PC2, data_to_PC :

std_logic_vector(7 downto 0);
signal WR : std_logic;
signal TX_ready, RX_ready_prev, RX_ready : std_logic := '1';
--processing signals
signal start_processing : std_logic := '0'; --signal that starts the processing block
signal ready : std_logic := '0'; --signal that reports that processing block has finished
type PROC_TYPE is (RESET, WAIT_FOR_DATA, WRITE_INPUT, INC_ADDRESS,

START_PROC, DO_PROC, WRITE_RES, GET_RES,
SEND_RES, WRITE_OUTPUT, INC_OUT_ADDRESS);

signal next_proc_state, proc_state : PROC_TYPE := RESET;
--memory signals
signal PC_address: std_logic_vector(7 downto 0);
signal write_enable_in1, write_enable_in2, write_enable_out : std_logic;
signal FPGA_write_address, FPGA_read_address: std_logic;
signal PC_read_write_address: std_logic_vector(5 downto 0);
signal write_item, read_item: std_logic_vector(511 downto 0);

begin
--
---Interface with dual-port memory
--
memory_from_PC_1: entity work.INPUT_MEMORY port map(CLKA => clk,

WEA(0) => write_enable_in1, ADDRA => PC_read_write_address,
DINA => data_from_PC, CLKB => clk, ADDRB(0) => FPGA_read_address,
DOUTB => read_item(255 downto 0));

memory_from_PC_2: entity work.INPUT_MEMORY port map(CLKA => clk,
WEA(0) => write_enable_in2, ADDRA => PC_read_write_address,
DINA => data_from_PC, CLKB => clk, ADDRB(0) => FPGA_read_address,
DOUTB => read_item(511 downto 256));

memory_to_PC_1 : entity work.OUTPUT_MEMORY port map (CLKA => clk,
WEA(0) => write_enable_out, ADDRA(0) => FPGA_write_address,

193

write_enable_in2 <= '1';
end if;

when INC_ADDRESS =>
if (PC_address = x"3f") then --last position, input data transfer completed

start_processing <= '1';
PC_address <= (others => '0');

else
PC_address <= PC_address + 1;

end if;
--FINISH FILL IN INPUT MEMORY
--START PROCESSING

when START_PROC =>
start_processing <= '1';

when DO_PROC =>
start_processing <= '1';
PC_address <= (others => '0');

when GET_RES =>
write_enable_out <= '1';

when WRITE_RES =>
--FINISH PROCESSING
--START SEND THE RESULT TO PC

when SEND_RES =>
WR <= '1';

when WRITE_OUTPUT =>
when INC_OUT_ADDRESS =>

PC_address <= PC_address + 1;
if (PC_address = x"3f") then --last position, input data transfer completed

PC_address <= (others => '0');
end if;

--FINISH SEND THE RESULT TO PC
when others => --should never be reached

end case;
end if;

end process output_logic;

next_state_logic: process (proc_state, RX_ready, PC_address, ready, TX_ready)
begin

case proc_state is
--START FILL IN INPUT MEMORY
when RESET =>

next_proc_state <= WAIT_FOR_DATA;
when WAIT_FOR_DATA =>

if (RX_ready = '1') then
next_proc_state <= WRITE_INPUT;

else next_proc_state <= WAIT_FOR_DATA;
end if;

DINA => write_item(255 downto 0), CLKB => clk,
ADDRB => PC_read_write_address, DOUTB => data_to_PC1);

memory_to_PC_2 : entity work.OUTPUT_MEMORY port map (CLKA => clk,
WEA(0) => write_enable_out, ADDRA(0) => FPGA_write_address,
DINA => write_item(511 downto 256), CLKB => clk,
ADDRB => PC_read_write_address, DOUTB => data_to_PC2);

data_to_PC <= data_to_PC1 when PC_address(5) = '0' else data_to_PC2;
PC_read_write_address <= '0' & PC_address(4 downto 0);
--
---Interface with PC
--
UART: entity work.UART_comm port map (clk => clk, WR => WR,

DIN => data_to_PC, DOUT => data_from_PC, TX_ready => TX_ready,
RX_ready => RX_ready, TXD => TXD, RXD => RXD);

FPGA_read_address <= '0';
FPGA_write_address <= '0';
--
---Processing block (the control FSM)
--
state_transition: process (clk)
begin

if (rising_edge(clk)) then
proc_state <= next_proc_state;

end if;
end process state_transition;

output_logic: process (clk)
begin

if (rising_edge(clk)) then
start_processing <= '0';
write_enable_in1 <= '0';
write_enable_in2 <= '0';
write_enable_out <= '0';
WR <= '0';
case proc_state is
--START FILL IN INPUT MEMORY

when RESET =>
PC_address <= (others => '0');

when WAIT_FOR_DATA =>
when WRITE_INPUT =>

if (PC_address(5) = '0') then
write_enable_in1 <= '1';

else

4.4  Software/Hardware Co-design and Co-simulation

194 4  Embedded Blocks and System-Level Design

when WRITE_INPUT =>
next_proc_state <= INC_ADDRESS;

when INC_ADDRESS =>
if (PC_address = x"3f") then --last position, input data transfer completed

next_proc_state <= START_PROC;
else next_proc_state <= WAIT_FOR_DATA;
end if;

--FINISH FILL IN INPUT MEMORY
--START PROCESSING

when START_PROC =>
if (ready = '0') then --processing started

next_proc_state <= DO_PROC;
else next_proc_state <= START_PROC;
end if;

when DO_PROC =>
if (ready = '1') then --processing finished

next_proc_state <= GET_RES;
else next_proc_state <= DO_PROC;
end if;

when GET_RES =>
next_proc_state <= WRITE_RES; --write the result to output memory

when WRITE_RES =>
if (TX_ready = '1') then

next_proc_state <= SEND_RES ; --ready to transmit
else next_proc_state <= WRITE_RES;
end if;

--FINISH PROCESSING
--START SEND THE RESULT TO PC

when SEND_RES =>
if (TX_ready = '0') then --transmission started

next_proc_state <= WRITE_OUTPUT;
else next_proc_state <= SEND_RES;
end if;

when WRITE_OUTPUT =>
if (TX_ready = '1') then

next_proc_state <= INC_OUT_ADDRESS;
else next_proc_state <= WRITE_OUTPUT;
end if;

when INC_OUT_ADDRESS =>
if (PC_address = x"3f") then --last position, input data transfer completed

next_proc_state <= RESET;
else next_proc_state <= SEND_RES;
end if;

--FINISH SEND THE RESULT TO PC
when others => --should never be reached

write_enable_in2 <= '1';
end if;

when INC_ADDRESS =>
if (PC_address = x"3f") then --last position, input data transfer completed

start_processing <= '1';
PC_address <= (others => '0');

else
PC_address <= PC_address + 1;

end if;
--FINISH FILL IN INPUT MEMORY
--START PROCESSING

when START_PROC =>
start_processing <= '1';

when DO_PROC =>
start_processing <= '1';
PC_address <= (others => '0');

when GET_RES =>
write_enable_out <= '1';

when WRITE_RES =>
--FINISH PROCESSING
--START SEND THE RESULT TO PC

when SEND_RES =>
WR <= '1';

when WRITE_OUTPUT =>
when INC_OUT_ADDRESS =>

PC_address <= PC_address + 1;
if (PC_address = x"3f") then --last position, input data transfer completed

PC_address <= (others => '0');
end if;

--FINISH SEND THE RESULT TO PC
when others => --should never be reached

end case;
end if;

end process output_logic;

next_state_logic: process (proc_state, RX_ready, PC_address, ready, TX_ready)
begin

case proc_state is
--START FILL IN INPUT MEMORY
when RESET =>

next_proc_state <= WAIT_FOR_DATA;
when WAIT_FOR_DATA =>

if (RX_ready = '1') then
next_proc_state <= WRITE_INPUT;

else next_proc_state <= WAIT_FOR_DATA;
end if;

195

The software part of the projects includes the main function which provides for
interaction with the user, randomly generates unsigned integers to sort, creates a
handle to the serial port, sends data to the FPGA with the aid the write_data_to_serial_
port function, receives the result of sorting back with the get_data_from_serial_port
function, prints the original and sorted data, and finally closes the handle. The main
function can be described in C++ as follows:

next_proc_state <= RESET;
end case;

end process next_state_logic;

sort: entity work.EvenOddTransitionIterative
generic map (M => 32, N => 16)
port map (clk => clk, sort_en => start_processing, ready => ready,

input_data => read_item, sorted_data => write_item);
end Behavioral;

#include <windows.h>
#include <iostream>
#include <ctime>

void set_up_serial_port(HANDLE& h);
bool get_data_from_serial_port(HANDLE h, unsigned* data, unsigned long data_size);
bool write_data_to_serial_port(HANDLE serial_port, unsigned* data,

unsigned long size);

const int NO_DEFAULT_DEVICE = 2;
const unsigned N = 16; //number of data items
const unsigned M = 32; //size of each data item in bits

using namespace std;

int main(int argc, char* argv[])
{ using namespace std;

HANDLE serial_port = 0;
set_up_serial_port(serial_port);

unsigned* data = new unsigned[N];
unsigned* result = new unsigned[N];

const unsigned range_min = 0, range_max = RAND_MAX;
srand (static_cast<unsigned>(time(0)));
char operation;

do
 { cout << endl << "Select an operation (s - sort data in FPGA, e - exit)" << endl;

cin >> operation;

switch (operation)
 {

case 's':
for(int j = 0; j < N; j++) //randomly generate N M-bit numbers

 { data[j] = static_cast<unsigned>((double)rand() / (RAND_MAX) *
(range_max - range_min) + range_min);

 data[j] = data[j] << M/2 | static_cast<unsigned>((double)rand() /
 (RAND_MAX) * (range_max - range_min) + range_min);
 }

write_data_to_serial_port(serial_port, data, N); //send data to the FPGA
 cout << "Original data: " << endl;

for(unsigned j = 0; j < N; j++)
 { cout.width(8);

cout << hex << data[j] << endl;
 }

get_data_from_serial_port(serial_port, result, N); //get the result of sort
 cout << "The result in FPGA is: " << endl;

for(unsigned j = 0; j < N; j++)
 { cout.width(8);
 cout << hex << result[j] << endl;
 }

break;
case 'e' :

break;
default:

 cout << "Wrong parameter" << endl;
 }
 } while (operation != 'e');

delete [] data;
delete [] result;
CloseHandle(serial_port); //close handle
return 0;

}

4.4  Software/Hardware Co-design and Co-simulation

196 4  Embedded Blocks and System-Level Design

The function set_up_serial_port is identical to the function presented in
Sect. 4.3.2.2. The remaining two functions get_data_from_serial_port and write_data_to_
serial_port were modified to receive three parameters: a handle to the serial port, an
array of 32-bit data (to send to the FPGA or to fill in from the FPGA) and the size
of the array.

The function write_data_to_serial_port sends the array data of 16 32-bit unsigned
numbers to the serial port. For each data item a 4-byte buffer is filled in and then
the contents of the buffer is written to the attached COM port. The function has the
following C++ code:

bool write_data_to_serial_port (HANDLE h, unsigned* data, unsigned long data_size)
{ unsigned long bytes_sent = 0; //number of bytes actually sent to COM

const unsigned BUF_SIZE = 4;
char buffer[BUF_SIZE]; //buffer to store a data item to send
unsigned new_data;

for (unsigned i = 0; i < data_size; i++)
 {

new_data = data[i];
for (unsigned j = 0; j < BUF_SIZE; j++)

buffer[j] = (new_data & (0xff << j*8)) >> (j*8);
WriteFile(h, static_cast<void *>(buffer), BUF_SIZE, &bytes_sent, 0);

if (bytes_sent != BUF_SIZE)
 { cerr << "Error writing file" << endl;

CloseHandle(h);
return false;

 }
 }

return true;
}

case 's':
for(int j = 0; j < N; j++) //randomly generate N M-bit numbers

 { data[j] = static_cast<unsigned>((double)rand() / (RAND_MAX) *
(range_max - range_min) + range_min);

 data[j] = data[j] << M/2 | static_cast<unsigned>((double)rand() /
 (RAND_MAX) * (range_max - range_min) + range_min);
 }

write_data_to_serial_port(serial_port, data, N); //send data to the FPGA
 cout << "Original data: " << endl;

for(unsigned j = 0; j < N; j++)
 { cout.width(8);

cout << hex << data[j] << endl;
 }

get_data_from_serial_port(serial_port, result, N); //get the result of sort
 cout << "The result in FPGA is: " << endl;

for(unsigned j = 0; j < N; j++)
 { cout.width(8);
 cout << hex << result[j] << endl;
 }

break;
case 'e' :

break;
default:

 cout << "Wrong parameter" << endl;
 }
 } while (operation != 'e');

delete [] data;
delete [] result;
CloseHandle(serial_port); //close handle
return 0;

}

197

The function get_data_from_serial_port receives the sorted data from the FPGA and
stores them in the array data of size 32-bit unsigned numbers. For each data item a
4-byte buffer is filled in by reading from the attached COM port.

Now the developed software/hardware co-design project can be tested. The user
interface is identical to the interface depicted in Fig. 4.21.

4.5 � Programmable Systems-on-Chip

This section presents very brief introduction to the Xilinx all programmable sys-
tems-on-chip (APSoC) and suggests several APSoC-based designs. The APSoCs
of the Xilinx Zynq-7000 family contain an industry-standard ARM® dual-core
Cortex™-A9 MPCore™ processing system (PS) and 7 series FPGA-based pro-
grammable logic (PL) combining logical slices, DSP blocks, memories and other
embedded components. The ARM® dual-core Cortex™-A9 MPCore™ PS can be

bool get_data_from_serial_port(HANDLE h, unsigned* data, unsigned long data_size)
{ unsigned long bytes_received = 0;//number of bytes actually received from COM

const unsigned BUF_SIZE = 4;
char buffer[BUF_SIZE]; //buffer to store 4 bytes to read from the FPGA
unsigned new_data;

for (unsigned i = 0; i < data_size; i++)
 { //receive data from the serial port

ReadFile(h, static_cast<void *>(buffer), BUF_SIZE, &bytes_received, 0);

if (bytes_received != BUF_SIZE)
 { cerr << "Error reading file" << endl;

CloseHandle(h);
return false;

 }
new_data = 0;
for (unsigned j = BUF_SIZE; j > 0; j--)

new_data = (new_data << 8) | (buffer[j-1] & 0xff);
data[i] = new_data;

 }
return true;

}

bool write_data_to_serial_port (HANDLE h, unsigned* data, unsigned long data_size)
{ unsigned long bytes_sent = 0; //number of bytes actually sent to COM

const unsigned BUF_SIZE = 4;
char buffer[BUF_SIZE]; //buffer to store a data item to send
unsigned new_data;

for (unsigned i = 0; i < data_size; i++)
 {

new_data = data[i];
for (unsigned j = 0; j < BUF_SIZE; j++)

buffer[j] = (new_data & (0xff << j*8)) >> (j*8);

WriteFile(h, static_cast<void *>(buffer), BUF_SIZE, &bytes_sent, 0);

if (bytes_sent != BUF_SIZE)
 { cerr << "Error writing file" << endl;

CloseHandle(h);
return false;

 }
 }

return true;
}

4.4  Software/Hardware Co-design and Co-simulation

198 4  Embedded Blocks and System-Level Design

used autonomously or interact with circuits implemented in the PL through high
performance interfaces. The PL can generate up to 16 interrupts that are handled
by the PS and may be used as signals from the circuits indicating that the process-
ing task is completed or for some other needs. The interaction between the PS and
the PL can be organized through the following interfaces [12]:

•	 High-performance Advanced eXtensible Interface (AXI) optimized for high
bandwidth access from the PL to external DDR memory and to dual-port on-
chip memory [12, 13]. There are totally four 32/64-bit ports available con-
necting the PL to the memory through FIFOs [13]. The multi-protocol DDR
memory controller supports speed of up to 1333 Mb/s for DDR3 and allows
shared access to a common memory from the PS and the PL [13].

•	 Four (two slave and two master) General-Purpose Interfaces (GPI) optimized
for access from the PL to the PS peripheral devices and from the PS to the PL
registers [12].

•	 Accelerator Coherency Port (ACP) permits a coherent access from the PL
(where hardware accelerators might be implemented) to the PS memory cache
enabling a low latency path between the PS and the PL [13].

Design with APSoCs is supported by the Xilinx ISE and Vivado computer-
aided design systems and permits configuration of hardware in the PL, linking the
PL with the PS, and development of software for the PS that interacts with hard-
ware in the PL. All such steps require comprehensive knowledge of different top-
ics and they cannot be presented here with sufficient details. Many of such details
can be found in [14]. In this section we mainly focus on potential applications
of Xilinx APSoCs for solving problems described in the book and for co-design
that enables the developed hardware circuits and systems to be linked with soft-
ware running in the PS (or possibly in general-purpose computers interacting with
APSoCs through widely available interfaces [13]). We will start with data process-
ing that involves high-performance parallel circuits that may efficiently be imple-
mented in the PL such as network-based sorters and searchers (see Sects. 3.4–3.6).

Figure 4.23 demonstrates one potential application which enables large sets of
data to be sorted in software with the aid of hardware accelerators. Suppose the PS
has to sort a set of data stored in the external DDR memory (these data either are

Fig. 4.23   Using fast sorting networks in hardware and merging in software

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

199

received from outside or may be preliminary created by the PS and copied to the
memory). There are ν items in the set and they cannot be sorted in the PL because
the PL resources are not sufficient. Let us consider the following steps:

•	 The PS divides the given set in such subsets that can be sorted in the PL.
Suppose there are G such subsets with N items in each one.

•	 The numbers G, N and DDR addresses are transferred to the PL and the lat-
ter reads subsets from the DDR memory through the internal high-performance
interfaces, sorts data in each subset and copies the sorted subsets to the DDR.

•	 As soon as some subsets (with a predefined number) are sorted, the PL gen-
erates a dedicated interrupt that informs the PS that certain sorted subsets are
already available in the memory and ready for further processing.

•	 The PS processes the sorted subsets (e.g. merges them) and completes sorting.

Figure 4.24 demonstrates other potential applications. The first system (see
Fig. 4.24a) enables an interaction between a pipeline (implemented in the PL) and
the PS that uses the results of processing in the pipeline. There are three modules
z1, z2, z3 between pipeline registers and they solve problems that will be described
with details in Sect. 5.8. Input data are received from the external DDR memory
and the results are copied to the memory. The PS supplies initial data and handles
the results of processing. Eventually FIFO memories are used in the PL on inputs

(a)

(b)

Fig. 4.24   Interaction of the PS with a pipeline (details are given in Sect. 5.8) implemented in the
PL (a) and with circuits that autonomously control external devices (b)

4.5  Programmable Systems-on-Chip

http://dx.doi.org/10.1007/978-3-319-04708-9_5
http://dx.doi.org/10.1007/978-3-319-04708-9_5

200 4  Embedded Blocks and System-Level Design

and outputs of the pipeline. Such high-speed processing permits many practical
algorithms to be accelerated.

Figure 4.24b demonstrates another potential interaction between the PS and
the PL through general purpose ports. The PL may provide support for control
of external devices through APSoCs pins. In the next chapter we will show that
advanced FSMs enable dedicated modules that execute application-specific func-
tions to be implemented. Such modules can be triggered from the PS and the latter
continues its functionality in parallel with the hardware modules. This way per-
mits, in particular, concurrent hardware accelerators (for software operations) to
be activated/deactivated. For example, in Chap. 5 we will describe accelerators
that permit the greatest common divisor of many integers to be found in parallel.

APSoCs are also very efficient for experiments and comparisons. For example,
often the most appropriate algorithm needs to be chosen from a large number of
available alternatives (e.g. to compute and compare Hamming weights). It should
be noted that a reliable evaluation of competitive algorithms needs to be done in
the same hardware and under similar conditions. For such purposes the following
technique can be used:

•	 Competitive devices are implemented in different areas of the PL and they can
receive the same sets of data from a shared window in the DDR memory.

•	 Initial data are prepared and stored in memory segments S1,…,SK in such a way
that a segment Sk is then owned by the device k.

•	 The same data sets are processed by competitive devices in parallel.
•	 The results are supplied to the PS, which makes the conclusion.

Figure 4.25 gives an example of a system that provides support for such experi-
ments. The PL contains different circuits for Hamming weight counters and com-
parators described in the book. The following operations are executed:

•	 The PS sends a request to the PL to activate all the components which begin
execution in parallel. The PS and/or the PL measure timing intervals for each
component before the requested task is completed.

Fig. 4.25   A system that provides support for experiments and comparisons with alternative
circuits

http://dx.doi.org/10.1007/978-3-319-04708-9_5

201

•	 As soon as any device solves the problem, the results are stored in the respective
segment of a shared window in the memory and an associated interrupt is gener-
ated requesting the relevant PS measuring circuit to be stopped.

•	 As soon as all the results are produced by all the devices, the PS validates the
correctness of these results, measures time slots, carries out the final analysis
and makes the conclusion.

The selected from the experiments circuits (see the right-hand part of Fig. 4.25)
can be used as accelerators of software programs (e.g. for digital filtering).

Figure 4.26 presents architecture of an analyzer for binary vectors and matrices
described in [15] which includes: a number of accelerators in the PL and a subsys-
tem implemented in software of the PS. Software applications were developed in
C language and they execute the following tasks: (1) getting data from a host PC;
(2) partitioning the data and transmitting them to the PL when required; (3) getting
an application-specific analysis of the results from the PL; (4) supporting experi-
ments with the developed hardware in the PL.

Similarly other problems requiring high-performance computations may be
solved. For example, many designs described in [16] can be implemented faster
and more efficiently because of availability of on-chip high-performance inter-
faces. In [17] an FPGA-based accelerator for algorithms that solve the Boolean
satisfiability problem is proposed. The idea was to use an FPGA for the Boolean
constraints propagation algorithm while other required tasks are executed in soft-
ware. Such partitioning can directly be transformed to APSoCs. Many other appli-
cations from the scope of video processing, driver assistance, communications and
control can also benefit from APSoCs [13].

Fig. 4.26   Architecture of the analyzer from [15]

4.5  Programmable Systems-on-Chip

202 4  Embedded Blocks and System-Level Design

Comprehensive design examples based on APSoCs can be found in [14] where
the following methods and tools are described:

•	 Design flow and design steps for APSoCs in the Xilinx Vivado environment.
•	 Tutorials demonstrating all necessary steps for simple projects involving the PS,

the PL, various interactions between the PS and the PL as well as interaction of
APSoCs with peripheral devices such as switches, buttons, LEDs, displays and
a number of supplementary modules [18].

•	 Many details about design techniques and prototyping with ZedBoard [19] and
Xilinx evaluation kit [20].

•	 Implementation of the majority of the projects described here (Chaps. 3–5) in
the PL of Xilinx APSoCs, development of software for the PS (that uses the
results of the projects) with demonstration of different modes for interactions
between the PS and the PL.

•	 Data exchange between the PS and the PL through the external DDR memory
and the results of measurements for different projects.

•	 Software/hardware co-design for APSoCs with demonstration of more compli-
cated projects from such areas as data processing, combinatorial optimization,
interaction of software programs with hardware accelerators, using advanced
controllers based on hierarchical and parallel finite state machines, and others.

•	 Using interrupts for different projects.
•	 Support for experiments that involve software of general-purpose computers

and the PS interacting with different circuits implemented in the PL.

References

	 1.	Digilent Inc. (2013) Nexys-4 reference manual. http://www.digilentinc.com/Data/Products/
NEXYS4/Nexys4_RM_VB1_Final_3.pdf. Accessed 9 Nov 2013

	 2.	Chu PP (2008) FPGA prototyping using VHDL examples: Xilinx Spartan-3 version. Willey,
New Jersey

	 3.	Sklyarov V, Skliarova I (2013) Parallel processing in FPGA-based digital circuits and sys-
tems. TUT Press, Tallinn

	 4.	Xilinx Inc. (2013) 7 series DSP48E1 slice user guide. http://www.xilinx.com/support/docu-
mentation/user_guides/ug479_7Series_DSP48E1.pdf. Accessed 16 Nov 2013

	 5.	Sklyarov V, Skliarova I (2013) Design and implementation of counting networks.
Computing. doi:10.1007/s00607-013-0360-y

	 6.	Parhami B (2009) Efficient Hamming weight comparators for binary vectors based on
accumulative and up/down parallel counters. IEEE Trans Circuits Syst—II: Express Briefs
56(2):167–171

	 7.	Digilent Inc. (2004) Digilent parallel interface model reference manual. http://www.
digilentinc.com/Data/Products/ADEPT/DpimRef%20programmers%20manual.pdf.
Accessed 9 Nov 2013

	 8.	Digilent Inc. (2009) Adept I/O expansion reference design. http://www.digilentinc.com/
Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2. Accessed 9 Nov 2013

	 9.	Digilent Inc. (2007) Adept SDK API. http://www.digilentinc.com/Products/Detail.cfm?NavP
ath=2,66,828&Prod=ADEPT2. Accessed 9 Nov 2013

	10.	Future Technology Devices International Ltd. (2013) Virtual COM port drivers. http://www.ft
dichip.com/Drivers/VCP.htm. Accessed 9 Nov 2013

http://dx.doi.org/10.1007/978-3-319-04708-9_3-5
http://dx.doi.org/10.1007/978-3-319-04708-9_5
http://www.digilentinc.com/Data/Products/NEXYS4/Nexys4_RM_VB1_Final_3.pdf
http://www.digilentinc.com/Data/Products/NEXYS4/Nexys4_RM_VB1_Final_3.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://dx.doi.org/10.1007/s00607-013-0360-y
http://www.digilentinc.com/Data/Products/ADEPT/DpimRef%20programmers%20manual.pdf
http://www.digilentinc.com/Data/Products/ADEPT/DpimRef%20programmers%20manual.pdf
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2
http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/VCP.htm

203

	11.	Teich J (2012) Hardware/software codesign: the past, the present, and predicting the future.
Proc IEEE 100:1411–1430

	12.	Neuendorffer S, Martinez-Vallina F (2013) Building Zynq® accelerators with Vivado® high
level synthesis. Tutorial. In: Proceedings of the 21st ACM/SIGDA international symposium
on field-programmable gate arrays, Monterey, California, 2013. http://tcfpga.org/fpga2013/Vi
vadoHLS_Tutorial.pdf. Accessed 25 Nov 2013

	13.	Xilinx Inc. (2013) Zynq-7000 all programmable SoC. http://www.xilinx.com/products/sili-
con-devices/soc/zynq-7000/. Accessed 16 Nov 2013

	14.	Sklyarov V, Skliarova I, Rjabov A, Silva J, Sudnitson A, Cardoso C (2014) Hardware/soft-
ware co-design for programmable systems-on-chip. TUT Press, Tallinn

	15.	Sklyarov V, Skliarova I (2013) Digital Hamming weight and distance analyzers for binary
vectors and matrices. Int J Innovative Comput Inf Control 9(12):4825–4849

	16.	Mueller R (2010) Data stream processing on embedded devices. Ph.D. dissertation, Swiss
Federal Institute of Technology

	17.	Davis JD, Tan Z, Yu F, Zhang L (2008) A practical reconfigurable hardware accelerator for
Boolean satisfiability solvers. In: Proceedings of the 45th ACM/IEEE design automation con-
ference, Anaheim, California, 2008

	18.	Digilent Inc. (2013) Peripheral modules. http://www.digilentinc.com/pmods/. Accessed 16
Nov 2013

	19.	Digilent Inc. (2013) ZedBoard Zynq™-7000 Development Board. http://www.digilentinc.
com/Products/Detail.cfm?NavPath=2,400,1028&Prod=ZEDBOARD. Accessed 16 Nov 2013

	20.	Xilinx Inc. (2013) Xilinx Zynq-7000 All Programmable SoC ZC702 Evaluation Kit.
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm. Accessed 16 Nov 2013

References

http://tcfpga.org/fpga2013/VivadoHLS_Tutorial.pdf
http://tcfpga.org/fpga2013/VivadoHLS_Tutorial.pdf
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.digilentinc.com/pmods/
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1028&Prod=ZEDBOARD
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1028&Prod=ZEDBOARD
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC706-G.htm

205

Abstract  This chapter gives an overview of the design techniques based on hier-
archical and parallel specifications. First, hierarchical graph-schemes (HGSs)
are introduced that enable complex digital control algorithms to be decomposed
and described efficiently. A module, described by an HGS, is the fundamental
entity that provides the basis for the technique, and is an autonomous, complete,
and potentially reusable component. A module has to be designed such that: (1)
it can be verified independently of other modules; (2) it possesses a well-defined
external interface so it can be reused in different specifications. It is shown that a
set of HGSs (modules) can be implemented in a hierarchical finite state machine
(HFSM) with stack memory. Many VHDL examples are given that demonstrate
that HFSMs permit the execution of hierarchical algorithms and provide support
for recursion if required. Various types of HFSMs are described and synthesizable
VHDL templates for these are given that can be customized for particular prob-
lems. Parallel specifications and parallel HFSMs are also discussed. Many fully
functioning VHDL examples for all the types of HFSMs above are presented and
evaluated. It is also shown how software programs can be mapped to hardware
with the aid of HFSM models. Finally, a variety of HFSM optimization techniques
are proposed.

5.1 � Modular Hierarchical Specifications

Nowadays, the development of software and hardware becomes more and more
interrelated. The emphasis has significantly shifted from general-purpose to appli-
cation-specific products in the form of embedded processing modules in various
areas such as communications, industrial automation, automotive computers, and
home electronics [1]. To support application-specific computations, a number of
new engineering solutions and technological innovations have been proposed.
There is a tendency to integrate components on a chip that not so long ago were
separated and implemented as autonomous Application-Specific Integrated

Chapter 5
Design Technique Based on Hierarchical
and Parallel Specifications

V. Sklyarov et al., Synthesis and Optimization of FPGA-Based Systems,
Lecture Notes in Electrical Engineering 294, DOI: 10.1007/978-3-319-04708-9_5,
© Springer International Publishing Switzerland 2014

206 5  Design Technique Based on Hierarchical and Parallel Specifications

Circuits (ASICs) or Application-Specific Standard Products (ASSP). In the past
individual ASICs/ASSPs were assembled together with the surrounding logic,
often implemented in autonomous FPGAs; today all these components are cou-
pled within the same micro-chip. For example, the Zynq-7000 all programmable
system-on-chip (APSoC) briefly described in Sect. 4.5 incorporates a processing
system (PS) and programmable logic (PL) on the same microchip and they are
linked through advanced interfaces.

APSoCs can run software that interacts with parallel processing elements (PE)
that have been mapped to hardware. The main objective of any PE is to provide
greater performance than an equivalent software component with similar func-
tionality that is typically composed of a set of functions in C, or methods in Java.
The relative effectiveness (e.g. performance) of software modules that have been
mapped to hardware PEs needs to be tested, analyzed and compared. Thus, it is
important to be able to create the functionality of typical software constructions
directly in hardware circuits. This chapter addresses the provision of modular-
ity, hierarchy (including recursion), and parallelism in hardware. Modularity and
hierarchy are very widely used techniques in general-purpose programming [2, 3].
They are supported by the majority of application-specific development systems
for the design of software in single/multi-core autonomous and built-in microcon-
trollers, mainly originating from specifications in C. In many practical cases, there
is a need for hardware accelerators to achieve higher performance by parallelizing
the most critical parts of the programs in hardware circuits. Thus, mapping such
processor-intensive software fragments to hardware by applying potential parallel-
ism becomes very important. There are many known methods that allow modular-
ity, hierarchy and parallelism to be realized in hardware and a survey of some of
these is presented in [4]. The described here technique is based on a hierarchical
finite state machine (HFSM) model, which is less constrained than potential alter-
natives [4], can easily be implemented in hardware, and is very consistent with
the corresponding software technique. The model is also supported by known tem-
plates that are synthesizable [5] in commercial computer-aided design (CAD) sys-
tems such as ISE of Xilinx.

The main objective of this chapter is to develop an approach to the synthesis
of digital circuits and systems whose functionality can be expressed hierarchically
(also allowing recursive invocations) represented in form of hierarchical graph-
schemes (HGSs) with the following formal description (see Fig. 5.1).

An HGS is a directed connected graph containing rectangular (Fig. 5.1a), rhom-
boidal (Fig. 5.1b), and triangular (Fig. 5.1c) nodes. Each HGS has one entry point,
which is a rectangular node named Begin (Fig. 5.1d) and one exit point, which is
a rectangular node named End (Fig. 5.1e). Other rectangular nodes contain either
micro instructions (Fig. 5.1f) or macro instructions (Fig. 5.1g) or both (Fig. 5.1h).
We will also allow micro instructions to be assigned to the nodes Begin and End
if required. Any micro instruction Yj (Fig. 5.1f) includes a subset of micro opera-
tions from the set Y = {y1,…, yN}. A micro operation is an output binary signal.
Any macro instruction Zk incorporates a subset of macro operations from the set
Z = {z1,…, zQ} (Fig. 5.1g). Each macro operation is described by another HGS of

http://dx.doi.org/10.1007/978-3-319-04708-9_4

207

a lower level called a module. If a macro instruction includes more than one macro
operation then these macro operations have to be executed in parallel (Fig. 5.1i).
Each rhomboidal node contains one element from the set X ∪ Θ, where X = {x1,…,
xL} is the set of logic conditions, and Θ = {θ1,…, θΙ} is the set of logic functions.
A logic condition is an input signal, which communicates the result of a test. Each
logic function is calculated by performing a predefined set of sequential steps that
are described by an HGS (a module) of a lower level. Directed lines (arcs) connect
the inputs and outputs of the nodes in the same manner as for an ordinary graph-
scheme [6]. Each triangular node contains an expression which can produce a set
of one-hot values associated with the outputs of this node. As soon as the control
flow passes a triangular node, exactly one output must be selected enabling the con-
trol flow to proceed (see examples in Fig. 5.1c and j). The output of a rectangular
node k with more than one element zi, zj,… from the set Z is called a merging point
(Fig. 5.1i). Control flow passes the merging point if and only if all the elements zi,
zj,… have been completed. This means that a node following the node k is only acti-
vated after terminating all the macro operations zi, zj,… .

Using HGSs enables complex control algorithms to be developed step by step,
concentrating the efforts at each stage on a specified level of abstraction [7]. Each
separate HGS (i.e. module) is usually simple, and can be tested independently.
Besides, a module may be easily updated if required.

Figure 5.2 demonstrates an example of describing the function IGCD from
Sect. 3.3 in form of an HGS.

Conversion from the C function in Fig. 5.2a to the HGS in Fig. 5.2b is easier
and better understandable than in Fig. 3.3a. Since the HGS in Fig. 5.2b does not
involve any hierarchy, FSM states can be assigned to the HGS much like it is done
for an ordinary graph-scheme using the methods [6] where the rules are different
for Mealy and Moore models. For example, the states init and run_state for Mealy
FSM can be assigned as it is shown in Fig. 5.2b. They are associated with the
input of the node following the node Begin (init), the input of the node End (the
same state init), and the input of the triangular node (run_state). Transition and out-
put signals can also be identified with the aid of the methods [6]. Finally, VHDL
code that describes FSM state transitions with elements of datapath can be built

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5.1   Nodes of a hierarchical graph-scheme: rectangular (a); rhomboidal (b); triangular (c);
entry point—node Begin (d); exit point—node End (e); with micro instructions (f); with macro
instructions (g); with micro and macro instructions (h); with parallel macro operations (i); trian-
gular node with expression producing a set of one-hot values (j)

5.1  Modular Hierarchical Specifications

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

208 5  Design Technique Based on Hierarchical and Parallel Specifications

as it is shown in Fig. 5.2c (Fig. 5.2c also depicts an example of FSM functional-
ity for A = 15 and B = 25). All necessary details needed for the considered above
conversions are given in [6, 8]. Coding of HGSs in VHDL is discussed in [5].

The complete parameterizable VHDL module for the IGCD is given below:

entity FSM_OneEdge_GCD is -- circuit with synchronization by one clock edge
generic(data_size : integer := 8);
port (clk : in std_logic;
 rst : in std_logic;
 A : in std_logic_vector(data_size-1 downto 0);
 B : in std_logic_vector(data_size-1 downto 0);
 Result : out std_logic_vector(data_size-1 downto 0));
end FSM_OneEdge_GCD;

architecture Behavioral of FSM_OneEdge_GCD is
 signal FSM_A, FSM_B, FSM_A_next, FSM_B_next

: integer range 0 to 2**data_size-1;
 type state_type is (init, run_state);
 signal C_S, N_S : state_type;
 signal Res, Res_next : integer range 0 to 2**data_size-1;
begin
process (clk) -- this process describes functionality of the FSM state register and
begin -- registers of datapath
 if rising_edge(clk) then
 if (rst = '1') then C_S <= init;

 FSM_A <= conv_integer(A);
 FSM_B <= conv_integer(B);
 Res <= 0;
 else C_S <= N_S;
 FSM_A <= FSM_A_next; FSM_B <= FSM_B_next;
 Res <= Res_next;
 end if;
 end if;
end process;
process (C_S, A, B, FSM_A, FSM_B, Res) -- this is a combinational process
begin
 N_S <= C_S;
 FSM_A_next <= FSM_A;
 FSM_B_next <= FSM_B;
 Res_next <= Res;
 case C_S is
 when init =>
 if ((A = 0) or (B = 0)) then Res_next <= 0; N_S <= init;
 else FSM_A_next <= conv_integer(A);

FSM_B_next <= conv_integer(B);
N_S <= run_state;

 end if;
 when run_state => N_S <= run_state;

if (FSM_B>0) and (FSM_B>FSM_A) then FSM_A_next <= FSM_B;
 FSM_B_next <= FSM_A;

elsif (FSM_B>0) and (FSM_B<=FSM_A) then FSM_A_next <= FSM_B;
 FSM_B_next <= FSM_A rem FSM_B;

else Res_next <= FSM_A; N_S <= init;
end if;

 when others => N_S <= init;
 end case;
end process;

Result <= conv_std_logic_vector(Res, data_size);

end Behavioral;

(a) (b)

(c)

Fig. 5.2   C function IGCD from Sect. 3.3 (a); description of the function in form of HGS (b);
VHDL description with example (c)

http://dx.doi.org/10.1007/978-3-319-04708-9_3

209

as it is shown in Fig. 5.2c (Fig. 5.2c also depicts an example of FSM functional-
ity for A = 15 and B = 25). All necessary details needed for the considered above
conversions are given in [6, 8]. Coding of HGSs in VHDL is discussed in [5].

The complete parameterizable VHDL module for the IGCD is given below:

entity FSM_OneEdge_GCD is -- circuit with synchronization by one clock edge
generic(data_size : integer := 8);
port (clk : in std_logic;
 rst : in std_logic;
 A : in std_logic_vector(data_size-1 downto 0);
 B : in std_logic_vector(data_size-1 downto 0);
 Result : out std_logic_vector(data_size-1 downto 0));
end FSM_OneEdge_GCD;

architecture Behavioral of FSM_OneEdge_GCD is
 signal FSM_A, FSM_B, FSM_A_next, FSM_B_next

: integer range 0 to 2**data_size-1;
 type state_type is (init, run_state);
 signal C_S, N_S : state_type;
 signal Res, Res_next : integer range 0 to 2**data_size-1;
begin
process (clk) -- this process describes functionality of the FSM state register and
begin -- registers of datapath
 if rising_edge(clk) then
 if (rst = '1') then C_S <= init;

 FSM_A <= conv_integer(A);
 FSM_B <= conv_integer(B);
 Res <= 0;
 else C_S <= N_S;
 FSM_A <= FSM_A_next; FSM_B <= FSM_B_next;
 Res <= Res_next;
 end if;
 end if;
end process;
process (C_S, A, B, FSM_A, FSM_B, Res) -- this is a combinational process
begin
 N_S <= C_S;
 FSM_A_next <= FSM_A;
 FSM_B_next <= FSM_B;
 Res_next <= Res;
 case C_S is
 when init =>
 if ((A = 0) or (B = 0)) then Res_next <= 0; N_S <= init;
 else FSM_A_next <= conv_integer(A);

FSM_B_next <= conv_integer(B);
N_S <= run_state;

 end if;
 when run_state => N_S <= run_state;

if (FSM_B>0) and (FSM_B>FSM_A) then FSM_A_next <= FSM_B;
 FSM_B_next <= FSM_A;

elsif (FSM_B>0) and (FSM_B<=FSM_A) then FSM_A_next <= FSM_B;
 FSM_B_next <= FSM_A rem FSM_B;

else Res_next <= FSM_A; N_S <= init;
end if;

 when others => N_S <= init;
 end case;
end process;

Result <= conv_std_logic_vector(Res, data_size);

end Behavioral;

The code above can be used as a component in more complicated projects. For
example, it can be linked with modules from Appendix B in order to show the
results on 7-segment displays of the Nexys-4 board in decimal format:

entity TestGCD is
 generic(data_size : integer := 8);
 port (clk : in std_logic; -- clock signal
 rst : in std_logic; -- reset signal (active high)
 A : in std_logic_vector(data_size-1 downto 0);
 B : in std_logic_vector(data_size-1 downto 0);
 sel_disp : out std_logic_vector(7 downto 0);
 seg : out std_logic_vector(6 downto 0));
end TestGCD;

5.1  Modular Hierarchical Specifications

210 5  Design Technique Based on Hierarchical and Parallel Specifications

5.2 � Hierarchical Finite State Machines

It is known [5, 7, 9, 10] that a set of HGSs can be implemented in an HFSM with
stack memory, which permits the execution of hierarchical algorithms. The HFSM
model was proposed in [9] and further elaborated in [10]. The model was realized
in hardware and successfully tested in a number of industrial products. Further
improvements were made in [5, 7, 11, 12] and consequently new practical appli-
cations have been implemented, tested and evaluated. Theoretical and practical
issues of HFSMs have been analyzed and used for further extensions and improve-
ments in numerous publications [13–24]. Statecharts [25] specifications are also
applicable to HFSMs, and they were adapted for object-oriented programming
and used as a part of the unified modeling language. Hierarchical and concurrent
finite state machines of other types are discussed extensively and their applicabil-
ity to embedded systems is demonstrated in [26]. It is important to point out that
HFSMs permit not only an abstract conversion, but also physical implementations
because they are synthesizable.

We will skip here the formal mathematical definition and will describe the
HFSM model informally. Let x1,…, xL/y1,…, yN be sets of input/output signals.
Structurally, an HFSM contains one or two stacks. In case of two stacks one of
them (FSM_stack) keeps states and the other (M_stack) enables transitions
between modules to be done. Any module is considered to be either an FSM or an
HFSM. The stacks are managed by a circuit (C) that is responsible for new module
invocations and state transitions in active modules that are designated by the out-
puts of the M_stack. Since each particular module has a unique identification code,
the same HFSM states can be repeated in different modules. Any non-hierarchical
(conventional) transition is performed through the change of a code only on the
top register of the FSM_stack (see Fig. 5.3 and the mark ●). Any hierarchical call
activates a push operation and alters the states of the both stacks in such a way that
the M_stack will store the code for the new (called) module and the FSM_stack
will be set to an initial state of the called module (see Fig. 5.3 and the mark ▪).

architecture Behavioral of TestGCD is
 signal BCD2,BCD1,BCD0 : std_logic_vector(3 downto 0);
 signal Result : std_logic_vector(data_size-1 downto 0);
begin
BCD: entity work.BinToBCD8
 port map (clk, rst, open, Result, BCD2, BCD1, BCD0);

DispCont: entity work.EightDisplayControl
 port map(clk, "0000", "0000", "0000", "0000", "0000",

BCD2, BCD1, BCD0, sel_disp, seg);

GCD: entity work.FSM_OneEdge_GCD
 port map(clk, rst, A, B, Result);

end Behavioral;

211

Any hierarchical return just activates a pop operation without any change in the
stacks (see Fig. 5.3 and the mark ◆). As a result, a transition to the state follow-
ing the state where the terminated module was called will be executed. The stack
pointer is common to the both stacks. In the explored here HFSM with datapath
the circuit C has RTL structure (see Fig. 5.3) enabling operations of high-level
languages to be either mapped directly or in a slightly altered manner and conse-
quently to be executed in hardware.

The model depicted in Fig. 5.3 possesses the following advantages:

•	 It does not have the limitations that exist for processing cores, such as the con-
strained size of operands, a predefined set of instructions, limited parallelism,
the impossibility of fast combinational operations;

•	 It is entirely synthesizable, which is demonstrated in [5];
•	 It implements hierarchy (including potential recursion) faster than in software

[27, 28], i.e. a smaller number of clock cycles is required.

We can distinguish two types of HFSMs [5, 11]: HFSMs with explicit and with
implicit modules. HFSMs with explicit modules (see Fig. 5.3) include two stacks
(the FSM_stack and the M_stack) and the circuit C, which is responsible for state
transitions within any active module selected by the stack of modules (M_stack).
An HFSM with implicit modules includes just one stack that keeps track of returns
from a currently active module.

Design of HFSM-based circuits can be done from templates that are described
below. The stacks in the templates are entirely reusable. The design method just
requires state transitions to be specified in the templates that describe functionality
of the circuit C.

5.2.1 � HDL Template for HFSM with Explicit Modules

Figure 5.3 depicts the structure of an HFSM with explicit modules [5, 11].
M_stack and FSM_stack enable the currently executing module and the current
state of the module to be explicitly indicated. The top register of the M_stack

Fig. 5.3   HFSM which provides support for hierarchy and recursive calls

5.2  Hierarchical Finite State Machines

212 5  Design Technique Based on Hierarchical and Parallel Specifications

contains the code of the currently executing module. The top register of the FSM_
stack is used as a register for the currently executing module, i.e. it supplies states
(codes of states) for any state transition required within the currently executing
module. At the beginning, the top registers of both stacks are set to the initial state
a0 of the initial module (z0), which must be activated first according to the given
algorithm. After that the following three allowed types of state transitions can be
executed:

1.	 Transitions between states that belong to the same module. In this case the
HFSM operates like an ordinary FSM.

2.	 A transition to the first state of a next module zp. In this case the opera-
tion push(“the code of zp”) is applied to the M_stack and the operation
push(“the first state of zp”) is applied to the FSM_stack. This transition is
known as a hierarchical call.

3.	 A transition from a currently executing module zp to a module zq from
which zp was activated. In this case the operation pop is applied to the
M_stack (thus, the top register of the M_stack will contain the code of zq)
and the operation “pop + state transition” is applied to the FSM_stack.
This third type of transition is known as a hierarchical return.

HFSMs with explicit modules have the following features. There are two stack
memories that keep vectors of

⌈
log2Q

⌉
 bits for modules and

⌈
log2R

⌉
 bits for states,

where Q is the number of modules and R is the maximum number of states in a
module. States in different modules can be assigned the same codes.

We discuss here two types of HFSMs. The first one is exactly the same as it was
described in [5]. Synchronization is done with two clock edges: rising and falling
(see Fig. 5.4a). In the second type (see Fig. 5.4b) synchronization is done with one
clock edge in such a way that combinational process is responsible for preparation

Fig. 5.4   Synchronization of
HFSM on two clock edges
(a) and on one clock edge (b)

(a)

(b)

213

of the next HFSM state and the next contents of registers in the datapath. The
states of HFSM and the registers are changed on the selected edge of the clock
(such as rising edge in Fig. 5.4b). Implementation of the circuit in Fig. 5.4b is usu-
ally smaller and faster while the first circuit in Fig. 5.4a has clearer and simpler
description and, thus, potential errors can be detected more easily and avoided.

The HFSM with explicit modules template for synthesis from VHDL [7, 11] is
shown in Fig. 5.5 and includes two processes describing: (1) reusable stacks for
modules (M_stack) and states (FSM_stack); (2) a structure of the circuit C allow-
ing transitions at the level of modules and states to be executed. Here, stack_pointer
is a stack pointer common to both M_stack and FSM_stack; signals push and pop
increment and decrement the stack_pointer.

Let us consider an example. The following C language code (where the func-
tion IGCD with two arguments was described above in Fig. 5.2a) finds the greatest
common divisor of four non-negative integers A, B, C, and D:

The function IGCD with four arguments A, B, C, D can be described by an HGS
depicted in Fig. 5.6. You can see that it looks similar to a flowchart. Different
states (initAB, initCD, c1_z1, c2_z1, c3_z1, init1_2, final_state) and modules (z0, z1)
are written in italic. In Sect. 5.3 we will show how to associate HFSM states
with nodes of HGSs. From comments given in Fig. 5.6a the functionality of the

unsigned int IGCD(unsigned int A, unsigned int B, unsigned int C, unsigned int D)
{ return IGCD (IGCD(A,B), IGCD(C,D)); }

Fig. 5.5   A template for HFSM with explicit modules

5.2  Hierarchical Finite State Machines

214 5  Design Technique Based on Hierarchical and Parallel Specifications

module z0 should be understandable. The module z1 (that finds the greatest com-
mon divisor of two non-negative integers) has already been described above.
VHDL code for this module is depicted in Fig. 5.6b. VHDL code in Fig. 5.6c
gives a general idea of the intended functionality of the module z0.

Any hierarchically called module (such as z1) can be replaced or modified
without any influence on upper modules (such as z0). For example, the module of
greatest common divisor in [1, 5] was described in VHDL on the basis of the fol-
lowing recursive C function RGCD:

As we mentioned above recursive module invocations are supported by the con-
sidered HFSM modules, although recursive implementations of cyclic functions
(like RGCD above) are not efficient at all [27]. Later on we will discuss algorithms
over trees for which recursion might be profitable [28].

VHDL code below gives a complete synthesizable specification of HFSM with
datapath for implementation of the HGS in Fig. 5.6a and applying synchronization
with rising and falling clock edges (see Fig. 5.4a).

unsigned int RGCD (unsigned int A, unsigned int B)
{ if (B > A) return RGCD (B,A);
 else if (B<=0) return A;
 else return RGCD(B, A%B); }

(c)(a)

(b)

Fig. 5.6   Description of IGCD function with 4 arguments A, B, C, D (a); VHDL code for the
module z1 (b); state transitions and hierarchical calls (c)

215

entity IGCD is -- the function IGCD with four arguments A, B, C, and D
generic (stack_size : integer := 1; data_size : integer := 4);
port (clk : in std_logic; -- clock signal
 rst : in std_logic; -- reset signal (active high)
 A : in std_logic_vector(data_size-1 downto 0);
 B : in std_logic_vector(data_size-1 downto 0);
 C : in std_logic_vector(data_size-1 downto 0);
 D : in std_logic_vector(data_size-1 downto 0);
 stack_overflow : out std_logic; -- indicates HFSM stack overflow
 Result : out std_logic_vector(data_size-1 downto 0));
end IGCD;

architecture Behavioral of IGCD is
 signal FSM_A, FSM_B : integer range 0 to 2**data_size-1; -- data_size is the size of data
 signal Res, ResF, ResAB : integer range 0 to 2**data_size-1;
 type state_type is (initAB, initCD, c1_z1, c2_z1, c3_z1,init1_2,final_state); --states ***
 signal N_S : state_type;
 type MODULE_TYPE is (z0, z1); -- HFSM modules -- ***
 signal N_M : MODULE_TYPE;
 type stack is array(0 to stack_size) of STATE_TYPE; -- ***
 signal FSM_stack : stack; -- FSM_stack for HFSM -- ***
 signal stack_pointer : integer range 0 to stack_size+1; -- +1 to allow test for overflow ***
 signal push : std_logic; -- forces to increment the stack_pointer -- ***
 signal pop : std_logic; -- forces to decrement the stack_pointer -- ***
 type Mstack is array(0 to stack_size) of MODULE_TYPE; -- ***
 signal M_stack : Mstack; -- M_stack for HFSM -- ***
begin
process(clk) -- beginning of the M_stack and FSM_stack
begin -- this is a sequential process
 if rising_edge(clk) then stack_overflow <= '0';
 if rst = '1' then stack_pointer <= 0; FSM_stack(0) <= initAB;
 M_stack(0) <= z0;
 else
 if push = '1' then
 if stack_pointer = stack_size+1 then stack_overflow <= '1';
 else stack_pointer <= stack_pointer + 1;
 FSM_stack(stack_pointer+1)<= initAB;
 FSM_stack(stack_pointer) <= N_S;
 M_stack(stack_pointer+1) <= N_M;
 end if;
 elsif pop = '1' then stack_pointer <= stack_pointer - 1;
 else FSM_stack(stack_pointer) <= N_S;
 end if;
 end if;
 end if;
end process; -- description of the M_stack and FSM_stack ends here

process (clk) -- description of the left-hand circuit in Fig. 5.4a
begin -- this is a sequential process
 if falling_edge(clk) then push <= '0'; pop <= '0'; N_M <= z0;
 if rst = '1' then FSM_A <= 0; FSM_B <= 0; Res <= 0;

5.2  Hierarchical Finite State Machines

216 5  Design Technique Based on Hierarchical and Parallel Specifications

VHDL code below gives a complete synthesizable specification of HFSM with
datapath for implementation of the HGS in Fig. 5.6a and applying synchronization
with the only one rising clock edge (see Fig. 5.4b).

 case M_stack(stack_pointer) is
 when z0 => -- the code is the same as in Fig. 5.6c
 case FSM_stack(stack_pointer) is
 when initAB =>
 if ((A = 0) or (B = 0) or (C = 0) or (D = 0)) then
 ResF <= 0; N_S <= initAB;
 else FSM_A <= conv_integer(A);

 FSM_B <= conv_integer(B); N_S <= c1_z1; end if;
 when c1_z1 => N_S <= initCD; N_M <= z1; push <= '1';
 when initCD => ResAB <= Res; FSM_A <= conv_integer(C);
 FSM_B <= conv_integer(D); N_S <= c2_z1;
 when c2_z1 => N_S <= init1_2; N_M <= z1; push <= '1';
 when init1_2 => N_S <= c3_z1; FSM_A <= conv_integer(ResAB);
 FSM_B <= conv_integer(Res); N_S <= c3_z1;
 when c3_z1 => N_S <= final_state; N_M <= z1; push <= '1';
 when final_state => ResF <= Res; N_S <= initAB;
 when others => N_S <= initAB;
 end case;
 when z1 => -- the code is the same as in Fig. 5.6b
 case FSM_stack(stack_pointer) is
 when initAB => N_S <= initAB;
 if (FSM_B>0) and (FSM_B>FSM_A) then FSM_A <= FSM_B;
 FSM_B <= FSM_A;
 elsif (FSM_B>0) and (FSM_B<=FSM_A) then FSM_A <= FSM_B;
 FSM_B <= FSM_A rem FSM_B;
 else Res <= FSM_A; pop <= '1';
 end if;
 when others => N_S <= initAB;
 end case;
 when others => N_M <= z0;
 end case;
 end if;
 end if;

else

 th

 end if;

 ;

 is

 ;

 ;

 ;
 ;
 ;

end process;

Result <= conv_std_logic_vector(ResF, data_size);

end Behavioral;

entity Hierarchical_IGCD is
-- this entity is described exactly the same as the entity IGCD above
end Hierarchical_IGCD;
architecture Behavioral of Hierarchical_IGCD is --some lines have to be copied from the IGCD
 --the same declarations as in the IGCD above are not shown (they are marked with *** in the IGCD)
 signal FSM_A, FSM_B, FSM_A_next, FSM_B_next :

integer range 0 to 2**data_size-1;

217

 signal Res, Res_next, ResAB, ResAB_next, ResF, ResF_next :
integer range 0 to 2**data_size-1;

 signal N_S, C_S : state_type;
 signal N_M, C_M : MODULE_TYPE;
begin
process(clk) -- beginning of the M_stack and FSM_stack
begin -- this is a sequential process
 if rising_edge(clk) then -- stack memory is described differently compared to the previous example
 if rst = '1' then
 if pop /= '1' then stack_pointer <= 0; -- to avoid warnings because of line +++ below
 end if;
 C_M <= z0; C_S <= initAB; M_stack(0) <= z0; FSM_stack(0) <= initAB;
 else FSM_A <= FSM_A_next; FSM_B <= FSM_B_next;
 Res <= Res_next; ResAB <= ResAB_next;
 ResF <= ResF_next; C_M <= N_M; C_S <= N_S;
 FSM_stack(stack_pointer) <= N_S; M_stack(stack_pointer) <= C_M;
 if push = '1' then
 if stack_pointer = stack_size+1 then stack_overflow <= '1';
 else stack_pointer <= stack_pointer + 1; stack_overflow <= '0';

 end if;
elsif pop = '1' then stack_pointer <= stack_pointer - 1; -- +++ (see comment above)

 C_S <= FSM_stack(stack_pointer-1);
 C_M <= M_stack(stack_pointer-1);

end if;
 end if;
 end if;
end process; -- description of the M_stack and FSM_stack ends here

process (A, B, C, D, C_M, C_S, FSM_A, FSM_B, Res, ResAB, ResF)
begin -- this combinational process describes the left-hand circuit in Fig. 5.4b

 N_S <= C_S;
 FSM_A_next <= FSM_A; FSM_B_next <= FSM_B; Res_next <= Res;
 N_M <= C_M; push <= '0'; pop <= '0';
 ResAB_next <= ResAB; ResF_next <= ResF;
 case C_M is
 when z0 =>
 case C_S is
 when initAB =>
 if ((A = 0) or (B = 0) or (C = 0) or (D = 0)) then
 ResF_next <= 0; N_S <= initAB;
 else FSM_A_next <= conv_integer(A);

 FSM_B_next <= conv_integer(B); N_S <= c1_z1;
 end if;
 when c1_z1 => N_S <= initCD; N_M <= z1; push <= '1';
 when initCD => ResAB_next <= Res; FSM_A_next <= conv_integer(C);
 FSM_B_next <= conv_integer(D); N_S <= c2_z1;
 when c2_z1 => N_S <= init1_2; N_M <= z1; push <= '1';
 when init1_2 => N_S <= init1_2; FSM_A_next <= conv_integer(ResAB);
 FSM_B_next <= conv_integer(Res); N_S <= c3_z1;
 when c3_z1 => N_S <= final_state; N_M <= z1; push <= '1';
 when final_state => N_S <= initAB; ResF_next <= Res;
 when others => N_S <= initAB;
 end case;

5.2  Hierarchical Finite State Machines

218 5  Design Technique Based on Hierarchical and Parallel Specifications

The projects for the entities IGCD and Hierarchical_IGCD above have been tested in
the Nexys-4 and Atlys prototyping boards. Only onboard switches, buttons and
LEDs have been used for the Nexys-4 board. Since there are 16 switches available,
4-bit operands A, B, C, D were supplied. The following VHDL code has been used:

 when z1 =>
 case C_S is
 when initAB => N_S <= initAB;
 if (FSM_B>0) and (FSM_B>FSM_A) then FSM_A_next <= FSM_B;
 FSM_B_next <= FSM_A;
 elsif (FSM_B>0) and (FSM_B<=FSM_A) then FSM_A_next <= FSM_B;
 FSM_B_next <= FSM_A rem FSM_B;
 else N_S <= initAB; Res_next <= FSM_A; pop <= '1';
 end if;
 when others => N_S <= initAB;
 end case;
 when others => N_M <= z0;
 end case;
end process;

Result <= conv_std_logic_vector(ResF, data_size);

end Behavioral;

entity Top_GCD_4items is -- this project has been tested in the Nexys-4 board
generic (stack_size : integer := 1; data_size : integer := 4);
 port (A,B,C,D : in std_logic_vector (data_size-1 downto 0);
 Result : out std_logic_vector (data_size-1 downto 0);
 stack_overflow : out std_logic;
 clk, rst : in std_logic);
end Top_GCD_4items;
-- IGCD: synchronized by two clock edges; Hierarchical_IGCD: synchronized by one clock edge
architecture Behavioral of Top_GCD_4items is
begin -- either the first or the second entity has to be uncommented below

HIGCD: entity work.Hierarchical_IGCD -- the number of the occupied slices (Ns) is 29
 generic map (stack_size, data_size) -- the maximum attainable clock frequency (Fmax)
 port map (clk, rst, A, B, C, D, stack_overflow, Result); -- is 365.5 MHz

--HIGCD: entity work.IGCD -- Ns = 29, Fmax = 241.5 MHz
-- generic map (stack_size, data_size)
-- port map (clk, rst, A, B, C, D, stack_overflow, Result);

end Behavioral;

Note that both VHDL codes for the entities IGCD and Hierarchical_IGCD are eas-
ily parameterizable for any size of data (data_size). The following VHDL code has
been used for testing these entities in the Atlys board communicating with a host
computer with the aid of the Digilent IOExpansion component (see Sect. 1.7). The
size of data was set to 8 and the 8-bit values A, B, C, D were taken from 32-bit
value (data_from_PC) received from a host computer. The result is displayed in the
virtual window of a host computer (signal data_to_PC).

http://dx.doi.org/10.1007/978-3-319-04708-9_1

2195.2  Hierarchical Finite State Machines

As we can see from the previous examples, HFSMs enable executable algo-
rithms to be built from preliminary tested modules. Thus, we can benefit from the
following:

•	 Any module can be debugged and verified independently of a more complex
algorithm which can potentially use this module.

•	 Any module becomes reusable and can be included in different algorithms.
Reusability assumes that for any new call all variables and signals that might be
potentially changed during previous calls have to be set to initial values.

entity Iterative_GCD is
generic (stack_size : integer := 1; data_size : integer := 8);
 port (clk : in std_logic;
 EppAstb : in std_logic;
 EppDstb : in std_logic;
 EppWr : in std_logic;
 EppDB : inout std_logic_vector(7 downto 0);
 EppWait : out std_logic);
end Iterative_GCD;
architecture Behavioral of Iterative_GCD is -- see interaction with PC in Sects. 1.7 and 2.6
 signal MyLed : std_logic_vector(7 downto 0);
 signal MyLBar : std_logic_vector(23 downto 0);
 signal MySw : std_logic_vector(15 downto 0);
 signal MyBtn : std_logic_vector(15 downto 0);
 signal data_to_PC : std_logic_vector(31 downto 0);
 signal data_from_PC : std_logic_vector(31 downto 0);
 signal A,B,C,D : std_logic_vector(data_size-1 downto 0);
 signal rst, stack_overflow : std_logic; -- reset and HFSM stack overflow signals
 signal Result : std_logic_vector(data_size-1 downto 0);
begin --IGCD: synchronization by two clock edges; Hierarchical_IGCD: synchronization by one clock edge
 MyLed(0) <= stack_overflow; -- HFSM stack overflow
 MyLed(7 downto 1) <= MyBtn(7 downto 1); -- for tests only
 MyLBar <= MySw & MyBtn(15 downto 8); -- for tests only
 rst <= MyBtn(0); -- HFSM reset
 A <= data_from_PC(31 downto 24); B <= data_from_PC(23 downto 16);
 C <= data_from_PC(15 downto 8); D <= data_from_PC(7 downto 0);
 -- either the first or the second entity has to be uncommented below
 HIGCD: entity work.Hierarchical_IGCD -- Ns = 122, Fmax = 61.5 MHz
 generic map (stack_size, data_size) -- note, that Ns and Fmax above are
 port map (clk, rst, A, B, C, D, stack_overflow, Result); -- for the entire project

 --HIGCD: entity work.IGCD -- Ns = 136, Fmax = 61.5 MHz
 -- generic map (stack_size, data_size) -- note, that Ns and Fmax above are
 -- port map (clk, rst, A, B, C, D, stack_overflow, Result); -- for the entire project

 data_to_PC <= (31 downto 8 => '0') & Result;

 IO_interface: entity work.IOExpansion
 port map(EppAstb, EppDstb, EppWr, EppDB, EppWait, MyLed,
 MyLBar, MySw, MyBtn, data_from_PC, data_to_PC);

end Behavioral;

220 5  Design Technique Based on Hierarchical and Parallel Specifications

•	 Any module can be optimized, generally without requiring changes in the rest
of the algorithms.

•	 Alternative and competitive modules (such as IGCD and RGCD) can easily be
examined and compared.

•	 Complexity of algorithms mapped to hardware can be significantly increased.

5.2.2 � HDL Template for HFSM with Implicit Modules

Figure 5.7 depicts the structure of an HFSM with implicit modules [29]. The
HFSM behaves like an ordinary FSM and a single stack of states is used just for
returns from the called modules.

There are three basic blocks in Fig. 5.7: a Register, an FSM_stack, and a circuit
C that calculates next states for state transitions and generates the required out-
puts. Now states in different modules have to be assigned different codes [29]. The
FSM_stack is needed just to know which state has to be the target of the transi-
tion when a called module is terminated. All state transitions are executed with the

FSM_stack
keeps only
states for returns from modules

Register – FSM
memory FSM_stackCircuit C

current
state

next
state

Control: clock,
reset, push, pop

-- see the template for HFSM with explicit modules

-- much like the previous template this part is dependent on chosen type of this process (i.e. combinational or sequential)
Register

-- describing operations and transitions
-- repeat for all states
-- for any hierarchical call save return state on the stack and generate push signal. Example: Return_S<= init; N_S <= init2; push <= '1';
-- for any hierarchical return generate pop signal

-- ...

states that influence
transitions just for

hierarchical returns

decoding

Structure:

The stack can be built
on the basis of:
1. Arbitrary logic

elements (slices)
2. Distributed memory
3. Embedded Block

RAM

Fig. 5.7   Templates for HFSM with implicit modules

221

register, much like it is done in a conventional FSM. Here, Return_S is a code of
the return state.

Suppose that a new module zp has to be called in a state am. In this case the fol-
lowing operations are executed at the same time: (1) the state an that follows am is
saved in the FSM_stack; (2) the stack_pointer is incremented; and (3) the transi-
tion from am to a0 (the first state of zp) is performed in the register.

When the called module zp is terminated, the stack pointer is decremented and
the stack_pointer points to the register of the stack with the state an that has to
be selected for the next state transition. We consider two modes of returns [5]. In
the first mode, transition from the state am does not depend on the execution of
the called module (zp). Thus, we can explicitly save in the stack the target state
(such as an) for transition after the return from the called module (such as zp). In
the second (more complicated) case the transition from am can be changed in the
called module and a method based on the use of a special return flag [28] has to be
applied. All necessary details can be found in [5, 28].

Note that identical module calls might appear in different states, and, thus, the
returns might also be done to different states from the same called module. That
is why the returned state has to be chosen in the calling modules (but not in the
called modules). The stack is needed just to know which state has to be the tar-
get of the transition when a called module is terminated. The number of states is
increased comparing to HFSMs with explicit modules. However, the number of
stacks and the size of the stack registers are reduced [5]. Another feature of this
model is that it is directly applicable to all known optimization techniques that
have been proposed for conventional FSMs. An example of complete synthesiz-
able VHDL code for HFSM with implicit modules is given in [5].

5.3 � Synthesis of HFSMs

Synthesis of an HFSM with the structure shown in Figs. 5.5 and 5.7 includes the
following steps:

1.	 Marking the given HGSs with labels that will be considered as the HFSM
states. For example, the labels initAB, initCD, c1_z1, c2_z1, c3_z1, init1_2, final_
state in Fig. 5.6a are HFSM states.

2.	 Customizing the proposed HDL templates (VHDL templates in Figs. 5.5
and 5.7).

3.	 Synthesis of HFSM circuits from the customized VHDL templates using
commercially available computer-aided design tools, such as ISE of Xilinx
or Quartus of Altera.

Various types of HGS marking (labeling) have been proposed and these types
depend on the selected HFSM model (Mealy, Moore or combined Mealy and
Moore with either explicit or implicit modules). In the example in Fig. 5.6a an
HFSM with explicit modules is based on Moore model. In consequent sections we
will present methods of synthesis for different types of HFSM.

5.2  Hierarchical Finite State Machines

222 5  Design Technique Based on Hierarchical and Parallel Specifications

5.3.1 � Synthesis of HFSMs with Explicit Modules

Synthesis can be done for Moore, Mealy, and mixed (Moore and Mealy) models
[8]. For Moore machine it includes the following steps, which are very similar to
the methods for conventional FSMs [6, 8]:

•	 The label a0 is assigned to the node Begin of all HGSs.
•	 The labels a1, a2,…, aM−1 are assigned to unmarked rectangular nodes (includ-

ing End node) in each HGS.
•	 The labels can be repeated in different HGSs but cannot be repeated within the

same HGS (except the label a0 in the main HGS z0, which can also be assigned
to the node End).

•	 All rectangular nodes have to be labeled.

The considered type of labeling allows HGS to be executed from the node
Begin of the main module z0 and to be terminated in the node End of the main
module z0. If z0 has to be executed cyclically then the node End of z0 has to be
assigned the same label as the node Begin of z0, i.e. the label a0. Alternatively tran-
sition from the node End can be performed explicitly to the node Begin (see exam-
ple in Fig. 5.6a). Now the labels a0,.., aM−1 are considered to be HFSM states.
State transitions are formed using the same rules as in [6, 8]. Each state transition
is used to customize the proposed template in Fig. 5.5. All other details will be
shown on a simple practical example in Fig. 5.8.

Let us design an HFSM that provides support for full functionality of the itera-
tive sorter in Fig. 3.14. The HFSM analyzes the enable signal in Fig. 3.14 and
permits sorting to be concluded in less than N/2 clock cycles (see Sect. 3.5 for
additional details). Now each comparator in the right-hand line of Fig. 5.8c has the
following VHDL code:

entity ComparatorOdd is
 generic (M : integer := 4);
 port(Op1 : in std_logic_vector(M-1 downto 0);
 Op2 : in std_logic_vector(M-1 downto 0);
 MaxValue : out std_logic_vector(M-1 downto 0);
 MinValue : out std_logic_vector(M-1 downto 0);
 test_sorted : out std_logic); -- test_sorted =0 if data are not swapped
end ComparatorOdd;

architecture Behavioral of ComparatorOdd is
begin
process(Op1,Op2)
begin
 if Op1 >= Op2 then MaxValue <= Op1; MinValue <= Op2; test_sorted <= '0';
 else MaxValue <= Op2; MinValue <= Op1; test_sorted <= '1';
 end if;
end process;

end Behavioral;

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

223

The first HFSM module z0 checks if a new set of data is available from a
source. The latter, for example, could be a random number generator from
Appendix B (see Fig. 5.9a), a host PC (see Sects. 4.3 and 4.4), or a host processor
(see Sect. 4.5). As soon as a new set of data is available the data are copied to the
register R of the sorter and the module z1 (see Fig. 5.8b) is called. The latter sorts
data controlling the sorter shown in Fig. 5.8c. The main function of z1 is an execu-
tion of iterations in the sorter until there is no data swap in the second line of com-
parators, which indicates that the data have already been sorted and can be copied
from the outputs of the sorter (see Fig. 5.8c). Hence, the number of iterations may
now be less than N/2 (see Sect. 3.5 for additional details) and the sorting may be
accelerated. The statement count <=0; can be associated with the node Begin of z1 or
with the calling node a1 in the module z0.

The HGSs in Fig. 5.8a and b are marked with the labels a0, a1, a2 which are
considered to be HFSM states. All state transitions and operations in the states are
shown in Fig. 5.8d. For the sake of simplicity we used synchronization with two
clock edges (see Fig. 5.4a). Stack memory in the HFSM is exactly the same as in
the entity IGCD (see Sect. 5.2.1). Functionality of the circuits can be tested in more
complicated examples given in Sect. 4.1 and one of them is shown in Fig. 5.9.

As distinct from Fig. 4.7 the iterative sorter from Fig. 5.8c for N items is used
and it is controlled by the HFSM a part of which is shown in Fig. 5.9 (see reusable

(a) (b) (c)

(d)

Fig. 5.8   HGS module z0 (a), HGS module z1 (b), iterative sorter (c), part of VHDL code for the
modules z0 and z1 (d)

5.3  Synthesis of HFSMs

http://dx.doi.org/10.1007/978-3-319-04708-9_4
http://dx.doi.org/10.1007/978-3-319-04708-9_4
http://dx.doi.org/10.1007/978-3-319-04708-9_4
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_4
http://dx.doi.org/10.1007/978-3-319-04708-9_4

224 5  Design Technique Based on Hierarchical and Parallel Specifications

declarations D and the reusable process P1) and another part—in Fig. 5.8d (the
process P2). VHDL code for the iterative sorter (see the block IC in Fig. 5.9)
can almost completely be reused from Fig. 3.14. The only difference is the
replacement of the Comparator for the OddComp component with the shown above
ComparatorOdd, the signals test_sorted from which are individual signals of type std_
logic in the following vector data_sorted:

Thus, if data_sorted = 0 then we can conclude that sorting is completed (see the
states a0 and a1 in the module z1 in Fig. 5.8d). Signal declarations for the itera-
tive sorter (DIC) shown in Fig. 5.9 have to be also provided. The entire circuit in
Fig. 5.9 occupies 117 slices and 1 embedded block RAM (Nexys-4 board with
Artix-7 FPGA) and it has been tested in hardware. The maximum attainable clock
frequency is 299 MHz. Note that such frequency is increased if synchronization
with one clock edge (see Fig. 5.4b and Sect. 5.2.1) is applied.

For Mealy machine synthesis includes the following steps, which are very simi-
lar to the methods for conventional FSMs [6, 8]:

1.	 The label a0 is assigned to the input of node following the node Begin of all
HGSs.

2.	 The labels a1, a2,…, aM−1 are assigned to unmarked inputs of nodes that
follow rectangular nodes and to inputs of End node in each HGS.

signal data_sorted: std_logic_vector(N/2-2 downto 0); -- the bottom line in the block DIC

Fig. 5.9   The use of HFSM and the sorter from Fig. 5.8 in a more complicated (slightly modi-
fied) example from Sect. 4.1 (see also Fig. 4.7)

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_4#Sec7
http://dx.doi.org/10.1007/978-3-319-04708-9_4#Fig7

225

3.	 The labels can be repeated in different HGSs but cannot be repeated within
the same HGS (except the label a0 in the main HGS z0, which can also be
assigned to the input of the node End).

4.	 Any input is labeled only once.

The considered type of labeling allows HGS to be executed from the node
Begin of the main module z0 and to be terminated in the node End of the main
module z0. If z0 has to be executed cyclically than the same label a0 can be used
after the node Begin and at the input of the node End of z0 much like it was done
for Moore HFSM. Now the labels a0,.., aM−1 are considered to be HFSM states.
State transitions are formed applying the same rules as in [6, 8]. Each state transi-
tion is used to customize the proposed template in Fig. 5.5. Figure 5.10 demon-
strates an example of marking for the same HGSs that were used for the Moore
machine in Fig. 5.8a and b.

VHDL code below gives complete specification of the circuit in Fig. 5.9 in
which Mealy HFSM is used instead of Moore HFSM. Blocks with exactly the
same code as in Fig. 5.9 are indicated in comments and VHDL statements are not
shown explicitly. The sorter is described in the following component:

where the following signals are used:

•	 clk, rst—clock and reset;
•	 ready—indicates that the sorter is ready to sort a new set of data items;
•	 input_data, sorted_data—unsorted and sorted sets of data items;
•	 overflow—HFSM stack overflow;
•	 disp_count—the number of iterations in the iterative sorter;
•	 sort_enable—enables a new set of items to be sorted in the iterative sorter.

sorter : entity work.EvenOddTransitionIterative -- this specification has to be used below
 port map (clk=>clk, ready=>ready, input_data=>to_rg, sorted_data=>sorted_data,

overflow =>overflow, disp_count=>disp_count_int, rst=>rst,
sort_enable=>sort_en);

(a) (b)

Fig. 5.10   Labeling the modules z0 (a) and z1 (b) from Fig. 5.8 a and b for Mealy HFSM

5.3  Synthesis of HFSMs

226 5  Design Technique Based on Hierarchical and Parallel Specifications

The top level module has the following VHDL code:

entity TestFIFO_withMealyHFSM_Component is
generic (data_in_size : integer := 8; -- the width of the input for FIFO
 data_out_size : integer := 32; -- the width of the output for FIFO
 N : integer := 8); -- we consider here eight 4-bit items to sort
 port (clk : in std_logic; -- system clock 100 MHz
 led_full : out std_logic; -- LED 15 of the Nexys-4 was used
 led_empty : out std_logic; -- LED 14 of the Nexys-4 was used
 led_div_clk : out std_logic; -- LED 4 of the Nexys-4 was used
 seg : out std_logic_vector(6 downto 0); -- display segments
 sel_disp : out std_logic_vector(7 downto 0); -- display selections
 disp_data : in std_logic; -- switch 0 of the Nexys-4 was used
 disp_sorted_data : in std_logic; -- switch 1 of the Nexys-4 was used
 overflow : out std_logic; -- LED 13 of the Nexys-4 was used
 rst : in std_logic; -- BTNL of the Nexys-4 was used
 disp_count : out std_logic_vector(2 downto 0)); -- LEDs 2,1,0 of the Nexys-4
end TestFIFO_withMealyHFSM_Component;

architecture Behavioral of TestFIFO_MealyHFSM_Component is
 signal divided_clk : std_logic; -- see also section 4.1
 signal random_8bit : std_logic_vector(data_in_size-1 downto 0);
 signal wr_en : std_logic;
 signal rd_en : std_logic;
 signal to_rg : std_logic_vector(data_out_size-1 downto 0);
 signal sorted_data : std_logic_vector(data_out_size-1 downto 0);
 signal data_to_display : std_logic_vector(data_out_size-1 downto 0);
 signal wr_ack : std_logic;
 signal rd_valid : std_logic;
 signal full : std_logic;
 signal ready : std_logic;
 signal disp_count_int : integer range 0 to N/2;
 signal sort_en : std_logic;
 signal to_HFSM_to_count: std_logic;
begin
 disp_count <= conv_std_logic_vector(disp_count_int, 3);
 led_div_clk <= divided_clk;
 led_full <= full;
process(full, rd_valid, disp_data)
begin
 if (full /= '1') then wr_en <= '1';
 else wr_en <= '0';
 end if;
 if (disp_data = '1') then rd_en <= '1';
 else rd_en <= '0';
 end if;
end process;

227

process(clk)
begin
 if rising_edge(clk) then
 if ((rd_en = '1') and (ready = '1')) then sort_en <= '1';
 else sort_en <= '0';
 end if;
 end if;
end process;
data_to_display <= to_rg when disp_sorted_data = '0' else

sorted_data when ready = '1'
 else (others => '0');
FIFO : entity work.FIFO_mem -- see section 4.1
 port map (wr_clk=>clk, rd_clk=>divided_clk, din=>random_8bit, wr_en=>wr_en,

rd_en=>rd_en, dout=>to_rg, full=>full, empty=>led_empty,
rd_data_count=>open, wr_data_count=>open);

Random: entity work.RanGen -- see VHDL code in Appendix B
 generic map(width => data_in_size)
 port map (clk, random_8bit);
DispCont: entity work.EightDisplayControl -- see VHDL code in Appendix B

port map(clk, data_to_display(31 downto 28), data_to_display(27 downto 24),
data_to_display(23 downto 20), data_to_display(19 downto 16),
data_to_display(15 downto 12), data_to_display(11 downto 8),
data_to_display(7 downto 4), data_to_display(3 downto 0), sel_disp, seg);

div: entity work.clock_divider -- see VHDL code in Appendix B
 port map (clk, '0', divided_clk);
sorter: entity work.EvenOddTransitionIterative -- see the specification above

end Behavioral;

5.3  Synthesis of HFSMs

The sorter has the following VHDL code:

entity EvenOddTransitionIterative is
generic (M : integer := 4; -- M is the size of any data item
 stack_size : integer := 1; -- there are two registers in the HFSM stack 0 and 1
 N : integer := 8); -- N is the number of data items

 port (clk : in std_logic;
 ready : out std_logic;
 input_data : in std_logic_vector(N*M-1 downto 0);
 sorted_data : out std_logic_vector(N*M-1 downto 0);
 overflow : out std_logic;
 disp_count : out integer range 0 to N/2;
 rst : in std_logic;
 sort_enable : in std_logic);
end EvenOddTransitionIterative;

architecture Behavioral of EvenOddTransitionIterative is
-- Declarations needed for the HFSM: insert here all lines from the block D in Fig. 5.9
-- (the state a2 is not needed for the Mealy HFSM and is removed from the state_type)
-- Declarations needed for the iterative sorter: insert here all lines from the block DIC in Fig. 5.9

228 5  Design Technique Based on Hierarchical and Parallel Specifications

begin
process(sorted) -- this combinational process converts a set of N data items to a single vector
begin
 for i in N-1 downto 0 loop
 sorted_data((i+1)*M-1 downto i*M) <= sorted(i);
 end loop;
end process;
generate_even_comparators: -- even-odd transition iterative circuit is given below in its entirety
 for i in N/2-1 downto 0 generate -- see also the block IC in Fig. 5.9 and Fig. 3.14
 EvenComp: entity work.Comparator -- this is exactly the same comparator as in Fig. 3.14
 generic map (M => M)
 port map(input_items(i*2), input_items(i*2+1), out1_in2(i*2), out1_in2(i*2+1));
end generate generate_even_comparators;
generate_odd_comparators: -- the code below is slightly different compared to Fig. 3.14
 for i in N/2-2 downto 0 generate
 OddComp: entity work.ComparatorOdd -- see the code at the beginning of section 5.3.1
 generic map (M => M)

port map(out1_in2(2*i+1), out1_in2(2*i+2), out2_in3(i*2+1),
out2_in3(i*2+2), data_sorted(i));

end generate generate_odd_comparators;
out2_in3(0) <= out1_in2(0); -- these two lines are exactly the same as in Fig. 3.14
out2_in3(N-1) <= out1_in2(N-1);
-- The process for HFSM stacks: insert here all lines from the block P1 in Fig. 5.9

process (clk) -- Description of transitions and operations in the Mealy HFSM (see Fig. 5.10)
begin
 if falling_edge(clk) then
 push<='0'; pop<='0'; N_M<=z0; ready<='1';
 case M_stack(stack_pointer) is
 when z0 =>

 case FSM_stack(stack_pointer) is
 when a0 => disp_count <= 0;
 if sort_enable = '1' then N_S <= a1; count <= 0;
 for i in N-1 downto 0 loop -- copying unsorted data items to the register R
 input_items(i) <= input_data((i+1)*M-1 downto i*M);
 end loop;
 N_M <= z1; push <= '1';
 else N_S <= a0;
 end if;
 when a1 => disp_count <= count;
 if sort_enable = '1' then N_S <= a1; count <= 0;
 for i in N-1 downto 0 loop -- copying unsorted data items to the register R
 input_items(i) <= input_data((i+1)*M-1 downto i*M);
 end loop;
 N_M <= z1; push <= '1';
 else N_S <= a0;
 end if;
 when others => N_S <= a0;

229

The described circuit occupies 109 slices and 1 embedded block RAM (Nexys-4
board with Artix-7 FPGA) and it has been tested in hardware. The maximum
attainable clock frequency is 266.7 MHz. Note that such frequency is increased if
synchronization with one clock edge (see Fig. 5.4b and Sect. 5.2.1) is applied.

5.3.2 � Synthesis of HFSMs with Implicit Modules

Much like HFSMs with explicit modules, synthesis of HFSMs with implicit mod-
ules can be done for Moore, Mealy, and mixed (Moore and Mealy) models. For
Moore HFSM synthesis includes the following steps:

1.	 The label a0 is assigned to the node Begin of the main HGS usually desig-
nated z0.

2.	 The labels a1, a2,…, aM−1 are assigned to unmarked rectangular nodes
(including End node) in each HGS.

3.	 The labels cannot be repeated in different HGSs and within the same HGS
(except the label a0 in the main HGS z0, which can also be assigned to the
node End).

4.	 All rectangular nodes have to be labeled.
5.	 All other details are the same as for HFSM with explicit modules.

For Mealy HFSM synthesis includes the following steps:

1.	 The label a0 is assigned to the input of the node following the node Begin of
all HGS.

2.	 The labels a1, a2,…, aM−1 are assigned to unmarked inputs of nodes that
follow rectangular nodes and inputs of End nodes in each HGS.

3.	 The labels cannot be repeated in different and within the same HGSs
(except the label a0 in the main HGS z0, which can also be assigned to the
input of the node End).

4.	 Any input is labeled only once.

 end case;
 when z1 =>
 case FSM_stack(stack_pointer) is
 when a0 => ready <= '0'; input_items <= out2_in3;
 if data_sorted = 0 then -- test if there is no swap in the second line of Fig. 5.8c

N_S <= a1; sorted <= out2_in3; -- sorted data are ready
 else N_S <= a0; count <= count+1;
 end if;
 when a1 => pop <= '1';
 when others => N_S <= a0;
 end case;
 when others => N_M <= z0;
 end case;
 end if;
end process;

end Behavioral;

5.3  Synthesis of HFSMs

230 5  Design Technique Based on Hierarchical and Parallel Specifications

All other details are the same as for HFSM with explicit modules. A mixed
HFSM permits Mealy and Moore models to be combined and such model is the
most preferable in many practical applications. Indeed, the circuit C may use the
most appropriate signals that depend on either only the states or the states and inputs.

Many different examples for synthesis of HFSMs with implicit modules
(including mixed HFSMs) are given in [5].

5.4 � Parallel Specifications and Parallel HFSMs

Some modules (such as c1_z1 and c2_z1 in Fig. 5.6a) can be executed in parallel
(see Fig. 5.11). Let us take for further study only HGS rectangular nodes with
more than one macro operation making up sets Z1, Z2,…,… [1]. Thus, paral-
lel execution of macro operations assigned to each set has to be provided. For
example in Fig. 5.11b there are three sets: Z1 = {z1, z2, z3}, Z2 = {z1, z4}, and
Z3 = {z2, z3, z4}. The main module Z0 = {z0} also needs to be implemented
and up to three modules (see the sets Z1 and Z3) need to be executed in parallel.
According to the proposal in [1], a parallel HFSM (PHFSM) can be designed by
applying the following rules:

1.	 Macro operations from each set Zi are assigned to different HFSMs running
in parallel. The HFSM implementing the calling module is responsible for the
parallel activation of the called modules and for verification that all the called
modules from the same set have been completed (i.e. execution can proceed
after the relevant merging point such as that is shown in Fig. 5.1i). For our
example in Fig. 5.11b, the assignment can be done as follows: HFSM1 ← z0,
z1, z2; HFSM2 ← z2, z3, z4; HFSM3 ← z3, z4. For the example in Fig. 5.11a:
HFSM1 ← Z1   

4, Z1   
2 (A, B), Z1    

2 (R1, R2); HFSM2 ← Z1   
2 (C, D).

2.	 Each HFSMp is described as a VHDL component with three additional sig-
nals that are introduced in the next point.

3.	 If a calling (zq →) and a called (→zp) module (zq → zp) belong to the
same HFSM component, then functionality is exactly the same as for

(a) (b)

Fig. 5.11   Examples of parallel operations

231

a non-parallel HFSM (see sections above). Suppose now that zq → zp
and the modules zq → , → zp belong to different components HFSMq
and HFSMp. To trigger a macro operations → zp from zq → , the follow-
ing three additional signals are involved: (1) startp to activate the HFSMp
(HFSMq → HFSMp); (2) zp to choose the module → zp in the HFSMp
from the HFSMq; (3) finishp to indicate that the module → zp is completed.
The signals startp and zp are formed (assigned) in zq → and used (tested) in
→ zp. The signal finishp is assigned in → zp and tested in zq →.

4.	 Finally parallel execution of macro operations in the sets Z1, Z2, Z3 in
Fig. 5.11b will be provided in the following three HFSM components:
Z1 → {HFSM1(z1), HFSM2(z2), HFSM3(z3)}; Z2 → {HFSM1(z1),
HFSM2(z4)}; Z3 → {HFSM1(z2), HFSM2(z3), HFSM3(z4)}. Parallel
execution of macro operations from the set Z1 = {Z1

2(A, B), Z1
2(C, D)} in

Fig. 5.11a will be provided in two HFSM components: {HFSM1(Z1
2(A, B)),

HFSM2(Z1
2(C, D))}.

The technique described above enables any reasonable number of HFSMs
mapped to VHDL components to be executed at the same time. All the HFSM
features discussed in the previous sections are entirely supported. Concurrent exe-
cution of VHDL components is combined with modularity and recursion within
individual HFSMs. However, parallel calls from recursively activated modules are
not allowed [1]. The maximum number of concurrent HFSMs has to be known in
advance to provide the necessary mapping to VHDL components. The graph of
parallel invocations (such as Z1 → {z1, z2, z3}; Z2 → {z1, z4}; Z3 → {z2, z3, z4})
has to be a tree (i.e. cycles are not allowed for parallel invocations but they are
allowed for sequential invocations). Thus, any called module cannot call any of its
predecessors with parallel calls.

Let us consider an example of a PHFSM that has to be synthesized from speci-
fication shown in Fig. 5.12. Let us assume that four pairs of operands (A, B),
(C, D), (E, F), and (G, H) need to be processed in parallel. One of the opera-
tions, for instance (A, B), can be executed in the main module called PHFSM. For
each pair of the remaining operations the main module PHFSM activates parallel
branches (PB) supplying to each branch the signal start (activating the branch), the
name of macro-operation zp that has to be executed, and the relevant operands (see
Fig. 5.12). As soon as any branch completes the required operation, it generates the
signal finish. Signals finish from all the parallel branches are verified in the main
module, which decides whether it can continue execution after the parallel calls.

Suppose, parallel operations have to be executed over individual operands, such
as A, B, C, D. The method is exactly the same: one operand (let us say A) is asso-
ciated with the main module and the remaining operands (B, C, D) are processed
in parallel branches, activated from the main module.

Let us implement the following C function gcd with 8 arguments in FPGA:

unsigned int gcd(unsigned int A, unsigned int B, unsigned int C,
 unsigned int D, unsigned int E, unsigned int F,
 unsigned int G, unsigned int H)
{ return gcd(gcd(gcd(A,B), gcd(C,D)), gcd(gcd(E,F), gcd(G,H))); }

5.4  Parallel Specifications and Parallel HFSMs

232 5  Design Technique Based on Hierarchical and Parallel Specifications

This function permits the greatest common divisor of eight operands A, B, C, D,
E, F, G, H to be found and calls another function gcd with two operands:

Clearly, four functions gcd(A,B), gcd(C,D), gcd(E,F), gcd(G,H) can be executed in
parallel at the first step giving the results Result_A_B, Result_C_D, Result_E_F, and
Result_G_H. At the second step these results will be used as the arguments of the
functions: gcd(Result_A_B, Result_C_D), and gcd(Result_E_F, Result_G_H), which can also
be executed in parallel giving the result Result_A_B_C_D, and Result_E_F_G_H. At the
next (last) step the function gcd(Result_A_B_C_D, Result_E_F_G_H) computes the final
result which is the greatest common divisor of 8 unsigned integers A, B, C, D, E, F,
G, H. All the discussed above functions can be implemented in the PHFSM with
the functionality described by parallel HGSs depicted in Fig. 5.13. At the begin-
ning the operands A, B, C, D, E, F, G, H are tested and if there is at least one zero
operand then the subsequent steps are not executed and the result is assigned to
0. If all the operands are not equal to zero then 4 modules z1 with different argu-
ments are active at the same time. As soon as all of them terminate, the results of
these modules are used as operands for two new invocations of z1 also running in
parallel. The final result is produced in the bottom module z1.

We present below two complete synthesizable VHDL specifications that allow
the hardware circuit S that implements the algorithm in Fig. 5.13 to be designed.

unsigned int gcd(unsigned int A, unsigned int B)
{ int tmp;
 while (B > 0)
 { if (B > A) { tmp=A; A=B; B=tmp; }
 else { tmp=B; B= A%B; A=tmp; } }
 return A; }

Fig. 5.12   An example of a parallel specification

233

The first specification (an entity Parallel_HFSM_iterative) corresponds to the C function
discussed above. The second specification (an entity Parallel_HFSM_recursive) is based
on the recursive C function RGCD given in Sect. 5.2.1. Thus, there are recursive
calls in all modules z1 running in parallel. Figure 5.14 demonstrates the general
interface. Interactions are organized with the aid of two additional signals: enable
and ready. The latter is generated by the circuit S and indicates that it is ready to
process a new set of operands A, B, C, D, E, F, G, H. The signal enable is formed by
a system that interacts with the circuit S and indicates that a new set of data A, B, C,
D, E, F, G, H is available for further processing.

Note that in the previous examples we used the VHDL rem operation to find the
rest of division of two operands. From preliminary experiences we found that if
the size of operands is increased, the maximum attainable clock frequency is rap-
idly decreased and, besides the maximum size of integers (that are the requested
type for the operation rem) is limited. So, we decided to implement a similar oper-
ation using an additional HFSM module z2. A simple algorithm was adopted from
[30]. Figure 5.15 demonstrates the basic organization of different HGSs (modules)
z0, z1, and z2.

The first HGS z0 tests the operands for zeros and activates the iterative module
z1. As soon as a remainder needs to be found, necessary data are copied to the vari-
ables local_divisor and local_remainder and the module z2 is activated. The latter executes
a cyclic algorithm [30] requiring totally M cycles controlled by a variable index,
where M is the size of operands. Parallel call of several modules (see Fig. 5.13) is

Fig. 5.13   Parallel HGS that
permits the greatest common
divisor of eight non-negative
integers to be found

5.4  Parallel Specifications and Parallel HFSMs

234 5  Design Technique Based on Hierarchical and Parallel Specifications

done in a separate module (see Fig. 5.16) that executes its own operation (discov-
ering the greatest common divisor of two operands) and activates parallel modules
that are described as VHDL components. Activations are done by the signals start
and terminations of modules are checked examining the values of the signals finish
(see Fig. 5.12).

Fig. 5.15   HGSs for the greatest common divisor of two non-negative integer operands

other statements

other statements

there is at least one operand equal to zero assign the result to zero
copy operands to the modules z

other statements

other statements

Fig. 5.14   Interface of an upper-level system with the greatest common divisor

235

The following VHDL code gives the complete specification of the greatest
common divisor for 8 non-negative integer operands using an iterative algorithm:

 ready : out std_logic); -- ready signal
end Parallel_HFSM;

architecture Behavioral of Parallel_HFSM is
 signal FSM_A, FSM_B : std_logic_vector(M-1 downto 0);
 type state_type is (init, run, run_d, final_state); -- *
 signal N_S : state_type; -- *
 type MODULE_TYPE is (z0, z1, z2); -- *
 -- the lines marked with *** in the entity IGCD in section 5.2.1
 -- except for state_type and MODULE_TYPE
 signal C_in, D_in : std_logic_vector(M-1 downto 0);
 signal Result_A_B : std_logic_vector(M-1 downto 0);
 signal Result_C_D : std_logic_vector(M-1 downto 0);

entity Parallel_HFSM is
generic (stack_size : integer; -- stack_size is the size of the HFSM stack
 M : integer); -- M is the size (the number of bits) of operands

port (clk : in std_logic; -- system clock (100 MHz for Nexys-4)
 rst : in std_logic; -- reset signal (the button BTNC was used)
 A,B,C,D,E,F,G,H : in std_logic_vector(M-1 downto 0); -- M-bit operands
 Result : out std_logic_vector(M-1 downto 0); -- M-bit result
 overflow : out std_logic; -- HFSM stack overflow signal
 enable : in std_logic; -- enable signal

Fig. 5.16   HGSs for the greatest common divisor of eight non-negative integer operands

5.4  Parallel Specifications and Parallel HFSMs

236 5  Design Technique Based on Hierarchical and Parallel Specifications

 signal Result_E_F : std_logic_vector(M-1 downto 0);
 signal Result_G_H : std_logic_vector(M-1 downto 0);
 signal overflow1, overflow2, overflow3, overflow4 : std_logic;
 signal start1, start2, start3, finish1, finish2, finish3 : std_logic;
begin
 overflow <= overflow1 or overflow2 or overflow3 or overflow4;
 -- the process from the entity IGCD in section 5.2.1 in which the state initAB is
 -- replaced with the state init

process (clk)
 variable local_remainder : std_logic_vector(M-1 downto 0) := (others => '0');
 variable local_divisor : std_logic_vector(2*M-1 downto 0) := (others => '0');
 variable index : integer range 0 to M+1 := 0;
begin
 if falling_edge(clk) then
 push <= '0'; pop <= '0'; start1 <= '0'; start2 <= '0'; start3 <= '0';
 -- the module z0 from Fig. 5.16
 -- the module C(z1) from Fig. 5.15 without the signal finish
 -- the module C(z2) from Fig. 5.15
 when others => null;
 end case;
 end if;
end process;

C_D: entity work.Parallel_branch
 generic map(stack_size => stack_size, M => M)

 port map (clk, start1, finish1, C_in, D_in, Result_C_D, overflow2);

E_F: entity work.Parallel_branch
 generic map(stack_size => stack_size, M => M)
 port map (clk, start2, finish2, E, F, Result_E_F, overflow3);

G_H: entity work.Parallel_branch
 generic map(stack_size => stack_size, M => M)

 port map (clk, start3, finish3, G, H, Result_G_H, overflow4);
end Behavioral;

The components C_D, E_F, and G_H have the following VHDL code:

entity Parallel_branch is
generic (stack_size : integer;
 M : integer);

port (clk : in std_logic;
 reset : in STD_LOGIC;
 finish : out STD_LOGIC;
 A, B : in std_logic_vector(M-1 downto 0);
 Result : out std_logic_vector(M-1 downto 0);
 overflow : out std_logic);
end Parallel_branch;

architecture Behavioral of Parallel_branch is
 signal FSM_A, FSM_B : std_logic_vector(M-1 downto 0);

237

The entity Parallel_HFSM can be used as a component of an upper-level system
like in the following code:

 -- the lines marked with * from the code above (entity Parallel_HFSM)
 -- the lines marked with *** in the entity IGCD in section 5.2.1
 -- except for state_type and MODULE_TYPE
begin
 -- the process from the entity IGCD in section 5.2.1 in which the state initAB
 -- is replaced with the state init

process (clk)
 variable local_remainder : std_logic_vector(M-1 downto 0) := (others => '0');
 variable local_divisor : std_logic_vector(2*M-1 downto 0) := (others => '0');
 variable index : integer range 0 to M+1 := 0;
begin
 if falling_edge(clk) then push <= '0'; pop <= '0'; finish <= '0';
 case M_stack(stack_pointer) is
 -- the module C(z0) from Fig. 5.15

-- the module C(z1) from Fig. 5.15
-- the module C(z2) from Fig. 5.15
when others => null;

 end case;
 end if;
end process;

end Behavioral;

entity test_4_parallel_HFSM_iterative is
generic (stack_size : integer := 2; M : integer := 32); -- the size of operands is 32 bits
port (clk : in std_logic; -- system clock 100 MHz for the Nexys-4 board

 rec : in std_logic; -- switch15 (Nexys-4)
 sel : in std_logic_vector(2 downto 0); -- switches 2-0 (Nexys-4)
 use_sw : in std_logic; -- switch14 (Nexys-4)
 sw : in std_logic_vector(10 downto 0); -- switches 13-3 (Nexys-4)
 overflow : out std_logic; -- stack overflow in at least one HFSM
 Result1 : out std_logic_vector(M-1 downto 15);-- bits of the result on PMod pins
 led : out std_logic_vector(14 downto 0)); -- bits of the result on LEDs
end test_4_parallel_HFSM_iterative;

architecture Behavioral of test_4_parallel_HFSM_iterative is
 signal A,B,C,D,E,F,G,H: std_logic_vector(M-1 downto 0) := (others => '0');
 signal Result : std_logic_vector(M-1 downto 0););-- M-bit result
 signal enable, ready : std_logic;
begin
 Result1 <= Result(M-1 downto 15); -- bits of the result to PMod pins
process (clk)
begin
 if rising_edge(clk) then
 if (ready = '1') then enable <= '1';
 if (rec = '1') then -- use one of fixed or generated data sets

 case (sel) is -- fixed (or generated) data sets selected by onboard switches 2,1,0

 rst : in std_logic; -- BTNC button for the Nexys-4 board was used

5.4  Parallel Specifications and Parallel HFSMs

238 5  Design Technique Based on Hierarchical and Parallel Specifications

 when "000" => A<=A+1; B<=B+1; C<=C+1; D<=D+1; E<=E+1; F<=F+1;
 G<=G+1; H<=H+1; -- change values of operands somehow
 when "001" =>A<=conv_std_logic_vector(152,M); -- the first fixed set

 B<=conv_std_logic_vector(38, M); C<=conv_std_logic_vector(209, M);
D<=conv_std_logic_vector(133, M); E<=conv_std_logic_vector(95, M);
F<=conv_std_logic_vector(57, M); G<=conv_std_logic_vector(247, M);
H<=conv_std_logic_vector (171, M); -- the result is 19: 10011

 -- other fixed sets
 when others =>

A <= conv_std_logic_vector (3303375, M); -- the last fixed set
B<=conv_std_logic_vector(20809539, M);
C<=conv_std_logic_vector(127666539, M);
D<=conv_std_logic_vector(19533, M);
E<=conv_std_logic_vector(1147851, M);
F<= conv_std_logic_vector(1320201, M);
G<=conv_std_logic_vector(20980740, M);
H<= conv_std_logic_vector(688479651, M);
-- the result is 1149: 10001111101

 end case;
 if use_sw = '1' then

 H <= (31 downto 11 => '0') & sw; -- onboard switches can be used
 end if; -- onboard switches 13,…,3 can be used to change 10 least significant bits of H

 else -- a default set, the result is 3: 11
 A<= conv_std_logic_vector(33, M);
 B<= conv_std_logic_vector(60, M);

 C<= conv_std_logic_vector(1200, M);
 D<= conv_std_logic_vector(57, M);

 E<= conv_std_logic_vector(6, M);
 F<= conv_std_logic_vector(399, M);

 G<= conv_std_logic_vector(63, M); H<=conv_std_logic_vector (24, M);
 end if;
 else enable <= '0';
 end if;
 end if;
end process;

PHFSM: entity work.Parallel_HFSM_iterative
 generic map(stack_size => stack_size, M => M)

 port map (clk, rst, A, B, C, D, E, F, G, H, Result, overflow, enable, ready);
led <= Result(14 downto 0); -- 15 onboard LEDs were used for indicating the binary result

end Behavioral;

In the second (recursive) specification (an entity Parallel_HFSM_recursive) only one
module z1 is changed and now it has the following VHDL code:

when z1 =>
 case FSM_stack(stack_pointer) is
 when init => N_S <= final_state;
 if (FSM_B>0) then

 if (FSM_B>FSM_A) then FSM_A <= FSM_B; FSM_B <= FSM_A;
N_M <= z1; push <= '1'; -- recursive call of z1

239

The remaining code is the same and tests can be done in the entity test_4_
parallel_HFSM_iterative above where the Parallel_HFSM_iterative needs to be replaced
with a new component that calls the recursive module z1.

The results of synthesis, implementation, and tests have shown the following.
The project based on the iterative algorithm requires 645 slices (from 15,850 slices
available in the FPGA of the Nexys-4 board) and permits the maximum attainable
clock frequency 133.1 MHz. The project based on the recursive algorithm requires
683 slices and permits the maximum attainable clock frequency 124.2 MHz.
Clearly for cyclic algorithms recursive calls do not give any advantage, however
for algorithm that use tree-based structures recursive modules might be more ben-
eficial than iterative modules [2, 3, 5, 27, 28].

5.5 � Hardware Implementations of Software Programs
Based on HFSM Models

It is known [27, 28] that iteration in general and recursion in particular can be
implemented more efficiently in hardware than in software. This is because any
activation of a module can be combined with the execution of operations (micro
operations) that are required by the algorithm. The same event takes place when
any module is being terminated, i.e. when control has to be returned to the point
after the last recursive call and an operation of the executing algorithm that fol-
lows the last recursive call has to be activated. The number of states required for
the execution of recursion in hardware can be reduced comparing with software.
Moreover, we will show later (in Sect. 5.6) that states can be accommodated on
stacks that are implemented on built-in memory blocks. Besides, broad parallelism
can directly be supported (see the Sect.5.4). The results obtained for known meth-
ods, such as those reviewed in [4], that enable hierarchical calls to be executed in
hardware have shown that hardware circuits may be faster than alternative soft-
ware programs implementing similar functionality. Enhanced models of HFSMs
that allow different types of arguments to be passed to hardware modules and to
be returned from the modules, much as in software programs, are described in [1].

 else FSM_A <= FSM_B; N_S <= run;
 local_divisor(2*M-1 downto M) := FSM_B;
 local_divisor(M-1 downto 0) := (others => '0');
 local_remainder(M-1 downto 0) := FSM_A;
 N_M <= z2; push <= '1'; index := 0; -- non-recursive call of z2
 end if;
 else Result <= FSM_A;
 end if;
 when run => N_M <= z1; push <= '1'; N_S <= final_state; -- recursive call of z1
 when final_state => N_S <= final_state; finish <= '1'; pop <= '1'; -- note that the
 when others => init; -- statement finish<=‘1’ has to be removed in the entity Parallel_HFSM
 end case;

5.4  Parallel Specifications and Parallel HFSMs

240 5  Design Technique Based on Hierarchical and Parallel Specifications

Let us look at Fig. 5.13 where several modules z1 can run in parallel. Each
module has two arguments and returns a value. To provide similar functionality in
hardware, we need to be able to: (a) pass arguments by values; (b) return values.

Let us consider an example from [1]. The following C code (where the function
treesort is called recursively) constructs and returns a sorted list from a given binary
tree (such as that studied in [28]):

Any tree node has the following structure:

Any list item has the following structure:

We assume here that the tree has already been built (using, for example, the
method [28]). The nodes of the tree contain four fields: a pointer to the right child
node, a pointer to the left child node, a counter, and a value (an integer in our
case). The nodes are maintained so that at any node, the left sub-tree contains only
values that are less than the value at the node, and the right sub-tree contains only
values that are greater. The counter indicates the number of occurrences of the
value associated with the respective node.

If we call the function with the statement beginning = treesort(root);, it returns a pointer to
the list of sorted data items. To provide similar functionality in hardware, we need to be
able to: (a) pass arguments through pointers; (b) return pointers.

To support the described above features the third stack memory (called AR_
stack) has been introduced for arguments together with an additional register for
the returned value [1] which is shown in Fig. 5.17.

ValueAndCounter* treesort(treenode* node) { // node is a pointer to the root of the tree
 ValueAndCounter* tmp; // tmp is a temporary pointer to a list item
 static ValueAndCounter* ttmp=0; // at the beginning the list is empty
 if(node!=0)
 { // if the node exists
 treesort(node->lnode); // sort left sub-tree
 tmp = new ValueAndCounter; // allocate memory for a new list item tmp
 tmp->next=ttmp; // store pointer to the previous list item

tmp->val = node->val; // save the value
 tmp->count = node->count; // save the number of repetitions of the value node->val
 ttmp = tmp; // extend the list
 treesort(node->rnode); // now sort right sub-tree
 return ttmp;
 }

struct treenode {
 int val; // value of an item of type int
 int count; // number of items with the value val
 treenode* lnode; // pointer to left sub-tree
 treenode* rnode; }; // pointer to right sub-tree

struct ValueAndCounter {
 int val; // value of an item of type int
 int count; // number of items with the value val
 ValueAndCounter* next; }; // pointer to the next item of type ValueAndCounter

241

Now C functions can be converted to an HFSM as follows:

1.	 Stacks are specified in VHDL using the considered above templates.
2.	 Other blocks are described based on the VHDL templates and using the fol-

lowing additional rules:
•	 Arguments passed by value are stored in the AR_stack when a module (cre-

ated for the respective C function) is being activated.
•	 Different numbers of arguments passed to the same function are recognized

by specifying a different HDL module depending on the actual number of
arguments. This can be seen as a hardware technique for replicating func-
tion overloading in software.

•	 For each argument that is a pointer, the address is stored in the AR_stack
when a module (created for the respective C function) is being activated.

•	 A single returned value/pointer is copied to a specially allocated register
when a module is terminated and all arguments previously passed to this
module are destroyed.

All three stacks (FSM_stack, M_stack, and AR_stack) are described in the fol-
lowing VHDL process:

process(clock)
begin -- a0 is an initial state; z0 is a top-level module

if rising_edge(clock) then stack_overflow <= '0';
if reset = '1' then stack_pointer <= 0; FSM_stack(0) <= a0;
 M_stack(0) <= z0; stack_overflow <= '0'; AR_stack(0) <= (others => ‘0’);
else

if push = '1' then
if stack_pointer = stack_size then -- handling stack overflow
else stack_pointer <= stack_pointer + 1;

FSM_stack(stack_pointer+1) <= a0; -- initial state is a0
FSM_stack(stack_pointer) <= N_S; -- N_S is the next state in the calling module
M_stack(stack_pointer+1) <= NextModule; -- NextModule is the next module
AR_stack(stack_pointer+1) <= pass_arguments; -- passing arguments

end if;
elsif pop = '1' then

stack_pointer <= stack_pointer - 1; -- decrementing the stack_pointer when the
else -- module is terminated

FSM_stack(stack_pointer) <= N_S; -- conventional state transition to N_S
end if;

end if;
end if;

end process;

Fig. 5.17   Using additional elements for passing arguments and returning values/pointers

5.5  Hardware Implementations of Software Programs Based on HFSM Models

242 5  Design Technique Based on Hierarchical and Parallel Specifications

Since there is just a single value returned, it is kept in a signal that is declared as:

where size_of_operands is a generic constant.
The arguments are prepared in the calling module like the following:

The returned value is produced as follows:

5.6 � Using Stacks Based on Embedded or Distributed
Memories

Note that HFSM stack memory might require excessive hardware resources when
it is built as a logic block. However, it can also be constructed from embedded to
FPGA or distributed memories. Since the signals push, pop, clock, reset, stack_
pointer are common to all the stacks, the memory can be organized as shown in
Fig. 5.18. VHDL code for the stacks constructed from block/distributed RAM (see
RAM_block in Fig. 5.18) looks like this:

signal return_value : std_logic_vector(size_of_operands-1 downto 0);

when stateWhereTheCalledModuleActivated => push <= '1'; NextModule <= <name>;
 pass_arguments(<index range>) <= <arguments>; -- preparing arguments

when stateWhereTheResultIsProduced => N_S <= indicatingTheNextState;
 return_value <= signalThatKeepsTheResult;

process(clock)
begin -- states and modules are represented by binary codes

if rising_edge(clock) then stack_overflow <= '0';
if reset = '1' then

stack_pointer <= 0; stack_overflow <= '0'; -- see Fig. 5.18a
FSM_Register <= (others => '0'); -- see Fig. 5.18c

else
if push = '1' then -- hierarchical call

if stack_pointer = 2**ram_addr_bits-1 then stack_overflow <= '1';
else stack_pointer <= stack_pointer + 1;

-- the arguments are passed through the signal to_AR
FSM_Register <= to_AR & N_M &

(size_of_FSM_stack_words-1 downto 0 => '0');
RAM_block(stack_pointer) <= to_AR & C_M & N_S;

end if;
elsif pop = '1' then -- hierarchical return

stack_pointer <= stack_pointer - 1;
FSM_Register <= RAM_block(stack_pointer-1);

else -- conventional transition
FSM_Register(size_of_FSM_stack_words-1 downto 0) <= N_S; end if;

end if;
end if;

end process;

243

RAM_block is declared as an array:

Figure 5.19 illustrates different types of transitions in the HFSM for hierarchi-
cal calls (Fig. 5.19a), conventional state transitions (Fig. 5.19b), and hierarchi-
cal returns (Fig. 5.19c). Note, that the stack is passive in a hierarchically called
module (the stack is needed just for a hierarchical return from the called module).
Thus, just a register (FSM_Register) can be used for passing arguments and execut-
ing state and module transitions. As soon as a transition to the next module has
to be done (in the case of a hierarchical call), a binary vector (BVc = to_AR & N_M
& <first state with all zeros>) with the arguments (to_AR) and the codes of the called
module (N_M) with its initial state (all zeros) is copied to the register as shown in
Fig. 5.19a.

Conventional state transitions are executed similarly to an ordinary FSM using
the register FSM_Register (see Fig. 5.19b). The arguments are taken directly from
the register (FSM_Register).

constant ram_width : integer := <size of words for the stack shown in Fig. 5.18a,b>
constant ram_addr_bits : integer := <size of RAM addresses>
type DistributedRAM is array (2**ram_addr_bits-1 downto 0) of

std_logic_vector (ram_width-1 downto 0);
signal RAM_block: DistributedRAM; -- Block RAM is declared similarly to distributed RAM

(a)

(b)

(c)

Fig. 5.18   Single block of embedded/distributed RAM for three stacks in Fig. 5.17 (a), active
stack register (b), state transitions/hierarchical calls through the FSM conventional register (c)

5.6  Using Stacks Based on Embedded or Distributed Memories

244 5  Design Technique Based on Hierarchical and Parallel Specifications

As soon as a hierarchical return has to be done, the binary vector (BVr) from
the stack shown in Fig. 5.19c (containing the arguments, the code of the calling
module and the code of the next state in the calling module after termination of
the called module) is copied to the FSM_Register (FSM_Register <= RAM_block(stack_
pointer-1);). Thus, the calling module will continue its execution.

The line RAM_block(stack_pointer) <= to_AR & C_M & N_S; in the process that
describes embedded or distributed memory sets the code of the next state N_S
that is needed after the termination of the called module. As a result, after the
corresponding hierarchical return, the transition to the proper HFSM state occurs
(FSM_Register <= RAM_block(stack_pointer-1);). Since the next state is determined
before the invocation of a module, the called module cannot change the pre-
determined state transition. For the majority of practical applications this does
not create a problem. However, in some cases it is a problem, which must be
resolved. This can be done by replacing the line above with the statement: RAM_
block(stack_pointer) <= to_AR & C_M & C_S; where C_S (the current state in the calling
module) has to be further replaced with such N_S in the calling module that is
found taking into account potentially changed conditions in the called module(s).
Methods for such a replacement are discussed in [31] and in the next section (see
Sect. 5.7.1).

(a)

(b)

(c)

Fig. 5.19   Three types of stack transitions in HFSM: hierarchical calls (a); conventional transi-
tions (b), and hierarchical returns (c)

245

Note that complete synthesizable VHDL projects for HFSMs with stacks based
on embedded and distributed memories can be found in [5].

5.7 � Optimization Techniques

This section presents optimization techniques [5] for synthesis of HFSMs, namely,
execution of hierarchical returns, using multiple entry points to sub-algorithms
(HGSs), and fast stack unwinding.

5.7.1 � Execution of Hierarchical Returns

The line FSM_stack(stack_ pointer)<=N_S; sets the code of the next state N_S during
a hierarchical call. As a result, after a hierarchical return the top register of the
FSM_stack contains the code of the proper HFSM state. Since the next state is
determined before the invocation of a (called) module, the called module can-
not change the state transition. For many practical applications this does not cre-
ate a problem. However, for some practical cases it is a problem, which must be
resolved. If we remove the line FSM_stack(stack_ pointer)<=N_S; then after a hierarchi-
cal return the top register of the FSM_stack contains the code of the state where
the terminated module was called. This enables us to provide correct transitions
to the next state because all logic conditions that might have changed in the
called module have already received the proper values. However, this gives rise to
another problem; namely it is necessary to avoid both repeating invocations of the
same module in the state where it has to be called and generating unnecessary out-
puts (see Fig. 5.20). The following code overcomes the problem:

The signal return_flag permits module invocation and output operations to be
activated during a hierarchical call and to be avoided during a hierarchical return
[28]. Indeed, the return_flag is equal to 1 only in a clock cycle when the signal stack_
pointer is decremented. As soon as the currently active (called) module is being ter-
minated, the control flow will be returned to the point of the calling module from
which this (called) module was called. Thus, the top of the M_stack will contain

-- see VHDL description for stacks
elsif pop = '1' then
 stack_pointer <= stack_pointer - 1;
 return_flag <= '1';
else FSM_stack(stack_pointer) <= N_S;
 return_flag <= '0';
end if;

5.6  Using Stacks Based on Embedded or Distributed Memories

246 5  Design Technique Based on Hierarchical and Parallel Specifications

the code of the calling module (z →) and the top of the FSM_stack will store the
code of the calling state (a→). The return_flag enables us to eliminate the second
call of the same module (and the second activation of the relevant output signals).
This is achieved with the aid of the following lines that have to be inserted in the
process that describes transitions and operations (see also Fig. 5.20):

Finally, the proposed technique permits logic conditions to be tested after ter-
minating the called module, which might alter these conditions.

5.7.2 � Providing Multiple Entry Points to HGSs

Any considered above invocation of hierarchical modules activates a new HGS
starting from the node Begin (somehow associated with the state a0) and, as a rule,
this node does not contain micro operations. Skipping the node a0 removes one
clock cycle from a hierarchical call. However, in this case, the relevant HGS might
require multiple entry points and the particular entry point will be chosen by the
group of rhomboidal/triangular nodes (enclosed in an ellipse in Fig. 5.21) tested
in the calling module (z →). Here NM_FS is the first state of the next module. The
description of the stacks has to be slightly modified:

when state_with_module_call
 if return_flag='0' then push<='1'; -- specifying operations and calling the next module

else push<='0'; -- no operation and no module call is involved
end if;

FSM_stack(stack_pointer+1) <= NM_FS;

Fig. 5.20   Execution of
hierarchical returns

247

5.7.3 � Fast Stack Unwinding

Some HGSs are called recursively just before the node End and as soon as the
node End is reached a sequence of recursive calls has to be terminated. Such ter-
mination can be done during only one clock cycle through the use of a fast stack
unwinding technique. Indeed, at the end of recursive calls, the line:

is executed repeatedly until the stack_pointer receives the value assigned at the
beginning of the sequence with recursive calls. Repeated execution of the line
stack_pointer <= stack_pointer–1; requires multiple clock cycles. To eliminate such
redundant cycles the code above is changed as follows:

where the signal unwinding is calculated as

and an assignment saved_sp<=stack_pointer has to be done during the first invoca-
tion of the module in a sequence of potential hierarchical (recursive) calls. Thus,
redundant clock cycles for hierarchical returns can be avoided.

5.8 � Practical Applications

This section presents some of practical examples in which HFSMs and PHFSMs
can efficiently be used. Let us discuss at the beginning such applications that
require traversing N -ary trees (see Sect. 3.4.3 and [32]). Let us consider N -ary
tree (N = 4) from Fig. 3.12. This tree can store a set of data that are linked in
accordance with given relationships. For example, the tree in Fig. 5.22 holds
the following set of integers: 60, 12, 31, 56, 0, 9, 63, 28, 6, 1, 58, 15, 2, 62, 48,

if pop='1' then stack_pointer <= stack_pointer – 1;

if pop='1' then stack_pointer <= stack_pointer – unwinding;

unwinding <= stack_pointer - saved_sp + 1;

Fig. 5.21   Providing multiple entry points for HGSs

5.7  Optimization Techniques

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

248 5  Design Technique Based on Hierarchical and Parallel Specifications

49, 7, 29, 50, 5, 3, 30, 59, 23. Let us consider the binary codes of the integers
decomposed in G-bit groups (G = 2): 111100, 001100, 011111, 111000, 000000,
001001, 111111, 011100, 000110, 000001 111010, 001111, 000010, 111110,
110000, 110001, 000111, 011101, 110010, 000101, 000011, 011110, 111011,
010111. The first group on the left-hand side is shown in italic. Let us use this
group to allocate three children of the root for all the codes found: 00, 01, and
11 leading to the children b, c and d, accordingly. Now the nodes b, c and d can
be considered as roots of sub-trees for which the same rules have to be applied.
Items from the last group are not expanded for new tree nodes, but are just asso-
ciated with the leaves at depth 2 (these are the leaves e, f, g, h, i, j, k, l, m). Such
a tree can easily be built, and it can be traversed [32] by applying either an itera-
tive or a recursive procedure. Data attached to the leaves are ordered (the leftmost
leaf contains the smallest values and the rightmost leaf—the greatest values).
Thus, the tree may be used for data sorting, or for searching for particular items.
For example, to check if the data item 28 is in the set you can execute three tests:
one for the tree root and others for the nodes c and j (see underlined codes in
Fig. 5.22).

N -ary trees are involved in numerous practical applications (see, for example,
[32]) and we will use them for sorting data by applying two types of modules:
(1) for traversing the tree enabling all leaves to be found; and (2) for fast sort of
data associated with the leaves. The first module will have two alternative imple-
mentations: iterative and recursive. The second module executes sequential (non-
recursive) operations enabling reusable sorting networks described above (see
Sect. 3.5) to be involved.

Suppose an N -ary tree for sorting data has been built and it is necessary to
extract the sorted data from the tree. The following recursive C function does this:

void traverse_tree(treenode* root, int depth)
{ depth++;

if (root == 0) { depth--; return; }
if (depth == max_depth) { sort_and_print_leaf_data(root); depth--; return; }
for (int i = 0; i < N; i++)

 traverse_tree(root->node[i], depth); -- recursive call
depth--; }

Fig. 5.22   An example of
N -ary tree (N = 4) from
Fig. 3.12 that can now be
used for data sort

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3#Fig12

249

where treenode is the following C structure (N is a constant N):

Similarly, an iterative function void iterative_traverse_tree(treenode* root, int depth) can be
built for which the treenode structure has an additional field with a pointer to the parent
node of the tree.

The functions traverse_tree and iterative_traverse_tree can be transformed to hard-
ware circuits using the methods and tools described above. Different branches of
the tree (such as with the local roots b, c, d) can be traversed concurrently and,
thus, the PHFSM described in Sect. 5.4 can be applied directly allowing differ-
ent modules to be executed in parallel. Eventual data dependency between the
modules is avoided by storing sub-trees in different memory blocks. Also, any
module allows a pipeline to be created. For example, the function sort_and_print_leaf_
data(root); in the C code above sorts data associated with the tree leaves. Figure 5.23
demonstrates a pipeline implemented in an HFSM module.

As soon as the function traverse_tree finds the sub-set of data with the small-
est values (e.g. node e in Fig. 5.22), all items are transferred to the input of the
leftmost pipeline register in Fig. 5.23 (see the number 1 enclosed in a circle). At
the next iteration, a subsequent sub-set (e.g. node f in Fig. 5.22) is transferred and
the results of operations with the first sub-set are stored in the next pipeline regis-
ter of Fig. 5.23 (see the number 2 enclosed in a circle). Subsequent iterations are
executed similarly. Examples of operations between pipeline registers are given in
Fig. 3.15.

Any HFSM module has a unified interface. However, the implementa-
tions of modules may be different. For example, the recursive function trav-
erse_tree(treenode* root, int depth) can easily be replaced by the iterative function
iterative_traverse_tree(treenode* root, int depth). Such a technique is indispensable for
experiments and comparisons. Note that a complete synthesizable VHDL code of
HFSM implementation for traversing binary trees can be found in [5].

struct treenode {
int* arrayTOsort;
int count;
treenode* node[N]; };

Fig. 5.23   A pipeline controlled by an HFSM module

5.8  Practical Applications

http://dx.doi.org/10.1007/978-3-319-04708-9_3

250 5  Design Technique Based on Hierarchical and Parallel Specifications

The second example is taken from the scope of combinatorial search. Suppose
we want to find a minimal row cover of a given binary matrix, i.e. the minimum
number of rows such that in conjunction they have at least one value ‘1’ in each
column. The approximate algorithm [33] that allows this problem to be solved
requires the following sequence of steps (see Fig. 5.24a):

1.	 discovering a matrix column Cmin, with the minimal Hamming weight N1
min

(if N1
min = 0 then the covering does not exist);

2.	 discovering a row Rmax, with the value ‘1’ in the column Cmin, with the
maximum Hamming weight N1

max;
3.	 including the row Rmax in the solution and removing this row and all the

columns, which have values ‘1’ in the Rmax;
4.	 repeating the steps 1–3 until the matrix is empty or there is a column with

only zeros meaning that the solution does not exist.

Figure 5.24b gives an example from [1] of a particular matrix to which the
steps in Fig. 5.24a have been applied. These steps can be realized in the respec-
tive HFSM modules that involve fast parallel computations from Sects. 3.7–3.9.

(a) (b)

Fig. 5.24   Approximate matrix covering algorithm (a); iterations of the algorithm applied to the
given binary matrix (b)

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

251

The main module is z0 and it calls the modules z1, z2, and z3.The module z1 (see
Fig. 5.24a) executes step 1 and outputs the values N1

min and Cmin. The module z2
(see Fig. 5.24a) finds Rmax. The module z3 updates masks that are used to indi-
cate the rows and columns that have been removed (see Fig. 5.24a) and, thus, the
same masked (reduced) matrix is taken for subsequent steps. The steps above are
repeated until the covering is found or until it is concluded that the solution does
not exist.

Clearly all such steps can easily be implemented in general-purpose processors,
which, as a rule, operate with significantly higher clock frequency than FPGAs.
However, FPGA-based (and HFSM-based) implementations might have advan-
tages that are listed below:

•	 Very fast parallel computations (such as that are needed to calculate Hamming
weights) can easier be executed without communication overheads that usu-
ally take place when similar accelerators are involved in processor-based
implementations.

•	 Concurrent operations are possible. For example, Hamming weights can be
found for all the matrix columns (that are kept in FPGA registers accessed in
parallel) and N1

min may be found in a combinational process that describes func-
tionality of the circuit shown in Fig. 3.16 (see Sect. 3.6). This permits, in par-
ticular, the steps 1 and 2 above to be completed within one clock cycle.

•	 Fast hardware components that provide support for combinatorial search can
be created as a part of more complicated systems implemented in the same
FPGA.

The last example with an HFSM demonstrates a pipeline with such operations
between pipeline registers that are executed sequentially and require more than
one clock cycle. Indeed, any operation in Fig. 5.23 (see letters A and B enclosed
in circles) can be either combinational or sequential. Combinational operations do
not use sequential control circuits but they might involve excessive propagation
delays. For certain applications (such as that are discussed in Sects. 3.5 and 3.6)
sequential operations executed with high clock frequency might be better because
they enable resource consumption to be significantly reduced and the required per-
formance to be achieved and adjusted with other characteristics of the developed
system such as communication overheads. HFSMs can be used to control pipe-
lines in which operations between pipeline registers are sequential and each par-
ticular operation is described by the relevant HGS. Let us look at Fig. 5.25 which
gives some examples of operations (see letters A and B enclosed in circles). For
instance, the operation A is an iterative sorting that may be controlled by HGSs in
Fig. 5.8a and b. Some of possible types of the operation B are listed in Fig. 5.25.

Let us consider now a particular example depicted in Fig. 5.26 which enables
two subsets (composed of N data items each) to be sorted in a pipeline requiring
approximately N/2 clock cycles for each pipeline stage (step) and functioning at
a high frequency. Besides, the final set (up to 2 × N items) contains only non-
repeated positive values.

5.8  Practical Applications

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

252 5  Design Technique Based on Hierarchical and Parallel Specifications

There are three modules between the pipeline registers in Fig. 5.26a. The first
module examines availability of data on the outputs of the left block (designated
as SOURCE) and executes the module z1 activating in parallel two iterative sorters
(for N items each) shown in Fig. 5.8c (see also Fig. 5.25). Such operation requires
at most N/2 clock cycles with a combinational path delay equal to the delay of
two comparators. For the sake of simplicity we assume in Fig. 5.26b that if there
are no input data then the previously recorded data have to be sorted first and only
after that a new signal indicating availability of new data sets may appear. This
pre-condition can easily be avoided but the HGS in Fig. 5.26b becomes more
complicated. The second module z2 removes all the repeated items. It is done
as follows: (a) comparison of neighboring items (see Fig. 3.33) and finding the
Hamming weight of the resulting vector allowing the number of repeated items
to be discovered; (b) keeping just one item from any set of the repeated items;
(c) resorting with the aid of the circuits from Chap. 3. Since operations (a) and
(b) can be done combinationally, the number of the required clock cycles is also
N/2 at maximum. The last module z3 exchanges items in the two sorted subsets as
it is shown in Fig. 5.26c using the method [34] and then resorts two N-item sets
giving the final sorted set with 2 × N items. Note that the network [34] is also
described in [35] with additional details that, in particular, prove that the consid-
ered here method is correct. It is easy to show that such operation also requires not
more than N/2 clock cycles. Finally 2 × N sorted items are transferred to the block
designated in Fig. 5.26a as DESTINATION. Figure 5.26c illustrates the intended
functionality on a simple example of two 4-item sets: 7,3,9,3 and 2,8,2,1. Note

Sets of data
to sort by
iterative
sorting
network

P
ip

el
in

e
re

gi
st

er
Operations

between
pipeline
registers

P
ip

el
in

e
re

gi
st

er

Operations
between
pipeline
registers

The
requested

data

Operations of HFSM module to control pipeline

R
eg

is
te

r
(R

)

0

7

1
2
3
4
5
6

1
2
3
4
5
6

sortedunsorted

Iterative sorting (see Figures 5.8a, 5.8b, 5.8c)

Filtering (removing all items above
the given upper bound and below

the given lower bound)

Computation of the most frequent
item (see Figure 3.33)

Comparison of neighboring items
(see Figure 3.33) and finding the
Hamming weight of the resulting

vector allowing the number of
repeated items to be discovered

Examples

A B

Fig. 5.25   Examples of sequential operations between pipeline registers

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

253

that unnecessary zeros may easily be discarded. Alternatively, the module z2 may
explicitly indicate the number of items in the final set.

As you can see transferring data between the pipeline registers is executed
after not more than N/2 clock cycles and this is faster than 2 × N/2 clock cycles
needed for the circuit in Fig. 3.14 if this circuit is directly used for sorting 2 × N
data items. Hence, pipelined implementation in Fig. 5.26 is faster (by a factor of
about 2) than using the circuit in Fig. 3.14 in a similar pipeline in such a way that
instead of 3 modules z1, z2, z3 just one module is used that controls the circuit in
Fig. 3.14 for 2 × N items.

It should be noted in conclusion that many additional examples can be found in
[1, 5, 36].

It is known that HFSMs can be configured either statically or dynamically. In
the last case the behavior of an HFSM may be changed during run-time. Methods
[37] can be applied for such purposes and they permit HFSM circuits to be built
from reloadable memories that determine the desired functionality. The memories
(that are embedded or distributed FPGA blocks) can be reloaded during execu-
tion time and, thus, the operations of the HFSM can be changed in accordance
with the requirements that might depend on some factors (e.g. weather conditions,
surrounding temperature, faults in some units, etc.). Since HFSMs are composed
of modules that can be replaced if required, different control algorithms specified
by the modules can be selected during execution time in order to adjust param-
eters of the controlled devices. Let us look at Fig. 5.27 which shows one possible

(a)

(b) (c)

Fig. 5.26   Pipelined sort with sequential modules between pipeline registers (a); HGS that
controls the pipeline (b); an example of sort (c)

5.8  Practical Applications

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

254 5  Design Technique Based on Hierarchical and Parallel Specifications

way that enables an intelligent control of external devices to be implemented in
APSoCs discussed in Sect. 4.5. The HFSM is composed of different modules
aimed at control of external devices (i.e. controlled devices) and some of the mod-
ules implement alternative or competitive algorithms. Thus, we can apply the
strategy “try, test and replace if required”. Besides, any module can be updated
with an improved version without modifications in surrounding modules. Indeed,
it is sufficient to change the relevant microoperation (zi) which indicates an entry
point to the module with a new microoperation (zj) indicating an entry point to
another (alternative) module (from the set 1, 2,…, G). Figure 5.27 demonstrates a
potential intelligent control. The PS (see Sect. 4.5) evaluates the functionality of
the controlled devices and verifies if different established requirements are satis-
fied. If from the result of evaluation the PS makes a conclusion that some modes
or algorithms applied to the controlled devices may be improved then the set of
active modules implemented in the PL can be updated and some of such modules
may be reconfigured using the methods [37]. Update means a replacement of a
currently active module with a currently idle module that is expected to be used
more efficiently. Reconfiguration means changes in the selected module function-
ality through reloading its memories.

For some applications the described above intelligent system permits a better
satisfaction of different requirements to be achieved. Besides, HFSMs are capable
to realize a very high-speed control which also might be beneficial for some
practical cases.

References

	 1.	Sklyarov V, Skliarova I (2013) Hardware implementations of software programs based on
HFSM models. Comput Electr Eng 39(7):2145–2160

	 2.	Carrano FM, Henry T (2012) Data abstraction and problem solving with C++: walls and
mirrors, 6th edn. Prentice Hall, New Jersey

	 3.	Cormen TH, Leiserson CE, Rivest RL, Stain C (2009) Introduction to algorithms, 3rd edn.
MIT Press, Cambridge

	 4.	Skliarova I, Sklyarov V (2009) Recursion in reconfigurable computing: a survey of imple-
mentation approaches. In: Proceedings of the 19th international conference on field-program-
mable logic and applications, FPL 2009, Prague

Fig. 5.27   Using an HFSM
for an intelligent control

Module 1

Module 2

Reconfigurable
Module

Module G

PLPS

1. Evaluation of
functionality

2. Update or
reconfiguration

of the modules

HFSM Controlled
devices

http://dx.doi.org/10.1007/978-3-319-04708-9_4
http://dx.doi.org/10.1007/978-3-319-04708-9_4

255

	 5.	Skliarova I, Sklyarov V, Sudnitson A (2012) Design of FPGA-based circuits using hierarchi-
cal finite state machines. TUT Press, Tallinn

	 6.	Baranov S (2008) Logic and system design of digital systems. TUT Press, Tallinn
	 7.	Sklyarov V (1999) Hierarchical finite-state machines and their use for digital control. IEEE

Trans VLSI Syst 7(2):222–228
	 8.	Baranov S (1994) Logic synthesis for control automata. Kluwer Academic Publishers,

Norwell
	 9.	Sklyarov V (1983) Finite state machines with stack memory and their automatic design. In:

Proceedings of USSR conference on computer-aided design of computers and systems, 1983
(in Russian)

	10.	Sklyarov V (1984) Synthesis of finite state machines based on matrix lsi. Science and
Techniques, Minsk (in Russian)

	11.	Sklyarov V (2010) Synthesis of circuits and systems from hierarchical and parallel specifica-
tions. In: Proceedings of the 12th biennial baltic electronics conference, Tallinn

	12.	Sklyarov V, Skliarova I (2008) Design and implementation of parallel hierarchical finite state
machines. In: Proceedings of the 2nd international conference on communications and elec-
tronics, Hoi An

	13.	Lyshevski SE (2003) Hierarchical finite state machines and their use in hardware and soft-
ware design. In: Goddard WA, Brenner DW, Lyshevski SE, Iafrate GJ (eds) Handbook of
nanoscience engineering and technology. CRC Press, Boca Raton

	14.	Marcon CAM, Calazans NLV, Moraes FG (2002) Requirements, primitives and models for
systems specification. In: Proceedings of the 15th symposium on integrated circuits and sys-
tems design, Porto Alegre

	15.	del Moral BA, Zafra JMJ, Gómez JFR, Mesa RS, Muñoz RM, Trinidad AR, Moreno JJL,
and The International Medusa Team (2010) New control system for space instruments.
Application for medusa experiment. In: Proceedings of the 7th international planetary probe
workshop, Barcelona

	16.	Neishaburi MH, Zilic Z (2011) Hierarchical trigger generation for post-silicon debugging. In:
Proceedings of the international symposium on VLSI design, automation and test, Taiwan

	17.	Perez-Rodriguez R, Caeiro-Rodriguez M, Anido-Rifon L, Llamas-Nistal M (2010) Execution
model and authoring middleware enabling dynamic adaptation in educational scenarios
scripted with PoEML. J Univ Comput Sci 16(19):2821–2840

	18.	Hu W, Zhang Q, Mao Y (2011) Component-based hierarchical state machine - a reusable and
flexible game AI technology. In: Proceedings of the 6th IEEE joint international conference
on information technology and artificial intelligence, Chongqing

	19.	Jenihhin M, Gorev M, Pesonen V, Mihhailov D, Ellervee P, Hinrikus H, Bachmann M, Lass
J (2011) EEG analyzer prototype based on FPGA. In: Proceedings of the 7th international
symposium on image and signal processing and analysis, Dubrovnik

	20.	Mihhailov D, Sklyarov V, Skliarova I, Sudnitson A (2011) Acceleration of recursive data
sorting over tree-based structures. Electron Electr Eng 7(113):51–56

	21.	Ninos S, Dollas A (2008) Modeling recursion data structures for FPGA-based implementa-
tion. In: Proceedings of the 18th international conference on field-programmable logic and
applications, Heidelberg

	22.	Malakonakis P, Dollas A (2011) Exploitation of parallel search space evaluation with fpgas in
combinatorial problems: the eternity II case. In: Proceedings of the 21st international confer-
ence on field-programmable logic and applications, Crete

	23.	Muñoz DM, Llanos CH, Ayala-Rincón M, van Els RH (2008) Distributed approach to group
control of elevator systems using fuzzy logic and FPGA implementation of dispatching algo-
rithms. Eng Appl Artif Intell 21(8):1309–1320

	24.	Sklyarov V, Skliarova I, Neves A (2009) Modeling and implementation of automatic system
for garage control. In: Proceedings of ICROS-SICE international joint conference, Fukuoka

	25.	Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program
8(3):231–274

References

256 5  Design Technique Based on Hierarchical and Parallel Specifications

	26.	Gajski DD, Abdi S, Gerstlauer A, Schirner G (2009) Embedded system design. Springer,
New York

	27.	Sklyarov V, Skliarova I, Pimentel B (2005) FPGA-based implementation and comparison of
recursive and iterative algorithms. In: Proceedings of the 15th international conference on
field-programmable logic and applications, Tampere

	28.	Sklyarov V (2004) FPGA-based implementation of recursive algorithms. Microprocess
Microsyst 28(5–6):197–211 Special issue on FPGAs: applications and designs

	29.	Skliarova I, Sklyarov V (2010) Reconfiguration technique for adaptive embedded systems.
In: Proceedings of the 3rd international conference on intelligent and advanced systems,
Kuala Lumpur

	30.	Patterson DA, Hennessy JL (2009) Computer Organization and Design. Morgan Kaufmann
Publishers, Burlington

	31.	Sklyarov V, Skliarova I (2006) Recursive and iterative algorithms for n-ary search problems.
In: Debenham J (ed) Proceedings of the 19th IFIP world computer congress, Santiago de
Chile

	32.	Rosen KH, Michaels JG, Gross JL, Grossman JW, Shier DR (eds) (2000) Handbook of dis-
crete and combinatorial mathematics. CRC Press, Boca Raton

	33.	Zakrevskij A, Pottosin Y, Cheremisiniva L (2008) Combinatorial algorithms of discrete math-
ematics. TUT Press, Tallinn

	34.	Alekseev VE (1969) Sorting algorithms with minimum memory. Kibernetika 5(5):99–103
	35.	Knuth DE (2011) The art of computer programming, vol 3: sorting and searching. Addison-

Wesley, New York
	36.	Sklyarov V, Skliarova I (2013) Parallel processing in FPGA-based digital circuits and sys-

tems. TUT Press, Tallinn
	37.	Sklyarov V (2002) Reconfigurable models of finite state machines and their implementation

in FPGAs. J Syst Architect 47(14–15):1043–1064

Part II
Methods for Optimization of Finite State

Machines for FPGA-Based Circuits
and Systems

259

Abstract  The Chapter is devoted to the problems of optimization of Moore FSM
logic circuits implemented with FPGAs. The general characteristic is given for
methods of functional and structural decomposition. Distinctive features of FPGA
are analyzed allowing the number of look-up table (LUT) elements in logic cir-
cuits of Moore FSMs to be decreased. The classification of optimization meth-
ods are given for Moore FSM including: (1) the transformation of state codes
into codes of the classes of pseudoequivalent states (PES); (2) presentation of
state codes as concatenations of codes of PES and collections of microoperations;
(3) replacement of logical conditions (input variables of FSM) by additional vari-
ables. All discussed methods are illustrated by examples. The chapter is written
together with PhD student Olena Hebda (University of Zielona Gora, Poland).

6.1 � General Characteristic of Existing Methods

One of the main problems connected with implementing logic circuits of con-
trol units is the problem of hardware reduction [1, 2]. Solution of this problem
allows decreasing the chip area occupied by the FSM logic circuit. The positive
back effects of this problem’s solving is increasing for performance and decreas-
ing for power consuming of the logic circuit [3–6]. If the propagation time of logic
elements in use is not diminished, then the increasing for performance is possible
only by the decreasing for the number of layers in the combinational part of a con-
trol unit [7]. The structural diagram of Moore FSM includes two combinational
blocks and a register RG (Fig. 6.1) [8].

A block of input memory functions (BIMF) implements the functions Dr ∈ Φ,
where the system of input memory is represented as

(6.1)Φ = Φ(T , X).

Chapter 6
Hardware Reduction in Logic Circuits
of Moore FSM

V. Sklyarov et al., Synthesis and Optimization of FPGA-Based Systems,
Lecture Notes in Electrical Engineering 294, DOI: 10.1007/978-3-319-04708-9_6,
© Springer International Publishing Switzerland 2014

260 6  Hardware Reduction in Logic Circuits of Moore FSM

As a rule, there is Φ = {D1, …, DR} because the register RG is implemented using
D flip-flops [9]. The minimum number of bits in the register is determined by the
following equation: R =

⌈
log2 M

⌉
. A block of microoperations (BMO) generates

functions yn ∈ Y, where the system of microoperations is represented as

For the sake of compactness, let us name the methods of hardware reduction
as optimization methods. The existing optimization methods for Moore FSM can
be divided by universal and specialized. The universal methods are applied for
optimization of FSM implemented with arbitrary logic elements and for arbitrary
GSA. This group includes such methods as functional and structural decomposi-
tion of FSM.

The functional decomposition is based on the Shannon’s expansion [9, 10].
Let us consider the following example. Let it be necessary to construct the logic
circuit for the following function y1 = abcd ∨ abc̄d̄ ∨ āb̄cd ∨ āb̄c̄d̄. Let only
LUTs having three inputs (S = 3) can be used for implementing the circuit. Let us
expand the function by the variable a. It gives the following result:

It is enough three LUTs for implementing the circuit corresponding to (6.3). The
resulting circuit has two layers (Fig. 6.2).

In this circuit, the logic element LUT1 implements the function B = bcd ∨ bc̄d̄,
whereas LUT2 the function C = b̄cd ∨ b̄c̄d̄. If the decomposition is not used, then
each term of the (6.1) is implemented using two LUTs. To implement the disjunction
of these terms, two LUTs are used with S = 3 inputs. Therefore, the resulting circuit
without decomposition includes 10 LUTs and has four layers.

The functional decomposition was applied for implementing logic circuits with
NAND gates [1]. Next, it found application for implementing FSM circuits with
FPGA chips [11, 12]. In the last time, the functional decomposition is widely
used for implementing FSM circuits with CPLD chips [13–17]. The number of
logic elements can be decreased if the functional decomposition is used together

(6.2)Y = Y(T).

(6.3)y1 = a
(
bcd ∨ bc̄d̄

)
∨ ā

(
b̄cd ∨ b̄c̄d̄

)
.

Fig. 6.1   Structural diagram
of Moore FSM

Fig. 6.2   Logic circuit for
function y1

261

with factoring of Boolean functions representing FSM circuits [18]. The factoring
assumes use of some conjunctions in different functions of the system (6.1).

The structural decomposition is based on increasing for the number of structure
levels in the FSM logic circuit [9, 19]. The methods of structural decompositions
are the following:

1.	 Replacement of the logical conditions.
2.	 Encoding of the collections of microoperations.
3.	 Encoding of the fields of compatible microoperations.
4.	 Transformations of objects.

Let us discuss main ideas of these methods.
Replacement of the logical conditions. This method targets decreasing of the

numbers of arguments in the FSM input memory functions. Let Lm = |X(am)|,
where X(am) ⊆ X is a set of logical conditions determining transitions from
the state am ∈ A. Let us replace the set X by the set of additional variables
P = {p1, . . . , pG}, where there is G = max(L1, . . . , LM). Let us name the Moore
FSM (Fig. 6.1) PY Moore FSM. Let us denote the existence of the block BIMF by
the symbol P, whereas the existence of the block BMO by Y. The replacement of
logical conditions leads to the MPY Moore FSM shown in Fig. 6.3.

In the MPY Moore FSM, the block of logical conditions (BLC) implements the
following system of functions:

The block BIMF implements functions

Let us point out that the block BMO still implements functions (6.2). This method
can be applied if the condition G < < L takes place. In this case, the number of
arguments in the system (6.4) decreases significantly in the comparison with
their number in the system (6.1). As the results of investigations [19] prove, the
decreasing for the number of arguments leads to decreasing for the number of
LUT elements in the corresponding combinational circuit.

Encoding of the collections of microoperations. This method targets the hard-
ware reduction in the block BMO. Let Q collections of microoperations (CMO)
Yq ⊆ Y be placed into the operator vertices of GSA Γ. Let us encode the CMO
Yq ⊆ Y by the binary codes K(Yq) having the following amount of bits:

(6.4)P = P(T , X).

(6.5)Φ = Φ(T , P).

(6.6)RQ =
⌈
log2 Q

⌉
.

Fig. 6.3   Structural diagram
of MPY Moore FSM

X
T

Start
Clock

Y
P

6.1  General Characteristic of Existing Methods

262 6  Hardware Reduction in Logic Circuits of Moore FSM

Let us use the variables zr ∈ Z for encoding the collections Yq ⊆ Y, where there is
|Z| = RQ. Now, the system of microoperations Y is represented as

If the condition RQ < R takes place, the system (6.7) leads to the circuit with fewer
amounts of logic elements than in the circuit corresponding to the system (6.2),

Encoding of the fields of compatible microoperations. This method also tar-
gets the optimization of the block BMO. Let us remind that the microoperations
yi, yj ∈ Y are compatible if they do not belong to the same collections of micro-
operations Yq ⊆ Y (q = 1, Q). Let us find a partition of the set Y by the classes
of compatible microoperations Y1, . . . , YK. The following conditions should take
places in this partition:

Let it be |Yk| = Nk (k = 1, K). Let us Hencode microoperations yn ∈ Yk by
binary codes K(yn) having Rk =

⌈
log2 (Nk + 1)

⌉
 bits. Now, it is necessary RD vari-

ables zr ∈ Z for encoding the microoperations yn ∈ Y, where the value of RD is
determined by the following equation:

Transformations of objects. Both previously discussed methods cannot be
directly applied in the Moore FSM. They can be used only together with the trans-
formations of objects [20–23]. There are two different objects in the Moore FSM,
namely its states and collections of microoperations. The transformation of the
state codes into collections of microoperations with the following encoding of col-
lections leads to the PAY Moore FSM. The transformation of the state codes into
collections of microoperations with the following encoding of the fields of com-
patible microoperations leads to the PAD Moore FSM. Both these models possess
the same structural diagram (Fig. 6.4).

The structural diagram includes a block of state transformation (BST), generat-
ing the following functions

The functions (6.10) are used as the arguments of the system (6.7) implemented
by the block BMO. There are other methods of object’s transformations discussed
further in this Chapter.

The methods of structural decomposition are connected with the idea of hetero-
geneous implementation of logic circuits [8]. In this case, different logic elements
are used for implementing different structure parts of the FSM circuits. For exam-
ple, such elements as either NAND gates, or PAL macrocells, or LUT elements

(6.7)Y = Y(Z).

(6.8)

Yn ∩ Ym = ∅ (n �= m, m, n ∈ {1, . . . , K});
⋃K

k=1
Yk;

Yk �= ∅ (k = 1, K).

(6.9)RD =

K∑

k=1

Rk .

(6.10)Z = Z(T).

263

are used for implementing the circuit of BIMF. The multiplexers are used for
implementing the block BLC. The decoders are used for implementing the circuit
of BMO in PAD Moore FSM. Obviously, the circuits of multiplexers and decod-
ers are implemented using logic elements. But, multiplexers, as well as decoders,
are library elements of any industrial CAD tools targeting CPLD or FPGA chips.
Application of more complex library elements instead of either LUTs or PALs
simplifies the design process.

Boolean functions of systems Y(T), Z(T), and Y(Z) are determined for more
than 50 % of possible input assignments. It is reasonable to use memory blocks
(RAMs, PROMs) for implementing such functions. It is known that a single mem-
ory cell replaces at least one logic element. Because of it, application of memory
blocks results in the significant reduction for hardware amount.

Let us point out that the discussed methods can be applied simultaneously. For
example, mutual application of the replacement of logical conditions, objects’
transformation and encoding of CMOs leads to the MPAY Moore FSM (Fig. 6.5).
To minimize the circuit, the functional decomposition of (6.5) can be used.

Obviously, the growth of the number of structure levels leads to increasing
of the propagation time. But it is possible the positive side effect, namely, the
decreasing for the number of layers of logic elements in the logic circuit of BIMF.
It can compensate the previously mentioned negative effect.

The specialized optimization methods are based on the taking into account the pecu-
liarities of: (a) logic elements in use; (b) a control algorithm used for implementing the
resulting FSM; (c) an FSM model. Let us discuss the using of these peculiarities.

Using peculiarities of logic elements. The peculiarities of PAL macrocells are
the significant number of inputs (up to 30) and very small number of product
terms q (around 8). The first peculiarity allows using more than one source of the
classes of pseudoequivalent states [15, 17, 18] leading to the hardware reduction in
the block BIMF. The second peculiarity leads to the necessity of separate minimi-
zation for the input memory functions Φ [24, 25]. For minimization, it is enough

Fig. 6.4   Structural diagram of PAY and PAD Moore FSMs

X
T

Start

Clock

Z Y

T

Start

Clock

Z Y
X P

Fig. 6.5   Structural diagram of MPAY Moore FSM

6.1  General Characteristic of Existing Methods

264 6  Hardware Reduction in Logic Circuits of Moore FSM

to find such a variant when each sum-of-product (SOP) form includes not more
than q terms for any function Dr ∈ Φ [26].

The main peculiarity of FPGA chips is existence of heterogeneous basis; it
consists from lock-up table elements and embedded memory blocks. The mod-
ern LUTs have S ≤ 8 inputs. A single LUT might implement a truth table of an
arbitrary Boolean function depending on not more than S arguments. To optimize
a combinational circuit implemented with LUTs, it is necessary to diminish the
number of arguments, as well as the number of product terms in a Boolean func-
tion to be implemented [2].

Embedded memory blocks are used for implementing systems of Boolean func-
tions specified for more than 50 % of possible input assignments. Therefore, it is
reasonable to use EMBs for implementing the logic circuit of BMO [27, 28]. The
peculiarity of EMB is its reconfigurability [5] assuming changing the numbers of
address inputs SA and cell outputs tF under the constant size of a block. The num-
ber of outputs tF cannot be arbitrary; it belongs to some fixed set S(tF). For the
up-to-day FPGAs, there is S(tF) = {1, 2, 4, 8, 18, 36, 72} [5]. The size (the num-
ber of cells) of a EMB is determined as

Because the value of Vo is constant for given FPGA chip, then the decreasing for the
value of parameter SA by 1 leads to doubling for the number of outputs of the EMB.

Nowadays, the FPGAs are used for which there is Vo = 16k (bits) [7]. These EMBs
have the following configurations: 16k × 1, 8k × 2, 4k × 4, 2k × 8, 1k × 16, 512 × 36,
256 × 72, bits. The following expression can be used for determining the number of
outputs tFR of EMBs implementing the circuit of BMO for PY Moore FSM:

It was always assumed that the replacement of the PY- model by the PAY-model
allowed decreasing for the number of memory blocks in the circuit of BMO [8]. In
this case, the number of outputs tFQ of EMB is determined as

But if the following condition

takes place, then the numbers of EMBs in use are equal for PY and PAY FSMs.
In both cases, only one EMB is necessary. Therefore, the use of the encoding of
the collections of microoperations leads to decreasing of performance without any
hardware reduction. It means that such a peculiarity of EMB as existence of fixed
outputs allows refusing from the approach which was always treated as reasonable.

The block BMO of PY Moore FSM can be presented as a table having M × N
bits. On the other hand, the block EMB can be presented as a table having
2R × tFR = Vo bits (Fig. 6.6). As follows from Fig. 6.6, it is quite possible the
existence of free (unused) resources in a EMB; it could be either cells, or, out-
puts, or both. These free resources are determined as ΔM = 2R − M (for cells)

(6.11)Vo = 2SA · tF .

(6.12)tFR = ⌈Vo/M⌉.

(6.13)tFQ = ⌈Vo/Q⌉.

(6.14)tFR ≥ N

265

and Δt = tFR – N (for outputs). They can be used for decreasing in the number of
LUTs in the logic circuit of BIMF.

Using peculiarities of control algorithms. As it is shown in [29], it is possible to
replace the register RG by the counter CT. It has sense if an initial GSA includes
not less than 75 % of operator vertices. So called compositional microprogram
control units (CMCU) are discussed in [29]. The CMCU can be viewed as Moore
FSMs because their outputs are represented by the system (6.2). The logic synthe-
sis of CMCU is based on constructing operator linear chains (OLC) representing
some sequences of operator vertices.

This idea can be developed by introducing the conditional vertices into OLCs
[30]. Such an approach leads to the Moore PCTY Moore FSM (Fig. 6.7). Let us
discuss the rules used for state assignment of PCTY Moore FSMs. Let it be an
unconditional transition < am, as > for the states am ∈ A from the same OLC.

In this case the state codes are determined by the following expression:

To organize the transitions (6.15), a special variable z1 is generated. This variable
is used for incrementing the content of the counter CT.

If there is a conditional transition from am into as and the condition (6.15) takes
place, then the variable z2 is generated to increment the content of CT.

If for some transition < am, as > the condition (6.15) is violated, then there is
z1 = z2 = 0. In this case the next state code is determined by functions Φ. This
approach allows decreasing for the number of structure table’s rows in comparison
with this value for an equivalent PY FSM. Let us point out that now there are no
design methods of PCTY FSMs targeting either CPLD or FPGA.

Usage peculiarities of FSM model. There are two specifics of Moore FSM which
can be used for its circuit’s optimization: (1) the dependence of output functions only
from state variables Tr ∈ T and (2) the existence of classes of pseudoequivalent states.

The first specific allows implementing the logic circuit of BMO using only
EMBs. If all existed EMBs of a particular FPGA chip are used in a project, then

(6.15)K(as) = K(am) + 1.

Fig. 6.6   Relation of
characteristics for BMO and
EMB

Fig. 6.7   Structural diagram
of PCTY Moore FSM

6.1  General Characteristic of Existing Methods

266 6  Hardware Reduction in Logic Circuits of Moore FSM

the circuit of BMO is implemented using LUTs. In this case, the states should be
assigned in the manner leading to minimizing the number of LUTs in the circuit of
BMO. In the ideal case, only N of LUTs are enough for implementing the circuit
of BMO. The state assignment methods for this case are considered in [31].

The second specific allows decreasing for the number of Moore FSM struc-
ture table’s rows up to this value of equivalent Mealy FSM [32]. Three main
approaches can be used for reaching this goal: (a) the optimal state assignment; (b)
the transformation of the states codes into the codes of classes of pseudoequivalent
states; (c) the transformation of initial GSA. In this Chapter, we discuss the second
approach, whereas two others can be found in [30].

The classification of the optimization methods of Moore FSM logic circuits is
shown in Fig. 6.8. Let us point out that these methods are used simultaneously.
Only the simultaneous approach can result in a circuit with minimum amounts of
LUTs and EMBs. Some of optimization methods are discussed in this chapter.

6.2 � Object Transformation in Moore FSM

As it is shown in [8], the optimal state encoding does not always leads to decreas-
ing for the number of ST rows up to H0, where H0 is the number of ST rows for
equivalent Mealy FSM. In this case, it is reasonable to replace the state codes into
the codes of classes of pseudoequivalent states [19].

Optimization methods

Universal methods Specialized methods

Decomposition Factoring

Functional Structural

Replacement of
logical conditions

Encoding of collections
of microoperations

Encoding of fields of
compatible

microoperations

Object transformation

Specifics of logic
elements

Specifics of control
algorithm

Specifics of FSM model

Dependance Y(T)

Classes of
pseudoequivalent states

Fig. 6.8   Classification of the optimization methods of Moore FSM logic circuits

267

Let the partition ΠA = {B1, . . . , BI } of the set of states A by the classes of
pseudoequivalent states be found for some Moore FSM. Let us encode each class
Bi ∈ ΠA by the binary code K(Bi) having the following amount of bits:

Let us use the variables τr ∈ τ for encoding the classes Bi ∈ ΠA, where |τ| = RB.
Let us transform the codes of states am ∈ Bi into the codes of corresponding

classes Bi ∈ ΠA. To do such a transformation, it is necessary to include the special
block of code transformer (BCT) into the Moore FSM. The proposed approach
leads to PBY Moore FSM shown in Fig. 6.9.

In the PBY Moore FSM, the blocks BIMF and BCT implement the following
systems of functions:

Let us compare the systems (6.2) and (6.18). The comparison shows that func-
tions of these systems have the same nature. The functions τ and Y depend only on
the state variables Tr ∈ T. Therefore, it is reasonable to use EMBs for implement-
ing systems (6.2) and (6.18).

Let the following condition take place

In this case, only one block of EMB is enough for implementing both systems
(6.2) and (6.18). If there is tFR < N, then N (Y) of memory blocks are necessary for
implementing the BMO’s logic circuit:

Let the following condition take place:

In this case, the block BCT is implemented using the same EMBs as the block
BMO. If the condition (6.20) is violated, then some part of the functions τr ∈ τ is
implemented with EMBs, whereas the other part with LUTs. Let us point out that
our analysis of standard benchmarks [33] shows that the condition (6.19) takes
place for the overwhelming majority of practical control algorithms.

Let us point out that the register RG is shown for the purposes of explanation.
In reality, the flip-flops of RG are distributed among the LUTs of a logic circuit. If

(6.16)RB =
⌈
log2 I

⌉
.

(6.17)Φ = Φ(τ , X),

(6.18)τ = τ(T).

(6.19)tFR ≥ N + RB.

(6.20)N(Y) = ⌈N/tFR⌉.

(6.21)N(Y) · tFR − N ≥ RB.

Fig. 6.9   Structural diagram
of PBY Moore FSM

6.2  Object Transformation in Moore FSM

268 6  Hardware Reduction in Logic Circuits of Moore FSM

a LUT element implements the function Dr ∈ Φ, then its output is connected with
the flip-flop of the corresponding macrocell. Therefore, the practical structural dia-
gram of the PBY Moore FSM is shown in Fig. 6.10. This circuit has only two lev-
els. Let us point out that the condition (6.21) should take place for the PBY Moore
FSM. In Fig. 6.10, the block LUTer denotes the collection of look-up table ele-
ments implementing the system (6.17), whereas the block EMBer denotes the col-
lection of embedded memory blocks implementing the systems (6.2) and (6.18).

The synthesis method for PBY Moore FSM includes the following steps:

1.	 Marking the initial GSA Γ by the states of Moore FSM and constructing the
set of states A.

2.	 Finding the partition ΠA = {B1, . . . , BI }.
3.	 Encoding of the states am ∈ A and the classes Bi ∈ ΠA.
4.	 Constructing the reduced structure table of Moore FSM.
5.	 Constructing the system (6.17).
6.	 Constructing the table of block of microoperations.
7.	 Constructing the table of block of code transformer.
8.	 Implementing the FSM logic circuit for given FPGA chip.

Let us discuss an example of synthesis for the Moore FSM PBY(Γ1), where the
part (Γi) means that the given model is synthesized using a GSA Γi. The graph-
scheme of algorithm Γ1 is shown in Fig. 6.11.

The states am ∈ A are already shown in Fig. 6.11. Thus, the following
information about sets and their parameters can be derived from Fig. 6.11:
A = {a1, . . . , a8}, M = 8; X = {x1, . . . , x4}; L = 4; Y = {y1, . . . , y5}, and N = 5.
Obviously, there are R = 3, T = {T1, T2, T3}, and Φ = {D1, D2, D3}. Analysis of
GSA Γ1 allows constructing the partition ΠA = {B1, . . . , B4}. Therefore, there are
the following values: I = 4, RB = 2. It gives the set of variables τ = {τ1, τ2}.

Let us encode the states am ∈ A in an arbitrary manner. Let us use the follow-
ing codes: K(a1) = 000, K(a2) = 001, …, K(a8) = 111. Let us encode the classes
Bi ∈ ΠA using the frequency principle [19]. In this case, the more states a class
includes the more zeros its code contains. In the case of FSM PBY(Γ1), there
are the classes B1 = {a1}, B2 = {a2, a3, a4}, B3 = {a5, a6}, and B4 = {a7, a8}.
Using the frequency principle produces the following class codes: K(B1) = 11,
K(B2) = 00, K(B3) = 01, and K(B4) = 10.

To construct the reduced structure table, it is necessary to find the system of
generalized formulae of transitions (GFT) [19]. A generalized formula of transi-
tions has the following form:

(6.22)
Bi →

Hm
∨

h=1
Xhas(i = 1, I).

Fig. 6.10   Implementation of
PBY Moore FSM with FPGA

269

In (6.22), the symbol Hm stands for the number of transitions from any state
am ∈ Bi, the symbol Xh corresponds to a conjunction of input variables xl ∈ X,
determining the transition from the state am ∈ Bi into the next state as ∈ A. In the
case of PBY(Γ1) FSM, there is the following GFT:

The reduced structure table has the following columns: Bi, K(Bi), as, K(as), Xh,
Φh, h. In the case of Moore FSM PBY(Γ1), the reduced structure table includes
H0 = 8 rows (Table 6.1).

The connection between the system (6.23) and Table 6.1 is obvious. Let us
point out that the transitions are not considered for the class B4. It is connected
with the fact that there is K(a1) = 00, and, therefore, there is D1 = D2 = 0. Also,
let us point out that there is H = 20 for the Moore FSM PY(Γ1).

The content of Table 6.1 is used for deriving the system (6.17). After minimiz-
ing, this system is the following:

(6.23)

B1 → x1a2 ∨ x̄1x2a3 ∨ x̄1x̄2a4;

B2 → x3x4a5 ∨ x3x̄4a6 ∨ x̄3x4a7 ∨ x̄3x̄4a8;

B3 → a2; B4 → a1.

(6.24)
D1 = τ̄1τ̄2; D2 = τ1τ2x̄1 ∨ τ̄1τ̄2x3;

D3 = τ1τ2x1 ∨ τ1τ2x̄2 ∨ τ̄1τ̄2x̄4 ∨ τ̄1τ2.

Fig. 6.11   The graph-scheme
of algorithm Γ1

x1
01

a1

y1y2 x2

y3y5 y4

a2

a3 a4

x3

01

01

y1y2

0 1 0

a5 a6 a7 a8

a1

x4 x4

1

y1y3 y3y5 y1y2

Table 6.1   Reduced structure
table of Moore FSM PBY(Γ1)

Bi K(Bi) as K(as) Xh Φh h

B1 11 a2 001 x1 D3 1
a3 010 x̄1x2 D2 2
a4 011 x̄1x̄2 D2D3 3

B2 00 a5 100 x3x4 D1 4
a6 101 x3x̄4 D1D3 5
a7 110 x̄3x4 D1D2 6
a8 111 x̄3x̄4 D1D2D3 7

B3 01 a2 001 1 D3 8

6.2  Object Transformation in Moore FSM

270 6  Hardware Reduction in Logic Circuits of Moore FSM

Table of BMO (Table 6.2) is constructed in the trivial way using both codes
K(am) and collections of microoperations Yq ⊆ Y from GSA Γ1.

The table of BCT (Table 6.3) includes the columns K(am), K(Bi), m, i. The col-
umn m includes the subscript of a state (as for Table 6.2), whereas the column i
includes the subscript of a block Bi, where there is am ∈ Bi.

The implementing logic circuit of PBY Moore FSM is reduced to the imple-
menting the system (6.24) by the LUTer, whereas both Tables 6.2 and 6.3 are
implemented by the EMBer. Let the FSM logic circuit be implemented using
LUTs having S = 3 inputs. Let the possible configurations of EMB include the
configuration 8 × 8, bits. Let us denote the number of literals in the function
Dr ∈ Φ as L(Dr). Let the following condition take place:

In this case, the part of the logic circuit corresponding to the function Dr ∈ Φ is
implemented using one LUT. If the condition (6.25) is violated, then the method
of functional decomposition should be used for function Dr ∈ Φ.

The following values can be found for Moore FSM PBY(Γ1): L(D1) = 2,
L (D2) = 4, and L(D3) = 5. Therefore, both the functions D2 and D3 should be
decomposed. It leads to the following system of Boolean functions:

(6.25)L(Dr) ≤ S.

(6.26)
D2 = τ1(τ2x̄1) ∨ τ̄1(τ̄2x3) = τ1Φ1 ∨ τ̄1Φ2;

D3 = τ1(τ2x1 ∨ τ2x2) ∨ τ̄1(τ̄2x̄4 ∨ τ2) = τ1Φ3 ∨ τ̄1Φ4.

Table 6.2   Table of BMO for
Moore FSM PBY(Γ1)

K(am) Microoperations m

T1 T2 T3 y1 y2 y3 y4 y5

0 0 0 0 0 0 0 0 1
0 0 1 1 1 0 0 0 2
0 1 0 0 0 1 0 1 3
0 1 1 0 0 0 1 0 4
1 0 0 1 1 0 0 0 5
1 0 1 1 0 1 0 0 6
1 1 0 0 0 1 0 1 7
1 1 1 1 1 0 0 0 8

Table 6.3   Table of BCT for
Moore FSM PBY(Γ1)

K(am) K(Bi) m i

T1 T2 T3 τ1 τ2

0 0 0 1 1 1 1
0 0 1 0 0 2 2
0 1 0 0 0 3 2
0 1 1 0 0 4 2
1 0 0 0 1 5 3
1 0 1 0 1 6 3
1 1 0 1 0 7 4
1 1 1 1 0 8 4

271

Because there is tFR = 8, the condition (6.19) takes place. Therefore, only a single
EMB is necessary for implementing the circuit of EMBer. The resulting logic cir-
cuit is shown in Fig. 6.12.

As follows from Fig. 6.12, seven LUTs are used for implementing the circuit of
BIMF. The combinational outputs of elements LUT2–LUT5 are used, whereas the
registered outputs of elements LUT1, LUT6 and LUT7 are used. The pulses Start
and Clock are connected correspondingly with synchronization and clearing inputs
of logic elements 1, 6 and 7. The block LUTer has two layers of LUTs, whereas
the block EMBer uses only a single EMB.

It can be shown that the block LUTer of Moore FSM PY(Γ1) consists from 34
LUTs having S = 3 inputs; it has four layers of logic elements. Therefore, the applica-
tion of the method of objects’ transformation allows, in the discussed case, decreasing
for both the number of LUTs (in 4,85 times) and the propagation time of the resulting
FSM logic circuit (in 2 times). Let us point out that there are a lot of different methods
of objects’ transformation [8], but they are beyond the scope of this chapter.

6.3 � Expansion of State Codes for Moore FSM

Let the parameters tFR and tFY be found for some PY Moore FSM (for the given
FPGA chip). Let the following condition take place

(6.27)

⌈
N

tFR

⌉
>

⌈
N

tFY

⌉
.

1

2

3

1
2
3
4
5
6
7
8

1

2

3

4

5

6

7

8

x1

x2

x3

x4

Start

Clock

1

2

7
8
5
6

1

8

3

8

1

2
8

4

8

9

10

11

12

13

T1

1

2

3

4

10
11
7
5
6

12
13
7
5
6

14T2

15T3

9

14

15

y1
y2
y3
y4
y5
71
82

Fig. 6.12   Logic circuit of Moore FSM PBY(Γ1)

6.2  Object Transformation in Moore FSM

272 6  Hardware Reduction in Logic Circuits of Moore FSM

In this case, it is reasonable to encode the collections of microoperations Yq ⊆ Y
and use the variables zr ∈ Z as address inputs for the block BMO. Let us discuss
an approach which can be viewed as the development of ideas from [34, 35].

Let us find the partition ΠA = {B1, . . . , BI } and encode the classes Bi ∈ ΠA by
binary codes K(Bi) having RB bits. Let us encode the collections Yq ⊆ Y by binary
codes K(Yq) having RQ bits. The value of RB is determined by (6.16), whereas the value
of RQ by (6.6). Let us use the variables τr ∈ τ for encoding of the classes Bi ∈ ΠA,
whereas the variables zr ∈ Z for encoding of the collections of microoperations.

Let a collection Yq ⊆ Y be generated for a state am ∈ Bi. Let us represent the
state code K(am) as the following expression:

In (6.28), the sign “*” denotes the concatenation of codes. The representation
(6.28) is named the extension of state codes [35]. This representation allows
obtaining the structural diagram of PBYY Moore FSM (Fig. 6.13).

In the PBYY Moore FSM, the block BIMF implements RB + RQ functions
forming the system (6.7). If the condition (6.27) takes place, the block BMO of
PBYY Moore FSM requires fewer embedded memory blocks in comparison with
either PY or PBY Moore FSMs. Let the following condition take place:

In this case, the block BIMF implements more functions than in the cases of both
PY or PBY Moore FSMs.

The proposed synthesis method of PBYY FSM includes the following steps:

1.	 Marking the initial GSA and forming the set of states A.
2.	 Finding the partition ΠA = {B1, . . . , BI }.
3.	 Encoding of classes Bi ∈ ΠA and collections of microoperations Yq ⊆ Y.

Finding the extended state codes.
4.	 Constructing the reduced structure table.
5.	 Constructing the system of functions Dr ∈ Φ.
6.	 Constructing the table of BMO.
7.	 Implementing FSM circuit for a given FPGA chip.

Let us discuss an example of synthesis for the Moore FSM PBYY(Γ2), where the
initial GSA Γ2 is shown in Fig. 6.14.

Let us analyse the characteristics of Moore FSM PY(Γ2). The set of states
A includes M = 9 elements; therefore, there is R = 4. The following collec-
tions of microoperations can be derived from the operator vertices of GSA Γ2:
Y2 = {y1, y2}, Y3 = {y3, y5}, Y4 = {y4}, Y5 = {y3, y4}, Y6 = {y2, y5}. Besides,

(6.28)K(am) = K(Bi) ∗ K
(
Yq

)
.

(6.29)R < RB + RQ.

Fig. 6.13   Structural
diagram of Moore FSM with
extension of state codes

273

the start vertex corresponds to the empty collection Y1 = ∅. Therefore, there are
Q = 6, RQ = 3, and Z = {z1, z2, z3}. The partition ΠA includes I = 4 blocks,
namely: B1 = {a1}, B2 = {a2, a3, a4}, B3 = {a5, a6, a7}, and B4 = {a8, a9}.
Therefore, there are RB = 2 and τ = {τ1, τ2}.

Let an FPGA chip in use include embedded memory blocks having the follow-
ing configurations: 16 × 4 and 8 × 8 (bits). Therefore, each EMB has Vo = 64
bits. Using expressions (6.12) and (6.13), respectively, the following values can be
found: tFR = 4 and tFQ = 8. Because there is N = 5, then there are

⌈
N

tFR

⌉
= 2 and ⌈

N
tFQ

⌉
= 1. It means that the condition (6.26) takes place. Therefore, it is reason-

able to use the approach of state expansion.
Let us point out one specific of the PBYY Moore FSM. Using the pulse Start,

the zero code (all zeros) corresponding to the initial state a1 should be loaded into
the register RG. According with (6.28), there is K(a1) = K(B1) * K(Y1). Therefore,
both the class B1 ∈ ΠA and the collection Y1 = ∅ should be encoded by zero codes.
Let us use the frequency principle for encoding of both classes of pseudoequiva-
lent states and collections of microoperations. For collections of microoperations
this principle can be formulated as the following one: the more operator vertices
contain a collection Yq ⊆ Y, the more zeros its code includes.

Let us encode the classes Bi ∈ ΠA in the following manner: K(B1) = 00,
K(B2) = 01, K(B3) = 10, and K(B4) = 11. Let us encode the collections of
microoperations Yq ⊆ Y in the following manner: K(Y1) = 000, K(Y2) = 001,
K(Y3) = 010, K(Y4) = 100, K(Y5) = 011, and K(Y6) = 101. Using codes of
both classes of pseudoequivalent states and collections of microoperations, the
extended state codes can be found for states am ∈ A (Fig. 6.15).

End

Start

x1
01

a1

y1y2 x2

y3y5 y4

a2

a3 a4

x3

01

01

y1y2

0 1 0

a5 a6 a7

a8

a1

x4 x1

1

y2y5

y4 y1y2x4

y3y5

a9
1 0

Fig. 6.14   Initial graph-scheme of algorithm Γ2

6.3  Expansion of State Codes for Moore FSM

274 6  Hardware Reduction in Logic Circuits of Moore FSM

In Fig. 6.15, the sign “*” marks the codes (6.28) which do not correspond to the
states am ∈ A for the Moore FSM PBYY(Γ2). The reduced structure table of PBYY
Moore FSM is constructed using the same approach as for PBY Moore FSM. For
the discussed example, the system of GFT includes the following formulae:

The system (6.30) includes 10 terms, but the transitions from the states of the
class B4 are not listed in the table. Because of it, the reduced structure table of the
Moore FSM PBYY(Γ2) includes only H0 = 9 rows (Table 6.4).

The system of input memory functions Dr ∈ Φ is derived from this table. These
functions can be minimized. After minimizing, the system Dr ∈ Φ is the following
in the discussed case:

Let LUTs having S = 4 inputs be used for implementing the logic circuit of
BIMF. Analysis of the system (6.31) shows that there are L(D1) = 2, L(D2) = 3,

(6.30)

B1 → x1a2 ∨ x̄1x2a3 ∨ x̄4x̄2a4;

B2 → x3x4x5a5 ∨ x3x4x̄5a6 ∨ x3x̄4a7 ∨ x̄3x1a8 ∨ x̄3x̄1a9;

B3 → a2; B4 → a1.

(6.31)

D1 = τ̄1τ2;

D2 = τ̄2 ∨ τ̄1τ2x̄3;

D3 = τ̄1τ̄2x̄1x̄2 ∨ τ̄1τ2x3x̄4 ∨ τ̄1τ2x̄3x1;

D4 = τ̄1τ̄2x̄1x2 ∨ τ̄1τ2x3x4x5;

D5 = τ̄1τ̄2x1 ∨ τ̄1τ2x3 ∨ τ̄1τ2x̄1 ∨ τ1τ̄2.

Fig. 6.15   Extended state
codes of Moore FSM
PBYY(Γ2)

Table 6.4   Reduced structure
table of Moore FSM
PBYY(Γ2)

Bi K(Bi) as K(as) Xh Φh h

B1 00 a2 01001 x1 D2D5 1
a3 01010 x̄1x2 D2D4 2
a4 01100 x̄1x̄2 D2D3 3

B2 01 a5 10001 x3x4x5 D1D5 4
a6 10011 x3x4x̄5 D1D4D5 5
a7 10101 x3x̄4 D1D3D5 6
a8 11101 x̄3x1 D1D2D3 7
a9 11001 x̄3x̄1 D1D2D5 8

B3 10 a2 01001 1 D2D5 9

275

L(D3) = 6, L(D4) = 7, and L(D5) = 4. Therefore, only three LUTs are used for
implementing a subcircuit for functions D1, D2, and D5. The functions D3 and D4
should be decomposed. Let us represent them in the following manner:

As in the case of PBY Moore FSM, the structure of PBYY Moore FSM can be rep-
resented as a composition of LUTer and EMBer (Fig. 6.16). The table of BMO is
the same as the table of EMBer (Table 6.5).

The logic circuit of Moore FSM PBYY(Γ2) is shown in Fig. 6.17. In this circuit,
the block LUTer consists from 9 LUTs, whereas the block EMBer is implemented
using only one EMB.

Let us point out that there is H = 21 for the Moore FSM PY(Γ2). If the FSM
states are encoded in the natural order (K(a1) = 0000, K(a2) = 0001, …), then it
is necessary 15 LUTs for implementing the logic circuit of BIMF and two EMBs
for implementing BMO. The EMB should have the configuration 16 × 4, because
there is R = 4 for the Moore FSM PY(Γ2).

Let us use the principle of optimal state assignment [2] for the discussed exam-
ple. Let us denote the model based on this principle as PoY. For optimal state
assignment, the codes of states belonging to a single class of pseudoequivalent
states should be placed in the minimal possible amount of generalized intervals
of coding space. The optimal state codes for the FSM PoY(Γ2) are shown in the
Karnaugh map (Fig. 6.18).

The following class codes can be found from Fig. 6.18: K(B1) = 00**,
K(B2) = 01**, K(B3) = 11**, K(B4) = 10**. The reduced structure table of
Moore FSM PoY(Γ2) includes H0 = 9 rows (Table 6.6).

(6.32)
D3 = τ̄1(τ̄2x̄1x̄2 ∨ τ2x̄3x1) ∨ τ̄1τ2x3x̄4 = τ̄1Φ1 ∨ Φ2;

D4 = τ̄1(τ̄2x1x2) ∨ τ̄1(τ2x3x4x̄5) = τ̄1Φ3 ∨ τ̄1Φ4.

Fig. 6.16   Structural
diagram of PBYY Moore FSM
implemented with FPGA

Table 6.5   Reduced structure
table of Moore FSM
PBYY(Γ2)

K(Yq) Microoperations q

z1 z2 z3 y1 y2 y3 y4 y5

0 0 0 0 0 0 0 0 1
0 0 1 1 1 0 0 0 2
0 1 0 0 0 1 0 1 3
0 1 1 0 0 1 1 0 5
1 0 0 0 0 0 1 0 4
1 0 1 0 1 0 0 1 6
1 1 0 0 0 0 0 0 *
1 1 1 0 0 0 0 0 *

6.3  Expansion of State Codes for Moore FSM

276 6  Hardware Reduction in Logic Circuits of Moore FSM

This table is a base for constructing the system of functions Dr ∈ Φ. After mini-
mizing, this system is the following:

D1 = B2 = T̄1T2;

D2 = B1 ∨ B2x3 ∨ B3;

D3 = B1x̄1x̄2 ∨ B2x3x̄4;

D4 = B1x̄1x2 ∨ B2x3x4x̄5 ∨ B2x̄3x̄1.

Fig. 6.17   Logic circuit of Moore FSM PBYY(Γ2)

Fig. 6.18   Optimal state
codes for Moore FSM
PoY(Γ2)

Table 6.6   Reduced structure
table of Moore FSM PoY(Γ2)

Bi K(Bi) as K(as) Xh Φh h

B1 00** a2 0100 x1 D2 1
a3 0101 x̄1x2 D2D4 2
a4 0110 x̄1x̄2 D2D3 3

B2 01** a5 1100 x3x4x5 D1D2 4
a6 1101 x̄5x3x4 D1D2D4 5
a7 1110 x3x̄4 D1D2D3 6
a8 1000 x̄3x1 D1 7
a9 1001 x̄3x̄1 D1D4 8

B3 11** a2 0100 1 D2 9

277

It can be shown that it is necessary 10 LUTs having S = 4 inputs for imple-
menting the system Φ. The circuits for each function D1 and D2 are implemented
using only one LUT, the circuit for D3 needs three LUTs (it has two layers), the
circuit for D4 requires 5 LUTs and includes three layers. The characteristics of
logic circuits for PoY, PY and PBYY FSMs for GSA Γ2 are listed in Table 6.7.

Therefore, for the case of GSA Γ2, the logic circuit of Moore FSM PBYY contains
the least amount of LUTs and EMBs. Besides, this circuit has the least value of the
propagation time. Of course, this conclusion cannot be done for the common case.

The number of EMBs in the circuit of BMO can be diminished if tFR of micro-
operations yn ∈ Y are implemented with embedded memory blocks, whereas the
other N − tFRi of microoperations with LUTs [36]. Let us explain this idea for the
general case.

Let us represent the set Y in the form Y = Y 1 ∪ Y 2, where Y1 ∩ Y2 = ∅. Let the
set Y1 include N1 elements, where

Let us point out that the parameter N(Y) is determined by the expression (6.19). It
is clear that the set Y2 includes the remaining N2 elements:

In this case, the PoY Moore FSM, for example, is represented as a circuit with a
mixed memory (Fig. 6.16).

Let us use the symbol PoYM for denoting the FSM shown in Fig. 6.19. In the
PoYM Moore FSM, the block LUTer1 implements the system Φ:

In the expression (6.35), the set T  ′ ⊆ T is a set of input variables sufficient for
encoding of the classes Bi ∈ ΠA. For example, the set T  ′ includes only two ele-
ments in the FSM PoY(Γ2), namely, there is the set T  ′ = {T1, T2}. At the same
time, some LUTs are used for implementing the register RG.

(6.33)N1 = tFR · (N(Y) − 1).

(6.34)N2 = N − tFR · (N(Y) − 1).

(6.35)Φ = Φ
(
T ′, X

)
.

Table 6.7   Characteristics of FSMs

Type of FSM Number of LUTs Number of layers Number of EMBs

PBYY 9 2 1
PY 15 3 2
PoY 10 3 2

Fig. 6.19   Structural diagram
of PoYM Moore FSM

6.3  Expansion of State Codes for Moore FSM

278 6  Hardware Reduction in Logic Circuits of Moore FSM

The block EMBer implements microoperations yn ∈ Y1, whereas the block
LUTer2 implements microoperations yn ∈ Y2. The microoperations yn ∈ Y2 are
chosen in such a way that the corresponding circuits will be implemented with the
fewest amounts of LUTs.

For example, the following formulae can be obtained from analysis of GSA Γ2
and Karnaugh map (Fig. 6.18):

In the discussed example, there is R = S = 4. Therefore, the logic circuit for
any function of the system (6.36) is implemented using a single LUT. If there is
R > S, then the states should be rearranged inside the Karnaugh map. The rear-
rangement should be executed in such a manner that to diminish the value of
A(yn), where A(yn) is the number of arguments in the SOP of a function yn ∈ Y.
Obviously, the places of states am ∈ Bi might be changed only within the range of
the map’s columns occupied by these states after the execution of the optimal state
assignment. Let us name this approach a refined state assignment. The result of
refined state assignment for the FSM PoY(Γ2) is shown in Fig. 6.20.

In the case of refined state assignment, the system (36) is represented as the fol-
lowing one:

Analysis of the system (6.37) shows that it is enough to use the state variable T4
for implementing the circuit for y2. The circuits for microoperations y1 and y4 are
implemented using only one LUT having S ≥ 2. It is enough to have only one LUT
with S ≥ 3 for implementing the circuit for the function y5. It is enough to have only
one LUT having S ≥ 4 for implementing the circuit for function y3. Because there
are N1 = 4 and N2 = 1, it is reasonable to choose the set Y2 = {y2}. Let us point out
that the rearrangement of states in the Karnaugh map leads to changing the SOPs
for functions Dr ∈ Φ. In turn, it can lead to increasing for the number of LUTs in
the circuit of the block LUTer1 in comparison with the initial block LUTer.

(6.36)

y1 = A2 ∨ A5 ∨ A9 = T2T̄3T̄4 ∨ T̄2T̄3T4;

y2 = A2 ∨ A5 ∨ A7 ∨ A9;

y3 = A3 ∨ A6;

y4 = A4 ∨ A6 ∨ A8;

y5 = A3 ∨ A7.

(6.37)
y1 = T̄3T4; y2 = T4; y3 = T2T̄3T̄4 ∨ T1T2T̄4;

y4 = T3T4; y5 = T2T̄3T4 ∨ T3T4.

Fig. 6.20   Refined state
codes for Moore FSM
PoYM(Γ2)

279

6.4 � Synthesis of Moore FSM with Replacement
of Logical Conditions

Let us consider an example of synthesis for Moore FSM MPY(Γ1), where the
GSA Γ1 is shown in Fig. 6.11. The following sets of logical conditions can be
derived from the GSA Γ1: X(a1) = {x1, x2}, X(a2) = X(a3) = X(a4) = {x3, x4},
and X(a5) = · · · = X(a8) = ∅. Therefore, there is G = 2. It means that the fol-
lowing set P = {p1, p2} should be formed. Let the states have the following codes:
K(a1) = 000, K(a2) = 001, …, K(a8) = 111. Let us construct the table of replace-
ment of logical conditions for the FSM MPY(Γ1) (Table 6.8).

Using Table 6.8, it is possible to find the following functions of the system
(6.4):

As it is shown in [1], the states codes of the states am ∈ A having X(am) = ∅
might be considered as insignificant; they might be used for minimizing functions
of the system (6.4). Using this possibility, the following system of functions can
be obtained:

To get the system (6.5), it is necessary to construct the transformed structure
table of Moore FSM [27]. To do it, the column Xh of the initial structure table
should be replaced by the column Ph. The replacement rule is obvious: if a vari-
able xl ∈ X is situated on the intercrossing of the column am and the row pg of the
table of replacement of logical conditions, then the variable pg replaces the logical
condition xl for the structure table’s part with transitions from the state am. In the
case of Moore FSM MPY(Γ1), the transformed structure table includes 19 rows.
The fragment of the table for states a1 and a2 is shown in Table 6.9.

The following fragment of the system (6.4) can be derived from Table 6.9:
D1 = T̄1T̄2T3; D2 = T̄1T̄2p̄1; D3 = T̄1T̄2T̄3(p1 ∨ p̄1p̄2) ∨ T̄1T̄2T3p̄2. These func-
tions are minimized.

Using the classes of pseudoequivalent states, it is possible to simplify the func-
tions P and Φ. The structural diagram of MPBY Moore FSM is shown in Fig. 6.21.
In the MPBY Moore FSM, the block LUTer1 implements the system

(6.38)
P1 = A1x1 ∨ A2x3 ∨ A3x3 ∨ A4x3;

P2 = A1x2 ∨ A2x4 ∨ A3x4 ∨ A4x4.

(6.39)
P1 = T̄1T̄2x1 ∨ T2x3 ∨ T1x3;

P2 = T̄1T̄2x2 ∨ T2x4 ∨ T1x4.

(6.40)P = P(τ , X).

Table 6.8   Table of
replacement of logical
conditions of FSM MPY(Γ1)

am a1 a2 a3 a4 a5 a6 a7 a8

K(am) 000 001 010 011 100 101 110 111
P1 x1 x3 x3 x3 – – – –
P2 x2 x4 x4 x4 – – – –

6.4  Synthesis of Moore FSM with Replacement of Logical Conditions

280 6  Hardware Reduction in Logic Circuits of Moore FSM

The block LUTer2 of the MPBY Moore FSM implements the register RG and sys-
tem of input memory functions represented in the following form:

As in the case of PBY Moore FSM, the block EMBer implements the systems Y(T)
and τ(T).

The proposed synthesis method for MPBY Moore FSM includes the following
steps:

1.	 Marking the states and constructing the set A.
2.	 Constructing the partition ΠA = {B1, . . . , BI } of the set of states by the

classes of pseudoequivalent states.
3.	 Encoding of the states am ∈ A.
4.	 Constructing the reduced table of replacement of logical conditions.
5.	 Optimal encoding of the classes Bi ∈ ΠA

6.	 Constructing the reduced transformed structure table
7.	 Constructing the systems (6.40) and (6.41).
8.	 Constructing the table of EMBer.
9.	 Implementing the FSM logic circuit with given logic elements.

Let us consider an example of synthesis for Moore FSM MPY(Γ1). Such ele-
ments as the set of internal states A, the partition ΠA and the classes Bi ∈ ΠA are
obtained before (see Sect. 6.2). Let us encode the states am ∈ A in the trivial way:
K(a1) = 000, K(a2) = 001, …, K(a8) = 111.

Obviously, the transitions for all states am ∈ Bi depend on the same logical con-
ditions. This rule can be represented by the following expression:

(6.41)Φ = Φ(τ , P).

(6.42)am, as ∈ Bi → X(am) = X(as).

Fig. 6.21   Structural diagram
of MPBY Moore FSM

Table 6.9   Fragment of
transformed structure table
for Moore FSM MPY(Γ1)

am K(am) as K(as) Ph Φh h

a1

(–) 000 a2 001 p1 D3 1
a3 010 p̄1p2 D2 2
a4 011 p̄1p̄2 D2D3 3

a2

(y1y2) 001 a5 100 p1p2 D1 4
a6 101 p1p̄2 D1D3 5
a7 110 p̄1p2 D1D2 6
a8 111 p̄1p̄2 D1D2D3 7

281

This property allows replacing the states am ∈ Bi in the table of replacement
of logical conditions by the corresponding class Bi ∈ ΠA. Therefore, the resulting
table of replacement includes fewer rows than the corresponding table for MPY
Moore FSM. In the case of Moore FSM MPY(Γ1), the reduced table of replace-
ment of logical conditions is represented by Table 6.10.

The following system of equations can be derived from Table 6.10:

Because of the equality X(B3) = X(B4) = ∅, both codes of classes K(B3) and
K(B4) can be used for minimizing the system (6.43). Let us name the encoding of
classes Bi ∈ ΠA leading to minimizing the system of additional variables as opti-
mal encoding. One of the variants of optimal encoding is a trivial one, namely:
K(B1) = 00, …, K(B4) = 11. This variant of class encoding leads to the following
system of equations:

The logic circuit for any function of the system (6.44) is implemented with
LUTs having S = 3 inputs.

Let us use Table 6.1 for constructing the reduced transformed structure table of
Moore FSM MPBY(Γ1) (Table 6.11).

Using Table 6.11, the system of input memory functions is constructed (after
minimization):

(6.43)
P1 = B1x1 ∨ B2x3;

P2 = B1x2 ∨ B2x4.

(6.44)
P1 = τ̄1x1 ∨ τ1x3;

P2 = τ̄1x2 ∨ τ1x4.

(6.45)

D1 = τ̄1τ2;

D2 = τ̄1τ̄2p̄1 ∨ τ̄1τ2p̄1 = τ̄1p̄1;

D3 = τ̄1τ̄2p1 ∨ τ̄1p̄2 ∨ p1p̄2.

Table 6.10   Reduced table of replacement of logical conditions for Moore FSM MPY(Γ1)

Bi B1 B2 B3 B4

P1 x1 x3 – –
P2 x2 x4 – –

Table 6.11   Reduced
transformed structure table of
Moore FSM MPBY(Γ1)

Bi K(Bi) as K(as) Ph Φh h

B1 11 a2 001 p1 D3 1
a3 010 p̄1p2 D2 2
a4 011 p̄1p̄2 D2D3 3

B2 00 a5 100 p1p2 D1 4
a6 101 p1p̄2 D1D3 5
a7 110 p̄1p2 D1D2 6
a8 111 p̄1p̄2 D1D2D3 7

B3 01 a2 001 1 D3 8

6.4  Synthesis of Moore FSM with Replacement of Logical Conditions

282 6  Hardware Reduction in Logic Circuits of Moore FSM

Obviously, the tables for both blocks BCT and BMO are the same for FSMs
MPBY(Γ1) and PBY(Γ1), as well as the circuit of the block EMBer. The logic cir-
cuit of FSM MPBY(Γ1) is shown in Fig. 6.22.

Two subfunctions (Φ1 = τ̄1τ̄2p1 and Φ2 = τ̄1p̄2 ∨ p̄1p̄2) are used for imple-
menting the circuit for function D3. Comparison of logic circuits showed in
Figs. 6.12 and 6.22 shows that they include the same amount of LUTs. But the
circuit of MPBY(Γ1) FSM has more layers. Therefore, there is no sense in the
replacement of logical conditions for the case of GSA Γ1. So, this example is
shown only to demonstrate how the proposed method is applied.

Comparison of functions (6.26) and (6.45) shows that the replacement of logi-
cal conditions leads to simplifying the functions Dr ∈ Φ. This conclusion is true
for the general case [19]. In the general case, the replacement of logical conditions
is reasonable for FSMs of average and large complexity having M ≥ 200, L ≥ 50,
G ≈ 6. But this problem should be investigated.

Some optimization methods targeting optimization of the block of replacement
of logical conditions are discussed in the works [8, 37]. These methods are based
on the encoding of logical conditions. It leads to introducing the block of encoding
of the logical conditions (BELC). For example, the structural diagram of MPBLY
Moore FSM is shown in Fig. 6.23. In the expression MPBLY, the subscript L shows
that the encoding of logical conditions is applied in the particular model of FSM.

In the MPBLY Moore FSM, the block BLC implements the functions

whereas the block BELC the functions

The number of functions Z is determined by the parameter Rx

(6.46)P = P(Z , X),

(6.47)Z = Z(T).

(6.48)Rx =
⌈
log2 (L + 1)

⌉
.

Fig. 6.22   Logic circuit of
Moore FSM MPBY(Γ1)

283

Let us point out that the synthesis methods for Moore FSM based on this idea
are not published. We treat these methods as one of possible directions of further
investigations.

References

	 1.	Baranov SI (1994) Logic synthesis of control automata. Kluwer Academic Publishers,
Boston

	 2.	De Micheli G (1994) Synthesis and optimization of digital circuits. McGraw-Hill, New York
	 3.	Grout I (2008) Digital systems design with FPGAs and CPLDs. Elsevier, Oxford University

Press, Inc, Amsterdam
	 4.	Jenkins J (1995) Design with FPGAs and CPLDs. Prentice Hall, New York
	 5.	Maxfield C (2004) The design warrior’s guide to FPGAs. Elsevier, Amsterdam
	 6.	Zeidman B (2002) Designing with FPGAs and CPLDs. CMP Books, Lawrence
	 7.	Maxfield C (2008) FPGAs: instant access. Elsevier, Oxford
	 8.	Barkalov AA, Titarenko LA (2009) Synthesis of microprogrammed automata with custom-

ized and programmable VLSI. UNITEX, Donetsk (in Russian)
	 9.	Baranov S, Sklyarov V (1986) Digital devices on programmable LSI with matrix structure.

Radio i Swiaz, Moscow (in Russian)
	10.	Łuba T, Rawski M, Jachna Z (2002) Functional decomposition as a universal method for

logic synthesis of digital circuits. In: Proceeding of IX international conference MIXDES’02,
pp 285–290

	11.	Łuba T (1994) Multi-level logic synthesis based on decomposition. Microprocess Microsyst
18(8):429–437

	12.	Łuba T, Selvaraj H (1995) A general approach to boolean functions decomposition and its
application in fpga-based synthesis. VLSI Des 3(3):289–300

	13.	Kania D (2004) The logic synthesis for the PAL-based complex programmable logic devices.
Zeszyty naukowe Politechniki Ślaskiej, Gliwice (in Polish)

	14.	Kania D (2011) Efficient technology mapping method for pal-based devices. In: Adamski M,
Barkalov A, Wegrzyn M (eds) Design of digital systems and devices. Springer, Berlin, pp
145–163

	15.	Kania D, Czerwinski R (2012) Area and speed oriented synthesis of FSMs for PAL-based
CPLDs. Microprocess Microsyst 36(1):45–61

T

Start

Clock

Y
X

P

Z

Fig. 6.23   Structural diagram of Moore MPBLY Moore FSM

6.4  Synthesis of Moore FSM with Replacement of Logical Conditions

284 6  Hardware Reduction in Logic Circuits of Moore FSM

	16.	Kania D, Milik A (2010) Logic synthesis based on decomposition for CPLDs. Microprocess
Microsyst 34(1):28–38

	17.	Opara A, Kania D (2010) Decomposition-based logic synthesis for PAL-based CPLDs. Int J
Appl Math Comput Sci 20(2):367–384

	18.	Baranov S (2008) Logic and system design of digital systems. TUT Press, Tallinn
	19.	Barkalov A, Titarenko L (2009) Logic synthesis for FSM-based control units. Springer,

Berlin
	20.	Barkalov A, Barkalov A (2001) Optimization of logic circuit of Moore FSM with program-

mable LSI. Control Syst Mach 6:38–41 (in Russian)
	21.	Barkalov A, Barkalov A (2002) Synthesis of control units with transformation of objects.

Control Syst Mach 6:41–44 (in Russian)
	22.	Barkalov A, Barkalov A (2005) Design of Mealy FSMs with transformation of object codes.

Int J Appl Math Comput Sci 15(1):151–158
	23.	Barkalov A, Titarenko L, Barkalov A (2012) Structural decomposition as a tool for the

optimization of an FPGA-based implementation of a Mealy FSM. Cybern Syst Anal
48(2):313–323

	24.	Solovjov V, Klimowicz A (2008) Logic design of digital systems on the base of programma-
ble logic devices. Hot line-Telecom, Moscow (in Russian)

	25.	Solovjov VV (2001) Design of digital systems using the programmable logic integrated cir-
cuits. Hot line-Telecom, Moscow (in Russian)

	26.	Palagin A, Barkalov A, Usifov S, Shvets A (1992) Synthesis of microprogrammed automata
with FPLDs. IC NAC Ukraine, Preprint 92:18–26 (in Russian)

	27.	Borowik G (2007) Finite state machine synthesis for FPGA structure with embedded mem-
ory blocks. PhD thesis, WUT, Warszawa (in Polish)

	28.	Rawski H, Tomaszewicz P, Borowski G, Luba T (2011) Logic synthesis method of digital
circuits designed for implementation with embedded memory blocks on FPGAs. In: Wegrzyn
M, Adamski M, Barkalov A (eds) Design of digital systems and devices. Springer, Berlin, pp
121–144

	29.	Barkalov A, Titarenko L (2008) Logic synthesis for compositional microprogram control
units. Springer, Berlin

	30.	Barkalov AA (2002) Synthesis of control units with PLDs. Donetsk National Technical
University, Donetsk (in Russian)

	31.	Achasova SN (1987) Algorithms of synthesis of automata on programmable arrays. Radio i
Swiaz, Moscow (in Russian)

	32.	Barkalov A (1998) Principles of logic optimization for a Moore microprogrammed automa-
ton. Cybern Syst Anal 34(1):54–61

	33.	Yang S (1991) Logic synthesis and optimization benchmarks user guide. Technical report,
Microelectronics center of North Carolina

	34.	Barkalov A, Titarenko L, Hebda O (2010) Matrix implementation of Moore FSM with
expansion of coding space. Meas Autom Monit 56(7):694–696

	35.	Barkalov A, Titarenko L, Hebda O, Soldatov K (2009) Matrix implementation of Moore
FSM with encoding of collections of microoperations. Radioelectron Inf 4:4–8

	36.	Barkalov A, Matvienko A, Tsololo S (2011) Optimization of logic circuit of Moore FSM
with FPGAs. IC NAC Ukraine 10:22–29 (in Russian)

	37.	Barkalov A, Zelenjova I (2001) Optimization of logic circuit of control unit with replacement
of variables. Control Syst Mach 1:75–78 (in Russian)

285

Abstract  Chapter deals with design of Moore FSMs based on using embedded
memory blocks (EMB). The methods of trivial EMB-based implementation of logic
circuits of both Moore and Mealy FSMs are discussed. In this case, only one EMB is
enough for implementing the circuit. Next, the optimization methods are discussed
based on replacement of logical conditions as well as encoding of the collections of
microoperations. The considered methods are based on encoding the rows of FSM’s
structure table. All these methods lead to two-level models of Mealy FSMs and to
three-level models of Moore FSMs. Next, these methods are combined together
for further optimizing the hardware amount in FSM logic circuits. The last section
considers applying PES-based methods in EMB-based Moore FSMs. All discussed
methods are illustrated by examples. The chapter is written together with PhD
Malgorzata Kolopienczyk (University of Zielona Gora, Poland).

7.1 � Trivial Implementation of Mealy and Moore FSMs

The majority of FPGAs include three main blocks: look-up table (LUT) elements
connected with programmable flip-flops, embedded memory blocks (EMB), and a
matrix of programmable interconnections [7, 9]. One LUT together with a flip-flop
forms a logic element (LE), two LEs form a slice, two slices form a configurable
logic block (CLB). The fast interconnections are used inside a CLB [20], but it
is a very rear situation when only one CLB is enough for implementing an FSM
logic circuit. The flip-flop of LE can be bypassed, so the output of LUT can be
either registered or combinational. As a rule, the number of LUT’s inputs is rather
small (S ≤ 6) [1, 20]. If the number of arguments of a Boolean function exceeds
the number of LUT’s inputs, then more than one LUT is necessary to implement
the corresponding combinational circuit. In this case, the methods of functional
decomposition are used [8, 10, 13]. It leads to increasing for the number of layers
of logic in a resulting circuit and to complication for interconnections. In turn, it
results in increasing for the propagation time and power consumption [17, 19]. To

Chapter 7
Design of FSMs with Embedded
Memory Blocks

V. Sklyarov et al., Synthesis and Optimization of FPGA-Based Systems,
Lecture Notes in Electrical Engineering 294, DOI: 10.1007/978-3-319-04708-9_7,
© Springer International Publishing Switzerland 2014

286 7  Design of FSMs with Embedded Memory Blocks

improve the parameters of an FSM circuit, the embedded memory blocks should
be used for implementing some its parts [5, 11, 12, 15, 18].

As it is mentioned before, the EMBs of up-to-day FPGAs have a property of
configurability. It means that such parameters as the number of cells and their out-
puts can be changed [7, 9]. Typical configurations of modern EMBs are the fol-
lowing: 16 K × 1, 8 K × 2, 4 K × 4, 2 K × 8, 1 K × 18, 512 × 36 (bits) [7, 9].

So, the modern EMBs are very flexible and can be tuned to meet demands of
a particular design project. Let an EMB contain V cells and tF outputs. Let Vo be
a number of cells for the number of outputs tF = 1. The number V can be deter-
mined as

Let us discuss a case when a single EMB is enough for implementing an FSM’s
logic circuit. Let the following condition take place:

In this case a Mealy FSM can be implemented in a trivial way [6] using only one
EMB and R flip-flops forming the register (Fig. 7.1). Let us denote this circuit as a
Mealy FSM U1.

In FSM U1, the EMB implements functions

The circuit of RG is implemented using R logic elements whose flip-flops are pro-
grammed as D flip-flops.

Let us consider an example of FSM design for a GSA Γ3 (Fig. 7.2).

(7.1)V = ⌈Vo/tF⌉.

(7.2)2L+R(R + N) ≤ Vo.

(7.3)Y = Y(X, T),

(7.4)Φ = Φ(X, T).

Fig. 7.1   Structural diagram
of Mealy FSM U1

Fig. 7.2   Graph-scheme of
algorithm Γ3

287

The GSA Γ3 is marked by the states of Mealy FSM using the rules from [2]. The
following sets and their parameters can be derived from the GSA Γ3: A = {a1, a2},
M = 2, X = {x1, x2}, L = 2, Y = {y1, …, y4}, N = 4, R = 1, T = {T1} and Φ = {D1}.

Let the symbol Ui(Γj) mean that the model Ui of FSM is used for synthesis of
a control unit represented by a GSA Γj. To apply the model U1(Γ3), the following
conditions should take places: tF ≥ 5, SA = 3. Here the symbol SA stands for the
number of address inputs of EMB. The design method for FSM U1(Γj) includes all
steps used for designing a Mealy FSM [2], as well as one additional step. This step
is reduced to some transformation of the initial structure table.

In the case of FSM U1(Γ3), the structure table includes H1(Γ3) = 5 rows
(Table 7.1). In this table, the trivial state codes are used (K(a1) = 0, K(a2) = 1). To
design the logic circuit, the initial structure table should be transformed.

The transformed structure table should include V1 rows:

This table includes the following columns: K(am), X, Y, Φ, v, where v is a number
of a row. In the discussed example, the transformed structure table has V1(Γ3) = 8
rows (Table 7.2).

In the transformed structure table, the columns K(am) and X determine the
address of a cell, whereas the columns Y and Φ determine its content. Each row h
of the initial structure table corresponds to n(h) cells of EMB:

In the expression (7.6), the symbol Lh stands for the number of logical conditions
from the row number h. The transitions from the state am ∈ A are represented by
H(L) rows of the transformed structure table:

(7.5)V1 = 2R+L.

(7.6)n(h) = 2L−Lh .

(7.7)H(L) = 2L.

Table 7.1   Structure table of
Mealy FSM U1(Γ3)

am K(am) as K(as) Xh Yh Φh h

a1 0 a2 1 x1 y1y2 D1 1
a2 1 x̄1 y3 D1 2

a2 1 a1 0 x1 y2y4 – 3
a1 0 x̄1x2 – – 4
a2 1 x̄1x̄2 y3 D1 5

Table 7.2   Transformed
structure table of Mealy FSM
U1(Γ3)

K(am) X Y Φ v

T1 x1x2 y1y2y3y4 D1

0 00 0010 1 1
0 01 0010 1 2
0 10 1100 1 3
0 11 1100 1 4
1 00 0010 1 5
1 01 0000 0 6
1 10 0101 0 7
1 11 0101 0 8

7.1  Trivial Implementation of Mealy and Moore FSMs

288 7  Design of FSMs with Embedded Memory Blocks

Let H(am) be the number of transitions from the state am ∈ A. If there is
H(am) < H(L), then the contents of some cells are identical. For example, the row
1 of Table 7.1 includes only x1. Because of the equality x1 = x1x2 ∨ x1x̄2, the rows
3 and 4 of Table 7.2 include the same data for columns Y and Φ. All other rows of
initial structure table are transformed in this very way.

The functional circuit of FSM U1(Γ3) in shown in Fig. 7.3. To stress the fact
that flip-flops of particular logic elements are used, the corresponding LUTs are
connected with pulses Start and Clock (Fig. 7.4).

Now, let us consider the trivial EMB-based implementation for a Moore FSM.
If the condition (7.2) takes place, then the model U1 can be used for Moore FSM.
Let us do not discuss this trivial case. Let the following conditions take places:

The condition (7.8) shows that it is impossible to use the model U1. The condition
(7.9) shows that the circuit for system Φ can be implemented using a single EMB.
The condition (7.10) shows that the circuit for system

can be implemented using a single EMB. Therefore, the structural diagram for
Moore FSM U2 can be obtained (Fig. 7.5) using conditions (7.9)–(7.10).

In the model U2, the block EMB1 implements the system of input memory
functions (7.3), whereas the block EMB2 the system of microoperations (7.11).
The design method for FSM U2 includes the following steps:

1.	 Constructing the set of states A.
2.	 State assignment.

(7.8)2L+R(R + N) > Vo;

(7.9)R · 2L+R ≤ Vo;

(7.10)N · 2R ≤ Vo.

(7.11)Y = Y(T)

Fig. 7.3   Logic circuit of
Mealy FSM U1(Γ3)

Fig. 7.4   Structural diagram
of CityplaceMoore FSM U2

289

3.	 Constructing the structure table.
4.	 Transformation of the structure table.
5.	 Constructing the table of microoperations.
6.	 Implementing the FSM logic circuit with EMBs and LUTs of a given

FPGA chip.

Let us discuss an example of design for Moore FSM U2(Γ4), where the GSA Γ4
is shown in Fig. 7.5.

The GSA Γ4 is marked by the states of Moore FSM using the rules from [2].
The following sets and their parameters can be derived from the GSA Γ4: A = {a1,
…, a5}, M = 5, X = {x1}, L = 1, Y = {y1, …, y4}, N = 4, R = 3, T = {T1, T2, T3},
and Φ = {D1, D2, D3}. Let us encode the states am ∈ A in the following manner:
K(a1) = 000, …, K(a5) = 100. Using these codes and GSA Γ4, the structure table
of FSM U2(Γ4) can be constructed (Table 7.3).

This table includes H2(Γ4) = 6 rows. The column am of this table contains the
current state am ∈ A, as well as the set of microoperations Y(am) ⊆ Y generated in
this state.

The transformed structure table of Moore FSM U2 includes V2 rows where
V2 = V1. The transformed structure table includes the columns K(am), X, Φ, v. In
the case of Moore FSM U2(Γ4) this table includes V2(Γ4) = 16 rows. Because the
rows 11–16 contain only zeros, they are not shown in Table 7.4.

To make the connection between Tables 7.3 and 7.4 more obvious, the last
includes the column h. This column shows the numbers of rows of structure table

Fig. 7.5   Graph-scheme of
algorithm Γ4

Table 7.3   Structure table of
Moore FSM U2(Γ4)

am K(am) as K(as) Xh Φh h

a1 000 a2 001 1 D3 1
a2 (y1y2) 001 a3 010 x1 D2 2

a4 011 x̄1 D2D3 3
a3 (y3) 010 a5 100 1 D1 4
a4 (y1y4) 011 a5 100 1 D1 5
a5 (y2y3) 100 a1 000 1 – 6

7.1  Trivial Implementation of Mealy and Moore FSMs

290 7  Design of FSMs with Embedded Memory Blocks

corresponding to the rows of transformed structure table. For example, the rows 1
and 2 of Table 7.4 correspond to the row 1 of Table 7.3.

The table of microoperations contains the columns K(am), Y, m. In the case of
FSM U2(Γ4) it should include 8 rows. Only five of them are shown in Table 7.5.
To construct this table, data from the column am of the structure table are used.

Let an FPGA chip in use include EMB having configurations 16 × 4 and 8 × 8.
The first of them is used for implementing the transformed structure table. Both
configurations can be used for implementing the table of microoperations. Let us
choose the configuration 8 × 8 for implementing the system Y. The logic circuit of
Moore FSM U2(Γ4) is shown in Fig. 7.6.

In this circuit, LUT1–LUT3 are used for implementing the register RG. Let us
point out that both blocks EMB1 and EMB2 have unused resourses.

It is known, that conditions (7.2), (7.9) and (7.10) take places only for very sim-
ple FSMs [16]. If these conditions are violated, the different methods of structural
decomposition [3, 4] should be applied for optimizing EMB-based circuits of FSMs.

Table 7.4   Transformed
structure table of Moore FSM
U2(Γ4)

K(am) X Φ v h

T1T2T3 x1 D1D2D3

000 0 001 1 1
000 1 001 2 1
001 0 011 3 3
001 1 010 4 2
010 0 100 5 4
010 1 100 6 4
011 0 100 7 5
011 1 100 8 5
100 0 000 9 6
100 1 000 10 6

Table 7.5   Table of
microoperations of Moore
FSM U2(Γ4)

K(am) Y m

T1T2T3 y1y2y3y4

000 0000 1
001 1100 1
010 0010 3
011 1001 2
100 0110 4

Fig. 7.6   Logic circuit of
Moore FSM U2(Γ4)

x1

y1
y2
y3
y4

T1

T2

T3

D1

D2

D3

T1 T1

T2 T2

T3 T3

T

291

7.2 � Structural Decomposition of FSMs

To diminish the numbers of LUTs in FSM logic circuits, the methods of structural
decomposition can be used. The structural decomposition is resulted in increasing for
the number of structural levels in an FSM circuit. There are the following methods of
structural decomposition [2, 3, 14]: (1) replacement of logical conditions; (2) encoding
of collections of microoperations; (3) encoding of the fields of compatible microopera-
tions; (4) encoding of the rows of structure table. Let us discuss these methods.

Let X(am) be a set of logical conditions determining transitions from the state
am ∈ A, and let

If the following condition takes place

then the method of replacement of logical conditions [2] can be applied. Let
P = {p1, …, pG} be a set of additional variables used for the replacement of logi-
cal conditions. To execute the replacement, a special table of replacement of log-
ical conditions should be constructed. In this table, the columns are marked by
variables pg ∈ P, whereas the rows by states am ∈ A. So, the table includes G col-
umns and M rows. If a variable pg ∈ P replaces a logical condition xl ∈ X in a state
am ∈ A, then the symbol xl should be written on the intersection of the row am and
column pg of the table. To minimize the hardware amount for a logic circuit used
for the replacement, the distribution of logical conditions is executed in such a
manner that each variable xl ∈ X is always placed in the same column of the table.
Of course, such a distribution is not always possible. The following system can be
derived from the table of replacement of logical conditions:

The structural diagram of MP Mealy FSM is shown in Fig. 7.7. The symbol M
in MP denotes existence of the block of replacement of logical conditions (BRLC)
and the symbol P the block of input memory functions (BIMF).

In MP Mealy FSM, the block BRLC is implemented with LUTs. It generates
the functions (7.14). The block BIMF can be implemented using either LUTs or
EMBs. It implements the functions

(7.12)G = max(|X(a1)|, . . . , |X(aM)|).

(7.13)G << L,

(7.14)P = P(T , X).

(7.15)Φ = Φ(T , P);

(7.16)Y = Y(T , P).

Fig. 7.7   Structural diagram
of MP Mealy FSM

7.2  Structural Decomposition of FSMs

292 7  Design of FSMs with Embedded Memory Blocks

The structural diagram of MPY Moore FSM is shown in Fig. 7.8. The symbol Y
denotes the existence of the block of microoperations (BMO).

In MPY Moore FSM, the block BRLC generates functions (7.14), the block BIMF
implements functions (7.15) and the block BMO generates the functions (7.11). Both
blocks BIMF and BMO can be implemented using either LUTs or EMBs.

The design methods of MP and MPY FSMs are discussed in the next chapter of
this book.

Let To different collections of microoperations Yt ⊆ Y be written in operator
vertices of a GSA Γ. Let us encode each collection Yt by a binary code K(Yt) hav-
ing RY bits, where

The value 1 is added to To to take into account the empty collection yo = ∅. Let us
use the variables zr ∈ Z for encoding of the collections Yt ⊆ Y, where |Z| = RY.

Application of this approach leads to the model of PY Mealy FSM shown in
Fig. 7.9. The symbol Y denotes the block of microoperations BMO.

In PY Mealy FSM, the block BIMF implements the system (7.3) and system of
functions

The block BMO implements functions

The circuit of BMO can be implemented using either LUTs or EMBs.
In the case of Moore FSM, this method is not used. It is connected with the fact

that output functions of Moore FSM depend only on its inputs. This method can
be applied together with the method of object transformation [3], but we do not
discuss this approach in our book.

(7.17)RY =
⌈
log2 (To + 1)

⌉
.

(7.18)Z = Z(T , X).

(7.19)Y = Y(Z).

Fig. 7.8   Structural diagram
of MPY Moore FSM

X
T

Start
Clock

YP Φ

Fig. 7.9   Structural diagram
of PY Mealy FSM

293

The joint application of the replacement of logical conditions and encoding of
collections of microoperations leads to the MPY Mealy FSM (Fig. 7.10).

In MPY Mealy FSM, the block BIMF generates functions (7.15) and functions

Let us name microoperations yi, yj ∈ Y compatible, if they do not written in the
same operator vertices of the initial GSA [3]. Let the set of microoperations Y be
divided by the classes of compatible microoperations and represented as

In (7.21), Yk is a class number k of compatible microoperations (k = 1, K). Let it
be |Yk| = Nk. Let us encode the microoperations yn ∈ Yk by binary codes K(yn) hav-
ing Rk bits, where

The value 1 is added to Nk to take into account the fact that no microoperation
yn ∈ Yk belongs to any collection of microoperations Yt ⊆ Y. To encode all micro-
operations, it is enough RD variables zr ∈ Z, where

The set Z can be represented as Z = Z1 ∪ Z2 ∪ … ∪ Zk; the variables zr ∈ Zk are
used for encoding compatible microoperations yn ∈ Yk. After encoding the micro-
operations, the system Y is represented as the following collection of subsystems:

Microoperations yn ∈ Yk are generated by a decoder DCk having Rk inputs and Nk
outputs (k = 1, K).

The totality of decoders forms a block BD. Application of this method leads to
PD Mealy FSM shown in Fig. 7.11.

In PD Mealy FSM, the block BIMF is implemented using either LUTs or
EMBs. It generates functions (7.3) and (7.20). The block BD is implemented using
LUTs; it implements the system (7.24).

Of course, this method can be applied together with the replacement of logical
conditions. It leads to MPD Mealy FSM. If the block BMO (Fig. 7.10) is replaced

(7.20)Z = Z(T , P).

(7.21)Y = Y
1 ∪ Y

2 ∪ · · · ∪ Y
K

.

(7.22)Rk =
⌈
log2 (Nk + 1)

⌉
.

(7.23)RD = R1 + R2 + · · · + RK .

(7.24)

Y1 = Y(Z1);
...

YK = Y(ZK).

;

Fig. 7.10   Structural diagram
of MPY Mealy FSM

7.2  Structural Decomposition of FSMs

294 7  Design of FSMs with Embedded Memory Blocks

by the block BD, then MPY Mealy FSM is transformed into MPD Mealy FSM. As
in the previous case, this approach is not directly used in Moore FSM.

Let us encode each row Fh of a Mealy FSM structure table by binary codes
K(Fh) having RH bits, where

Let us use the variables zr ∈ Z for this encoding, where there is |Z| = RH. It leads
to PH Mealy FSM (Fig. 7.12).

In PH Mealy FSM, the block of encoding of rows (BER) implements functions
(7.18); the block BIMF implements the functions (7.19) and the input memory
functions represented as the following system:

In MPH Mealy FSM, the block BRLC implements the system (7.14), the block
BER the system (7.20), the block BIMF the systems (7.19) and (7.26) (Fig. 7.13).
The same approach can be used in the case of Moore FSM. Let us discuss design
methods and examples for some of models discussed in Sect. 7.2.

If EMBs are used for implementing FSM circuit, only models PY and PH can
be used for Mealy FSM, whereas only the model PH can be used for Moore FSM.

(7.25)RH =
⌈
log2 H

⌉
.

(7.26)Φ = Φ(Z).

Fig. 7.11   Structural diagram
of PD Mealy FSM

Fig. 7.12   Structural diagram
of PH Mealy FSM

Fig. 7.13   Structural diagram
of MPH Mealy FSM

295

7.3 � Design of Mealy FSM with Encoding of the Collections
of Microoperations

The structural diagram of EMB-based PY Mealy FSM is shown in Fig. 7.14.
To stress the fact that both blocks BIMF and BMO are implemented with

EMBs, let us denote the FSM (Fig. 7.14) as PYm Mealy FSM. In PYm FSM, the
block EMB1 implements functions (7.3) and (7.18); the block EMB2 implements
functions (7.19). The design method of PYm Mealy FSM includes the following
steps:

1.	 Constructing the set of states A.
2.	 State assignment.
3.	 Constructing the structure table of Mealy FSM.
4.	 Encoding of collections of microoperations.
5.	 Constructing the transformed structure table.
6.	 Constructing the table of BIMF.
7.	 Constructing the table of BMO.
8.	 Implementing the FSM logic circuit with EMBs and LUTs.

The model PYm can be applied if the following conditions take places:

Let us discuss an example of design for PYm(Γ5) where the GSA Γ5 is shown in
Fig. 7.15. This GSA is marked by states of Mealy FSM using the rules from [2].

The following sets and their parameters can be found for Mealy FSM U1(Γ5):
A = {a1, …, a5}, M = 5, X = {x1, x2, x3}, L = 3, Y = {y1, …, y7}, N = 7, R = 3,
T = {T1, T2, T3}, Φ = {D1, D2, D3}. Let us encode the states am ∈ A in the trivial
way: K(a1) = 000,…, K(a5) = 100.

Let the FPGA chip in use have Vo = 384(bits) and let the following configu-
rations of EMB exist: 64 × 6 and 32 × 12 (bits). For the FSM U1(Γ5), there is
2L+R(R + N) = 640 bits. So, the model U1(Γ5) cannot be used.

There are To = 5 collections of microoperations in the operator vertices of GSA
Γ5: Y1 = {y1, y2, y3}, Y2 = {y1, y4}, Y3 = {y2, y5}, Y5 = {y3, y6, y7}. Also, there
are no microoperations generated during the transition from a4 into a1. Therefore,
there is the collection y0 = ∅ in the discussed case. Its existence should be taken

(7.27)2L+R(R + RY) ≤ Vo;

(7.28)N · 2
RY ≤ Vo.

Fig. 7.14   Structural diagram
of EMB-based PY Mealy
FSM

7.3  Design of Mealy FSM with Encoding of the Collections of Microoperations

296 7  Design of FSMs with Embedded Memory Blocks

into account for finding the number of additional variables. Using (7.17), it can be
found that there are RY = 3 and Z = {z1, z2, z3}.

Let us check the conditions (7.27)–(7.28). In the case of GSA Γ5, the expression
(7.27) is the following: 384 = 384. The expression (7.28) produces the inequality
56 < 384. So, both conditions take places and the model PYm(Γ5) can be used.

The structure table of Mealy FSM U1(Γ5) includes H1(Γ5) = 9 rows (Table 7.6).
Because EMBs are used for implementing all combinational parts of the FSM logic

circuit, the collections of microoperations can be encoded in the arbitrary manner. Let
us encode them in the following manner: K(Y0) = 000, K(Y1) = 001, … , K(Y5) = 101.

To construct the transformed structure table, the column Yh of initial table
should be replaced by columns Yt and K(Yt). Obviously, the number of rows in the
transformed structure table is the same as for the initial structure table of Mealy
FSM. The transformed structure table of Mealy FSM PYm(Γ5) is represented by
Table 7.7. The transformed structure table is used for constructing the table of
BIMF. In the case of PYm FSM, this table includes the following columns: K(am),
X, Z, Φ, v. The columns K(am) and X form an address of the cell of EMB. The col-
umns Z and Φ determine contents of the cells. In the case of Mealy FSM PYm(Γ5),
there is L = 3 and, therefore, H(L) = 8. So, the table of BIMF includes 40 rows

Fig. 7.15   Initial GSA Γ5

1y 2y

1x

7y
6y

3y

2x

3x

2y 5y 3y

2y 5y 1y 4y

1y 4y

6y3y

 3x

Table 7.6   Structure table of
Mealy FSM U1(Γ5)

am K(am) as K(as) Xh Yh Φh h

a1 000 a2 001 1 y1y2y3 D3 1
a2 001 a3 010 x1 y1y4 D2 2

a5 100 x̄1x2 y2y5 D1 3
a5 100 x̄1x̄2 y3y6 D1 4

a3 010 a4 011 1 y3y6y7 D2D3 5
a4 011 a4 011 x3 y3y6y7 D2D3 6

a1 000 x̄3 – – 7
a5 100 a1 000 x3 y2y5 – 8

a1 000 x̄3 y1y4 – 9

297

where there is some useful data. Let us point out, that there is V1(Γ5) = 64. So, 24
rows of the table include only zeros. The part of the table of BIMF is represented
by Table 7.8.

Table 7.8 represents transitions from the state a2 ∈ A. The column h is added to
show the connection between the rows of Tables 7.7 and 7.8.

The table of BMO includes the following columns: K(Yt), Yt, v. It is constructed
in a trivial way. This table includes Zo rows where

In the case of Mealy FSM PYm(Γ5), this table contains Zo = 8 rows (Table 7.9).
The logic circuit of Mealy FSM PYm(Γ5) is shown in Fig. 7.16.

(7.29)Zo = 2RY .

Table 7.7   Transformed
structure table of Mealy FSM
PYm(Γ5)

am K(am) as K(as) Xh Yt K(Yt) Φh h

a1 000 a2 001 1 Y1 001 D3 1
a2 001 a3 010 x1 Y2 010 D2 2

a5 100 x̄1x2 Y3 011 D1 3
a5 100 x̄1x̄2 Y4 100 D1 4

a3 010 a4 011 1 Y5 101 D2D3 5
a4 011 a4 011 x3 Y5 101 D2D3 6

a1 000 x̄3 Y0 000 – 7
a5 100 a1 000 x3 Y3 011 – 8

a1 000 x̄3 Y2 010 – 9

Table 7.8   The part of table
of BIMF (for state a2)

K(am) X Z Φ v h

T1T2T3 x1x2x3 z1z2z3 D1D2D3

001 000 100 100 9 4
001 001 100 100 10 4
001 010 011 100 11 3
001 011 011 100 12 3
001 100 010 010 13 2
001 101 010 010 14 2
001 110 010 010 15 2
001 111 010 010 16 2

Table 7.9   Table of BMO for
Mealy FSM PYm(Γ5)

K(Yt) Yt v

z1z2z3 y1y2y3y4y5y6y7

000 0 0 0 0 0 0 0 1
001 1 1 1 0 0 0 0 3
010 1 0 0 1 0 0 0 2
011 0 1 0 0 1 0 0 4
100 0 0 1 0 0 1 0 5
101 0 0 1 0 0 1 1 6
110 0 0 0 0 0 0 0 7
111 0 0 0 0 0 0 0 8

7.3  Design of Mealy FSM with Encoding of the Collections of Microoperations

298 7  Design of FSMs with Embedded Memory Blocks

As you can see from Fig. 7.16, the circuit of BIMF is implemented using EMB
with the configuration 64 × 6 bits, whereas the circuit of BMO is based on EMB
with configuration 32 × 8 bits.

7.4 � Design of Mealy FSM with Encoding of the Fields
of Compatible Microoperations

The structural diagram of EMB-based PD Mealy FSM is shown in Fig. 7.17.
In this model, the block EMB implements functions (7.3) and (7.20). The

block LUTer implements functions (7.24). The circuits of both register RG and
LUTer are implemented using LUTs. The design method of PD Mealy FSM
includes the same steps as the method for PYm Mealy FSM. The only difference
is for the step 4.

In the case of PD Mealy FSM, the step 4 is connected with finding and encod-
ing of the fields of compatible microoperations. The model of PD Mealy FSM can
be applied if the following condition takes place:

Let us discuss an example of design for Mealy FSM PD(Γ5). The GSA Γ5 is
shown in Fig. 7.15. Let us point out that all sets and their parameters are already
found is Sect. 7.3. Let it be K(a1) = 000, … , K(a5) = 100.

Let us find the partition ΠY = {Y1, …, YK} for the set Y. In the case of FSM
PD(Γ5), the following classes of compatible microoperations can be formed:
Y1 = {y1, y5, y6}, Y2 = {y2, y4, y7} and Y3 = {y3}. Therefore, K = 3, N1 = N2 = 3
and N3 = 1. Using (7.22) and (7.23), the following values can be found:

(7.30)2L+R(R + RD) ≤ Vo.

Fig. 7.16   Logic circuit of
Mealy FSM PYm(Γ5)

x1

y1
y2
y3
y4

T1

T2

T3

D1

D2

D3

T1

z1

T2

z2

T3

z3

x2

x3

y5
y6
y7

Fig. 7.17   Structural diagram
of EMB-based PD Mealy
FSM

299

R1 = R2 = 2, R3 = 1 and RD = 5. It means that Z1 = {z1, z2}, Z2 = {z3, z4} and
Z3 = {z5}.

Let the FPGA chip in use have Vo = 512 (bits) and let the configuration 64 × 8
exist. It was found that Vo ≥ 640 is required for implementing the logic circuit of
Mealy FSM U1(Γ5). So, the model U1(Γ5) cannot be used. The expression (7.30)
produces the following equality: 512 = 512. Therefore, the model PD(Γ5) can be
used.

Let us encode the microoperations yn ∈ Yk in the following way: K(y1) =
K(y2) = 01, K(y4) = K(y5) = 10, K(y6) = K(y7) = 11 and K(y3) = 1.

The structure table of Mealy FSM U1(Γ5) is represented by Table 7.6. The
transformed structure table of Mealy FSM PD(Γ5) has the same columns as
Table 7.7. For the discussed example, it is represented by Table 7.10.

Let us explain how the column K(Yt) is filled. The code K(Yt) of a collection
of microoperations Yt ⊆ Y can be represented as a concatenation of codes K(yn)k
(k = 1, K), where yn ∈ Yt:

In (7.31), the sign * denotes the concatenation.
For example, there is Y1 = {y1, y2, y3}. As we know, there are K(y1) = 01,

K(y2) = 01 and K(y3) = 1. Therefore, the first row of Table 7.10 should include the
code 01011 in the column K(Yt). The collection Y4 = {y3, y6} and y3 ∈ Y3, y6 ∈ Y1.
So, this collection does not include microoperations yn ∈ Y2. It means that the code
K(∅)2 = 00 should be used. It gives the code K(Y4) = 11001. All other codes K(Yt)
are formed in this very manner.

The table of BIMF for PD FSM is constructed on the base of transformed
structure table. In the case of FSM PD(Γ5), this table includes V1(Γ5) = 64 rows.
The part of this table is represented by Table 7.11. This table describes transitions
from the state a2 ∈ A.

In the case of PD FSM, there is no need in table of BMO. The system (7.24)
can be derived from the table with codes of microoperations. In the discussed
example, the following system can be derived from the codes of microoperations:
y1 = z̄1z2, y2 = z̄3z4, y3 = z5, y4 = z1z̄2, y6 = z1z2, y7 = z3z4.

The logic circuit of FSM PD(Γ5) is shown in Fig. 7.18.

(7.31)Yt = K(yn)
1 ∗ K(yn)

2 ∗ · · · ∗ K(yn)
K

.

Table 7.10   Transformed
structure table of Mealy FSM
PD(Γ5)

am K(am) as K(as) Xh Yt K(Yt) Φh h

a1 000 a2 001 1 Y1 01011 D3 1
a2 001 a3 010 x1 Y2 01100 D2 2

a5 100 x̄1x2 Y3 10010 D1 3
a5 100 x̄1x̄2 Y4 11001 D1 4

a3 010 a4 011 1 Y5 11111 D2D3 5
a4 011 a4 011 x3 Y5 11111 D2D3 6

a1 000 x̄3 Y0 00000 – 7
a5 100 a1 000 x3 Y3 10010 – 8

a1 000 x̄3 Y2 01100 – 9

7.4  Design of Mealy FSM with Encoding of the Fields

300 7  Design of FSMs with Embedded Memory Blocks

The circuit of BIMF is implemented using a single EMB having 64 × 8 bits.
Three logic elements are used for implementing the circuit of RG. At last, six
LUTs are used to implement the circuit of BMO. Obviously, the equation y3 = z5
is implemented without LUTs.

7.5 � Design of Mealy FSM with Encoding of the Rows
of Structure Table

The structural diagram of EMB-based PH Mealy FSM is shown in Fig. 7.19.
In this model, the block EMB1 implements functions (7.18), the block EMB2

functions (7.19) and (7.26). The design method of PH FSM includes the following
steps:

1.	 Constructing the set of states A.
2.	 State assignment.
3.	 Constructing the structure table of Mealy FSM.
4.	 Encoding of the rows of structure table.
5.	 Constructing the transformed structure table.

Table 7.11   The part of table
of BIMF for FSM PD(Γ5)

K(am) X Z Φ v h

T1T2T3 x1x2x3 z1z2z3z4z5 D1D2D3

001 000 11001 100 9 4
001 001 11001 100 10 4
001 010 10010 100 11 3
001 011 10010 100 12 3
001 100 01100 010 13 2
001 101 01100 010 14 2
001 110 01100 010 15 2
001 111 01100 010 16 2

Fig. 7.18   Logical circuit of
Mealy FSM PD(Γ5)

x1

y1

y3

T1

T2

T3

D1
D2

D3

T1

T2

T3

x2

x3

y5

y6

y2

y4

y7

z1
z2
z3
z4
z5

301

6.	 Constructing the table of BER.
7.	 Constructing the table of BIMF.
8.	 Implementing the logic circuit of FSM using EMBs and LUTs.

The model of PH FSM is applied if the following conditions take places:

Let us discuss an example of design for Mealy FSM PH(Γ5). As in the pre-
vious examples, there are the following sets and their parameters: A = {a1, …,
a5}, M = 5, X = {x1, x2, x3}, L = 3, Y = {y1, …, y7}, N = 7, R = 3, T = {T1, T2,
T3} and Φ = {D1, D2, D3}. Let us encode the states am ∈ A in the trivial way:
K(a1) = 000, …, K(a5) = 100.

Let the FPGA chip in use have Vo = 256 bits with configurations 256 × 1,
128 × 2, 64 × 4, 32 × 8 and 16 × 16 (bits). Because 640 bits are necessary for
implementing the logic circuit of U1(Γ5), this model cannot be used.

Because there is H1(Γ5) = 9, then RH = 4 and Z = {z1, …, z4}. For the
FSM PH(Γ5), the relations (7.32)–(7.33) are the following: 64 × 4 = 256 and
10 × 16 < 256. Therefore, the model PH(Γ5) can be used.

The structure table of the FSM U1(Γ5) is represented by Table 7.6. As it was
pointed out, the set of rows F = {F1, …, F9}. Let us encode the rows Fh ∈ F in the
trivial way: K(F1) = 0000, K(F2) = 0001, …, K(F9) = 1000.

To construct the transformed structure table, it is enough to replace the columns
Yh and Φh of the initial structure table by the column K(Fh). Obviously, this col-
umn contains a code for corresponding row. The transformed structure table of the
Mealy FSM PH(Γ5) is represented by Table 7.12.

(7.32)2L+R · RH ≤ Vo;

(7.33)(N + R) · 2
RH ≤ Vo.

Fig. 7.19   Structural diagram
of EMB-based PH Mealy
FSM

Table 7.12   Transformed
structure table of Mealy FSM
PH(Γ5)

am K(am) as K(as) Xh K(Fh) h

a1 000 a2 001 1 0000 1
a2 001 a3 010 x1 0001 2

a5 100 x̄1x2 0010 3
a5 100 x̄1x̄2 0011 4

a3 010 a4 011 1 0100 5
a4 011 a4 011 x3 0101 6

a1 000 x̄3 0110 7
a5 100 a1 000 x3 0111 8

a1 000 x̄3 1000 9

7.5  Design of Mealy FSM with Encoding of the Rows of Structure Table

302 7  Design of FSMs with Embedded Memory Blocks

The transformed structure table is used for constructing the table of BER. In
the case of PH FSM, this table includes the following columns: K(am), X, K(Fh), v.
For the Mealy FSM PH(Γ5) this table has V1(Γ5) = 64 rows. The part of this table
(for the state a2 ∈ A) is represented by Table 7.13.

The table of BIMF includes the following columns: K(Fh), Φ, Y, h. The first
column contains the address of the cell of EMB2. The contents of cell are deter-
mined by columns Φ and Y. This table is filled in the trivial way. The contents of
columns Φ and Y are taken from the structure table. In the case of FSM PH(Γ5),
this table includes H1(Γ5) = 9 rows (Table 7.14).

In this circuit, the block BER is implemented by EMB1 and the block BIMF is
implemented by EMB2. The content of EMB1(EMB2) is taken from Table 7.13
(Table 7.14). The logical circuit of Mealy FSM PH(Γ5) is shown in Fig. 7.20.

Let the condition (7.23) be violated for some GSA Γj and FPGA chip in use.
Let the following conditions are satisfied:

In this case, the model of PHY Mealy FSM (Fig. 7.21) can be used. All blocks
of PHY Mealy FSM are implemented using EMBs. The block BER implements
the system Z(T, X), the block BIMF implements the system Φ(Z) and

(7.34)(R + RY) · 2RH ≤ Vo;

(7.35)N · 2RY ≤ Vo.

(7.36)Z1 = Z1(Z).

Table 7.13   The part of table
of BER for FSM PH(Γ5)

K(am) X K(Fh) v h

T1T2T3 x1x2x3 z1z2z3z4

001 000 0011 9 4
001 001 0011 10 4
001 010 0010 11 3
001 011 0010 12 3
001 100 0001 13 2
001 101 0001 14 2
001 110 0001 15 2
001 111 0001 16 2

Table 7.14   Table of BIMF
of Mealy FSM PH(Γ5)

K(Fh) Φ Y h

z1z2z3z4 D1D2D3 y1y2y3y4y5y6y7

0000 001 1 1 1 0 0 0 0 1
0001 010 1 0 0 1 0 0 0 2
0010 100 0 1 0 0 1 0 0 3
0011 100 0 0 1 0 0 1 0 4
0100 011 0 0 1 0 0 1 1 5
0101 011 0 0 1 0 0 1 1 6
0110 000 0 0 0 0 0 0 0 7
0111 000 0 1 0 0 1 0 0 8
1000 000 1 0 0 1 0 0 0 9

303

The variables zr ∈ Z1 are used for encoding of collections of microoperations
Yt ⊆ Y.The number of these variables (RY) is determined by (7.17). The block
BMO implements the following system

Let us point out that the system (7.37) is the same as the system (7.19).
The design methods of PHY Mealy FSM includes the following steps:

	1.	Constructing the set of states A.
	2.	State assignment.
	3.	Constructing the structure table of Mealy FSM.
	4.	Encoding of the rows of structure table.
	5.	Constructing the transformed structure table.
	6.	Constructing the table of BER.
	7.	Encoding of the collection of microoperations.
	8.	Constructing the table of BIMF.
	9.	Constructing the table of BMO.
	10.	Implementing the logic circuit of FSM with a particular FPGA chip.

Let us discuss an example of design for Mealy FSM PHY(Γ5). Let us point out
that sets A, X, Y, T and Φ are already found, as well as their parameters. Let us
encode the states am ∈ A in the trivial way: K(a1) = 000, …, K(a5) = 100.

The structure table of the FSM U1(Γ5) is represented by Table 7.6. Let us use
the same codes K(Fh) as for the case of PH(Γ5). It allows constructing the trans-
formed structure table of Mealy FSM PHY(Γ5) which is the same as Table 7.12.

(7.37)Y = Y
(

Z1
)

.

Fig. 7.20   Logic circuit of
Mealy FSM PH(Γ5)

x1

y1
y2
y3
y4

T1

T2

T3

D1

D2
D3

T1

z1

T2

z2

T3

z3

x2

x3

y5
y6
y7

z4

T

Fig. 7.21   Structural diagram
of PHY Mealy FSM

1

7.5  Design of Mealy FSM with Encoding of the Rows of Structure Table

304 7  Design of FSMs with Embedded Memory Blocks

As it was found before, there are T0 = 5 collections of microoperations for
the case of FSM U1(Γ5). There are the following collections of microoperations:
Y1 = {y1, y2, y3}, Y2 = {y1, y4}, Y3 = {y2, y5}, Y4 = {y3, y6}, and Y5 = {y3, y6,
y7}. Because of it, there is RY = 3. Let us encode the collections Yt ⊆ Y in the
trivial way: K(Y0) = 000, K(Y1) = 001, …, K(Y5) = 100. Obviously, Y0 = ∅.

The table of BER for FSM PHY(Γj) is the same as for Mealy FSM PH(Γj). The
table of BIMF includes the following columns: K(Fh), Φ, K(Yt), h. This table is
constructed in the trivial way. It is similar to the table of BIMF for PHY(Γj) FSM.
In the case of FSM PHY(Γ5), this table includes H1(Γ5) = 9 rows (Table 7.15).

As follows from Table 7.15, the set Z1 includes the variables z5–z7. The table of
BMO is constructed in the same way as it is done for PY FSM. The logic circuit of
Mealy FSM PHY(Γ5) is shown in Fig. 7.22.

This circuit includes three levels of EMBs. It is the slowest implementation of
FSM equivalent to U1(Γ5). Let us point out that this FSM can be implemented
using only one level of EMBs having configuration 64 × 4 (Fig. 7.23).

Let us denote a Mealy FSM with the single-level structure as P Mealy FSM.
It has the structural diagram shown in Fig. 7.24. The number of EMBs in the P
Mealy FSM is determined as

(7.38)I =

⌈
R + N

tF

⌉
.

Table 7.15   Table of BIMF of Mealy FSM PH(Γ5)

K(Fh) Φ K(Yt) h

z1z2z3z4 D1D2D3 z5z6z7

0000 001 001 1
0001 010 010 2
0010 100 011 3
0011 100 100 4
0100 011 101 5
0101 011 101 6
0110 000 000 7
0111 000 011 8
1000 000 010 9

1
2

3
4
5
6

x1

Start
Clock

z5
1
2

3
4

T1

T2

T3

D1

D2
D3

T1

z1

T2

z2

T3

z3

5
6

1
2

3
4x2

x3

1
2

3
4

z4

T

1
2
3
4
5
6
7
8

y1
y2
y3
y4

1
2
3

y5
y6
y7

z6

z7

Fig. 7.22   Logic circuit of Mealy FSM PHY(Γ5)

305

In P Mealy FSM, a block EMBi implements microoperations yn ∈ Yi, where
Yi ⊆ Y. As follows from (7.38), the following condition should take place:

Obviously, it is possible the situation when only a set Xi ⊆ X is required for
implementing functions yn ∈ Y i (i = 1, I). It means that different EMBs of P FSM
will require different amount of cells. Therefore, they will have different values of tF.
If this fact is taken into account, the number I can be decreased in comparison with
this parameter for the FSM shown in Fig. 7.24. Let us point out that P Mealy FSM
can be used as an alternative for all FSMs discussed in this chapter.

7.6 � Optimization of BIMF Based on Pseudoequivalent
States of Moore FSM

One of the specific features of Moore FSM is the existence of classes of pseudo-
equivalent states [3]. The states am, as ∈ A are pseudoequivalent states if outputs of
corresponding operator vertices are connected with the input of the same vertex of
GSA Γ. Lets us find the partition ΠA of the set A by classes of pseudoequivalent
states B1, …, BI.

Two approaches can be used for optimizing the BIMF of Moore FSM. The first
of them is the optimal state assignment. In this case, the states are encoded in such

(7.39)Yi ∩ Yj = ∅(i �= j; i, j ∈ {1, . . . , I}).

Start

Clock

D1 D2 D3

T1 T2 T3
T

y1 y2 y3 y4 y5 y6 y7

x1
T1 T2 T3x2 x3

2 3 4 5 61

2 3 41

2 3 4 5 61

2 3 41

2 3 4 5 61

2 3 41

x1
T1 T2 T3x2 x3 x1

T1 T2 T3x2 x3

Fig. 7.23   Single-level circuit of Mealy FSM U1(Γ5)

Fig. 7.24   Structural diagram
of P Mealy FSM

1 I

7.5  Design of Mealy FSM with Encoding of the Rows of Structure Table

306 7  Design of FSMs with Embedded Memory Blocks

a way that each class Bi ∈ ΠA is represented by minimum possible amount of gen-
eralized intervals of R-dimensional Boolean space. The second approach is con-
nected with encoding of the classes Bi ∈ ΠA. Let us discuss these approaches and
corresponding models of EMB-based Moore FSMs.

The following classes Bi ∈ ΠA can be found from GSA Γ4: B1 = {a1},
B2 =

{
a2

}
, B3 = {a3, a4} and B4 = {a5}. So there is the partition ΠA = {B1…B4}

with I = 4. Let us encode the states am ∈ A in the optimal way (Fig. 7.25).
The transitions from the state a5 do not present in the structure table because

they are executed automatically (using only pulse Clock). Because of it, the code
of state a5 can be treated as “don’t care” and can be included into the cubes for
other classes Bi ∈ ΠA.

Taking it into account, the following codes can be obtained for classes Bi ∈ ΠA
in the discussed case: K(B1) = **0, K(B2) = *01, K(B3) = *11. So, the value
of T1 is not significant to determine the classes Bi ∈ ΠA. In the general case this
approach leads to PEY Moore FSM (Fig. 7.26).

In the PEY FSM, the BIMF is represented by the block EMB1. It implements
the system

The block EMB2 implements the system (7.11). The following condition should
take place for implementing this model:

The value of RE is determined by the cardinality value of the set T ′ ⊆ T . The
proposed design method for PEY Moore FSM is the following one:

1.	 Constructing the set of states A.
2.	 Optimal state assignment.
3.	 Constructing the transformed structure table
4.	 Constructing the table of BIMF.
5.	 Constructing the table of microoperations.
6.	 Implementation of the FSM logic circuit.

(7.40)Φ = Φ
(
T ′, X

)
.

(7.41)R · 2L+RE ≤ V0.

Fig. 7.25   Optimal state
codes for Moore FSM U2(Γ4)

32T T

1T 00 01 11 10
0 1a 2a 3a 5a

1 ∗ ∗ 4a ∗

Fig. 7.26   Structural diagram
of PEY Moore FSM

307

Let us discuss an example of PEY(Γ4) FSM’s design. The GSA Γ4 is shown in
Fig. 7.5. Let the EMB in use have the following configurations: 32 × 1, 16 × 2,
8 × 4 (bits). Because there is R = 3, the configuration 8 × 4 should be chosen.
But because of R + L = 4, the number of cells should be equal to 16 for tF = 4. It
is tF = 2 for V = 16. So, the model PY(Γ4) cannot be used in the discussed case.

Two first steps have been already executed. The applying optimal state assign-
ment gives the value RE = 2. Now there is 21+2

× 3 = 24 < 32. It means that the
condition (7.40) is satisfied and the model PEY(Γ4) can be applied.

To construct the transformed structure table of PEY Moore FSM, it is necessary
to construct the system of generalized formulae of transitions for classes Bi ∈ ΠA.
This system does not include the class B4 ∈ ΠA because the state a5 ∈ B4 is con-
nected only with state a1 ∈ A. The following system can be derived from GSA Γ4:

The transformed structure table of Moore FSM PEY(Γ4) is represented by
Table 7.16.

The table of BIMF contains the columns K(Bi), X, Φ, v. In the case of FSM
PEY(Γ4) this table includes 8 rows (Table 7.17).

Four lines of Table 7.17 correspond to the row number 1 of the transformed
table. Two lines of Table 7.17 correspond to the row number 4 of the transformed
table. The connection between Tables 7.16 and 7.17 is transparent. The table of
microoperations is constructed in the same manner as for the Moore FSM U2. In
the discussed case, this table includes 8 rows (Table 7.18).

The logic circuit of FSM PEY(Γ4) is shown in Fig. 7.27. The circuits of BIMF
and BMO are implemented using EMBs having configurations 8 × 4.

(7.42)
B1 → a2; B3 → a5;

B2 → x1a3 ∨ x1a4.

Table 7.16   Transformed
structure table of Moore FSM
PEY(Γ4)

Bi K(Bi) as K(as) Xh Φh h

B1 **0 a2 001 1 D3 1
B2 *01 a3 011 x1 D2D3 2

a4 111 x̄1 D1D2D3 3
B3 *11 a5 010 1 D2 4

Table 7.17   Table of BIMF
of Moore FSM PEY(Γ4)

K(Bi) X Φ v h

T2T3 x1 D1D2D3

00 0 001 1 1
00 1 001 2 1
01 0 111 3 3
01 1 011 4 2
10 0 001 5 1
10 1 001 6 1
11 0 010 7 4
11 1 010 8 4

7.6  Optimization of BIMF Based on Pseudoequivalent States of Moore FSM

308 7  Design of FSMs with Embedded Memory Blocks

It is quite possible the situation when T ′ = T after the execution of optimal
state assignment [3]. In this case the following approach can be used.

Let us encode each class Bi ∈ ΠA by a binary code K(Bi) having RB bits:

Let us use the variables τΓ ∈ τ for the encoding, where |τ| = RB. Let the following
condition take place:

In this case, we propose to use the PCY Moore FSM. Its structural diagram is
shown in Fig. 7.28.

In PCY Moore FSM, the block EMB1 corresponds to BIMF. It implements the
system of input memory functions

(7.43)RB =
⌈
log2 I

⌉
.

(7.44)
2RB+L · R ≤ V0;

2R · (N + RB) ≤ V0.

(7.45)Φ = Φ(τ , X).

Table 7.18   Table of
microoperations of Moore
FSM PEY(Γ4)

K(am) Y m

T1T2T3 y1y2y3y4

000 0000 1
001 1100 2
010 0110 3
011 0010 4
100 0000 5
101 0000 6
110 0000 7
111 1001 8

Fig. 7.27   Logic circuit of
Moore FSM PEY(Γ4)

x1 y1

y2

y3

y4

T’

T2

T3

D1

D2

D3

T1 T1

T2
T2

T3 T3

T

Fig. 7.28   Structural diagram
of PCY Moore FSM

τ

309

The block EMB2 implements the circuit of BMO. It generates the functions
(7.11) and the system of additional variables

The proposed design method for PCY Moore FSM includes the following steps:

1.	 Constructing the set of states A.
2.	 State assignment.
3.	 Finding the partition ΠA = {B1…B4}.
4.	 Encoding of the classes Bi ∈ ΠA.
5.	 Constructing the transformed structure table
6.	 Constructing the table of BIMF.
7.	 Constructing the table of BMO.
8.	 Implementation of the FSM logic circuit.

Let us discuss an example of design for PCY(Γ4) Moore FSM. The set A includes
M = 5 elements and there is R = 3. Let us encode the states am ∈ A in the trivial
way: K(a1) = 000, …, K(a5) = 100.

There is the partition ΠA = {B1, …, B4} with I = 4. It gives RB = 2. Let us
encode the classes Bi ∈ ΠA in the trivial way: K(B1) = 00, …, K(B4) = 11.

To construct the transformed structure table, the system of generalized formu-
lae of transitions should be derived from a GSA Γj. In the discussed case, this sys-
tem is represented by (7.40). The transformed structure table of PCY Moore FSM
includes the same columns as its counterpart for PEY Moore FSM (Table 7.19).

The table of BIMF is constructed on the base of the transformed structure table.
In the discussed case, it is represented by Table 7.20. The table of BMO includes
the additional column τ (Table 7.21). If am ∈ Bi, then the row corresponding to the
state am includes the code K(Bi).

(7.46)τ = τ(X).

Table 7.19   Transformed
structure table of Moore FSM
PCY(Γ4)

Bi K(Bi) as K(as) Xh Φh h

B1 00 a2 001 1 D3 1
B2 01 a3 010 x1 D2 2

a4 011 x̄1 D2D3 3
B3 10 a5 100 1 D1 4

Table 7.20   Table of BIMF
of Moore FSM PCY(Γ4)

K(Bi) X Φ v h

τ1τ2 x1 D1D2D3

00 0 001 1 1
00 1 001 2 1
01 0 011 3 3
01 1 010 4 2
10 0 100 5 4
10 1 100 6 4
11 0 000 7 0
11 1 000 8 0

7.6  Optimization of BIMF Based on Pseudoequivalent States of Moore FSM

310 7  Design of FSMs with Embedded Memory Blocks

The logic circuit of Moore FSM PCY(Γ4) is shown in Fig. 7.29. In this circuit,
the configuration 8 × 6 is required for EMB implementing the BMO. The same
configuration is required for implementing the BIMF. But only three outputs are
used in this case.

Of course, the examples discussed in this Chapter are very simple. They merely
illustrate the main ideas which can be used for optimizing logic circuits of EMB-
based finite state machines.

References

	 1.	ALTERA (2013) Website of the Altera Corporation
	 2.	Baranov S (1994) Logic synthesis of control automata. Kluwer, Boston
	 3.	Barkalov A, Titarenko L (2009) Logic synthesis for FSM-based control units. Springer, Berlin
	 4.	Barkalov A, Titarenko L, Barkalov A (2012) Structural decomposition as a tool for the

optimization of an FPGA-based implementation of a mealy FSM. Cybern Syst Anal
48(2):313–323

	 5.	Cong J, Yan K (2000) Synthesis for FPGAs with embedded memory blocks. In: Proceedings
of the 2000 ACM, SIGDA 8th international symposwium on FPGAs, pp 75–82

	 6.	Garcia-Vargas I, Senhadji-Navarro R, Civit-Balcells A, Guerra-Gutierrezz P (2007) ROM-
based finite state machine implementation in low cost FPGAs. In: IEEE international simpo-
sium on industrial electronics, Vigo, pp 2342–2347

	 7.	Grout I (2004) Digital system design with FPGAs and CPLDs. Elsevier, Amsterdam
	 8.	Kim T, Vella T, Brayton R, Sangiovanni-Vincentalli A (1997) Synthesis of finite state machines:

functional optimization. Kluwer, Boston
	 9.	Maxfield C (2004) The design Warrior’s guide to FPGAs, Academic Press Inc, Orlando

Table 7.21   Table of BMO of
Moore FSM PCY(Γ4)

K(am) Y τ m

T1T2T3 y1y2y3y4 τ1τ2

000 0000 00 1
001 1100 01 2
010 0010 10 3
011 1001 10 4
100 0110 11 5
101 0000 00 6
110 0000 00 7
111 1001 00 8

Fig. 7.29   Logic circuit of
FSM PCY(Γ4) x1

y1
y2
y3
y4

D1

D2

D3

T1

T2

T3

1

2
1
2

τ
τ τ

τ

τ

311

	10.	Nowicka M, Łuba T, Rawski M (1999) FPGA-based decomposition of boolean functions:
algorithms and implementation. In: Proceedings of the 6th international conference on ACS,
pp 502–509

	11.	Rawski M, Tomaszewicz P, Borowik G, Luba T (2011) Logic synthesis method of digital cir-
cuits designed with Embedded Memory Blocks of FPGAs. In: Adamski M et al. (eds) Design
of digital systems and devices, Springer, Berlin, pp 121–144

	12.	Rawski M, Selvaraj H, Luba T (2005) An application of functional decomposition in ROM-
based FSM implementation in FPGA devices. J Syst Archit 51(6–7):423–434

	13.	Scholl C (2001) Functional decomposition with application to FPGA synthesis. Kluwer,
Norwell

	14.	Sklyarov V (1984) Synthesis of FSMs based on matrix LSI. Science and Technique, Minsk
	15.	Sklyarov V (2000) Synthesis and implementation of RAM-based finite state machines in

FPGAs. In: Proceedings of conference on field programmable logic, Villach, pp 718–728
	16.	Sklyarova I, Sklyarov V, Sudnitson A (2008) Design of FPGA-based circuits using hierarchi-

cal finite state machines. TUT Press, Tallinn
	17.	Sutteer G, Todorowich E, Lopez-Buedo S, Boemo E (2002) Lower-power FSMs in FPGA:

encoding alternatives. Lecture notes in computer science 2451, Springer, Berlin
	18.	Tiwari A, Tomko K (2004) Saving power by mapping finite state machines into embedded

memory blocks in FPGAs. In: Proceedings of design automation and test in Europe, vol 2.
pp 916–921

	19.	Wu X, Pedram M, Wang L, Multi-code state assignment for low-power design. In: IEEE pro-
ceedings on circuits, devices and systems, vol 147. pp 271–275

	20.	XILINX (2013) Website of the Xilinx Corporation

References

313

Abstract  Chapter is devoted to optimization of logic circuits of EMB-based
FSMs. First of all, the design methods based on the replacement of logical condi-
tions are discussed for both Moore and Mealy FSMs. Next, the proposed optimiza-
tion methods are presented. These methods are based on splitting the set of logical
conditions. This approach allows decreasing the number of LUTs in the circuit
of the block of replacement of logical conditions. In the case of Moore FSM, the
optimization methods are based on optimal state assignment, as well as the trans-
formation of state codes into codes of the classes of PES. All discussed methods
are illustrated by examples. The chapter is written together with PhD Malgorzata
Kolopienczyk (University of Zielona Gora, Poland).

8.1 � Trivial Implementation of MP Mealy FSMs

Let us find the value of G determined by (7.12) and let us form the set
P = {P1; . . . , PG} for some FSM U1(Γj). In this case, it is possible to use the
model MP(Γj). Its structural diagram is shown in Fig. 8.1.

In the MP Mealy FSM, a block LUTer represents the block of replacement
of logical conditions (BRLC) from the structural diagram shown in Fig. 7.7. It
is implemented using LUT elements of FPGA chip. The LUTer implements the
system (7.14) which can be represented as the following:

In (8.1), the set Xg includes logical conditions xl ∈ X replaced by the variable
Pg ∈ P. It is quite possible that the following relation is true:

(8.1)

P1 = P1

(
T, X1

)

...

PG = PG

(
T, XG

)
.

(8.2)Xi ∩ Xj �= ∅(i �= j; i, j ∈ {1, . . . , G}).

Chapter 8
Optimization of FSMs with Embedded
Memory Blocks

V. Sklyarov et al., Synthesis and Optimization of FPGA-Based Systems,
Lecture Notes in Electrical Engineering 294, DOI: 10.1007/978-3-319-04708-9_8,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-04708-9_7
http://dx.doi.org/10.1007/978-3-319-04708-9_7#Fig7
http://dx.doi.org/10.1007/978-3-319-04708-9_7

314 8  Optimization of FSMs with Embedded Memory Blocks

A block EMB represents the block of input memory functions (BIMF) from
Fig. 7.7. It implements the systems (7.15 and 7.16).

The design method of Mealy FSM MP(Γj) includes the following steps:

1.	 Constructing the set of states A.
2.	 State assignment.
3.	 Constructing the structure table of FSM U1(Γj) .
4.	 Replacement of logical conditions.
5.	 Constructing the system (8.1).
6.	 Constructing the transformed structure table.
7.	 Constructing the table of BIMF.
8.	 Implementing the FSM logic circuit with EMB and LUTs of a particular

FPGA chip.

The, model of Mealy FSM MP(Γj) can be applied if the following condition
takes place:

Let us discuss an example of design for Mealy FSM MP(Γ6). The GSA Γ6 is
shown in Fig. 8.2.

This GSA is marked by states of Mealy FSM using the rules from [1]. The
following sets and their characteristics can be found for Mealy FSM U1 (Γ6) :

A = {a1, . . . , a4}, M = 4, X = {x1, . . . , x6}, L = 6, Y = {y1, . . . , y6}, N = 6,

R = 2, T = {T1, T2} and � = {D1, D2}. Let us encode the states am ∈ A in the triv-
ial way: K(a1) = 00, . . . , K(a4) = 11.

Let the FPGA chip in use have V0 = 128 bits and let the following configura-
tions of EMB exist: 128 × 1 64 × 2, 32 × 4, 16 × 8 (bits). For the FSM U1(Γ6),
the following relation takes place: 2L+R(R + N) = 28 · 8 = 2048 > 128. It means
that the model U1(Γ6) cannot be used.

The structure table of Mealy FSM U1(Γ6) includes H1(Γ6) = 10 rows
(Table 8.1). As follows from Table 8.1, there are four sets of logical conditions
X(am) : X(a1) = {x1, x2}, X(a2) = {x3, x4}, X(a3) = {x5, x6}, X(a4) = ∅. Obviously,
it defines the value G = 2 and, therefore, there is the set P = {P1, P2}. Let us form the
table of replacement of logical conditions for Mealy FSM MP(Γ6) (Table 8.2). Let us
point out that the condition (8.3) takes place for the given example.

There are no equal logical conditions in the sets X(am) ⊆ X for the discussed
case. Because of it, the distribution of the logical conditions among the variables
Pg ∈ P is executed in the trivial way. If there is X(ai) ∩ X

(
aj

)
�= ∅, then the dis-

tribution should be executed in such a way that the intersection for any pair of sets
Xg

(
g = 1, G

)
 has the minimum capacity [1].

(8.3)2G+R(R + N) ≤ Vo.

Fig. 8.1   Structural diagram
of MP Mealy FSM

http://dx.doi.org/10.1007/978-3-319-04708-9_7#Fig7
http://dx.doi.org/10.1007/978-3-319-04708-9_7
http://dx.doi.org/10.1007/978-3-319-04708-9_7

315

Fig. 8.2   Initial graph-scheme of algorithm Γ6

2 3 4 5

5

6
4 6

2

3

4

Table 8.1   Structure table of Mealy FSM U1(Γ6)

am K(am) as K(as) Xh Yh Φh h

a1 00 a2 01 x1 y1y2 D2 1
a2 01 x̄1x2 y2y3 D2 2
a2 01 x̄1x̄2 y3y4y5 D2 3

a2 01 a2 01 x3 y1y2 D2 4
a3 10 x̄3x4 y3y6 D1 5
a2 01 x̄3x̄4 y3y4y5 D2 6

a3 10 a4 11 x5 y4y6 D1D2 7
a4 11 x̄5x6 y4y6 D1D2 8
a1 00 x̄5x̄6 y1y2 – 9

a4 11 a1 00 1 y1y2 – 10

Table 8.2   Table of replacement of logical conditions for Mealy FSM MP(Γ6)

am a1 a2 a3 a4

P1 x1 x3 x5 –
P2 x2 x4 x6 –

8.1  Trivial Implementation of MP Mealy FSMs

316 8  Optimization of FSMs with Embedded Memory Blocks

The following system of equations can be derived from Table 8.2:

If the variables Am

(
m = 1, M

)
 are replaced by corresponding state codes, the

system (8.4) is transformed into the following one:

Obviously, the system (8.5) represents the system (8.1) for the case of Mealy FSM
PM(Γ6). The logic circuit corresponding to system (8.5) should be implemented
using look-up table elements.

The transformed structure table of PM(Γj) includes all columns that its coun-
terpart for the Mealy U1(Γj). But the column Xh is replaced by the column Ph.
The transformation is executed in the obvious way. For the discussed example, the
transformation leads to Table 8.3.

This table is the base for constructing the table of BIMF containing the following
columns: K(am), P, Y, Φ, v. The columns K(am) and P form the addresses of cells.
The table of BIMF includes V(Γ6) = 16 rows for the discussed case. The number of
rows H(P) for representing transitions from a state am ∈ A is determined as:

In the discussed case, there is H(P) = 4. The table of BIMF is represented by
Table 8.4. The logic circuit of FSM PM(Γ6) is shown in Fig. 8.3. In the discussed
example, they use LUTs having S = 5 inputs. In this case, each function Pg ∈ P is
implemented using only a single LUT. In the common case, each function Pg ∈ P
is implemented using only a single LUT if the following condition takes place:

So, the logic circuit of MP(Γ6) consists from 4 LUTs and one block EMB. Let
us point out that two LUTs are used for implementing the circuit of RG.

(8.4)
P1 = A1x1 ∨ A2x3 ∨ A3x5;

P2 = A1x2 ∨ A2x4 ∨ A3x6.

(8.5)
P1 = T̄1T̄2x1 ∨ T̄1T2x3 ∨ T1T̄2x5;

P2 = T̄1T̄2x2 ∨ T̄1T2x4 ∨ T1T̄x6.

(8.6)H(P) = 2G.

(8.7)R +
∣∣Xg

∣∣ ≤ S
(
g = 1, G

)
.

Table 8.3   Transformed
structure table of Mealy FSM
MP (Γ6)

am K(am) as K(as) Ph Yh Φh h

a1 00 a2 01 P1 y1y2 D2 1
a2 01 P̄1P2 y2y3 D2 2
a2 01 P̄1P̄2 y3y4y5 D2 3

a2 01 a2 01 P1 y1y2 D2 4
a3 10 P̄1P2 y3y6 D1 5
a2 01 P̄1P̄2 y3y4y5 D2 6

a3 10 a4 11 P1 y4y6 D1D2 7
a4 11 P̄1P2 y4y6 D1D2 8
a1 00 P̄1P̄2 y1y2 – 9

a4 11 a1 00 1 y1y2 – 10

317

The structural diagram of MPY Moore FSM is shown in Fig. 8.4. A block
LUTer represents BRLC, a block EMB1 represents BIMF, and a block EMB2 rep-
resents BMO.

As in the case of MP Mealy FSM, the LUTer implements the system (8.1). The
EMB1 implements functions (7.15), whereas the EMB2 the system (7.11). This
model can be applied if the following conditions take places:

Table 8.4   Table of BIMF of Mealy FSM MP(Γ6)

K(am) P Y Φ v h

T1T2 P1P2 y1y2y3y4y5y6 D1D2

00 00 001110 01 1 3
00 01 011000 01 2 2
00 10 110000 01 3 1
00 11 110000 01 4 1
01 00 001110 01 5 6
01 01 001001 10 6 5
01 10 110000 01 7 4
01 11 110000 01 8 4
10 00 110000 00 9 9
10 01 000101 11 10 8
10 10 000101 11 11 7
10 11 000101 11 12 7
11 00 110000 00 13 10
11 01 110000 00 14 10
11 10 110000 00 15 10
11 10 110000 00 16 10

x1

Start
Clock

y1
y2

y3
y4

D2
T2

1
2
3

1
2
3
4
5
6

x5
x3

T1
T2

7
8

4

x2

x6
x4

T2

T1

T1 T2

P1

P2 T1D1

y6
y5

T

Fig. 8.3   Logic circuit of Mealy FSM MP (Γ6)

Fig. 8.4   Structural diagram
of MPY Moore FSM

YT

X P

8.1  Trivial Implementation of MP Mealy FSMs

http://dx.doi.org/10.1007/978-3-319-04708-9_7
http://dx.doi.org/10.1007/978-3-319-04708-9_7

318 8  Optimization of FSMs with Embedded Memory Blocks

The design method of Moore FSM MPY(Γj) includes the following steps:

1.	 Constructing the set of states A.
2.	 State assignment.
3.	 Constructing the structure table of FSM U2(Γj).
4.	 Replacement of logical conditions.
5.	 Constructing the system (8.1).
6.	 Constructing the transformed structure table.
7.	 Constructing the table of BIMF.
8.	 Constructing the table of BMO.
9.	 Implementing the FSM logic circuit with EMBs and LUTs of a particular

FPGA chip.

Let us discuss an example of design for Moore FSM MPY(Γ7). The GSA Γ7 is
shown in Fig. 8.5.

This GSA is marked by states of Moore FSM using the rules from [1].
The following sets and their characteristics can be found for Moore FSM
U2(Γ7) : A = {a1, . . . , a6}, M = 6, X = {x1, . . . , x4}, L = 4, Y = {y1, . . . ,

y7}, N = 7, R = 3, T = {T1, T2, T3} and Φ = {D1, D2, D3}.
Let the FPGA chip in use have V0 = 128 bits and let the following configura-

tions of EMBs exist: 128 × 1 64 × 2, 32 × 4 and 16 × 8 (bits). For the FSM

(8.8)2G+R · R ≤ V0;

(8.9)2R · N ≤ V0.

Fig. 8.5   Initial GSA Γ7

5 6 73 5 6

2 3 4 2 4

6

319

U2(Γ7) the following relation takes place: 2L+R · R = 128 × 3 > 128. Therefore,
this model cannot be used in the discussed case.

Let us encode the am ∈ A in the trivial way, namely: K (a1) =

000, . . . ,K (a6) = 101. The structure table of FSM U2(Γ7) includes H2(Γ7) = 14
rows (Table 8.5).

As follows from this table, there are the following sets X (am) ⊆ X : X (a1) =

{x1, x2}, X(a2) = X(a3) = X(a4) = {x3, x4}, X(a5) = X(a6) = ∅. Obviously, there
is G = 2 and P = {P1, P2}.

Let us check the conditions (8.8) and (8.9). For the discussed case there are:

It means that the model MPY(Γ7) can be used.
The table of replacement of logical conditions is represented by Table 8.6.
The following system of equations can be derived from Table 8.6:

If variables Am ∈ A are replaced by corresponding conjunctions, the system (8.10)
represents the system (8.1) for the given example.

The transformed structure table of Moore FSM MPY(Γj) is constructed in the same
way as its counterpart for Mealy FSM MP(Γj). In the discussed example, it is repre-
sented by Table 8.7. This table is the base for constructing the table of BIMF. The table
of BIMF contains the following columns: K(am), P, Φ, v. In the discussed example,

25 · 3 = 96 < 128;

23 · 7 = 56 < 128.

(8.10)
P1 = A1x1 ∨ (A2 ∨ A3 ∨ A4)x3;

P2 = A1x2 ∨ (A2 ∨ A3 ∨ A4)x4.

Table 8.5   Structure table of FSM U2(Γ7)

am K(am) as K(as) Xh Φh h

a1– 000 a2 001 x1 D3 1
a3 010 x̄1x2 D2 2
a4 011 x̄1x̄2 D2D3 3

a2 y1y2 001 a5 100 x3 D1 4
a6 101 x̄3x4 D1D3 5
a4 011 x̄3x̄4 D2D3 6

a3 y3 010 a5 100 x3 D1 7
a6 101 x̄3x4 D1D3 8
a4 011 x̄3x̄4 D2D3 9

a4 y2y4 011 a5 100 x3 D1 10
a6 101 x̄3x4 D1D3 11
a4 011 x̄3x̄4 D2D3 12

a5 y3y5y6 100 a1 000 1 – 13
a6 y6y7 101 a1 000 1 – 14

Table 8.6   Table of replacement of logical conditions for Moore FSM MPY(Γ7)

am a1 a2 a3 a4 a5 a6

P1 x1 x3 x3 x3 – –
P2 x2 x4 x4 x4 – –

8.1  Trivial Implementation of MP Mealy FSMs

320 8  Optimization of FSMs with Embedded Memory Blocks

this table includes V2(Γ7) = 32 rows. Using (8.6), it can be found that H(P) = 4. The
part of table of BIMF for the state a3 ∈ A is represented by Table 8.8. Other parts of
the table are not shown but they are constructed in the same manner as Table 8.8.

The logic circuit of FSM MPY(Γ7) is shown in Fig. 8.6. As in the previous case,
the circuit of BRLC is implemented using LUTs with S = 5. In this circuit, the
EMB having configuration 32 × 4 (bits) is used for implementing the logic circuit
of BIMF. The EMB having configuration 16 × 8 is used for implementing the cir-
cuit of BMO. Because there is R = 3, the most significant digit of address is equal
to zero. The condition (8.7) is true for both variables P1 and P2. Due to it, only
two LUTs are used in the circuit of BRLC.

Table 8.7   Transformed structure table of Moore FSM MPY(Γ7)

am K(am) as K(as) Ph Φh h

a1 – 000 a2 001 P1 D3 1
a3 010 P̄1P2 D2 2
a4 011 P̄1P̄2 D2D3 3

a2 y1y2 001 a5 100 P1 D1 4
a6 101 P̄1P2 D1D3 5
a4 011 P̄1P̄2 D2D3 6

a3 y3 010 a5 100 P1 D1 7
a6 101 P̄1P2 D1D3 8
a4 011 P̄1P̄2 D2D3 9

a4y2y4 011 a5 100 P1 D1 10
a6 101 P̄1P2 D1D3 11
a4 011 P̄1P̄2 D2D3 12

a5 y3y5y6 100 a1 000 1 – 13
a6 y6y7 101 a1 000 1 – 14

Table 8.8   Part of table of BIMF for FSM MPY(Γ7)

K(am) P Φ v h

T1T2T3 P1P2 D1D2D3

010 00 011 9 9
010 01 101 10 8
010 10 100 11 7
010 11 100 12 7

x1

Start
Clock

D2

LUT3

LUT5

EMB

1

1
2
3

1

2

3
4

LUT1
T1

x3

T2
T3 4

x2 LUT1x4

T1
T2

P1

P2

D1

T

T1

T2
T3

5

y1
y2
y3
y4

EMB

2

1
2
3

1
2
3
4
5
6
7
8

4

„0”

y6
y5

LUT3

T3

D3

T1

T2

T3

y7

Fig. 8.6   Logic circuit of Moore FSM MPY(Γ7)

321

8.2 � Optimization of LUTer

Let us discus the case when the following condition takes place:

In (8.11), the value SA determines the number of address bits of EMB for given
tF. If (8.11) is true, then the following condition takes place:

The value S0 is equal to the number of “free” address inputs of EMB. These
inputs are not connected with neither variables Tr ∈ T or Pg ∈ P. We propose to
use them for optimization of the circuit of LUTer.

Let us start from MP Mealy FSM. Let us represent the set X as X1 ∪ X2 where
the following condition takes place:

Let us replace the logical conditions xl ∈ X2 by additional variables Pg ∈ P. It
leads to M0P Mealy FSM shown in Fig. 8.7.

In M0P FSM, the LUTer executes the replacement of logical conditions xl ∈ X2.
It implements the system

The EMB implements functions

The following design method is proposed for M0P Mealy FSM.

1.	 Constructing the set of states A.
2.	 State assignment.
3.	 Constructing the structure table of Mealy FSM.
4.	 Partitioning the set X and finding the sets X1 and X2.
5.	 Replacement of logical conditions xl ∈ X2.

(8.11)SA > G + R.

(8.12)S0 = SA − (G + R) > 0.

(8.13)
X1 ∩ X2 = ∅; X1 ∪ X2 = X;∣∣X1

∣∣ = S0;
∣∣X2

∣∣ = L − S0.

(8.14)P = P
(

T , X2
)

.

(8.15)Y = Y
(

T , P, X1
)
;

(8.16)Φ = Φ

(
T , P, X1

)
.

Fig. 8.7   Structural diagram
of M0P Mealy FSM

2

1

8.2  Optimization of LUTer

322 8  Optimization of FSMs with Embedded Memory Blocks

6.	 Constructing the transformed structure table of Mealy FSM M0P(Γj).
7.	 Constructing the table of BIMF.
8.	 Implementing the logic circuit of FSM for a given FPGA chip.

Let us discus an example of design for Mealy FSM M0P(Γ6) where the GSA
Γ6 is shown in Fig. 8.2. Let FPGA chip in use include EMBs having the follow-
ing configurations: 512 × 1, 256 × 2, 128 × 4, 64 × 8 (bits). For Mealy FSM
U1(Γ6), there is N + R = 8. Therefore, the configuration 64 × 8 can be used with
SA = 6. There is R = 2, then it is possible to have G + S0 = 4.

The structure table of Mealy FSM U1(Γ6) is represented by Table 8.1. The fol-
lowing sets can be derived from this table: X(am) ⊆ X : X(a1) = {x1, x2}, X(a2) =

{x3, x4}, X(a3) = {x5, x6}. Let us represent each set X(am) ⊆ X as X(am)1 ∪

X(am)2 where X(am)1 ∩ X(am)2 = ∅
(
m = 1, M

)
. Let us find the sets X1 and X2

using the rules:

Let us construct the following sets of logical conditions: X(a1)
1

= {x1}, X(a1)
2

=

{x2}, X(a2)
1

= {x3}, X(a2)
2

= {x4}, X(a3)
1

= {x5} and X(a3)
2 = {x6}. It leads

to the sets X1 = {x1, x3, x5} and X2 = {x2, x4, x6}. Obviously, there is G = 1. The
additional variable is determined by the following equation:

The transformed structure table of Mealy FSM M0P(Γj) includes the following
columns: am, K(am), as, K(as), X1

h , Ph, Yh, Φh, h. In the discussed case, it is repre-
sented by Table 8.9.

The table of BIMF includes the following columns: K(am), X1, P, Y , Φ, v, h.
The first three columns create the address of some cell of EMB. This table
includes V3(Γj) rows where:

(8.17)X1 =

M⋃

m=1

X(am)1;

(8.18)X2 =

M⋃

m=1

X(am)2.

P1 = A1x2 ∨ A2x4 ∨ A3x6.

Table 8.9   Transformed
structure table of Mealy FSM
M0P(Γ6)

am K(am) as K(as) Xh
1 Ph Yh Φh h

a1 00 a2 01 x1 1 y1y2 D2 1
a2 01 x̄1 P1 y2y3 D2 2
a2 01 x̄1 P̄1 y3y4y5 D2 3

a2 01 a2 01 x2 1 y1y2 D2 4
a3 10 x̄2 P1 y3y6 D1 5
a2 11 x̄2 P̄1 y3y4y5 D2 6

a3 10 a4 11 x3 1 y4y6 D1D2 7
a4 11 x̄3 P1 y4y6 D1D2 8
a1 00 x̄3 P̄1 y1y2 – 9

a4 11 a1 00 1 1 y1y2 – 10

323

It can be found that V3(Γ8) = 64. Transitions from each state am ∈ A of
M0P(Γj) are represented by H3(Γj) rows, where

In the case of FSM M0P(Γ6), there is H3(Γ6) = 16. The part of the table of
BIMF for FSM M0P(Γ6) is represented by Table 8.10. This table contains the tran-
sitions from state a1 ∈ A.

The logic circuit of FSM M0P(Γ6) is shown in Fig. 8.8. The LUTs having S = 5 are
used for implementing the logic circuit of LUTer. In the discussed example, it is enough
one LUT for LUTer. Two more LUTs are used for implementing the register RG.

(8.19)V3

(
Γj

)
= 2S0+G+R.

(8.20)H3

(
Γj

)
= 2S0+G.

Table 8.10   Part of table of BIMF of Mealy FSM M0P(Γ6)

K(am) X1 P Y Φ v h

T1T2 x1x2x3 P1 y1y2y3y4y5y6 D1D2

00 000 0 001110 01 1 3
00 000 1 011000 01 2 2
00 001 0 001110 01 3 3
00 001 1 011000 01 4 4
00 010 0 001110 01 5 3
00 010 1 011000 01 6 2
00 011 0 001110 01 7 3
00 011 1 011000 01 8 2
00 100 0 110000 01 9 1
00 100 1 110000 01 10 1
00 101 0 110000 01 11 1
00 101 1 110000 01 12 1
00 110 0 110000 01 13 1
00 110 1 110000 01 14 1
00 111 0 110000 01 15 1
00 111 1 110000 01 16 1

x1

Start
Clock

y1
y2

y3
y4

D2
T2

1
2
3

1
2
3
4
5
6

x3
x2

T1
T2

7
8

4T1

T2

P1

T1D1

y6
y5

T

5
6

x1

x3
x2

Fig. 8.8   Logic circuit of Mealy FSM M0P(Γ6)

8.2  Optimization of LUTer

324 8  Optimization of FSMs with Embedded Memory Blocks

The same approach can be used for optimizing the LUTer of MPY Moore
FSM. Its structural diagram is shown in Fig. 8.9. As in the previous case, the
LUTer corresponds to the letter M0 is the record “M0PY”. In the M0PY Moore
FSM, the LUTer implements system (8.14), whereas the EMB1 implements
system (8.16). The EMB2 implements the system of microoperations Y (T).

Let us point out the LUTer corresponds to BRLC, the EMB1 to BIMF, and the
EMB2 to BMO. This model can be used if the following condition takes place:

The design method for Moore FSM M0PY(Γj) includes the following steps:

1.	 Constructing the set of states A.
2.	 State assignment.
3.	 Constructing the structure table of FSM PY(Γj).
4.	 Partitioning the set X by subsets X1 and X2.
5.	 Replacement of logical conditions xl ∈ X2.
6.	 Constructing the transformed structure table.
7.	 Constructing the table of BIMF.
8.	 Constructing the table of BMO.
9.	 Implementing the FSM logic circuit.

Let us discus an example of design for Moore FSM M0PY(Γ7). All sets and
their parameters have been found before. Let us use the trivial codes of internal
states K(a1) = 000, . . . , K(a6) = 101. The structure table of FSM U2(Γ7)
(Table 8.5) is the same for PY(Γ7) Moore FSM.

Let an FPGA chip in use include EMBs having the following configurations:
256 × 1, 128 × 2, 64 × 4, 32 × 8 (bits). In this case the model U2(Γ7) cannot
be applied. For Moore FSM MPY(Γ7), there is G = 2. So, there is G = 2. So, the
model MPY(Γ7) can be applied but 160 bits of EMB are not used. Let us try to use
the model M0PY(Γ7).

There is X(a5) = X(a6) = ∅, then the configuration X(am) ⊆ X can be
chosen. In this case |X1| = 1 and SA – R = 3. So, two possibilities can be used
for the replacement of logical conditions: (1) G = 2 and |X ′| = 1 and (2)
G = 1 and |X

′

| = 2. There are the following sets X (am) ⊆ X : X (a1) =

{x1, x2}, X(a2) = X(a3) = X(a4) = {x3, x4} and X(a5) = X(a6) = ∅. Let us
divide the set X by following subsets: X1 = {x2, x4} and X2 = {x1, x3}. It gives
P = {P1} and the following equation can be found:

(8.21)2G+S0+R; · R ≤ V0.

(8.22)P1 = A1x1 ∨ A2x3 ∨ A3x3 ∨ A4x3.

Fig. 8.9   Structural diagram
of M0PY Moore FSM

YT

X2 P

X1

325

The structure table of Moore FSM U2(Γ7) is represented by Table 8.5. Let us
transform it to get Table 8.11. The table of BIMF includes 64 rows. The transitions
from each state am ∈ A are represented by 8 rows. The part of table of BIMF is
represented by Table 8.12. It shows transitions from the state a1 ∈ A.

8.3 � Optimization of LUTer Based on Pseudoequivalent
States

Let us discuss a situation when LUTs used for implementing the circuit of LUTer
have S = 4. In the case of Moore FSM M0PY(Γ7), the LUTer is represented by
Eq. (8.22). It can be represented as the following one:

(8.23)P1 = T̄1T̄2T̄3x1 ∨ T̄1T̄2T3x3 ∨ T̄1T2T̄3x3 ∨ T1T̄2T̄3x3;

Table 8.11   Transformed
structure table of Moore FSM
M0PY(Γ7)

am K(am) as K(as) Xh
1 Ph Φh h

a1 (-) 000 a2 001 1 P1 D3 1
a3 010 x2 P̄1 D2 2
a4 011 x̄2 P̄1 D2D3 3

a2 (y1y2) 001 a5 100 1 P1 D1 4
a6 101 x4 P̄1 D1D3 5
a4 011 x̄4 P̄1 D2D3 6

a3 (y3) 010 a5 100 1 P1 D1 7
a6 101 x4 P̄1 D1D3 8
a4 011 x̄4 P̄1 D2D3 9

a4 (y2y4) 011 a5 100 1 P1 D1 10
a6 101 x4 P̄1 D1D3 11
a4 011 x̄4 P̄1 D2D3 12

a5 (y3y5y6) 100 a1 000 1 1 – 13
a6 (y6y7) 101 a1 000 1 1 – 14

Table 8.12   Part of table
of BIMF of Moore FSM
M0PY(Γ7)

K(am) X1 P Φ v h

T1T2T3 x2x4 P1 D1D2D3

000 00 0 011 1 3
000 00 1 001 2 1
000 01 0 011 3 3
000 01 1 001 4 1
000 10 0 010 5 2
000 10 1 001 6 1
000 11 0 010 7 2
000 11 1 001 8 1

8.2  Optimization of LUTer

326 8  Optimization of FSMs with Embedded Memory Blocks

If there is S = 4, then the expression (8.23) should be transformed using
the rules of functional decomposition [5, 6]. The transformed equation is the
following:

The Eq. (8.25) corresponds to the logic circuit of LUTer shown in Fig. 8.11.
In Fig. 8.11, there are A = T̄2T̄3x1 ∨ T̄2T3x3 ∨ T2T̄3x3 and B = T̄2T̄3x3. This

circuit has 2 levels and uses 3 LUTs with S = 4. Let us try to improve this circuit
using pseudoequivalent states of Moore FSM [2, 3].

In the case of Moore FSM U2(Γ7), there is the partition ΠA = {B1, B2, B3}
where B1 = {a1}, B2 = {a1, a2, a3} and B3 = {a5, a6}. Let us encode the states
am ∈ A as it is shown in Fig. 8.12.

The logic circuit of Moore FSM M0PY(Γ7) is shown in Fig. 8.10.
Now, the Eq. (8.22) can be represented as

This equation corresponds to the single-level logic circuit shown in Fig. 8.13a.

(8.24)P1 = T̄1

(
T̄2T̄3x1 ∨ T̄2T3x3 ∨ T2T̄3x3

)
∨ T1

(
T̄2T̄3x3

)
;

(8.25)P1 = T̄2T̄3x1 ∨ T3x3.

x1

Start
Clock

D2

LUT3

LUT4

EMB

1

1
2
3

1

2

3
4

LUT1
T1

x3

T2
T3 4

x2
x4

T1
T2

P1 D1

T

T1

T2
T35

y1
y2
y3
y4

EMB

2

1
2
3

1
2
3
4
5
6
7
8

4

„0”

y6
y5

LUT2

T3

D3

T1

T2

T3

6 5

„0”

Fig. 8.10   Logic circuit of Moore FSM M0PY(Γ7)

Fig. 8.11   Logic circuit of
LUTer for S = 4

2

3
1

3 1

2

3
3

1

Fig. 8.12   Optimal state
codes for Moore FSM U2(Γ7)

32TT

1T 00 01 11 10

0 1a 2a 3a 5a

1 4a 6a* *

327

Because of the equality X(a5) = X(a6) = ∅, their codes can be treated as
“don’t care” for function P1. It allows obtaining the following equation:

The circuit for Eq. (8.26) can be implemented as a single-level circuit even for
case of S = 3 (Fig. 8.13b).

The following codes K(Bi) of classes of pseudoequivalent states Bi ∈ �A
can be derived from the Karnaugh map (Fig. 8.12): K(B1) = ∗00, K(B2) =

∗ ∗ 1 and K (B3) = ∗10. It means that input memory functions Dr ∈ Φ depend on
variables Tr ∈ T ′ where T ′ ⊂ T . In the discussed case, there is T ′ = {T2, T3}.

The discussed approach is based on the optimal state assignment for Moore
FSM [2]. It leads to MEPEY(Γj) Moore FSM (Fig. 8.14), where subscript “E”
shows the usage of optimal state assignment.

In this model, the LUTer implements the system

The EMB1 implements the system

Let it be RE = |T
′

|. In this case the proposed model can be used if the follow-
ing condition takes place:

The proposed method for design of MEPEY(Γj) Moore FSM includes the fol-
lowing steps:

	 1.	 Constructing the set of states A.
	 2.	 Constructing the partition ΠA = {B1, …, BI}.
	 3.	 Optimal state assignment.
	 4.	 Constructing the structure table of PEY(Γj) Moore FSM.

(8.26)P1 = T̄3x1 ∨ T3x3.

(8.27)P = P
(

T ′, X2
)

.

(8.28)� = �

(
T ′, P, X2

)
.

(8.29)2G+S0+RE · R ≤ V0.

Fig. 8.13   Optimal circuit of
LUTer

(a) (b)

Fig. 8.14   Structural diagram
of Moore FSM MEPEY(Γj)

YT

X2 P

X1

T’

8.3  Optimization of LUTer Based on Pseudoequivalent States

328 8  Optimization of FSMs with Embedded Memory Blocks

	 5.	 Partitioning the set X by subsets X1 and X2.
	 6.	 Replacement of logical conditions xl ∈ X2.
	 7.	 Constructing the transformed structure table.
	 8.	 Constructing the table of BIMF.
	 9.	 Constructing the table of BMO.
10.	 Implementing the FSM logic circuit.

Let us discuss an example of design of Moore FSM MEPEY(Γ7). The set of
states A is constructed before, as well as the partition ΠA = {B1, B2, B3}. Let us
use the state codes from Fig. 8.12.

To construct the structure table of PEY(Γj) Moore FSM, let us form the system
of generalized formulae of transitions [3]. In the discussed case, it is the following
system:

The structure table of Moore FSM PEY(Γ7)includes HE(Γ7) = 7 rows
(Table 8.13). The table includes the following columns: Bi, K(Bi), as, K(as), Xh,
Φh, h. The codes K(Bi) of classes Bi ∈ ΠA are taken from Fig. 8.12, as well as the
codes of states am ∈ A.

Let the FPGA chip in use have EMBs with the following configurations:
128 × 1, 64 × 2, 32 × 4, 16 × 8 (bits). Because there is R = 3, we should
choose the configuration 32 × 4 for implementing the circuit of BIMF. There is
T ′ = {T2, T3} and, therefore, RE = 2. For given configuration, there is SA = 5.
It means that three inputs can be used for logical conditions xl ∈ X1 and addi-
tional variables Pg ∈ P. Let us make the following partition of the set of logical
conditions X: X1 = {x2, x4} and X2 = {x1, x3}. It gives the set P = {P1}. Using
Table 8.13, the following equation can be found:

Let X(Bi) be a set of logical conditions determining transitions from states
am ∈ Bi

(
i = 1, I

)
. Because X(B3) = ∅, the codes of states a5, a6 ∈ B3 can be

treated as “don’t cares”. It gives the final form of the system (8.27) for the given
example:

(8.30)
B1 → x1a2 ∨ x̄1x2a3 ∨ x̄1x̄2a4;

B2 → x3a5 ∨ x̄3x4a6 ∨ x̄3x̄4a4;

B3 → a1.

(8.31)P1 = B1x1 ∨ B2x3 = T̄2T̄3x1 ∨ T3x3.

(8.32)P1 = T̄3x1 ∨ T3x3.

Table 8.13   Structure table
of Moore FSM PEY(Γ7)

Bi K(Bi) as K(as) Xh Φh h

B1 *00 a2 001 x1 D3 1
a3 011 x̄1x2 D2D3 2
a4 101 x̄1x̄2 D1D3 3

B2 **1 a5 010 x3 D2 4
a6 110 x̄3x4 D1D2 5
a4 101 x̄3x̄4 D1D3 6

B3 *10 a1 000 1 – 7

329

The transformed structure table of MEPEY Moore FSM includes the following
columns: Bi, K(Bi), as, K(as), Ph, Xh

1, Φh, h. In the discussed case, it is represented
by Table 8.14.

The table of BIMF of MEPEY Moore FSM includes the following columns: K(Bi),
P, X1, Φ, h. The column K(Bi), P, X1 create the address of a cell inside the EMB. In
the discussed case, the transitions from each class Bi ∈ ΠA are represented by 8 rows
of this table. The transitions from the class B1 ∈ ΠA are represented by Table 8.15.

The table of BMO is always the same for given GSA. It includes the columns
K(am), Y, m. The address of a cell is determined by the state code K(am). Let the FPGA
chip in use include LUTs having S = 3. In this case the Eq. (8.32) needs only a single
LUT for implementation. The logic circuit of FSM MEPEY(Γ7) is shown in Fig. 8.15.

Table 8.14   Transformed structure table of Moore FSM MEPEY(Γ7)

Bi K(Bi) as K(as) Ph Xh
1 Φh h

B1 *00 a2 001 P1 1 D3 1
a3 011 P̄1 x2 D2D3 2
a4 101 P̄1 x̄2 D1D3 3

B2 **1 a5 010 P1 1 D2 4
a6 110 P̄1 x4 D1D2 5
a4 101 P̄1 x̄4 D1D3 6

B3 *10 a1 000 1 1 – 7

Table 8.15   Part of the table of BIMF for Moore FSM MEPEY(Γ7)

K(Bi) P X1 Φ v h

T2T3 P1 x2x4 D1D2D3

00 0 00 101 1 3
00 0 01 101 2 3
00 0 10 011 3 2
00 0 11 011 4 2
00 1 00 001 5 1
00 1 01 001 6 1
00 1 10 001 7 1
00 1 11 001 8 1

x1

Start
Clock

D2

LUT3

LUT4

EMB

1

1
2
3

1

2

3
4

LUT1x3T3

4x2
x4

T2

P1

D1

T

T1

T2
T3

5

y1
y2
y3
y4

EMB

2

1
2
3

1
2
3
4
5
6
7
8

4

„0”

y6
y5

LUT2T3

D3

T1

T2

T3

T’ T’

P1

Fig. 8.15   Logic circuit of FSM MEPEY(Γ7)

8.3  Optimization of LUTer Based on Pseudoequivalent States

330 8  Optimization of FSMs with Embedded Memory Blocks

Due to the optimal state encoding, the circuit of BRLC is implemented using
only one LUT with S = 3. To implement the Eq. (8.25) with LUTs having three
inputs, it should be decomposed:

This equation corresponds to the circuit having three layers formed by 5 LUTs
(Fig. 8.16).

So, the proposed approach allows 5 times reduction for the hardware of BRLC,
as well as 3 times acceleration for the propagation time. Of course, it is true only
for the given example.

It is known that sometimes the optimal state encoding is not possible [3]. In
the case of replacement of logical conditions, it can lead to increasing both hard-
ware amount and propagation time of BRLC. In this case the following approach
is proposed.

Let us encode each class Bi ∈ ΠA by a binary code K(Bi) having RB bits:

Let us use the variables τr ∈ τ for the encoding, where |τ| = RB

Let the following condition takes place:

In this case, we propose to use the MCPCY Moore FSM. Its structural diagram
is shown in Fig. 8.17. In this FSM, the LUTer implements the system of additional
variables

P1 = T1

(
T2T̄3x3

)
∨ T̄1

(
T2

(
T̄3x3

)
∨ T̄2

(
T̄3x1 ∨ T3x3

))

= T1A ∨ T̄1

(
T2B ∨ T̄2C

)
= T1A ∨ T̄1D.

(8.33)RB =
⌈
log2 I

⌉
.

(8.34)2R(N + RB) ≤ V0.

Fig. 8.16   Logic circuit of
BRLC based on trivial state
codes

2
3

2

3 1

3
3

1

3
1
3

Fig. 8.17   Structural diagram
of MCPCY Moore FSM

YT

X2 P

X1

331

The block EMB1 implements input memory functions

The block EMB2 implements microoperations yn ∈ Y and the system

The proposed model can be used if the condition (8.22) takes place together
with the following condition

The proposed design method for MCPCY Moore FSM includes the following
steps:

	 1.	 Constructing the set of states A.
	 2.	 Constructing the partition ΠA = {B1, …, BI}.
	 3.	 State assignment.
	 4.	 Encoding of the classes Bi ∈ ΠA.
	 5.	 Constructing the structure table of PCY Moore FSM.
	 6.	 Partitioning the set X by subsets X1 and X2.
	 7.	 Replacement of logical conditions xl ∈ X2.
	 8.	 Constructing the transformed structure table
	 9.	 Constructing the table of BIMF.
	10.	 Constructing the table of BMO.
	11.	 Implementing the FSM logic circuit.

Let us discuss an example of design for FSM MCPCY(Γ8). The GSA Γ8 is
shown in Fig. 8.18.

For the FSM U2(Γ8), there are the following sets and their parameters:
A = {a1, . . . , a8}, M = 8, X = {x1, . . . , x5}, L = 5, Y = {y1, . . . , y6}, N = 6,

R = 3, T = {T1, T2, T3}, Φ = {D1, D2, D3}.
The following partition �A can be found for Moore FSM U2(Γ8): �A = {B1, . . . , B4},

where B1 = {a1}, B2 = {a2, a3, a4}, B3 = {a5, a6, a7}, B4 = {a8}. So there is I = 4
and RB = 2. A state assignment is treated as optimal if any class Bi ∈ ΠA is represented by
a single generalized interval of R-dimensional Boolean space [2]. It is impossible to find
such an outcome for Moore FSM U2(Γ8). So, let us encode the states am ∈ A in the trivial
way: K(a1) = 000, . . . , K(a8) = 111.

Because of RB = 2, there is τ = {τ1, τ2}. Let us encode the classes Bi ∈ �A in the
trivial way: K(B1) = 00, . . . , K(B4) = 11. Let us point out that there is no need in
the representing the transitions from states a8 ∈ B4 by the structure table. In the case
of D flip-flops such transitions are executed automatically (using only pulse Clock).

Therefore, the code 11 can be treated as “don’t care” input assignment. It can
be used for minimizing FSM logic circuit.

(8.35)P = P
(
τ , X2

)
.

(8.36)Φ = Φ

(
τ , X1, P

)
.

(8.37)τ = τ(T).

(8.38)2G+S0+RB · R ≤ V0.

8.3  Optimization of LUTer Based on Pseudoequivalent States

332 8  Optimization of FSMs with Embedded Memory Blocks

To construct the structure table of PCY Moore FSM, it is necessary to construct
the system of generalized formulae of transitions. In the discussed case, this sys-
tem is the following one:

Let us point out that there is no formula for the class B4 ∈ ΠA in the system (8.39).

(8.39)
B1 → x1a2 ∨ x̄1x2a3 ∨ x̄1x̄2a4;

B2 → x3a5 ∨ x̄3x4a6 ∨ x̄3x̄4a7;

B3 → x4a5 ∨ x̄4x5a8 ∨ x̄4x̄5a7.

Table 8.16   Structure table
of Moore FSM PCY(Γ8)

Bi K(Bi) as K(as) Xh Φh h

B1 00 a2 001 x1 D3 1
a3 010 x̄1x2 D2 2
a4 011 x̄1x̄2 D2D3 3

B2 01 a5 100 x3 D1 4
a6 101 x̄3x4 D1D3 5
a7 110 x̄3x̄4 D1D2 6

B3 10 a5 100 x4 D1 7
a8 111 x̄4x5 D1D2D3 8
a7 110 x̄4x̄5 D1D2 9

Fig. 8.18   Initial GSA Γ8

5

1

2

3 41 2

3

4

2 4 6

1

2 3 4

1

5 6

6

1 3

73 4

4

5

8 3 4

333

The system (8.39) includes HC (Γ8) = 9 terms. Obviously, the structure table of
Moore FSM PCY(Γ8) includes 9 rows (Table 8.16).

Let us use the FPGA chip including EMBs with the following configura-
tions: 256 × 1, 128 × 2, 64 × 4, 32 × 8 (bits). It is necessary to use EMBs with
V0 = 23+8 · 3 = 6144 bits on the case of U2(Γ8). Obviously, the replacement of
logical conditions should be used in the discussed case.

In the discussed case, there is R = 3. It means that the configuration 64 × 4
must be used. Because there is RB = 2, the EMB has SA − RB = 6−2 = 4 free
inputs. It gives |X1| = 3, |X2| = 2 and G = 1. Let us represent the set X as X1 ∪ X2
where X1 = {x2, x3, x5} and X2 = {x1, x4}.

Let us form the table of replacement of logical conditions for Moore FSM
MCPCY(Γ8) (Table 8.17).

The following equation can be derived from Table 8.17 P1 = B1x1 ∨ B2x4∨

B3x4 = τ̄1τ̄2x1 ∨ τ̄1τ2x4 ∨ τ1τ̄2x4. This formula can be implemented as a single-
level circuit using LUTs with S ≥ 4. Let us point out that this equation can be sim-
plified due to appropriate encoding of the classes Bi ∈ ΠA. For example, if there is
K(B1) = 00, K(B2) = 10, K(B3) = 11, K(B4) = 01, then there is the following equation
P1 = τ̄1x1 ∨ τ1x4. It can be implemented using only one LUT having S = 3 inputs.

The transformed structure table of MCPCY FSM includes the following columns: Bi,
K(Bi), as, K(as), Xh

1, Ph, Φh, h. It is Table 8.18 for Moore FSM MCPCY(Γ8). The table of
BIMF includes the same columns as it is for the case of MEPEY FSM. In the discussed
case, the transitions from each class Bi ∈ ΠA are represented by 16 rows of the table.
The table BMO includes the following columns: K(am), Y, K(Bi), m. The column K(Bi)
includes the code of class Bi ∈ ΠA such that am ∈ Bi (for the row number m of the
table). In the case of Moore FSM MCPCY(Γ8) This table has M = 8 rows (Table 8.19).

The logic circuit of FSM MCPCY(Γ8) is shown in Fig. 8.19.

Table 8.17   Table of replacement of logical conditions for Moore FSM MCPCY(Γ8)

Bi B1 B2 B3 B4

P1 x1 x4 x4 –

Table 8.18   Transformed
structure table of Moore FSM
MCPCY(Γ8)

Bi K(Bi) as K(as) Xh
1 Ph Φh h

B1 00 a2 001 1 P1 D3 1
a3 010 x2 P̄1 D2 2
a4 011 x̄2 P̄1 D2D3 3

B2 01 a5 100 x3 1 D1 4
a6 101 x̄3 P1 D1D3 5
a7 110 x̄3 P̄1 D1D2 6

B3 10 a5 100 1 P1 D1 7
a8 111 x5 P1 D1D2D3 8
a7 110 x̄5 P1 D1D2 9

8.3  Optimization of LUTer Based on Pseudoequivalent States

334 8  Optimization of FSMs with Embedded Memory Blocks

8.4 � Optimization of LUTer Based on Encoding
of Collections of Microoperations

Three approaches can be used for the optimization of the circuit of BRLC of
Mealy FSM. The first approach is based on the splitting the set X. The second is
connected with the special state assignment. The third approach is based on the
encoding of the logical conditions [4].

The splitting the set X by subsets X1, X2 is executed in the same manner as for
M0P Mealy FSM. It leads to M0PY Mealy FSM shown in Fig. 8.20.

In this FSM, the LUTer implements the system (8.14). The block EMB1 imple-
ments the system (8.16) and the system of additional variables

The block EMB2 implements the microoperations yn ∈ Y represented by the system

(8.40)Z = Z
(

T , P, X1
)

.

(8.41)Y = Y(Z).

1
2

x1

Start
Clock

D2

1
2
3

1

2

3
4

x4

4

x2

x5

D1

5

y1
y2
y3
y4

1

2

3

1
2
3
4
5
6
7
8

y6
y5

x3
D3

T1

T2

T3

P1

1

2

6
1
2

Fig. 8.19   Logic circuit of Moore FSM MCPCY(Γ8)

Fig. 8.20   Structural diagram
of M0PY Mealy FSM

Y

T

X2 P

X1

Z

Table 8.19   Table of BMO of Moore FSM MCPCY(Γ8)

K(am) Y K(Bi) m

T1T2T3 y1y2y3y4y5y6 τ1τ2

000 000000 00 1
001 110000 01 2
010 001100 01 3
011 000011 01 4
100 101000 10 5
101 010101 10 6
110 001100 10 7
111 101000 11 8

335

The following conditions should take places for the case of M0PY Mealy FSM:

The proposed design method for Mealy FSM M0PY(Γj) includes the following steps:

	 1.	 Constructing the set of states A.
	 2.	 State assignment.
	 3.	 Constructing the structure table of FSM U1(Γj).
	 4.	 Partitioning the set X by classes X1 and X2.
	 5.	 Replacement of logical conditions xl ∈ X2 .
	 6.	 Encoding of the collections of microoperations.
	 7.	 Constructing the transformed structure table.
	 8.	 Constructing the table of BIMF.
	 9.	 Constructing the table of BMO.
	10.	 Implementing the FSM logic circuit.

Let us discuss an example of design for Mealy FSM M0PY(Γ9). The GSA Γ9
is shown in Fig. 8.21. The following sets and their parameters can be found for
Mealy FSM U1(Γ9): X = {x1, . . . , x5}, L = 5, Y = {y1, . . . , y10}, N = 10,

A = {a1, · · · , a6}, M = 6, R = 3, T = {T1, T2, T3}, � = {D1, D2, D3}. Let

(8.42)
2G+S0+R(R + RY) ≤ V0;

2RY · N ≤ V0.

Fig. 8.21   Initial GSA Γ9

a1

y1y2 8

a2

a5

x1

y3 9

y4y6y10

x1

x3

x2

y5 7

x4

a1

y3 9

y2 4

y3 5

y1 2 8

x5

a3

a4

a6

8.4  Optimization of LUTer Based on Encoding of Collections of Microoperations

336 8  Optimization of FSMs with Embedded Memory Blocks

us execute the state assignment in the trivial way: K(a1) = 000, …, K(a6) = 101.
The structure table of FSM U1(Γ9) includes H1(Γ9) = 12 lines (Table 8.20).

Let the FPGA chip in use include EMBs with the following configurations:
512 × 1, 256 × 2, 128 × 4, 64 × 8, 32 × 16 (bits). To implement the circuit of
FSM U1(Γ9), it is necessary V0 = 28 · 13 = 3328 (bits). But the EMB in use have
only 512 bits. It is necessary at least 7 blocks for implementing the FSM logic cir-
cuit. So, the replacement of logical conditions should be used.

There are T0 = 7 different collections of microoperations in the vertices
of GSA Γ9. They are the following: Y1 = ∅, Y2 = {y1, y2, y8}, Y3 = {y3, y9},
Y4 = {y2, y4}, Y5 = {y3, y5}, Y6 = {y4, y6, y10}, Y7 = {y5, y7}. It is enough RY = 3
variables zr ∈ Z for encoding of these collections.

Because of R + RY = 6, the configuration 64 × 8 should be chosen with
SA = 6. It gives G = 1, S0 = 2; therefore, there is |X1| = 2, |X2| = 3.

Let us represent the set X as X = X1 ∪ X2 where X1 = {x2, x3} and
X2 = {x1, x4, x5}. The table of replacement of logical conditions for FSM
M0PY(Γ9) is represented by Table 8.21.

The following equation can be derived from Table 8.21:

The circuit of LUTer requires LUTs with S ≥ 6.
Let use encode the collections of microoperations Yt ⊆ Y in the trivial

way: K(Y1) = 000, …, K(Y7) = 110. Now, the transformed structure table of
Mealy FSM M0PY(Γj) can by constructed. The table includes the columns
am, K(am), as, K(as), X1

h , Ph, Zh, Φh, h. The column Zh contains additional vari-
ables zr ∈ Z which are equal to 1 in the code K(Yt) written in the h-th row of the
table. The transformed table for FSM M0PY(Γ9) is represented by Table 8.22. This
table is a base for constructing the table of BIMF.

(8.43)P1 = T̄1T̄2x1 ∨ T1T̄2T̄3x4 ∨ T1T̄2T3x5.

Table 8.20   Structure table of Mealy FSM U1(Γ9)

am K(am) as K(as) Xh Yh Φh h

a1 000 a2 001 x1x2 y1y2y8 D3 1
a2 001 x1x̄2 y3y9 D3 2
a3 010 x̄1 y2y4 D2 3

a2 001 a5 100 x1 y4y6y10 D1 4
a6 101 x̄1x3 y3y9 D1D3 5
a4 011 x̄1x̄3 y3y5 D2D3 6

a3 010 a4 011 1 y3y5 D2D3 7
a4 011 a6 101 1 y1y2y8 D1D3 8
a5 100 a2 001 x4 y1y2y8 D3 9

a1 000 x̄4 y5y7 – 10
a6 101 a1 000 x5 – – 11

a4 011 x̄5 y3y5 D2D3 12

Table 8.21   Replacement of logical conditions for Mealy FSM M0PY(Γ9)

am a1 a2 a3 a4 a5 a6

P1 x1 x1 – – x4 x5

337

The table of BIMF includes the following columns: K(am), P, X1, Z , Φ, v. In
the discussed case, transitions from each state am ∈ A are represented by 8 rows of
the table of BIMF. The part of this table is represented by Table 8.23. It describes
the transitions from state a1 ∈ A.

The table of BMO includes the columns K(Yt), Y, t. In the discussed case, this
table is represented by Table 8.24.

Table 8.22   Transformed
table of Mealy FSM
M0PY(Γ9)

am K(am) as K(as) Xh
1 Ph Zh Φh h

a1 000 a2 001 x2 P1 z3 D3 1
a2 001 x̄2 P1 z2 D3 2
a3 010 1 P̄1 z2z3 D2 3

a2 001 a5 100 1 P1 z1z3 D1 4
a6 101 x3 P̄1 z2 D1D3 5
a4 011 x̄3 P̄1 z1 D2D3 6

a3 010 a4 011 1 1 z1 D2D3 7
a4 011 a6 101 1 1 z3 D1D3 8
a5 100 a2 001 1 P1 z3 D3 9

a1 000 1 P̄1 z1z2 – 10
a6 101 a1 000 1 P1 – – 11

a4 011 1 P̄1 z1 D2D3 12

Table 8.23   Part of table
of BIMF for Mealy FSM
M0PY(Γ9)

K(am) P X1 Z Φ v h

T1T2T3 P1 x2x3 x1x2x3 D1D2D3

000 0 00 011 101 1 3
000 0 01 011 101 2 3
000 0 10 011 011 3 3
000 0 11 011 011 4 3
000 1 00 010 001 5 2
000 1 01 010 001 6 2
000 1 10 001 001 7 1
000 1 11 001 001 8 1

Table 8.24   Table of BMO
for Mealy FSM M0PY(Γ9)

K(Yt) Y t

z1z2z3 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

000 0 0 0 0 0 0 0 0 0 0 1
001 1 1 0 0 0 0 0 1 0 0 2
010 0 0 1 0 0 0 0 0 1 0 3
011 0 1 0 1 0 0 0 0 0 0 4
100 0 0 1 0 1 0 0 0 0 0 5
101 0 0 0 1 0 1 0 0 0 1 6
110 0 0 0 0 1 0 1 0 0 0 7
111 0 0 0 0 0 0 0 0 0 0 8

8.4  Optimization of LUTer Based on Encoding of Collections of Microoperations

338 8  Optimization of FSMs with Embedded Memory Blocks

Let the FPGA chip in use include LUTs having S = 4. It means that the expres-
sion (8.43) should be transformed in the following way:

The expression (8.44) corresponds to the circuit of BRLC shown in Fig. 8.22, a.
The number of LUTs in the circuit of BRLC can be decreased due to the special state
assignment [4]. In this case set A is represented as A1 ∪ A2. The set A1 includes states
am ∈ A with conditional transitions, as well as the initial state a1 ∈ A. The set A2
includes states am ∈ A with the unconditional transitions. The state assignment starts
from the states am ∈ A1. The codes K(am) for states am ∈ A1 correspond to decimal
numbers from 0 to M1 – 1, where |A1| = M1.

It is enough RE variables Tr ∈ T for encoding of the states am ∈ A1, where

In the case of FSM U1(Γ9), there are the following sets: A1 = {a1, a2, a5, a6}
and A2 = {a3, a4}. There is RE = 2, so, the states am ∈ A1 can be determined using
only state variables T2 and T3 (Fig. 8.23).

(8.44)P1 = T̄1T̄2x1 ∨ T1

(
T̄2T̄3x4 ∨ T̄2T3x5

)
= A ∨ T1B.

(8.45)RE =
⌈
log2 M1

⌉
.

T1
LUT1T2

x1

x5

P1

A

T2
LUT2T3x4

B

LUT3T1

T1
LUT1T2

x4

P1

C

LUT2T1
x5

x1

(a) (b)

Fig. 8.22   Logical circuit of BRLC for Mealy FSM M0PY(Γ7) (a) and MEPY(Γ9) (b)

Fig. 8.23   Outcome of
special state assignment for
Mealy FSM U1(Γ9)

32TT

1T 00 01 11 10

0 1a 2a 6a 5a

1 3a 4a * *

Fig. 8.24   Structural diagram
of MEPY Mealy FSM

Y

T

X2 P

X1

T’ T

Z

339

Such an approach leads to MEPY Mealy FSM. Its structural diagram is shown
in Fig. 8.24. The set T′ ⊆ T includes RE variables.

The only difference between the M0PY and MEPY FSMs is reduced to the system
P. In the later case the additional variables are represented by the following system:

In the discussed case, the following equation can be found for the function
P1 ∈ P:

The logic circuit of BRLC for Mealy FSM MEPY(Γ9) is show in Fig. 8.22b. It
requires 1, 5 times less amount of LUTs than its counterpart for M0PY(Γ9).

The only difference between design methods for M0PY and MEPY FSMs is
reduced to the different state assignments. For MEPY Mealy FSM, the special state
assignment should be executed.

If G = 1, then the approach of encoding of logical conditions can be applied.
Let the symbol X(P) stand for the set of logical conditions replaced by the variable
P1 ∈ P. It is enough RL variables for encoding of the logical conditions xl ∈ X (P):

Let us use the variables br ∈ B for encoding of logical conditions. This
approach leads to MCPY Mealy FSM (Fig. 8.25).

In MCPY Mealy FSM, the LUTer implements system

The block EMB1 implements system (8.16), (8.40) and

The block EMB2 implements system (8.41).
The design method for Mealy FSM MCPY(Γj) includes all steps presented in

the design method for M0PY FSM. But the encoding of logical conditions is exe-
cuted before the step of their replacement. Let us discuss an example of design for
Mealy FSM MCPY(Γ9).

The steps from 1 to 4 are executed before. There is the set X(P) = X2 = {x1, x4, x5}
with LP = 3. These logical conditions can be encoded using RL = 2 variables. It

(8.46)P = P
(
T ′, X2

)
.

(8.47)P1 = T̄2x1 ∨ T2T̄3x4 ∨ T2T3x5 = T̄2x1 ∨ C.

(8.48)RL =
⌈
log2 |X(P)|

⌉
.

(8.49)P = P
(

B, X2
)

.

(8.50)B = B
(

T , P, X1
)

.

Fig. 8.25   Structural diagram
of MCPY Mealy FSM

YX2 P

X1
B

T

Z
B

8.4  Optimization of LUTer Based on Encoding of Collections of Microoperations

340 8  Optimization of FSMs with Embedded Memory Blocks

gives the set B = {b1, b2}. Let us encode the logical conditions in the following
manner: K(x1) = 00, K(x4) = 01 and K(x5) = 10. It gives the following equation
for the block BRLC:

Let us encode the collections of microoperations as for the M0PY(Γ9).
The transformed structure table of MCPY Mealy FSM includes all columns of

its counterpart for M0PY Mealy FSM. Also, it includes the column Bh with the
variables br ∈ B equal to 1 in the code K(xl) from the h-th row of the table.

The transformed structure table of Mealy FSM MCPY(Γ9) is represented by
Table 8.25. The table of BIMF includes an additional column B with K(xl). The

(8.51)P1 = b̄1b̄2x1 ∨ b2x4 ∨ b1x5 = A ∨ C.

Table 8.25   Transformed structure table of Mealy FSM MCPY(Γ9)

am K(am) as K(as) Xh
1 Ph Zh Bh Φh h

a1 000 a2 001 x2 P1 z3 – D3 1
a2 001 x̄2 P1 z2 – D3 2
a3 010 1 P̄1 z2z3 – D2 3

a2 001 a5 100 1 P1 z1z3 – D1 4
a6 101 x3 P̄1 z2 – D1D3 5
a4 011 x̄3 P̄1 z1 – D2D3 6

a3 010 a4 011 1 1 z1 – D2D3 7
a4 011 a6 101 1 1 z3 – D1D3 8
a5 100 a2 001 1 P1 z3 b2 D3 9

a1 000 1 P̄1 z1z2 b2 – 10
a6 101 a1 000 1 P1 – b1 – 11

a4 011 1 P̄1 z1 b1 D2D3 12

b1

Start
Clock

D2

1
2
3

b2

4

z2

B

D1

5

y1
y2
y3
y4

1
2
3
4
5
6
7
8

y6
y5

z3

D3

T1

T2

T3

P1

x4

x5

6

x1

b1

b2

1
2
3
4
5
6
7
8

x2
x3

T1

T2

T3

P1

9
10
11
12
13
14

16
15

y7
y8
y9
y10

1

2
3

4
5

b1

b2

T

z1

z2
z3

z1

„0”

Fig. 8.26   Logic circuit of Mealy FSM MCPY(Γ9)

341

table of BMO is the same as for Mealy FSM M0PY(Γ9). The logic circuit of Mealy
FSM MCPY(Γ9) is shown in Fig. 8.26.

This approach can be used if the following condition takes place:

It there is G > 1, then logical conditions from different sets X(Pg) should be
encoded using different variables br ∈ B. Let X(Pg) ⊆ X is a set of logical condi-
tions, it is enough RL    

g variables where

It gives the value of RL = R1
L + R2

L + · · · + RG
L . This value should be used in

(8.52).
The encoding of logical conditions can be used for optimizing the BRLC of

Moore FSM. In this case, the codes K(xl) should be added into collections of
microoperations. It leads to MCPY Moore FSM shown in Fig. 8.27.

This approach can be used together with the method of optimal state assign-
ment, as well as the encoding of the classes of pseudoequivalent states. We do not
discuss these approaches in this chapter.

References

1.	Baranov SI (1994) Logic synthesis of control automata. Kluwer, Boston
2.	Barkalov A (1998) Principles of logic optimization for a Moore microprogrammed automaton.

Cybern Syst Anal 34(1):54–61
3.	Barkalov A, Titarenko L (2009) Logic synthesis for FSM-based control units. In: Number 53

in Lecture notes in electrical engineering. Springer, Heidelberg
4.	Barkalov A, Zelenjova I (2000) Optimization of replacement of logical conditions for an

automaton with bidirectional transitions. Autom Control Comput Sci 34(5):48–53
5.	Łuba T (1994) Multi-level logic synthesis based on decomposition. Microprocess Microsyst

18(8):429–437
6.	Rawski M, Selvaraj H, Łuba T (2005) An application of functional decomposition in

ROM-based FSM implementation in FPGA devices. J Syst Archit 51(6–7):423–434

(8.52)2R+S0+G(R + RY + RL) ≤ V0.

(8.53)R
g
L =

⌈
log2 |X(Pg)|

⌉
.

Fig. 8.27   Structural diagram
of Moore FSM Y

X2 P

B

T

8.4  Optimization of LUTer Based on Encoding of Collections of Microoperations

343

Abstract  Chapter is devoted to the using the data-path for decreasing the number of
LUTs in logic circuits of FPGA-based Moore FSMs. Firstly, the principle of opera-
tional implementation of interstate transitions is proposed. It is based on the usage of
operational elements (adders, counters, shifters and so on) for calculating codes of the
states of transitions. Next, the organization of FSM with operational implementation
of interstate transitions is discussed. An example is given for application of the pro-
posed method. Next, the base structure of synthesis process is proposed for Moore
FSM with operational implementation of interstate transitions. The structure of the
synthesis process depends on initial conditions such as set of operations or codes of
FSM states. The typical structures are discussed for the operational automaton exe-
cuting the transitions. Next, the method is shown based on mixture of traditional and
proposed approaches for calculation of the codes of states of transitions. The last part
of the chapter discusses the efficiency of proposed solution. The chapter is written
together with PhD Roman Babakov (Donetsk National Technical University, Ukraine).

9.1 � Conception of Operational Implementation
of Transitions

The base for classical methods of FSM design is a proposed by Viktor Glushkov
canonical method of structural synthesis. According to this principle, the logic
circuit of BIMF is represented by a system of Boolean functions (SBF). In this
system, both state variables and logical conditions are connected by Boolean oper-
ations such as negation, conjunction or disjunction.

The usage of SBF for representing a logic circuit is rather convenient because
the corresponding synthesis methods, as well as different optimization techniques,
are profoundly examined. There are very efficient methods targeting different logic
elements (gates, PAL, PLA, CPLD, FPGA, and so on) [8]. Up-to-day CAD tools
support synthesis based on Boolean functions. Moreover, a lot of industrial CAD
packages include embedded tools targeting minimizing logic circuits [10, 12].

Chapter 9
Finite State Machines with Operational
Implementation of Transitions

V. Sklyarov et al., Synthesis and Optimization of FPGA-Based Systems,
Lecture Notes in Electrical Engineering 294, DOI: 10.1007/978-3-319-04708-9_9,
© Springer International Publishing Switzerland 2014

344 9  Finite State Machines with Operational Implementation of Transitions

The following peculiarities should be taken into account under implementing
the BIMF circuit using SBF:

1.	 The complexity of an SBF is increased as far as the number of interstate transi-
tions is increased. The growth for the number of interstate transitions results
in increase for the number of product terms in the SBF to be implemented, as
well as for the number of literals in these terms. It is connected with increasing
number of state variables. Because the state codes are unique for each state, the
growth of hardware amount with increasing the parameters of GSA is a natural
process. This event can be partially compensated due to applying different opti-
mization methods targeting FSMs [1, 7, 9]. In some cases, it can be obtained
analytical dependences among the parameters of GSA and the number of logic
elements required for implementing the corresponding FSM circuit. For exam-
ple, it can be done for PALs or PLAs.

2.	 The exact minimization of SBF can be executed only by the complete enumera-
tion for all possible solutions. As it is known, this problem is a NC-complete
and finding the exact solution is a very time-consuming task [13]. There are a
lot of heuristic methods decreasing the number of enumerations, but they do
not guarantee finding the optimal solution [11].

Let us consider the proposed conceptual approach for constructing the BIMF.
If some conditions take places, this approach allows restriction the complexity of
BIMF logic circuit with the growth for the number of FSM transitions [2, 3].

The main goal of a control unit is the generation of a proper sequence of
collections of microoperations entering a data-path (operational automaton) of
some digital system. This sequence is determined by a particular GSA represent-
ing the control algorithm for executing some task. The operational automaton
(OA) executes the required data processing. To do it, some operational blocks
are used such as adders, multipliers, shifters, and so on. As a rule, the FSM
processes logical conditions using either Boolean functions or truth tables. For
example, the addresses of transitions are represented by a table corresponding to
the control memory of the microprogram control unit with compulsory address-
ing of microinstructions. The only exception is a compositional microprogram
control units, where some addresses of transitions are generated by incrementing
a counter [5, 6].

As a rule, a state code is considered as a binary vector. But it is quite possi-
ble to consider it as some arithmetical value in some positional number system
(mostly, in binary system). For example, the state code K(ai) = 111010112 can
be viewed either as the integer number 235, or the signed number −107, or as the
two-complement number −21, or as the real number −10.112 = −2.7510 and so
on. Obviously, if state codes are treated as binary numbers, the different arithmeti-
cal, as well as logical, operations can be executed under these numbers.

Each transition of FSM can be viewed as a transformation of the code K(ai) of
a current state into the code K(aj) of a state of transition. Let it be necessary, for
example, to transform the state code K(ai) = 010101102 = 8610 = +86SM = +862

C into the code K(aj) = 101010012 = 16910 = −41SM = −872C. The subscript SM

345

means that the number is represented in the sign-and-magnitude form, whereas the
subscript 2C in the two’s complement form [8].

Interpreting the binary vectors of the state codes as numbers with different
representation, the required transformation K(ai) → K(aj) can be executed, for
example, in the ways shown in Fig. 9.1. Here the central blocks includes arith-
metical operations necessary for transformation of K(ai) into K(aj). Each of these
approaches gives the resulting binary vector K(aj).

Obviously, each of these transformations can be executed using different oper-
ations, as well as sequences of some operations. For example, three variants are
shown in Fig. 9.2 for the transformation K(ai) → K(aj) if these codes are treated as
two’s complements. In the last case, the division of K(ai) by −28 is executed as the
exact division (without saving the residue of division).

In some cases, the transformation can be executed using Boolean opera-
tions under the binary vector of a state code, as well as using some combination
of arithmetical and logic operations. For example, the discussed transformation
K(ai) → K(aj) can be executed by bit-wise inversion of the vector K(ai). From the
design point of view, this operation leads to the circuit having maximum perfor-
mance and minimum hardware amount in comparison with other discussed opera-
tions. But it is a particular case, which takes place only for discussed codes and
only if they are represented as double-byte numbers.

The following two statements can be made on the base of previous discussion:

Statement 9.1  The transformation of FSM codes is possible with usage of arith-
metical and logic operations, whose choice depends on the mathematical interpre-
tation of corresponding binary vectors of state codes.

Statement 9.2  In the common case, there are a lot of transformation variants with
arithmetical and logic operations. It can be chosen at least one variant leading to
the logic circuit having either minimum hardware amount or maximum perfor-
mance in comparison with other possible variants for given logic elements.

Fig. 9.1   Transformation of
binary vectors as different
numbers

K(ai) = 8610 + 8310 K(aj) = 16910

K(ai) = +86SM – 127SM K(aj) = -41SM

K(ai) = +862C – 1732C K(aj) = -872C

Fig. 9.2   Equivalent
transformations of binary
vectors as two’s complements

K(ai) = +862C – 1732C K(aj) = -872C

K(ai) = +862C × (-1) – 1 K(aj) = -872C

K(ai) = +862C / (-28) × 29 K(aj) = -872C

9.1  Conception of Operational Implementation of Transitions

346 9  Finite State Machines with Operational Implementation of Transitions

Let us name as operational generation of transitions this new approach of transfor-
mation of FSM codes using arithmetical and logic operations. This approach leads to
the new structure (model) of FSM where the block BIMF is represented as a composi-
tion of combinational circuits executing different arithmetic and logic operations.

9.2 � Organisation of FSM with Operational Generation
of Transitions

The canonical structure diagram of Moore FSM [9] is shown in Fig. 9.3. In this
model, the block BIMF implements the system of input memory functions Φ and
generates a code of the next state entering the register RG. The code of the cur-
rent state represented by state variables from the set T enters both blocks BIMF
and BMO. The BMO is implemented using ROM; it keeps microoperations from
the set Y. The microoperations enter the data-path and initiate execution of some
primitive operations. The pulse Start is used for loading the code of initial state
into RG. The pulse Clock causes changing the content of RG.

Let a Moore FSM corresponding to some GSA have the set of states
A = {a1,…, aM}. Let the GSA include branches corresponding to interstate transi-
tions (conditional and unconditional) and forming the set B = {B1,…, BV}. Let us
name them as interstate branches. Obviously, each interstate branch corresponds to
one unique row of the FSM structure table [9]. If all transitions are unconditional,
then there is V = M, otherwise there is V > M.

Each interstate branch corresponds up to R product terms in the system of input
memory functions, where R is the number of bits in state codes. It is clear, that the
growth of the number of branches leads to the increasing for the hardware amount
in the FSM logic circuit. This dependence is approximately linear.

Let us transform the model (Fig. 9.3) in the following manner.

1.	 Let us represent BIMF as a composition of combinational circuits CC(Oi)
(i = 1, Q).

	 Each of them implements some unique arithmetical or logic operation (OP)
Oi ∈ O using both state variables T and logical conditions X as operands
(Fig. 9.4). The outputs of circuits CC(Oi) enter the multiplexer MX. The MX
is controlled by the code of operation Ψ; it generates the input memory func-
tions Φ to load the code of the next state into RG. Let us denote the operations
implemented by circuits CC(Oi) as operations of transitions. Let us name the

Fig. 9.3   Canonical structure
diagram of Moore FSM

X
BIMF Φ RG

T
BMO

T
Y

Start
Clock

347

collection of the blocks {CC(O1),…, CC(OQ), MX) as operational part (OP) of
an Moore FSM. The function of OP is generation of input memory functions
Φ (code of the next state) on the base of state variables T (code of the current
state), logical conditions X and code of operation Ψ:

	 It should be point out that the structure of OP (Fig. 9.4) is similar to the com-
binational part of operational automaton [9]. The register RG receives data
from the output of multiplexer MX, whereas the output of RG enters the inputs
of OP. Therefore, the register can be treated as a memory of OA. Because
the block OP implements de facto the interstate transitions, let us name the
pair <OP, RG> as operational automaton of transitions (OAT).

2.	 Let us introduce an additional block of operation of transition (BOT) in the
structure of FSM. It is implemented using ROM (EMBs of FPGAs). The main
function of the BOT is the generation of the code of operation of transition Ψ on
the base of state variables T. Next, this code enters the input of multiplexer MX.

	 Let us name the resulting FSM structure as the Moore FSM with operational
automaton of transitions (FSM with OAT). The structure diagram of the Moore
FSM with OAT is shown in Fig. 9.5. This FSM is based on the principle of
operational generation of interstate transitions.

	 The FSM with OAT operates in the following manner. In each cycle of opera-
tion, the register RG receives a code of the next state, represented by functions
Φ. Now this code is represented by the state variables T and is treated as a code
of the current state. Using this code, the block BMO generates microoperations
Y. At the same time, the block BOT generates a code of operation Ψ entering
OAT. Using this code, the OP generates new values of input memory functions
executing one of Q possible operations of transitions.

(9.1)Φ = Φ(T , X, Ψ).

CC(O1) CC(O2) CC(OQ)

X

Ψ

MX

RG

T

O1(T, X)
O2(T, X) OQ(T, X)

Φ = OΨ(T, X)

. . .

. . .

OP

Fig. 9.4   Structure of operational part of Moore FSM

9.2  Organisation of FSM with Operational Generation of Transitions

348 9  Finite State Machines with Operational Implementation of Transitions

Therefore, the FSM with OAT possesses the following peculiarities distinguish-
ing it from the traditional Moore FSM:

1.	 A state code is interpreted not as a collection of bits, but as some arithmetical
value represented in the binary number system.

2.	 The transformation of the current state code K(at) into the next state code
K(at+1), where t = 0, 1, is an automaton time, is executed using a set of arith-
metical and logic operations.

3.	 The choice of operation of transition is a function of the current state code.

If there is an unconditional transition from the state at into the state at+1, then
the function of transition depends only on the code of current state:

In (9.2), the symbol Ot stands for operation of transition used for execution a tran-
sition from the state at.

If there are conditional transitions from the state at, then they can be made into
some of the FSM states depending on the values of both the current state code and
logical conditions sufficient for these transitions. The function of transformation is
the following one:

In (9.3), the symbol K(at+1) stands for the code of the next state; Xt is a subset of the
set of logical conditions checked for executing transitions from the current state; Ot is
an operation of transition implementing a conditional transition from the current state.

Thus, the following sets can be found in the structural representation of the
FSM with OAT:

1.	 The set of the state codes K = {K(a1), K(a2),…,K(aM)}, where M is the cardi-
nal number of the set A. Only one transition corresponds to each state (it can be
either unconditional or conditional).

2.	 The set of operations of transitions O = {O1,…,OQ}, where Q ≤ M. In the
general case, each element of the set O allows different implementation (it can
be implemented using different combinational circuits). The appropriate choice
of a way for implementing each operation influences significantly the hardware
characteristics of the final FSM circuit.

The relation Q ≤ M is based on the fact that the same operation can be used for
executing more than one transition. For example, the transition from the state ai

(9.2)K(at+1) = O
t(K(at)).

(9.3)K(at+1) = O
t(K(at), X

t).

Fig. 9.5   Structure of FSM
with OAT

X
OP Φ RG

T

BMO
T

Y

OAT
BOT Ψ

349

having the code 20 into the state aj with the code 40 can be implemented using the
operation “+20”. The same is true for the transition from the state ai having the
code 34 into the state aj with the code 54. In this case, the same operation of tran-
sition can be used for executing these transitions. It means that both transitions are
executed using the same combinational circuit. Obviously, the same combinational
circuit can be used for executing from 1 to M transitions. It is clear, that operations
of transitions chosen for given GSA should provide executing all interstate transi-
tions for given values of state codes.

The proposed FSM model can be represented by the following vector:

In accordance with [9], the synthesis of the logic circuit of FSM with OAT is
reduced to constructing and physical implementation of all sets from (9.4). The
microoperations are implemented using operational vertices of a particular GSA,
whereas both the sets K and O are constructed in accordance with given optimiza-
tion criteria.

9.3 � Example of FSM Design

Let us discuss a design example for Moore FSM with OAT. The main goal of this
example is only outlining the proposed principle. We do not consider such issues
as minimizing the hardware amount and optimizing the FSM performance. It is
connected with the fact that the example is very simple. Let a control algorithm be
represented by GSA Γ10 (Fig. 9.6). Let us construct the set of operations of transi-
tions including three elements. The operation O1 is an operation of unconditional
“sequential” transition corresponding to the “down” transition along the GSA to
the next state. Let the operation O1 correspond to the following expression:

where k1 is some constant. Let us point out that the symbol at is treated as the code
K(at). It means that all similar expressions use the state codes.

The operation O2 is an operation of conditional transition. This operation pro-
duces one of two possible results depending on the value of a logical condition to
be checked:

where k2 is some constant. This operation can be divided by two parts and repre-
sented as:

(9.4)S = < K , O, Y >.

(9.5)O1(a
t) = a

t − k1,

(9.6)O2(a
t, xt) =

{
2at + k2, xt = 0;

2at − k2, xt = 1,

(9.7)O2−0(a
t) = 2a

t + k2;

(9.8)O2−1(a
t) = 2a

t − k2.

9.2  Organisation of FSM with Operational Generation of Transitions

350 9  Finite State Machines with Operational Implementation of Transitions

The operation O3 is an operation of unconditional “reverse” transition; it is a
transition in the higher point of a GSA. In the discussed example, such a transition
is executed from the state a4 into the state a2. Let us define this operation as the
following one:

where k3 is some constant.
Let us point out that we do not discuss how to choose the expressions (9.5) –(9.9).

The special method should be applied for the choice. Obviously, quite different oper-
ations can be chosen for another GSA.

Let us construct a system of equations having number values of state codes
as their roots. Each equation of the system corresponds to a unique transition,
whereas the total number of equations is equal to the number of interstate tran-
sitions for a given GSA. Each transition is executed using one of the functions
O1–O3.

In the general case, any from the appointed operations can be used for execut-
ing a transition. The only condition is the correct implementation of the transition.
But let us follow the above chosen appointments for the operations of transitions.
So, the transitions a0 → a1, a1 → a2, and a5 → a0 should be executed using the
operation O1. The transitions a2 → a3 and a3 → a1 should be executed using the
operation O2–1, the transitions a2 → a4 ï£¡ a3 → a5 using the operation O2–0. At
last, the transition a4 → a2 should be executed using the operation O3. As a result,
the following system of equations can be constructed:

(9.9)O3(a
t) = a

t − k3,

(9.10)






a0 = O1(a5); a2 = O3(a4);

a1 = O1(a0); a3 = O2−1(a2);

a1 = O2−1(a3); a4 = O2−0(a2);

a2 = O1(a1); a5 = O2−0(a3).

Fig. 9.6   Graph-scheme
of algorithm Γ10

a0

End

a1

a2

x1

a3 a4

a5

x2

1 0

1 0

a0

Start

y1 y2

y2 y3

y1 y3 y4

y1 y3 y4

351

Obviously, the system (9.10) has a lot of possible solutions (roots). Let us
choose the constants k1 = k2 = 3, k3 = 7 for operations O1–O3, respectively. In
this case, the following decimal values can be obtained corresponding to the state
codes satisfying the system (9.10): K(a0) = 10, K(a1) = 7, K(a2) = 4, K(a3) = 5,
K(a4) = 11, K(a5) = 13.

This solution can be shown as a following graph (Fig. 9.7). The rectangle verti-
ces of this graph contain state codes, whereas it edges correspond to operations of
transitions.

Despite the fact that there are only M = 6 states for Moore FSM correspond-
ing to GSA Γ10, the maximum decimal number used as a state code is equal to
13. Obviously, it is necessary 4 bits for state assignment. This value determines
parameters of combinational blocks, RG and PROM of OAT.

One of two logical conditions (x1 or x2) is analyzed by the operation O2. To
choose one of these conditions, the well-known method of replacement of logi-
cal conditions can be used [1, 7]. To do it, let us add the field Z into the PROM of
the block BOT. This field contains a code of logical condition to be chosen. In the
discussed example, this field contains only one bit. To transfer only one of logical
conditions on the input of OP, it is necessary to place a special multiplexer of logi-
cal conditions before the combinational block executing operation O2. The multi-
plexer is controlled by the code from the field Z.

Let us encode operations O1–O3 in the following manner: K(O1) = 00,
K(O2) = 01, and K(O3) = 10. Let us encode the logical conditions using the fol-
lowing codes: K(x1) = 0 and K(x2) = 1. Let us construct a table reflecting the
content of PROM of BOT (Table 9.1). In this table, the symbol “*” stands for the
“don’t care” value of a particular bit of PROM.

Let us point out that the content of PROM of the block BMO is constructed in a
manner similar to constructing this content for the model shown in Fig. 9.1. To do
it, both contents of operational vertices and values of state codes should be used.
In the discussed example, the BMO should have four address inputs, whereas only

Fig. 9.7   Graph
corresponding GSA Γ10 with
codes of states and operations
of transitions

10

10

-3

4

x1

5 11

13

x2

-3
7

×2–3

×2–3

-3

–7

×2+3

×2+3

9.3  Example of FSM Design

352 9  Finite State Machines with Operational Implementation of Transitions

three inputs are necessary for the Moore FSM shown in Fig. 9.1. The content of
BMO based on the one-hot encoding of microoperations is shown in Table 9.2.

The structure diagram of Moore FSM with operational automaton of transitions
is shown in Fig. 9.8. The blocks O1–O3 implement the corresponding operations
represented by expressions (9.5)–(9.9). The multiplexer of logical conditions MX1
generates values of logical conditions in accordance with values of variables Z.
The multiplexer of result MX2 generates the values of input memory functions Φ
in accordance with values of variables Ψ. Of course, this set of operational blocks
is unique for each FSM with operational automaton of transitions. But the design
method is general for any initial graph-scheme of algorithm.

Table 9.1   Content of PROM
of BOT (for GSA Γ10)

ai K(ai) T1T2T3T4 Ψ Z

0 0 0 0 ** *
0 0 0 1 ** *
0 0 1 0 ** *
0 0 1 1 ** *

a2 4 0 1 0 0 01 0
a3 5 0 1 0 1 01 1

0 1 1 0 ** *
a1 7 0 1 1 1 00 *

1 0 0 0 ** *
1 0 0 1 ** *

a0 10 1 0 1 0 00 *
a4 11 1 0 1 1 10 *

1 1 0 0 ** *
a5 13 1 1 0 1 00 *

1 1 1 0 ** *
1 1 1 1 ** *

Table 9.2   Content of PROM
of BMO (for GSA Γ10)

ai K(ai) T1T2T3T4 y1 y2 y3 y4

0 0 0 0 * * * *
0 0 0 1 * * * *
0 0 1 0 * * * *
0 0 1 1 * * * *

a2 4 0 1 0 0 0 1 1 0
a3 5 0 1 0 1 1 0 1 0

0 1 1 0 * * * *
a1 7 0 1 1 1 1 1 0 0

1 0 0 0 * * * *
1 0 0 1 * * * *

a0 10 1 0 1 0 0 0 0 0
a4 11 1 0 1 1 0 0 0 1

1 1 0 0 * * * *
a5 13 1 1 0 1 1 0 1 1

1 1 1 0 * * * *
1 1 1 1 * * * *

353

9.4 � Structural Representation of Synthesis Process
for FSM with OAT

There are some problems connected with the development of general synthesis
method for FSM with OAT. First of all, it is necessary to determine the parameters
of the FSM used as starting conditions for the process of synthesis. The following
issues should be found:

•	 a fixed set of state codes used for constructing the set of operations of
transitions;

•	 a fixed set of operations of transitions determined by available operational
blocks (these blocks are viewed as library elements of a particular CAD);

•	 an optimization criterion used for choosing either state codes or operations of
transitions.

Of course, different parameters can be chosen as starting, as well as more than
one parameter can be chosen. This choice depends on a lot of particular factors.
The final choice determines the peculiarities of synthesis process.

Apart from the proper choice of starting parameters, it should be taken into
account that different stages of synthesis can be carried out by different tools. For
example, different sets of operations of transitions can be constructed for given

X

Y

BMO

RG

MX2

MX1O1 O3

O2

OP

T

BOT

Z Ψ

Fig. 9.8   Structure of Moore FSM with OAT (for GSA Γ10)

9.4  Structural Representation of Synthesis Process for FSM with OAT

354 9  Finite State Machines with Operational Implementation of Transitions

values of state codes. These sets differ in both hardware amount and performance of
the final FSM circuit. On the other hand, the state codes can be chosen in different
ways for the same set of operations. In this case, the choice influences the number
of bits in state codes and, therefore, on hardware amount for blocks BOT and BMO.

Undoubtedly, the choice of this or that approach for implementing some stage
of synthesis influences the final result, but it is very difficult to estimate this influ-
ence before getting the FSM circuit. Therefore, a designer of FSM with OAT
should deal with a lot of variants for starting conditions’ choice, as well as a lot
of possibilities for executing the synthesis stages. At the same time, there are no
precise preliminary knowledge about such important issues as the synthesis stages,
their number and the order of their execution. Such a problem definition compli-
cates the development of general approach for synthesis of FSM with OAT.

9.4.1 � Base Structure of Synthesis Process for FSM with OAT

Let us consider the following approach for development of the general design
method for FSM with OAT [4].

1.	 Let us form the set of main stages for design process. The following issues can
be elements of this set:

a.	the choice of values for state codes;
b.	the constructing the set of operations of transitions;
c.	the constructing the set of interstate transitions for given GSA (if it is neces-

sary, additional vertices can be introduced into initial GSA corresponding to
idle FSM states);

d.	the data types used for interpreting state codes (for example, the state codes
can be treated as either sign-and-magnitude integers or one’s-complements,
or two’s-complements, or floating point numbers, or binary-encoded-decimal
numbers and so on);

e.	the set of library elements used for implementing operations of transitions
(the same OT can be implemented using blocks targeting either hardware
minimization or performance maximization; this choice influences the area
of a chip occupied by a particular circuit);

f.	 the basic optimization criterion used for FSM circuit (hardware amount, per-
formance, consumed power, reliability, and so on).

Obviously, other synthesis steps can be added to meet some specifics of a
particular project.

2.	 Let us represent the synthesis process as some directed graph. The graph
nodes correspond to synthesis stages. The graph edges correspond to possi-
ble connections of synthesis process. The above mentioned stage of synthe-
sis allows constructing the graph for FSM with OAT (Fig. 9.9). This graph is
characterized by the comprehensive whole of interlacement and stable connec-
tions among its components. Due to it, the graph can be named as the basic

355

structure of synthesis process for FSM with OAT. The term “basic” means that
this structure is not rigid; there is a possibility for either adding or deleting
some nodes or edges.

Let us consider the connections between the elements of the basic structure.
The block 6 “Main optimization criterion” may influence practically all other

blocks. The approach used for implementing all other blocks depends significantly
on the optimization criterion in use. No another block might change the optimiza-
tion criterion.

The block 7 “Level of optimization” allows restricting complexness of methods
used in blocks 1–5.

The blocks 3 and 4 affect the generation process for state codes (block 1).
Using state codes generated by the block 1, the set of operations of transitions can
be developed (block 2).

Using the set of operations of transitions from block 2, it is possible to choose
the format for code states (block 4) as well as the set of interstate transitions can
be found (block 3) determining the values of state codes (block 1). Using blocks 2,
6 and 7, the choice of library elements is made for implementing the operations of
transitions (block 5).

The block 8 “Functional circuit of FSM with OAT” has no outgoing edges. It
can be viewed as a final node of the graph. It contains an outcome of the design
process. The content of this block is determined by both the block 5 (the set of
combinational circuits of operational part) and the block 1 (number of bits in both
state codes and addresses of data in PROMs of BMO and BOT).

9.4.2 � Refinement of Basic Structure of Synthesis Process

The block diagram (Fig. 9.9) represents only a collection of possible synthesis
steps and their interconnections for FSM with OAT. To obtain a synthesis method
which can be used in practice, it is necessary to refine the basic structure. The
refinement is reduced to the following issues:

1.	� Some blocks (one or more) are chosen as the starting conditions for the synthe-
sis. Either one of the blocks 1, 2, 6, 7 or the block pairs <1, 4> , <2, 4> can be
chosen as the starting conditions. In the general case, the choice should provide
implementing the FSM functional circuit. Next, the edges which enter into ini-
tial blocks are deleted from the graph. As a result, these synthesis steps do not
depend on other steps.

2.	� The route is chosen leading from the initial nodes to the node 8. In the gen-
eral case, the route can be either consecutive, or parallel, or iterative (having
cycles).

3.	� The way of implementation is determined for each synthesis step. In the com-
mon case, it depends on outcomes of both previous points.

9.4  Structural Representation of Synthesis Process for FSM with OAT

356 9  Finite State Machines with Operational Implementation of Transitions

Let us discuss some examples.

Example 9.1  Let the steps 1 and 6 be chosen as the starting conditions. It leads to
the synthesis process shown in Fig. 9.10.

1.	� Both blocks 1 and 6 be starting; they have no ingoing edges. The nodes are
deleted having outgoing edges connected with 1 and 6 (in this case, the nodes 3
and 4 are deleted).

2.	� The nodes 6 and 7 have no influence on the node 1. Of course, they can influ-
ence other synthesis steps. The outcome of this influence depends on specifics
of each step’s implementation.

Considering the interrelations of blocks 1 and 2 (Fig. 9.1), we can state that the
preliminary state assignment takes place in this structure of synthesis process. The
step of constructing the set of transitions is the following one.

The step-by-step implementation of each block produces an algorithm for syn-
thesis of Moore FSM with OAT. Different algorithmic implementations are pos-
sible for most of blocks. Therefore, the structure (Fig. 9.10) might produce the
variety of synthesis algorithms. Of course, it is true for any refinement of the basic
structure of synthesis process.

Main
optimization

criterion

Level of
optimization

Format of state
code

State assignment Set of interstate
transitions

Set of operations
of transitions

Implementing
circuits for OTs

Functional
circuit of FSM

with OAT

1

2

34

5

6 7

8

Fig. 9.9   Basic structure of synthesis process for FSM with OAT

357

The approach shown in Fig. 9.10 can be applied in the case when the state codes
(block 1) are defined beforehand. It is possible, for example, when the content of
BMO is obtained using these codes. The second possibility gives the preliminary
design some blocks used in cases of structural decomposition of FSM [6].

Example 9.2  Let the steps 2 and 6 be chosen as starting. In this case, the basic
structure takes on form shown in Fig. 9.11. It has the following specifics:

1.	� The block 6 does not affect the block 2 (both blocks are starting). It means that
the appointed set of operations of transitions cannot be changed. If the set of
OT is not sufficient for implementing all interstate transitions for all possible
state codes, then it not possible to implement the synthesis.

2.	� Using the set of OT, the presentation of state codes can be chosen (block 4), as
well as the set of interstate transitions (block 3). The choice can be done tak-
ing into account the optimization criterion (the influence of block 6 on blocks
3 and 4). Different level of optimization can be chosen (the influence of the
block 7 on blocks 3 and 4).

Fig. 9.10   Structure of
synthesis process for initial
blocks 1 and 6

6 7

1

5

2

8

Fig. 9.11   Structure of
synthesis process with
starting blocks 2 and 6

6 7

1

2

4 3

5

8

9.4  Structural Representation of Synthesis Process for FSM with OAT

358 9  Finite State Machines with Operational Implementation of Transitions

Considering the interrelation among the blocks 1 and 2, we can state that a
preliminary construction of the set of operations of transitions can place in this
model. This step is followed by the step of state assignment.

The structure shown in Fig. 9.11 corresponds to the situation when the set of
operations of transitions is defined beforehand and cannot be changed. It is pos-
sible, for example, when the set of operations is implemented using either some
standard ALU, or other standard equipment.

Example 9.3  Let the blocks 4 and 6 be taken as starting. In this case, the basic
structure turns into the structure shown in Fig. 9.12.

As it can be seen, the blocks 1, 2 and 3 form a ring. It means that stages 1–3
can be multiple repeated during the synthesis process. Such a structure presumes
different iterative implementations for given stages. It could improve the qualita-
tive characteristics of synthesis outcomes. On the other hand, it can result in com-
plication for these steps’ implementations.

The structure shown in Fig. 9.12 corresponds to the situation when the stages
of state assignment and constructing the set of interstate transitions are executed
at the same time. This process can be named as a concurrent state assignment and
constructing the set of transitions.

Thus, three following specified structures of synthesis process have been
pointed out:

1.	 the structure with preliminary state assignment (Fig. 9.10);
2.	� the structure with preliminary constructing the set of operations of transitions

(Fig. 9.11);
3.	� the structure with concurrent state assignment and constructing the set of inter-

state transitions (Fig. 9.12).

There are a lot of possible implementations for each block of each structure. It
means that there are a lot of different possible synthesis processes. Besides, each
structure can be modified due to introducing some new stages connected with
applying either different constraints or optimization methods used for FSMs. As

Fig. 9.12   Structure of
synthesis process with
starting blocks 4 and 6

6 7

1

2

4 3

5

8

359

we know, each change in logic elements used for implementing the FSM logic
circuits leads to development of new optimization methods based on peculiarities
of these new elements.

9.5 � Organization of Operational Automaton of Transitions

9.5.1 � Typical Structure Models of Operational Automata

In the theory of structural synthesis, it is accepted to evaluate the structures of
operational automata by such characteristics as hardware amount, performance,
regularity, and universality. Different combinations of these characteristics found
their embodiment in such structural models as the canonical automaton (C-OA),
the automaton with individual microoperations (I-OA), the automaton with mutual
microoperations (M-OA) and the automaton with either sequential or parallel
combinational part (IM-OA) [9].

In C-OA, each microoperation of an algorithm is executed by a unique com-
binational circuit. Such an OA possesses the maximum values of both hardware
amount and performance (an average number of microoperations executed during
one cycle of operation), as well as the minimum value of propagation time among
the equivalent OAs. Let us point out that operational automata are equivalent if
they implement the same set of operations.

In I-OA, each word of information (operand) is processed by a unique com-
binational circuit. This individual circuit cannot include the same operational
elements. For example, only one adder or shifter can be included into each CC.
The additional multiplexers are introduced into I-OA in comparison with C-OA.
It results in diminishing for the hardware amount and increasing the propagation
time in comparison with C-OA.

There is only single CC in the M-OA, which is mutual for all registers keeping
the possible operands. Both single-operand and double-operand microoperations
can be executed by this CC for one cycle. The number of operational elements can
be optimized for a given set of operations. It results in minimum values for both
the hardware amount and performance. Only one microoperation can be executed
during one cycle of operation. It means that the performance of M-OA does not
exceed 1.

IM-automata allow execution up to three microoperations for one cycle. Either
one single-operand and one double-operand microoperations can be executed
for one cycle for two receiving registers (IMP-OA, where the subscript p stands
for parallel combinational part), or two single-operand and one double-operand
microoperations can be executed for one cycle for the same receiving register
(IMS- OA, where the subscript s stands for sequential combinational part). The
growth for the number of combinational circuits converges this model to I-OA,
whereas the decreasing to M-OA. As a rule, IM-OAs possess the average values of
characteristics in comparison with other models.

9.4  Structural Representation of Synthesis Process for FSM with OAT

360 9  Finite State Machines with Operational Implementation of Transitions

9.5.2 � Organizational Specifics of OAT

The operational automaton of transitions as a part of Moore FSM possesses the
following peculiarities:

1.	� It should be able to execute all operations for transforming the state codes under
executing all transitions for a given GSA. Therefore, the set of OTs imple-
mented by its circuitry is determined by the set of interstate transitions. In other
words, it is determined by the initial GSA.

2.	� Only one register exists in OAT used for keeping the FSM state codes. This reg-
ister is the only receiver for any OT. The initial data for executing an operation
of transition include both the content of RG and values of logical conditions.
The logical conditions are external; in general case, they are asynchronous in
respect to the OAT.

3.	� In OA, the values of operands are random; they can be different for the same
operation repeated once more. It can lead to some errors (for example, the over-
flow for adding or division by zero). These error situations are shown by flags
(logical conditions), which are generated by a special block of OA and enter
the circuit of FSM. In the case of OAT, the fixed state codes are used as the
operands. Therefore, the OAT should be designed in the way excluding any
error situation during the processing state codes. Each possible interstate transi-
tion should be processed without errors. So, there is no need in flags informing
about errors. Therefore, the structure of OAT does not include a block for gen-
eration of logical conditions.

9.5.3 � Organization of Combinational Part of OAT

The initial data for designing the combinational part of OA is the set of microop-
erations existed for an algorithm to be implemented. In general, it may be stated
that the discussed above structures of OAs can be viewed as different approaches
for the projection sets of microoperations on the set of combinational circuits. By
analogy with the traditional OA of a digital system [7], it can be stated that the
OAT implements some mapping of the set of interstate transitions into the set of
combinational circuits. The following variants are possible for implementing such
a mapping.

Individual implementation. In this case, each from H transitions corresponds to
an individual OT. Some unique combinational circuit corresponds to each OT exe-
cuting the required function for transformation of a current state code into a code
of the next state. All blocks CC(O1)–CC(OH) are connected with the multiplexer
of result MX (Fig. 9.13). Let us name the OAT from Fig. 9.13 as OAT with combi-
national part of the type I (OATI). In OATI, the internal organization of combina-
tional circuits can be different. If a CC corresponds to an unconditional transition,

361

then it can be implemented as a generator of a constant code of the next state. Its
function does not depend on both the code of a current state and the values of
logical conditions. If a CC corresponds to a conditional transition, then it can be
implemented as a multiplexer having constants as its inputs and controlled by the
corresponding logical conditions. The constants correspond to codes of next states.

The most hardware-consumed element of this OA is the multiplexer of result.
If there are M states in a given FSM and M operations of transitions, that there
are R = ⌈ log2 M⌉ bits in both state codes and codes of operations. In this case, the
MX is an R-bit MX having M informational inputs and R control inputs. For FSM
of average complexity, it is possible to have M = 200 [5]. In this case, there is a
MX for 200 8-bits directions. Such a complex MX can be implemented only as a
multilevel (cascaded) circuit. Obviously, it needs too much hardware and it is very
slow.

Therefore, the main drawbacks of OATI are tremendous hardware amount and
large propagation time increasing with the growth of the number of FSM states.
It results in the high complexity for the circuit of BOT due to maximum possible
number of bits in codes of operations. The main positive feature of this approach
is the universality of a design process. It means that the design is the same for any
GSA; it is reduced to the consecutive implementation of all CCs for all OTs final-
ized by design of a resulting MX.

Generalized implementation of operations of transitions. Let us name two or
more transitions as pseudoequivalent transitions, if the same OT can be used for
their implementation. For example, the transition from the state with the code 5
into the state with code 20 is executed by 2-bit left shifting the initial code. Using
this very operation, a transition can be executed from the state with the code 8 into
the state with code 32. These transitions form a class Bi ∈ B of pseudoequivalent
transitions, where there is i = 1, Q. Therefore, it is possible to form Q classes of
pseudoequivalent transitions in a GSA.

CC(O1) CC(O2) CC(OH)

X

Ψ
MX

RG

T

O1(T, X)
O2(T, X) OH(T, X)

 Φ = OΨ (T, X)

. . .

. . .

Fig. 9.13   Structure diagram of OAT with I-OA

9.5  Organization of Operational Automaton of Transitions

362 9  Finite State Machines with Operational Implementation of Transitions

Such a generalization of operations of transitions allows reducing the amount
of CCs into the circuit of OAT. It leads to OAT having the operational part with
IM-type (OATIM) (Fig. 9.14).

In comparison with OATI, this structure has the following peculiarities:

1.	 The number of CCs is decreased up to Q ≤ M due to existence of classes of
pseudoequivalent transitions.

2.	 The internal structures of CCs are more complex. They implement some arith-
metical and logic operations, rather than generation some constants. So, the
propagation time for the operational part is increased.

3.	 Due to decreasing for the number of operations, the number of bits in codes of
operations is decreased from RΨ = ⌈ log2 M⌉ to RΨ = ⌈ log2 Q⌉. It results in
simplification for both BOT and MX of result.

4.	 The amount of classes of pseudoequivalent transitions depends on the values
of state codes; it affects both the amount and complexity of combinational cir-
cuits. Therefore, there is a possibility for such a choice of state codes that the
OATIM will include the minimum amount of CCs (the minimum hardware
amount). But the problem of an appropriate choice of state codes is rather
complex; it requires developing special algorithms.

General implementation of transitions. In some cases (for some GSAs), it is
possible to reduce the set of OTs to two operations implemented by two combina-
tional circuits. The first CC implements the unconditional transitions, whereas the
second CC implements the conditional transitions. By analogy with IM-OA, two
organizations are possible. One of them is OAT with sequential OP (OATS) and
the second is OAT with parallel OP (OATP).

The OATS allows using the operation of unconditional transition indepen-
dently, as well as a part of a complex operation of conditional transition. In the
second case, the multiplexer of result is absent.

In the model with parallel OP, the operations of transitions are implemented by
two CCs operating in parallel. The propagation time of FSM is smaller than in the

CC(O1) CC(O2) CC(OQ)

X

Ψ
MX

RG

T

O1(T, X)
O2 (T, X) OQ(T, X)

Φ= OΨ(T, X)

. . .

. . .

Fig. 9.14   Structure diagram of OATIM

363

previous case. It is determined by the maximum propagation time for one of the CCs.
The MX of result is controlled by a single-bit code of operation Ψ generated by BOT.

Obviously, the necessary condition for applying this kind of OP is a possibility
for implementing all interstate transitions by two combinational circuits. It is quite
possible that such condition cannot take place for an arbitrary GSA. So, this model
can be viewed as some “ideal model”.

Generalizing discussed structures of OAT, the following conclusion can be
done. The OATI possesses maximum hardware amount. Finding classes of pseu-
doequivalent transitions allows using models with generalized implementing oper-
ations of transitions. The synthesis outcome depends on optimization methods in
use as well as on characteristics of a GSA to be implemented.

Canonical implementation of OAT. The traditional C-OA assumes existence of
several registers receiving of data. Each register corresponds to its own collection
of CCs. Because only one register is possible in OAT, then the structure of OATI
can be treated as an OAT with canonical OP.

9.6 � Synthesis Method for FSM with Supplemented Set
of Operations of Transitions

In the case of preliminary constructing the set of operations of transitions, a
designer should solve the problem connected with the choice of state codes on
the base of these operations. The unique state codes should be chosen in such
a way that any interstate transition can be executed using these operations. It
is quite possible a situation when it is impossible to implement all transitions
using only existing operations of transitions. In this case, the following actions
can be done:

1.	� A part of states forming the set A1 ⊆ A is assigned using the acceptable range
of codes.

2.	� The rest of state forming the set A2 = A\A1 may be encoded using unused state
codes from the acceptable range of codes.

3.	 The operations from the set O correspond to states from the set A1.
4.	 There are no operations corresponding to states from the set A2.

In this case, to design the circuit of OT, it is necessary to redefine the state
codes from the set A2. Next, the transitions from these states should be imple-
mented. The following can be done to solve this problem.

1.	� Let us delete those rows of a structure table for whom both current and next
states belong to A1 (their codes are determined). It can be done if some opera-
tions of transitions correspond to these transitions. Let us name the resulting
table as synthesizable table of transitions (STT).

2.	� Let us encode states from the set A2 using arbitrary unique codes from the
acceptable range.

9.5  Organization of Operational Automaton of Transitions

364 9  Finite State Machines with Operational Implementation of Transitions

3.	� Considering the state codes as binary vectors and using the STT, let us con-
struct a system of Boolean functions implementing transitions from the states
from A2.

4.	� Let us treat the resulting SBF as a single operation of transition, OQ+1. This
operation supplements the existed set of OTs in such a way that all interstate
transitions turn to be implemented. Let us design a combinational circuit cor-
responded to this system. Let us encode the operation OQ+1 by a unique code
Ψ(UQ+1).

Let us name the OAT with supplemented OT implementing transitions for the
states from A2 as operational automaton of transitions with supplemented set of
operations of transitions (OATS). The organization of its operational part is simi-
lar to the one shown in Fig. 9.4.

The positive feature of OATS is a possibility for synthesis of FSM for any
arbitrary GSA using any appointed set of OTs. The drawback of this approach
is increasing for hardware amount with the growth for the number of transitions
implemented by the supplemented OT.

Let us discuss an example of OATS synthesis for Moore FSM based on GSA
Γ11 (Fig. 9.15). The approach proposed in [3] is used for the synthesis. The GSA
Γ11 is characterized by the following parameters: it includes M = 12 collections of
microoperations, a1–a12 and L = 2 logical conditions, x1–x2. The distribution of

Fig. 9.15   The graph-scheme
of algorithm Γ11

S

a1

x1

x2

a2

a4

a5

a3

a6

a7

a8

a9

a10

x1

a12

a11

10

0

1

1

0

End

365

microoperations in operational vertices does not affect the design process. Because
of it, there is no specification for contents of operational vertices. It means that the
GSA Γ11 is rather abstract.

Let the following set of OTs be set up: O = {O1, O2, O3}. Let its elements be
determined as the following:

Using our methodology, let us construct the structure table of Moore FSM for
GSA Γ11 (Table 9.3). The table includes the following rows: ai is the current state;
K(ai) is the code of current state; OT is a code of operation of transition from the
state ai; aj is the state of transition; K(aj) is the code of the state of transition; X are
the logical conditions checked during the transition from ai into aj. In this table,
codes correspond to all states, as well as to a majority of operations of transitions.

Let us point out that there are no operations of transitions for the following uncon-
ditional transitions: from a3 into a2, from a9 into a10, and from a11 into a12. It is con-
nected with the fact that there are no operation among the appointed ones capable to
make the required transformation from K(at) into K(at+1). Let us supplement the set
of OT by the operation O4, used for implemented the above mentioned uncoded tran-
sitions. To do it, let us represent the state codes as four-bit binary numbers using the
variables T1–T4 for the encoding. For example, let it be K(a5) = 1110 = 10112.

Let us construct the synthesized structure table where state codes are repre-
sented by corresponding binary values (Table 9.4). In this table, the column D
includes the input memory functions used for loading the register RG.

O1 : At+1
=

{
At

+ 3, if x1 = 0;

At
+ 5, if x1 = 1.

O2 : At+1
=

{
At

+ 3, if x2 = 0;

At
+ 5, if x2 = 1.

O3 : At+1
= At

+ 3.

Table 9.3   Table of
transitions (GSA Γ11)

ai K(ai) OT aj K(aj) X

a1 0 O1 a11 5 x1

a2 3 x̄1

a2 3 O2 a4 8 x2

a6 6 x̄2

a3 14 * a2 3 1
a4 8 O3 a5 11 1
a5 11 O3 a3 14 1
a6 6 O3 a9 9 1
a7 9 O3 a8 12 1
a8 12 O3 a9 15 1
a9 15 * a10 4 1
a10 4 O1 a7 9 x1

a12 7 x̄1

a11 5 * a12 7 1

9.6  Synthesis Method for FSM with Supplemented Set of Operations

366 9  Finite State Machines with Operational Implementation of Transitions

Let us derive the following system of equations using the SST:

Let us design a combinational circuit corresponding to this system. It gives us
the CC implementing the OT O4. Now, the OT O4 should be pointed in Table 9.3
instead of the sign “*”. Let us point out that the CCs for operations O1–O3 are
synthesized in a trivial way. The outcome of this approach is shown in Fig. 9.16.

D1 = 0;

D2 = T1T2T3T4 ∨ T̄1T2T̄3T4;

D3 = T1T2T3T̄4 ∨ T̄1T2T̄3T4;

D4 = D3.

Table 9.4   Synthesized
structure table (for GSA Γ11)

ai K(ai) OT aj K(aj) D X

a3 1110 * a2 0011 D3 D4 1
a9 1111 * a10 0100 D2 1
a11 0101 * a12 0111 D2 D3D4 1

Fig. 9.16   State and
operation codes for GSA Γ11

S

K(a1)=0

x1

x2

x1

+5

+3

End

K(a2)=3

K(a4)=8

K(a5)=11

K(a3)=14

K(a6)=6

K(a7)=9

K(a8)=12

K(a9)=15

K(a12)=7

K(a11)=5

K(a10)=4

O1

O1

O2

+5

+5

+3

+3

O3

O3

O4

+3

+3

O3+3

O3+3

O3+3

O4

O4

367

To provide the correct operation of FSM with OAT, it is necessary to find the
content of PROM for the block BOT. Using the variables Ψ1, Ψ2, let us encode
the operations O1–O4 by the following binary codes: K(O1) = 00, K(O2) = 01,
K(O3) = 10, and K(O4) = 11. The content of PROM is constructed on the base
of state codes corresponding to addresses of cells, as well as codes of OTs cor-
responding to contents of the cells. For the GSA Γ11 the content of PROM for the
block BOT is represented by Table 9.5.

Let us explain this table. The code 10 is written in the cell having the address
1011. It is done because the transition from the state a5 having the code 1011 is
executed using the OT O3 having the code 10. There are arbitrary values in the
cell with address 1101. This is done because there are no states having the code
11012 = 1310. There are arbitrary values in the cell with address 0111. This is
done because the code 0111 corresponds to the final state a12 having no outgoing
transitions.

The further synthesis of FSM is reduced to the synthesis of logic circuit of
operational part. The content of PROM for BMO can be obtained if the collections
of microoperations are known.

9.7 � Investigation of Efficiency of FSM with OAT

The increase for hardware amount is proportional to the growth in the number of
interstate transitions for the traditional Moore FSM. It is necessary to find a mini-
mum set of operations of transitions which can be used for executing all transi-
tions. If the ratio between numbers of transitions and operations is measured by
tens (or even, hundreds), then the proposed approach allows tremendous saving of
hardware in comparison with the traditional approaches. The block BIMF is the
most complex block of an FSM. It is true for both the traditional Moore FSM and
the FSM with OAT (where this block is represented by OP). Because of it, let us
use the hardware amount in BIMF and OP for comparison of these two models.
Let us choice the minimum hardware amount as an optimization criterion.

Table 9.5   Content of PROM
for the block BOT

Address Content Address Content

(K(ai)) (Ψ1, Ψ2) (K(ai)) (Ψ1, Ψ2)

0000 00 1000 11
0001 ** 1001 11
0010 ** 1010 **
0011 01 1011 10
0100 01 1100 10
0101 11 1101 **
0110 10 1110 11
0111 ** 1111 11

9.6  Synthesis Method for FSM with Supplemented Set of Operations

368 9  Finite State Machines with Operational Implementation of Transitions

Let us compare the efficiency of Moore FSMs with BIMF and OP. Let us use the
equivalent gates (EG) as standard units for the comparison. As it is adopted, one EG
corresponds to a double-operand Boolean operation, such as NAND, for example.

Let a SBF having R of Boolean equations be used for implementing the circuit
of BIMF. Without minimizing, each product term of this system is represented by
a conjunction of RT = RLC + R literals. Here the symbol RLC stands for average
number of logical conditions determining transitions for all states of a GSA. In this
case, it is necessary to have H1 equivalent gates for implementing each term, where

Let the number f terms in each equation is equal to V, where this number is
equal to the number of interstate transitions for the given GSA. To connect these
terms, it is necessary H2 equivalent gates:

For the system with R Boolean functions, the value R · H1 corresponds to hard-
ware amount necessary for implementing one transition, whereas the value R · H2
for implementing all disjunctions in the system. Taking into account that there
are V interstate transitions for a given FSM, the number of EGs in the circuit of
Moore FSM is determined as:

As a rule, using some optimization methods leads to decreasing the value of
HK. To take it into account, let us introduce a coefficient k1 into (9.13). This coeffi-
cient reflects the level of minimization. Now, the expression (9.13) is transformed
into the following one:

Let us estimate the hardware amount for FSM with OAT. Because the inter-
state transitions are executed by OAT, let us estimate necessary hardware amount
in this block. Let us represent the hardware amount in OAT as result of summation
for the following two components. First of them (H3) is the hardware needed for
implementing circuits for operations of transitions, the second component (H4) is
the hardware needed for implementing the multiplexer of result:

The value H3 depends on the number Q of different OTs, as well as on their
complexness. The rough estimate of the hardware amount in OAT can be made
for some average amount of hardware (HOT) for one operation of transition. In this
case, the value H3 is determined as:

Adding one transition leads to increasing the value of HK by

(9.11)H1 = RT − 1 = RLC + R − 1.

(9.12)H2 = V − 1.

(9.13)HK = R · (V · H1 + H2) = R · (V · (RLC + R − 1) + V − 1).

(9.14)HK = k1 · R · (V · (RLC + R − 1) + T − 1).

(9.15)HOAT = H3 + H4.

(9.16)H3 = Q · HOT .

(9.17)HV = R · H1.

369

The value (9.17) is constant for given values of both R and RLC. The added
transition can be either unconditional or conditional. In both cases it is necessary to
define the corresponding OT for executing this new transition. If the transition cannot be
implemented using already existing combinational circuits, then some new OT should
be introduced with corresponding CC. It results in increasing the value of HOAT by the
value HOT. Neglecting the increasing for hardware in MX, the value of HOT is constant
for given values of both R and RLC. Let us introduce a coefficient k2 into the expression
(9.16). The coefficient is used for expressing the value of HOT through the value of HV:

The amount of operations of transitions Q is the most difficult for forecasting
due to its dependence on both the structure of a GSA and types of operations of
transitions for each particular case. It can be assumed that the value of Q is a func-
tion depending on V. But it is impossible to find the universal dependence Q(V)
for an arbitrary GSA. It is connected with existence of a lot of possibilities for the
choice of types and quantity of OTs for each specific GSA.

After executing some investigations for GSA from LGSynth93, the following
dependence Q(V) has been found. If there is V ∈ [0, 10], then each new OT is
added for approximately 1–2 new transitions. It means that there is the dependence
Q ≈ V/2. If there is V ∈ [10, 30], then each new OT is added for approximately
7–10 new transitions. For V ∈ [30, 100], each new OT is added for approximately
10–20 new transitions, and so on. The obtained discrete dependence can be repre-
sented as some logarithmic function corresponded to the following expression:

In (9.19), the coefficient k3 is obtained after carrying out a lot of experiments for
different GSAs. As a rule, this coefficient belongs to the range from 2.5 to 5.

Taking into account expressions (9.18)–(9.19), the expression (9.16) can be
represented as the following one:

The multiplexer of result generates the code of the next state having R bits. It is
controlled by the code of operation having R = ⌈ log2 Q⌉. Each output of MX can be
viewed as a SOP having Q terms. Taking into account the interterm disjunctions, the
number of EGs necessary for implementing the MX is determined as the following:

Taking into account expressions (9.19)–(9.21), the expression (9.15) is trans-
formed to the following one:

Let us determine the efficiency of the circuit of OAT in comparison with the
circuit of BIMF in the following manner:

(9.18)HOT = k2 · HV = k2 · R · H1.

(9.19)Q = k3 · ln(V/2) + 2.

(9.20)H3 = (k3 · ln(V/2) + 2) · k2 · R · H1.

(9.21)H4 = R ·
(
Q ·

(
⌈ log2 Q⌉

)
+ Q − 1

)
.

(9.22)HOAT = (k3 · ln(V/2) + 2) · k2 · R · H1 + R ·
(
Q ·

(
⌈ log2 Q⌉

)
+ Q − 1

)
.

(9.23)EOAT = HK/HOAT .

9.7  Investigation of Efficiency of FSM with OAT

370 9  Finite State Machines with Operational Implementation of Transitions

If there is EOAT > 1, then the FSM with OAT is more efficient than the tra-
ditional Moore FSM (from the hardware point of view). Let us investigate the
function (9.23) to find its dependence on different its components. Let the fol-
lowing parameters are constants having the following values: R = 10; V = 2000;
RLC = 2; k1 = 0.8; k2 = 30; k3 = 3.5. The following diagrams are obtained as
results of conducted investigations.

1.	 The dependence EOAT(V) is shown in both Table 9.6 and Fig. 9.17. Obviously,
the function is a linear one for the given range of argument’s values. For given
constants, the FSM with OAT becomes more efficient starting from V > 800.
The growth of V leads to the growth of the efficiency.

2.	 The dependence EOAT(R) is shown in both Table 9.7 and Fig. 9.18.
	 As follows from the diagram, the investigated function is exponentially

decreasing. For given range of its argument, it tends to a limit 2.05. For the
whole diapason of R, the FSM with OAT is more efficient than the Moore
FSM with BIMF.

3.	 The dependence EOAT (k1) is shown in both Table 9.8 and Fig. 9.19.
	 The diagram shows that the increasing of coefficient of minimization for the

system of input memory functions leads to the linear increasing for the effi-
ciency of FSM with OAT. If there is no minimization, then the maximum effi-
ciency reaches the value 2.29. Only if the minimization simplifies the system
of functions till 60 %, the FSM with BIMF turns to be more efficient than
FSM with OAT.

Table 9.6   Dependence EOAT(V)

V 200 400 600 800 1000 1200 1400 1600 1800 2000

EOAT 0.32 0.56 0.78 1.0 1.20 1.41 1.60 1.80 2.00 2.18

Fig. 9.17   Dependence EOAT(V)

Table 9.7   Dependence EOAT(R)

R 3 4 5 6 7 10 15 20 25 30

EOAT 2.43 2.35 2.30 2.26 2.24 2.18 2.14 2.11 2.10 2.09

371

4.	 The dependence EOAT (k2) is shown in both Table 9.9 and Fig. 9.20.
	 Analysis of this diagram shows that the efficiency of FSM with OAT is

decreasing with the increasing of the average complexness of combinational
circuits used for implementing the operations of transitions. For given values
of arguments, the efficiency is getting lost starting from k2 > 65.

5.	 The dependence EOAT(k3) is shown in both Table 9.10 and Fig. 9.21.
	 The exponentially decreasing nature of the diagram is explained by the influ-

ence of the value of coefficient k3 on the logarithmic function (9.19). With the
growth of k3, the increasing of the amount of OTs is higher with the growth
for the number of transitions. If there is k3 > 8, then the amount of hardware in
FSM with OAT exceeds this value for FSM with BIMF. To decrease the value
of k3, it is necessary to make a correct choice of the operations of transitions.

Fig. 9.18   Dependence EOAT(R)

Table 9.8   Dependence EOAT(k1)

k1 0.3 0.35 0.4 0.45 0.5 0.6 0.7 0.8 0.9 1.0

EOAT 0.82 0.96 1.09 1.23 1.36 1.64 1.91 2.18 2.46 2.73

Fig. 9.19   Dependence EOAT(k1)

9.7  Investigation of Efficiency of FSM with OAT

372 9  Finite State Machines with Operational Implementation of Transitions

Integrally, the following conclusion can be made from analysis of diagrams shown
in Figs. 9.17, 9.18, 9.19, 9.20, 9.21. There are the following factors leading to
increasing the efficiency of FSM with OAT in comparison with FSM with BIMF:

•	 increasing for the number of interstate transitions;
•	 decreasing for the numbers of bits in state codes (in the ideal case this number

should be minimum possible for a given GSA);

Table 9.9   Dependence EOAT(k2)

k2 10 20 30 40 50 60 70 80 90 100

EOAT 6.32 3.25 2.18 1.64 1.32 1.10 0.95 0.83 0.74 0.66

Fig. 9.20   Dependence EOAT(k2)

Table 9.10   Dependence EOAT(k3)

k3 1 2 3 4 5 6 7 8 9 10

EOAT 6.44 3.62 2.51 1.93 1.56 1.31 1.13 0.99 0.89 0.80

Fig. 9.21   Dependence EOAT(k3)

373

•	 implementing GSAs for which the system of input memory functions cannot be
deeply minimized;

•	 decreasing the average complexness of combinational circuits used for imple-
menting the operations of transitions (so, the operations leading to simple com-
binational circuits should be chosen);

•	 usage of special methods for constructing the set of operations of transitions
allowing maximum decreasing for the growth of the quantity of operations of
transitions for an arbitrary GSA with increasing for the number of interstate
transitions.

References

	 1.	Barkalov A (1998) Principles of logic optimization for a Moore microprogrammed automa-
ton. Cybern Syst Anal 34(1):54–61

	 2.	Barkalov A, Babakov R (2008) Organization of control units with operational addressing.
Control Syst Mach 6:34–39 (in Russian)

	 3.	Barkalov A, Babakov R (2011) Operational formation of state codes in microprogram autom-
ata. Cybern Syst Anal 2:193–199

	 4.	Barkalov A, Babakov R (2011) Structural representation of syntheses process for control
automata with operational automaton of transitions. Control Syst Mach 3:47–53

	 5.	Barkalov A, Titarenko L (2008) Logic synthesis for compositional microprogram control
units. Springer, Berlin

	 6.	Barkalov A, Titarenko L (2009) Logic synthesis for FSM-based control units. Springer,
Berlin

	 7.	Barkalov A, Wegrzyn M (2006) Design of control units with programmable logic. UZ Press,
Zielona Góra

	 8.	De Micheli G (1994) Synthesis and optimization of digital circuits. McGraw–Hill, New York
	 9.	Glushkov V (1962) Synthesis of digital automata. Fizmatgiz, Moscow (in Russian)
	10.	Grout I (2008) Digital systems design with FPGAs and CPLDs. Elsevier, Oxford
	11.	Kim T, Villa T, Brayton R, Sangiovanni-Vincentelli A (1997) Synthesis of finite state

machines: functional optimization. Kluwer Academic Publishers, Boston
	12.	Maxfield C (2004) The design warrior’s guide to FPGAs. Elsevier, Amsterdam
	13.	Zakrevskij A (1981) Logic synthesis for cascaded circuits. Nauka, Moscow

9.7  Investigation of Efficiency of FSM with OAT

375V. Sklyarov et al., Synthesis and Optimization of FPGA-Based Systems,
Lecture Notes in Electrical Engineering 294, DOI: 10.1007/978-3-319-04708-9,
© Springer International Publishing Switzerland 2014

Appendix A

Abstract We present here concise information about used in the book synthesiz-
able constructions and keywords (reserved words) of VHDL that are listed alpha-
betically and complemented with a brief informal description. We provide also a
few useful tables (e.g. ASCII) with supplementary data needed for different chap-
ters. Words written in ITALIC SMALL CAPS need to be replaced with user code.

Absolute Value—abs

This is a unary operator that is predefined for any numeric type and returns an
absolute value of the operand. See examples in Sect. 2.2.

Aggregate

is a grouping of values to form an array or record expression. In positional asso-
ciation, the values are associated with elements from left to right. Named associa-
tion indicates explicitly each value. Note that positional association cannot follow
named association. Example:

-- Aggregates below are used in order to assign a record (positional association):
record_data <= ('0', '1', "01"); -- record_data is a signal of type my_packet (see below)
type my_packet is record -- see also records below

first_bit, second_bit : std_logic;
data : std_logic_vector (1 downto 0);

end record;

VHDL Constructions Used in the Book and
Additional Support Materials

http://dx.doi.org/10.1007/978-3-319-04708-9_2

Appendix A: VHDL Constructions Used in the Book376

Elements can be grouped by named association, where the keyword others indi-
cates the remaining elements:

Aggregates and Arrays

are shown on examples below. Two-dimensional arrays may be declared as fol-
lows (arrays and indices can be signals or variables):

Suppose the following declarations are done in the architecture.

Different results can be tested in the architecture body using onboard LEDs:

The following statement assigns all the LEDs the value ‘1’ (the LEDs are ON):

The next statements give results shown in the comments:

(0=>bit3, 2=>bit2, 1=>bit1, 3=>bit0) -- an example of named association
A(7 downto 0) <=(7=>'0', 5 downto 4 => '0', others => '1'); -- an example of named association

type my_array is array (3 downto 0) of std_logic; -- type for a one-dimensional array
type my_packet is array (0 to 9) of my_array; -- type for a two-dimensional array
signal my_data : my_packet; -- my_data is a two-dimensional array

type array2vect is array (0 to 1) of std_logic_vector(1 downto 0);
type array4vect is array (0 to 3) of array2vect;
signal table : array4vect; -- table is a three-dimensional array
signal table_line : array2vect; -- table_line is a two-dimensional array
signal table_data : std_logic_vector(1 downto 0); -- table_data is a one-dimensional array

led <= table(0)(0) & table(0)(1) & table(1)(0) & table(1)(1) & -- there are 16 individual
table(2)(0) & table(2)(1) & table(3)(0) & table(3)(1); -- LEDs: led(15 downto 0)

table <= (others=>(others=>(others=>'1')));

-- the result below is: led(15 downto 0) = 00 01 10 11 11 00 10 01
table <= (("00","01"),("10","11"),("11","00"),("10","01"));

-- sw(15 downto 0) are connected to led(15 downto 0) with the same indices
table <= ((sw(15 downto 14), sw(13 downto 12)), (sw(11 downto 10), sw(9 downto 8)), -- #

(sw(7 downto 6), sw(5 downto 4)), (sw(3 downto 2), sw(1 downto 0))); -- #

-- the result below is: led(15 downto 0) = 00 00 01 11 01 11 00 00
table <= (1 to 2 =>(1=>(others=>'1'), 0=>"01"), others=>(others=>(others=>'0')));

-- the result below is: led(15 downto 0) = 01 10 11 00 00 01 10 11
table <= (0 =>(0=>"01", 1=>"10"), 1 =>(0=>"11", 1=>"00"),

2 =>(0=>"00", 1=>"01"), 3 =>(0=>"10", 1=>"11"));

-- below sw(1 downto 0) control led(15 downto 14),
-- sw(3 downto 2) control led(13 downto 12), etc.
table <= (0 =>(0=>sw(1 downto 0), 1=>sw(3 downto 2)),

1 =>(0=>sw(5 downto 4), 1=>sw(7 downto 6)),
2 =>(0=>sw(9 downto 8), 1=>sw(11 downto 10)),
3 =>(0=>sw(13 downto 12), 1=>sw(15 downto 14)));

-- sw(15 downto 0) in the process below are connected to the leds(15 downto 0) with the same indices
process(table)
begin

for i in array4vect'range loop
for j in array2vect'range loop

led(i*4+j*2+1 downto i*4+j*2) <= table(i)(j);
end loop;

end loop;
end process;

-- sw(7 downto 4) in the code below control led(3 downto 0), for the assignment above marked with #
table_line <= table(2);
led <= (15 downto 4 => '0') & table_line(0) & table_line(1);

-- the table_line is linked with different groups of 4 switches depending on the values of two buttons
table_line <= table(3) when buttons = "11" else -- we assume the use of 2 buttons
 table(2) when buttons = "10" else -- we assume the assignment above marked with #
 table(1) when buttons = "01" else
 table(0); -- the values of the switches are indicated below on the LEDs in the reverse order
led(3 downto 0) <= table_line(1)(0) & table_line(1)(1) & table_line(0)(0) & table_line(0)(1);

Appendix A: VHDL Constructions Used in the Book 377

Alias

declaration permits an alternative name to be defined for an object. Alias declara-
tions may be done in declarative parts. Alias declaration is done like the following:
alias <NEW NAME> is <EXISTING IDENTIFIER>;

All

identifies all declarations within the package or library, for example: use ieee.
std_logic_1164.all.

Architecture

is demonstrated on a general template below:

Array

is declared in the following general form:

architecture <NAME OF ARCHITECTURE> of <NAME OF ENTITY> is
-- declarative part
-- declarations (of signals, components, functions, procedures)
-- definitions (of types)

begin
-- architecture body

end <NAME OF ARCHITECTURE>;

type <NAME OF TYPE> is array <RANGE OF ARRAY> of <TYPE OF ELEMENTS>;

-- the result below is: led(15 downto 0) = 00 01 10 11 11 00 10 01
table <= (("00","01"),("10","11"),("11","00"),("10","01"));

-- sw(15 downto 0) are connected to led(15 downto 0) with the same indices
table <= ((sw(15 downto 14), sw(13 downto 12)), (sw(11 downto 10), sw(9 downto 8)), -- #

(sw(7 downto 6), sw(5 downto 4)), (sw(3 downto 2), sw(1 downto 0))); -- #

-- the result below is: led(15 downto 0) = 00 00 01 11 01 11 00 00
table <= (1 to 2 =>(1=>(others=>'1'), 0=>"01"), others=>(others=>(others=>'0')));

-- the result below is: led(15 downto 0) = 01 10 11 00 00 01 10 11
table <= (0 =>(0=>"01", 1=>"10"), 1 =>(0=>"11", 1=>"00"),

2 =>(0=>"00", 1=>"01"), 3 =>(0=>"10", 1=>"11"));

-- below sw(1 downto 0) control led(15 downto 14),
-- sw(3 downto 2) control led(13 downto 12), etc.
table <= (0 =>(0=>sw(1 downto 0), 1=>sw(3 downto 2)),

1 =>(0=>sw(5 downto 4), 1=>sw(7 downto 6)),
2 =>(0=>sw(9 downto 8), 1=>sw(11 downto 10)),
3 =>(0=>sw(13 downto 12), 1=>sw(15 downto 14)));

-- sw(15 downto 0) in the process below are connected to the leds(15 downto 0) with the same indices
process(table)
begin

for i in array4vect'range loop
for j in array2vect'range loop

led(i*4+j*2+1 downto i*4+j*2) <= table(i)(j);
end loop;

end loop;
end process;

-- sw(7 downto 4) in the code below control led(3 downto 0), for the assignment above marked with #
table_line <= table(2);
led <= (15 downto 4 => '0') & table_line(0) & table_line(1);

-- the table_line is linked with different groups of 4 switches depending on the values of two buttons
table_line <= table(3) when buttons = "11" else -- we assume the use of 2 buttons
 table(2) when buttons = "10" else -- we assume the assignment above marked with #
 table(1) when buttons = "01" else
 table(0); -- the values of the switches are indicated below on the LEDs in the reverse order
led(3 downto 0) <= table_line(1)(0) & table_line(1)(1) & table_line(0)(0) & table_line(0)(1);

Appendix A: VHDL Constructions Used in the Book378

One-dimensional, two-dimensional, and three-dimensional arrays are shown
above in aggregates and arrays.

ASCII Table

provides an encoding for 128 characters. It is given in Table A.1 for 33 special
characters (codes 0, . . . , 31, 127) and in Table A.2 for the remaining 95 printable
characters (codes 32, . . . , 126).

Table A.1   ASCII codes for
control characters

Code Name

0 Nul
1 soh (start of heading)
2 stx (start of text)
3 etx (end of text)
4 eot (end of transmission)
5 enq (enquiry)
6 ack (acknowledge)
7 bel (bell)
8 bs (back space)
9 ht (horizontal tab)
10 lf (line feed)
11 vt (vert. tab)
12 ff (form feed)
13 cr (carriage return)
14 so (shift out)
15 si (shift in)
16 dle (data link escape)
17 dc1 (device control 1)
18 dc2 (device control 2)
19 dc3 (device control 3)
20 dc4 (device control 4)
21 nak (negative acknowledge)
22 syn (synchronous idle)
23 etb (end of transmitted block)
24 can (cancel)
25 em (end of medium)
26 sub (substitute)
27 esc (escape)
28 fsp (file separator)
29 gsp (group separator)
30 rsp (record separator)
31 usp (unit separator)
127 del (delete)

379

Assert

describes a condition that has to be evaluated and it is normally used to report
warning and error messages (see Sect. 2.5 for details).

Attribute

is a named characteristic of certain objects and it permits constraints to be
described directly in the code. In this book only predefined attributes (existing for
types, arrays, and signals) have been used. They are defined in the form: type/array/
signal'<NAME OF ATTRIBUTE>. An example of attribute event for signal clk is: if clk'event
and clk = ‘1’ then… (clock is changing from 0 to 1, i.e. the same as in if rising_edge(clk)
then …) or if clk'event and clk = ‘0’ then… (clock is changing from 1 to 0, i.e. the same
as in if falling_edge(clk) then …). Examples of other useful attributes are:

•	 Test for an ascending range, for example: led_flash <= divided_clk when not
led'ascending else ‘1’; If the LED is a descending range then the led_flash gets the
divided clock value.

•	 The highest value of a type: integer'high.
•	 Test for the last value lv just before the last event on lv. For example: last_led <=

lv(3)'last_value;
•	 Left-bound index signal'left. Let us consider the following example: internal_

clock(internal_clock'left) where the type of internal_clock is std_logic_vector.
•	 Length of a dimension array'length. For example: my_RAM(i)'length.
•	 Position within a type: type'pos(…). For example: character'pos(‘A’) returns the posi-

tion of ‘A’ in the ASCII table, which is 65.
•	 Left downto/to right in an array array'range. For example: for i in input'range loop.

Table A.2   ASCII codes for
95 printable characters

code +0 +1 +2 +3 +4 +5 +6 +7

32 <space> ! " # $ % & '
40 () * + , - . /
48 0 1 2 3 4 5 6 7
56 8 9 : ; < = > ?
64 @ A B C D E F G
72 H I J K L M N O
80 P Q R S T U V W
88 X Y Z [\] ^ _
96 ` a b c d e f g
104 h i j k l m n o
112 p q r s t u v w
120 x y z { | } ~

Appendix A: VHDL Constructions Used in the Book

http://dx.doi.org/10.1007/978-3-319-04708-9_2

Appendix A: VHDL Constructions Used in the Book380

•	 Right downto/to left in an array array'reverse_range. For example: for i in
input'reverse_range loop.

•	 Right-bound index signal'right For example: internal_clock(internal_clock'right) where
the type of internal_clock is std_logic_vector.

The following lines give examples of user-defined attributes:

Begin

marks the beginning of process/function/procedure statements or architecture body
and the end of the respective declarative part in the process/function/procedure/
architecture. It is also used in some other constructions such as in blocks and to
describe multiple instances in generate statements.

Block

is a concurrent statement simplifying partition of a design and declared using the
following basic format (examples are given in Sect. 2.4):

Body

is used with the package reserved word (see package).

Buffer

is used for a port and enables the relevant signal to be read and written. Such port
may have not more than one source and can be connected only to another buffer or
linked to a signal with no more than one source. As distinct from inout ports, buffer
ports cannot be connected to tri-state buses (see inout) and they allow output sig-
nals declared as ports in a module to be also read in the module.

attribute LOC : string; -- specifying location constraints
attribute LOC of led: signal is "P2"; -- the led signal is assigned to the pin P2
attribute IOSTANDARD : string; -- specifying input/output standard
attribute IOSTANDARD of led: signal is "LVCMOS33"; -- see the user constraints file for Nexys-4

<OPTIONAL LABEL>: block (<OPTIONAL BOOLEAN GUARD EXPRESSION>) is
begin

-- concurrent statements
end block <OPTIONAL LABEL>;

http://dx.doi.org/10.1007/978-3-319-04708-9_2

381Appendix A: VHDL Constructions Used in the Book

Case

statement has the following general form:

Case statements are used in processes, functions, and procedures and cannot be
used directly in architectures (if required when…else can be applied instead in the
architecture body). The following simple example demonstrates the use of the case
statement:

Component

is a declaration in a higher-level entity enabling a lower-level entity to be instan-
tiated. The following two templates can be used for component declaration and
instantiation.

Note that positional associations cannot follow named associations.
Component entities can be included in a library. The library named work is

available by default. The following line demonstrates the use of this library with-
out explicit component declarations:

case < EXPRESSION > is
when <VALUE OF THE EXPRESSION> => <STATEMENTS>;
-- continue for other values: when <value of the expression> => <statements>;
when others => <STATEMENTS>;

end case;

process(A, B, C) -- A,B,C are integers: signal A,B,C: integer range 0 to 7;
begin

case (A+B+C) is -- A+B+C is the evaluated expression;
when 1 to 3 | 5 | 10 => led <= '1'; -- when A+B+C = 1 or 2 or 3 or 5 or 10
when others => led <= '0';

end case;
case (A+B+C)>12 is

when true => led1 <= '1'; -- when A+B+C is greater than 12
when others => led1 <= '0';

end case;
end process;

component <NAME OF COMPONENT>
generic (

<NAME OF GENERIC> : <type> := <DEFAULT VALUE OF “NAME OF GENERIC”>;
<other generics...>);

port (
<NAME OF PORT> : <mode of port such as in, out, inout, buffer> <type>;
<other ports...>);

end component;

<NAME OF INSTANCE> : <NAME OF COMPONENT>
generic map (< POSITIONAL OR NAMED ASSOCIATIONS >)
port map (< POSITIONAL OR NAMED ASSOCIATIONS >);

Appendix A: VHDL Constructions Used in the Book382

A library with a different name can also be created (see Sect 2.6). The major-
ity of examples in the book assume the use of the default library work without
explicit component declarations.

Constant

can be declared in any declarative region. Constant values cannot be changed.

Examples:

The following VHDL entity (test_const) gives an additional demonstration.

Conversion Functions

convert types (see type conversions and Sect. 2.2).

u1: entity work.half_adder port map(A, B, s2, s1); -- using the default library work

constant <NAME OF CONSTANT> : <type> := <USER VALUE>;

constant line_with_equal_sign : string(1 to 3) := " = "; -- the symbol = is placed in between two spaces
constant ternary_vector : std_logic_vector(5 downto 0) := "01-1-0";
constant my_integer : integer := 7;
constant line1 : string(7 downto 1):="Index:" & CR; -- CR is a non-printing character
constant binary_constant : std_logic_vector(5 downto 0) := "011100";

entity test_const is
port (sw : in std_logic_vector (2 downto 0);

led : out std_logic_vector (6 downto 0));
end test_const;

architecture Behavioral of test_const is
constant binary : std_logic_vector(6 downto 0) := "0101010";
constant octal : std_logic_vector(6 downto 0) := o"12" & '1';
constant hexadecimal : std_logic_vector(6 downto 0) := x"a" & o"5";
constant decimal : integer := 63;
type rom is array (0 to 3) of std_logic_vector (6 downto 0);
constant ex : rom :=(x"6" & o"3", x"8" & "101", '1' & o"45", o"3" & '0' & o"2");

begin
led <= binary when sw = "001" else -- the result: 0101010

octal when sw = "010" else -- the result: 0010101
hexadecimal when sw = "011" else -- the result: 1010101
ex(0) when sw = "100" else -- the result: 0110011
ex(1) when sw = "101" else -- the result: 1000101
ex(2) when sw = "110" else -- the result: 1100101
ex(3) when sw = "111" else -- the result: 0110010
conv_std_logic_vector(decimal,7); -- the result: 0111111

end Behavioral;

http://dx.doi.org/10.1007/978-3-319-04708-9_2
http://dx.doi.org/10.1007/978-3-319-04708-9_2

383

Downto

declares a direction in a range, for example, A(7 downto 0).

End

concludes descriptions (statements) in a process/function/procedure/architecture.
It is also used in some other constructions such as block and generate statements.

Entity

describes inputs and outputs of the design module. It is demonstrated on a general
template below:

Enumerated Type

may be user-defined, such as that is frequently needed for listing names of states
in FSMs as it is shown in the example below:

Exit

forces exiting from the innermost loop or from the loop with the indicated label.
In the following example the variable count (declared as: variable count : integer range
0 to 4:= 0;) is always equal to 0 if the statement exit a is used and always equal to 4
when the statement without the label a (e.g. exit) is used:

entity <NAME OF ENTITY> is
generic (<NAME OF GENERIC> : <type> := <USER VALUE>;

<other generics if required...>);
port (<NAME OF PORT> : <mode of port such as in, out, inout, buffer > <type>;

<other ports if required...>
);
end <NAME OF ENTITY>;

type state_type is (init, run_state); -- there are two states in the state_type: init and run_state

a: for i in 0 to 3 loop -- a is an optional label
for j in 0 to 3 loop -- begin of the innermost loop

if i = j then exit a; -- count is always equal to 0 with the label a
-- -- count is always equal to 4 without the label a

end if;
end loop; -- end of the innermost loop
count := count+1;

end loop a; -- a is an optional label

Appendix A: VHDL Constructions Used in the Book

Appendix A: VHDL Constructions Used in the Book384

File

is a type that provides for interaction of the design with storage devices. An exam-
ple with files is given in Sect. 2.6. In another example below the function read_array
from Sect. 2.6 uses a while loop to read data from the file data.txt:

The next example demonstrates writing to a file:

impure function read_array (input_data : in string) return my_array is
file my_file : text is in input_data;
variable line_name: line;
variable a_name : my_array;
variable index : natural;

begin
index := 0;
while not endfile(my_file) loop -- using the function endfile(file) [2]

readline (my_file, line_name);
read (line_name, a_name(index));
index := index+1; -- index is incremented until the end of file is reached

end loop;
return a_name;

end function;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_arith.all;
use IEEE.STD_LOGIC_TEXTIO.all;
use STD.TEXTIO.all;

entity WriteToFile is
generic (M : integer := 32;

N : integer := 1024);
port (const_bit : out std_logic;

bit_number : in integer range 0 to 14);
end WriteToFile;

architecture Behavioral of WriteToFile is -- opening the file MyFile.txt for writing
file generic_and_constants : text open write_mode is "MyFile.txt";
constant oct_const: std_logic_vector(14 downto 0) :=o"37145";

begin
process(bit_number) -- combinational process

variable file_line : LINE;
begin

write(file_line, string'("----------")); -- preparing the string "----------"
writeline(generic_and_constants, file_line); -- recording the string "----------"
write(file_line, string'("M = ")); -- preparing the string "M = "
write(file_line, M); -- preparing the generic value M
writeline(generic_and_constants, file_line); -- recording the string and generic value M
write(file_line, string'("N = ")); -- preparing the string "N = "
write(file_line, N); -- preparing the generic value N

writeline(generic_and_constants, file_line); -- recording the string and generic value N
write(file_line, string'("The maximum value of an integer: ")); -- preparing the string …
write(file_line, integer'high); -- preparing the value of the largest integer
writeline(generic_and_constants, file_line); -- recording the prepared string and value
write(file_line, string'("Decimal value of octal constant: ")); -- preparing the string …
write(file_line, conv_integer(oct_const)); -- converting the octal constant to integer
writeline(generic_and_constants, file_line); -- recording the converted value
for i in 3877 to 3879 loop -- this loop records binary values of the index i in the file

 write(file_line, conv_std_logic_vector(i,12)); -- converting integers to std_logic_vector
 writeline(generic_and_constants, file_line); -- recording the std_logic_vector

end loop;
const_bit <= hex_const(bit_number); -- other statements
-- the remaining part of the code

end process;

-- the remaining part of the code

end Behavioral;

http://dx.doi.org/10.1007/978-3-319-04708-9_2
http://dx.doi.org/10.1007/978-3-319-04708-9_2

Appendix A: VHDL Constructions Used in the Book 385

Suppose the module WriteToFile is a component of another module in which it is
declared as follows:

The file MyFile.txt is created during synthesis and is composed of the following
lines:

It contains those generic values that have been provided by the entity Top.
Files may be useful for such tasks as initializing arrays (ROMs), reading stimu-

lus for simulations, etc. The predefined package textio in the library std collects use-
ful functions, types and operations that permit to read/write files from the design.
Additional details can be found in [1, 2].

entity Top is
generic (M: integer := 16; N: integer := 512);
port -- descriptions of ports

end Top;

architecture Behavioral of Top is
begin
test: entity work.WriteToFile

generic map (M, N)
port map (const_bit, bit_number);

end Behavioral;

M = 16
N = 512
The maximum value of an integer: 2147483647
Decimal value of octal constant: 15973
111100100101
111100100110
111100100111

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_arith.all;
use IEEE.STD_LOGIC_TEXTIO.all;
use STD.TEXTIO.all;

entity WriteToFile is
generic (M : integer := 32;

N : integer := 1024);
port (const_bit : out std_logic;

bit_number : in integer range 0 to 14);
end WriteToFile;

architecture Behavioral of WriteToFile is -- opening the file MyFile.txt for writing
file generic_and_constants : text open write_mode is "MyFile.txt";
constant oct_const: std_logic_vector(14 downto 0) :=o"37145";

begin
process(bit_number) -- combinational process

variable file_line : LINE;
begin

write(file_line, string'("----------")); -- preparing the string "----------"
writeline(generic_and_constants, file_line); -- recording the string "----------"
write(file_line, string'("M = ")); -- preparing the string "M = "
write(file_line, M); -- preparing the generic value M
writeline(generic_and_constants, file_line); -- recording the string and generic value M
write(file_line, string'("N = ")); -- preparing the string "N = "
write(file_line, N); -- preparing the generic value N

writeline(generic_and_constants, file_line); -- recording the string and generic value N
write(file_line, string'("The maximum value of an integer: ")); -- preparing the string …
write(file_line, integer'high); -- preparing the value of the largest integer
writeline(generic_and_constants, file_line); -- recording the prepared string and value
write(file_line, string'("Decimal value of octal constant: ")); -- preparing the string …
write(file_line, conv_integer(oct_const)); -- converting the octal constant to integer
writeline(generic_and_constants, file_line); -- recording the converted value
for i in 3877 to 3879 loop -- this loop records binary values of the index i in the file

 write(file_line, conv_std_logic_vector(i,12)); -- converting integers to std_logic_vector
 writeline(generic_and_constants, file_line); -- recording the std_logic_vector

end loop;
const_bit <= hex_const(bit_number); -- other statements
-- the remaining part of the code

end process;

-- the remaining part of the code

end Behavioral;

Appendix A: VHDL Constructions Used in the Book386

For

statement permits to replicate logic in generate and loop constructions and may
also serve some other purposes [1, 2]. Iterations for-loop can be used in processes,
functions, and procedures. Suppose the following signal is declared:

The following fragments demonstrate examples of for statements:

Function

computes a single value and always terminates with a return statement. It is
declared according to the following general format:

Input parameters can be unconstrained, i.e. they may have no bounds. The body
of a function is similar to the body of a combinational process.

Section 2.4 is dedicated to functions with many simple examples.

signal vector : std_logic_vector(N-1 downto 0);

<OPTIONAL LABEL>: for i in vector'range loop -- 1) elements of the vector from N-1 to 0 will be used
 -- statements that specify logic that has to be replicated
end loop <OPTIONAL LABEL>;

for i in vector'reverse_range loop -- 2) elements of the vector from 0 to N-1 will be used
 -- statements that specify logic that has to be replicated
end loop;

for i in N-1 downto 0 loop -- 3) elements of the vector from N-1 to 0 will be used
 -- statements that specify logic that has to be replicated
end loop;

for i in a downto b loop -- 4) elements from a to b will be used (a b, a<N, b 0)
 -- statements that specify logic that has to be replicated
end loop;

for i in vector'left downto vector'right loop -- 5) elements from N-1 to 0 will be used
 -- statements that specify logic that has to be replicated
end loop;

≤≤

function <NAME OF THE FUNCTION> (<LIST OF INPUT PARAMETERS>) return <TYPE> is
<DECLARATIVE PART>
begin

-- sequential statements (the function body)
end <NAME OF THE FUNCTION>;

http://dx.doi.org/10.1007/978-3-319-04708-9_2

Appendix A: VHDL Constructions Used in the Book 387

Generate

construction is used to instantiate an array of components allowing concurrent
statements to be replicated. The modes for and if can be applied which is illustrated
below on an example (Fig. A.1 shows the output_vector for the given input_vector):

Generic

supplies particular constant values to entities and components. A default value may
be included which will be used if another value is not specified in the generic map.
Section 2.5 is dedicated to generics with many simple examples. Generic map con-
structions permit default generic values in lower-level modules to be changed.

entity Test_generic is
generic(N : integer := 8);
port (input_vector : in std_logic_vector (N-1 downto 0);

 output_vector : out std_logic_vector (N-1 downto 0));
end Test_generic;

architecture Behavioral of Test_generic is
begin

example: for i in N-1 downto 0 generate
exchange: if (i >= 2 and i <= 3) generate

 for_example: entity work.OneBitComparator
port map(input_vector(i), input_vector(i+2), output_vector(i), output_vector(i+2));

end generate exchange;

copy: if (i < 2) generate
output_vector(i) <= input_vector(i);
output_vector(i+6) <= input_vector(i+6);

end generate copy;

end generate example;

end Behavioral;

input_vector

output_vector

entity OneBitComparator is
port(A, B : in std_logic;

MaV, MiV : out std_logic);
end OneBitComparator;
architecture Behavioral of OneBitComparator is
begin
process(A,B)
begin

ifA>=B then MaV<=A; MiV<= B; else MaV<=B; MiV<=A; end if;
end process;
end Behavioral;

Fig. A.1   An example of input/output vectors and VHDL code for a 1-bit comparator

http://dx.doi.org/10.1007/978-3-319-04708-9_2

Appendix A: VHDL Constructions Used in the Book388

Guarded Signal

allows a concurrent assignment to be done only when the guard condition in the
block with this assignment is true (see an example of the entity TestBlockGuarded in
Sect. 2.4).

If

is a conditional statement which can be used in a process, function, and procedure
Many simple examples are given in Sect. 2.3. This statement is demonstrated on a
general template below:

Impure

is an option for a function that extends the scope of variables and signals declared
outside of the function that become available in the function. Thus, an impure
function (in contrast to a pure function) may return different values for the same
arguments (see Sect. 2.4 for details).

In

is a port mode allowing the port to be read only. If no mode is declared it is
assumed to be in.

Inout

is a mode for bidirectional ports (for read and write). Inout is mainly aimed at indi-
cation of a tri-state port that can be both an output and an input. It can be applied
to such signal MyBus that might be assigned like the following: MyBus <= MyIntBus
when (MyWr = ‘1’) else (others => ‘Z’);. Ports with inout type have to be used when bidi-
rectional communications are actually needed. Inout type can also be used for pro-
cedures (see procedure) and permits to return values of the respective arguments
to the calling module and to read/write these arguments in the procedure.

if <condition1> then <statements are executed if the condition1 is true>
elsif <condition2> then < statements are executed if the conditions1 is false and 2 is true>
else < statements are executed if both the conditions are false >
end if; -- then, elsif, else, end if are reserved words

http://dx.doi.org/10.1007/978-3-319-04708-9_2
http://dx.doi.org/10.1007/978-3-319-04708-9_2
http://dx.doi.org/10.1007/978-3-319-04708-9_2

Appendix A: VHDL Constructions Used in the Book 389

Is

links identities to definitions in different constructions, for example: architecture
Behavioral of TestTextFile is.

Library

permits the resources of a library to be used. The following examples demonstrate
declaration of libraries IEEE and UNISIM:

The library work does not need to be declared. A user-defined library must be
defined explicitly (see an example in Sect. 2.6).

Literal

is a value specified in the design that appears in expressions in form of a number, a
character, a string, or a bit string:

•	 Numbers are represented by integer and real literals (a synthesizable object
of type real cannot be defined). Examples of decimal integer literals are 45, 0,
1872. A base can be different from 10. In this case the number is enclosed in
sharp characters # preceded by the base that can be any integer from 2 to 16.
For example, the value 25 can be written as: 2#11_001#, or 16#19# or 5#100#.
Separators (underscores _) are ignored in the literal and permit a more readable
form to be used. The considered in the book convertions can be applied to num-
bers, for example leds(10 downto 2) <= conv_std_logic_vector(3#01_10#, 9);.

•	 A character literal is a single character enclosed in single quotation marks,
for example: ‘3’, ‘f’, ‘S’, ‘ ’ (where in the last case the character is the space).
There are a number of special (non-printable) characters that can be indicated
by their predefined names (such as del), for example: signal special: character: = del;
(see ASCII table).

•	 Strings are sequences of characters enclosed in double quotation marks, for
example: “this is a string”, “” (where in the last case the string is empty). Two
strings can be joined by the concatenation operator (&). The indices are posi-
tive numbers and the range may be either ascending or descending, although the
majority of applications use an ascending range beginning with 1 [1]. The latter
is also frequently used as the default initial index in a string range.

library IEEE; -- "library", "use" and "all" are reserved words
use IEEE.STD_LOGIC_1164.all; -- see details in section 2.6
use IEEE.STD_LOGIC_ARITH.all; -- see details in section 2.6
use IEEE.STD_LOGIC_UNSIGNED.all; -- see details in section 2.6
library UNISIM; -- these lines have to be included if Xilinx primitives and the vendor-specific libraries are used
use UNISIM.VComponents.all;

http://dx.doi.org/10.1007/978-3-319-04708-9_2

Appendix A: VHDL Constructions Used in the Book390

•	 A bit string literal represents a string of binary values. For example, a binary
vector can be described in the following form: B“1_001”, where B (or b) is the
base (binary). Other possible bases can be (O or o)—octal and (X or x)—hexa-
decimal. As before, separators (underscores _) are ignored. A bit string literal
can be assigned to std_logic_vector with the proper size: SLV(2 downto 0) <= b“1_0_0”.

Logical Operators

are summarized in Table A.3.

Map

associates names in a block (port or generic) with external names. Positional and
named associations can be used. Let us consider some examples:

The entity clock_divider can be, for example, declared as:

Named association may look like the following:

Modulo—mod

This is a binary operator that is predefined for integer types. The result has the
sign of the second operand and absolute value less than the absolute value of the
second operand. It is defined as: a mod b = a − b × n, where n is some integer.
See examples in Sect. 2.2.

divider: entity work.clock_divider -- positional association
-- clk and divided_clk are signals declared in the module which uses the clock_divider
port map (clk, divided_clk);

entity clock_divider is -- c and d_c are internal signals inside the entity clock_divider
port (c : in std_logic; -- c corresponds to the signal clk in the upper level module

d_c : out std_logic); -- d_c corresponds to the signal divided_clock
end clock_divider;

divider: entity work.clock_divider -- names in upper and lower level modules may be the same
port map (c=>clk, d_c=>divided_clk); -- here external (clk, divided_clk)

-- and internal (c, d_c) names are different

Table A.3   The truth table for binary logical operations

A B A and B A nand B A nor B not A not B A or B A xor B A xnor B

False False False True True True True False False True
False True False True False True False True True False
True False False True False False True True True False
True True True False False False False True False True

http://dx.doi.org/10.1007/978-3-319-04708-9_2

Appendix A: VHDL Constructions Used in the Book 391

Names

are used for identifiers. They may be composed of letters, digits, and underscores.
Names are non-sensitive to case (i.e. AAa and aAA names are the same). Names
must start with a letter, may not end with an underscore character, and may not
include two successive underscore characters. VHDL reserved words cannot be
used as names.

Next

terminates the current iteration (replication of logic) in loops and initiates a new
iteration (replication). Much like the statement exit, next may have an optional
label (e.g. next a;) which has the same interpretation as for the exit.

Null

indicates that no action is to be performed (normally used in case and if statements,
for example, when others => null).

Of

links identities to names or types of elements, for example, type my_array is array(0 to 7)
of std_logic_vector(15 downto 0).

Open

is used to leave the specified port unassociated. The IEEE VHDL specification
does not allow unconnected input ports, but unconnected (open) output ports are
permitted.

Operands

that are used in the book are: array aggregates, bit string literals, enumeration
literals, function calls, integers, physical literals (only for behavioral simula-
tion), record aggregates, string literals, static expressions, type conversions (see
also literals above).

Appendix A: VHDL Constructions Used in the Book392

Operators

are divided into arithmetic (+, −, *, /, abs, mod, rem, sign + and −, **), concat-
enation (&), logical (and, nand, nor, not, or, xnor, xor), relational (=, /=, <, <=, >,
>=), assignment (:=, <=) and shift (rol, ror, sla, sll, sra, srl). Some operators are
represented by special symbols composed of individual or pairs of characters.
A pair of characters, such as <= (if they correspond to an operator) must be typed
next to each other without a space in between them. Logical operators can be com-
bined with relational operators (ex. if ((a > b) and (c /= d)) or be bitwise (e.g. a xor b
where a and b are std_logic_vector signals with equal sizes). All operators shown in
bold font are reserved words. Operators are organized in the following groups
according to their precedence (power − **), (abs), (not), (*), (/), (mod, rem), (+
identity, − negation), (+, −), (&), (rol, ror, sll, srl), (sla, sra), (=, /=), (<, <=, >,
>=), (and, nand, nor, or, xnor, xor) with the highest priority in the first and with the
lowest priority in the last group. Parentheses can be used to change the order of
operators and are recommended for clarity.

On

is used in wait statements to introduce the sensitivity list as follows: wait on
<SENSITIVITY LIST> until <BOOLEAN EXPRESSION>. An example is given below:

Others

is used as the last branch of case statement and the right part of a signal/variable
assignments to cover not specified values in the case statement and to assign val-
ues to not-assigned array elements. Some examples are given below (see also
aggregate):

Out

is a port mode allowing the port to be only written.

process -- sequential process;
begin -- for a combinational process the line below is changed to: wait on count;

wait on count until rising_edge(divided_clk);
led <= count;

end process; -- support for wait statement is often limited (see, for example, restrictions in [2])

type memory is array (15 downto 0) of std_logic_vector (7 downto 0);
signal s_mem : memory := (others => (others => '0')); -- all elements of 2-dimensional array are zeros
-- beginning of a case statement
when others => null;

Appendix A: VHDL Constructions Used in the Book 393

Package

permits to describe functions, procedures, constants, and types in a separate file,
which can be shared by different projects. See examples in Sect. 2.6. A general
template for a package is shown below:

Port

is a signal enabling an entity to communicate with other upper-level modules. Port
map construction defines mapping of signals from upper-level modules to signals
from lower-level modules.

Procedure

differs from a function because it permits more than one signal to be produced.
A general template for a procedure is:

Arguments of mode out and inout in procedures return their values to the calling
module. Parameters can be unconstrained, i.e. they may have no bounds. The body
of a procedure is similar to the body of a combinational process. Section 2.4 is
dedicated to procedures and demonstrates simple examples.

Process

describes a level of hierarchy in a design. Different processes are executed concur-
rently (in parallel with other processes and concurrent signal assignments). A gen-
eral template for a process is:

package <NAME OF THE PACKAGE> is
type -- optional declaration of types
constant -- optional declaration of constants
function -- optional declaration of functions
procedure -- optional declaration of procedures

end <NAME OF PACKAGE>;

package body <NAME OF THE PACKAGE> is
-- definition of functions and procedures

end <NAME OF THE PACKAGE>;
-- some predefined packages are described in section 2.6

procedure <NAME OF PROCEDURE> (<LIST OF INPUT, OUTPUT AND INOUT PARAMETERS>) is
-- declarative part

begin
-- sequential statements (the procedure body)

end <NAME OF PROCEDURE>;

http://dx.doi.org/10.1007/978-3-319-04708-9_2
http://dx.doi.org/10.1007/978-3-319-04708-9_2

Appendix A: VHDL Constructions Used in the Book394

Statements within a process are executed sequentially. Update of signals is
done when the process suspends. Signal assignments (<=) inside processes do not
take effect immediately as distinct from variables for which assignments (:=) of
values are done immediately. The sensitivity list is a set of signals written in
parentheses after the word process. Any change in (any event on) these signals
causes the process to be activated. The sensitivity list of a combinational process
(for a combinational circuit) must contain all the input signals and the process
must update all the output signals. Sequential processes include edge-triggered
clocked timing. One process might change signals in a sensitivity list of another
process. Processes without a sensitivity list should include a wait statement.
Section 2.3 is dedicated to processes with many simple examples.

Pure

is an option for a function that does not allow the usage of signals or variables
declared outside of the function. All functions are pure by default (see Sect. 2.4
and impure functions for details).

Qualified Expression

(type'(expression)) permits the type of expression to be explicitly indicated, for
example:

Range

permits an interval of allowed values to be explicitly defined (see subtype). The
following example declares a range of integers:

<OPTIONAL LABEL>: process (<SENSITIVITY LIST>)
-- declarative part

begin
-- sequential statements (the process body)

end process < OPTIONAL LABEL>;

architecture …..
signal user_signal : integer range 0 to 15 := 11;
begin
user_out <= unsigned'("0000") + user_signal;

signal user_signal : integer range -5 to 10; -- the range of integers is from -5 to 10

http://dx.doi.org/10.1007/978-3-319-04708-9_2
http://dx.doi.org/10.1007/978-3-319-04708-9_2

Appendix A: VHDL Constructions Used in the Book 395

Record

permits a collection of data (with the same or different types) to be represented.
A record can be declared as a type (see additional information in type). Record type
signals can be assigned using aggregates (see additional information in aggre-
gates). The following example demonstrates how a type record can be declared for
a serial package that might be used in communications through RS232 interface:

The following example shows how to access and assign individual fields:

Relational Operators

= (equal to), /= (not equal to), < (less than), <= (less than or equal to), > (greater
than), >= (greater than or equal to).

Remainder—rem

is a binary operator for remainder that is predefined for any integer type. The
result has the sign of the first operand and is defined as: a rem b = a−(a / b) × b.
See examples in Sect. 2.2.

Report

is a statement for generating report messages (see Sect. 2.5 for details).

Return

terminates a function with this statement and passes control to the calling module.
Any function must have a return statement.

type serial_package is record -- type definition
 start_bit : std_logic;
 data_bits : std_logic_vector (7 downto 0);
 parity_bit : std_logic;
 stop_bit : std_logic;
 number : integer range 0 to 127;
end record;
signal my_sp : serial_package; -- declaration of my_sp signal of type serial_package

my_sp.number <= 10; my_sp.start_bit <= '1';
my_sp.data_bits <= (others => '1');

http://dx.doi.org/10.1007/978-3-319-04708-9_2
http://dx.doi.org/10.1007/978-3-319-04708-9_2

Appendix A: VHDL Constructions Used in the Book396

Select

can be used in signal assignments in the body of an architecture. For example, the
following architecture describes the full adder from Sect. 2.1:

Severity

is a predefined type with the values note, warning, error and failure (see Sect. 2.5
for details).

Shared Variable

Shared keyword allows different processes to access the same variable. Shared
variables can be declared only in entities, architectures, and generates (which are
places where normal variables cannot be declared) according to the following
syntax:

For example (N is the number of RAM words, M is the size of the words):

Xilinx recommends shared variables to be used to model a RAM with two
write ports (examples are given in [1]).

Shift Operators rol, ror, sla, sll, sra, srl

The document [1] indicates that these operators are defined for a one-dimen-
sional array with bit or Boolean elements. There are two arguments: A and B,
where A is the array and B is the number of the array positions which are either
shifted or rotated. Assuming that the operand A has N bits (N-1 downto 0) and
the operand B is an integer, the following logical equivalence can be given:

architecture STRUCT of FULLADD is -- another example is given in section 3.1.2
signal three_bits : std_logic_vector(2 downto 0);

begin three_bits <= A & B & CIN;
with three_bits select SUM <= '1' when "100"|"010"|"001"|"111", -- SUM=1 for the listed vectors

'0' when others; -- SUM=0 for non-listed vectors
with three_bits select COUT <= '1' when "011"|"101"|"110"|"111", -- COUT=1 for the listed vectors

 '0' when others; -- COUT=0 for non-listed vectors
end STRUCT; -- another example is given in subtype

shared variable <VARIABLE_NAME> : <NAME OF TYPE> := <EXPRESSION>;

type type_of_the_RAM_block is array (0 to N-1) of std_logic_vector (M-1 downto 0);
shared variable RAM_block : type_of_the_RAM_block;

http://dx.doi.org/10.1007/978-3-319-04708-9_2
http://dx.doi.org/10.1007/978-3-319-04708-9_2

Appendix A: VHDL Constructions Used in the Book 397

• rol (rotate left): A(N-B-1 downto 0) & A(N-1 downto N-B);
• ror (rotate right): A(B-1 downto 0) & A(N-1 downto B);
• sla (shift left arithmetic): A(N-B-1 downto 0) & (B-1 downto 0 => A(0));
• sll (shift left logic): A(N-B-1 downto 0) & (B-1 downto 0 => ‘0’);
• sra (shift right arithmetic): (B-1 downto 0 => A(N-1)) & A(N-1 downto B);
• srl (shift right logic): (B-1 downto 0 => ‘0’) & A(N-1 downto B);

The following example provides an additional demonstration:

We would prefer to use logically equivalent operators shown above instead of
the described here shift operators.

Signal

Signals model physical wires in hardware circuits. They are assigned with a pair
of symbols <= and any assignment involves a delay (one delta delay by default).
The latter applies when an assignment is done within a block or as a part of
sequential statements within a process (see TestProc entity in Sect. 2.3.2 for

entity L_shift is -- the library numeric_std has to be included (use ieee.numeric_std.all;)
port(clk : in std_logic; -- system clock 100 MHz

sw : in unsigned(15 downto 0); -- switches of the Nexys-4 or any other board
led : out unsigned(13 downto 0)); -- LEDs of the Nexys-4 or any other board

end L_shift;
architecture Behavioral of L_shift is

signal data_in : unsigned(13 downto 0); -- an input vector from the switches
signal data_tmp : unsigned(13 downto 0); -- a temporary vector that is rotated
signal sel : unsigned(1 downto 0); -- selects the number of positions to rotate
signal divided_clk : std_logic; -- low frequency (1Hz) to make the rotations visible

begin
data_in <= sw(13 downto 0); -- taking an input vector from the switches
sel <= sw(15 downto 14); -- taking the sel value from the switches

process (divided_clk) -- sequential process that demonstrates the use of the rol operator
begin

if rising_edge(divided_clk) then
case sel is -- selection of the number of positions to rotate

when "00" => data_tmp <= data_in ; -- taking an initial vector from the switches
when "01" => data_tmp <= data_tmp rol 1;-- rotate one position (B=1)
when "10" => data_tmp <= data_tmp rol 2;-- rotate two positions (B=2)
when "11" => data_tmp <= data_tmp rol 3;-- rotate three positions (B=3)
when others => data_tmp <= data_in ;

end case; -- the operators ror, sll, srl can be used above instead of the operation rol
end if;

end process;

led <= data_tmp; -- showing rotated data on leds
div: entity work.clock_divider -- clock divider to reduce clock frequency from 100 MHz to 1Hz

port map (clk, '0', divided_clk); -- the reset signal is always deasserted ('0')

end Behavioral;

http://dx.doi.org/10.1007/978-3-319-04708-9_2

Appendix A: VHDL Constructions Used in the Book398

details). Signals differ from variables which are assigned immediately. Signals are
declared in architectures (and cannot be declared in processes, procedures or func-
tions) in the following form:

Signals can be used in bodies of architectures, processes, procedures or func-
tions and can be formal parameters of a function or a procedure. A sensitivity list
of a process cannot include variables and includes only signals.

Concurrent signal assignments (<=), conditional signal assignments (when … else)
and selected signal assignments (with … select … when) can be used in architecture
body. In processes (procedures) normally only sequential signal assignments (<=)
are allowed. The following rules are the most important:

1.	 Sequential signal assignments will be done in a process only when the process
suspends.

2.	 If there are several assignments in the process to the same signal only the last
one takes effect.

Subtype

Introduces constraints or subsets of values for the chosen base type. It is declared
in the following general form:

The use of subtypes is considered on an example below.

To

declares a direction in a range, for example, A(0 to 7).

signal <NAME OF SIGNAL> : <TYPE OF SIGNAL>;
signal <NAME OF SIGNAL> : <TYPE OF SIGNAL> := <INITIAL VALUE>;

subtype <NAME OF SUBTYPE> is <BASE_TYPE>
range <VALUES IN RANGE>;

entity types_and_subtypes is
port (switches : in std_logic_vector(1 downto 0); -- two switches

 leds : out std_logic_vector (3 downto 0)); -- four LEDs
end types_and_subtypes;

architecture Behavioral of types_and_subtypes is
subtype four_bits_std_logic_vector is std_logic_vector (3 downto 0);
type my_pack is array (0 to 3) of four_bits_std_logic_vector; -- a subtype of std_logic_vector
constant set_of_lines : my_pack := (x"F", b"00_11", o"6"&'0', "0101"); -- defining a constant value

begin
with switches select leds <= set_of_lines(0) when "00", -- displayed value is "1111" = x"F"

set_of_lines(1) when "01", -- displayed value is "0011" = b"00_11"
set_of_lines(2) when "10", -- displayed value is "1100" = o"6"&'0'
set_of_lines(3) when "11", -- displayed value is "0101" = "0101"
(others => '0') when others;

end Behavioral;

Appendix A: VHDL Constructions Used in the Book 399

Type

is declared in the following general form:

Table A.4 summarizes information about types most commonly used in
synthesizable VHDL (resolved type permits signals to be driven by more than one
source). Note that there are many restrictions for using the type real.

Each type allows a set of values and a set of associated operations. There are several
groups of predefined types such as scalar (bit, boolean, character, enumerated, integer,
physical, real, severity) and composite (array, bit_vector, record, string).

Unsigned vector “1111” corresponds to integer 15 and signed vector “1111” cor-
responds to integer −1. The latter is represented in two’s complement notation, i.e.
the most significant bit indicates the sign (1 is minus ‘−’ and 0 is plus ‘+’) and
has a negative weight −23, while all the remaining bits have positive weights (20,
21 and 22, accordingly) which are equal to 2x where x is the index of the respective
bit (the least significant bit has an index 0).

type <NAME OF TYPE> is <SPECIFICATION OF TYPE>; -- see also enumerated type

Table A.4   Often used predefined VHDL data types

Type Where declared Possible values

bit Standard in VHDL ‘0’, ‘1’
bit_vector Standard in VHDL Array of bits
boolean Standard in VHDL False, true
character Standard in VHDL 7-bit ASCII codes in ISE
integer Standard in VHDL At least 32 bits (−231 to 231 − 1)
natural Standard in VHDL Subtype of integer: at least from 0 to

231 − 1
positive Standard in VHDL Subtype of integer: at least from 1 to

231 − 1
real There are many restrictions for

synthesis
Floating-point values

signed Packages: ieee.std_logic_arith, ieee.
numeric_std

Array of std_logic

std_logic Package: ieee.std_logic_1164 Resolved std_ulogic
std_logic_vector Package: ieee.std_logic_1164 Array of std_logic
std_ulogic Package: ieee.std_logic_1164 ‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’,

‘-‘
std_ulogic_vector Package: ieee.std_logic_1164 Array of std_ulogic
string Standard in VHDL Array of characters
time Standard in VHDL Time units: hr, min, sec, ms, us, ns,

ps, fs
unsigned Packages: ieee.numeric_std, ieee.

std_logic_arith
Array of std_logic

Appendix A: VHDL Constructions Used in the Book400

Type Conversions

are frequently required. They are provided either automatically, through type casts,
or with the aid of conversion functions (see also Sect. 2.2). Type cast is used to
convert equal sized signed or unsigned to std_logic_vector and vice versa:

The following assignments need conversion functions:

Using conversion functions requires the relevant libraries to be included.
For example the conv_integer function is defined in the library std_logic_unsigned (or
std_logic_signed) and conv_std_logic_vector function is defined in the library std_logic_arith.

Until

is used in the condition of a wait statement (see on). An example is given below.
The support is limited [1].

Use

enables functions, procedures, constants, and types of a package to become acces-
sible (visible) in an associated entity/architecture.

Variable

Variables in VHDL are very similar to variables in general-purpose programming
languages. They can be declared and used in processes, procedures, and functions.
Assignments are allowed from signals to variables (<variable>:= <signal>;) and vice

signed_vector <= signed(std_logic_vector_signal);
unsigned_vector <= unsigned(std_logic_vector_signal);
std_logic_vector_signal <= std_logic_vector(signed_vector);
std_logic_vector_signal <= std_logic_vector(unsigned_vector);

integer_signal <= conv_integer (unsigned_vector);
integer_signal <= conv_integer (signed_vector);
integer_signal <= conv_integer (std_logic_vector_signal);
unsigned_vector <= conv_unsigned (integer_signal, size_of_unsigned_vector);
signed_vector <= conv_signed (integer_signal, size_of_signed_vector);
std_logic_vector_signal <= conv_std_logic_vector (integer_signal, size);

process
begin

wait until rising_edge(divided_clk) and BTNC = '1';
count <= count + 1;

end process;

http://dx.doi.org/10.1007/978-3-319-04708-9_2

Appendix A: VHDL Constructions Used in the Book 401

versa (<signal> <= <variable>;), however type match has to be satisfied and the proper
operator (:= or <=) must be chosen. Variable assignments take effect without a
delay (as distinct from signal assignments).

Wait

suspends a process. The document [1] recommends describing processes with a
sensitivity list and indicate the following limitations: (1) only one wait statement
is allowed and it must be the first in the process; (2) the condition in the wait state-
ment has to describe a clock signal. See also on and until.

When

can be used in case statements and in signal assignments (see examples in case
and select).

While

statement permits repeated operations to be implemented in replicated logic. It has
the following general form:

Let us consider an example:

With

is used in a selected signal assignment (see select).

<OPTIONAL LABEL>: while <CONDITION> loop
-- sequential statements;

end loop <OPTIONAL LABEL>;

process (vector) -- this process finds the position (from 1 to 8) of the first '1' in the vector
variable first_right : integer range 0 to N;
variable i : integer range 0 to N;

begin
first_right := 0; -- variables have to be used here
i := 0;
while i < N loop -- vector is declared as std_logic_vector (7 downto 0);

if vector(i) = '1' then first_right := i+1; exit;
else i := i+1;
end if; -- positions of the vector bits are: 8 for bit 7, 7 for bit 6, 6 for bit 5, etc.

end loop; -- an optional label can be used for the loop
 led <=conv_std_logic_vector(first_right, 8); -- if vector = "00010100" then the result is 0011

end process; -- the result 0011 indicates position 3 (for bit 2) which is the first '1' from the right

Appendix A: VHDL Constructions Used in the Book402

References

1.	 Xilinx Inc. (2013) XST user guide for Virtex-6, Spartan-6, and 7 series devices.
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/xst_v6s6.pdf.
Accessed 17 Nov 2013

2.	 Ashenden PJ (2008) The designer's guide to VHDL, 3rd edn. Morgan Kaufmann, Boston

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/xst_v6s6.pdf

403

Appendix B

Abstract Appendix B includes coding examples for frequently needed modules,
any of which can easily be located by name. Entities have exactly the same names
that are used for the relevant components described in Chaps. 3 and 4. VHDL
codes, user constraints files, and bitstreams for all the projects are available online
at http://sweet.ua.pt/skl/Springer2014.html.

Binary to BCD Converters (BinToBCD8)

The following VHDL code is a complete description of a module, which converts 8-bit
binary numbers (binary) to binary coded decimal (BCD) numbers (BCD2, BCD1, BCD0):

library IEEE; -- a conversion can also be done on request and this will be
use IEEE.STD_LOGIC_1164.all; -- shown after the next example BinToBCD16
use IEEE.STD_LOGIC_ARITH.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
entity BinToBCD8 is -- Binary to BCD converter for 8-bit numbers of std_logic_vector type
generic(size_of_data_to_convert : integer := 8);
port (clk : in std_logic;

 reset : in std_logic;
 ready : out std_logic; -- ready is 0 when the number is being converted
 binary : in std_logic_vector (size_of_data_to_convert-1 downto 0);
 BCD2 : out std_logic_vector (3 downto 0); -- BCD code for the most significant digit
 BCD1 : out std_logic_vector (3 downto 0); -- BCD code for the digit in the middle
 BCD0 : out std_logic_vector (3 downto 0)); -- BCD code for the least significant digit

end BinToBCD8;

architecture Behavioral of BinToBCD8 is
type state is (idle, op, done);
signal c_s, n_s : state;
signal BCD2_c, BCD1_c, BCD0_c, BCD2_n, BCD1_n, BCD0_n : unsigned(3 downto 0);
signal BCD1_tmp, BCD0_tmp : unsigned(3 downto 0);
signal BCD2_tmp : unsigned(2 downto 0);
signal int_rg_c, int_rg_n : std_logic_vector (size_of_data_to_convert-1 downto 0);
signal index_c, index_n : unsigned(3 downto 0);
signal get_outputs : std_logic;

begin

process(clk, reset)
begin

V. Sklyarov et al., Synthesis and Optimization of FPGA-Based Systems,
Lecture Notes in Electrical Engineering 294, DOI: 10.1007/978-3-319-04708-9,
© Springer International Publishing Switzerland 2014

Coding Examples

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_2
http://sweet.ua.pt/skl/Springer2014

404

Figure B.1a explains an interface with the module BinToBCD8. Signal ready is
valid during one clock cycle and it indicates that the result of conversion is ready
to be used. A new data item for conversion can be prepared when ready=0. The code

if rising_edge(clk) then
if reset = '1' then

c_s <= idle; -- idle state at the beginning
BCD2_c <= (others => '0'); BCD1_c <= (others => '0'); BCD0_c <= (others => '0');
BCD0 <= (others=>'0'); BCD1 <= (others=>'0'); BCD2 <= (others=>'0');

else c_s <= n_s; -- next values are copied to current values
BCD2_c <= BCD2_n; BCD1_c <= BCD1_n; BCD0_c <= BCD0_n;
index_c <= index_n; int_rg_c <= int_rg_n;
if (get_outputs = '1') then

 BCD0 <= std_logic_vector(BCD0_n);
BCD1 <= std_logic_vector(BCD1_n);

 BCD2 <= std_logic_vector(BCD2_n);
end if;

end if;
end if;

end process;

process (c_s, BCD2_c, BCD1_c, BCD0_c, BCD2_tmp,
BCD1_tmp, BCD0_tmp, binary, int_rg_c, index_c, index_n)

begin

get_outputs <= '0'; n_s <= c_s;
BCD2_n <= BCD2_c; BCD1_n <= BCD1_c;
BCD0_n <= BCD0_c; index_n <= index_c;
int_rg_n <= int_rg_c; ready <= '0';

case c_s is -- at the beginning ready is 0
when idle => n_s <= op; ready <= '0'; int_rg_n <= binary; index_n <= "1000";
when op => ready <= '0';

int_rg_n <= int_rg_c(size_of_data_to_convert-2 downto 0) & '0';
 BCD0_n <= BCD0_tmp(2 downto 0) & int_rg_c(size_of_data_to_convert-1);
 BCD1_n <= BCD1_tmp(2 downto 0) & BCD0_tmp(3);
 BCD2_n <= BCD2_tmp(2 downto 0) & BCD1_tmp(3);
 index_n <= index_c - 1;

if (index_n = 0) then n_s <= done; get_outputs <= '1';
end if;

when done => n_s <= idle;
 BCD2_n <= (others => '0');
 BCD1_n <= (others => '0');
 BCD0_n <= (others => '0');
 ready <= '1'; -- now ready is 1, i.e. a new conversion can be done

end case;
end process;

BCD0_tmp <= BCD0_c + 3 when BCD0_c > 4 else BCD0_c;
BCD1_tmp <= BCD1_c + 3 when BCD1_c > 4 else BCD1_c;
BCD2_tmp <= BCD2_c(2 downto 0) + 3 when BCD2_c > 4 else BCD2_c(2 downto 0);

end Behavioral;

library IEEE; -- a conversion can also be done on request and this will be
use IEEE.STD_LOGIC_1164.all; -- shown after the next example BinToBCD16
use IEEE.STD_LOGIC_ARITH.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
entity BinToBCD8 is -- Binary to BCD converter for 8-bit numbers of std_logic_vector type
generic(size_of_data_to_convert : integer := 8);
port (clk : in std_logic;

 reset : in std_logic;
 ready : out std_logic; -- ready is 0 when the number is being converted
 binary : in std_logic_vector (size_of_data_to_convert-1 downto 0);
 BCD2 : out std_logic_vector (3 downto 0); -- BCD code for the most significant digit
 BCD1 : out std_logic_vector (3 downto 0); -- BCD code for the digit in the middle
 BCD0 : out std_logic_vector (3 downto 0)); -- BCD code for the least significant digit

end BinToBCD8;

architecture Behavioral of BinToBCD8 is
type state is (idle, op, done);
signal c_s, n_s : state;
signal BCD2_c, BCD1_c, BCD0_c, BCD2_n, BCD1_n, BCD0_n : unsigned(3 downto 0);
signal BCD1_tmp, BCD0_tmp : unsigned(3 downto 0);
signal BCD2_tmp : unsigned(2 downto 0);
signal int_rg_c, int_rg_n : std_logic_vector (size_of_data_to_convert-1 downto 0);
signal index_c, index_n : unsigned(3 downto 0);
signal get_outputs : std_logic;

begin

process(clk, reset)
begin

Appendix B: Coding Examples

405Appendix B: Coding Examples

may be slightly changed in such a way that as soon as ready is active the FSM in
the module above is continued to be in the idle state until a request for a new con-
version is received. Additional details will be given after the next example.

Binary to BCD Converters (BinToBCD16)

The following VHDL code is a complete description of a module, which converts
16-bit binary numbers (binary) to binary coded decimal (BCD) numbers (BCD4,
BCD3, BCD2, BCD1, BCD0):

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_ARITH.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
entity BinToBCD16 is -- binary to BCD converter for 16-bit numbers of std_logic_vector type
generic(size_of_data_to_convert : integer := 16);
port (clk : in std_logic;

 reset : in std_logic;
 ready : out std_logic; -- ready is 0 when the number is being converted
 binary : in std_logic_vector (size_of_data_to_convert-1 downto 0);

 request : in std_logic; -- a request is assumed to be sent when ready is active (1)
 BCD4 : out std_logic_vector (3 downto 0); -- BCD code for the most significant digit

 BCD3 : out std_logic_vector (3 downto 0);
 BCD2 : out std_logic_vector (3 downto 0);
 BCD1 : out std_logic_vector (3 downto 0);
 BCD0 : out std_logic_vector (3 downto 0)); -- BCD code for the least significant digit

end BinToBCD16;

architecture Behavioral of BinToBCD16 is
type state is (idle, op, done);
signal c_s, n_s : state;
signal BCD4_c, BCD3_c, BCD2_c, BCD1_c, BCD0_c, BCD4_n, BCD3_n, BCD2_n, BCD1_n,

BCD0_n : unsigned(3 downto 0);
signal BCD3_tmp, BCD2_tmp, BCD1_tmp, BCD0_tmp : unsigned(3 downto 0);
signal BCD4_tmp : unsigned(2 downto 0);
signal int_rg_c, int_rg_n : std_logic_vector (size_of_data_to_convert-1 downto 0);
signal index_c, index_n : unsigned(4 downto 0);
signal get_outputs : std_logic;

begin
process(clk, reset)
begin

if rising_edge(clk) then
 if reset = '1' then c_s <= idle;

BCD4_c <= (others => '0'); BCD3_c <= (others => '0'); BCD2_c <= (others => '0');
BCD1_c <= (others => '0'); BCD0_c <= (others => '0'); BCD0 <= (others=>'0');
BCD1 <= (others=>'0'); BCD2 <= (others=>'0'); BCD3 <= (others=>'0');
BCD4 <= (others=>'0');

else c_s <= n_s;
BCD4_c <= BCD4_n; BCD3_c <= BCD3_n; BCD2_c <= BCD2_n;
BCD1_c <= BCD1_n; BCD0_c <= BCD0_n;
index_c <= index_n; int_rg_c <= int_rg_n;
if (get_outputs = '1') then

BCD0 <= std_logic_vector(BCD0_n); BCD1 <= std_logic_vector(BCD1_n);
BCD2 <= std_logic_vector(BCD2_n); BCD3 <= std_logic_vector(BCD3_n);
BCD4 <= std_logic_vector(BCD4_n);

 end if;
end if;

end if;
end process;

(a)

(b)

(c)

Fig. B.1   Interface with the BinToBCD8 module (a), an example of conversion (b), and interface
with the BinToBCD16 module (c)

406

process (c_s, BCD4_c, BCD3_c, BCD2_c, BCD1_c, BCD0_c, BCD4_tmp, BCD3_tmp,
BCD2_tmp, BCD1_tmp, BCD0_tmp, binary, int_rg_c, index_c, index_n, request)

begin

get_outputs <= '0';
n_s <= c_s; BCD4_n <= BCD4_c; BCD3_n <= BCD3_c; BCD2_n <= BCD2_c;
BCD1_n <= BCD1_c; BCD0_n <= BCD0_c; index_n <= index_c; int_rg_n <= int_rg_c;
ready <= '0';

case c_s is
when idle =>

n_s <= op; ready <= '1'; int_rg_n <= binary; index_n <= "10000";
if request /= '1' then n_s <= idle; -- transition to the op state is
end if; -- done as soon as the request is active (i.e. equal to 1)

when op => ready <= '0';
int_rg_n <= int_rg_c(size_of_data_to_convert-2 downto 0) & '0';
BCD0_n <= BCD0_tmp(2 downto 0) & int_rg_c(size_of_data_to_convert-1);
BCD1_n <= BCD1_tmp(2 downto 0) & BCD0_tmp(3);
BCD2_n <= BCD2_tmp(2 downto 0) & BCD1_tmp(3);
BCD3_n <= BCD3_tmp(2 downto 0) & BCD2_tmp(3);
BCD4_n <= BCD4_tmp(2 downto 0) & BCD3_tmp(3);
index_n <= index_c - 1;
if (index_n = 0) then n_s <= done; get_outputs <= '1';
end if;

when done => n_s <= idle;
BCD4_n <= (others => '0'); BCD3_n <= (others => '0'); BCD2_n <= (others => '0');
BCD1_n <= (others => '0'); BCD0_n <= (others => '0');
ready <= '1'; -- now ready is 1, i.e. a new conversion can be done

end case;
end process;

BCD0_tmp <= BCD0_c + 3 when BCD0_c > 4 else BCD0_c;
BCD1_tmp <= BCD1_c + 3 when BCD1_c > 4 else BCD1_c;
BCD2_tmp <= BCD2_c + 3 when BCD2_c > 4 else BCD2_c;
BCD3_tmp <= BCD3_c + 3 when BCD3_c > 4 else BCD3_c;
BCD4_tmp <= BCD4_c(2 downto 0) + 3 when BCD4_c > 4 else BCD4_c(2 downto 0);

end Behavioral;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_ARITH.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
entity BinToBCD16 is -- binary to BCD converter for 16-bit numbers of std_logic_vector type
generic(size_of_data_to_convert : integer := 16);
port (clk : in std_logic;

 reset : in std_logic;
 ready : out std_logic; -- ready is 0 when the number is being converted
 binary : in std_logic_vector (size_of_data_to_convert-1 downto 0);

 request : in std_logic; -- a request is assumed to be sent when ready is active (1)
 BCD4 : out std_logic_vector (3 downto 0); -- BCD code for the most significant digit

 BCD3 : out std_logic_vector (3 downto 0);
 BCD2 : out std_logic_vector (3 downto 0);
 BCD1 : out std_logic_vector (3 downto 0);
 BCD0 : out std_logic_vector (3 downto 0)); -- BCD code for the least significant digit

end BinToBCD16;

architecture Behavioral of BinToBCD16 is
type state is (idle, op, done);
signal c_s, n_s : state;
signal BCD4_c, BCD3_c, BCD2_c, BCD1_c, BCD0_c, BCD4_n, BCD3_n, BCD2_n, BCD1_n,

BCD0_n : unsigned(3 downto 0);
signal BCD3_tmp, BCD2_tmp, BCD1_tmp, BCD0_tmp : unsigned(3 downto 0);
signal BCD4_tmp : unsigned(2 downto 0);
signal int_rg_c, int_rg_n : std_logic_vector (size_of_data_to_convert-1 downto 0);
signal index_c, index_n : unsigned(4 downto 0);
signal get_outputs : std_logic;

begin
process(clk, reset)
begin

if rising_edge(clk) then
 if reset = '1' then c_s <= idle;

BCD4_c <= (others => '0'); BCD3_c <= (others => '0'); BCD2_c <= (others => '0');
BCD1_c <= (others => '0'); BCD0_c <= (others => '0'); BCD0 <= (others=>'0');
BCD1 <= (others=>'0'); BCD2 <= (others=>'0'); BCD3 <= (others=>'0');
BCD4 <= (others=>'0');

else c_s <= n_s;
BCD4_c <= BCD4_n; BCD3_c <= BCD3_n; BCD2_c <= BCD2_n;
BCD1_c <= BCD1_n; BCD0_c <= BCD0_n;
index_c <= index_n; int_rg_c <= int_rg_n;
if (get_outputs = '1') then

BCD0 <= std_logic_vector(BCD0_n); BCD1 <= std_logic_vector(BCD1_n);
BCD2 <= std_logic_vector(BCD2_n); BCD3 <= std_logic_vector(BCD3_n);
BCD4 <= std_logic_vector(BCD4_n);

 end if;
end if;

end if;
end process;

Appendix B: Coding Examples

407

The module BinToBCD16 operates slightly different comparing with the module
BinToBCD8. Now the ready signal is active in the idle state (ready <= ‘1’) and the mod-
ule waits for a request for a new conversion. As soon as the signal request becomes
active, new data item is taken and a new conversion will be done (see Fig. B.1c).
To use the module BinToBCD16 in the entity TopForInteractingWitIPCores (see Sect. 4.1)
the following small change can be done:

The following changes can be done in the entity TopForInteractingWitIPCores that
enable the request signal to be involved:

1.	 New signals have to be declared: signal request, ready: std_logic;
2.	 The request has to be generated, for example: request <= ready and BTNR;
3.	 Mapping in the port map is done as follows:

Now the conversion will be done on the request from the onboard button BTNR.

Clock Divider (clock_divider)

A clock divider permits system clock to be divided by 2how_fast+1. The module with
the reset signal is the following (from comments it is clear that reset can be removed
if required):

binTO_BCD3: entity work.BinToBCD16 – the request below is assumed to be always active (i.e. 1)
port map (clk, reset, open, To_BCD, '1', BCD4, BCD3, BCD2, BCD1, BCD0);

port map (clk, reset, ready, To_BCD, request, BCD4, BCD3, BCD2, BCD1, BCD0);

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity clock_divider is
generic (how_fast : integer := 25);
port (clk, reset : in std_logic; -- similar circuit without the reset signal can also be used
 divided_clk : out std_logic);
end clock_divider;

architecture Behavioral of clock_divider is
signal internal_clock : std_logic_vector (how_fast downto 0);

begin
process(clk, reset) -- remove reset if there is no reset in the circuit
begin
 if rising_edge(clk) then
 if reset = '1' then -- remove reset if there is no reset in the circuit

-- remove this line if there is no reset in the circuit internal_clock <= (others=>'0');
else internal_clock <= internal_clock+1;
end if; -- remove else and end if keywords if there is no reset in the circuit

end if;
end process;

divided_clk <= internal_clock(internal_clock'left) when falling_edge(clk);

end Behavioral;

process (c_s, BCD4_c, BCD3_c, BCD2_c, BCD1_c, BCD0_c, BCD4_tmp, BCD3_tmp,
BCD2_tmp, BCD1_tmp, BCD0_tmp, binary, int_rg_c, index_c, index_n, request)

begin

get_outputs <= '0';
n_s <= c_s; BCD4_n <= BCD4_c; BCD3_n <= BCD3_c; BCD2_n <= BCD2_c;
BCD1_n <= BCD1_c; BCD0_n <= BCD0_c; index_n <= index_c; int_rg_n <= int_rg_c;
ready <= '0';

case c_s is
when idle =>

n_s <= op; ready <= '1'; int_rg_n <= binary; index_n <= "10000";
if request /= '1' then n_s <= idle; -- transition to the op state is
end if; -- done as soon as the request is active (i.e. equal to 1)

when op => ready <= '0';
int_rg_n <= int_rg_c(size_of_data_to_convert-2 downto 0) & '0';
BCD0_n <= BCD0_tmp(2 downto 0) & int_rg_c(size_of_data_to_convert-1);
BCD1_n <= BCD1_tmp(2 downto 0) & BCD0_tmp(3);
BCD2_n <= BCD2_tmp(2 downto 0) & BCD1_tmp(3);
BCD3_n <= BCD3_tmp(2 downto 0) & BCD2_tmp(3);
BCD4_n <= BCD4_tmp(2 downto 0) & BCD3_tmp(3);
index_n <= index_c - 1;
if (index_n = 0) then n_s <= done; get_outputs <= '1';
end if;

when done => n_s <= idle;
BCD4_n <= (others => '0'); BCD3_n <= (others => '0'); BCD2_n <= (others => '0');
BCD1_n <= (others => '0'); BCD0_n <= (others => '0');
ready <= '1'; -- now ready is 1, i.e. a new conversion can be done

end case;
end process;

BCD0_tmp <= BCD0_c + 3 when BCD0_c > 4 else BCD0_c;
BCD1_tmp <= BCD1_c + 3 when BCD1_c > 4 else BCD1_c;
BCD2_tmp <= BCD2_c + 3 when BCD2_c > 4 else BCD2_c;
BCD3_tmp <= BCD3_c + 3 when BCD3_c > 4 else BCD3_c;
BCD4_tmp <= BCD4_c(2 downto 0) + 3 when BCD4_c > 4 else BCD4_c(2 downto 0);

end Behavioral;

Appendix B: Coding Examples

http://dx.doi.org/10.1007/978-3-319-04708-9_4

408

DSP-Based Hamming Weight Counter/Comparator for N = 32
(Test_HW32)

The following VHDL code is a complete description of the Hamming weight
counter/comparator (with a fixed threshold) for N = 32:

library IEEE; -- The top-level module to test the 32-bit Hamming weight counter/comparator
use IEEE.STD_LOGIC_1164.all; -- this circuit occupies 0 logical slices and 2 DSP48 slices
use IEEE.STD_LOGIC_UNSIGNED.all; -- the maximum combinational path delay is 3.9 ns

entity Test_HW32 is -- the project was tested in the Nexys-4 board
port (Sw : in std_logic_vector (15 downto 0); -- Nexys-4 onboard switches

led : out std_logic_vector (5 downto 0); -- Nexys-4 onboard LEDs
in16bit : in std_logic_vector(15 downto 0); -- signals from Nexys-4 PMod connectors
led_comp : out std_logic); -- the result of comparison

end Test_HW32;

architecture Behavioral of Test_HW32 is
signal threshold : std_logic_vector(5 downto 0);
signal HW1, HW2 : std_logic_vector(4 downto 0);
signal remaining_inputs1 : std_logic_vector(11 downto 0);
signal remaining_inputs2 : std_logic_vector(11 downto 0);
signal remaining_outputs1 : std_logic_vector(5 downto 0);
signal remaining_outputs2 : std_logic_vector(5 downto 0);

begin

threshold <= not "011010" + 1; -- this value of threshold was taken just for test
remaining_inputs1 <= '0' & HW1 & '0' & HW2;
remaining_inputs2 <= remaining_outputs1 & threshold;
led <= remaining_outputs1;

HWCC16_1: entity work.HW_counter_comparator_16bit -- see the code below
port map(Sw, HW1, remaining_inputs1, remaining_outputs1, open);

HWCC16_2: entity work.HW_counter_comparator_16bit -- see the code below
port map(in16bit, HW2, remaining_inputs2, open, led_comp);

end Behavioral;

library IEEE; -- this is the component for the top-level module above
use IEEE.STD_LOGIC_1164.all; -- this is 16-bit Hamming weight counter/comparator

entity HW_counter_comparator_16bit is -- this component is used as HWCC16_1 and HWCC16_2 above
port (Sw : in std_logic_vector (15 downto 0);

Hamming_weight : out std_logic_vector (4 downto 0);
remaining_inputs : in std_logic_vector(11 downto 0);
remaining_outputs : out std_logic_vector(5 downto 0);
comp : out std_logic);

end HW_counter_comparator_16bit;

architecture Behavioral of HW_counter_comparator_16bit is
signal A, B, Y : std_logic_vector(47 downto 0); -- A and B are operands for DSP48E1, Y is the result

begin

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity clock_divider is
generic (how_fast : integer := 25);
port (clk, reset : in std_logic; -- similar circuit without the reset signal can also be used
 divided_clk : out std_logic);
end clock_divider;

architecture Behavioral of clock_divider is
signal internal_clock : std_logic_vector (how_fast downto 0);

begin
process(clk, reset) -- remove reset if there is no reset in the circuit
begin
 if rising_edge(clk) then
 if reset = '1' then -- remove reset if there is no reset in the circuit

-- remove this line if there is no reset in the circuit internal_clock <= (others=>'0');
else internal_clock <= internal_clock+1;
end if; -- remove else and end if keywords if there is no reset in the circuit

end if;
end process;

divided_clk <= internal_clock(internal_clock'left) when falling_edge(clk);

end Behavioral;

Appendix B: Coding Examples

409

Figure B.2a demonstrates a possible interface with the circuit.
Clearly, the value of the threshold can also be taken from outside and any mode

from Fig. 3.30 can easily be added with just one additional look-up table (see
Fig. B.2b). Xilinx primitive CFGLUT5 [1] is a runtime, dynamically reconfigu-
rable 5-input LUT that enables the implemented logical function (configuration of
the LUT) to be changed during the circuit operation. Hence, the bounds/thresholds
can be modified during run-time if required.

process(Sw, Y, remaining_inputs)
begin

A <= (others => '0'); B <= (others => '0'); -- at the beginning the operands are assigned zero values

for i in 7 downto 0 loop -- see also Fig. 4.10 and Fig. 4.11
A(2*i) <= Sw(i);
B(2*i) <= Sw(i+8);

end loop;

for i in 3 downto 0 loop
A(16+3*i+1 downto 16+3*i) <= Y(2*i+1 downto 2*i);
B(16+3*i+1 downto 16+3*i) <= Y(2*i+1+8 downto 2*i+8);

end loop;

for i in 1 downto 0 loop
A(28+4*i+2 downto 28+4*i) <= Y(16+3*i+2 downto 16+3*i);
B(28+4*i+2 downto 28+4*i) <= Y(16+3*i+2+6 downto 16+3*i+6);

end loop;

A(39 downto 36) <= Y(31 downto 28);
B(39 downto 36) <= Y(35 downto 32);
A(46 downto 41) <= remaining_inputs(5 downto 0);
B(46 downto 41) <= remaining_inputs(11 downto 6);

end process;
Hamming_weight <= Y(40 downto 36); -- the resulting Hamming weight
comp <= Y(47); -- the result of comparison
remaining_outputs <= Y(46 downto 41); -- the threshold is supplied here

DSP : entity work.TesDSP48E1_HW16
port map (A, B, "0000", Y);

end Behavioral;

library IEEE; -- The top-level module to test the 32-bit Hamming weight counter/comparator
use IEEE.STD_LOGIC_1164.all; -- this circuit occupies 0 logical slices and 2 DSP48 slices
use IEEE.STD_LOGIC_UNSIGNED.all; -- the maximum combinational path delay is 3.9 ns

entity Test_HW32 is -- the project was tested in the Nexys-4 board
port (Sw : in std_logic_vector (15 downto 0); -- Nexys-4 onboard switches

led : out std_logic_vector (5 downto 0); -- Nexys-4 onboard LEDs
in16bit : in std_logic_vector(15 downto 0); -- signals from Nexys-4 PMod connectors
led_comp : out std_logic); -- the result of comparison

end Test_HW32;

architecture Behavioral of Test_HW32 is
signal threshold : std_logic_vector(5 downto 0);
signal HW1, HW2 : std_logic_vector(4 downto 0);
signal remaining_inputs1 : std_logic_vector(11 downto 0);
signal remaining_inputs2 : std_logic_vector(11 downto 0);
signal remaining_outputs1 : std_logic_vector(5 downto 0);
signal remaining_outputs2 : std_logic_vector(5 downto 0);

begin

threshold <= not "011010" + 1; -- this value of threshold was taken just for test
remaining_inputs1 <= '0' & HW1 & '0' & HW2;
remaining_inputs2 <= remaining_outputs1 & threshold;
led <= remaining_outputs1;

HWCC16_1: entity work.HW_counter_comparator_16bit -- see the code below
port map(Sw, HW1, remaining_inputs1, remaining_outputs1, open);

HWCC16_2: entity work.HW_counter_comparator_16bit -- see the code below
port map(in16bit, HW2, remaining_inputs2, open, led_comp);

end Behavioral;

library IEEE; -- this is the component for the top-level module above
use IEEE.STD_LOGIC_1164.all; -- this is 16-bit Hamming weight counter/comparator

entity HW_counter_comparator_16bit is -- this component is used as HWCC16_1 and HWCC16_2 above
port (Sw : in std_logic_vector (15 downto 0);

Hamming_weight : out std_logic_vector (4 downto 0);
remaining_inputs : in std_logic_vector(11 downto 0);
remaining_outputs : out std_logic_vector(5 downto 0);
comp : out std_logic);

end HW_counter_comparator_16bit;

architecture Behavioral of HW_counter_comparator_16bit is
signal A, B, Y : std_logic_vector(47 downto 0); -- A and B are operands for DSP48E1, Y is the result

begin

Appendix B: Coding Examples

http://dx.doi.org/10.1007/978-3-319-04708-9_3

410

DSP-Based Hamming Weight Counter/Comparator for N = 64
(Test_HW64)

The following VHDL code is a complete description of the Hamming weight
counter/comparator (with a fixed threshold) for N = 64:

library IEEE; -- the top-level module to test the 64-bit Hamming weight counter/comparator
use IEEE.STD_LOGIC_ARITH.all; -- the project was tested in the Nexys-4 board
use IEEE.STD_LOGIC_UNSIGNED.all; -- the maximum combinational path delay is 6.1 ns

entity Test_HW64 is -- this projects takes 64-bit vectors from FPGA pins
port (Sw : in std_logic_vector (15 downto 0); -- part of the vector from Nexys-4 switches

 led : out std_logic_vector (6 downto 0); -- Nexys-4 onboard LEDs
 in48bit : in std_logic_vector(47 downto 0); -- the rest of the vector from other pins
 led_comp : out std_logic); -- the result of comparison
end Test_HW64;

architecture Behavioral of Test_HW64 is -- this circuit occupies 1 logical slice and 4 DSP48 slices
signal threshold : std_logic_vector(6 downto 0);
signal HW1, HW3 : std_logic_vector(4 downto 0);
signal HW2, HW4 : std_logic_vector(5 downto 0);
signal remaining_inputs1 : std_logic_vector(11 downto 0);
signal remaining_inputs2 : std_logic_vector(11 downto 0);
signal remaining_inputs3 : std_logic_vector(11 downto 0);
signal remaining_inputs4 : std_logic_vector(11 downto 0);
signal remaining_outputs1 : std_logic_vector(5 downto 0);
signal remaining_outputs2 : std_logic_vector(6 downto 0);
signal remaining_outputs3 : std_logic_vector(5 downto 0);
signal comp : std_logic;

begin
threshold <= not "0110010" + 1; -- this value of threshold was taken just for test
remaining_inputs1 <= '0' & HW1 & HW2;
remaining_inputs2 <= remaining_outputs1 & remaining_outputs3;
remaining_inputs3 <= '0' & HW3 & HW4;
remaining_inputs4 <= remaining_outputs2(5 downto 0) & threshold(5 downto 0);
led_comp <= comp or remaining_outputs2(6);
led <= remaining_outputs2;

HWCC16_1: entity work.HW_counter_comparator_16bit -- see the code above
port map(Sw, HW1, remaining_inputs1, remaining_outputs1, open);

HWCC16_2: entity work.HW_counter_comparator_16bit_m
port map(in48bit(15 downto 0), HW2, remaining_inputs2, remaining_outputs2, open);

HWCC16_3: entity work.HW_counter_comparator_16bit -- see the code above
port map(in48bit(31 downto 16), HW3, remaining_inputs3, remaining_outputs3, open);

HWCC16_4: entity work.HW_counter_comparator_16bit_m -- the code above is slightly changed
port map(in48bit(47 downto 32), HW4, remaining_inputs4, open, comp);

end Behavioral;

(a)

(b)

(c)

Fig. B.2   DSP-based 32-bit Hamming weight counter/comparator (a); using many bounds for
comparison (b); DSP-based 64-bit Hamming weight counter/comparator (c)

Appendix B: Coding Examples

411

The next module may be helpful when only the onboard switches for the
Nexys-4 board are used to supply 64-bit binary vectors as a sequence of four
16-bit fragments from the 16 available switches. Each fragment is saved when the
associated onboard button is pressed (BTNL for in_16bit1, BTNC for in_16bit2, BTNR for
in_16bit3, and BTND for in_16bit4).

use IEEE.STD_LOGIC_1164.all; -- the project was tested in the Nexys-4 board
use IEEE.STD_LOGIC_UNSIGNED.all;

entity Test_HW64 is
port (clk : in std_logic; -- for reading and saving 16-bit segments of 64-bit vector

Sw : in std_logic_vector (15 downto 0); -- segments of the vector from Nexys-4 switches
led : out std_logic_vector (6 downto 0); -- Nexys-4 onboard LEDs
BTNL, BTNC, BTNR, BTND : in std_logic; -- Nexys-4 onboard buttons

led_comp : out std_logic); -- the result of comparison
end Test_HW64;

architecture Behavioral of Test_HW64 is
-- the same signal declarations as in the previous example

signal in_16bit1, in_16bit2, in_16bit3, in_16bit4 : std_logic_vector(15 downto 0);
begin

process(clk)
begin -- reading and saving 16-bit fragments of 64-bit vector
 if rising_edge(clk) then
 if BTNL = '1' then -- saving the first 16 bits if BTNL is pressed

in_16bit1 <= Sw;
elsif BTNC = '1' then -- saving the second 16 bits if BTNC is pressed

in_16bit2 <= Sw;
elsif BTNR = '1' then -- saving the third 16 bits if BTNR is pressed

in_16bit3 <= Sw;
elsif BTND = '1' then -- saving the forth 16 bits if BTND is pressed

in_16bit4 <= Sw;
else null;
end if;

end if;
end process;

-- the code here is almost the same as in the example above. The only difference is in supplying the fragments
-- in_16bit1, in_16bit2, in_16bit3, and in_16bit4 to the 16-bit Hamming weight counters/comparators

end Behavioral;

library IEEE; -- the top-level module to test the 64-bit Hamming weight counter/comparator

library IEEE; -- the top-level module to test the 64-bit Hamming weight counter/comparator
use IEEE.STD_LOGIC_ARITH.all; -- the project was tested in the Nexys-4 board
use IEEE.STD_LOGIC_UNSIGNED.all; -- the maximum combinational path delay is 6.1 ns

entity Test_HW64 is -- this projects takes 64-bit vectors from FPGA pins
port (Sw : in std_logic_vector (15 downto 0); -- part of the vector from Nexys-4 switches

 led : out std_logic_vector (6 downto 0); -- Nexys-4 onboard LEDs
 in48bit : in std_logic_vector(47 downto 0); -- the rest of the vector from other pins
 led_comp : out std_logic); -- the result of comparison
end Test_HW64;

architecture Behavioral of Test_HW64 is -- this circuit occupies 1 logical slice and 4 DSP48 slices
signal threshold : std_logic_vector(6 downto 0);
signal HW1, HW3 : std_logic_vector(4 downto 0);
signal HW2, HW4 : std_logic_vector(5 downto 0);
signal remaining_inputs1 : std_logic_vector(11 downto 0);
signal remaining_inputs2 : std_logic_vector(11 downto 0);
signal remaining_inputs3 : std_logic_vector(11 downto 0);
signal remaining_inputs4 : std_logic_vector(11 downto 0);
signal remaining_outputs1 : std_logic_vector(5 downto 0);
signal remaining_outputs2 : std_logic_vector(6 downto 0);
signal remaining_outputs3 : std_logic_vector(5 downto 0);
signal comp : std_logic;

begin
threshold <= not "0110010" + 1; -- this value of threshold was taken just for test
remaining_inputs1 <= '0' & HW1 & HW2;
remaining_inputs2 <= remaining_outputs1 & remaining_outputs3;
remaining_inputs3 <= '0' & HW3 & HW4;
remaining_inputs4 <= remaining_outputs2(5 downto 0) & threshold(5 downto 0);
led_comp <= comp or remaining_outputs2(6);
led <= remaining_outputs2;

HWCC16_1: entity work.HW_counter_comparator_16bit -- see the code above
port map(Sw, HW1, remaining_inputs1, remaining_outputs1, open);

HWCC16_2: entity work.HW_counter_comparator_16bit_m
port map(in48bit(15 downto 0), HW2, remaining_inputs2, remaining_outputs2, open);

HWCC16_3: entity work.HW_counter_comparator_16bit -- see the code above
port map(in48bit(31 downto 16), HW3, remaining_inputs3, remaining_outputs3, open);

HWCC16_4: entity work.HW_counter_comparator_16bit_m -- the code above is slightly changed
port map(in48bit(47 downto 32), HW4, remaining_inputs4, open, comp);

end Behavioral;

Appendix B: Coding Examples

412

Even–Odd Merge Sorting Network for N = 16 (EvenOddMergeSort16)

The network uses two components EvenOddMerge8Sort described in Sect. 3.4.1.

library IEEE; -- the project was tested in the Atlys board involving interactions with a host PC
use IEEE.STD_LOGIC_1164.all; -- interactions with a host PC are not shown here
use work.set_of_data_items.all; -- see the given below user-defined package

entity EvenOddMerge16Sort is -- this circuit occupies 187 logical slices (including interactions)
generic (M : integer := 4; -- generic size of data items

N : integer := 16); -- generic number of data items (cannot be changed for this project)
port (input_1items : in set_of_8items;

input_2items : in set_of_8items;
sorted : out set_of_16items);

end EvenOddMerge16Sort;
architecture Structural of EvenOddMerge16Sort is

signal sorted1,sorted2 : set_of_8items;
signal out1_in2, out2_in3 : set_of_16items;
signal out3_in4 : set_of_16items;

begin
sort8items1: entity work.EvenOddMerge8Sort -- even-odd merge sorter for 8 items

generic map (M => M, N => 8)
port map(input_1items, sorted1); -- the code of the sorter is given in section 3.4.1

sort8items2: entity work.EvenOddMerge8Sort -- even-odd merge sorter for 8 items
generic map (M => M, N => 8)
port map(input_2items, sorted2); -- the code of the sorter is given in section 3.4.1

stage4: for i in N/2-1 downto 0 generate
group1stage4: entity work.Comparator

generic map (M => M)
port map(sorted1(i), sorted2(i), out1_in2(i), out1_in2(i+8));

step1stage4: if (i >= 4) generate
group2stage4: entity work.Comparator
generic map (M => M)
port map(out1_in2(i), out1_in2(i+4), out2_in3(i), out2_in3(i+4));

end generate;
step2stage4: if (i < 4) generate

out2_in3(i) <= out1_in2(i);
out2_in3(i+12) <= out1_in2(i+12);

end generate;
step3stage4: if (i < 3) generate

 incide_stage4: for j in 0 to N/8-1 generate
group3stage4: entity work.Comparator

generic map (M => M)
port map(out2_in3(2+i*4+j), out2_in3(2+i*4+j+2), out3_in4(2+i*4+j),

 out3_in4(2+i*4+j+2));
end generate incide_stage4;

end generate;
step4stage4: if (i < 2) generate

out3_in4(i) <= out2_in3(i);
out3_in4(i+14) <= out2_in3(i+14);

end generate;
step5stage4: if (i < N/2-1) generate
step5stage4: entity work.Comparator

generic map (M => M)
port map(out3_in4(1+i*2), out3_in4(1+i*2+1), sorted(1+i*2), sorted(1+i*2+1));

end generate;
end generate stage4;

sorted(0) <= out3_in4(0);
sorted(15) <= out3_in4(15);

end Structural;

use IEEE.STD_LOGIC_1164.all; -- the project was tested in the Nexys-4 board
use IEEE.STD_LOGIC_UNSIGNED.all;

entity Test_HW64 is
port (clk : in std_logic; -- for reading and saving 16-bit segments of 64-bit vector

Sw : in std_logic_vector (15 downto 0); -- segments of the vector from Nexys-4 switches
led : out std_logic_vector (6 downto 0); -- Nexys-4 onboard LEDs
BTNL, BTNC, BTNR, BTND : in std_logic; -- Nexys-4 onboard buttons

led_comp : out std_logic); -- the result of comparison
end Test_HW64;

architecture Behavioral of Test_HW64 is
-- the same signal declarations as in the previous example

signal in_16bit1, in_16bit2, in_16bit3, in_16bit4 : std_logic_vector(15 downto 0);
begin

process(clk)
begin -- reading and saving 16-bit fragments of 64-bit vector
 if rising_edge(clk) then
 if BTNL = '1' then -- saving the first 16 bits if BTNL is pressed

in_16bit1 <= Sw;
elsif BTNC = '1' then -- saving the second 16 bits if BTNC is pressed

in_16bit2 <= Sw;
elsif BTNR = '1' then -- saving the third 16 bits if BTNR is pressed

in_16bit3 <= Sw;
elsif BTND = '1' then -- saving the forth 16 bits if BTND is pressed

in_16bit4 <= Sw;
else null;
end if;

end if;
end process;

-- the code here is almost the same as in the example above. The only difference is in supplying the fragments
-- in_16bit1, in_16bit2, in_16bit3, and in_16bit4 to the 16-bit Hamming weight counters/comparators

end Behavioral;

library IEEE; -- the top-level module to test the 64-bit Hamming weight counter/comparator

Appendix B: Coding Examples

http://dx.doi.org/10.1007/978-3-319-04708-9_3

413

The following package set_of_data_items has been used:

Hamming Weight Comparator for N = 15 (HammingWeightComparator)

The following VHDL code is a complete synthesizable specification of the
Hamming weight comparator in Fig. 3.31a (for any module below the final com-
parison circuits from Fig. 3.25 can also be used):

library IEEE;
use IEEE.STD_LOGIC_1164.all;

package set_of_data_items is
constant N : integer := 8;
constant M : integer := 4; -- for different values of M this constant needs to be changed
type set_of_8items is array (N-1 downto 0) of std_logic_vector (M-1 downto 0);
type set_of_16items is array (2*N-1 downto 0) of std_logic_vector (M-1 downto 0);

end set_of_data_items;

package body set_of_data_items is
end set_of_data_items;

library IEEE; -- the project was tested for the Nexys-4 board and occupies 3 slices
use IEEE.STD_LOGIC_1164.all; -- maximum combinational path delay is 2.5 ns
-- the final comparator LUT6_1 is configured for: if (3 < weight < 10) then LED if OFF otherwise - ON

entity HammingWeightComparator is
port (Sw : in std_logic_vector (14 downto 0); -- input 15-bit vector

LedC : out std_logic); -- the result of comparison
end HammingWeightComparator;

architecture Behavioral of HammingWeightComparator is
signal Upper_bits, Middle_bits, Bottom_bits : std_logic_vector(2 downto 0);
signal ToLast : std_logic_vector(5 downto 0);
signal comp : std_logic;

begin

LUT_5_3_upper : entity work.LUT_5to3
port map(Sw(14 downto 10), Upper_bits);

LUT_5_3_middle : entity work.LUT_5to3
port map(Sw(9 downto 5), Middle_bits);

LUT_5_3_bottom : entity work.LUT_5to3
port map(Sw(4 downto 0), Bottom_bits);

LUT6_1_comp: entity work.LUT6_1
port map (ToLast, LedC);

FA_generate: for i in 0 to 2 generate
FA: entity work.FullAdder -- see entity FullAdder in section 3.7
port map(Bottom_bits(i), Middle_bits(i), Upper_bits(i), ToLast(2*i), ToLast(2*i+1));
end generate FA_generate;

end Behavioral;

step2stage4: if (i < 4) generate
out2_in3(i) <= out1_in2(i);
out2_in3(i+12) <= out1_in2(i+12);

end generate;
step3stage4: if (i < 3) generate

 incide_stage4: for j in 0 to N/8-1 generate
group3stage4: entity work.Comparator

generic map (M => M)
port map(out2_in3(2+i*4+j), out2_in3(2+i*4+j+2), out3_in4(2+i*4+j),

 out3_in4(2+i*4+j+2));
end generate incide_stage4;

end generate;
step4stage4: if (i < 2) generate

out3_in4(i) <= out2_in3(i);
out3_in4(i+14) <= out2_in3(i+14);

end generate;
step5stage4: if (i < N/2-1) generate
step5stage4: entity work.Comparator

generic map (M => M)
port map(out3_in4(1+i*2), out3_in4(1+i*2+1), sorted(1+i*2), sorted(1+i*2+1));

end generate;
end generate stage4;

sorted(0) <= out3_in4(0);
sorted(15) <= out3_in4(15);

end Structural;

Appendix B: Coding Examples

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

414

The following code is for the component LUT_5to3:

The following code is for the final comparator in Fig. 3.29a (LUT6_1):

library IEEE;
use IEEE.STD_LOGIC_1164.all;
library UNISIM; -- for FPGA LUTs
use UNISIM.vcomponents.all;

entity LUT_5to3 is
port (fiveBitIn : in std_logic_vector (4 downto 0);

ThreeBitOut : out std_logic_vector (2 downto 0));
end LUT_5to3;

architecture Structural of LUT_5to3 is
begin

LUT5_inst1 : LUT5
generic map (INIT => X"E8808000") -- LUT Contents
port map (ThreeBitOut(2), fiveBitIn(0), fiveBitIn(1), fiveBitIn(2), fiveBitIn(3), fiveBitIn(4));

LUT5_inst2 : LUT5
generic map (INIT => X"177E7EE8") -- LUT Contents
port map (ThreeBitOut(1), fiveBitIn(0), fiveBitIn(1), fiveBitIn(2), fiveBitIn(3), fiveBitIn(4));

LUT5_inst3 : LUT5
generic map (INIT => X"96696996") -- LUT Contents
port map (ThreeBitOut(0), fiveBitIn(0), fiveBitIn(1), fiveBitIn(2), fiveBitIn(3), fiveBitIn(4));

end Structural;

library IEEE; -- the project was tested for the Nexys-4 board and occupies 3 slices
use IEEE.STD_LOGIC_1164.all; -- maximum combinational path delay is 2.5 ns
-- the final comparator LUT6_1 is configured for: if (3 < weight < 10) then LED if OFF otherwise - ON

entity HammingWeightComparator is
port (Sw : in std_logic_vector (14 downto 0); -- input 15-bit vector

LedC : out std_logic); -- the result of comparison
end HammingWeightComparator;

architecture Behavioral of HammingWeightComparator is
signal Upper_bits, Middle_bits, Bottom_bits : std_logic_vector(2 downto 0);
signal ToLast : std_logic_vector(5 downto 0);
signal comp : std_logic;

begin

LUT_5_3_upper : entity work.LUT_5to3
port map(Sw(14 downto 10), Upper_bits);

LUT_5_3_middle : entity work.LUT_5to3
port map(Sw(9 downto 5), Middle_bits);

LUT_5_3_bottom : entity work.LUT_5to3
port map(Sw(4 downto 0), Bottom_bits);

LUT6_1_comp: entity work.LUT6_1
port map (ToLast, LedC);

FA_generate: for i in 0 to 2 generate
FA: entity work.FullAdder -- see entity FullAdder in section 3.7
port map(Bottom_bits(i), Middle_bits(i), Upper_bits(i), ToLast(2*i), ToLast(2*i+1));
end generate FA_generate;

end Behavioral;

Appendix B: Coding Examples

http://dx.doi.org/10.1007/978-3-319-04708-9_3

415

Table B.1 below explains how to configure the LUT LUT6_1 for the final com-
parator in Fig. 3.29a.

The SixIn column shows input vectors that are represented by three 2-bit sub-
vectors. The most significant sub-vector has the weight 4, the middle sub-vector—
the weight 2 and the least significant sub-vector—the weight 1. Thus, the code
000101 has the value 0 × 4 + 1 × 2 + 1 × 1 = 3 and this is the settled bound 3.
The next code 000110 has the value 0 × 4 + 1 × 2 + 2 × 1 = 4 and this is the
value above the bound 3. All the subsequent values until the number 011001 are
within the settled bounds (more than 3 and less than 10). The number 011010 has
the first value 1 × 4 + 2 × 2 + 2 × 1 = 10 outside the bounds. Hexadecimal
numbers from Table B.1 are used to configure the LUT. They have to be taken
from the bottom right part to the upper left part giving the following constant:
FFFFFFFFFC00003F that is used for the INIT statement: INIT => X“fffffffffc00003f”.

The circuit has been tested in the Nexys-4 board. Input vectors were taken from 15
onboard switches: 14, 13, . . . , 0 (switch 15 was not used). The result of comparison is
shown on LED 0.

Hamming Weight Counter for N = 31 and Comparator for N = 32
(HW31_HWC32)

VHDL code below can be used directly for the circuit in Fig. 3.32 which counts the
Hamming weight of any input binary vector for N = 31 (i.e. for B = {B0,…,B30})

library IEEE;
use IEEE.STD_LOGIC_1164.all;
library UNISIM; -- for FPGA LUTs
use UNISIM.vcomponents.all;

entity LUT6_1 is
port (SixIn : in std_logic_vector (5 downto 0);

Comp : out std_logic);
end LUT6_1;

architecture Structural of LUT6_1 is
begin -- this LUT is used just for comparator and it is configured for two bounds

LUT6_inst0 : LUT6 -- if required the LUT contents can be configured
generic map (INIT => X"fffffffffc00003f") -- for different bounds (see table B.1 for details)
port map (Comp, SixIn(0), SixIn(1), SixIn(2), SixIn(3), SixIn(4), SixIn(5));

end Structural;

Appendix B: Coding Examples

http://dx.doi.org/10.1007/978-3-319-04708-9_3

416

Ta
bl

e
B

.1
  

C
on

fig
ur

in
g

th
e

L
U

T
6_

1
fo

r
th

e
fin

al
 c

om
pa

ra
to

r
(s

ee
 a

ls
o

Fi
g.

 3
.2

9a
)

Si
xI

n
C

om
p

Si
xI

n
C

om
p

Si
xI

n
C

om
p

Si
xI

n
C

om
p

00
00

00
1

F
01

00
00

0
0

10
00

00
1

F
11

00
00

1
F

00
00

01
1

01
00

01
0

10
00

01
1

11
00

01
1

00
00

10
1

01
00

10
0

10
00

10
1

11
00

10
1

00
00

11
1

01
00

11
0

10
00

11
1

11
00

11
1

00
01

00
1

3
01

01
00

0
0

10
01

00
1

F
11

01
00

1
F

00
01

01
1

01
01

01
0

10
01

01
1

11
01

01
1

00
01

10
0

01
01

10
0

10
01

10
1

11
01

10
1

00
01

11
0

01
01

11
0

10
01

11
1

11
01

11
1

00
10

00
0

0
01

10
00

0
C

10
10

00
1

F
11

10
00

1
F

00
10

01
0

01
10

01
0

10
10

01
1

11
10

01
1

00
10

10
0

01
10

10
1

10
10

10
1

11
10

10
1

00
10

11
0

01
10

11
1

10
10

11
1

11
10

11
1

00
11

00
0

0
01

11
00

1
F

10
11

00
1

F
11

11
00

1
F

00
11

01
0

01
11

01
1

10
11

01
1

11
11

01
1

00
11

10
0

01
11

10
1

10
11

10
1

11
11

10
1

00
11

11
0

01
11

11
1

10
11

11
1

11
11

11
1

Appendix B: Coding Examples

http://dx.doi.org/10.1007/978-3-319-04708-9_3

417

and provides comparison of any binary vector for N = 32 with fixed bounds (any
set of bounds from Fig. 3.30 may be chosen).

library IEEE; -- the project was tested for the Nexys-4 board and occupies 14 logical slices
use IEEE.STD_LOGIC_1164.all; -- the maximum combinational path delay is 4.4 ns
use IEEE.STD_LOGIC_ARITH.all; -- constant compare configured for two bounds: 1) 10 weight -
-- LedC is OFF; 2) 10<weight<20 - LedC is ON; 3) 20 weight<30 - LedC is OFF;
use IEEE.STD_LOGIC_UNSIGNED.all; -- and 30 weight - LedC is ON;

entity HW31_HWC32 is -- the names of used components are the same as in Fig. 3.32
port (Data_in : in std_logic_vector (31 downto 0); -- 32-bit binary vector (Vector31_in in Fig. 4.6)

led : out std_logic_vector (4 downto 0);
LedC : out std_logic);

end HW31_HWC32;

architecture Mixed of HW31_HWC32 is
signal HW15_1: std_logic_vector(3 downto 0); -- the Hamming weight for Data_in(14 downto 0)
signal HW15_2: std_logic_vector(3 downto 0); -- the Hamming weight for Data_in(29 downto 15)
signal LUT5_3 : std_logic_vector(3 downto 0); -- LUT5_3 in Fig. 3.32 (see block D)
signal LUT4_3 : std_logic_vector(3 downto 0); -- LUT4_3 in Fig. 3.32 (see block C)
signal Out5_3 : std_logic_vector(2 downto 0); -- LUT5_3 in Fig. 3.32 (see block D)
signal Out4_3 : std_logic_vector(2 downto 0); -- LUT4_3 in Fig. 3.32 (see block C)
constant compare : std_logic_vector(127 downto 0) := -- 128-bit constant for comparator

X"FEE000077FFCC000FCC0000FFFF88000";
-- there are five 64-bit constants below for the Hamming weight bits (4 downto 0) for a 31-bit binary vector

constant bit0 : std_logic_vector(63 downto 0) := X"AAAAAAAAAAAAAAAA";
constant bit1 : std_logic_vector(63 downto 0) := X"CCCCCCCCCCCCCCCC";
constant bit2 : std_logic_vector(63 downto 0) := X"0FF00FF00FF00FF0";
constant bit3 : std_logic_vector(63 downto 0) := X"0FFFF0000FFFF000";
constant bit4 : std_logic_vector(63 downto 0) := X"0FFFFFFFF0000000";

begin
LUT_based1: entity work.HW15Counter -- see block B in Fig. 3.32

port map (Data_in(14 downto 0), HW15_1);

LUT_based2: entity work.HW15Counter -- see block A in Fig. 3.32
port map (Data_in(29 downto 15), HW15_2);

LUT4_3 <= HW15_1(3 downto 2) & HW15_2(3 downto 2); -- see LUT4_3 lines in Fig. 3.32
LUT5_3 <= HW15_1(1 downto 0) & HW15_2(1 downto 0); -- see LUT5_3 lines in Fig. 3.32

LUT_4_3: entity work.LUT4to3 -- see block C in Fig. 3.32
port map(LUT4_3, Out4_3);

LUT_5_3 : entity work.LUT5to3 -- see block D in Fig. 3.32
port map(LUT5_3, Data_in(30), Out5_3);

LedC <= compare(conv_integer(Data_in(31) & Out4_3 & Out5_3)); -- the result of comparison (block E)
-- 5-bit Hamming weight of the vector Data_in(30 downto 0) is copied to LED (this part is not shown in Fig. 3.32)
-- if necessary to get the Hamming weight for a vector Data_in(31 downto 0) an extra bit 31 can be added
led <= bit4(conv_integer(Out4_3 & Out5_3)) & bit3(conv_integer(Out4_3 & Out5_3)) &

bit2(conv_integer(Out4_3 & Out5_3)) & bit1(conv_integer(Out4_3 & Out5_3)) &
bit0(conv_integer(Out4_3 & Out5_3)); -- computation of Hamming weight is not shown in Fig. 3.32

end Mixed;

≥
≥

≥

Appendix B: Coding Examples

http://dx.doi.org/10.1007/978-3-319-04708-9_3

418

Table B.2 explains how the constants compare, bit4, bit3, bit2, bit1, bit0 have been
prepared.

The result of the comparison is changed twice on the left-hand side of
Table B.2. Let us consider the first change: 001110 (10) and 001111 (11). The val-
ues in parenthesis (in the SixIn column) indicate the decimal numbers correspond-
ing to the neighboring code. For the vector 001 110 the decimal number is formed
as 110 × 410 + 610 = 1010 (see also Fig. 3.32). The value in parenthesis for the col-
umn Hamming weight/comparator indicates the result of comparison. It is equal
to 0 for (1010) and it is equal to 1 for (1110). For the second vector 010 010 (10)

Table B.2   Preparing the constants for the module HW31_HWC32

SixIn Hamming weight/comparator SixIn Hamming weight/
comparator

000000 (0) 00000 (0) 0 000CA 100000 (16) 10000 (1) F F00CA
000001 (1) 00001 (0) 100001 (17) 10001 (1)
000010 (2) 00010 (0) 100010 (18) 10010 (1)
000011 (3) 00011 (0) 100011 (19) 10011 (1)
000100 (4) 00100 (0) 0 00FCA 100100 (20) 10100 (0) 0 F0FCA
000101 (5) 00101 (0) 100101 (21) 10101 (0)
000110 (6) 00110 (0) 100110 (22) 10110 (0)
000111 (7) 00111 (0) 100111 (23) 10111 (0)
001000 (4) 00100 (0) 0 00FCA 101000 (20) 10100 (0) 0 F0FCA
001001 (5) 00101 (0) 101001 (21) 10101 (0)
001010 (6) 00110 (0) 101010 (22) 10110 (0)
001011 (7) 00111 (0) 101011 (23) 10111 (0)
001100 (8) 01000 (0) 8 0F0CA 101100 (24) 11000 (0) 0 FF0CA
001101 (9) 01001 (0) 101101 (25) 11001 (0)
001110 (10) 01010 (0) 101110 (26) 11010 (0)
001111 (11) 01011 (1) 101111 (27) 11011 (0)
010000 (8) 01000 (0) 8 0F0CA 110000 (24) 11000 (0) 0 FF0CA
010001 (9) 01001 (0) 110001 (25) 11001 (0)
010010 (10) 01010 (0) 110010 (26) 11010 (0)
010011 (11) 01011 (1) 110011 (27) 11011 (0)
010100 (12) 01100 (1) F 0FFCA 110100 (28) 11100 (0) C FFFCA
010101 (13) 01101 (1) 110101 (29) 11101 (0)
010110 (14) 01110 (1) 110110 (30) 11110 (1)
010111 (15) 01111 (1) 110111 (31) 11111 (1)
011000 (12) 01100 (1) F 0FFCA 111000 (28) 11100 (0) C FFFCA
011001 (13) 01101 (1) 111001 (29) 11101 (0)
011010 (14) 01110 (1) 111010 (30) 11110 (1)
011011 (15) 01111 (1) 111011 (31) 11111 (1)
011100 (16) 10000 (1) F F00CA 111100 (32) 100000 (1) F 000CA
011101 (17) 10001 (1) 111101 (33) 100001 (1)
011110 (18) 10010 (1) 111110 (34) 100010 (1)
011111 (19) 10011 (1) 111111 (35) 100011 (1)

Appendix B: Coding Examples

http://dx.doi.org/10.1007/978-3-319-04708-9_3

419

the value (1010) is formed as 210 × 410 + 210 = 1010 (see also Fig. 3.32). Additional
explanations are given in Fig. B.3. The upper one-digit hexadecimal numbers
are used to configure the comparator and the lower five-digits hexadecimal num-
bers—to configure the counter. Figure B.3 explains how the constants have been
prepared. This figure depicts the bottom right part of the Table B.2. Hexadecimal
numbers for forming the comparison result are produced as shown in Fig. B.3.
Thus, the 16-digit constant FCC0000FFFF88000 is defined. The most significant
16-digit part of the constant (FEE000077FFCC000) is formed using the same tech-
nique but considering also the most significant bit Data_in(31) (this part is not shown
in Table B.2 and in Fig. B.3). Hexadecimal constants for the Hamming weight are
built similarly, but now five columns with five-digit hexadecimal numbers are used
(the rightmost column for bit0 and the leftmost column for bit4; the remaining con-
stants are built from digits in the middle).

Thus, the following hexadecimal values are used: 000CA (the bottom right
part of Table B.2), FFFCA, FFFCA, FF0CA, FF0CA, F0FCA, F0FCA, F00CA,
F00CA, 0FFCA, 0FFCA, 0F0CA, 0F0CA, 00FCA, 00FCA, 000CA (the upper left
part of Table B.2). Such constants have been defined only for five least significant
digits in the column Hamming weight/comparator (because the Hamming weight
is computed only for 31-bit vectors and five binary digits are sufficient). Now the
constant is prepared for each hexadecimal digit. For the most significant digit the
constant bit4 is 0FFFFFFFF0000000 (composed of the most significant digits in each
hexadecimal number). The next constant for bit3 is: 0FFFF0000FFFF000, etc.

The component HW15Counter is very similar to the described above component
HammingWeightComparator. The only difference is in computing the Hamming weight
of a 15-bit input vector instead of the result of comparison. VHDL code below is
used for the component HW15Counter that computes the Hamming weight:

Fig. B.3   Preparing constant values

Appendix B: Coding Examples

http://dx.doi.org/10.1007/978-3-319-04708-9_3

420

The component LUT_5to3 is the same as in the described above entity
HammingWeightComparator. The component LUT6_4 has the following VHDL code:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity HW15Counter is
 port (Data_in : in std_logic_vector (14 downto 0); -- input binary vector
 HW15 : out std_logic_vector(3 downto 0)); -- Hamming weight of the input vector
end HW15Counter;

architecture Structural of HW15Counter is -- it is very similar to the entity HammingWeightComparator
 signal Upper, Middle, Bottom : std_logic_vector(2 downto 0);
 signal ToLast : std_logic_vector(5 downto 0);
begin

LUT_5_3_upper : entity work.LUT_5to3
 port map(Data_in(14 downto 10), Upper);

LUT_5_3_middle : entity work.LUT_5to3
 port map(Data_in(9 downto 5), Middle);

LUT_5_3_bottom : entity work.LUT_5to3
 port map(Data_in(4 downto 0), Bottom);

LUT6_4_comp_HW: entity work.LUT6_4
 port map (ToLast, HW15);

FA_generate: for i in 0 to 2 generate
 FA: entity work.FullAdder -- see entity FullAdder in section 3.7
 port map(Bottom(i), Middle(i), Upper(i), ToLast(2*i), ToLast(2*i+1));
end generate FA_generate;

end Structural;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
library UNISIM; -- for FPGA LUTs
use UNISIM.vcomponents.all;

entity LUT6_4 is
port (Data_in : in std_logic_vector (5 downto 0); -- input binary vector

Data_out : out std_logic_vector (3 downto 0)); -- Hamming weight for the input vector
end LUT6_4;

architecture Structural of LUT6_4 is
begin

LUT6_inst2: LUT6
generic map (INIT => X"003f3fffffc0c000") -- LUT Contents
port map (Data_out(3), Data_in(0), Data_in(1), Data_in(2), Data_in(3), Data_in(4), Data_in(5));

LUT6_inst3 : LUT6
generic map (INIT => X"c03f3fc0c03f3fc0") -- LUT Contents
port map (Data_out(2), Data_in(0), Data_in(1), Data_in(2), Data_in(3), Data_in(4), Data_in(5));

LUT6_inst4 : LUT6
generic map (INIT => X"3c3c3c3c3c3c3c3c") -- LUT Contents
port map (Data_out(1), Data_in(0), Data_in(1), Data_in(2), Data_in(3), Data_in(4), Data_in(5));

LUT6_inst5 : LUT6
generic map (INIT => X"aaaaaaaaaaaaaaaa") -- LUT Contents
port map (Data_out(0), Data_in(0), Data_in(1), Data_in(2), Data_in(3), Data_in(4), Data_in(5));

end Structural;

Appendix B: Coding Examples

421

The component LUT4to3 has the following VHDL code:

The component LUT5to3 (note that this component is not the same as the consid-
ered above component LUT_5to3 in the entity HammingWeightComparator) has the fol-
lowing VHDL code:

library IEEE;
use IEEE.STD_LOGIC_1164.all;
library UNISIM; -- for FPGA LUTs
use UNISIM.vcomponents.all;

entity LUT4to3 is
port (Data_in : in std_logic_vector (3 downto 0);

Data_out : out std_logic_vector (2 downto 0));
end LUT4to3;

architecture Structural of LUT4to3 is
begin

LUT4_inst1 : LUT4
generic map (INIT => X"EE80")
port map (Data_out(2), Data_in(0), Data_in(1), Data_in(2), Data_in(3));

LUT4_inst2 : LUT4
generic map (INIT => X"936C")
port map (Data_out(1), Data_in(0), Data_in(1), Data_in(2), Data_in(3));

LUT4_inst3 : LUT4
generic map (INIT => X"5A5A")
port map (Data_out(0), Data_in(0), Data_in(1), Data_in(2), Data_in(3));

end Structural;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
library UNISIM; -- for FPGA LUTs
use UNISIM.vcomponents.all;

entity LUT5to3 is
 port (Data_in : in std_logic_vector (3 downto 0);
 Extra_bit : in std_logic;
 Data_out : out std_logic_vector (2 downto 0));
end LUT5to3;
architecture Structural of LUT5to3 is
begin

LUT5_inst1 : LUT5
 generic map (INIT => X"FEC8EE80")
 port map (Data_out(2), Data_in(0), Data_in(1), Data_in(2), Data_in(3), Extra_bit);

LUT5_inst2 : LUT5
 generic map (INIT => X"C936936C")
 port map (Data_out(1), Data_in(0), Data_in(1), Data_in(2), Data_in(3), Extra_bit);

LUT5_inst3 : LUT5
 generic map (INIT => X"A5A55A5A")
 port map (Data_out(0), Data_in(0), Data_in(1), Data_in(2), Data_in(3), Extra_bit);

end Structural;

Appendix B: Coding Examples

422

The respective project is ready to be tested and the circuit (with the maximum
combinational path delay equal to 4.4 ns) occupies just 14 Artix-7 FPGA slices. It
can be used as a Hamming weight counter and comparator. If just one from two
such functions (i.e. either counting or comparison) is required then unnecessary
fragment can be removed. The project above will also be used as a component of
the last example in Appendix B.

Hamming Weight Counter for N = 36 (HammingWeightCounter36bits)

The following VHDL code is a complete synthesizable specification of the
Hamming weight counter in Figs. 3.27 and 3.28 (any final comparison circuit from
Fig. 3.25 can be used for the Hamming weight comparator):

The component Final_LUT_based_adders describes the functionality of the circuit
in Fig. 3.28a and it is coded in VHDL as follows (similar but simpler circuit can
be built for Fig. 3.28b):

library IEEE; -- the project was tested for the Nexys-4 board and occupies 15 slices
use IEEE.STD_LOGIC_1164.all; -- the maximum combinational path delay is 3.5 ns

entity HammingWeightCounter36bits is
generic (N : integer := 36);
port (Data_in : in std_logic_vector (N-1 downto 0); -- inputs a0,a1,…,a35 in Fig. 3.27

Data_out : out std_logic_vector (5 downto 0)); -- the Hamming weight in Fig. 3.28
end HammingWeightCounter36bits;

architecture Behavioral of HammingWeightCounter36bits is
type array_of_inputs is array (N/12-1 downto 0) of std_logic_vector(5 downto 0);
signal Out18_bits : std_logic_vector(N/2-1 downto 0); -- outputs of the layer 1 in Fig. 3.27
signal In6_bits : array_of_inputs; -- inputs of the layer 2 in Fig. 3.27
signal Res9_bits : std_logic_vector(N/4-1 downto 0); -- outputs of the layer 2 in Fig. 3.27

begin

generate_LUTs_at_level_0: for i in N/6-1 downto 0 generate
one_slice: entity work.LUT_6to3

-- VHDL code of this component (LUT_6to3) is given in section 3.9
port map(Data_in(6*i+5 downto 6*i), Out18_bits(3*i+2 downto 3*i));

end generate generate_LUTs_at_level_0;

generate_LUTs_at_level_1: for i in N/12-1 downto 0 generate
In6_bits(i) <= Out18_bits(i) & Out18_bits(i+3) & Out18_bits(i+6) &

Out18_bits(i+9) & Out18_bits(i+12) & Out18_bits(i+15);

one_slice: entity work.LUT_6to3
-- VHDL code of this component (LUT_6to3) is given in section 3.9
port map(In6_bits(i), Res9_bits(3*i+2 downto 3*i));

end generate generate_LUTs_at_level_1;

FinalCircuit: entity work.Final_LUT_based_adders
port map (Res9_bits(7 downto 0), Res9_bits(8), Data_out);

end Behavioral;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
entity Final_LUT_based_adders is -- the mapping is described below by constants
port (A_3bits_B_3bits_C_2bits: in std_logic_vector(7 downto 0);
 C_last_bit : in std_logic; -- C_last_bit is the symbol 3 in Fig. 3.28 a

Data_out : out std_logic_vector(5 downto 0)); -- Hamming weight (N=36)
end Final_LUT_based_adders;

architecture Behavioral of Final_LUT_based_adders is
type for_LUT is array (0 to 31) of std_logic_vector(3 downto 0); -- the first constant corresponds to
-- INIT statements for 1, 0, 2, 1 in Fig. 3.28a and the second constant – to the INIT statement for 5, 4, 3

constant LUTs1 : for_LUT :=
(x"0", x"1", x"2", x"3", x"1", x"2", x"3", x"4", x"2", x"3", x"4", x"5", x"3", x"4", x"5", x"6",
x"2", x"3", x"4", x"5", x"3", x"4", x"5", x"6", x"4", x"5", x"6", x"7", x"5", x"6", x"7", x"8");

-- only 3 least significant bits in 4-bit vectors are used below for the INIT statement for 5, 4, 3 (see Fig. 3.28a)
constant LUTs2 : for_LUT :=

(x"0", x"1", x"1", x"2", x"2", x"3", x"3", x"4", x"1", x"2", x"2", x"3", x"3", x"4", x"4", x"5",
x"2", x"3", x"3", x"4", x"4", x"5", x"5", x"6", x"3", x"4", x"4", x"5", x"5", x"6", x"6", x"7");

-- A_3bits/B_3bits/C_2 bits are associated with the symbols 1 2 3/ 1 2 3/ 1 2 in Fig. 3.28 a
signal A1A2A3, B1B2B3, C1C2C3 : std_logic_vector(2 downto 0);
signal CmClO2O1 : std_logic_vector(3 downto 0);
signal O5_3 : std_logic_vector(2 downto 0);

begin -- the lines below describe the circuit in Fig. 3.28a

-- (LUTs1 is the bottom block in Fig. 3.28a and LUTs2 is the upper block in Fig. 3.28a)
A1A2A3 <= C_last_bit & A_3bits_B_3bits_C_2bits(7 downto 6); -- signals 1 2 for the upper block
B1B2B3 <= A_3bits_B_3bits_C_2bits(5 downto 3); -- signals 1 (upper block) and 2 3 (bottom block)
C1C2C3 <= A_3bits_B_3bits_C_2bits(2 downto 0); -- signal 3 (direct output) and 1 2 (bottom block)
O5_3 <= LUTs2(conv_integer(CmClO2O1(3 downto 2) &

A1A2A3(2 downto 1) & B1B2B3(2)))(2 downto 0);
CmClO2O1 <= LUTs1(conv_integer(A1A2A3(0) & B1B2B3(1 downto 0) &

C1C2C3(2 downto 1)));
Data_out <= O5_3 & CmClO2O1(1 downto 0)& C1C2C3(0); -- concatenation of (0) (1 2) and (3 4 5)

end Behavioral;

χ

χ χ

χ χ χ

β β β

β β β

α

α α

α α

ρ ρ γ

γ γ γ γ γγ

γ

γ γ γ

γ γγ

Appendix B: Coding Examples

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

423

The respective project is ready to be tested and the circuit (with the maximum
combinational path delay equal to 4.4 ns) occupies just 14 Artix-7 FPGA slices. It
can be used as a Hamming weight counter and comparator. If just one from two
such functions (i.e. either counting or comparison) is required then unnecessary
fragment can be removed. The project above will also be used as a component of
the last example in Appendix B.

Hamming Weight Counter for N = 36 (HammingWeightCounter36bits)

The following VHDL code is a complete synthesizable specification of the
Hamming weight counter in Figs. 3.27 and 3.28 (any final comparison circuit from
Fig. 3.25 can be used for the Hamming weight comparator):

The component Final_LUT_based_adders describes the functionality of the circuit
in Fig. 3.28a and it is coded in VHDL as follows (similar but simpler circuit can
be built for Fig. 3.28b):

library IEEE; -- the project was tested for the Nexys-4 board and occupies 15 slices
use IEEE.STD_LOGIC_1164.all; -- the maximum combinational path delay is 3.5 ns

entity HammingWeightCounter36bits is
generic (N : integer := 36);
port (Data_in : in std_logic_vector (N-1 downto 0); -- inputs a0,a1,…,a35 in Fig. 3.27

Data_out : out std_logic_vector (5 downto 0)); -- the Hamming weight in Fig. 3.28
end HammingWeightCounter36bits;

architecture Behavioral of HammingWeightCounter36bits is
type array_of_inputs is array (N/12-1 downto 0) of std_logic_vector(5 downto 0);
signal Out18_bits : std_logic_vector(N/2-1 downto 0); -- outputs of the layer 1 in Fig. 3.27
signal In6_bits : array_of_inputs; -- inputs of the layer 2 in Fig. 3.27
signal Res9_bits : std_logic_vector(N/4-1 downto 0); -- outputs of the layer 2 in Fig. 3.27

begin

generate_LUTs_at_level_0: for i in N/6-1 downto 0 generate
one_slice: entity work.LUT_6to3

-- VHDL code of this component (LUT_6to3) is given in section 3.9
port map(Data_in(6*i+5 downto 6*i), Out18_bits(3*i+2 downto 3*i));

end generate generate_LUTs_at_level_0;

generate_LUTs_at_level_1: for i in N/12-1 downto 0 generate
In6_bits(i) <= Out18_bits(i) & Out18_bits(i+3) & Out18_bits(i+6) &

Out18_bits(i+9) & Out18_bits(i+12) & Out18_bits(i+15);

one_slice: entity work.LUT_6to3
-- VHDL code of this component (LUT_6to3) is given in section 3.9
port map(In6_bits(i), Res9_bits(3*i+2 downto 3*i));

end generate generate_LUTs_at_level_1;

FinalCircuit: entity work.Final_LUT_based_adders
port map (Res9_bits(7 downto 0), Res9_bits(8), Data_out);

end Behavioral;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
entity Final_LUT_based_adders is -- the mapping is described below by constants
port (A_3bits_B_3bits_C_2bits: in std_logic_vector(7 downto 0);
 C_last_bit : in std_logic; -- C_last_bit is the symbol 3 in Fig. 3.28 a

Data_out : out std_logic_vector(5 downto 0)); -- Hamming weight (N=36)
end Final_LUT_based_adders;

architecture Behavioral of Final_LUT_based_adders is
type for_LUT is array (0 to 31) of std_logic_vector(3 downto 0); -- the first constant corresponds to
-- INIT statements for 1, 0, 2, 1 in Fig. 3.28a and the second constant – to the INIT statement for 5, 4, 3

constant LUTs1 : for_LUT :=
(x"0", x"1", x"2", x"3", x"1", x"2", x"3", x"4", x"2", x"3", x"4", x"5", x"3", x"4", x"5", x"6",
x"2", x"3", x"4", x"5", x"3", x"4", x"5", x"6", x"4", x"5", x"6", x"7", x"5", x"6", x"7", x"8");

-- only 3 least significant bits in 4-bit vectors are used below for the INIT statement for 5, 4, 3 (see Fig. 3.28a)
constant LUTs2 : for_LUT :=

(x"0", x"1", x"1", x"2", x"2", x"3", x"3", x"4", x"1", x"2", x"2", x"3", x"3", x"4", x"4", x"5",
x"2", x"3", x"3", x"4", x"4", x"5", x"5", x"6", x"3", x"4", x"4", x"5", x"5", x"6", x"6", x"7");

-- A_3bits/B_3bits/C_2 bits are associated with the symbols 1 2 3/ 1 2 3/ 1 2 in Fig. 3.28 a
signal A1A2A3, B1B2B3, C1C2C3 : std_logic_vector(2 downto 0);
signal CmClO2O1 : std_logic_vector(3 downto 0);
signal O5_3 : std_logic_vector(2 downto 0);

begin -- the lines below describe the circuit in Fig. 3.28a

-- (LUTs1 is the bottom block in Fig. 3.28a and LUTs2 is the upper block in Fig. 3.28a)
A1A2A3 <= C_last_bit & A_3bits_B_3bits_C_2bits(7 downto 6); -- signals 1 2 for the upper block
B1B2B3 <= A_3bits_B_3bits_C_2bits(5 downto 3); -- signals 1 (upper block) and 2 3 (bottom block)
C1C2C3 <= A_3bits_B_3bits_C_2bits(2 downto 0); -- signal 3 (direct output) and 1 2 (bottom block)
O5_3 <= LUTs2(conv_integer(CmClO2O1(3 downto 2) &

A1A2A3(2 downto 1) & B1B2B3(2)))(2 downto 0);
CmClO2O1 <= LUTs1(conv_integer(A1A2A3(0) & B1B2B3(1 downto 0) &

C1C2C3(2 downto 1)));
Data_out <= O5_3 & CmClO2O1(1 downto 0)& C1C2C3(0); -- concatenation of (0) (1 2) and (3 4 5)

end Behavioral;

χ

χ χ

χ χ χ

β β β

β β β

α

α α

α α

ρ ρ γ

γ γ γ γ γγ

γ

γ γ γ

γ γγ

The respective project is ready to be tested and the circuit (with the maximum
combinational path delay equal to 3.5 ns) occupies just 15 Artix-7 FPGA slices. It
only counts the Hamming weight of 36-bit vectors. A simple addition enables the
same project to be used as a Hamming weight comparator.

Note that we have described many different projects and they may be chosen
dependently on available embedded to FPGA components. Indeed, if embedded
DSP slices are available then DSP-based projects are perhaps the best. If only log-
ical slices can be used then one of the described here projects may be helpful.

Random Number Generator (RanGen)

The module generates random numbers with generic size width and it has the fol-
lowing VHDL code (for the default value width = 32):

Appendix B: Coding Examples

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

424

In each clock cycle a new 32-bit pseudorandom number is generated. The size
width = 32 is generic and can easily be changed.

Segment Decoder (segment_decoder)

The decoder converts 4-bit binary codes in such a way that the respective digits
become visible on 7-segment displays such as that are available on the Nexys-4
board. VHDL code for the decoder is given below:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity RanGen is
generic (width : integer := 32); -- generic size of random numbers
port (clk : in std_logic; -- system clock

random_num : out std_logic_vector (width-1 downto 0)); -- generated number
end RanGen;

architecture Behavioral of RanGen is
begin

process(clk)
variable rand_temp : std_logic_vector(width-1 downto 0):=(width-1 => '1', others => '0');
variable temp : std_logic := '0';

begin

if(rising_edge(clk)) then
temp := rand_temp(width-1) xor rand_temp(width-2);
rand_temp(width-1 downto 1) := rand_temp(width-2 downto 0);
rand_temp(0) := temp;

 end if;

random_num <= rand_temp;

end process;

end Behavioral;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity segment_decoder is -- any one hexadecimal or BCD code can be used as an input
port (BCD : in std_logic_vector (3 downto 0); -- decoder input

segments : out std_logic_vector (7 downto 1)); -- decoder output
end segment_decoder;

architecture Behavioral of segment_decoder is
begin -- segment is active when the signal is '0' and passive when the signal is '1'

segments <= "1000000" when BCD = "0000" else -- 0
 "1111001" when BCD = "0001" else -- 1
 "0100100" when BCD = "0010" else -- 2
 "0110000" when BCD = "0011" else -- 3
 "0011001" when BCD = "0100" else -- 4
 "0010010" when BCD = "0101" else -- 5
 "0000010" when BCD = "0110" else -- 6
 "1111000" when BCD = "0111" else -- 7
 "0000000" when BCD = "1000" else -- 8
 "0010000" when BCD = "1001" else -- 9
 "0001000" when BCD = "1010" else -- a

 "0000011" when BCD = "1011" else -- b
 "1000110" when BCD = "1100" else -- c
 "0100001" when BCD = "1101" else -- d
 "0000110" when BCD = "1110" else -- e
 "0001110" when BCD = "1111" else -- f

 "1111111"; -- all segments are passive
end Behavioral;

Appendix B: Coding Examples

425

Segment Display Control (EightDisplayControl)

This component controls eight 7-segment displays available on the Nexys-4 board.
Functionality of the module is explained in Fig. B.4 and its VHDL code is given
below:

 near_rightL, rightL : in std_logic_vector (3 downto 0);
 leftR, near_leftR : in std_logic_vector (3 downto 0);
 near_rightR, rightR : in std_logic_vector (3 downto 0);
 select_display : out std_logic_vector (7 downto 0);
 segments : out std_logic_vector (6 downto 0));
end EightDisplayControl;

architecture Behavioral of EightDisplayControl is
 signal Display : std_logic_vector(2 downto 0);
 signal div : std_logic_vector(16 downto 0);
 signal convert_me : std_logic_vector(3 downto 0);
begin

div<= div + 1 when rising_edge(clk);
Display <= div(16 downto 14);

process(Display, leftL, near_leftL, near_rightL, rightL, leftR, near_leftR, near_rightR, rightR)
begin -- sequential activation of the displays with proper control of the segments of the selected display
 if Display ="111" then select_display <= "11111110"; convert_me <= leftL;
 elsif Display ="110" then select_display <= "11111101"; convert_me <= near_leftL;
 elsif Display ="101" then select_display <= "11111011"; convert_me <= near_rightL;
 elsif Display ="100" then select_display <= "11110111"; convert_me <= rightL;
 elsif Display ="011" then select_display <= "11101111"; convert_me <= leftR;
 elsif Display ="010" then select_display <= "11011111"; convert_me <= near_leftR;
 elsif Display ="001" then select_display <= "10111111"; convert_me <= near_rightR;
 else select_display <= "01111111"; convert_me <= rightR;
 end if; -- the display is active when the corresponding bit in 8-bit vector above is zero
end process;

decoder : entity work.segment_decoder -- segment decoder (see above)
 port map (convert_me, segments);

end Behavioral;

library IEEE; -- this code is for 8 7-segment displays avai lable on the Nexys-4 board
use IEEE.STD_LOGIC_1164.all; -- small changes permit the same code to be used for many
use IEEE.STD_LOGIC_UNSIGNED.all; -- prototyping boards, for example, Nexys-2/Nexys-3

entity EightDisplayControl is -- FourDisplayControl for Nexys-2/Nexys-3 can be also based on the code below
port (clk : in std_logic;

 leftL, near_leftL : in std_logic_vector (3 downto 0);

library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity segment_decoder is -- any one hexadecimal or BCD code can be used as an input
port (BCD : in std_logic_vector (3 downto 0); -- decoder input

segments : out std_logic_vector (7 downto 1)); -- decoder output
end segment_decoder;

architecture Behavioral of segment_decoder is
begin -- segment is active when the signal is '0' and passive when the signal is '1'

segments <= "1000000" when BCD = "0000" else -- 0
 "1111001" when BCD = "0001" else -- 1
 "0100100" when BCD = "0010" else -- 2
 "0110000" when BCD = "0011" else -- 3
 "0011001" when BCD = "0100" else -- 4
 "0010010" when BCD = "0101" else -- 5
 "0000010" when BCD = "0110" else -- 6
 "1111000" when BCD = "0111" else -- 7
 "0000000" when BCD = "1000" else -- 8
 "0010000" when BCD = "1001" else -- 9
 "0001000" when BCD = "1010" else -- a

 "0000011" when BCD = "1011" else -- b
 "1000110" when BCD = "1100" else -- c
 "0100001" when BCD = "1101" else -- d
 "0000110" when BCD = "1110" else -- e
 "0001110" when BCD = "1111" else -- f

 "1111111"; -- all segments are passive
end Behavioral;

Appendix B: Coding Examples

426 Appendix B: Coding Examples

Four-bit codes (either BCD or binary) leftL, near_leftL, near_rightL, rightL, leftR,
near_leftR, near_rightR, rightR are associated with different displays shown in Fig. B.4.
These codes are sent to the inputs of the segment decoder. Since only one display
is active at a time, scanning all the displays enables different numbers to be shown
on each of them. Sequential activation of the displays is achieved with the aid of
the lines: div<= div + 1 when rising_edge(clk) and Display <= div(16 downto 14). If a con-
verter from binary to BCD codes is also used then binary numbers (see Fig. B.1b)
will be displayed in decimal format.

Let us consider an example in which the considered above four components
EightDisplayControl, segment_decoder, BinToBCD8, and HW31_HWC32 are used:

 sel_disp : out std_logic_vector(7 downto 0); -- control of onboard displays
 Data_in : in std_logic_vector (31 downto 0); -- 32-bit input binary vector

 LedC : out std_logic); -- the result of comparison (see the entity HW31_HWC32 above)
end HW32_HWC32;

architecture Mixed of HW32_HWC32 is
signal HW15_1,HW15_2 : std_logic_vector(3 downto 0);
signal binary : std_logic_vector(7 downto 0);
signal BCD2,BCD1,BCD0 : std_logic_vector(3 downto 0);
signal bits4_0 : std_logic_vector(4 downto 0);

begin
-- This line is used to compute the Hamming weight for 32-bit binary vector
binary <= "00" & (("00000"&Data_in(31)) + ('0'&bits4_0));

DispCont : entity work.EightDisplayControl
port map(clk, "0000", "0000", "0000", "0000", "0000", BCD2, BCD1, BCD0,

sel_disp, seg);

BinToBCD : entity work.BinToBCD8
port map (clk, '0', open, binary, BCD2, BCD1, BCD0);

HW_HWC_32 : entity work.HW_HWC32
port map (Data_in, bits4_0, LedC);

end Mixed;

library IEEE; -- the project was tested for the Nexys-4 board and occupies 34 slices
use IEEE.STD_LOGIC_1164.all; -- the project shows on segment displays the Hamming weight of
use IEEE.STD_LOGIC_UNSIGNED.all; -- 32-bit input binary vector and the result of comparison

entity HW32_HWC32 is -- in the experiments 32-bit input binary vector is received from onboard
port (clk : in std_logic; -- switches of two Nexys-4 boards connected through PMod

 seg : out std_logic_vector(6 downto 0); -- segments of onboard displays

Fig. B.4   Functionality of the module EightDisplayControl

427Appendix B: Coding Examples sel_disp : out std_logic_vector(7 downto 0); -- control of onboard displays
 Data_in : in std_logic_vector (31 downto 0); -- 32-bit input binary vector

 LedC : out std_logic); -- the result of comparison (see the entity HW31_HWC32 above)
end HW32_HWC32;

architecture Mixed of HW32_HWC32 is
signal HW15_1,HW15_2 : std_logic_vector(3 downto 0);
signal binary : std_logic_vector(7 downto 0);
signal BCD2,BCD1,BCD0 : std_logic_vector(3 downto 0);
signal bits4_0 : std_logic_vector(4 downto 0);

begin
-- This line is used to compute the Hamming weight for 32-bit binary vector
binary <= "00" & (("00000"&Data_in(31)) + ('0'&bits4_0));

DispCont : entity work.EightDisplayControl
port map(clk, "0000", "0000", "0000", "0000", "0000", BCD2, BCD1, BCD0,

sel_disp, seg);

BinToBCD : entity work.BinToBCD8
port map (clk, '0', open, binary, BCD2, BCD1, BCD0);

HW_HWC_32 : entity work.HW_HWC32
port map (Data_in, bits4_0, LedC);

end Mixed;

library IEEE; -- the project was tested for the Nexys-4 board and occupies 34 slices
use IEEE.STD_LOGIC_1164.all; -- the project shows on segment displays the Hamming weight of
use IEEE.STD_LOGIC_UNSIGNED.all; -- 32-bit input binary vector and the result of comparison

entity HW32_HWC32 is -- in the experiments 32-bit input binary vector is received from onboard
port (clk : in std_logic; -- switches of two Nexys-4 boards connected through PMod

 seg : out std_logic_vector(6 downto 0); -- segments of onboard displays

We mentioned at the end of Sect. 1.5 that almost all projects of the book are
available at http://sweet.ua.pt/skl/Springer2014.html. They were implemented and
tested in Xilinx ISE 14.7 and many of them were converted and tested in Xilinx
Vivado 2013.4 design suite. The following project permits to examine Test_HW16
entity from Sect. 4.2 that is a DSP-based Hamming weight (HW) counter. The
resulting HW is shown on the leftmost display of the Nexys-4 in hexadecimal for-
mat. If HW=16 then the leftmost LED is ON and 0 appears on the display.

library IEEE;
use IEEE.STD_LOGIC_1164.all ;
entity HW16 _DISPLAY is -- Nexys-4 circuit occupies 4 logical slices and 1 DSP slice
port (ledL : out std_logic; -- ledL is the leftmost LED

seg : out std_logic_vector(6 downto 0); -- from segment decoder
sel_disp : out std_logic_vector(7 downto 0); -- pins:N6,M6,M3,N5,N2,N4,L1,M1
Sw : in std_logic_vector(15 downto 0)); -- input vector to count the HW

end HW16 _DISPLAY;

architecture Mixed of HW16 _DISPLAY is
signal HW16 : std_logic_vector(4 downto 0); -- represents the HW
begin
-- DSP-based computing of the Hamming weight (HW16) for 16-bit binary vector Sw from Sect. 4.2
HWCC : entity work.Test_HW16 -- combining positional and named associations

port map (Sw,led=>HW16,led_comp=> open);
-- segment display decoder for hexadecimal input numbers
seg_dec : entity work.segment_decoder -- only named association is used

port map(BCD=>HW16(3 downto 0),segments=>seg);

ledL <= HW16(4); -- if HW16 = 16 then LedL is ON otherwise - OFF
sel_disp <= "11111110"; -- only the leftmost display is chosen

end Mixed;

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://sweet.ua.pt/skl/Springer2014.html
http://dx.doi.org/10.1007/978-3-319-04708-9_4

428428 Appendix B: Coding Examples

At the beginning let us test the project above in ISE and then make some con-
versions that enable the project to be synthesized, implemented and tested in
Vivado. Firstly, Nexys-4 UCF file has to be converted to XDC file as follows:

1)	 Run Xilinx PlanAhead software and open the project created in ISE;
2)	 Run synthesis in the PlanAhead and open synthesized design;
3)	 Run the following command: write_xdc c:/tmp/Nexys4.xdc from Tcl console

of the PlanAhead (note that sub-directory tmp has to be manually created).

Then the following steps have to be done:

4)	 Crea�te a new RTL Vivado project for FPGA available on the Nexys-4;
5)	 Copy all VHDL files from ISE project (4 files have to be copied for our proj-

ect above) and the newly created XDC file to the new Vivado project;
6)	 Run synthesis, implementation and generate bitstream in Vivado;
7)	 Open hardware manager in Vivado and program the FPGA of Nexys-4;
8)	 Test the project in the Nexys-4 board.

To simplify testing the projects in ISE and Vivado all necessary components
can be found at http://sweet.ua.pt/skl/Springer2014.html (either in ISE or in
Vivado subdirectories). They contain all necessary files that have to be included in
ISE/Vivado projects and, thus, only the steps 4)-8) need to be done. Note that if a
converted project has XCO files they may need to be upgraded (see Sect. 1.5). If a
converted project has COE/TXT files, they have to be either copied to Vivado proj-
ect or their locations have to be explicitly indicated, for instance:

signal array_name : my_array := read_array("c:/tmp/data.txt");

Additional VHDL examples of different reusable blocks are available in [2,3].
Document [4] describes details about migration of ISE projects to Vivado projects.

References

1.	 Xilinx Inc. (2011) Xilinx 7 series FPGA libraries guide for HDL designs.
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/7series_hdl.pdf.
Accessed 21 Nov 2013

2.	 Sklyarov V, Skliarova I (2013) Parallel processing in FPGA-based digital circuits and sys-
tems. TUT Press, Tallinn

3.	 Skliarova I, Sklyarov V, Sudnitson A (2012) Design of FPGA-based circuits using hierar-
chical finite state machines. TUT Press, Tallinn

4.	 Xilinx Inc. (2013) Vivado Design Suite. ISE to Vivado Design Suite Migration Guide.
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_3/ug911-vivado-
migration.pdf. Accessed 24 Jan 2014

http://sweet.ua.pt/skl/Springer2014.html
http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/7series_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_3/ug911-vivado-migration.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_3/ug911-vivado-migration.pdf

429429V. Sklyarov et al., Synthesis and Optimization of FPGA-Based Systems,
Lecture Notes in Electrical Engineering 294, DOI: 10.1007/978-3-319-04708-9,
© Springer International Publishing Switzerland 2014

Combinational circuit, 89, 101
Communication overhead, 35
Comparator, 95
Computer-aided design system, 4
Configurable logic block, 8
Consecutive ones, 137
Constraints files

UCF, 27, 428
XDC, 27, 428

Counting network, 127
components, 127
data-independent segment, 127
mapping onto LUTs, 129

Counter, 60, 83, 98

D
Data-independent segment, 127
Decomposition

functional, 260
structural, 260

Decoder, 93
for segment displays, 93

Design
hierarchical, 7
steps, 25
summary report, 7
tools, 21

Digital signal processing
slice, 4, 17, 153

bitwise operations, 153
splitting, 154

Display controller, 146

E
Embedded memory block, 264

A
Adept software (Digilent), 5
Arithmetical circuit, 95, 144

with accumulators, 99
Automaton

operational, 347
of transitions, 347

B
Barrel shifter, 96
Binary-coded decimal (BCD), 145
Block of

code transformer, 267
input memory functions, 259
microoperations, 260
operations of transitions, 346
replacement of logical conditions, 291
state transformer, 262

Boolean
function, 89
operation, 345

C
Carry network, 124, 126, 128
C language function

iterative greatest common divisor, 102
recursive greatest common divisor, 214
traversing trees, 111, 248

Class of
compatible microoperations, 262
pseudoequivalent states, 266

Code of
class of pseudoequivalent states, 266
collection of microoperations, 261
state, 262

Index

430430 Index

G
Generalized formula of transitions, 268
Graph-scheme of algorithm, 269
Greatest common divisor

iterative implementation, 102, 208, 213,
231

recursive implementation, 214

H
Half adder, 23, 47, 127
Hamming weight, 57, 64, 73, 131, 149, 155,

200
comparison, 64, 124, 130
counter

DSP-based, 155
LUT-based, 130
network-based, 127
Parallel, 123

simplest counter (SHWC), 130
Hardware description language, 7
Hierarchical graph-scheme, 207

I
Integrated software environment, 5

ISE, 26, 428
Vivado, 26, 428

Intellectual property cores, 143
Intersection operation, 90
Interactions with higher-level systems, 33, 158

through Digilent parallel port interface,
159, 181
timing diagrams, 160

through UART interface, 167, 188
types, 110

IOExpansion component (from Digilent), 28,
37, 78

K
Karnaugh map, 275

L
Logic element, 12
Look-up-table, 4, 8

LUTs and constants, 87
LUTer, 268

M
Macrocell, 263
Matrix covering, 250

EMBer, 268
Encoder, 92

F
Feedback register, 114, 118, 121, 138
Field-programmable gate array (FPGA), 3

bitstream, 5, 21
characteristics, 29
clock, 20

management, 20, 152
skew, 20

configurable logic block, 4, 8
DSP slice, 4, 17, 153

bitwise operations, 153
splitting, 154

embedded blocks, 13
flip-flop, 4
interactions, 34

through Digilent Adept virtual window,
35

with higher-level systems, 34, 158
look-up table, 4, 8
memory, 4, 11, 13

coefficient (COE) file, 15
dual port, 16
FIFO, 147
single port, 14

prototyping, 5, 25
reset, 20
slice, 4, 8

Finite state machine, 100
clocking

one edge, 103, 208, 212, 216
two edges, 212, 214, 215, 218, 223

hierarchical, 111, 210
implementation of software programs,

239
intelligent control, 254
optimization, 245
stacks, 242
synthesis, 222
with explicit modules, 212, 222

template, 213
with implicit modules, 220, 229

template, 220
Mealy, 101
Moore, 101
parallel, 230
reconfigurable, 254
with datapath, 102

Frequent item computation, 138
Full adder, 23, 47, 124, 132
Function of transition, 348

431431Index

example with N=8, 106
example with N=16, 108
example with N = 32, 109
number of comparators, 109

even-odd transition, 113
iterative, 113, 180

enable signal, 114
number of comparators, 113
pipeline, 114
propagation delay, 108, 113
regularity, 113, 119

Specification
hierarchical, 205
parallel, 230

State of FSM
current, 348
initial, 272
internal, 319
pseudoequivalent, 266

State variable, 267
Structural diagram, 259
Structure table, 265

reduced, 268
transformed, 303

Sum-of-products, 264
Synthesis, 268
System of

Boolean functions, 270
generalized formulae of transitions, 268
microoperations, 260

T
Table of

microoperations, 272
replacement of logical conditions, 279

Test bench, 22
Threshold, 124

LUT-based bounds, 129, 133
Tree

N -ary, 111, 247
traversing, 112

U
User constraints file, 5, 26, 52, 428

V
Vector-based computations, 138
Vertex

conditional, 265
operator, 265

VHDL, 43

Max-min network, 68, 118
application for sorting, 121
combinational, 118
complexity and delays, 119, 122
iterative, 118
large-scale data sets, 122

Merging of sorted subsets, 111, 198
Migration from ISE to Vivado projects,

27, 428
Multiplexer, 94

O
Orthogonality operation, 90

P
Parallel counters, 123

characteristics and formulae, 124
Pipeline, 114, 199, 249, 252
Processing system, 197
Product term, 263
Programmable logic, 197
Programmable system-on-chip, 197, 254
Prototyping boards

Atlys, 5, 27, 31
interaction with PC, 158, 167, 181

DE2-115, 29, 85
Nexys-4, 32, 33

interaction with PC, 167, 188

R
Random number generator, 423
Register, 97

shift, 10, 61, 98
Return flag, 245

S
Schematic

editor, 5
Sequential circuit, 97
Set of

additional variables, 261
logical conditions, 261
states, 272

Simulation, 22, 81
behavioral, 81

Software/hardware co-design, 179
Sorting network

bitonic merge, 105, 113
depth, 113
even-odd merge, 66, 105, 113

432432

behavioral specification, 45
block, 69
constructions in alphabetical order, 375
coding examples, 403
constant-based conversions, 87, 94
files, 79, 384
function, 63

impure, 65
pure, 65

generic parameter, 70
generate statement, 74
library, 76
limitations (and assumptions) in the book,

34, 50
mixed specification, 46
objects, 51

operators, 53
package, 76
procedure, 66
process, 55

combinational, 56
sequential, 59
sensitivity list, 55

signals and variables, 51, 58, 62
simulation, 81
structural specification, 44
types, 50

Virtual window (Digilent Adept), 37

Index

	Synthesis and Optimization of FPGA-Based Systems
	Preface
	Contents
	Abbreviations
	Conventions

	Part I Design of Digital Circuits and Systems on the Basis of FPGA
	1 FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools
	Abstract
	1.1 Introduction to FPGA
	1.2 The Basis of FPGA Devices
	1.2.1 Configurable Logic Blocks of Xilinx FPGAs
	1.2.2 Logic Elements of Altera FPGAs

	1.3 Embedded Blocks
	1.3.1 Embedded Memories
	1.3.2 Embedded DSP Slices

	1.4 Clock Distributions and Resets
	1.5 Design Tools
	1.6 Implementation and Prototyping
	1.7 Interaction with FPGA-Based Circuits and Systems
	References

	2 Synthesizable VHDL for FPGA-Based Devices
	Abstract
	2.1 Introduction to VHDL
	2.2 Data Types, Objects and Operators
	2.3 Combinational and Sequential Processes
	2.3.1 Combinational Processes
	2.3.2 Sequential Processes

	2.4 Functions, Procedures, and Blocks
	2.5 Generics and Generates
	2.6 Libraries, Packages, and Files
	2.7 Behavioral Simulation
	2.8 Prototyping
	References

	3 Design Techniques
	Abstract
	3.1 Combinational Circuits
	3.1.1 Encoders
	3.1.2 Decoders
	3.1.3 Multiplexers
	3.1.4 Comparators
	3.1.5 Arithmetical Circuits
	3.1.6 Barrel Shifters

	3.2 Sequential Circuits
	3.2.1 Registers
	3.2.2 Shift Registers
	3.2.3 Counters
	3.2.4 Arithmetical Circuits with Accumulators

	3.3 Finite State Machines
	3.4 Optimization of FPGA-Based Circuits and Systems
	3.4.1 Highly Parallel Network-Based Solutions
	3.4.2 Hardware Accelerators
	3.4.3 Parallel Modular Algorithms Running in Hierarchical FSMs

	3.5 Design Examples for Parallel Sort
	3.6 Design Examples for Parallel Search
	3.7 Design Examples for Parallel Counters
	3.8 Design Examples for Counting Networks
	3.9 Design Examples for LUT-Based Hamming Weight CountersComparators
	3.10 Design Examples for Operations Over Vectors
	References

	4 Embedded Blocks and System-Level Design
	Abstract
	4.1 Using IP Cores
	4.2 Design with Embedded DSP Slices
	4.3 Interaction with FPGA
	4.3.1 Digilent Parallel Port Interface
	4.3.1.1 Digilent EPP Communication Module
	4.3.1.2 Application Software

	4.3.2 UART Interface
	4.3.2.1 UART Communication Module
	4.3.2.2 Application Software

	4.4 SoftwareHardware Co-design and Co-simulation
	4.4.1 Software-Hardware Co-design with Digilent Parallel Port Interface
	4.4.2 Software-Hardware Co-design with UART Interface

	4.5 Programmable Systems-on-Chip
	References

	5 Design Technique Based on Hierarchical and Parallel Specifications
	Abstract
	5.1 Modular Hierarchical Specifications
	5.2 Hierarchical Finite State Machines
	5.2.1 HDL Template for HFSM with Explicit Modules
	5.2.2 HDL Template for HFSM with Implicit Modules

	5.3 Synthesis of HFSMs
	5.3.1 Synthesis of HFSMs with Explicit Modules
	5.3.2 Synthesis of HFSMs with Implicit Modules

	5.4 Parallel Specifications and Parallel HFSMs
	5.5 Hardware Implementations of Software Programs Based on HFSM Models
	5.6 Using Stacks Based on Embedded or Distributed Memories
	5.7 Optimization Techniques
	5.7.1 Execution of Hierarchical Returns
	5.7.2 Providing Multiple Entry Points to HGSs
	5.7.3 Fast Stack Unwinding

	5.8 Practical Applications
	References

	Part II Methods for Optimization of Finite State Machines for FPGA-Based Circuits and Systems
	6 Hardware Reduction in Logic Circuits of Moore FSM
	Abstract
	6.1 General Characteristic of Existing Methods
	6.2 Object Transformation in Moore FSM
	6.3 Expansion of State Codes for Moore FSM
	6.4 Synthesis of Moore FSM with Replacement of Logical Conditions
	References

	7 Design of FSMs with Embedded Memory Blocks
	Abstract
	7.1 Trivial Implementation of Mealy and Moore FSMs
	7.2 Structural Decomposition of FSMs
	7.3 Design of Mealy FSM with Encoding of the Collections of Microoperations
	7.4 Design of Mealy FSM with Encoding of the Fields of Compatible Microoperations
	7.5 Design of Mealy FSM with Encoding of the Rows of Structure Table
	7.6 Optimization of BIMF Based on Pseudoequivalent States of Moore FSM
	References

	8 Optimization of FSMs with Embedded Memory Blocks
	Abstract
	8.1 Trivial Implementation of MP Mealy FSMs
	8.2 Optimization of LUTer
	8.3 Optimization of LUTer Based on Pseudoequivalent States
	8.4 Optimization of LUTer Based on Encoding of Collections of Microoperations
	References

	9 Finite State Machines with Operational Implementation of Transitions
	Abstract
	9.1 Conception of Operational Implementation of Transitions
	9.2 Organisation of FSM with Operational Generation of Transitions
	9.3 Example of FSM Design
	9.4 Structural Representation of Synthesis Process for FSM with OAT
	9.4.1 Base Structure of Synthesis Process for FSM with OAT
	9.4.2 Refinement of Basic Structure of Synthesis Process

	9.5 Organization of Operational Automaton of Transitions
	9.5.1 Typical Structure Models of Operational Automata
	9.5.2 Organizational Specifics of OAT
	9.5.3 Organization of Combinational Part of OAT

	9.6 Synthesis Method for FSM with Supplemented Set of Operations of Transitions
	9.7 Investigation of Efficiency of FSM with OAT
	References

	Appendix A VHDL Constructions Used in the Book and Additional Support Materials
	Appendix B Coding Examples
	Index

