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PREFACE

Spectral logic is a mathematical discipline in the area of abstract harmonic analysis
devoted to applications in engineering, primarily electrical and computer engineering.

Abstract harmonic analysis has evolved from classical Fourier analysis by replac-
ing the real line R, which is a particular locally compact Abelian group, by an arbitrary
locally compact Abelian or compact non-Abelian group. The exponential functions,
which are group characters of R, are replaced by group characters of Abelian groups
and group representations for non-Abelian groups.

Spectral techniques mainly deal with signals of compact groups and in most cases
finite groups. In this way, when using transforms defined in terms of group char-
acters, the origins of spectral techniques can be found in classical Fourier analy-
sis (181). Switching (Boolean) functions are an example of functions defined on a
particular finite group that is the group of binary-valued n-tuples under the com-
ponentwise addition modulo 2 (EXOR). This group is known as a finite dyadic
group.

For functions of this group, the Fourier transform is defined in terms of the discrete
Walsh functions, which are characters of the finite dyadic groups. The origins of
spectral techniques in terms of the discrete Walsh functions can be found in the
theory of Walsh analysis, which is defined in terms of continuous Walsh functions
introduced in 1923 (638) and interpreted as group characters of the infinite dyadic
group in 1949 (176). Initially, Walsh functions have been defined on the interval (0, 1),
which can be mapped into the infinite dyadic group.

Many important problems in analysis, design, and testing of digital devices have
simple and sometimes even analytical solutions in the spectral domain whereas the
solutions of these problems in the original domain are very difficult. Some of these
problems will be discussed in detail in this book.

xv
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xvi PREFACE

Through the group theoretic approach, various spectral transforms can be uni-
formly viewed as transforms on the groups. The discrete Haar transform is a particular
spectral transform on finite dyadic groups efficiently used in computer engineering.
This transform can be viewed as a discrete counterpart of the Haar transform, which
is defined in terms of the Haar functions introduced in 1910 (223) as a particular set
of functions defined on the interval (0, 1). Thus, the origins of spectral techniques
exploiting the discrete Haar transform can be dated back to 1910 (223).

The Haar transform is an example of the so-called local transforms in the sense
that except for the first two coefficients, all other coefficients can be calculated over
a subset of function values. This is a very useful property that allows focusing on
function values of subsets of their domains, and thus to study local properties of a
signal modeled by the function considered. This is the main property that characterizes
the wavelets theory, which in this respect can be viewed as an extension of Fourier
analysis. The same property implies a simplified calculation of spectral coefficients,
which makes the Haar transform computationally very efficient.

The Reed–Muller transform is another example of local transforms on finite dyadic
groups. The spectral interpretation of the Reed–Muller expressions is related to the
application of FFT-like algorithms for their calculations proposed by Ph.W. Besslich
(60). This interpretation establishes a link between Reed–Muller expressions and
spectral transforms. Thus, this interpretation permits one to consider that the mathe-
matical foundations for the application of this particular spectral transform in switch-
ing theory and logic design were already set in 1927 (678) and 1928 (679). This
transform is defined over the finite field GF (2), that is, values of Reed–Muller spec-
tral coefficients are logic values 0 and 1. Transforms with this feature are called
bit-level transforms. Word-level transforms require a byte, or computer word, to rep-
resent each coefficient, since they are integers, rational numbers, or complex numbers.
In other words, this classification of spectral transforms is performed with respect to
the range of the basis functions in terms of which the transform is defined. Examples
of word-level transforms are the discrete Walsh and Haar transforms.

The same range specified for a transform is also assumed for processed functions.
The values 0 and 1 of logic functions are interpreted as integers 0 and 1 when these
function are processed by word-level transforms.

The arithmetic transform is defined by the interpretation of the basis functions in
the Reed–Muller transforms as integer-valued functions and all the calculations are
performed in the field of rational numbers. Thus, the arithmetic transform is another
example of word-level local transforms.

Practical applications of spectral logic in analysis and design of switching
and multiple-valued (MV) functions date back to the early history of these areas
(86,106,190,315,331,391,460,599).

It is believed that spectral logics developed into a separate discipline between
1970 and 1975, which is possibly best expressed by pointing out annual symposia
on Walsh and other nonsinusoidal functions, with even two international meetings
on that subject in 1971 and 1973. After that time, although with somewhat fluc-
tuating interest, spectral techniques have been continuously developing, and activ-
ity in the area has been summarized at the International Workshops on Spectral
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Techniques in Boston 1985 (282), Montreal 1986, Dortmund 1988 (382), Beijing 1990
(within the Conference on Signal Processing, Beijing, P.R. China, October 22–26,
1990).

In 1992, the Workshop on Logic Design and Microprocessor Architecture in Iizuka,
Fukuoka, Japan, provided space for a tutorial discussion of spectral methods in logic
design by Varma and Trachtenberg, which was further developed in a chapter (624) of
a book edited afterward by Sasao (486), accompanied by a chapter on minimization
of AND–EXOR expressions including fixed polarity Reed–Muller expressions (485).

Another Workshop on Spectral Techniques had been organized March 15–17, 1994,
hosted by Beijing University of Aeronautic and Astronautics, Beijing, P.R. China and
chaired by Qishang Zhang and Claudio Moraga (389), with selected papers published
afterward in Reference (383). As an especially important contribution of the workshop
in 1994, we mention a bibliography of papers in this areas which were published in
Russian. The bibliography has been prepared by Shmerko and Mikhailov (525).

Advances in spectral methods for digital logic have often been presented at regular
sessions at conferences on signal processing and circuit design, among which the
International Symposia on Multiple-Valued Logic (ISMVL) are probably the most
important for research in this area. Within the ISMVL, this activity was carefully
traced and discussed, and a summary of developments in theory and practice of
spectral techniques up to the late 1970s was given by Karpovsky (281), while the
development in the next decade was overviewed by Moraga (380). The most recent
review has been presented at the ISMVL 2001 (299).

The Workshop on Spectral Methods and Logic Design for Future Digital Systems,
held on June 2–3, 2000 in Tampere, Finland, organized by Tampere International
Center for Signal Processing (TICSP), within the Institute of Signal Processing at
Tampere University of Technology, Tampere, Finland, was an event devoted to appli-
cations of spectral methods in logic design. It can be viewed as an additional activity
in the series of annual TICSP Workshops on Spectral Methods and Multirate Signal
Processing organized regularly by TICSP starting from 1998 to date.

In switching theory and logic design, there is apparently a renewed and consider-
able interest in exploiting spectral techniques after the publication of a report about
applications of Walsh functions in technology mapping (655). This interest is due to
requirements regarding complexity and performances of logic networks and digital
devices, which in many cases cannot be met by traditional approaches.

It should be noted that renewed interest in Reed–Muller expressions is due to the
publication of the paper (493) presenting a conjecture that AND–EXOR expressions
require on the average a smaller number of products compared with sum-of-product
(SOP) expressions. This conjecture was confirmed and experimentally verified by
the same authors and many others in a series of publications. (See a discussion and
References 489,491).

This renewed interest in this subject resulted in the organization of International
Workshops on Applications of Reed–Muller Expansions in Circuit Design in Hamburg,
Germany, September 16–17, 1993 and Chiba, Tokyo, Japan, August 23–25, 1995. In
addition the Reed–Muller Colloquium held on, December 19, 1995, was organized
at the University of Bristol, UK.
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The Reed–Muller Workshops continued in Oxford, UK, September 1997; Vic-
toria, Canada, August 20–21, 1999; Starkville, Mississippi, USA, August 10–11,
2001. In 2003, the Workshop changed its name to Symposium on Representations
and Methodology for Future Computing Technologies, keeping the same abbrevia-
tion (RM-Workshops), and was held in Trier, Germany, March 10–11, 2003. The
series of Workshops under this name has been continued on September 5-6, 2005, in
Tokyo, Japan.

The series of Workshops on Boolean Problems, usually held in the second half
of September of every second year in Freiberg, Germany, starting in October 7,
1994, also provided room for discussing various aspects of theory and practice
of Reed–Muller expressions and related representations, including other spectral
representations.

Besides many other interesting results, an especially important achievement of
the Reed–Muller Workshops was the establishment of relationships between spectral
logic and decision diagrams (DDs) as data structures for representation of large dis-
crete functions. Decision diagram methods for calculation of spectral logic originating
in Reference (104) considerably improved applicability of spectral logic, since they
permit overcoming problems related to the exponential complexity of FFT algorithms
in terms of both space and time.

Conversely, spectral interpretation of decision diagrams (547,550,555,569), per-
mits a unified consideration and classification of different decision diagrams (568)
and offers a way for further generalizations and optimization of decision diagram
representations (166,228,549).

It should be noted that publication of a book collecting selected papers presented at
the Reed–Muller Workshop in 1995, edited by Sasao and Fujita (499), was of crucial
importance for the further development of both decision diagram representations and
spectral logic. This research resulted in two special issues on Spectral Techniques in
Digital Logic of the journal Multiple Valued Logic and Soft Computing , No. 1 and 2,
2004.

Besides the Walsh and Reed–Muller transforms, traditional approaches in spectral
techniques are related to the arithmetic and Haar transforms. The conference series
Advances in Computer Systems organized at the Technical University of Szczecin,
Poland (started 1994) has acted as a forum for discussing spectral techniques, in
particular arithmetic transforms, mainly owing to the previous background work in
this area done in East Europe and Russia.

Publication of the monograph (353), the book chapter (266), the tutorial paper
(168), and a historic overview (156) have set fundamentals for further work in this
area. The importance of arithmetic expressions is further raised by showing that some
classes of decision diagrams represent functions in the form of arithmetic polyno-
mials (387,547,550,569). In Reference 99, this property is used for defining a class
of decision diagrams for an efficient representation of arithmetic circuits for the pur-
pose of their verification and related applications. The same property has recently
been exploited in efficient representations of elementary numerical functions that
are important from a practical point of view (501). This interest in arithmetic trans-
forms was confirmed by the special issue of the journal Avtomatika i Telemekhanika
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PREFACE xix

(edition in English, Automation and Remote Control) , No. 6, 2004 devoted to arith-
metic expressions.

For the recent interest and development in Haar transforms, credit should be given
to the special session on spectral techniques and decision diagrams, accompanied by
another session devoted exclusively to Haar transforms within the International Con-
ference on Informatics, Communications and Signal Processing (1st ICICS), Septem-
ber 9–12, 1997, in Singapore.

The organization of several workshops and preparation of related proceedings,
editing of four special issues of three journals on this subject and publication in the
last decade of several monographs devoted completely or in part to spectral methods
in switching and multiple-valued logic, should be considered considerable support for
future work in the area (8,151,323,353,379, 499,555,567,571,576,584,604,658,661,
676,675).

We believe that the present monograph will serve the same goal and be useful in
further advances in theory and application of spectral methods.

Motivation

This book, in addition to the new results in representation of discrete functions by
decision diagrams and calculation of spectral transforms over decision diagrams,
spectral optimization of decision diagrams, spectral testing of hardware, and so on,
contains almost all results from the book Karpovsky, M.G., Finite Orthogonal Series
in the Design of Digital Devices, John Wiley, 1976, which, in turn, has been based
on Reference 289. Both of these books, together with References 16,51,234, were
among the very pioneering monographs in the area of applications of spectral logic
in electrical and computer engineering.

While References 16,51,234 covered different areas of electrical and computer
science, the book by Karpovsky was the first book devoted to application of spec-
tral methods to digital logic and system design. At the same time, it was written to
adapt classical engineering methods based on Fourier analysis and autocorrelation
functions to solve problems in switching theory and logic design. Because of these
two features, the book has been well accepted and has become a standard reference
in the area. The book preserved this position owing to well-presented mathematical
foundations as well as a slightly different approach mainly based on autocorrelation
functions as the main tool, compared to other books in the area, as in References 52,
255, and 258.

Writing this book has been directly motivated by the renewed interest in spectral
techniques as reviewed above and by the introduction of decision diagrams as the data
structure permitting compact representation and efficient calculation with large dis-
crete functions. Thanks to this, exponential complexity of FFT-like algorithms, which
has often been considered to be the main obstacle for practical applications of spectral
methods, has been overcome up to some degree and applicability of algorithms based
on spectral transforms and autocorrelation functions discussed in the book has been
considerably improved. Further, the advent of data structures for representation of
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logic functions, either binary or multiple valued, enlarged the field of application of
the optimization methods in the book.

Functional testing of digital devices, irrespective of the means for their imple-
mentation, either as software, hardware, or hardware/software systems, is a very
demanding task, the complexity of which is often viewed as a drawback of manufac-
turing procedures. Spectral methods in many cases offer analytical solutions of testing
problems (both for test pattern generation and data compression of test responses)
and permit efficient implementations of test procedures. For these reasons, the book
contains an extensive discussion of spectral methods for testing of digital devices.

We note that in this book, we targeted hardware for the implementation of spectral
techniques, but most of the presented results can easily be generalized for the case of
software implementations.

Outline

In this section, we briefly present the outline of the book (Fig. P.0.1) and specify
differences with the first edition.

Logic Functions

Spectral Transforms for
Logic Functions

Calculation of
Spectral Transforms

Spectral Methods for
Optimization of Decision
Diagrams

Analysis and Optimization of
Logic Functions

Spectral Methods for
Synthesis of
Logic Functions

Spectral Methods for
Synthesis of
Sequential Machines

Spectral Methods of Analysis and Synthesis of

Reliable Combinational and Sequential Devices

Spectral Methods for

Hardware Implementation of
Spectral Methods

Testing

1

2 34

5

6

7

8 9

10

11
Examples of Applications and Generalizations of Spectral Methods on Logic Functions

FIGURE P.0.1 Relations among the chapters.
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TABLE P.0.1 Conferences and Workshops on Spectral Techniques, 1970–1999.

Year Conference or workshop

1970 Workshop on Applications of Walsh Functions, Washington, DC, USA
1971 Workshop on Applications of Walsh Functions, Washington, DC, USA

Proc. 1971 Symp. Theory and Applications of Walsh Functions,
Halfield Polytechnic, Hatfield. Herts. UK.

1972 Workshop on Applications of Walsh Functions, Washington, DC, USA
1973 Workshop on Applications of Walsh Functions, Washington, DC, USA

Symp. Walsh and Other Nonsinusoidal Functions Applications,
Hatfield Polytechnic, England

1974 Workshop on Applications of Walsh Functions, Washington, DC, USA
1975 Symp. Walsh and Other Nonsinusoidal Functions Applications,

Hatfield Polytechnic, England
1975 Workshop on Applications of Walsh Functions, Washington, DC, USA
1985 First Workshop on Spectral Techniques, Boston, USA
1986 Second Workshop on Spectral Techniques, Montreal, Canada
1988 Third Workshop on Spectral Techniques, Dortmund, Germany
1990 Fourth Workshop on Spectral Techniques, Beijing, P.R. China
1992 Workshop on Logic Design and Microprocessor Architecture,

Iizuka, Fukuoka, Japan
1993 Reed–Muller Workshop, Hamburg, Germany
1994 Fifth Workshop on Spectral Techniques, Beijing, P.R. China

First Workshop on Boolean Problems, Freiberg, Germany
Advances in Computer Systems, Szczecin, Poland

1995 Reed–Muller Workshop, Chiba, Tokyo, Japan
Advances in Computer Systems, Szczecin, Poland
Reed–Muller Colloquium, University of Bristol, England, UK

1996 Second Workshop on Boolean Problems, Freiberg, Germany
Advances in Computer Systems, Szczecin, Poland

1997 Reed–Muller Workshop, Oxford, UK
First Int. Conf. on Information, Communication and Signal Processing,
Singapore, Special Session on Haar transform
Advances in Computer Systems, Szczecin, Poland

1998 TICSP Workshop on Transforms and Filter Banks,
Tampere, Finland
Third Workshop on Boolean Problems, Freiberg, Germany
Advances in Computer Systems, Szczecin, Poland

1999 TICSP Workshop on Transforms and Filter Banks,
Brandenburg, Germany
Reed–Muller Workshop, Victoria, Canada

The introductory presentations in the first edition providing necessary mathemati-
cal background for discussing spectral methods are reorganized and divided into two
chapters.

The first chapter contains spectral representations of discrete functions from the
first edition extended by presentation of functional expressions including the Reed–
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TABLE P.0.2 Conferences and Workshops on Spectral Techniques, 2000–2006.

Year Conference or workshop

2000 Workshop on Spectral Transforms and Logic Design for Future Digital Systems,
Tampere, Finland
First Workshop on Boolean Problems, Freiberg, Germany

2001 TICSP Workshop on Spectral Methods and Multirate Signal Processing,
Pula, Croatia
Reed-Muller Workshop, Starkville, Mississippi, USA

2002 TICSP Workshop on Spectral Techniques and Multirate Signal Processing,
Toulouse, France
Fifth Workshop on Boolean Problems, Freiberg, Germany

2003 Reed-Muller Workshop, Trier, Germany
TICSP Workshop on Spectral Methods and Multirate Signal Processing,
Barcelona, Spain,

2004 TICSP Workshop on Spectral Methods and Multiratre Signal Processing,
Vienna, Austria
Sixth Workshop on Boolean Problems, Freiberg, Germany

2005 TICSP Workshop on Spectral Methods and Multirate Signal Processing,
Riga, Latvia
Reed-Muller Workshop, Tokyo, Japan

2006 TICSP Workshop on Spectral methods and Multirate Signal Processing,
Florence, Italy
Seventh Workshop on Boolean Problems, Freiberg, Germany

2007 Reed-Muller Workshop, Oslo, Norway
TICSP Workshop on Spectral Methods and Multirate Signal Processing,
Moscow, Russia

Muller expressions and their spectral interpretation, which are a basis for AND–
EXOR synthesis.

The second chapter is a continuation of the overview of methods for representations
of discrete functions updated by the discussion of the arithmetic expressions that
are viewed as an integer-valued analog of the Reed–Muller expressions. Additional

TABLE P.0.3 Special Issues of Journals Devoted to Spectral Techniques.

Year Journal and publisher Issue

2002 VLSI Design Journal, Taylor and Francis Vol. 14
Spectral Techniques and Decision Diagrams No. 1

2004 Multiple Valued Logic and Soft Computing, Oldcity Publisher Vol. 10
Spectral Techniques in Digital Logic No. 1, No. 2

2004 Avtomatika i Telemekhanika, MAIK Nauka/Interperiodica, Vol. 65
edition in English Automation and Remote Control, Springer
Arithmetical Logic in Control Systems No. 6
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generalizations and spectral (Fourier) transforms of finite non-Abelian groups are also
briefly discussed.

Because of their importance, methods for efficient calculations of spectral
transforms are presented in a separate chapter. Special attention has been paid to
calculations of spectral transforms by decision diagrams. Methods for calculation
of autocorrelation functions, which are extensively used in forthcoming chapters for
analysis and synthesis of logic functions, are discussed in detail.

The new Chapter 4 presents spectral methods for optimization of decision
diagrams.

Chapters 5 and 6 are updated versions of Chapters 3 and 4 in the first edition and
are devoted to spectral methods for the analysis of switching and multiple-valued
functions and their implementations by combinational networks.

Chapter 7 is also an updated version of Chapter 5 in the first edition and is devoted
to spectral methods in the synthesis of sequential networks, with special attention
paid to optimal assignment of states and related encoding problems.

Chapter 8 discusses hardware implementations of spectral methods by using
memories as basic modules. It is an updated version of the corresponding chapter in
the first edition of the book.

In Chapter 9, based on Chapter 6 in the first edition, we analyze error-correcting
capabilities and the design of reliable digital devices by spectral logic.

Chapter 10 is a new part devoted to spectral methods for testing of digital systems.
It is the first time that many results in this area are uniformly discussed and presented
in a consistent way.

Chapter 11 discusses examples of various spectral transforms purposely defined
to accommodate requirements in particular applications. It also describes extensions
of spectral methods for different applications in image processing and broadband
radio.

To conclude this section, we would like to note that, excluding classical theoretic
foundations, almost all results (and possible errors) in the book belong to the authors.

Mark G. Karpovsky
Boston, USA

Radomir S. Stankovic
Niš, SERBIA

Jaakko T. Astola
Tampere, FINLAND
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Stanković and M.G. Karpovsky at the Tampere International Center for Signal Pro-
cessing (TICSP), Tampere University of Technology, Tampere, Finland, as a result of
a long-term cooperation and joint research work. The support and facilities provided
by TICSP are gratefully acknowledged.

Special thanks are due to Mrs. Pirkko Ruotsalainen, the Official for International
Affairs of TICSP, for great help in many practical matters during the preparation of
this book.

The authors are grateful to their families Maya and Alex Karpovsky; Milena,
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CHAPTER 1

LOGIC FUNCTIONS

In the design of digital devices, many different ways are used to describe the input and
output signals, and the input/output relations of the devices. The inputs and outputs
are usually mathematically modeled by functions, while the input/output relations are
represented by operators in some suitably selected function spaces. Combinational
and sequential logic circuits alone can be viewed as particular examples of digital
devices or as constitutes of their essential components.

In combinational logic circuits, the output is a (logic) function of inputs and,
therefore, the input/output relations of these circuits are also represented by logic
functions, or, conversely, combinational circuit realize (implement) logic functions.

In sequential circuits, the output depends also on the internal states of the circuit,
and more sophisticated mathematical models, called sequential machines, are used for
their representations. Combinational circuits are necessary parts of sequential circuits
used to realize the output functions and state functions describing transitions between
the states.

We will use several types of functions that vary with different sets as the domain
and the range of the function to be able to represent the variety of the relations realized
by digital devices. At the same time, representation of the same relations by functions
with different domains and ranges may provide advantages in digital devices analysis,
design, verification, testing, maintaining, etc.

There are also many ways to describe a function, that is, specify function values for
all possible combinations of values for its variables. These specifications, establishing
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2 LOGIC FUNCTIONS

uniquely correspondence between the inputs and the values taken by a function,
are called representations of functions, and could be expressed by a formula, table,
graph, an ordered set of points where the function takes particular value, as cubes,
or a textual-like description of links between the inputs, preselected modules (ba-
sic logic elements or equivalently, subfunctions), and the output values, as for the
netlists.

In this chapter, we briefly review different types of functions encountered in
the design of digital devices and their representations that will be used in this
book.

1.1 DISCRETE FUNCTIONS

A combinational digital device has a finite number of inputs and a finite number of
possible values for inputs as well as for outputs and can be represented as a finite
discrete function

f : ×m−1
i=0 Di → ×k−1

i=0 Ri,

where × denotes the Cartesian product and Di, i = 0, 1, . . . , m − 1 are finite sets.
The set Ri may be a finite or infinite, and usually, if infinite, it is either the set R

of real numbers or the set C of complex numbers.
A multioutput function is such that k > 1. Thus, it is a system of single-output

functions (k = 1) and can be represented as a vector f = (f (0), . . . , f (k−1)) of single-
output functions.

Switching functions or Boolean functions are the basic functions in digital design
and they are functions

f : {0, 1}m → {0, 1}, (1.1.1)

that is, in this case, D0 = D1 = · · · = Dm−1 = R0 = {0, 1}.
Often discrete functions with a finite, but nonbinary (i.e., Ri �= {0, 1}) range, are

called multiple-valued functions. A typical case is a function f : Zk → Zk, where
Zk denotes the ring of integers (field if k is prime) modulo k. Definitions of rings and
fields will be presented later in Section 5.1.

Whenever the domain and the range are finite sets of the cardinalities p and
q, we can identify the elements with the first nonnegative integers and consider
the corresponding function f : {0, 1, . . . , p − 1} → {0, 1, . . . , q − 1}. In the case
of functions of m variables and k outputs, it would be f : {0, 1, . . . , p − 1}m →
{0, 1, . . . , q − 1}k.

This “coding” of the domain and the range is most often done when the domain
and the range or both are powers of {0, 1}, that is, an element

z = (z0, z1, . . . , zi, . . . , zm−1) ∈ {0, 1}m,
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TABULAR REPRESENTATIONS OF DISCRETE FUNCTIONS 3

is represented as a nonnegative integer z ∈ {0, 1, . . . , 2m − 1} via the bijective map-
ping {0, 1}m → {Z|0 ≤ z < 2m},

z =
m−1∑
s=0

zs2
m−1−s.

When the domain D and the range R are finite sets, as for discrete functions, the
number of different functions f : D → R is finite.

The number of discrete functions is exponential in the cardinality of the domain.
Consider discrete functions f : X → Y . Each function is uniquely specified by a
vector of its values, the length of which is |X| and as there are |Y | choices for each
component, the total number of functions is |Y ||X|.

Example 1.1.1 Consider D1 = {0, 1}, D2 = {0, 1, 2}, and R = {0, 1, 2, 3}. The
number of function f : D1 × D2 → R is 42×3 = 46, since for each element in the set
of 2 × 3 = 6 elements, an element out of four elements in R can be associated.

Example 1.1.2 The number of switching functions f : {0, 1}m → {0, 1} is 22m
.

Similarly, the number of ternary functions {0, 1, 2}m → {0, 1, 2} is 33m
. For m = 2,

there are 16 switching (two-valued) functions and 19683 ternary functions.

1.2 TABULAR REPRESENTATIONS OF DISCRETE FUNCTIONS

Since for discrete functions, the domain D and the range R are finite, the simplest
way to define a discrete function is to specify its value f (x) ∈ R at each element
x ∈ D. The enumeration of function values can be presented by a table. In the case of
switching and multiple-valued functions, such tables are called truth tables. In other
cases, the term function tables is used.

Example 1.2.1 Tables 1.2.1–1.2.4 show single output for D = {0, 1}3 and D =
{0, 1, 2}2, and two-output functions for D = {0, 1}2 and D = {0, 1} × {0, 1, 2}. In
these tables, the function values are shown with integer coding of the domain.

When the order of the assignments of values to the variables is fixed, it is sufficient
to present the right part of the table as a vector. In the case of switching and multiple-
valued functions, these vectors are called truth vectors. In general, the term function
vectors is used. Multiple-output functions are represented by separate vectors for each
output.

Sometimes we want to use the rich mathematical machinery developed for real
and complex-valued functions. This can be achieved by replacing logic functions by
their step function equivalents defined as follows.

A k-output p-valued function

f : {0, 1, . . . , p − 1}m → {0, 1, . . . , p − 1}k, (1.2.1)
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4 LOGIC FUNCTIONS

TABLE 1.2.1 Binary-Valued
Input Functions of Three
Variables.

z0z1z2 f (z)

0. 000 f (0)
1. 001 f (1)
2. 010 f (2)
3. 011 f (3)
4. 100 f (4)
5. 101 f (5)
6. 110 f (6)
7. 111 f (7)

TABLE 1.2.2 Multiple-Valued
Input Functions of Two
Ternary Variables.

z0z1 f (z)

0. 00 f (0)
1. 01 f (1)
2. 02 f (2)
3. 10 f (3)
4. 11 f (4)
5. 12 f (5)
6. 20 f (6)
7. 21 f (7)
8. 22 f (8)

TABLE 1.2.3 Binary-Valued
Input Two-Output Functions.

z0z1 f (z) = (f (0), f (1))

0. 00 f (0)(0) f (1)(0)
1. 01 f (0)(1) f (1)(1)
2. 10 f (0)(2) f (1)(2)
3. 11 f (0)(3) f (1)(3)

TABLE 1.2.4 Multiple-Valued
Input Two-Output Functions,
with p = 2 for z0 and p = 3
for z1.

z0z1 f (z) = (f (0), f (1))

0. 00 f (0)(0) f (1)(0)
1. 01 f (0)(1) f (1)(1)
2. 02 f (0)(2) f (1)(2)
3. 10 f (0)(3) f (1)(3)
4. 11 f (0)(4) f (1)(4)
5. 12 f (0)(5) f (1)(5)

written alternatively as the system of k single-output functions f = (f (s)), f (s) :
{0, 1, . . . , p − 1} → {0, 1 . . . , p − 1}, s = 0, 1, . . . , k − 1, can be represented by
a step function �(z) of a real variable, defined on a half-open interval [0, pm) as
follows.

Set

z =
m−1∑
s=0

zsp
m−1−s, (1.2.2)

f (z) =
k−1∑
s=0

f (s)pk−1−s. (1.2.3)

and we can represent the function (1.2.1) by a discrete function y = f (z), defined at
the points 0, 1, . . . , pm − 1 of the interval [0, pm−1).
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TABULAR REPRESENTATIONS OF DISCRETE FUNCTIONS 5

TABLE 1.2.5 Logic Function in
Example 1.2.2.

z0 z1 z2 f (0) f (1)

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

TABLE 1.2.6 Step Function for
the System of Logic Functions
in Example 1.2.2.

z f (z)

0 0
1 2
2 2
3 1
4 2
5 1
6 1
7 3

Finally, we complete y = f (z) to a step function �(z) by defining

�(z) = f (i), when z ∈ [i, i + 1), i = 0, 1, . . . , p − 1. (1.2.4)

We say that a step function �(z) represents the original logic function if �(z)
satisfies (1.2.4) for the function f (z) defined as in (1.2.1)–(1.2.3). The analysis and
synthesis problems for systems of logic functions can be based on their step-function
representations. Throughout the sequel, we use the same notation for the variables of
the functions and the vectors of their p-ary expansions, provided no confusion can
arise.

Example 1.2.2 Let p = 2 and consider the system of two switching functions defined
in Table 1.2.5. This table describes the operation of a one-digit adder, where y(0) is
the sum output and y(1) the carry output.

The corresponding function f (z) is defined in Table 1.2.6, and the step function
�(z) representing the system is shown in Fig. 1.2.1.

0 1 2 3 4 5 6 7 8

1

2

3

4

( )z

z

FIGURE 1.2.1 Step function �(z) for the system in Example 1.2.2.
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6 LOGIC FUNCTIONS

1.3 FUNCTIONAL EXPRESSIONS

In switching theory, the literal function za is assigned to a binary valued variable
z ∈ {0, 1} as

za =
{

z, if a = 0,

z, if a = 1,

where z is the negation of z.
In this notation, for a switching variable zi, there is the positive literal zi and the

negative literal zi, which express logic negation of the variable, that is, zi = 1 ⊕ zi,
where ⊕ is the logic EXOR, equivalently, addition modulo 2.

For a given number m of variables, products α0α1 · · · αm−1, where αi is either zi

or zi are called minterms.
For a given function f , minterms corresponding to the function values 0 and 1 are

called 0-minterms and 1-minterms, or false and true minterms, respectively.
Similarly, disjunctions (i.e., logical sums) of all variables α0 ∨ α1 ∨ · · · ∨ αm−1,

where αi is either zi or zi, are called maxterms.
Each minterm defines a function of m variables that equals 1 at exactly one element

of the domain. Each maxterm defines a function that equals 0 at exactly one element
of the domain. Thus, it is clear that any function can be represented as a disjunction
(logic sum) of minterms, or as a conjunction (logic product) of maxterms.

Example 1.3.1 For m = 3, the assignments of values for binary variables (000),
(010), and (111) correspond to minterms z0z1z2, z0z1z2, and z0z1z2.

For the functions f (0), f (1) in Table 1.2.5, 1-minterms are

f (0) z0z1z2, z0z1z2, z0z1z2, z0z1z2

f (1) z0z1z2, z0z1z2, z0z1z2, z0z1z2

For the same functions, 0-maxterms are

f (0) z0 + z1 + z2, z0 + z1 + z2, z0 + z1 + z2, z0 + z1 + z2,

f (1) z0 + z1 + z2, z0 + z1 + z2, z0 + z1 + z2, z0 + z1 + z2

Remark 1.3.1 In the design of digital devices, we use mathematical machinery from
many branches of mathematics where different names and different conventions exists
for essentially the same mathematical structures. For instance, switching functions
have properties that are found in finite fields, propositional logic, Boolean algebra,
and so on. We use the conventions and notations from various branches when it is
natural and there is no danger of confusion.
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FUNCTIONAL EXPRESSIONS 7

Example 1.3.2 Consider the simplest finite field Z2 = {0, 1} with the operations
⊕, · that are the addition and multiplication modulo 2. These are equivalently exp-
ressed by

⊕ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

In Boolean algebra or propositional logic, we have the same set {0, 1} and oper-
ations ∨, ·, and − defined by

∨ 0 1

0 0 1
1 1 1

· 0 1

0 0 0
1 0 1

−
0 1
1 0

It is clear that we can express any binary operation by the operations ⊕, · and the
constant 1. For instance,

x ∨ y = (x ⊕ y) ∨ xy,

x = 1 ⊕ x.

Table 1.3.1 shows some operators that are commonly used in logic design. For the
logic addition (disjunction) OR, the symbols + and ∨ are often used. Similarly, for
the logic multiplication (conjunction) AND, symbols ·, ∧, or simply juxtaposition are
also used.

If any operation can be expressed by the operations from a set A of operations, (e.g.,
A = {∨, ·, −}, and A = {∨, −}, A = {·, −}), then A is called functionally complete.
It is worth noticing that a single operation may form a functionally complete set. The
example of such an operation is Sheffer stroke, |, defined in the tabular form as

| 0 1

0 1 1
1 1 0

TABLE 1.3.1 Logic Operations.

∨ ⊕ ↓ · ≡ → |
x y OR EXOR NOR AND Equivalence Implication NAND

0 0 0 0 1 0 1 1 1
0 1 1 1 0 0 0 1 1
1 0 1 1 0 0 0 0 1
1 1 1 0 1 1 1 1 0
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or as the negation of the logic AND, that is, x|y = x ∧ y, and therefore also called
logic NAND. The completeness of this operation can be seen from the relations

x = x|x,

x ∨ y = x|y,

x ∧ y = (x|y)|(x|y),

x ⊕ y = (x + y) + xy.

The operation called logic NOR defined as the negation of logic OR also forms a
functionally complete set.

Definition 1.3.1 (Complete disjunctive normal form) The complete disjunctive nor-
mal form for a switching function f is the logic OR sum of 1-minterms for f . It is
also called the Sum-of-Product (SOP) expression for f .

Example 1.3.3 For the function f (z) = (f (0), f (1)) in Table 1.2.5, the complete
disjunctive normal form is

f (0) = z0z1z2 ∨ z0z1z2 ∨ z0z1z2 ∨ z0z1z2,

f (1) = z0z1z2 ∨ z0z1z2 ∨ z0z1z2 ∨ z0z1z2.

Notice that in Definition 1.3.1, the operation ∨ can be replaced by ⊕, since the
product terms are minterms, and, thus, no two can simultaneously be equal 1. This
replacement of logic operations is impossible in the reduced sum-of-product expres-
sions where the product terms are not necessarily minterms.

Example 1.3.4 For the function f (1) in Table 1.2.5, a SOP-expression is

f (1) = z0z1z2 ∨ z0z1z2 ∨ z0z1,

since z2 ∨ z2 = 1 for all the combinations of logic values 0 and 1, and therefore,
z0z1z2 ∨ z0z1z2 can be reduced to z0z1.

From SOP expressions, Product-of-Sum (POS) expressions can be derived by the
application of the De Morgan rules from the Boolean algebra. For more information
about these and related representations of switching functions, see References 41,395,
and 491.

A single variable switching function can always be written as

f (z) = zf0 ⊕ zf1 = zf0 ∨ zf1, (1.3.1)

where f0 and f1 are the cofactors of f with respect to the variable z, which means,
f0 = f (z = 0) and f1 = f (z = 1).
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FUNCTIONAL EXPRESSIONS 9

This representation is called the Shannon expansion. A two-variable function
f (z0, z1) can be represented as a sum-of-products of variables by the recursive appli-
cation of the Shannon expansion

f (z0, z1) = z0f (z0 = 0, z1) ⊕ z0f (z0 = 1, z1)

= z0(z1f (z0 = 0, z1 = 0) ⊕ z1f (z0 = 0, z1 = 1))

⊕z0(z1f (z0 = 1, z1 = 0) ⊕ z1f (z0 = 1, z1 = 1))

= z0z1f (z0 = 0, z1 = 0) ⊕ z0z1f (z0 = 0, z1 = 1)

⊕z0z1f (z0 = 1, z1 = 0) ⊕ z0z1f (z0 = 1, z1 = 1).

A generalization to functions of an arbitrary number of variables is straightforward
and by deleting the products corresponding to the function values 0 yields the complete
disjunctive normal form.

This interpretation permits generalization of this form of functional expressions
to multiple-valued logic functions. For simplicity of notation, these definitions will
be introduced and explained by an example of three-valued functions.

Definition 1.3.2 (Characteristic functions) For a multiple-valued variable zj tak-
ing values in the set {0, 1 . . . , p − 1}, j = 0, . . . , m − 1, the characteristic functions
Ji(zj), i = 0, 1, . . . , p − 1 are defined as Ji(zj) = 1 for zj = i, and Ji(zj) = 0 for
zj �= i.

Example 1.3.5 For p = 3 and m = 2, the characteristic functions Ji(zj) are given
in Table 1.3.2.

Definition 1.3.3 (Generalized Shannon expansion) The generalized Shannon expan-
sion for three-valued logic functions is defined as

f = J0(zi)f0 + J1(zi)f1 + J2(zi)f2,

where fi, i = 0, 1, 2 are the cofactors of f for zi ∈ 0, 1, 2.

TABLE 1.3.2 Characteristic Functions for p = 3, n = 2.

z0z1 J0(z0) J1(z0) J2(z0) J0(z1) J1(z1) J2(z1)

00 1 0 0 1 0 0
01 1 0 0 0 1 0
02 1 0 0 0 0 1
10 0 1 0 1 0 0
11 0 1 0 0 1 0
12 0 1 0 0 0 1
20 0 0 1 1 0 0
21 0 0 1 0 1 0
22 0 0 1 0 0 1
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Example 1.3.6 For p = 3 and m = 2, expanding with respect to z0

f (z0, z1) = J0(z0)f (z0 = 0, z1) + J1(z0)f (z0 = 1, z1) + J2(z0)f (z0 = 2, z1).

After application f the generalized Shannon expansion with respect to z1, it follows

f (z0, z1) = J0(z1)(J0(z0)f (z0 = 0, z1 = 0) + J1(z0)f (z0 = 1, z1 = 0)

+J2(z0)f (z0 = 2, z1 = 0)) + J1(z1)(J0(x0)f (z0 = 0, z1 = 1)

+J1(z0)f (z0 = 1, z1 = 1) + J2(z0)f (z0 = 2, z1 = 1))

+J2(z1)(J0(z0)f (z0 = 0, z1 = 2) + J1(z0)f (z0 = 1, z1 = 2)

+J2(z0)f (z0 = 2, z1 = 2))

= J0(z1)J0(z0)f (z0 = 0, z1 = 0) + J0(z1)J1(z0)f (z0 = 1, z1 = 0)

+J0(z1)J2(z0)f (z0 = 2, z1 = 0) + J1(z1)J0(z0)f (z0 = 0, z1 = 1)

+J1(z1)J1(z0)f (z0 = 1, z1 = 1) + J1(z1)J2(z0)f (z0 = 2, z1 = 1)

+J2(z1)J0(z0)f (z0 = 0, z1 = 2) + J2(z1)J1(z0)f (z0 = 1, z1 = 2)

+J2(z1)J2(z0)f (z0 = 2, z1 = 2)).

1.4 DECISION DIAGRAMS FOR DISCRETE FUNCTIONS

All logic (switching) functions can be represented by truth tables or when the order of
variables is fixed by truth vectors. However, in practical applications, the number of
variables can be large (tens or even hundreds) and use and manipulation of truth vectors
is impractical or impossible. The same is true also for SOP and POS representations,
which may consists of a large number (millions) of terms.

If the function possesses suitable properties, it may have an alternative representa-
tion that makes it possible to determine the value of the function for any assignment
of variables.

The central theme of this book is to represent the function f (z) or its integer-valued
equivalent �(z) by finding a sparse representation for �(z) in terms of suitably chosen
basis functions. These basis functions are intimately connected with another represen-
tation called Decision Diagrams (555) that often lead to very compact representations
and also allow efficient manipulation of functions in both direct and spectral repre-
sentations.

In this section, we briefly present basic definitions from decision diagram rep-
resentations of logic functions restricting the considerations to notions that will be
used latter in the book. Further information about decision diagrams can be found for
example in References (130, 499, and 555). For more detail about the many ways to
represent logic functions, we refer for example to References (41 and 491).
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We note that representations of logic functions by decision diagrams have been
widely used in industry (121,491), and there are quite a few tools and the correspond-
ing software packages for the design of devices such that their behavior is defined by
decision diagrams, see Reference 661 and references therein.

1.4.1 Decision Trees

Recursive application of the Shannon decomposition (1.3.1) to all the variables in a
given switching function f to derive the complete disjunctive normal form for f can
be represented by a Binary Decision Tree (BDT)(30,76).

Example 1.4.1 Figure 1.4.1 shows BDT representing the decomposition for three-
variable switching functions f . This tree is a graphical representation of the decom-
position of f with respect to all the variables by recursive application of the Shannon
expansion f = zif0 ⊕ zif1, where f0 = f (zi = 0) and f1 = f (zi = 1).

1. The Shannon expansion with respect to z0 produces

f = z0f0 ⊕ z0f1.

2. The Shannon expansion with respect to z1 yields

f0 = z1f00 ⊕ z1f01, f1 = z1f10 ⊕ z1f11.

3. After performing the Shannon expansion with respect to z2,

f00 = z2f000 ⊕ z2f001, f01 = z2f010 ⊕ z2f011,

f10 = z2f100 ⊕ z2f101, f11 = z2f110 ⊕ z2f111.

S

S

S

S SS S

z 1

z 0

z 1

z 2 z 2z 2 z 2

z 1

z 0

z 1

z 2 z 2z 2 z 2

f000 f001 f010 f011 f100
f101 f110 f111

f

f 0

f 00 f 01
f 10 f 11

f 1

_

_ _

_ _ _ _

FIGURE 1.4.1 BDT for m = 3.
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1 1 1 1 10 0 0

z 0

z 1 z 1

z 2 z2 z 2 z 2 z2
z2 z 2 z 2

z1 z 1

z 0
_

_
_

_ _ _ _

S

f

0,0

S1,0 S 1,1

S2,0 S2,1 S2,2
S2,3

FIGURE 1.4.2 BDT for the function f in Example 1.4.2.

It follows that BDT in Fig. 1.4.1 represents f through the SOP-expression

f = z0z1z2f000 ⊕ z0z1z2f001 ⊕ z0z1z2f010 ⊕ z0z1z2f011 (1.4.1)

z0z1z2f100 ⊕ z0z1z2f101 ⊕ z0z1z3f110 ⊕ z0z1z2f111.

If products assigned to the 0-value of f are removed from this expression, that is,
products of labels at the edges along paths pointing to the constant node 0, we get
the complete disjunctive form.

Example 1.4.2 Figure 1.4.2 shows BDT for the three-variable function f given
by the truth-vector F = [1, 0, 0, 1, 0, 1, 1, 1]T . In this figure, nodes are labeled by
the symbol Si,j , where S refers to the Shannon decomposition rule, the first index
corresponds to the level in the diagram, thus, it is equal to the index of the decision
variable at the level, and the second index shows the position of the node at the level.
Such notation is convenient in calculations over decision diagrams, and it will be used
in subsequent discussions referring to this example. In programming implementations
of related algorithms, it is usually realized in the form of linked lists. When possible,
the notation is simplified by using just the symbol for the decomposition rule and
omitting the indices. Alternatively, a node can be labeled by the decision variable, in
which case edges are labeled by values a variable can take, which in binary decision
diagrams, i.e., diagrams with two outgoing edges per node, usually are logic values
0 and 1.

BDT is a canonic representation of f in the same way as the complete disjunctive
normal form is a canonic representation of f .

As can be seen from Fig.1.4.1, a BDT consists of the root node, internal nodes
called nonterminal nodes and constant nodes. Nonterminal nodes are distributed over
levels, each level corresponding to a variable zi in f by starting from the root node
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corresponding to z0. The nodes corresponding to ith variable form the ith level in the
decision tree. Therefore, indices in the labels of nonterminal nodes show the level
and the position of the node at the level, respectively. For a switching function of m

variables, the number of nodes at the level i is 2i, i = 0, 1, . . . , m − 1. Since variables
appear in a fixed order, such BDT is the ordered BDT.

Each path from the root node down to the constant nodes corresponds to a minterm
in (1.4.1), determined as the product of labels at the edges. Alternatively, edges can
be labeled by 0 and 1 instead zi and zi, respectively. The values of constant nodes in
the BDTs are the values of the represented functions. Thus, they are elements of the
truth-vector F of f .

1.4.2 Decision Diagrams

If in F there are some equal subvectors of orders 2k, k ≤ m − 2, then in BDT some
isomorphic subtrees appear. Thanks to that, BDT can be reduced into a Binary Deci-
sion Diagram (BDD) (76) derived from BDT by using the reduction rules defined as
follows.

Definition 1.4.1 (BDD reduction rules)

1. If two descendent nodes of a node are identical (Fig. 1.4.3(a)), then delete the
node and connect the incoming edges of the deleted node to the corresponding
successor.

2. Share isomorphic subtrees (Fig. 1.4.3(b)).

In a BDD, edges longer than one, that is, connecting nodes at nonsuccessive levels
can appear. For example, the length of an edge connecting a node at the (i − 1)th level
with a node at the (i + 1)th level is two.

Definition 1.4.2 (Cross points) Cross point is a point where an edge longer than
one crosses a level in the BDD.

By including cross points as nodes, all the edges of the decision diagram have
length equal to 1. This is convenient, since manipulations of decision diagrams are

ggg

a(b+c)

a

b

d
d

c

e
e

(a) (b)

FIGURE 1.4.3 BDD reduction rules.
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z 1
z 1
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z
0,0

1,0 1,1

2,02,12,0

0

_

_ _
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S

f

S S

S S
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FIGURE 1.4.4 BDD for f in Example 1.4.2.

performed over the successive levels. In practical implementations, the cross points
are considered as nodes with both outgoing edges pointing to the same node.

Example 1.4.3 Figure 1.4.4 shows a BDD for f in Example 1.4.2. It is derived
from the BDT in Fig. 1.4.2 in the following way. Since, both outgoing edges of the
node S2,3 point to the value 1, no decision is made in this node, and therefore, it
can be deleted and the incoming edges directed toward the corresponding constant
node. In this way, a path of the length 2 appears and the impact of the deleted node
is represented formally by the cross point c2,0. Subtrees rooted in the nodes S2,1 and
S2,2 are isomorphic, and represent the same subfunction whose truth-vector is [0, 1].
Therefore, the subtree rooted at S2,2 is deleted, and the incoming edge of the node
S2,2 pointed to the node S2,1.

To get more compact representations, Free BDDs, where the order of variables
along different paths may be different, are also considered (56). The compactness is
achieved at the price of increased complexity in constructing such diagrams and proper
selecting of order of variables, and more complex algorithms for manipulation with
such diagrams (195). Thus, these diagrams provide an opportunity for the trade-off
between the compactness and efficiency of manipulations depending on the intended
applications.

When logic functions are represented by decision diagrams, the constant nodes
have values equal to 0 or 1. Often we want to represent some other discrete functions
f : {0, 1}m → R by a decision diagram and then the constant nodes have values from
R. These decision diagrams are often called Multiterminal Binary Decision Diagrams
(MTBDDs) (103–105).

Example 1.4.4 Figure 1.4.5 shows a decision diagram for a function f : {0, 1}5 →
{0, 1, 2} given by the vector of function values

F = [0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2]T .

Because multioutput logic functions, that is, systems of functions, can be repre-
sented by the binary coding, these functions can be represented by a multiterminal
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FIGURE 1.4.5 MTBDD of f in Example 1.4.4.

BDD (499). Alternatively, they can often be compactly represented by Shared BDDs
(372). In these, each output of the multioutput function has its unique root node, but
(whenever possible) “isomorphic subfunctions” are represented by a single copy of
the corresponding parts of the BDDs.

Example 1.4.5 The integer-valued function in Example 1.4.4 can be considered as
the multioutput switching function f = (f (0), f (1)), where f (0) and f (1) are given by
the truth vectors

F(0) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1]T ,

F(1) = [0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0]T .

These truth vectors are determined by coding the values 0, 1, 2 in f by 0 = (0, 0), 1 = (0, 1),
and 2 = (1, 0).

Figure 1.4.6 shows SBDD, representing thus determined f (1) and f (0). The value of f is
the sum 2f (0) + f (1) of values represented by the root nodes in this SBDD.

z 0 z 0

z 1
z 1

z 2
z2

z 3

z3
z 3

z 3z 4 z
4

z 4 z 4

z 3
z 3

z 3z 3

z 2 z
S

S

S

S S

SS

S S

10

S

S S
ff

2

z 1
z 1

z 0
z 0

_ _

_ _

_ _

_
_ _

__ _

(0) (1)

FIGURE 1.4.6 SBDD of f in Example 1.4.4.
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FIGURE 1.4.7 MDT for p = 3, m = 2.

1.4.3 Decision Diagrams for Multiple-Valued Functions

Extension of decision diagrams to multivalued functions and in general discrete func-
tions is straightforward by allowing more than two outgoing edges per nodes. These
decision diagrams are called Multiple-Place Decision Diagrams (MDDs) (534). In
MDDs, edges are labeled by Xs

i , which shows that the p-valued variable Xi takes
along this edge the value s, where s ∈ {0, 1, . . . , p − 1}.

Example 1.4.6 Figure 1.4.7 shows a Multiple-Place Decision Tree (MDT) for func-
tions when p = 3, m = 2.

The basic characteristics of decision diagrams are

1. Size—the number of nodes in the diagram.

2. Depth—the number of levels.

3. Width—the maximum number of nodes per level.

4. The number of outgoing edges per node.

5. The number of constant nodes for multiterminal diagrams.

6. The number and the complexity of interconnections.

Each of these characteristics has a strong influence to the efficiency of applications
of decision diagrams. Therefore, reduction of these characteristics or at least some of
them in a diagram representing a given function is a very important task and related
methods are extensively discussed in the literature. An approach to find compact
decision diagrams is to use various decomposition rules to assign a given function to
a decision diagram. In this way, a variety of decision diagrams has been defined and
a list of them can be found in Reference 555. In this respect, BDDs, MTBDDs, and
MDDs can be viewed as the basic decision diagrams since they are defined by using
the identity mapping to assign a function to the diagram.

1.5 SPECTRAL REPRESENTATIONS OF LOGIC FUNCTIONS

Spectral representations of discrete functions are the main theme of this book. As it
will be seen in next chapters of this book, there are quite a few problems in analysis,
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design, testing, and diagnosis of digital devices that are much easier to solve if the
logic functions describing these devices are converted to the spectral (generalized
frequency) domain.

This situation is very similar to the application of Fourier transforms to analysis
and design of analog devices. In fact, we are going to exploit the generalized Fourier
transform for logic functions and to discuss analysis, design, and testing techniques
based on these spectra. We note that the transition from the original domain to the
spectral domain may result in a drastic reduction of the complexity of a solution.

In general, a spectral representation of a discrete function means that instead
of representing the (vector of the) function values, we represent the (vector of the)
function values after applying a suitable spectral transform to the function considered.

These representations are entirely equivalent. As long as we are able to determine
all values of the function, the particular form of the representations is unimportant.
However, from the practical point of view, there are very important differences. First,
it may happen that the direct representation requires, for example, a large number of
minterms of the full vector of the function values need to be stored while after the
right linear transform, the corresponding coefficient vector would have a very simple
form. Second, from the linearly transformed vector of function values, that is, vector
of the coefficients, the spectrum, it may be possible to determine certain properties
of the function that would be rather difficult to determine directly (spectral analysis).
For instance, the transformed form may reveal particular regularities of the function
that allow the use of specific types of circuits in the hardware implementations. We
note that it is possible to place large numbers of powerful computing elements on a
single chip and this makes the high regularity of a representation very desirable.

In this section, we briefly discuss the spectral representations of logic functions
and their implementations. In latter chapters, a more profound exposition of these
techniques based on classical Fourier analysis and abstract harmonic analysis is given.

Since we are mainly interested in representations of logic functions, we will in-
troduce here spectral techniques by referring to the above introduced notions from
switching theory, in particular, by starting from the spectral interpretation of the Shan-
non expansion written in the matrix form.

Recall that the Kronecker product of an (m × n) matrix A and a (p × q) matrix B
is the (mp × nq) matrix C

C =




a1,1B a1,2B · · · a1,nB

a2,1B a2,2B · · · a2,nB

· · · · · · · · · · · ·
am,1B am,2B · · · am,nB


 .

The Kronecker product satisfies many useful properties, such as

(A ⊗ B)(C ⊗ D) = AC ⊗ BD,

(A ⊗ B)T = AT ⊗ BT ,
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and

(A ⊗ B)−1 = A−1 ⊗ B−1,

if A and B are nonsingular and where AT and A−1 are the transpose and the inverse
matrices of A.

Using this notation, the Shannon expansion can be compactly written for functions
of m variables.

In the rest of this section and in Section 1.6, in relations with vectors and matrices,
all the multiplications and additions are assumed to be modulo 2.

In the matrix notation, the Shannon expansion with respect to the variable zi can
be written as

f = [
zi zi

] [
f (zi = 0)

f (zi = 1)

]
= [

zi zi

] [
1 0

0 1

] [
f (zi = 0)

f (zi = 1)

]
. (1.5.1)

The vector of minterms can be expressed formally as Kronecker product of (1 × 2)
matrices

[
zi zi

]
as follows:

[ z0z1 z0z1 z0z1 z0z1 ] = [ z0 z0 ] ⊗ [ z1 z1 ],

[ z0z1z2 z0z1z0 z0z1z2 · · · z0z1z2 ]

= [ z0 z0 ] ⊗ [ z1 z1 ] ⊗ [ z2 z2 ],

and in the same way for an arbitrary number of variables.
Thus, we can write for m = 2,

f = ([
z0 z0

] ⊗ [
z1 z1

])



f00

f01

f10

f11




= ([
z0 z0

] ⊗ [
z1 z1

]) ([
1 0

0 1

]
⊗

[
1 0

0 1

]) 


f00

f01

f10

f11


 (1.5.2)

and for the case of m variables

f = X(m)F = X(m)I(m)F, (1.5.3)
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where

X(m) =
m−1⊗
i=0

Xi(1), Xi(1) = [
zi zi

]
,

I(m) =
m−1⊗
i=0

I(1) = I(1) ⊗ · · · ⊗ I(1)︸ ︷︷ ︸
m

, I(1) =
[

1 0

0 1

]
,

and F = [f (0), . . . , f (2m − 1)]T is the truth vector of f written with integer encoding
of variables.

Notice that the entries of X(m) are minterms. We can view a minterm as a function
{0, 1}m → {0, 1} or, by using the integer encoding, as a function {0, 1, . . . , 2m −
1} → Z, where Z is the set of integers. In this interpretation (1.5.3) expresses f as
a linear combination of the basis functions which are defined by minterms. These
functions are clearly linearly independent as each minterm equals 1 for exactly one
value z = ∑m−1

i=0 2m−1−izi and is zero otherwise. Thus, they form a basis and (1.5.3)
is the (trivial) spectral representation of f in the Shannon basis.

Figure 1.5.1 shows the waveforms of these functions for m = 3.

r z(0, )

r z(1, )

r z(2, )

r z(3, )

r z(4, )

r z(5, )

r z(6, )

r z(7, )
0 1 2 3 4 5 6 7 z

FIGURE 1.5.1 Waveforms of basis functions in the complete disjunctive normal form.
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Various spectral transforms are defined by selecting different basis functions. For
instance, we get the Reed–Muller transform if in (1.5.3) we replace the matrices
Xi(1) = [ zi zi ] and I(1) with XRi (1) = [ 1 zi ] and R(1) = [ 1 0

1 1
]
, respectively.

The relation obtained in this way

f = [
1 zi

] [
1 0

1 1

] [
f0

f1

]
(1.5.4)

is the matrix form of the positive Davio expansion that can be derived from the
Shannon expansion as follows:

f = zif0 ⊕ zif1 = (1 ⊕ zi)f0 ⊕ zif1 = 1 · f0 ⊕ zi(f0 ⊕ f1).

The matrix R(1) is called the basic Reed–Muller matrix.
Repeated application of (1.5.4) to all the variables in f can be expressed through

the Kronecker product as in the case of the Shannon expressions. In that way, for a
function f defined by the vector F = [f (0), . . . , f (2m − 1)]T , the Positive Polarity
Reed–Muller (PPRM) polynomial is given in matrix notation by

f = XR(m)R(m)F, (1.5.5)

where

XR(m) =
m−1⊗
i=0

[
1 zi

]

and

R(m) =
m−1⊗
i=0

R(1) = R(1) ⊗ · · · ⊗ R(1)︸ ︷︷ ︸
m

,

where R(1) is the basic Reed–Muller matrix defined above, with calculations carried
out modulo 2.

The matrix R(m) is called the Reed–Muller matrix and its columns the Reed–
Muller functions. From (1.5.5), the ith Reed–Muller function is given by

rm(i, z) = rmi(i0, . . . , im−1; z0, . . . , zm−1) = (z0)i0 · · · (zm−1)im−1 ,

where i = ∑m−1
j=0 ij2m−1−j .

Notice that here (zi)k denotes the exponentiation in the sense that (zi)0 = 1 for
every zi.
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R(3) =




1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1




.

FIGURE 1.5.2 Reed–Muller matrix for m = 3.

Example 1.5.1 Figure 1.5.2 shows the Reed–Muller matrix for m = 3. Figure 1.5.3
shows the waveforms of the Reed–Muller step functions for m = 3.

The concepts of the sum and integral on the finite discrete structures coincide
and, thus, also the concepts of the Fourier series-like representation and the Fourier-
like transform. Therefore, the matrix representation of the PPRM polynomial can be
alternatively considered as a spectral transform for switching functions defined in
terms of the Reed–Muller functions.

rm(0,z)

rm(1,z)

rm(2,z)

rm(3,z)

rm(4,z)

rm(5,z)

rm(6,z)

rm(7,z)

z0 1 2 3 4 5 6 7

FIGURE 1.5.3 Waveforms of Reed–Muller functions for m = 3.
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The vector Sf = [Sf (0), . . . , Sf (2m − 1)]T defined by

Sf = R(m)F (1.5.6)

is the vector of Reed–Muller transform coefficients. We will call Sf the Reed–Muller
spectrum of f . In the Russian literature, this transform is usually reported as the
conjunctive transform (24, 27, 323).

Relation (1.5.6) together with the relation

f = XR(m)Sf (1.5.7)

form the Reed–Muller transform pair consisting of the direct (1.5.6) and the inverse
(1.5.7) Reed–Muller transforms. Note that the basic Reed–Muller matrix is self-
inverse over GF (2). Thanks to the properties of the Kronecker products, the same
applies to R(m).

Example 1.5.2 For the three-variable function f given by the truth-vector F =
[1, 0, 0, 0, 0, 1, 1, 1, ]T , the Reed–Muller spectrum is calculated as

Sf = R(3)F

= [1, 1, 1, 1, 1, 0, 0, 0]T ,

where R(3) is the Reed–Muller matrix in Fig. 1.5.2. From (1.5.7), the Reed–Muller
expression for f is

f = 1 ⊕ z0 ⊕ z1 ⊕ z2 ⊕ z1z2.

Basic properties of the Reed–Muller transform are listed in Table 1.5.1 (116).
Thanks to its properties, the Reed–Muller transform can be considered as a
Fourier-like transform in Boolean algebra or Boolean ring. In the subsequent
chapter, the Reed–Muller transform will be derived from the Walsh (Fourier)
transform.

TABLE 1.5.1 The Properties of the Reed–Muller Transform Considered as a
Transform in the Boolean Algebra (B, ∨, ∧, −, 0, 1).

If h(x) = f (x) ⊕ g(x), then Sh(w) = Sf (w) ⊕ Sg(w)
If h(x) = f (x) ∨ g(x), then Sh(w) = ⊕

u∨v=w
Sf (u)Sg(v)

If h(x) = f (x) ∧ g(x), then Sh(w) = Sf ⊕ Sg(w)
⊕

u∨v=w
Rf (u)Rg(v)

Convolution theorem
If Sh(w) = Sf (w) ∨ Sg(w), then h(x) = ⊕

y∨z=x
f (y)g(z)
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1.6 FIXED-POLARITY REED–MULLER EXPRESSIONS
OF LOGIC FUNCTIONS

As noticed above, the Reed–Muller expressions where all the variables are repre-
sented as the positive literals are called positive polarity Reed–Muller expressions. A
further generalization of Reed–Muller representations can be derived by taking the
negative literals for variables in expanding a given function f with respect to a given
basis when the basis functions can be expressed in terms of switching variables. For
instance, the negative Davio expansion f = 1 · f1 ⊕ xi(f0 ⊕ f1) is derived in this
way.

The use of the negative Davio expansion together with the positive Davio expan-
sion, permits the derivation of the Fixed Polarity Reed–Muller (FPRM) polynomials
(487, 488, 494). In FPRMs, we perform the expansion of f by freely selecting either
the positive or the negative Davio expansion for each variable in f .

These polynomials with different polarity for variables are characterized by the
polarity vectors H = (h0, . . . , hm−1) whose ith coordinate hi = 1 shows that the
corresponding variable is represented by the negative literal xi in the polynomial
representation. It follows that in the matrix notation, the use of a negative literal implies
the permutation of columns in the ith basic Reed–Muller matrix in the Kronecker
representation of R(m) (541).

In that setting, for a given polarity vector H , the FPRM polynomial is given in the
matrix notation by

f (z0, . . . , zm−1) =
(

m−1⊗
i=0

[
1 z

hi
i

]) (
m−1⊗
i=0

Rhi
i (1)

)
F,

where

z
hi
i =

{
zi, hi = 0;

zi, hi = 1,
Rhi

i (1) =




[
1 0

1 1

]
, hi = 0;

[
0 1

1 1

]
, hi = 1.

Notice that in the usual terminology in the study of fixed-polarity expressions,
see for instance Reference (489), the value of the coordinate hi in the polarity vector
means choice between the positive and the negative literals for the variable zi and not
the definition of the literal itself. In this setting, the zero polarity, that is, hi = 0 for
each i is called also the positive polarity.

The matrix notation permits interpretation of the coefficients in FPRMs as the spec-
tral coefficients of fixed polarity Reed–Muller transforms defined by the transform
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matrices

RH (m) =
m−1⊗
i=0

Rhi
i (1),

for different choices of H = (h0, . . . , hm−1).
The positive-polarity Reed–Muller transform described in the previous section

(see (1.5.5)–(1.5.7)) is the special case of this transform for the polarity H =
(h0, . . . , hm−1) = (0, 0, . . . , 0).

For a given positive-polarity Reed–Muller spectrum, the Reed–Muller spectrum
for the polarity H = (h0, . . . , hm−1) is determined by the permutation of the i =
(i0, . . . , im−1)th coefficient into the (i0 ⊕ h0, . . . , im−1 ⊕ hm−1)th coefficient, since
RH (m) is derived from R(m) by the permutation of columns in which the ith column is
shifted to the position (i0 ⊕ h0, . . . , im−1 ⊕ hm−1). However, for a given m-variable
function f , the use of different polarity Reed–Muller matrices produces 2m different
Reed–Muller spectra. The fixed polarity Reed–Muller spectrum with the minimum
number of nonzero coefficients is the minimum Reed–Muller expansion for f . If for a
given function f , there are two FPRMs with the same number of nonzero coefficients,
the expression with the smaller number of literals in product terms to which the
nonzero coefficients are assigned is usually selected as the minimum FPRMs.

Example 1.6.1 Figure 1.6.1 shows the Reed–Muller transform matrix for m = 3
and the polarity vector H = (0, 1, 0). Compared to the positive-polarity Reed–
Muller matrix, that is, the Reed–Muller matrix for H = (0, 0, 0) in Fig. 1.5.2, the
indices of columns in R(010)(3) are defined as (i0 ⊕ h0, i1 ⊕ h1, i2 ⊕ h2). Thus,
(0, 1, 2, 3, 4, 5, 6, 7) → (2, 3, 0, 1, 6, 7, 4, 5). With this matrix, for f given by the
truth-vector F = [1, 0, 0, 1, 0, 1, 1, 1]T , the Reed–Muller expansion forH = (0, 1, 0)
is given by

f = z2 ⊕ z1 ⊕ z0 ⊕ z0z2 ⊕ z0z1z2.

R(010)(3) =




0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

0 0 1 0 0 0 1 0

0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1




.

FIGURE 1.6.1 Reed–Muller matrix for m = 3 and the polarity vector H = (010).
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Example 1.6.2 For f in Example 1.6.1, the Reed–Muller expansions with five
product terms are derived for the polarity vectors H = (0, 0, 0), H = (0, 0, 1), H =
(0, 1, 0), H = (1, 0, 0), H = (1, 1, 1). Each of other three Reed–Muller expansions
have six product terms. Therefore, the positive-polarity Reed–Muller expansion for
f can be used as the minimal Reed–Muller expansion for f , the same as that in
Example 1.6.1.

1.7 KRONECKER EXPRESSIONS OF LOGIC FUNCTIONS

Further generalizations can be achieved by allowing to select either the Shannon,
positive Davio, or negative Davio expansion for different variables in the functions
that should be represented. In this way, the Kronecker transforms are defined, see
Reference 555. The main idea is to increase the number of possible basis functions to
3m compared to 2m in FPRMs, and then for the given function f , select the spectrum
with the fewest number of nonzero coefficients.

In matrix notation, the spectra of Kronecker transforms are calculated as

Sf = K−1(m)F,

where K−1(m) is the inverse of the Kronecker transform matrix K(m), determined as

K(m) = ⊗m−1
i=0 Ki(1),

where K(1) ∈ {I2, R(1), R(1)}. Notice that in determination of K−1, we use the prop-

erties that I2 and R(1) are self-inverse matrices, while R
−1

(1) =
[

1 1
1 0

]
, which in

symbolic notation corresponds to [ 1 zi ].
The corresponding functional expressions are determined as

f = X(m)Sf (m),

where

X(m) =
m−1⊗
i=0

Xi(1),

with Xi(1) is either
[
zi zi

]
,
[

1 zi

]
or

[
1 zi

]
.

The following example illustrates Kronecker expressions and a possibility to trade-
off between the number of nonzero coefficients and the number of literals in them by
selecting different expansion rules for variables.

Example 1.7.1 Table 1.7.1 shows coefficients in six randomly selected Kronecker
expressions for the function f in Example 1.6.1. The analytical representations for
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TABLE 1.7.1 Assignment of Decomposition Rules and the Coefficients in Kronecker
Expressions for f in Example 1.6.1

Decomposition Coefficients Number of Coefficients

1. S,pD,nD [0, 1, 1, 0, 1, 1, 0, 1] 5
2. pD,S,nD [0, 1, 1, 1, 1, 0, 0, 1] 5
3. pD,S,S [1, 0, 0, 1, 1, 1, 1, 0] 5
4. S,pD,S [1, 0, 1, 1, 0, 1, 1, 0] 5
5. pD,nD,nD [1, 1, 1, 0, 0, 1, 1, 1] 6
6. S,S,nD [0, 1, 1, 1, 1, 1, 1, 0] 6

the first three expressions are

f = z0z2 ⊕ z0z1 ⊕ z0 ⊕ z0z2 ⊕ z0z1z2,

f = z1z2 ⊕ z1 ⊕ z1z2 ⊕ z0z1 ⊕ z0z1z2,

f = z1z2 ⊕ z1z2 ⊕ z0z1z2 ⊕ z0z1z2 ⊕ z0z1z2.

For the illustration, we explain calculation of the first Kronecker expression given
above.

Since in this case, the assignment of the decomposition rules or basic transforms
is (S, PD, nD), the set of basic functions is defined by

X(3) = [
z0 z0

] ⊗ [
1 z1

] ⊗ [
1 z2

]
.

When written as columns of a matrix, these basis functions are

K(3) =
[

1 0

0 1

]
⊗

[
1 0

1 1

]
⊗

[
1 1

1 0

]

=




1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 0




.

The inverse Kronecker transform is

K−1(3) =
[

1 0

0 1

]
⊗

[
1 0

1 1

]
⊗

[
0 1

1 1

]
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=




0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 1 0 1

0 0 0 0 1 1 1 1




.

The Kronecker spectrum for this assignment of basic matrices is calculated as

Sf (3) = K−1(3)F

= [0, 1, 1, 0, 1, 1, 0, 1]T

The Kronecker expression is determined as X(3)Sf , which produces the expression
shown above.

These Kronecker expressions differ in the number of nonzero coefficients and the
number of literals in product terms. Each of the expressions can be input in a mini-
mization program and, in this case, will result in some further optimized form, which,
however, will not preserve the regularity of expressions in the sense of an a priory
determined way of assigning positive or negative literals to the variables.

1.8 CIRCUIT IMPLEMENTATION OF LOGIC FUNCTIONS

Devices intended for the processing of discrete information may be divided into two
classes:

1. devices without memory, that is, combinational networks, whose output de-
pends on the present input and

2. devices with memory, sequential networks, whose output and the next state are
determined by the input and the internal state of the device.

In devices with memory, two blocks can be distinguished, a combinational network
and the block consisting of memory elements (247,313). Therefore, we will first
discuss systems of functions describing the operation of combinational networks.

The operation of a combinational network built from elements with p, (p ≥ 2)
stable states, m p-ary inputs, and k p-ary outputs is described by a system of k p-
valued logic functions of m variables. Conversely, a given system of logic functions
can be implemented, that is, realized in hardware or software, by combinational
networks. Design of such a network is called synthesis of the network. In many cases,
both the synthesis procedure and the network produced are simplified if the function
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P P

f
+

Memory for
spectral coefficients

Generator of
basis functions

Multiplication in Addition in

FIGURE 1.8.1 Spectral implementations of logic circuits.

realized expresses some peculiar properties. Therefore, logic functions are often first
analyzed to detect their properties and classified with respect to them.

The analysis and synthesis problems may be solved with the help of Boolean al-
gebra or the corresponding algebraic structures in binary or multiple-valued logic,
respectively (247,313,633). The main shortcoming of these widely used tools, how-
ever, is that in the basic problems of the above type, they require an exhaustive
examination of all alternatives (the so-called brute-force method). Since the number
of alternatives may increase exponentially with the number m of variables, the actual
use of these tools in engineering practice is limited (even when powerful computers
are employed) to problems involving comparatively small number of variables.

In this book, we shall examine another approach to analysis, synthesis, and testing
based on the use of spectral expansions of systems of logic functions. The systems
will be represented by functions of a continuous variable, and the latter expanded
in finite orthogonal series. The pros and cons of this “spectral” approach will be
considered in Section 9.5, where it will also be compared with Boolean algebra and
multiple-valued logic and recommendations will be made as to its use.

Figure 1.8.1 illustrates the basic principle of circuit implementation by spectral
representations of logic functions. The network consists of a generator of basis func-
tions, and a memory to store spectral coefficients that will be assigned to the basis
functions by calculating the spectrum of the function that will be realized. The ba-
sis functions are multiplied with spectral coefficients and then added to produce the
function required. The addition and multiplication are in the field P that may be a
finite field or the field of real or complex numbers.

The following example explains that classical two-level implementations of
switching functions can be interpreted as a particular case of spectral implementa-
tions in the same way as the disjunctive normal form is a spectral representation in
terms of a particular set of basis functions. In this case, each basis function is realized
by a single AND circuit providing sufficient number of inputs. Spectral coefficients
are identical to function values, and those equal to zero after multiplication eliminate
some of the basis functions, that is, the related AND circuits. The addition of outputs
of AND circuits corresponding to the basis functions to which nonzero coefficients
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FIGURE 1.8.2 Two-level implementation of switching function in Example 1.8.1.
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FIGURE 1.8.3 Two-level implementation of f in Example 1.8.1 though Reed–Muller
coefficients.
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FIGURE 1.8.4 Simplified two-level
implementation of f in Example 1.8.1.
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FIGURE 1.8.5 Simplified two-level
implementation of f in Example 1.8.1
through Reed–Muller coefficients.
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are assigned is performed by an OR or EXOR circuit with sufficiently large number of
inputs.

Example 1.8.1 Figure 1.8.2 shows a two-level implementation for the function
f given by the the truth vector F = [1, 0, 0, 0, 0, 1, 1, 1]T . Figure 1.8.3 shows the
implementation of f through the Reed–Muller expansion.

Since in the multiplication part it trivially reduced to selection of AND circuits
corresponding to 1-minterms and addition is performed by an OR or EXOR circuit,
the first network is reduced as in Fig. 1.8.4. This is the implementation of the
SOP-expression f = z0z1z2 ∨ z0z1z2 ∨ z0z1z2 ∨ z0z1z2. Similarly, Fig. 1.8.5 shows
the implementation of f in terms of Reed–Muller coefficients and the simplified
related network. This is the implementation of the positive-polarity Reed–Muller
expressions f = 1 ⊕ z0 ⊕ z1 ⊕ z2 ⊕ z1z2, since the Reed–Muller spectrum for f is
Sf = [1, 1, 1, 1, 1, 0, 0, 0]T .

BIBLIOGRAPHIC NOTES

Fundamentals of theory of Boolean functions have been set in Reference 29, and developed
and presented in many other publications, see References 395,410, and 491 and references
therein. There are many classical textbooks and monographs discussing logic functions and
their representations for applications in logic synthesis, system design, and signal processing
(313,395,491). Functional expressions have been discussed in detail in References 41,499,
and 661. Decision diagrams are discussed in References 130,372, and 499 and their spectral
interpretations are presented in References 550,555, and 569. For fundamentals of spectral rep-
resentations of discrete functions, see References 8,16,51,52,255,258,278,331,332,354,555,
and 604. A detailed overview of fixed-polarity Reed–Muller expressions and their determina-
tion can be found in References 120,485,486,487, and 497. Kronecker transforms have been
discussed in References 340,486, and 555. Circuit implementation of logic functions is the
subject of many classical and recent books in this area (313,395,491,661).
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CHAPTER 2

SPECTRAL TRANSFORMS FOR LOGIC
FUNCTIONS

The subject of this chapter is the representation of systems of logic functions by
orthogonal series. In the previous chapter, it has been shown that the classical Boolean
representation as the sum-of-products, can be viewed as a particular Fourier series-like
representation, and the same considerations can be extended to Boolean polynomial
representations, that is, Reed-Muller expressions. Extensions of the same principle,
achieved by changing the decomposition rules, equivalently, basis functions, lead to
Fixed-polarity Reed-Muller expressions, and Kronecker expressions, for example,
References 488,489,491, and 555. Coefficients c(w) in these expressions are logic
values, thus, c(w) ∈ {0, 1} and, therefore, they are called bit-level expressions. In this
chapter, we will discuss word-level expressions, which are defined in terms of basis
functions borrowed from abstract harmonic analysis on finite groups, and having real
or complex-valued (in the case of multiple-valued functions) coefficients, which are
represented by computer words. These expressions will be very similar to the classical
Fourier representations.

We describe the basic properties of various discrete functional transforms relating
the original systems of functions to the spectral coefficients, introduce spectral and
correlation characteristics of systems of logical functions, and demonstrate their use
for the analysis and synthesis of digital devices. In short, the chapter sets forth the
main mathematical tools to be used in the sequel. A thorough grasp of the results
presented here is a prerequisite for an understanding of the subsequent chapters.

Spectral Logic and Its Applications for the Design of Digital Devices by Mark G. Karpovsky, Radomir
S. Stanković and Jaakko T. Astola
Copyright © 2008 John Wiley & Sons, Inc.
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2.1 ALGEBRAIC STRUCTURES FOR SPECTRAL TRANSFORMS

To get mathematically tractable models for basis functions in terms of which vari-
ous spectral transforms are defined, some algebraic structures are imposed to their
domain and the range. For most of applications, it is sufficient to assume the
structure of a group, not necessarily Abelian, for the domain and a field for the
range.

Definition 2.1.1 (Group) An algebraic structure G = (G, ◦, 0) with the following
properties is a group.

1. Associative law: (x ◦ y) ◦ z = x ◦ (y ◦ z), x, y, z ∈ G.

2. There is identity: For all x ∈ G, the unique element 0 (identity) satisfies x ◦ 0 =
0 ◦ x = x.

3. Inverse element: For any x ∈ G, there exists an element x−1 such that x ◦ x−1 =
x−1 ◦ x = 0.

The group G is Abelian group if for all x, y ∈ G, x ◦ y = y ◦ x.
A group that can be generated by a single element, called a generator of the group,

is a cyclic group. When the group operation is assumed as multiplications, then every
group element is a power of the generator.

Example 2.1.1 The group G = {e = g0, g1, g2, g3, g4, g5}, where e is the identity
element, is a cyclic group that is isomorphic to the group {0, 1, 2, 3, 4, 5}, since
1 + 2 = 3 modulo 6, 2 + 5 = 1 modulo 6, etc.

The groups of particular interest in this book are the finite dyadic group Cm
2 ,

that is, the group of m-bit binary vectors, defined as the direct product of basic cyclic
groups of order 2, C2 = ({0, 1}, ⊕), where ⊕ is the addition modulo 2, (logic EXOR),
and the group Cm

p , where Cp = ({0, 1, . . . , p − 1}, ⊕p) with the group operation the
componentwise addition modulo p.

We will also use the following notions and definitions related to the set theory and
group theory.

Definition 2.1.2 (Subset) For two sets X and Y , the set X is a subset of Y if each
element of X is also an element of Y .

The relationship of a set being a subset of another set is called inclusion and
usually written as ⊆.

If X is a subset of Y , but X is not equal to Y , then X is a proper subset of Y , which
is written as X ⊂ Y .

Definition 2.1.3 (Product of subsets) In a set Q, consider two subsets X and Y . The
product of X and Y is defined as XY = {xy|x ∈ X, y ∈ Y}.
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Definition 2.1.4 (Subgroup) In a group G under the operation ◦, a subset H of G

is a subgroup is H also forms a group under the operation ◦. When H is a proper
subset of G, then the subgroup H is a proper subgroup.

Definition 2.1.5 (Coset) For a subgroup H of a group G and an element x in G,
the left and right cosets are defined, respectively, as xH = {xh|h ∈ H} and Hx =
{hx|h ∈ H}.

Definition 2.1.6 (Conjugate element) In a group G, the conjugate element of an
element h by another element x is the element xhx−1.

Definition 2.1.7 (Normal subgroup) A subgroup H of a group G is called a normal
subgroup if it is invariant under conjugation, meaning that for each element h ∈ H ,
and each x ∈ G, the element xhx−1 ∈ H .

In terms of cosets, a subgroup H is a normal subgroup if left and right cosets of
H are equal, that is, xH = Hx.

Definition 2.1.8 (Factor group) For a group G and its normal subgroup H , the factor
group G/H (also called the quotient group) is the group of the set of all left cosets
of H in G, under the operation of product of subsets, that is, the factor group is the
group G/H = ({xH |x ∈ G}, ◦), where ◦ is the product of subsets.

Definition 2.1.9 (Ring) An algebraic structure R = (G, +, ·) with two operations,
the addition + and the multiplication ·, is a ring if (G, +) is an Abelian group,
the multiplication is associative, that is, for all x, y, z ∈ g, (xy)z = x(yz), and the
distributivity is satisfied (x + y)z = xz + yz.

Definition 2.1.10 (Field) A ring R = (G, +, ·, 0) is a field if (G \ {0}, ·) is an Abelian
group. The identity element of this multiplicative group is denoted by 1.

In this settings, basis functions are considered as elements of a vector space on the
group G over the field P .

Definition 2.1.11 Given an Abelian group G with the group operation ⊕ and a field
P with the addition + and multiplication denoted by · or juxtaposition. The pair
(G, P) is a linear vector space, in short, vector space, if the multiplication of elements
of G with elements of P , that is, the operation P × G → G is defined such that the
following properties hold.

For each x, y ∈ G, and λ, µ ∈ P ,

1. λx ∈ G,

2. λ(x ⊕ y) = λx ⊕ λy,

3. (λ + µ)x = λx ⊕ µx,
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4. λ(µx) = (λµ)x,

5. 1 · x = x, where 1 is the identity element in P .

In what follows, we will consider the vector spaces of functions defined on
finite discrete groups. Spaces of particular interest in this book are GF2(Cm

2 ), C(Cm
2 ),

GFp(Cm
p ), and C(Cm

2 ), of functions on Cm
2 and Cm

p and taking values in GF (2),
GF (p), and C.

Definition 2.1.12 Denote by P(G) the set of all functions f : G → P , where G is a
finite group of order g, and P is a field. In this book P is usually the complex-field
C, the real-field R, the field of rational numbers Q or a finite (Galois) field GF (pk).
P(G) is a vector space if

1. For f, h ∈ P(G), addition of f and h, is defined by

(f + h)(x) = f (x) + h(x),

2. Multiplication of f ∈ P(G) by an α ∈ P is defined as

(αf )(x) = αf (x).

In these relations, the group operation on G is denoted as ⊕, and the addition in
P as +.

Since the elements of P(G) are vectors of the dimension g, where g = |G| is the
cardinality of G, it follows that the multiplication by α ∈ P can be viewed as the
componentwise multiplication with constant vectors in P(G).

This structure is often enriched into a function algebra by introducing the multi-
plication as

(f · g)(x) = f (x) · g(x),

where f, g ∈ P(G), x ∈ G, and f (x), g(x) ∈ P .

2.2 FOURIER SERIES

In order to exploit powerful machinery of spectral methods, we first represent a
multioutput function f (z) = (f (0), . . . , f (k−1)), where z = (z0, . . . , zm−1) as an inte-
ger function y = f (z), z ∈ {0, 1, . . . , pm − 1}, derived by interpreting p-ary k-tuples
of values at the outputs as coordinates in the p-ary representation of integers. Then,
to make another step closer to the classical Fourier analysis, y is completed to a
corresponding step function �(z), see Section 1.2.

The next step toward application of spectral methods in analysis and synthesis of
logicfunctions is to expand the step function �(z) representing the system of logic
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functions as an orthogonal series or Fourier series

�(z) =
∞∑

w=0

S(w)�ω(z), (2.2.1)

where {�w(z)} is a complete system of orthonormal step functions (basis) defined on
[0, pm), that is,

(∫ pm

0
�w(z)�w(z)dz

)−1 ∫ pm

0
�w(z)�r(z)dz =

{
1 if w = r,

0 if w �= r.
(2.2.2)

Here and below �(z) is the function complex conjugate to �(z).
The coefficients S(w) of the series (2.2.1) are the Fourier coefficients, defined by

S(w) =
(∫ pm

0
�w(z)�w(z)dz

)−1 ∫ pm

0
�(z)�w(z)dz. (2.2.3)

The sequence of coefficients S(0), S(1), . . . of the step function �(z) representing
the system of logic functions, relative to the basis {�w(z)}, is called the spectrum of
the system relative to {�w(z)}.

Thus, formulas (1.2.2), (2.2.2), (2.2.3) define a chain of one-to-one transforma-
tions:

{f (s)(z0, . . . , zm−1)} ↔ f (z) ↔ �(z) ↔ S(w).

Since there is a one-to-one correspondence between the original system of logic
functions {f (s)(z0, . . . , zm−1)} and its spectrum S(w), the problems of analysis and
synthesis for such systems will generally be formulated and solved in terms of spectra
(or in terms of correlation functions (see Section 2.7), which are double spectral
transforms of the representing step function).

The solution of problems discussed clearly depends in an essential manner on the
choice of the basis. The relevant questions will be considered below, for the two-
valued (Boolean) logic in Section 2.3, and for the multivalued logic in Section 2.5.

2.3 BASES FOR SYSTEMS OF BOOLEAN FUNCTIONS

2.3.1 Basis Functions

As it was mentioned above, the choice of the basis is a decisive factor in the solution
of analysis and synthesis problems using spectral representations of systems of logic
functions. In particular, it determines the number of nonzero spectral coefficients
in spectral representations, and this number in turn determines the complexity of
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the hardware or software implementation of a given system of logic functions. By
an implementation of a system, we mean a device or computer program whose
input and output signals stand in the relation defined by the functions of the
system.

Since we are representing the initial system of p-ary logic functions of m variables
by a step function �(z) on (0, pm) of span 1 (i.e., each “step” is of the length 1), it
is natural to stipulate that the basis consist of step functions with the same span on
(0, pm). As we will show below, it is always possible to choose a basis such that the
number of nonzero terms in the series (2.2.1) representing �(z) is finite, in fact, at
most pm.

Another natural requirement is that each of the basis functions take on a relatively
small number of values, thus simplifying hardware implementation of the system of
logic functions. For example, if p = 2, it will be convenient to have basis functions
with values 0, ±1. If this is the case, in fact, there is no need for the multiplication
operation in calculation of �(z) by (2.2.1). Finally, it will be convenient if the values of
the basis functions �(z) can be calculated by simple, standard, analytical procedures
applied to the values of z.

We now exhibit a few bases that meet these requirements. We first consider two
systems of functions (Walsh functions and Haar functions), which are exceptionally
suited for spectral representations of systems of Boolean functions.

2.3.2 Walsh Functions

The Walsh functions have been introduced by J.L. Walsh in 1923, (638). They are
an important tool in the approximation of continuous functions (151,215,523,671).
A very good brief review of development in this area can be found in (635). For
problems related to the approximation theory, we usually consider Walsh functions
defined on the interval (0, 1) and investigate properties of series formed of Walsh
functions.

Walsh functions have also found applications in such fields as radar, tele-
vision, electromagnetic radiation, data processing and pattern recognition, logic
design, and elsewhere, (8,16,52,234,255,258,263,339,431,441,584,587,671). There
are good grounds for the assertion that Walsh functions and their generaliza-
tions (Section 2.5) play a role in the analysis, synthesis and optimization of dig-
ital devices analogous to that of the exponential (or trigonometric) functions in
analysis and synthesis of continuous-time (analog) devices (255,258,331,332,333,
555,576,604,610,624).

In Reference 176 it has been shown that Walsh functions can be identified as
the group characters (defined below in Section 2.8.1), of infinite dyadic groups,
and therefore, they can be used for the harmonic analysis of logic functions and all
the functions defined over the dyadic groups Cm

2 . In this book, we are interested
in representation of discrete functions, logic functions and their integer encodings
being a particular case, and therefore, we will use the discrete version of Walsh
functions. When viewed as group characters of finite dyadic groups, that is, the groups
Cm

2 = ({0, 1}m, ⊕), the Walsh functions can be defined as follows.
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Consider binary representations of two natural numbers w, z ∈ {0, 1, . . . , 2m − 1},
that is, w = (w0, . . . , wm−1) and z = (z0, . . . , zm−1), where

w =
m−1∑
s=0

ws2
s, (2.3.1)

z =
m−1∑
s=0

zs2
s. (2.3.2)

Definition 2.3.1 The set of 2m discrete Walsh functions in the Hadamard ordering of
the variable z and the index w, w, z ∈ {0, 1, . . . , 2m − 1} are defined as

Ww(z) = (−1)
∑m−1

s=0
wszs = exp

(
2π

2
i

m−1∑
s=0

wszs

)
, i = √−1. (2.3.3)

If we perform the so-called bit-reverse transform in the binary representations of
w and z, that is, for

←−w =
m−1∑
s=0

ws2
m−1−s, (2.3.4)

←−z =
m−1∑
s=0

zs2
m−1−s, (2.3.5)

the definition 2.3.1 converts into the following.

Definition 2.3.2 The discrete Walsh functions on {0, 1, . . . , 2m − 1}, in Paley order-
ing are defined by

←−
W w(z) = W←−w (z) = (−1)

∑m−1
s=0

wm−1−szs (2.3.6)

= exp

(
2π

2
i

m−1∑
s=0

wm−1−szs

)
, i = √−1.

Thus, both definitions determine the same set of functions, the discrete Walsh
functions, however, in a different order, each of them having advantages in some
particular applications. Therefore, these as well as other orderings will be discussed
later in more details in the Section 2.3.2.1.
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W0(z)

W1(z)

W2(z)

W3(z)

W4(z)

W5(z)

W6(z)

W7(z)

0 1 2 3 4 5 6 7 z

FIGURE 2.3.1 Walsh functions corresponding to Definition 2.3.1 for m = 3.

The discrete Walsh functions defined by either (2.3.3) or (2.3.6) are defined
at the points 0, 1, . . . , 2m − 1. They may be completed to step functions on the
interval [0, 2m) as done above for �(z) in (1.2.4). This completion to a step
function will be adhered to throughout the sequel for all discrete functions that are
considered.

The waveforms of Walsh functions in both orderings defined by the Defini-
tions 2.3.1 and 2.3.2 are illustrated in Figs. 2.3.1 and 2.3.2 for m = 3.

The subscript w of the function Ww(z) is called its index, and the number of ones
in the binary expansion of w (i.e., the quantity ‖w‖ = ∑m−1

s=0 ws) will be called the
weight of the index.

Consider the subset of Walsh functions with indices of the weight 1. Denote these
functions by Rs(z), s = 1, . . . , m. Then by (2.3.3),

Rs(z) = W2s−1 (z) = (−1)zs−1 = exp

(
2π

2
izs−1

)
. (2.3.7)

Together with the first Walsh function W0(z) ≡ 1, the functions Rs(z) thus defined
are known as the Rademacher functions (455). In this context, W0(z) is considered as
the first Rademacher function R0 ≡ 1. They are also called the basic Walsh functions
or the Walsh functions of first order.

The first four Rademacher functions are shown in Fig. 2.3.3. Note that if we change
−1 to +1 and +1 to 0, the function Rs(z) is simply zs−1, that is, the (1, −1) encoded
switching variables, viewed as trivial m variable functions f (z0, . . . , zm−1) = zi.
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W0(z)

W1(z)

W2(z)

W3(z)

W4(z)

W5(z)

W6(z)

W7(z)

0 1 2 3 4 5 6 7 z

FIGURE 2.3.2 Walsh functions corresponding to Definition 2.3.2 for m = 3.

The following equivalent definition of the Rademacher functions is sometimes
employed

Rs(z) = sgn(sin 2s−mπz),

0 1 2 3 4 5 6 7 z

R0(z)

R1(z)

R2(z)

R3(z)

FIGURE 2.3.3 Rademacher functions for m = 3.
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where

sgn(a) =
{

1 if a ≥ 0,

−1 if a < 0.

This formula illustrates the relationship of the Rademacher functions (hence also
the Walsh functions) to the ordinary harmonic functions.

Any Walsh function may be expressed as a product of Rademacher functions.
Indeed, by (2.3.6) and (2.3.7),

←−
W w(z) =

m−1∏
s=0

(Rs+1(z))wm−1−s . (2.3.8)

Thus, the set of Walsh functions is the multiplicative closure of the set of
Rademacher functions.

2.3.2.1 Ordering of Walsh Functions The relation (2.3.3) produces Walsh
functions in the so-called natural ordering or Hadamard ordering. The application of

the bit-reversal order of indices as in
←
ω , (see (2.3.6), results in the Paley ordering of

Walsh functions. However, in the original definition by J.L. Walsh (638), the Walsh
functions are ordered in the sequency order. This ordering is in the present literature
also called Walsh ordering.

Notice that Walsh defined the set of functions called by his name on the open
interval (0, 1). The discrete Walsh functions considered above, can be viewed as the
discrete counterpart of the Walsh functions derived by sampling, or as an indepen-
dently defined set of functions in a different function space. However, relating the
continuous and discrete Walsh functions permit to use the group theoretic approach
to the interpretation of discrete Walsh functions, which is useful for generalizations
to p-valued case.

There are other orderings of Walsh functions among 2m! possible, that have
proved useful in some particular applications. In the following, we briefly discuss
this topic, and more information about it can be found in References 8,16,51,52,234,
235,255,258,587,592,617,663,667,669, and 683.

In Reference 638 and later in his work, Walsh has been using a two parameter
notation for his functions, f

(i)
k (x). The first parameter, written as the subscript is

called packet, and the parameter in the parenthesis denotes the order of a particular
function within the packet. Functions from a packet can be generated by compression
and inversion of the functions from the previous packet. Position of a function within
the packet is determined by the number of zero crossings of the function on (0, 1).
Some authors (67,107) denote that number as the sequency, a concept resembling in
some aspects the frequency in trigonometric functions. The sequency is defined by
other authors (16,234) as the half of the number of zero crossings, and this definition
is more widely accepted. The sequency does not satisfy certain essential and natural
properties of the frequency (611).
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The two parameter notation of Walsh functions is useful in some theorems in Walsh
analysis. The sequency ordering of Walsh functions proved to be useful in some
applications, in particular in communications and information theory (233,234).
Emphasizing the resemblance between the trigonometric functions and sequency
ordered Walsh functions, some authors split the set of Walsh functions into two
subsets called cal (Cosinus WALsh) and sal (Sinus WALsh) functions (427)

Wi(z) = wal(i, z) =
{

wal(2i, z) = cal(i, z),

wal(2i − 1, z) = sal(i, z).

Such division of the set of Walsh functions was also suggested by J.L. Walsh
himself.

Kaczmarz (271) showed that the Walsh functions can be considered as the mul-
tiplicative closure of the set of Rademacher functions (455) into a complete system.
In his considerations Kaczmarz used the sequency ordering and, thus, the sequency
ordered Walsh functions are somewhere called Walsh-Kaczmarz functions (201).

Definition of Walsh functions as the componentwise products of Rademacher func-
tions introduced by Paley (419) proved much more convenient in some analytical
considerations. For this reason, the Paley ordering is mostly used in this book for
analytical definitions, while for the calculation purposes the Hadamard ordering is
preferred. When the Paley ordering is used, it will be indicated by the arrow from
right to the left ← reminding the bit-reverse ordering of indices. This ordering of
Walsh functions is also called the dyadic order.

Dyadic group is defined as the infinite countable direct product of the groups
C2 = ({0, 1}, ⊕). Thus, dyadic group is the set of all sequences {zi}, zi ∈ {0, 1},
i = 0, 1, . . . , under the componentwise addition modulo 2.

A correspondence between the dyadic group and the interval (0, 1) can be estab-
lished if for each z ∈ (0, 1) we consider the dyadic expansion

z =
∞∑

m=1

zm2−m.

This mapping is unique if z does not belong to the set of dyadic rational numbers
on [0, 1), D = {z ∈ (0, 1), z = p

2q }, where p ∈ Z and q is a natural number. For the
dyadic rational numbers, which have two possible representations on the dyadic scale,
a finite and an infinite, we will assume the finite representation.

Using this representation, it was shown by Fine (176) that the Walsh functions
are characters of the dyadic group. Therefore, the Fourier analysis on dyadic group
is defined in terms of the Walsh functions. In the same way, the discrete Walsh
functions are characters of the finite dyadic groups on which the switching functions
are defined. Therefore, the Fourier analysis for switching functions considered as
a subset of complex valued functions is formulated in terms of the discrete Walsh
functions.

In the case of finite groups, the group characters are conveniently represented by
matrices. The characters of the basic dyadic group C2 = ({0, 1}, ⊕) are represented
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by the matrix

W(1) =
[

1 1

1 −1

]
,

which is called the basic Walsh matrix.
Since the finite dyadic group of order m is the direct product of m-cyclic groups

C2, the characters of Cm
2 are defined by the Walsh–Hadamard matrix

W(m) =
m−1⊗
i=0

W(1),

whose columns can be identified with the discrete Walsh functions. The formal defi-
nition of group characters will be given in Section 2.8.

Thanks to the Kronecker product representation W(m) can be represented as

W(m) =
[

W(m − 1) W(m − 1)

W(m − 1) −W(m − 1)

]
,

which is, as noted above, a relation characterizing the subset of so-called Hadamard
matrices of order 2m introduced by M.J. Hadamard (226) by a generalization of the
results by J.J. Sylvester (594). Therefore, the Walsh matrix whose columns are thus
ordered discrete Walsh functions is the subset of Hadamard matrices and thus ordered
Walsh functions are reported as Walsh–Hadamard functions.

Relationship of Walsh functions to some other classes of matrices was mentioned
in (201), and discussed in the contents of circulant matrices.

The relationships among different orderings of discrete Walsh functions have been
discussed in a series of papers, for example, References 683, and 667, and references
therein. These relationships were used by Zhang Qishan to develop the so-called
shift-copy theory providing a broad family of the so-called bridge functions involving
the discrete Walsh functions in different orderings as particular examples (674,680,
684).

The coefficients Sf (w) with respect to the basic Walsh functions W2i (z) express
the correlation of f with the switching variables zi. These Walsh spectral coefficients
are closely related to the Chow parameters used in characterization of threshold logic
functions (124). Therefore, in some applications in classification and characterization
of switching functions, the Walsh functions are ordered with respect to the increas-
ing number of component Rademacher functions. This ordering is called the logic
ordering due to the applications mainly related to logic design and since this ordering
follows the usual ordering in the set of natural numbers and is easy acceptable in
everyday practice.

The four different orderings of Walsh functions mentioned above are compared in
Table 2.3.1 for m = 3. Among the total of 2m! possible orderings of discrete Walsh
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TABLE 2.3.1 Different Orderings of Walsh Functions Represented As Products of the
Rademacher Functions, m = 3.

Ordering

w Sequency (Walsh) Dyadic (Paley) Natural (Hadamard) Logic

0 R0 R0 R0 R0

1 R1 R1 R3 R1

2 R1R2 R2 R2 R2

3 R2 R1R2 R2R3 R3

4 R2R3 R3 R1 R1R2

5 R1R2R3 R1R3 R1R3 R1R3

6 R1R3 R2R3 R1R2 R2R3

7 R3 R1R2R3 R1R2R3 R1R2R3

functions, most of them destroy the symmetry property of the Walsh matrix, as is for
example the case with the logic ordering. Therefore, the first three orderings are the
most often used in applications.

2.3.2.2 Properties of Walsh Functions We now consider a few properties of
Walsh functions that will be used repeatedly in what follows. These properties remain
valid for both orderings of Walsh functions given by Definitions 2.3.1 and 2.3.2.
Completeness and Orthogonality

Theorem 2.3.1 The Walsh functions form a complete orthogonal system. In partic-
ular,

2m−1∑
z=0

Wt(z)Ww(z) =
{

2m, if t = w,

0, if t �= w.
(2.3.9)

Thus, if �(z) is a step function representing a system of switching functions of m

variables and

2m−1∑
z=0

�(z)Ww(z) = 0,

for w = 0, 1, . . . , 2m − 1, then �(z) = 0.

Theorem 2.3.1, that can be proved by direct calculation, shows that we can use the
Walsh functions as a basis for an orthogonal expansion of functions defined on 2m

points and, therefore, also step functions representing systems of Boolean functions.
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Corollary 2.3.1 For an integer w, 0 ≤ w ≤ 2m − 1

2m−1∑
z=0

Ww(z) =
{

2m, if w = 0,

0, if w �= 0.
(2.3.10)

This follows from (2.3.9) by setting t = 0.
Finiteness of representing series

Theorem 2.3.2 Let �(z) be a step function representing a system of Boolean func-
tions of m variables. Then

�(z) =
2m−1∑
w=0

S(w)Ww(z), (2.3.11)

where

S(w) = 2−m
2m−1∑
z=0

�(z)Ww(z). (2.3.12)

Theorem 2.3.2 is proved by inserting (2.3.12) into (2.3.11) and by using
Theorem 2.3.1.

The expansion of (2.3.12) is the representation of �(z) as a finite Walsh series, and
the numbers S(w) are its Walsh coefficients of the Walsh spectrum.

It follows from Theorem 2.3.2 that the Walsh expansion of any step function
representing a system of Boolean functions of m variables contains at most 2m terms
with Walsh functions with the index weight ≤ m. Thus, if the original system of
Boolean functions is defined by a sequence of 2m values, its Walsh spectrum will also
contain at most 2m nonzero coefficients.

Example 2.3.1 Consider a system of Boolean functions describing the operation of
an adder, as in Table 1.2.5 (see Example 1.2.2). We expand the corresponding step
function (see Table 1.2.6, Fig. 1.2.1) in a Walsh series. The result is

�(z) = 2−3(12 − 2←−
W 1(z) − 2←−

W 2(z) − 2←−
W 4(z) − 6←−

W 7(z))

= 2−2(6 − R1(z) − R2(z) − R3(z) − 3R1(z)R2(z)R3(z)).

Symmetry of index and variable

Theorem 2.3.3 For any w, z ∈ {0, 1, . . . , 2m − 1},

Ww(z) = Wz(w). (2.3.13)
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This property follows directly from the definition of Walsh functions (see Formulas
(2.3.1– 2.3.6)), and has many useful consequences, for instance, in calculation of
Walsh coefficients.

In matrix notation, the discrete Walsh functions (2.3.6) can be written as rows
of a (2m × 2m) matrix W(m), called the Walsh matrix. They are particular cases of
Hadamard matrices (7, 135), since the entries are ±1.

Example 2.3.2 For m = 3, the Walsh functions corresponding to Definition 2.3.1
can be represented as rows, or due to the symmetry, also columns of the matrix

W(3) =




1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1




.

The Walsh matrix corresponding to Definition 2.3.2 is

←−
W(3) =




1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 −1 1 −1 1

1 −1 −1 1 1 −1 −1 1

1 −1 −1 1 −1 1 1 −1




.

Because of the symmetry of the index and the variable of Walsh functions in
Definition 2.3.2, the Walsh matrix is a symmetric matrix. A proof of this property has
been given for binary encoded Walsh matrices for an arbitrary m by K.K. Nambiar in
Reference 402. This property holds for various orderings of Walsh functions discussed
in Section 2.3.2.1, as for instance, the dyadic, sequency, and natural ordering, however,
for some orderings it can be destroyed, as for instance in the case of the so-called
logic ordering, see Table 2.3.1.

From the orthogonality of Walsh functions, and symmetry of the Walsh matrix, for
the orderings providing this property, it follows that the Walsh matrix is a self-inverse
matrix up to the constant 2m. Thus, the direct and the inverse discrete Walsh transform
can be performed by using the same algorithm, which will be discussed in the next
chapter.
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Translation of variables

Theorem 2.3.4 For any w, z, τ ∈ {0, 1, . . . , 2m − 1},

Ww(z ⊕ τ) = Ww(z)Ww(τ), (2.3.14)

where ⊕ is the componentwise addition modulo 2, (EXOR).

Here and below the notation a ⊕ b (mod p) denotes the number whose p-ary
expansion is the sum modulo p of the corresponding p-ary components of a and b.
Similarly, a � b (mod p) denotes the componentwise subtraction modulo p.

The proof of Theorem 2.3.4 follows readily from (2.3.1) to (2.3.6).
It follows from Theorems 2.3.3 and 2.3.4 that the set of Walsh functions is closed

under multiplication.
Isomorphism of linear switching functions and walsh functions

A switching function f (z0, . . . , zm−1) is linear if it may be expressed as the EXOR
sum of Boolean variables, thus,

f (z0, . . . , zm−1) = c0z0 ⊕ · · · ⊕ cm−1zm−1, (2.3.15)

where cs, zs ∈ {0, 1}, s = 0, 1, . . . , m − 1.
The number of linear Boolean functions of m variables is 2m. The set of linear

Boolean functions is a commutative group, under (f ⊕ g)(z) = f (z) ⊕ g(z), modulo
2. In other words, the group operation is componentwise addition modulo 2, the
identity is 0, and f−1 = f for any f .

The Walsh functions also form a group with respect to multiplication, with identity
W0(z) = 1, W−1

w (z) = Ww(z), and (Ww · Wq)(z) = Ww(z) · Wq(z).
Two groups G1 and G2 are said to be isomorphic if there exists a one-to-one

correspondence h : a ↔ h(a), a ∈ G1, h(a) ∈ G2, such that h(a ◦ b) = h(a) ◦ h(b),
where◦denotes the group operation inG1 andG2, as the case may be (these operations
may of course be quite different).

Theorem 2.3.5 The group of Walsh functions is isomorphic to the group of linear
Boolean functions.

Indeed, we shall show that the one-to-one correspondence

h(Ww(z)) =
m−1⊕
s=0

wszs,
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is an isomorphism. Using the symmetry and translation properties, we have

h(Wt(z)Wq(z)) = h(Wt⊕q(z)) =
m−1⊕
s=0

(ts ⊕ qs)zs

=
m−1⊕
s=0

tszs ⊕
m−1⊕
s=0

qszs

= h(Wt(z)) ⊕ h(Wq(z)).

By virtue of the isomorphism between the group of Walsh functions and the group
of linear Boolean functions, it is possible to solve various problems involving linear
Boolean functions and linearization of Boolean functions in terms of Walsh expan-
sions, and, conversely, Walsh expansions may be viewed as expansions in terms of
linear Boolean functions.

Example 2.3.3 For m = 3, the correspondence between Walsh functions in
Hadamard ordering and linear switching functions can be established as follows

1 ↔ [+1, +1, +1, +1, +1, +1, +1, +1]

z2 ↔ [+1, −1, +1, −1, +1, −1, +1, −1]

z1 ↔ [+1, +1, −1, −1, +1, +1, −1, −1]

z1 ⊕ z2 ↔ [+1, −1, −1, +1, +1, −1, −1, +1]

z0 ↔ [+1, +1, +1, +1, −1, −1, −1, −1]

z0 ⊕ z2 ↔ [+1, −1, +1, −1, −1, +1, −1, +1]

z0 ⊕ z1 ↔ [+1, +1, −1, −1, −1, −1, +1, +1]

z0 ⊕ z1 ⊕ z2 ↔ [+1, −1, −1, +1, −1, +1, +1, −1]

Notice that, truth vectors of linear functions can be obtained from the Walsh
functions, that is, rows of the Walsh matrix, by replacing the function values
(1, −1) → (0, 1).

2.3.2.3 Hardware Implementations of Walsh Functions In many applica-
tions it is important to be able to generate Walsh 1 functions rapidly and economically
in hardware. Examples of such applications are mobile phones, where Walsh func-
tions are used in Code Division Multiple Access (CDMA) procedures in which a wide
band in the spectrum is shared by many users simultaneously. The problem with this
approach is, of course, that the shared signals will interfere with each other. CDMA
solves this problem in part by using Walsh functions, usually called Walsh codes. Other
modulation schemes such as Orthogonal Frequency Division Multiplexing (OFDM)
and Frequency Hopping can also make use of the orthogonal Walsh functions.

1This section has been written by Dave Henderson of Coherent Logix Corp., Austin, Texas, USA.
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The standard IS-95 CDMA from 1993, uses length 64 Walsh functions for mod-
ulation. If each transmitter is modulated by a different Walsh function, then the
orthogonality of the functions provides a means of separating them at the receiver. In
Direct Sequence CDMA the transmitted signal is multiplied by the same continuously
repeating Walsh function that spreads the spectrum of the information carrying signal
in a unique way, although its spectrum resembles random noise. At the receiver, many
such signals are present at once and appear even more noiselike. However by multi-
plying the combined signals by the same Walsh function used by a specific transmitter,
the desired signal is recovered.

Built In Self Test methods (BIST), discussed in Chapter 10, are another example,
where circuits generating Walsh functions are required.

In both the mentioned applications, subsets of Walsh coefficients are required.
Therefore, we will briefly discuss circuits derived by translating mathematical defi-
nitions of Walsh functions into logic networks using the basic logic gates.

Equation 2.3.16 was used earlier to define the Walsh functions 2 in terms of their
index w and input variable z

Ww(z) = (−1)
∑m−1

s=0
wm−1−szs = (−1)

⊕m−1
s=0

wm−1−szs . (2.3.16)

In the right hand side of equation (2.3.16) the exponent is the sum of the bitwise
product of the input, z, and the bit-reversed index, w. A bitwise product is equivalent
to the AND gate. Since the sum is the exponent of −1 then the magnitude of the sum
is unimportant, only whether there are an even or odd number of nonzero product
bits. Digital designers will recognize this as the parity function.

A logic network that will generate all Walsh functions of order four is shown in
Fig. 2.3.4. In order to be consistent with binary logic we can map the {+1, −1} values
of the Walsh function into {1, 0} without any loss of generality.

The network in Fig. 2.3.4 may be expanded to generate Walsh functions of any
order by adding one AND gate and one EXOR gate for each additional input bit. If

Z3

Z2

Z1

Z 0

W (z )

w 3
w 2
w 1
w 0

w

FIGURE 2.3.4 Generator of Walsh functions of order four.

2This section has been written by Dr. Dave Henderson of Coherent Logix Corp., Austin, Texas, USA.
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Z 3

Z 2

Z 1

Z 0

W ( z )

w3
w2
w1
w0

w

FIGURE 2.3.5 Generator of Walsh functions of order four with parity function implemented
as a tree of EXOR circuits.

the delay between input and output transitions becomes unacceptably long for a given
application then the parity function can be implemented as tree of EXOR gates as in
Fig. 2.3.5.

Current integrated circuit technology can employ this type of circuit to generate
Walsh function output updated at up to several gigahertz. Some commercial circuits
have stored Walsh functions in Read-Only Memories (ROMs) or had the ability to
load new functions into Random-Access Memory (RAM) from an external source.
However, when this circuit is employed only the function index needs to be stored.
For example, in each CDMA standard IS-95 CDMA (see Chapter 11) Walsh function
needs only a six bit index to completely generate it.

The complexity, expressed as the number of two-input AND and EXOR gates, of
generation of Ww(z) is 2m−1.

This circuit generates the set of Walsh functions in Walsh–Rademacher order.
In Reference 167 it can be found a method for generating Walsh functions in

different orderings in hardware. The Walsh–Rademacher ordering is the simplest to
implement in hardware as described above. All of the other orderings can be derived
by performing linear transformations and bit permutations on the index.

In cases where multiple Walsh functions must be generated simultaneously with
fixed indices, then the circuit can be simplified by eliminating the gates associated
with zeros in the index, as shown in Figs. 2.3.6–2.3.8.

In some cases, it may be practical to implement a full inverse Walsh transform at
high speed by using an array of Walsh generators similar to those in Figs. 2.3.6–2.3.8.
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Z 3

Z 2

Z1

Z 0

W 9 (z)

(w = 1001)

FIGURE 2.3.6 Generation of Walsh function with the fixed index w = (1001).

A minimal combinational device with m inputs z0, . . . , zm and 2m outputs,
W0(z), . . . , W2m−1(z) may be constructed by the approach described in Section 5.4.
This device requires 2m − m − 1 two-input EXOR gates.

Walsh function generators based on decision diagrams has been discussed in
Reference 259.

2.3.3 Haar Functions

Each of the expansion coefficients of a function relative to the Walsh basis depends
on the behavior of the function at all its points.

In some cases it is more natural to use bases in which the expansion coefficients
depend only on the “local” behavior of the function, that is, on its behavior at few
points which are in some sense “close together.” An example is the system of Haar
functions introduced in 1910 by the Hungarian mathematician Alfred Haar (233).

In the study of Haar functions and transforms, it is convenient to establish first
basic terminology and review the notions that will be used before presenting defini-
tions and providing more detailed discussions. There is not only a strong similarity
and correspondence with the theory of Walsh analysis, but also some important dif-
ferences.

Similarly as for the Walsh functions, we distinguish the Haar functions on the
interval [0, 1) split into 2m subintervals, or correspondingly the interval [0, 2m), and
their discrete counterpart, the discrete Haar functions, which can be viewed as sam-
pled versions of the Haar functions. Conversely, the Haar functions can be interpreted
as the completion of the discrete Haar functions (614, 671). In this settings, special
attention has to be paid to the definition of Haar functions at the discontinuity points
(234).

Z 3

Z 2

Z 1

Z 0

(w = 1101)

W13(z)

FIGURE 2.3.7 Generation of Walsh function with fixed index w = (1101) = 13.
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Z3

Z2

Z1

Z0

W15(z)

(W= 1111)

FIGURE 2.3.8 Generation of Walsh function with fixed index w = (1111) = 15.

In both cases, the unnormalized and normalized sets of Haar functions are used,
depending on the applications. These sets differs just in the normalization factor,
however, selecting between them is important for the efficiency of particular practical
applications.

Similarly as the Walsh functions, the Haar functions can be ordered in different
ways. In practice, two different orderings are most widely used. These are the sequency
ordering used also by A. Haar in his initial paper (223), therefore, also called Haar
ordering, and the natural ordering. Definitions of both orderings correspond to the
definitions of the same orderings for the Walsh functions.

We also note that the Haar functions and their nonbinary generalizations, see
Section 2.5.2, are a special case of wavelet functions, which are widely used in signal
processing.

2.3.3.1 Ordering of Haar Functions We now briefly present the basic defini-
tions in the Haar functions theory.

Definition 2.3.3 (Discrete Haar functions) The unnormalized discrete Haar func-
tions H

(q)
l (z) are defined as

H
(0)
0 (z) = 1,

and for l = 0, 1, . . . , m − 1, q = 1, 2, . . . 2l,

H
(q)
l (z) =




1, if z = (2q − 2)2m−l−1,

−1, if z = (2q − 1)2m−l−1,

0, at all other points.

(2.3.17)

In this definition, it is used the same three parameter notation as in the original
definition of the Haar functions (223) and the Walsh functions (638), emphasizing
the splitting of functions into packages with the same number of zero crossings. As
noticed above, this ordering of Haar functions originates in the work by Alfred Haar
(223), and is called sequency ordering by the analogy with the corresponding ordering
of Walsh functions or Haar ordering. In the case of Haar functions, packets are ordered
by the increasing number of zero crossings. The natural ordering of Haar functions
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is also used in practice. This ordering corresponds to the natural ordering of Walsh
functions and will be further discussed below.

Notice that the number of the discrete Haar functions is

1 +
m−1∑
l=0

2l = 2m.

Similar to the Walsh functions, the Haar functions can be extended to the real
interval (0, 2m) and this gives the definition of unnormalized Haar functions.

Definition 2.3.4 (Haar functions in the sequency ordering) The unnormalized
Haar functions are defined as H

(q)
l (z), where the indices l = 0, 1, . . . , m − 1,

q = 1, 2, . . . , 2l, or l = q = 0, z ∈ [0, 2m). Thus,

H
(0)
0 (z) = 1, (2.3.18)

H
(q)
l (z) =




1, if z ∈ [(2q − 2)2m−l−1, (2q − 1)2m−l−1),

−1, if z ∈ [(2q − 1)2m−l−1, 2q · 2m−l−1),

0, at all other point of [0, 2m).

The Haar functions for m = 3 are illustrated in Fig. 2.3.9. They are step functions
of span 1, taking the values 0, ±1.

0 1 2 3 4 5 6 7 z

H0
(0)(z)

H0
(1)(z)

H1
(1)(z)

H1
(2)(z)

H2
(1)(z)

H2
(2)(z)

H2
(3)(z)

H2
(4)(z)

FIGURE 2.3.9 Haar functions for m = 3.
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Similar to the Walsh functions, the matrix notation is convenient in the represen-
tation of discrete Haar functions. The Haar functions are represented as rows of the
Haar matrix. We will later discuss the recursive structure of the Haar matrix.

Example 2.3.4 For m = 3, the unnormalized discrete Haar functions in the sequency
or Haar ordering is defined by the matrix

H(3) =




1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1




.

In certain applications, it is more natural to use normalized Haar functions, as
defined in Reference 223. The following example illustrates the normalized discrete
Haar functions.

Example 2.3.5 For m = 3, the normalized Haar functions in the sequency ordering
are defined by the matrix

H(3) = 1

2
√

2




1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1√
2

√
2 −√

2 −√
2 0 0 0 0

0 0 0 0
√

2
√

2 −√
2 −√

2

2 −2 0 0 0 0 0 0

0 0 2 −2 0 0 0 0

0 0 0 0 2 −2 0 0

0 0 0 0 0 0 2 −2




.

In the general case, the discrete Haar functions can be represented as rows of the
2m × 2m Haar matrices. In the matrix notation, the normalized discrete Haar functions
in the sequency ordering are defined by the recurrence relation

H(m) =




H(m − 1) ⊗ [
1 1

]
2

(m−2)
2

[√
2 0

0
√

2

]
⊗ I(2m−2) ⊗ [

1 −1
]

 (2.3.19)
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with

H(1) =
[

1 1

1 −1

]
,

where I(2m−2) is the (2m−2 × 2m−2) identity matrix.
The same relation defines the sequency ordered unnormalized Haar functions if

all the normalization coefficients are omitted.
The sequency and naturally ordered Haar functions are related through a repeated

application of the bit-reversal procedure to the binary representation of the index i

denoting the ith row of the Haar matrix. For details see Reference 16.

Example 2.3.6 The naturally ordered Haar functions for m = 3 are shown in
Fig. 2.3.10.

Relationships between the discrete Haar and Walsh functions and related trans-
forms are considered in Reference 177,587 and 671.

These functions can be considered as particular examples of unitary transforms
with fast algorithms called the Identical computation family of transforms (179,180).
In this case, the discrete Haar functions in natural ordering can be generated in terms
of the generalized Kronecker product of sets of matrices (179). Further advent in
Haar transforms on finite Abelian groups is given in References 673 and 672. For a
brief review of recent development in the Haar transforms and their applications, see
Reference 559.

Definitions of unnormalized and normalized Haar functions, as well as different
orderings can be extended to the generalized Haar functions, and other related
functions discussed in Reference 644, see also Reference 584.

In the rest of this book, we will be mainly using unnormalized sequency ordered
Haar functions defined by (2.3.18). Generalizations of these functions top-ary (p > 2)
case will be given in the Section 2.5.2.

Hp(3) =




1 1 1 1 1 1 1 1

2 −2 0 0 0 0 0 0√
2

√
2 −√

2 −√
2 0 0 0 0

0 0 2 −2 0 0 0 0

1 1 1 1 −1 −1 −1 −1

0 0 0 0 2 −2 0 0

0 0 0 0
√

2
√

2 −√
2 −√

2

0 0 0 0 0 0 2 −2




.

FIGURE 2.3.10 Naturally Ordered Haar Functions for m = 3.
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2.3.3.2 Properties of Haar Functions In this section we consider properties
of the unnormalized Haar functions.
Completeness and orthogonality

Theorem 2.3.6 The set of Haar functions is a complete orthogonal system:

2m−1∑
z=0

H
(q)
t (z)H (r)

l (z) =
{

2m−l, if t = l, q = r,

0, otherwise,
(2.3.20)

for l = 0, 1, . . . , m − 1, q = 1, 2, . . . , 2l, and if �(z) is a step function such that

2m−1∑
z=0

�(z)H (q)
l (z) = 0,

for l = 0, . . . , m − 1, q = 0, 1, . . . , 2l, then �(z) ≡ 1.

Theorem 2.3.6 shows that the Haar system is a suitable basis for expansions of step
functions representing systems of Boolean functions. Like Walsh expansions, Fourier
expansions in Haar functions are widely applied in numerical computations, since they
yield a uniform approximation of continuous functions �(z) (223,530,639). This is
an example of applications where the interval of definition is usually normalized to
(0, 1), the integrals of the squared Haar functions are normalized to unity, and as the
basis system the set of Haar functions for m → ∞ is taken.
Finiteness of representing series.

Theorem 2.3.7 A step function �(z) representing a system of switching functions
of m variables, can be expressed as

�(z) = c
(0)
0 H

(0)
0 (z) +

m−1∑
l=0

2l∑
q=1

c
(q)
l H

(q)
l (z), (2.3.21)

where

c
(q)
l = 2−m+l

2m−1∑
z=0

�(z)H (q)
l (z), (2.3.22)

and H
(q)
l (z) is defined by (2.3.18).

The proof follows from Theorem 2.3.6 by substitution of (2.3.22) into (2.3.21).
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It follows from Theorem 2.3.7 that a step function representing a system of Boolean
functions of m variables may be expanded in a series of Haar functions containing at
most 2m terms.

By (2.3.22) and (2.3.18),

c
(q)
m−1 = 2−1(�(2q − 2) − �(2q − 1)), (2.3.23)

where q = 1, 2, . . . , 2m−1,

c
(q)
m−2 = 2−2(�(4q − 4) + �(4q − 3) − �(4q − 2) − �(4q − 1)), (2.3.24)

where q = 1, 2, . . . , 2m−2, and

c
(q)
m−l = 2−l


 2l∑

s=2l−1+1

�(2lq − s) −
2l−1∑
s=1

�(2lq − s)


 , (2.3.25)

where l = 1, 2, . . . , m − 1, q = 1, 2, . . . , 2m−l.
Thus, c(q)

m−1 depends on two consecutive values �(2q − 2), and �(2q − 1) of �(z),

c
(q)
m−2 on four consecutive values �(4q − 4), �(4q − 3), �(4q − 2), �(4q − 1), and

so on. In general, each of the coefficients c
(q)
m−l depends on the behavior of �(z) on the

interval [2lq − 2l, 2lq − 1). Thus, the expansion coefficients of �(z) in Haar series
depend on the local behavior of the function, over an interval which is shorter, the
higher the subscript of the coefficient. This points to the essential difference between
the Walsh and Haar expansions. Every coefficient of the Walsh expansion depends
on the function values over the entire interval [0, 2m). It will be shown later that this
local feature of the Haar expansions considerably simplifies the selection of functions
with prescribed Haar spectra out of a given class of functions.

More information about the properties of Walsh and Haar functions may be found,
for example, in Reference 223,272,530, and 638.

2.3.3.3 Hardware Implementation of Haar Functions The Haar 3 trans-
form, or rather its inverse, has several important advantages over the Walsh transform
for synthesizing logic circuits. First, the number of arithmetic operations required to
compute an output for a given z is much lower. It is required at most m + 1 operations
compared to at most 2m operations for the Walsh transform.

Second, unlike the Walsh transform, the complexity of the Haar spectrum depends
on the order of the function inputs. This order dependency can be exploited to find
minimal circuits that can generate a given function (see Subsection 6.1.6.1). Third,
the Haar basis functions are even simpler to generate than the Walsh functions.

The first question that might occur to anyone attempting to generate Haar func-
tions in hardware is likely to be “how can the three function values {−1, 0, 1} be

3This section has been written by Dave Henderson of Coherent Logix Corp., Austin, Texas, USA.
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signz 0

z 1
z 2
z 3

supp H3
(q)SH3

(q)

FIGURE 2.3.11 Generation of the sign function and the support function for the Haar
functions.

implemented using binary logic gates that can only take on two values, {1, 0}”? The
answer is simple. In synthesis only the product of Haar functions with Haar coeffi-
cients is needed, so only two of the three values are important. Multiplication by zero
is quite easy to accomplish in hardware. To see this clearly, first look at the alternative
definition of the Haar functions in (2.3.26),

H
(q)
l (z) =

{
Rl−1(z), if z ∈ [(q − 1)2m−l, q2m−l),

0, at all other points of [0, 2m).
(2.3.26)

We have already seen in Section 2.3.2 that the Rademacher functions are equivalent
to the bits of the circuit input. Consider the Haar functions for m = 4.

The logic circuit in Fig. 2.3.11 generates two functions from a four bit input value z.
The sign function is just the input z0 mapped into R4, {0, 1} → {1, −1}. The second

function we can call the support function of Haar functions. It will equal to 1 when
the three bit vector (z3, z2, z1) = q otherwise it is zero.

The specific Haar functions are generated by the product of the sign and support
functions as shown in Fig. 2.3.12 for q = 1, l = 3 and Fig. 2.3.13 for q = 2, l = 3.
The circles on the inputs indicate inversion.

By repeating this circuit for all permutations of input bit inversions all of the Haar
functions for l = 3 can be generated. For l = 2 bit z0 is ignored, bit z1 (R3) is used
as the sign, and bits (z3, z2) select the value of q as in Fig. 2.3.14.

For an m bit input vector z = (zm−1, . . . , z2, z1) similar circuits can be used to
generate any Haar function having l < m.

The Haar generator circuits of the type shown above are considerably simpler
than those needed to generate Walsh functions. However, 2m such circuits would be

+1

-1

0

0

0
1

1

z 0 1 2 3 4 5 6 7 8

(2)

3
SH

(2)
3H

4R

signz 0

z1
z2
z3

(1)
3

SH

4m =

FIGURE 2.3.12 Generation of specific Haar functions for q = 1, l = 3.
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+1
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0

0
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1
(1)z

z 0 1 2 3 4 5 6 7 8

(1)

2
SH

(3)
3H

signz 0

z1

z2

(1)
2

SH

FIGURE 2.3.13 Generation of specific Haar functions for q = 2, l = 3.

required to generate the full set of Haar functions for an m bit input. Fortunately,
we can combine these circuits with coefficient circuits as shown below to reduce the
overall circuit complexity.

2.3.3.4 Hardware Implementation of the Inverse Haar Transform A
Haar 4 spectrum has a hierarchical structure consisting of multiple groups of coeffi-
cients called packages (see, Section 2.3.3.1). There are m + 1 packages for spectra of
functions having m inputs. For considerations in this section, recall that each pack-
age has an index equal to l + 1 and contains 2l coefficients. The package indexed
by 0 contains the single constant coefficient c

(0)
0 . This convention is useful in both

hardware and software implementations of the Haar transform.
If the logic function f (z) to be realized has an m-bit integer input and an k-bit

integer output then the output vector will contain 2m values. If the entire output vector
is needed, then the best solution is to use the Inverse Fast Haar Transform (IFHT)
algorithm (see, Section 3.2) since it will perform the minimum number of operations.
However, in the case where the circuit is to generate a single output for each new
arbitrary input, then the best approach is to compute the right side of (2.3.21) and
directly sum the m + 1 appropriate coefficients each time a new input is presented.

+1

-1

0

0

0

1

1

(1)z

z 0 1 2 3 4 5 6 7 8

(1)

2
SH

(3)
3H

signz1

z2

z3
(1)
2

SH

FIGURE 2.3.14 Generation of all Haar functions for l = 3 by permutation of input bit
inversions.

4This section has been written by Dave Henderson of Coherent Logix Corp., Austin, Texas, USA.
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FIGURE 2.3.15 Circuit that generates terms in Haar expressions (2.3.21).

Before looking at the complete inverse transform circuit, we need a circuit to
generate the coefficients from the input. Figure 2.3.15 is a schematic representation
of a circuit that will generate a term of the sum in (2.3.21).

This circuit uses a subset of the input bits to generate the coefficient for the package
l + 1. The coefficients in the package l are selected by the l most significant bits of
the input. The input bits are sent to a l of 2l decoder circuit with each output of the
decoder performing the role of the support SH

(q)
l for a Haar function. The single

decoder output that is driven is followed in Fig. 2.3.15, all of the other outputs will be
zero and will not affect the final result. Each nonzero bit of the coefficient c

(q)
l is then

multiplied by SH
(q)
l and inverted if the sign bit zm−l−1 is equal to 1. The final outputs

are terms of the sum in (2.3.21). The sign bit is also provided so that 2’s compliment
addition can be used.

Since the circuit must be able to generate any of the coefficients with the index
l circuit following the decoder will actually be a 2l to k encoder. Its outputs
will be the k bits of the selected coefficient (plus sign). In practice, the encoder
tends to be larger than the decoder, but this depends on the Haar spectrum being
encoded.

Next, we can combine the circuits that generate the intermediate terms for each
rank into a full inverse Haar transform circuit. An example having m = 4 is shown in
Fig. 2.3.16. The highest rank, l = 3, has the largest number of inputs and will typically
be the largest circuit block. The bold lines on the right indicate that these are multiple
bit signals large enough to accommodate the largest encoded coefficient.
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FIGURE 2.3.16 Complete inverse Haar transform circuit.

The circuit that computes the final sum is a bank of adders with five input words
in this case. The type of adder is not important in producing the correct output, but
it is important to the performance of the circuit. When required the adder should
be optimized for the specific function. If possible a structure similar to a parallel
multiplier should be used having a carry save adder for the multiple input terms and
carry propagation at the last stage.

We now have a Haar function generator circuit with a simple structure that can be
used as a basic building block.

2.4 WALSH RELATED TRANSFORMS

In this section, we will introduce the Arithmetic transform as an integer-valued
counterpart of the Reed–Muller transform, see Section 1.5. In other words, the Arith-
metic transform is defined with respect to the basis function used to define the Reed–
Muller transform, however, with their values interpreted as integers 0 and 1 instead of
logic values 0 and 1. We will show that the arithmetic transform can be derived from
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the Walsh transform when Walsh functions expressed in terms of switching variables
whose values are interpreted as integers. In a similar way, it will be shown that the
Reed–Muller transforms can be derived from the arithmetic transform by interpreting
the integer values 0 and 1 as the corresponding logic values, and replacing arithmetic
operations of addition, substraction, and multiplication by the addition and the
multiplication modulo 2.

2.4.1 Arithmetic Transform

In the matrix notation, the arithmetic expressions for functions given by the vectors
of function values F = [f (0), . . . , f (2m − 1)]T , are defined as

f = Xa(m)Sa,f =
(

m−1⊗
i=0

[
1 zi

])
Sa,f

with

Sa,f = A(m)F,

where

A(m) =
m−1⊗
i=0

A(1),

and A(1) is the basic arithmetic transform matrix given by

A(1) =
[

1 0

−1 1

]
.

If the elements of Xa are interpreted as logic values 0 and 1, then this
matrix is referred to as the Reed–Muller matrix or the conjunctive transform
matrix (8,28). It defines a self-inverse transform in the space GF2(Cm

2 ) of
binary-valued functions on finite dyadic group, denoted as the Reed–Muller
transform, or the conjunctive transform. In this context, the arithmetic trans-
form in C(Cm

2 ) is denoted as the inverse conjunctive transform (8). For more
details on arithmetic expressions, see References 8,323,349,350,351,524, and
658.
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Example 2.4.1 For m = 3, the arithmetic transform in C(C3
2) is defined by the matrix

A(3) =




1 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0

−1 0 1 0 0 0 0 0

1 −1 −1 1 0 0 0 0

−1 0 0 0 1 0 0 0

1 −1 0 0 −1 1 0 0

1 0 −1 0 −1 0 1 0

−1 1 1 −1 1 −1 −1 1




.

For the function f of m = 3 variables defined by F = [1, 0, 0, 0, 0, 1, 1, 1]T , the

arithmetic spectrum is Sa,f = [1, −1, −1, 1, −1, 2, 2, −2]T . Therefore,

f = 1 − z2 − z1 + z1z2 − z0 + 2z0z2 + 2z0z1 − 2z0z1z2.

2.4.2 Arithmetic Expressions from Walsh Expansions

Let G = C2
2 and P = C. Each z ∈ G can be expressed by z = (z0, z1), z0, z1 ∈ {0, 1}.

Fourier expansions for functions f ∈ C(C2
2) are defined in terms of Walsh functions

in the Hadamard ordering given by the columns of the Walsh matrix

W(2) =




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


 . (2.4.1)

The set of Walsh functions wi, i = 0, 1, 2, 3 can be represented in terms of switch-
ing variables as

1. W0 = 1,

2. W1 = 1 − 2z1,

3. W2 = 1 − 2z0,

4. W3 = (1 − 2z0)(1 − 2z1).

In symbolic notation, W(2) can be written as

X(2) = [
W0 W1 W2 W3

]
.
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From (2.4.1), the Walsh expression for f ∈ C(C2
2) is defined by

f = X(2)Sf

= [
1 1 − 2z1 1 − 2z0 (1 − 2z0)(1 − 2z1)

]
Sf ,

where Sf = [Sf (0), Sf (1), Sf (2), Sf (3)]T is the vector of Walsh spectral coefficients.
With this notation, the orthogonal Walsh series expression transfers into the Walsh

polynomial expressions in terms of switching variables. It is assumed that switching
variables are encoded by (0, 1)GF (2) → (0, 1)Z. Therefore,

f = 1 · Sf (0) + (1 − 2z1)Sf (1) + (1 − 2z0)Sf (2) (2.4.2)

+(1 − 2z0)(1 − 2z1)Sf (3).

In (2.4.2), if the multiplications are performed, then the polynomial expression for
f is derived

f = 1 · v0 − 2z0v2 − 2z1v1 + 4z0z1v3,

where

v0 = Sf (0) + Sf (1) + Sf (2) + Sf (3),

v1 = Sf (1) + Sf (3),

v2 = Sf (2) + Sf (3),

v3 = Sf (3).

Note that in this relation, indices of variables and coefficients are ordered in a way
that corresponds to the Hadamard ordering of Walsh functions as in Definition 2.3.1.

If Walsh (Fourier) coefficients are expressed in terms of the function values for f ,
these polynomial representations become the arithmetic expressions for f .

In this example,

Sf (0) = 1

4
(f (0) + f (1) + f (2) + f (3)),

Sf (1) = 1

4
(f (0) − f (1) + f (2) − f (3)),

Sf (2) = 1

4
(f (0) + f (1) − f (2) − f (3)),

Sf (3) = 1

4
(f (0) − f (1) − f (2) + f (3)).
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Therefore,

v0 = f (0),

v1 = 1

2
(f (0) − f (1)),

v2 = 1

2
(f (0) − f (2)),

v3 = 1

4
(f (0) − f (1) − f (2) + f (3)).

After replacement of zi, we get the arithmetic expressions for f ∈ C(Cm
2 )

f = 1 · a0 + z0a2 + z1a1 + z0z1a3,

where

a0 = f (0),

a1 = f (0) − f (1),

a2 = f (0) − f (2),

a3 = f (0) − f (1) − f (2) + f (3).

If further

1. binary values 0 and 1 for variables are considered as the logic values 0 and 1,

2. the addition and subtraction in C are replaced by the addition in GF (2),

3. values of coefficients are calculated modulo 2,

then, the arithmetic expressions become the Reed–Muller expressions for f .
In this example, the Reed–Muller expression is given by

f = 1 · r(0) ⊕ r2z0 ⊕ z1r1 ⊕ r3z0z1,

where ri ∈ {0, 1}, are

r0 = f (0),

r1 = f (0) ⊕ f (1),

r2 = f (0) ⊕ f (2),

r3 = f (0) ⊕ f (1) ⊕ f (2) ⊕ f (3).
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Example 2.4.2 For the function f in Example 2.4.1, the Walsh spectrum in the
Hadamard ordering is Sf = 1

8 [4, 0, 0, 0, −2, 2, 2, 2]T .
For m = 3, the Walsh functions in the Hadamard ordering in Definition 2.3.1 can

be represented as

W0(z) = 1,

W1(z) = 1 − 2z2,

W2(z) = 1 − 2z1,

W3(z) = (1 − 2z1)(1 − z2),

W4(z) = 1 − 2z0,

W5(z) = (1 − 2z0)(1 − 2z2),

W6(z) = (1 − 2z0)(1 − 2z1),

W7(z) = (1 − 2z0)(1 − 2z1)(1 − 2z2).

Therefore, since the Walsh transform is self-inverse, when we assign the coefficients
to the corresponding Walsh functions, it follows

f = 1

8
(4 − 2(1 − 2z0) + 2(1 − 2z0)(1 − 2z2) + 2(1 − 2z0)(1 − 2z1)

+2(1 − 2z0)(1 − 2z1)(1 − 2z2))

= 1 − z0 − z1 − z2 + 2z0z1 + 2z0z2 + z1z2 − 2z0z1z2,

which is the arithmetic expression for f .
If we reduce the coefficients modulo 2, and replace the addition and subtraction

by EXOR, we get the Reed–Muller expression for f

f = 1 ⊕ z0 ⊕ z1 ⊕ z2 ⊕ z1z2.

In should be noticed that the arithmetic and Reed–Muller expressions are defined
with respect to the same set of basis functions {�w} = Xa but taking values in different
fields, the field of rational numbers and GF (2), respectively. Therefore, they are
viewed as examples of word-level and bit-level polynomial expressions for Boolean
functions, see References 499, and 555.

2.5 BASES FOR SYSTEMS OF MULTIPLE-VALUED FUNCTIONS

In this section we go over to complete systems of orthogonal functions that can be
used for the analysis and synthesis of systems of p-valued logic functions. These
orthogonal systems generalize the Walsh and Haar functions and do not take two or
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three real values, as was the case previously, but p or p + 1 complex values, where
p ≥ 2 is prime.

2.5.1 Vilenkin–Chrestenson Functions and Their Properties

The generalization of Walsh functions to the p-valued case, where p is a prime, is the
system of Vilenkin–Chrestenson functions (102, 626). They can be viewed as group
characters of finite Abelian groups Cm

p , where Cp = {0, 1, . . . , p − 1}, and the group
operation is the componentwise addition modulo p.

The Vilenkin–Chrestenson functions χ
(p)
w (z) are step functions defined on the

interval [0, pm). Let p and m be natural numbers. The Vilenkin–Chrestenson functions
χ

(p)
w (z), w = 0, 1, . . . , pm − 1 are first defined on integer points z = 0, 1, . . . , pm − 1

and then extended to step functions on [0, pm) by χ
(p)
w (z) = χ

(p)
w (�z�).

For z = 0, 1, . . . , pm − 1,

χ(p)
w (z) = exp

(
2π

p
i

m−1∑
s=0

wm−1−szs

)
, (2.5.1)

where i = √−1, ws, zs ∈ {0, 1, . . . , p − 1}, and

w =
m−1∑
s=0

wsp
m−1−s, (2.5.2)

z =
m−1∑
s=0

zsp
m−1−s. (2.5.3)

A comparison of formulas (2.3.6) and (2.5.1) reveals that

χ(2)
w (z) = ←−

W w(z) = W←−w (z), (2.5.4)

in other words, the Vilenkin–Chrestenson system for p = 2 is the Walsh system.
Table 2.5.1 lists the Vilenkin–Chrestenson functions for p = 3, m = 2. Both in

Tables 2.5.1 and 2.5.2, e1 = − 1
2 (1 − i

√
3) = exp(2πi/3), e2 = e1 = − 1

2 (1 + i
√

3) =
exp(4πi/3), i = √−1.

Consider the subset K(p)
r,s (z) of the Vilenkin–Chrestenson system χ

(p)
w (z) consisting

of all those functions whose subscript w is a power of p. These functions generalize
the Rademacher functions:

K(p)
r,s (z) = χ

(p)
r·ps (z) = exp

(
2π

p
i · r · zs

)
, i = √−1. (2.5.5)
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TABLE 2.5.1 Vilenkin–Chrestenson Functions for
p = 3, m = 2.

z

χ(3)
ω 0 1 2 3 4 5 6 7 8

χ
(3)
0 (z) 1 1 1 1 1 1 1 1 1

χ
(3)
1 (z) 1 1 1 e1 e1 e1 e2 e2 e2

χ
(3)
2 (z) 1 1 1 e2 e2 e2 e1 e1 e1

χ
(3)
3 (z) 1 e1 e2 1 e1 e2 1 e1 e2

χ
(3)
4 (z) 1 e1 e2 e1 e2 1 e2 1 e1

χ
(3)
5 (z) 1 e1 e2 e2 1 e1 e1 e2 1

χ
(3)
6 (z) 1 e2 e1 1 e2 e1 1 e2 e1

χ
(3)
7 (z) 1 e2 e1 e1 1 e2 e2 e1 1

χ
(3)
8 (z) 1 e2 e1 e2 e1 1 e1 1 e2

A comparison of formulas (2.3.7) and (2.5.5) shows that

K
(2)
1,s(z) = Rs+1(z), (2.5.6)

and so the functions K
(p)
r,s (z) are known as generalized Rademacher functions. The

generalized Rademacher functions for p = 3, m = 2 are listed in Table 2.5.2.
There is a one-to-one correspondence h between the set of values assumed by the

Vilenkin–Chrestenson functions and the set {0, 1, . . . , p − 1}. Indeed, set

h

(
exp

(
2π

p
iq

))
= q. (2.5.7)

Then, as is evident from (2.5.5), the mapping h takes the value of K
(p)
1,s (z) onto the

corresponding digit zs of the p-ary code of z.

TABLE 2.5.2 Generalized Rademacher Functions for
p = 3, m = 2.

K(3)
r,s 0 1 2 3 4 5 6 7 8

K
(3)
0,0 1 1 1 1 1 1 1 1 1

K
(3)
1,0 1 1 1 e1 e1 e1 e2 e2 e2

K
(3)
2,0 1 1 1 e2 e2 e2 e1 e1 e1

K
(3)
1,1 1 e1 e2 1 e1 e2 1 e1 e2

K
(3)
2,1 1 e2 e1 1 e2 e1 1 e2 e1
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The Vilenkin–Chrestenson functions may be expressed in terms of the generalized
Rademacher functions. Indeed, by (2.5.5) and (2.5.1),

χ(p)
w (z) =

m−1∏
s=0

(K(p)
wm−1−s,s

(z)), (2.5.8)

so that the set of Vilenkin–Chrestenson functions is the multiplicative closure of the
set of generalized Rademacher functions.

Formula (2.5.8) generalizes the formula (2.3.8) relating the Rademacher and Walsh
functions.

We now turn to the main properties of the Vilenkin–Chrestenson functions. (The
proofs are analogous to those of the properties of the Walsh functions.)
Completeness and orthogonality

Theorem 2.5.1 The set of Vilenkin–Chrestenson functions is a complete orthogonal
system:

pm−1∑
z=0

χ
(p)
t (z)χ(p)

q (z) =
{

pm, if t = q,

0 , if t �= q,
(2.5.9)

where χ
(p)
q (z) is the complex conjugate of χ

(p)
q (z).

If �(z) is a step function representing a system of p-valued logic functions of m

variables, such that

pm−1∑
z=0

�(z)χ(p)
w (z) = 0,

for all w = 0, 1, . . . , pm − 1, then �(z) = 0 for all z.

It follows from (2.5.9) for t = 0 that

pm−1∑
z=0

χ(p)
w (z) = 0, (2.5.10)

for w �= 0.
Finiteness of representing series

Theorem 2.5.2 Let �(z) be a step function representing a system of p-valued logic
functions of m variables. Then,

�(z) =
pm−1∑
w=0

S(w)χ(p)
w (z), (2.5.11)
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where

S(w) = p−m

pm−1∑
z=0

�(z)χ(p)
w (z). (2.5.12)

Example 2.5.1 Consider the system of two ternary functions of two variables defined
by Table 2.5.3 (p = 3, m = 2). The corresponding step function �(z) and its Vilenkin–
Chrestenson spectrum are also given in Table 2.5.3. We have

�(z) = 3−2
(

36 + 3

2
(1 − i

√
3)χ(3)

4 (z) +
(

−21

2
− 15

2
i
√

3

)
χ

(3)
5 (z)

+
(

−21

2
+ 15

2
i
√

3

)
χ

(3)
7 (z) +

(
3

2
+ 3

2
i
√

3

)
χ

(3)
8 (z)

)
.

Symmetry of index and variable.

Theorem 2.5.3 For any w, z ∈ {0, 1, . . . , pm − 1},

χ(p)
w (z) = χ(p)

z (w). (2.5.13)

TABLE 2.5.3 Function in Example 2.5.1 and Its
Vilenkin–Chrestenson Spectrum.

z, w z0 z1 f (0)(z) f (1)(z) �(z) 9S(w)

0 0 0 0 2 2 36

1 0 1 2 2 8 0

2 0 2 0 2 2 0

3 1 0 1 0 3 0

4 1 1 0 1 1 1.5 − 1.5i
√

3

5 1 2 2 2 8 −10.5 − 7.5i
√

3

6 2 0 2 1 7 0

7 2 1 1 0 3 −10.5 + 7.5
√

3i

8 2 2 0 2 2 1.5 + 1.5
√

3i
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Translation of variables

Theorem 2.5.4 For any w, z, τ ∈ {0, 1, . . . , pm − 1},

χ(p)
w (z ⊕ τ) = χ(p)

w (z)χ(p)
w (τ), (2.5.14)

where ⊕ stands for the componentwise addition modulo p of p-ary representations
of z and τ.

It follows from Theorems 2.5.3 and 2.5.4 that the set of Vilenkin–Chrestenson
functions is closed under multiplication.

Isomorphism of the set of linear p-valued logic functions and the Vilenkin–
Chrestenson system

Ap-valued logic functionf (z0, . . . , zm−1) is said to be linear if it may be expressed
as

f (z0, . . . , zm−1) =
m−1⊕
s=0

cszs, mod p. (2.5.15)

The linear functions form a commutative group of order pm with respect to addition
modulo p. The inverse of an element

⊕m−1
s=0 cszs, modulo p, (cs ∈ {0, 1, . . . , p − 1})

is
⊕m−1

s=0 (p − cs)zs modulo p.

The Vilenkin–Chrestenson functions χ
(p)
w (z) also form a multiplicative group of

order pm.

Theorem 2.5.5 The group of Vilenkin–Chrestenson functions is isomorphic to the
group of linear p-valued logic functions. The isomorphism h is defined by

h(χ(p)
w (z)) =

m−1⊕
s=0

wm−1−szs, mod p. (2.5.16)

This isomorphism is an extension of the isomorphism between the generalized
Rademacher functions and the components of the p-ary expansion of the variable. It
will be used in the sequel in analysis and synthesis of networks realizing systems of
p-valued logic functions.

2.5.2 Generalized Haar Functions

Each expansion coefficient of a system of p-valued logic functions relative to the
Vilenkin–Chrestenson basis depends on the behavior of the system over its entire
interval of definition. We now define a complete system of orthogonal (p + 1)-valued
functions, p is prime, generalizing the Haar functions, with the property that the
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corresponding expansion coefficients depend only on the local behavior of the original
system. We refer to these functions as generalized Haar functions {M(p,q)

r,s (z)}.
The generalized Haar functions M

(p)
r,s (z) are defined in terms of the generalized

Rademacher functions K
(p)
r,s = χ

(p)
r,ps (z) = exp(2πrizs/p) as follows:

M
(p,1)
0,0 (z) ≡ 1,

M(p,q)
r,s (z) =

{
K

(p)
r,s (z), if z ∈ [(q − 1)pm−s, qpm−s),

0, otherwise.
(2.5.17)

It follows from (2.5.6), (2.5.17), (2.3.18) that the generalized Haar functions for
p = 2 are the Haar functions, M

(2,q)
1,s = H

(q)
s (z). The values of the generalized Haar

functions for p = 3 and m = 2 are given in Table 2.5.4.
The generalized Haar functions form a complete orthogonal system. Any step

function representing a p-valued logic function of m variables admits an expansion
in series of generalized Haar functions, containing at most pm nonzero terms.

2.6 PROPERTIES OF DISCRETE WALSH AND
VILENKIN–CHRESTENSON TRANSFORMS

Series representations
In previous sections we have shown that if the Walsh or Haar systems (for Boolean
functions) and the Vilenkin–Chrestenson or generalized Haar functions (for p-valued
functions) are used, the series thus obtained are finite. If the original system of
logic functions is defined at pm points, its spectrum will also take at most pm nonzero
values. Thus, the orthogonal-series representation of a system of logic functions de-
fines a one-to-one mapping of the pm-dimensional space of systems of logic functions

TABLE 2.5.4 Generalized Haar Functions For p=3 and m=2.

M
(3,q)
r,i (z) 0 1 2 3 4 5 6 7 8

M
(3,0)
0,0 (z) 1 1 1 1 1 1 1 1 1

M
(3,1)
1,0 (z) 1 1 1 e1 e1 e1 e2 e2 e2

M
(3,1)
2,0 (z) 1 1 1 e2 e2 e2 e1 e1 e1

M
(3,1)
1,1 (z) 1 e1 e2 0 0 0 0 0 0

M
(3,2)
1,1 (z) 0 0 0 1 e1 e2 0 0 0

M
(3,3)
1,1 (z) 0 0 0 0 0 0 1 e1 e2

M
(3,1)
2,1 (z) 1 e2 e1 0 0 0 0 0 0

M
(3,2)
2,1 (z) 0 0 0 1 e2 e1 0 0 0

M
(3,3)
2,1 (z) 0 0 0 0 0 0 1 e2 e1
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into the pm-dimensional space of spectral coefficients. We shall refer to the system in
question as the “original,” in keeping with the terminology used in Laplace transform
theory (129), and the sequence of spectral coefficients S(0), . . . , S(pm − 1) of the ex-
pansion of the system will be called the image, transform, or spectrum of the system
relative to the appropriate basis. The mapping itself will be called the Walsh or the
Vilenkin–Chrestenson transform. The spectrum of the function �(z) relative to the
basis in question will be denoted by Sf (z)(w), where �(z) = f (δ) for z ∈ [δ, δ + 1),
δ = 0, 1, . . . , pm − 1.
Properties of Walsh and Vilenkin–Chrestenson expressions

In view of the fact that the Walsh and the Vilenkin–Chrestenson spectra will be
used constantly in what follows as the main tool for the analysis and the synthesis of
digital devices, we list the most important properties of the Walsh and the Vilenkin–
Chrestenson transforms below.
Linearity

Theorem 2.6.1 Let

�(z) =
N∑

q=1

aq�q(z), (2.6.1)

where aq are arbitrary numbers and �q(z), (q = 1, . . . , N) step functions represent-
ing systems of logic functions fq, (q = 1, 2, . . . , N).

Then,

Sfq(z)(w) =
N∑

q=1

aqSfq (w). (2.6.2)

Translation of variable in the original and in the transform domain

Theorem 2.6.2 For every τ ∈ {0, 1, . . . , pm − 1}

Sf (z�τ)(w) = χ
(p)
τ (w)Sf (z)(w), mod p, (2.6.3)

Sf (z)χ
(p)
τ (z) = Sf (z)(w � τ), mod p, (2.6.4)

where � stands for componentwise subtractions of p-ary representations of z and τ

or w and τ.

It is worth noticing that Theorem 2.6.2 is analogous to the theorem of translation of
variables in the case of the Laplace transform (129), except that here the subtraction
(translation) of variables in both the original and transform domain is carried out
modulo p. (The translation of z or w by an amount τ modulo p is defined by the
componentwise addition (mod p) of the p-ary expansions of z (or w) and τ).
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Involution property

Theorem 2.6.3 The following relation holds for the transform of the complex con-
jugate of the Vilenkin–Chrestenson spectrum

S
Sf

(z) = p−mf (z). (2.6.5)

Proof. Since,

Sf (w) = p−m

pm−1∑
q=0

f (q)χ(p)
w (q),

it follows in view of (2.6.1), (2.6.2), (2.5.9), (2.5.13), and (2.5.14) that

S
Sf

(z) = p−m

pm−1∑
w=0

Sf (w)χ(p)
z (w)

= p−m

pm−1∑
w=0


p−m

pm−1∑
q=0

f (q)χ(p)
w (q)


χ

(p)
w (z)

= p−2m

pm−1∑
w=0

pm−1∑
q=0

f (q)χ(p)
w (q � z) mod p,

= p−2m

pm−1∑
q=0

f (q)
pm−1∑
w=0

χ(p)
w (q � z)

= p−mf (z).

The involution property means that the Vilenkin–Chrestenson transform of a step
function �(z) is the original function, up to a normalizing factor p−m.
Convolution theorem

Theorem 2.6.4 The convolution theorem for the Vilenkin–Chrestenson transform is

Sf1·f2 (w) =
pm−1∑
τ=0

Sf1 (τ)Sf2 (w � τ), mod p. (2.6.6)

Let �(z) = ∑pm−1
τ=0 f1(τ)f2(z � τ) mod p. Then,

S�(w) = pmSf1 (w)Sf2 (w). (2.6.7)
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Proof. By (2.6.1), (2.6.2), (2.5.9), (2.5.13), and (2.5.14),

Sf1f2 (w) = p−m

pm−1∑
z=0

f1(z)f2(z)χ(p)
w (z)

= p−m

pm−1∑
z=0


pm−1∑

τ=0

Sf1 (τ)χ(p)
τ (z)




pm−1∑

α=0

Sf2 (α)χ(p)
α (z)


χ

(p)
w (z)

= p−m

pm−1∑
τ=0

pm−1∑
α=0

Sf1 (τ)Sf2 (α)
pm−1∑
z=0

χ
(p)
τ⊕α�w(z)

= p−m

pm−1∑
τ=0

Sf1 (τ)Sf2 (w � τ)
pm−1∑
z=0

χ
(p)
0 (z)

+p−m
∑

α�=q�τ

Sf1 (τ)Sf2 (α)
pm−1∑
z=0

χ
(p)
τ⊕α�w(z) mod p

=
pm−1∑
τ=0

Sf1 (τ)Sf2 (w � τ).

It follows from (2.6.7) that rather complicated operation of convolution in the
original domain, corresponds to the multiplication in the spectral domain. If � =
f1 ⊕⊗ f2, where ⊕⊗ denotes the convolution operator, then, S� = Sf1Sf2 .

This convolution theorem is a particular example of the convolution theorem in
Fourier analysis on groups, including the classical Fourier analysis as an example of
Fourier representations on locally compact Abelian groups, see Reference 567. In the
case of Abelian groups, the theorem holds also in the opposite direction, that is, the
product of functions in the original domain corresponds to the convolution of their
spectra. In the case of compact non-Abelian groups, just the first part of this theorem
holds.

The proof of the convolution theorem (2.6.7) is analogous to the proof of (2.6.6).
Convolution Theorem (2.6.4) will be widely used in this book for spectral analysis

of logic functions, spectral synthesis, and spectral testing.

Corollary 2.6.1 Let f (z) be a switching function (p = 2) of m variables and Sf (w)
its Walsh spectrum. Then,

Sf (w) =
2m−1∑
τ=0

Sf (τ)Sf (w ⊕ τ), (2.6.8)

and conversely, if (2.6.8) is true, then f (z) is a switching function.
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Formula (2.6.8) is thus an alternative definition of switching functions. The corol-
lary follows from Theorem 2.6.4, using the equality f (z) = f (z)f (z), which is true
if and only if f (z) is a switching function.

Corollary 2.6.2 Let f (z) be a switching function and Sf (w) its Walsh spectrum.
Then,

2m−1∑
w=0

Sf (w) ∈ {0, 1}.

This is verified by summing both sides of (2.6.8) over w.
Corollary 2.6.2 is useful as a check on the correctness of calculations of Walsh

spectra of switching functions by means of check sums
∑

w Sf (w).
Plancherel theorem

Theorem 2.6.5 For any real-valued function f (z) where z ∈ Cm
p ,

pm−1∑
z=0

f 2(z) = pm

pm−1∑
w=0

Sf (w)Sf (w), (2.6.9)

where Sf (w) is the complex conjugate of Sf (w).

Proof. From Theorem 2.5.1 to 2.5.4, we have

pm−1∑
z=0

f 2(z) =
pm−1∑
z=0


pm−1∑

w=0

Sf (w)χ(p)
w (z)




pm−1∑

v=0

Sf (v)χ(p)
v (z)




=
pm−1∑
z=0

pm−1∑
w,v=0

Sf (w)Sf (v)χ(p)
w⊕v(z)

= pm

pm−1∑
w=0

Sf (w)Sf (w).

In classical Fourier analysis, this theorem is also called the Parseval relation or
theorem.

Corollary 2.6.3 If f (z) is a switching function of m variables, that is, f : Cm
2 → C2,

then

‖f‖ =
2m−1∑
z=0

f (z) = 2m
2m−1∑
w=0

S2
f (w). (2.6.10)
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For a function φ : Cm
p → C, where C is the field of complex numbers, the L2-norm

is defined as

‖f‖2 =
pm−1∑
z=0

φ(z)φ(z). (2.6.11)

Theorem 2.6.5 states that the Vilenkin–Chrestenson and Walsh transforms for
p = 2, are isometric (unitary) with respect to the L2-norm, that is,

‖f‖2 = 2m‖Sf ‖2. (2.6.12)

Poisson summation formula

Theorem 2.6.6 Let V of Cm
p be a subgroup of Cm

p , and V⊥ = {x|x ∈ Cm
p ,
∑m−1

i=0
xizi = 0 for all z ∈ V }. Then, for any f defined on Cm

p ,

∑
z∈V

f (z) = |V |
∑

←−w ∈V⊥
Sf (w). (2.6.13)

Proof. By definition of the Vilenkin–Chrestenson transform and its properties, we
have

∑
z∈V

f (z) =
∑
z∈V

pm−1∑
w=0

Sf (w)χ(p)
w (z)

=
pm−1∑
w=0

Sf (w)
∑
z∈V

χ(p)
w (z) = |V |

∑
←−w ∈V⊥

Sf (w).

Linear (mod p) transformation of variables
Let p be a prime, and σ = (σi,s), (i, s = 0, 1, . . . , m − 1) a matrix over the field

GF (p) of residues mod p, with nonvanishing determinant |σ|p �= 0 over GF (p)
(i.e., σis ∈ {0, 1, . . . , p − 1} and all the multiplication and addition operations in the
calculation of |σ|p are performed modulo p). Let σ � sa (a � σ) be the number
whose p-ary expansion vector is the product of σ and the p-ary expansion vector of
the number a (in the appropriate order), and all arithmetical operations are performed
modulo p. For example,


0 2 1

1 2 1

0 1 1


� 14 =


0 2 1

1 2 1

0 1 0


�


 1

1

2


 =


 1

2

1


 = 16, mod 3.
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Theorem 2.6.7 Let σi,s ∈ {0, 1, . . . , p − 1}, i, s = 0, 1, . . . , m − 1, |σ|p �= 0. Then,
for the Vilenkin Chrestenson transform defined by (2.5.1) to (2.5.4),

Sf (σ�z)(w) = Sf (z)
←−−−−−−−
(←−w � σ−1). (2.6.14)

The inversion of the matrix σ in (2.6.14) is again over the field of residues modulo
p, and if w = ∑m−1

s=0 wsp
m−1−s, (ws ∈ {0, 1, . . . , p − 1}), then ←−w = ∑m−1

s=0 wsp
s.

Proof. It holds,

m−1∑
s=0

wm−1−s(σ � z)s =
m−1∑
s=0

wm−1−s

m−1∑
q=0

σsqzq =
m−1∑
q=0

zq(←−w � σ)q

=
m−1∑
q=0

zq(
←−−−−←−w � σ)m−1−q mod p.

Hence,

χ(p)
w (σ � z) = χ←−−−−←−w � σ

(z) mod p. (2.6.15)

It follows that

Sf (σ�z)(w) =
pm−1∑
z=0

f (σ � z)χ(p)
w (z)

=
pm−1∑
z=0

f (σ � z)χ(p)
w (σ−1 � σ � z)

=
pm−1∑
z=0

f (σ � z)χ←−−−−−−←−w � σ−1
(σ � z) = Sf (z)(

←−−−−−−←−w � σ−1), mod p.

Corollary 2.6.4 Let σi,s ∈ {0, 1, . . . , p − 1}, (i, s = 0, 1, . . . m − 1), |σ|p �= 0. Let
σ be an orthogonal matrix, that is,

m−1∑
s=0

σi,sσq,s =
{

0, if i �= q, mod p

1, if i = q.

Then,

Sf (σ�z)(w) = Sf (z)(
←−−−−
σ � ←−w ), mod p. (2.6.16)
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Formula (2.6.16) follows from (2.6.14), in view of the following identity for
orthogonal matrices.

For all α,

α � σ−1 = σ � α, mod p.

It follows from Theorem 2.6.7 that a nonsingular linear transformation of the
variables of a function, results in a linear transformation of variables of its spectrum,
and the transformation matrix for the spectrum is the inverse of that of the original
transformation.

Since permutation of variables is a particular case of a linear transformation, The-
orem 2.6.7 will be used when we are looking for the “optimal” order of variables,
in linearization of systems of logic functions, analysis of various classes of logic
functions, and so on.

Example 2.6.1 Table 2.6.1 defines a function f (z) and the function f (σ � z)
(mod p) for m = 4, p = 2,

σ =




1 0 0 1

1 1 1 1

0 1 1 1

0 1 0 1


 , σ−1 =




0 1 1 0

1 1 1 1

0 0 1 1

1 1 1 0


 .

Also shown in the table are Sf (z)(w) and Sf (σ�z)(w) modulo 2, illustrating Theo-
rem 2.6.7.

TABLE 2.6.1 Function f(z) in Example 2.6.1, Its Spectrum in Paley Ordering by
Definition 2.3.2, Linearly Transformed Function f(σ� z) and the Spectrum of It.

z, w σ � z f (z) f (σ � z) 16Sf (z)(w) 16Sf (σ�z)(w)

0 0 0 0 8 8
1 15 1 0 2 0
2 6 1 0 2 −4
3 9 1 0 0 −4
4 7 0 1 −2 0
5 8 1 1 0 0
6 1 0 1 0 0
7 14 1 1 −2 0
8 12 1 0 −2 −2
9 3 0 1 −4 2

10 10 0 0 0 −2
11 5 1 1 2 2
12 11 0 1 0 2
13 4 0 0 −2 −2
14 13 1 0 2 −2
15 2 0 1 −4 2
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Remark 2.6.1 The properties of linearity, translation, and convolution considered
above for Walsh and Vilenkin–Chrestenson transforms are analogs of the correspond-
ing properties for the ordinary Laplace transform. This observation makes it possible
to utilize Walsh and Vilenkin–Chrestenson functions in the analysis, synthesis, and
optimization of digital of logic devices, in a role analogous to that of the exponential
functions in the classical fields of electrical and computer engineering, control theory
(with regard to the Laplace transform) or the theory of sampled-data control systems
(discrete Laplace transform).

2.7 AUTOCORRELATION AND CROSS-CORRELATION FUNCTIONS

In this section, we introduce the autocorrelation and cross-correlation functions, to be
used subsequently for the analysis and synthesis of networks realizing logic functions.
We also indicate the connection between these functions and the discrete transforms
considered previously. These correlation functions are analogous to the classical cor-
relation functions employed extensively in telecommunications, theory of stochastic
processes, and so on.

2.7.1 Definitions of Autocorrelation and Cross-Correlation Functions

Consider a system of p-valued logic functions {f (s)(z0, . . . , zm−1)}, where zq ∈
{0, 1, . . . , p − 1},q = 0, . . . , m − 1, s = 0, . . . , k − 1, and the corresponding integer
equivalent function f (z). We define the autocorrelation function (mod p) of the func-
tions {f (s)(z0, . . . , zm−1)} or of the discrete function f (z) by

B
(f,f )
p,2 (τ) =

pm−1∑
z=0

f (z)f (z � τ), mod p, (2.7.1)

where z � τ (mod p) denotes the number whose p-ary expansion is the component-
wise difference of the numbers z and τ.

It should be clear from (2.7.1) that B
(f,f )
p,2 (τ) is a convolution-type transform of

the original function f (z), with the translation of the variable z by τ performed mod-
ulo p. The autocorrelation functions used in telecommunication systems for signal
synchronization (125,330,522,407), are a special cases of (2.7.1) for m = 1, p = N,
where N is the number of points at which the signal is defined, or p = ∞.

Now let f1(z) and f2(z) be two discrete functions, representing two systems of
p-valued logic functions of m variables. We define their cross-correlation function
(mod p) as

B
(f1,f2)
p,2 (τ) =

pm−1∑
z=0

f1(z)f2(z � τ), mod p. (2.7.2)
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2.7.2 Relationships to the Walsh and Vilenkin–Chrestenson
Transforms, the Wiener–Khinchin Theorem

We now determine the relationship of the correlation functions to the Walsh and
Vilenkin–Chrestenson transforms discussed in Sections 2.3 and 2.5. We show that
they may be expressed in terms of double transforms of the original functions, a
representation similar to that of the usual correlation functions B

(f1,f2)
∞,2 as double

Laplace transforms (330) or the representation furnished by the Wiener–Khinchin
theorem in the theory of stochastic processes (330).

Let f be a discrete function and Sf its Vilenkin–Chrestenson transform and S−1
f

the inverse Vilenkin–Chrestenson transform.

Theorem 2.7.1 Let f1 and f2 be discrete functions representing two systems of
functions of p-valued logic functions of m variables. Then,

B
(f1,f2)
p,2 = pmS−1(Sf1Sf2 ), (2.7.3)

where Sf2 is the complex conjugate of Sf2 .

Proof. Since f1(z) and f2(z) are real functions,

Sf1 (w)Sf2 (w) = p−2m

pm−1∑
z1,z2=0

f1(z1)f2(z2)χ(p)
w (z1)χ(p)

w (z2).

Hence, in view of Theorems 2.5.1, 2.5.3, 2.5.4, and 2.6.3,

(S−1(Sf1Sf2 ))(τ) =
pm−1∑
w=0

Sf1 (w)Sf2 (w)χ(p)
τ (w)

= p−2m

pm−1∑
w=0

pm−1∑
z1,z2=0

f1(z1)f2(z2)χ(p)
w (z1 � z2 � τ)

= p−2m

pm−1∑
z1,z2=0

f1(z1)f2(z2)χ(p)
w (z1 � z2 � τ)

= p−m

pm−1∑
z1=0

f1(z1)f2(z2 � τ)

+p−2m
∑

z2 �=z1�τ

f1(z1)f2(z2 � τ)
pm−1∑
w=0

χ(p)
w (z1 � z2 � τ)
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= p−m

pm−1∑
z=0

f1(z)f2(z � τ)

= p−mB
(f1,f2)
p,2 (τ), mod p.

In binary case, the spectrum assumes real values, so that

Sf2 = Sf2 = 2−m(Sf2 )−1,

and formula (2.7.3) then becomes

B
(f1,f2)
2,2 = 2mW(W(f1) · W(f2)), (2.7.4)

where W is the Walsh transform operator.
Theorem 2.7.1 is a direct analogue to the Wiener–Khinchin theorem in classical

Fourier analysis and for p = 2 can be called the dydaic Wiener–Khinchin theorem.
The theorem was published in Reference 288, for the case p = 2 (see Section 2.7.3)
and it was in fact contained in Reference 286, and also in References 203, and 611. A
generalization to arbitrary finite Abelian groups will be discussed in Section 2.8 (see
Theorem 2.8.4).

Example 2.7.1 Table 2.7.1 defines a system of two Boolean functions for m = 3 and
the discrete function f (z) representing this system. The spectrum Sf (w), S2

f (w), and

the autocorrelation function B
(f,f )
2,2 (τ) are also shown in this table.

It follows from Theorem 2.7.1 that the autocorrelation function is symmetric
(“evenness” relation for autocorrelation functions):

B
(f,f )
p,2 (τ) = B

(f,f )
p,2 (τ),

TABLE 2.7.1 The Function f(z), the Spectrum S(w) in Paley Ordering, S2(w), and the
Autocorrelation Function B(f,f )

2,2 (τ) in Example 2.7.1.

z0 z1 z2 y(0) y(1) z, w, τ f (z) 8S(w) 64S2(w) B
(f,f )
2,2 (τ)

0 0 0 0 1 0 1 13 169 29
0 0 1 1 0 1 2 5 25 24
0 1 0 1 1 2 3 −3 9 22
0 1 1 1 1 3 3 −3 9 22
1 0 0 1 0 4 2 1 1 16
1 0 1 0 0 5 0 −3 9 20
1 1 0 0 1 6 1 1 1 18
1 1 1 0 1 7 1 −3 9 18

www.it-ebooks.info

http://www.it-ebooks.info/


82 SPECTRAL TRANSFORMS FOR LOGIC FUNCTIONS

where τ ⊕ τ = 0 modulo p. This property halves the computational work needed to
determine autocorrelation functions in the case p > 2.

We now list the basic properties of the correlation functions, which determine
convolution-type transforms of the original functions. These properties are important
in the study of switching functions and solving the optimization problems in their
representations and circuit design.

2.7.3 Properties of Correlation Functions

Translation of variables of the original function

Theorem 2.7.2 Let f (z) and φ(z) be discrete functions corresponding to two systems
of p-valued logic functions of the equal number of variables, and

fα(z) = f (z � α), φα(z) = φ(z � α), mod p. (2.7.5)

Then,

B
(fα,φα)
p,2 (τ) = B

(f,φ)
p,2 (τ). (2.7.6)

Theorem 2.7.2 implies that the correlation functions are invariant with respect
to the translation of the variables in the original function. It can be shown that for
autocorrelation functions the converse is also true, that is, a nonnegative function is
uniquely determined, up to translation of the variable, by its autocorrelation function.
In the case of switching functions, translation of the variable by α is equivalent to the
inversion of variables corresponding to nonzero components of the binary expansion
of α. Thus, the complexity of a network realizing a switching function, relative to
any basis, is completely determined by the autocorrelation function B

(f,f )
2,2 (τ) (up to

m inversion elements, where m is the number of variables). Thus, it can be used for
solving any problem related to the minimization of networks realizing systems of
switching functions.
Linearity

Theorem 2.7.3 Let fs, s = 1, 2, . . . , n and φq, q = 1, 2, . . . , l be discrete functions
corresponding to systems of p-valued logic functions of m variables, and let cs,
s = 1, 2, . . . , m and dq, q = 1, 2, . . . , l be arbitrary constants. Then,

B

(∑n

s=1
csfs,

∑l

q=1
dqφq

)
p,2 (τ) =

n∑
s=1

l∑
q=1

csdqB
(fs,φq)
p,2 (τ). (2.7.7)
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Corollary 2.7.5 Let f be a switching function of m variables,
∑2m−1

z=0 f (z) = N,
and f the inversion of f , (f = 1 ⊕ f mod 2). Then,

B
(f,f )
2,2 (τ) = B

(f ,f )
2,2 (τ) − 2m + 2N. (2.7.8)

This follows from (2.7.7) in view of the equality f = 1 − f .

Corollary 2.7.5 simplifies the calculation of the autocorrelation function B
f,f
2,2(τ),

replacing the direct calculation by evaluation of B
(f ,f )
2,2 (τ) when N > 2m−1.

Linear transformation of variables

Theorem 2.7.4 Let f (z) and φ(z) be discrete functions corresponding to two sys-
tems of p-valued logic functions of m variables, σ = (σis) a p-ary matrix (i, s =
0, 1, . . . , m − 1), |σ|p �= 0 (|σ|p denotes the determinant of σ over GF (p)), and p is
a prime,

fσ(z) = f (σ � z), φσ(z) = φ(σ � z), mod p.

Then,

B
(fσ,φσ )
p,2 (τ) = B

(f,φ)
p,2 (σ � τ), mod p. (2.7.9)

Here σ � z is a vector obtained by the multiplication of the matrix σ and the vector
z over GF (p).

Proof. It holds

B
(fσ,φσ )
p,2 (τ) =

pm−1∑
z=0

fσ(z)φσ(z � τ) =
pm−1∑
z=0

f (σ � z)φ(σ � (z � τ))

=
pm−1∑
y=0

f (y)φ(y � (σ � τ)) = B
(f,φ)
p,2 (σ � τ), mod p.

For an illustration of properties of correlation functions discussed above, we pro-
vide the following example related to Corollary 2.7.1.

Example 2.7.2 Consider the switching function of two variables f (z0, z1) specified
by the truth-vector F = [1, 0, 1, 1]T . The logic complement f (z1, z2) is defined by
the truth-vector F = [0, 1, 0, 0]T .
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The autocorrelation of f is calculated in matrix notation as

B(f,f )
2,2 =




1 0 1 1

0 1 1 1

1 1 1 0

1 1 1 0






1

0

1

1


 =




3

2

2

2


 .

It is obvious that in this relation, the rows of the matrix values of f (z ⊕ τ) for
z = (z1, z2), τ = (τ1, τ2) = 0, 1, 2, 3, and the autocorrelation function is written as
the vector B(f,f )

2,2 .
In the same way,

Bf ,f )
2,2 =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0






0

1

0

0


 =




1

0

0

0


 .

Therefore, since m = 2, and the number of nonzero elements in F is N = 3, it
follows

B(f,f )
2,2 = B(f ,f )

2,2 − 2m + 2N

=




1

0

0

0


−




4

4

4

4


+ 2




3

3

3

3


 =




3

2

2

2


 .

2.7.4 Generalized Autocorrelation Functions

We now generalize the autocorrelation functions modulo p defined by (2.7.1) and
(2.7.2).

Let f (z) be the discrete function representing a system of p-valued logic functions
of m variables.

Consider the class {Bp,q} of autocorrelation functions defined as follows

Bp,q(τ) =
pm−1∑
z=0

f (z)f (z � τ) · · · f (z � τ � · · · � τ︸ ︷︷ ︸
q−1

), mod p (2.7.10)

Note that Bp,2(τ) = B
(f,f )
p,2 (τ).
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TABLE 2.7.2 A Function f of Two Ternary Variables
z0, z1 and Its Autocorrelation Function B3,3(τ).

z0 z1 f z, τ f (z) B3,3(τ)

0 0 1 0 1 6
0 1 0 1 0 0
0 2 1 2 1 0
1 0 1 3 1 0
1 1 1 4 1 6
1 2 0 5 0 0
2 0 0 6 0 0
2 1 1 7 1 0
2 2 1 8 1 6

We shall assume that p > q in (2.7.10)

Bp,q(τ) = Bp,p(τ), (τ = 0, 1, . . . , pm − 1). (2.7.11)

The function Bp,q(τ) is the cross-correlation function of q functions obtained by
q successive translations (mod p) of the original function. Of this class of correlation
characteristics, the most frequently used in the sequel will be {Bp,p(τ)}, these func-
tions find application in the analysis and synthesis of networks realizing systems of
p-valued logic functions.

Example 2.7.3 Table 2.7.2 defines a function f of two ternary variables z0, z1 ∈
{0, 1, 2} and its autocorrelation function B3,3(τ).

To end this section, we note that Theorems 2.7.2–2.7.4 may be rephrased in terms
of the autocorrelation characteristics {Bp,q}, for q ≥ 2, under the assumption that
fi = φi.

2.8 HARMONIC ANALYSIS OVER AN ARBITRARY FINITE
ABELIAN GROUP

The preceding considerations, were focused on spectral transforms on the finite dyadic
groups cn

2 , and the corresponding generalization to the cyclic groups Cn
p, for p - prime.

These considerations are particular cases of a more general theory of spectral methods
on topological groups usually called the abstract harmonic analysis.

2.8.1 Definition and Properties of Fourier Transform on Finite
Abelian Groups

In this section we present a unified approach to the discrete transforms described
above. This approach will yield more general versions of the properties of discrete
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transforms and correlation characteristics described in Sections 2.6 and 2.7, and also
enable us to construct new discrete transforms with given properties.
Definitions and theorems

Let G = (Z, ◦) be an Abelian (commutative) group, where Z is a set of N elements,
◦ an associative, commutative and invertible binary operation on Z.

An example of a commutative group is the set of all binary (p-ary) sequences of
the length m, with the operation of componentwise addition modulo 2 (modulo p).
In this case N = 2m, (N = pm). The most familiar infinite Abelian group is the set
of all integers (including 0) with respect to the addition.

Definition 2.8.1 Two groups G1 = (Z, ◦) and G2 = (Y, �) are isomorphic if there
exists a one-to-one mapping h of Z onto Y such that if z1 ◦ z2 = z3, (z1, z2, z3 ∈ Z)
then

h(z1)�h(z2) = h(z3), (h(z1), h(z2), h(z3) ∈ Y ). (2.8.1)

If the group operation is ordinary addition or multiplication, the groups are the
additive or the multiplicative group, respectively.

Theorem 2.8.1 Let G = (Z, ◦), Z = {0, 1, . . . , N − 1}, be a finite Abelian group.
Then, there exists a system of orthogonal functions {�(G)

w (z)}, w = 0, 1, . . . , N − 1,
which forms a multiplicative group isomorphic to G and is a complete orthogonal
basis in the space C(G) of all functions from Z to the complex numbers C.

A proof of this theorem will be presented later in this section.
It follows from Theorem 2.8.1 that any function in C(G) may be expressed as a

linear combination of functions {�(G)
w } with the coefficients defined in the usual way

as the Fourier coefficients, that is, if f ∈ C(G), then

f (z) =
N−1∑
w=0

S(w)�(G)
w (z), (2.8.2)

and

S(w) = N−1
N−1∑
z=0

f (z)�(G)
w (z), (2.8.3)

where �
(G)
w (z) is the complex conjugate of �

(G)
w (z).

The sequence S(w), (w = 0, 1, . . . N − 1) is known as the Fourier transform on
finite Abelian groups or spectrum of f .

Theorem 2.8.1 is a generalization of Theorems 2.3.3 and 2.5.5.
Indeed, let G = ({0, 1}m, ⊕(mod 2)). Then, {�(G)

w (z)} = {Ww(z)}. If G =
({0, 1, . . . , p − 1}m, ⊕(mod p)), we have {�(G)

w (z)} = {χ(p)
w (z)}.
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Theorem 2.8.1 is also valid for some infinite groups.
For example, if G = ({0, ±1, ±2, . . .}, +) is the additive group of integers, then

{�(G)
w (z)} = {exp(2πiwz)}, i = √−1,

is the system of exponential functions.
The space C(G) of functions from G to the field of complex numbers contains

many complete orthogonal bases. For example, if G = ({0, 1}n, ⊕(mod 2)), we may
replace the Walsh basis by the Haar basis, and so on.

It follows from Theorem 2.8.1, however, that among all these complete bases
there is exactly one basis, the basis {�(G)

w (z)}, whose structure is identical to that
of the original group G. This is one of the main reasons for the extensive use of
exponential functions in the analysis of discrete-time processes. As stated, this basis
forms a multiplicative group isomorphic to the additive group of integers. The theory
of the discrete Laplace transform, the basic tool of the theory of sampled-data control
systems, is based on this approach.

In context of considerations in this book, Theorem 2.8.1 explains the expediency
of the Walsh and Vilenkin–Chrestenson bases as a tool for the analysis, synthesis, and
testing of networks realizing switching and p-valued logic functions.

An immediate problem is, given a group G, how can we construct the isomorphic
complete orthogonal multiplicative system {�(G)

w (z)}? The method described below
is essentially a constructive proof of Theorem 2.8.1. Before proceeding to the con-
struction, however, we recall a few important propositions from the theory of group
characters.

Definition 2.8.2 A mapping χ (not necessarily one-to-one) of a group G = (Z, ◦) into
the multiplicative group of (nonzero) complex numbers is called a homomorphism if,
whenever z1 ◦ z2 = z3,

χ(z1)χ(z2) = χ(z3), (z1, z2, z3 ∈ Z). (2.8.4)

Definition 2.8.3 Any homomorphism of a group G into the multiplicative group of
complex numbers is known as a character of G.

Let χw(z) denotes the wth character of G, then χ0(z) denotes the character such
that χ0(z) = 1 for any z ∈ Z, the identity character or the principle character.

Example 2.8.1 Let G = ({0, 1, 2}, ⊕(mod 3)). Then, the function χw(z) defined by
Table 2.8.1 is a character of G (here e1 = exp(2πi/3), e2 = exp(4πi/3), i = √−1).

Indeed, taking, for instance, z1 = (0, 2), z2 = (1, 1), we have z1 ⊕ z2 = (0, 2) ⊕
(1, 1) = (1, 0) (mod 3), and χw(z1)χw(z2) = e2 · e2 = e1 = χw(z1 ⊕ z2) (mod 3).

Notice that this character is the Vilenkin–Chrestenson function χ
(3)
4 (z). It will be

clear from what follows that every character of this group is a Vilenkin–Chrestenson
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TABLE 2.8.1 Characters χw(z) for the Group C2
3 in

Example 2.8.1.

z z0 z1 χw(z)
0 0 0 1
1 0 1 e1

2 0 2 e2

3 1 0 e1

4 1 1 e2

5 1 2 1
6 2 0 e2

7 2 1 1
8 2 2 e1

function, and every Vilenkin–Chrestenson function χ
(p)
w (z) is a character of G =

({0, 1, . . . , p − 1}m, ⊕( mod p)).

Theorem 2.8.2 Let G be a finite Abelian group. Then, the set of all characters of G

is a multiplicative group isomorphic to G.

Theorem 2.8.2 is a corollary of Theorem 2.8.3, to be proved later in this sec-
tion. From Theorem 2.8.2, the set of characters {χw(z)}, (w = 0, 1, . . . , N − 1) of a
group G = (Z, ◦), (Z = {0, 1, . . . , N − 1}) is the complete orthogonal system whose
existence is asserted in Theorem 2.8.1. In other words,

1. Orthogonality of characters

N−1∑
z=0

χw(z)χs(z) =
{

0, if w �= s,

N, if w = s,
(2.8.5)

and

2. Completeness of characters
If

N−1∑
z=0

f (z)χw(z) = 0, w = 0, . . . , N − 1,

then

f (z) ≡ 0, z = 0, . . . , N − 1. (2.8.6)

Thus, whenever we are analyzing the properties of functions defined on finite
groups (in particular, logic functions) or synthesizing functions of this type with pre-
scribed properties, we may view the functions as being defined not on the original
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group but on its character group. This is extremely convenient, in view of the or-
thogonality of the characters and the fact that the group operation is now ordinary
multiplication.

By the value of a function f (z) on a character χw(z) we mean the quantity
S(w) = N−1 ∑N−1

z=0 f (z)χw(z). The numbers S(w), (w = 0, 1, . . . , N − 1) form the
spectrum (Fourier transform on G) of the original function. Thus, when concerned
with problems of analysis, synthesis, testing, diagnosis, and optimization of digital
networks, we may go over from originals to transforms, as done, for example, in
automatic control theory.

2.8.2 Construction of Group Characters

We can now proceed to methods for constructing the group of characters of a given
Abelian groupG and describe some of the basic properties of characters. As mentioned
previously, the method described below proves Theorem 2.8.2 and hence, in view of
theorthogonality and completeness relations (2.8.5 and 2.8.6), also Theorem 2.8.1.

Let G = (Z, ◦) be a finite Abelian group. For any z ∈ Z, the set of elements
e = z0, z1, z2, . . ., where zn = z ◦ z ◦ · · · ◦ z︸ ︷︷ ︸

n

, is a group. This group is known as a

cyclic subgroup of G and z is called its generator.
A standard theorem of group theory states that any finite Abelian group is a direct

product of cyclic subgroups. This means that there exist elements γ0, γ1, . . . , γm−1 ∈
Z such that, for any z ∈ Z, there exist numbers z0, z1, . . . , zm−1, where 0 ≤ zs ≤
N − 1, (s = 0, 1, . . . , m − 1), (N is the number of elements in Z), such that

z = γ
z0
0 ◦ γz1

1 ◦ . . . ◦ γ
zm−1
m−1 . (2.8.7)

Note that the elements γs, (s = 0, 1, . . . , m − 1) are independent of z. They are
known as generators, forming a basis of G, and m is called the dimension of
G. Throughout the sequel, we shall assume that for any z the numbers zs, (s =
0, 1, . . . , m − 1) in (2.8.7) are minimal. In that case the numbers ns = maxz∈Zzs + 1
will be called the orders of the appropriate subgroups.

For example, if G = (Cm
p = {0, 1, . . . , p − 1}m, ⊕ mod p), then the vectors

(0, . . . , 0, zs, 0, . . . , 0) zs = 0, 1, . . . , p − 1,

form a cyclic subgroup of G of order p, with the generator defined as γs = (0, . . . ,

0, 1, 0, . . . , 0).
The group G is the direct product of all such subgroups. In this case,

γzs
s = zsγs, 0 ≤ zs ≤ p − 1, (2.8.8)
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and it follows from (2.8.7) that for any z ∈ {0, 1, . . . , p − 1}m there exist numbers zs

(here zs is simply the sth component of z) such that

z =
m−1⊕
s=0

zsγs, mod p. (2.8.9)

Theorem 2.8.3 Let G = ({0, 1, . . . , N − 1}, ◦) be a finite Abelian group, which
is a direct product of m cyclic subgroups of order ns, (s = 0, 1, . . . , m − 1) with
generators γs, and let χw(z) be the wth character of G. Then,

χw(z) = exp

(
2πi

m−1∑
s=0

wszs

ns

)
, i = √−1, (2.8.10)

where

z = γ
z0
0 ◦ · · · ◦ γ

zm−1
m−1 (2.8.11)

w = γ
w0
0 ◦ · · · ◦ γ

wm−1
m−1 ,

for (0 ≤ ws, zs ≤ ns − 1). The mapping h : χw → w is an isomorphism of the char-
acter group of G onto G.

Proof. We first show that the function χw(z) defined by (2.8.10 and 2.8.11) is indeed
a character of G. Let z(1) ◦ z(2) = z(3), where

z(q) = γ
z

(q)
0

0 ◦ . . . ◦ γ
z

(q)
m−1

m−1 , q = 1, 2, 3.

Then, it follows from (2.8.11), in view of the definition of ns, that

z(3)
s = z(1)

s ⊕ z(2)
s , mod ns, s = 0, . . . , m − 1, (2.8.12)

χw(z(1) ◦ z(2)) = exp

(
2πi

m−1∑
s=0

ws(z
(1)
s ⊕ z

(2)
s

ns

)

= exp

(
2πi

m−1∑
s=0

wsz
(1)
s

ns

)
· exp

(
2πi

m−1∑
s=0

wsz
(2)
s

ns

)

= χw(z(1)) · χw(z(2)), mod ns.

Thus, the function in question is indeed a character of G.
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Now the set {χw(z)} is a multiplicative group, with

χ−1
w (z) = exp

(
2πi

m−1∑
s=0

(ns − ws)zs

ns

)
= χw(z), i = √−1,

where

w = γ
n0−w0
0 ◦ . . . ◦ γ

nm−1−wm−1
m−1

and

χw(z)χ−1
w (z) = χ0(z) ≡ 1.

We now show that the character group is isomorphic to G, under the isomorphism
h : χw → w. Let z, w(1), w(2), w(3) ∈ G, and

w(q) = γ
w

(q)
0

0 ◦ · · · ◦ γ
w

(q)
m−1

n−1 , q = 1, 2, 3,

Then, if w(3) = w(1) ◦ w(2), we have w
(3)
s = w

(1)
s ⊕ w

(2)
s , mod ns, (s = 0, 1, . . . ,

ns − 1) and

χw(3) (z) = exp

(
2πi

m−1∑
s=0

w
(3)
s zs

ns

)
= exp

(
2πi

m−1∑
s=0

(w(1)
s ⊕ w

(2)
s )zs

ns

)

= exp

(
2πi

m−1∑
s=0

w
(1)
s zs

ns

)
· exp

(
2πi

m−1∑
s=0

w
(2)
s zs

ns

)

= χw(1) (z) · χw(2) (z), mod ns.

Conversely, if χw(3) (z) = χw(1) (z) · χw(2) (z), we set z = γs, (s = 0, 1, . . . , m − 1), to
obtain same form

exp

(
2πi

w
(3)
s

ns

)
= exp

(
2π

ns

iw(1)
s

)
· exp

(
2π

ns

iw(2)
s

)
,

hence it follows that w
(3)
s = w

(1)
s ⊕ w

(2)
s , (mod ns) and w(3) = w(1) ◦ w(2).

Formulas (2.8.10) and (2.8.11) generate a simple procedure for constructing the
characters, thus furnishing a complete multiplicative system of functions isomorphic
to the original group.

In addition, these formulas yield a direct proof of Theorem 2.8.2.
If G = ({0, 1, . . . , p − 1}m, ⊕p), then ns = p, s = 0, 1, . . . , m − 1, ws, zs are the

components of the p-ary expansions of w, z, and the set of characters {χw(z)} is pre-
cisely the Vilenkin–Chrestenson system {χ(p)

w (z)} (see Section 2.5). For convenience
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TABLE 2.8.2 The Operation Table of the Group in
Example 2.8.2.

◦ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 0 4 5 3
2 2 0 1 5 3 4
3 3 4 5 0 1 2
4 4 5 3 1 2 0
5 5 3 4 2 0 1

we have indexed the characters in a manner slightly different from that adopted pre-
viously for the Vilenkin–Chrestenson functions corresponding to Definition 2.3.2 for
p = 2, and this of course does not affect the validity of the exposition.

Using Theorems 2.8.1–2.8.3, we can generalize the properties of Walsh functions
(Section 2.3) and Vilenkin–Chrestenson functions (Section 2.5) to arbitrary finite
commutative groups (completeness and orthogonality, finiteness of representing
series, symmetry of index and variable, translation theorem, etc.). The same
applies to the properties of the corresponding discrete transforms (Section 2.6,
linearity, translation of original and transform, involution property, convolutions,
and so on).

Example 2.8.2 Consider the group G = ({0, 1, 2, 3, 4, 5}, ◦), where ◦ is de-
fined by Table 2.8.2 (N = 6, e = 0). We construct the characters χ

(G)
w (z) of G,

(z ∈ {0, 1, . . . , 5}). The group G contains two cyclic subgroups G0 = ({0, 3}, ◦) and
G1 = ({0, 1, 2}, ◦), with generators γ0 = 3, γ1 = 1, respectively, and it is the di-
rect product of these subgroups (n0 = 2, n1 = 3). The representation of the elements
z ∈ G in terms of powers of the generators of the cyclic groups is shown in Table 2.8.3.

The characters χ
(G)
w (z) of G are, by (2.8.10),

χ(G)
w (z) = exp

(
2πi

(w0z0

2
+ w1z1

3

))
, i = √−1.

TABLE 2.8.3 Elements of G in Terms of Powers of
Generators.

z, w z0, w0 z1, w1

0 0 0
1 0 1
2 0 2
3 1 0
4 1 1
5 1 2
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TABLE 2.8.4 The Characters of the Group G = C2×C3 in
Example 2.8.2.

z/w 0 1 2 3 4 5

0 1 1 1 1 1 1

1 1 e1 e2 1 e1 e2

2 1 e2 e1 1 e2 e1

3 1 1 1 −1 −1 −1

4 1 e1 e2 −1 −e1 −e2

5 1 e2 e1 −1 −e2 −e1

Table 2.8.4 lists the values of these characters, e1 = exp(2πi/3), e2 = e2
1 =

exp(4πi/3).
A direct examination of Table 2.8.4 readily shows that χ

(G)
w (z) = χ(G)

z (w),∑s
z=0 χ

(G)
w (z) = 0 if w �= 0,

∑s
z=0 χ

(G)
w1 (z)χ(G)

w2 (z) = 0 if w1 �= w2, and χ
(G)
w (z1) ·

χ
(G)
w (z2) = χ

(G)
w (z1 ◦ z2).

We can also generalize the auto- and cross-correlation functions to any group
G = ({0, 1, . . . , N − 1}, ◦). Thus, if f1(z), f2(z) are two functions defined on the
group, their cross-correlation function is defined as

B
(f1,f2)
◦,2 (τ) =

N−1∑
z=0

f1(z)f2(z ◦ τ−1), (2.8.13)

where τ ◦ τ−1 = e is the identity of the group.
Let χ(f ) denote the generalized Fourier transform of a function f defined on

{0, 1, . . . , N − 1}, that is, the sequence of expansion coefficients of f with respect to
the characters of G. We may assume that χ(f ), like f is defined on {0, 1, . . . , N − 1}.
We then have the following generalization of Theorem 2.7.1 to an arbitrary finite
commutative group (analog of the Wiener–Khinchin theorem (330)).

Theorem 2.8.4 Let G = ({0, 1, 2, . . . , N − 1}, ◦) be a finite commutative group and
f1, f2 functions defined on {0, 1, . . . , N − 1}. Then,

B
(f1,f2)
◦,2 = N · χ−1(χ(f1)χ(f2)), (2.8.14)

where χ−1 is the inverse Fourier transform on G.

Theorem 2.8.4 enables us to generalize to arbitrary groups the properties of the
correlation functions considered in Section 2.7.
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2.8.3 Fourier–Galois Transforms

We have studied discrete transforms defined by

f (z) =
N−1∑
w=0

S(w)�w(z), (2.8.15)

S(w) = N−1
N−1∑
z=0

f (z)�w(z), (2.8.16)

where {�(z)} is a basis and z ranges over the elements of a finite group G, the domain
group. The values of f (z), S(w), �w(z) are in the field of complex numbers.

We shall now introduce transforms for which all the operations in (2.8.15 and
2.8.16) are interpreted not over the field of complex numbers but over a finite field
(Galois field).

We shall denote the field with Q elements by GF (Q), where Q is a prime number.
The transforms thus defined will be referred to as Walsh–Galois, Haar–Galois and
Vilenkin–Chrestenson–Galois transforms, in accordance with the choice of the basis
{�w(z)}.

In the case of Vilenkin–Chrestenson–Galois transforms, as applied to p-valued
logic, we have the additional condition that p be a divisor of N − 1.

Consider the important special case in which the field is the field R of residues
modulo prime number Q, R = GF (Q). Recall that the field of residues modulo Q is
the field whose elements are the numbers 0, 1, . . . , Q − 1, the operations of addition
and multiplication being performed modulo Q. Let

Q > max(max
z

f (z), p),

where we are dealing with p-valued logic, and p is a divisor of Q − 1.
We then define a discrete transform over GF (Q):

f (z) =
Q−1⊕
w=0

S(w) · �w(z), mod Q, (2.8.17)

S(w) = Q−1 ·
Q−1⊕
z=0

f (z) · �w−1 (z), mod Q, (2.8.18)

where w ◦ w−1 = e, ◦ denoting the operation in G.
The use of transforms over finite fields GF (Q) is convenient for the design of

networks realizing logic functions, since when this approach is adopted the number
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of p-ary digits of the code of S(w) is at most �logp Q�, and this number may be
considerably smaller than that needed for expansions over the complex field. (Here
and below �a� denotes the smallest integer ≥ a.)

Example 2.8.3 As an example, let us calculate the Walsh spectrum of the Boolean
function defined by Table 2.8.5 over the real field, on the one hand, and over GF (3)
on the other (Table 2.8.5). It is clear from the table that the range of S(w) for every
w is decreased to �log23� = 2.

All the properties of the Walsh, Haar, etc. transforms remain valid for the Walsh–
Galois, Haar–Galois, etc. versions.

Among many discrete transforms over finite fields, probably most important
for analysis and synthesis is the special case of the Vilenkin–Chrestenson–Galois
transform with the basis {�w(z)} = {χ(p)

w (z)} (see Section 2.5), over the field GF (Qn)
(170,171). This special case arises when p = Qn − 1 and m = 1, and is known as
the Laplace–Galois transform, used in analysis and synthesis of linear switching net-
works with memory described by discrete periodic time functions (with period at
most Qn − 1). (A linear network consists exclusively of mod p adders and flip-flops,
where n is the number of flip-flops.) The use of Laplace–Galois transforms in analysis
and synthesis of linear networks with memory is discussed in detail in References
170–172, and 190.

In the general case, any discrete transform may be characterized by the algebraic
structure (group, field, etc.) of the variable set G of the original function and the alge-
braic structure of the value set R of the basis functions and the corresponding expan-
sion coefficients. In the cases considered hitherto G is a finite commutative (Abelian)

TABLE 2.8.5 Walsh Spectrum of the Function f Over
the Real Field and GF (3).

z0 z1 z2 z3 z, w f (z) 16S(w) S(w)(mod 3)

0 0 0 0 0 1 11 2
0 0 0 1 1 0 3 0
0 0 1 0 2 1 −1 2
0 0 1 1 3 0 −1 2
0 1 0 0 4 1 −1 2
0 1 0 1 5 1 −1 2
0 1 1 0 6 1 −1 2
0 1 1 1 7 0 −1 2
1 0 0 0 8 0 −1 2
1 0 0 1 9 1 3 0
1 0 1 0 10 1 3 0
1 0 1 1 11 1 −1 2
1 1 0 0 12 1 −1 2
1 1 0 1 13 0 3 0
1 1 1 0 14 1 −1 2
1 1 1 1 15 1 3 0
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FIGURE 2.8.1 Spectral transforms.

group, while R is the field of real numbers for the Haar and Walsh transforms, the field
of complex numbers for the generalized Haar transform and the Vilenkin–Chrestenson
transform, and a finite (Galois) field for the Haar–Galois, Walsh–Galois, etc. trans-
forms. For recent generalizations of the Haar transform to multiple-valued functions
see Reference 580, and related discussions in Reference 555.

It is sometimes convenient to work with discrete functions defined on an infinite
set G. The set G is usually the set of discrete times (sampling times) at which the
behavior of the object is observed. This set is treated as the additive group of inte-
gers. If the set of values of z is the additive group G of integers and R (the field of
values of the basis functions and the coefficients) is the complex field, the transform
defined by the multiplicative basis isomorphic to G is the familiar discrete Laplace
transform (129). Since digital devices with finite memory are described by periodic
time functions, the argument group G may always be taken finite, its order coinciding
with the maximum period of the functions describing the operation of the device.
This explains why this book is concerned only with discrete transforms, over finite
argument groups. A general classification of all discrete transforms described in this
chapter is given in Fig. 2.8.1. In the figure, |G|, and |R| denote the number of elements
in G and R, respectively, �w ∼ G and � �� G denote, respectively, isomorphism and
nonisomorphism of the expansion basis {�} and the argument group G. As a final
remark, we note that the properties of the Walsh, Vilenkin–Chrestenson, etc. trans-
forms and the corresponding correlation characteristics are readily generalized to all
the discrete transforms listed in Fig. 2.8.1.
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2.9 FOURIER TRANSFORM ON FINITE NON-ABELIAN GROUPS

In this section, for the completeness of the presentation, we briefly discuss extensions
of the Fourier transforms to finite non-Abelian groups, although they will not be
used in further considerations in this book. Notice, however, that there are real-life
signals and systems that are naturally modeled by functions and, respectively, relations
between functions on non-Abelian groups. We will mention few of those related with
electrical engineering practice. Some other examples of such problems are discussed
in Reference 100. For these reasons we believe that spectral methods on non-Abelian
groups may have in the future interesting applications in the areas discussed in this
book. Therefore, in this section, we will briefly outline mathematic foundations for
such a study after we first give references to some related applications.

As is noted in Reference 302, some relevant examples of such applications are
a problem of pattern recognition for binary images, which may be considered as a
problem of implementation of binary matrices, a problem of synthesis of rearrangeable
switching networks whose outputs depend on the permutation of input terminals, a
general problem of interconnecting various objects, and so on. Non-Abelian groups
have found applications in linear systems theory in the approximation of a linear
time-invariant system by a system whose input and output are functions defined on
non-Abelian groups (301). See, also References 542,543, and 609.

Such systems can be used for instance, as mathematical models of signal filtering.
For example, in Reference 303 a general model of a suboptimal Wiener filter over a
group is defined. It is shown that, with respect to some criteria, the use of non-Abelian
groups may be more advantageous than the use of an Abelian group. For example,
in some cases the use of the Fourier transform on various non-Abelian groups results
in improved statistical performance of the filter as compared to the DFT. See, also
Reference 608.

It has been pointed out in Reference 610 that in the area of logic design the non-
Abelian quaternion group Q2, which is used as an illustrative example in this section,
may have a role equal to that played by the finite dyadic group among Abelian groups.
Similarly as with the Walsh transform, that is, the Fourier transform on finite dyadic
groups, the calculation of the Fourier transform on the group of quaternions does
not require the multiplication. Regarding the efficiency of the fast Fourier transform
on groups, it is shown 476, for sample, evaluations with different groups that in a
multiprocessor environment the use of non-Abelian groups, for example quaternions,
may result in many cases in optimal, fastest, performance of the FFT. Moreover,
as has been shown in Reference 476, the quaternion groups as components of the
direct product for G in many cases show optimal performance in the accuracy of
calculation.

These performances are estimated taking into consideration the number of arith-
metic operations, the number of interprocessor data transfers, and the number of
communication lines operating in parallel. In this setting, it has been shown that the
combination of small cyclic groups C2 and non-Abelian quaternions Q2 in the direct
product for G results in groups exhibiting in the most cases the fastest algorithms for

www.it-ebooks.info

http://www.it-ebooks.info/


98 SPECTRAL TRANSFORMS FOR LOGIC FUNCTIONS

the computation of the Fourier transform. Therefore, such groups are a suitable finite
group structure G that should be imposed on the domain of discrete signals.

In Reference 562, some aspects of the calculation complexity of FFT on such
groups have been discussed.

In Reference 563, a comparison between spectral methods on finite dyadic groups
Cm

2 and groups defined as product of the quaternion group Q2, C2, and their powers
has been discussed for applications in compact representations of large switching
functions.

In Reference 566, the arithmetic-Haar expressions on Q2 have been defined by
combining good features of Fourier expressions on Q2 and Haar expression on Cm

2
for compact representations of large functions. These expressions directly extend to
groups that are products of Q2 and freely selected finite groups. In this case, the related
transform matrices are defined the Kronecker product of arithmetic-Haar matrix on Q2
and Fourier transforms on other groups selected as the constituents of the considered
group G. Further generalizations are directly possible by combining other transforms
on finite groups with the arithmetic-Haar transform. In particular, it is interesting to
combine the Haar transforms of different orders with the arithmetic-Haar transform
on Q2 and their powers. In this way, a family of Haar-like transforms can be defined
sharing useful properties of the Haar and the arithmetic transforms on Cm

2 and the
arithmetic-Haar transform on Q2.

In Reference 557, word-level expressions with matrix-valued coefficients for rep-
resentation of large switching functions have been defined by exploiting properties
of Fourier series for matrix-valued functions.

In References 548,549,552,553, and 554, the Fourier transform on Q2 has been
used to define compact decision diagram representations for large switching and
multiple-valued functions. More details on such applications can be found in Refer-
ence 567.

2.9.1 Representation of Finite Groups

We have defined transforms for functions that have a group as the domain and a field as
the range. For instance, the Walsh transform is defined for functions from the dyadic
group to the real field and the discrete Fourier transform for functions from the group
of integers modulo N to the complex field. In both cases, the basis of the transform
was developed using group characters that can be viewed as the tool that ties together
the structures of the domain and the range.

In this section, we consider functions where the domain is a non-Abelian group
and the range a field (e.g, the complex numbers). Because a field has commutative
multiplication, we cannot find a substructure within the field that would be compatible
with the domain. (Such as the roots of unity that form a multiplicative group within
the complex numbers).

Such a compatible structure can be found by going up in abstraction and consid-
ering linear transforms (matrices) over the field instead of elements of the field.

Therefore, generalization of Fourier transform to finite non-Abelian groups can be
done in terms of group representations, and among them the irreducible unitary repre-
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sentations are especially distinguished, which we are now going to discuss briefly. An
excellent presentation of theory of group representations can be found, for instance,
in Reference 246.

We will use the following notation to discuss the definition and properties of the
Fourier transform on finite non-Abelian groups.

Denote by P the complex field or a finite field. Henceforth it will be assumed that:

1. charP = 0, or charP does not divide g = |G|,
2. P is a so-called splitting field for G,

where charP is the characteristic of P . 5 If P = GF (Q), then Q − 1 is divisible by
charP .

A representation of a group G on a vector space V is a correspondence between
the abstract group G and a subgroup of the “concrete” group of linear transformations
of V . That is, a representation is a homomorphism of G into the multiplicative group
of invertible linear transformations on V , see Reference 567. In the case of finite
groups, the linear transformations are usually identified with matrices. In this setting
the following definition of group representations can be introduced.

Definition 2.9.1 The general linear group GL(n, P) is the group of (n × n) invertible
matrices (n is a natural number) with respect to matrix multiplication, with entries
in a field P that can be the field of complex numbers C or a finite field Fq, where q is
power of a prime p.

Since a matrix over a field P is invertible iff its determinant is nonzero, an
alternative definition of GL(n, P) is as the group of (n × n) matrices with nonzero
determinant.

Definition 2.9.2 (Group representations) A finite dimensional representation of a
finite group G is a group homomorphism R : G → GL(n, P).

The order of the matrix Rw(x) from GL(n, P) assigned to the wth representation
Rw(x) is the dimension of Rw(x), and is denoted by rw.

A representation R is unitary if each Rw(x), x ∈ G, is an unitary matrix over P ,
and is trivial if Rw(x) = I for each x ∈ G, and I is the identity matrix.

It can be shown that in the case of compact groups it is sufficient to restrict the
consideration just to the unitary representations without loss of generality.

Each unitary irreducible representation Rw for a compact group G is finite dimen-
sional.

From two representations R1 and R2, it is possible to construct a larger represen-
tation R3 by combining the matrices R1(x) and R2(x) assigned to them. For instance,

5If e is the identity in P , then the smallest number p for which p · e = 0 is called the characteristic of P

and denoted by charP . If n · e �= 0 for each n ∈ N, then charP = 0.
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we can construct R3 as

R3(x) =
[

R1(x) 0

0 R2(x)

]
,

where 0 is the zero matrix. Thus constructed representation R3 is called reducible,
since it can be decomposed into smaller representations.

A representation that does not have this block structure, and cannot be reduced
to this form by a similarity transformation S−1R(x)S, where S is a given transform
matrix of the corresponding order, is called an irreducible representation of G over
the field P .

The set of all nonequivalent unitary irreducible representations for a group G forms
the dual object � of G.

In the case of finite groups,

1. Every irreducible representation of a finite group G is equivalent to some unitary
representation.

2. Every irreducible representation is finite dimensional.

3. The number of nonequivalent irreducible representations Rw of a finite non-
Abelian group G of order g is equal to the number of equivalence classes of
the dual object� of G. Denoting this number by K, it can be written

K−1∑
w=0

r2
w = g,

where rw is the dimension of Rw.

Each such equivalence class contains just one unitary representation. We shall
denote the K unitary irreducible representations of G in some fixed order by
R0, R1, . . . , RK−1. We denote by Rw(z) the value of Rw at z ∈ G. Note that
Rw(z) stands for a nonsingular rw by rw matrix over P , with elements R

(i,j)
w (z),

i, j = 1, 2, . . . , rw, R
(i,j)
w (z) ∈ P .

If the group G is representable in the form

G = G1 × · · · × Gm, (2.9.1)

then its unitary irreducible representations can be obtained as the Kronecker prod-
uct of the unitary irreducible representations of subgroups Gi, i = 1, . . . , m (246).
Therefore, the number K of unitary irreducible representations of G can be expressed
as,

K =
m∏

i=1

Ki, (2.9.2)
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where Ki is the number of unitary irreducible representations of the ith subgroup Gi.
Now, for a given group G of the form (2.9.1), the index w of each unitary irreducible

representation Rw can be written as:

w =
m∑

i=1

biwi, wi ∈ {0, 1, . . . , Ki − 1}, w ∈ {0, 1, . . . , K − 1},

with

bi =
{∏m

j=i+1 Kj, i = 1, . . . , m − 1,

1, i = m,

where Kj is the number of unitary irreducible representations of the subgroup Gj .

2.9.2 Fourier Transform on Finite Non-Abelian Groups

The Fourier transform on compact non-Abelian groups is defined by the so-called
Peter–Weyl theorem (425). In the case of finite groups, this definition can be summa-
rized as follows.

The functions R
(i,j)
w (z), w = 0, 1, . . . , K − 1, i, j = 1, . . . , rw form an orthog-

onal system in the space P(G). Therefore, the direct and the inverse Fourier transform
of a function f ∈ P(G) are respectively defined by

Sf (w) = rwg−1
g−1∑
z=0

f (z)Rw(z−1), (2.9.3)

f (z) =
K−1∑
w=0

Tr(Sf (w)Rw(z)), (2.9.4)

where for a matrix Q, Tr(Q) denotes the trace of Q, that is, the sum of elements on
the main diagonal of Q.

Here and in the sequel we shall assume, without explicitly saying so, that all
arithmetical operations are carried out in the field P .

Example 2.9.1 Let G be the Quaternion (non-Abelian) group Q2 of order 8. This
group has two generators a and b and the group identity is denoted by e. If the
group operation is written as abstract multiplication, the following relations hold for
the group generators: b2 = a2, bab−1 = a−1, a4 = e. If the following bijection V is
chosen

z e a a2 a3 b ab a2b a3b

V (z) 0 1 2 3 4 5 6 7
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TABLE 2.9.1 Group Operation for the Quaternion
Group Q2.

◦ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 2 3 0 5 6 7 4
2 2 3 0 1 6 7 4 5
3 3 0 1 2 7 4 5 6
4 4 5 6 7 2 3 0 1
5 5 6 7 4 3 0 1 2
6 6 7 4 5 0 1 2 3
7 7 4 5 6 1 2 3 0

then the full group operation is described in Table 2.9.1. All the irreducible unitary
representations of Q2 over C are given in Table 2.9.2.

The dual object � of Q2, that is, the set of unitary irreducible representations of G

over the field of complex numbers, is of the cardinality 5, since there are five irreducible
unitary representations of this group. Four of representations are 1-dimensional and

TABLE 2.9.2 Irreducible Unitary Representations of Q2 Over C.

x R0 R1 R2 R3 R4

0 1 1 1 1 I

1 1 −1 1 −1 iA

2 1 1 1 1 −I

3 1 −1 1 −1 iB

4 1 1 −1 −1 C

5 1 −1 −1 1 −iD

6 1 1 −1 −1 E

7 1 −1 −1 1 iD

r0 = 1 r1 = 1 r2 = 1 r3 = 1 r4 = 2

I =
[

1 0
0 1

]
A =

[
1 0
0 −1

]

B =
[

−1 0
0 1

]
C =

[
0 −1
1 0

]

D =
[

0 1
1 0

]
E =

[
0 1

−1 0

]

www.it-ebooks.info

http://www.it-ebooks.info/


FOURIER TRANSFORM ON FINITE NON-ABELIAN GROUPS 103

one is 2-dimensional. The Fourier transform on Q2 is defined by the matrix

[R]−1 = 1

8




1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

2I 2iB −2I 2iA 2E 2iD 2C −2iD


 ,

where the notation is as in Table 2.9.2. Therefore, the Fourier spectrum of a function
f on Q2 consists of five coefficients, four 1-dimensional and one 2-dimensional and
can be represented as a vector

[
Sf

] = [
Sf (0) Sf (1) Sf (2) Sf (3) Sf (4)

]T
.

For example, the Fourier spectrum of the function f on Q2 given by the truth-vector
F = [0α00βλ00]T is given by

[
Sf

] =




α + β + λ

−α + β − λ

α − β − λ

−α − β + λ

2

[
−iα β + iλ

−β + iλ iα

]




.

Fast Fourier transform (FFT) algorithms for the calculation of Fourier transform
on finite non-Abelian groups are proposed in Reference 278. Their matrix interpre-
tation given in Reference 544 permitted extension of the method to the calculation
through Multiterminal Decision Diagrams (MTDDs) 567. These algorithms provide
an efficient way for determination of values of constant nodes in Fourier decision
diagrams 567.

Theorem 2.9.1 The main properties of the Fourier transform on finite non-Abelian
groups are the following:

1. Linearity: For all α1, α2 ∈ P , f1, f2 ∈ C(G),

Sα1f1+α2f2 (w) = α1Sf1 (w) + α2Sf2 (w).

2. Right group translation: For all τ ∈ G,

Sf (zτ)(w) = Rw(τ)Sf (w).
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3. Group convolution: For two functions f1, f2 ∈ C(G) the convolution is defined
by

(f1 ∗ f2)(τ) =
∑
z∈G

f1(z)f2(τ−1z).

rwg−1S(f1∗f2)(τ)(w) = Sf1 (w)Sf2 (w).

It should be noted that unlike the Fourier transform on Abelian groups, a
dual statement cannot be formulated since the dual object � does not exhibit a
group structure suitable for definition of a convolution of functions on �.

4. Parseval theorem: For all f1, f2 ∈ P(G),∑
z∈G

f1(z)f 2(z) = g
∑

Rw∈�(G)

r−1
w Tr(Sf1 (w)S∗

f2
(w)),

where f denotes the complex conjugate of f , S∗
f2

(·) is the conjugate transpose

of Sf2 (·), that is, S∗
f2

(·) = (Sf2 (·))T .

5. The Wiener–Khinchin theorem: For two functions f1, f2 ∈ P(G), the cross-
correlation function is defined by

B(f1,f2)(τ) =
∑
z∈G

f1(z)f2(zτ−1).

The autocorrelation function is the cross-correlation function for f1 = f2.
Denote by FG and F−1

G the direct and inverse Fourier transform on G defined
by (2.9.3) and (2.9.4), respectively, and by F∗

G the transform such that

(F∗
G(f ))(w) = S∗

f (w).

With this notation the Wiener–Khinchin theorem on G is defined by

B(f1,f2) = gF−1
G (r−1

w FG(f1)F∗
G(f2)).

For applications of Fourier transforms on finite non-Abelian groups for problems
related to logic design, we refer to Reference 567.

BIBLIOGRAPHIC NOTES

Algebraic structures for logic design are discussed in many books, see (395,491). Walsh and
Haar transforms have been studied from different aspects and for different applications in Ref-
erences 8,51,52,151,234,235,255,258,323,555,661,671. The Vilenkin–Chrestenson transform
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is viewed as a generalization of the Walsh transform (378,383,611,658). For the arithmetic
transform, see (266,349,658). Autocorrelation functions have been extensively used in opti-
mization problems in logic design in References 228 and 289. For computational methods of
autocorrelation functions see (558,561). Spectral transforms over finite fields are discussed in
References 190,255,381,399, and 641. An excellent book for Fourier transform on groups is
(479), and for abstract analysis in general (246). For Fourier analysis on non-Abelian groups,
see (567).
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CHAPTER 3

CALCULATION OF SPECTRAL
TRANSFORMS

Efficient calculations of spectral transforms are very important for their practical
applications. The efficiency is expressed in terms of

1. Space required to store functions that will be transformed, results of interme-
diate calculations, and their spectra, and

2. Time to perform the calculations, which is usually expressed through the number
of required arithmetical operations, often reduced to the number of additions
and multiplications, while the time for some auxiliary manipulations with data,
as for instance various reordering, is neglected.

This chapter discusses methods for calculation of spectra and autocorrelations
for different transforms and uses different data structures to represent the functions
processed.

Methods presented in this chapter have been developed for calculations with a
single processor.

Efficient techniques for calcuation of spectral transforms with multiprocessors and
interconnection networks can be found in References (295, 304, and 475).

3.1 CALCULATION OF WALSH SPECTRA

Henceforth, Walsh spectra will be used extensively as a working tool in solution of
analysis and synthesis problems for network implementations of Boolean functions.

Spectral Logic and Its Applications for the Design of Digital Devices by Mark G. Karpovsky, Radomir
S. Stanković and Jaakko T. Astola
Copyright © 2008 John Wiley & Sons, Inc.
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We shall, therefore, devote some attention to methods for their efficient computation
in terms of space and time.

We first consider an effective algorithm for construction of the Walsh spectrum
and estimate its complexity. This algorithm is similar to the analogous algorithm used
for the basis of trigonometric functions (Fast Fourier Transform (FFT) (75, 109)).
Actually, this is the same algorithm performed over Cm

2 for a transform defined with
respect to a different basis, that is, instead of the discrete exponential functions, the
Walsh functions are used.

Theorem 3.1.1 (36) Let �(z) be a step function representing a system of Boolean
functions of m variables, and S(w) (w = 0, 1, . . . , 2m − 1) its Walsh spectrum. Set




a0(w) = �(w)

a0(2m−1 + w) = �(2m−1 + w) w = 0, 1, . . . , 2m−1 − 1,

aq(w) = aq−1(2w) + aq−1(2w + 1)

aq(2m−1 + w) = aq−1(2w) − aq−1(2w + 1), q = 1, . . . , m. (3.1.1)

Then, for ordering of Walsh functions defined by the Definition 2.3.2,

S(w) = 2−mam(w).

Theorem 3.1.1 describes a simple algorithm for calculating the Walsh spectrum,
in terms of a recursive procedure yielding the sequence aq(w).

The number of operations NW required to calculate S(w) with this algorithm is
NW = m · 2m, where m is the number of binary digits in the variable. A sample
calculation of the spectrum is shown in Table 3.1.1.

Another method for construction of the Walsh spectrum is very convenient if m is
not large.

TABLE 3.1.1 Calculation of Walsh Spectrum.

z, w �(z) a1(w) a2(w) a3(w) = 8S(w)

0 1 3 7 27
1 2 4 20 −5
2 0 4 −5 −13
3 4 16 0 7
4 3 −1 −1 −13
5 1 −4 −12 −5
6 7 2 3 11
7 9 −2 4 −1
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Let W(m) be the matrix whose the wth row is (Ww(0), Ww(1), . . . , Ww(2m − 1)),
w = 0, 1, . . . , 2m − 1. For example, for m = 2 and m = 3, the matrices W(2) and
W(3) for the so-called Hadamard ordering determined by Definition 2.3.1 are

W(2) =




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


 ,

W(3) =




1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1




.

As noticed in Section 2.8.1, matrices of this type are Hadamard matrices (36, 453),
and so all the properties of Walsh functions may be phrased in terms of Hadamard
matrices. For this reason, the Walsh transform is sometimes called the Hadamard–
Walsh transform (453).

The translation of the properties of Walsh functions is as follows:

1. Formula (2.3.9) The scalar product of any two rows of W(m) is equal to 0.

2. Formula (2.3.10) The sum of elements of any row except the first is equal to
zero.

3. Formula (2.3.13) W(m) is a symmetric matrix.

4. Formula (2.3.14) The element-by-element product of the zth and rth rows
(columns) of W(m) is its (z ⊕ i)th row (column), modulo 2.

If we express the Walsh spectrum Sf and the original function �(z) as vectors,
S = [S(0), . . . , S(2m − 1)]T and � = [�(0), . . . , �(2m − 1)]T , then, as is evident
from (2.3.12), that

S = 2−mW(m)�. (3.1.2)

www.it-ebooks.info

http://www.it-ebooks.info/


CALCULATION OF WALSH SPECTRA 109

For example, for the system of Boolean functions defined by Table 1.2.5
(Example 1.2.2), we have

S = 2−3W(3)




0

2

2

1

2

1

1

3




=




1.5

−0.25

−0.25

0.00

−0.25

0.00

0.00

−0.75




.

It is clear from (3.1.2) that we could have defined the Walsh functions in terms of
Hadamard matrices W(m), without taking trouble to complete the functions f (z) and
Ww(z) to step functions. Nevertheless, our procedure is technically very convenient,
since it allows us to utilize the classical theory of orthogonal series (see Section 6.4).
Calculation of the Walsh spectrum by Hadamard matrices requires 22m operations of
addition or subtraction for a function of m variables (2m operations per coefficient).
We now describe a matrix method for calculating the Walsh spectrum that requires
only m2m operations. It is the matrix analog of Theorem 3.1.1 and defines the so-called
fast Hadamard–Walsh transform (453).

3.1.1 Matrix Interpretation of the Fast Walsh Transform

Let

Am =




1 1 0 0 0 · · · 0 0 0

0 0 1 1 0 · · · 0 0 0
...

0 0 0 0 0 · · · 0 1 1

1 −1 0 0 0 · · · 0 0 0

0 0 1 −1 0 · · · 0 0 0
...

0 0 0 0 0 · · · 0 1 −1




.

Then by Theorem 3.1.1,

W(m) = (Am)m. (3.1.3)
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Together with (3.1.2), the formula (3.1.3) provides us with a matrix method of
calculating the Walsh spectrum, involving m iterated multiplications of the vector
� by the matrix Am, each multiplication requiring just 2m operations of addition
or subtraction, so that the total number of operations is m2m, or m additions or
subtractions to compute a single Walsh coefficient.

Example 3.1.1 For m = 3, it follows

W(3) = (A3)3,

where

A3 =




1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1




.

Figure 3.1.1 shows the flow-graph of the algorithm derived from this factorization of
the Walsh matrix. In this figure, and hereafter, solid and dotted lines denote addition
and subtraction, respectively. If there are numbers at the edges, they denote the mul-
tiplicative coefficients. The absence of these coefficients means multiplication by 1.

f (0)

f (1)

f (2)

f (3)

f (4)

f (5)

f (6)

f (7)

S f

S f

(0)

(1)

S f (2)

S f (3)

S f (4)

S f (5)

S f (6)

S f (7)

FIGURE 3.1.1 Flow-graph of the algorithm to calculate the Walsh spectrum for m = 3.
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The representation of the Hadamard matrix W(m) defined by the above formula
is known as matrix factorization. It can be shown that the fast Hadamard–Walsh
transform defined by (3.1.3) computes the Walsh spectrum with the minimum number
of addition or subtraction operations (36, 453), since this algorithm is a particular case
of the fast algorithms to calculate the Fourier transform on finite groups that have this
property of requiring the minimum number of arithmetic operations.

To end this section, we present another m-recursive construction of the Hadamard
matrix W(m). It is based on the factorization (3.1.3) and described by

W(m) =
[

W(m − 1) W(m − 1)

W(m − 1) −W(m − 1)

]
. (3.1.4)

The recursive procedure defined by (3.1.4) for the calculation of the spectrum is
essentially the same as the fast Hadamard–Walsh transform.

Repeated application of this recursive relation permits to write the Walsh matrix
W(m) in terms of the mth Kronecker power of the basic Walsh matrices

W(1) =
[

1 1

1 −1

]
.

Thus,

W(m) =
m⊗

i=1

W(1), (3.1.5)

where ⊗ denotes the Kronecker product.
Because of the properties of the Kronecker product, it follows the so-called Good–

Thomas factorization of the Walsh matrix; see References 567, and 584,

W(m) =
m−1∏
k=0

Ck(m), (3.1.6)

where

Ck(m) = (Im−k−1 ⊗ W(1) ⊗ Ik),

where Ij is the (2j × 2j) identity matrix.

Example 3.1.2 For m = 3, the Walsh matrix can be represented as the product of
three sparse matrices,

W(3) = C1(3)C2(3)C3(3),
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where

C1(3) =




W(1) 0
W(1)

W(1)

0 W(1)


 ,

C2(3) =




I2 I2 0
I2 −I2

I2 I2

0 I2 −I2


 ,

C3(3) =
[

I4 I4

I4 −I4

]
.

Figure 3.1.2 shows the flow-graph of the algorithm derived from this factorization of
the Walsh matrix.

Notice that the above factorization is a particular case of a more general Good
factorization for Kronecker product representable matrices where it is assumed that
the transform length N is a composite number with relatively prime factors, see
Reference 587. In this case, a matrix

M = M(1) ⊗ M(2) ⊗ · · · ⊗ M(r)

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

Sf

Sf

(0)

(1)

Sf (2)

Sf (3)

Sf (4)

Sf (5)

Sf (6)

Sf (7)

FIGURE 3.1.2 Flow-graph of the algorithm for calculation of the Walsh spectrum with
Good–Thomas factorization for m = 3.
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with entries

mk,n =
r∏

s=1

m
(s)
ks,ns

,

where

M(s) = (m(s)
i,j),

for i = 0, 1, . . . , ps − 1, j = 0, 1, . . . , qs − 1, can be represented as

M = A(1)A(2) · · · A(r),

where

A(s) = (a(s)
k,n),

and

a
(s)
k,n = m

(s)
k1,ns

δ(k2, n1)δ(k3, n2) · · · δ(kr, nr−1),

for 0 ≤ k1 < ps, 0 ≤ k2 < ps+1, . . . , 0 ≤ kr−s+1 < pr, 0 ≤ kr−s+2 < q1, . . . , 0 ≤
kr < qs−1, and 0 ≤ n1 < ps+1, 0 ≤ n2 < ps+2, . . . , 0 ≤ nr−s < pr, 0 ≤ nr−s+1 <

q1, . . . , 0 ≤ nr < rr, and δ(i, j) is the Kronecker delta function taking value 1 is
i = j, and 0, otherwise.

This factorization is a basis to derive the matrices Am in (3.1.3).
For the particular case of square matrices with ps = qs, it follows

M = M(1) ⊗ M(2) ⊗ · · · ⊗ M(r) = C(1)C(2) · · · C(r),

where

C(1) = M(1) ⊗ Ir1 ⊗ · · · ⊗ Irr

C(2) = Ir1 ⊗ M(2) ⊗ · · · ⊗ Irr

...

C(r) = Ir1 ⊗ Ir2 ⊗ · · · ⊗ M(r),

where Iri is the (2ri × 2ri ) identity matrix.
For ps = qs = 2, the above factorization for the Walsh matrix can be derived.

Remark 3.1.1 Since the basis functions that we consider take the values {1, −1} or
{0, ±1}, it is sometimes convenient, when calculating the values of systems of switch-
ing functions from (2.2.1), to let switching functions take the values 1 and −1 instead
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of 0 and 1, respectively, that is, to replace f (s)(z0, . . . zm−1) by φ(s)(z0, . . . , zm−1)
where

φ(s)(z0, . . . , zm−1) = 1 − 2f (s)(z0, . . . , zm−1).

It should be clear that this transformation has no effect on the validity of our results.
The encoding {0, 1} → {1, −1} in the case of Walsh representations of switching

functions reduces the values of unnormalized spectral coefficients to the set of even
numbers between −2m and 2m. Notice that not all combinations of numbers in this
set can be the Walsh spectrum of a switching function, and this property has been
used in characterization of particular classes of switching functions (255,258).

3.1.2 Decision Diagram Methods for Calculation
of Spectral Transforms

The main disadvantage of FFT-like algorithms in application in switching theory is
that calculations in FFT are performed over vectors specifying function values and in-
termediate results of calculations. In the case of switching functions often met in nowa-
days practice, the number of variables is large, even huge, and truth vectors of order 2m,
m—number of variables, are larger than it can be efficiently processed. That restricts
application of FFT-like algorithms to functions of a relatively small number of vari-
ables. Therefore, alternative representations for switching functions have to be used.

FFT-like algorithms do not take into consideration particular properties that a
function whose spectral transform is required may have. Decision Trees (DTs) are
alternative descriptions of truth vectors. When a function has a regularity in the truth
vector, due to such properties as symmetry, decomposability, and so on, decision trees
can be reduced into Decision Diagrams (DDs), which are data structures that are used
to represent large functions efficiently in terms of space and time. Decision trees are
reduced into decision diagrams, thanks to such properties in f that are not taken into
account in FFT-like algorithms. Therefore, alternative procedures for calculation of
spectral transforms through decision diagrams permit processing of functions with
a large number of variables on standard computer architectures; this will be briefly
discussed in the next section. More information about that topic can be found in
References 499,550,555, and 576.
Relationships between FFT and decision diagram methods

As we have seen from the previous sections, for a given function f defined on
Cm

2 , the spectrum with respect to a transform with Kronecker product representable
transform matrix is calculated in m steps. Each step performs the transform with
respect to a variable in f . The operations at the ith step are determined by the submatrix
Ki(1), for i = 1, . . . , m. In Multiterminal Binary Decision Diagrams (MTBDDs)
representations, see Section 1.4, such calculation means that the spectrum is calculated
through the operations defined by Ki(1) at each node and cross points at the ith level in
the MTBDD. For transforms defined in fields different from GF (2), Binary Decision
Diagrams (BDDs) are considered as MTBDDs with two constant nodes showing logic
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values 0 and 1. It is assumed that the logic values 0 and 1 for constant nodes in BDDs
are interpreted as the integers 0 and 1 in MTBDDs.

Calculation of spectral transforms can be represented by decision diagrams. In that
way, decision diagrams for the spectra with respect to the considered transforms are
derived.

Unlike FFT, BDDs-based calculation architectures are different for each particular
function f in the same way as BDDs for different functions are different. Thanks to
that, the number of processors or arithmetic operations is reduced in comparison to
that required to perform FFT. Note that the number of processors is reduced even
if the calculation is performed over the Binary Decision Tree (BDT) at the price of
processing subfunctions sequentially. As in FFT, calculation is performed in m steps,
each corresponding to a level in the BDD, thus, to a variable in f .

Compared to FFT, efficiency of decision diagrams-based calculation methods is
obtained due to the following:

1. In BDDs, calculations with identical parts in the vector representing f are not
repeated.

2. In BDDs, calculations are performed over subvectors represented by the sub-
trees in the BDDs. Thus, calculation of the spectrum is done by using vector
operations.

Extensions of the method from switching to integer-valued or complex-valued
functions is straightforward, thanks to MTBDDs (105) defined as a generalization
of BDDs derived by allowing integer or complex numbers as the values of constant
nodes. For multiple-output switching functions, calculation of the spectral transforms
may be performed over

1. MTBDDs (105),

2. Shared BDDs (SBDDs) (372).

In the first case, it is assumed that a given multiple-output function with k outputs
is represented by an integer-valued function derived by adding the outputs multiplied
by the weighting coefficients 2i, i = 0, . . . , k − 1. In SBDDs, we use the fact that the
calculated spectral transform is linear. Conversely, thanks to the linearity, the SBDDs
may be used for calculation of spectral transforms for integer-valued functions. It
is assumed that an integer-valued vector is represented by a multioutput switching
function through the binary representations of its elements.

In what follows, we elaborate algorithms for calculation of spectral transforms
considered in this monograph through decision diagrams.

3.1.3 Calculation of the Walsh Spectrum Through BDD

In this section, we consider calculation of the Walsh spectrum through BDDs as a
particular example of decision diagram methods for spectral transforms. The same
method can be extended to the transforms defined by transform matrices, which
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can be represented as the Kronecker product of some basic transform matrices. The
extensions to transforms that are layer by layer Kronecker product representable
matrices (663) will be discussed by the example of the Haar transform.

For a switching function f defined by a BDD or a complex-valued function on Cm
2

defined by a MTBDD, the Walsh spectrum is calculated by performing operations
determined by W(1) at each node and each cross point. The method will be explained
by the following example by using the matrix notation. Note that operations are
performed over decision diagrams, and matrix operations are used just for explanation
of the method. It is assumed that BDT represent the vector F of the values for f .
Similarly, subtrees in the BDT represent subvectors in F.

Example 3.1.3 Figure 3.1.3 shows the calculation procedure for the Walsh transform
of f represented by the BDD in Fig. 1.4.4. At each node and the cross point in this
BDD, we perform the same operations as specified by the basic Walsh matrix

W(1) =
[

1 1

1 −1

]
,

the same as in FFT-like algorithms. In matrix notation, the calculation procedure can
be described as follows.

The constant nodes are processed first by performing the matrix W(1) at the nodes
and cross points at the level corresponding to z2. Therefore, result of calculations in
the nodes labeled by S2,0, S2,1 and the cross point c2,0 are

WS2,0 =
[

1 + 0

1 − 0

]
=

[
1

1

]
,

WS2,1 =
[

0 + 1

0 − 1

]
=

[
1

−1

]
,

Wc2,0 =
[

1 + 1

1 − 1

]
=

[
2

0

]
.

Performing W(1) at the nodes at the level corresponding to z1, that is, over the
subvectors that point the outgoing edges of these nodes, we get

WS1,0 =




[
1

1

]
+

[
1

−1

]

[
1

1

]
−

[
1

−1

]




=




2

0

0

2


 ,
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z0

z1 z1

z1 z1

z2 z2
z2 z2

z2 z2 z2

z z2 2+ z2 z2

z2 z2 z2 z2

z2 z2 z2

z2 z2

z1 z1

z1 z1

z0
_

_ _

_ _

_ _
_ _

_ _ _

_ _ _

W W

W W W

8Sf = W

S1,0 S1,1

S2,0 S2,1 c2,0

S0

FIGURE 3.1.3 Calculation of the WHT for f represented by the BDD in Fig. 1.4.4.
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WS1,1 =




[
1

−1

]
+

[
2

0

]

[
1

−1

]
−

[
2

0

]




=




3

−1

−1

−1


 .

Performing W(1) at the root node, we get the Walsh spectrum of f up to the
normalization factor 23 as follows:

8Sf (w) = WS0 =







2

0

0

2


 +




3

−1

−1

−1







2

0

0

2


 −




3

−1

−1

−1







=




5

−1

−1

1

−1

1

1

3




.

Thus, described calculation procedure can be represented through BDDs as it is
shown in Fig. 3.1.3. In this figure, the label z2 + z2 means that both outcoming edges
point to the same constant node. It is suitable for coding in a programming language.
In this respect, a notation introduced in Reference 576 for description of decision
diagrams by taking into account their hierarchical and recursive structure appears
very convenient.

Table 3.1.2 taken from Reference 576 shows complexity of SBDDs for some mcnc
benchmark functions and CPU-times for calculation of the Walsh transform. The
number of inputs (In), outputs (Out), size of SBDDs, number of nonterminal nodes
(ntn); constant nodes (cn), and the total of nodes (n) are shown. Calculation time is
given in milliseconds. Calculations are performed on a 133 MHz Pentium PC with
32 MB of RAM. This confirms that decision diagram methods can be implemented
over simple hardware, which extends the range of various applications.

3.2 CALCULATION OF THE HAAR SPECTRUM

3.2.1 FFT-Like Algorithms for the Haar Transform

We now propose an algorithm for calculation of the Haar spectrum and determine its
complexity.
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TABLE 3.1.2 Calculation of Walsh Transform Through BDDs.

f In Out Cubes SBDD Ntn cn n Time, ms

ex1010 10 10 1024 1079 6281 87 6368 530
ex5p 8 63 256 311 1209 82 1291 100
misex3c 14 14 305 847 9199 475 9674 1610
pdc 16 40 2810 705 10264 637 10901 7090
spla 16 16 2307 974 8270 633 8903 5160
sqrt8 8 4 40 42 144 34 178 10
t481 16 1 481 32 184 19 203 280
table3 14 14 175 941 41652 681 42333 3220
5xp1 7 10 75 88 314 49 363 20
9sym 9 1 87 33 39 4 43 10
alu4 14 8 1028 1352 6201 139 6340 1590
apex4 9 19 438 1021 4800 117 4917 370
bw 5 28 87 114 307 26 333 10
misex2 25 18 29 140 999 30 1029 140
duke2 22 29 87 946 6330 524 6854 2560
sao2 10 4 58 154 465 34 499 30

Theorem 3.2.1 (36) Let �(z) be a step function representing a system of switching
functions of m variables and S

(q)
l , l = 0, 1, . . . , m − 1, q = 1, 2, . . . , 2l its Haar

coefficients. Set

a0(t) = �(t), t = 0, 1, . . . , 2m − 1,

as(t) = as−1(2t) + as−1(2t + 1), t = 0, 1, . . . , 2m−s − 1,

as(2m−s + t) = as−1(2t) − as−1(2t + 1), s = 1, 2, . . . , m.

Then,

c
(q)
m−s = 2−sas(2

m−s − 1 + q). (3.2.1)

Theorem 3.2.1 yields a simple algorithm calculating the Haar spectrum in sequency
ordering (2.3.19) by s-recursive construction of the sequence as(t), s = 1, 2, . . . , m,
t = 0, 1, . . . , 2m−s+1. It is apparent from a comparison of Theorems 3.1.1 and 3.2.1
that the Walsh and Haar spectra may be calculated simultaneously using the sequence
as(t).

The number of addition or subtraction operations required by this algorithm to
calculate the 2m coefficients of the Haar series is 2 · 2m − 2. It can be shown that this
is the minimum complexity for an algorithm computing the Haar spectrum.

Example 3.2.1 Consider the system of switching functions defined by Table 1.2.5. The
computation of the Haar spectrum is shown in Table 3.2.1, where c

(q)
m−s = c(t) for t =

2m−s − 1 + q. (Note that for given m, the values of s and q are uniquely determined
for each t, in view of the fact that q ∈ {1, 2, . . . , 2m−s}, where s ∈ {1, 2, . . . , m}.)
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TABLE 3.2.1 Calculation of the Haar Spectrum.

z, t �(z) a1(t) a2(t) a3(t) Sf (t)

0 0 2 5 12 1.5
1 2 3 7 −2 −0.25
2 2 3 −1 – −0.25
3 1 4 −1 – −0.25
4 2 −2 – – −1.00
5 1 1 – – 0.50
6 1 1 – – 0.50
7 3 −2 – – −1.00

The Haar expansion of the system considered is

�(z) = 3

2
− 1

4
H

(1)
0 (z) − 1

4
H

(1)
1 (z) − 1

4
H

(2)
1 (z)

−H
(1)
2 (z) + 1

2
H

(2)
2 (z) + 1

2
H

(3)
2 (z) − H

(4)
2 (z).

There is an interesting relationship between the Haar functions and the Rademacher
functions Rs(z), s = 1, 2, . . . , m. By (2.3.7) and (3.1.4), we have

H
(q)
l (z) =

{
Rl+1(z), if z ∈ [(q − 1)2m−l, q2m−l),

0, otherwise.
(3.2.2)

In view of this formula, it is fairly easy to calculate a Haar function H
(q)
l (z) given

the binary representation of its variable (z0, . . . , zm−1), since (except for notation)
the value of the Rademacher function Rl+1(z) is the lth coordinate zl in the binary
representation of z (see Section 2.3.2).

Unlike the Walsh system, the Haar system is not closed under multiplication, since
the product of two Haar functions need not be a Haar function. However, the Haar basis
possesses a highly important advantage over the Walsh basis as regards computation
of �(z) by serial summation of the terms of the series. This can be concluded from
the following theorem.

Theorem 3.2.2 Let �(z) be a step function representing a system of switching
functions of m variables. Then, for any fixed z = z∗, (z∗ ∈ {0, 1, . . . , 2m − 1}) the
number of nonzero terms of the series (2.3.21) is at most m + 1.

Proof. To prove Theorem 3.2.2, notice that for any fixed z∗ ∈ [0, 2m) there are exactly
m + 1 distinct pairs (q, l) such that z∗ ∈ [(q − 1)2m−l, q · 2m−l). The assertion now
follows in view of (3.2.2).

www.it-ebooks.info

http://www.it-ebooks.info/


CALCULATION OF THE HAAR SPECTRUM 121

Note that the number of nonzero terms depends on the choice of z∗. For example,
for m = 3, z∗ = 5, we have

�(z∗) = �(5) = c
(0)
0 − c

(1)
0 + c

(2)
1 − c

(3)
2 ,

since H
(1)
1 (5) = H

(1)
2 (5) = H

(2)
2 (5) = H

(4)
2 (5) = 0 (see Fig. 2.3.9).

Thus, for any fixed z = z∗, we can express �(z∗) as an algebraic sum of coefficients
c

(q)
l , containing exactly one coefficient with each subscript l �= 0 and two with the

subscript l = 0.
To end this section, we reemphasize the three most important features of the Walsh

and Haar bases, thanks to which they find a wide application in analysis and synthesis
of networks realizing systems of switching functions.

1. The expansion of any step function representing a system of Boolean functions
of m variables contains at most 2m nonzero terms.

2. The basis functions assume the values ±1 or 0, ±1.

3. The values of any basis function are calculated easily from the binary code
of its variable, the calculation involving at most m elementary operations over
single-digit binary numbers.

3.2.2 Matrix Interpretation of the Fast Haar Transform

Notice that unlike the Walsh matrix, the Haar matrix is not symmetric, which makes
a difference in the study of fast Haar algorithms compared to the corresponding
algorithms for the Walsh transform. More precisely, due to the orthogonality and
symmetry, the Walsh matrix is a self-inverse matrix up to the constant 2m. It follows
that the same algorithm can be used to calculate both the direct and the inverse Walsh
transform, and the difference between these two is in the multiplication by the scaling
factor 2m.

In dealing with fast calculation algorithms for the Haar transform, we study
algorithms for the direct transform to calculate the Haar coefficients and the inverse
Haar transform to reconstruct the signal, that is, a function representing the system
of switching functions, from the spectrum. In such calculations, we use the property
that, since the Haar matrix is real-valued, due to the orthogonality, the inverse Haar
matrix is the transposed Haar matrix up to the normalization factors, which, however,
in numerical computations can be assigned to either direct or the inverse transform
matrix, or split between these two matrices equally.

The following example illustrates matrix calculations of Haar coefficients.

Example 3.2.2 For the function f in Example 3.2.1, the normalized Haar coeffi-
cients written as a vector C = [c(0), c(1), c(2), c(3), c(4), c(5), c(6), c(7)]T , can be
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calculated in matrix notation as

C = 1

8




1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

2 2 −2 −2 0 0 0 0

0 0 0 0 2 2 −2 −2

4 −4 0 0 0 0 0 0

0 0 4 −4 0 0 0 0

0 0 0 0 4 −4 0 0

0 0 0 0 0 0 4 −4







0

2

2

1

2

1

1

3




=




1.50

−0.25

−0.25

−0.25

−1.00

0.50

0.50

−1.00




.

From this Haar spectrum, the vector of function values F is reconstructed as

F =




1 1 1 0 1 0 0 0

1 1 1 0 −1 0 0 0

1 1 −1 0 0 1 0 0

1 1 −1 0 0 −1 0 0

1 −1 0 1 0 0 1 0

1 −1 0 1 0 0 −1 0

1 −1 0 −1 0 0 0 1

1 −1 0 −1 0 0 0 −1







1.50

−0.25

−0.25

−0.25

−1.00

0.50

0.50

−1.00




=




0

2

2

1

2

1

1

3




.

The discrete Haar transform is not a Kronecker product representable transform.
However, the recursive structure of the Haar matrix in (2.3.19), where the Kronecker
product of different submatrices appears in the upper and bottom part of the transform
matrix, permits a factorization that allows definition of FFT-like algorithms for the
discrete Haar transform.

For instance, the unnormalized Haar transform matrix is defined as

H(m) =
[

H(m − 1) ⊗ [
1 1

]
I2m−1 ⊗ [

1 −1
]
]

, (3.2.3)

where I2m−1 is the (2m−1 × 2m−1) identity matrix.
The inverse unnormalized Haar transform is defined as

H−1(m) =
[

H−1(m − 1) ⊗
[

1

1

]
, I2m−1 ⊗

[
2m−1

−2m−1

]]
. (3.2.4)
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The normalized Haar matrix and its inverse have the same form, and the difference
with the unnormalized inverse Haar matrix is in the normalization factors, as will be
illustrated below.

In the following examples, we will discuss different factorizations of the Haar
matrices that lead to the definition of the corresponding fast algorithms.

Example 3.2.3 The normalized Haar transform matrix in sequency ordering for
m = 3 can be factorized as Reference 587

Hs(3) = C1(3)C2(3)C3(3),

C1(3) =




1 1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0

0 0 0
√

2 0 0 0 0

0 0 0 0
√

2 0 0 0

0 0 0 0 0
√

2 0 0

0 0 0 0 0 0
√

2 0

0 0 0 0 0 0 0
√

2




,

C2(3) =




1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0
√

2 0 0 0

0 0 0 0 0
√

2 0 0

0 0 0 0 0 0
√

2 0

0 0 0 0 0 0 0
√

2




,

C3(3) =




1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1




.
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f (0)
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f (2)

f (3)
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f (6)

f (7)

S f

S f

(0)

(1)

S f (2)

S f (3)

S f (4)

S f (5)

S f (6)

S f (7)

2

2

2

2

2

2

2

2

2

2–1
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–1
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–1

FIGURE 3.2.1 Cooley-Tukey fast Haar transform.

Figure 3.2.1 shows FFT-like algorithm for the discrete Haar transform for m = 3
based on this factorization of the Haar transform matrix. Figure 3.2.2 shows the
flow-graph of the fast algorithm for the corresponding inverse Haar transform.

Notice that calculations in Example 3.2.2 can be performed by using the algo-
rithms in these figures, however, with multiplicative factors corresponding to the

f (0)

f (1)

f (2)

f (3)

f (4)

f (5)

f (6)

f (7)

S f

S f

(0)

(1)

S f (2)

S f (3)

S f (4)

S f (5)

S f (6)

S f (7)

2

2

2

2

2

2

2

2

2

2 –1

–1

–1

–1

–1
–1

–1

FIGURE 3.2.2 Flow-graph of the Cooley-Tukey fast inverse Haar transform.
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–1

–1

–1

–1

–1
–1

–1

0

2

2

1

2

1

1

3

0+2=2

2+1=3

2+1=3

1+3=4

0 2=

2 1=1

2 1=1

1 3= 2

2

2

2

2

2

2

2

2

2

2

2+3=5

3+4=7

2 3= 1

–2 =

3

1

1

5+7=12

5–7=–2

2

2

FIGURE 3.2.3 Calculation of the Haar spectrum in Example 3.2.1.

unnormalized Haar transform calculated in this example. Figure 3.2.3 illustrates the
calculations of the Haar spectrum for the function f in Example 3.2.1 by using the
fast algorithm. It should be noticed that the interim results after each step are equal
to these in Table 3.2.1.

The Haar spectrum in natural ordering is derived from the Haar spectrum in se-
quency ordering by reordering of spectral coefficients (16, 52, 258, 671).

A factorization similar to that for Walsh functions in terms of the matrix Am (see
3.1.3) yields the algorithm for the Haar transform similar to that in Fig. 3.1.1.

Example 3.2.4 For m = 3, the Haar matrix in sequency ordering can be factorized
as

Hs(3) = C1(3)C2(3)C3(3),

where

C1(3) =




1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1




,
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C2(3) =




1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1

0 0 0 0 2 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 2




,

C3(3) =




1 1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0

0 0 0
√

2 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




.

In this factorization, the scaling factor 1/8 is not shown, and should be performed
after the calculations are done.

Example 3.2.5 Figure 3.2.4 shows the flow-graph of the algorithm derived from
this factorization of the Haar matrix. This algorithm belongs to the class of FFT-
like algorithms with constant geometry, see Reference 16. Figure 3.2.5 shows the
flow-graph for the inverse Haar transform for the algorithm with constant geometry.

3.2.3 Calculation of the Haar Spectrum Through BDD

As it was mentioned above, the Haar matrix has a recursive structure expressed by
the Kronecker product over some submatrices within the Haar matrix, as it can be
seen from (3.2.3) and (3.2.4). Owing to that, a procedure for calculation of the Haar
spectra through BDDs can be formulated in a similar way as in the transforms with
Kronecker product representable transform matrices. The difference is that in this
case, processing of different nodes is done by using different rules as determined in
the above-mentioned relations defining the direct and inverse Haar transform matrices.

Several methods to calculate the discrete Haar transform through BDDs have
been presented in References 83, 102, 158, 228, and 600. Moreover, the number and
distribution of nonzero elements in the Haar matrix allow some further savings in cal-
culation of the Haar transform through BDDs for switching and MTBDDs for integer
or complex-valued functions on Cm

2 (536). The method presented in Section 3.2.3 has
been introduced in References 536 and 537.
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FIGURE 3.2.4 Fast Haar transform for m = 3.

As in other spectral transforms, we perform some calculations at each node and the
cross point in the decision diagram for f . Calculations are performed over subvectors
represented by subtrees rooted at the nodes that point the outgoing edges of the
processed node. In Kronecker spectral transforms, that is, transforms with transform
matrices that can be represented by the Kronecker product of transform matrices of
smaller order (555), calculations at the nodes are determined by the basic transform
matrices. For the Haar transform, calculations are determined by a rule derived from
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FIGURE 3.2.5 Fast inverse Haar transform for m = 3.
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the definition of the Haar transform matrix. The method will be explained in the
matrix notation.

Decision diagram methods for calculation of spectral transforms perform basic
operations used in FFT and the related algorithm over decision diagrams instead
of vectors used to represent the functions processed (559). These operations can be
expressed as suitably defined matrix operators. In the case of Haar transform, further
simplification of the algorithm can be derived by taking advantages of properties of
the transform matrix, resulting in the structure of fast algorithms as in Figs. 3.2.1,
3.2.4, and 3.2.5. Except the first step for the direct transforms and the last step of the
algorithms for the inverse transforms, in all other steps in these figures, calculations
are performed over subsets of values that are inputs for the considered steps. This
property is due to the regular structure and distribution of zero entries in the Haar
transform matrices, both direct and inverse. That simplification of the fast algorithm
for the Haar coefficients, compared for instance to the corresponding algorithms for
the Walsh transform, can also be exploited in calculations of Haar coefficients over
decision diagrams, as will be explained below.

In calculation of the Haar spectra over decision diagrams, the Haar coefficients are
assigned to nonterminal nodes of the BDD representing the function whose spectrum
is to be calculated. For a function f defined by a decision diagram, the procedure
computes all the Haar coefficients for the natural ordering discussed in Section 2.3.3.2.
It is possible to read the Haar spectrum in different orderings, by changing the way of
traversing the decision diagram forf , that is, by visiting nonterminal nodes in the order
corresponding to the required ordering of Haar coefficients. This can be preformed
by using commonly known procedures for traversing decision diagrams widely used
in the area of data representations and data structures. Therefore, in calculations over
vectors, when Haar spectrum is calculated for a specified ordering, the spectrum
in different ordering is determined by performing the corresponding permutation
procedure. In calculation of spectra over decision diagrams, we change the way of
traversing the decision diagram and read the coefficients for the required ordering.

For the description of the algorithm for calculation of Haar coefficients over de-
cision diagrams, we need the following definition for matrix calculations and the
generalized notion of decision trees and diagrams defined with respect to different
spectral transforms, the Spectral Transform Decision Trees (STDTs) and the corre-
sponding Spectral Transform Decision Diagrams (STDDs) (555).

Definition 3.2.1 In the space P(Cp), consider a (p × p) matrix Qp = [qi,j], i, j =
0, . . . , p − 1. For p vectors of the lengths z, that is, having z elements, Y0, . . . , Yp−1,
we define a vector of the length zp as

Qp(Y0, . . . , Yp−1) =




q0,0Y0 + · · · + q0,p−1Yp−1

...

qp−1,0Y0 + · · · + qp−1,p−1Yp−1


 .

Definition 3.2.2 Consider a function f defined in k points, and the decision diagram
representation of it. In a STDT for f , see Section 1.4, defined with respect to a basis
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R = {r0, . . . , rk}, the leftmost nodes are nodes in the path from the root node to
the constant node representing the coefficient S(0). Thus, these nodes are connected
by edges in the path corresponding to the basis function r0. In the case of BDDs,
MTBDDs, MDDs, and MTDDs, these are edges denoted by 0 inP or the corresponding
literal for related variables.

In a multiterminal binary decision diagram for a function f , MTBDD(f ), each
nonterminal node is a root node for a subfunction in f . For the node at the ith level, this
subfunction is a cofactor of f for a particular assignment of variables z0, . . . , zi−1.
In matrix notation, these cofactors are represented by vectors Y0 and Y1 of orders
2m−i. In decision diagram methods, at each node calculations are performed over the
subfunctions rooted at the nodes pointed by the outgoing edges of the considered node.

It is shown in Reference 537, from a discussion and an analysis of fast algorithms
for the Haar transform, that the Haar transform in C(C2) can be calculated through
MTBDT(f ) by using the following algorithm.

Algorithm 3.2.1 (Haar transform through MTBDT)

1. Given f by a MTBDT(f ).

2. At each nonterminal node in MTBDD(f ) perform

Q2(δ0(z)Y0, δ0(z)Y1),

where δk(z) is the Kronecker δ function, for z ∈ {0, . . . , 2i}, and i =
{0, 1, . . . , m − 1} is the number of the level that is processed in the MTBDT,
and Q2 = W(1).

Example 3.2.6 Figure 3.2.6 shows calculation of the unnormalized Haar spectrum
in sequency ordering over MTBDTs for m = 3.

f (0)+ f (1)

f (0)+ f (1)+ f (2)+ f (3)

f (0)+ f (1)+ f (2)+ f (3)+ f (4)+ f (5)+ f (6)+ f (7)= S f (0)

f (0)+ f (1)+ f (2)+ f (3)– f (4)– f (5)– f (6)– f (7)=S f(1)

f (4)+ f (5)+ f (6)+ f (7)

f (0)+f (1)– f (2)–f (3)= S f(2)
f (4)+f (5)– f (6)–f (7)= S f(3)

f (0)– f (1)=S f(4)
f (6)+ f (7)
f (6)– f (7)=S f(7)

f (4)+ f (5)
f (4)– f (5)=S f(6)

f (2)+ f (3)
f (2)– f (3)=S f(5)

f S, f

S

S S

S S S S

f (0) f (1) f (2) f (3) f (4) f (5) f (6) f (7)

W (1)

W (1) W (1)

W (1)

W (1) W (1) W(1)

z0

z1 z1

z2 z2 z2 z2z2 z2 z2 z2

z1 z1

z0
_

_ _

_ _ _ _

FIGURE 3.2.6 Calculation of the Haar transform for m = 3 through MTBDT(f ).
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Since from the same diagram we can read the function f and its Haar spectrum, the
root node is labeled by both f and Sf . If we change the order of visiting nonterminal
nodes, we can read the Haar spectrum in natural ordering.

The result of calculation at each node is stored in two fields assigned to each
nonterminal node. The first field is used in further calculations, and the other field
shows a particular Haar coefficient. Therefore, the MTBDD for f at the same time
represent the Haar spectrum Sf of f . In a similar way, it follows that the calculation
of the inverse Haar transform can be performed by using the following algorithm.

Algorithm 3.2.2 (Inverse Haar transform through MTBDT)

1. Given f by a MTBDT(f ).

2. At each non-terminal node in MTBDD(f ) perform

Q2(Y0, Y1),

where Q2 = W(1) for the leftmost nodes, and Q2 = I2 for the other nodes.

Example 3.2.7 Figure 3.2.7 shows calculation of the unnormalized inverse Haar
transform in sequency ordering over MTBDTs for m = 3.

The same algorithms can be performed over MTBDDs, because the reduction of
nodes does not destroy or diminish the information content in MTBDTs. In this case

S Sf(0)+ f(1) Sf(2) Sf(4)

Sf(4)

Sf(6)

Sf(6)

Sf(7)

Sf(7)

Sf(3) Sf(5)

Sf(5)

, f

S

S S

S S S S

Sf(0) Sf(1) Sf(2) Sf(3) Sf(4) Sf(5) Sf(6) Sf(7)

W(1)

W(1) 4I2

W(1)

2I2 2I2 2I2
2 2 2

4

1_
8

z0

z1 z1

z2 z2 z2 z2 z2z2z2z2

z1z1

z0
_

_ _

_ _ _ _

Sf(0)+Sf(1)+2Sf(2)+4Sf(4)
Sf(0)+Sf(1)+2Sf(2)–4Sf(4)
Sf(0)+Sf(1)–2Sf(2)+4Sf(4)
Sf(0)+Sf(1)–2Sf(2)–4Sf(4)
Sf(0)–Sf(1)+2Sf(2)+4Sf(4)
Sf(0)–Sf(1)+2Sf(2)–4Sf(4)
Sf(0)–Sf(1)–2Sf(2)+4Sf(4)
Sf(0)–Sf(1)–2Sf(2)–4Sf(4)

Sf(0)+Sf(1)+2Sf(2)
Sf(0)+Sf(1)–2Sf(2)
Sf(0)–Sf(1)+2Sf(2)
Sf(0)–Sf(1)–2Sf(2)

Sf(0)–Sf(1)

FIGURE 3.2.7 Calculation of the inverse Haar transform through MTBDT(Sf ).
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the impact of deleted nodes is taken into account through the cross points (569), as
in other decision diagram algorithms.
Calculation procedure for the Haar spectrum through MTBDD

It follows from the properties of the Haar transform matrix that calculation over
subvectors represented by subdiagrams in a decision diagram can be reduced to the
processing of their first elements. In this way, a fast calculation procedure for the Haar
spectrum over decision diagrams has been proposed in References 536 and 537. This
procedure will be explained as follows, by using the Haar matrix in natural ordering
as the direct transform matrix. Notice that both normalized and unnormalized Haar
spectra can be calculated in the same way, by paying attention to the normalization
factors. Since the results of all calculations are represented by decision diagrams, the
Haar spectra for different ordering of the Haar functions can be read by changing the
way of traversing the diagram. Moreover, the method does not require construction of
a separate diagram for the Haar spectrum. Owing to the properties of the Haar matrix,
resulting in the characteristic structure of the corresponding FFT-like algorithms (see
Figs. 3.2.1–3.2.5), all the calculations can be performed over the decision diagram
representing the given function f and attached in a file assigned to the nodes of it. In
this way, the method does not require more memory than needed to store the decision
diagram for the function f .

Denote by Sk−1,i(0) and Sk−1,i(1) the nodes and cross points such that incoming
edges for these nodes and cross points are the outgoing edges of the ith node at the
kth level Sk,i, denoted by zi and zi. The use of cross points permits to consider all
the edges as edges of the length equal to 1. Thus, calculations at the kth level are
performed over subvectors represented by the subtrees rooted at the nodes at k − 1-th
level in the decision diagram.

Denote by QSk,i
= [q(0), . . . , q(2m−k − 1)]T the subvector of the length 2m−k

represented by the subtree rooted at the node Sk,i. Furthermore, denote by
QSk+1,i(0) = [q0(0), . . . , q0(2m−(k+1) − 1)]T the vector represented by the subtree
rooted in Sk+1,i(0). Similar, QSk+1,i(1) = [q1(0), . . . , q1(2m−(k+1) − 1)]T is the sub-
vector rooted in Sk+1,i(1).

For a simpler explanation, we introduce two auxiliary vectors.
Denote by ZSk+1,i(0) = [z0(0), . . . , z0(2m−(k+1) − 1)]T , where

z0(i) =
{

q0(0) + q1(0), i = 0,

q0(i), i = 1, . . . , 2m−(k+1) − 1.

Similarly, ZSk+1,i(1) = [z1(0), . . . , z1(2m−(k+1) − 1)]T , where

z1(i) =
{√

2k−1(q1(0) − q1(0)), i = 0,

q1(i), i = 1, . . . , 2m−(k+1) − 1.
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In this notation, to calculate the Haar spectrum in natural ordering through BDD
for f , in each node and the cross point, we perform calculations determined by the
rule

QSk,i
= ZSk+1,i(0) 	 ZSk+1,i(1), (3.2.5)

where 	 denotes concatenation of vectors. For the calculations in this section, we
work with vectors written as columns, since this notation directly corresponds to the
calculations performed at the nodes level by level over a decision tree, as in Figs. 3.2.6
and 3.2.7.

The method is illustrated by the following example.

Example 3.2.8 For f discussed in Examples 1.4.2 and 1.4.3, given by the BDD in
Fig. 1.4.4, the normalized Haar spectrum is calculated as follows. We first process
the nodes to which z2 is assigned by using the above rule

QS2,0 = [1 + 0] 	 [2(1 − 0)] =
[

1

2

]
,

QS2,1 = [0 + 1] 	 [2(0 − 1)] =
[

1

−2

]
,

Qc2,0 = [1 + 1] 	 [2(1 − 1)] =
[

2

0

]
.

Calculations at the nodes to which z1 is assigned, produce

QS1,0 =
[

1 + 1

2

]
	

[√
2(1 − 1)

−2

]

=
[

2

2

]
	

[
0

−2

]
=




2

2

0

−2


 ,

QS1,1 =
[

1 + 2

−2

]
	

[√
2(1 − 2)

0

]

=
[

3

−2

]
	

[
−√

2

0

]
=




3

−2

−√
2

0


 .
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Calculation at the root node produces the Haar spectrum for f up to the normal-
ization factor 1/8 as follows:

QS0 = 8Sf = =




2 + 3

2

0

−2


 	




2 − 3

−2

−√
2

0




= [5, 2, 0, −2, −1, −2, −
√

2, 0]T .

The same spectrum is obtained when the normalized Haar matrix in natural ordering
in (2.3.10) is multiplied by the truth-vector F of the function considered.

Figure 3.2.8 shows the MTBDD for the Haar spectrum thus calculated.

In calculation of other spectral transforms through decision diagrams, the nodes in
the BDD for f are transformed into the nodes of BDD (for the Reed–Muller transform)
or MTBDD (for other transforms) for the corresponding spectrum for f .

In calculation of the Haar transform, from (3.2.5), we change the value of only the
first elements in the subvectors ZSk+1,i(0) and ZSk+1,i(1). The other elements remain
unchanged. Therefore, we assign to each node in the decision diagram for f two fields
denoted as the left and right fields.

In this way, we do not generate a MTBDD for the Haar spectrum of f (537). We
determine and write during the calculations the values of spectral coefficients in the
fields assigned to the nodes in the decision diagram for f . The left field contains the
value that will be used in further calculations. The right field contains the value of
a spectral coefficient. The position of this coefficient in the vector representing the
Haar spectrum for f is determined by the labels at the edges in the path from the root
node to the considered node. From thus modified decision diagram for f , the Haar
spectrum is read by using the standard procedure of descending decision diagrams
usually denoted in the literature as in-order procedure for traversing decision trees.
The procedure is especially suitable for traversing binary decision trees, but can be

5 –2 –2 0 –1

z0

z1 z1

z2 z2
z2

z2

z2
z2 z2 z2

z1 z1

z0
_

_ _

_ _ _
_

S

S S

S S S S

Sf

FIGURE 3.2.8 MTBDD for the Haar spectrum in Example 3.2.8.
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generalized to arbitrary trees. In an in-order traversal, a node is visited after its left
subtree and before its right subtree. Therefore, the procedure consists of the following
steps:

1. Descend the left subtree.

2. Visit the root.

3. Descend the right subtree.

The method will be illustrated by the following example.

Example 3.2.9 Figure 3.2.9 shows the BDD for f in Example 1.4.2 modified to
represent the values of Haar coefficients for f . In that order, two fields are assigned
to each nonterminal node and used as described above. Thus, in all nonterminal nodes,
except the root node, the left field contains value that is used in future calculations,
and the right field shows the value of the corresponding Haar spectral coefficient.
In the root node, both fields, the right and the left field, show the values of spectral
coefficients Sh,f (0) and Sh,f (2m−1). The index h in the coefficients denotes that the
coefficients are in sequency ordering, hence it is also called the Haar ordering.

Figure 3.2.10 explains the application of the in-order procedure to this BDD. In
this figure, the gray curve shows the order of visiting nodes as specified by the in-order
procedure widely used in data structures.

The coefficients Sh,f (0) is in the left field assigned to the root node. Thus, its value
is Sh,f (0) = 5. Then, we descend the left subtree and read the value of Sh,f (1) = 2.

z0

z1 z1

z2 z2

z1 z1

z2
z2

z0
_

_ _

_ _

0

1,0 1,1

2,0 2,1
c2,0

–1

–

–2

FIGURE 3.2.9 BDD for the Haar spectrum for f in Example 1.4.2.
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0 1

f

S1,0

S0

S2,1S2,0

S1,1 3

1 –2

–

S (0)h,f

Sh,f (1)

Sh,f (2) Sh,f (6)

Sh,f (3) Sh,f (5) Sh,f (7)

S (4)s,f

c2,0

–1

FIGURE 3.2.10 In-order procedure for BDD for f in Example 3.2.9.

We continue by traversing the left subtree, and visit the node showing the coefficient
Sh,f (2) = 0. There after, we traverse the right subtree of the node S1,0 and read the co-
efficient Sh,f (3) = −2. This completes the traversal of the left subtree of the node S0,
and therefore, we visit this node and read the value of the coefficient Sf,h(4) = −1. We
continue by traversing the right subtree of the root node, and thus visit the shared node
S2,1 to read the value of Sh,f (5) = −2. Since this complete the traversal of the left sub-
tree of the node S1,1, we visit this node and read Sh,f (6) = −√

2. Finally, we traverse
the right subtree and read Sh,f (7) = 0 in the right field assigned to the cross point c2,0.

3.3 CALCULATION OF THE VILENKIN–CHRESTENSON SPECTRUM

We now examine methods for calculating the Vilenkin–Chrestenson transform. As in
all other transforms, we consider calculations of the spectrum and reconstruction of
the signal from it, that is, performing the direct and the inverse transforms. As in the
case of the Walsh transform, due to symmetry and orthogonality of the transform ma-
trix, the direct and the inverse Vilenkin–Chrestenson transform can be calculated by
the same algorithm by exploiting the property that the inverse transform matrix is the
complex conjugate of the direct transform matrix. This has very convenient implica-
tions in practical implementations. For example, in terms of the Vilenkin–Chrestenson
matrix p = 3, which means permutation of the entries e1 = − 1

2 (1 − i
√

3)
and e2 = − 1

2 (1 + i
√

3), since they are complex conjugate to each other. Thus, by
a simple manipulation with indices of matrix entries, the same algorithm can be used
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to calculate the spectrum and reconstruct function values from it. The scaling factor
p−m can be assigned to either direct or inverse transform. In some definitions it is
split between them. Notice that besides this factor, different approaches to the defi-
nitions of the Vilenkin–Chrestenson transform can be found in the literature. If the
Vilenkin–Chrestenson functions are defined as columns of the Vilenkin–Chrestenson
matrix, then its inverse is used to calculate the corresponding spectral coefficients,
and a given function is expressed as a series in terms of these functions. Alternatively,
the Vilenkin–Chrestenson matrix can be used to calculate spectral coefficients, and
its inverse to reconstruct the signal from the spectrum. It should be noted that the
algorithms defined below can be easily adapted to perform any of these definitions
by a simple manipulation with indices of matrix entries as pointed out above.

A natural method to calculate the Vilenkin–Chrestenson transform is provided by
formulas (1.2.1) and (2.2.3) for �w(z).

3.3.1 Matrix Interpretation of the Fast Vilenkin–Chrestenson
Transform

We proceed to a different method, generalizing the method of Section 3.1 calculating
the Walsh spectrum through Hadamard matrices.

Let χ(p)(m) be the (pm × pm) matrix whose wth row is the Vilenkin–
Chrestenson function of the index w. Thus, the row w of this matrix is (χ(p)

w (0),

χ
(p)
w (1), . . . , χ(p)

w (pm − 1)), where χ
(p)
w = exp

(
2πi
p

∑m−1
s=0 zm−1−sws

)
, z = ∑m−1

s=0

zsp
m−1−s, w = ∑m−1

s=0 wsp
m−1−s.

Example 3.3.1 The matrices χ
(3)
1 (m) and χ

(3)
2 (m), for m = 1, m = 2, are shown

below:

χ(3)(1) =




1 1 1

1 e1 e2

1 e2 e1


 ,

χ(3)(2) =




1 1 1 1 1 1 1 1 1

1 1 1 e1 e1 e1 e2 e2 e2

1 1 1 e2 e2 e2 e1 e1 e1

1 e1 e2 1 e1 e2 1 e1 e2

1 e1 e2 e1 e2 1 e2 1 e1

1 e1 e2 e2 1 e1 e1 e2 1

1 e2 e1 1 e2 e1 1 e2 e1

1 e2 e1 e1 1 e2 e2 e1 1

1 e2 e1 e2 e1 1 e1 1 e2




.

All the properties of the Vilenkin–Chrestenson functions may be rephrased in
terms of the matrices χ(p)(m) as was the case for the Walsh functions and Hadamard
matrices (see Section 2.3.2).
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Let us express the initial function and its Vilenkin–Chrestenson spectrum as
vectors, � = [�(0), . . . , �(pm − 1)]T , Sf = [Sf (0), . . . , Sf (pm − 1)]T . Then, by
(2.5.12),

Sf = p−mχ(p)(m)�, (3.3.1)

where χ(p)(m) is the complex conjugate of χ(p)(m), which is the matrix complex
conjugate to χ

(p)
m . This formula generalizes (3.1.2) and provides a simple construction

of the spectrum if p and m are not too large. Calculation of the Vilenkin–Chrestenson
spectrum using formula (3.3.1) requires p2m addition or subtraction operations (pm

operations per coefficient).
We now exhibit another method for computing the Vilenkin–Chrestenson spec-

trum, generalizing the method of Theorem 3.1.1 to the p-valued case and requiring
the minimum number m · pm(p − 1) of operations.

Given a natural number w = ∑m−1
s=0 wsp

m−1−s, we set ←−w = ∑m−1
s=0 wsp

s.

If A is a symmetric pm × pm matrix, we let
←−
A denote the matrix whose wth row

(column) is the ←−w th row (column) of A.
Consider the matrix

A(p)
m =




e0
0e

0
1 · · · e0

p−1 0 0 · · · 0

0 e0
0e

0
1 · · · e0

p−1 0 · · · 0

0 0 0 · · · e0
0e

0
1 · · · e0

p−1

e0
0e

0
1 · · · e0

p−1 0 0 · · · 0

0 e0
0e

0
1 · · · e0

p−1 0 · · · 0

0 0 0 · · · e0
0e

0
1 · · · e0

p−1

...
...

...
...

...

e
p−1
0 e

p−1
1 · · · ep−1

p−1 0 0 · · · 0

0 e
p−1
0 e

p−1
1 · · · ep−1

p−1 0 · · · 0

0 0 0 · · · e
p−1
0 e

p−1
1 · · · ep−1

p−1




,

where eq = exp(2qπi/p), q = 0, 1, . . . , p − 1. For p = 2, A(p)
m is simply the matrix

Am considered in Section 3.1.

Theorem 3.3.1 The Vilenkin–Chrestenson matrix χ(p)(m) can be factorized as

χ(p)(m) = ←−−−−
(A(p)

m )m. (3.3.2)

This theorem, generalizing formula (3.1.3), defines the factorization of the matrix
χ(p)(m) and, together with formula (3.3.1), defines the fast Vilenkin–Chrestenson
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transform in Hadamard order corresponding to the same ordering of Walsh func-
tions. Calculation of the Vilenkin–Chrestenson spectrum using this transform requires
mpm(p − 1) addition or subtraction operations (multiplication of � by A(p)

m requires
pm operations). This is the minimum complexity of an algorithm for this purpose.

Example 3.3.2 Figure 3.3.1 shows the flow-graph of the fast algorithm to calculate
the Vilenkin–Chrestenson transform for p = 3 and m = 2 by using the factorization
in Theorem 3.3.1.

Another consequence of Theorem 3.3.1 is the following m-recursive procedure for
calculating χ(p)(m), expressing it as a block matrix:

←−−−−
χ(p)(m) =




e
(0)
0

←−−−−−−−
χ(p)(m − 1) e

(0)
1

←−−−−−−−
χ(p)(m − 1) · · · e

(0)
p−1

←−−−−−−−
χ(p)(m − 1)

e
(1)
0

←−−−−−−−
χ(p)(m − 1) e

(1)
1

←−−−−−−−
χ(p)(m − 1) · · · e

(1)
p−1

←−−−−−−−
χ(p)(m − 1)

...

e
(p−1)
0

←−−−−−−−
χ(p)(m − 1) e

(p−1)
1

←−−−−−−−
χ(p)(m − 1) · · · e

(p−1)
p−1

←−−−−−−−
χ(p)(m − 1)




.

This formula generalizes (3.1.4) to the p-valued case and may be used to generate
the Vilenkin–Chrestenson matrices in the Hadamard order.

f (0)
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f (4)
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f (6)

f

f

(7)

(8)

Sf
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(0)

(1)

Sf (2)

Sf (3)

Sf (4)

Sf (5)

Sf (6)

S

S

f

f

(7)

(8)

1 e1 e2

FIGURE 3.3.1 Vilenkin–Chrestenson FFT with constant geometry for p = 3 and m = 2.
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(0)

(1)
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Sf (3)

Sf (4)

S f (5)

Sf (6)
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S

f

f

(7)
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1 e1 e2

FIGURE 3.3.2 Vilenkin–Chrestenson FFT for p = 3 and m = 2.

The Good factorization can be applied to the Vilenkin–Chrestenson matrices to
derive fast calculation algorithms as in the case of the Walsh transform.

Example 3.3.3 Figure 3.3.2 shows the flow-graphs of the corresponding algorithms
for p = 3 and m = 2 derived from the Good–Thomas factorization as

χ(3)(2) = V1(2)V2(2),

where

V1(2) =




1 1 1

1 e2 e1

1 e1 e2


 ⊗




1 0 0

0 1 0

0 0 1


 ,

V2(2) =




1 0 0

0 1 0

0 0 1


 ⊗




1 1 1

1 e2 e1

1 e1 e2


 .

Here, as before, ⊗ stands for the Kronecker product. If e1 and e2 are permuted, the
same algorithm can be used to calculate the inverse transform.
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3.3.2 Calculation of the Vilenkin–Chrestenson Transform Through
Decision Diagrams

Decision diagram methods for calculation of the Vilenkin–Chrestenson transform are
a direct generalization of those for the Walsh transform (581). It will be explained by
the following example.

Example 3.3.4 Figure 3.3.3 shows the multiple-place decision tree for a function
for p = 3 and m = 2. In this figure, the label z

j
i at an edge denotes that this edge

corresponds to the value of the variable zi = j.
From the definition of the Vilenkin–Chrestenson transform, we perform at each

node calculations determined by the inverse of the basic Vilenkin–Chrestenson
matrix χ(3)(1). Finally, at the root node, we read the Vilenkin–Chrestenson spec-
trum up to the normalization factor 32. The calculation has been performed as follows:

For the node q1,0,

q1,0 =




1 1 1

1 e2 e1

1 e1 e2







f (0)

f (1)

f (2)


 =




f (0) + f (1) + f (2)

f (0) + e2f (1) + e1f (2)

f (0) + e1f (1) + e2f (2)


 .

For the node q1,1,

q1,1 =




1 1 1

1 e2 e1

1 e1 e2







f (3)

f (4)

f (5)


 =




f (3) + f (4) + f (5)

f (3) + e2f (4) + e1f (5)

f (3) + e1f (4) + e2f (5)


 .

FIGURE 3.3.3 Calculation of the Vilenkin–Chrestenson spectrum for p = 3 and m = 2
through multiple-place decision tree.
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For the node q1,2,

q1,2 =




1 1 1

1 e2 e1

1 e1 e2







f (6)

f (7)

f (8)


 =




f (6) + f (7) + f (8)

f (6) + e2f (7) + e1f (8)

f (6) + e1f (7) + e2f (8)


 .

For the node q0,

q0 =




1 1 1

1 e2 e1

1 e1 e2







q1,0

q1,1

q1,2




=




1 · q1,0 + 1 · q1,1 + 1 · q1,2

1 · q1,0 + e2 · q1,1 + e1 · q1,2

1 · q1,0 + e1 · q1,1 + e2 · q1,2


 .

3.4 CALCULATION OF THE GENERALIZED HAAR SPECTRUM

The generalized Haar spectrum may be calculated by a procedure analogous to the
fast Vilenkin–Chrestenson transform in the Hadamard ordering. This procedure is
described in the next theorem, which generalizes Theorem 3.2.1.

Theorem 3.4.1 Let �(z) be a step function representing a system of p-valued
logic functions of m variables, and c

(p,q)
r,m−s its expansion coefficients relative to the

generalized Haar functions M
(p,q)
r,m−s(z). Set

a0(t) = �(t),

as(τp
m−s + t) =

p−1∑
δ=0

e−τ
δ as−1(pt + δ), (3.4.1)

where τ = 0, 1, . . . , p − 1, s = 1, 2, . . . , m, and eδ = exp(2πδi/p), i = √−1, δ =
0, 1, . . . , p − 1. Then,

c
(p,q)
r,m−s = p−sas(r(pm−s − 1) + q). (3.4.2)

As stated above, this theorem generates an algorithm calculating the generalized
Haar spectrum that requires p · pm − p addition and subtraction operations, which is
the minimum possible number.

In Reference 580, Haar functions are generalized to the spaces of functions
f : G → P , where G is a finite group representable as a direct product of groups
of smaller orders, and P is either a finite (Galois) field GF (p) or the complex field C.
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The generalization is achieved by referring to the structure of the flow-graphs of the
above-mentioned fast calculation algorithms for the Haar spectra and their implemen-
tation over decision diagrams. This class of Haar functions involves the generalized
Haar functions defined in Section 2.5.2 as a particular example.

3.5 CALCULATION OF AUTOCORRELATION FUNCTIONS

Autocorrelation is an important operation in signal processing and systems theory
(8, 74). In particular, the autocorrelation on finite dyadic groups, denoted as dyadic
autocorrelation B(f,f )(τ) = Bf (τ), defined and discussed in Section 2.7, is useful in
switching theory and design of systems whose inputs and outputs are represented by
functions defined in 2m points, including switching functions as an example (278,
288, 282, 429, 433, 463, 464, 465, 467, 468, 606). Recently, some new applications
of dyadic autocorrelation in spectral methods for switching functions (160), testing of
logic networks (297), and optimization of decision diagrams for representation of dis-
crete functions have been reported (468). Efficient calculation of the autocorrelation
is, therefore, an important task for practical applications.

In this section, we define and discuss a method for calculation of the dyadic autocor-
relation through decision diagrams, the use of which permits processing of functions
of a large number of variables (561). Then, we have discussed the calculation of
separate autocorrelation coefficients over decision diagrams with permuted labels of
the edges. In the case of restricted memory resources, these calculations can be per-
formed by traversing in a suitable way the decision diagram for the function whose
autocorrelation coefficients are required.

In matrix notation, if a given function f and the corresponding autocorrela-
tion function Bf (τ) = ∑2m−1

z=0 f (z)f (z ⊕ τ) for f are represented by vectors F =
[f (0), . . . , f (2m − 1)]T and Bf = [Bf (0), . . . , Bf (2m − 1)]T , respectively, then

Bf = Bf (m)F,

where Bf (m) is the dyadic autocorrelation matrix for f .

Example 3.5.1 For m = 3, the dyadic autocorrelation matrix is

Bf (3) =




f (0) f (1) f (2) f (3) f (4) f (5) f (6) f (7)

f (1) f (0) f (3) f (2) f (5) f (4) f (7) f (6)

f (2) f (3) f (0) f (1) f (6) f (7) f (4) f (5)

f (3) f (2) f (1) f (0) f (7) f (6) f (5) f (4)

f (4) f (5) f (6) f (7) f (0) f (1) f (2) f (3)

f (5) f (4) f (7) f (6) f (1) f (0) f (3) f (2)

f (6) f (7) f (4) f (5) f (2) f (3) f (0) f (1)

f (7) f (6) f (5) f (4) f (3) f (2) f (1) f (0)




.
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The recursive structure of the autocorrelation matrix will be exploited in calculation
of the autocorrelation coefficients.

Example 3.5.2 The autocorrelation function Bf (τ) for a function f given by the vec-
tor of function values F = [0, 0, 1, 2, 3, 3, 3, 3]T is calculated by the autocorrelation
matrix Bf (3) as

Bf =




0 0 1 2 3 3 3 3

0 0 2 1 3 3 3 3

1 2 0 0 3 3 3 3

2 1 0 0 3 3 3 3

3 3 3 3 0 0 1 2

3 3 3 3 0 0 2 1

3 3 3 3 1 2 0 0

3 3 3 3 2 1 0 0







0

0

1

2

3

3

3

3




=




41

40

36

36

18

18

18

18




.

The dyadic autocorrelation matrices are known as circulants on C(2)m (1). Prop-
erties of circulants on groups are studied in References 96, and 246.

3.5.1 Matrix Notation for the Wiener–Khinchin Theorem

The Wiener–Khinchin theorem, Theorem 2.7.1, states a relationship between the
autocorrelation function and Walsh (Fourier) coefficients. In matrix notation, this
theorem can be expressed as

Bf = 2−mW(m)(W(m)F)2,

where W(m) denotes the Walsh transform matrix and F is the vector of function values
for the given function f .

Example 3.5.3 Figure 3.5.1 shows calculation of the autocorrelation of a function of
two binary-valued variables. Figure 3.5.2 illustrates the same calculation performed
by the fast Walsh transform in the Hadamard ordering.

3.5.2 Wiener–Khinchin Theorem Over Decision Diagrams

Decision diagrams can be used to represent both functions and their autocorrelation
functions, and moreover, for a function f specified by a decision diagram, the deci-
sion diagram for the autocorrelation function Bf can be constructed by performing
calculations over the diagram for f .

Example 3.5.4 Figure 3.5.3 shows a MTBDT and the corresponding MTBDD for
a function f in Example 3.5.2. In this figure, we also show the cross points in the
MTBDD. Figure 3.5.4 shows the MTBDD for the autocorrelation function Bf (τ).
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FIGURE 3.5.1 Calculation of the autocorrelation of f (z0, z1).

Figure 3.5.5 illustrates the basic principle in calculating the autocorrelation func-
tions by the Wiener–Khinchin theorem performed over decision diagrams.

The Walsh spectrum Sf of a given function f , represented by a MTBDD, is
determined by performing at each node and each cross point of the MTBDD(f ) the
calculations determined by W(1). For simplicity, we say the nodes and cross points
in MTBDD(f ) are processed by W(1). In this way, MTBDD(f ) is converted into the
MTBDD(Sf ). Methods for construction of MTBDD(Sf ) from the MTBDD(f ) by
performing calculations determined by W(1) at every node and cross points in the
MTBFF(f ) has been presented in Section 3.1.3.

We perform the multiplication of Sf by itself by replacing the values of constant
nodes Sf (i) with S2

f (i) (499). Then, the MTBDD(Bf ) is determined by performing
the calculations determined by W(1) at each node and the cross point of the resulting
MTBDD(S2

f ) followed by the normalization with 2m, since the Walsh matrix is self-
inverse up to the constant 2−m.

Example 3.5.5 Figure 3.5.6 illustrates calculation of the autocorrelation function
Bf by the above method for the function f in Example 3.5.4.

Complexity of the method
Since in calculation of the Walsh spectrum, we perform an addition and a sub-

traction at each node and the cross point distributed over m levels, the complexity is
O(2m · size(MTBDD(f ))). Recall that the size of a decision diagram is defined as
the number of nodes in the diagram. Notice that the upper bound on the number

FIGURE 3.5.2 Calculation of the autocorrelation of f (z0, z1) by the fast Walsh transform.
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FIGURE 3.5.3 MTBDT and MTBDD for f in Example 3.5.2.

of cross points in a MTBDD is on the average at about 30% of the number of
nonterminal nodes (499). The result of these calculations is the MTBDD(Sf ). Then,
we perform squaring of the values of constant nodes followed by the inverse transform.
Thus, since the Walsh transform is self-inverse, the complexity of these calculations
is O(2m · size(MTBDD(Sf ))). After multiplication with the scaling factor 2m, the
MTBDD(Bf ) is derived.

Notice that the size of the MTBDD for the Walsh spectrum is usually greater
than that of the MTBDD for functions with a limited number of different values.
Since in calculation of the autcorrelation function, MTBDD(f ) is converted into a
MTBDD(Sf ), which in many cases has a larger size than the MTBDD(f ), the space
complexity of the method is O(size(MTBDD(Sf ))).

For an illustration, Table 3.5.1 shows the sizes of MTBDDs for few standard mcnc

benchmark functions used in logic design (MTBDD(f )) and their Walsh spectra
(MTBDD(Sf )). This table shows the number of inputs (In) of benchmark functions,
number of nonterminal nodes (ntn), constant nodes (cn), size (s), and number of paths
(paths) in the MTBDDs and WDDs.
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FIGURE 3.5.4 MTBDD for the autocorrelation function Bf (τ).
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f SfSf (Sf)2(Sf)2 BfBf

WW W–1W22

MTBDD(f) MTBDD(Sf) MTBDD((Sf)
2
) MTBDD(Bf)

FIGURE 3.5.5 Calculation of the autocorrelation function by the Wiener–Khinchin theorem
over decision diagrams.

Example 3.5.6 For the function f represented by the MTBDD in Fig. 3.5.3, the
Walsh spectrum is calculated as follows:

We first process the cross points and the node at the level for z2. For the left cross
point, calculation is trivial since the constant node shows the value 0, the result will
be the zero -valued vector of order 2. For the completeness of presentation, we also
show these calculations

Sc−left = W(1) ◦
[

0

0

]
=

[
0 + 0

0 − 0

]
=

[
0

0

]
.

For the node for z2,

Sfz2
= W(1) ◦

[
1

2

]
=

[
1 + 2

1 − 2

]
=

[
3

−1

]
.

For the right cross point,

Sc−right = W(1) ◦
[

3

3

]
=

[
3 + 3

3 − 3

]
=

[
6

0

]
.
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1
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2 2 2
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FIGURE 3.5.6 Calculation of the autocorrelation function Bf for f in Example 3.5.4 by
using the Wiener–Khinchin theorem over decision diagrams.
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TABLE 3.5.1 Characteristics of MTBDDs and WDDs for Some Benchmark Functions.

MTBDD(f ) MTBDD(Sf )

f In ntn cn s paths ntn cn s paths

5xp1 7 127 128 255 128 41 14 55 128
9sym 9 43 3 46 125 101 30 131 224
add4 8 147 31 178 256 36 11 47 37
add5 10 387 63 450 1024 55 13 68 56
apex4 9 446 319 765 450 511 512 1023 512
bw 5 29 24 53 30 31 32 63 32
clip 9 339 33 372 498 449 170 619 464
con1 7 46 5 51 83 83 26 109 96
ex1010 10 899 178 1077 1887 1023 972 1995 1024
mul2 4 13 7 20 14 12 8 20 13
mul3 6 59 26 85 59 30 16 46 31
rd53 5 21 6 27 24 30 13 43 32
rd73 7 57 8 25 96 64 24 88 98
rd84 8 85 9 94 192 118 40 158 193
sao2 10 96 11 107 237 295 70 365 508
sqrt8 8 64 17 81 65 127 54 181 176
xor5 5 15 3 18 22 9 6 15 10

av. 8 163 495 210 298 167 112 279 201

Then, we process the node for z1,

Sfz1
= W(1) ◦




[
0

0

]

[
3

−1

]




=




[
0

0

]
+

[
3

−1

]

[
0

0

]
−

[
3

−1

]




=




3

−1

−3

1


 ,

where ◦ symbolically denotes multiplication of a matrix by a vector consisting of
subvectors.

For the cross point at the level for z1,

Sc = W(1) ◦




[
6

0

]

[
6

0

]




=




[
6

0

]
+

[
6

0

]

[
6

0

]
−

[
6

0

]




=




12

0

0

0


 .
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For z0,

8Sf = W(1) ◦







3

−1

−3

1







12

0

0

0







=







3

−1

−3

1


 +




12

0

0

0







3

−1

−3

1


 −




12

0

0

0







=




15

−1

−3

1

−9

−1

−3

1




.

Thus determined vector is multiplied by 1/8 to get the Walsh spectrum for f .
Notice that matrix calculations are used for the explanations of the method. In

practice, each step of the calculation is represented by a decision diagram, which is a
subdiagram in a decision diagram representing the Walsh spectrum for the function
f . Figure 3.5.7 shows the MTBDD(Sf ) for the Walsh spectrum, where for simplicity,
the scaling factor is not shown. As specified in the Wiener–Khinchin theorem, we
replace values of constant nodes by their square, and then calculate the inverse
Walsh transform as explained above, since the Walsh transform is self-inverse. If in
this calculation, each step is represented by a decision diagram, we get a MTBDD
for the autocorrelation function Bf , as shown in Fig. 3.5.4.

3.5.3 In-place Calculation of Autocorrelation Coefficients
by Decision Diagrams

We define a transformation of nodes in MTBDDs that consists of permutation of
labels at the outgoing edges, as shown in Fig. 3.5.8.

The ith row of the autocorrelation matrix is the vector of function values f (z ⊕ i),
where ⊕ denotes the componentwise EXOR over the binary representations for
z = (z0, . . . , zm−1), and i = (i0, . . . , im−1). In decision diagrams, this shift of the
variable for f implies permutation of labels at the edges of some nodes in the deci-
sion diagram for f . Nodes whose edges should be permuted are located at the levels
whose position within the decision diagram corresponds to the position of 1-bits in
the binary representation for the row index i.

Example 3.5.7 Figure 3.5.9 shows MTBTDs for the first four rows of the autocor-
relation matrix Bf in Example 3.5.1. Figure 3.5.10 shows the decision diagrams for
a three-variable switching function f (z), z = (z0, z1, z2), given by the truth-vector
F = [1, 0, 1, 1, 0, 1, 0, 1]T , and for f (z ⊕ 3), that is, for the first and the fourth row
of the autocorrelation matrix for f . These diagrams differ in the order of labels at
the edges of nodes at the levels for z1 and z2.
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FIGURE 3.5.7 MTBDD for the Walsh spectrum for f in Example 3.5.6.

The ith autocorrelation coefficient is calculated by the multiplication of the ith row
of the autocorrelation matrix Bf by the vector F of function values for f . When f and
rows of Bf are represented by decision diagrams, it follows that the ith autocorrela-
tion coefficient is calculated by the multiplication of the decision diagrams for f (z)
and f (z ⊕ i). This can be performed by the classical procedure for multiplication of

S S
zi zizi zi
_ _

f(z=0)i f(z=0)if(z=1)i f(z=1)i

FIGURE 3.5.8 Transformation of nodes.
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FIGURE 3.5.9 MTBDTs for the first four rows of the autocorrelation matrix for m = 3.
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FIGURE 3.5.10 MTBDDs for f (z) and f (z ⊕ 3) in Example 3.5.7.
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decision diagrams. However, since decision diagrams for f (z) and f (z ⊕ i) differ in
labels at the edges, in practical programming implementations, calculations can be
organized over a single diagram similar to calculations of FFT organized in-place (8).
Therefore, complexity of calculation for this approach is proportional to the number
of nodes in the decision diagram for f .

Figure 3.5.11 shows a procedure for in-place calculation of the autocorrelation
function through decision diagrams with permuted labels at the edges. In this proce-
dure, f (z) is represented by a MTBDD, which is then traversed in such a way as to

int AUTOCORREL(∗node1, ∗node2, level)
{

r = level − node → level

if (node NOT TERMINAL)
{

if (node → flag = 0)
{
if(τi = 1)
{
pom1 = node2 → right

pom2 = node2 → left

}
else
{
pom1 = node2 → left

pom2 = node2 → right

}
i = i + 1
a = AUTOCORREL(node1 → left, pom1)
+ AUTOCORREL(node1 → right, pom2)
node → sub − value

node → flag = 1
return (2r−1 · a)

}
else
{
return node → sub − value

}
}
else
a = node1 → value · node2 → value

return (2r−1 · a)
}
End of pseudocode.

FIGURE 3.5.11 Calculation of the autocorrelation coefficient Bf (τ).
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multiply values of constant nodes in the MTBDD for f (z) with the values of con-
stant nodes in the MTBDD for f (z ⊕ τ) and perform the addition of these values to
compute Bf (τ) = ∑2m−1

z=0 f (z)f (z ⊕ τ). The way of traversing is determined by the
binary components τi, i = 0, 1, . . . , m − 1 of τ. A flag associate to each nonterminal
node to show if the node was already traversed. In this manner, the coefficient Bf (τ)
is calculated. The procedure has to be repeated for each coefficient.
Complexity of in-place calculations of autocorrelation coefficients

In-place calculations are performed over the MTBDD(f ) and, therefore, the space
complexity, that is, the required memory, is O(size(MTBDD(f )). Since for each
coefficient we perform a multiplication at each constant node and an addition at each
nonterminal node, the number of multiplications is O(cn), and the number of additions
is O(ntn), where cn and ntn are the number of constant and nonterminal nodes,
respectively. Thus, the total complexity of in-place calculation of an autocorrelation
coefficient is O(size(MTBDD(f ))).

Table 3.5.1 shows number of constant nodes and nonterminal nodes for several
benchmark functions. The procedure is performed for each value of Bf . Thus, it is suit-
able for calculation of a single value of Bf (τ) for a given τ, or a small subset of values.

Example 3.5.8 Figure 3.5.12 explains application of the procedure for calculation
of the autocorrelation functions over MTBDT for a given function f for m = 3 and
τ = 1 = (001). Recall that in this case, we should perform multiplication of f (z) and
f (z ⊕ 1), where z = (z0, z1, z2), τ = (τ0, τ1, τ2), zi, τi ∈ {0, 1}. Therefore,

Bf (1) = [
f (1)f (0)f (3)f (2)f (5)f (4)f (7)f (6)

]
× [

f (0)f (1)f (2)f (3)f (4)f (5)f (6)f (7)
]T

.

This can be done by a suitable traversing MTBDT for f . In Fig. 3.5.12 the dotted
lines show the part for performing permutation of variables to transfer the MTBDD
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_

_
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FIGURE 3.5.12 Explanation of calculation of Bf (1) for m = 3.
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for f into MTBDD for f (z ⊕ 1). Thus, there are two arrows, represented by dotted
and solid lines, from each node to illustrate computation of the values f (0)f (1) and
f (1)f (0) that are first two numbers in the sum determining the value of the auto-
correlation coefficient Bf (001) = f (1)f (0) + f (0)f (1) + f (3)f (2) + f (2)f (3) +
f (5)f (4) + f (4)f (5) + f (7)f (6) + f (6)f (7). Arcs in this figure show the way of
visiting nodes during traversing the decision tree.

BIBLIOGRAPHIC NOTES

Efficient calculation of spectral transforms, where the efficiency is expressed in terms of re-
quired space and time to perform the computations, is of an essential importance for applications
of spectral methods in practice (75). The origins of fast calculation algorithms of the Discrete
Fourier Transform (DFT) can be dated back to the time of Gauss (240). In modern era, the
Fast Fourier transform, as an algorithm for efficient calculation of DFT has been introduced
in Reference 109, which revolutionizes practical applications of DFT. The same algorithm
can be extended to Fourier and Fourier-like transforms on various groups (217). Recommend-
able references in this subject are 16,52, and 555. See Reference (567) for fast algorithms for
calculation of Fourier transforms on finite non-Abelian groups. Extension of FFT-like algo-
rithms to calculation over decision diagrams is given in References 104 and 105. For more
details see References 550 and 555. Methods for calculation of the Haar transform over deci-
sion diagrams are considered in References 162,229, and 536. Methods for calculation of logic
autocorrelation over decision diagrams are discussed in References 558 and 561.
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CHAPTER 4

SPECTRAL METHODS
IN OPTIMIZATION OF
DECISION DIAGRAMS

This chapter is devoted to the minimization of basic characteristic of decision diagrams
for representation of discrete functions. We will also provide a spectral interpretation
of decision diagrams and based on it define decision diagrams derived from the Haar
transform.

The main interest will be focused on decision diagrams for switching functions
and their integer equivalent functions. In particular, we will discuss minimization
of Binary Decision Diagrams (BDDs) by autocorrelation functions, minimization of
planar BDDs by using Walsh coefficients, and minimization of Haar diagrams by
using again the autocorrelation coefficient.

The complexity of a decision diagram is usually estimated as the number of nodes,
called the size of the BDD. In the case of switching functions, it is enough to consider
the nonterminal nodes, since the constant nodes always represent two logic values 0
and 1.

The size of a BDD is very sensitive to the order of variables, ranging from the
polynomial to the exponential complexity for the same function for different orders
of variables. Therefore, majority of the approaches to the reduction of sizes of BDDs
is related to developing efficient algorithms for reordering of variables, see References
185 and 478. Linearly transformed BDDs (LT-BDDs) are defined by allowing linear
combinations of variables (220). In this way, the number of possible transformations
of variables is increased from m! to

∏m−1
i=0 (2m − 2i)

∏m
i=1(2i − 1)−1 for reordering

and linear transformation of variables, respectively.

Spectral Logic and Its Applications for the Design of Digital Devices by Mark G. Karpovsky, Radomir
S. Stanković and Jaakko T. Astola
Copyright © 2008 John Wiley & Sons, Inc.
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Several heuristic algorithms have been proposed to determine orders or linear
transformations of variables, and when integrated with widely used sifting algorithms
for BDD minimization (478) they are quite efficient (see a discussion in References
364 and 365). However, a disadvantage of heuristic algorithms is that they cannot
guarantee the quality of the results produced. A deterministic algorithm for construc-
tion of linearly transformed decision diagrams that exploits properties of switching
functions in the original and spectral domain has been proposed in Reference 297.
An algorithm for exact minimization of BDDs by linear transformation of variables
has been proposed in Reference 220. The algorithm is based on sifting procedures
and properties of linear transformations over the Galois field GF (2). However,
since the search space is very large, this method is limited to functions of a small
number of variables (no more than seven variables in most cases). This may be
sufficient for some applications related to Field Programmable Gate Array (FPGA)
synthesis.

In this chapter, we discuss spectral methods for reduction of sizes of Multiterminal
Binary Decision Diagrams (MTBDDs), construction of linearly transformed MTB-
DDs, and planar MTBDDs. It will be shown that in many cases these methods provide
for a simple and efficient solution of the problem.

4.1 REDUCTION OF SIZES OF DECISION DIAGRAMS

Reduction rules used to derive a decision diagram from the decision tree are adapted
to the decomposition rules assigned to the nodes used in the tree (372). In a general
formulation, the possibility to delete or share a node relates to the existence of iso-
morphic subtrees in the decision tree. Since a decision diagram is derived from the
decision tree, the complexity of a decision diagram depends on the structure of the
vector representing the values of constant nodes in the decision tree.

We consider the relationships among the subvectors Vk whose orders depend on
the group on which the represented discrete function is defined. In the case of the
finite dyadic group, the orders of the subvectors Vk are 2k, k = 1, . . . , m − 1. For
discrete functions on a finite Abelian group G, the orders of Vk are determined by
the orders of the subgroups Gi such that G can be represented as a product of Gi.

From the spectral interpretation, the complexity of a decision diagram depends on
the Fourier-like spectrum of f , and thus on the transform that in turn determines the
spectral decision tree (the decision tree of the spectrum).

For a given f , different transforms provide decision diagrams of different
complexity. Therefore, it is important to realize to which transforms various decision
diagrams defined in literature are related. It is equally important to provide definitions
of decision diagrams based upon different suitably chosen transforms. For each
decision tree and respectively decision diagram, there is always a class of functions
for which a particular decision diagram is more suitable than any other decision
diagram. Therefore, it is important to discover the connections between well known
classes of decision diagrams and transform types.
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4.1.1 K-Procedure for Reduction of Sizes of Decision Diagrams

In this section, we present a procedure for minimization of MTBDDs for systems of
Boolean functions by their logic autocorrelation functions. It is assumed that a given
system is represented by the integer equivalent function f (z) and represented by a
MTBDD, rather than by a Shared BDD (SBDD).

We note that the reduction of the size of a BDD or MTBDD is an NP-complete
problem (71). The proposed procedure provides for the nearly minimal solutions in the
following way. It performs minimization of the MTBDD for a given f (z0, . . . , zm−1)
level by level, starting from the bottom level corresponding to zm−1. It guarantees
the maximal number of pairs of equal values of f for input vectors that differ in
the value of zm−1. Thus, for each pair of equal values of f , we can reduce a node
at the lowest level in the MTBDD. Then, we perform next reordering of pairs of
equal values of f , and repeat the procedure at the new MTBDD for m − 1 variables
thus produced. Under the assumption that we already minimized the width at the
previous level, we get a minimum width at the present level. The width is determined
by the maximum value of the total autocorrelation function for f (z). This maximum
value may be achieved for many different m-tuples of variables τ = (τ0, . . . , τm−1).
Therefore, the procedure depends on the choice of τ in the sense that for different
choices of these maxima, different reduction possibilities at the upper levels may be
achieved. However, this is a usual feature of nearly optimal solutions of NP-complete
problems.

Unlike the method described in Reference 468, the method presented in this section
can be used for both single-output and multiple-output networks, and extends the
class of permutation matrices that are used in optimization of decision diagrams by
ordering of variables. Therefore, the proposed method always produce MTBDDs
with smaller or at most equal sizes compared to the methods using the ordering of
variables.

The following procedure (K-procedure) will be used in minimization of sizes
of MTBDDs for a given system {f (i)(z0, . . . , zm−1)}, i = 0, 1, . . . , k of switching
functions.

Procedure 4.1.1 K-procedure

1. Assign to a given multioutput function f (0), . . . , f (k−1), an integer equivalent
function f (z) = ∑k−1

i=0 2k−i−1f (i)(z).

2. Denote by R the range of f (z). For every i ∈ R, construct characteristic
functions

fi(z) =
{

1, if f (z) = i,

0, otherwise.

3. Calculate the autocorrelation functions Bi for each fi(z), and the total auto-
correlation function Bf = ∑

i Bi.
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4. Determine a τ = (τ0, . . . , τm−1), for which Bf takes the maximum value, except
the value Bf (0). If there are several choices, select any of them.

5. Determine an (m × m) nonsingular over GF (2) matrix σ = σm−1 from the
requirement

σ � τ = (0, . . . , 0, 1)T ,

where � denotes the multiplication over GF (2).

6. Determine the function fσ such that

fσ(σ � z) = f (z).

That means, reorder the components of the vector F = Qm representing values
of f by the mapping z = (z0, . . . , zm−1) → zσ , where zσ = σ−1 � z.

7. In the vector Fσ representing the values of fσ , perform an encoding of pairs
of adjacent values (fσ = (z0, . . . , zm−2, 0), fσ(z0, . . . , zm−2, 1)) by assigning
the same symbol to the identical pairs. Denote the resulting function of (m − 1)
variables by Qm−1.

8. Repeat the above procedure for i = i − 1 to some j until all the pairs of adjacent
values in Qj are identical.

9. Determine MTBDD for fσj .

Remark 4.1.1 The K-procedure produces the maximal number of identical pairs
of values or subtrees at the positions pointed by the outgoing edges zi and zi for all
i = m − 1, m − 2, . . . , 0.

Remark 4.1.2 (Upper bound on the number of remaining nodes) The number of
nodes in the resulting MTBDD(fσ) is upperbounded by

L ≤ 2m − 1 − 1

2

r∑
i=1

B(i)
max,

where B
(i)
max is the maximum value of the total autocorrelation function at the level i,

and r is the number of times the K-procedure has been applied.

Remark 4.1.3 For each pair of equal values of f at adjacent positions, which
is produced by the reordering of function values determined by the K-procedure,
a node at the lowest level in the MTBDD(f

σ−1
i

) may be deleted. It follows that the

K-procedure produces the minimal number of different nodes at lowest level in the
MTBDD(f

σ−1
i

). However, since the pairing of nodes at the ith level is performed by

the total autocorrelation function for Qi, this is not necessarily the exact minimum
of nodes for the whole MTBDD(f ), obtained by ordering the elements of F.
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Remark 4.1.4 A reordering of elements in F can be represented by the corresponding
(2m × 2m) permutation matrix.

We denote by Pdv, PFreeBDD, and PK, the set of permutation matrices used in
optimization of MTBDDs by ordering of variables, in FreeBDDs where different
order of variables along different paths can be used (130), and in MTBDDs for fσ

determined by K-procedure.
Then,

Pdv ⊂ PFreeBDD ⊂ PK.

We illustrate the K-procedure by the following example.

Example 4.1.1 Table 4.1.1 shows a two-output function f (0), f (1) of four
variables. This function is represented by the integer equivalent function f =
2f (0) + f (1). In this table, there are also shown the characteristic functions fi,
i = 0, 1, 2, 3, their autocorrelation functions Bi, and the total autocorrelation
function Bf .

The maximum value for the total autocorrelation function Bf for z �= 0 is 8, which
corresponds to the m-tuple τmax = (1111).

Figure 4.1.1 shows Multiterminal Binary Decision Tree (MTBDT(f )) for f and
Fig. 4.1.2 shows the corresponding MTBDD(f ).

TABLE 4.1.1 Function f and fσ .

Function Characteristic Functions Autocorrelation Functions

z, w f (0), f (1) f (z) f0 f1 f2 f3 B0 B1 B2 B3 B

0 00 0 1 0 0 0 4 4 4 4 16
1 10 2 0 0 1 0 2 0 0 2 4
2 11 3 0 0 0 1 2 2 0 0 4
3 11 3 0 0 0 1 2 2 0 0 4
4 01 1 0 1 0 0 0 0 2 2 4
5 10 2 0 0 1 0 0 0 2 2 4
6 01 1 0 1 0 0 0 0 0 0 0
7 11 3 0 0 0 1 0 0 0 0 0
8 11 3 0 0 0 1 0 0 0 0 0
9 01 1 0 1 0 0 0 0 0 0 0

10 01 1 0 1 0 0 0 0 2 2 4
11 10 2 0 0 1 0 0 0 2 2 4
12 00 0 1 0 0 0 2 2 0 0 4
13 00 0 1 0 0 0 2 2 0 0 4
14 10 2 0 0 1 0 0 2 2 0 4
15 00 0 1 0 0 0 2 2 2 2 8
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FIGURE 4.1.1 MTBDT for f .

We determine a matrix σ4 from the requirement

σ4 � τmax = σ4 �




1

1

1

1


 =




0

0

0

1


 .

S

S S

S S S S

S S S S S S

z0

z1 z1 z1z1

z2

z3
z3 z3

z3
z3

z3z3 z3
z3 z3z3 z3

z2 z2z2 z2z2 z2 z2

z0
_

_ _

_
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0 32 2 03 21

FIGURE 4.1.2 MTBDD for f .

www.it-ebooks.info

http://www.it-ebooks.info/


160 SPECTRAL METHODS IN OPTIMIZATION OF DECISION DIAGRAMS

Therefore, we can choose

σ4 =




1 1 1 1

0 0 1 1

1 0 0 1

1 1 1 0


 .

We determine the inverse matrix for σ4 over GF (2)

σ−1
4 =




1 0 1 1

0 1 1 1

1 1 0 1

1 0 0 1


 .

Table 4.1.2 shows the mapping of vectors of variables in f by using σ−1
4 . Then,

we determine

Fσ = [f (0), f (15), f (12), f (3), f (6), f (9), f (10),

f (5), f (11), f (4), f (7), f (8), f (13), f (2), f (1), f (14)]T

= [0, 0, 0, 3, 1, 1, 1, 2, 2, 1, 3, 3, 0, 3, 2, 2]T ,

for σ = σ4.
We perform the encoding Fσ → Q3 of pairs of function values in Fσ as follows:

Q3 = [0, 4, 1, 5, 6, 3, 4, 2]T ,

where (0, 0) = 0, (0, 3) = 4, (1, 1) = 1, (1, 2) = 5, (2, 1) = 6, (3, 3) = 3, (2, 2) = 2.

TABLE 4.1.2 Mapping of Function Values by σ−1
4 , y = σ−1

4 � z.

z0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
z1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
z2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
z3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

y0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
y2 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
y2 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
y3 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

y 0 15 12 3 6 9 10 5 11 4 7 8 13 2 1 14
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S

S S

S S S S

S S S S S S S S

z0

z1 z1 z1z1

z2

z3 z3 z3 z3 z3 z3 z3 z3z3 z3 z3 z3 z3 z3 z3 z3

z2 z2 z2 z2z2 z2 z2

z0
_

_ _

_

_ _ _ _ _ _ _ _

_ _ _

f

0 0 0 3 1 1 1 2 2 1 3 3 0 3 2

0 4 1 5 6 3 4 2

2

FIGURE 4.1.3 MTBDT for f
σ−1

4
.

Figure 4.1.3 shows MTBDT(f
σ−1

4
) and Fig. 4.1.4 shows MTBDT(f−1

4 ) with en-
coded pairs of equal values for constant nodes. We denote the characteristic functions
for 0,1,2,3,4,5,6 in Q3 as fi. There is a single nontrivial characteristic function f4.
It is given by

f4 = [0, 1, 0, 0, 0, 0, 1, 0]T ,

and its autocorrelation function is given by

B4 = [2, 0, 0, 0, 0, 0, 0, 2]T .

S

S S

S S S S

z0

z1 z1 z1z1

z2 z2 z2 z2 z2z2 z2 z2

z0
_

_ _

_ _ _ _

q

0 4 1 5 6 3 4 2

FIGURE 4.1.4 MTBDT for f
σ−1

4
with encoded pair of function values.
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Since maxτ �=0 B4(τ) = B4(111) = 2, we have for σ3

σ3 � τmax = σ3 �




1

1

1


 =




0

0

1


 .

Therefore,

σ3 =




1 1 0

1 0 1

0 1 0


 ,

and

σ−1
3 =




1 0 1

0 0 1

1 1 1


 .

Table 4.1.3 shows the mapping of vectors of variables in Q3 by using σ−1
3 . For f

in Table 4.1.1 and σ = σ3, we have

Qσ = [0, 2, 4, 4, 3, 1, 6, 5]T .

Figure 4.1.5 shows the corresponding MTBDD(Qσ).
Therefore,

Fσ = [f (0), f (15), f (1), f (14), f (12), f (3), f (13),

f (2), f (7), f (8), f (6), f (9), f (11), f (4), f (10), f (5)]T

= [0, 0, 2, 2, 0, 3, 0, 3, 3, 3, 1, 1, 2, 1, 1, 2]T .

TABLE 4.1.3 Mapping of Function Values by σ−1
3 , y = σ−1

3 � z.

z0 0 0 0 0 1 1 1 1
z1 0 0 1 1 0 0 1 1
z2 0 1 0 1 0 1 0 1

z 0 1 2 3 4 5 6 7

y0 0 1 0 1 1 0 1 0
y1 0 1 0 1 0 1 0 1
y2 0 1 1 0 1 0 0 1

y 0 7 1 6 5 2 4 3
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S
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z0

z1 z1 z1z1

z2 z2 z2 z2z2 z2

z0
_

_ _

_ _ _

q

0 4 1 5632

FIGURE 4.1.5 MTBDD(Qσ) for σ = σ3.

Figure 4.1.6 shows the corresponding final MTBDD(fσ).
Note that the recursive application of σ−1

4 and σ−1
3 to f is identical to the appli-

cation of a composite mapping

σ−1
4,3 = σ−1

4 � σ−1
3,1,

where

σ−1
3,1 =

[
σ−1

3 0

0 1

]
,

where 0 is (3 × 1) zero matrix.

S

S S

S S S

S S S

z0

z1 z1 z1z1

z2

z3 z3
z3

z3 z3
z3

z2 z2z2 z2 z2

z0
_

_ _

_

_ _

_

_ _

f

0 32 1

FIGURE 4.1.6 MTBDD(fσ).
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TABLE 4.1.4 Mapping of Function Values by y = σ−1
4 · σ−1

3 � z.

z0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
z1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
z2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
z3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

y0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
y1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
y2 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0
y3 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

y 0 15 1 14 12 3 13 2 7 8 6 9 11 4 10 5

Therefore,

σ−1
4,3 =




1 0 1 1

0 1 1 1

1 1 0 1

1 0 0 1


 ·




1 0 1 0

0 0 1 0

1 1 1 0

0 0 0 1


 =




0 1 0 1

1 1 0 1

1 0 0 1

1 0 1 1


 .

Table 4.1.4 shows the mapping of vectors of variables in f by using σ−1
4,3. It produces

the identical permutation of values in F as a recursive application of σ−1
4 and σ−1

3 to
f , respectively.

In this example, the size of the MTBDD(f ) was reduced from 13 to 9 nonterminal
nodes by using the proposed method.

4.1.2 Properties of the K-Procedure

Remark 4.1.5 The K-procedure performs the decomposition of f with respect to
the expansion rule

f = (zi ⊕ · · · ⊕ zm)f0 ⊕ (zi ⊕ · · · ⊕ zm)f1,

where f0 and f1 are the cofactors of f for zi ⊕ · · · ⊕ zm = 0, and 1, respectively.

The following example illustrates dependency of the solutions on the choice of
matrices σ and vectors τ, where the total autocorrelation functions take the maximum
values, in the cases when there are several maxima in the total autocorrelation function
for a given function f .

Example 4.1.2 (Dependency on τ) Consider a four-variable Boolean function f

given by the truth-vector

F = [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0]T .

For this function, size(MTBDD(f )) = 9.
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The maximum value of the autocorrelation function Bf (τ) = 14 for the inputs
τ = 6, 9, and 15. For τ = (1111) = 15 and

σ4(τ = 15) =




1 1 1 1

0 0 1 1

1 0 0 1

1 1 1 0


 ,

we determine

σ−1
4 (τ = 15) =




1 0 1 1

0 1 1 1

1 1 0 1

1 0 0 1


 .

The components of the truth vector for f are reordered as Fσ = [0, 0, 0, 0, 0, 0,

0, 0, 1, 1, 0, 1, 1, 1, 0, 0]T .
We perform encoding of pairs of adjacent values as Qσ = [0, 0, 0, 0, 1, 2, 1, 0]T ,

where (0, 0) = 0, (1, 1) = 1, and (0, 1) = 2. For this function, the maximum value of
the total autocorrelation function maxτ BQσ (τ) = 6 for the input τ = 2 = (010). For

σ3(τ = 2) =




1 0 0

0 0 1

0 1 0


 ,

it follows

σ−1
3 (τ = 2) =




1 0 0

0 0 1

0 1 0


 ,

and the corresponding reordering is Qσ = [0, 0, 0, 0, 1, 1, 2, 0]T , from where Fσ =
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0]T . For the resulting fσ , it follows that
size(MTBDD(fσ)) = 4.

If for the maximum value of the autocorrelation function Bf (τ), we choose the
input τ = 6 instead of τ = 15, then for

σ4(τ = 6) =




1 0 0 0

0 1 1 0

1 0 0 1

0 0 1 1


 ,
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we determine

σ−1
4 (τ = 6) =




1 0 0 0

1 1 1 1

1 0 1 1

1 0 1 0


 .

Thus, we reorder the elements of F for the given f as Fσ = [0, 0, 0, 0, 1, 1,

0, 0, 0, 0, 1, 0, 1, 1, 0, 0]T .
For encoding Qσ = [0, 0, 1, 0, 0, 2, 1, 0]T , where (0, 0)) = 0, (1, 1) = 1, and

(1, 0) = 2, the maximum values of the total autocorrelation function of Qσ is 6 for
the input 4 = (100).

For

σ3(τ = 4) =




0 0 1

0 1 0

1 0 0


 ,

we determine σ−1
3 (τ = 4) = σ3(τ = 4).

Therefore, the corresponding reordering is Qσ = [0, 0, 1, 1, 0, 2, 0, 0]T , which
produces Fσ = [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0]T . For the resulting fσ , we
determine size(MTBDD(fσ)) = 5.

Thus, selecting at the first step τ = 15 produces smaller resulting MTBDD(f ) than
τ = 6, but for the original function Bf (6) = Bf (15) = 14.

Example 4.1.3 (Dependency on σ) For the function f in the previous example, if
we choose for the maximum value of Bf (τ) the assignment τ = 15 and the matrix

σ4,r(τ = 15) =




1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 0


 ,

instead of




1 1 1 1

0 0 1 1

1 0 0 1

1 1 1 0
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as in Example 4.1.2, with the matrix

σ−1
4,r (τ = 15) =




1 0 0 1

0 0 0 1

1 0 1 1

1 1 1 1


 ,

then we obtain the reordering

Fσ = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]T .

For the encoding σ(Q) = [0, 0, 0, 1, 1, 2, 0, 0]T , the maximum value of the total
autocorrelation function is maxτ BQσ

(τ) = 6 for the input τ = 7 = (111). For

σ3(τ = 7) =




1 1 0

1 0 1

0 1 0


 ,

we get

σ−1
3 (τ = 7) =




1 0 1

0 0 1

1 1 1


 ,

which induces a reordering Qσ = [0, 0, 0, 0, 2, 0, 1, 1]T . From there, Fσ = [0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1]T . For the resulting fσ , size(MTBDD(fσ)) = 4.
However, if we choose

σ3,r(τ = 7) =




0 1 1

1 1 0

0 1 0


 ,

and the corresponding

σ−1
3,r (τ = 7) =




0 1 1

0 0 1

1 0 1


 ,

we get the reordering Qσ = [0, 0, 1, 1, 0, 0, 2, 0]T , which produces the vec-
tor Fσ = [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0]T . For the resulting fσ , size

(MTBDD(fσ)) = 5.
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The reason for the increased size is that σ3,r(τ = 7), unlike σ3(τ = 7), does not
pair together sequences of four zeros in Qσ . This pairing in MTBDD(fσ) means
assignment of identical subvectors of length 4 to the same logic value for z0. In this
case that is the negative literal z0. Owing to this fact, the subtree rooted in the node
pointed by z0 in the MTBDD is reduced to a single constant node.

The presented method provides for the reduction of a number of subtrees consisting
of a nonterminal node and two constant nodes, since it produces pairs of equal function
values. The larger subtrees, which correspond to the equal subvectors of orders 2i,
i > 1, are not taken into account at this step. The method fails in the case when we
choose a permutation matrix that does not provide a grouping of isomorphic smallest
subtrees into a larger subtree. Example 4.1.4 illustrates this feature of the method.

Example 4.1.4 Consider a function f = z1z3 ∨ z1z2z3 ∨ z0z1z3 ∨ z0z2z3. The
truth vector for f is given by F = [1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1]T . The
size(MTBDD(f )) = 6 for this truth vector.

The maximum value of Bf (τ) is equal to 12, which means that we may generate
six pairs of equal values for f at the adjacent places at the level z3. The method
presented in Section 4.1.1 produces MTBDDs with the size equal to 7. However, by
ordering of variables it is possible to obtain the MTBDDs of sizes 5, 6, and 7 (468).

However, if we first perform encoding Q = [2, 2, 3, 2, 2, 2, 3, 3]T , where (1, 0) =
2, and (0, 1) = 3, and then apply the method from Section 4.1.1, we get a MTBDD of
size 5, by always taking the smallest value for τ. This follows from the property that
in Q, we have five pairs denoted by 2 and three pairs denoted by 3, which permits an
immediate reduction of subtrees consisting of three nonterminal nodes.

We note that the method described in Section 4.1.1 is based on an extended set of
allowed permutation matrices for the inputs consisting of all nonsingular over GF (2)
matrices, compared to the one used in decision diagram optimization by ordering of
variables. The price for such extension is minor, since the values for f can be easily
determined from fσ assigned to f . Therefore, the proposed method permits to derive
efficient solutions, which cannot be achieved by the ordering of variables. In this
respect, the proposed method relates to the considerations in References 56 and 185.
In Reference 56, the same approach to BDDs minimization by using an extended set of
permutation matrices was proposed, starting from cube representations of functions
and performing transformations of cubes. However, no algorithm or heuristic for
determination of a transformation for cubes has been proposed. Instead, for each
given function f , a particular transformation is determined by the inspection of the
characteristics of f . In Reference 185, the method in Reference 56 was extended to
the method of truth-table permutation, and was further elaborated by proposing two
heuristic algorithms for determination of a suitable permutation of the function values
for f permitting reduction of the size of the BDD for f .

To conclude this section, we note that the method described in Section 4.1.1 results
in BDDs that can be smaller than BDDs produced by methods based on ordering of
variables.
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Example 4.1.5 Consider a function f = z0z1z2 ∨ z1z2z3. The truth vector for this
function is F = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1]T . The optimization by or-
dering of variables can produce MTBDDs of size 5. However, the method proposed
in this chapter produces a MTBDD of size 4 in the following way. The maximum
value for Bf (τ) = 14 for the inputs τ = 1, 8, 9. For simplicity, we choose τ = 1,
which implies σ4(τ = 1) is the identity matrix of order 4, and perform the encoding
as Q = [0, 0, 0, 2, 0, 0, 0, 1]T . The maximum of the total autocorrelation function for
Q is 6 and it is achieved for the input τ = 4 = (100). For a matrix

σ3(τ = 4) =




0 0 1

0 1 0

1 0 0


 ,

which is self-inverse over GF (2), we get the reordering Qσ = [0, 0, 0, 0,

0, 0, 2, 1]T , which produces Fσ = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]T . For
this fσ , size(MTBDD(fσ)) = 4.

4.2 CONSTRUCTION OF LINEARLY TRANSFORMED BINARY
DECISION DIAGRAMS

In this section, we explain the application of the linearization method for switching
functions presented above for construction of linear transformations for BDDs and
SBDDs for systems of Boolean functions.

Example 4.2.1 Figure 4.2.1 shows SBDD for the system of Boolean functions f (0)(z)
and f (1)(z) defined in Table 4.2.1. This SBDD represents the given system in the form
of expressions

f (0) = z0z1z2z3 ⊕ z0z1z2 ⊕ z0z1z2 ⊕ z0z1z2z3

⊕z0z1z2z3 ⊕ z0z1z2z3 ⊕ z0z1z2 ⊕ z0z1z2,

f (1) = z0z1z2z3 ⊕ z0z1z2z3 ⊕ z0z1z2z3 ⊕ z0z1z2z3.

We perform first five steps in Procedure 4.2.1 for construction of linearly trans-
formed binary decision diagrams defined in what follows; and after the linearization,
this system can be converted into the system f

(0)
σ (y) and f

(1)
σ (y), in terms of new

variables yi, i = 0, 1, 2, 3 expressed as the linear combination of original variables
zi, i = 0, 1, 2, 3. Then, the given system can be represented by a SBDD derived from
decomposition in terms of this linear combination of variables as is specified in the
Step 6 for construction of LT-BDDs.

Figure 4.2.2 shows SBDD for the system derived from the linearization method,
where, in the Step 7 of Procedure 4.2.1, the labels at the edges are determined. This
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FIGURE 4.2.1 SBDD for the system of functions in Example 4.2.1.

SBDD represents the given system in the following form:

f (0) = (z0 ⊕ z2) ⊕ (z0 ⊕ z2)(z1 ⊕ z3),

f (1) = (z0 ⊕ z2)(z1 ⊕ z3).

TABLE 4.2.1 System of Switching Functions in
Example 4.2.1.

z, τ z0z1z2 f (0) f (1) Bf (τ) f (0)
σ f (1)

σ

0 0000 0 0 16 0 0
1 0001 1 0 0 0 0
2 0010 1 0 0 0 0
3 0011 1 1 8 0 0
4 0100 1 0 0 1 0
5 0101 0 0 16 1 0
6 0110 1 1 8 1 0
7 0111 1 0 0 1 0
8 1000 1 0 0 1 0
9 1001 1 1 8 1 0
10 1010 0 0 16 1 0
11 1011 1 0 0 1 0
12 1100 1 1 8 1 1
13 1101 1 0 0 1 1
14 1110 1 0 0 1 1
15 1111 0 0 16 1 1
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01

FIGURE 4.2.2 Shared LT-BDD for the system of functions derived by the linearization
method for f (0) and f (1) from Example 4.1.2.

4.2.1 Procedure for Construction of Linearly Transformed Binary
Decision Diagrams

The following procedure for determination of a linear transformation of variables in
LT-BDD for a given function f can be formulated, as is explained by this example.

Procedure 4.2.1 Procedure for generation of LT-BDD is as under:

1. Given an m-variable k-output, switching function f = (f (0), . . . , f (k−1)).

2. Represent f by the integer-valued equivalent function

f (z) =
k−1∑
i=0

f (i)(z)2k−i−1.

3. Construct characteristic functions fr(z) for f (z), where fr(z) = 1 if f (z) = r

and fr(z) = 0 for f (z) �= r.

4. Construct a total autocorrelation function Bf (τ) = ∑
r Br(τ), where Br(τ) is

the autocorrelation function for fr(z) for the system {fr(z)}.
5. Perform the linearization Procedure 4.1.1 (K-procedure), determine σ = σopt ,

and assign to f (z) a function fσ(y), where y = σ � z (mod 2).

6. Determine SBDD for fσ(y).

7. Relabel edges in SBDD(fσ(y)) by replacing each yi with the corresponding
linear combination of initial variables zi.

Compared to the present methods for linear transformation of decision diagrams, an
advantage is that the linearization method based on autocorrelation functions provides
for a deterministic algorithm, in the sense that all steps are uniquely determined.
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4.2.2 Modified K-Procedure

Procedure 4.2.2 (Modified K-procedure)

1. Compute maxτ �=0 Bfm (τ) = Bm(τ), where fm = f , and m is the number of vari-
ables in fm.

2. Compress fm into fm−q by encoding q-tuples of successive function values in the
truth vector for fm, for q = 1, . . . , m − 1.

3. Compute maxi Bfi = Bft .

4. Apply K-procedure to ft .

This modification of the original procedure may increase the amount of computa-
tion by the factor of 2 at the most.

4.2.3 Computing Autocorrelation by Symbolic Manipulations

We note that total autocorrelation functions and optimal LT-BDDs in many cases may
be computed analytically. To illustrate this point, we consider a device implementing
an error-correcting procedure based on a linear code V of length m with k-information
bits (278).

A code V correct errors from a set E ⊂ Cm
2 iff v1 ⊕ e1 �= v2 ⊕ e2 for any v1, v2 ∈

V and e1, e2 ∈ E, e1 �= e2. If V corrects l-bit errors, then E contains at least all∑l
i=0

(m
i

)
vectors e with ‖e‖ ≤ l, where ‖e‖ is the Hamming weight of e, that is,

the number of 1 values in e.
A code V is perfect for a given E iff for any z ∈ Zm

2 there exists a unique v ∈ V

and a unique e ∈ E such that z = v ⊕ e, |E| = 2(m−k).
A device implementing an error-correcting procedure based on a given V has m

inputs, m outputs, and for the input z produces the output e = f (z) such that there
exist v ∈ V and z = v ⊕ e. Since V corrects a set of errors E, this e is unique.

We have Reference 278 for the total autocorrelation function for e = f (z) so that

Bf (τ) =
{

2m, τ ∈ V,

0, τ /∈ V .

If V is an (m, k) code, the K-procedure will require k steps. For the resulting
optimal linear transform σ, the rows (h1, . . . , hm−k) of σ form a basis of the null
space for V . Thus,

σ =




h1

...

hm−k

−− − − −
0 Ik




,
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where Ik is the (k × k) identity matrix, and the corresponding LT-BDD will have
2m−k − 1 nodes.

Example 4.2.2 Consider (5, 2)-single-error-correcting codeV (shortened Hamming
code (278)) with the generating matrix

G =
[

1 0 1 1 0

0 1 1 0 1

]
.

It is easy to check that this code can correct all single errors and two double errors,
00011 and 10001. In this case,

Bf (τ) =
{

32, if τ = 00000, 10110, 01101, 11011

0, otherwise,

and

σ−1 =




1 1 1 0 0

1 0 0 1 0

0 1 0 0 1

−− −− −− −− −− −−
0 0 0 | 1 0

0 0 0 | 0 1




.

Therefore,

y0 = z0 ⊕ z1 ⊕ z2,

y1 = z0 ⊕ z3,

y3 = z1 ⊕ z4.

Figure 4.2.3 shows the resulting optimal BDD for the decoder for this (5, 2)-single-
error-correcting code.

4.2.4 Experimental Results on the Complexity of Linearly Transformed
Binary Decision Diagrams

In this section, we discuss the efficiency of linearly transformed BDDs in the light of
experiments on benchmark functions used in logic design and for randomly generated
multiple-output switching functions.

These results illustrate a reduction of complexities of MTBDDs, which can be
obtained by linear transformations of variables.
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FIGURE 4.2.3 LT-BDD for the decoder for the (5, 2) shortened Hamming code.

In Table 4.2.2, we present the number of inputs (In), outputs (Out), constant nodes
(cn) for the given functions, and in columns denoted by MTBDD(f ) and MTBDD(fσ),
we compared the number of nonterminal nodes (ntn) whose sum with the constant
nodes produces the size (s), and the width (w) of the MTBDDs for the initial ordering
of variables and for LT-MTBDDs derived by the autocorrelation functions. The col-
umn MTBDD(fv) shows the number of nonterminal nodes and width of MTBDDs
for the optimal ordering of variables determined by the brute-force method estimating
all possible orderings of variables. The existing methods for optimization of decision
diagrams by variables ordering are heuristics and mostly produce the nearly optimal
solutions. Therefore, the provided comparison is the strongest challenge for the pro-
posed method. This table presents the results for the method using the autocorrelation
functions for the smallest values for the indices τ where the autoorrelation functions
take the maximum values. The other choices for τ, and subsequently σ, may produce
smaller LT-MTBDDs.

However, in Table 4.2.3, we compare the number of nonterminal nodes of
MTBDDs for the initial ordering of variables (MTBDD(fI )), the optimal order-
ing (MTBDD(fv)), and the initial ordering with negated edges (MTBDD(fw)) (130,
499), the ordering determined by the lower-bound sifting method with negated edges
(MTBDD(fr) (130, 499), and by the autocorrelation functions (MTBDD(fσ)) for
binary-valued single output randomly generated functions. In a BDD with negated
edges, a subfunction f and its logic complement f are represented by the same subdi-
agram. It follows that by assigning negative attributes to the edges, it is not needed to
represent both f and f , which provides advantages in reducing complexity of BDDs
as well as in computations over BDDs (371).

As it is usually the case with NP-complete problems, for some functions, the
method described in Section 4.1.1 produces better solutions compared with the initial
ordering and the optimal ordering of variables. However, for some functions, the
MTBDDs for the optimal ordering of variables are smaller in terms of the number of
nonterminal nodes, the width, or both these parameters. From these experiments, the
following conclusions can be made:

1. The proposed method is very effective when the integer equivalent function f (z)
defined by a given multiple-output function takes a large number of different
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TABLE 4.2.2 Sizes of MTBDD(f ), MTBDD(f v), and MTBDD(fσ) for Benchmark
and Randomly Generated Functions.

MTBDD(f ) MTBDD(fv) MTBDD(fσ)

f In Out cn ntn w ntn w ntn w
add2 4 3 7 13 6 12 6 8 3
add3 6 4 15 51 20 33 14 24 7
add4 8 5 31 113 30 78 30 64 15
add5 10 6 63 289 62 171 62 160 31
add6 12 7 127 705 126 360 126 384 63
add7 14 8 255 1665 254 741 254 896 127
ex1010 10 10 177 894 383 - - 871 367
misex1 8 11 17 6 17 6 17 5
clip 9 5 33 339 120 141 35 159 32
t481 16 1 2 32 4 - - 103 46
rd53 5 3 6 15 5 15 5 14 5
rd73 7 3 8 28 7 28 7 17 6
rd84 8 4 9 36 8 36 8 23 7
rd84/8 8 4 9 36 8 36 8 18 6
9sym 9 1 2 33 6 33 6 24 5
9sym/16 9 1 2 33 6 33 6 9 3

Randomly Generated Functions

f2 8 1 2 75 30 68 25 66 24
f3 8 1 2 73 28 67 23 72 27
f6 8 1 2 58 18 58 18 69 25
f7 8 1 2 72 28 70 26 67 23
f8 8 3 8 174 64 167 60 168 59
f9 8 4 16 222 95 216 90 219 94
f10 8 3 5 139 56 135 54 136 54
n1 8 2 3 84 30 77 25 80 26
n2 8 2 3 89 29 80 26 87 27
n3 8 2 3 91 31 85 27 50 15
n4 8 2 3 90 31 83 24 89 28
n5 8 2 3 82 27 76 22 77 24
n6 8 2 2 68 25 59 18 62 19
n7 8 2 2 72 28 64 21 63 20
n8 8 2 2 72 29 64 22 72 28
n9 8 2 2 73 28 69 25 68 25
n10 8 2 2 118 41 111 36 115 42

values, which, however, do not repeat periodically as sequences of order 2i,
i = 1, . . . , m − 1. This is the case, for example, of m-bit adders. It follows
from Table 4.2.2 that for adders, transition from BDDs to LT-BDDs results in
almost 50% reduction of the sizes of the corresponding decision diagrams.

For adders, the method produces the LT-MTBDDs with the optimal width,
however, with the increased size in comparison to the size for the optimal
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TABLE 4.2.3 Numbers of Nonterminal Nodes in
MTBDDs for Initial Ordering of Variables fI , Optimal
Ordering fv, Initial Ordering with Negated Edges fw,
Lower-Bound Sifting with Negated Edges fr , and
Autocorrelation Functions fσ .

MTBDD

f fI fv fw fr fσ

f1 75 68 64 62 66
f2 73 67 67 60 72
f6 58 58 52 51 69
f7 72 70 64 62 67
n1 84 77 64 62 80
n6 68 59 63 55 62
n7 72 64 65 60 63
n8 72 64 65 58 72
n9 73 69 64 62 68

ordering of variables. It should be noted that the reordering of variables does
not reduce the width of the MTBDD for adders. The self-inverse matrix σ,
describing the optimal ordering of variables for adders, can be derived from
the values τi for the maximum values of the total autocorrelation functions
by writing each 1-bit of τi in the separate row of σ, starting from the largest
τi. For example, for 2-bit adder, the total autocorrelation function Bf takes
the maximum value for τ1 = 5 = (0101) and τ2 = 10 = (1010). Therefore,
we can select the matrix σ as a self-inverse matrix with the first two rows
corresponding to binary representations for τ2 and τ1, and the remaining two
rows as the corresponding rows of the identity matrix, that is,

σ =




1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


 .

2. The method is less efficient when the equal values repeat as sequences of the
length 2i in the vector of function values F = [f (0), . . . , f (2m − 1)]T . In a
MTBDD, such sequences result in isomorphic subtrees, which permits reduc-
tion of nodes at the upper levels in the MTBDD, that is, levels with the smaller
value of indices. In these cases, pairing function values at the Hamming dis-
tance 1 by the total autocorrelation function may destroy the equal sequences
of the length 2i, for i > 1, which results in larger MTBDDs.

As it is discussed in Reference 185, that feature is characteristic for methods
using permutations of function values for multiple-output functions (permu-
tation of components of F) (56, 185). Since any reordering of variables is a
permutation of function values, the same remark applies to optimization of

www.it-ebooks.info

http://www.it-ebooks.info/


CONSTRUCTION OF LINEARLY TRANSFORMED PLANAR BDD 177

DDs by reordering of variables, in the sense that some orderings reduce, while
the other increase the size of DDs.

The method is inefficient for multiple-output functions whose integer-valued
equivalent functions contain few equal values. In these cases, we cannot produce
large numbers of pairs of equal values resulting in a reduction of the number
of nodes in the MTBDD. The examples are multipliers.

3. The method is efficient for randomly generated multiple-output functions. It
should be noted that in this case the initial MTBDDs are usually large and the
ordering of variables does not provide for reduction of their size.

4. An important feature of the proposed method is that, unlike widely used sifting
technique (130, 478), it can be applied to the reduction of MTBDDs of sym-
metric functions, where the permutation of variables does not permit reduction
of nodes. Symmetry implies equal sequences of the length 2i for some large i

in the function values.
First, we perform encoding of such sequences, and after this we apply the

method to the function g of 2n−i variables derived in this way. Then we de-
termine gσ for this function, and after the decoding we get fσ for the initial
function f . Table 4.2.2, in rows 11–16, illustrates the method and compares
MTBDD(f ) and MTBDD(fσ) for some symmetric benchmark functions. For
these benchmarks, we first perform encoding of sequences of four successive
elements, and then apply the method presented in Section 4.1.1 to the MTBDDs
whose constant nodes are the encoded sequences, and perform recoding before
we determine the size of the MTBDD for the initial function f .

Notice that the same approach can be used to reduce the Average path length (APL)
in decision diagrams, since APL = m − ∑m−1

i=0 2l−mB(i) (310, 311).
The K-procedure is presented in this chapter as a BDD minimization procedure.

The basic idea is to “integrate” linear decomposition with BDD minimization. Since
columns of the linearization matrix T form a base in the input space {0, 1}m, the K-
procedure provides for a simple method to solve the difficult problem of constructing
a set of m independent vectors having high autocorrelation values and to construct a
suitable base in {0, 1}m.

We also note that the K-procedure can be very efficient for minimization of a
number of literals in the sum-of-products representations for nonlinear blocks imple-
menting the linearized functions.

4.3 CONSTRUCTION OF LINEARLY TRANSFORMED PLANAR BDD

In digital circuits, crossings of interconnections must be realized by at least two levels
in the circuits connected by bias between levels. Crossings are a significant source
of the delays in digital circuits. For instance, in FPGAs most of the delay occurs
in interconnecting devices rather than the devices themselves (394). Therefore, the
design of planar circuits, that is, circuits without crossings of interconnections, is an
interesting and important task (174, 401).
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In circuit synthesis, decision diagrams provide a simple mapping to technology,
since a network is easily derived from a decision diagram by replacing each node with
the logic element realizing the decomposition rule used to assign a given function f

to the corresponding decision diagram. Planar decision diagrams, that is, decision
diagrams without crossings of edges, result in planar networks.

Therefore, planar decision diagrams have been studied in several publications; see
References 82,495, and 496. In particular, in Reference 495, there have been derived
necessary conditions for planarity in decision diagrams of certain functions. In Refer-
ence 496, these results have been extended by completely characterizing symmetric
functions with planar decision diagrams, with the motivation that such functions are
an important set of functions and an indispensable part of arithmetic circuits.

In References 605 and 659, Linear Decision Diagrams (LDDs) that are planar by
definition have been proposed as models for efficient computation of multiple-valued
functions. These decision diagrams are based on the corresponding representations
of logic functions by arithmetic polynomials (37).

In this section, we consider construction of linearly transformed planar binary
decision diagrams by Walsh transform coefficients. The approach we are going to use
will be similar to that in the previous section, but in this case, the Walsh spectrum is
used instead of the logic autocorrelation to determine the optimal linear transform of
input variables.

4.3.1 Planar Decision Diagrams

In this section, we define the class of planar decision diagrams and briefly discuss
their properties.

Definition 4.3.1 A binary decision diagram is planar if there are no crossings of
edges connecting nonterminal nodes, under the assumption that the edges labeled by
zi and zi emerge to the left and right of a node, respectively, constant node 0 is to the
left of the constant node 1, and all edges are directed down throughout their length,
which precludes arcs that extend around the root node or constant nodes.

In planar decision diagrams that we consider, crossing of edges to constant nodes
are allowed. For simplicity, in figures illustrating examples, constant nodes are re-
peated if there were crossing otherwise.

There are functions that due to their inherent properties have planar decision dia-
grams. Some classes of such functions are determined in Reference 496.

Example 4.3.1 Figure 4.3.1 shows a BDD for the five-variable majority function f

that is a planar BDD.

It should be noticed that the planarity of a decision diagram strongly depends on
the order of variables. For a given function f , nonplanar decision diagrams in some
cases can be converted into planar decision diagram and vice versa by changing the
order of variables.
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FIGURE 4.3.1 BDD for the majority function of five variables.

Notice that a planar decision diagram can be derived by the reduction of a decision
tree in such a way that sharing of isomorphic subtrees is restricted to subtrees rooted
at neighboring nodes at the same level in the decision tree. The planar BDDs derived
in this way may not be optimal in the number of nodes and provide a simple and
regular distribution of interconnections, as it can be seen from Example 4.3.5. It
should be noticed that many functions with planar decision diagrams already fulfill
this restriction on sharing of isomorphic subtrees. For instance, a switching function
is symmetric if it does not change for any permutation of variables. Owing to this
requirement, there is some regularity in the truth vectors of symmetric functions,
which reflects on the regularity in the BDDs for symmetric functions corresponding
to the above assumptions.

Example 4.3.2 A symmetric function for m = 3 has the truth vector of the form
F = [A, V, V, W, V, W, W, K]T . Figure 4.3.2 shows a planar BDD for symmetric
functions of three variables.

S
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S S S

f(000) V W f(111)

z0

z1 z1
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z1 z1

z0
_

_ _
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f

FIGURE 4.3.2 BDD for symmetric functions of three variables.
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FIGURE 4.3.3 Planar BDD for symmetric functions defined on Cm
2

We note that any symmetric, not necessarily switching function of m variables
f (z0, z1, . . . , zm−1), zi ∈ {0, 1}, can be represented by the planar MTBDD of the
form shown in Fig. 4.3.3. There are at most m + 1 different constant nodes in a planar
MTBDD for any symmetric function f : Cm

2 → C.

Definition 4.3.2 A switching function f (z0, z1, . . . , zm−1) is elementary symmetric
function and denoted as Si(m) if

f (z0, z1, . . . , zm−1) = Si(m) =
{

1, if ‖z‖ = i

0, if ‖z‖ �= i

for i = 0, 1, . . . , m − 1.

Any symmetric switching function can be represented as OR (or EXOR) sum of
at most m + 1 elementary symmetric functions.

The set {Si(m)}, i = 0, 1, . . . , m, is functionally closed, that is, superposition of
symmetric functions is a symmetric function.

There are exactly 2m+1 symmetric switching functions of m variables.
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FIGURE 4.3.4 Rectangular planar BDD for S3(6).

Elementary symmetric functions can be represented by rectangular planar BDDs.
The word rectangular refers to the shape of the decision diagram as it is obvious
from Figure 4.3.4. We note that the size of a rectangular planar BDD for any Si(m) is
upperbounded by 1/2m

2.

Example 4.3.3 The rectangular planar BDD for S3(6) is given by Fig. 4.3.4.

Further examples of functions with planar BDDs sharing isomorphic subtrees
rooted at the neighboring nodes can be found in Reference 496.

Walsh and Haar spectra, as well as the autocorrelation functions of symmetric
switching functions, are given in the Appendix A.

Owing to the correspondence between Walsh functions and linear switching func-
tions, discussed in Section 2.3.2, the absolute values of Walsh spectral coefficients
|Sf (w)| express proximity of a given function f with the linear switching functions,
the larger Walsh coefficients, the stronger similarity in the number of points where
values for f and the corresponding linear function coincide. We exploit this prop-
erty to determine optimal or near optimal linear combination of variables in planar
LT-BDDs.

4.3.2 Construction of Planar LT-BDD by Walsh Coefficients

The method to construct linearly transformed BDDs by Walsh coefficients exploits
the following property.

Consider a function τ defined as the EXOR sum of variables corresponding to the
nonzero coordinates in the binary representation of the decimal value w �= 0, where
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the Walsh spectral coefficients Sf (w) of a given function f have the maximal value. If
f is decomposed with respect to this function τ as f = τf0 ⊕ τf1, then the cofactors
f0 and f1 tend to be simple. Therefore, it may be expected that they can be represented
by MTBDDs with a small number of nodes.

The method will be introduced and illustrated by the following example.

Example 4.3.4 Consider a four-variable function f , defined as

F = [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0]T .

Figure 4.3.5 shows a BDD for f . The Walsh spectrum in the Hadamard ordering for
this function f is

Sf = 1

16
[5, 1, 1, 1, 1, 1, −3, 1, −1, 3, −1, −1, −1, −1, −1, −5]T ,

and the coefficient with the maximum absolute value for w �= 0 is Sf (wmax) =
Sf (15) = −5/16, and since wmax = (1111), we get the linear function τ1 = z0 ⊕
z1 ⊕ z2 ⊕ z3, where each zi corresponds to the appearance of coordinate i with value
1 in the binary representation for wmax.

Because τ1 is constant on cofactors, we can express them in terms of
z0, z1, z2 as fτ=0(z0, z1, z2) = f (z0, z1, z2, z0 ⊕ z1 ⊕ z2) and fτ=1(z0, z1, z2) =
f (z0, z1, z2, z0 ⊕ z1 ⊕ z2), yielding the truth-vectors F0 = [0, 0, 0, 0, 0, 0, 0, 0]T ,
and F1 = [0, 1, 1, 0, 1, 1, 1, 0]T .

We create a node where outgoing edges point to subfunctions F0 and F1 and edges
are labeled by z0 ⊕ z1 ⊕ z2 ⊕ z3 and z0 ⊕ z1 ⊕ z2 ⊕ z3, respectively. Thus, this tree
represents f as

f = (z0 ⊕ z1 ⊕ z2 ⊕ z3)f0 ⊕ (z0 ⊕ z1 ⊕ z2 ⊕ z3)f1,

S

S S

S S S S
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z3z3
z3

z2 z2 z2 z2
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FIGURE 4.3.5 BDD for f in Example 4.3.4.
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where the cofactors f0 and f1 are determined by the truth-vectors F0 and F1. Thus,
at this step, the variable z3 is replaced by τ1 = z0 ⊕ z1 ⊕ z2 ⊕ z3.

Since F0 is a constant function 0, the edge z0 ⊕ z1 ⊕ z2 ⊕ z3 points to the constant
node 0 directly. The Walsh spectrum for F1 is

Sf1 = 1

8
[5, 1, 1, −3, −1, −1, −1, −1]T .

The maximum Walsh coefficient for F1 is 6 for wmax = (011), thus we determine
τ2 = z2 ⊕ z3, and perform decomposition of f1 into cofactors of two variables F1,0 =
[0, 0, 1, 0]T and F1,1 = [1, 1, 1, 1]T .

Thus, we have

f = (z0 ⊕ z1 ⊕ z2 ⊕ z3) · 1 ⊕ (z0 ⊕ z1 ⊕ z2 ⊕ z3)

((z1 ⊕ z2)f1,0 ⊕ (z1 ⊕ z2)f1,1),

where cofactors f1,0 and f1,1 are determined by the truth-vectors F0,1 and F1,1.
Since F1,1 is a constant function 1, we proceed with decomposition of F1,0. This

cofactor can be expressed by z0 and z1, since z2 was the last variable in τ2.
The Walsh spectrum of it is Sf1,0 = 1

4 [1, 1, −1, −1]T . Since all the coefficients in
this spectrum have the same absolute value, we can choose, for example, τ3 = z0 and
we do not have to continue the decomposition.

In this way, we derive the LT-BDD for f as shown in Fig. 4.3.6. This LT-BDD
represents f as f = (z0 ⊕ z1 ⊕ z2 ⊕ z3)((z1 ⊕ z2)z0z1 ⊕ (z1 ⊕ z2)). Thus, the pro-
posed linearization by Walsh coefficients resulted in the reduction of a size of the
BDD for f from 9 nodes for the original BDD, 7 nodes for the BDD for the optimal
order of variables, to only 4 nodes for the planar LT-BDD of Fig. 4.3.6.
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z1 z2 z1 z2
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FIGURE 4.3.6 LT-BDD for f in Example 4.3.4.
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Algorithm for construction of planar LT-BDD
The method presented in the example leads immediately to the following algorithm.

Algorithm 4.3.1 (Construction of planar LT-BDD)

1. Given an m-variable switching function f . Calculate the Walsh spectrum in
Hadamard ordering.

2. Find the Walsh coefficient Sf (wmax) of the maximum absolute value, except the
coefficient for w = 0. Declare w = wmax and write its binary representation,
that is, wmax = (w0, . . . , wm−1).

3. Determine the linear function τ = τ1 = ⊕m−1
i=0 wizi.

4. Determine the cofactors fτ=0 and fτ=1 of f with respect to τ, where

fτ=0(z0, . . . , zik−1 , zik−1+1, . . . , zm)

= f (z0, . . . , zik−1, zi1 ⊕ zi2 · · · ⊕ zik−1 = 0, zik+1, . . . , zm),

fτ=1(z0, . . . , zik−1 , zik−1+1, . . . , zm)

= f (z0, . . . , zik−1, zi1 ⊕ zi2 ⊕ · · · ⊕ zik−1 = 1, zik+1, . . . , zm).

5. Create a node whose outgoing edges point to the cofactors f0 and f1 and label
its edges by τ1 and τ1, respectively.

6. Repeat Steps 1–5 for cofactors f0, f1.

7. Share isomorphic subtrees under the restriction that they are rooted at the neigh-
boring nodes at the same level in the decision diagrams, which guarantees
planarity.

Assignment of variables to the edges in LT-BDDs can be performed by using the
following algorithm, which exploits the property that when the decomposition with
respect to an EXOR sum of a subset of variables zk ⊕ zq ⊕ · · · ⊕ zr is performed,
then this EXOR sum is constant for a subfunction that implies that there cannot be
two vectors in the domain of the subfunction that would differ just at the zr.

Algorithm 4.3.2 (Assignment of labels to the edges)

1. If at a node at the ith level for the decomposition with respect to a linear
combination zk ⊕ zq ⊕ · · · ⊕ zr, where k < q < . . . < r, is performed, relate
the variable zr to the level i and eliminate it from the further considerations.

2. Repeat Step 1 to all the levels in the BDD, starting from the root node.

We note that the planar BDDs determined by Algorithms 4.3.1 and 4.3.2 are Free
BDDs (195), since they have different orderings of variables along different paths in
the BDD.

Example 4.3.5 Figure 4.3.7 shows the planar LT-BDD for the first output of the
function 5xp1, (m = 7), with shown values for τ per nodes in terms of which the
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FIGURE 4.3.7 Planar MTBDD for 5xp1−1.

decomposition has been performed. The planar BDD for this function for the initial
order of variables and the planar BDD for the optimal order of variables require 14
and 11 nodes, respectively.

4.3.3 Upper Bounds on the Number of Nodes in Planar BDDs

An estimate of the number of nodes in planar BDDs constructed under restrictions
assumed above can be derived from the following considerations.

Figure 4.3.8 shows a decision tree for functions of m variables, which is split into
the upper part for m − 2 variables, and the lower part representing subfunctions of two
variables. Each of these subfunctions can be any of 16 possible two-variable switching
functions. Therefore, each of these subfunctions can be realized by a subtree with at
most two nonterminal nodes. If all these functions are different, the number of nodes

…

m–2

2

}

} }

m–2

f

Number of subtrees

Number of levels

FIGURE 4.3.8 Decision tree and subtrees for two variables.
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_
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FIGURE 4.3.9 BDD for f in Example 4.3.6.

L(m) in this decision diagram is

L(m) ≤ 2m−2 − 1 + 2 · 2m−2 = 2m−1 + 2m−2 − 1.

The most complicated functions are those in the Walsh spectrum where exists a
single maximum absolute value at wmax �= 0. In this case, for example, L(3) = 5 and
L(4) = 11.

Example 4.3.6 Figure 4.3.9 shows BDD of a function for m = 3 given
by F = [1, 0, 0, 0, 0, 1, 1, 1]T . The Walsh spectrum of this function is Sf =
1
8 [4, 0, 0, 0, −2, 2, 2, 2]T . If we select wmax = 111, we determine τ = z0 ⊕ z1 ⊕ z2.
Cofactors with respect to this τ are F0 = [1, 0, 1, 1]T and F1 = [0, 0, 0, 1]T , and
their Walsh spectra are Sf0 = 1

4 [3, 1, −1, 1]T and Sf1 = 1
4 [1, −1, −1, 1]T . There-

fore, further linearization does not reduce the number of nodes. Figure 4.3.10 shows
the LT-BDD of f , and it is obvious that in this case, BDD and LT-BDD have the same
form.

With respect to the upper bounds on the number of nodes in LT-BDDs and the
method proposed above, the following should be noticed.

S

S S

S S

0 0 01 1 1

z0 z z1 2

z0 z0

z1 z1z1 z1

z0 z z1 2

z0 z0

f

_ _

_ _

FIGURE 4.3.10 LTBDD for f in Example 4.3.6.
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g

FIGURE 4.3.11 Decision tree for f linearized with respect to r variables.

A point w = wmax, where a Walsh spectrum Sf (w) of a given function f has

the maximum value, that is, |Sf (w)| = 2−m
∑2m−1

z=0 f (z), is called the linearity point
for f (278). The set of all linearity points {wi}, i = 0, . . . , r, for a function f is a
group, called the linearity group for f , with respect to the componentwise addition
modulo 2 of binary representations for wi. The linearity group contains 2r vectors,
r = 0, 1, . . . , m, iff the linearization for f can be done r times in which case f

can be represented as f = τ1 · τ2 · · · τr · g, where τi are linear functions of z0–zm−1
corresponding to r linearly independent elements of the linearity group and g is a
nonlinear function of at most m − r variables. Owing to that, such a function f can
be represented by the decision diagram in Fig.4.3.11. Decision diagrams of this form
are a subset of planar decision diagrams determined by the method presented above.

4.3.4 Experimental Results for Complexity of Planar LT-BDDs

Table 4.3.1 compares the sizes of the initial BDDs, BDDs for the optimal order of
variables, planar BDDs, and planar linearly transformed BDD produced by decom-
position with respect to Walsh coefficients.

For BDDs and BDDs optimized by reordering of variables, sizes are determined
by allowing sharing of all isomorphic subtrees; thus, these are not necessarily planar
decision diagrams. It should be noticed that planar decision diagrams have larger
sizes, since they may contain some redundant information, but the advantage of these
decision diagrams is in avoiding crossing of edges, which may be an important fea-
ture in circuit synthesis and some other applications as explained in Reference 495.
With this comparison we estimate impact of keeping decision diagrams planar and
efficiency of the linearization of planar BDDs by Walsh coefficients, for example,
under the restriction as in the definition of planar decision diagrams.

Each output of a multioutput benchmark function is considered as a separate single-
output function f − i, where f is the name of the benchmark and i is the number of
the output.

The experiments have been performed for small benchmarks, since we compared
sizes of LT-BDDs with sizes of BDDs with optimal orders or variables, which are
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TABLE 4.3.1 Sizes of BDDs, BDDs with Optimal Order of Variables (BDDv), Planar
BDD (BDDr), and Planar LT-BDDs (LT-BDD).

f n BDD Optimal Order BDD Planar BDD Planar LT-BDD

5xp1-1 7 14 11 35 13
5xp1-4 7 16 11 19 15
9sym 9 33 33 33 57
apex4-10 9 95 91 193 148
clip-1 9 37 34 67 35
clip-2 9 58 42 156 45
clip-3 9 73 32 196 51
clip-4 9 76 36 169 27
clip-5 9 36 36 36 22
con1-1 7 12 11 11 16
con1-2 7 8 7 8 8
ex1010-2 10 155 148 390 156
ex1010-8 10 154 147 377 209
rd73-3 7 16 16 16 16
rd84-1 8 32 25 54 82
rd84-2 8 25 22 169 15
rd84-4 8 19 19 22 59
sao2-1 10 46 32 75 32
sao2-2 10 48 34 85 31
squar5-1 5 5 5 6 5
z5xp1-3 7 20 14 22 12
z5xp1-6 7 15 9 21 9

av. 45 36 96 46

determined by the brute-force method examining all possible m! orderings of vari-
ables. However, the method can be applied for a large number of inputs, see Chapter
3 and also References 104,267.

Notice that for applications such as FPGA synthesis, even a small gain in the num-
ber of reduced nodes count may result in a drastic simplification of the network (394).

It is worth mentioning that LT-BDD constructed by Walsh coefficients have sizes
comparable to the sizes of BDDs for the optimal order of variables. This could be
considered as an important feature of LT-BDDs constructed by decomposition with
respect to Walsh coefficients.

For many functions planar LT-BDDs are smaller than planar BDDs.
It follows from Table 4.3.1, that on the average LT-MTBDDs are for 48% smaller

than planar BDD, and for 2% and 26% larger than BDDs for initial and optimal order
of variables.

4.4 SPECTRAL INTERPRETATION OF DECISION DIAGRAMS

As we have seen, decision diagrams often allow much more compact representation
of discrete functions than direct enumeration of values or functional expressions.
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Likewise, decision diagrams can be used to represent the spectrum of a discrete
function (i.e., the discrete function whose values are the spectrum of the original
function). The direct way is to compute the spectrum by using the spectral transform
matrix Q and then represent the values by a decision diagram.

If, as is usually the case, the transform matrix is a Kronecker power of a (2 × 2)
matrix Q(1), we can directly form the spectral decision diagram whose leaves contain
the spectrum by assigning the spectral decomposition rule to the nodes.

Definition 4.4.1 Consider a function f : {0, 1}m → P , where P is a field. Let

Q(1) =
[

a b

c d

]
,

with

U(1) =
[

α β

γ δ

]
= Q−1,

be nonsingular (over P) and Q(k) = (Q(1))⊗k.
Consider the decision tree T defined as

1. The root of T has the value f ,

2. If a node has the value g(zk, . . . , zm−1), 0 ≤ k ≤ m − 1, then the left child has
the value

gL(zk, . . . zm−1) = a(g(0, zk+1, . . . , zm−1)) + b(g(1, zk+1, . . . , zm−1)),

and the right child has the value

gR(zk, . . . , zm−1) = c(g(0, zk+1, . . . , zm−1)) + d(g(1, zk+1, . . . , zm−1)).

T is called the spectral decision tree of f with respect to the transform Q(m)
defined by Q(m), and the decision diagram obtained from T by the reduction rules is
the spectral decision diagram of f with respect to Q(m).

Example 4.4.1 Consider the function f : {0, 1}2 → Q, where Q is the field of
rational numbers, defined by F = [1, 0, 1, 1]T and the transform which is defined by
the Kronecker powers of the matrix

A =
[

1 0

1 −1

]
.

Figure 4.4.1 shows the BDT and BDD for this function f , where the decomposition
is the identity. Now, let the matrix defining the decomposition be A. Then, we have
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FIGURE 4.4.1 BDT and BDD for f in Example 4.4.1.

the decision tree as shown in Fig. 4.4.2, where

gL(z0, z1) = 1 · g(0, z1) + 0 · g(1, z1),

gR(z0, z1) = 1 · g(0, z1) − 1 · g(1, z1),

gLL(0, z1) = 1 · g(0, 0) + 0 · g(0, 1),

gLR(0, z1) = 1 · g(0, 0) − 1 · g(0, 1),

gRL(1, z1) = 1 · (g(0, 0) − g(1, 0)) + 0 · (g(0, 1) − g(1, 1)),

gRR(1, z1) = 1 · (g(0, 0) − g(1, 0))) − 1 · (g(0, 1) − g(1, 1)).

Figure 4.4.1 shows the decision tree for the function f considered in this example
defined with respect to the transform determined as the Kronecker product of the
matrix A.

In this decision diagram, the constant nodes show the values of the spectrum of f

in terms of the transform defined as

Sf = (A ⊗ A) F =
([

1 0

1 −1

]
⊗

[
1 0

1 −1

]) 


1

0

1

1


 =




1

1

0

1


 .

1 101

SS

SS SS

( , )=[1,0,1,1]0 1( , )0 1

gL gR

gLL gLR gRL gRR

0

1

–1

0

1

1

0

1

1 1
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1–z0 1–z
0
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FIGURE 4.4.2 STDT for f in Example 4.4.1.
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This tree can be reduced into a diagram which is the Spectral Transform Deci-
sion Diagram (STDD) with respect to the transform defined by A. The reduction is
performed by using the generalized BDD reduction rules, see Reference 569.

If the matrix A is selected as the arithmetic transform matrix A(1) or the Walsh
transform matrix W(1), we get the Arithmetic Spectral Transform Decision Diagrams
and Walsh Transform Decision Diagrams (569). In the same way, various STDDs can
be defined.

The function can be read from the spectral decision tree or diagram by descend-
ing from the leaves to the root and level by level performing the inverse opera-
tions. Thus, if the children of a node g(xk, . . . , xm−1) are gL(xk+1, . . . , xm−1) and
gR(xk+1, . . . , xm−1), then

g(xk, . . . , xm−1) = xk(αgL(xk+1, . . . , xm−1) + βgR(xk+1, . . . , xm−1)

+ xk(γgL(xk+1, . . . , xm−1) + δgR(xk+1, . . . , xm−1))

= (αxk + γzk)gL + (βxk + δxk)gR.

Thus, over the field of rational numbers Q,

g(xk, . . . , xm−1) = (α(1 − xk) + γxk)gL + (β(1 − xk))gR

= (α + (γ − α)xk)gL + (δ + (δ − β)xk)gR.

Similarly, over GF (2), it is

g(xk, . . . , xm−1) = (α + (γ + α)xk)gL + (δ + (δ + β)xk)gR.

Spectral decision diagrams are useful, for instance, when the function has relatively
few nonzero spectral coefficients and a compact spectral decision diagram can be
obtained.

Notice that a Spectral Transform Decision Tree (STDT) represents at the same
time f and the spectrum Sf for f with respect to the transform in terms of which the
STDT is defined. Thus, from the same diagram both the function and its particular
spectrum can be determined. When reading the spectrum, the STDD is interpreted
as an MTBDD for the spectrum. Thus, from a STDD, we read the spectrum in the
same way as we read f from the MTBDD. The difference in reading f from the
STDD is that we do not perform the operation inverse to that used in definition of the
STDD. Thus, STDDs allow a dual interpretation, as diagrams representing f or Sf ,
depending on the interpretation of labels at the edges.

More details on spectral interpretation of decision diagrams are given in Reference
555.

In decision trees with attributed edges, the values of coefficients may be assigned
to the edges, or factorized in additive, or multiplicative, or both additive and multi-
plicative, parts and assigned to the edges. For more details and a discussion of that
we refer to Reference 550.
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As an example of STDDs, in the following section, we will discuss the Haar
spectral transform decision diagrams (HSTDDs) (573).

4.4.1 Haar Spectral Transform Decision Diagrams

Above we defined spectral transform decision diagrams in a narrow sense by requiring
that the decomposition rule is the same at each node. We also considered decision
diagrams with two outgoing edges per node. This corresponds to a transform defined
by a Kronecker power of the basic (2 × 2) matrix. A more general class of transforms
and corresponding decision diagrams is obtained if the decomposition rule can vary
from level to level (553), or even node to node. To be meaningful and useful, there
needs to be a general procedure that determines the decomposition rule assigned to
a particular node. Such procedures can be formulated in a uniform way for different
classes of transforms, for instance, by assuming a group structure to the domain of
the definition of functions that should be represented and the spectral transforms on
groups point of view (553, 567).

Haar spectral transform decision diagrams (572, 580), form one such class. It is
very fast to form because most of the nodes have a trivial decomposition rule, but still
is able to capture essential properties of certain functions.

Definition 4.4.2 (Haar spectral transform decision diagrams) For f ∈ C(Cm
2 ), the

Haar spectral transform decision tree (HSTDT) is such that at each nonterminal level
of the tree, the leftmost node is decomposed using the basic Walsh matrix W(1) and
the rest of the nodes are decomposed using the (2 × 2) identity matrix I(1).

In HSTDDs, there are Walsh nodes performing the decomposition defined by the
matrix W(1), and integer counterpart of Shannon nodes defined by the matrix I(1).
Therefore, the edges are labeled by 1 and 1 − 2zi as symbolic notation for the columns
of W(1) and by zi and zi for the columns of I(1).

To have the values of the Haar transform coefficients in the constant nodes in
consistent order, the variables in the edges of Walsh nodes in the diagram are written
in descending order. Thus, the labels at the two edges of the leftmost node at level i

are 1 and 1 − 2zm−i by starting with the root node at the level 1. Labels of the edges
of other nodes are zi and zi in the increasing order of indices by starting with z0 for
the root of the first subtree after a Walsh node.

This notation corresponds to the representation of Haar functions in sequency
ordering in terms of binary-valued variables, as it will be discussed in Example 4.4.5.

Example 4.4.2 Figure 4.4.3 shows a HSTDT for m = 3.

Reduction of HSTDDs
The K-procedure discussed above produces the maximal number of identical values
at the adjacent places in the vector of function values for a function f .

Consider the function values f (w) at the points w ≥ 2m−1. In this case, we
may write w = 2m−1 + j, where j = 0, . . . , 2m−1 − 1. From definition of the Haar
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FIGURE 4.4.3 HSTDT for m = 3.

functions, for w ≥ 2m−1, Sf (w) = 0 iff f (2j) = f (2j + 1). It follows that in the
HSTDT for fσ determined by the K-procedure, there is a large number of constant
nodes with the value 0.

Each nonzero coefficient corresponds to a term in the Haar expression for f . In
a HSTDD for f , each c-path, that is, a path from the root node to a constant node
showing the values c �= 0, corresponds to a term in the Haar expression for f . Thus,
this algorithm reduces the number of c-paths in the HSTDD for f . Moreover, HSTDD
for fσ has the minimum number of c-paths among HSTDDs for all functions generated
for other possible orderings of elements in the vector F representing f . We denote by
QHSTDD the number of c-paths in a HSTDD.

In a truth-vector F, pairs of equal values produced by the K-procedure corre-
sponds to subvectors of order 2 in the vector Fσ for fσ . In MTBDDs, and thus, Haar
Spectral Diagrams (HSDs), this means the possibility to reduce a node at the level
corresponding to zm−1 whose outgoing edges point to f (2j) and f (2j + 1). Simi-
larly, for w < 2m−1, Sf (w) = 0 if there are constant or equal subvectors of orders 2i,
i = 2, . . . , m − 1 in F. Equal and constant subvectors mean possibility to share or
delete nonterminal nodes at upper levels in the MTBDD(f ).

Since in many cases, although not always, as shown by counterexamples in
Reference 133, decision diagrams with smaller sizes have a smaller number of paths,
the K-procedure can be used to reduce also the sizes of decision diagrams. Notice that,
however, unlike the number of c-paths, c �= 0, that depends on the number of nonzero
coefficients, the size of a HSTDD depends also on the number of different nonzero
coefficients and their distribution in the spectrum. Therefore, it may happen that the
reordering by K-procedure although reducing the number of paths, may increase the
size of the HSTDDs. Such an example are HSTDDs for adders (572).

Example 4.4.3 (278) Table 4.4.1 shows a two-output function f = (f (0), f (1)) of
four variables. This function is represented by the integer equivalent function f =
2f (0) + f (1). This function has the Haar spectrum with 14 nonzero coefficients. The
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TABLE 4.4.1 Function with the Minimized Haar
Spectrum.

z, w f (0), f (1) f (z) 16Sf (w) fσ(z) 16Sfσ
(w)

0 00 0 22 0 22
1 10 2 0 0 2
2 00 0 −5 2 −8
3 01 1 1 0 2
4 10 2 1 3 −2
5 01 1 0 3 −2
6 10 2 −2 2 2
7 11 3 1 2 0
8 11 3 −2 2 0
9 00 0 3 2 0

10 01 1 1 2 0
11 10 2 −1 0 0
12 01 1 −1 1 2
13 10 2 −1 1 2
14 10 2 −1 1 0
15 00 0 2 1 0

matrix determined by the K-procedure,

σ =




0 1 1 0

1 0 0 1

0 0 1 1

1 1 1 0


 ,

defines a reordering of the variables zi, i = 1, 2, 3, 4 in the binary representation for
z = (z1, z2, z3, z4) through the relation zσ = σ−1z. Since

σ−1 =




1 0 0 1

0 1 1 1

1 1 1 1

1 1 0 1


 ,

the vector

F = [f (0), f (1), f (2), f (3), f (4), f (5), f (6), f (7), f (8),

f (9), f (10), f (11), f (12), f (13), f (14), f (15)]T ,

where fσ(σ � z) = f (z), is transformed into the vector

Fσ = [f (0), f (15), f (6), f (9), f (7), f (8), f (1), f (14),

f (11), f (4), f (13), f (2), f (12), f (3), f (10), f (5)]T .
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FIGURE 4.4.4 HSTDD for f in Example 4.4.3.

The matrix σ defines a function fσ min, which has the Haar spectrum with 9 nonzero
coefficients, compared to the 14 coefficients in the Haar spectrum for f .

Example 4.4.4 Figure 4.4.4 shows HSTDD for the function f in Table 4.4.1,
and Fig. 4.4.5 shows HSTDD for fσ . In this example, size(MTBDD(f )) =
18, size(MTBDD(fσ)) = 11, size(HSTDD(f )) = 22, size(HSTDD(fσ)) = 15,
QHSTDD(f ) = 13, and QHSTDD(fσ )) = 8, since a path contains a cross point.

Table 4.4.2 compares the number of nonzero coefficients in the Haar spectrum
before and after the linear transform of variables. The savings in the number of nonzero
coefficients range from 0.81% to 88.24% with the average savings of 49.48%.
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FIGURE 4.4.5 HSTDD for fσ in Example 4.4.3.
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TABLE 4.4.2 Number of Coefficients in the Haar
Spectrum and the LT-Haar Spectrum.

f Haar LT-Haar %
9sym 211 106 49.77
ex1010 989 971 1.83
misex1 32 28 12.50
rd53 32 22 31.25
rd73 128 32 75.00
rd84 265 64 75.85
xor5 17 2 88.24
add2 16 7 56.25
add3 64 29 54.69

Table 4.4.3 compares the complexity of HSTDDs before (HSTDD(f )) and after
(LT-HSTDD(f )) the linear transform of variables determined by the K-procedure. It
shows the number of nonterminal nodes (ntn), constant nodes (cn), whose sum is the
size of the HSTDD (s = ntn + cn), and the width (w) of HSTDDs. We also show the
number of 0-paths, c-paths and the total number of paths. The K-procedure reduced
the number of c-paths and the width of HSTDDs for all the considered functions.

TABLE 4.4.3 Complexity of MTBDDs and
LT-MTBDDs.

MTBDD(f )
f ntn cn s w paths

0 c total
9sym 33 2 35 6 72 148 220
ex1010 894 177 1071 383 190 800 990
misex1 17 11 28 6 5 13 18
rd53 15 6 21 5 1 31 32
rd73 28 8 36 7 1 127 128
rd84 36 9 45 8 1 255 256
xor5 9 2 11 2 16 16 32
add2 13 7 20 6 1 15 16
add3 41 15 66 14 1 63 64

LT-MTBDD(f )

f ntn cn s w paths

0 c total
9sym 24 2 26 5 27 48 75
ex1010 871 177 1048 367 180 791 971
misex1 17 11 28 5 4 14 18
rd53 17 6 23 6 1 23 24
rd73 17 7 24 6 1 31 32
rd84 23 8 41 7 1 63 64
xor5 1 2 3 1 1 1 2
add2 8 7 15 3 1 8 9
add3 24 15 39 7 1 26 27
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TABLE 4.4.4 Complexity of HSTDs and LT-HSTDD.

HSTDD(f )
f ntn cn s w paths

0 c total

9sym 111 16 127 26 189 197 381
ex1010 1023 639 1662 512 35 989 1024
misex1 34 17 51 11 22 18 40
rd53 23 9 32 9 0 30 30
rd73 52 11 63 14 0 103 103
rd84 74 16 90 18 0 201 201
xor5 12 4 16 3 4 17 21
add2 4 4 8 1 0 5 5
add3 6 7 13 1 0 7 7

LT-HSTDD(f )

f ntn cn s w paths
0 c total

9sym 89 13 102 25 85 87 172
ex1010 1019 636 1655 508 53 969 1022
misex1 41 17 58 13 26 18 44
rd53 19 10 29 7 8 19 27
rd73 20 6 26 7 0 23 23
rd84 32 8 40 10 0 44 44
xor5 5 3 8 1 4 2 6
add2 6 4 10 2 4 3 7
add3 9 5 14 2 6 4 10

Table 4.4.4 compares the complexity of MTBDDs for the same set of functions
before (MTBDD(f )) and after (LT-MTBDD(f )) the application of the linear trans-
form of variables used in HSTDDs. The linear transform used in HSTDDs, reduced
the number of c-paths for all the considered functions.

4.4.2 Haar Transform Related Decision Diagrams

There is apparent a renewed interest in application of the Haar transform in switching
theory and logic design.

A number of publications on this subject has been published in the previous decade
(299). The applications have been presented in circuit synthesis, equivalence check-
ing, verification, and testing of logic networks (228, 229, 559, 601, 602).

Relationships between the Haar transform and related transforms, as well as the
Haar transform and decision diagrams were considered; for example, in References
94,155,160,228,600, and 603.

This research activity provides rationales to study decision diagrams related to the
Haar transform, as well as representation of Haar coefficients by decision diagrams.

Algorithms for calculation of Haar spectrum through decision diagrams (537,
600) overcome the exponential complexity of FFT-like algorithms for Haar wavelet
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z0

z1 z1

z2 z2 z2 z2z2 z2 z2 z2

z1 z1

z0

f(0) f(1) f(2) f(3) f(4) f(5) f(6) f(7)

FIGURE 4.4.6 HST for m = 3.

transform (258, 278) and due to that extend the applications to functions with large
number of variables.

The Haar spectral diagrams (228) have been introduced to represent Haar coeffi-
cients efficiently in terms of space and time. They are derived from assigning the Haar
coefficients for a given function f to the corresponding edges in the multiterminal
binary decision diagrams (105).

Example 4.4.5 Figure 4.4.6 shows an example of the Haar spectral tree (HST) for
m = 3. The following relation shows the correspondence among the Haar functions,
labels at the edges in the multiterminal binary decision tree, and the Haar coefficients.

f (0) har(0, z) = 1 Sf (0)

f (1) har(1, z) = (1 − 2z0) Sf (1)

f (2) har(2, z) = (1 − 2z1)z0 Sf (2)
f (3) har(3, z) = (1 − 2z1)z0 Sf (3)

f (4) har(4, z) = (1 − 2z2)z0z1 Sf (4)

f (5) har(5, z) = (1 − 2z2)z0z1 Sf (5)

f (6) har(6, z) = (1 − 2z2)z0z1 Sf (6)

f (7) har(7, z) = (1 − 2z2)z0z1 Sf (7)

From this example, a Haar coefficient Sf (w) is situated at the end of a subpath
consisting of edges denoted by variables used in symbolic description of the cor-
responding Haar function har(w, z) with respect to which this Haar coefficient is
calculated.

A good feature of HSDs is that the same diagram can represent both f and the Haar
spectrum of f , which means that the size of the diagram to represent the Haar spectrum
is not larger than the size of the diagram for f . Thus, HSDs are actually MTBDDs,
or BDDs, with the Haar coefficients assigned to the edges. It follows that they do not
exploit properties of the Haar spectra to possibly get reduced representations for f .
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BIBLIOGRAPHIC NOTES

Complexity of decision diagrams is discussed in many books in this area, see References,
130,366,372,499, and 555. The optimization by reordering of variables using the sifting al-
gorithm is discussed in References 130,185,478, and 661. The application of autocorrelation
functions in optimization of decision diagrams is explored in References 297,467, and 468.
Planar decision diagrams have been discussed in References 82,495, and 496. Construction of
planar BDD by using Walsh coefficients is discussed in Reference 298. For spectral interpre-
tation of decision diagrams, see References 547,550,555, and 569.

An XML (Extensible Markup Language) environment for description of various classes of
decision diagrams has been developed in Reference 586, and methods for automatic generation
of VHDL descriptions of circuits derived from such representations of decision diagrams are
presented in Reference 585.
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CHAPTER 5

ANALYSIS AND OPTIMIZATION
OF LOGIC FUNCTIONS

In this chapter, we study spectral methods for solving the decision problems for
some important classes of logical functions1 and also develop spectral methods for
solving optimization problems in the algebra of logic (including the linearization and
approximation of systems of logical functions). We will also present in this chapter
spectral methods for serial and parallel decomposition of combinatorial networks.

A special section will be devoted to the analysis of spectral complexity of Boolean
functions, deriving bounds for the number of nonzero coefficients in their orthogonal
expansions. The main tool throughout the chapter will be the Walsh transform, since
this is a transform defined in terms of two-valued ±1 functions.

It is assumed that, when appropriate, the logic values 0 and 1 are also interpreted
as the corresponding integers. In this sense, the Walsh transform is compatible with
the switching functions to which it is applied.

5.1 SPECTRAL ANALYSIS OF BOOLEAN FUNCTIONS

The problem of the analysis of Boolean functions (BF), or switching functions, is
to decide whether a given function belongs to some standard class (linear, self-dual,

1The decision problem for a class of functions is to devise a procedure (or algorithm) whereby, given any
function, determine (“recognize”) whether or not it is a member of the class (the rigorous definition is
formulated in the framework of mathematical logic).

Spectral Logic and Its Applications for the Design of Digital Devices by Mark G. Karpovsky, Radomir
S. Stanković and Jaakko T. Astola
Copyright © 2008 John Wiley & Sons, Inc.
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threshold, among other functions). In other words, we determine whether a given
function possesses any of the properties characterizing these classes of switching
functions. The reason for the importance of the corresponding decision problems is
that standard methods of network synthesis are available for the standard classes of
switching functions, and these “special-purpose” methods are usually incomparably
more efficient than universal methods. Thus, the synthesis stage of network design is
frequently preceded by the analysis of an appropriate system of switching functions.

Below, we evolve decision procedures for some important classes of switching
functions using their Walsh spectra and the autocorrelation functions. (Tables of spec-
tra and autocorrelation functions of several classes of switching functions widely used
in engineering practice are given in the Appendix A.)

The analysis methods described in this section may be generalized to many-valued
logic functions by using the Vilenkin–Chrestenson transforms and the appropriate
autocorrelation functions.

All the switching functions considered in this section will be assumed to be com-
pletely specified. If f (z) = f (z0, . . . , zm−1), we denote its Walsh spectrum in Paley
ordering by Sf (w) or Sf (w0, . . . , wm−1), where

w =
m−1∑
i=0

wi2
m−1−i, Sf (w) = 2−m

2m−1∑
z=0

(−1)
∑m−1

i=0
wizm−1−if (z),

where wi ∈ {0, 1}. Notice that in consideration of methods in this chapter, we will use
this definition of Walsh spectrum. We denote the autocorrelation function by Bf (τ)
or Bf (τ0, . . . , τm−1), where by (2.7.1) for p = 2,

Bf (τ) =
2m−1∑
z=0

f (z)f (z ⊕ τ) mod 2,

and τ = ∑m−1
i=0 τi2m−1−i, τ ∈ {0, 1}.

5.1.1 Linear Functions

A switching function f (z0, . . . , zm−1) is linear iff there exist numbers ci ∈ {0, 1},
(i = 0, 1, . . . , m − 1) such that

f (z0, . . . , zm−1) =
m−1⊕
i=0

cizi, mod 2. (5.1.1)

The class of linear functions is closed under superposition: the superposition of
any two linear switching functions is again a linear switching function. Any linear
switching functions of m variables can be realized by a network of at most m − 1
two-input mod 2 adders, that is, two-input EXOR circuits. Any k linear switching
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functions of m variables may be realized by a network using a number of EXORs of
the order mk/ log2 m.

Theorem 5.1.1 Let f (z) = ⊕m−1
s=0 cszs (mod 2). Then,

S(w) =




1
2 , if w = 0,

− 1
2 , if w = ←−c ,

0, otherwise,

(5.1.2)

where ←−c = ∑m−1
s=0 cs2s and

B(τ) = 2m−2(W←−c (τ) + 1). (5.1.3)

Proof. By the definition of Walsh functions,

m−1⊕
s=0

cszs = 1

2
(1 − W←−c (z)).

Hence, using (2.3.5), (2.3.9), and (2.3.10), we obtain (5.1.2). Formula (5.1.3) is
derived from (5.1.2) using Theorem 2.7.1.

The converse is also valid in the sense that if either of the conditions (5.1.2) or
(5.1.3) holds, the function f (z) may be expressed in the form (5.1.1).

Thus, to decide whether a function is linear, we need to calculate only its spectrum.
If the spectrum contains only one nonzero point w = ←−c (apart from the point w = 0),
the switching function is linear and has the form

⊕m−1
s=0 cszs (mod 2).

Example 5.1.1 Consider the switching function defined in Table 5.1.1. Since

TABLE 5.1.1 Function f in Example 5.1.1, Its
Spectrum Sf (w), and Autocorrelation Function Bf (τ).

z0, z1, z2 f (z) w, τ Sf (w) Bf (τ)

000 0 0 0.5 4
001 1 1 0 0
010 1 2 0 0
011 0 3 0 4
100 1 4 0 0
101 0 5 0 4
110 0 6 0 4
111 1 7 −0.5 0
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S(w) =




1
2 , if w = 0,

− 1
2 , if w = 7,

0, otherwise,

it follows that f (z) is linear and c = ←−c = 7 and f (z0, z1, z2) = z0 ⊕ z1 ⊕ z2.

5.1.2 Self-Dual and Anti-Self-Dual Functions

A switching function is self-dual (anti-self-dual) iff

f (z0, . . . , zm−1) = f (z0, . . . , zm−1), (5.1.4)

f (z0, . . . , zm−1) = f (z0, . . . , zm−1). (5.1.5)

The bar over a function or a variable denotes inversion, that is, z = 1 − z = 1 ⊕ z

(mod 2).
The class of self-dual switching functions is closed under superposition. Since

self-duality and anti-self-duality are invariant with respect to translation of variables,
these classes may be characterized in terms of autocorrelation functions.

Theorem 5.1.2 A switching function f (z) = f (z0, . . . , zm−1) is self-dual and anti-
self-dual iff,

Bf (2m − 1) =
2m−1∑
z=0

f (z) − 2m−1, (5.1.6)

and

Bf (2m − 1) =
2m−1∑
z=0

f (z), (5.1.7)

respectively.

Proof. To prove (5.1.6) observe that if the condition (5.1.4) holds then f (z) = f (z)
and f (z) = 1 − f (z), where z = (z0, . . . , zm−1) and f (z)f (z) = 0, f (z)f (z) = 0 for
all z ∈ {0, 1, . . . , 2m − 1}. Then,

2m−1∑
z=0

f (z)f (z) +
2m−1∑
z=0

f (z)f (z) = 2
2m−1∑
z=0

f (z)f (z) + 2m − 2
2m−1∑
z=0

f (z) = 0
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and

Bf (2m − 1) =
2m−1∑
z=0

f (z)f (z) =
2m−1∑
z=0

f (z) − 2m−1.

Conversely, by (5.1.6)

2Bf (2m − 1) + 2m − 2
2m−1∑
z=0

f (z) =
2m−1∑
z=0

f (z)f (z) +
2m−1∑
z=0

f (z)f (z) = 0

and f (z)f (z) = 0, f (z)f (z) = 0. Hence f (z) = f (z). The proof of (5.1.7) is
similar.

We have thus reduced the verification of (anti-)self-duality to calculation of the
autocorrelation function at the point 2m − 1.

For example, for the switching function in Example 5.1.1, (m = 3), we have
Bf (7) = 0 so that it is self-dual.

5.1.3 Partially Self-Dual and Partially Anti-Self-Dual Functions

A switching function f (z0, . . . , zm−1) is said to be partially self-dual and partially
anti-self-dual iff there exists α = ∑m−1

s=0 αs2m−1−s such that

f (z0, . . . , zm−1) = f (zα0
0 , . . . , z

αm−1
m−1 ) (5.1.8)

and

f (z0, . . . , zm−1) = f (zα0
0 , . . . , z

αm−1
m−1 ), (5.1.9)

respectively, where

zαs
s =

{
zs, if αs = 1,

zs, if αs = 0.

A switching function satisfying (5.1.8) or (5.1.9) will also be called α-(anti)-self-
dual, where α = ∑m−1

s=0 αs2m−1−s and αs = 1 − αs. (According to this definition, a
switching function is (anti-) self-dual if it is (2m − 1)-(anti-)self-dual.)

For the same function f (z), there may be several numbers α1, α2, . . . , ag such that
f (z) is αs-self-dual (s = 1, 2, . . . , g) and β1, β2, . . . , βh such that f (z) is βs-anti-
self-dual (s = 1, 2, . . . , h).

Note that any switching function is 0-anti-self-dual, and if f (z) is both βs-anti-self-
dual andβq-anti-self-dual, then it is also (βs ⊕ βg)-anti-self-dual. Indeed, in that case it
follows from (5.1.9) that f (z) = f (z ⊕ βs) = f (z ⊕ βq), and f (z) = f (z ⊕ βs ⊕ βq)
(mod 2) for every z ∈ {0, 1, . . . , 2m − 1}.
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We call β an (anti-)self-duality point for f (z) iff f (z) is β-(anti-)self-dual. The set
of anti-self-duality points for any switching function is a group, and the number of
such points (the order of the group) is a power of 2. The group of anti-self-duality
points will be called the anti-self-duality group or the inertia group.

If f (z0, . . . , zm−1) is 2s-anti-self-dual, then it is independent of zs.

Theorem 5.1.3 A function f (z) = f (z0, . . . , zm−1) has self-duality points α1,

. . . , αg and anti-self-duality points β1, . . . , βh iff

Bf (αs) =
2m−1∑
z=0

f (z) − 2m−1,

for s = 1, . . . , g, and

Bf (βq) =
2m−1∑
z=0

f (z), (5.1.10)

for q = 1, . . . , h, where 1 ≤ g + h ≤ 2m.

Theorem 5.1.3 is a generalization of Theorem 5.1.2 (in the latter α = 2m − 1 or
β = 2m − 1), and the proof is analogous.

Corollary 5.1.1 For any switching function f (z), the number of points at which
the autocorrelation function takes the value

∑2m−1
z=0 f (z) is a power of 2, and the

corresponding autocorrelation assignments form a group.

Corollary 5.1.1 generates a simple procedure for checking the validity of a
calculation of the autocorrelation function of a switching function f (z). Thus, if∑

z f (z) = 2m−1, the zeros of the autocorrelation function defines the self-duality

points. In any case, the set of all τ such that Bf (τ) = ∑2m−1
z=0 f (z) defines the anti-

self-duality points.
As an example of analysis for partial anti-self-duality, let us consider a switching

function that is a characteristic function of a linear code.
A linear (m, k)-code V is defined by a generating matrix




V1

V2

...

Vk


 ,

where Vs = [Vs(0), . . . , Vs(m − 1)] is a binary vector of the length m. The code
V is the set of all linear combinations

⊕k
s=1 csVs (mod 2), where cs ∈ {0, 1}.
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The characteristic function fV (z) of V is defined by

fV (z) =
{

1, if z ∈ V,

0, if z /∈ V.
(5.1.11)

Theorem 5.1.4 A function f (z) is the characteristic function of a linear (m, k)-code
V iff

S(w) = 2−m
k∏

r=1

(WVr (w) + 1), (5.1.12)

where

Vr =
m−1∑
q=0

Vr(q)2q,

or iff

B(τ) =
{

2k, if τ ∈ V,

0, if τ �= V.
(5.1.13)

Proof. We prove (5.1.12) by induction on k.

If k = 1, we have

fV (z) =
{

1, if z = 0, V1,

0, otherwise,

and S(w) = 2−m(W←−
V 1

(w) + 1).

Now let fVl,...,Vk−1 (z) be the characteristic function of the code with generating
matrix 


V1

V2

...

Vk−1


 ,

SV1,...,Vk−1 (w) its spectrum, and fVk
the characteristic function of the code whose

generating matrix is Vk. Let

SV1,...,Vk−1 (w) = 2−m
k−1∏
r=0

(WVr (w) + 1).
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Since fV (z) is the characteristic function of the code with generating matrix




V1

V2

...

Vk


 ,

iff

fV (z) = fV1,...,Vk
(z) =

2m−1∑
τ=0

fVk
(τ)fV1,...,Vk−1 (z ⊕ τ), mod 2,

it follows by the convolution theorem for the original function (2.6.7) that (5.1.12) is
true.

To prove (5.1.13), we note that a linear (m, k)-code is a group with respect to the
addition modulo 2, and fV (z) is the characteristic function of an (m, k)-code V iff∑2m−1

z=0 fV (z) = 2k, and if fV (z) = 1, then

fV (z) =
{

fV (z ⊕ τ), if τ ∈ V,

fV (z ⊕ τ), otherwise,
mod 2.

Thus the vectors τ of the code are anti-self-duality points for fV (z).

5.1.4 Quadratic Forms, Functions with Flat Autocorrelation

A switching function f (z0, . . . , zm−1) is called a quadratic form iff there exists cqs,
αq ∈ {0, 1}, such that

f (z0, . . . , zm−1) =
m−1⊕

q,s=0,q<s

cqs(zq)αq (zs)
αs . (5.1.14)

The design of a network realizing a quadratic form (cqs) requires at most LAND =∑m−1
s=0

∑s−1
q=0 cqs two-input AND gates (logical multiplication) and LEXOR =

LAND − 1 two-input mod 2 adders, that is, EXOR circuits.
A quadratic form in m = 2s variables is said to be nonrepetitive if each of its

variables zq appears in (5.1.14) exactly once.
An example of a nonrepetitive quadratic form is

fs(z) =
s−1⊕
q=0

zqzq+s,
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with calculations modulo 2 and m = 2s.
The function may also be expressed as

s−1⊕
q=0

zqzq+s = 1

2

(
1 − (−1)

⊕s−1
q=0

zqzq+s

)
= 1

2
(1 − Wa(z)(b(z))), (5.1.15)

where

a(z) =
s−1∑
q=0

zq2q,

b(z) =
s−1∑
q=0

zq+s2
s−1−q.

Any nonrepetitive quadratic form in m = 2s variables may be realized by a network
of s two-input AND gates and s − 1 two-input EXOR circuits.

Theorem 5.1.5 If a switching function is a nonrepetitive quadratic form in m = 2s

variables, then its autocorrelation function Bs(τ) satisfies the condition

Bs(τ) =
{

22s−1 − 2s−1, for τ = 0,

22s−2 − 2s−1, for τ �= 0.
(5.1.16)

We first prove the following lemma.

Lemma 5.1.1 Let φ1(z) = ⊕s−1
q=0 aqzq and φ2(z) = ⊕s−1

q=0 bqzq, a �= b, and a, b �=
0. Then, for any τ ∈ {0, 1, . . . , 2s − 1},

Bφ1,φ2 (τ) =
2s−1∑
z=0

φ1(z)φ2(z ⊕ τ) = Bφ1,φ2
(τ) = 2s−2. (5.1.17)

The equality Bφ1,φ2 (τ) = 2s−2 follows from Theorem 5.1.1 and formula (2.7.4).
For the other equality, we have

Bφ1,φ2
(τ) =

2s−1∑
z=0

φ1(z)(1 − φ2(z ⊕ τ)) =
2s−1∑
z=0

φ1(z) − Bφ1,φ2 (τ)

= 2s−1 − 2s−2 = 2s−2.

Proof of Theorem 5.1.5 We first show that if fs(z) = ⊕s−1
q=0 zqzq+s is a nonrepeti-

tive quadratic form, its autocorrelation function Bs(τ) satisfies (5.1.16). Consider the
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function

Q(z0, . . . , zs−1, τ) =
∑

zs,...,z2s−1∈{0,1}


 s−1⊕

q=0

zqzq+s





 s−1⊕

q=0

(zq ⊕ τq)(zq+s ⊕ τq+s)


 .

Let a(z) = ∑s−1
q=0 zq2q �= 0, τ = 0. Then, for any z0, . . . , zs−1,

Q(z0, . . . , zs−1, τ) =
∑

zs,...,z2s−1∈{0,1}


 s−1⊕

q=0

zqzq+s


2

=
∑

zs,...,z2s−1∈{0,1}

s−1⊕
q=0

zqzq+s = 2s−1.

Let a(z) �= 0, τ �= 0. Then, for any z0, . . . , zs−1, by Lemma 5.1.1,

Q(z0, . . . , zs−1, τ) = 2s−2.

Thus,

Q(z0, . . . , zs−1, τ) =




2s−1, if a(z) �= 0, τ = 0,

2s−2, if a(z) �= 0, τ �= 0,

0, if a(z) = 0.

(5.1.18)

Next, we have

Bs(τ) =
2s−1∑
z=0

fs(z)fs(z ⊕ τ) =
∑

z0,...,zs−1∈{0,1}
Q(z0, . . . , zs−1, τ). (5.1.19)

Formula (5.1.16) now follows from (5.1.18), (5.1.19).
Thus, formula (5.1.16) holds for fs(z). Now, any nonrepetitive form of 2s vari-

ables may be obtained from fs(z) by a suitable permutation and translation of the
variables. The translation leaves the autocorrelation function invariant. A permuta-
tion is equivalent to a linear transformation of the variables (with the transformation
matrix containing exactly one unit in each row and column). A linear transformation
of the variables in fs(z) induces the same linear transformation of the variables in
the autocorrelation function (see Theorem 2.7.4), but since Bs(τ) = const. (τ �= 0)
(see 5.1.19)), it follows that Bs(τ) is invariant under linear transformations. Thus any
nonrepetitive quadratic form has the autocorrelation function (5.1.16).

Example 5.1.2 Table 5.1.2 defines the switching function f (z) = z0z3 ⊕ z1z2, whose
autocorrelation is Bf (τ) = 2 for τ �= 0.
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TABLE 5.1.2 Function f in Example 5.1.2 and Its
Autocorrelation Bf (τ).

z, τ f (z) Bf (τ)

0 0 6
1 0 2
2 0 2
3 0 2
4 0 2
5 0 2
6 1 2
7 1 2
8 0 2
9 1 2

10 0 2
11 1 2
12 0 2
13 1 2
14 1 2
15 0 2

It is a useful observation that nonrepetitive quadratic forms are switching functions
with the “best” correlation characteristics in the following sense.

For a function specified in N points, of the correlation functions involved in
transmission of synchronizing signals,

B∞,2(τ) =
N−1∑
z=0

f (z)f (z − τ),

BN,2(τ) =
N−1∑
z=0

f (z)f (z � τ),

where calculation is modulo N, is specified for a given N and signal power (number
of 1 values)

∑N−1
z=0 f (z) by �∞ = B∞,2(0) − maxτ �=0 B∞,2(τ) or �N = BN,2(0) −

maxτ �=0 BN,2(τ), respectively. These quantities determine the error-correcting capa-
bility in transmission of synchronizing signals using f (z) (330, 522). Determination
of the best synchronizing codes f (z), maximizing �∞ or �N for given “length”
N and “power”

∑N−1
z=0 f (z), is a highly important and difficult problem. From this

standpoint, the best quality is that of a switching function with B∞,2(τ) = const.

(τ �= 0) or BN,2(τ) = const. (t �= 0) (if such a switching function exists). A function
whose autocorrelation function is “most nearly” a constant for τ �= 0 is closest to a
pseudorandom sequence of the given length.

With these remarks in mind, let us consider the autocorrelation functions Bs(τ) (s =
1, 2, . . .) of nonrepetitive quadratic forms in m = 2s variables. By Theorem 5.1.5, we
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have

Bs(τ) = 22s−2 − 2s−1 = const., τ �= 0,

and

�2,s = Bs(0) − max
τ �=0

Bs(τ) = 22s−2.

Now the quadratic form fs(z) = ⊕s−1
i=0 zizi+s satisfies the condition fs(z) = 0 for

0 ≤ z < 2s and, if a zero value of fs(z) corresponds to the absence of a signal at the
transmitter output (passive zero codes (522)), we may assume that the transmitted
code is of length 22s − 2s.

Thus, if we define an (N, b, �2)-code to be a code of the length N such that
B(0) = b and �2 = Bf (0) − maxτ �=0 Bf (τ), then the nonrepetitive quadratic forms
in 2s variables constitute the class of optimal (2s(2s − 1), 2s−1(2s − 1), 22s−2)-codes.

Some of these optimal codes are shown in Table 5.1.3. Note that codes defined by
nonrepetitive quadratic forms have the same number of 0 and 1 values.

We note that nonrepetitive quadratic forms with a flat autocorrelation are known
as bent functions (474). These functions are widely used in coding theory, see for
example, (347, 438). For instance, in this settings, they can be viewed as a coset of
the first order Reed–Muller code with the largest minimum weight (88, 89, 347). Thus,
a bent function has a maximum distance from a linear functions and, therefore, due to
its maximum nonlinearity, such functions are widely exploited in cryptography, see
References 213, 666.

In particular, bent functions are used for design of substitution boxes (S-boxes) in
secure block ciphers in Advanced Cryptography Standard (374).

Theorem 5.1.5 can be generalized for the Q-ary case when f is a mapping from
GF (Q2s) onto GF (Q), Q = pt , where p is a prime and t an integer.

In this case, zj ∈ GF (Q) and all the additions and the multiplications in the defi-
nition of the nonrepetitive quadratic form are in GF (Q).

In this case, we have the following generalization of Theorem 5.1.5.
For a Q-ary nonrepetitive quadratic form f (z) = ⊕s−1

q=0 zqzs+q, zq, zs+q ∈
GF (Q), we can define the total autocorrelation function Bf (τ) for the quadratic

TABLE 5.1.3 Parameters of Some Optimal Codes Ns,
bs, �

(S)
2 .

Code length No. of 1-values
s Ns bs �

(s)
2

1 2 1 1
2 12 6 4
3 56 28 16
4 240 120 64
5 992 496 256
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form f (z) as

Bf (τ) =
∑

i

∑
z

fi(z)fi(z ⊕ τ), (5.1.20)

where z, τ ∈ GF (Q), ⊕ stands for the addition in GF (Q), and fi(z) is the character-
istic function of f (z), that is, fi(z) = 1 iff f (z) = i.

Then, by using the approach similar to that used in the proof of Theorem 2.3.5
[294], it is possible to show that for Q-ary nonrepetitive quadratic form

⊕s−1
j=0 zjzs+j ,

we have

Bf (τ) = Q2s−1. (5.1.21)

Applications of nonrepetitive quadratic forms for construction of optimal robust
error-detecting codes with equal error-correcting probabilities for all errors can be
found in Reference 293, and applications for the design of optimal compressors for
test responses can be found in References 291, 292, and 400. Notice that in this case,
Q = 2t .

In the case of compression of test responses byQ-ary (Q = 32t) quadratic forms, zj

is the t-bit response of a device-under-test and f (z) = ∑s−1
q=0 zqzs+q is the compressed

response (signature) of the device, to be verified for testing. For these quadratic com-
pressors, all errors have the same probability 2t of being masked (aliasing probability)
in the process of compression of test responses (284,292).

We note also that nonrepetitive quadratic forms are special cases of perfect
nonlinear functions that are widely used in cryptography (91,114,412). These
functions are also closely related to difference sets and balanced combinatorial
designs (66).

5.2 ANALYSIS AND SYNTHESIS OF THRESHOLD ELEMENT
NETWORKS

5.2.1 Threshold Elements

Threshold elements (TE) have been used quite widely in digital data-processing sys-
tems. Nowadays, they are related to the artificial neural networks, see Reference 21
and references therein.

By a threshold element with weights d0, d1, . . . , dm−1 and the threshold T we
mean an element realizing the function

f (z0, . . . , zm−1) = sign

(
m−1∑
s=0

dszs − T

)
, (5.2.1)
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where2

sign(z) =
{

0, if z ≤ 0,

1, if z > 0.
(5.2.2)

The numbers d0, d1, . . . , dm−1, and T in (5.2.1) are assumed to be integers.
The class �(m) of switching functions of m variables for which there exist ds and T

satisfying (5.2.1) is called the class of single-threshold switching functions. It is quite
difficult to determine whether a given function f (z0, . . . , zm−1) belongs to the class
�(m). For instance, no analytical methods are available for this purpose. Tables have
been constructed (124,649,650) that enable to determine whether a switching function
is in �(m) according to m + 1 certain characteristics of the function and to solve the
so-called threshold synthesis problem to determine weights ds (s = {0, 1, . . . , m −
1}) and the threshold T for a given single-threshold switching function that minimize
the quantity T + ∑m−1

s=0 ds.
There are fairly sophisticated methods for the synthesis of networks with a single

threshold element. The situation is more difficult for threshold networks realizing
functions not in �(m), and the problem of synthesis of threshold element networks
in which the number of inputs of threshold elements exceeds the number of variables
of the function realized by the entire network is especially complex.

In view of this situation, we propose in this section a spectral characterization
of �(m). We pay special attention to spectral methods for synthesis of thresh-
old element networks realizing both completely and partially specified switching
functions.

Several papers in this area have been related to the properties of threshold el-
ements and the links to neural networks with extensions to multiple-valued logic
(21,22,376,384,593). Recent achievements in circuit implementation of threshold
logic are reviewed in Reference 53. An algorithm for efficient threshold logic syn-
thesis aimed at delay minimization has been proposed in Reference 677, see also
Reference 417. Realization of large logic circuits by programmable threshold logic
gate arrays has been discussed in Reference 309.

In this section, we discuss the spectral approaches to the threshold logic synthesis.
Thanks to the isomorphism between the variables zs and the Rademacher functions

Rs+1(z), we may view the representation of a switching function in �(m) in the
form (5.2.1) as its expansion in an orthogonal series of Walsh functions. In this
interpretation, we consider series containing m + 1 terms. To calculate the value of
the switching functions, we need the sign of the sum of the series; that is, it suffices
to consider the sign digit of the adder computing the sum. Thus, the spectral analysis
and synthesis methods developed in the preceding sections may be utilized for this
narrow class �(m) of switching functions.

2The reader is warned that we are using two different “sign” functions (see the definition of sign(σ) in the
footnote on page 6).
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5.2.2 Identification of Single Threshold Functions

We now define the concept of k-monotonicity, k = 1, . . . , m, which proves very useful
for the identification of single-threshold functions and the synthesis of threshold
element networks.

Two switching function f1, and f2 of m variables are said to be comparable if

f1(z0, . . . , zm−1) ≤ f2(z0, . . . , zm−1) (5.2.3)

or

f1(z0, . . . , zm−1) ≥ f2(z0, . . . , zm−1), (5.2.4)

for all (z0, . . . , zm−1).
Fix k (1 ≤ k ≤ m) variables of a functionf (z0, . . . , zm−1). The functionf is said to

be k-comparable if any two switching functions obtained by substituting the constants
0, 1 for the fixed k variables are comparable and this property is independent of which
k variables are fixed and how. The function f is said to be n-monotone (1 ≤ n ≤ m)
if it is k-comparable for all k = 1, 2, . . . , n. An m-monotone function will be called
completely monotone.

Theorem 5.2.1 (649) If f (z0, . . . , zm−1) is 	m/2
-monotone, it is completely mono-
tone. (	a
 denotes the largest integer ≤ a.)

The next theorem establishes the connection between the monotonicity and the
concept of a single-threshold function.

Theorem 5.2.2 (649) If f ∈ �(m), then f is completely monotone; if m ≤ 6 and f

is completely monotone, then f ∈ �(m).

A completely monotone switching function that is not single threshold was con-
structed by Moore (649) for m = 12. We now discuss the use of spectral methods
for the identification of 1, 2-monotone functions, leading to corresponding necessary
conditions for a switching function to be single threshold. Denote

�f (q) =
∑

‖z‖=q

f (z), (5.2.5)

�s(q) = 2m
∑

‖w‖=q

‖S(w)‖, (5.2.6)

�B(q) =
∑

‖τ‖=q

B(τ), q = 0, 1, . . . , m, (5.2.7)

where ‖z‖, ‖w‖, ‖τ‖ denote the number of 1 values in the binary expansions of the
numbers z, w, and τ, and S(w) is the spectrum and Bf (τ) the autocorrelation function
of f (z).
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Theorem 5.2.3 A function f (z0, . . . , zm−1) is 1-monotone iff

m−1∑
q=0

�f (q)(m − q) = 1

2
�B(1), (5.2.8)

or

�s(1) + �B(1) = m�B(0). (5.2.9)

Thus, either of the conditions (5.2.8) or (5.2.9) may be used to check whether a
given switching function is 1-monotone.

Example 5.2.1 Table 5.2.1 defines a switching function f (z0, z1, z2, z3) for which
�f (0) = �f (1) = 0, �f (2) = 3, �f (3) = 4, �f (4) = 1, �B(0) = 8, �B(1) = 20,
and �s(1) = 12. Since both conditions (5.2.8) and (5.2.9) are satisfied, f is 1-
monotone.

Theorem 5.2.4 A 1-monotone function f (z0, . . . , zm−1) is 2-monotone iff

2m
m−1∑
p=1

(m − p)|S(2ip )| + �B(2) =
(

m

2

)
�B(0), (5.2.10)

TABLE 5.2.1 Functions � and f in Examples 5.2.1 and
5.2.2 and Their Spectral and Autocorrelations.

z, w, τ f (z) 16S(w) B(τ) φ(z) 16S(w) B(τ)

0 0 8 8 0 5 5
1 0 −4 6 0 −3 2
2 0 −4 6 0 −3 2
3 0 0 4 0 1 2
4 0 −2 4 0 −3 2
5 0 −2 4 0 1 2
6 1 2 4 0 1 2
7 1 2 4 1 1 0
8 0 −2 4 0 −3 2
9 1 2 4 0 1 2

10 0 −2 4 0 1 2
11 1 2 4 1 1 0
12 1 0 2 0 1 2
13 1 0 2 1 1 0
14 1 0 2 1 1 0
15 1 0 2 1 −3 0
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where i1, i2, . . . , im−1 ∈ {0, 1, . . . , m − 1} are defined by the condition

|S(2i1 )| ≤ |S(i2 )| ≤ · · · ≤ |S(2im−1 )|. (5.2.11)

We thus have a condition (5.2.10) providing a check on the 2-monotonicity of a
switching function.

Example 5.2.2 Turning again to the function f (z0, z1, z2, z3) in Table 5.2.1, we have
24S(20) = −4, 24S(21) = −4, 24S(22) = −2, 24S(23) = −2, �B(0) = 8, �B(2) =
22. Thus, i1 = 0, i2 = 1, i3 = 2, and

24
3∑

p=1

(4 − p)|S(2ip )| + �B(2) = 12 + 8 + 2 + 22 = 44

and (
4

2

)
�B(0) = 48.

Thus, the condition (5.2.10) is not satisfied, and f is not 2-monotone; hence, it is
not a single-threshold function.

Example 5.2.3 The function φ(z0, . . . , z3) defined in Table 5.2.1 has �s(1) = 12,
�B(1) = 8, �B(0) = 5, and thus (5.2.9) holds and φ is 1-monotone. Furthermore,
24S(20) = 24S(21) = 24S(22) = 24S(23) = −3; �B(2) = 12; i1 = 0, i2 = 1, i3 =
2, i4 = 3, and

24
3∑

p=1

(4 − p)|S(2ip )| + �B(2) = 9 + 6 + 3 + 12 = 30,

and (
4

2

)
�B(0) = 30.

Thus, the condition (5.2.10) is satisfied and so φ is 2-monotone. But in this case,
	m/2
 = 2, and so, by Theorems 5.2.1 and 5.2.2, φ is a single-threshold function.

It is a laborious matter to check k-monotonicity when k ≥ 3; in practice, there-
fore, tables of monotone functions are often used (124,649), according to which a
switching function may be identified as being in class �(m) on the basis of the
m + 1 characteristics S(0), S(20), . . . , S(2m−1) (these characteristics are often called
Chow parameters (101)). The tables also provide values of integers ds and T that
minimize

∑m−1
s=0 ds + T (see (5.2.1)). If (S(0), a0, a1, . . . , am−1), where ai = S(2i)
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z
0

zm-1

TE

n

f(z)}
FIGURE 5.2.1 Block diagram of a linear threshold network.

for i = 0, . . . , m − 1, conform to these tables so that the corresponding switching
function is single threshold, we write (S(0), a0, a1 . . . , am−1) ∈ �.

Since the fraction of switching functions of m variables, which are single-threshold
switching function, tends to zero quite rapidly as m → ∞ [649], it is important to
consider the analysis and synthesis of networks containing one threshold element and
additional equipment, and also networks of several threshold elements.

Let us consider the class of linear-threshold networks consisting of a linear block
of EXOR circuits and one threshold element (see Fig. 5.2.1).

Theorem 5.2.5 Any switching function may be realized by a linear-threshold
network.

Proof. The assertion follows from the fact that any switching function may be
represented by a finite series of Walsh functions and from the isomorphism bet-
ween the multiplicative group of Walsh functions and the group of linear switching
functions.

The number n of inputs for the threshold element may exceed the number m of
variables of the switching functions. We now consider the important special case
n = m.

Theorem 5.2.6 A switching function may be realized by a linear-threshold net-
work in which the number of threshold element inputs is equal to the number
m of variables of the switching function iff there exist w0, . . . , wm−1, such that
(S(0), S(w0), S(w1), . . . , S(wm−1)) ∈ � and the matrix (w) whose rows are the bi-
nary expansions of the numbers wi, (i = 0, 1, . . . , m − 1) is nonsingular over GF (2);
that is, the determinant over GF (2) is |w|2 �= 0.

Note that in this case the linear block ⊕ in Fig. 5.2.1 computes the prod-
uct of (z0, . . . , zm−1) by the matrix [←−w ] (where ←−w = ∑m−1

s=0 w
(s)
i 2s if wi =∑m−1

s=0 w
(s)
i 2m−1−s), w

(s)
i ∈ {0, 1}.

The proof of Theorem 5.2.6 is based on the Theorem 2.6.7 for the case p = 2.

Example 5.2.4 Consider the function f (z0, z1, z2) defined by Table 5.2.2
and its Walsh spectrum S(w). Setting w0 = 1, w2 = 2, w2 = 7, we have
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TABLE 5.2.2 Function f in Example 5.2.4 and Its
Spectrum.

z, w f (z) 8S(w)

0 0 5
1 1 1
2 1 −1
3 1 −1
4 1 −1
5 0 −1
6 0 1
7 1 −3

(S(0), S(1), S(2), S(7)) ∈ � and

|w|2 =

∣∣∣∣∣∣∣
0 0 1

0 1 0

1 1 1

∣∣∣∣∣∣∣
2

= 1.

Thus, f (z0, z1, z2) can be realized by a linear-threshold network with n = m = 3
(see Fig. 5.2.2), with weights d1 = 1, d2 = 1, d3 = 2, and the threshold T = 1.

Since not every switching function is realizable by a linear-threshold network
with n ≤ m, we are naturally interested in upper bounds for the number n of
threshold element inputs for an arbitrary switching function f (z). The results pre-
sented below are relevant to both completely and incompletely specified switching
functions.

Let B(f0,f0), B(f1,f1) denote the autocorrelation functions of the characteristic func-
tions of occurrence of 0 and 1, respectively, in the original function f and B(f0,f1)
their cross-correlation function. By the characteristic function, we mean the switch-
ing function fi(z) such that fi(z) = 1 iff f (z) = i. It is clear that for incompletely
specified functions f �= f1, f �= f0 (where f (z) is undefined if f (z) is undefined)
and for any z we have f0(z) + f1(z) ≤ 1. If f (z) is completely specified, however,
then f = f1 and B(f1,f1)(τ) = Bf (τ).

z0

z1

z

two-input EXOR gate

2

1

1

2

1
f(z)

FIGURE 5.2.2 Realization of the function f in Example 5.2.4.
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Theorem 5.2.7 Any switching function f defined at N(f ) points is realizable by a
linear-threshold network with n threshold element inputs, where

n ≤ N(f ) − max

{
1

2
max
τ �=0

(B(f0,f0)(τ) + B(f1,f1)(τ)), (5.2.12)

max
τ �=0

B(f0,f1)(τ)

}
.

For the proof, we need two lemmas, that are also of an independent interest.

Lemma 5.2.1 Let f be a switching function that is not defined at d(f ) points. Then,
there exists a completionf̃ of f such that

LW (f̃ ) ≥ d(f ), (5.2.13)

where LW (f̃ ) is the number of zero coefficients in the Walsh expansion off̃ .

The proof follows easily from the linear independence of the rows of the Walsh
matrix and from (3.1.2).

Lemma 5.2.2 Let f be a switching function undefined at d(f ) points. Suppose that
there are d1(f ) + d0(f ) points p1, . . . , pd1(f ), q1, . . . , qd0(f ) at which f is defined,
such that

f (2pj) �= f (2pj + 1), (j = 1, . . . , d1(f )), (5.2.14)

f (2qs) = f (2qs + 1), (s = 1, . . . , d0(f )). (5.2.15)

Then there exists a function φ(z) such thai, if f (z∗) is defined,

sign(φ(z∗)) = f (z∗), (5.2.16)

LW (φ) ≥ d(f ) + max{d1(f ), d0(f )}. (5.2.17)

Proof. We shall prove that there exists a function φ = φ1 satisfying (5.2.16), such
that

LW (φ1) ≥ d(f ) + d1(f ). (5.2.18)

(The proof that there exists a function φ0 satisfying (5.2.16) such that LW (φ0) ≥
d(f ) + d0(f ) is similar.)

We first note that for any φ(z),

LW (φ(z)) = LW (φ(2z) + φ(2z + 1)) + LW (φ(2z) − φ(2z + 1)). (5.2.19)
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This follows from the factorization (3.1.3) of the Walsh matrix or from
Theorem 3.1.1.

We now see that for any y1, . . . , yd1(f ) there exists φ1(z) such that, if f (z∗) is
defined,

{
sign(φ1(z∗)) = f (z∗),

φ1(2pj) + φ1(2pj + 1) = yj, j = 1, . . . , d1(f ),
(5.2.20)

and φ1(z∗) = f (z∗) if z∗ �= 2pj, 2pj + 1 for j = 1, . . . , d1(f ). In view of (5.2.20),
we may assume that the function φ1(2z) + φ1(2z + 1) is not defined at the points pj ,
j = 1, . . . , d1(f ), and hence, by Lemma 5.2.1,

LW (φ1(2z) + φ1(2z + 1)) = d1(f ). (5.2.21)

Now, the functions φ(2z) + φ(2z + 1) and φ(2z) − φ(2z + 1) are also not defined
at no less than d(f ) points where f (2z) or f (2z + 1) is not defined. Hence, again by
using Lemma 5.2.1 and (5.2.19), we obtain (5.2.18).

Proof of Theorem 5.2.7. We first note that

n ≤ 2m − LW (f ). (5.2.22)

This follows from the isomorphism of the group of linear switching functions and
the group of Walsh functions.

In addition, for any switching function f (z), there always exist linear transforma-
tions σ1 and σ0 of z such that, if we define a switching function fσ1 (z) and fσ0 (z)
by

fσ1 (σ1 � z) = fσ0 (σ0 � z) = f (z), mod 2,

then the number of points z such that fσ1 (2z) �= fσ1 (2z + 1) and fσ0 (2z) = fσ0 (2z +
1) is equal to maxτ �=0 B(f0,f0)(τ) and 1

2 maxτ �=0(B(f0,f1))(τ) + B(f1,f1)(τ), respec-
tively.

In view of Theorem 2.7.4, the matrices σ1 and σ0 may be found from the conditions

σ1 � τ1 = 1, (5.2.23)

σ0 � τ0 = 1,

with calculations modulo 2, where

max
τ �=0

(B(f0,f1)(τ) + B(f1,f1)(τ)) = B(f0,f0)(τ0) + B(f1,f1)(τ0).
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TABLE 5.2.3 Function f and the Autocorrelation
Function Bf in Example 5.2.5.

z, τ f (z) Bf (τ)

0 0 5
1 0 4
2 1 2
3 1 2
4 1 2
5 1 2
6 0 4
7 1 4

Since LW (f (σ � z)) = LW (f (z)) for any σ (see Theorem 2.6.7) and N(f ) = 2m −
d(f ), formula (5.2.12) now follows from (5.2.22) and Lemma 5.2.2.

Corollary 5.2.1 For any completely specified switching function f of m variables,

n ≤ 2m − max

{
2m−1 − Bf (0) + max

τ �=0
Bf (τ), Bf (0) − min

τ �=0
Bf (τ)

}
(5.2.24)

This follows from (5.1.2) with N(f ) = 2m by using the fact that

B(f0,f0)(τ) = 2m − 2Bf (0) + Bf (τ), (5.2.25)

B(f0,f1)(τ) = Bf (0) − Bf (τ). (5.2.26)

Example 5.2.5 Table 5.2.3 defines a completely specified switching function
f (z0, z1, z2) and the corresponding B(τ). It is clear from the table and from (5.2.24)
that

n ≤ 23 − max

{
4 − 5 + max

τ �=0
Bf (τ), 5 − min

τ �=0
Bf (τ)

}
= 5.

Remark 5.2.1 Thanks to the isomorphism between the linear switching function
f and the Walsh functions (Theorem 2.3.5), formulas (5.2.12) and (5.2.24) yield
upper bounds for the number of nonzero coefficients in the Walsh expansions of the
completions of partially defined switching function f .

To conclude this section, we point out that the spectral methods considered above
may also be used in synthesis and analysis of networks of many-valued threshold
elements, as described in References 21, 22, 23, 376, and 405.
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5.3 COMPLEXITY OF LOGIC FUNCTIONS

In the following sections, we shall be studying some optimization problems for logic
functions and spectral methods for their solution. Before solving an optimization
problem, we must have criteria for the complexity of systems of logic functions. This
section is therefore devoted to some basic results in regard to complexity of logic
functions. Most of the discussion is devoted to binary logic. The reader should note
that although this section is essentially auxiliary in nature, it is necessary for a good
understanding of the subsequent sections.

5.3.1 Definition of Complexity of Systems of Switching Functions

The complexity of a system of logic functions is defined as the sum of complexities
of the individual functions. The latter concept will now be defined.

By the complexity L(f ) of a switching function f (z0, . . . , zm−1), we mean the
minimum number of two- and one-input elements necessary for a network realizing
f ; that is, L(f ) is the complexity of a minimal implementation of f .

It is clear that complexity in terms of two-input elements does not necessarily
imply such implementation of logic functions. It is rather related to equivalent
networks consisting of these basic elements that can be derived from various
implementations of switching functions by different technological platforms. Thus,
reduction to equivalent networks of simplest two-input elements permits a uniform
comparison of different possible implementations and makes complexity analysis
independent on technological issues.

Yablonskii (652) has conjectured that the labor involved in determining the exact
value of L(f ) is roughly of the same order of magnitude as that required to construct
a minimal network for f by the brute-force method. Since this conjecture seems
highly reasonable, the theory of network complexity (342,519,526) deals mainly with
asymptotic (m → ∞) estimates for the complexity of functions in various classes.
Shannon was the first to point out that although almost all functions admit only the
most complex network implementation, the functions actually used in practice are
quite simple (519). Since the exact complexity of a switching functions is generally
impossible to determine, there have been introduced special functionals on the set
of switching functions, known as complexity criteria. These criteria actually provide
an upper bound for the complexity, and the level curves of each criterion induce a
classification of functions according to their complexity.

To be precise, a complexity criterion on the set of switching functions is a functional
π(f ) with the following property.

There exists a monotone real-valued function θπ(t) such that, for any sequence of
functions fm(z0, . . . , zm−1), m = 1, 2, . . ., for which

lim
m→∞ π(fm)/m log2 m = ∞,

the following two conditions are satisfied:
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1. Any function f of m variables such that π(f ) ≤ π(fm) has complexity

L(f ) � Qπ(π(fm)), (5.3.1)

(we write αm � βm if limm→∞ αm/βm ≤ 1, and αm ∼ βm if αm � βm and
βm � αm).

2. For almost all such functions,

L(f ) � Qπ(π(fm)), (5.3.2)

that is, the fraction of functions f not satisfying this condition tends to zero as m →
∞. (Henceforth, we shall use this terminology freely. We say that a proposition A

holds for almost all switching functions of m variables iff the fraction of functions of
m variables for which A holds tends to 1 as m → ∞.)

The function Qπ(t) of the definition enables us to estimate the actual complexity
of a switching function in terms of the criterion, and Qπ(π(fm)) will be called the
complexity of fm relative to π or the π-complexity of fm.

To facilitate the comparison of criteria, it is convenient to normalize them in such
a way that Qπ(t) is the same for all criteria π. We set

Qπ(t) = t

log2 t
, (5.3.3)

since, under quite broad assumptions, the asymptotic estimates for complexity will
have the form π(fm)/ log2 π(fm) [526].

Note that the values of complexity criteria are independent of the choice of the
basis system of elements participating in the design of the network.

An example of a very simple complexity criterion is 2m, where m is the number of
variables on which the switching function depends essentially. Denote this criterion
by ζ(f ).

The choice of this functional as a criterion is justified by the following proposition
(first proved by Shannon and Lupanov (342,519)). For almost all switching functions
of m variables, the complexity L(m) of a minimal network realizing the switching
function satisfies the asymptotic estimate

L(m) ∼ 2m

m
. (5.3.4)

We now present another important sequence of complexity criteria.
If

∑k−1
i=0 ti = 1, for 0 ≤ ti ≤ 1, then the entropy function is defined

as H(t0, t1, . . . , tk−1) = −∑k−1
i=0 ti log2 ti, (where 0 log2 0 = 0 by convention).

Then,

0 ≤ H(t0, t1, . . . , tk−1) ≤ log2 k. (5.3.5)
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We can represent the function fm(z0, . . . , zm−1) by a vector of length 2m

of function values F = [fm(0, 0, . . . , 0), fm((0, 0, . . . , 1), . . . , fm(1, 1, . . . , 1)]T .
Divide this vector into 2m−r nonoverlapping subvectors of the length 2r. Set pi(fm) =
li(fm)/2m−r, where li(fm) is the number of distinct subvectors of the ith type in fm.
Now define a functional

µr(fm(z0, . . . , zm−1)) =
{

2m−rH(p0, p1, . . . , pR−1), if r ≤ m,

0, if r > m,
(5.3.6)

where R = 22r
.

The values of the functionals µr(r = 0, 1, . . .) are obtained by substituting con-
stants for m − r variables of the original function in all possible ways. Thus the values
of µ1, are defined by substituting constants in all possible ways for m − 1 variables;
each such substitution determines a pair of assignments of the original function whose
variables differ in only one position, and µ1 is defined by the entropy function of the
frequencies with which the various pairs appear.

It is evident that the values of the criteria µr depend on the order of the variables.
If the order of the variables of fm is T , let us denote µr(fm) by µT

r (fm) and

µ̂r(fm) = min
T

µT
r (fm). (5.3.7)

Theorem 5.3.1 (526) The functionals µr and µ̂r are complexity criteria. Moreover,
for every r, µ̂r is stronger than µ̂r−1, in the sense that µ̂r gives a sharper upper bound
than µ̂r−1.

Theorem 5.3.1 shows that the “power” of the criterion µ̂r increases with increasing
r, but on the contrary it becomes more difficult to calculate, since to calculate µ̂r the
total of ( m

m − r ) · 2m operations are required to examine ( m
m − r ) = ( m

r ) different
arrangements of the m − r variables, and the complexity of each alternative is 2m.

Example 5.3.1 Let fm(z0, . . . , zm−1) be a sequence of functionally separable switch-
ing functions, that is, functions of the form

fm(z0, . . . , zm−1) = Fm(z0, . . . , zm−r−1, gm(zm−r, . . . , zm−1)), (5.3.8)

where Fm and gm are switching functions.
Let us calculate µr(fm). Substitution of constants for z0, . . . , zm−r−1 yields a

total of four functions: 1, 0, gm, gm, and thus the 2r-component subvectors in the
representation of fm may have only four forms, whose frequencies we denote by
p0, p1, p2, p3. Then, by (5.3.6),

µr(fm) = 2m−rH(p0, p1, p2, p3) ≤ 2m−r+1,
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whence, in view of (5.3.3),

L(fm) �
2m−r+1

m − r + 1
, (5.3.9)

and this bound is asymptotically the best possible (526).

The properties of the criteria µ̂r (r = 0, 1, . . .) yield information on the structure
of the most complex functions. In particular, the most complex switching functions
have approximately the same number of zeros and ones, and substitution of constants
for m − r arbitrary variables in the most complex switching function of m variables
yields all switching functions of r variables; moreover, the number of such switching
functions of each type are approximately the same.

5.3.2 Complexity and the Number of Pairs of Neighboring Minterms

The next complexity criterion that we consider is quite widely used in practice. We
first recall a few simple definitions from switching algebra.

We call z∗ a minterm of a switching function f (z) if f (z∗) = 1, and a maxterm for
f (z) if f (z∗) = 0. Minterms (maxterms) z∗

1 and z∗
2 are said to match if z∗

1 ⊕ z∗
2 = 2i

(mod 2).
A switching function φ(z) = ∏q

s=1(zis )
αi, (q ≤ m, zα = z if α = 1, zα = z = 1 −

z if α = 0) is called a prime implicant of a function f (z0, z1, . . . , zm−1) if φ(z) = 1
always implies f (z) = 1; the integer q will be called the length of φ(z). We shall also
say that the prime implicant φ(z) covers minterms

∑
z φ(z) of f (z) (a maxterm z∗ is

covered by φ(z) if φ(z∗) = 1).
A set of prime implicants φ1(z), . . . , φl(z) of a switching function f (z) will be

called a minimal complete set of implicants if any minterm of f (z) is covered by
at least one implicant φi(z) and the sum of lengths of φ1(z), . . . , φl(z) is minimal.
The disjunction (logical sum) of all prime implicants in a minimal complete set
is the minimal disjunctive form of f (z), which in turn determines an economical
implementation of f (z) (224, 247).

The construction of minimal complete sets of implicants is among the most
important and difficult problems in the theory of network synthesis
(78,110,111,224,239,247,265,325,373,362,490).

We now introduce another complexity criterion for f (z) = f (z0, . . . , zm−1). Let
∼
η (f ) denote the number of unordered pairs of matching minterms or maxterms in
f (z), that is,

∼
η (f ) =

∑
‖τ‖=1

2m−1∑
z=0

(f (z)f (z ⊕ τ) + f (z)f (z ⊕ τ)) mod 2, (5.3.10)
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where ‖τ‖ is the number of 1-values in the binary expansion of τ. From now on, we
shall compare the complexity of pairs of switching functions (f1, f2) such that

2m−1∑
z=0

f1(z) =
2m−1∑
z=0

f2(z).

Therefore, if
∑2m−1

z=0 f (z) is known, the number

∑
‖τ‖=1

2m−1∑
z=0

f (z)f (z ⊕ τ)

of matching maxterms may easily be calculated in terms of the number

∑
‖τ‖=1

2m−1∑
=0

f (z)f (z ⊕ τ)

of matching minterms. Indeed, we have

∑
‖τ‖=1

2m−1∑
z=0

f (z)f (z ⊕ τ) =
∑

‖τ‖=1

2m−1∑
z=0

(1 − f (z))(1 − f (z ⊕ τ))

=
∑

‖τ‖=1

2m−1∑
z=0

(1 − f (z) − f (z ⊕ τ) + f (z)f (z ⊕ τ))

= 2m − 2‖f‖ +
∑

‖τ‖=1

2m−1∑
z=0

f (z)f (z ⊕ τ).

We may thus characterize the complexity of a switching function by the quantity
η(f ), defined as the number of pairs of matching constituents of unity:

η(f ) =
∑

‖τ‖=1

2m−1∑
z=0

f (z)f (z ⊕ τ). (5.3.11)

An experimental check of this criterion shows that in most cases it provides a
quite satisfactory estimate of the complexity of network implementations of f (z). In
particular, it can be shown, see Reference 288, that the number of nonoverlapping
pairs of minterms in f (z) (for which ‖f‖ = 2m−1) is equal to 1

4 (2m+1η(f )/m)1/2 for
almost all f (z) that depend on m variables. Consequently, at least 1

2 (2m+1η(f )/m)1/2

minterms are covered by 1
4 (2m+1η(f )/m)1/2 prime implicants of the length m − 1.
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Remark 5.3.1 It would be more appropriate to call the criterion η (and its gen-
eralizations to multivalued logic, see 5.3.3) not the complexity but the simplicity of
the switching functions, since for almost all switching functions a decrease in η(f )
implies an increase in the complexity of the minimal implementation for f . We shall
nevertheless continue to use the term “complexity,” since the only important factor
for our purposes is the monotonicity of the complexity of the minimal implementation
of f as a function of η(f ).

The specific complexity criteria ξ, µ̂r, for r = 0, 1, . . ., and η were selected in
view of the fact that, on the one hand, they are used quite frequently, and on the
other hand they provide a good illustration of the effective use of spectral methods in
optimization problems.

5.3.3 Complexity Criteria for Multiple-Valued Functions

The complexity criteria ξ(f ), µ̂(f ) (r = 0, 1, . . . ), and η(f ) considered above are
readily generalized to multiple-valued logic functions. We shall do this for η(f ).

If f (z) = f (z0, . . . , zm−1) is a p-valued logical function, we define its complexity
η(f ) to be the number of sets {y1, . . . , yp} such that

{
f (y1) = f (y2) = · · · = f (yp),

y2 � y1 = y3 � y2 = · · · = yp � yp−1 = ps mod p,

that is, the p-ary expansions of the numbers yi � yi+1 (mod p), (i = 1, 2, . . . , p − 1)
have the form (0, . . . , 0︸ ︷︷ ︸

s

, 1, 0, . . . , 0).

5.4 SERIAL DECOMPOSITION OF SYSTEMS OF SWITCHING
FUNCTIONS

5.4.1 Spectral Methods and Complexity

In this section, we discuss spectral methods for solving certain optimization problems
related to the design of switching networks. We shall use the languages of spectral and
correlation characteristics. In contrast to the methods of classical algebra of logic, the
solutions will be analytical, in the sense that the calculation of the final result does not
require an exhaustive search of all possible alternatives (in other words, the number of
elementary operations will not be an exponential but only a linear or at most quadratic
function of the number of points at which the system of functions is defined).

The topic studied in this section and the next is linearization of logic functions, that
is, the problem of representing a given system of logic functions as the superposition
of a system of linear functions and a residual nonlinear part of minimal complexity.
Any such representation determines the design of a network realizing the original
system as a serial connection of two blocks, a linear and a nonlinear. For a system
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of p-valued logical functions, the linear block consists of mod p (p ≥ 2) adders and
networks implementing multiplication by constants.

We shall show that the complexity of the linear block increases asymptotically
no faster than m2/ logp m as m → ∞, where m is the number of variables, whereas
the complexity of the nonlinear block is almost always an exponentially increasing
function of m (see (5.3.4)). For this reason, the complexity of the linear block may
be ignored in linearization problems.

Throughout this section and in Section 5.4.6, we shall assume that all systems of
functions defining the behavior of the device to be designed are completely specified.
This section is devoted to the case of greatest practical importance switching functions
p = 2. We employ the complexity criteria ξ, µ̂, η introduced in Section 5.3.

Recall that the complexity of a system of functions is the sum of complexities of
the switching function occurring therein.

A rigorous formulation of the linearization problem is as follows. Consider a
system of switching function f (z) = {f (i)(z0, . . . , zm−1)} for i = 0, 1, . . . , k − 1.
Let  denote the class of all nonsingular (mod 2) (m × m) matrices and α any one
of our complexity criteria. Problem: Given α, devise an algorithm that, for any f (z),
computes a matrix σ ∈  that minimizes α(fσ), where fσ is defined by

fσ(σ � z) = f (z), mod 2. (5.4.1)

We shall refer to this as the linearization problem relative to α. In Section 5.4.2 to
5.4.4, we will consider the linearization problems relative to the criteria ζ, µ̂, and η.

5.4.2 Linearization Relative to the Number of Essential Variables

We first consider the linearization problem for the most easily calculated criterion ξ,
which means the criterion taking into account the number of essential variables in a
nonlinear part.

Recall that ξ(φ) = 2m, where φ is a switching function depending essentially on
exactly m of its variables (φ is said to depend essentially on zi if

φ(z0, . . . , zi−1, 0, zi+1, . . . , zm−1) �= φ(z0, . . . , zi−1, 1, zi+1, . . . , zm−1)

for some z0, . . . , zi−1, zi+1, . . . , zm−1.
Let f (z) = {f (i)(z0, . . . , zm−1)}, i = 0, 1, . . . , k − 1 be a system of switching

functions depending on all their variables. Set

B(τ) =
k−1∑
i=0

Bi(τ) =
k−1∑
i=0

2m−1∑
z=0

f (i)(z)f (i)(z ⊕ τ), mod 2.

To determine a matrix σξ minimizing ξ(fσ) (see (5.4.1)), we shall use the total
autocorrelation functions Bf (τ) thus defined.

Note that for any τ we have Bf (τ) ≤ Bf (0).
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Let GI (f ) denote the set of all values τ such that B(τ) = Bf (0) =∑k−1
i=0

∑2m−1
z=0 f (i)(z).

It is clear that GI (f ) is a group (with respect to ⊕ (mod 2)), which, in accordance
with Section 5.1.3, we call the inertia group of the system f .

Let τ0, τ1, . . . , τa(f )−1 be an arbitrary basis of GI (f ) (i.e., a maximal set of ele-
ments of GI (f ) linearly independent modulo 2).

Theorem 5.4.1 Let T be an arbitrary (m × m) nonsingular binary matrix (T ∈ )
whose set of columns includes a basis of the inertia group GI (f ) of the system
{f (i)(z0, . . . , zm−1)} (i = 0, . . . , k − 1) of switching functions that depend essentially
on all their variables. Then,

min
σ∈

ξ(fσ) = ξ(fσξ
) = k2m−a(f ), (5.4.2)

and

σξ � T = Im =




1

1 0

0
. . .

1




mod 2, (5.4.3)

that is, σξ = T−1 mod 2.

Proof. The proof falls into two parts.

1. We first prove that ξ(fT−1 ) = k · 2m−a(f ).
Let Bσ(τ) be the total autocorrelation function of the system fσ (see (5.4.1)).
Then, by Theorem 2.7.4, if {τs} is a basis element of GI (f ),

BT−1 (T−1 ⊗ τs) = Bf (τs) =
k−1∑
i=0

2m−1∑
z=0

f (i)(z),

for s = 0, 1, . . . , a(f ) − 1.
But, by the definition of T , the binary expansion of T−1 � τs (mod 2) contains

exactly one 1; hence, it follows that f (i)(z) (i = 0, 1, . . . , k − 1) is independent
of a(f ) variables, that is,

ξ(f (i)
T−1 ) = 2m−a(f ),

ξ(fT−1 ) =
k−1∑
i=0

ξ(f (i)
T−1 ) = k2m−a(f ).
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2. We now prove that there is no σ ∈  such that

ξ(fσ) < k2m−a(f ).

Indeed, were σ a matrix satisfying this condition, there would exist
β0, β1, . . . , βa(f )−1+� (� ≥ 1) such that Bσ(βs) = ∑k−1

i=0
∑2m−1

z=0 f (i)(z) and
the binary expansion of βs contains exactly one 1, for s = 0, 1, . . . , a(f ) −
1 + �. Next, since σ−1 � βs �= σ−1 � βq (mod 2), (s �= q) and

B(σ−1 � βs) = Bσ(βs) =
K−1∑
i=0

2m−1∑
i=0

f (i)(z) mod 2,

for s = 0, 1, . . . , a(f ) − 1 + �, it follows that the system {σ−1 �
β0, . . . , σ

−1 � βa(f )−1+�} is linearly dependent (since σ−1 � βs ∈ GI (f ) and
the basis of GI (f ) contains exactly a(f ) elements). But since σ−1 ∈ , this
contradicts the assumption that

{
β0, β1, . . . , βa(f )−1+�

}
are linearly indepen-

dent.

Theorem 5.4.1 provides a procedure for determining a ξ-optimal linear transforma-
tion σξ of the variables of a system of switching functions and also an estimate for the
ξ-complexity of the nonlinear part corresponding to σξ , (see (5.4.2)). To settle these
questions, we need to only construct an arbitrary basis of the inertia group GI (f ) of
the system.

Example 5.4.1 Table 5.4.1 defines a system f (0), f (1) (m = 4, k = 2), and also its
total autocorrelation function Bf (τ). It follows from the table that

GI (f ) = {(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)}.

As a basis, we take τ0 = (0, 1, 0, 1), τ1 = (1, 0, 1, 0), (a(f ) = 2). Now set

T =




1 0 0 1

0 1 1 0

0 0 0 1

0 0 1 0


 .

Then,

σξ = T−1 =




1 0 1 0

0 1 0 1

0 0 0 1

0 0 1 0


 .
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TABLE 5.4.1 Function f = (f (0), f (1)) in Example 5.4.1,
the Total Autocorrelation Bf , and Linearly
Transformed Function fT−1 = (f (0)

T−1 , f
(1)
T−1 ).

z, τ z0z1z2z3 f (0) f (1) Bf f
(0)
T−1 f

(1)
T−1

0 0000 0 0 16 0 0
1 0001 1 0 8 0 0
2 0010 1 0 8 0 0
3 0011 1 1 8 0 0
4 0100 1 0 8 1 0
5 0101 0 0 16 1 0
6 0110 1 1 8 1 0
7 0111 1 0 8 1 0
8 1000 1 0 8 1 0
9 1001 1 1 8 1 0

10 1010 0 0 16 1 0
11 1011 1 0 8 1 0
12 1100 1 1 8 1 1
13 1101 1 0 8 1 1
14 1110 1 0 8 1 1
15 1111 0 0 16 1 1

The functions f
(0)
T−1 and f

(1)
T−1 are shown in Table 5.4.1, from where it is evident that

f
(0)
T−1 and f

(1)
T−1 do not depend essentially on z2, z3. Consequently, by (5.4.2),

ξ(fσξ
) = ξ(f (0)

T−1 ) + ξ(f (1)
T−1 ) = 4 + 4 = 8.

5.4.3 Linearization Relative to the Entropy-Based Complexity Criteria

We now consider linearization with respect to the criteria µ̂. Recall that for a switching
function f (z0, . . . , zm−1)

µr(f ) =
{

2m−rH(p0, . . . , pR−1), if r ≤ m,

0, if r > m,
(5.4.4)

where R = 22m
, H(p0, . . . , pR−1) = −∑R−1

i=0 pi log2 pi, and pi = li2−m+r

(0 log2 0 = 0), with li the number of subvectors of length 2r of the ith type in the
vector F = [f (0), . . . , f (2m − 1)]T of function values f . The criterion µ̂r(f ) is then
defined as the minimum of µr(f ) over all possible orders of the binary variables zi

of f .
Since µ̂0 depends on the number of 1 values in the truth vector of each function,

which remains invariant under any nonsingular linear transformation, it follows from
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(5.4.1) that for any σ

µ̂0(fσ) = µ̂0(f ),

and the linearization problem relative to µ̂0 is trivial.
We, therefore, proceed to the linearization problem for µ̂1, the most simply evalu-

ated criterion for which the problem is not trivial. Denote the corresponding optimal
linear transformation by σµ1

µ̂1(fσµ1
) = min

σ∈
µ̂1(fσ).

Let {f = (f (i)(z0, . . . , zm−1))} (i = 0, 1, . . . , k − 1) be a given system and Si(τ),
Bi(τ) the Walsh spectrum and the autocorrelation function of it, respectively. We set
Sf (w) = ∑k−1

i=0 Si(w), and Bf (τ) = ∑k−1
i=0 Bi(τ)

Theorem 5.4.2 Let

max
w�=0

|Sf (w)| = |Sf (w′)|, min
τ �=0

Bf (τ) = Bf (τ′), (5.4.5)

and

(00, · · · , 01) � σ̃ =
←−
w

′

σ̃ � τ′ =




0

0
...

0

1







mod 2, (5.4.6)

where
←
α= (αm−1, . . . , α0) if α = (α0, . . . , αm−1). Then, σµ1 = σ̃.

Proof. By the definitions of µ̂1, Sf (w) and Bf (τ),

µ̂1(f ) =
k−1∑
i=0

µ̂1(f (i)) = 2m−1H(p0, p1, p2, p3), (5.4.7)

where

p0 = 1 − 2−m+1Bf (0) + 2−mBf (1),

p1 = 2−m(Bf (0) − Bf (1) − 2mSf (2m−1)), (5.4.8)

p2 = 2−m(Bf (0) − Bf (1) + 2mSf (2m−1)),

p3 = 2−mBf (1).
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In view of (5.4.7) and (5.4.8), we may express µ̂1(f ) as

µ̂1(f ) = (Bf (1), S(2m−1), Bf (0), m) (5.4.9)

and by Theorems 2.6.7 and 2.7.4,

µ̂1(fσ) =
k−1∑
i=0

µ̂(f (i)
σ ) = (Bf (σ � 1), Sf (

←−−−−−−−←−−
2m−1 � σ−1), Bf (0), m).

The functional  is minimized by the matrix σ defined in (5.4.6). The value µ̂(fσµ1
)

is determined by substituting Bf (τ
′
) for Bf (1) and Sf (w

′
) for Sf (2m−1) in (5.4.7)

and (5.4.8), where τ
′

and w
′

are defined in (5.4.5).

Example 5.4.2 Table 5.4.2 defines a switching function f (z0, z1, z2, z3) and the
corresponding S(w), B(τ).

For this function, µ1(f ) = µ̂1(f ) = 8H(3/8, 2/8, 3/8) = 12.4.
It follows from the table that w′ = 7, τ′ = 14. Then, by (5.4.6),

σµ1 =




1 1 0 0

0 1 1 0

0 0 0 1

1 1 1 0


 .

The function fσµ1
(z), where fσµ1

(σµ1 � z) = f (z) (mod 2), is also given in
Table 5.4.2.

We have µ1(fσµ1
) = µ̂1(fσµ1

) = 8H(7/8, 1/8) � 4.4. Thus linearization brings
about a decrease in µ1 by a factor of 3.3 and in µ̂1 by a factor of 2.8.

5.4.4 Linearization Relative to the Numbers of Neighboring
Pairs of Minterms

We now proceed to the linearization relative to the criterion η (see Section 5.3.2) that
takes into account the merging of adjacent minterms and maxterms. Recall that the
criterion η(f ) for a switching function f (i)(z0, . . . , zm−1) is defined by

η(f (i)) =
∑

‖τ‖=1

2m−1∑
z=0

f (i)(z)f (i)(z ⊕ τ) mod 2, (5.4.10)

where ‖τ‖ is the number of 1 values in the binary expansion of τ.
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Given a system of switching functions f (z) = {f (0)(z), . . . , f (k−1)(z)}, we wish
to find a linear transformation matrix ση such that

max
σ∈

η(fσ) = η(fση ), (5.4.11)

where fσ is defined as before by

fσ(σ � z) = f (z) mod 2,

and  is the class of all (m × m) nonsingular binary matrices (σ ∈  iff |σ|2 = 1).
Let T = (τqs), where τqs ∈ {0, 1}, (q, s = 0, 1, . . . , m − 1), Bi(τ) be the autocor-

relation function of f = {f (i)(z)}, and Bf (τ) = ∑k−1
s=0 Bi(τ). Set

Bf (T ) =
k−1∑
s=0

Bf


m−1∑

q=0

τq,s2
m−1−q


 . (5.4.12)

Theorem 5.4.3 Let

max
T∈

Bf (T ) = Bf (Tη). (5.4.13)

TABLE 5.4.2 Function f in Example 5.4.2, Its
Spectrum Sf , Autocorrelation Bf , and the Linearly
Transformed Function fσµ1

.

z, w, τ f (z) 16Sf (w) Bf (τ) fσµ1
(z)

0 1 8 8 1
1 1 2 6 0
2 0 −2 2 1
3 0 0 2 0
4 1 2 2 1
5 0 0 2 0
6 1 0 6 1
7 1 6 6 0
8 0 0 2 1
9 0 2 2 0

10 0 −2 6 1
11 1 0 6 0
12 1 2 6 0
13 1 0 6 1
14 0 0 0 1
15 0 −2 2 0
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Then,

ση � Tη = Im =




1

1 0

0
. . .

1




mod 2. (5.4.14)

Proof. For any function f
(i)
σ (z) with (σ ∈ ), where f

(i)
σ (σ � z) = f (i)(z), let

Bσ,i(τ) denote the autocorrelation function and Bσ(τ) = ∑k−1
i=0 Bσ,i(τ). Then, by

Theorem 2.7.4,

Bσ(σ � τ) = Bf (τ). (5.4.15)

In addition, by the definition of η (see (5.4.10)), we see that for any fσ ,

η(fσ) = Bσ(Im). (5.4.16)

In view of (5.4.11)–(5.4.14), formulas (5.4.15) and (5.4.16) imply that

max
σ∈

η(fσ) = max
σ∈

Bσ(Im) = max
σ∈

Bσ(σ � σ−1)

= max
σ∈

B(σ−1) = max
T∈

B(T )

= B(Tη) = Bση (ση � Tη) = Bση (Im)

= η(fση ) mod 2.

Theorem 5.4.3 generates a simple procedure for determining the η-optimal linear
transformation ση.

We first calculate the autocorrelation function B(τ) = ∑m−1
i=0 Bi(τ) and then find

m linearly independent vectors over GF (2) such that the sum of Bf (τ) over them is
maximal.

These m vectors may be found recursively as follows.
Supposing that we already have s vectors, 1 ≤ s ≤ m − 1, τ0, τ1, . . . , τs−1 we find

τs from the condition

B(τs) = max
τ /∈Qs

B(τ), (5.4.17)

where Qs is the set of all linear combinations (mod 2) of the binary vectors
τ0, τ1, . . . , τs−1. It can be shown (288) that the vectors τ0, τ1, . . . , τm−1 thus
determined are columns of the matrix Tη, defined by (5.4.13). The η-optimal
matrix ση is now determined from (5.4.14).
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Example 5.4.3 Table 5.4.3 shows a system f (0)(z), f (1)(z) for m = 4 and the func-
tions B0(τ), B1(τ), and B(τ) = B0(τ) + B1(τ). We have η(f ) = η(f (0)) + η(f (1)) =
3 + 1 = 4. Using the procedure described above, we have from (5.4.13) that

Tη =




1 1 0 0

0 0 0 1

0 0 1 0

0 1 1 1


 , ση =




1 1 1 1

0 1 1 1

0 0 1 0

0 1 0 0


 .

The functions f
(0)
ση and f

(1)
ση (z) are shown in Table 5.4.3.

For this example, we have η(fση ) = η(f (0)
ση ) + η(f (1)

ση ) = 4 + 4 = 8, and the
η-optimal linear transformation doubles the number of matching pairs of
minterms.

Using the autocorrelation function Bf (τ), we can estimate the criteria η(f ) and
η(fση ).

The quantity 1
2Bf (τs), where τs is determined by the above procedure, is equal to

the number of pairs of minterms for fση , which are matched in the sth variable. For
example, if

Bf (τ0) = Bf (τ1) = · · · = Bf (τs) =
k−1∑
i=0

2m−1∑
z=0

f (i)(z), (5.4.18)

TABLE 5.4.3 Function f=(f (0), f (1)) in Example 5.4.3, Its Total Autocorrelation
Function Bf , and Linearly Transformed Function fση

= (f (0)
ση

, f (1)
ση

).

z, τ f (0)(z) f (1)(z) B0(τ) B1(τ) B(τ) f (0)
στ

(z) f (1)
ση

(z)

0 0 0 5 5 10 0 0
1 0 0 2 0 2 0 1
2 1 1 0 0 0 1 0
3 1 0 2 2 4 1 0
4 0 0 2 0 2 0 0
5 0 1 2 2 4 0 0
6 1 0 0 2 2 0 0
7 0 0 0 2 2 0 0
8 1 0 2 2 4 1 0
9 0 0 2 2 4 0 1

10 0 0 2 0 2 1 1
11 1 1 2 2 4 0 1
12 0 0 0 2 2 0 0
13 0 1 2 0 2 0 0
14 0 1 2 2 4 1 1
15 0 0 0 2 2 0 0
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it can be shown that as m → ∞ the complexity L(fση ) of a minimal network realizing
fση satisfies the asymptotic estimate

L(fση ) ∼ k2m−s−1

m − s − 1
. (5.4.19)

5.4.5 Classification of Switching Functions by Linearization

The linearization procedure of this section may be utilized in spectral analysis of
switching functions to identify certain important classes of functions.

As an example, consider the class of partially linear switching functions.

Definition 5.4.1 A switching function f (z) = f (z0, . . . , zm−1) is said to be partially
linear iff

f (z0, . . . , zm−1) = φ(z0, . . . , zm−b−1, l(zm−b, . . . , zm−1)), (5.4.20)

where l(zm−b, . . . , zm−1) = ⊕m−1
i=m−b cizi, ci ∈ {0, 1}, (mod 2).

It is apparent that when a function f has been identified as partially linear, the
design of a network implementation for it becomes much simpler.

Given a switching function f , let GI (f ) denotes the group of inertia points, that
is, β ∈ GI (f ) iff f (z) = f (z ⊕ β), (mod 2) (see Section 5.1.3).

Set a(f ) = log2 |GI (f )|, where |GI (f )| is the order of the group GI (f ).
We assume throughout that f essentially depends on all its variables zi, for i =

0, 1, . . . , m − 1.

Theorem 5.4.4 The function f (z0, . . . , zm−1) satisfies (5.4.20) iff

a(f ) = b − 1, (5.4.21)

and if β = (β0, . . . , βm−1) ∈ GI (f ), then βi = 0, i = 0, . . . , m − b − 1.

Proof. If f satisfies (5.4.20) (or, conversely, (5.4.21)), the matrices ση and Tη (ση �
Tη = Im (mod 2)) have the form shown in Fig. 5.4.1.

The a(f ) last columns of Tη are a(f ) linearly independent vectors in GI (f ), and
the function φ in (5.4.20) is defined by

φ(z) = fση (z). (5.4.22)

From Theorem 5.4.4, we see, setting b = m, that f is a linear function of all its
variables iff a(f ) = m − 1.

Example 5.4.4 Table 5.4.4 defines a function f (z) and its autocorrelation function
B(τ), (m = 4).
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Im-b

0

0 0

0 0

1

m-b

m-b

m

a(f )

a(f )

FIGURE 5.4.1 Matrices ση and Tη.

It follows from this table that B(0) = B(3) = ∑15
z=0 f (z) = 8, and so by

Theorem 5.1.3, GI (f ) = {(0, 0, 0, 0), (0, 0, 1, 1)}, f (z) = f (z ⊕ (0, 0, 1, 1))
(mod 2), a(f ) = 1. The assumptions of Theorem 5.4.4 hold with b = 2, and we have

Tη =




I2 | 0

− − − − − − − − −

0 | 1 1

0 1


 ,

and ση = Tη.

TABLE 5.4.4 Function f in Example 5.4.4, Its
Autocorrelation Bf , and Linearly Transformed
Function fση

.

z, τ f (z) Bf (τ) fση
(z)

0 0 8 0
1 1 0 0
2 1 0 1
3 0 8 1
4 0 4 0
5 1 4 0
6 1 4 1
7 0 4 1
8 0 4 0
9 1 4 0

10 1 4 1
11 0 4 1
12 1 4 1
13 0 4 1
14 0 4 0
15 1 4 0
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The switching function fση (z) (where fση (ση � z) = f (z) (mod 2)) is also shown
in Table 5.4.4.

Again by using the table, we see that

f (z) = fση (z0, z1, z2 ⊕ z3) = z0z1 ⊕ z2 ⊕ z3, mod 2.

Thus, an identification procedure for partially linear functions may be based on
the inertia group GI (f ) or, in other words, on the autocorrelation function B(τ) (since
β ∈ GI (f ) iff B(β) = ∑

z f (z); see Theorem 5.1.3).
To end this section, we note that the linearization methods considered above are

also useful in connection with other problems related to optimal ordering of the
variables in switching functions or linearization of systems of switching functions
(see Reference 207).

5.4.6 Linearization of Multiple-Valued Functions Relative
to the Number of Essential Variables

We first generalize the linearization method of Section 5.4.2 (criterion ξ based on the
minimization of the number of essential variables for a nonlinear part) to systems of
p-valued logic functions p ≥ 2, where p is a prime.

Let f (z0, . . . , zm−1) be a p-valued logic function. We shall say that f depends
inessentialy on the variable zi if for any fixed z0, . . . , zi−1, zi+1, . . . , zm−1,

f (z0, . . . , zi−1, r, zi+1, . . . , zm−1) = f (z0, . . . , zi−1, s, zi+1, . . . , zm−1),

for all r, s ∈ {0, 1, . . . , p − 1}.
If n is the number of p-ary variables on which f depends essentially, we set

ξ(f ) = pn.
For a system of functions f = (f (0), . . . , f (k−1)), we have

ξ(f ) =
k−1∑
i=0

ξ(f (i)).

Consider a system

f (z) = (f (i)(z0, . . . , zm−1)), i = 0, 1, . . . , k − 1, zi ∈ {0, 1, . . . , p − 1},

which depend essentially on all their variables. Let p be the set of all (m × m) p-ary
matrices that are nonsingular modulo p. In other words, σ = (σij) ∈ p iff |σ|p �= 0,
where |σ|p is the determinant of σ over GF (p), σij ∈ {0, 1, . . . , p − 1}.

The problem is to devise an algorithm computing a matrix σ = σξ ∈ p that, for
each f (z), minimizes ξ(fσ), where

fσ(σ � z) = f (z), mod p. (5.4.23)
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For each of the original logic function f (i)(z), we define a system of characteristic
functions

f
(i)
t (z) =

{
1, if f (i)(z) = t,

0, if f (i)(z) �= t.
(5.4.24)

Autocorrelation functions modulo p

B
(i)
t (τ) =

pm−1∑
z=0

f
(i)
t (z)f (i)

t (z � τ) mod p, (5.4.25)

where � stands for the subtraction modulo p, and the total autocorrelation function

Bp,2(τ) =
p−1∑
t=0

k−1∑
i=0

B
(i)
t (τ). (5.4.26)

We now define τs ∈ GI (f ) iff

Bp,2(τs) = Bp,2(0) = k · pm. (5.4.27)

The set GI (f ) is a group with respect to the addition modulo p, which we call the
inertia group of the initial system of logic functions. The motivation for the usage
of this term is that, as follows from (5.4.24)–(5.4.27), if τ ∈ GI (f ), then f (z) =
f (z ⊕ τ), mod p (see also Section 5.1).

Let a(f ) be the number of elements in any basis of GI (f ). The generalized version
of Theorem 5.4.1 to p-valued functions is stated as follows.

Theorem 5.4.5 Let T be an arbitrary nonsingular matrix (T ∈ p) whose set
columns include a basis of the inertia group of a system of k p-valued (p ≥ 2) logic
functions f (z), which depend essentially on all their m variables. Then,

min
σ∈p

ξ(fσ) = ξ(fσξ
) = k · pm−a(f ), (5.4.28)

σξ � T = Im =




1

1 0

0
. . .

1


 , mod p. (5.4.29)

The proof is analogous to that of the Theorem 5.4.1. The difference is that for
p-valued functions we must replace each function by its system of characteristic
functions (5.4.24), and the variables are now translated into not modulo 2 but modulo
p in the formula for the autocorrelation functions Bp,2(τ).
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TABLE 5.4.5 Function f=(f (0), f (1)) in Example 5.4.5
and the Characteristic Functions.

z, τ z0z1 f (0) f (1) f
(0)
0 f

(0)
2 f

(1)
1 f

(1)
2

0 00 0 1 1 0 1 0
1 01 2 2 0 1 0 1
2 02 2 1 0 1 1 0
3 10 2 1 0 1 1 0
4 11 0 1 1 0 1 0
5 12 2 2 0 1 0 1
6 20 2 2 0 1 0 1
7 21 2 1 0 1 1 0
8 22 0 1 1 0 1 0

Example 5.4.5 Table 5.4.5 defines a system f = (f (0), f (1)) with p = 3, k = 2, m =
2. The table also shows the nonvanishing characteristic functionsf

(0)
0 , f

(0)
1 , f

(1)
1 , f

(1)
2 .

Table 5.4.6 shows the autocorrelations B
(0)
0 , B

(0)
2 , B

(1)
1 , B

(1)
2 for the characteristic

functions and the total autocorrelation function B3,2.
An examination of the table shows that

GI (f ) = {(0, 0), (1, 1), (2, 2)}.

The basis for GI (f ) will be τ0 = (1, 1), (a(f ) = 1). Now, set T =
[

1 1

0 1

]
. Then,

σξ � T−1 =
[

1 2

0 1

]
, (mod 3).

The functions f
(0)
T−1 , f

(1)
T−1 are also shown in Table 5.4.6, and from which it follows

that they depend inessentially on z1. Therefore, by (5.4.24), ξ(f (σξ)) = ξ(f (0)
T−1 ) +

ξ(f (1)
T−1 ) = 3 + 3 = 6.

TABLE 5.4.6 Autocorrelation Functions for the
Function f = (f (0), f (1)) in Example 5.4.5 and Linearly
Transformed Function fT−1 = (f (0)

T−1 , f
(1)
T−1 ).

z, τ z0z1 B
(0)
0 B

(0)
2 B

(1)
1 B

(2)
1 B3,2 f

(0)
T−1 f

(1)
T−1

0 00 3 6 6 3 18 0 1
1 01 0 3 3 0 6 0 1
2 02 0 3 3 0 6 0 1
3 10 0 3 3 0 6 2 1
4 11 3 6 6 3 18 2 1
5 12 0 3 3 0 6 2 1
6 20 0 3 3 0 6 2 2
7 21 0 3 3 0 6 2 2
8 22 3 6 6 3 18 2 2

www.it-ebooks.info

http://www.it-ebooks.info/


242 ANALYSIS AND OPTIMIZATION OF LOGIC FUNCTIONS

Remark 5.4.1 By using the inertia group concept, it is possible to generalize Theo-
rem 5.4.4 (decision procedure for partially linear logic functions) to p-valued logic.

5.4.7 Linearization for Multiple-Valued Functions Relative
to the Entropy-Based Complexity Criteria

In this section, we generalize the linearization methods discussed in Section 5.4
(the criterion η) to p-valued logic functions.

Recall (see Section 5.3.3) that in this case, the criterion η for a function f (i)(z) is
defined as the number of sets of p vectors y1, y2, . . . , yp such that{

f (i)(y1) = f (i)(y2) = · · · = f (i)(yp),

y2 � y1 = y3 � y2 = · · · = yp � yp−1 = ps, mod p.
(5.4.30)

As usual, the complexity of a system of functions is the sum of complexities of
the individual functions.

The linearization problem relative to η is to find a matrix σ = ση such that

η(fση ) = max
σ∈p

η(fσ), (5.4.31)

where σ = (σq,s), σq,s ∈ {0, 1, . . . , p − 1}.
As before, we construct the system of characteristic functions {f (i)

t (z)}, but now,
instead of the functions B2,2(τ), we construct a class of autocorrelation functions

Bp,p(τ) =
p−1∑
t=0

Bt(τ) (5.4.32)

=
p−1∑
t=0

∑
i,z

f
(i)
t (z)f (i)

t (z � τ) · · · f (i)
t (z �

p−1︷ ︸︸ ︷
τ � · · · � τ),

with calculations modulo p.
In analogy to the case of switching functions (p = 2), the algorithm computing ση

makes use of functions Bp,p(τ).
Let T = [τq,s] (τq,s ∈ {0, 1, . . . , p − 1}, q, s = 0, 1, . . . , m − 1). We set

Bp,p(T ) =
m−1∑
s=0

Bp,p


m−1∑

q=0

τq,sp
m−1−q


 . (5.4.33)

Theorem 5.4.6 Let

max
T∈p

Bp,p(Tη) = Bp,p(Tη). (5.4.34)
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Then,

ση � Tη = Im =




1

1 0

0
. . .

1


 , mod p. (5.4.35)

Proof. First, by the definitions of η(f ), Bp,p, ση, and Tη, we have

η(f ) = Bp,p(Im)

η(fση ) = Bp,p(Tη).

Second, the analog of Theorem 2.7.4 for the function Bp,p(τ) is true. If f (z)
corresponds to Bp,p(τ), then f (σ � z), where σ = [σi,j] σi,j ∈ {0, 1, . . . , p − 1},
σ ∈ p, corresponds to Bp,p(σ � τ) (mod p). These two remarks directly yield
Theorem 5.4.6.

Theorem 5.4.6 generalizes Theorem 5.4.3 to p-valued logic.
The matrix Tη may be determined from Bp,p(τ) by a recursive procedure analogous

to that described in Section 5.4.4.
It is readily seen from (5.4.32) that

Bp,p(τ) = Bp,p(τ), (5.4.36)

where τ ⊕ τ = (0, . . . , 0) (mod p). This remark yields a substantial simplification of
the construction of Bp,p(τ).

Example 5.4.6 Table 5.4.7 defines a ternary logic function of two variables (p = 3,
m = 2, k = 1) and also gives the autocorrelation functions B0(τ), B1(τ), the charac-
teristic functions f0, f1, (f2(z) = 0), and the function B3,3(τ). We have η(f ) = 0.

By using the table and formulas (5.4.34)–(5.4.35), we see that

Tη =
[

1 1

0 1

]
, ση =

[
1 2

0 1

]
,

and η(fση ) = 3.

The linearization procedures considered here may be extended to systems of
incompletely specified switching functions or many-valued logic functions.
Linearization methods employing other complexity criteria have been considered in
Reference 277, which also describes a generalization of the procedures to nonprime p.
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TABLE 5.4.7 Function f in Example 5.4.6.

z, τ f (z) B0(τ) B1(τ) B3,3(τ) fση
(z)

0 1 3 6 9 1
1 0 0 0 0 1
2 1 0 0 0 1
3 1 0 0 0 1
4 1 0 6 6 1
5 0 0 0 0 1
6 0 0 0 0 0
7 1 0 0 0 0
8 1 0 6 6 0

5.5 PARALLEL DECOMPOSITION OF SYSTEMS
OF SWITCHING FUNCTIONS

The linearization methods discussed above are related to serial connections of linear
and nonlinear blocks, minimizing the complexity of a nonlinear part.

In this section, we shall discuss structures in which the linear and nonlinear blocks
are connected in parallel and the minimized functional will again be the complexity
of the nonlinear part.

Another difference between this and the preceding sections is that whereas pre-
viously our main tools were the correlation functions, the methods of polynomial
approximation to be considered here illustrate the effective use of spectral character-
istics in optimization problems.

We shall measure the complexity of a given completely specified switching
function f (z0, . . . , zm−1) (depending essentially on all its variables) in terms of
the simplest criterion ξ(f ) = 2n, where n ≤ m and n is the number of essential
variables in f (see Section 5.3). As before, we will use the Paley ordering of Walsh
spectra.

In this context, we shall use the term “linear function” not only for a linear function
proper but also for its inversion; in other words, li(z) is a linear function iff

li(z) =
m−1⊕
s=0

l
(s)
i zs ⊕ l

(m)
i mod 2, (5.5.1)

where l
(s)
i ∈ {0, 1}, s = 0, 1, . . . , m.

5.5.1 Polynomial Approximation of Completely Specified Functions

We can now state the problem of polynomial approximation for a completely specified
switching functions.
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lp-1

f
fp(z) f(z)

P

l 0

z {

FIGURE 5.5.1 Network to realize the parallel approximation of f .

We say that a switching function f is approximated by a product of q linear
functions l0, . . . , lq−1 if

f (z) = fP (z) ·
q−1∏
i=0

li(z). (5.5.2)

The function P(z) = ∏q−1
i=0 li(z) is a polynomial of degree q, which we shall call

a polynomial approximation of f .
If f has a polynomial approximation P(z) = ∏q−1

i=0 li(z), it may be realized by a
network of the type shown in Fig. 5.5.1.

Notice that for a given f and a given polynomial approximation P(z), there may
exist several functions fP satisfying (5.5.2). Let FP denote the set of all such
functions, and

min
fP∈FP

ξ(fP ) = ξ(f̃ P ). (5.5.3)

Denote the set of all approximations P(z) of f by πf .
We shall say that an approximation P(z) = Pξ(z) is optimal for f if it minimizes

the complexity of the residual part fP

min
P(z)∈πf

ξ(f̃ P ) = ξ(f̃ Pξ
). (5.5.4)

The problem is thus to determine an optimal approximation Pξ(z) for a given function
f from the condition (5.5.4).

If f (z) = f (z0, . . . , zm−1), we shall call li = (l(0)
i , . . . , l

(m−1)
i ), (l(s)i ∈ {0, 1}, s =

0, . . . , m − 1) a linearity point if

li(z) =
m−1⊕
s=0

l
(s)
i zs ⊕ l

(m)
i , mod 2,

is an approximation of f , for some lmi ∈ {0, 1}.
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Theorem 5.5.1 A switching function f (z0, . . . , zm−1) has linearity points
l0, l1, . . . , lQ(f )−1 iff

|Sf (
←
li )| = 2−m

2m−1∑
z=0

f (z), i = 0, 1, . . . , Q(f ) − 1, (5.5.5)

where Sf is the Walsh spectrum in Paley ordering of f and
←
l = ∑m−1

s=0 l
(s)
i 2s,

for l = ∑m−1
s=0 l

(s)
i 2m−1−s.

Proof. Notice that li(z) is an approximation of f iff for any fixed z∗ such that f (z∗) =
1, it is always true that li(z∗) = 1 ⊕ l

(m)
i , W←−

li
(z∗) = (−1)1⊕l

(m)
i . Consequently, |Sf

(
←
l1 )| = 2−m

∑2m−1
z=0 f (z).

Corollary 5.5.1 The set of linearity points of an arbitrary switching function is a
group relative to the addition modulo 2.

Proof. We first note that l(z) = 0 is a linearity point for any switching function, since
1 ⊕ l(z) = 1 is an approximation of any switching function and if f (z) = li(z)fli (z) =
lj(z)flj (z), then for any fixed z∗ it follows from f (z∗) = 1 that

W←−−−
li ⊕ lj

(z∗) = W←
li ⊕

←
lj

(z∗) = W←
li

(z∗)W←
lj

(z∗) = (−1)l
(m)
i

+l
(m)
j , mod 2,

and so |Sf (
←−−−
li ⊕ lj)| = 2−m

∑
z f (z). Hence, it follows by Theorem 5.5.1 that li ⊕ lj

is a linearity point for f .

Corollary 5.5.2 The number of points at which the Walsh spectrum of an
arbitrary switching function f (z0, . . . , zm−1) assumes its maximum absolute value
2−m

∑
z f (z) is always a power of 2.

This corollary, which follows from Theorem 5.5.1 and Corollary 5.5.1, yields yet
another simple method for checking the validity of a calculation of spectra.

Comparing Theorem 5.5.1 and Corollary 5.5.1 with Theorem 5.1.3 and Corol-
lary 5.1.1, we see that while the maximum absolute value of the spectrum of a switch-
ing function determines its linearity group, the maximum values of the autocorrelation
function define its inertia (anti-self-duality) group.

Now let l0, l1, . . . , lQ(f )−1 be an arbitrary basis (maximal linearly independent set
of vectors over GF (2)) of the group of linearity points of f .

Denote

log2 ξ(f̃ Pξ
) = ξ(f ). (5.5.6)
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Theorem 5.5.2 For any f (z0, . . . , zm−1) with a linearity group containing 2q(f )

vectors,

Pξ(z) =
q(f )−1∏

i=0

(
m−1⊕
s=0

l
(s)
i zs ⊕ sign(Sf (

←
li ))

)
, mod 2, (5.5.7)

where

sign(x) =
{

1, if x > 0,

0, if x ≤ 0,

and

n(f ) ≤ m − q(f ). (5.5.8)

Proof. The fact that

Pξ(z) =
q(f )−1∏

i=0

(
m−1⊕
s=0

l
(s)
i zs ⊕ sign(Sf (

←
li ))

)
, mod 2,

is an approximation of f follows from the definition of l0, . . . , lq(f )−1, Theorem 5.5.1

and Corollary 5.5.1 in view of the fact that if sign(Sf (
←
li )) = 0 (sign(Sf (

←
li )) = 1),

then f (z∗) = 1 always implies W←
li

(z∗) = −1, (or W←
li

(z∗) = 1) and

li(z) =
m−1⊕
i=0

l
(s)
i zs, (or 1 ⊕ li(z)), mod 2,

is an approximation of f .
Now, if P̂(z) ∈ πf , and

P̂(z) =
q̂−1∏
i=0

(
m−1⊕
s=0

l̂
(s)
i zs ⊕ l̂

(m)
i

)
, mod 2,

where l̂
(s)
i ∈ {0, 1}, i = 0, 1, . . . , q̂ − 1, s = 0, 1, . . . , m, then the vectors l̂i =

(l̂(0)
i , . . . , l̂

(m−1)
i ), (i = 0, 1, . . . , q − 1) belong to a subgroup of the group of linearity

points. Since l0, l1, . . . , lq(f )−1 form a basis for this group, it follows that for any z∗ if
Pξ(z∗) = 1, then necessarily P̂(z∗) = 1 and so ξ(f̃ Pξ

) ≤ ξ(f̂P ). Thus the polynomial
Pξ(z) defined by (5.5.6) is an optimal approximation.
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We now prove (5.5.8). Consider a system of q(f ) linearly independent equations
in m variables z0, . . . , zm−1,

m−1⊕
s=0

l
(s)
i zs ⊕ sign(Sf (

←
li )) = 1. (5.5.9)

There always exist s0, s1, . . . , sq(f )−1 such that
∑q(f )−1

i=0 l
(sr)
i > 0,

r = 0, 1, . . . , η(f ) − 1, since l0, l1, . . . lq(f )−1 are linearly independent. Then,
by (5.5.9)

zs = gsr (z0, z1, . . . , zm−1), (r = 0, 1, . . . , q(f ) − 1), (5.5.10)

where gsr are linear functions and each of which is independent of zs0 , . . . , zsq(f )−1 .
Now, if f (z) = Pξ(z)fPξ

(z), substitution of gsr for zsr , (r = 0, . . . , q(f ) − 1) in fPξ
(z)

yields a function f
′
Pξ

(z) that does not depend on zsr and if P(z∗) = 1 for some z∗

(i.e., all the equations of system (5.5.9) are satisfied), then f ′
Pξ

(z∗) = fPξ
(z∗). Hence

f
′
Pξ

∈ πf and

n(f ) = min
P(z)∈πf

log2 ξ(f̃ P ) ≤ log2 ξ(f
′
Pξ

) ≤ m − q(f ).

Theorems 5.5.1 and 5.5.2 yield a simple procedure for determining the optimal
polynomial approximation Pξ(z) and estimating the complexity of the nonlinear part.
We calculate the spectrum Sf of the function f , construct the group of linearity

points li for which |Sf (
←
li )| = 2m

∑
z f (z), and select an arbitrary basis of this group.

An upper bound for the complexity n(f ) of the nonlinear part of f may even be
established without finding a basis, as n(f ) depends on the number m of variables of
f and on the number q(f ), which is equal to the binary logarithm of the number of
elements in the group of linearity points of f .

Example 5.5.1 Table 5.5.1 defines a switching function f (z) and its spec-
trum Sf (w), for m = 4. The table shows that |Sf (0)| = |Sf (2)| = |Sf (8)| =
|Sf (10)| = 2−m

∑
z f (z) = 3. The group of linearity points contains the vectors

(0, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (0, 1, 0, 1) (q(f ) = 2). As the basis, we take l0 =
(0, 0, 0, 1), l1 = (0, 1, 0, 1). Since sign(Sf (

←
l0 )) = sign(Sf (8)) = 0 and sign(Sf (

←
l1 ))

= sign(Sf (10)) = 0, the optimal approximation is Pξ(z) = (z1 ⊕ z3)z3 = z3 ⊕ z1z3
and by (5.5.8), we have n(f ) ≤ 2. The nonlinear part f̃ Pξ

(z) (where f (z) =
Pξ(z)f̃ Pi

(z)) in this example isf̃ Pi
(z) = z0 ∨ z2. Finally,

f (z) = (z3 ⊕ z1z3)(z0 ∨ z2).
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TABLE 5.5.1 Function f in Example 5.5.1 and Its
Walsh Spectrum.

z, w f (z) 16Sf (w)

0 0 3
1 0 −1
2 0 3
3 1 −1
4 0 −1
5 0 −1
6 0 −1
7 0 −1
8 0 −3
9 1 1

10 0 −3
11 1 1
12 0 1
13 0 1
14 0 1
15 0 1

5.5.2 Additive Approximation Procedure

In this section, we generalize the approximation procedure of the preceding section.
Hitherto we have been studying multiplicative approximations

f (z) = fP (z)
q−1∏
i=0

li(z). (5.5.11)

We now consider additive approximations, with logical product replaced through-
out by the logic sum

f (z) = fP (z) ∨
q−1∨
i=0

li(z), (5.5.12)

P(z) =
q−1∨
i=0

li(z). (5.5.13)

As before, we say that an approximation P(z) = Pξ(z) is optimal if it minimizes
ξ(fP ) (see (5.5.4) and (5.5.6)).

The physical implementation of an additive approximation is described by the
same block diagram as in Fig. 5.5.1, except that the logic multiplication elements
(AND gates) are replaced throughout by logic adders (OR gates).

www.it-ebooks.info

http://www.it-ebooks.info/


250 ANALYSIS AND OPTIMIZATION OF LOGIC FUNCTIONS

The optimal additive approximation may be determined by using De Morgan
laws (247)

1 ⊕
q−1∏
i=0

ai =
q−1∨
i=0

(1 ⊕ ai), mod 2, (5.5.14)

where ai ∈ {0, 1}.
Applying (5.5.14) and (5.5.11), we obtain a simple rule for the additive

approximation as follows. If
∏q−1

i=0 li(z) is the optimal multiplicative approx-

imation to f , then
∨q−1

i=0 (1 ⊕ li(z)) is the optimal additive approximation to
f = 1 ⊕ f .

Since f (z) = f (z0, . . . , zm−1) has a nontrivial multiplicative approximation if∑
z f (z) ≤ 2m−1, and a nontrivial additive approximation exists if

∑
z f (z) ≥ 2m−1,

it is clear that these two types of approximation complement each other in a natural
way.

The above approximation procedures may also be generalized to systems of switch-
ing functions. We call P(z) an approximation of the system f (i)(z), i = 0, 1, . . . , k − 1
if each f (i)(z) may be expressed as

f (i)(z) = f
(i)
P (z)P(z), i = 0, 1, . . . , k − 1. (5.5.15)

An optimal approximation is the approximation that minimizes the quantity

ξ(f ) =
k−1∑
i=0

ξ(f (i)).

The solution of the optimal approximation problem for a system of switching
functions is entirely analogous to the case of a single switching function, except that
the linearity group is the set of vectors that are linearly points simultaneously for all
switching functions in the system.

5.5.3 Complexity Analysis of Polynomial Approximations

We conclude this section with a discussion of the relationships between the optimal
approximation problems just considered and the problem of minimizing the complex-
ity of devices realizing systems of switching functions.

Let f be a system of k switching functions of m variables and Pξ a ξ-optimal
polynomial approximation of f .

Let L(f ) denote the complexity of a minimal network realizing the system f , that
is, the minimum number of required single- and two-input gates.
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Theorem 5.5.3 As m → ∞,

L(f ) �
k2n(f )

n(f )
+ 2m

log2 m
. (5.5.16)

Proof. By Theorem 5.5.2, Pξ(z) is a product of q(f ) linear functions of m variables,
and so it can be realized by linear networks computing these functions and AND gates
computing their product. The complexity of the multiplication network is at most
q(f ) − 1 AND gates. Since q(f ) � m, it follows, in view of the complexity estimate
m2/log2 m, (m → ∞) for the linear network with m inputs (see Section 6.1.3), that
the complexity L(Pξ) satisfies the estimate

L(Pξ) �
m2

log2 m
. (5.5.17)

We can now use the Shannon–Lupanov estimate (5.3.4) for the complexity L(f̃ Pξ
)

of the systemf̃ Pξ
of k switching functions of n(f ) = log2 ξ(f̃ Pξ

) variables

L(f̃ Pξ
) �

k · 2ξ(f )

ξ(f )
. (5.5.18)

By using the relation

L(f ) ≤ L(Pξ) + L(f̂Pξ
), (5.5.19)

we now deduce the desired estimate from (5.5.17) and (2.8.17).
Theorem 5.5.3 is valid for both multiplicative and additive approximations. It

provides a good illustration of how important is to know the complexity ξ(f ) of the
nonlinear part to estimate the complexity in terms of the number of logic elements
required for a minimal implementation of f .

For example, if k = 1, ξ(f ) = 0 (f is a product or the logic sum of linear functions),
it follows from Theorem 5.5.3 that L(f ) � m2/log2 m.

If η(f ) = m, (i.e., q(f ) = 0, Pξ(z) = 1, and there is no linear part), the estimate of
Theorem 5.5.3 coincides with the Shannon–Lupanov estimate (5.3.4), and if q(f ) ≥ 1,
it is more precise.

5.5.4 Approximation Methods for Multiple-Valued Functions

The above polynomial approximation methods will now be generalized to p-valued
logical functions.

As before, the criterion for the complexity of a completely specified p-valued
logical function f (z0, z1, . . . , zm−1), depending essentially on all its m variables,
will be ξ(f ) = pm.
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Let lr(z) be a linear p-valued logic function,

lr(z) =
m−1⊕
s=0

l(s)r zs, mod p, l(s)r ∈ {0, 1, . . . , p − 1}. (5.5.20)

Let dt(lr) denote the tth characteristic function of lr(z), that is,

dt(lr(z)) =
{

1, if lr(z) = t,

0, otherwise,
(5.5.21)

where t = 0, 1, . . . , p − 1.
In the case p = 2, we have t ∈ {0, 1} in (5.5.21), and

d0(lr(z)) = 1 ⊕ lr(z), d1(lr(z)) = lr(z), mod 2, (5.5.22)

so that the characteristic functions thus defined generalize those defined by (5.5.1)
for p = 2.

We shall say that f is approximated by a product of q linear functions l0, . . . , lq−1
iff there exist t0, . . . , tq−1 ∈ {0, 1, . . . , p − 1} such that

f (z) = fP (z)
q−1∏
r=0

dtr (lr(z)). (5.5.23)

We then call P(z) = ∏q−1
r=0 dtr (lr(z)) a polynomial approximation for f .

Let FP denote the set of functions fP satisfying (5.5.23) for given f and P(z),
and set

min
fP∈FP

ξ(fP ) = ξ(f̃ P ). (5.5.24)

An approximation P(z) = Pξ(z) is said to be optimal if

min
P(z)∈πf

ξ(f̃ P ) = ξ(f̃ Pξ
), (5.5.25)

where πf is the set of all polynomial approximations of f . In other words, as before,
an optimal approximation minimizes the ξ-complexity of the nonlinear part fP .

A vector lr = (l(0)
r , . . . , l(m−1)

r ), l(s)r ∈ {0, 1, . . . , p − 1}, s = 0, . . . , m − 1 will
be called a linearity point for a p-valued logical function f (z) = f (z0, . . . , zm−1)
if lr(z) = ⊕m−1

s=0 l(s)r zs (mod p) approximates f (z); that is, there exist tr ∈
{0, 1, . . . , p − 1} such that

f (z) = dtr (lr(z))fP (z). (5.5.26)
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Theorem 5.5.4 A p-valued logical function f (z) = f (z0, . . . , zm−1) may be
expressed as

f (z) = dlr (lr(z))fP (z), (5.5.27)

where lr(z) = ⊕m−1
s=0 l(s)r zs, (mod p), iff

Sf (
←−
l r) = p−m

pm−1∑
z=0

f (z) exp

(
2π

p
i

m−1∑
s=0

l(s)r zs

)
= p−metr

pm−1∑
z=0

f (z)

is the spectral coefficient for lr = ∑m−1
s=0 l(s)r 2s in the expansion of f (z) in terms of

Vilenkin–Chrestenson functions χ
(p)
w (z) and etr = exp(−2πitr/p), (i = √−1).

Proof. We first note that (5.5.26) holds iff for any fixed z∗, f (z∗) �= 0 implies lr(z∗) =
tr. Furthermore, by virtue of the isomorphism of the linear p-valued logical functions
and the Vilenkin–Chrestenson functions (Theorem 2.5.5),

χ←
lr

(z∗) = exp

(
2π

p
itr

)
= etr ,

and therefore

Sf (
←
l r) = p−m

pm−1∑
z=0

f (z)χ←−
l (z)

= p−metr

pm−1∑
z=0

f (z),

proving (5.5.27).
Setting p = 2 in Theorem 5.5.4, we obtain Theorem 5.5.1 (since |etr | = 1 for any

tr ∈ {0, 1}).
Theorem 5.5.4 thus states that lr is a linearity point of f (z) iff

|Sf (
←
lr )| = p−m

pm−1∑
z=0

f (z). (5.5.28)

In analogy with the Corollary 5.5.1, the set of linearity points of any p-valued
logic function is a group with respect to componentwise addition modulo p. This also
follows from Theorem 5.5.4.

Hence, the following corollary can be stated.

Corollary 5.5.3 The number of points at which the Vilenkin–Chrestenson spectrum
of an arbitrary p-valued logic function f (z0, . . . , zm−1) (where p is a prime) is of
the absolute value p−m

∑
z f (z) is always an integral power of p.

Corollary 5.5.3 is a generalization of Corollary 5.5.2 and provides a check on
calculations of Vilenkin–Chrestenson spectra.
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When p > 2, the calculation of spectra may be simplified by using the identity

Sf (w) = Sf (w), w ⊕ w = 0, mod p, (5.5.29)

and Sf (w) is complex conjugate of Sf (w), which follows from χ
(p)
w (z) = χ

(p)
w (z),

(mod p). This halves the complexity of computation of Vilenkin–Chrestenson spectra.
We can now prove the main result related to polynomial approximations of

p-valued logical functions, generalizing Theorem 5.5.2.

Theorem 5.5.5 Let f (z) = f (z0, . . . , zm−1) be a p-valued logic function, and
l0, l1, . . . , lq(f )−1 a basis of its linearity group. Let

Sf (
←
l r) = p−metr

pm−1∑
z=0

f (z),

where Sf is the Vilenkin–Chrestenson spectrum of the function f and elr =
exp(−2πitr/p). Then, an optimal polynomial approximation Pξ(z) and the complexity
ξ(f ) = logp ξ(f̃ Pξ

) of the nonlinear part of f satisfy the conditions

Pξ(z) =
q(f )−1∏

r=0

dtr

(
m−1⊕
s=0

l(s)r zs

)
, mod p, (5.5.30)

ξ(f ) ≤ m − q(f ). (5.5.31)

Proof. Analogous to that of Theorem 5.5.2, except that in proving (5.5.31,) it should
be considered instead of (5.5.9) the system

m−1⊕
s=0

l(s)r zs = tr, r = 0, 1, . . . , q(f ) − 1, mod p (5.5.32)

of q(f ) linearly independent linear equations over GF (p) in m variables zi, i =
0, . . . , m − 1.

Example 5.5.2 Table 5.5.2 defines a ternary logic function of two variables
(p = 3, m = 2) and its Vilenkin–Chrestenson spectrum (using the notation e1 =
exp(2πi/3), e2 = e1 = exp(4πi/3)). The linearity group consists of the points
{(0, 0), (1, 2), (2, 1)}, and its basis consists of the single vector (1, 2) and q(f ) = 1.

By Theorem 5.5.4, in view of the relation

Sf (
←−
5 ) = Sf (7) = 3−2e2 · 5,
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TABLE 5.5.2 Function f in Example 5.5.2, Its
Spectrum, and Linear Approximation d2.

n z, w z0z1 f (z) 9Sf (w) d2(z)

0 0 0 0 5 0
1 0 1 2 −e2 1
2 0 2 0 −e1 0
3 1 0 0 −e1 0
4 1 1 0 −1 0
5 1 2 1 5e2 1
6 2 0 2 −e2 1
7 2 1 0 5e1 0
8 2 2 0 −1 0

we find by Theorem 5.5.5 that the optimal approximation is

Pξ(z) = d2(z0 ⊕ 2z1), mod 3,

and ξ(f ) ≤ 1. The function d2(z0 ⊕ 2z1) (mod 3) is also shown in Table 5.5.2.
It is evident from Table 5.5.2 that a functionf̃ Pξ

(z) such that f (z) = d2(z0 ⊕
2z1)f̃ Pxi

(z) is the function of a single variable z0 (ξ(f ) = 1) defined by Table 5.5.3.

Remark 5.5.1 The procedure for the optimization of polynomial approximations
may be generalized to systems of p-valued logical functions. In this case, a linearity
point of the system is defined as a vector that is a linearity point for each function in
the system. Further generalizations to systems of functions defined on arbitrary finite
commutative groups may be found in Reference 277.

5.5.5 Estimation on the Numbers of Nonzero Coefficients

In this section, we consider bounds for the spectral complexity of several important
classes of completely specified switching functions. As it will be shown later, these
bounds enable the complexity of networks realizing functions from these classes to
be estimated by spectral methods. In addition, a comparison of the bounds for Walsh
and Haar bases is frequently an aid to more rational choice of a basis system.

The spectral complexity of a switching function f relative to the Walsh (Haar)
basis, denoted by LW (f ) and LH (f ), is defined as the number of nonzero coefficients
in the Walsh (Haar) expansion of f .

TABLE 5.5.3 Function f̃ Pξ
(z0) in

Example 5.5.2.

z0 f̃ Pξ
(z0)

0 2
1 1
2 2
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As will be shown later (see Sections 6.1.1–6.1.5), the spectral complexity of
a switching function determines the complexity of a network implementing f or
equivalently, the necessary memory size the function f is being computed by the
corresponding program.

In Appendix A, the reader may find the Walsh transforms, autocorrelation func-
tions, and bounds for the Walsh and Haar spectral complexities for 21 important
classes of switching functions. Next section (Section 5.5.5) is in fact a commentary
on Appendix A.

Appendix A employs the following notation.
For any z ∈ {0, 1, . . . , 2m − 1}, z = ∑m−1

i=0 zi2m−1−i, zi ∈ {0, 1}), we put

←
z =

m−1∑
i=0

zi2
i, ‖z‖ =

m−1∑
i=0

zi.

In Appendix A, the Walsh and Haar spectra are in Paley ordering.
For determination of bounds for the spectral complexity, we begin with a few

considerations that enable us to extend the applicability of the bounds for spectral
complexity given in the Appendix A.

Theorem 5.5.6 Let f (z) be a switching function of m variables and σ a nonsingular
matrix over GF (2). Then,

LW (f (z)) = LW (1 ⊕ f (z)) = LW (f (z)), mod 2, (5.5.33)

LH (f (z)) = LH (1 ⊕ f (z)) = LH (f (z)), mod 2, (5.5.34)

LW (f (z ⊕ τ)) = LW (f (z)), mod 2, (5.5.35)

LH (f (z ⊕ τ)) = LH (f (z)), mod 2, (5.5.36)

LW (f (σ � z)) = LW (f (z)), mod 2, (5.5.37)

where τ ∈ {0, 1, . . . , 2m − 1} .

Theorem 5.5.6, in effect, states that the bounds for the Walsh and Haar spectral
complexities are invariant under inversion of functions and translation (inversion) of
variables. The Walsh complexity is also invariant under linear transformations of the
variable, but the Haar complexity is not, and in particular, it depends on the order
of variables of the function. The bounds given in Appendix A for the Haar spectral
complexity refer to the optimal order of variables (i.e., the order that minimizes the
complexity).

Theorem 5.5.6 implies a certain duality principle for the spectral complexities LW

and LH .
We first note that any switching function may be built up from its variables by

superposition of the following operations: disjunction ∨ (logical addition, OR),
conjunction (logic multiplication, AND), negation ′, and addition modulo 2, ⊕.
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(This set of operations is, of course, redundant, and it is sufficient, for example, to
take the disjunction or the conjunction together with negation.)

Corollary 5.5.4 Let f ∗(z) be the switching function of m variables derived from a
switching function f (z) by interchanging the disjunction and conjunction operations
in any representation of f (z) in terms of the disjunction, conjunction, negation, and
addition modulo 2. Then,

LW (f ∗(z)) = LW (f (z)), LH (f ∗(z)) = LH (f (z)). (5.5.38)

The proof of (5.5.38) is based on the De Morgan laws (5.5.14) and formulas
(5.5.33), (5.5.34), (5.5.36), (5.5.37) with τ = 2m − 1.

By virtue of the duality principle (5.5.38), it is possible to considerably expand
the range of application of the spectral complexity bounds listed in the Appendix A.
For example, according to this principle, the switching function

⊕k−1
i=0 (zi ∨ zi+k) has

the same spectral complexity as the nonrepetitive quadratic form
⊕k−1

i=0 zizi+k (mod
2), that is (see Appendix A),

LW

(
k−1⊕
i=1

(zi ∨ zi+k)

)
= 22k, mod 2 (5.5.39)

LH

(
k−1⊕
i=0

(zi ∨ zi+k)

)
= 1

3
(22k − 1) + k + 1, mod 2.

An analysis of rows 2 through 5 of the Appendix A shows that the spectral complex-
ity of conjunction or disjunction increases with the number of variables, exponentially
for the Walsh basis and linearly for the Haar basis. For these functions, therefore, the
Haar basis is far more efficient.

On the contrary, for linear functions (Appendix A, 6), quadratic forms⊕m−1
i,q=0 cidqzizq, ci, dq ∈ {0, 1}, which are products of two linear functions (Appendix

A, 4) and k-ary forms (i.e., products of k linear functions of m variables, k << m;
see Appendix A, 5), the use of Walsh functions is more efficient, since the Walsh
complexity is an exponential function of k and the Haar complexity an exponential
function of m.

We now look more closely into complexity bounds of products of linear functions.
Let A be a (k × m) binary matrix A = [ai,s], i = 1, 2, . . . , k, s = 0, 1, . . . , m − 1

whose rows are linearly independent over GF (2).
A function f (z0, . . . , zm−1) is called a k-ary form of m variables if

f (z0, . . . , zm−1) =
k∏

i=1

m−1⊕
s=0

ai,szs =
m−1⊕

s1,...,sk=0

ai,sizsi , mod 2. (5.5.40)
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Example 5.5.3 Let

A =


 1 1 0 0 0 0

0 0 1 1 0 0

0 1 0 0 1 1


 ,

where k = 3, m = 6. Then,

f (z) = f (z0, . . . , z5) = (z0 ⊕ z1)(z2 ⊕ z3)(z1 ⊕ z4 ⊕ z5), mod 2.

For the function f (z) defined by (5.5.40), we set

fr(z) = f (z)⊕m−1
s=0 ar,szs

=
k∏

i=1,i�=r

m−1⊕
s=0

ai,szs, mod 2. (5.5.41)

In addition, let fr(zs1 = αs1 , zs2 = αs2 , . . . , zst = αst ) denote the subfunction of
fr(z) obtained from fr(z) by fixing zs1 = αs1 , zs2 = αs2 , . . . , zst = αst , (1 ≤ t ≤ m).

Example 5.5.4 In the above example, for instance,

f2(z) = (z0 ⊕ z1)(z1 ⊕ z4 ⊕ z5),

f2(z1 = 0) = z0(z4 ⊕ z5), mod 2.

Theorem 5.5.7 Let f (z) = ∏k
i=1

⊕m−1
s=0 ai,szs, (mod 2) be a k-ary form,

min1≤i≤k

∑m−1
s=0 ai,s = ∑m−1

s=0 aq,s, and {s1, s2, . . . , st} all the column indices of the
matrix [ai,s] such that aq,s1 = aq,s2 = · · · = aq,st = 1. Then,

LW (f ) = 2k, (5.5.42)

LH (f ) ≤ LH (fq(zs1 = 0, zs2 = 0, . . . , zst = 0))2
∑m−1

s=0
aq,s−1 + 1.

Formula (5.5.42) may be proved by induction on the number k of factors in the k-ary
form. The proof of (5.5.42) also involves the convolution theorem (Theorem 2.6.4).

Formula (5.5.42) generates a (k − 1)-step recursive procedure for computing a
bound for LH (f ), since it essentially reduces the estimation of the complexity of a
k-ary form f to the same problem for a (k − 1)-ary form fq (which generally depends
on fewer variables than f ).

The following example illustrates this procedure.
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Example 5.5.5 We estimate LH (f ) for the function f of Example 5.5.3. In this case,
m = 6 and

min
1≤i≤3

5∑
s=0

ai,s =
5∑

s=0

a1,s = 2, q = 1, s1 = 0, s2 = 1.

By (5.5.43),

LH (f ) ≤ LH (f1(z0 = 0, z1 = 0))21 + 1,

where

f1(z0 = 0, z1 = 0) = (z2 ⊕ z3)(z4 ⊕ z5), mod 2.

Proceeding in the same way for LH (f1(z0 = 0, z1 = 0)), we get

LH (f1(z0 = 0, z1 = 0)) ≤ LH (f1,2(z0 = 0, z1 = 0, z2 = 0, z3 = 0))2 + 1,

where

f1,2(z0 = 0, z1 = 0, z2 = 0, z3 = 0) = z4 ⊕ z5, mod 2, LH (z4 ⊕ z5) = 3.

Finally, therefore,

LH (f ) ≤ 2(2 · 3 + 1) + 1 = 15.

Rows 16 to 18 of the Appendix A give the Walsh transforms, the autocorrelation
functions, and the spectral Walsh and Haar complexities for the signs of the elemen-
tary trigonometric functions sign sin(2−kπz), sign cos(2−kπz), sign tan(2−kπz) =
sign cot(2−kπz) for z ∈ [0, 2m). The sign functions are viewed as step functions repre-
senting switching functions and (see (1.2.4)) are assumed to be right continuous—that
is to say, f (z + 0) = f (z) or limε→0 f (z + ε) = f (z), (ε > 0).

Rows 16 and 18 illustrate the relationship of the trigonometric functions to the
Walsh functions.

Rows 19 to 21 list the transforms, autocorrelation functions, and complexities of
the unit step and impulse functions widely used in automatic control, and also of the
sign functions for the logarithm. These are again step functions representing switching
functions. In all these cases, the Haar basis is usually more convenient than the Walsh
basis, since the Haar complexity is a linear function of the number of variables and
the Walsh complexity an exponential function.

The notation for the transforms in rows 20 and 21 employs integral Walsh
functions Iw(y) = ∑y−1

z=0 Ww(z), w = 0, 1, . . . , 2m − 1. These may be viewed
as piecewise-linear functions, they are linearly independent and therefore, after
orthogonalization, may be utilized as a basis for the expansion of systems of logic
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functions of continuous functions. In that case, it is convenient to represent a
system of logic functions not by a step function �(z) but by the corresponding
piecewise-linear function. Similar considerations apply to integral Haar functions or
Schauder functions I

(j)
i (y) = ∑y−1

z=0 H
(j)
i (z) (511).
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Linearization of switching functions has been discussed in References 277,301, and 378.

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6

SPECTRAL METHODS IN SYNTHESIS
OF LOGIC NETWORKS

The present chapter is devoted to methods for the design of combinational digital
devices realizing systems of logical functions. These methods are based on the
orthogonal series expansions of logic functions, with various spectral transforms and
correlation functions as the main tools.

All the methods described in this chapter for the design of digital devices realizing
systems of logic functions are also applicable to the construction of algorithms for
software implementations of logic functions. In other words, spectral methods may be
interpreted from both network and programming standpoint. The synthesis methods
are illustrated by network interpretations.

As it has been noticed in Reference 299, there is apparent a renewed and consider-
able interest in spectral techniques after the publication of a report about applications
of Walsh functions to technology mapping (655). This interest is due to the devel-
opment of technology of digital circuits imposing requirements and strong demands
regarding complexity and performances of logic networks and digital devices in gen-
eral, which cannot be met by traditional approaches.

In the last decade, spectral method for synthesis, including testing, has been dis-
cussed in a considerable number of publications, see References 37, 54, 57, 98, 204,
228, 283, 295, 297, 318, 319, 345, 346, 356, 385, 434, 458, 475, 481, 497, 600, 602,
604, 656, and 657.

Spectral Logic and Its Applications for the Design of Digital Devices by Mark G. Karpovsky, Radomir
S. Stanković and Jaakko T. Astola
Copyright © 2008 John Wiley & Sons, Inc.
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6.1 SPECTRAL METHODS OF SYNTHESIS OF COMBINATORIAL
DEVICES

6.1.1 Spectral Representations of Systems of Logic Functions

Before describing the design procedure, we briefly review the finite orthogonal series
representations of systems of p-ary (p ≥ 2) logic functions described in previous
chapters.

Given a system of logic functions

y(s)(z) = y(s)(z0, . . . , zm−1), (6.1.1)

for s = 0, . . . , k − 1, and y(s)(z), zi ∈ {0, . . . , p − 1}, we define the discrete function
y = f (z) corresponding to the system by

f (z) =
k−1∑
s=0

pk−1−sy(s)(z0, . . . , zm−1), (6.1.2)

where

z =
m−1∑
i=0

zsp
m−1−i. (6.1.3)

The function f (z) is defined at all integer points of the half-open interval [0, pm).
We complete f (z) to a step function �(z) by setting

�(z) = f (δ), for z ∈ [δ, δ + 1). (6.1.4)

This step function represents the system (6.1.1).
Let {�w(z)} be a complete system of orthogonal functions. Expand �(z) in a series

in terms of {�w(z)},

�(z) =
pm−1∑
w=0

S(w)�w(z), (6.1.5)

where the Fourier coefficients S(w) are defined by

S(w) =

pm−1∑

z=0

�w(z)�w(z)


−1

pm−1∑
z=0

�(z)�w(z). (6.1.6)

From (6.1.5), we can set up a block diagram of a device realizing system (6.1.1),
as illustrated in Fig. 6.1.1. The main blocks are as follows:
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Memory
Basis-function generator storing expansion coefficients

Multiplier

Adder

w (z)

(z)

S(w)

z

m

k

FIGURE 6.1.1 Block diagram of the network for spectral implementation of logic functions.

First, we have a basis-function generator with the input z and its output �w(z)
for w = 0, 1, 2, . . . , pm − 1. The memory stores the values of spectral coefficients
Sf (w). These data are fed to a multiplier that computes the products of �w(z) and
S(w), and the sum of the series (6.1.5) is computed by an adder-accumulator.

At the end of the summation process, the adder outputs the value of the step function
�(z) representing the original system of logic functions.

The block diagram in Fig. 6.1.1 will be used constantly in what follows, in con-
nection with all spectral methods of synthesis to be described. The complexity and
computing time of physical implementation of blocks may of course vary depending
on the technological platform used.

The reader should note that according to this method of synthesis, the networks
realizing the individual functions of the initial system are minimized jointly. Indeed,
each component of the device represented by the block diagram participates in the
computation of each function, since the step function �(z) is defined by all the func-
tions in the system. This points to the expediency of spectral methods in synthesis of
multioutput functions with a large number of outputs.

Although we have included a multiplier in the block diagram, in the case of most
practical importance, namely, implementation of systems of switching functions
(p = 2) using the Walsh and Haar bases, the multiplier becomes superfluous, since
the basis functions then take on values −1, +1, or 0, ±1, so that they merely play the
role of signs to be ascribed to the coefficients S(w) in the adder.
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6.1.2 Spectral Methods for the Design of Combinatorial Devices

The spectral methods with which we are concerned may be classified according to
the following three parameters:

1. The basis {�w(z)} used, as for instance, Walsh or Haar when p = 2, and
Vilenkin–Chrestenson or generalized Haar when p > 2.

2. The field over which the arithmetical operations involved in calculating by
formulas (6.1.5) and (6.1.6) are implemented (complex numbers or residues
modulo Q and for expansions over the field of residues modulo Q, the discrete
transforms over Galois fields are used, and the adder and multiplier must of
course implement the appropriate operations modulo Q).

3. Parallel or serial summation of terms in series (6.1.5).

The main topic here is the choice of the basis {�w(z)}. We will also discuss various
approaches to the optimization of the implementations for the given basis.

The question as to which basis is more effective in regard to some given system
of logic functions must be settled in each individual case. The aim here is to provide
some signposts indicating the comparative efficiency of a particular basis or another
for certain classes of logic functions.

Before presenting discussions of particular bases, we present the following illus-
trative examples:

Example 6.1.1 Consider the function f (z0, z1, z2) defined by the truth-vector F =
[1, 0, 1, 1, 0, 0, 1, 0]T . The nonnormalized Haar spectrum in sequency ordering for
f is Sf = 1

8 [4, 2, −1, −1, 1, 0, 0, 1]T . Therefore, this function f can be represented
as the discrete Haar series

f (z) = 1

8
(4 + 2H

(1)
0 (z) − H

(1)
1 (z) − H

(2)
1 (z) + H

(1)
2 (z) + H

(4)
2 (z)),

where z = (z0, z1, z2) and Haar functions Hw(x) are rows of the Haar matrix H(3).
Since the Haar functions can be expressed in terms of switching variables as in

Example 4.4.5, the Haar series for the function f is

f (z) = 1

8
(6 − 4z0 − 2z0 + 4z1z0 + z1z0 + z1z0 − 2z2z1z0 − 2z2z1z0).

Figure 6.1.2 shows an implementation of f from this Haar series representation in
terms of switching variables. Thus, as mentioned above, the Haar functions generator
and the multiplier array is avoided, and the multiplication reduced to the weight
coefficients at the inputs of the adder.

We note that in the case of implementation of one switching function, the adder
with weighted inputs can be replaced with the threshold element.
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z 1

1

1 6

4

f

–2

–2

–2
–4

0
z1

z 2

FIGURE 6.1.2 Realization of f in Example 6.1.1 from the discrete Haar series.

In the case of implementation of logic functions by the Haar series, complexity of
the implementation depends on the ordering of input variables. The same holds for
the implementations in terms of other local transforms as discussed in Section 2.4.

Example 6.1.2 (169) For the benchmark function con1 of seven variables, the Haar
spectrum has 38 nonzero coefficients. If coordinates wi in binary representations of the
indices w of Haar functions are permuted as (0, 1, 2, 3, 4, 5, 6) → (2, 3, 6, 1, 0, 5, 4),
the number of nonzero coefficients reduces from 38 to 12. Table 6.1.1 shows the
values and the position of nonzero coefficients in the vector Sf representing the
Haar spectrum for con1 after optimization by permutation of coordinates of indices.
Figure 6.1.3 shows the block diagram for the implementation of con1 by this optimized
Haar series. In this figure har(w, i) is the wth row of the Haar matrix H(7), that is
the corresponding Haar function of seven variables.

This example illustrates that reordering of basis functions (or equivalently, re-
ordering of variables in the input (z0, . . . , zm−1)) may be used as an approach to
the optimization of the network or software implementations of switching functions,
and often it can reduce the amount of required hardware or software resources. The
method used in the above example has been extended to multiple-valued functions in
Reference 560.

We will discuss the techniques for optimal ordering of variables of implementations
by the Haar series in Sections 6.1.5 – 6.1.6.2.

Example 6.1.3 For the function f in Example 6.1.1, the Walsh spectrum in the
Hadamard ordering is Sf = 1

8 [4, 2, −2, 0, 2, 0, 0, 2]T .

TABLE 6.1.1 Nonzero Haar Coefficients in the Optimized Haar Spectrum for con1.

i 0 1 3 6 7 12 13 24 35 43 114 115

Sf 148 −20 −12 −12 −16 −4 −8 −4 −4 −4 2 2
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har(0,z)
har(1,z)
har(3,z)

har(6,z)
har(7,z)

har(12,z)
har(13,z)
har(24,z)
har(35,z)
har(43,z)

har(114,z)
har(115,z)

+
con1

z0

z0

z1

z1

z2

z2

z3

z3

z4

z4

z5 z5

z

Selection and
reordering

Generator of
Haar functions

6

z6

148 20 12– – 12

Haar coefficients for con 1
– 16– 4– 8– 4– 4– 4 2 2–

FIGURE 6.1.3 Realization of con1 from the optimized Haar series in Example 6.1.2.

Since the Walsh functions in the Hadamard ordering can be expressed in terms of
switching variables as shown in Example 2.4.2, the function f can be expressed as

f (z) = 1 − z2 − z0 + z1z2 + z0z2 + z0z1 − 2z0z1z2.

Figure 6.1.4 shows the implementation of f from this Walsh expression in terms of
switching variables.

6.1.3 Asymptotically Optimal Implementation of Systems
of Linear Functions

When using a linear transformation of the variables, we may represent the block
diagram of a device realizing the relevant system of switching functions as a serial
connection of two blocks, the first (σ) implementing the linear transformation of
variables, the second of the type shown in Fig. 6.1.1, realizing the function fσ(z),
where

fσ(σ � z) = f (z), mod 2.

The linear σ-block may be constructed from EXOR gates.

z0

z1

z 2

–1
–1

–2

f

1

FIGURE 6.1.4 Realization of f in Example 6.1.1 from Walsh series.
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Before proceeding to methods for determination of σmin, we estimate the com-
plexity of the block implementing multiplication by an arbitrary matrix σ, in terms
of the number N(2)(σ) of two-input EXOR gates.

It is obvious that if
∑m

i=1 σi,s = ∑m
s=1 σi,s = 1, then N(2)(σ) = 0, since then mul-

tiplication by σ is simply permutation of the components of z.
An upper bound for N(2)(σ) in the general case is given by the following theorem:

Theorem 6.1.1 For any σ = (σi,s), σi,s ∈ {0, 1}, s = 0, 1, . . . , m − 1,

N(2)(σ) ≤ min
a∈{1,2,...,m}

((
2�m/a� −

⌊m

a

⌋
− 1

)
resa(m) (6.1.7)

+
(

2�m/a� −
⌊m

a

⌋
− 1

)
(a − resa(m)) + (a − 1)m

)
,

where resa(m) denotes the remainder upon division of m by a, and �x	 (�x�) is the
largest (smallest) integer ≤ x (≥ x).

For the proof, we need the following lemma, which is also of an independent
interest.

Lemma 6.1.1 LetL(2)
⊕ (n) be the minimal number of two-input EXOR gates necessary

to implement all linear switching functions of n variables, that is, functions of the
form

⊕n−1
i=0 cizi, (ci ∈ {0, 1}) (mod 2). Then,

L
(2)
⊕ (n) = 2n − n − 1. (6.1.8)

Proof. Realization of n + 1 functions 0, z0, . . . , zn−1 requires no hardware. Let
R(2)(n) be the number of linear switching functions of n variables that depend
essentially on more than one variable. Then, R(2)(n) ≤ L

(2)
⊕ (n) and, since R(2)(n) =

2n − n − 1,

L
(2)
⊕ (n) ≥ 2n − n − 1. (6.1.9)

We now prove by induction on n that

L
(2)
⊕ (n) ≤ 2n − n − 1. (6.1.10)

Suppose we have a network realizing all linear switching functions of n − 1
variables z0, . . . , zn−2.

We can obtain all functions depending on the nth variable, with the exception
of the function zn−1, by connecting one more EXOR circuit to each output of the
appropriate network. Since the number of such functions is 2n−1 − 1, we have

L
(2)
⊕ (n) ≤ L

(2)
⊕ (n − 1) + 2n−1 − 1. (6.1.11)
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z 0 z 1 z 2

FIGURE 6.1.5 Minimal network realizing all switching functions of m = 3 variables.

Hence, (6.1.10) is true for alln. The assertion now follows from (6.1.9) and (6.1.10).
Lemma 6.1.1 is readily generalized to linear p-valued logic functions (p ≥ 2).
IfL(p)

⊕ (n) is the minimal number of two-input modp adders necessary to implement
all linear p-valued logic functions, then

L
(p)
⊕ = pn − n − 1. (6.1.12)

Figure 6.1.5 illustrates a minimal network realizing all linear switching functions
of three variables (except the identically zero function) in accordance with the proof
of Lemma 6.1.1.

The method thus provided for synthesis of minimal linear networks enables us
to synthesize minimal generators for the Walsh or Vilenkin–Chrestenson functions,
in view of the isomorphism between the linear logic function and the Walsh or
Vilenkin–Chrestenson functions.

Proof of Theorem 6.1.1. We first observe that for any natural numbers a and m,
a ≤ m,

m =
⌊m

a

⌋
(a − resa(m)) +

⌈m

a

⌉
resa(m), (6.1.13)

where resa(m) is the residue of m modulo a.
In accordance with this formula, we partition the (m × m) matrix σ into a sub-

matrices of which each of the first a − resa(m) containing �m/a	 columns of σ, and
each of the remaining resa(m) containing �m/a� columns of σ.

A network realizing multiplication by σ may now be constructed from a networks
multiplying by each of the submatrices, in series with a network summing their outputs
modulo 2.

Each of the submatrix networks implements a linear switching function of �m/a	 or
�m/a� variables, respectively, so that the corresponding complexities are L

(2)
⊕ (�m/a	)
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or L
(2)
⊕ (�m/a�). Summation of the outputs of these networks requires at most (a − 1)m

EXOR gates.
Thus, by Lemma 6.1.1, for any matrix σ,

N(2)(σ) ≤ L
(2)
⊕
(⌊m

a

⌋)
(a − resa(m)) (6.1.14)

+L
(2)
⊕
( ⌈m

a

⌉ )
resa(m) + (a − 1)m

=
(

2�m/a	 −
⌊m

a

⌋
− 1

)
(a − resa(m))

+
(

2�m/a� −
⌈m

a

⌉
− 1

)
resa(m) + (a − 1)m.

Since a may be selected arbitrarily, this implies the conclusion of our theorem.
Table 6.1.2 lists lowest upper bounds Ñ(2) for N(2)(σ) as given by (6.1.7), and the

corresponding values of a = aopt .
A fairly sharp approximation to the bound Ñ(2) is given by

Ñ(2) ∼= 2m2

log2 m
− 2m − m

log2 m
. (6.1.15)

This estimate follows from Theorem 6.1.1 by setting a = �m/ log2 m�.
It can be shown that the bound (6.1.7) is asymptotically optimal (m → ∞) for

almost all matrices σ (i.e., the number of linear transformation matrices σ for which
this bound is larger than N

(2)
σ specified in (6.1.7) tends to zero as m → ∞).

The asymptotically optimal value of the parameter a is

Qopt =
⌊

m

log2 m − log2 log2 m

⌋
, (6.1.16)

and for any σ

N(2)(σ) ∼ m2

log2 m
. (6.1.17)

TABLE 6.1.2 Lowest Upper Bounds for N (2)(σ).

m 1 2 3 4 5 6 7 8 9 10

aopt 1 1 1 2 2 2 3 3 3 3

Ñ (2) 0 1 4 6 10 14 20 25 30 39

m 11 12 13 14 15 16 17 18 19 20

aopt 4 4 4 4 5 5 5 5 5 5

Ñ (2) 46 52 62 72 80 91 102 113 124 135
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z 0

z 1

z2

z

EXOR gate

3

FIGURE 6.1.6 Network implementing multiplication by σ.

In other words, the ratio of the number of two-input mod 2 adders (EXOR gates)
needed for a best implementation of any (m × m) matrix σ and m2/ log2 m tends to
unity as m → ∞, for almost all matrices σ.

Example 6.1.4 Figure 6.1.6 illustrates a network implementing multiplication by

σ =




0 1 1 0

1 0 0 1

0 0 1 1

1 1 1 0


 ,

in accordance with the proof of Theorem 6.1.1. Here m = 4 and, as is evident from
Table 6.1.2, aopt = 2.

Theorem 6.1.1 may also be generalized to matrices σ with elements in
{0, 1, . . . , p − 1}, and also to the case of rectangular matrices σ. In these cases again
the resulting estimate is asymptotically optimal for almost all matrices σ.

6.1.4 Walsh and Vilenkin–Chrestenson Bases for the Design
of Combinatorial Networks

When using the Walsh or Vilenkin–Chrestenson bases, each coefficient in (6.1.5)
depends on the values of the system at all points of specification, that is, on the
“global” behavior of �(z). As we know, this is not the case for the Haar basis. For
example, in the case of the Haar basis (and the situation for the generalized Haar
basis is similar), the two “leading” coefficients (c(0)

0 , c
(1)
0 ) (see (2.3.25)) depend on

the “global” behavior of �(z). Each of the next two coefficients (c(1)
1 , c

(2)
1 ) depends

on the values of �(z) on one half of the interval and the relevant interval is further
contracted as proceeding along the series, until finally each of the 2m − 1 lowest-order
coefficients (c(1)

m−1, . . . , c
2m−1

m−1 ) (see (2.3.23)) is determined by the values of �(z) at
the corresponding two “neighboring” assignments. Thus, the coefficients of the Haar
expansion of �(z) depend essentially on the “local” behavior of �(z).
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Consequently, the use of the Walsh or Vilenkin–Chrestenson basis should be rec-
ommended when the original system of logic functions is from a class whose defining
properties relate to the behavior of each function at all points of specification. The
following theorem is an illustration of this statement.

Theorem 6.1.2 Let f (z) = f (z0, . . . , zm−1) be a switching function with 2q anti-
self-duality points.1 Then,

LW (f ) ≤ 2m−q, (6.1.18)

where LW (f ) is the number of nonzero coefficients in the Walsh expansion of f .

Proof. Let β1, . . . , βq be anti-self-duality points that are linearly independent over
GF (2). Then,

f (z) = f (z ⊕ β1) = · · · = f (z ⊕ βq), (mod 2),

and, if Sf (w) is the spectrum of f , it follows from the translation theorem
(Theorem 2.6.2) that

Sf (w) = Wβ1 (w)S(w) = · · · = Wβq (w)Sf (w).

Hence, if S(w) = 0, then Wβ1 (w) = · · · = Wβq (w) = 1. Using the linear indepen-
dence of β1, . . . , βq, we see that the number of distinct w-values satisfying this rela-
tion is 2m−q, proving (6.1.18).

According to Theorem 6.1.2, the use of the Walsh basis is advisable when the
number of anti-self-duality points of the functions is greater than 1.

By contrast, Haar functions are more convenient when the defining properties
of the relevant class of logic functions are “local,” that is, depend on the values of
the function at a few points. An example is the class of systems of logic functions
represented by step functions �(z) with a small number V (�) of discontinuities,
where

V (�) =
pm−1∑
z=0

sign|�(z + 1) − �(z)|. (6.1.19)

The important factor here is that, as shown by the following theorem, V (�)
determines an upper bound for the number LH (�) of nonzero coefficients in the
Haar expression for �(z).

1For the definition of anti-self-duality points and the proof that the number of such points is a power of 2,
see Section 5.1.
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Theorem 6.1.3 Let �(z) be a step function representing a system of p-valued logic
functions of m variables. Then,

LH (�) ≤ V (�)(p − 1)(m − 1) + p. (6.1.20)

Proof. The proof is by induction on V (�), an increase by 1 in the number of
discontinuities implies an increase by at most (p − 1)(m − 1) in the number of
nonzero coefficients for functions that take nonzero values just in a part of the
interval of their definition. The second term in (6.1.20) is due to the p coefficients of
the basis functions that are not equal to zero at any point of the interval.

For example, if p = 2, and

�(z) =
{

1, if z ≥ a,

0, otherwise,

(�(z) represents a single-threshold function, see Section 5.2, then V (�) = 1 and by
Theorem 6.1.3, we have LH (�) ≤ m + 1 for any a. By contrast, the number LW

of nonzero coefficients of the Walsh expansion of this function �(z) depends on a

and may reach as much as 2m so that for these functions the Haar basis is clearly
preferable.

In Section 6.4.6, we describe a method for minimization of V (�) by means of a
special linear transformation of variables, thus, minimizing the upper bound for the
complexity LH (�) of the Haar expressions.

The Appendix A lists bounds for LW and LH for 22 important classes of Switch-
ing functions (see the comments on the Appendix A in Section 5.5.5). The results
presented in the Appendix A and in Section 5.5.5 may also be used when selecting
bases for various classes of switching functions.

6.1.5 Linear Transforms of Variables in Haar Expressions

We now consider another important feature of Haar expressions related to their
behavior under linear transformation of variables in the initial system of given logic
functions.

Let σ be some permutation of the vector of variables z = (z0, . . . , zm−1). The
image of z under this permutation σ will be denoted by

σ � z = (zσ(0), . . . , zσ(m−1)).

The discrete function y = fσ(z) corresponding to the permuted system of logic
functions is (see (6.1.1), (6.1.2)),

y = fσ(z) =
k−1∑
s=0

pk−1−sy(s)(zσ0 , . . . , zσm−1 ), (6.1.21)
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where

z =
m−1∑
s=0

zσ(s)2
m−1−s. (6.1.22)

The function f (z) defined by (6.1.2) and (6.1.3) represents the original system
(6.1.1) for the identity permutation σ(s) = s, for s = 0, 1, . . . , m − 1.

The step-function completion of fσ(z), (see Section 6.1.5) will be denoted by
�σ(z). We say that �σ(z) represents the given system for the permutation σ.

Letting σ vary over different permutations and expanding the corresponding func-
tions �σ(z) in series as (6.1.5), we can generally obtain different spectral coefficients
and, therefore, implementations of different complexity.

Since implementation of a permutation requires no special hardware, we have a
problem of construction of the optimal permutation, which minimizes the number LH

of nonzero coefficients, since LH determines the size of the most complex component
of the block diagram in Fig. 6.1.1, the memory block to store the coefficients.

It follows from Theorem 2.6.7 that when the Walsh and the Vilenkin–Chrestenson
bases are used, the number of nonzero spectral coefficients is independent of per-
mutations of the variables. The situation is quite different for the Haar transform, as
it has been already demonstrated by Example 6.1.2. In this example, reordering of
coordinates in binary representation of indices of Haar functions, equivalently rows
of the Haar matrices, has been discussed. Notice that reordering of coordinates in
binary representation of indices of columns in the Haar matrix corresponds to the
reordering of variables in the functions processed.

Example 6.1.5 Consider the function f (z0, z1, z2) defined in Table 6.1.3, In this
table, there are also shown the discrete functions f (z) and fσ(z) for σ � z =
(z0, z2, z1). It follows that LH = 5 for �(z), but LH = 3 for �σ(z).

This illustrates the dependence of LH on permutations of components in the vector
of variables (z0, . . . , zm−1). In the following, we present an analytical solution of the
problem of the optimal permutation of variables (i.e., minimizing LH ) for the Haar
bases, in the case of completely specified logic functions. The case of incompletely
specified logic functions will be discussed in Sections 6.2 and 6.3. Permutations of

TABLE 6.1.3 Function f in Example 6.1.5.

z0, z1, z2 z f (z0, z1, z2) f (z) fσ(z) 8Sf 8Sfσ

000 0 0 0 0 4 4
001 1 1 1 0 0 0
010 2 0 0 1 0 −2
011 3 1 1 1 0 2
100 4 1 1 1 −1 0
101 5 0 0 1 −1 0
110 6 1 1 0 1 0
111 7 0 0 0 1 0
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variables thus considerably enhance the advantage of Haar bases over Walsh and
Vilenkin–Chrestenson bases as tools for the synthesis of network implementations of
systems of logic functions.

6.1.6 Synthesis with Haar Functions

The Haar bases have other advantages in regard to the implementation in Fig. 6.1.1.
It was shown in Sections 2.3.3 and 2.5.2 that when calculating �(z∗) for any

fixed z∗, the number of nonzero terms of the series is at most ((p − 1)m + 1) for the
generalized Haar functions ((m + 1) for the ordinary Haar functions). Thus, the num-
ber of additions performed in summation of the series is at most ((p − 1)m + 1) for
the generalized Haar functions, whereas the corresponding figure for the Vilenkin–
Chrestenson functions may reach pm. The advantages of using Haar bases in the
synthesis of logical networks are thus evident. In the sequel, therefore, our discus-
sions of spectral methods for synthesis will be concerned for the most part with the
Haar bases and the generalized Haar functions. The Walsh and Vilenkin–Chrestenson
expansions will usually be used as an intermediate, but important auxiliary tool.

6.1.6.1 Minimization of the Number of Nonzero Haar Coefficients We
showed in Section 6.1.5 that the number LH of nonzero coefficients, and hence also the
complexity of the realizing network, depends on the ordering of variables when Haar
bases are employed, whereas the corresponding figure for the Walsh and Vilenkin–
Chrestenson bases is independent of the order. An immediate goal is, therefore, to find
the optimal order of variables in a system of completely specified switching functions,
minimizing LH . Any ordering of variables for a system of switching functions of m

variables may be described by an (m × m) matrix σ = [σi,s], where σi,s ∈ {0, 1} and∑m
i=1 σi,s = ∑m

s=1 σi,s = 1, that is, each row (column) of σ contains exactly one
1. Then the argument vector zσ defined by the matrix is obtained by multiplying
z = (z0, . . . , zm−1) by σ, that is,

zσ = σ � z, mod 2. (6.1.23)

For example, if

σ =


 1 0 0

0 0 1

0 1 0


 , m = 3,

then zσ = σ � z = (z0, z2, z1).
To indicate the dependence of LH on σ, we shall write LH (σ).
We may thus state the problem of the optimal ordering of variables for the

Haar basis as finding a matrix σ minimizing LH (σ). In Section 6.1.6.2 we shall
solve a more general problem, in which σ may be any nonsingular binary matrix.
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For example, if

σ = σ∗ =




0 1 1 0

1 0 0 1

0 0 1 1

1 1 1 0


 , m = 4,

then

zσ∗ = (z1 ⊕ z2, z0 ⊕ z3, z2 ⊕ z3, z0 ⊕ z1 ⊕ z2), (mod 2).

Recall that σ is nonsingular if its determinant |σ|2 over the field GF (2) is different
from 0. Let � denote the class of all nonsingular (m × m) matrices. The generalized
optimization problem may be formulated as finding a nonsingular matrix σmin ∈ �,
such that

min
σ∈�

LH (σ) = LH (σmin). (6.1.24)

6.1.6.2 Determination of Optimal Linear Transform of Variables We can
now tackle the main problem of finding a nonsingular matrix σmin that minimizes the
number LH (σ) of Haar expansion coefficients.

Since the upper bound for the complexity of the block realizing σ is of the order of
m2/ log2 m, while the complexity of the entire network is in general an exponential
function of m, minimization of the whole network should be approached via mini-
mization of only the nonlinear part of the network, in terms of the number of nonzero
coefficients LH (σ).

The definition and properties of the Haar basis were considered in detail in
Section 2.3. Recall that the expansion coefficients of a discrete function fσ(z) in terms
of the Haar basis are defined by

c
(q)
m−1 = 2−1(fσ(2q − 2) − fσ(2q − 1)), q = 1, . . . , 2m−1, (6.1.25)

...

c
(q)
m−l = 2−l


 2l∑

i=2l−1+1

fσ(2lq − i) −
2l−1∑
i=1

fσ(2lq − i)


 ,

q = 1, . . . , 2m−l,

where

fσ(zσ) = f (z), (6.1.26)

zσ = σ � z, mod 2.
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Let LH
m−l(σ) denote the number of nonzero coefficients with subscript m − l. Then

it follows from (6.1.25) and (6.1.26) that for any σ

0 ≤ LH
m−1(σ) ≤ 2m−1, (6.1.27)

...

0 ≤ LH
m−l(σ) ≤ 2m−l,

for l = 1, . . . , m − 1, and

LH (σ) =
m−1∑
l=1

LH
m−l(σ) ≤ 2m. (6.1.28)

Thus, our search for σmin may be organized recursively along the following lines:
Let �m = � be the class of all nonsingular matrices over GF (2).

1. Find the class �m−1 ⊆ �m of matrices σ such that

LH
m−1(σm−1) = min

σ∈�m

LH
m−1(σ), (6.1.29)

where σm−1 is an arbitrary matrix in �m−1

2. Find the class �m−2 ⊆ �m−1 such that

LH
m−2(σm−2) = min

σ∈�m−1
LH

m−2(σ), (6.1.30)

where σm−2 is an arbitrary matrix in �m−2.

3. Find the class �m−l ⊆ �m−l+1, l = 1, 2, . . . , m − 1, such that

LH
m−l(σm−l) = min

σ∈�m−l+1
LH

m−l(σ), (6.1.31)

where σm−l is an arbitrary matrix in �m−l.

We may now take any matrix in �1 as σmin. This matrix makes LH
m−1(σ) assume

its absolute minimum, while the numbers LH
m−l(σ), l = 2, . . . , m − 1, take certain

local minima.
Determination of �m−1

We now consider how to find the class of matrices �m−1 minimizing LH
m−1(σ).

First let σ = Im be the identity matrix of order m, and denote the function
f (z) corresponding to the given system of k switching functions of m variables
by f (m−1)(z).
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TABLE 6.1.4 Functions in Example 6.1.6.

z0z1z2z3 y(0)y(1) z, τ f (3)(z) f
(3)
i (z) B

(3)
i (z) B(3)(τ) f (3)

σ3
(z)

0000 00 0 0 1000 4444 16 0
0001 10 1 2 0010 2002 4 0
0010 11 2 3 0001 2200 4 0
0011 11 3 3 0001 2200 4 3
0100 01 4 1 0100 0022 4 1
0101 10 5 2 0010 0022 4 1
0110 01 6 1 0100 0000 0 1
0111 11 7 3 0001 0000 0 2
1000 11 8 3 0001 0000 0 2
1001 01 9 1 0100 0000 0 1
1010 01 10 1 0100 0022 4 3
1011 10 11 2 0010 0022 4 3
1100 00 12 0 1000 2200 4 0
1101 00 13 0 1000 2200 4 3
1110 10 14 2 0010 0220 4 2
1111 00 15 0 1000 2222 8 2

Then, we define the characteristic functions f
(m−1)
i (z) for i = 0, 1, . . . , 2k − 1 by

f
(m−1)
i (z) =

{
1, if f (m−1)(z) = i,

0, if f (m−1)(z) = i.
(6.1.32)

Example 6.1.6 Table 6.1.4 defines a system of two switching functions y(0), y(1)

of four variables, showing also the discrete function f (m−1)(z) and the system of
characteristic functions {f (m−1)

i (z)}, i = 0, 1, 2, 3. For each characteristic function

f
(m−1)
i (z), we have an autocorrelation function B

(m−1)
i (τ) defined as

B
(m−1)
i (τ) =

2m−1∑
z=0

f
(m−1)
i (z)f (m−1)

i (z ⊕ τ), mod 2. (6.1.33)

Table 6.1.4 shows the corresponding functions for the example, the functions
f (3)(z), f

(3)
i (z), the autocorrelation functions B

(3)
i (z), for i = 0, 1, 2, 3, and the total

autocorrelation function B(3)(z) = ∑3
i=0 B

(3)
i (τ). Notice that this table also shows

f
(3)
σ3 (z) that will be determined later in Example 6.1.7. (The properties of the autocor-

relation functions and their relationship to double Walsh transforms were considered
in Section 2.7.)

The desired class �m−1 is determined by the following theorem.
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Theorem 6.1.4 Let

B(m−1)(τ) =
2k−1∑
i=0

B
(m−1)
i (τ).

Then, �m−1 is the set of all matrices σm−1 such that

σm−1 � τm−1 =




0
...

0

1


 , mod 2, (6.1.34)

where

maxτ =0B
(m−1)(τ) = B(m−1)(τm−1). (6.1.35)

Proof. Let LH
m−1(σ) denote the number of vanishing (equal to 0) coefficients with

the subscript (m − 1) (LH
m−1(σ) = 2m−1 − LH

m−1(σ)).

Setting f
(m−1)
σ (σ � z) = f (m−1)(z), we denote the characteristic functions of

f
(m−1)
σ (z) by f

(m−1)
i,σ (z), and the corresponding autocorrelation functions by

B
(m−1)
i,σ (τ).

Then, by (6.1.25), LH
m−1 is equal to the number of pairs of identical values of

f
(m−1)
σ (z) at points of the type z = 2s, z = 2s + 1 (s = 0, 1, . . . , 2m−1 − 1), that is,

the number of pairs of 1 values for all functions f
(m−1)
i,σ (z) at points z = 2s, z = 2s + 1

(i = 0, 1, . . . , 2k − 1). Thus the required number is 1
2

∑2k−1
i=0 B

(m−1)
i,σ (1).

In view of Theorem 2.7.4, this implies Theorem 6.1.4.
It follows from Theorem 6.1.4 that to determine �m−1, it is sufficient to find the

maximum of the total autocorrelation function B(m−1)(τ) = ∑2k−1
i=0 B

(m−1)
i (τ).

Example 6.1.7 Going back to Example 6.1.6, we find the function B(3)(τ) =∑3
i=0 B

(3)
i (τ), as specified in Table 6.1.4, we have that τm−1 is τ3 = 15, and by

Theorem 6.1.4 we can select

σm−1 = σ3 =




1 1 1 1

0 0 1 1

1 0 0 1

1 1 1 0


 .

The function f
(3)
σ3 (z) is shown in Table 6.1.4. For this example, we have LH

3 (I4) = 6,
and LH

3 (σ3) = 4.
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Determination of classes of �i

We now determine the classes �m−2 ⊇ �m−3 ⊇ · · · ⊇ �1.
To determine �m−2, we construct the function f

(m−1)
σm−1 (z) for f (m−1)(z) (see

(6.1.26)), hence obtaining the “contracted” function f (m−2)(z) defined at 2m−1 points

f (m−2)(z) = f (m−1)
σm−1

(2z) + f (m−1)
σm−1

(2z + 1). (6.1.36)

We now apply the algorithmic procedure that was used for the determination of
the matrix Qm−1 to f (m−2)(z), and denote the resulting (m − 1) × (m − 1) matrix by
σ(m−2).

Theorem 6.1.5 �m−2 is the set of all matrices σm−2 such that

σ(m−2) =




σ(m−2)
... 0

· · · · · · · · ·
0 ... 1


� σm−1, mod 2, (6.1.37)

where σm−1 ∈ �m−1.

Proof. It follows from (6.1.37) that the last ((m − 1)th) components of the vectors
σm−2 � z and σm−1 � z, (mod 2) are the same for any z, and so

LH
m−1(σm−2) = LH

m−1(σ(q)
m−1).

In addition, by (6.1.26) and (6.1.36) all the coefficients c
(q)
m−l, (l > 1) of the

functions f
(m−1)
σm−1 and f (m−2) coincide.

The construction of the classes �m−3, �m−4, . . . , �1 is analogous. The final result
is

σmin =
[

σ(1) 0

0 Im−2

]
� · · · �

[
σ(m−2) 0

0 I1

]
� σm−1, (6.1.38)

with calculations modulo 2.

Example 6.1.8 Continuing discussion of Example 6.1.6, we construct the classes
�m−2 = �2, �1. The “contracted” function f (m−2)(z) = f (2)(z), the total autocor-
relation function B(2)(τ) for f (2)(z), and the transformed function f

(2)
σ2 (z) are given
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TABLE 6.1.5 Functions in Example 6.1.6.

z, τ f (2)(z) B(2)(τ) f (2)
σ2

(z) f (1)(z) B(1)(τ) f (1)
σ1

(z)

0 0 8 0 2 4 2
1 3 0 2 6 0 10
2 2 4 3 6 0 6
3 3 0 3 10 2 6
4 3 0 3 - - -
5 6 4 3 - - -
6 3 0 6 - - -
7 4 4 4 - - -

in Table 6.1.5. We have

σ(m−2) = σ(2) =


 1 0 0

0 0 1

0 1 0


 .

The functions f (1)(z), B(1)(τ), and f
(1)
σ(1) (z) are also shown in Table 6.1.5. We have

σ(m−3) = σ(1) =
[

1 1

0 1

]
.

Finally, by using (6.1.38), we see that the minimizing matrix is

σmin =




1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1


�




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


�




1 1 1 1

0 0 1 1

1 0 0 1

1 1 1 0




=




0 1 1 0

1 0 0 1

0 0 1 1

1 1 1 0


 , mod 2.

A network implementation of σmin is shown in Fig. 6.1.6.
Table 6.1.6 gives the values of the original function f (z), its Haar spectrum

Sf (w) = c
(q)
l , where w = 2l + q − 1 (note that q and l are uniquely determined by this

condition for any given w), and also fσmin (z) and the corresponding Haar spectrum
Sσmin (w).

It is evident from the table that in this example the linear transformation σmin
yields a savings of approximately 45% in the number of nonzero spectral coefficients.
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TABLE 6.1.6 Initial Function f in Example 6.1.6,
Linearly Transformed Function fσmin

, and the
Haar Spectra for f and fσmin

.

z, w f (z) 16Sf (w) fσmin (z) 16Sfσmin
(w)

0 0 24 0 24
1 2 6 0 0
2 3 2 1 −16
3 3 10 1 0
4 1 −16 3 −8
5 2 −4 3 8
6 1 4 2 0
7 3 −8 2 0
8 3 −16 2 0
9 1 0 1 0

10 1 −8 0 0
11 2 −16 3 0
12 0 16 0 8
13 0 −8 3 −24
14 2 0 1 −24
15 0 16 2 −8

Figure 6.1.7 is a block diagram of the algorithm for determination of the optimal
linear transformation σmin, relative to the Haar basis and a system of completely
specified switching functions. The notation a = b used in the figure signifies assign-
ment of the value b to the variable a.

The above algorithm for computation of σmin involves m − 1 iterations of
the maximization procedure for finding a maximum of the total autocorrelation
function

B(m−l)(τ) =
∑

i

∑
z

f
(m−l)
i (z)f (m−l)

i (z ⊕ τ), mod 2, l = 1, . . . , m − 1.

Instead, we can use m − 1 iterations of the procedure for finding a maximum for
the total cross-correlation functions

A(m−l)(τ) =
∑
i=s

∑
z

f
(m−l)
i (z)f (m−l)

s (z ⊕ τ), mod2, l = 1, . . . , m − 1.

This follows from the following theorem.

Theorem 6.1.6 Let {f (i)(z)} be a system of discrete functions, fi(z) ∈ {0, 1}, z ∈
{0, 1, . . . , pm − 1}, i = 0, 1, . . . , pk − 1, and

B(τ) =
∑

i

∑
z

fi(z)fi(z � τ), mod p,
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=
=

otherwise

z i
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(
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f (s)
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fi
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{
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(s)(s)

(s) (s) (s)

(s)

(s)

where
(mod 2)

mod 2

mod 2

(mod 2)
m–s–1

min

S > 1

FIGURE 6.1.7 Block diagram of the algorithm for determination of σmin.
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A(τ) =
∑
i=s

∑
z

fi(z)fs(z � τ), mod p.

Then,

B(τ) + A(τ) = pm. (6.1.39)

The reason that we have been using the autocorrelation functions B(m−l)(τ)
throughout, rather than the cross-correlation functions A(m−l)(τ), is that the former
are easier to calculate.

It is worth noting that the same remark as to the possible use of cross-correlation
functions applies to the linearization algorithm in Section 5.4.3, which also made use
of the total autocorrelation function.

6.1.6.3 Efficiency of the Linearization Method A good efficiency criterion
for the method of linear transformations of variables is the maximal number of nonzero
coefficients for an arbitrary system of k completely specified switching functions of
m variables, assuming the best choice of the linear transformation σ.

Theorem 6.1.7 Let {fm,k} be the set of all discrete functions corresponding to
systems of k completely specified switching function of m variables, and LH

m−l(f, σ)
the number of nonzero Haar coefficients with subscript m − l for a discrete function
f ∈ {fm,k} with variables transformed by σ. Then

max
fm,k

min
σ

LH
0 (f, σ) ≤ 2, (6.1.40)

max
fm,k

min
σ

LH
m−l(f, σ) ≤ 2m−l − ��d	�d − 1	

2d
�, (6.1.41)

where

d = 2m−l+1

2k+l−1 − 2l−1 + 1
, l = 1, . . . , m − 1. (6.1.42)

Proof. Formula (6.1.40) follows from the definition of LH
0 (f, σ). The proof of (6.1.41)

will require more effort.

Let f (m−l) be the function produced at the lth iteration of the algorithm (see
Fig. 6.1.7), {f (m−l)

i } its system of characteristic functions, and {B(m−l)
i } the corres-

ponding system of autocorrelation functions. Then, by Theorems 6.1.4 and 6.1.5,

min
fm,k

min
σ

LH
m−l(f, σ) = 2m−l − min

fm,k

max
τ =0

1

2

2k+l−1−2l−1∑
i=0

B
(m−l)
i (τ). (6.1.43)
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We proceed to estimate the min–max term on the right side of (6.1.43). Denote

2m−l+1−1∑
z=0

f
(m−l)
i (z) = Ni. (6.1.44)

Then,

2k+l−1−2l−1∑
i=0

Ni = 2m−l+1, (6.1.45)

and

1

2

2m−l+1−1∑
τ=1

B
(m−l)
i (τ) =

(
Ni

2

)
, i = 0, . . . , 2k+l−1 − 2l−1. (6.1.46)

Since f (m−l) and f
(m−l)
i are defined at 2m−l+1 points and the number of charac-

teristic functions f
(m−l)
i is 2k+l−1 − 2l−1, it follows that

min
fm,k

max
τ =0

1

2

2k+l−1−2l−1∑
i=0

B
(m−l)
i (τ) ≥ min

fm,k




∑2k+l−1−2l−1

i=0

(
Ni

2

)
2m−l+1




≥
⌈

1

d

(
[d]

2

)⌉
=
⌈�d	�d − 1	

2d

⌉
, (6.1.47)

where

d = 2m−l+1

2k+l−1 − 2l−1 + 1
.

The formula (6.1.41) now follows from (6.1.47) and (6.1.43).
In practical computations, the bound (6.1.41) may be simplified as follows,

provided k � m (so that �d	 � 1)

⌈�d	�d − 1	
2d

⌉
≥

⌈
(�d	 − 1)�d	
2(�d	 + 1)

⌉
(6.1.48)

=
⌈

�d	
2

+
∞∑
i=0

(−1)i+1 1

�d	i

⌉
(6.1.49)

≥
⌈�d	

2
− 1

⌉
≥
⌈

d − 3

2

⌉
.
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This inequality yields the coarser estimate

max
fm,k

min
σ

LH
m−l(f, σ) ≤ 2m−l −

⌈
d − 3

2

⌉
. (6.1.50)

We now estimate the number LH
m−l(σ) of nonzero coefficients for the case of a single

switching function(k = 1).

Corollary 6.1.1 For a single-output switching function f ,

max
fm,1

min
σ

LH
m−l(f, σ) ≤ 2m − �0.36 · 2m� + �1.5(m − 1)�. (6.1.51)

Proof. It follows from (6.1.50), in view of (6.1.28), that

max
fm,1

min
σ

m∑
l=1

LH
m−1(σ) ≤ 2m −

m−1∑
l=1

⌈
1

2

(
2m−l+1

2l−1 + 1
− 3

)⌉

≤ 2m +
⌈

3

2
(m − 1)

⌉

−
(⌈

1

4
· 2m

⌉
+
⌈

1

12
· 2m

⌉
+
⌈

1

40
· 2m

⌉
+
⌈

1

144
· 2m

⌉)

≤ 2m − �0.36 · 2m� + �1.5(m − 1)�.

Table 6.1.7 lists upper bounds for maxfm,1 minσ LH
m−l, for l = 1, 2, . . . , m in the

case of a single switching function f , m = 2, 3, . . . , 10. It is also given in the table
the upper bound L̃H of maxfm,1 minσ

∑m
l=1 LH

m−l(f, σ), for l = 1, 2, . . . , m.

TABLE 6.1.7 Upper Bounds for maxfm,1 minσL
H
m−l

(f , σ), l = 1, 2, . . . , m.

l \ m 2 3 4 5 6 7 8 9 10

1 1 2 4 8 16 32 64 128 256
2 2 2 3 6 11 22 43 86 171
3 0 2 2 4 7 13 26 52 103
4 0 0 2 2 4 8 15 29 57
5 0 0 0 2 2 4 8 16 31
6 0 0 0 0 2 2 4 8 16
7 0 0 0 0 0 2 2 4 8
8 0 0 0 0 0 0 2 2 4
9 0 0 0 0 0 0 0 2 2

10 0 0 0 0 0 0 0 0 2

L̃H 3 6 11 22 42 83 164 327 650
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It follows from Theorem 6.1.7 that in the case k = 1, the use of linear transforma-
tions reduces the upper bound for the number of nonzero coefficients with subscript
m − 1 by about one half, while by (6.1.51) the total number of nonzero coefficients
is reduced by about one third.

In this case, then, introduction of a linear block σ, requiring a number of two-input
mod 2 adders of the order of m2/ log2 m (see Section 6.1.3), produces a savings of at
least �0.36 · 2m� − �1.5(m − 1)� multibit storage cells for the coefficients.

6.2 SPECTRAL METHODS FOR SYNTHESIS OF INCOMPLETELY
SPECIFIED FUNCTIONS

6.2.1 Synthesis of Incompletely Specified Switching Functions

The design of networks realizing systems of incompletely specified switching func-
tions is one of the most important and difficult problems of modern digital network
design theory. Some recent results in this area, supporting this statement and illus-
trating different approaches to the problem, are presented, for instance, in References
120, 264, 337, 338, 492, 500, 532, 640, and 687.

The added difficulty, in comparison with the analogous problem for completely
specified functions, is that here the optimal completions of the functions involved
should be determined.

In this section we shall show how to determine an optimal completion of a system
and an optimal linear transformation of its variables, in the sense that the number of
nonzero Haar expansion coefficients is minimized.

Before proceeding to the solution of these problems, we shall estimate the degree
to which networks may be simplified if the function to be realized is allowed to be
incompletely specified.

Theorem 6.2.1 Let {�w(z)}, z ∈ [0, pm), be a complete orthogonal system of step
functions, andf (z) a function defined atN pointsy0, . . . , yN−1 ∈ {0, 1, . . . , pm − 1}.
Then there exists a completion of f (z) to [0, pm) such that the number of nonzero
coefficients in its expansion in terms of the basis {�w(z)} is at most N.

In the case of the Walsh basis, this is simply Lemma 5.2.1. In regard to the Haar
basis, we shall develop an algorithm computing the desired completion in
Section 6.2.2.

6.2.2 Synthesis of Incompletely Specified Functions
by Haar Expressions

We consider the optimal completion problem for a system of switching functions in
the case of the Haar basis.

If LH
m−l is the number of nonzero coefficients c

(q)
m−l, q = 1, 2, . . . , 2m − 1, then

0 ≤ LH
m−l ≤ 2m−l (where m, as usual, is the number of variables).
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The optimal completion may therefore be sought by the following recursive pro-
cedure. The procedure will produce completion classes Km−1 ⊇ Km−2 ⊇ · · · ⊇ K0,
where Km−l, l = 1, 2, . . . , m is the set of all completions in Km−l+1, which minimize
LH

m−l (Km is the set of all completions of the system).
Suppose that we have a system of k incompletely specified switching functions of

m variables

y(s) = y(s)(z0, z1, . . . , zm−1), s = 0, 1, . . . , k − 1. (6.2.1)

Notice that all the functions in this system are assumed to be undefined at exactly
the same points. We represent the system (6.2.1) by a discrete function y = f (z),
where

z =
m−1∑
s=0

zs2
m−1−s,

y =
k−1∑
s=0

y(s)2k−1−s.

Then Km−1 will be the class of all completions such that the number of distinct z

for which

f (2z − 2) = f (2z − 1), (6.2.2)

is maximum.
The class Km−2 ⊆ Km−1 is the set of all completions in Km−1 such that the number

of distinct z for which

f (4z − 4) + f (4z − 3) = f (4z − 2) + f (4z − 1), (6.2.3)

is maximum.
The definition of Km−3 ⊇ Km−4 ⊇ · · · ⊇ K1 ⊇ K0 is similar.
Then, any completion in class K0 will meet these requirements. The essential

point here is that determination of a completion in K0 does not require an exhaustive
search. Thus, given a system of incompletely specified switching functions, with
their variables in a selected order, we can construct a completion corresponding to an
absolute minimum of LH

m−1 and certain relative minima for LH
m−l, for l = 2, 3, . . . , m.

Example 6.2.1 Consider the switching function f of four variables defined in
Table 6.2.1, where the asterisk ∗ stands for undefined values. The classes K3,
K2, K1 = K0 are shown in the table. Here a1, a2, a3, a4, a5 ∈ {0, 1}, a6 ∈ {a2, a3},
a7 ∈ {a4, a5}, and a8 ∈ {a6, a1}. There are two functions in K0, one of which (φ) is
shown in Table 6.2.1.
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TABLE 6.2.1 Partially Defined Function f in Example
6.2.1 and Its Optimal Completion φ.

z0z1z2z3 f K3 K2 K1 = K0 φ ∈ K0

0000 1 1 1 1 1
0001 0 0 0 0 0
0010 ∗ 0 0 0 0
0011 0 0 0 0 0
0100 ∗ a1 0 0 0
0101 ∗ a1 0 0 0
0110 0 0 0 0 0
0111 1 1 1 1 1
1000 ∗ a2 a6 a8 0
1001 ∗ a2 a6 a8 0
1010 ∗ a3 a6 a8 0
1011 ∗ a3 a6 a8 0
1100 ∗ a4 a7 a8 0
1101 ∗ a4 a7 a8 0
1110 ∗ a5 a7 a8 0
1111 ∗ a5 a7 a8 0

The next task is to look for an optimal linear transformation of variables σmin. For
any σ, we retain the same method of completion as before.

To determine σmin, we use the algorithm in Fig. 6.1.7, except that the characteristic
functions f

(m−1)
i (z) will now be defined not by (6.1.32), but as

f
(m−1)
i (z) =

{
1, if f (m−1)(z) = i, or f (m−1)(z) = ∗,

0, otherwise,
(6.2.4)

and

f (m−1)
∗ (z) =

{
1, if f (m−1)(z) = ∗,

0, otherwise,
(6.2.5)

the function
∑2k−1

i=0 B
(m−1)
i (τ) in (6.1.35) is replaced by

2k−1∑
i=0

(B(m−1)
i (τ) − B(m−1)

∗ (τ)) + B(m−1)
∗ (τ)

=
2k−1∑
i=0

B
(m−1)
i (τ) − (2k − 1)B(m−1)

∗ (τ),
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where B
(m−1)∗ (τ) is the autocorrelation function of f

(m−1)∗ (z), and in (6.1.36)
we set

a + ∗ = 2a, (6.2.6)

∗ + ∗ = ∗.

We note that for weakly specified functions, it follows from (6.2.4) and (6.2.5) that

2m−1∑
z=0

f
(m−1)
i (z) � 2m−1,

and, therefore, it is convenient to calculate B
(m−1)
i (τ) with the aid of Corollary 2.7.1,

according to which one can use the inverse function

f
(m−1)
i (z) = 1 − f

(m−1)
i (z),

for i = 0, 1, . . . , 2k − 1, ∗.

Example 6.2.2 Let us find the classes �m−1 = �3, �2, �1 and the matrix σmin for
the switching function in Example 6.2.1.

Table 6.2.2 presents the original incompletely specified switching function f (3)(z);

its inverse characteristic functions f
(3)∗ (z); f

(3)
0 (z), and f

(3)
1 (z); the autocorrelation

TABLE 6.2.2 The Partially Defined Function f = f (3) in Example 6.2.2, the Autoco-
rrelation Functions, and Linearly Transformed Function f (3)

σ3
.

z0z1z2z3 z, τ f (3) f
(3)
∗ (z) f

(3)
0 f

(3)
1 B(3)

∗ B
(3)
0 B

(3)
1 B(3) f (3)

σ3

0000 0 1 1 1 0 11 14 13 16 1
0001 1 0 1 0 1 10 12 10 12 *
0010 2 ∗ 0 0 0 8 12 12 16 0
0011 3 0 1 0 1 8 12 10 14 0
0100 4 ∗ 0 0 0 8 12 10 14 0
0101 5 ∗ 0 0 0 8 12 12 16 0
0110 6 0 1 0 1 10 12 10 12 ∗
0111 7 1 1 1 0 10 14 12 16 1
1000 8 ∗ 0 0 0 6 12 10 16 ∗
1001 9 ∗ 0 0 0 6 12 10 16 ∗
1010 10 ∗ 0 0 0 6 12 10 16 ∗
1011 11 ∗ 0 0 0 6 12 10 16 ∗
1100 12 ∗ 0 0 0 6 12 10 16 ∗
1101 13 ∗ 0 0 0 6 12 10 16 ∗
1110 14 ∗ 0 0 0 6 12 10 16 ∗
1111 15 ∗ 0 0 0 6 12 10 16 ∗
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functions B
(3)∗ (τ), B(3)

0 (τ), and B
(3)
1 (τ) (constructed by using Corollary 2.7.1); and the

function B
(3)
0 (τ) + B

(3)
1 (τ) − B

(3)∗ (τ). From Table 6.2.2, we can set τm−1 = τ3 = 2,
and by Theorem 6.1.4,

σ3 =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 .

The function f
(3)
σ3 (z) defined by

f (3)
σ3

(σ3 � z) = f (3)(z), mod 2,

is shown in Table 6.2.2. With the completion defined as above, this gives LH
3 (σ3) = 0,

whereas for the original function LH
3 (I4) = 2.

Table 6.2.3 shows the “contracted” function f (2)(z) constructed by (6.1.36) and
(6.2.6), and the function

B(2)(τ) =
3∑

i=0

B
(2)
i (τ) − 3B(2)

∗ (τ) = B
(2)
0 (τ) + B

(2)
2 (τ) − B(2)

∗ (τ),

since B
(2)
1 (τ) = B

(2)
3 (τ) = B

(2)∗ (τ).
Table 6.2.3 yields τ2 = 4, and by Theorem 6.1.4

σ(2) =


0 0 1

0 1 0

1 0 0


 .

TABLE 6.2.3 Contracted Functions f (2)(z), f<1>(z) in
Example 6.2.2, Their Autocorrelation Functions B(2), B<1>,
and Linearly Transformed Functions f

(2)
σ(2) and f

(1)
σ(1) .

z, τ f (2)(z) B(2)(τ) f
(2)
σ(2) (τ) f (1)(z) B(1)(τ) f (1)

σ(1)
(z)

0 2 8 2 4 4 4
1 0 4 ∗ 0 0 4
2 0 4 0 0 0 0
3 2 8 ∗ 4 4 0
4 ∗ 8 0 - - -
5 ∗ 8 ∗ - - -
6 ∗ 8 2 - - -
7 ∗ 8 ∗ - - -
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The function f
(2)
σ(2) (z), the “contracted” function f (1)(z), the corresponding

B(1)(τ) = B
(1)
0 (τ) + B

(1)
4 (τ) and f

(1)
σ(1) (z) are also shown in Table 6.2.3. It is assumed

that τ = 3 and σ(1) =
[

1 1

0 1

]
.

The final result, using (6.1.31), is

σmin =




1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1


�




0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1


�




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




=




0 1 0 1

0 1 0 0

1 0 0 0

0 0 1 0


 , mod 2.

Realization of the σmin-block requires one two-input EXOR gate. The results for
this example are summarized in Table 6.2.4, which presents the original function
f (z), the function fσmin (z), and the Haar spectra of their optimal completions φ(z)

and φmin(z), with Sf (w) = c
(q)
l , (w = 2l + q − 1).

TABLE 6.2.4 Initial Function f in Example 6.2.1,
Linearly Transformed Function fσmin

and Their Haar
Spectra.

z, τ f φ 8Sf (w) fσmin
φσmin

8Sfσmin
(w)

0000 1 1 1 1 1 4
0001 0 0 1 ∗ 1 4
0010 ∗ 0 0 ∗ 1 0
0011 0 0 0 ∗ 1 0
0100 ∗ 0 2 ∗ 1 0
0101 ∗ 0 −2 1 1 0
0110 0 0 0 ∗ 1 0
0111 1 1 0 ∗ 1 0
1000 ∗ 0 4 0 0 0
1001 ∗ 0 0 0 0 0
1010 ∗ 0 0 ∗ 0 0
1011 ∗ 0 −4 ∗ 0 0
1100 ∗ 0 0 ∗ 0 0
1101 ∗ 0 0 0 0 0
1110 ∗ 0 0 ∗ 0 0
1111 ∗ 0 0 ∗ 0 0
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The data in Table 6.2.4 show that whereas the optimal completion of f (z)
gives LH = LH (I4) = 6, the result after optimal rearrangement of the variables is
LH (σmin) = 2.

6.3 SPECTRAL METHODS OF SYNTHESIS OF MULTIPLE-VALUED
FUNCTIONS

6.3.1 Multiple-Valued Functions

Recent years have seen considerable progress in the development of economical
multistable elements, see Reference 661 and references therein. Several examples
of various particular implementations of multiple-valued logic circuits and different
related technologies are discussed References in 26, 46, 79, 81, 113, 205, 230, 312,
404, 521, 633, 636, and 660.

As a result, there is a need to formalize the problem of network synthesis for
components of this type. The problem turns out to be far more complex than its
analog for binary elements, in view of the fact that the methods of multiple-valued
switching logic (205, 312, 633) are noneffective from the practical standpoint, and
indeed sometimes quite unsuitable for the synthesis of networks from multistable
elements.

In this section, we discuss spectral methods for the solution of this problem. They
yield fairly simple, but approximate results.

6.3.2 Network Implementations of Multiple-Valued Functions

Networks based on p-stable elements are described by systems of p-valued logic
functions.

In the framework of spectral methods, we proceed as in the two-valued case,
expanding the step function representing a given system in a series of generalized Haar
functions {M(p,q)

r,m−l(z)}. These are step functions, defined on [0, pm) and taking on at
most p + 1 complex values from the set {0, exp(2πiq/p)} (q = 0, 1, . . . , p − 1, i =√−1). The properties of these functions and methods for calculating the generalized
Haar spectrum were considered in Section 2.5. As before, we shall measure the
complexity by the number LM of nonzero series coefficients. If the original system
depends on m variables, then LM ≤ pm.

We shall assume throughout this section that p is a prime.
The use of spectral methods in multiple-valued logic raises the following two

problems:

1. The optimal completion of the original system of partially defined p-valued
logic functions (the solution of this problem will be given in Section 6.3.3).

2. Choice of the optimal order of variables or, in more general terms, the optimal
linear transformation of variables (the solution of this problem will be presented
in Section 6.3.4 and 6.3.5).
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6.3.3 Completion of Multiple-Valued Functions

Let LM
m−l denote the number of nonzero coefficients c

(p,q)
r,m−l, r = 0, 1, . . . , p − 1, and

q = 1, 2, . . . pm−l. Then,

0 ≤ LM
m−l < (p − 1)pm−l. (6.3.1)

We shall assume that the functions of the original system are undefined at the same
points.

In view of (6.3.1), we shall use the following m-step procedure to find an optimal
completion. We first determine the class Km−1 of completions minimizing LM

m−1,
the subclass Km−2 ⊆ Km−1 of completions minimizing LM

m−2, and so on, obtaining
classes Km−3 ⊇ Km−4 ⊇ · · · ⊇ K0. Any member of K0 may be taken as the optimal
completion.

It follows from the definition of the system {M(p,q)
r,m−l(z)} that the expansion coeffi-

cients c
(p,q)
r,m−1, r = 0, 1, . . . , p − 1 of a discrete function f (z) are equal to 0 iff

f (pq − p) = f (pq − (p − 1)) = · · · = f (pq − 1). (6.3.2)

This condition defines the class Km−1, which will consist of all completions for
which the number of distinct numbers q satisfying (6.3.2) is a maximum. The class
Km−2 will then be the set of all completions in Km−1 for which the number of distinct
q is such that

p∑
i=1

f (p2q − i) =
p∑

i=1

f (p2q − p − i) = · · · =
p∑

i=1

f (p2q − p(p − 1) − i),

is a maximum.
The construction of the remaining classes Km−3 ⊇ Km−4 ⊇ · · · ⊇ K0 is

analogous.
This completion method is a generalization of the method discussed in Section 6.2

for switching functions to p-valued logic. In view of (6.3.1), the method guarantees
an absolute minimum for LM

m−1 and certain local minima for LM
m−l, (l > 1).

Example 6.3.1 We start with a partially defined ternary logical function of two
variables (Table 6.3.1). The classes K1 and K0 are shown in Table 6.3.1, where
(a1, a2 ∈ {0, 1, 2}). The optimal completion reduces the number of nonzero spectral
coefficients to 3.

6.3.4 Complexity of Linear Multiple-Valued Networks

We now turn to the problem of optimal choice of the order of variables. As in
Sections 6.1.6.1 and 6.2, we deal with a more general problem, that is, the optimal
linear transformation of variables.
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TABLE 6.3.1 The Partially Defined Function f in
Example 6.3.1 and Its Optimal Completion.

z0z1 f K1 K0

00 1 1 1
01 ∗ a1 0
02 2 2 2
10 1 1 1
11 1 1 1
12 ∗ 1 1
20 ∗ a2 1
21 ∗ a2 1
22 ∗ a2 1

Any linear transformation of a p-ary argument, vector z = (z0, . . . , zm−1)
is defined by a nonsingular matrix σ = [σi,j], where σi,j ∈ {0, 1, . . . , p − 1} and
the determinant |σ|p = 0 over the field GF (p) of residues modulo p.

Example 6.3.2 For example, if p = 3 and

σ =


 1 0 0

2 1 0

1 1 1


 ,

then,

zσ = σ � z = (z0, 2z0 ⊕ z1, z0 ⊕ z1 ⊕ z2), mod 3.

Multiplication by the matrix σ requires a special block, which may be implemented
with modulo p adders and networks realizing multiplication mod p by the constants
1, 2, . . . , p − 1.

A network implementing multiplication by the matrix shown above is illustrated
in Fig. 6.3.1.

Let N(p)(σ) denote the minimum number of two-input adders and multipliers by
constants modulo p in network implementing the matrix σ.

Theorem 6.3.1 For any σ = [σi,j], where σi,j ∈ {0, 1, . . . , p − 1}, i, j=1, 2,

. . . , m,

N(p)(σ) ≤ min
a∈{1,...,m}

((
p�m/a	 −

⌊m

a

⌋
− 1

)
(a − resa(m)) (6.3.3)

+
(
p�m/a� −

⌈m

a

⌉
− 1

)
resa(m) + (a − 1)m

)
,

where resa(m) denotes the remainder upon division of m by a.
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z0

z1

z2

multiplication by 2, modulo 3

addition modulo 3

2

2

FIGURE 6.3.1 Network realizing multiplication by σ in Example 6.3.2.

This theorem is a generalization of Theorem 6.1.1 and its proof employs an anal-
ogous construction.

The asymptotic behavior of N(p)(σ) as m → ∞ is described for almost all σ by

N(p)(σ) ∼ m2

log2 m
. (6.3.4)

It follows from Theorem 6.3.1 and formula (6.3.4) that if the network realizing a
system of p-valued logical functions is designed as a serial connection of two blocks,
a linear block implementing the optimal linear transformation σmin, and a nonlinear
block using spectral methods to realize the appropriate system of functions of the
variables σmin � z (mod p), then the complexity of the linear part may be neglected,
since it increases with m more slowly than m2, whereas the complexity of the nonlinear
block is generally an exponential function of m.

6.3.5 Minimization of Numbers of Nonzero Coefficients in the
Generalized Haar Spectrum for Multiple-Valued Functions

We now proceed to the construction of an optimal linear transformation σmin. This
will be done by an (m − 1)-step procedure, yielding a sequence of classes �m−1 ⊇
�m−2 ⊇ · · · ⊇ �1, where �m−l is the set of all matrices in �m−l+1, that minimize
LM

m−l, (�m is the set of all nonsingular matrices over GF (p)).
The construction of �m−1 is as follows. By starting with the system f (z) =

f (m−1)(z) of k incompletely specified p-valued logic functions of m variables, we
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construct the characteristic functions

f
(m−1)
i (z) =

{
1, if f (m−1)(z) = i, or f (m−1)(z) = ∗,

0, otherwise,
(6.3.5)

f (m−1)
∗ (z) =

{
1, if f (m−1)(z) = ∗,

0, otherwise,
(6.3.6)

for i = 0, 1, . . . , pk − 1.
Now define the function B

(m−1)
i (τ) by

B
(m−1)
i (τ) =

pm−1∑
z=0

f
(m−1)
i (z)f (m−1)

i (z � τ) · · · f (m−1)
i (z �

p−1︷ ︸︸ ︷
τ � · · · � τ). (6.3.7)

This is the autocorrelation function of p functions obtained by successive transla-
tion modulo p of the variable of the characteristic function f

(m−1)
i (z), and it coincides

with our previous autocorrelation function when p = 2.

Theorem 6.3.2 The class �m−1 is the set of all nonsingular matrices σm−1 over
GF (p) such that

σm−1 � τm−1 =




0

0
...

0

1




, mod p, (6.3.8)

where

max
τ =0


pk−1∑

i=0

(B(m−1)
i (τ) − B(m−1)

∗ (τ)) + B(m−1)
∗ (τ)


 (6.3.9)

=
pk−1∑
i=0

(B(m−1)
i (τm−1) − B(m−1)

∗ (τm−1)) + B(m−1)
∗ (τm−1).

This is actually a generalization of Theorem 6.1.4 to systems of partially defined
p-valued functions.

Example 6.3.3 Consider the ternary logical function f (z0, z1) = f (1)(z) of two
variables defined by Table 6.3.2. The table also gives the system of characteristic
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TABLE 6.3.2 Ternary Function f = f (1) in Example 6.3.3, Its Autocorrelation
Functions, and the Linearly Transformed Function f (1)

σ1
.

z0, z1 z, τ f (1) f
(1)
0 f

(1)
1 f

(1)
2 B

(1)
0 B

(1)
1 B

(1)
2 B(1) f (1)

σ1

00 0 1 0 1 0 2 5 2 9 1
01 1 2 0 0 1 0 0 0 0 0
02 2 1 0 1 0 0 0 0 0 2
10 3 1 0 1 0 0 3 0 3 0
11 4 1 0 1 0 0 0 0 0 1
12 5 2 0 0 1 0 3 0 3 2
20 6 1 0 1 0 0 3 0 3 1
21 7 0 1 0 0 0 3 0 3 1
22 8 0 1 0 0 0 0 0 0 1

functions f
(1)
i (z), autocorrelation functions B

(1)
i (τ), (i = 0, 1, 2), and the function

B(1) = ∑2
i=0 B

(1)
i (τ).

Thus, we have

τ1 =
(

2

1

)
.

By Theorem 6.3.2,

σmin = σ1 =
[

1 1

1 2

]
.

The function f
(1)
σ1 (z) defined by f

(1)
σ1 (σ � z) = f (1)(z) (mod 3) is shown in the table,

where B(1) = ∑2
i=0 B

(1)
i . It follows that whereas LM = 9 for the original system f (z),

the transformed system f<1>
σ1

(z) gives LM = 5.

In this section we will discuss construction of linear transformations that minimize
the number LM

m−l, l = 2, 3, . . . , m − 1 of spectral coefficients.
We outline a recursive procedure constructing the classes �m−2 ⊇ · · · ⊇

�1, which is a generalization of the similar procedure for the two-valued
case.

To construct �m−2, we start with the function f (m−1)(z), defining a function
f

(m−1)
σm−1 (z) by

f (m−1)
σm−1

(σm−1 � z) = f (m−1)(z), mod p.
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We define the “contracted” function f (m−2)(z) at p(m−1) points by

f (m−2)(z) =




∑p−1
s=0 f

(m−1)
σm−1 (pz + s), if f

(m−1)
σm−1 (pz + s), s = 0, . . . , p − 1,

is completely specified,

pa, if f
(m−1)
σm−1 (pz + s) ∈ {∗, a},

a, s = 0, . . . , p − 1,

∗, otherwise.

(6.3.10)

The application of the algorithm from Section 6.3.5 to the function f (m−2)(z)
produces an (m − 1) × (m − 1) matrix σ(m−2).

The construction of σ(m−3), σ(m−4), . . . , σ(1) is analogous.
Finally, we define σmin by

σmin =




σ(1)
... 0

· · · · · · · · ·
0

... Im−2


�




σ(2)
... 0

· · · · · · · · ·
0

... Im−3


 (6.3.11)

� · · · �




σ(m−2)
... 0

· · · · · · · · ·
0

... I1


� σm−1, mod p.

Remark 6.3.1 The algorithms we have described for determination of an optimal
linear transformation and an optimal completion in multiple-valued logic are almost
identical with the appropriate algorithms for systems of binary switching functions.
This is yet another demonstration that the algorithms provided by spectral methods
of synthesis are independent of the “arity” of the logic.

6.4 SPECTRAL SYNTHESIS OF DIGITAL FUNCTIONS AND
SEQUENCES GENERATORS

6.4.1 Function Generators

When devising complex systems of automatic control, signal processing, and mea-
surement, there is the need to design devices that reproduce given functions. This
involves designing digital generators of continuous functions of one or more vari-
ables (208–210). When the input of such a device is the m-bit binary code of the
variable z, the output is the value of the required function f (z), or rather its k-bit
code. A Digital Function Generator (DFG) may be designed with the aid of any
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method for the synthesis of m input k output functions realized by an (m, k)-terminal
combinational logic network. However, the functions produced by a DFG are not
continuous functions, but functions derived from continuous functions by quantiza-
tion; thus, a more detailed study of DFG design is indispensable. In this section, we
consider spectral methods to this end and establish a few estimates.

6.4.2 Design Criteria for Digital Function Generators

Throughout this section we assume that f (z), �(z), as well as the Walsh and Haar
functions, are defined on the closed interval [0, 1].

The principal technical parameters of a DFG are the accuracy with which it
reproduces the given function, its speed, and the amount of hardware required. The
accuracy is estimated by the distance ε between the object function f (z) and the
approximating function �(z) produced at the output. There are various definitions
of this “distance” between two functions. For instance, the uniform distance εc is
defined by

εc = max
z∈(0,1)

|f (z) − �(z)|, (6.4.1)

and the mean-square distance (or L2 distance) is defined by

ε2 =
(∫ 1

0
(f (z) − �(z))2dz

)1/2

. (6.4.2)

The speed of the DFG is estimated by the quantity 1/tDFG, where tDFG is the time
interval elapsing from application of the code of z at the input to production of the
function value at the output.

The complexity is measured, as usual, by the number LDFG of logic elements (from
some complete basis system) necessary for implementation of the DFG.

In most cases, the given parameters for design of a DFG are the required accuracy
ε and the admissible value-generation time tDFG. Analyzing the various methods of
synthesis, one selects the optimal solution—that minimizing the hardware complexity
LDFG of the DFG.

The reader should note that the spectral methods considered in this book for the
synthesis of combinational networks in many cases are more efficient than the classical
methods. The reasons are as follows:

First, the spectral approach greatly increases the likelihood that the synthesis
method actually selected will yield a device answering most completely to the
demands. To this end the basis systems should be sought not only among the systems
studied in our book (Walsh functions, Haar functions, and their many-valued analogs),
but also among the systems obtained, say, by integrating them ({∫ z

0 Ww(z)dz} (208)),
Schauder functions (511)), as well as the Reed–Muller functions, arithmetic trans-
form, and so on.
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Second, the DFGs designed by spectral methods are multiphase devices—the value
of the function is produced only after several arithmetic operations have been per-
formed. The decrease in speed nevertheless makes it possible to reduce the necessary
hardware; in other words, to make use of the available time tDFG, which is fixed in
advance. Indeed, LDFG is determined largely by the size of the memory device in
which the coefficients are stored (combinatorial network may be regarded as a mem-
ory holding codes of the function values). As we shall show later in this section, when
spectral methods are used, the number of expansion coefficients to be stored is often
much smaller than the number of function values to be computed. This is the case
for a quite broad range of continuous functions. All this implies a reduction in the
complexity of a DFG.

Finally, spectral methods are applicable in cases where the variables and functions
involve a large number of digits, where classical methods for synthesis of combination
networks demand a prohibitive amount of labor. This is because the functions to
be produced by DFG are generally specified in analytical form, and the techniques
for analysis of the errors arising in approximation of these functions by series are
independent of the length of the variable or function-value codes (see Sections 6.4.3–
6.4.5).

6.4.3 Hardware Complexity of Digital Function Generators

The hardware complexity LDFG will be measured by the number L of nonzero
coefficients stored in the memory. This number depends on the form of f (z), the
accuracy of reproduction ε, the type of approximation (uniform or mean-square), and
also on the selected basis. We now proceed to estimate LDFG as a function of these
parameters.

To approximate f (z) by a finite Walsh or Haar series, we must first approximate
f (z) by a step function �(z).

(Throughout this section we shall adopt the approximation in the uniform norm
(6.4.1), since this is customary in the theory of function generators.)

Let {�(z)}n be the set of step functions with at most n discontinuities of the first
kind (272).

Theorem 6.4.1 For any differentiable function f (z) defined on [0, 1] and any
arbitrarily small ε > 0, there exists �(z) ∈ {�(z)}n, such that

max
z∈[0,1]

|�(z) − f (z)| ≤ ε,

provided

n ≥
⌈

maxz∈[0,1] |f ′
(z)|

2ε

⌉
, (6.4.3)

where f
′
(z) is the derivative of f (z) with respect to z.
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Proof. The required step function �(z) ∈ {�(z)} may be constructed as follows:

Divide the interval [0, 1] into n subintervals of equal length, where n satisfies
(6.4.3), by points z0 = 0, y1, . . . , yn = 1, and set

�(y) = 1

2
(f1(yi) + f (yi+1)), (6.4.4)

for yi ≤ y < yi+1, i = 0, 1, . . . , n − 1 and maxy∈[0,1] |�(y) − f (y)| ≤ ε.

Corollary 6.4.1 Denote

m = �log2 max
z∈[0,1]

|f ′
(z)| − log2 ε − 1�. (6.4.5)

Then for any differentiable function f (z), (z ∈ [0, 1]), there exists

�(z) =
2m−1∑
w=0

S(w)Ww(z) = c
(0)
0 +

m−1∑
l=0

2t∑
q=1

c
(q)
l H

(q)
l (z),

such that maxz∈[0,1] |f (z) − �(z)| ≤ ε, that is, LW , LH ≤ 2m, where LW (LH ) is the
number of nonzero coefficients in the Walsh (Haar) expansion of �(z).

Proof. The assertion follows from Theorem 6.4.1 (with the interval divided into 2m ≥
n parts) and the fact that any left-continuous step function �(z) with discontinuities
at the points i/2m, (i = 0, 1, . . . , 2m − 1) has a Walsh (Haar) expansion containing
at most 2m terms.

Example 6.4.1 Suppose we wish to design a function generator for f (z) = arctan z,
(z ∈ [0, 1]) with accuracy ε = π/180 radians, with m = 20 and k = 20. The number
LW (LH ) of nonzero coefficients in the Walsh (Haar) expansion of f (z) is calculated
as follows:

Calculate m by (6.4.5), noticing that

max
z∈[0,1]

(arctan z)
′ = (1 + z2)−1|z=0 = 1, m =

⌈
1 − log2

π

180
− 1

⌉
= 6,

and so LW, LH ≤ 64.

In this example it is not taken into consideration that there is an additional error δ

in the values of f (z), due to the fact that the number k of binary digits of the function
at the generator output is finite. It is clear that this error does not exceed one half of
the lowest order digit, that is, the last significant bit. In other words, assuming that
the maximum of f (z) is normalized to 1, we have

δ ≤ 2−k−1. (6.4.6)
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To summarize, the uniform error ẽ in reproduction of a function f (z) by a
DFG is

ε̃ ≤ ε + δ, (6.4.7)

where ε is the error in approximation of f (z) by a step function �(z), and δ is the
error due to the finite accuracy of computation of �(z). Thus, when calculating the
complexities LW (LH ) as in Corollary 6.4.1, the error in (6.4.5) should be taken equal
to ε = ε̃ − δ, where ε̃ s is the prescribed uniform error.

6.4.4 Bounds for the Number of Coefficients in Walsh Expansions
of Analytical Functions

Sharper bounds for LW may be established by the approximation of f (z) by a power
series, such as the Taylor series.

Recall that the weight ‖w‖ of the index of the Walsh function Wm(z) is the number
of 1 values in the binary expansion of w.

Theorem 6.4.2 For any function f (z), z ∈ [0, 1], having a continuous qth derivative
f (q)(z), the coefficients S(w) of its expansion in a series of Walsh functions with index
weight q ( ‖w‖ = q) satisfy the inequality

|S(w)| ≤ (2(q2+3q))−1/2| max
z∈[0,1]

f (q)(z)|, (6.4.8)

where f (q)(z) denotes the qth derivative of f (z).

Proof. By Taylor formula,

f (z) =
q−1∑
s=0

(s!)−1f (s)
(

1

2

)(
z − 1

2

)s

+ (q!)−1f (q)(θ(z))

(
z − 1

2

)q

, (6.4.9)

(6.4.10)

where 0 ≤ θ(z) ≤ 1.
The binomial (z − 1

2 )s may be represented as a Walsh series (441)

(
z − 1

2

)s

=
(

−
∞∑
i=1

2−i−1Ri(z)

)s

, (6.4.11)

where Ri(z) are the Rademacher functions and Ri(z) = W2i−1 (z).
It follows that the nonzero coefficients D(w) in the Walsh spectrum of (z − 1

2 )q

have indices with the weight at most q, and the maximum absolute value of these
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coefficients is given by

max
‖w‖=q

|D(w)| = 2−
∑q

i=1
(i+1) · q! = (2(q2+3q))−1/2 · q!. (6.4.12)

Substituting (6.4.11) for (z − 1
2 )s in (6.4.9), we obtain

f (z) =
q−1∑
s=0

(s!)−1f (s)
(

1

2

)(
−

∞∑
i=0

2−i+1Ri(z)

)s

(6.4.13)

+f (q)(θ(z))(q!)−1

(
−

∞∑
i=1

2−i−1Ri(z)

)q

,

where 0 ≤ θ(z) ≤ 1.
It follows that the nonzero coefficients with the index weight q in the spectrum of

f (z) are determined only by the second term, and by (6.4.12),

max
‖w‖=q

|S(w)| = (2(q2+3q))−1/2| max
z∈[0,1]

f (q)(z)|.

Other estimates based on power series may be found in Reference 441.

Example 6.4.2 Let us estimate the maximum coefficient with the index weight 10
for f (z) = sin 2πz, (z ∈ [0, 1]).

We have

max
z∈[0,1]

| sin(10) 2πz| = (2π)10.

Thus, by (6.4.8),

max
‖w‖=10

|S(w)| ≤ 2−65 · (2π)10 < 2 · 10−10.

Theorem 6.4.2 and Example 6.4.2 illustrate the rapid convergence of Walsh series
and the advantage of using the Walsh basis in designing DFG for smooth functions.

6.4.5 Implementation of Switching Functions Represented
by Haar Series

We now consider the same problem for the number LH of nonzero Haar coefficients.
Let 0 < α ≤ 1. We say that f (z) is in the class Hα(A) if, for any z1z2 ∈ [0, 1],

|f (z1) − f (z2)| ≤ A(z1 − z2)α, (6.4.14)

where A > 0. We call Hα(A) the Lipschitz class of order α with constant A.
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Theorem 6.4.3 (530) If f (z) ∈ Hα(A), then

LH ≤ 2�log2((α+1)ε−1A)1/α�. (6.4.15)

These bounds for the number of nonzero Haar coefficients may be lowered if the
number m of digits in the code of the variable z is fixed in advance.

Let f (z) be approximated with prescribed accuracy ε by a step function
�(z) ∈ {�(z)}n, where �(z) has discontinuities at points of the form i · 2m, i =
0, 1, . . . , 2m − 1.

Then, by Theorem 6.1.2,

LH ≤ n(m − 1) + 2. (6.4.16)

This bound is useful when n < 2m/m.
The above results demonstrate that in the design of function generators for analytic

functions, the use of Walsh functions is generally preferable to that of Haar functions,
as far as the memory size necessary for storing the coefficients is concerned. The
underlying reason is that, unlike the Haar coefficients, each of the Walsh coefficients
depends on the behavior of f (z) throughout its interval of definition, since it is a
global transform in that respect.

Methods for DFG design, estimates of the accuracy of reproduction for some other
bases, related to the Walsh and Haar bases, and also methods for the design of DFG
computing functions of several variables, were considered in References 208–210.

From the hardware point of view, DFGs designed on the basis of expansion in
orthogonal series are described by the same block diagrams as devices realizing
systems of logic functions by spectral methods and details will be given in the
following chapters.

6.4.6 Spectral Methods for Synthesis of Sequence Generators

We now consider spectral methods for the synthesis of an important special class of
DFG, which we call Sequence Generators (SG).

A sequence generator generates a function y = f (z) defined at points
(0, 1, . . . , M − 1), that is, when the binary codes of the numbers (0, 1, . . . , M − 1)
are applied at its input in this order, the corresponding output is the sequence
f (0), f (1), . . . , f (M − 1).

Thus, the characteristic feature of a signal generator is that the sequence of input
vectors z is fixed in advance. This generally simplifies implementation of the sequence
generators in comparison with digital function generators. In the majority of sequence
generators, the variable z is the time. All our spectral methods of synthesis may be
applied to the design of sequence generators, and the estimates for the convergence
of the series representing f (z) remain valid.

We now proceed to some special methods for the synthesis of sequence generators,
which frequently yield substantial reductions in the required hardware.
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We shall assume that the complexity of a sequence generator is a monotone
increasing function of the number Lf of nonzero values of f (z). There are several
reasons for this choice of the complexity criterion. If the network implementation of
the sequence generator is an (m, k)-terminal combinatorial logic network, it is clear
that with decreasing Lf the number of zero values of the corresponding switching
functions will increase, and so, as shown in Section 5.3, the complexity of a minimal
network realizing the system will decrease (see the criterion µ0(f ) for the complexity
of switching functions discussed in Section 5.3.1.

If a sequence generator is realized by spectral methods, a decrease in Lf implies
a decrease in the absolute values of the expansion coefficients of f (z), thus leading
to a reduction in the complexity of the coefficient-storage block.

Denote

f (z) = f (z) − f (z � 1), mod M. (6.4.17)

Then

f (z) =
z∑

s=1

f (z) + f (0), z ∈ {1, 2, . . . , M − 1}. (6.4.18)

This representation determines a method for designing SG, in terms of the first
order finite differences f (z) of f (z), as illustrated in Fig. 6.4.1.

In this figure, the symbol f (z) denotes an SG computing the function f (z),
and � is an adder-accumulator whose initial state is f (0). For smooth functions,
Lf � Lf , and this method of SG design turns out to be highly effective. An SG
implementing the function f (z) may in turn be designed by the same method, as a
result of which f (z) will be represented in terms of higher order finite differences.

Another method for designing sequence generators is related to the linearization
of f (z) with respect to the above criterion.

Let 0 < σ < M, and express f (z) as

fσ(σ � z) = f (z), mod M, (6.4.19)

where fσ is a discrete function defined at the points 0, 1, . . . , M − 1. Thus, for each
σ ∈ {1, 2, . . . , M − 1} we have a linear transformation of variables modulo M. We

z

f (0)

f (z)
f (z)

FIGURE 6.4.1 Design of a sequence generator for a function f by summation of the finite
difference f .
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z f
f(z)

f(0)

min
min

FIGURE 6.4.2 Design of a sequence generator by linear transform of variables.

consider transformations that are nonsingular modulo M, so that the equation

σ � z = 1, mod M, (6.4.20)

is solvable for any z ∈ {1, 2, . . . , M − 1}. The number σ generates a nonsingular
transformation iff σ and M are relatively prime.

Denote the set of nonsingular transformations modulo M by �M . (The number of
elements in this set is φ(M), where φ is Euler function (329).)

The linearization problem for a sequence generator realizing f (z) is to find a
number σmin ∈ �M such that

Lfσmin
= min

σ∈�M

Lfσ
, (6.4.21)

where fσ , fσmin are defined as in (6.4.19).
An sequence generator designed by linearization of f (z) is illustrated in Fig. 6.4.2.
The transformation σmin itself can be determined by analyzing the appropriate

correlation functions.
Let {f (z)} be the system of characteristic functions of f (z),

fi(z) =
{

1, f (z) = i,

0, otherwise.
(6.4.22)

The cyclic autocorrelation functions (mod M) of fi(z) are defined by

BM,i(τ) =
M−1∑
z=0

fi(z)fi(z � τ), mod M. (6.4.23)

It is evident from (6.4.23) and Theorem 2.7.1 that if M is a prime, the functions
BM,i(τ) may be expressed as double Vilenkin–Chrestenson transforms χ(M) of fi(z)
(see Section 2.7).

Theorem 6.4.4 Let

max
τ∈�M

∑
i

BM,i(τ) =
∑

i

BM,i(τM). (6.4.24)
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TABLE 6.4.1 Function f in Example 6.4.3, Its Finite
Differences, Linearly Transformed Function f 8 and Its
Finite Difference �f 8.

z, τ f f B11,0 B11,1 B11,0 + B11,1 f8 f8

0 1 0 5 6 11 1 1
1 0 1 2 3 5 1 0
2 1 1 0 1 1 1 0
3 1 0 3 4 7 1 0
4 0 1 4 5 9 1 0
5 0 0 1 2 3 1 0
6 1 1 1 2 3 0 1
7 1 0 4 5 9 0 0
8 0 1 3 4 7 0 0
9 0 0 0 1 1 0 0

10 1 1 2 3 5 0 0

Then,

σmin � τM = 1, mod M. (6.4.25)

The proof is based on Theorem 2.7.4 for the case m = 1, p = M.
Thus, to find an optimal nonsingular linear transformation modulo M for a

sequence generator, we need to determine the maximum value of the total cyclic
autocorrelation function

∑
i BM,i(τ) over all τ relatively prime to M.

Example 6.4.3 Let M = 11 and define f (z) as in Table 6.4.1. Also given in the table
are f (z), Lf = 6, and the correlations B11,0(τ), B11,1(τ), B11,0(τ) + B11,1(τ) for
f (z).

We thus obtain τM = τ11 = 7, and by (6.4.25), σmin = 8. The functions f8(z) and
f8(z) also shown in the table. The result is Lf8 = 2.

Remark 6.4.1 The linearization method of this section is essentially equivalent to
minimization of the number of discontinuities off (z). It may be used in implementation
of f (z) by expansion in the Haar series, since the number LH of nonzero coefficients
is then determined by the number of discontinuities (see (6.4.16)). The method is
useful in the implementation of logical functions by threshold element networks (3,
53, 92, 134, 418, 470, 471, 588, 589), and in many other cases.

BIBLIOGRAPHIC NOTES

Recommendable references about spectral methods for synthesis of logic networks are 37,
54, 57, 228, 255, 257, 258, 297, 318, 345, 346, 604, 610, 624, 656, and 657. First university
textbook on this subject is Reference 379, while the first research monograph is Reference 289.
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CHAPTER 7

SPECTRAL METHODS OF SYNTHESIS
OF SEQUENTIAL MACHINES

In the previous chapters we discussed the elements of the theory of discrete transforms
and methods for their application to the analysis, synthesis, and optimization of digital
devices implementing logical functions (combinational networks). In this chapter we
consider their application to the synthesis of digital devices with memory.

In particular, we will investigate the problem of constructing optimal state as-
signments for input signals and internal states for Haar based implementations of
sequential devices by the corresponding finite automata.

7.1 REALIZATION OF FINITE AUTOMATA BY SPECTRAL METHODS

7.1.1 Finite Structural Automata

A Finite Automaton (FA) or a state transition machine is a model of the operation of
a digital device with memory.

The operation of any device may be modeled at two levels, abstract and structural.
The appropriate mathematical models are respectively known as abstract automata
and structural finite automata.

An abstract finite automaton is defined as a set of six objects

M = {X, A, Y, a0, φ(x, a), g(a)},

Spectral Logic and Its Applications for the Design of Digital Devices by Mark G. Karpovsky, Radomir
S. Stanković and Jaakko T. Astola
Copyright © 2008 John Wiley & Sons, Inc.
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TABLE 7.1.1 Next-State Function for the Automaton
in Example 7.1.2.

x0 x1 x2 x3

a0 a0 a0 a3 a3

a1 a2 a2 a2 a0

a2 a1 a3 a0 a3

a3 a3 a1 a1 a1

where X is the (finite) set of input signals, A the (finite) set of internal states, Y the
(finite) set of output signals, a0 the initial state, φ(x, a) the next-state function, and
g(a) the output function (x ∈ X, a ∈ A, a0 ∈ A, and φ(x, a) ∈ A, g(a) ∈ Y for any
(a, x).1

It is clear from this definition that an abstract finite automaton is essentially a
formal description of the operational algorithm of the digital device in question. The
synthesis of a digital device usually begins with the construction of an abstract finite
automaton describing its operation. The abstract finite automaton may be defined by
a state table or a state diagram. The state table is a matrix whose element aq,r is the
state into which the automaton goes from the state aq when the input signal xr is
applied (aq, aq,r ∈ A, xr ∈ X). In other words, aq,r = φ(xr, aq).

The state diagram is a labeled directed graph whose vertices represent the states
of the automaton and the corresponding output signals. A vertex as is connected to a
vertex aq by a directed edge labeled xr iff as = φ(xr, aq).

Example 7.1.1 Table 7.1.1 is the state table of an automaton with the states A =
{a0, a1, a2, a3}, and the inputs X = {x0, x1, x2, x3}.

When the operation of a digital device has been simulated by a model at the
abstract level, it is possible to determine the structural model of it. Here the operational
algorithm of the device is modeled by a structural finite automaton.

A structural finite automaton describing the operation of a digital device based on
p-ary elements is an abstract finite automaton whose input signals, states, and output
signals are p-ary vectors, so that the next-state and output functions are essentially
systems of p-valued logic functions.

The transition from the abstract finite automaton to the structural finite automaton
is known as a state-input assignment or simply assignment and also state encoding,
simply encoding.

When the assignment is determined, the synthesis of the automaton amounts to the
implementation of the system of logic functions defined by the next-state and output
functions.

Throughout this chapter we shall limit the discussion to automata based on binary
elements.

1This is the Moore model of an abstract automaton (247). If the Mealy model (247) is used instead, no
essential changes are needed in the spectral methods developed below.
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TABLE 7.1.2 Binary Encoded Inputs and Internal
States.

aq Code of aq xr Code of xr

a0 00 x0 00
a1 01 x1 01
a2 10 x2 10
a3 11 x3 11

Example 7.1.2 Suppose that the states and inputs of the abstract automaton in
Example 7.1.1 are assigned binary codes as shown in Table 7.1.2. Then the truth
table for the system of Boolean functions corresponding to the next-state function is
shown in Table 7.1.3. (Here xs, as denote the sth components of the input signal and
state, respectively.)

The implementation of a finite automaton means the design of a digital device
whose behavior is modeled by the automaton considered.

The structural finite automaton may be realized as shown in the block diagram in
Fig. 7.1.1, where x(t), a(t), and y(t) denote the input signal, the state, and the output
signal, respectively, at time t. Blocks φ and g are combinational networks described by
systems of switching functions corresponding to the next-state and output functions.
Thus, implementation of the finite automaton for a given state-input assignment,
reduces to implementation of the combinational networks φ and g.

TABLE 7.1.3 Next-State Function in Example 7.1.2
Represented as a System of Switching Functions
(Excitation Functions).

x0x1 a0a1 φ(x, a)

00 00 00
00 01 10
00 10 01
00 11 11
01 00 00
01 01 10
01 10 11
01 11 01
10 00 11
10 01 10
10 10 00
10 11 01
11 00 11
11 01 00
11 10 11
11 11 01
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x(t) a(t)

y(t) = g(a(t))

(x(t),a(t-1))

a(t-1)

gMemory

FIGURE 7.1.1 Structure of a Moore automaton.

Throughout this chapter we will assume that outputs are equal to internal states, that
is, y(t) = g(a(t)) = a(t). Whenever this condition is not satisfied, the output-function
block g may be implemented by the methods of the previous chapters.

Switching functions realized by the next-state function block are called excitation
functions.

7.1.2 Spectral Implementation of Excitation Functions

The methods discussed in the previous chapter may be employed to realize the ex-
citation functions by expanding them in orthogonal series. The adder accumulator
computing the sums of these series will then fulfill the function of a memory.

For a fixed state-input assignment, the implementation of a system of excitation
functions is equal to the problem of realizing a system of completely or incompletely
specified switching functions. We assume that the number of states is na = 2n, and
the number of input signals is nx = 2c.

As usual in spectral methods for implementation of switching functions, we first
represent the system by a step function �(z).

This is done as follows. Set

zs =
{

xs(t), for s = 0, 1, . . . , log2 nx − 1;

as − log2 nx(t − 1), for s = log2 nx, log2 nx + 1, . . . , m − 1,
(7.1.1)

where m = log2 na + log2 nx,

z =
m−1∑
s=0

zs2
m−1−s. (7.1.2)

Then the next-state function φ(x(t), a(t − 1)) defines a discrete function ã = f (z).

Example 7.1.3 Table 7.1.4 defines the function ã = f (z) for the Example 7.1.2.

We complete f (z) to a step function �(z) representing the system of excitation
functions

�(z) = f (δ), δ ≤ z < δ + 1. (7.1.3)
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TABLE 7.1.4 Function fT (z) in Example 7.1.4.

z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f (z) 0 2 1 3 0 2 3 1 3 2 0 1 3 0 3 0
fT (z) 0 2 3 2 0 2 3 0 1 3 0 1 3 1 3 0

We now expand �(z) in an orthogonal series

�(z) =
nanx−1∑

q=0

cq�q(z), (7.1.4)

where

cq =
(

nanx−1∑
z=0

�q(z)�q(z)

)−1

·
nanx−1∑

q=0

�(z)�q(z), (7.1.5)

and {�q(z)} is a complete system of orthogonal (basis) step functions.
Formula (7.1.4) defines a physical implementation of the finite automaton as a

network consisting of a function generator for the basis functions �q(z), the coefficient
block cq and the adder.

The step function �(z) representing a system of excitation functions may be
constructed in various ways, depending on the choice of the order of variables
x0, x1, . . . , xlog2 nx−1, a0, a1, . . . , alog2 na−1.

Let T = (T0, T1, . . . , Tm−1), where m = log2 na + log2 nx, be a permutation of
the numbers 0, 1, . . . , m − 1. Set

zs =
{

xs(t), for s = 0, 1, . . . , log2 nx − 1,

as−log2 nx
(t − 1), for s = log2 nx, log2 nx + 1, . . . , m − 1.

If �T (z) is the step function representing the system of excitation functions with
order of variables T , then z is determined by

z =
m−1∑
s=0

zTs2
m−1−s, (7.1.6)

ã is defined by (7.1.1 and from (7.1.1) and (7.1.6), the next-state function φ(x(t),
a(t − 1)) is defined by ã = fT (z), and �(z) is the completion of fT (z) defined as in
(7.1.3).

The function �(z) defined by (7.1.6) corresponds to the identity permutation
(0, 1, . . . , m − 1).

Example 7.1.4 Consider the assignment in Table 7.1.2 for the automaton in Exam-
ple 7.1.1. Let T = (2, 1, 0, 3), (m = 4) is the permutation of the vector (x0, x1, a0, a1).

www.it-ebooks.info

http://www.it-ebooks.info/


ASSIGNMENT OF STATES AND INPUTS FOR COMPLETELY SPECIFIED AUTOMATA 313

Then, z0 = x0, z1 = x1, z2 = a0, z3 = a1, and by (7.1.6),

z = a023 + x122 + x021 + a120.

The corresponding function fT (z) is shown in Table 7.1.4.

The problem of optimizing the order of variables so as to minimize the number
of nonzero coefficients in (7.1.4) for a given basis {�q(z)} (and hence also minimize
the complexity of the combinational part of the automaton) is inextricably bound up
with the state-input assignment problem. Both these problems will be discussed in
Sections 7.2 and 7.3.

When the excitation functions are being realized by expansion in orthogonal series,
we can utilize all the spectral methods of synthesis described in the previous chapters,
optimizing the linear transformation (minimizing the number of nonzero terms in the
series) (see Subsection 6.1.6.1), optimizing the completion of the excitation functions
(see Sections 6.2 and 7.3), summation of series over finite fields (see Section 2.8),
and so on.

To end this section, we list the main distinguishing features and advantages of
spectral methods for the implementation of finite automata:

1. The structure of the digital device is fixed in advance, the single parameter to
be minimized is the number of nonzero coefficients in the expansion of the step
function representing the system of excitation functions (see Sections 6.1.1 and
6.1.5).

2. For a fixed assignment, minimization of the number of nonzero coefficients and
optimization of the completion of the excitation functions may be accomplished
by techniques, which almost completely avoid the brute-force approach (see
Sections 6.1.6.1–6.1.6.3, and 6.2).

3. It is relatively easy to determine asymptotically optimal assignments for ab-
stract finite automata and asymptotically optimal completions of the next-state
function for incompletely specified finite automata (see Sections 7.2 and 7.3).

4. Sequential networks designed by spectral methods provide for a simple orga-
nization of error detection and/or correction using arithmetic error-detecting
and/or -correcting codes (see Section 9.4).

A more detailed comparison of spectral and classical methods of synthesis will be
carried out in Section 9.5.

7.2 ASSIGNMENT OF STATES AND INPUTS FOR COMPLETELY
SPECIFIED AUTOMATA

The optimization of state-input assignments is a very important problem in theory and
practice of finite automata, as regards the complexity, reliability, etc. of the device.
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To represent R states, we need a binary code with at least �log2 R� bits. Such a code
is the minimum length code.

It was shown in the last section that, for a given assignment, implementation
of an automaton reduces to the implementation of a system of switching functions
representing the next-state and output functions of the automaton. The disadvantage
of classical methods of Boolean algebra for the state-assignment problem is
that the system of switching functions describing the combinational part for a
given assignment does not readily yield information concerning the complexity,
reliability, etc. of the corresponding network implementation. The situation is further
complicated if the finite automaton to be synthesized is incompletely specified,
that is, the next-state function is undefined for certain input signal-internal state
pairs.

Because of these complicating factors, classical solutions of the assignment prob-
lem always involve some measure of brute force. The number of alternatives to be
checked generally increases exponentially with the number of states or inputs of the
automaton. This situation is apparently intrinsic in nature, thus limiting application
of the classical methods to relatively simple devices. A complete survey of existing
methods for solving the assignment problem by classical methods may be found, for
example, in Reference 231. For these methods see also References 40, 236, 484, and
645.

Because of the importance of selecting a good assignment, this problem is a subject
of continuous study, and there are many efforts to solve it by using a variety of
approaches (123,375). Recently, genetic algorithms have been used as a tool to address
this problem, see References 32 and 34.

The traditional approaches to encoding of states have been intended primarily
to reduce the number of flip-flops required at the price of the complexity of the
combinational logic (194,654). Different technologies may force other optimality
criteria and related state encodings.

The so-called 1-hot bit encoding where the code words for each state have a single
1 bit, provides for fast sequential networks. Notice that since the number of bits is
equal to the number of states, this assignment necessarily implies more flip-flops
for the memory part than optimal minimum length encoding (491). This results in
wasting of area, which, however does not effect the performances much in Field
Programmable Gate Arrays (FPGA) (41) based sequential networks, since FPGAs
usually have more flip-flops than function generators. Therefore, in most FPGAs
synthesis tools for implementations of sequential networks, this encoding is usually
used by default to improve the speed of the networks produced, see Reference 148.

Some variants of this approach are also discussed and adapted to different
implementations of the combinational part of the sequential network. For example,
in Reference 473, it is proposed the encoding where exactly half of the state variables
are equal to 1. The method is intended for Programmable Logic Array (PLA)
(491,41), implementations of the combinational logic.

We note that this balanced encoding may be useful for protection of some devices
against attacks based on measuring of power consumption, since balanced encoding
makes the power consumption less data dependent. We also note that the balanced
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encoding provides for detection of all unidirectional errors by verification that exactly
half of the state variables are equal to 1.

In Reference 623, it has been proposed a method for determination of good state
assignment by using partition theory and spectral translation techniques. The method
is adapted for implementation of the combinational part of the sequential machines
by PLAs.

Low power state assignment (97,140,616), and easy testable implementations
(44,45,126), are among the most important design criteria.

There are algorithms adapted for implementations of particular classes of finite
automata, as for instance, incompletely specified automata (33,423), or asynchronous
automata (403,502,620). In the case of asynchronous automata, state assignment takes
into account avoiding of critical races and logic hazards (619,620). Various algorithms
has been developed to ensure such encoding see References 188,189, and 619.

There are several synthesis tools for sequential networks including various
algorithms for state encoding, to provide references for just few of them (122,127,
131,516,629). A rule based system developed in Reference 503 includes a solution
to the state assignment problem.

A parallel implementation of classical state assignment algorithms, also
implemented in the mentioned synthesis tools, can reduce time and memory
implementation requirements without compromising with the quality of solutions
produced, see References 47 and 238.

By contrast to classical and many other present methods performed in the Boolean
domain, as we will see in Sections 7.2–7.4, the spectral approach to the implemen-
tation of the combinational part of an automaton yields highly simple assignment
algorithms computing asymptotically optimal orderings of variables in the excitation
functions for almost all finite automata (i.e., the fraction of automata for which the
state assignment is not optimal tends to zero very fast as the number of states tends
to infinity).

We measure the complexity of the combinational part by the number of nonzero
expansion terms.

The basis system will again be the Haar basis (see Section 2.3). For the sake of
convenience, we restrict ourselves here and in Section 7.3 to the Haar expansions
over the field of real numbers. However, the method described here for optimal
assignments, optimal ordering of variables of the excitation functions and optimal
completion of the state table carries over practically unchanged to the Haar–Galois
expansions (see Section 6.3).

7.2.1 Optimization of the Assignments for Implementation
of the Combinational Part by Using the Haar Basis

We proceed to the first two of the last-mentioned problems,

1. the optimization of the state-input assignment, and
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2. the optimization of the order of variables in the excitation functions, for imple-
mentation of the combinational part of a completely specified finite automata
by using the Haar basis.

We have already discussed the main properties of the Haar system {H (q)
l (z)}, the

reasons for choosing it as a basis, and efficient computational procedures for the
expansion coefficients c

(q)
l (see Section 2.3).

Let Ll, for l = 0, 1, . . . , m − 1 denote the number of nonzero coefficients c
(q)
l ,

(q = 1, 2, . . . , 2l) with subscript l in the expansion of �T (z).
Then, 0 ≤ Ll ≤ 2l, and so our first task is to determine the set of assignments

minimizing the number Lm−1 of nonzero coefficients c
(q)
m−1. We shall then look for

the subset of assignments minimizing Lm−2 for the optimal Lm−1, and so on.
Arbitrary assignments will be represented by two functions Ka(q) and Kx(r), (q =

0, 2, . . . , na − 1, r = 0, 1, . . . , nx − 1), where Ka(q) (Kx(r)) is the number whose
binary expansion is the code vector of the state aq (input signal xr) in the assignment.
In other words,

Ka(q) =
log2 na−1∑

s=0

aq,s2
log2 na−1−s, (7.2.1)

Kx(r) =
log2 nx−1∑

s=0

xr,s2
log2 nx−1−s, (7.2.2)

where aq,s, (xr,s) is the sth component of the binary code of the state aq (input
signal xr).

Denote the inverse functions of the assignments Ka(q), Kx(r) by (Ka)−1(q) and
(Kx)−1(r), respectively. To be precise, (Ka)−1(q) = λ, ((Kx)−1(q) = λ) iff the code
of the state aλ (input signal xλ) is the binary expansion of the number q. For example,
if the state a4 is encoded by 011, then Ka(4) = 3 ((Ka)−1(3) = 4).

We now consider how to determine the set of assignments minimizing Lm−1.
We shall assume that the original abstract automaton is defined by a state ma-

trix Am−1 = [aq,r] (q = 0, 1, . . . , na − 1, na = 2n, r = 0, 1, . . . , nx − 1, nx = 2c),
where aq,r is the state into which the automaton goes from aq upon application of the
input signal xr.

We need distance functions on the set of rows and columns, respectively, of the
next-state matrix. The distance ρa

m−1(q, s) (ρx
m−1(q, s)) between rows (columns) q

and s of the state matrix is defined as follows

ρa
m−1(q, s) =

nx−1∑
r=0

δ(aq,r, as,r), (7.2.3)
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ρx
m−1(q, s) =

na−1∑
r=0

δ(ar,q, ar,s). (7.2.4)

where

δ(aα,β, aγ,δ) =
{

1, if aα,β �= aγ,δ,

0, if aα,β = aγ,δ.
(7.2.5)

Using formulas (7.2.3–7.2.5), we construct (na × na) and (nx × nx) distance
matrices [ρa(q, s)] and [ρx(q, s)], respectively, given the next-state matrix of the au-
tomaton.2

Theorem 7.2.1 Given an automaton Am−1 = [aq,r] and an assignment of states and
inputs (Ka(q), Kx(r)). Then,

Lm−1 = min(La
m−1, L

x
m−1),

where

Lx
m−1 =

nx/2∑
s=1

ρx
m−1((Kx)−1(2s − 2), (Kx)−1(2s − 1)), (7.2.6)

La
m−1 =

na/2∑
i=1

ρa
m−1((Ka)−1(2i − 2), (Ka)−1(2i − 1)).

Proof. Define a function φ̂(λ, β) by setting φ̂(λ, β) = t iff there exist q, t ∈
{0, 1, . . . , na − 1} and r ∈ {0, 1, . . . , nx − 1} such that

{
Ka(q) = λ, Kx(r) = β, Ka(t) = t,

φ(xr, aq) = at.

Then depending on the selected order of variables of φ̂, we have

Lm−1 = La
m−1 =

nx−1∑
β=0

na/2∑
i=1

sign|φ̂(2i − 2, β) − φ̂(2i − 1, β)|,

2The distance thus defined on the state matrix satisfies the usual axioms for a metric, and it is a generalization
of the Hamming metric (55).
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or

Lm−1 = Lx
m−1 =

na−1∑
λ=0

nx/2∑
s=1

sign|φ̂(λ, 2s − 2) − φ̂(λ, 2s − 1)|.

We first consider the case Lm−1 = La
m−1. Set

q′ = (Ka)−1(2i − 2),

q′′ = (Ka)−1(2i − 1),

r = (Kx)−1(β),

for i ∈ {1, 2 . . . , na/2}, q′, q′′ ∈ {0, 1, . . . , na − 1}, r, β ∈ {0, 1, . . . , nx − 1}.
Then,

sign|φ̂(2i − 2, β) − φ̂(2i − 1, β)| = 1

iff

φ(xr, aq′ ) �= φ(xr, aq′′ ),

or, in view of (7.2.5), iff

δ(aq′,r, aq′′,r) = 1.

Hence, by (7.2.4),

nx−1∑
β=0

sign|φ̂(2i − 2, β) − φ̂(2i − 1, β)|

=
nx−1∑
r=0

ρ(aq′, r, aq′′,r)

= δa
m−1(q′, q′′) = ρa

m−1((Ka)−1(2i − 2), (Ka)−1(2i − 1)).

Consequently,

La
m−1 =

na/2∑
i=1

nx−1∑
β=0

sign|φ̂(2i − 2, β) − φ̂(2i − 1, β)|,

=
na/2∑
i=1

ρa
m−1((Ka)−1(2i − 2), (Ka)−1(2i − 1)).

www.it-ebooks.info

http://www.it-ebooks.info/


ASSIGNMENT OF STATES AND INPUTS FOR COMPLETELY SPECIFIED AUTOMATA 319

The proof of the equality

Lx
m−1 =

nx/2∑
s=1

ρx
m−1((Kx)−1(2s − 2), (Kx)−1(2s − 1)),

is analogous, completing the proof.

Example 7.2.1 Consider the automaton with the next-state matrix

Am−1 = [aq,r] = A5 =




a0 a4 a0 a6 a4 a0 a2 a0

a1 a0 a2 a3 a0 a2 a3 a2

a5 a1 a7 a6 a7 a5 a6 a6

a0 a3 a0 a6 a3 a0 a7 a0

a1 a0 a2 a3 a4 a2 a3 a2

a0 a3 a0 a4 a3 a0 a4 a0

a0 a6 a0 a4 a6 a0 a4 a0

a5 a2 a7 a6 a2 a5 a6 a6




.

Then

[ρa
5(q, s)] =




0 8 7 2∗ 7 4 4 8

8 0 8 8 1∗ 8 8 8

7 8 0 7 8 8 8 2∗

2∗ 8 7 0 8 2 4 7

7 1∗ 8 8 0 8 8 8

4 8 8 2 8 0 2∗ 8

4 8 8 4 8 2∗ 0 8

8 8 2∗ 7 8 8 8 0




and

[ρx
5(q, s)] =




0 8 4 8 8 2∗ 8 4

8 0 8 8 1∗ 8 8 8

4 8 0 8 8 2 8 2∗

8 8 8 0 8 8 2∗ 6

8 1∗ 8 8 0 8 8 8

2∗ 8 2 8 8 0 8 2

8 8 8 2∗ 8 8 0 6

4 8 2∗ 6 8 2 6 0
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By Theorem 7.2.1, the assignment Ka(q) = q, Kx(q) = q gives Lm−1 = L5 =
min(31, 30) = 30. (As we shall show below, the optimal assignment for this example
gives Lm−1 = 7.)

It follows from Theorem 7.2.1 that the optimal assignment for Lm−1 minimizes
one of the quantities La

m−1, Lx
m−1.

To find an optimal assignment, we first determine the class of assignments Ka
m−1 =

{Ka(q)} minimizing La
m−1 and then the class of assignments Kx

m−1 = {Kx(q)} mini-
mizing Lx

m−1. The class of assignments Km−1, minimizing Lm−1, is then either Ka
m−1

or Kx
m−1, depending on whether La

m−1 ≤ Lx
m−1 or La

m−1 > Lx
m−1.

If zTs is the sth variable of the excitation function (see Section 7.1.2) for the required
optimal order T of variables, we set

zTm−1 =
{

xlog2 nx−1 if Lx
m−1 < La

m−1,

alog2 na−1 if La
m−1 ≤ Lx

m−1,
(7.2.7)

where xi and ai are ith components in the binary representations of x(t) and a(t − 1).

7.2.2 Minimization of the Number of Highest Order Nonzero
Coefficients

In order to determine the classes Ka
m−1 and Kx

m−1 minimizing, respectively,

La
m−1 =

na/2∑
i=1

ρa
m−1((Ka)−1(2i − 2), (Ka)−1(2i − 1))

and

Lx
m−1 =

nx/2∑
i=1

ρa
m−1((Kx)−1(2q − 2), (Kx)−1(2q − 1))

it suffices to partition the set of rows (columns) of the next-state matrix into disjoint
pairs in such a way that the sum of distances (7.2.3) ((7.2.4)) within the pairs is min-
imized. If these pairs are {i0, i1}, . . . , {ina−2 , ina−1} and {g0, g1} . . . , {gnx−2, gnx−1},
then the required class of assignments is the set of all assignments such that

{
(Ka)−1(2α) = i2q,

(Ka)−1(2α + 1) = i2q+1,

or {
(Ka)−1(2α) = i2q+1

(Ka)−1(2α + 1) = i2q,
(7.2.8)
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for α = 0, 1, . . . , na/2 − 1, and q = 0, 1, . . . , na/2 − 1 and

{
(Kx)−1(2α) = g2s,

(Kx)−1(2α + 1) = g2s+1,

or

{
(Kx)−1(2α) = g2s+1

(Kx)−1(2α + 1) = g2q,

for α = 0, 1, . . . , nx/2 − 1, and s = 0, 1, . . . , nx/2 − 1.
It follows from (7.2.8) that Ka

m−1 (Kx
m−1) is the set of all assignments for which

the states (input signals) from the same pair are assigned binary codes differing in the
least significant bit.

The above constructions of Ka
m−1, (Kx

m−1) may be formulated in terms of the
matrix [ρa

m−1(q, s)] ([ρx
m−1(q, s)]) as follows.

We want to find na (nx) elements of the matrix, for instance,

ρa
m−1(q0, s0), ρa

m−1(q1, s1), . . . , ρa
m−1(qna−1, sna−1),

(ρx
m−1(q0, s0), ρx

m−1(q1, s1), . . . , ρx
m−1(qnx−1, snx−1)),

where qi �= si, such that each row and column of the matrix contains exactly one of
the selected elements. The elements are symmetrically situated around the principal
diagonal, and their sum is a minimum. We call any set of matrix elements satisfying
these conditions a minimal symmetric matching of the matrix.

It is apparent from Theorem 7.2.1 that half the sum of elements of a minimal
symmetric matching for the matrix [ρa

m−1(q, s)] ([ρx
m−1(q, s)]) gives La

m−1, (Lx
m−1).

The minimal symmetric matching of a matrix is relatively easy to determine, for
instance, by using the Hungarian algorithm (137, 321, 322, 390, 632). Notice that
to ensure that the minimal matching is symmetric, we will use a slightly modified
version of the Hungarian algorithm.

Example 7.2.2 Resuming the discussion of Example 7.2.1, we find the class of
assignments Km−1 = K5 minimizing Lm−1. To determine Ka

5 , we find a minimal
symmetric matching for [ρa

5(q, s)], which in this case is

{ρa
5(0, 3), ρa

5(1, 4), ρa
5(2, 7), ρa

5(5, 6)}.

In view of the symmetry, we shall henceforth specify matchings in terms of elements
above the principal diagonal, elements appearing in the matching are denoted by ∗
in the matrix [ρa

5(q, s)].
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TABLE 7.2.1 Assignment from Ka
5 .

q 0 1 2 3 4 5 6 7
Ka(q) 0 2 4 1 3 6 7 5

The states are thus partitioned into pairs

{a0, a3}, {a1, a4}, {a2, a7}, {a5, a6}.

The class Ka
5 is the set of all assignments in which states from the same pair are

assigned codes differing only in the lowest order digit alog2 na−1. For example, the
assignment in Table 7.2.1 is in Ka

5 .
Half the sum of the “intrapair" distances is

ρa
5(0, 3) + ρa

5(1, 4) + ρa
5(2, 7) + ρa

5(3, 6) = 7,

and so La
5 = 7.

Similarly, to determine Kx
5 we find a minimal symmetric matching for [ρx

5(q, s)] as

{ρx
5(0, 5), ρx

5(1, 4), ρx
5(2, 7), ρx

5(3, 6)}.

The input signals are divided into pairs

{x0, x5}, {x1, x4}, {x2, x7}, {x3, x6}

and

Lx
5 = ρx

5(0, 5) + ρx
5(1, 4) + ρx

5(2, 7) + ρx
5(3, 5) = 7,

Since La
5 = Lx

5 = 7, we may take, say K5 = Ka
5 . Thus, whereas the original

assignment, for Example, 7.2.1 gave Lm−1 = L5 = 30, any assignment in class K5
gives L5 = 7.

7.2.3 Minimization of the Number of Lowest Order Nonzero
Coefficients

Continuing the procedure, we must now determine the classes of assignments
Km−2 ⊇ Km−3 ⊇ · · · ⊇ K0, where Km−s is the set of all assignments in Km−s+1
for which Lm−s assumes a local minimum, preserving the previously attained value
of Lm−s+1. Along with the classes Km−s (s = 1, 2, . . . , m) we determine the order
T (see Section 7.1.2) of variables in the excitation functions of the automaton.

We now outline the construction of Km−2 ⊆ Km−1 assuming that La
m−1 ≤ Lx

m−1,
so that Km−1 = Ka

m−1.
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Construct the (na/2 × nx) matrix Am−2 = Aa
m−2 = [bqr] whose (q, r)th element

is the (unordered) pair

bq,r = {ai2q,r
, ai2q+1,r

}, (7.2.9)

where q = 0, 1, . . . , na/2 − 1, r = 0, 1, . . . , nx − 1, and let

{{i0, i1}, . . . , {ina−2, ina−1}},

is the partition into pairs of the rows of Am−1, determined by a minimal matching for
the matrix [ρa

m−1(q, s)].
Thus, to the qth row of Am−2 = Aa

m−2 corresponds the pair of rows i2q, i2q+1 of
the state matrix Am−1.

Example 7.2.3 In the case of Example 7.2.1 and partition {a0, a3}, {a1, a4}, {a2, a7},
{a5, a6},

Am−2 = A4 =


{a0, a0}, {a4, a3}, {a0, a0}, {a6, a6}, {a4, a3}, {a0, a0}, {a7, a7}, {a0, a0}
{a1, a1}, {a0, a0}, {a2, a2}, {a3, a3}, {a0, a4}, {a2, a2}, {a3, a3}, {a2, a2}
{a5, a5}, {a1, a2}, {a7, a7}, {a6, a6}, {a1, a2}, {a5, a5}, {a6, a6}, {a6, a6}
{a0, a0}, {a3, a6}, {a0, a0}, {a4, a4}, {a3, a6}, {a0, a0}, {a4, a4}, {a0, a0}


 .

As in (7.2.3–7.2.5), we define distances ρa
m−2(q, s) and ρx

m−2(q, s) for Am−2 =
[bi,j] on the rows and columns, respectively,

ρa
m−2(q, s) =

nx−1∑
r=0

δ(bq,r, bs,r), q, s ∈ 0, 1, . . . , na/2 − 1, (7.2.10)

ρx
m−2(q, s) =

na/2−1∑
r=0

δ(br,q, br,s), q, s ∈ 0, 1, . . . , nx − 1, (7.2.11)

where

δ(bα,β, bγ,δ) =
{

1, if bα,β �= bγ,δ;

0, if bα,β = bγ,δ.
(7.2.12)

Notice that the equality of elements of Am−2 is equality of unordered pairs.

Example 7.2.4 In Example 7.2.1,
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[ρa
4(q, s)] =




0 8 7 4∗

8 0 8∗ 8

7 8∗ 0 8

4∗ 8 8 0




and

[ρx
4(q, s)] =




0 4 2 4 4 1∗ 4 2

4 0 4 4 1∗ 4 4 4

2 4 0 4 4 1 4 1∗

4 4 4 0 4 4 1∗ 3

4 1∗ 4 4 0 4 4 4

1∗ 4 1 4 4 0 4 1

4 4 4 1∗ 4 4 0 4

2 4 1∗ 3 4 1 4 0




.

If La
m−1 > Lx

m−1, so that Km−1 = Kx
m−1, we define Am−2 as Ax

m−2 instead of
Aa

m−2, (this is an (na × nx/2) matrix, derived from Am−1 in the same way as Aa
m−2).

The procedure is then analogous except that in formulas (7.2.9–7.2.12) the optimal
matching {i2q, i2q+1}, q = 0, 1, . . . , na/2 − 1 on [ρa

m−1] is replaced by an optimal
matching on [ρx

m−1], i.e., {g2q, g2q+1}, q = 0, 1, . . . , nx/2 − 1.
Any state (input) assignment in the class Ka

m−2 (Kx
m−2) may be defined, as in

(7.2.1), by a function Ka
m−2(q) (Kx

m−2(q))

Ka
m−2(q) =

log2 na−2∑
s=0

ai2q,s
· 2log2 na−2−s

=
log2 na−2∑

s=0

ai2q+1,s
2log2 na−2−s, (7.2.13)

q = 0, . . .
1

2
na − 1

and

Kx
m−2(q) =

log2 nx−2∑
s=0

xg2q,s
· 2log2 nx−2−s

=
log2 nx−2∑

s=0

xg2q+1,s
2log2 nx−2−s, (7.2.14)

q = 0, . . . ,
1

2
nx − 1.
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It follows from these formulas that for fixed q the value of Ka
m−1(q) (Kx

m−1(q))
may be regarded as the number whose binary expansion is determined by the first log2
na − 1 (log2 nx − 1) components of states ai2q

, ai2q+1 (input signals {xg2q
, xg2q+1}).

Since the pair of states {ai2q
, ai2q+1} (input signals {xg2q

, xg2q+1}) corresponds to
the qth row of Aa

m−2 (qth column of Ax
m−2), we may assume Ka

m−2(q) (Kx
m−2(q))

defines the number corresponding to the qth row of Aa
m−2 (the qth column of Ax

m−2)
in the given assignment.

The inverse functions for Ka
m−2(q), Kx

m−2(q) will be denoted by (Ka
m−2)−1(q) and

(Kx
m−2)−1(q), respectively. These functions define, respectively the row of Aa

m−2 and
the column of Ax

m−2 which the assignment associates with the number q.
For example, if states ai2 and ai3 are assigned codes (110) and (111), respectively,

then Ka
m−2(1) = 3 and (Ka

m−2)−1(3) = 1.

Theorem 7.2.2 For almost all automata with the assignment in Km−1

Lm−2 ∼ min


na/4∑

q=1

ρa
m−2((Ka

m−2)−1(2q − 2), (Ka
m−2)−1(2q − 1)),

(7.2.15)

nx/4∑
q=1

ρx
m−2((Kx

m−2)−1(2q − 2)), (Kx
m−2)−1(2q − 1)


 ,

for m = log2 na + log2 nx, as n = log2 na → ∞ and log2 nx → ∞.

Proof. The proof is analogous to that of Theorem 7.2.1. The new point is the use of
the limit relation

ρ(bα,β, bγ,ρ) = lim
na→∞ P


 ∑

aq∈bα,β

Ka(q) �=
∑

aq∈bγ,ρ

Ka(q)


 ,

where ρ(bα,β, bγ,ρ) is defined by (7.2.12) and

P


 ∑

aq∈bα,β

Ka(q) �=
∑

aq∈bγ,ρ

Ka(q)




is the fraction of assignments Ka(q) for the automaton such that the sum of the
numbers corresponding to codes of states in the set bα,β is not equal to the analogous
sum for the set bγ,δ.

Theorem 7.2.2 provides a fairly simple procedure for estimating Lm−2 in terms of
the matrix Am−2, with the right-hand side of (7.2.15) as a bound for Lm−2.
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Example 7.2.5 In Example 7.2.1, for an assignment in K5 = Ka
5 , analysis of the

matrices [ρa
4(q, s)] and [ρx

4(q, s)] by Theorem 7.2.2 with Ka
4(q) = q, Kx

4(q) = q gives
L4 ≤ 16. We shall see later that by optimizing the assignment we can lower the bound
for L4 to 4.

It follows from Theorem 7.2.2 that for almost all automata the asymptotically
optimal assignment in class Km−2 (minimizing Lm−2) minimizes at least one of the
quantities

La
m−2 =

na/4∑
q=1

ρa
m−2((Ka

m−2)−1(2q − 2), (Ka
m−2)−1(2q − 1)),

or

Lx
m−2 =

nx/4∑
q=1

ρx
m−2((Kx

m−2)−1(2q − 2), (Kx
m−2)−1(2q − 1)).

To determine Km−2, we first find the class Ka
m−2 of assignments minimizing La

m−2
and the class Kx

m−2 of assignments minimizing Lx
m−2, and then set

Km−2 =
{

Ka
m−2, if La

m−2 ≤ Lx
m−2,

Kx
m−2, if Lx

m−2 < La
m−2.

(7.2.16)

If Km−1 = Ka
m−1, we put

zTm−2 =
{

alog2 na−2, if La
m−2 ≤ Lx

m−2,

xlog2 nx−1, if Lx
m−2 < La

m−2,
(7.2.17)

and if Km−1 = Kx
m−1,

zTm−2 =
{

alog2 na−1, if La
m−2 ≤ Lx

m−2,

xlog2 nx−2, if Lx
m−2 < La

m−2.
(7.2.18)

A comparison of Theorems 7.2.1 and 7.2.2 shows that the procedures for Km−2 and
Km−1, are entirely analogous, amounting to the determination of a minimal symmetric
matching, except that now this is done for the matrices [ρa

m−2(q, s)] and [ρx
m−2].

As in (7.2.9), the minimum of these matchings defines the class Km−2. For exam-
ple, if {i0, i1}, . . . , {ina/2−2, ina/2−1} is the partition of the rows of Aa

m−2 into pairs
corresponding to the computed minimal matching on [ρa

m−2(q, s)], then Ka
m−2 is the

www.it-ebooks.info

http://www.it-ebooks.info/


ASSIGNMENT OF STATES AND INPUTS FOR COMPLETELY SPECIFIED AUTOMATA 327

TABLE 7.2.2 Assignment of Ka
5 .

q 0 1 2 3 4 5 6 7
Ka(q) 0 4 6 1 5 2 3 7

set of all assignments in Km−1 for which

{
(Ka

m−2)−1(2α) = i2q,

(Ka
m−2)−1(2α + 1) = i2q+1,

(7.2.19)

or {
(Ka

m−2)−1(2α) = i2q+1,

(Ka
m−2)−1(2α + 1) = i2q.

(7.2.20)

Example 7.2.6 Returning to Example 7.2.1 considered above, we now compute
Km−2 = K4. To this end, we need a minimal symmetric matching for [ρ(a)

4 (q, s)].
This is found to be {ρa

4(0, 3), ρa
4(1, 2)} (the elements participating in the matching are

denoted by ∗ in the matrix [ρa
4(q, s)]).

The rows of [ρa
4(q, s)] are divided into pairs {0, 3}, {1, 2}. The class Ka

4 is the set
of assignments in which the codes of states in the same pair may differ in the second
bit (in order of significance).

For example, Ka
4 will contain the assignment from Ka

5 shown in Table 7.2.2. We
have La

4 = ρa
4(0, 3) + ρa

4(1, 2) = 12.
To find Kx

4 , we construct a minimal matching for [ρx
4(q, s)], as

{ρx
4(0, 5), ρx

4(1, 4), ρx
4(2, 7), ρx

4(3, 6)}.

Then,

Lx
4 = ρx

4(0, 5) + ρx
4(1, 4) + ρx

4(2, 7) + ρx
4(3, 6) = 4.

Consequently, Km−2 = K4 = Kx
4 , and L4 = Lx

4 = 4 (instead of 16 in the original
assignment) and, since K5 = Ka

5 and K4 = Kx
4 , we have zT5 = a2, zT4 = x2. An

example of an assignment from the class K4 = Kx
4 is given in Table 7.2.3.

The classes Km−3, Km−4, . . . , K0 may be constructed in the same way as Km−1
and Km−2, together with the order of variables for the excitation functions.

A general outline of the procedure is as follows.

TABLE 7.2.3 Assignment of Ka
4 .

q 0 1 2 3 4 5 6 7
Ka(q) 0 2 4 6 3 1 7 5

www.it-ebooks.info

http://www.it-ebooks.info/


328 SPECTRAL METHODS OF SYNTHESIS OF SEQUENTIAL MACHINES

The initial data for computation of the class Km−t , is the matrix Am−(t−1) deter-
mined at the (t − 1)th iteration, which defines the class Ka

m−(t−1), (Kx
m−(t−1)) and the

minimal symmetric matching for [ρa
m−(t−1)(q, s)] ([ρx

m−(t−1)(q, s)]. The tth iteration
of the algorithm consists of the following operations:

1. By using Am−(t−1), construct the matrix Aa
m−t , (Ax

m−t) as in (7.2.9).

2. Construct the distance matrices [ρa
m−t(q, s)] and [ρx

m−t(q, s)] for Aa
m−t and

Ax
m−t as in (7.2.10–7.2.12).

3. Employing the Hungarian algorithm, determine minimal symmetric matchings
for the matrices [ρa

m−t(q, s)] and [ρx
m−t(q, s)].

4. If the sum of elements of the matching for [ρa
m−t(q, s)] is less or equal (greater)

the analogous sum for [ρx
m−t(q, s)], set Km−t = Ka

m−t (Km−t = Kx
m−t). The

construction of Km−t is analogous to (7.2.8).

5. Suppose that the set of variables of the excitation functions determined in
the previous (t − 1) iterations, that is, in computation of the assignments
Km−1, Km−2, . . . , Km−(t−1),

{zTm−1 , zTm−2 , . . . , zTm−(t−1)},

contains the components alog2 na−1, alog2 na−2, . . . , alog2 na−γ and
xlog2 nx−1, xlog2 nx−2, . . . , xlog2 nx−(t−1−γ). Then, assuming that the sum of ele-
ments of the matching for [ρa

m−t(q, s)] is less or equal (greater) than the sum
for [ρa

m−t(q, s)], we set

zTm−t = alog2 na−γ−1,

and, respectively when greater,

zTm−t = xlog2 nx−(t−1−γ)−1 = xlog2 nx−t+γ .

Example 7.2.7 We now construct the classes Km−3 = K3, K2, K1, K0 for the above
example, and find the final state-input assignment and order of variables in the exci-
tation functions.

We have already seen that from the first iteration K5 = Ka
5 , zT5 = a2, L5 = 7.

The second iteration gave K4 = Kx
4 , zT4 = x2, L4 ≤ 4.

Third iteration. In the previous section, it has been determined the matrix Am−2 =
A4. We have K4 = Kx

4 and the minimal symmetric matching for [ρx
4(q, s)] is

{ρx
4(0, 5), ρx

4(1, 4), ρx
4(2, 7), ρx

4(3, 6)}.
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1. By using A4 and the above matching, we construct Ax
3

Ax
3 =




{a0, a0, a0, a0} {a4, a3, a4, a3} {a0, a0, a0, a0} {a6, a6, a7, a7}
{a1, a1, a2, a2} {a0, a0, a0, a4} {a2, a2, a2, a2} {a3, a3, a3, a3}
{a5, a5, a5, a5} {a1, a2, a1, a2} {a7, a7, a6, a6} {a6, a6, a6, a6}
{a0, a0, a0, a0} {a3, a6, a3, a6} {a0, a0, a0, a0} {a4, a4, a4, a4}


 .

2. The distance matrices [ρa
3(q, s)] and [ρx

3(q, s)] for q, s = 0, 1, 2, 3 are

[ρa
3(q, s)] =




0 4 4 2∗

4 0 4∗ 4

4 4∗ 0 4

2∗ 4 4 0


 ,

[ρx
3(q, s)] =




0 4 2∗ 4

4 0 4 4∗

2∗ 4 0 4

4 4∗ 4 0


 .

3. Minimal symmetric matchings for [ρx
3(q, s)] and [ρx

3(q, s)] are, respectively,

{ρa
3(0, 3), ρa

3(1, 2)}

and

{ρx
3(0, 2), ρx

3(1, 3)},

which gives L3 ≤ 6.

4. Since the sum of elements in the matchings are equal, we set, for instance,
K3 = Ka

3 . Since K5 is the set of assignments in which states in the same pair
{a0, a3} {a1, a4}, {a2, a7}, {a5, a6} have codes that differ in the least significant
bit, we see that Ka

3 is the set of assignments in which the codes of states in the
4-tuples {a0, a3, a5, a6}, {a1, a4, a2, a7}, differ in the second digit. For example,
Ka

3 will contain the state assignment in Table 7.2.4.

5. Since K3 = Ka
3 , zT5 = a2, zT4 = x2, it follows that zT3 = a1.

Fourth iteration.

TABLE 7.2.4 State Assignment from Ka
3 .

q 0 1 2 3 4 5 6 7
Ka(q) 0 4 6 1 5 2 3 7
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1. The matrix Aa
2 is

Aa
2 =

[
k00 k01 k02 k03

k10 k11 k12 k13

]
,

where

k00 = {a0, a0, a0, a0, a0, a0, a0, a0},
k01 = {a4, a3, a4, a3, a3, a6, a3, a6},
k02 = {a0, a0, a0, a0, a0, a0, a0, a0},
k03 = {a6, a6, a7, a7, a4, a4, a4, a4},
k10 = {a1, a1, a2, a2, a5, a5, a5, a5},
k11 = {a0, a0, a0, a4, a3, a6, a3, a6},
k12 = {a2, a2, a2, a2, a7, a7, a6, a6},
k13 = {a3, a3, a3, a3, a6, a6, a6, a6},

2. Then,

[ρa
2(q, s)] =

[
0 4∗

4∗ 0

]
,

[ρx
2(q, s)] =




0 2 1∗ 2

2 0 2 2∗

1∗ 2 0 2

2 2∗ 2 0


 .

3. Minimal matching are {ρa
2(0, 1)} and {ρx

2(0, 2), ρx
2(1, 3)}.

4. For now we have K2 = Kx
2 , and L2 ≤ 3. The class K4 = Kx

4 is the set of assign-
ments in which the codes of input signals in each of the pairs {x0, x5}, {x1, x4},
{x2, x7}, {x3, x6}, differ in the least significant digit, and since the matching
on {ρx

2(q, s)} is {ρx
2(0, 2), ρx

2(1, 3)}, it follows that Kx
2 is the set of assignments

in which the codes on inputs signals in each of the 4-tuples {x0, x5, x2, x7}
and {x1, x4, x3, x6} differ in their second digits. For example, K2 contains the
assignment in Table 7.2.5

5. Since K2 = Kx
2 , zT5 = a2, zT4 = x2, zT3 = a1, we have zT2 = x1.

Fifth iteration.
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TABLE 7.2.5 State Assignment from Kx
2 .

q 0 1 2 3 4 5 6 7
Kx(q) 0 4 2 6 5 1 7 3

1. The matrix Ax
1 is

Ax
1 =

[
k00 k01

k10 k11

]
,

where

k00 = {a0, a0, a0, a0, a0, a0, a0, a0, a0, a0, a0, a0, a0, a0, a0, a0},
k01 = {a4, a3, a4, a3, a3, a6, a3, a6, a6, a6, a7, a7, a4, a4, a4, a4},
k10 = {a1, a1, a2, a2, a5, a5, a5, a5, a2, a2, a2, a2, a7, a7, a6, a6},
k11 = {a0, a0, a0, a4, a3, a6, a3, a6, a3, a3, a3, a3, a6, a6, a6, a6},

2. The distance matrices are

[ρa
1(q, s)] =

[
0 2∗

2∗ 0

]

and

[ρx
1(q, s)] =

[
0 2∗

2∗ 0

]
.

3. Minimal matchings are {ρa
1(0, 1)} and {ρx

1(0, 1)}.
4. We set K1 = Kx

1 , and L1 ≤ 2. For example, Kx
1 contains the input assignments

shown in Table 7.2.6.

5. We have zT1 = x0.

Sixth iteration.

TABLE 7.2.6 Input Assignment from Kx
1 .

q 0 1 2 3 4 5 6 7
Kx(q) 0 4 2 6 5 1 7 3

www.it-ebooks.info

http://www.it-ebooks.info/


332 SPECTRAL METHODS OF SYNTHESIS OF SEQUENTIAL MACHINES

TABLE 7.2.7 Final State Assignment.

q 0 1 2 3 4 5 6 7

Kx(q) 0 4 2 6 5 1 7 3
Ka(q) 0 4 6 1 5 2 3 7

1. The matrix Ax
0 is

Ax
0 =

[
k0

k1

]
,

where

k0 = {a0, a0, a0, a0, a0, a0, a0, a0, a0, a0, a0, a0, a0, a0, a0, a0,

a4, a3, a4, a3, a3, a6, a3, a6, a6, a6, a7, a7, a4, a4, a4, a4}
k1 = {a1, a1, a2, a2, a5, a5, a5, a5, a2, a2, a2, a2, a7, a7, a6, a6,

a0, a0, a0, a4, a3, a6, a3, a6, a3, a3, a3, a3, a6, a6, a6, a6}

2. The distance matrix is

[ρa
0(q, s)] =

[
0 1∗

1∗ 0

]
.

3. Minimal matching is {ρa
0(0, 1)}.

4. We have K0 = Ka
0 and L0 ≤ La

0 + 1 = 2.

5. Therefore, zT0 = a0.

To summarize, the final state-input assignment is shown in Table 7.2.7. The order
of variables for the excitation functions is z = (a0, x0, x1, a1, x2, a2), defined by the
permutation T = (3, 0, 1, 4, 2, 5).

The complexity bounds L (giving the number of nonzero coefficients in the initial
and optimal assignments) are shown in Table 7.2.8.

It is evident that optimal choice of the state-input assignment and optimal ordering
of variables in the excitation functions have reduced the complexity of the automaton
to about 2/5 of its original value.

TABLE 7.2.8 Spectral Complexities for the Initial and
Optimal Assignments.

l 0 1 2 3 4 5

Ll Initial assignment 2 2 4 4 14 30
Optimal assignment 2 2 3 5 4 7

www.it-ebooks.info

http://www.it-ebooks.info/


STATE ASSIGNMENT FOR INCOMPLETELY SPECIFIED AUTOMATA 333

The above method may be generalized for implementation of automata based
on multistable elements by using expansions of the excitation functions in series of
generalized Haar functions (see Section 2.5). In addition, if the numbers of states
and input signals are not powers of 2, the automaton in question may be treated as
an incompletely specified automaton with 2�log2 na� states and 2�log2 nx� input signals.
The assignment problem for incompletely specified automata will be considered in
the next section.

To conclude this section, we note that in order to establish sharper bounds for the
expected values of Lm−2, Lm−3, . . . , L0 during the implementation of the algorithm,
should proceed as follows.

To define distances between the rows (columns) of the appropriate matrices
Am−2, Am−3, . . . , A0, put the distance ρ(cα,β, cγ,δ) between elements cα,β and cγ,δ of
the matrix Am−t (t = 2, 3, . . . , m) (recall that each element of Am−t is a set of 2t−1

elements) equal to

ρ(cα,β, cγ,δ) = P


 ∑

aq∈cα,β

Ka(q) �=
∑

aq∈cγ,δ

Ka(q)


 , (7.2.21)

The right-hand side of this expression is the fraction of assignments Ka(q) for
which the sum of numbers corresponding to codes of states in cα,β is not equal to the
analogous sum for cγ,δ. It can be shown that

limlog2 na→∞ P


 ∑

aq∈cα,β

Ka(q) �=
∑

aq∈cγ,δ

Ka(q)


 (7.2.22)

=
{

1, if cα,β �= cγ,δ,

0, if cα,β = cγ,δ,

The quantity on the left side of (7.2.22) tends to unity (cα,β �= cγ,δ) as log2 na → ∞,
and does so very fast. Thus, for as low a value as log2 na = 4 the deviation from one
is at most 0.1. This justifies the use of a formula of type (7.2.12) in the definition of
ρ(cα,β, cγ,δ), instead of the more accurate (7.2.21).

7.3 STATE ASSIGNMENT FOR INCOMPLETELY SPECIFIED
AUTOMATA

7.3.1 Minimization of Higher Order Nonzero Coefficients
in Representation of Incompletely Specified Automata

The state-input assignment problem for incompletely specified finite automata is even
more complicated than for completely specified. Besides the difficulties outlined in
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Section 7.2, we are faced here with the complex problem of optimal completion of
the state table. At present, there seem to be no really effective assignment procedures
for optimal design of incompletely specified finite automata, as far as the classical
approach is concerned.

When spectral methods are employed, however, one can construct a fairly simple
and effective completion and assignment algorithm, producing optimal results for
almost all incompletely specified automata. The method of completion, as we shall
see, is analogous to the completion of incompletely specified logical functions in the
framework of spectral methods (see Section 6.2). As before, we shall adopt the Haar
functions as our basis system, measuring the complexity of implementation in terms
of the number L of nonzero expansion coefficients.

The following example illustrates construction of assignments for incompletely
specified automata. We first construct Km−1.

Example 7.3.1 Consider an incompletely specified automaton with the state ma-
trix Ãm−1 = [ãq,r], (q = 0, 1, . . . , na − 1, r = 0, 1, . . . , nx − 1). By using the matrix
Ãm−1 of the original automaton, we construct an equivalent3 automaton with the
state matrix Am−1 = [aq,r] (q = 0, 1, . . . , 2�log2 na� − 1, r = 0, 1, . . . , 2�log2 nx�−1),
where

aq,r =
{

ãq,r, if 0 ≤ q ≤ na − 1 and 0 ≤ r ≤ nx − 1,

−, otherwise.
(7.3.1)

In this relation, the symbol − stands for undefined elements of the state matrix
Am−1.

Let

Ãm−1 = Ã5 =




a0 − a3 a6 a4 − a7

a1 a0 a2 a3 a0 a2 −
− a1 a7 − a1 a5 a6

a0 − a0 a6 a3 − a7

a1 a0 a2 a3 a4 − −
a0 a3 − a4 a3 a0 −




,

where na = 6 and nx = 7.

3Two automata A and A′ are equivalent as they define the same mapping of the set of input words, that is,
strings of input signals, into the set of output words, which means, strings of output signals.
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Then,

Am−1 = A5 =




a0 − a3 a6 a4 − a7 −
a1 a0 a2 a3 a0 a2 − −
− a1 a7 − a1 a5 a6 −
a0 − a0 a6 a3 − a7 −
a1 a0 a2 a3 a4 − − −
a0 a3 − a4 a3 a0 − −
− − − − − − − −
− − − − − − − −




.

We now apply to Am−1 the method in Section 7.2 for the optimal assignment
and optimization of the order T of variables in the excitation functions. As before,
we minimize the numbers Lm−1, Lm−2, . . . , L0, consecutively, Now, however, we
simultaneously construct a completion of Am−1, which is optimal for almost all
automata.

The first iteration of the algorithm constructs matrices [ρa
m−1(q, s)] and

[ρx
m−1(q, s)] for Am−1 by (7.2.3) and (7.2.4). Formula (7.2.5) is now replaced by

ρ(aα,β, aγ,ρ) =
{

1, if aα,β �= aγ,δ provided aα,β, aγ,δ are defined,

0, otherwise.
(7.3.2)

Example 7.3.2 In Example 7.3.1,

[ρa
5(q, s)] =




0 4 3 2 3 2 0∗ 0

4 0 3 4 1∗ 5 0 0

3 3 0 3 3 3 0 0∗

2 4 3 0 4 1∗ 0 0

3 1∗ 3 4 0 4 0 0

2 5 3 1∗ 4 0 0 0

0∗ 0 0 0 0 0 0 0

0 0 0∗ 0 0 0 0 0
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and

[ρx
5(q, s)] =




0 3 3 4 5 1∗ 2 0

3 0 3 3 1∗ 3 1 0

3 3 0 4 5 1 3 0∗

4 3 4 0 5 2 2∗ 0

5 1∗ 5 5 0 3 3 0

1∗ 3 1 2 3 0 1 0

2 1 3 2∗ 3 1 0 0

0 0 0∗ 0 0 0 0 0




.

We now find minimal symmetric matchings for [ρa
m−1(q, s)] and [ρx

m−1(q, s)]. In
the example, these are

{ρa
5(0, 6), ρa

5(1, 4), ρa
5(2, 7), ρa

5(3, 5)}

and

{ρx
5(0, 5), ρx

5(1, 4), ρx
5(2, 7), ρx

5(3, 6)}.

The matchings on [ρa
m−1(q, s)] and [ρx

m−1(q, s)] define partitions of the sets of states
and input signals (and also the sets of rows and columns of the matrices [ρa

m−1(q, s)]
and [ρx

m−1(q, s)] into disjoint pairs. In this example, these partitions are

{{a0, a6}, {a1, a4}, {a2, a7}, {a3, a5}}

and

{{x0, x5}, {x1, x4}, {x2, x7}, {x3, x6}}.

As in the completely specified case, the sum of elements of the matching on
[ρa

m−1(q, s)] or [ρx
m−1(q, s)] determines Lm−1, if the binary codes of states or inputs

in each pair differ in the last significant digit. We thus choose a minimal matching.

Example 7.3.3 For the Example 7.3.1, the minimal matching is defined for
[ρa

m−1(q, s)] = [ρa
5(q, s)], and so

L5 = La
5 = ρa

5(0, 6) + ρa
5(1, 4) + ρa

5(2, 7) + ρa
5(3, 5) = 2.

Since L5 = La
5, it follows that

zTm−1 = zT5 = a�log2 na�−1 = a2.
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For a given minimal matching, we construct a class of completions minimizing
Lm−1.

It follows from (7.3.2) that

ρ(aα,β, −) = 0, (7.3.3)

for any aα,β.
Therefore, we complete Am−1 to A′

m−1 = [a′
p,r] as follows. If Lm−1 = La

m−1
(Lm−1 = Lx

m−1) and {{i0, i1}, . . . , {in−2, in−1}} is the partition of rows (columns)
into pairs corresponding to the selected matching, we set a′

i2q,r
= a′

i2q+1,r
if ai2q

= −
or ai2q+1,r

= −, (a′
r,i2q

= a′
r,i2q+1

if ar,i2q
= − or ar,i2q+1 = −).

The matrix Am−1 defines a class of completions minimizing Lm−1.

Example 7.3.4 For the Example 7.3.1, we have L5 = La
5 and

A′
5 =




a0 −1 a3 a6 a4 −2 a7 −3

a1 a0 a2 a3 a0 a2 −4 −5

−6 a1 a7 −7 a1 a5 a6 −8

a0 a3 a0 a6 a3 a0 a7 −9

a1 a0 a2 a3 a4 a2 −4 −5

a0 a3 a0 a4 a3 a0 a7 −9

a0 −1 a3 a6 a4 −2 a7 −3

−6 a1 a7 −7 a1 a5 a6 −8




,

where −i are undefined values (generally distinct)4 and the completed elements of
A′

5 are indicated by the bold type.

Note that in this method the fictitious states (input signals) introduced in
order to bring the number of states (input signals) up to 2�log2 na� (2�log2 nx�)
are equivalent5 to the states (input signals) paired with them in the selected
partition.

Example 7.3.5 The fictitious states a6 and a7 in the above example are equivalent
to a0 and a2, respectively. Thus, the first iteration of the algorithm produces a class
of assignments Km−1 and completions minimizing Lm−1.

4In other words, in any completion the matrix entries −i, may be replaced by arbitrary states, with the
restriction that bars with equal subscripts i must be replaced by the same state.
5States ap and aq of an automaton A are equivalent if φ(x, ap) = φ(x, aq) for any input x, where φ is the
next-state function of A.
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7.3.2 Minimization of Lower Order Nonzero Coefficients in Spectral
Representation of Incompletely Specified Automata

The second iteration constructs a class of assignments and completions minimizing
Lm−2. First, by using the matrix A′

m−1 and the optimal matching, we construct a
matrix Aa

m−2 or Ax
m−2 as in (7.2.9).

Example 7.3.6 For the Example 7.3.1, we have,

Am−2 = A4 = Aa
4,

where A4 is the matrix




{a0, a0}, {−1, −1}, {a3, a3}, {a6, a6}, {a4, a4}, {−2, −2}, {a7, a7}, {−3, −3}
{a1, a1}, {a0, a0}, {a2, a2}, {a3, a3}, {a0, a4}, {a2, a2}, {−4, −4}, {−5, −5}
{−6, −6}, {a1, a1}, {a7, a7}, {−7, −7}, {a1, a1}, {a5, a5}, {a6, a6}, {−8, −8}
{a0, a0}, {a3, a3}, {a0, a0}, {a6, a4}, {a3, a3}, {a0, a0}, {a7, a7}, {−9, −9}


 .

The next step is to construct the distance matrices [ρa
m−2(q, s)] and [ρx

m−2(q, s)]
for Am−2, by using formulas (7.2.10–7.2.12), the latter formula being modified in the
same way as (7.3.2)

ρ(bα,β, bγ,δ) =
{

1, if bα,β �= bγ,δ provided bα,β and bγ,δ are defined,

0, otherwise,
(7.3.4)

where bα,β, bγ,δ are elements of Am−2.

Example 7.3.7 In the example, Am−2 = Aa
4 and the distance matrices are

[ρa
4(q, s)] =




0 4 3 3∗

4 0 4∗ 6

3 4∗ 0 5

3∗ 6 5 0


 ,
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[ρx
4(q, s)] =




0 2 2 3 3 1∗ 2 0

2 0 3 2 1∗ 3 2 0

2 3 0 3 4 1 3 0∗

3 2 3 0 3 2 2∗ 0

3 1∗ 4 3 0 3 3 0

1∗ 3 1 2 3 0 2 0

2 2 3 2∗ 3 2 0 0

0 0 0∗ 0 0 0 0 0




.

The minimal matchings are indicated by ∗, and L4 ≤ Lx
4 = 4, zT4 = x2.

We now construct a class of completions minimizing Lm−2. The construction of
a completion A

′
m−2 = [b′

p,q] of Am−2 = [bp,q], using the optimal partition of the set
of rows (columns) of Am−2 into pairs, is analogous to the construction of A′

m−1, in
the first iteration.

Example 7.3.8 For Example 7.3.1, L4 ≤ Lx
4, the partition of columns is determined

as {{0, 5}, {1, 4}, {2, 7}, {3, 6}}, and

A′
m−2 = A′

4 =


{a0, a0}, {a4, a4}, {a3, a3}, {a6, a6}, {a4, a4}, {a0, a0}, {a7, a7}, {a3, a3}
{a1, a1}, {a0, a0}, {a2, a2}, {a3, a3}, {a0, a4}, {a2, a2}, {a3, a3}, {a2, a2}
{a5, a5}, {a1, a1}, {a7, a7}, {a6, a6}, {a1, a1}, {a5, a5}, {a6, a6}, {a7, a7}
{a0, a0}, {a3, a3}, {a0, a0}, {a6, a4}, {a3, a3}, {a0, a0}, {a7, a7}, {a0, a0}


 .

For this example, then, all undefined states become defined in the second iteration
of the algorithm. The final, completely specified state matrix is

A′
5 =




a0 a4 a3 a6 a4 a0 a7 a3

a1 a0 a2 a3 a0 a2 a3 a2

a5 a1 a7 a6 a1 a5 a6 a7

a0 a3 a0 a6 a3 a0 a7 a0

a1 a0 a2 a3 a4 a2 a3 a2

a0 a3 a0 a4 a3 a0 a7 a0

a0 a4 a3 a6 a4 a0 a7 a3

a5 a1 a7 a6 a1 a5 a6 a7




.

The elements defined in the second iteration are in bold.

The procedure for assignments minimizing Lm−3, Lm−4, . . . , L0 is analogous. We
illustrate using the same example as before.
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Example 7.3.9 Third iteration.

A3 = Ax
3 =




{a0, a0, a0, a0} {a4, a4, a4, a4} {a3, a3, a3, a3} {a6, a6, a7, a7}
{a1, a1, a1, a1} {a0, a0, a0, a4} {a2, a2, a2, a2} {a3, a3, a3, a3}
{a5, a5, a5, a5} {a1, a1, a1, a1} {a7, a7, a7, a7} {a6, a6, a6, a6}
{a0, a0, a0, a0} {a3, a3, a3, a3} {a0, a0, a0, a0} {a6, a4, a7, a7}


 ,

[ρa
3(q, s)] =




0 4 4 3∗

4 0 4∗ 4

4 4∗ 0 4

3∗ 4 4 0


 ,

[ρx
3(q, s)] =




0 4 3∗ 4

4 0 4 4∗

3∗ 4 0 4

4 4∗ 4 0


 .

Therefore, L3 ≤ Lx
3 = 7 and zT3 = x1.

Fourth iteration.

A2 = Ax
2 =




{a0, a0, a0, a0, a3, a3, a3, a3} {a4, a4, a4, a4, a6, a6, a7, a7}
{a1, a1, a2, a2, a2, a2, a2, a2} {a0, a0, a0, a4, a3, a3, a3, a3}
{a5, a5, a5, a5, a7, a7, a7, a7} {a1, a1, a1, a1, a6, a6, a6, a6}
{a0, a0, a0, a0, a0, a0, a0, a0} {a3, a3, a3, a3, a6, a4, a7, a7}


 ,

[ρa
2(q, s)] =




0 2 2 2∗

2 0 2∗ 2

2 2∗ 0 2

2∗ 2 2 0


 ,

[ρx
2(q, s)] =

[
0 4∗

4∗ 0

]
,
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and L2 ≤ La
2 = 4, zT2 = a1.

Fifth iteration.

The matrix A1 = Aa
1 is

Aa
1 =

[
k00 k01

k10 k11

]
,

where

k00 = {a0, a0, a0, a0, a3, a3, a3, a3, a0, a0, a0, a0, a0, a0, a0, a0},
k01 = {a4, a4, a4, a4, a6, a6, a7, a7, a3, a3, a3, a3, a6, a4, a7, a7},
k10 = {a1, a1, a2, a2, a2, a2, a2, a2, a5, a5, a5, a5, a7, a7, a7, a7},
k11 = {a0, a0, a0, a4, a3, a3, a3, a3, a1, a1, a1, a1, a6, a6, a6, a6}.

The distance matrices are

[ρ1
1(q, s)] =

[
0 2∗

2∗ 0

]
,

[ρx
1(q, s)] =

[
0 2∗

2∗ 0

]
,

and L1 ≤ La
1 = 2, zT1 = a0.

Sixth iteration.

The matrix A0 is

Aa
0 = [

k0 k1
]
,

where

k0 = {a0, a0, a0, a0, a3, a3, a3, a3, a0, a0, a0, a0, a0, a0, a0, a0

a1, a1, a2, a2, a2, a2, a2, a2, a5, a5, a5, a5, a7, a7, a7, a7} ,

k1 = {a4, a4, a4, a4, a6, a6, a7, a7, a3, a3, a3, a3, a6, a4, a7, a7

a0, a0, a0, a4, a3, a3, a3, a3, a1, a1, a1, a1, a6, a6, a6, a6} .
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TABLE 7.3.1 Assignments of States and Inputs for the
Automaton in Example 7.1.4.

q 0 1 2 3 4 5 6 7
Ka(q) 0 4 6 2 5 3 1 7
Kx(q) 0 4 2 6 5 1 7 3

The distance matrix is

[ρx
0(q, s)] =

[
0 1∗

1∗ 0

]

and L0 ≤ Lx
0 + 1 = 2, zT0 = x0.

In our example, therefore, the argument vector of the excitation functions is z =
(x0, a0, a1, x1, x2, a2). Tables 7.3.1 and 7.3.2 provide the assignments and complexity
bounds.

The above method of completion and assignment for incompletely specified finite
automata, like its counterpart (Section 7.2) for completely specified finite automata,
is asymptotically optimal for almost all automata. Indeed, even for comparatively low
values of n = log2 na the probability p that the completion and assignment will be
optimal is close to one (thus, if n = 4 we have p > 0.9).

7.4 SOME SPECIAL CASES OF THE ASSIGNMENT PROBLEM

7.4.1 Preliminary Remarks

The solutions of the assignment problem presented in Section 7.2 and 7.3 can be
applied to any automaton. In this section, we discuss a few important special classes
of automata whose specific features yield simplifications of the general algorithms.
The special classes considered in this section are autonomous automata and automata
for which a fixed state (or input) assignment is given in advance. All the notation used
in Sections 7.2 and 7.3 will be retained.

7.4.2 Autonomous Automata

The next state of an autonomous automaton is determined by the previous state, and
its state matrix Am−1 = [aq,r] reduces to a single column [aq, 1]. The algorithms
in Sections 7.2 and 7.3 are substantially simplified when applied to autonomous
automata. First and foremost, there is no need to construct the function Kx(q), the
matrices Ax

m−t , or [ρx
m−t(q, s)], (t = l, . . . , m). Further, zm−i = am−i. Moreover, for

TABLE 7.3.2 Complexity of the Implementations.

l 0 1 2 3 4 5
Lt 2 2 4 7 4 2
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any t we have ρa
m−1(q, s) ∈ {0, 1} for any q, s, and all the matrices Aa

m−t are single
columns.

We now establish a bound on the number of nonzero expansion coefficients for
autonomous automata.

Let φ−1(ai), (i = 0, 1, . . . , na − 1), denote the set of states such that if aj ∈
φ−1(ai), then φ(aj) = ai, where φ is the next-state function of the automaton. In
other words, aj,1 = ai in the matrix Am−1 = [aq,1]. Let |φ−1(ai)| denote the number
of elements in φ−1(ai).

Theorem 7.4.1 Consider an autonomous automaton with na states whose next-state
function is undefined at n− points. Then

L =
m∑

t=1

Lm−t ≤ na − n− −
�log2 na�∑

t=1

na−1∑
i=0

2−t|φ−1(ai)|�, (7.4.1)

m = �log2 na�,

Proof. Notice that if
∑na−1

i=0 2−t|φ−1(ai)� = t, then the matrix [ρa
m−t(q, s)] con-

tains t elements ρa
m−1(qi, si) (i = 1, 2, . . . , t) above the principal diagonal such that

ρa
m−t(qi, si) = 0, qi �= qj , si �= sj , (i �= j, i, j = 1, 2, . . . , t). Consequently, the ele-

ments (qi, si) (i = 1, . . . , δ) must be in minimal symmetric matrix for [ρa
m−t](q, s)],

(since ρa
m−t(q, s) ∈ {0, 1} for any q, s ∈ {0, 1, . . . , na − 1}), and the number of coef-

ficients c
(l)
m−t , (l = 1, 2, . . . , 2m−t) equal to zero is at least t. Hence, summing over

t and using the fact that the next-state function is defined at na − n−, points and
Theorem 6.2.1, we obtain (7.4.1).

Example 7.4.1 Consider an autonomous automaton with the state matrix

Am−1 = [a0, a1, a1, a2, −, a1, a2, −, a1]T ,

where − stands for undefined value of the next-state function φ. We have na = 9,
n− = 2, φ−1(a0) = a0, φ−1(a1) = {a1, a2, a5, a8}, φ−1(a2) = {a3, a6}, φ−1(a3) =
φ−1(a4) = φ−1(a5) = φ−1(a6) = φ−1(a7) = φ−1(a8) = ∅, where ∅ is the symbol for
the empty set. Then,

8∑
i=0

⌊
1

2
|φ−1(ai)|

⌋
= 3,

8∑
i=0

⌊
1

4
|φ−1(ai)|

⌋
= 1,

8∑
i=0

⌊
2−t|φ−1(ai)|

⌋
= 0,

for t > 2. Thus, by Theorem 7.4.1, we have L ≤ 3.
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Therefore, Theorem 7.4.1 yields a bound on the spectral complexity of autonomous
automata, directly in terms of the next-state function and there is no need to construct
the matrices [ρa

m−t(q, s)] to estimate the spectral complexity.
The state assignment problem for autonomous automata is reduced to determina-

tion of minimal symmetric matchings for the matrices [ρa
m−t(q, s)]. The construction

of these matrices is analogous to that described in Sections 7.2 and 7.3, facilitated
by the fact that here all the elements are zeros and ones. The problem of a minimal
symmetric matching for a matrix of zeros and ones is known as the matching prob-
lem. Efficient algorithms for its solution, based on a modification of the Hungarian
algorithm, may be found, for example, in References 136, 137, and 250.

7.4.3 Assignment Problem for Automata with Fixed Encoding
of Inputs or Internal States

We now consider the assignment problem for automata whose input signals or internal
states have preassigned codes that are fixed before the synthesis.

Assume that an assignment Kx(q) of input signals (Ka(q) of states) is fixed. The
problem is to determine the order of variables in the excitation functions and a state
assignment Ka(q) (the input assignment Kx(q)). The algorithm is again a simplified
version of the general procedure.

If Kx(q) is fixed, we set

Kx(q) = Kx
m−1(q) =

�log2 nx�−1∑
i=0

xq,i2
�log2 nx�−i−1, (7.4.2)

Kx
m−s(q) =

�log2 nx�−s−i−1∑
i=0

xq,i2
�log2 nx�−s−i−1. (7.4.3)

If the state assignment Ka(q) is fixed, we construct similar functions Ka
m−s(q).

The inverse functions to Kx
m−s(q) and Ka

m−s(q) will be denoted by (Kx
m−s)

−1(q) and
(Ka

m−s)
−1(q), respectively.

Now suppose that the tth iteration has produced a (2�log2 nx�−g × 2�log2 na�−d)
matrix Am−t , where g + d = t − 1, m = �log2 na� + �log2 nx�.

Then, if the assignment Kx(q) (or Ka(q)) is fixed, we define a minimal symmetric
matching for [ρa

m−t(q, s)] (or [ρx
m−t(q, s)]) to be

{ρx
m−t((K

x
m−1−d)−1(2q − 2), (Kx

m−1−d)−1(2q − 1))}, q = 1, . . . , 2�log2 nx�−d−1,

and similar,

{ρa
m−t((K

a
m−1−g)−1(2q − 2), (Ka

m−1−g)−1(2q − 1))}, q = 1, . . . , 2�log2 na�−g−1.
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Thus, in this type of automaton there is no need to construct the matrices
[ρa

m−t(q, s)], ([ρx
m−tq, s)]) for all t = 1, 2, . . . , m or to search for minimal symmetric

matchings on these matrices.

Remark 7.4.1 In many cases it is convenient to change the notation for the in-
put signals (states) of the original automaton before actually beginning the assign-
ment procedure, in such a way that the fixed assignment has the form Kx(q) = q (or
Ka(q) = q). This merely involves a suitable permutation of the columns (rows) of the
state matrix Am−1 and clearly has no effect on the final result.

If the fixed assignment is Ka(q), we replace the states aq,s in the original matrix
Am−1 by the values of their codes. The elements br,s of Am−t , were defined as sets
of 2t−1 elements of Am−1, (see (7.2.9)). Since Ka(q) is given, we can replace the
sets br,s by the corresponding numbers

∑
aq∈br,s

Ka(q). Thus, the elements of the
matrices Am−t are no longer sets but numbers, and this simplifies the construction of
the matrices [ρx

m−t(q, s)].
In addition, it can be shown that the resulting values of Lm−t (t = 2, 3, . . . , m) are

not only asymptotically optimal (see Theorem 7.2.2), but exact minima with respect
to all assignments that give Lm−t+1 the previously determined minimal value.

Example 7.4.2 Consider the automaton with Ka(q) = q, for q = 0, 1, 2, 3 defined
by the next-state matrix

A3 =




0 2 0 3

0 3 1 3

2 2 2 0

3 1 3 1


 ,

where m = 4. Here na = nx = 4 and the element ai,j of A3 is s if the input signal xj

converts the automaton from a state assigned the code of the number i into the state
assigned the code of s.

We determine an assignment Kx(q) and an optimal ordering T of the variables of
the excitation functions for this automaton.

First iteration. The matrix [ρx
3(q, s)] is

[ρx
3(q, s)] =




0 3 1∗ 4

3 0 3 2∗

1∗ 3 0 4

4 2∗ 4 0


 .

The minimal matching for [ρx
3(q, s)] is {ρx

3(0, 2), ρx
3(1, 3)}.

As a minimal matching for [ρa
3(q, s)] we take {ρa

3(0, 1), ρa
3(2, 3)}.

Then, Lx
3 = 3, La

3 = 6, Lx
3 < La

3, zT3 = x1.
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The input signals x0, x2 and x1, x3 are assigned codes that differ in the least
significant bit x1.

Second iteration. The matrix Am−2 = A2 = Ax
2 is

A2 = Ax
2 =




0 5

1 6

4 2

6 2


 .

Then

[ρx
2(q, s)] =

[
0 4∗

4∗ 0

]
.

The minimal matching for [ρx
2q, s)] is {ρx

2(0, 1)}.
As the minimal matching for [ρa

2(q, s)] we take {ρa
2(0, 1), ρa

2(2, 3)}.
Then, Lx

2 = 4, La
2 = 3, La

2 < Lx
2, zT2 = a1.

Third iteration. Am−3 = A1 = Aa
1 =

[
1 11

10 4

]
. Then,

[ρx
1(q, s)] =

[
0 2∗

2∗ 0

]
.

The minimal matching for [ρa
1(q, s)] is {ρx

1(0, 1)}and that for [ρx
1(q, s)] is {ρx

1(0, 1)},
Lx

1 = La
1 = 2. We set zT1 = a0.

Fourth iteration. We have A0 = Aa
0 = [

11 15
]
, then [ρx

0(q, s)] =
[

0 1∗
1∗ 0

]
, and

L0 = Lx
0 + 1 = 2, zT0 = z0.

In this example, then, the result is L3 = 3, L2 = 3, L1 = 2, L0 = 2, Kx(0) = 0,
Kx(1) = 2, Kx(2) = 1, Kx(3) = 3. The optimal order of variables is (x0, a0, a1, x1).

To conclude this chapter, we again state that the algorithms presented here provide
for computationally very efficient and asymptotically optimal methods for problems
of state assignment for inputs and internal states and ordering of variables for excita-
tion functions for the case when the sequential networks implementing partially and
completely defined automata are based on the Haar expansions of excitation functions.

We note that solutions of these problems for the classical approaches based on
minimization of excitation functions require exponential complexity. This is the major
advantage of spectral methods of synthesis of sequential networks over the traditional
methods.
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has been discussed in References 231,40,236,484,645,123, and 375. In References 32 and
34, genetic algorithms are applied to solve this problem. For low-power state assignment, see
References 97,140, and 616. State assignment for easy testable implementations (44,45,126).
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CHAPTER 8

HARDWARE IMPLEMENTATION OF
SPECTRAL METHODS

In this chapter we discuss some methods for implementation of logic networks by
using memories as basic modules.

In general, synthesis with memories has advantages that the design time and efforts
are minimal, since design in this case is reduced to the programming of a memory
structure (499). The optimization is possible in the case of two-level addressing of
Read-Only Memories (ROM), and simplification of the related multiplexer network
at the output. For more details, see Reference 41. This approach to the synthesis is
efficient when a given system of functions f is represented by the truth vectors that are
directly stored in the ROM, and there are no minimzation of f in the sense of reduction
of the product terms in Sum-of-Product (SOP) expressions. Since the complete truth
vectors are stored, it follows that the method is inefficient when f has many values
0 or 1, and unspecified values. In these cases, specification by cubes or analytical
expressions may provide more compact representations. The method is efficient, if f

has many product terms in SOP as the arithmetic functions. It is also efficient when it
is required a frequent change of functionality (adaptivity) of the produced network.

In the case of representation of functions by spectral expressions, the memory,
which is the core part of the implementations by spectral representations is used to
store the spectral coefficients.

The considerations in this chapter can be viewed as an elaboration of the design
methods discussed in Section 6.1 recalling further that present Look-up-Table (LUT)

Spectral Logic and Its Applications for the Design of Digital Devices by Mark G. Karpovsky, Radomir
S. Stanković and Jaakko T. Astola
Copyright © 2008 John Wiley & Sons, Inc.
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FPGAs are suitable technology platforms for such implementations of logic functions,
see References 41 and 394.

8.1 SPECTRAL METHODS OF SYNTHESIS WITH ROM

The presentation in this chapter will be mainly focussed on the implementations by the
discrete Haar series of switching functions. The advantage is taken from the distinct
feature of Haar functions that they take values in the set {−1, 0, 1}, which permits
to avoid explicit generation of basis functions used in the series expansion for the
function f (z). Instead, values of basis functions for a given input z are viewed as
signs associated to the Haar coefficients, the sum of which determines values of f (z)
for all possible values of z.

In this chapter, we present some complexity bounds that, although being approxi-
mative, allow to compare various spectral methods in logic networks synthesis.

The block diagrams of spectral implementations demonstrating an approach to
the solution of the major technical problems that arise when spectral methods are
employed will also be discussed in this chapter.

8.2 SERIAL IMPLEMENTATION OF SPECTRAL METHODS

We use the term serial implementation of spectral methods for the design technique
in which the value of the function describing the operation of a network is obtained
by a serial (i.e., sequential in time) summation of the appropriate spectral series.

When a state assignment has been selected, the implementation of a sequential
network is reduced to the implementation of a suitable combinational network im-
plementing excitation functions.

For this reason, the discussion of this chapter will be limited to the implementation
of combinational networks for systems of switching functions, that is, we will consider
logic networks with m inputs and k outputs.

As always in spectral implementations, a system of k switching functions of m

variables in a fixed order is represented by a single step function �(z), which is
then expanded into an orthogonal series. However, this system may also be viewed
as 2l (0 ≤ l < m) systems of m − l variables, obtained by fixing l arguments of the
original system in all possible ways. Alternatively, we can speak of s (0 < s ≤ k)
systems of m variables, where the ith system contains pi functions (i = 1, 2, . . . , s),
and

∑k
i=1 pi = k. Yet another interpretation is to take some combination of these two

cases.
Whatever the alternative chosen, each of the systems may be realized indepen-

dently. It will become clear from the sequel that depending on the specific alternative,
there are two possibilities

1. either the total number of nonzero expansion coefficients of the representative
step functions is increased or

2. the total number of bits in the adders computing the values of the step functions
is increased.
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We shall therefore confine ourselves throughout the sequel to the case of a system
of k switching functions of m variables represented by a single step function �(z)
defined as in (1.2.4).

8.3 SEQUENTIAL HAAR NETWORKS

Figure 8.3.1 illustrates the block diagram for implementation of systems of switching
functions by Haar series. The system operates as follows.

The binary encoded variable z is stored in an (m + 1)-bits shift register, whose
rightmost bit is set to 1.

This register receives Clock Pulses (CL) that shift the code recorded therein.
At consecutive instants, the portion of the shift register controlling the decoder
will hold the code sequences (1, 0, . . . , 0), (z0, 1, 0, . . . , 0), (z1, z0, 1, 0, . . . , 0), · · ·,
(zm−2, zm−1, . . . , z0, 1), where zs is the sth digit of the binary code for z. Each of these
sequences activates exactly one output of the decoder, depending on the code of z. If
the decoder outputs are numbered from 0 through 2m − 1, the output activated at the lth
time is the output corresponding to a number in the set {2l−1, 2l−1 + 1, . . . , 2l − 1},
l = 1, 2, . . . , m.

The decoder controls the operation of the memory storing binary codes of the
expansion coefficients of �(z) in the corresponding Haar series.

When the δth input (δ = 1, 2, . . . , 2m − 1) of the encoder is activated, the coeffi-
cient c(q)

l is fed from the output of the encoder to the input of the adder-accumulator �,
where l ∈ {1, . . . , m} and q ∈ {1, . . . , 2l} are uniquely determined by the condition

2l + q − 1 = δ. (8.3.1)

Reset

Decoder

Encoder

1 2 2 -1m

Set

Adder SgCounter

(m+1)-bit register m-bit register

Set 1

CL

( )z ...

......

...

...

...

...

...

...

c0
(0)

}
}z

FIGURE 8.3.1 Block diagram for implementation of switching functions by Haar series with
single dimensional ROM.
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The sign of the coefficient is fed through an EXOR circuit into the sign bit Sg of
the adder �.

To compute �(z) for any fixed z, it is required to sum up to m + 1 coefficients c
(q)
l ,

and so the value of �(z) is produced after m elementary addition operations. (Before
summation begins, the adder � holds the code of the coefficient c(0)

0 , which is thus the
initial state of �.) Upon each elementary addition, the number stored in the register
is shifted.

We now consider the implementation of the encoder in detail.
If a coefficient c

(q)
l is zero, there is no need to store it in the encoder or to realize

the corresponding decoder output. Thus, the complexity of both encoder and decoder
depends essentially on the number of nonzero coefficients.

We have already stated that the encoder is a memory, while the decoder computes
the address for it. The memory can be organized as a single-coordinate device, or as a
two-coordinate device. In the case of two coordinates (x, y), the set of m variables is
split into subsets of �m/2� and �m/2� variables for the abscise x and the ordinate y of
the coordinate (x, y). It will be shown below that this approach considerably reduces
complexity of the decoder.

Figure 8.3.2 shows the block diagram of the implementation by spectral methods
with two-coordinate ROM.

Each cell of the memory stores a coefficient c
(q)
l . The length of the binary code of

this coefficient is at most m + k + 1.
At each instant of time, the code of a single coefficient should appear at the decoder

output.

mm

Reset

y-decoder

x-
en

co
de

r

1 2 2m /2

Set

Adder SgCounter

CL

Set 1

/2 /2(m+1)-bit register

(z)

...

......

...

...

......

......

...

...

c0

(0)

}

}z

1
2

2m /2

Memory

-bit register -bit register

FIGURE 8.3.2 Block diagram for implementation of switching functions by Haar series with
two-coordinate ROM.
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We now consider generation of the sign digit Sg of the adder �, assuming as usual
that 1 in the sign digit implies a negative value of the number stored in �, and 0 a
positive value. Since,

H
(q)
l (z) = Rl+1(z) = (−1)zl , (8.3.2)

for z ∈ ((q − 1)2m−l, q2m−l), it follows in view of the previously shown relation that
the value of H

(q)
l (z) is equal to the lth digit zl of the argument code, and multiplication

of the sign of the coefficient by the sign of H (q)(z) is thus accomplished by the EXOR
circuit, whose output is fed to the sign digit of the adder �.

The computation of �(z) ends after m elementary additions, and a modulo m

counter (see Fig. 8.3.1) sends a reading signal to a network of AND gates, a reset
signal to the decoder address register, a set signal to the register bit controlling the
sign in the adder �, and a signal restoring the code c

(0)
0 in �.

Example 8.3.1 Let us design a network implementing the incompletely specified
automaton of Example 7.3.1, with serial summation of the corresponding spectral
series.

The optimal completion of the state matrix is the matrix A
′
5 in Section 7.3, for which

na = 8, nx = 8. The state assignment is shown in Table 7.3.1, the order of variables
in the excitation functions is (x0, a0, a1, x1, x2, a2), and bounds on the number of
nonzero coefficients are given in Table 7.3.2.

Using A
′
5 and the state assignment of Table 7.3.1, we construct a step function �(z)

representing the system of excitation functions for the selected order of variables. This
function and the nonzero coefficients c

(q)
l of its expansion are given in Tables 8.3.1

and 8.4.1, respectively.
A network realizing this automaton as described above is illustrated in Fig. 8.4.1.

The timing of the input signal coincides with the timing of signals at the counter
output.

8.4 COMPLEXITY OF SERIAL REALIZATION BY HAAR SERIES

We now estimate the complexity (a number of two input gates and flip-flops) of a
serial implementation of a combinational network by spectral methods. The block
diagram in Fig. 8.3.1 contains the following components:

1. (2m + 1)-bit shift register,

2. decoder,

3. encoder,

4. adder,

5. modulo m counter,

6. AND networks.
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TABLE 8.3.1 Function f Example 8.3.1.

z �(z) z �(z) z �(z) z �(z)

0 0 16 4 32 5 48 0
1 0 17 4 33 5 49 0
2 0 18 6 34 5 50 0
3 0 19 6 35 5 51 5
4 2 20 6 36 1 52 2
5 2 21 6 37 1 53 2
6 2 22 6 38 7 54 2
7 2 23 6 39 7 55 2
8 0 24 3 40 2 56 4
9 0 25 3 41 2 57 4

10 0 26 3 42 2 58 4
11 0 27 3 43 2 59 4
12 0 28 7 44 1 60 1
13 0 29 7 45 5 61 1
14 0 30 7 46 7 62 1
15 0 31 7 47 7 63 1

TABLE 8.4.1 Nonzero Coefficients for the Function f in Example 8.3.1.

Binary Representation of c
(q)
l

δ = 2l + q − 1 (l, q) 64c
(q)
l Sign 21 20 2−1 2−2 2−3 2−4 2−5 2−6

0 (0,0) 189 0 1 0 1 1 1 1 0 1
1 (0,1) −5 1 0 0 0 0 0 1 0 1
2 (1,1) −152 1 1 0 0 1 1 0 0 0
3 (1,2) 62 0 0 0 1 1 1 1 1 0
4 (2,1) 32 0 0 0 1 0 0 0 0 0
5 (2,2) 16 0 0 0 0 1 0 0 0 0
6 (2,3) 32 0 0 0 1 0 0 0 0 0
7 (2,4) −28 1 0 0 0 1 1 1 0 0
8 (3,1) −64 1 0 1 0 0 0 0 0 0

10 (3,3) −32 1 0 1 1 0 0 0 0 0
11 (3,4) −128 1 1 0 0 0 0 0 0 0
12 (3,5) −32 1 0 0 1 0 0 0 0 0
13 (3,6) 96 0 0 1 1 0 0 0 0 0
14 (3,7) −24 1 0 0 0 1 1 0 0 0
15 (3,8) 64 0 0 1 0 0 0 0 0 0
20 (4,5) −64 1 0 1 0 0 0 0 0 0
25 (4,10) −192 1 1 1 0 0 0 0 0 0
27 (4,12) −128 1 1 0 0 0 0 0 0 0
28 (4,13) −80 1 0 1 0 1 0 0 0 0
54 (5,23) −128 1 1 0 0 0 0 0 0 0
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1 2 3 4 5 6 7 8 10 11 12 13 14 15 20 25 27 28 54

2-6 2-5 2-4 2-3 2-2 2-1 2120 22 Sg
1

z 0 z 1 z 2 z 3 z 4 z 5

Register

a
(0)( ) a

(1)( ) a
(2)

( )

a t( ) }

}

}x t
0
( ) x t

1
( ) x t

2
( )

x t( )

a t( -1)
a t(2)( -1)

a t(1)( -1)

a t(0)( -1)

1 0 1 1 1 1 0 1 0 0

CL

Counter

k 6

Reset

Decoder

Memory

Adder

t t t

FIGURE 8.4.1 Block diagram for the implementation of the network in Example 8.3.1.

We now estimate the complexity of each block.

1. The complexity of the register LSR is

LSR = (2m + 1)L(1)
SR, (8.4.1)

where L
(1)
SR is the complexity of one-bit register.

2. The complexity of the decoder is

LDc ≤ LDc

(⌊m

2

⌋
, 2�m/2�

)
+ LDc

(⌈m

2

⌉
, 2�m/2�

)
≤ (2�m/2�+1 + 2�m/2�+1 − 8)L∧, (8.4.2)

where LDc(p, q) is the complexity of a decoder with p inputs and q outputs,
and L∧ is that of a two-input AND gate.

To prove (8.4.2), we note that in a two-coordinate memory the decoder splits
into two address decoders, with �m/2� and �m/2� inputs, respectively, and
2�m/2� and 2�m/2� outputs. Let us suppose that each of these decoders has the
structure of a tree.

A tree decoder with λ inputs z0, . . . , zλ−1 and 2λ outputs is a network ob-
tained by the serial connection of λ separate networks, the lth level receiving the
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output of the (l − 1)th and the input variable zl−1. The 0th level is a constant 1
signal, that is, a clock. In a tree decoder, each level, from the 0th to the (l − 1)th
inclusive, is a full decoder for the variables z0, . . . , zl−1. It is readily shown by
induction on λ that the complexity LDc(λ, 2λ) of a tree decoder with λ inputs
and 2λ outputs is

LDc(λ, 2λ) = (2λ+1 − 4)L∧.

The estimate (8.4.2) now follows easily.
If the encoder is a single-coordinate memory, the decoder has m inputs and

L outputs, where L is the number of nonzero coefficients in the expansion.
Reasoning as in the case of a two-coordinate ROM shows that its complexity
is bounded by 2L · L∧.

3. The encoder is a memory that stores the nonzero coefficients c
(q)
l . The com-

plexity of the encoder is given approximately by

LEn 	 1

2

m∑
l=1

Lm−l(k + 1)L1, (8.4.3)

where Lm−l is the number of nonzero coefficients c
(q)
m−l, q = 1, 2, . . . , 2m−l

and L1 is the complexity of the element (binary cell) necessary to store one bit
of information in the memory. Indeed, if �(z) is the step function representing
a system of k switching functions of m variables, then maxz �(z) < 2k and so
|c(q)

m−l| = 2−lc̃
(q)
m−l, where �log2 c̃

(q)
m−l� ≤ k < l.

In addition, it is assumed in (8.4.3) that the numbers of 1 and 0 values in the
binary expansion of each nonzero coefficient c

(q)
m−l are equal.

Remark 8.4.1 Both in (8.4.3) and in further complexity estimates for encoders,
if l = m, then L0 ≤ 1, since the coefficient c

(0)
0 is not produced in the encoder,

but fed directly to the adder as an initial state.

4. For serial summation of the terms of the series, it is used an adder accumulator
containing at most m + k + l bits. The complexity L� of the adder accu-
mulator is

L� ≤ (m + k + 1)L(1)
� , (8.4.4)

where L� is the complexity of one-bit adder accumulator.

5. The complexity of a modulo m counter is

LC = �log2 m�L(1)
C , (8.4.5)

where L
(1)
C is the complexity of one-bit counter.

www.it-ebooks.info

http://www.it-ebooks.info/


356 HARDWARE IMPLEMENTATION OF SPECTRAL METHODS

6. The complexity LAND of the AND circuits is

LAND = mL∧. (8.4.6)

Finally, the complexity LSq of the serial implementation of �(z) is obtained by

setting L
(1)
SR = L

(1)
� = L

(1)
C = Lff , where Lff is the complexity of a flip-flop

and L1 = L∧ for the case of a single-coordinate memory.
Noticing that L = ∑m

l=1 Lm−l, we have

LSq = LSR + LDc + LEn + L� + LC + LAND

≤ (3m + k + �log2 m� + 2)Lff

+
((

1

2
k + 2

)
L + m + 1

2

m∑
l=1

Lm−l · l

)
L∧. (8.4.7)

For the case of a two-coordinate memory, we have

LSq ≤ (3m + k + �log2 m� + 2)Lff

+
(

1

2
L · k + 1

2

m∑
l=1

Lm−l · l + m + 2�m/2�+1 + 2�m/2�+1 − 8

)
L∧.

(8.4.8)

A comparison of estimates (8.4.7) and (8.4.8) shows that the use of single-
coordinate memory is advisable when L < 2m/2, while in other cases a two-coordinate
memory should be used.

For example in Section 7.3, we have m = 6, k = �log2 na� = 3, LSq = 26Lff +
96L∧ when a single-coordinate ROM implemented with OR circuits is used, and
LSq = 26Lff + 76L∧ for a two-coordinate ROM.

The upper bounds provided by formulas (8.4.7) and (8.4.8) in these cases are, by
contrast,

LSq ≤ 26Lff + 103L∧,

LSq ≤ 26Lff + 89L∧.

8.4.1 Optimization of Sequential Spectral Networks

To end this section, we outline a method whereby the complexity LSq of the above
block diagrams for sequential implementation of spectral methods may be minimized.
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Since by definition the step function �(z) being implemented takes integer values,
it will suffice to compute another step function �(z) such that

max
z

|�(z) − �(z)| <
1

2
, (8.4.9)

and subsequently round off �(z) to the nearest integer (this approach may require a
fairly simple automatic rounding-off network, but the implementation of �(z) may
turn out to be substantially simpler than that of �(z)). We consider two ways of doing
this.

The first construction of �(z) involves deleting some of the expansion coefficients
of �(z).

Note that if c
(q)
m−1 
= 0, then |c(q)

m−1| ≥ 1/2 and coefficients with the subscript m − 1
cannot be deleted.

Now, let Pm−l, (l = 2, 3, . . . , m) be a subset of coefficients c
(q)
m−l for �(z) and P is

the union of all the sets Pm−l. Then, the coefficients in P may be deleted in computing
�(z) iff

max
z

∣∣∣∣∣∣∣
∑

c
(q)
m−l

∈P

c
(q)
m−lH

(q)
m−l(z)

∣∣∣∣∣∣∣ <
1

2
. (8.4.10)

If m is large, however, the use of this condition to determine a maximal set P of
coefficients that may be deleted is not very practical. We, therefore, replace (8.4.10)
by a somewhat weaker condition that is much easier to verify. Set

ĉm−l = max
c

(q)
m−l

∈Pm−l

|c(q)
m−l|. (8.4.11)

Then, the coefficients of P may be deleted if

m∑
l=2

ĉm−l <
1

2
. (8.4.12)

Returning to Example 8.3.1 discussed in this section (see Table 8.4.1), we see that
condition (8.4.10) allows to delete the coefficients c

(1)
0 , c

(2)
2 , c

(7)
3 . The complexity of

the encoder is thereby reduced by about 13%, and the complexity of the decoder is
also reduced.

The second approach to minimization is based on deleting the least significant bits
of the codes of c

(q)
m−l for �(z). This reduces the length of the coefficient codes and

thereby the necessary length of the adder.
Let c

(q)
m−l(s) denote the value of the digit with the weight 2−s in the binary ex-

pansion of c
(q)
m−l, (s ≤ m, c

(q)
m−l(s) ∈ {0, 1}). For example, c

(q)
m−l(m) is the value of the
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least significant bit in the binary expansion of c
(q)
m−l. Then, the bits in the binary rep-

resentations of the coefficients c
(q)
m−l with weights −m, −m + 1, . . . ,−m + r may be

deleted from the expansion of �(z) if

m∑
s=m−r

∑
l,q

c
(q)
m−l(s)2

−s <
1

2
. (8.4.13)

This condition generates a simple procedure yielding the maximal number r of
bits in the coefficients c

(q)
m−l that can be deleted.

For the example of this section, the bits with weights 2−6, 2−5, 2−4, (r = 3) can
be deleted. The complexity of the adder is reduced by 30% and that of the encoder is
also reduced.

8.5 PARALLEL REALIZATION OF SPECTRAL METHODS
OF SYNTHESIS

The use of parallel summation to compute the series expansion of a step function �(z)
representing a system of switching functions of m variables, yields an m-fold gain in
speed. This advantage is achieved, however, at the cost of the corresponding increase
in space (hardware) complexity, mainly due to the fact that the adder accumulator must
be replaced by a parallel adder for m terms. In this section, we discuss the technical
implementation of parallel summation and establish the corresponding complexity
estimates.

A block diagram for parallel summation of series is shown in Fig. 8.5.1. Its oper-
ation is as follows.

The binary code (z0, z1, . . . , zm−1) of the variable z is loaded into m flip-flops. For
any fixed z = z∗, there are exactly m + 1 Haar functions H

(q)
l such that H

(q)
l (z∗) 
= 0

(in fact, of all functions with the same nonzero subscript, exactly one is not equal to
zero), hence, only the coefficients of these functions have to be accessed from the
encoder. This is ensured by using a decoder with the structure of a tree. At the output of
the lth level of the decoder (l = 0, 1, . . . , m − 1), one line is activated, corresponding
to the coefficients c

(q)
l such that H

(q)
l (z) 
= 0 for the z in question. Thus, at most m

codes of coefficients c
(q)
l (for different l) are produced simultaneously at the encoder

output (the coefficient c
(0)
0 is fed directly to the adder �). These m + 1 coefficients

are summed by the parallel adder �.
The decoder in this network has m − 1 levels (and correspondingly m − 1 in-

puts z0, . . . , zm−2), since the output of the decoder corresponding to c
(0)
0 is taken

directly from its input (see Fig. 8.5.1). Each of the m coefficients produced at the
encoder output is multiplied by the values of the appropriate basis function, by
means of EXOR circuits, and the process is precisely the same as in the serial
architecture.
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FIGURE 8.5.1 Block diagram for implementation of switching functions by Haar series with
parallel summation of the coefficients.

The encoder is implemented by the same methods as in the serial architecture.
Thus, for parallel summation, the encoder consists of m independent single-coordinate
memory block, where the lth memory block (l = 0, 1, . . . , m − 1) stores the codes
of the coefficients c

(q)
l (q = 1, 2, . . . , 2l) and the lth level of the tree decoder acts as

the address decoder for the lth memory block.
Figure 8.5.2 is a block diagram of a parallel implementation of the automaton

considered in Section 8.3.

8.6 COMPLEXITY OF PARALLEL REALIZATION

We now estimate the complexity LPr of a parallel implementation of an (m, k)-
terminal network by spectral methods. The block diagram in Fig. 8.5.1 contains the
following components:

1. Flip-flops to store the variables (z0, . . . , zm−1)

2. Decoder

3. Encoder

www.it-ebooks.info

http://www.it-ebooks.info/


360 HARDWARE IMPLEMENTATION OF SPECTRAL METHODS

FIGURE 8.5.2 Block diagram of parallel implementation of the network in Example 8.3.1.

4. Sign-generation block (EXORs)

5. Adder.

We proceed to evaluate the complexity of each block.

1. The complexity of a block storing (z0, . . . , zm−1) is

Lm = m · Lff , (8.6.1)

with the notation as in the previous sections.

2. The decoder in Fig. 8.5.1 has m − 1 variables and the structure of a tree. The
(m − l)th level has Lm−l outputs. Suppose that the decoder is designed so that
the first m − 1 levels (for the first (m − 2) variables) form a full tree decoder,
while the (m − 1)th level consists of Lm−1 two-input AND circuits whose
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outputs correspond to the Lm−1 nonzero coefficients c
(q)
m−1. Then, the complex-

ity of the decoder satisfies the inequality (see Section 8.4)

LDc ≤ (2m−1 + Lm−1 − 4)L∧. (8.6.2)

Similarly, if the full tree decoder consists of the first m − l levels, then

LDc ≤ (2m−l+1 + Lm−l+1 + 2Lm−l+2 + 3Lm−l+3 + · · ·
+(l − 1)Lm−1 − 4)L∧ (8.6.3)

=
(

2m−l+1 − 4 +
l−1∑
s=1

sLm−l+s

)
L∧.

Since l may be chosen arbitrarily from the set {2, 3, . . . , m − 1}, the final
bound for the decoder complexity is

LDc ≤ min
l∈{2,3,...,m−1}

(
2m−l+1 − 4 +

l−1∑
s=1

s · Lm−l+s

)
L∧. (8.6.4)

For practical purposes, it is usually sufficient to examine the cases l = 2, 3, 4,
thus obtaining the following rough estimate

LDc ≤ min(2m−1 + Lm−1 − 4, 2m−2 + 2Lm−1 − 4,

2m−3 + Lm−3 + 2Lm−2 + 3Lm−1 − 4)L∧. (8.6.5)

3. The encoder consists of m independent encoders, of which the lth (l =
0, 1, . . . , m − 1) is a single-coordinate memory storing binary representations
of c

(q)
l , (q = 1, 2, . . . , 2l). Its complexity is the same as that of the encoder in

Fig. 8.3.1 (see Section 8.3).

4. The sign block has complexity

LSg = m · L⊕, (8.6.6)

where L⊕ is the complexity of a two-input EXOR circuit.

5. In parallel implementation, summation is performed by a combinational parallel
adder for m terms, each of which contains at most m + k + 1 bits. Thus, the
complexity of the adder satisfies the inequality

L� ≤ (m − 1)(m + k + 1)L(1)
c�, (8.6.7)

where L
(1)
� is the complexity of one-bit adder for two terms (the full adder)

[247].
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Finally, the complexity LPr of the entire network, assuming L1 = L⊕ = L∧,
L

(1)
� = 9L∧ [247] and using the estimate LDc ≤ (2m−1 + Lm−1 − 4)L∧ is

LPr = Lm + LDc + LEn + LSg + Lc�

≤ mLff +
(

2m−1 + 9m2 + m(9k + 1) + Lm−1

+ 1

2

m∑
l=1

l · Lm−1 +
(

1

2
Lm−1 − 9

)
k − 13

)
L∧. (8.6.8)

For the example in Section 7.3, it is m = 6, k = �log2 na� = 3 and LPr =
6Lff + 519L∧ (from (8.6.8) in this case we have LPr ≤ 6Lff + 544L∧).

A comparison of (8.4.7), (8.4.8), and (8.6.8) shows that the m-fold gain in
speed over the serial architecture is achieved at the cost of an increase in the
upper bound on the space complexity. When the serial architecture uses single-
coordinate storage, the increase is

�L = (2m−1 + 9m2 + 9k(m − 1) − 2L + Lm−1 − 13)L∧
− (2m + k + �log2 m� + 2)Lff , (8.6.9)

and for two-coordinate storage

�L = (2m−1 + 9m2 + 9k(m − 1) + Lm−1 − 2�m/2�+1

− 2�m/2�+1 − 5)L∧ (8.6.10)

− (2m + k + �log2 m� + 2)Lff .

Regarding the example in Section 7.3, we see that the increase in complexity
over the serial implementation is �L = 423L∧ − 20Lff for single-coordinate
storage, �L = 443L∧ − 20Lff for two-coordinate memory.

In most practical situations, the space complexity of the parallel implementation
is increased by a factor of approximately m in comparison with the serial implemen-
tation.

Remark 8.6.1 A parallel implementation of spectral methods of synthesis may be
minimized by either of the two methods described in Section 8.4.1 (approximation of
�(z) by a step function �(z) such that max|�(z) − �(z)| < 1

2 ).

8.7 REALIZATION BY EXPANSIONS OVER FINITE FIELDS

The techniques presented in Sections 8.2 and 8.5 will now be modified yielding a
reduction in the number of bits of the adder � and in the lengths of the codes of
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the coefficients c
(q)
l stored in the memory. The modification will be based on Haar

expansions over finite fields (the Haar–Galois expansions, see Section 2.8.3).
As we know, the Haar expansion of a step function �(z) representing a system of

switching functions of m variables has the form

�(z) = c
(0)
0 +

m−1∑
l=0

2l∑
q=1

c
(q)
l H

(q)
l (z), (8.7.1)

where

c
(q)
l = 2−m+l


 2m−l∑

s=2m−l−1+1

�(2m−lq − s) −
2m−l−1∑

s=1

�(2m−lq − s)


 . (8.7.2)

Assume now that all operations in (8.7.1) and (8.7.2) are performed modulo some
prime number p. We refer to the result as a Haar expansion over the finite field GF (p)
(the field of residues modulo p).

We know that if

p > max
z

�(z), (8.7.3)

the Haar functions form a complete orthogonal system over GF (p).
For any system of k switching functions,

max
z

�(z) ≤ 2k − 1, (8.7.4)

and so condition (8.7.3) becomes simply

p > 2k. (8.7.5)

There is always at least one prime in the interval (2k, 2k+1), and so it follows from
(8.7.5) that

�log2 p� = k + 1. (8.7.6)

In general, there is a whole set of primes
∏

k = {p1, p2, . . . , pθ} such that 2k

< pi < 2k+1, (i = 1, 2, . . . , θ). Thus, we are faced with the problem how to select
an optimal prime popt ∈ ∏

k for a given �(z). If L�(pi), (pi ∈ ∏
k) denotes the

number of coefficients c
(q)
l for �(z) such that c(q)

l ≡ 0 (mod pi), a natural condition for
popt is

L�(popt) = max
p∈

∏
k

L�(p).
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For large values of k, however, the difference

max
p∈

∏
k

L�(p) − min
p∈

∏
k

L�(p)

is usually not too large, and so p may be selected from
∏

k arbitrarily.

If the summation in (8.7.1) is performed over GF (p), then 0 ≤ c
(q)
l ≤ p − 1 for

any l, q, and the upper bound on code length for c
(q)
l is reduced (see (8.7.6)) from

m + k + 1 to k + 1. There is a corresponding reduction in the number of bits for the
adder.

For the example in Sections 8.2 and 8.5, k = 3,
∏

k = ∏
3 = {11, 13}, L�(11) =

L�(13) = 0, and so we select p = popt = 11.
The nonzero expansion coefficients of the step function �(z) representing the

system of excitation functions in this example, over the field GF (11), are shown in
Table 8.7.1. The length of the c

(q)
l codes is reduced from 9 to 4 and the number of bits

in the adder from 10 to 4, implying a substantial simplification of any implementation
using the block diagram of either Fig. 8.3.1 or (in particular) Fig. 8.5.1.

The block diagrams in Figs. 8.3.1 and 8.5.1 in both serial and parallel versions
remain essentially the same for implementation over finite fields, with the single
difference that the adder is replaced by an adder modulo p.

TABLE 8.7.1 Nonzero Coefficients Over GF (11) in the Expansion for f in
Example 8.3.1.

Binary Representation of c
(q)
l

δ = 2l + q − 1 (l, q) c
(q)
l 23 22 21 20

0 (0,0) 10 1 0 1 0
1 (0,1) 8 1 0 0 0
2 (1,1) 10 1 0 1 0
3 (1,2) 2 0 0 1 0
4 (2,1) 6 0 1 1 0
5 (2,2) 3 0 0 1 1
6 (2,3) 6 0 1 1 0
7 (2,4) 3 0 0 1 1
8 (3,1) 10 1 0 1 0

10 (3,3) 5 0 1 0 1
11 (3,4) 9 1 0 0 1
12 (3,5) 5 0 1 0 1
13 (3,6) 7 0 1 1 1
14 (3,7) 1 0 0 0 1
15 (3,8) 1 0 0 0 1
20 (1,5) 10 1 0 1 0
25 (4,10) 8 1 0 0 0
27 (4,12) 9 1 0 0 1
28 (4,13) 7 0 1 1 1
54 (5,23) 9 1 0 0 1
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The complexity estimates for the encoder and the adder become, respectively,

LEn = 1

2
(k + 1)L · L1, (8.7.7)

L� ≤ (k + 1)L̃(1)
� (8.7.8)

in the serial case and

L� ≤ (m − 1)(k + 1)L̃(1)
� (8.7.9)

in the parallel case, where L̃
(1)
� and L̃

(1)
� denote the complexity of one bit of a modulo

p adder accumulator and of one bit of a combinational adder modulo p, respectively.
The number L of nonzero coefficients does not increase in calculations over a finite

field. The complexity of all other components of the block diagrams in Figs. 8.3.1 and
8.5.1 (except the encoders and adders) remains unchanged. In addition, there is now
no need for EXOR circuits to compute the sign digits. As a result, the upper bound
on complexity is reduced by the amount

�pLSq = 1

2

(
m∑

l=1

Lm−1(k + l) − L(k + 1)

)
L1 + L⊕ (8.7.10)

+(m + k + 1)L(1)
� − (k + 1)L̃(1)

�

for the serial architecture and

�pLPr =
(

m∑
l=1

Lm−l(k + l) − L(k + 1)

)
L1 + mL⊕ (8.7.11)

+(m − 1)(m + k + 1)L(1)
� − (m − 1)(k + 1)L̃(1)

�

for the parallel implementation.
Setting L̃

(1)
� = Lff for serial implementation, and L

(1)
� = 9L∧ for parallel imple-

mentation, L1 = L⊕ = L∧, we obtain the final estimates for the reduction in com-
plexity

�pLSq =
(

1

2

(
m∑

l=1

l · Lm−l − L

)
+ 1

)
L∧ + mLff , (8.7.12)

�pLPr =
(

1

2

(
m∑

l=1

l · Lm−l − L

)
+ 9m(m − 1) + m

)
L∧. (8.7.13)
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TABLE 8.7.2 Complexity of Blocks for Spectral Implementation with Calculations in
R and GF (p).

Decoder

Architecture Modulo Register Counter 1 2

1 Serial ∞ (2m + 1)Lff �log2 m� · Lff 2L · L∧ LDc−1

2 Serial p (2m + 1)Lff �log2 m� · Lff 2L · L∧ LDc−2

3 Parallel ∞ mLff 0 LDc−3 LDc−3

4 Parallel p mLff 0 LDc−4 LDc−4

Example

1 Serial ∞ 13Lff 3Lff 44L∧ 24L∧
2 Serial 11 13Lff 3Lff 44L∧ 24L∧
3 Parallel ∞ 6Lff 0 18L∧ 18L∧
4 Parallel 11 6Lff 0 18L∧ 18L∧

An examination of estimations (8.7.10) through (8.7.13) shows that the transition
to expansions over finite fields is justified when L

(1)
� and L̃

(1)
� are close to be equal

each other, especially when parallel implementation is being employed.
For Example 8.3.1, the advantage of computation over GF (11) is

�11LSq = 11L∧ + 6Lff , �11LPr = 286L∧.

Table 8.7.2 summarizes the various complexity estimates obtained for all blocks
in the serial and parallel variants, for both ordinary expansions and expansions over
finite fields.

Table 8.7.3 shows the total complexity for these implementations.
In these tables,

LDc−1 = (2�m/2�+1 + 2�m/2�+1 − 8)L∧,

TABLE 8.7.3 Total Complexity of the Implementation of the Network in Example 8.3.1.

Total Complexity

Encoder Adder Circuits Sign 1-Coordinate 2-Coordinates

ER AddR mL∧ 1 · L∧ R S

EQ AddQ mL∧ 0 Q V

EW AddW 0 mL∧ W W

EX AddX 0 0 X X

Example

46L∧ 10Lff 6L∧ 1 · L∧ REx SEx

35L∧ 4Lff 6L∧ 0 QEx VEx

45L∧ 450L∧ 0 6L∧ WEx WEx

35L∧ 180L∧ 0 0 XEx XEx
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LDC−2 = (2�m/2�+1 + 2�m/2�+1 − 8)L∧,

LDc−3 =
(

min
l

(
2m−l−1 +

l−1∑
s=1

s · Lm−l+s − 4

))
L∧,

LDC−4 =
(

min
l

(
2m−l+1 +

l−1∑
s=1

s · Lm−l+s − 4

))
L∧,

and

R = (3m + k + �log2 m� + 2)Lff +
((

1

2
k + 2

)
L + m + 1

2

m∑
l=1

Lm−l · l

)
L∧,

S = (3m + k + �log2 m� + 2)Lff

+
(

1

2
k · L + 1

2

m∑
l=1

Lm−l + m + 2�m/2�+1 + 2�m/2�+1 − 8

)
L∧,

Q = (2m + k + �log2 m� + 2)Lff +
(

1

2
k · L + 2.5L + m − 1

)
L∧,

V = (2m + k + �log2 m� + 2)Lff

+
(

1

2
k · L + 1

2
L + m + 2�m/2� + 2�m/2�+1 − 9

)
L∧,

W = mLff + (2m−1 + 9m2 + m(9k + 1) + Lm−1

+ k

((
1

2
L − 9

)
+ 1

2

m∑
l=1

Lm−l · l − 13

)
L∧,

X = mLff +
(

2m−1 + 9(m − 1)(k + 1) + Lm−1 + 1

2
k · L + 1

2
L − 4

)
L∧,

REx = 26Lff + 96L∧,

SEx = 26Lff + 76L∧,

QEx = 20Lff + 85L∧,

VEx = 20Lff + 65L∧,

WEx = 6Lff + 519L∧,

XEx = 6Lff + 233L∧,
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ER = 1

2

m∑
l=1

Lm−l · (k + l)L∧,

EQ = 1

2
L · (k + 1)L∧,

EW = 1

2

m∑
s=1

Lm−l · (k + l)L∧,

EX = 1

2
Lm−l · (k + 1)L∧,

AddR = (m + k + 1)Lff ,

AddQ = (k + 1)Lff ,

AddW = 9(m − 1)(k + m + 1)L∧,

AddX = 9(m − 1)(k + 1)L∧.

All data in the table are subject to the assumptions L1 = L⊕ = L∧, L(1)
SR = L

(1)
C =

L
(1)
� = Lff , for serial implementation and L̃

(1)
� = 9L∧ for parallel implementation.

The table also gives complexity estimates for all implementations of the automaton
in the example considered. As regards the estimates for serial and parallel implementa-
tions over the field of real numbers, the possibility of minimization by approximating
the function �(z) to within an error smaller than 1

2 (see Section 8.4.1) is not taken
into consideration.

It follows from our estimates that, given m and k, the complexity of the imple-
mentation depends only on the numbers Lm−1, Lm−2, . . . , L0 of nonzero coefficients
c

(q)
m−l, q = 1, 2, . . . , 2m−l.

Thus, the methods of completion and linearization of systems of switching
functions described in Section 6.1.6.1, and Section 6.2, as well as the methods of
state-input assignment, completion of next-state functions and optimal ordering
of arguments in the excitation functions, all of which successively minimize the
numbers Lm−1, Lm−2, . . . , L0, are effective means for minimizing the complexity
of network implementations. The various methods described in this chapter may also
be used in the synthesis of reliable (fault-tolerant) digital devices (see Section 9.4)
by spectral methods. If this is done, the block diagrams of Figs. 8.3.1 and 8.3.2
are left unchanged. Therefore, in Table 8.7.2, it should be introduced additional
decoders for the error-correcting (or error-detecting) codes. The implementation
of such decoders is considered. for example, in Reference 275. With slight mod-
ifications, the methods are also applicable when the basis system is the set of
Walsh functions, or indeed any other orthogonal system of those considered in this
book.
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BIBLIOGRAPHIC NOTES

Synthesis with memories based on truth tables is a standard approach and has been discussed in
many books, see References 121, 225, 395, and 491. The same implementation principles can
be used in FPGAs with LUTs (121). Synthesis from spectral series is a generalization dealing
with spectral coefficients instead of function values (278, 610, 624).
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CHAPTER 9

SPECTRAL METHODS OF ANALYSIS
AND SYNTHESIS OF RELIABLE
DEVICES

The spectral approach developed in previous chapters will now be applied to the
analysis of the reliability of digital devices and to the synthesis of reliable devices.
These problems will be discussed both for digital devices including memory elements
and for combinational (memoryless) networks. The analysis of correcting capability
(Sections 9.1–9.3) will consider only “nonredundant” digital devices, that is, devices
containing no special “redundant” logic elements or memory elements designed to
increase reliability. The basic working tools in this chapter will be various correlation
characteristics of the functions describing the operation of the digital devices.

9.1 SPECTRAL METHODS FOR ANALYSIS OF ERROR CORRECTING
CAPABILITIES

9.1.1 Errors in Combinatorial Devices

We first analyze the types of errors that can be detected or corrected by switching
(combinational) networks with no memory elements. The behavior of such networks
is described by systems of logic functions.

In this context, the term “error” is reserved for errors at the input of a network
realizing a given logic function (in particular, these may be owing to errors in previous
logic networks or in communication channels). A knowledge of the types of errors

Spectral Logic and Its Applications for the Design of Digital Devices by Mark G. Karpovsky, Radomir
S. Stanković and Jaakko T. Astola
Copyright © 2008 John Wiley & Sons, Inc.
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that a network is capable of correcting is of paramount importance, both to estimate
its reliability and to use it for synthesis of another network realizing the same system
of logic functions, but correcting errors of some prescribed type. We shall confine
ourselves to the two most widespread types of errors: algebraic errors and arithmetic
errors.

We begin with a descriptive outline of these errors and of the corresponding cor-
recting capability of systems of logic functions. Formal definitions will be given later
in this section.

An algebraic error is an error leading to an independent distortion of individual
components of the input signal. In particular, an l-fold error, or the error with mul-
tiplicity l, is an error resulting in the distortion of exactly l components (bits) of the
input signal.

An arithmetic error is an error that can spread from component to component
of the input signal along the carry circuits. In particular, an l-fold arithmetic error
in m digits of a p-ary input signal is an error that increases (or decreases) the
input signal (mod pm) by any number of the form α

pi0
0 + α

pi1
1 + · · · + α

pil−1
l−1 , where

α0, . . . , αl−1 ∈, {±1, ±2, . . . ,±(p − 1)}, 0 ≤ i0, . . . , il−1 ≤ m − 1. Arithmetic
errors appear in a network if its input is the output of an arithmetic device (adder,
counter, multiplier, etc.).

A system of logic functions corrects an error if the presence of the error does
not change the values of all functions in the system. In other words, if a correctable
error occurs at the input of any network (even a nonredundant network of minimal
complexity) realizing the system (the network will correct the error automatically,
with no need for any redundancy.

We reiterate that in general any nonredundant network will correct a certain class
of errors. The determination of this class is extremely important for many practical
situations. The rest of this section is devoted to this problem—determination of the
correcting capability of systems of logic functions.

9.1.2 Analysis of Error-Correcting Capabilities

Consider a system of completely specified logic functions

ys = f (s)(z0, . . . , zm−1), (9.1.1)

where z0, . . . , zm−1 ∈ {0, 1, . . . , p − 1} and s = 0, 1, . . . , k − 1.
We first consider the correction of algebraic errors, omitting the adjective

“algebraic” whenever there is no danger of confusion.
In this chapter, we will slightly change the definition of errors. By an error we now

mean an ordered pair (z, z′) where z and z′ are correct and distorted inputs of a device
computing f (z).

System (9.1.1) corrects a set of errors R if, for any (z, z′) ∈ R,

f (s)(z) = f (s)(z′), s = 0, . . . , k − 1. (9.1.2)
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The multiplicity of an error (z, z′) is the number ‖z � z′‖ modulo p, that is, the
number of nonzero components of the (componentwise) difference modulo p between
the vectors z and z′. This quantity is also known as the Hamming distance between z

and z′.
The number of l-fold errors that can be corrected by a system f is denoted by

ηf (l). The function ηf (l) is called the correcting capability (or correcting power) of
the system f .

The problem is to construct the function ηf (l) for a given system f .
We first construct a discrete function y = f (z) representing system (9.1.1)

z =
m−1∑
s=0

zsp
m−1−s, (9.1.3)

y =
k−1∑
s=0

f (s)(z)pk−1−s. (9.1.4)

The characteristic functions of y = f (z) are defined, as usual, by

fi(z) =
{

1, if f (z) = i,

0, otherwise,
(9.1.5)

for i = 0, 1, . . . , pk − 1.
The autocorrelation functions for y = f (z) are defined in terms of the characteristic

functions fi as

Bi(τ) =
pm−1∑
z=0

fi(z)fi(z � τ), i = 0, 1, . . . , pk − 1, (9.1.6)

and the total autocorrelation function is

B�(τ) =
pk−1∑
i=0

Bi(τ). (9.1.7)

The properties of autocorrelation functions Bi(τ) and their relationship to the
Vilenkin–Chrestenson transforms were discussed in detail in Chapter 2.

Theorem 9.1.1 For a given system f , the correcting capability of l-folded errors is

ηf (l) =
∑
‖τ‖=l

B�(τ), (9.1.8)

where ‖τ‖ denotes the number of nonzero components of the p-ary expansion of τ.
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Proof. It follows from (9.1.5), (9.1.6), and the definition of the criterion ηf (l) that∑
‖τ‖=l Bi(τ) is the number of l-fold errors corrected by the system at points z for

which f (z) = i. Hence, summing over the characteristic functions and using (9.1.7),
we obtain (9.1.8).

Theorem 9.1.1 provides a simple method for calculating the correcting capability
of systems of logic functions in terms of their autocorrelation functions. The latter,
in turn, may be evaluated using (9.1.6), or it is often more convenient to express
them in terms of double Vilenkin–Chrestenson transforms. Recall that if χp(fi) is the
Vilenkin–Chrestenson transform of fi, then

Bi = pm(χ(p))−1(χ(p)(fi) · χ(p)(fi)),

where (χ(p))−1 and χ(p) are the inverse and the complex conjugate of the Vilenkin–
Chrestenson transform χ(p). The Vilenkin–Chrestenson transform and its inverse may
be evaluated by the fast Vilenkin–Chrestenson transform algorithm, whose implemen-
tation requires (p − 1)mpm elementary operations (see Sections 2.3, 2.5).

Another and in many cases more efficient method for computing Bi and B� is
based on decision diagrams (Section 3.5).

Computation of the correcting capability ηf (l) for a given l may be simplified by
the following observation.

Denote

θ
(p)
l (z) =

∑
‖w‖=l

χ(p)
w (z), (9.1.9)

where χ
(p)
w (z) is the wth Vilenkin–Chrestenson function (see Section 2.5).

Notice that {θ(p)
i (z)} is a system of orthogonal functions, but it is not complete.

Let Af (w) denote the total amplitude spectrum of the system of characteristic
functions {fi}, that is, the value of the function

Af =
pk−1∑
i=0

χ(p)(fi)χ(p)(fi)

at the point w. In particular, if f is a system of switching functions (p = 2), then Af (w)

is the value of the function
∑2k−1

i=0 (W(fi))2, where W(fi) is the Walsh transform of

fi, since W(fi) = χ(2)(fi) = χ(2)(fi).

Corollary 9.1.1 The correcting capability can be expressed in terms of the amplitude
spectrum as

ηf (l) = pm

pm−1∑
w=0

Af (w)θ(p)
i (w). (9.1.10)
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Proof. By using the definitions of Af (w), we deduce from (9.1.6) to (9.1.9) that

ηf (l) =
∑
‖τ‖=l

B�(τ) =
∑
‖τ‖=l

pk−1∑
i=0

Bi(τ) =
∑
‖τ‖=l

pm

pk−1∑
w=0

Af (w)χ(p)
τ (w)

= pm

pk−1∑
w=0

Af (w)
∑
‖τ‖=l

χ(p)
τ (w) = pm

pk−1∑
w=0

Af (w)θ(p)
l (w).

Thus, from Corollary 9.1.1, there is no need to evaluate the Vilenkin–Chrestenson
spectrum of the function Af (w) when calculating ηf (l). It suffices to evaluate the lth

expansion coefficient of this function relative to the basis {θ(p)
l (z)}.

The computation of B�(τ) by the formula (9.1.7) for p > 2 is facilitated by the
“evenness” property

B�(τ) = B�(τ), τ ⊕ τ = 0, mod p. (9.1.11)

This relation follows directly from (9.1.6), (9.1.7), and halves the necessary
computations.

Example 9.1.1 Consider the ternary function of two variables (p = 3, m = 2,
k = 1) defined by Table 9.1.1, where are also shown the characteristic functions f1,
f2, and since f0 = 0 it is omitted, the autocorrelation functions B1, B2, and the total
autocorrelation function B�.

By using Theorem 9.1.1, we see that ηf (1) = 20, ηf (2) = 12. Notice that for
p = 3, m = 2, k = 1, the total number of possible single errors is 36, and the number
of double errors is also 36. Thus the above function corrects 5/9 of all single errors
and a third of all double errors.

TABLE 9.1.1 Ternary Function f in Example 9.1.1 and
Its Autocorrelation Characteristics.

z, τ z0z1 f (z) f1(z) f2(z) B1(τ) B2(τ) B�(τ)

0 00 1 1 0 5 4 9
1 01 2 0 1 2 1 3
2 02 1 1 0 2 1 3
3 10 1 1 0 4 3 7
4 11 2 0 1 2 1 3
5 12 2 0 1 2 1 3
6 20 1 1 0 4 3 7
7 21 2 0 1 2 1 3
8 22 1 1 0 2 1 3
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Notice that according to our definition of errors as ordered pairs of correct and
distorted inputs, there are p

(
m
l

)
(p − 1)l errors with multiplicity l for an m-digit

p-ary output .

We will now discuss properties of the function ηf (l) characterizing the correcting
capability of a system of logic functions.

First, the correcting capability is invariant under translations (componentwise
addition modulo p of a constant vector) and permutations of the variables, and also
under translations of the function itself. In other words, for any 0 ≤ τ < pm and
0 ≤ q < pk, and a permutation σ, it is true that

ηf (z)(l) = ηf (z⊕τ)(l) = ηf (σz)(l) = ηf (z)⊕q(l), mod p, (9.1.12)

where σz is the number obtained by applying the permutation σ to the components
of z. These invariance properties follow from the analogous invariance properties of
the correlation functions.

A consequence of (9.1.12) is the following duality property of the correcting
capability of systems of switching functions (p = 2).

If f ∗(z) is the switching function obtained from a switching function f (z) by
interchanging disjunction (OR) and conjunction (AND) in any formula expressing
f (z) as a superposition of disjunction, conjunction, negation, and addition modulo 2,
then

ηf (z)(l) = ηf ∗(z)(l),

for any l. This follows from (9.1.12) with τ = 2m − 1 and q = 2k − 1 via De Morgan’s
laws (5.5.14) by reasoning similar to that proving the duality of spectral complexity
(Corollary 5.5.4).

The next task is to establish a bound on the number ηf = ∑m
l=1 ηf (l) of errors of

all multiplicities corrected by the system f .

Theorem 9.1.2 Let {f (p)
m,k} be the set of all systems of k p-valued logic functions of

m variables. Then,

min
f∈{f (p)

m,k
}
ηf = pm(pm−k − 1). (9.1.13)

Proof. By the definition of Bi(τ) (see (9.1.6))

pm−1∑
τ=1

Bi(τ) = Bi(0)(Bi(0) − 1). (9.1.14)
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Hence, from Theorem 9.1.1, it follows that for any f ∈ {f (p)
m,k},

ηf =
m∑

l=1

ηf (l) =
m∑

l=1

∑
‖τ‖=l

B�(τ) =
pm−1∑
τ=1

B�(τ) (9.1.15)

=
pm−1∑
τ=1

pk−1∑
i=0

Bi(τ) =
pk−1∑
i=0

Bi(0)(Bi(0) − 1).

Minimizing the last expression in (9.1.15) over Bi(0) (i = 0, 1, . . . , pk − 1) under

the constraint
∑pk−1

i=0 Bi(0) = pm, we see that the minimum of ηf is achieved when

Bi(0) = pm−k, i = 0, 1, . . . , pk − 1. (9.1.16)

Inserting (9.1.16) into (9.1.15), we obtain (9.1.13).
From (9.1.15), the total correcting capability ηf of a system f depends on the set

of values Bi(0) = ∑pm−1
z=0 fi(z) (i = 0, 1, . . . , pk − 1) since fi(z) = f 2

i (z).

In other words, if we denote ‖fi‖ = ∑pm−1
z=0 fi(z) as the power of fi, then ηf

depends on the distribution of powers of the characteristic functions, and ηf is minimal
when the functions fi (i = 0, 1, . . . , pk − 1) have equal powers.

We now specialize our results to the case of switching functions (p = 2). The
following proposition is a corollary of Theorem 9.1.2.

Corollary 9.1.2 Let f (z) be a switching function of m variables and power ‖f‖ =∑
z f (z). Then,

ηf = 2‖f‖2 − 2m+1‖f‖ + 22m − 2m. (9.1.17)

Proof. This follows from (9.1.15) with p = 2, k = 1, in view of the fact that in this
case the power distribution of the characteristic functions is ‖f1‖ = ‖f‖, ‖f0‖ =
2m − ‖f‖.

From (9.1.17), the total correcting capability of a switching function depends on
its number of variables and its power. Since as the power increases, ηf decreases for
‖f‖ < 2m−1 and increases for ‖f‖ > 2m−1, with a minimum at f = 2m−1,

min
f∈{f (2)

m,1}
ηf = 22m−1 − 2m.

For a fixed number of variables m, all switching functions of the same power
correct the same number of errors. However, the correcting capability of some
functions is concentrated in the region of low-multiplicity errors, or the high-
multiplicity errors, which depends on peculiar properties of the functions. Therefore,
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it is important to analyze the correcting capability of various different classes of
switching functions, since for most applications errors with low multiplicity are more
probable.

We first notice that for any single output switching function of m variables
(thus, p = 2, k = 1)

f1 = f, f0 = 1 − f,

and if Bf (τ) is the autocorrelation function of f , then by (9.1.7)

B�(τ) = 2m − 2‖f‖ + 2B(τ), (B(τ) = B1(τ)). (9.1.18)

Owing to that the autocorrelation functions of 21 classes of switching functions in
the Appendix A may be used to analyze their correcting capabilities.

From the technical viewpoint, most interesting are the three classes of switching
functions defined by the following distributions of correcting capability:

1. Concentrated in the region of low-multiplicity errors,

2. Uniformly distributed over multiplicities,

3. Concentrated in the region of errors of maximal multiplicity.

The reason for the prominence we give to these three classes is that devices realizing
them possess high correcting capability with respect to three important classes of
errors in the input signals:

1. Weakly correlated (independent) errors, and the most probable errors being
those of low multiplicity,

2. Errors of all multiplicities having equal probabilities,

3. Strongly correlated errors, and the most probable errors being those of high
multiplicity.

The distribution of correctable errors with respect to multiplicity l may be repre-
sented by the fraction η̂f (f ) of l-fold errors corrected by the function f .

The total number of l-fold errors for switching functions of m variables is
(

m
l

) · 2m,
and so

η̂f (l) = ηf (l)(
m
l

) · 2m
. (9.1.19)

As an example of a class of switching functions with error-correcting capability
concentrated mainly in the low-multiplicity region, we consider the class of majority
functions.

A switching function f (z) of m variables (where m is odd) is a majority function
if its value is 1 iff ‖z‖ ≥ (m + 1)/2.
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For any majority function of m variables,

‖f‖ =
2m−1∑
z=0

f (z) = 2m−1,

and from (9.1.18), (9.1.8), (9.1.19),

B�(τ) = 2B1(τ) = 2B(τ), (9.1.20)

η̂f (l) =
(m

l

)−1 · 2−m+1
∑
‖τ‖=l

B(τ). (9.1.21)

A formula for the autocorrelation functions of majority functions is given in row 9
of Appendix A. The data in Appendix A, together with (9.1.21), imply the following
formula for the fraction of errors corrected by majority functions

η̂f (l) =




2−m+2 ∑	l/2

i=0

(
l

i

) ∑	m/2

j=0

(
m − l

m − j − i

)
, if l is odd,

2−m+1

(
2

∑l/2−1
i=0

(
l

i

) ∑	m/2

j=0

(
m − l

m − j − i

)

+
(

l

l/2

) ∑	m/2

j=0

(
m − l

m − l/2 − j

))
, if l is even.

(9.1.22)

Here,
(

p
q

)
= 0 if p < q and

(
p
q

)
= 1.

Figure 9.1.1 illustrates the functions η̂f (l) for majority functions of m = 3, 5, 7
variables determined according to (9.1.22).
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FIGURE 9.1.1 Distribution of correctable errors for majority functions for m = 3, 5, 7.
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An analysis of (9.1.22) shows that if f is a majority function, η̂f (l) is a monotone
decreasing function of l, and

η̂f (2s − 1) = η̂f (2s), s = 1, . . . , �m/2�. (9.1.23)

Therefore, the correcting capability of a majority function is concentrated primarily
in the region of low-multiplicity errors.

An example of a class of switching functions with correcting capability uniformly
distributed over multiplicities is provided by the nonrepetitive quadratic forms in
m = 2k variables.

We recall that a nonrepetitive quadratic form is a switching function such that

f (z) = f (z0, . . . , z2k−1) =
k−1⊕

i,j=0,i<j

cijzizj, mod 2, (9.1.24)

where each zi appears exactly once.
It is shown in Section 5.1 that

‖f‖ = 22k−1 − 2k−1, (9.1.25)

and for any τ > 0,

B(τ) = 22k−2 − 2k−1, (9.1.26)

B�(τ) = 22k−1. (9.1.27)

It follows from (9.1.8), (9.1.18), (9.1.19), (9.1.25), and (9.1.26) that if f is a
nonrepetitive quadratic form, then, for l > 0,

η̂f (l) = 1

2
. (9.1.28)

Finally, as an example of a class of switching functions that correct mainly errors
of maximal multiplicity, we consider the elementary symmetric switching functions
of m = 2k variables with operating number k.

A switching function f (z) is an elementary symmetric function with operating
number k if f (z) = 1 iff ‖z‖ = k. We then have

‖f‖ =
(

2k

k

)
. (9.1.29)
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The autocorrelation function for an elementary symmetric switching function with
the operating number k is (see Appendix A, row 8)

B(τ) =




(
2k − ‖τ‖
k − ‖τ‖/2

) (
‖τ‖

‖τ‖/2

)
, if ‖τ‖ is even,

0, if ‖τ‖ is odd.

(9.1.30)

It follows from (9.1.7), (9.1.8), (9.1.18), (9.1.19), and (9.1.30) that if f is an
elementary symmetric function, then

η̂f (l) =




(
2k

l

)−1

2−2k

(
22k − 2

(
2k

k

)

+2

(
2k − l

k − l/2

) (
l

l/2

) (
2k

l

))
, if l is even,

(
2k

l

)−1

2−2k

(
22k − 2

(
2k

k

))
, if l is odd.

(9.1.31)

Figure 9.1.2 illustrates the functions η̂f (l) for elementary symmetric switching
functions of m = 2k variables with operating numbers k = 2, 3, 4.

An analysis of (9.1.31) shows that for any k the function η̂f (l) goes through a
maximum at l = 2k and has local maxima at l = 2i (i = 1, 2, . . . , k − 1). Another
conclusion from (9.1.31) is that η̂f (l) is symmetric with respect to l = k; that is, if
l < k, then

η̂f (l) = η̂f (k − l). (9.1.32)
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FIGURE 9.1.2 Distribution of correctable errors for the elementary symmetric switching
functions of 2k variables with k = 2, 3, 4.
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It follows from (9.1.31) that the asymptotic distribution of correctable errors for
these functions is

lim
k→∞

η̂f (l) = 0, l = 1, . . . , 2k − 1. (9.1.33)

Since

η̂f (2k) = 1, (9.1.34)

for any k, it follows from (9.1.33) that the correcting capability of an elementary sym-
metric switching function of 2k variables with the operating number k is concentrated
in the region of maximal multiplicity.

To summarize, devices realizing majority functions are reliable for weakly corre-
lated (independent) errors, since the most probable errors in such cases are errors of
low multiplicity. Devices realizing nonrepetitive quadratic forms display good cor-
recting capability when errors of all multiplicities are equally probable, and devices
realizing elementary symmetric switching functions of 2k variables with the operat-
ing numbers k are most reliable with respect to strongly correlated errors, since then
errors of maximal multiplicity are most probable in this case.

There is an interesting relationship between correcting capability and complexity
for completely specified switching functions.

Recall (see Section 5.3) that the complexity of a switching function may be mea-
sured by the number of unordered pairs of matched minterms or maxterms, and the
complexity criterion η̃(f ) for a switching function f (z) is the number of pairs {z1, z2}
such that f (z1) = f (z2) and ‖z1 ⊕ z2‖ = 1, modulo 2 (see (5.3.10)).

As shown in Section 5.3, for almost all switching functions f (z) of m variables
(m → ∞) the number of two-input logic elements necessary for a minimal network
realizing f (z) decreases with increasing η̃(f ). A comparison of the definitions of the
complexity criterion η̃(f ), see (5.3.10), and of the correcting capability ηf (l) reveals
the simple relationship

η̃(f ) = ηf (1). (9.1.35)

Thus, the higher the complexity criterion η̃(f ) for the function (i.e., the simpler
its implementation), the greater the number of single errors the function is capable of
correcting, and vice versa.

9.1.3 Correction of Arithmetic Errors

We now consider the correction of arithmetic errors by systems of logic functions.
Given a system (9.1.1), we define an arithmetic error, as before, to be any ordered

pair (z, z′) of variable assignments. An error (z, z′) is corrected if fi(z) = fi(z′) for
i = 0, 1, . . . , k − 1.

We consider two types of arithmetic errors: symmetric and nonsymmetric or
unidirectional.
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The multiplicity of a symmetric error (z, z′), denoted by ‖z � z′‖(s), is defined as
the minimal number of terms in the representation of z � z′ modulo pm or z′ � z

modulo pm as a linear combination of powers of p with exponents at most m − 1 and
coefficients in {±1, ±2, . . . ,±(p − 1)}.

For example, if p = 2, m = 4, and z � z′ = 7 (modulo 24), then ‖7‖(s) = 2, since
23 − 20 = 7, but if m = 3 and z � z′ = 7 modulo 23, then ‖7‖(s) = 1, since 7 = −20

modulo 23.
The multiplicity of a nonsymmetric error (z, z′) is defined as the number of nonzero

terms in the p-ary expansion of the number z � z′ modulo pm. For example, if p = 2,
then ‖7‖(n) = 3 for any m ≥ 3. (Note that ‖τ‖(n) = ‖τ‖ for any ‖τ‖ and we never-
theless find it convenient to use the notation ‖τ‖(n) instead of ‖τ‖ throughout this
section.)

It is easy to see that for any error (z, z′) and any p, m,

‖z � z′‖(s) ≤ ‖z � z′‖(n), mod pm (9.1.36)

‖z � z′‖(s) = ‖z′ � z‖(s). (9.1.37)

In general, however,

‖z � z′‖(n) �= ‖z′ � z‖(n), mod pm.

An examination of the definition of multiplicity for symmetric and nonsymmetric
errors reveals the following difference between the two types. In terms of a physical
implementation of the system of logic functions, symmetric errors will both increase
and decrease a value at the input to the device, whereas nonsymmetric errors will
only increase (or only decrease) a value at the input. These two cases correspond to
situations in which the input to the logic network is the output of a p-ary m-digit
network implementing an arithmetical operation, and the additive noise produced by
the network is two way or one way.

Any given system of logic functions corrects a certain class of algebraic errors (see
Section 9.1.2) and certain classes of symmetric and nonsymmetric arithmetic errors.
The latter are generally not the same, and the immediate task is therefore to find ways
of constructing the classes of arithmetic errors corrected by a system.

We denote the number of l-fold symmetric (nonsymmetric) arithmetic errors cor-
rected by a system f by λ

(s)
f (l) (λ(n)

f (l)). To calculate the correcting capabilities λ
(s)
f (l)

and λ
(n)
f (l), we use a method similar to that used in Section 9.1.2 to calculate the

correcting capability ηf (l) for algebraic errors.
Let {fi} be the system of characteristic functions for f (see (9.1.5)). Now set

Bi(τ) =
pm−1∑
z=0

fi(z)fi(z � τ), mod pm (9.1.38)

for i = 0, 1, . . . , pk − 1, z, τ = 0, 1, . . . , pm − 1.
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Reasoning as in the proof of Theorem 9.1.1, we can show that if B�(τ) =∑pk−1
i=0 Bi(τ), then

λ
(s)
f (l) =

∑
‖τ‖(s)=l

B�(τ), (9.1.39)

λ
(n)
f (l) =

∑
‖τ‖(n)=l

B�(τ). (9.1.40)

On the basis of formulas (9.1.39), (9.1.40), we have a simple computational
procedure for computing the arithmetic error-correcting capabilities of systems of
logic functions. The procedure is based on computing cyclic autocorrelation func-
tions modulo pm.

Example 9.1.2 Table 9.1.2 defines a switching function of four variables (m =
4, p = 2, k = 1). Here, f = f1 and 1 − f = f0. This table also shows the cyclic
autocorrelation function B(τ) = B1(τ) of f , the total autocorrelation function

B�(τ) = 2m − 2
∑

z

f (z) + 2B(τ) = 4 + 2B(τ),

(see (9.1.18)), and the values of ‖τ‖(s) and ‖τ‖(n).
For this example, the formulas (9.1.39) and (9.1.40) giveλ

(s)
f (1) = 40,λ(s)

f (2) = 80,

λ
(s)
f (3) = λ

(s)
f (4) = 0, λ

(n)
f (1) = 22, λ

(n)
f (2) = 60, λ

(n)
f (3) = 32, λ

(n)
f (4) = 6.

TABLE 9.1.2 Function f in Example 9.1.2 and Its
Cyclic Autocorrelation Characteristics.

z, τ ‖τ‖(s) ‖τ‖(n) z0z1z2z3 f (z) B(τ) B�(τ)

0 0 0 0000 1 6 16
1 1 1 0001 0 1 6
2 1 1 0010 0 0 4
3 2 2 0011 1 5 14
4 1 1 0100 0 2 8
5 2 2 0101 0 0 4
6 2 2 0110 1 4 12
7 2 3 0111 0 3 10
8 1 1 1000 0 0 4
9 2 2 1001 1 3 10

10 2 2 1010 0 4 12
11 2 3 1011 0 0 4
12 1 2 1100 1 2 8
13 2 3 1101 0 5 14
14 1 3 1110 0 0 4
15 1 4 1111 1 1 6
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The following theorem indicates the relationship between the numbers of cor-
rectable symmetric and nonsymmetric arithmetic errors for the case of most practical
importance—single errors.

Theorem 9.1.3 For any system f of p-valued logic functions of m

λ
(s)
f (1) =

{
2λ

(n)
f (1) − B�(pm/2), if p is even,

2λ
(n)
f (1), if p is odd.

(9.1.41)

Proof. For any τ, ‖τ‖(s) = ‖pm � τ‖(s) (modulo pm). Hence, if ‖τ‖(n) = 1, then
‖τ‖(s) = 1 and ‖pm � τ‖(s) = 1 (modulo pm).

Moreover, for any τ and the functions B�(τ) as defined before, we have the ana-
logue of (9.1.11)

B�(τ) = B�(pm � τ), mod pm. (9.1.42)

If p is odd, then τ �= pm � τ (modulo pm) for any τ. Therefore, by (9.1.39) and
(9.1.42),

λ
(s)
f (1) = 2λ

(n)
f (1).

If p is even, then since τ = pm � τ (modulo pm) for any τ, we have ‖pm/2‖(n) =
‖pm/2‖(s) = 1, and hence, by (9.1.39), (9.1.40), and (9.1.42),

λ
(s)
f (1) = 2λ

(n)
f (1) − B�(pm/2),

proving (9.1.41).
Notice that the total correcting capabilities of any system of logic functions with

respect to symmetric and nonsymmetric arithmetic errors are the same

m∑
l=1

λ
(s)
f (l) =

m∑
l=1

λ
(n)
f (l) = λf . (9.1.43)

This follows directly from (9.1.39) and (9.1.40). The quantity λf satisfies
estimates analogous to those established for algebraic errors in Theorem 9.1.2 and
Corollary 9.1.2.

The correcting capability of a system of logic functions with respect to arithmetic
errors is not invariant under permutation of variables of the logic function, but it
remains invariant under translation of variables of the functions itself.
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For any ≤ τ < pm, 0 ≤ q < p,




λ
(n)
f (z)(l) = λ

(n)
f (z⊕τ)(l), mod pm,

λ
(s)
f (z)(l) = λ

(s)
f (z⊕τ)(l),

(9.1.44)

and 


λ
(n)
f (z)(l) = λ

(n)
f (z)⊕q(l) mod pm,

λ
(s)
f (z)(l) = λ

(s)
f (z)⊕q(l).

(9.1.45)

The autocorrelation functions Bi(τ) modulo pm may be calculated by using ei-
ther (9.1.38) or the double Vilenkin–Chrestenson transforms χ(pm), which converts in
this case into discrete Fourier transforms, with the interval of definition of the func-
tions divided into pm equal subintervals. The fast Fourier transform algorithm can be
applied (193, 518), by using an analog of Corollary 9.1.1. If the formula (9.1.38) is
employed, it is possible to use the symmetry relation (9.1.42) for Bi(τ), thus halv-
ing the computational labor involved, and in the case of symmetric errors, where
‖τ‖(s) = ‖pm � τ‖(s), there is no need to evaluate Bi(τ) and B�(τ) for τ > 	pm/2
,
since by using Theorem 9.1.3, we have from (9.1.39) and (9.1.40),

λ
(s)
f (l) =




2
∑

‖τ‖(s)=1,0≤τ≤pm/2 B�(τ) − B�(pm/2), if l = 1 and

p is even,

2
∑

‖τ‖(s)=1,0≤τ≤	pm/2
 B�(τ), otherwise.

(9.1.46)

We now analyze the correcting capability of systems of logic functions when the
probabilities of individual errors are given. The correcting capability is measured by
the expected number of corrected errors.

We now confine the attention to algebraic and symmetric arithmetic errors. Each
error (z, z′) is assigned a certain probability and the errors (z, z′) and (z′, z) are
assumed to have the same probability.

Given a system of p-valued logic functions of m variables, we represent an alge-
braic error by z � z′ (mod p) and an arithmetic error by z � z′ (mod pm). For each
error z � z′ (mod p), or z � z′ (mod pm), we assume given a probability P(z � z′)
(mod p) or Q(z � z′) (mod pm), such that

P(z � z′) = P(z′ � z), mod p, (9.1.47)

Q(z � z′) = Q(z′ � z), mod pm. (9.1.48)
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Thus, for any τ ∈ {1, 2, . . . , pm − 1}, we can define functions P(τ) and Q(τ)
giving the probabilities of algebraic and arithmetic errors (z, z′) such that τ = z � z′
(mod p) and τ = z � z′ (mod pm), respectively.

Formulas (9.1.8), (9.1.39), and (9.1.40) may be generalized to this case.
Let M{ηf (l)} and M{λ(s)

f (j)} denote the numbers of expected l-fold algebraic and
symmetric arithmetic errors, respectively, that can be corrected by a system f . Then,

M{ηf (l)} =
∑
‖τ‖=l

P(τ)B�(τ), (9.1.49)

where B�(τ) is the total autocorrelation function modulo p (see (9.1.7)), and

M{λ(s)
f (l)} =

∑
‖τ‖(s)=l

Q(τ)B�(τ), (9.1.50)

where B�(τ) is the total autocorrelation function modulo pm.
Thus, the expected numbers of correctable errors may also be analyzed in terms

of the corresponding autocorrelation functions.

9.2 SPECTRAL METHODS FOR SYNTHESIS OF RELIABLE DIGITAL
DEVICES

The previous section was devoted to spectral methods for analysis of the error-
correcting capability of systems of logical functions. We will use the results for
the synthesis of reliable systems for the transmission and logical processing of
information. We use binary signals throughout this section, though the results may
be generalized to p-ary signals (p > 2).

9.2.1 Reliable Systems for Transmission and Logic Processing

The structure of the most general information transmission and processing system is
shown in Fig. 9.2.1.

Errors

Communication channel
Message
generator Receiver

f(z)

z

FIGURE 9.2.1 Digital system for transmission and processing of information.
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We assume that the message generator produces information in the form of binary
vectors (q0, . . . , qm−1). This information may be distorted because of errors in the
communication channel or in the message generator itself. It then proceeds to the
input of the receiver. We consider parallel transmission; that is, all the components zi,
i = 0, 1, . . . , m − 1 reach the receiver input simultaneously, and the receiver itself is
a switching network with no memory elements. It should be noticed, however, that all
the synthesis methods to be examined below may be extended to cases in which the
information is transmitted in a serial code and the receiver includes memory elements
(see Section 9.3) .

We also assume that the errors appearing at the receiver input are algebraic,
that is to say, an l-fold error will be an error distorting exactly l bits of the input
signal.

If the receiver includes no memory elements, its operation may be described by a
system of switching functions

y(s) = f (s)(z0, . . . , zm−1), s = 0, 1, . . . , k − 1. (9.2.1)

Note that the information processor realizing system (9.2.1) could have been
combined with the message generator, however, combined are the results {y(s)},
s = 0, 1, . . . , k − 1 being transmitted along the communication channel. For many
important applications this is, however, impossible as, for example, when the com-
plexity of the message generator is restricted. Further, transmission of the result {y(s)},
s = 0, 1, . . . , k − 1 may prove to be no more reliable than that of the message {zi},
i = 0, 1, . . . , m − 1, for example, when m ≥ k.

The reliability of the system illustrated in Fig. 9.2.1 may be increased by using the
sophisticated methods of the theory of error-correcting codes (39, 55, 426, 437). The
information (z0, . . . , zm−1) is then transmitted in a redundant code (i.e., additional
variables zm, . . . , zm+r−1 are required) and quite complex encoders and decoders are
needed. The system in Fig. 9.2.1 differs from those based on classical coding theory
in that the information received is processed in the receiver that computes (9.2.1).

As shown in Section 9.1, the system of switching functions describing the oper-
ation of the receiver has a certain error-correcting capability. Therefore, instead of
transmitting information in a redundant code and introducing encoders and decoders,
we shall represent the information by a nonredundant code, trying at the same time
to make full use of the correcting capability of the system of switching functions
describing the operation of the receiver.

We assume that the errors in the communication channel are algebraic (see
Section 9.1). For the sake of generality, we allow the probabilities of distortion of
the individual transmitted symbols zi, i = 0, 1, . . . , m − 1 or of their combinations
to be different. This will be the situation, for example, if the information is transmitted
in parallel code along m channels with different statistical properties.

We consider the case in which the system (9.2.1) describing the receiver is com-
pletely specified. The problem is to minimize the expected number of uncorrected
errors of the type in question at the output of the entire system of Fig. 9.2.1, that is,
the output of the receiver.
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Errors

Message
generator Communication channel ReceiverLinear block

z

f(z)

z f

FIGURE 9.2.2 Linearized digital system for transmission and processing.

To increase the reliability of the entire transmission and processing system, we
shall linearize the system of switching functions describing the receiver. As usual,
we represent system (9.2.1) by a discrete function f (z), z = 0, 1, . . . , 2m−1 and then
express f (z) as

f (z) = fσ(σ � z), (9.2.2)

where σ is an (m × m) matrix nonsingular over GF (2) and � is the symbol for matrix
multiplication over GF (2).

We now replace the original system of Fig. 9.2.1 by that represented schematically
in Fig. 9.2.2.

Here, we introduced an additional linear block implementing multiplication by
the matrix σ (the complexity of this block is comparatively low, involving a number
of two-input modulo 2 adders of the order of m2/ log2 m, see Section 6.1.6.1). The
modified receiver now realizes the function fσ . Thus, on the basis of the superposition
(9.2.2), we have a decomposition of the function f into blocks σ and fσ , the task of
correcting errors in the communication channel being assigned to fσ .

The problem is now to determine a matrix σ minimizing the expected number of
errors that are not corrected by fσ . The solution of this problem for various classes
of errors is the main topic of this section.

9.2.2 Correction of Single Errors

We start with a system of completely specified switching functions

y(s) = f (s)(z0, . . . , zm−1), s = 0, 1, . . . , k − 1.

Let pi for i = 0, 1, . . . , m − 1 denote the probability of distortion of the trans-
mitted symbol z = σ � y and 	 the class of all nonsingular (m × m) matrices over
GF (2), that is, with elements in {0, 1}, and define fσ by

fσ(σ � z) = f (z), mod 2,

where σ ∈ 	 and f (z) represents {f (s)}.
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Let M{ηfσ (l)} denote the number of expected errors with the multiplicity l that
can be corrected by fσ . Then, the problem is to find σ1 such that

M{ηfσ1
(1)} = max

σ∈	
M{ηfσ1

(1)}, (9.2.3)

where fσ is defined by (9.2.2).
As usual, let {ft(z)}, t = 0, 1, . . . , 2k − 1 denote the system of characteristic func-

tions of f (z) and B�(τ) the total autocorrelation function of {ft(z)},

B�(τ) =
2k−1∑
t=0

Bt(τ) =
2m−1∑
t=0

2m−1∑
z=0

ft(z)ft(z ⊕ τ), mod 2. (9.2.4)

For a given system (τ0, . . . , τm−1) of m binary vectors of the length m, we define
a matrix T whose columns are τ0, . . . , τm−1.

Theorem 9.2.1 Let

max
T∈	

m−1∑
i=0

piB�(τi) =
m−1∑
i=0

piB�(τ̃i). (9.2.5)

Then,

T̃ � σ1 = Im, mod 2, (9.2.6)

where Im is the (m × m) identity matrix.

The proof follows immediately from the observation that

m−1∑
i=0

piB�(2i) = M{ηf (1)}, (9.2.7)

after which Theorem 2.7.4 may be used.
Note that if pi = 1, i = 0, 1, . . . , m − 1, and l = 1, formula (9.2.7) follows from

Theorem 9.1.1.
It follows from Theorem 9.2.1 that to find σ1 we need to determine m vectors

τ̃0, . . . , τ̃m−1 linearly independent over GF (2), which maximize
∑m−1

i=0 piB�(τi).
These vectors may be determined by the following simple algorithm.

Arrange the probabilities pi, i = 0, 1, . . . , m − 1 in decreasing order

pi0 ≥ pi1 ≥ · · · ≥ pim−1 , is �= ir if s �= r. (9.2.8)
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Now put

max
τ �=0

B�(τ) = B�(τ̃i0 ). (9.2.9)

Assuming that τ̃i0 , . . . , τ̃is , for s < m − 1 have already been found, let τ̃is+1 be a
vector satisfying the condition

max
τ /∈Ls

B�(τ) = B�(τ̃is+1 ), (9.2.10)

where Ls is the set of all linear combinations of τ̃0, τ̃1, . . . , τ̃m−1 over GF (2).
Denote this algorithm by A. The output τ̃0, . . . , τ̃m−1 of the algorithm A applied

to B�(τ) is independent of the probabilities pi, i = 0, 1, . . . , m − 1 and depends just
on their ordering (9.2.8). If pi = 1, i = 0, 1, . . . , m − 1, algorithm A is simply the
linearization algorithm for a system of switching functions with respect to η(f ) (see
Section 5.4).

This provides yet another indication of the relationship between the con-
cepts of complexity and the error-correcting capability of logic functions (see
Section 9.1.2).

Example 9.2.1 Table 9.2.1 defines two switching functions of three variables and
also shows the discrete function f (z) assigned to them, the characteristic functions
fi(z), the autocorrelation functions Bi(τ), and the total autocorrelation function
B�(τ).

Let the distortion probabilities be p0 = 0.7, p1 = 0.8, p2 = 0.9. Then, by the
algorithm A

τ̃2 = [1, 1, 1], τ̃1 = [1, 0, 0], τ̃0 = [0, 1, 0],

TABLE 9.2.1 Function f in Example 9.2.1, Its Autocorrelation and Cross-Correlation
Functions.

z, τ z0z1z2 f0f1 f f 0f 1f2f3 B0B1B2B3 B� R A�

0 000 00 0 1000 1223 6 000000 0
1 001 11 3 0001 0000 0 002222 12
2 010 01 1 0100 0002 2 200202 8
3 011 10 2 0010 0000 0 020042 8
4 100 11 3 0001 0020 2 002040 8
5 101 01 1 0100 0002 2 200202 8
6 110 11 3 0001 0000 0 002222 12
7 111 10 2 0010 0202 4 020002 4
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and

T̃ =


 0 1 1

1 0 1

0 0 1




and by (9.2.6)

σ1 = T̃−1 =


 0 1 1

1 0 1

0 0 1


 , mod 2.

By using (9.2.7), we obtain the following expected values for the number of
correctable errors

M{ηf (1)} = 0.7 · 2 + 0.8 · 2 + 0.9 · 0 = 3,

M{ηfσ1
(1)} = 0.9 · 4 + 0.8 · 2 + 0.7 · 2 = 6.6.

To determine an optimal linear transformation σ1, maximizing the expected num-
ber of correctable single errors, and to estimate the expected values themselves, it is
possible to use the data collected in the Appendix A. In some cases, these data also
yield analytical expressions for σ1, M{ηf (1)} and M{ηfσ1

(1)}.

9.2.3 Correction of Burst Errors

A burst of the length b in a signal (z0, . . . , zm−1) is defined as the simultaneous
distortion of b variables zi, zi+1, . . . , zi+b−1 if i ≤ m − 1 − b or zi, zi+1, . . . , zm−1
if i > m − 1 − b. Thus, if (z1, z2) is a burst of width b, then

z1 ⊕ z2 ∈ {
b︷ ︸︸ ︷

1, 1, . . . , 1 0, 0, . . . , 0), (0,

b︷ ︸︸ ︷
1, 1, . . . , 1, 0, 0, . . . , 0), . . . ,

(0, 0, . . . , 0,

b︷ ︸︸ ︷
1, 1, . . . , 1), . . . , (0, 0, . . . , 0, 1, 1), (0, 0, . . . , 0, 1)}, mod 2.

Example 9.2.2 For example, if b = 2, m = 4, then

z1 ⊕ z2 ∈ {(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (0, 0, 0, 1)}, mod 2.

As we have defined them, burst errors are “solid,” in the sense that the distortion
of a variable zi invariably entails distortion of zi+1, . . . , zi+b−1 if i ≤ m − 1 − b, or
of zi+1, . . . , zm−1 if i > m − 1 − b (here zi is assumed to be the leftmost erroneous
bit). The concept of burst is a generalization of the single error. A burst of the length
b = 1 is a single error.
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Now let pi(b) be the probability of a burst of the length b for which the first distorted
variable is zi. We consider the parameters b and pi(b), for i = 0, 1, . . . , m − 1 as given
quantities, together with the system (9.2.1) of switching functions.

If f (z) is the function representing the system (9.2.1) and fσ(z) is defined as
in (9.2.2), we denote the expected numbers of corrected bursts of the length b by
M{ηB

f (b)}, M{ηB
fσ

(b)}.
Let σB

b denote an optimal linear transformation of variables, maximizing
M{ηB

fσ
(b)}.

The problem may be stated as follows: given f (z), b and pi(b) for i =
0, 1, . . . , m − 1, find a (m × m) matrix σB

b such that

max
σ∈	

M{ηB
fσ

(b)} = M{ηB
fB

σb

(b)}. (9.2.11)

Note that M{ηfσ (1)} = M{ηB
fσ

(1)} and σB
1 = σ1.

Let E(b)
m denote the (m × m) matrix whose columns are

(

b︷ ︸︸ ︷
11 . . . 1 0 . . . 0), (0

b︷ ︸︸ ︷
11 . . . 1 0 . . . 0), . . . , (0 . . .

b︷ ︸︸ ︷
11 . . . 1), (0 . . . 0

b︷ ︸︸ ︷
11 . . . 1), . . . ,

(00 . . . 01).

Example 9.2.3 For example, if m = 3, b = 2, then

E(2)
3 =


 1 0 0

1 1 0

0 1 1


 .

For any b and m, the matrix E(b)
m is nonsingular over GF (2) and E(1)

m = Im.

Theorem 9.2.2 Let B�(τ) be the total autocorrelation function of the system (9.2.1)
(see (9.2.4)) and τ̃0, τ̃1, . . . , τ̃m−1 linearly independent vectors of the length m over
GF (2) maximizing the function

∑m−1
i=0 pi(b)B�(τi).

Let T̃ be the matrix with columns τ̃0, . . . , τ̃m−1. Then,

T̃ � σB
b = E(b)

m , mod 2. (9.2.12)

The proof follows from the observation that

m−1∑
i=0

pi(b)B�(e(b)
i,m) = M{ηB

f (b)}, (9.2.13)

where e
(b)
i,m is the number whose binary expansion is the ith column of E(b)

m , after
which Theorem 2.7.4 can be applied.
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Theorem 9.2.1 is the special case of the Theorem 9.2.2 with b = 1. Thus, to
determine σB

b , we need to apply the algorithm A to B�(τ) and then use (9.2.2).

Example 9.2.4 As an example, consider the system of switching functions defined
in Table 9.2.1 (m = 3). Set b = 2, p0(2) = 0.9, p1(2) = 0.8, p2(2) = 0.7. (Thus,
the probability of a simultaneous distortion of z0 and z1 is 0.9, for z1 and z2 the
probability is 0.8, and for z2 it is 0.7.) The function B� is given in Table 9.2.1.
Applying the algorithm A, we have

T̃ =


 1 0 1

1 1 0

1 0 0


 .

Since

E(2)
3 =


 1 0 0

1 1 0

0 1 1


 ,

it follows from (9.2.12) that

σB
2 =


 1 0 1

1 1 0

1 0 0




−1

�


 1 0 0

1 1 0

0 1 1


 =


 0 0 1

1 1 1

1 0 1


 , mod 2.

Thus, by using (9.2.13), we obtain

M{ηB
f (2)} = 0 · 0.9 + 0 · 0.8 + 0 · 0.7 = 0,

M{ηB
fB

σ2
(2)} = 4 · 0.9 + 2 · 0.8 + 2 · 0.7 = 6.6.

9.2.4 Correction of Errors with Different Costs

We now characterize errors not only by their probabilities but also by their costs.
In general, different errors that are not corrected will incur different costs. The cost
of an error may be measured by its significance in a given system relative to other
subsequent systems. The cost of an error leading to distortion of all the components
of the output may usually be assumed to be larger than that of an error distorting only
some of the components. Thus, all the results of this section will be generalizations
of those in Sections 9.2.2 and 9.2.3. We proceed to the formal discussion.

Consider a system of k switching functions of m variables represented by the
function f (z).

Let C(α, β) be a given real-valued function for α, β ∈ {0, 1, . . . , 2k − 1}. The cost
of an error (z1, z2) for z1, z2 ∈ {0, 1, . . . , 2m − 1} is defined as C(f (z1), f (z2)). The
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function C(α, β) is assumed to have the properties

C(α, α) = 0, (9.2.14)

C(α, β) = C(β, α). (9.2.15)

Formula (9.2.14) means that corrected errors cost nothing, and (9.2.15) means that
errors (z1, z2) and (z2, z1) have equal costs.

We consider burst errors (and also single errors, since they are special cases of
bursts, see Section 9.2.3). As before, every error is assigned a probability pi(b).

LetM{CB
f (b)}denote the expected cost of errors that are not corrected. The problem

is now to find a nonsingular matrix σ̃B
b minimizing M{CfB

σ̃b

(b)}, where fσ is defined

by (9.2.2)

min
σ∈	

M{CB
fσ

(b)} = M{CB
f

σ̃B
b

(b)}. (9.2.16)

The previously considered problem (9.2.11) is a special case of (9.2.16). Set

C(α, β) =
{

1, if α �= β,

0, if α = β.

Instead of the autocorrelation functions for the solution of the problem (9.2.16),
we will use the cross-correlation functions of the original system.

The weighted total cross-correlation function of the characteristic functions
{ft(z)}, for t = 0, 1, . . . , 2k − 1 is defined as

A�(τ) =
∑
t1 �=t2

C(t1, t2)At1,t2 (τ) (9.2.17)

=
∑
t1 �=t2

C(t1, t2)
2m−1∑
z=0

ft1 (z)ft2 (z ⊕ τ), mod 2. (9.2.18)

Theorem 9.2.3 Let

min
T∈	

m−1∑
i=0

pi(b)A�(τi) =
m−1∑
i=0

pi(b)A�(τ̃i). (9.2.19)

Then,

T̃ � σ̃B
b = E(b)

m , mod 2, (9.2.20)

where τi and τ̃i are the columns of the matrices T and T̃ , respectively.
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The proof is immediate, by Theorem 2.7.4, since

m−1∑
i=0

pi(b)A�(e(b)
i,m) = M{CB

f (b)}, (9.2.21)

where e
(b)
i,m is the ith column of E(b)

m .
This theorem is a further generalization of Theorems 9.2.1 and 9.2.2, since for any

f (z) and any τ if the cost function is

C(α, β) =
{

1, if α �= β,

0, α = 0,

then

A�(τ) + B�(τ) = 2m. (9.2.22)

To determine T̃ from the condition (9.2.19), we can use a modified version of the
basic algorithm A, with maximization of B�(τ) in (9.2.9) and (9.2.10) replaced by
the minimization of A�(τ).

Example 9.2.5 As an example, we determine the optimal linear transformation σ̃1
for correction of single errors (b = 1) in Table 9.2.1, with the cost function defined
by C(α, β) = ‖α ⊕ β‖.

The functions At1t2 (τ) and A�(τ) are also shown in Table 9.2.1, where R =
(2A01, 2A02, 2A03, 2A12, 2A13, 2A23).

Since At1t2 (τ) = At2t1 (τ), the table specifies the values of 2At1t2 (τ) for t1 < t2.
Suppose that the distortion probabilities are p0(1) = 0.9, p1(1) = 0.8, and

p2(1) = 0.7. Then the modified algorithm A gives

T̃ =


 1 0 1

1 1 0

1 0 0




and

σ̃B
1 = σ̃1 =


 1 0 1

1 1 0

1 0 0




−1

=


 0 0 1

0 1 1

1 0 1


 , mod 2,

and formula (9.2.21) yields the following expected single-error costs for the systems
f and fσ̃1

M{Cf (1)} = 12 · 0.9 + 8 · 0.8 + 8 · 0.7 = 22.8,

M{Cfσ̃1
(1)} = 4 · 0.9 + 8 · 0.8 + 8 · 0.7 = 15.6.
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To minimize the expected error costs, the weighted total cross-correlation function
A� is constructed and applied to the modified algorithm A.

For large values of k, that is, for functions with many outputs, construction of the
function A� by (9.2.17) may become quite cumbersome. We therefore devote some
attention to ways and means of simplifying the construction of it.

We first observe that since C(t1, t2) = C(t2, t1) and At1t2 (τ) = At2t1 (τ), it follows
from (9.2.17) that

A�(τ) = 2
∑
t1<t2

C(t1, t2)At1t2 (τ) (9.2.23)

= 2
∑
t1<t2

C(t1, t2)
2m−1∑
z=0

ft1 (z)ft2 (z ⊕ τ), mod 2. (9.2.24)

Thus the functions At1t2 (τ) can be derived from the characteristic functions ft(z)
in terms of double Walsh transforms, using the fast Walsh–Hadamard transform
algorithm.

The cost of an error that is not corrected by a selected system of functions y(s) =
f (s)(z0, . . . , zm−1), for s = 0, 1, . . . , k − 1 may be determined by the number of
functions in the system that change value on appearance of the error.

If y(z) is the value vector of the system, the cost of an error (z1, z2) is a function
(usually monotone increasing) of ‖y(z1) ⊕ y(z2)‖. Then, C(α, β) = C(‖α ⊕ β‖) and
A� may be expressed as

A�(τ) =
2m−1∑
z=0

C(‖y(z) ⊕ y(z ⊕ τ)‖), mod 2. (9.2.25)

This formula may be more convenient for large values of k.

9.2.5 Correction of Multiple Errors

In the previous sections, we studied the correction of single errors and bursts with dif-
ferent probabilities and error costs. We now consider correction of errors of arbitrary
multiplicity.

Recall that the multiplicity of an error (z1, z2) is the number ‖z1 ⊕ z2‖. Suppose
that, given a system of switching functions (9.2.1), we want to correct all errors of a
multiplicity not exceeding some number l ≥ 1. The previous results (Theorems 9.2.1,
9.2.3) may be generalized to the case of arbitrary l, but the computational complexity
of the algorithms is greatly increased.

As before, we assume that each error is assigned a probability and a cost. By the
probability of an error (z1, z2), we mean the probability of simultaneous distortion of
variables (zi1 , . . . , zir ) for which (z1 ⊕ z2)i1 = · · · = (z1 ⊕ z2)ir = 1. Thus, any two
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errors (z1, z2), (z3, z4) such that z1 ⊕ z2 = z3 ⊕ z4 have equal probabilities, so that
we can consider the error probability as a function p(z) defined for z ∈ {1, 2, . . . ,

2m − 1}. If we are interested in errors of the multiplicity smaller or equal to l, then
p(z) = 0 if ‖z‖ > l.

The cost of an error (z1, z2) will again be C(f (z1), f (z2)), where C(α, β) is a
function satisfying (9.2.14) and (9.2.15).

Let M{Cfσ (f )} be the expected cost of errors of the multiplicity smaller or equal
to l that are not corrected by fσ . The problem is thus to determine a matrix σ̃ such
that

min
σ∈	

M{Cfσ (l)} = M{Cfσ̃l
}. (9.2.26)

Let τ0, . . . , τm−1 be an m-tuple of vectors and T the matrix with columns
τ0, . . . , τm−1, and Ll(τ, . . . , τm−1) denote the set of all linear combinations d0τ0
⊕ · · · dm−1τm−1 modulo 2, where d0, . . . , dm−1 ∈ {0, 1} and the number ‖d‖ of
nonzero components of the vector [d0, . . . , dm−1] satisfies the inequality 0 < ‖d‖ ≤ l.

As before, we denote the weighted total cross-correlation function of the charac-
teristic functions by A�(τ) (see(9.2.23)).

Theorem 9.2.4 Let

min
T∈	

∑
q∈Ll(τ0,...,τm−1)

p(q)A�(q) =
∑

q∈Ll(τ̃0,...,τ̃m−1)

p(q)A�(q). (9.2.27)

Then,

T̃ ⊗ σ̃l = Im, mod 2. (9.2.28)

The proof is based on the relation

∑
q∈Ll(e0,...,em−1)

p(q)Aσ(q) = M{Cf (l)}, (9.2.29)

where ei = {0, . . . , 0︸ ︷︷ ︸
i

, 1, 0, . . . , 0).

Setting l = 1 in Theorem 9.2.4 and using (9.2.22) we get Theorem 9.2.1 and also
the case b = 1 in Theorem 9.2.3.

Example 9.2.6 As an example, consider the correction of double errors by the system
in Table 9.2.1,
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for C(α, β) = ‖α ⊕ β‖ and

p(q) =




0.9, if ‖q‖ = 1,

0.8, if ‖q‖ = 2,

0, otherwise.

The function A� is given in Table 9.2.1, and from this and the formula (9.2.27) we
can set

T̃ =


 1 0 1

1 1 0

1 0 0


 .

Then,

σ̃2 =


 0 0 1

0 1 1

1 0 1


 ,

and by (9.2.29)

M{Cf (2)} =
∑

q∈L2(e0,e1,e2)

p(q)A�(q)

= 0.9(12 + 8 + 8) + 0.8(8 + 8 + 12) = 47.6

and

M{Cfσ (2)} =
∑

q∈L2((111),(010),(100))

p(q)A�(q)

= 0.9(4 + 8 + 8) + 0.8(8 + 8 + 12) = 40.4.

To summarize, in order to find the matrix σ̃l of an optimal linear transformation,
minimizing the expected cost of errors of the multiplicity smaller or equal l that
are not corrected, it is sufficient to construct A�(τ) for f and to find T̃ from the
condition (9.2.27). Notice, however, that in the general case (l > 1) the determination
of T̃ is a fairly complicated problem, which can no longer be solved by the basic
algorithm A.
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9.3 CORRECTING CAPABILITY OF SEQUENTIAL MACHINES

In this section, we assume that the mathematical model of a digital device with memory
is the finite automaton defined as

M = {X, A, Y, a0, φ(x, a), g(a)},

where X is the set of input signals, A the set of (internal) states, Y the set of output

signals, a0 the initial state (a0 ∈ A), φ(x, a) the next-state function (X × A
φ→ A),

and g(a) the output function (A
g→ Y ).

We may assume without loss of generality that Y = A and g(a) = a. Methods
for specification and spectral implementation of finite automata were considered in
Section 7.1.

9.3.1 Error Models for Finite Automata

Let q = x0x1, . . . , xm−1 be an input word (i.e., a string of input signals) of the length
m (xi ∈ X, i = 0, 1, . . . , m − 1), and set

φ(q, a) = φ(xm−1, . . . , φ(x2, φ(x1, φ(x0, a))) . . .), (9.3.1)

φ(q, a0) = φ(q). (9.3.2)

For example,

φ(x0x1x2, a) = φ(x2, φ(x1, φ(x0, a))).

We say that two states ai, aj ∈ A are equivalent if, for any input word p,

φ(p, ai) = φ(p, aj).

Henceforth, we confine the attention to minimal automata, that is, to automata
whose all states are pairwise inequivalent.

A standard theorem of automata theory states that for any automaton it is possible to
construct a minimal automaton with minimal number of internal states implementing
the same mapping of the set of input words into the set of output words, see References
247, 313.

An error in a finite automaton is defined as an arbitrary ordered pair (q, q′) of input
words where q �= q′.

We say that the finite automaton corrects an error (q, q) if φ(q) = φ(q′). It will
be shown below that every automaton corrects a certain (generally nonempty) set of
errors.
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9.3.2 Computing an Expected Number of Corrected Errors

Let Q be a set of errors for an automaton M. Suppose that each error (q, q′) ∈ Q

is assigned a probability p(q, q′) . The problem is to calculate the expected number
M{η(Q)} of errors from Q that are corrected by M.

We first construct a system of characteristic functions φi(q), defined on all input
word

φi(q) =
{

1, if φ(q) = ai,

0, otherwise,
(9.3.3)

for i = 0, 1, . . . , na − 1, where na is the number of states.
We now define the total “two-dimensional” autocorrelation function of the char-

acteristic functions

B�(q, q′) =
na−1∑
i=0

φi(q)φi(q
′). (9.3.4)

The following theorem is a direct corollary from the above definitions.

Theorem 9.3.1

M{η(Q)} =
∑

(q,q′)∈Q

p(q, q′)B�(q, q′). (9.3.5)

This theorem provides a formula for the expected number of errors in any set Q

corrected by a given automaton. Its practical use, however, is limited by the fact that
the computation of M{η(Q)} is quite tedious even for relatively small values of na.
The difficulties stem both from the need to calculate the characteristic functions φi(q)
for i = 0, 1, . . . , na − 1 by (9.3.1)–(9.3.3), and from the complexity of computation
of the two-dimensional autocorrelation function by formula (9.3.4).

9.3.2.1 Simplified Calculation of Characteristic Functions We first con-
sider how to simplify calculation of the characteristic functions φi(q).

We assume that the original automaton M is defined by an (na × na) matrix [Mi,j],
where Mi,j = {xs0 , xs1 , · · · , xsµ}, for xsk ∈ X, and k = 1, 2 . . . , µ iff

φ(xs0 , ai) = φ(xs1 , ai) = · · · = φ(xsµ, ai) = aj.

If there is no xs ∈ X such that φ(xs, ai) = aj , we put Mi,j = ∅, where ∅ is the
symbol for the empty set.
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For two (na × na) matrices [Mi,j] and [M ′
i,j], we define their logic product [M ′′

i,j]
as the matrix with

M ′′
i,j =

na−1⋃
s=0

Mi,sM
′
s,j, (9.3.6)

where, if Mi,s = {xα0 , xα1 , · · · , xαλ} and M ′
s,j = {xβ0 , xβ1 , · · · , xβγ }, then

Mi,sM
′
i,j =

λ⋃
g=0

γ⋃
q=0

{xαgxβq}, (9.3.7)

where ∅x = x∅ = ∅ for any x ∈ X, xαgxβq is a word of the length 2 over X.
Thus, logic multiplication is analogous to the ordinary multiplication, except that

summation is replaced by set-theoretic union and multiplication by concatenation of
words.

If (M ′′
i,j) = (Mi,j)(M ′

i,j), the elements of (M ′′
i,j) are sets of input words of the length

2. Similarly, the elements of a logic product of m matrices are sets of input words of
the length m.

Let (Mi,j) be a matrix defining an automaton and (Mm
i,j) its mth logic power.

For a fixed m, let Xm denote the set of all input words of the length m.

Lemma 9.3.1 Let {φi(q)} for i = 0, 1, . . . , na − 1, q ∈ Xm be the system of char-
acteristic functions of the automaton defined by (Mi,j). Then,

φi(q) =
{

1, if q ∈ Mm
0,i,

0, otherwise,
(9.3.8)

for i = 0, 1, . . . , na − 1.

The proof follows from the definition, of (Mi,j) and formulas (9.3.6), (9.3.7), by
induction on m. Thus, we need to determine the 0th row of the mth logic power of
the matrix (Mi,j) to construct the characteristic functions.

Example 9.3.1 Let M be the automaton with the state diagram of Fig. 9.3.1. Here
A = {a0, a1, a2, a3, a4, a5}, with na = 6 is the set of states, X = {0, 1} the set of
input signals, and a0 is the initial state. (In the state diagram, an edge labeled by xs,
(xs ∈ X) joins ai to aj , (ai, aj ∈ A) iff φ(xs, ai) = aj).
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a0

a1

a2

a3

a4

a5

1 1
0

1
0

10
1

0

1
0

0

FIGURE 9.3.1 State diagram for the automaton in Example 9.3.1.

Construct the characteristic functions φi(q), q ∈ Xm, i = 0, 1, 3, 4, 5 of M for an
arbitrary m. We have

[Mi,j] =




∅ 1 0 ∅ ∅ ∅
∅ ∅ 1 0 ∅ ∅
∅ ∅ ∅ 1 0 ∅
∅ ∅ ∅ ∅ 1 0

0 ∅ ∅ ∅ ∅ 1

1 0 ∅ ∅ ∅ ∅




.

This matrix satisfies the condition

Mi,j =




1, if i = j � 1, modulo 6,

0, if i = j � 2, modulo 6,

∅, otherwise.

(9.3.9)

We now determine the set Mm
0,i for arbitrary m and i.

Let Sα
m denote the set of binary sequences of the length m containing α values 1.

We claim that for any m

Mm
0,i =

⋃
α=2m�i

Sα
m, mod 6, (9.3.10)

for i = 0, 1, 2, 3, 4, 5.
We prove this by induction on m. Set

Mm−1
0,t =

⋃
α=2m�t�2

Sα
m−1, mod 6 (9.3.11)

for t = 0, 1, 2, 3, 4, 5.
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Note that

Sα−1
m−11 ∪ Sα

m−10 = Sα
m, (9.3.12)

where (see (9.3.7)) Sα−1
m−11 and Sα

m−10 are the sets obtained by concatenating 1 and

0, respectively, to the right of vectors from Sα−1
m−1 and Sα

m−1.
It now follows from (9.3.6), (9.3.7), (9.3.11), and (9.3.12) that

Mm
0,i =

5⋃
t=0

Mm−1
0,t Mt,i =

5⋃
t=0

( ⋃
α=2m�t�2

Sα
m−1

)
Mt,i

=
( ⋃

α=2m�i�2

Sα
m−1

)
1 ∪

( ⋃
α=2m�i

Sα
m−1

)
0

=
⋃

α=2m�i

Sα−1
m−11 ∪

⋃
α=2m�i

Sα
m−10

=
⋃

α=2m�i

(
Sα−1

m−11 ∪ Sα
m−10

)
=

⋃
α=2m�i

Sα
m, mod 6.

Example 9.3.2 It follows from (9.3.11) and Lemma 9.3.1 that for the automaton in
the Example 9.3.1 φi(q) = 1 iff the number of 1 values ‖q‖ in the word q satisfies the
condition ‖q‖ = 2m � i modulo 6, where m is the length of q, otherwise φi(q) = 0.

Lemma 9.3.1 provides a method for calculating the number ηM,m of errors in words
of the length m corrected by an automaton M and a lower bound on this number for
the set of all automata with given na and nx.

Let |R| denote the number of elements of an arbitrary set R and M(na, nx) the set
of all automata with na states and nx input signals whose next-state functions φ(x, a)
are defined for all x ∈ X, a ∈ A.

Corollary 9.3.1 For any automaton M ∈ M(na, nx) defined by a matrix [Mi,j]

ηM,m =
na−1∑
i=0

|Mm
0,i|(|Mm

0,i| − 1), (9.3.13)

and

min
M∈M(na,nx)

ηM,m = nm
x

⌊
nm

x

na

− 1

⌋
. (9.3.14)
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Proof. Formula (9.3.13) follows from Theorem 9.3.1 and Lemma 9.3.1 in view of
the relation ∑

q∈Xm

φi(q) = |Mm
0,i|.

To prove (9.3.14), we minimize (9.3.13) with respect to the variables |Mm
0,i| for

i = 0, 1, . . . , na − 1, subject to the constraint

na−1∑
i=0

|Mm
0,i| = nm

x . (9.3.15)

Example 9.3.3 To illustrate the Corollary 9.3.1, we calculate the function ηM,m for
all m for the automaton M in Example 9.3.1.

By (9.3.11),

|Mm
0,i| = |

⋃
α=2m�i

Sα
m|, mod 6. (9.3.16)

Since Sα1
m ∩ Sα2

m = ∅, where ∩ is the set-theoretical intersection of two sets, if

α1 �= α2 by the definition of Sα
m and |Sα

m| =
(

m

α

)
, it follows from (9.3.16) that

|Mm
0,i| =

∑
α=2m�i

(
m

α

)
, mod 6, (9.3.17)

where

(
m

α

)
= 0 if α > m, and finally, by (9.3.13)

ηM,m =
5∑

i=0

( ∑
α=2m�i

(
m

α

) ( ∑
α=2m�i

(
m

α

)
− 1

))
, mod 6. (9.3.18)

9.3.2.2 Calculation of Two-Dimensional Autocorrelation Functions
We now try to simplify calculation of the “two-dimensional” autocorrelation function
Bσ(q, q′) defined by (9.3.4). To achieve this end, we impose certain restrictions on
the set Q of errors.

First, as before, we fix the length m of the input words. We also assume that the
set of input words of the length m is a commutative group Gm, whose structure is
such that the class Q of errors may be described in terms of the group operation of
Gm. It will be shown below that this can indeed be done for most cases of practical
importance. In this setting, the “two-dimensional” autocorrelation function B�(q, q′)
may be replaced by the usual “one-dimensional” function B�(τ), and the correcting
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capability of automata may be analyzed in exactly the same way as for systems of
logic functions.

Let Gm be the group of input words, ◦ the group operation, and e the identity
element of Gm. We assume that the set of errors Q is described by a subset Qm of
Gm with the following properties.

If (q, q′) ∈ Q, then q ◦ q′ ∈ Qm. In addition, we assume the existence of a func-
tion p(q, q′) = p(q′, q) = p(τ), where τ = q ◦ q′; that is, we assume that p(q, q′) =
p(q1, q

′
1) if q ◦ q′ = q1 ◦ q′

1. Thus, p(q, q′) is the probability of the error (q, q′) ∈ Q.
Let M{ηm(Q)} be the expected number of errors from the set Q in input words of

length m that can be corrected by the automaton.

Corollary 9.3.2

M{ηm(Q)} =
∑

τ∈Qm

p(τ)B�(τ), (9.3.19)

where

B�(τ) =
na−1∑
i=0

Bi(τ) =
na−1∑
i=0

∑
q∈Gm

φi(q)φi(q ◦ τ−1), (9.3.20)

φi(q) is the ith characteristic function of input words of the automaton (see (9.3.3)
and τ ◦ τ−1 = e.

The Corollary 9.3.2 is the analog of formula (9.1.49) for systems of logic functions
and permits calculation of M{ηn(Q)} by a generalization of the Vilenkin–Chrestenson
transform, since

Bi(τ) =
∑

q∈Gm

φi(q)φi(q ◦ τ−1) (9.3.21)

is the autocorrelation function of φi(q) on the group Gm (see Section 2.8).
Generalized fast Vilenkin–Chrestenson transform algorithms for arbitrary finite

commutative groups may be found in References 38 and 85.
We now consider four important classes of groups Gm of input words of a given

length m. These classes correspond to serial or parallel input of data to the device,
with algebraic or arithmetic errors (see Section 9.1) in the input data.

1. Serial input, algebraic errors. The set of input symbols X is {0, 1, . . . , nx

− 1}. The group Gm is the group of all vectors (x0, . . . , xm−1), with xi ∈
{0, 1, . . . , nx − 1} and with the group operation componentwise addition mod-
ulo nx. The multiplicity of an error (q, q′) is the number of nonzero components
of q � q′ modulo nx.
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2. Serial input, arithmetic errors. The set of input symbols X is as before. The
group Gm is the set of all numbers {∑m−1

i=0 xi(nx)i} for xi ∈ {0, 1, . . . , nx − 1},
and the group operation is addition modulo nm

x .
This situation corresponds to the finite automata receiving the input from an

m-digit nx-ary arithmetic device. For a symmetric error (q, q′), the multiplicity
is defined as the minimal number of terms in the representation of (q � q′)
or (q′ � q) modulo nm

x as a linear combination of powers of nx with expo-
nents smaller or equal to (m − 1) and coefficients in {±1, ±2, . . . ,±(nx − 1)}.
The multiplicity of a nonsymmetric error is the number of terms in the nx-ary
representation of (q � q′) modulo nx (Section 9.1.3).

3. Parallel input, algebraic errors. The set of input symbols X is the set of
all r-ary vectors of the length t, where 1 < r < nx, nx ≤ rt , that is, X =
{0, 1, . . . , r − 1}t . The group Gm is the set of all r-ary (t × m) matrices [qi,j],
for qi,j ∈ {0, 1, . . . , r − 1}. The group operation is componentwise addition of
matrices modulo r. The multiplicity of an error (q, q′) is the number of nonzero
components in the matrix (q � q′) modulo r.

4. Parallel input, arithmetic errors. As before, X = {0, 1, . . . , r − 1}t . The group
Gm is the set of all vectors

(
t−1∑
i=0

q0,ir
i,

t−1∑
i=0

q1,ir
i, . . . ,

t−1∑
i=0

q(m−1)ir
i

)
,

where qi,j ∈ {0, 1, . . . , r − 1} and the group operation is componentwise addi-
tion modulo rt .

This situation corresponds to parallel input of information to the sequential
network from a t-digit r-ary arithmetic device. The multiplicities of symmetric
and nonsymmetric errors are defined exactly as for serial input (case (2)), with
t instead of m and r instead of nx.

The methods for analysis of correcting capability described by (9.3.19)–(9.3.21)
may be applied to each of these four groups of input words.

Note that if the input word is fed into the sequential network from a communication
channel (in which algebraic errors may occur), the expected number of corrected
errors in the channel may be increased by using linearization methods similar to those
described in Section 9.2. The linearization procedure in such cases should be applied
to the system {φi(q)} for i = 0, 1, . . . , na − 1 of characteristic functions defined on
the groups Gm in (2) and (4) above. These systems may be constructed with the aid
of Lemma 9.3.1.

Example 9.3.4 To illustrate the analysis of error-correcting capability of automata,
we calculate M{η5(l)} for the automaton in Example 9.3.1, with input words of the
length m = 5. We consider the case (1) of serial input and algebraic errors.

Since X = {0, 1}, the group Gm = G5 is the set of binary vectors of the length 5
under componentwise addition modulo 2.
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It is shown in Section 9.3.2.1 that in this case, φi(q) = 1 iff ‖q‖ = 2m � i = 4 � i

modulo 6, for i = 0, 1, . . . , 5.
Recall that a switching function φ(q) is called an elementary symmetric function

with the operating number α if φ(q) = 1 iff ‖q‖ = α.
Thus, each characteristic function φi(q) for q = 0, 1, . . . , 5 of this automaton is

an elementary symmetric function, with the operating number 4 � i modulo 6 for
i = 0, 1, . . . , 5. To determine the autocorrelation functions

Bi(τ) =
∑
q∈G5

φi(q)φi(q ⊕ τ), mod 2, (9.3.22)

we use the data in the row 8 of Appendix A. This gives

Bi(τ) =




(
5 − ‖τ‖

(4 � i) − ‖τ‖/2

) (
‖τ‖

‖τ‖/2

)
, if ‖τ‖ is even,

0, if ‖τ‖ is odd,

(9.3.23)

with calculations modulo 6.
As usual, we put

(
t
q

)
= 0 if t < q or q < 0, and ‖τ‖ is the number of 1 values in

the binary vector τ.
Assume that the probability of an l-fold error in the input words is pl, that is,

p(τ) = pl for ‖τ‖ = l.
Then, by Corollary 9.3.2, we have for the expected number of corrected l-fold

errors

M{η5(l)} =
∑
‖τ‖=l

p(τ)B�(τ) =
∑
‖τ‖=l

p(τ)
5∑

i=0

Bi(τ). (9.3.24)

Inserting (9.3.23) into (9.3.24), we finally obtain the result

M{η5(l)} = 0, (9.3.25)

if l is odd, and

M{η5(l)} =
∑
‖τ‖=l

p(τ)
5∑

i=0

(
5 − ‖τ‖

(4 � i) − ‖τ‖/2

) (
‖τ‖

‖τ‖/2

)
, (9.3.26)

= pl

(
5

l

) (
l

l/2

)
5∑

i=0

(
5 − l

(4 � i) − l/2

)

= pl

(
5

l

) (
l

l/2

)
25−l, mod 6,

if l ∈ {2, 4}.
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9.3.3 Error-Correcting Capabilities of Linear Automata

We now estimate the correcting capability of several classes of automata that are
important from the engineering standpoint. This will be done for the case of serial
input and algebraic errors (case 1 in Section 9.3.2.2). Thus, the multiplicity of an error
(q, q′) is the number of noncoinciding components (letters) in the words q and q′.

We first consider the class of linear automata over an arbitrary finite field GF (p)
(where p is a prime).

We put X = A = {0, 1, . . . , p − 1}t is the set of all p-ary vectors of the length t

and

φ(xs, aj) = T1 � xs ⊕ T2 � aj, mod p, (9.3.27)

where T1 and T2 are nonsingular (t × t) matrices over GF (p) and � is the symbol
for matrix multiplication over GF (p). Thus, the number of input signals is the same
as the number of states nx = na = n = pt .

Let ηM,m(l) denote the number of l-fold errors in the input words of length m

corrected by the automaton M.

Theorem 9.3.2 For any linear automaton M with n input signals and n states, we
have for a number of corrected errors with the multiplicity l in the input words of the
length m,

ηM,m(l) = ((n − 1)l + (−1)l(n − 1))nm−1

(
m

l

)
. (9.3.28)

Proof. Let q = x0x1, . . . , xm−1, with (xi ∈ X). Then, by (9.3.2), (9.3.27),

φ(q) = Tm
2 � a0 ⊕ Tm−1

2 � T1 � x0 ⊕ Tm−2
2 � T1 � x1 ⊕ · · · (9.3.29)

⊕T 1
2 � T1 � xm−2 ⊕ T 0

2 � T1 � xm−1, mod p.

Let q′ = z0z1, · · · , zm−1 with zi ∈ X. Then, the error (q, q′) is corrected iff φ(q) =
φ(q′), that is,

Tm−1
2 � x0 ⊕ Tm−2

2 � x1 ⊕ · · · ⊕ T 1
2 � xm−2 ⊕ T 0

2 � xm−1 (9.3.30)

= Tm−1
2 � z0 ⊕ Tm−2

2 � z1 ⊕ · · · ⊕ T 1
2 � zm−2 ⊕ T 0

2 � zm−1, mod p.

If (q, q′) is an l-fold error, there exist l distinct numbers i0, i1, . . . , il−1 with 0 ≤
is ≤ m − 1, for s = 0, 1, . . . , l − 1, such that zis �= xis , s = 0, 1, . . . , l − 1 and zj =
xj if there is no s such that j = is.
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Then, from (9.3.30)

l−1⊕
s=0

(Tm−is−1
2 � xis ) =

l−1⊕
s=0

(Tm−is−1
2 � zis ), mod p. (9.3.31)

We shall now calculate the number N(l) of solutions of (9.3.31) for fixed
xi0 , . . . , xil−1 such that zis �= xis for s = 0, 1, . . . , l − 1.

Fix zi0 , . . . , zil−2 arbitrarily so as to satisfy the conditions

{⊕l−2
s=0(Tm−is−1

2 � xis ) �= ⊕l−2
s=0(Tm−is−1

2 � zis ), mod p

zis �= xis , s = 0, 1, . . . , l − 2.
(9.3.32)

The number of ways in which this can be done is (n − 1)l−1 − N(l − 1), where
N(0) = 1. For each choice of zi0 , . . . , zil−2 satisfying (9.3.32), we can determine zil−1 ,
such that zil−1 �= xil−1 from (9.3.31), and conversely.

Thus,

N(l) = (n − 1)l−1 − N(l − 1). (9.3.33)

By solving the difference equation (9.3.33), we get

N(l) = n−1((n − 1)l + (−1)l(n − 1)). (9.3.34)

Since the number of all possible choices of a word x0x1, . . . , xm−1 and numbers
i0, . . . il−1 as stipulated above is nm

(
m
l

)
, it finally follows that

ηM,m(l) = nm

(
m

l

)
N(l) (9.3.35)

= ((n − 1)l + (−1)l(n − 1))nm−1

(
m

l

)
.

Corollary 9.3.3 Linear automata over GF (p) do not correct single errors.

Proof. For any n and m, by setting l = 1 in (9.3.28), we have

ηM,m(1) = 0. (9.3.36)

Corollary 9.3.4 For a linear automaton, the fraction η̃M,m(l) of corrected l-fold
errors in input words of the length m is independent of m

η̃M,m(l) = n−1(n − 1)−l((n − 1)l + (−1)l(n − 1)). (9.3.37)
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FIGURE 9.3.2 Fractions of corrected errors η̂M,m(l) with multiplicity l for the linear automata
with n inputs and n states.

Proof. Formula (9.3.37) follows from (9.3.28) in view of the fact that the total number
of l-fold errors in input words of the length m for an automaton with n input signals

is nm
(m

l
(n − 1)l

)
.

Figure 9.3.2 illustrates η̂M,m(l) as a function of l for linear automata with n =
2, 3, 4, 5, 6.

Letting n → ∞ in (9.3.37), we see that for any l > 1,

lim
n→∞ η̂M,m(l) = n−1. (9.3.38)

In other words, if the number n of input signals and states is sufficiently large,
the correcting capability of a linear automaton for l > 1 is uniformly distributed with
respect to multiplicities.

As we will see in Section 9.3.4, the results of this section may be generalized to
other types of automata.

9.3.4 Error-Correcting Capability of Group Automata

A group automaton is an automaton M, whose sets of inputs and internal states are
identical (X = A), and

φ(xs, aj) = xs ◦ aj ◦ b, (9.3.39)

where ◦ is some commutative group operation on X and b is independent of xs

and aj .
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For example, the linear automata considered above are group automata. Similarly,
automata representing adders or multipliers in GF (p) may be interpreted as group
automata, for in these cases, respectively,

φ(xs, aj) = xs ⊕ aj ⊕ b, (9.3.40)

φ(xs, aj) = xs � aj � b, mod R, (9.3.41)

where xs, aj, b ∈ {0, 1, . . . , R − 1}, and R is prime with b playing the role of the
initial state.

Theorem 9.3.2 is also valid for arbitrary group automata with the proof analogous
to this presented above. The same is true for Corollaries 9.3.3, 9.3.4, the asymptotic
result (9.3.38), and the curves η̂M,m(l) in Fig. 9.3.2.

The correcting capabilities ηM,m(l) of linear and group automata may thus be
determined (see the proof of Theorem 9.3.2) without actually constructing the char-
acteristic functions φi(q) (see (9.3.3)) and the autocorrelation functions Bi(τ) (see
(9.3.21), for i = 0, 1, . . . , na − 1.

9.3.5 Error-Correcting Capabilities of Counting Automata

We now consider yet another important class of automata for which analytical calcula-
tion of the correcting capability is more conveniently done by using the characteristic
functions φi(q) and the autocorrelation functions Bi(τ).

For a given automaton M with the input set X = {0, 1}, the numbers of 1 and 0
values in the input word q are N1(q) and N0(q). From the initial state, the automaton
goes to the state φ(q) for the input word q.

An automaton M with X = {0, 1}, A = {0, 1, . . . , na − 1}, where na is prime, and
the initial state 0 is called a counting automaton if

φ(q) ≡ C1N1(q) + C2N0(q), mod na, (9.3.42)

where C1, C2, (C1 �= C2) are arbitrary (possibly even negative) integers. The notation
α ≡ β (modulo γ) has the usual number-theoretical meaning of congruence modulo
γ , that is, the numbers α and β have the same remainder upon division by γ .

For example, binary counters (C1 = 1, C2 = 0) and reversible (up–down) counters
(C1 = 1, C2 = −1) are counting automata. The automaton in Example 9.3.1 is also
a counting automaton with C1 = 1, C2 = 2.

Consider the correcting capability ηM,m(l) and η̂m,m(l), that is, the number and the
fraction of corrected errors with the multiplicity l in input words of the length m of a
counting automaton, assuming serial input and algebraic errors.

The group Gm of input words of the length m is the set of all binary vectors of the
length m under componentwise addition modulo 2.
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Theorem 9.3.3 If M is a counting automaton, then for any C1, C2, and na,
m < na,

ηM,m(l) =




2m−l

(
m

l

) (
l

l/2

)
, if l is even,

0, if l is odd,

(9.3.43)

and

η̂M,m(l) =




2−l

(
l

l/2

)
, if l is even,

0, if l is odd.

(9.3.44)

Proof. For an input word q of the length m and any i ∈ {0, 1, . . . , na − 1}, we have
a system

N1(q) + N0(q) = m, (9.3.45)

C1N1(q) + C2N0(q) ≡ i, mod na. (9.3.46)

Consequently, for fixed m and any N1(q) ∈ {0, 1, . . . , m}, there exists a unique
i ∈ {0, 1, . . . , na − 1} satisfying (9.3.45) and (9.3.47). Moreover, these values for i

are different for different N1(q), (m < na). We may therefore write N1(q) = n(i, m).
Then, in view of (9.3.1)–(9.3.3) and (9.3.42), it follows that if i ∈ {0, 1, . . . , na − 1},
then φ(q) is an elementary symmetric switching function of m variables with the
operating number n(i, m). Since

ηM,m(l) =
∑
‖τ‖=l

B�(τ) =
∑
‖τ‖=l

na−1∑
i=0

Bi(τ) (9.3.47)

=
∑
‖τ‖=l

na−1∑
i=0

2m−1∑
q=0

φi(q)φi(q ⊕ τ), mod 2, (9.3.48)

where ‖τ‖ = N1(τ) is the number of 1 bits in the binary vector τ of the length
m, we may use the data in the row 8 in Appendix A to evaluate Bi(τ), so that for
odd l

ηM,m(l) = 0, (9.3.49)

and for even l,

ηM,m(l) =
na−1∑
i=0

∑
‖τ‖=l

(
m − ‖τ‖

n(i, m) − ‖τ‖/2

) (
‖τ‖

‖τ‖/2

)
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=
na−1∑
i=0

(
m − l

n(i, m) − l/2

) (
l

l/2

) (
m

l

)

=
(

l

l/2

) (
m

l

)
na−1∑
i=0

(
m − l

n(i, m) − l/2

)
. (9.3.50)

Now it follows from (9.3.45) and (9.3.49) that for a fixed m, the function n(i, m)
runs through all values in {0, 1, . . . , m} as i runs over {0, 1, . . . , na − 1}. Thus, for
m < na, we have for even l

η̂M,m(l) =
(

l

l/2

) (
m

l

)
m−l∑
i=0

(
m − l

i

)

= 2m−l

(
l

l/2

) (
m

l

)
. (9.3.51)

Using the definition of η̂M,m(l) and formulas (9.3.49), (9.3.51), we obtain for a
fraction of corrected errors with the multiplicity l in the input word of the length m

for counting automata

η̂M,m(l) = ηM,m(l)

2m

(
m

l

) =




2−l

(
l

l/2

)
, if l is even,

0, if l is odd.

(9.3.52)

The assertion of the theorem now follows from (9.3.49), (9.3.51), and (9.3.52).
Notice that by Theorem 9.3.3 the fraction η̂M,m(l) of errors corrected by a counting

automaton is independent of the parameters C1, C2 of the number of states na and of
the length m of input sequences (provided m < na).

Figure 9.3.3 illustrates the behavior of the function η̂M,m(l) for a counting automa-
ton with m < na.

The asymptotic behavior of η̂M,m(l) for l is readily determined from (9.3.44), using
the Stirling formula

lim
s→∞ η̂M,m(2s) =

√
2

π
(2s)−1/2. (9.3.53)

Thus, while the correcting capabilities of linear and group automata (l > 1) are
approximatively uniformly distributed over the multiplicities (see (9.3.37), (9.3.38),
and Fig. 9.3.2), the correcting capability of counting automata is concentrated
mainly in the region of errors of low even multiplicity (see (9.3.44), (9.3.53), and
Fig. 9.3.3).
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FIGURE 9.3.3 The fraction of corrected errors with the multiplicity l in the input words of
the length m, η̂M,m(l), for a counting automaton with m < na.

9.4 SYNTHESIS OF FAULT-TOLERANT AUTOMATA WITH
SELF-ERROR CORRECTION

9.4.1 Fault-Tolerant Devices

In general, the requirement that a digital device be capable of correcting (or detecting)
errors in a prescribed class implies the need for redundancy. By incorporating the
error-correcting capability at the very earliest stages in design of the device one can
usually lower the necessary redundancy (273, 274, 275). See also References 70, 126,
128, 328, 361, 414, 452 and references therein.

In this section, we confine the discussion for the most part to the case of error
correction, but everything carries over without modification to error detection. We
assume throughout that the excitation functions of the automaton A0 to be synthesized
are realized by expansion in orthogonal series (see Section 7.1) relative to the Walsh
or Haar basis. The automaton A0 itself need not be completely specified.

The automaton will be provided with error-correcting capability by the use of
error-correcting codes for state assignment. There are two principal conditions to be
met:

1. The parameters of the selected code should be matched in a flexible manner
with the specific features of the next-state function. For example, this condition
is not fulfilled in the familiar method of state redundancy based on replication
codes. Indeed, in this case, the correction of l-fold errors in any automaton with
na states, 2k−1 < na ≤ 2k, employs the same ((2l + 1)k, k)-code (426) and the
corresponding hardware implementation of the fault-tolerant device requires
2l + 1 copies of the original device.
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2. Low complexity of code selection and state assignment procedures. Underly-
ing this condition is the increase in efficiency of error-correcting codes with
increasing length of code words, and hence also with increasing number of
states na.

The present section is devoted to methods for introducing redundancy in a finite
automaton synthesized by spectral methods, assuming that the above two condi-
tions are satisfied. A fairly complete description of error-correction methods for finite
automata synthesized by classical methods may be found in References 273, 274,
275, 435. For recent development in this area see References 184, 249, 252, 442, 443,
533 and references therein.

9.4.2 Spectral Implementation of Fault-Tolerant Automata

In an automaton synthesized by spectral methods, the functions of memory are
implemented by the adder–accumulator computing the sum of the series. We therefore
use the arithmetic (AN + B)-codes (426) for error correction.

A binary m-digit (AN + B)-code is a set of numbers N1, N2, . . . , Nθ such that

Ni ≡ B, mod A, (9.4.1)

0 ≤ Ni < 2m,

for i = 1, 2, . . . , θ.
The binary expansions of the numbers N1, N2, . . . , Nθ represents the codes of the

internal states of the automata for error-correcting purposes.
The arithmetic distance ρ(Np, Nq) between numbers Np, Nq is defined as the

minimal number of terms in the representation of |Np − Nq| as a linear combination
of powers of 2 with exponents smaller or equal (m − 1) and the coefficients ±1; that
is, in this section, we restrict the considerations to symmetric arithmetic errors, see
Section 9.1.3.

If the result of an error is to distort the number Np into Nq, the multiplicity of the
error is ρ(Np, Nq).

The arithmetic code distance ρ(V ) of an (AN + B)-code V is defined as

ρ(V ) = min
Np,Nq∈V

ρ(Np, Nq). (9.4.2)

It can be shown that a code V detects (corrects) an l-fold error iff ρ(V ) ≥ l + 1
(ρ(V ) ≥ 2l + 1).

Methods for construction of optimal (AN + B)-codes are considered in Reference
426.

Notice that the (AN + B)-codes as defined here perform error detection and/or cor-
rection for symmetric errors in binary computing channels. Analogous (AN + B)-
codes may be constructed for arithmetic nonsymmetric errors and bursts, and also
for error correction in nonbinary channels (the latter should be used for digital
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devices synthesized from multistable elements) (153). All the error-correction meth-
ods described below carry over directly to any class of (AN + B)-codes.

9.4.3 Realization of Sequential Networks with Self-Error Correction

We now examine the problem of error correction for a sequential network realizing
a given finite automaton, that is, correction of errors not in the input signals of the
automaton (as before) but in the internal states (memory) of the automaton.

The definitions of errors and multiplicity in this case are entirely analogous to the
definitions for input signals. As for the input signals themselves, we assume here that
they are free of errors if the input to the finite automaton considered is the output of a
preceding automaton, and error correction is implemented in the latter. We may also
assume that the classical methods of error-correcting codes (55, 426) have been used
to correct errors in the input signals.

Let A0 be an automaton defined by a state table (state diagram) (see Section 7.1) and
λ = {λ0, λ1, . . . , λnλ−1} a partition of its input set X : λi ⊆ X, λi ∩ λs = ∅, i �= s,⋃nλ−1

i=0 λi = X.
We call the subsets λs, for s = 0, 1, . . . , nλ − 1 the blocks of the partition λ.
We construct a redundant finite automaton Aλ, equivalent to A0, in such a way

that Aλ will be in any of its states only when input signals from the same block of the
partition λ are applied.

To construct Aλ, we “split” each state ai of A0 into nλ(ai) equivalent states of Aλ,
where nλ(ai) is the number of blocks of λ that contain input signals forcing A0 into
state ai. To any state, ãi of these nλ(ai) states of Aλ corresponds the same output
signal as for ai in A0. Moreover, if φ0(xs, ai) = aq in A0, we put φλ(xs, ãi) = ãq in
Aλ, where ãi and ãq are states of Aλ obtained by “splitting” states ai and aq of A0.
The next-state functions of A0 and Aλ are φ0 and φλ, respectively.

In the state diagram for Aλ, all the directed edges coming to any given state are
labeled by input signals from the same block of λ.

Example 9.4.1 Consider a fragment of a state diagram for A0 in Fig. 9.4.1. Let
λ = {λ0, λ1}, where λ0 = {x0, x1}, λ1 = {x2}, X = {x0, x1, x2}. Then, the state a4 is
replaced by (“split” into) nλ(a4) = 2 states a′

4 and a′′
4 in Aλ.

a1

a2

a3

a4 a 5

a 6

a 1

a 2

a 3

a 4
’

a 4
’’

a 5

a 6

x0 x0
x 0

x 0

x1 x1 x 1 x 1

x 1
x2 x2

x 2

x 2

x 2

A 0 A
λ

FIGURE 9.4.1 The fragment of a state diagram illustrating the “splitting” procedure for the
state a4 and the partition λ = {λ0, λ1}, λ0 = {x0, x1}, λ1 = {x2} for the finite automaton in
Example 9.4.1.
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A state of Aλ is λs-reachable if the input signals of the block λs force Aλ into this
state.

To correct errors in Aλ, it is sufficient to assign to all the λs-reachable states of
Aλ different elements of a suitable (AN + s)-code for s = 0, 1, . . . , nλ − 1 for which
the modulus A ensures the desired correcting capability. The required redundancy for
the modulus A then depends on the specific properties of the next-state function φ0
of the automaton A0, and for any multiplicity of corrected errors there exists a class
of automata for which correction of errors of this multiplicity requires no redundant
memory elements (see Example 9.4.2). A formal description of this error-correction
method in the language of automata theory, including necessary and sufficient con-
ditions for the existence of a digital device with the appropriate correcting capability
implementing the given input–output mapping and having the stipulated number of
memory elements, may be set up in the same way as for implementation of the com-
binational part by the usual methods of Boolean algebra, see References 273, 275,
491.

The algorithms computing an optimal partition λ, selecting a number A generat-
ing the appropriate code, and constructing decoders that define the error-correction
procedure are analogous to those considered in detail in References 273, 275 and 276.

Example 9.4.2 Consider an automaton A0 defined by Table 9.4.1. Suppose that A0
is realized by a network with binary gates, and it is required to detect single errors.

An optimal partition for A0 is λ = {λ0, λ1, λ2}, where λ0 = {x0, x3}, λ1 = {x1},
λ2 = {x3}, (nλ = 3).

The automaton Aλ coincides with A0. To detect errors, we select the AN + B-
codes, (B = 0, 1, 2) with A = 3, which yield the state assignment in Table 9.4.2.
Recall that Ka(q) = r (Kx(q) = r) if the code assigned to the state aq, (input signal
xq) is the binary expansion of the number r.

The values of the function �(z) representing the excitation functions when the
input assignment is Kx(q) = q and the order of variables in the excitation functions
defined by the permutation T = (0, 1, 2, 3, 4) are given in Table 9.4.3. Shown are also
the expansion coefficients S(w) of �(z) relative to the Haar basis {H (q)

l (z)}, where

TABLE 9.4.1 State Table for the Automaton in
Example 9.4.2.

a/x x0 x1 x2 x3

a0 a0 a3 a2 a0

a1 a5 a3 a7 a1

a2 a5 a3 a7 a1

a3 a0 a3 a2 a5

a4 a1 a6 a7 a0

a5 a5 a4 a2 a5

a6 a0 a4 a7 a5

a7 a1 a3 a7 a0
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TABLE 9.4.2 State Assignment for Internal States in
the Automaton in Example 9.4.2.

q 0 1 2 3 4 5 6 7

Ka(q) 0 3 2 1 4 6 7 5

w = 2p + q − 1. It is evident from Table 9.4.3 that the computation of the excitation
functions for the finite automaton in Table 9.4.1 with single-error detection entails
storage of 13 nonzero coefficients, of which six are distinct.

The block diagram of a device whose excitation functions are realized by an ex-
pansion in orthogonal series involves a basis function generator, storage block for
expansion coefficients, and an adder/accumulator computing the sum of the series.

The use of arithmetic codes makes it possible to correct (or detect) errors in the
adder, in the storage block, and sometimes also in the basis function generator.

If the memory of the automaton is combined with the adder, errors may also be
corrected or detected by methods not based on the use of arithmetic codes. Indeed,
the binary codes of the expansion coefficients and the numbers stored in the adder
during the summation procedure have integral and fractional parts. At the end of
the computations, the fractional part of the number stored in the adder should be
zero. This provides a fairly simple and efficient technique for detecting errors in the
appropriate adder bits or for correcting them by rounding off the sum to the nearest
integer. Thus, arithmetic codes should be used only to detect or correct errors in the

TABLE 9.4.3 Function �(z) Representing Excitation
Functions of the Automaton in Example 9.4.2 and Its
Haar Spectrum.

z, w �(z) 4S(w) z, w �(z) 4S(w)

0 0 12 8 1 −12
1 0 −1 9 1 0
2 6 1 10 1 0
3 6 1 11 1 0
4 3 0 12 7 −6
5 3 −6 13 1 6
6 6 0 14 4 0
7 0 0 15 4 −12
z, w �(z) 4S(w) z, w �(z) 4S(w)
16 2 0 24 0 0
17 2 0 25 6 0
18 5 0 26 3 0
19 5 12 27 3 −6
20 5 0 28 0 −12
21 5 0 29 0 0
22 2 12 30 6 0
23 5 0 31 6 0
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digits of the integral part of the coefficient codes and in the corresponding bits of
the adder. Errors in these digits can also be detected by using overflow signals in the
adder and the value of the sign digit when the computation of the excitation functions
has been completed.

In the implementation of automata by spectral methods combined with the use of
(AN + B)-codes, a simultaneous detection and/or correction of errors in any system
of automata containing arithmetic units can be efficiently organized.

9.5 COMPARISON OF SPECTRAL AND CLASSICAL METHODS

In this section, we briefly compare spectral methods for synthesis of combinational
and sequential networks with the classical methods. By “classical” methods we mean
those based on the use of switching algebra or many-valued logic and finite automata
theory. A detailed account of the classical methods of synthesis may be found in
References 231, 247, 258, 313, 604, 661.

The most important characteristic of these methods is that, generally speaking,
they may lead to optimal solutions in the sense, say, of the complexity of the network
being designed. However, they require an exhaustive search of all alternatives to
tackle such important problems as minimization of systems of switching functions,
optimal state and input assignment, optimal completion of incompletely specified
switching functions and automata, and so on. Moreover, this limitation is apparently
intrinsic (526, 652) to these problems. The amount of computational work involved
in exhaustive search increases at an enormous rate with increase in the number of
variables of the switching functions or in the number of states and input signals of
the automaton. As a result, exact solution of the above-mentioned problems, even for
a relatively small number of variables, usually presents even the most sophisticated
computer with almost insurmountable difficulties. When the classical methods do
yield an exact solution, the cost involved may completely outweigh the advantage of
optimality. Moreover, in the classical framework, it is frequently difficult to estimate
the minimal complexity of the synthesized network before the end of an extremely
laborious synthesis process.

The classical methods usually depend essentially on the basis system of elements
from which the device is designed. However, new and technologically economical
basis systems are now being rapidly developed, integrated and homogeneous circuitry
is extensively used. There is a need for the synthesis of networks with time-variable
structure and networks capable of adapting themselves to the external medium, and
this situation will in all probability become even more actual in the future. What
we need are synthesis methods that depend only weakly on the specific features
of the basis system of elements, suitable for application to integrated and homoge-
neous circuitry, and methods for the design of networks of variable structure and
networks adaptable to changing environments. An additional factor is the applicabil-
ity of synthesis methods to design devices with multistable elements, networks built
from elements with different numbers of stable states, and digital–analog networks.
This sufficiently requires general methods applicable to design of networks with any
number of stable states.

www.it-ebooks.info

http://www.it-ebooks.info/


420 SPECTRAL METHODS OF ANALYSIS AND SYNTHESIS OF RELIABLE DEVICES

Finally, the design of devices equipped with error-detecting and error-correcting
abilities is a no less important and pressing task of synthesis methods.

Spectral methods meet all these requirements to a considerable degree. The main
shortcoming of spectral methods is that they are approximate—the network imple-
mentations that they produce are not absolutely minimal. Nevertheless, they possess
several advantages.

A major advantage is that spectral methods of synthesis are convenient for
computer implementation and yield solutions to problems of quite high dimensions.
Underlying this circumstance is the fact that in the spectral approach the structure
of the device is rigidly fixed. Consequently, it is possible to perform algorithms
related to the important problems involved in minimizing the complexity of networks
realizing systems of logic functions (Section 6.1.1), optimal state–input assignment
for automata (Section 7.2), optimal completion of incompletely specified logic
functions (Section 6.2), and automata (Section 7.3) without having to resort to
brute-force techniques.

In addition, the spectral methods provide an easy estimate of the complexity of
the network being designed, based on the number of nonzero expansion coefficients.
This in turn makes it possible to estimate the expected complexity of the network in
terms of the number of components required for an implementation of the functions
considered.

Another essential merit of spectral methods is their very weak dependence on
the basis system of components. Indeed, the block diagram of a device synthe-
sized by spectral methods contains standard components of computer technology
as registers, adders, counters, decoders, and so on. Consequently, implementation is
simplified.

Since the specific features of the functions realized by a network (given the number
of variables or of states and input signals) have an effect only on the content of the
memory, this makes for an easy adaptation of the network to the implementation of any
system of functions. This adaptation may be implemented by erasing the information
held in the memory and replacing it by the expansion coefficients of the step function
representing the new system of logic or excitation functions. A similar principle may
be employed to adapt the network to changes in its environment.

Yet another advantage of spectral methods, especially for the synthesis of combi-
national networks, is their weak dependence on the number of stable states of the basic
components. This universal property makes spectral methods particularly suitable for
the design of devices with elements having different numbers of stable states and
for digital–analog devices. Indeed, in many cases the orthogonal expansions of step
functions representing systems of logical functions or excitation functions in terms
of the basis functions described in Sections 2.3 and 2.5 yield quite simple analog
implementation of these step functions.

This approach may be extremely convenient for small numbers of nonzero spectral
coefficients in the corresponding series and small numbers of variables of the original
function or states and inputs of the automaton, especially in the synthesis of digital–
analog devices.
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In addition, as we saw in Section 9.4, the spectral approach provides for simple error
detection and/or correction using systems of arithmetic codes, and it is also possible
to organize simultaneous checking in any system of devices containing arithmetic
units.

All the spectral methods of synthesis described in this book, as regard both systems
of logical functions and automata, admit not only network interpretations but also
program implementation. In other words, they may be utilized to simulate systems
of logic functions and automata on a computer. In doing so, one is again presented
with the problem of minimizing the number of nonzero expansion coefficients to be
stored, and this may be done with the aid of methods set forth in this book.

To conclude this section, we also note that spectral methods provide for simple
off-line testing procedures and design of devices with built-in self-testing when the
functions implemented by the device have compact analytical representations (see,
Chapter 9).

BIBLIOGRAPHIC NOTES

Theory of error-correcting codes that are often used in the design reliable devices are considered
References 39,55,426,437.
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CHAPTER 10

SPECTRAL METHODS FOR TESTING
OF DIGITAL SYSTEMS

With the increasing complexity of semiconductor devices, the problem of hardware
testing and diagnosis becomes one of the major bottlenecks in computer industry. As
a result of a high density of components and limited numbers of input/output pins,
controllabilities and observabilities of internal interconnections and gates are going
down, which makes testing more and more costly. There are good reasons to believe
that this trend will continue in the future (269).

The conventional approach to testing is to identify a subset of input vectors (the test
set) such that correct behavior of the device-under-test for these input vectors ensures
correct behavior of the device relative to the selected class of faults. The device is
tested off-line by applying input test vectors and verifying test responses.

Testing of sequential devices is performed by breaking feedback loops in the testing
mode and testing separately combinational part and memories (269).

In this chapter, we will present several approaches based on the Walsh transform
and its generalizations for testing and diagnosis of combinational networks, Random-
Access Memories (RAMs), Read-Only Memories (ROMs), and software computing
numerical functions.

As we will see in the next few sections, spectral techniques provide in many cases
for simple and analytical solutions of testing and diagnostic problems.

Spectral Logic and Its Applications for the Design of Digital Devices by Mark G. Karpovsky, Radomir
S. Stanković and Jaakko T. Astola
Copyright © 2008 John Wiley & Sons, Inc.
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Approaches to testing and diagnosis of computer hardware can be classified into

1. transistor-level,

2. gate-level,

3. functional-level,

testing depending on the level of description of the device-under-test.
Since transistor-level techniques are applicable to small devices only, we will

concentrate in this chapter on the gate-level and the functional-level testing with the
emphasis on functional testing.

For the systematic presentation of traditional nonspectral techniques for testing
and diagnosis, we refer, to References 5 and 269.

10.1 TESTING AND DIAGNOSIS BY VERIFICATION OF WALSH
COEFFICIENTS

10.1.1 Fault Models

The standard fault models for gate-level testing are single and multiple stuck-at faults.
We will denote stuck-at-zero and stuck-at-one faults at a line u as u/0 and u/1.

The problem of constructing a minimal set of test patterns detecting even all single
stuck-at faults in a given gate-level network is NP-complete (5), see also
Reference 17.

Let y(s) = f (s)(z0, z1, . . . , zm−1), s = 0, 1, . . . , M − 1, y(s), zs ∈ {0, 1}, be a sys-
tem of M switching functions of m variables and

F (z) =
M−1∑
s=0

y(s)(z)2M−1−s,

is the corresponding integer function with the Walsh spectrum

SF (w) = 2−m
2m−1∑
z=0

F (z)Ww(z),

where

Ww(z) = (−1)
∑m−1

s=0
wszs .

Suppose that a combinational device-under-test with m inputs z0, z1, . . . , zm−1 and
M outputs F (z) = (f (0)(z), f (1)(z), . . . , f (M−1)(z)), as a result of a fault is computing

f̃ (z) instead of F (z).
Let w = (w0, . . . , wm−1) be a fixed m-bit binary vector.
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FIGURE 10.1.1 Block diagram for testing by verification of a spectral coefficient SF (w).

Definition 10.1.1 We will say that a fault f →f̃ is w-testable iff SF (w) �= SF̃ (w).

The block structure of testing by verification of spectral coefficients is given in
Fig. 10.1.1.

The following theorem (see 398) provides for necessary and sufficient conditions
for w-testability of input stuck-at faults.

Theorem 10.1.1 (Testing of stuck-at faults)

1. Faults zs/0 and zs/1, replacing f (z0, . . . , zs−1, zs, zs+1, . . . , zm−1) by
f̃ (z0, . . . , zs−1, 0, zs+1, . . . , zm−1) and f̃ (z0, . . . , zs−1, 1, zs+1, . . . , zm−1), are 0
testable, where 0 = (0, 0, . . . , 0), iff

SF (0, 0, . . . ,
s

1, 0, . . . , 0) �= 0. (10.1.1)

2. Any input stuck-at fault, single or multiple, involving p or more inputs is
w-testable if

|SF (w)| = t2−m+p, (10.1.2)

where t is an integer (t > 0).

3. Any multiple stuck-at fault involving input line zs is w-testable for

w = (w0, . . . , ws−1, 1, ws+1, . . . , wm−1),

iff

SF (w0, . . . , ws−1, 1, ws+1, . . . , wm−1) �= 0. (10.1.3)
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The proof of this theorem follows from the fact that for zs/0 and zs/1,

f̃ (zs = 0) =f̃ (zs = 1),

where

f̃ (zs = 0) =f̃ (z0, . . . , zs−1, 0, zs+1, . . . , zm−1)

f̃ (zs = 1) =f̃ (z0, . . . , zs−1, 1, zs+1, . . . , zm−1),

for all z0, . . . , zs−1, zs+1, . . . , zm−1 and from formulas (3.1.2)–(3.1.4).

Example 10.1.1 Table 10.1.1 presents the Walsh spectrum for a function f defined as
f (z0, z1, z2, z3) = z0z1z2 ∨ z3(z1 ∨ z2), M = 1, m = 4, and indicates w-testability
conditions from Theorem 10.1.1 for stuck-at faults involving z0, z1, z2, z3. Faulty lines
zi are represented by the rightmost part of the Table 10.1.1. In Table 10.1.1, 1 on the
right-hand side of the table in the row w and the column zi indicates that all multiple
stuck-at faults involving the line zs are w-testable.

The above results (Theorem 10.1.1) represent the characterization of testability by
spectral coefficients for input stuck-at faults.

Testing by verification of Walsh coefficients provides for a simple technique for
data compression of test responses.

Other approaches for compression of test responses (such as transition counting
and signature analysis by linear feedback shift registers) can be found in References

TABLE 10.1.1 Spectrum and w-Testability Conditions
for f in Example 10.1.1.

w w-testability
Faults at

w0 w1 w2 w3 16Sf (w) z0 z1 z2 z3

0 0 0 0 8 1 0 0 1
0 0 0 1 −6 0 0 0 1
0 0 1 0 0 0 0 0 0
0 0 1 1 −2 0 0 1 1
0 1 0 0 0 0 0 0 0
0 1 0 1 −2 0 1 0 1
0 1 1 0 −2 0 1 1 0
0 1 1 1 2 0 1 1 1
1 0 0 0 −2 1 0 0 0
1 0 0 1 0 0 0 0 0
1 0 1 0 2 1 0 1 0
1 0 1 1 0 0 0 0 0
1 1 0 0 2 1 1 0 0
1 1 0 1 0 0 0 0 0
1 1 1 0 −2 1 1 1 0
1 1 1 1 0 0 0 0 0
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5 and 269. Compression of test responses is required for built-in self-testing
(269).

Testing by verification of spectral coefficients eliminates the very difficult problem
of test pattern generation, but requires exhaustive application of all 2m input patterns
and can be applied only to networks with a relatively small number of inputs.

In the next section, we will extend spectral techniques to the cases when a small
number of input patterns will be required for testing. We will also present a complete
characterization of these devices.

Corollary 10.1.1 (591)
For a device implementing a system {f (s)(z0, . . . , zm−1)}, s = 0, 1, . . . , M − 1, of
switching functions

1. If

SF (1) = SF (1, 1, . . . , 1) �= 0, (10.1.4)

then all single and multiple input stuck-at faults are 1-testable.

2. If
∑

z f (z) is odd, then all single and multiple input faults are 0-testable.

10.1.2 Conditions for Testability

Theorem 10.1.1 and Corollary 10.1.1 provide conditions for w-testability for input
faults.

The case of 0-testability or syndrome testing was investigated in References 58,
152, 359, 398, 505, 506, and 517.

A generalization of these results to faults at the internal lines can be found in
Reference 398. In this case, detection of faults at an internal line g may require
computing of a spectral coefficient of the corresponding function of m + 1 variables
z0, z1, . . . , zm−1, g, which makes it difficult to apply this approach for complex net-
works.

For any line g (input or internal) in a network computing a switching function
f (z) = f (z0, z1, . . . , zm−1), there exist switching functions A(z), B(z), and C(z) in-
dependent of g(z), the function realized by the network line labeled g, such that

f (z) = A(z)g(z) ∨ B(z)g(z) ∨ C(z). (10.1.5)

Definition 10.1.2 (Features of a line in the network)

1. Line g is positive if in (10.1.5), B(z) = 0 for all z.

2. Line g is negative if in (10.1.5), A(z) = 0 for all z.

3. Line g is unate if it is either positive or negative.

Theorem 10.1.2 (505)
Any single stuck-at fault on a unate line is 0-testable.
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Proof. If g is positive, then from (10.1.5), we have for g/0

f̃ (z) = C(z),

and for g/1

f̃ (z) = A(z) ∨ C(z).

If g is negative, then we have for g/0

f̃ (z) = B(τ) ∨ C(z),

and for g/1

f̃ (z) = C(z).

Theorem 10.1.2 follows now from the observations that functions C(z), A(z) ∨
C(z), and B(z) ∨ C(z) have numbers of ones different from f (z).

Corollary 10.1.2 All single faults at input and internal lines in any fanout-free
network containing AND, OR, NAND, NOR, NOT gates only are 0-testable.

It is shown in Reference 152 that any two-level network can be made 0-testable
by the addition of at most one control input and at most one gate.

Example 10.1.2 Figure 10.1.2 shows a network implementing the function f from
Example 10.1.1 f (z0, z1, z2, z3) = z0z1z2 ∨ z3(z1 ∨ z2). This network is 0-testable
for all single stuck-at faults except for faults at the input lines z1, z2, and internal
line g.

It is easy to check that by adding a control line c, as shown in Fig. 10.1.3, the
network in Fig. 10.1.2 (due to Reference 398) can be modified into a network 0-
testable for all single stuck-at faults at all inputs and internal lines.

We note that the function fM(z0, z1, z2, z3, c) implemented by the modified network
is equal to the original function f (z0, z1, z2, z3) for c = 1.

The general problem of adding a minimal hardware to the existing network to
make all single faults 0-testable seems to be very difficult.

f

z0

z1
z2

z3

g

FIGURE 10.1.2 Network from Example 10.1.2.
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f

z0

z1

z2

z3

g

c

FIGURE 10.1.3 Networks from Example 10.1.2 with a control input c.

We will consider now the problem of fault diagnosis (fault location) by spectral
techniques.

10.1.3 Conditions for Fault Diagnosis

Fault diagnosis will be implemented by analysis of distortions of spectral coefficients.
Let F (z) be an integer function representing a system of M switching functions of

m variables and E be a set of faults in a device implementing F (z).
Denote by F̃ i(z) a function implemented by the device in the presence of a fault

ei ∈ E.

Definition 10.1.3 Set E of faults in a device implementing f (z) is w-diagnosable if

SF̃i
(w) �= SF̃j

(w),

for all ei, ej ∈ E.

Theorem 10.1.3 Set of single input stuck-at faults in a device implementing f (z) is
0-diagnosable iff

SF (2i) �= 0, (10.1.6)

SF (2i) �= SF (2j),

SF (2i) �= SF (0) − SF (2j),

for all i, j ∈ {0, 1, . . . , m − 1}, i �= j.

Proof. Denote

N
(s)
0 =

∑
z|zs=0

f (z),

N
(s)
1 =

∑
z|zs=1

f (z),

N =
∑

z

f (z).
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Then for any s we have N
(s)
1 = N − N

(s)
0 , and

SF (0) = 2−mN, (10.1.7)

SF (2s) = 2−m(N(s)
0 − N

(s)
1 ) = 2−m(2N

(s)
0 − N).

For zs/0, and zs/1, we have respectively

SF̃ (0) = 2−m+1N
(s)
0 , (10.1.8)

SF̃ (0) = 2−m+1(2N
(s)
0 − N).

From (10.1.6) and (10.1.7),

N
(i)
0 �= N

(j)
0 , and N

(i)
0 �= N − N

(j)
0 . (10.1.9)

Theorem 10.1.3 follows now from (10.1.8) and (10.1.9).

Example 10.1.3 Consider a problem of 0-diagnosability for single input stuck-at
faults for a device with m inputs and 2m outputs computing F (z) = z2, where
z =∑m−1

s=0 zs2m−1−s.

Since,

zs = 1 − W2s (z)

2
,

we have

z =
m−1∑
s=0

1 − W2s (z)

2
· 2m−1−s (10.1.10)

= 1

2
(2m − 1) −

m−1∑
s=0

W2s (z)2m−2−s.

Thus, for F (z) = z2,

SF (2s) = −(2m − 1)2m−2−s

and

SF (0) = 2−m
2m−1∑
z=0

z2 = 1

6
(2m − 1)(2m+1 − 1). (10.1.11)
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From (10.1.11),

SF (2i) �= SF (2j),

SF (2i) �= SF (0) − SF (2j),

for i �= j, and i, j = 0, 1, . . . , m − 1, and by Theorem 10.1.3 all single input stuck-at
faults are 0-diagnosable in any device computing F (z) = z2.

The methods discussed in this section are applicable for exhaustive testing. For
networks with large number of inputs, these tests may prove to be prohibitively long.

Hsiao and Seth (251) suggested an approach for the use of spectral coefficients in
pseudorandom testing. For this approach, rather than applying all 2m input vectors,
only a pseudorandom sample is used. These pseudorandom vectors for built-in self-
testing can be easily generated by Linear Feedback Shift Registers or Linear Cellular
Automata (5, 269). The observed spectral coefficient normalized by dividing by the
number of input vectors applied and compared to the precomputed reference value.
In Reference 251, the guidelines for selection of the test length and the spectral
coefficient are presented.

Savir (506), proposed constrained 0-testability method (constrained syndrome test-
ing). For this approach certain inputs are held at constant values, while the remaining
inputs are exhaustively exercised for verification of the sum of the corresponding
subfunctions. The spectral characterization of constrained 0-testability method was
presented in Reference 398. It was shown that constrained 0-testability method re-
sults in a drastic reduction of a number of input patterns required for detection of
stuck-at faults. In the next section, we will present a generalization of the constrained
0-testability method, which will result in a further reduction of sizes of test sets. We
will see, for example (Section 10.3), that for testing of hardware components comput-
ing basic microinstructions in most cases, only four input test patterns are sufficient.

Spectral techniques for memory testing have been investigated in References 244,
251, 260, 261, 263, and 276. We will discuss spectral techniques for memory testing
in Section 10.9.

In addition to the Walsh transform, several other transforms have been used for
fault detection. Testing by arithmetic transforms has been discussed in References
241 and 242, by Reed–Muller transforms in References 115, 116, 290, 305, 332, and
415, and both by arithmetic and Reed–Muller coefficients in Reference 397.

Spectral techniques for testing and diagnosis at the transistor level based on the
Walsh and Haar transforms are described in References 480 and 481.

10.2 FUNCTIONAL TESTING, ERROR DETECTION, AND
CORRECTION BY LINEAR CHECKS

10.2.1 Introduction to Linear Checks

Spectral methods based on verification of Walsh coefficients and described in the
previous section require exhaustive application of all input patterns and can be used
only for networks with small numbers of input lines.
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In this section, we will develop another approach for testing and diagnosis (the
linear checking approach), which will drastically reduce the time required for testing
and diagnosis. This approach will be a generalization of the 0-testability approach
described in the previous section. The approach can be used for functional testing
and diagnosis of combinational networks, memories, and software for numerical
computations.

Conversely to the previous section, spectral techniques in the rest of this
chapter will be used for minimization of complexities of testing and diagnostic
procedures.

For any integer function F (z), z = 0, 1, . . . , 2m − 1, representing a system of
switching functions, or content of a memory with the address z = (z0, . . . , zm−1), or
an output of a program for the corresponding numerical computations, there exists a
subgroup T of the group Cm

2 of all binary m-vectors with respect to the operation ⊕
of componentwise addition mod 2 and a constant d such that

∑
τ∈T

F (z ⊕ τ) − d = 0, (10.2.1)

for any z ∈ Cm
2 .

For example, take T = Cm
2 . The verification of whether (10.2.1) is satisfied

provides for the error detection (function verification) in any device or program
computing F . The time required for this error detection is proportional to the size
|T | of T .

For the case T = Cm
2 , the corresponding error detecting technique is known as the

check sum method.
We will present in this section the spectral method based on the Walsh transform

for constructing optimal linear checks with a minimal cardinality |T | of a check
subgroup T .

A generalization of this approach to functions defined on an arbitrary and not
necessarily Abelian groups and for the case when summation in (10.2.1) is in a finite
field can be found in References 280, 281, 300, and 302.

For a given F (z), denote by T (F ) a minimal subgroup of Cm
2 such that there exists

a value d satisfying (10.2.1) for T = T (F ). We call |T (F )| the check complexity of
F (z).

In the next section we will present the main properties of check complexities
|T (F )|.

10.2.2 Check Complexities of Linear Checks

A linear check (10.2.1) can be represented as

∑
τ∈Cm

2

δ(τ)F (z ⊕ τ) − d = 0, (10.2.2)
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where

δ(τ) =
{

1, τ ∈ T ,

0, τ /∈ T .
(10.2.3)

Recall the dyadic convolution defined by

(F1 ⊕⊗ F2)(y) =
∑
z∈Cm

2

F1(z)F2(z ⊕ y).

Thus, the linear check (10.2.1) can be represented as δ ⊕⊗ F − d = 0.

Theorem 10.2.1 (Check complexity)

1. Linear transform of arguments
Let σ be a (m × m) binary nonsingular over GF (2) matrix, y ∈ Cm

2 and

V (z) = F (σ � z ⊕ y), (10.2.4)

for every z ∈ Cm
2 .

Then, |T (V )| = |T (F )|.
2. Linear transform of functions

Let V =∑r−1
i=0 ciFi, where c0, c1, . . . , cr−1 are some nonzero constants.

Then,

|T (V )| ≤ |
r−1⊕
i=0

T (Fi)|,

where

r−1⊕
i=0

T (Fi) = {τ0 ⊕ τ1 · · · ⊕ τr−1| (10.2.5)

τ0 ∈ T (F0), τ1 ∈ T (F1), . . . τr−1 ∈ T (Fr−1)}.

3. Convolution of functions over Cm
2

Let V = F0 ⊕⊗ · · · ⊕⊗ Fr−1, where ⊕⊗ stands for the dyadic convolution (41),
then

|T (V )| ≤ min
i

|T (Fi)|. (10.2.6)

4. Necessary condition for nontrivial checks
If F : Cm

2 → {0, ±1, ±2, . . .} and |T (F )| < 2m, then there exist a constant
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d ∈ {0, ±1, ±2, . . .} and a value i ∈ {1, . . . , m − 1}, such that

∑
z∈Cm

2

F (z) = d2i. (10.2.7)

5. Lower bound for check complexity
If F : Cm

2 → {0, 1, . . .} and F �= 0, then

|T (F )| ≥ 2m


∑

z∈Cm
2

F (z)


−1

min
{z|F (z)�=0}

F (z), (10.2.8)

and there exists F : Cm
2 → {0, 1, 2, . . .} such that the equality holds in (10.2.8).

Proof.

1. By definition of T (F ), there exists d such that
∑

τ∈T (F ) F (z ⊕ τ) = d for every
z ∈ Cm

2 .
Then, we have from (10.2.4)

∑
τ∈σ−1T (F )

V (z ⊕ τ) =
∑

τ∈T (F )

V (z ⊕ σ−1τ) =
∑

τ∈T (F )

F (σz ⊕ y ⊕ τ) = d,

where σ−1 is the inverse of σ over GF (2), σ−1T (F ) = {σ−1τ|τ ∈ T (F )} and
σ−1T (F ) is a check set for V (z).

Then, σ−1T (F ) is a minimal check set for V (z) because |σ−1T (F )| = |T (F )|.
2. Let T =⊕r−1

i=0 T (Fi) and Ti be a subgroup isomorphic to the factor group
T/T (Fi). Then,

∑
τ∈T

V (z ⊕ τ) =
∑
τ∈Ti

∑
τi∈T (Fi)

V (z ⊕ τi ⊕ τ), i = 0, . . . , r − 1,

and because

∑
τi∈T (Fi)

Fi(z ⊕ τi) = di, i = 0, . . . , r − 1,

for every z ∈ Cm
2 , we have

∑
τ∈T

V (z ⊕ τ) =
r−1∑
i=0

ci

∑
τ∈Ti

∑
τi∈T (Fi)

Fi(z ⊕ τ ⊕ τi) =
r−1∑
i=0

cidi|Ti|,
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and

T =
r−1⊕
i=0

T (Fi),

is the check set for V .

3. Let δi(z) be a characteristic function for T (Fi),

δi(z) =
{

1, z ∈ T (Fi),

0, z /∈ T (Fi).

Then, by definition of T (Fi), (Fi ⊕⊗ δi)(z) = di for all z ∈ Cm
2 , and therefore

there exists the constant di such that for every i = 0, . . . , r − 1,

V ⊕⊗ δi = (⊕⊗ s �=iFs

) ⊕⊗ Fi ⊕⊗ δi = ⊕⊗ s �=iFs ⊕⊗ di = dV ,

and T (Fi) is a check set for V .

4. If H is isomorphic to Cm
2 /T (F ), then

∑
z∈Cm

2

F (z) =
∑
z∈H

∑
y∈T (F )

F (z ⊕ y) = d|H | = d2i.

5. Formula (10.2.8) follows from (10.2.7) because |H | = 2m|T (F )|−1 and d ≥
minF (z)�=0 F (z).

The lower bound (10.2.8) is reached, for example, for

F (z) =
{

1, 0 ≤ z < 2m−1,

0, 2m−1 ≤ z < 2m.

In this case, ∑
z∈Cm

2

F (z) = 2m−1,

and since d = 1, it follows F (z) + F (z ⊕ (1, 0, . . . , 0)) = 1 for every z ∈ Cm
2 .

10.2.3 Spectral Methods for Construction of Optimal Linear Checks

In this section we will describe a simple spectral method for construction of optimal
linear equality checks (10.2.1) minimizing testing time |T | for numerical functions
defined over Cm

2 .
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For a subgroup C of Cm
2 , denote by C⊥ the subgroup orthogonal to C, that is,

C⊥ = {x ∈ Cm
2 |

m⊕
i=0

xizi = 0 for all z = (z0, . . . , zm−1) ∈ C}. (10.2.9)

We note that C⊥ is isomorphic to the factor group Cm
2 /C.

For a given integer function F (z) (where z ∈ Cm
2 ), we also denote by T (F ) a

minimal subgroup of Cm
2 satisfying (10.2.1) for some d and all z ∈ Cm

2 .

Theorem 10.2.2 Denote

� = {w|SF (w) = 0, w �= 0}, (10.2.10)

and let C be a maximal subgroup of Cm
2 such that C ⊆ � ∪ {0}. Then, T (F ) = C⊥,

|T (F )| = 2m/|C| and

d =
∑
z∈Cm

2

F (z)/|C|.

Proof. From (10.2.1) and (10.2.2) we have by the convolution theorem (Theo-
rem 2.6.4) for δ(τ) defined by (10.2.3)

SF (w) · Sδ(w) =
{

2−md, for w = 0,

0, otherwise.
(10.2.11)

Let

d = 2m

|C|SF (0) = 1

|C|
∑
z∈Cm

2

F (z), (10.2.12)

and

Sδ(w) =
{

|C|−1, if w ∈ C,

0, if w /∈ C,
(10.2.13)

where C is the maximal subgroup of Cm
2 contained in � ∪ {0} = {w|SF (w) = 0, w �=

0} ∪ {0}.
Then (10.2.2) follows from (10.2.11).
From (10.2.13) we have

δ(z) =
∑
w∈C

Sδ(w)Wz(w) = 1

|C|
∑
w∈C

Wz(w) =
{

1, z ∈ C⊥,

0, z /∈ C⊥.
(10.2.14)
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The proof of Theorem 10.2.2 generates a simple spectral method for construction
of optimal linear equality checks (10.2.1), (10.2.2) for a given function F (z). This
method reduces to the following operations:

1. Compute the Walsh spectrum SF (w) for F (z).

2. Construct a maximal subgroup C in � ∪ {0}.
3. Construct C⊥ and take T (F ) = C⊥ and d =∑z∈Cm

2

F (z)
|C| .

We note that construction of optimal linear checks in the original z-domain is very
difficult.

We note also that any subgroup C in Cm
2 can be represented as a linear span of the

rows of its generating matrix G with log2 |C| rows and m columns. (All elements of
C can be obtained as linear combinations over GF (2) of rows of G.)

Matrix G can always be represented in the following standard equivalent form (see
Reference 347)

G = [ Ik | P
]
,

where Ik is the (k × k) identity matrix, k = log2 |C|, and P is a (k × (m − k)) matrix.
Then C⊥ can be obtained as the linear span of the rows of

H = [PT | Im−k

]
, (10.2.15)

where PT is the ((m − k) × k) matrix obtained by transposing P and Im−k is the
((m − k) × (m − k)) identity matrix.

We note that for the nonbinary (p-ary, p > 2) case, (10.2.2) should be replaced by

∑
z∈Cm

p

δ(τ)f (z  τ) = d, (10.2.16)

where  stands for componentwise subtraction modulo p of vectors from Cm
p , and

(10.2.15) should be replaced by

H = [PT | Im−k

]
, (10.2.17)

where PT is the matrix PT with all its elements multiplied by −1(modp).

Example 10.2.1 Consider error detection by linear equality checks for an n-bit
binary adder. In this case, m = 2n and

f (x0, . . . , xn−1, y0, . . . , yn−1) = x + y.
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Then,

F (x, y) =
n−1∑
s=0

xs2
n−1−s +

n−1∑
s=0

ys2
n−1−s (10.2.18)

=
n−1∑
s=0

(0.5(1 − Rs+1) + 0.5(1 − Rn+s+1))2n−1−s

= 2n − 1 −
n−1∑
s=0

(Rs+1 + Rn+s+1)2n−1−s,

where

Ri+1(x0, . . . , xn−1, y0, . . . , yn−1) = Ww(x0, . . . , xn−1, y0, . . . , yn−1)

for w = (

i−1︷ ︸︸ ︷
0, . . . , 0,

i︷︸︸︷
1 , 0, . . . , 0) are the Rademacher functions.

It follows from (10.2.18) that

SF (w) = Sx+y(w) = 0,

for all w ∈ C2n
2 such that ‖w‖ > 1, where ‖w‖ is the number of ones in w =

(w0, . . . , w2n−1).
Thus, by Theorem 10.2.2, we can take C = {w|⊕2n−1

s=0 ws = 0} with |C| = 22n−1.
The generating matrix for C can be taken as

G = [ Ik | 1T
]
,

where k = 2n − 1 and 1T is the column of all ones, and

T (f ) = T (x + y) = C⊥ = {0, 1}.

Since ∑
x,y∈Cn

2

F (x, y) = 22n(2n − 1),

it follows from (10.2.12) that d = 2(2n − 1) and we finally have the following linear
check for adders

f (x0, . . . , xn−1, y0, . . . , yn−1) + f (x0 ⊕ 1, . . . , xn−1 ⊕ 1, y0 ⊕ 1, . . . , yn−1 ⊕ 1)

= F (x, y) + F (x ⊕ 1, y ⊕ 1)

= F (x, y) + F (x, y) = 2(2n − 1), (10.2.19)
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for all x, y ∈ Cn
2 , and the complexity |T (F )| of the check for adders is equal to 2, that

is, |T (x + y)| = 2. (Here, x and y are componentwise negations of x and y.)

We note that the 0-testability approach described in Section 10.2.1 is the special
case of linear checks with C = {0} and T = C⊥ = Cm

2 .

Example 10.2.2 We now consider linear equality checks for an n-bit binary multi-
plier.

In this case, m = 2n and

f (x0, . . . , xn−1, y0, . . . , yn−1) = x · y (10.2.20)

=
(

n−1∑
s=0

0.5(1 − Rs+1)2n−1−s

)
·
(

n−1∑
s=0

0.5(1 − Rn+s+1)2n−1−s

)
.

It follows from (10.2.20) that

Sx·y(w) = Sx·y(w0, . . . , wn−1, wn, . . . , w2n−1) = 0

for all w such that

n−1∑
s=0

ws ≥ 2, and
n−1∑
s=0

wn+s ≥ 2.

Thus, by Theorem 10.2.2 we can take

C = {w|
n∑

s=0

ws = 2k1,

n−1∑
s=0

wn+s = 2k2, k1, k2 = 0, 1, . . . , �n/2�}.

with |C| = 22n−2.
The generating matrix G for C can be selected as

G =


 In−1 1T | 0

− − − − − − − − − − − − − − −
0 | In−1 1T


 .

Then,

T (f ) = T (x · y) = {00, 01, 10, 11},

where 0 and 1 are n-bit vectors of all zeros and all ones.
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Since,

∑
x,y∈Cn

2

F (x, y) =
2n−1∑
x,y=0

x · y = 22n−2(2n − 1)2,

it follows from (10.2.12) that in this case d = (2n − 1)2.
Thus, we have the following linear equality check for the n-bit multipliers:

F (x, y) + F (x, y) + F (x, y) + F (x, y) = (2n − 1)2, (10.2.21)

for all x, y ∈ Cn
2 and |T (x · y)| = 4.

The lower bound on check complexity |T (F )| is given by Theorem 10.2.1 (see
(10.2.8)). We will now construct the exact upper bound for |T (F )|.

Theorem 10.2.3 (The exact upper bound)

1. For any F (z) with z ∈ Cm
2 ,

|T (F )| ≤ 1

2
(2m + 1 − |�|), (10.2.22)

where � is defined by (10.2.10).

2. For any m, there are functions F (x) defined over Cm
2 such that

log2 |T (F )| = �log2(2m + 1 − |�|)� − 1. (10.2.23)

Proof.

1. It was shown in Reference 285 that for any subset Q of Cm
2 − {0}, the subset

Q ∪ {0} contains a subgroup C of Cm
2 such that

log2 C ≥ m + 1 − �log2(2m − |Q| + 1�. (10.2.24)

The upper bound (10.2.22) follows now from (10.2.24) by Theorem 10.2.2
with Q = � since |T (F )| ≤ |C⊥| = 2m

|C| .
2. It was also shown in Reference 285 that for any k ∈ {0, 1, . . . , m}, there exists

a set Q∗ ⊆ Cm
2 − {0} with |Q∗| = 2m − 2m−k+1 such that Q∗ ∪ {0} does not

contain any subgroup C with |C| = 2k. Then, for any function F (x) such that
{w|SF (w) = 0, w �= 0} = Q∗ equation (10.2.23) is satisfied.
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To conclude this section, we note that the most suitable functions for test-
ing by linear checks are functions with Walsh spectra containing sufficiently
many zeros. (As we will see in the next sections, functions describing the basic
computer instructions and software for numerical computations belong to this
class.)

Another limitation on the use of linear checks is implied by the fact that they yield
only solutions of (10.2.1) for which T is a subgroup of Cm

2 .
The main advantage of linear checks lies in their simplicity and convenience from

the computational point of view. Thus, if the initial function F is defined analytically,
the solution T (F ) may often be found also analytically (see Examples 10.2.1 and
10.2.2 above). The tables which list the Walsh spectra for a large number of important
classes of switching functions can be found in the Appendix A. Optimal linear checks
for standard microinstructions will be given in the following section and for functions,
computing polynomials in Section 10.4.

Another advantage of the proposed linear checks is their weak dependence on the
structure of the original group Cm

2 . The generalization of these checks to functions de-
fined on any (not necessarily Abelian) finite group is straightforward (208,209,212).
This generates a unified set of error-detecting methods for binary and nonbinary
devices, devices implementing functions defined on the symmetric group of permu-
tations, and so on.

10.2.4 Hardware Implementations of Linear Checks

We will consider now the problem of network implementation of linear checks starting
with the following example.

Example 10.2.3 Suppose that for a function f (z) = f (z0, . . . , z6), m = 7, the group
C and T = C⊥ are defined by the following matrices G and H, where C is the set of
all linear combinations of rows of G and C⊥ is the set of all linear combinations of
rows of H (see (10.2.15))

G =


 1 0 0 | 0 1 1 1

0 1 0 | 1 0 1 1

0 0 1 | 1 1 0 1


 ,

and

H =




0 1 1 | 1 0 0 0

1 0 1 | 0 1 0 0

1 1 0 | 0 0 1 0

1 1 1 | 0 0 0 1


 .
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counter
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Error
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z4
z5
z6

+1

FIGURE 10.2.1 Network implementation of the check from Example 10.2.3.

Then, |C⊥| = |T | = 16 and τ = (τ0, . . . , τ6) ∈ C⊥ iff

G � τ =


0

0

0


 ,

or τ0 = τ4 ⊕ τ5 ⊕ τ6, τ1 = τ3 ⊕ τ5 ⊕ τ6 and τ2 = τ3 ⊕ τ4 ⊕ τ6.
The network implementation of this check is given in Fig. 10.2.1 and consists of a

counter generating the information bits τ3, τ4, τ5, τ6 of C⊥, a linear encoding network
generating the check bits τ0, τ1, and τ2 of C⊥, and a network for mod 2 summation
of z and τ ∈ C⊥.

The general architecture for Built-In Self-Testing (BIST) by linear checks (10.2.1)
is given in Fig. 10.2.2. In this figure, the linear encoding network computes check bits
τ0, . . . , τk−1 by information bits τk, . . . , τm−1 for T = C⊥. The test pattern generator
generates test patterns (z0, . . . , zm−1), which may be either pseudorandom vector gen-
erated by a m-bit Linear Feedback Shit Register (269) or precomputed representatives
of cosets of C⊥ in Cm

2 .
The complexity of an (m − k)-bit counter is proportional to (m − k) and for the

number L(m, k) of two-input EXOR gates required for encoding network we have by
(6.1.17) as m − k → ∞

L(m, k) �
(m − k)k

log2(m − k)
,

where a(n) � b(n) iff limn→∞ a(n)/b(n) = 1.
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(m–k) -bit counter

m–k m–k

m–k

m–k

Encoding
forCnetwork

of CbitsInformation

Test
pattern
generator

k
k

Error
signal

f

–d

0,..., k–1

z m–1k,...,z

FIGURE 10.2.2 Built-in self-test architecture for testing by linear checks (10.2.1) |T | =
|C⊥| = 2m−k.

10.2.5 Error-Detecting Capabilities of Linear Checks

In this section, we will analyze error-detecting capabilities of linear checks (10.2.1).
These capabilities depend on a selected error model.

The simplest error model is the model of additive errors. In this case, by an error
e with multiplicity l we mean any function e(z) = e(z0, . . . , zm−1), which is not
equal to 0 at l points (i.e., F (z) is distorted at l points, ‖e‖ = l and our device or
program is computing F (z) + e(z) instead of F (z)). This definition is natural if errors
in computing F (z) are independent for different z, as, for example, is the case where
F (z) is information stored in a memory cell which address is z. In this case, an error
e(z) has multiplicity ||e|| = l iff exactly l cells contain a corrupted data.

It follows from (10.2.1) that e(z) cannot be detected iff for every z ∈ Cm
2∑

τ∈T

e(z ⊕ τ) = 0. (10.2.25)

It follows now from (10.2.25) that if η̂(l) is a fraction of errors with multiplicity l,
which are not detected by the check (10.2.1), and M is a number of bits in the binary
representation of F (z) for every z, then

η̂(1) = 0, (10.2.26)

η̂(l) ≤ (2M − 1)−1 (10.2.27)

for every l > 1.
Thus, for example, for the case of 32-bit computations (m = M = 32) even one

linear check (10.2.1) provides for a very high error detecting capability for the case
of additive errors.
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FIGURE 10.2.3 Block diagram of an n-bit adder.

In the case when errors at the output of the device are manifestations of faults in
the internal components (such as stuck-at faults, bridging between lines), the error
model depends on the selected model for internal faults.

Example 10.2.4 To illustrate the error-detecting capability of linear checks with
respect to internal, input, and output faults, we will consider the example of the n-bit
adder (see Example 10.2.1) with block diagram shown in Fig. 10.2.3. In this case,
f (x, y) = x + y and

f (x, y) + f (x, y) = 2(2n − 1),

where x, y ∈ {0, 1, . . . , 2n − 1}.
We shall consider four classes of errors for the adder in Fig. 10.2.3, that is, in-

put errors einp(x, y), output errors eout(x, y) carry errors ec(x, y), and shift errors
esh(x, y).

An l-fold input (output) error, 0 < l ≤ 2n, (0 < l ≤ n + 1) is said to occur if l

bits of (x0, . . . , xn, y0, . . . , yn−1) (of (f (0)(x, y), . . . , f (n)(x, y))) are corrupted and
converted into arbitrary binary constants (see Fig. 10.2.3).

An l-fold carry error, 0 < l ≤ n, occurs if l components of the carry vector
(C0, . . . , Cn) (see Fig. 10.2.3) are replaced by binary constants.

An l-fold shift error is a shift by l positions to the right or left in a vector recorded
in any three registers x, y, x + y in Fig. 10.2.3.

www.it-ebooks.info

http://www.it-ebooks.info/


444 SPECTRAL METHODS FOR TESTING OF DIGITAL SYSTEMS

For a right (left) shift by l positions, the vector (z0, . . . , zk−1) is changed into

(0, . . . , 0︸ ︷︷ ︸
l

z0, . . . , zk−1−l) (zl, . . . , zk−1, 0, . . . , 0︸ ︷︷ ︸
l

).

Shift errors are probable when the information is transferred to the x and y registers
and from the x + y register in serial form.

We denote the fraction of errors with multiplicity l, which are detected for the
above four classes by ρinp(n, l), ρout(n, l), ρc(n, l), ρsh(n, l), respectively.

Example 10.2.5 (Example 10.2.4 continued)
We will show now that for an n-bit adder

ρinp(n, l) =




1 −
(

n

S

)(
2n

2S

)−1

2−S, if l = 2S,

1, if l = 2S − 1,

(10.2.28)

S = 1, . . . , n,

ρout(n, l) = 1 − δl,n+12−n−1 (10.2.29)

where δl,n+1 - Kronecker symbol,

ρc(n, l) = ρsh(n, l) = 1, (10.2.30)

for all n, l.
Any input error with multiplicity l may be expressed as

einp(x, y) =
S1∑
i=1

(αpi − xpi )2
n−1−pi (10.2.31)

+
S2∑
i=1

(βri − yri )2
n−1−ri ,

where S1 + S2 = l, 0 ≤ p1 < . . . < pS1 ≤ n − 1, 0 ≤ r1 < . . . < rS2 ≤ n − 1,
αpi, βri ∈ {0, 1}.

Since ∑
x,y

(αpi − xpi ) = (−1)αpi
+122n−1, i = 1, . . . S1, (10.2.32)

∑
x,y

(βri − yri ) = (−1)βri
+122n−1, i = 1, . . . , S2,
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it follows that

∑
x,y

einp(x, y) = 22n−1

(
S1∑
i=1

(−1)αpi+1 2n−1−pi (10.2.33)

+
S2∑
i=1

(−1)βri+1 2n−1−ri

)
.

Set Einp = {einp|S1 = S2 = S, pi = ri, αpi = 1 − βri , i = 1, . . . , s}.
Then, if einp /∈ Einp, we see from (10.2.33) that

∑
x,y einp(x, y) �= 0 and by

(10.2.25) einp is detected for some x, y.
If einp ∈ Einp, then by (10.2.33)

∑
x,y einp(x, y) = 0 and einp is not detected for

all x, y.
Hence, in view of the fact that the total number of 2S-fold errors is equal to(

2n

2S

)
· 22S,

and the number of errors with multiplicity 2S, einp ∈ Einp is

(
n

S

)
· 2S,

we obtain (10.2.28).
Any output error with the multiplicity l may be expressed as

eout(x, y) =
l∑

i=1

(αpi − f (pi)(x, y))2n−pi , (10.2.34)

where (αpi ∈ {0, 1}, 0 ≤ p1 < . . . < pl ≤ n).
Since x + y =∑n

p=0 f (p)(x, y)2n−p, (f (p)(x, y) ∈ {0, 1}), it is readily seen that

for any pi ∈ {0, . . . , n} and αpi ∈ {0, 1},∑x,y f (pi)(x, y) = 22n−1 − δpi,0 · 2n−1 and

∑
x,y

(αpi − f (pi)(x, y)) = (−1)αpi
+122n−1 + (−1)αpi · δpi,0 · 2n−1.

(10.2.35)

Since 0 ≤ p1 < . . . < pl ≤ n, it follows from (10.2.34) and (10.2.35) that

∑
x,y

eout(x, y) = 22n−1

(
l∑

i=1

(−1)αpi
+12n−pi + (−1)αpi · δpi,0

)
. (10.2.36)
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Denote

Eout(x, y) = −f (0)(x, y)2n +
n∑

p=1

(1 − f (p)(x, y))2n−p. (10.2.37)

Then, if eout /∈ Eout , it follows from (10.2.36) and (10.2.37) that
∑

x,y eout(x, y) �= 0,
and eout is detected.

If eout ∈ Eout , then
∑

x,y eout(x, y) = 0, and eout is not detected.
Thus, the only undetected output error is the error Eout with multiplicity (n + 1),

and this implies (10.2.29).
Now, let ec(x, y) = ec(x0, . . . , xn−1, y0, . . . , yn−1) be a carry error with multiplic-

ity l for which Cpi = αpi (see Fig. 10.2.3) where the αpi are certain binary constants
(i = 1, . . . , l, 0 ≤ pl < . . . < pl ≤ n − 1).

Then, we have

ec(0, . . . 0︸ ︷︷ ︸
2n

) =
l∑

i=1

αpi2
αpi+1 , (10.2.38)

ec(1, . . . , 1︸ ︷︷ ︸
2n

) =
l∑

i=1

(αpi − 1)2αpi+1 ,

and

ec(0, . . . , 0︸ ︷︷ ︸
2n

) + ec(1, . . . , 1︸ ︷︷ ︸
2n

) =
l∑

i=1

(2αpi − 1)2αpi+1 �= 0, (10.2.39)

for any αpi ∈ {0, 1}, i = 1, . . . , l.
Thus, it follows from (10.2.38) that ρc(n, l) = 1 for all l.
Similarly, for an arbitrary shift error

esh(x, y) = esh(x0, . . . , xn−1, y0, . . . , yn−1),

we have ρsh(n, l) = 1 for all l ∈ {1, . . . , l}.

10.2.6 Detection and Correction of Errors by Systems of Orthogonal
Linear Checks

As it was explained in the previous section for the additive errors, replacing f (z)
by f̃ (z) = f (z) + e(z), all single errors (‖e‖ = 1) are detected and the fraction η̂(l)
of multiple errors with multiplicity l (‖e‖ = l), which are not detected, does not
exceed (2M − 1)−1, where M is the number of bits in the binary representation
of f (z).
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No errors can be corrected by verification of one linear check, and there are double
errors that are not detected.

Let ∑
τ∈Ti

f (z ⊕ τ) − di = 0, i = 0, 1, . . . , n − 1, z, τ ∈ G = Cm
2 (10.2.40)

be a system of n linear checks for f (z).
We will say that these checks are orthogonal iff

Ti ∩ Tj = {0} = {0m},

where 0m = 0 = (0, . . . , 0︸ ︷︷ ︸
m

) for any i �= j.

Pairs of orthogonal checks for several important classes of functions f (z) are given
in Tables 10.2.1.

Denote ∑
τ∈Ti

f̃ (z ⊕ τ) − di =
∑
τ∈Ti

e(z ⊕ τ) = S
(e)
i (z), (10.2.41)

for i = 0, 1, . . . , n − 1.
If y, v ∈ z ⊕ Ti, then

S
(e)
i (y) = S

(e)
i (v). (10.2.42)

We will call S(e)(z) = (S(e)
0 (z), . . . , S(e)

n−1(z)) a syndrome for the error e(z).
We will consider in this section, two classes of error-detecting and error-correcting

procedures based on analysis of error syndromes,

1. Memoryless (combinational) decoding, and

2. Memory-aided (sequential) decoding.

We will see that the transition from the memoryless decoding to the memory-aided
not only results in exponential increase of their error-detecting and error-correcting
capabilities, but also requires a considerable increase in the complexity of decoding.

For memoryless decoding, error detection (verification of e(z) �= 0) and error
correction (computation of e(z) for any given z) are implemented by a syndrome
S(e)(z) = (S(e)

0 (z), . . . , S(e)
n−1(z)) for any given z.

For memory-aided decoding, we first compute S(e)(z) for all z and then detect
errors (decide whether z exists such that e(z) �= 0) or correct the errors (compute e(z)
for all z).

We note that, as it follows from (10.2.42), S(e)
i (z) is a constant for all z that belong

to the same coset of Ti in Cm
2 .
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TABLE 10.2.1 Orthogonal Checks for Some Numerical Functions (|T 1| < |T 2|).
N Name Function T1 d1

1. Multiplication f (X, Y ) = XY {0m, 1m}2 (2m − 1)2

X, Y ∈ {0, . . . , 2m − 1} = {02m, 0m1m,

1m0m, 12m}

2. Conversion f (z) = z ⊕ shr(z), {0m, 1010 . . .} 2m − 1
from the shr(z)
binary to = (0, z1, . . . , zm−2)
the inverted z = (z0, . . . , zm−1)
code

3. Conversion f (z) = ⊕m−1
i=0 shriz {0m, 10m−1} 2m − 1

from the shr0z = z

inverted shriz = shr(shri−1z)
to the z = (z0, . . . , zm−1)
binary code zi ∈ {0, 1}

4. Conversion f (z1, . . . , zm) = {0m, 1m} 10s − 1
from the

∑s−1
i=0 (zm−4i

2421 BCD +2zm−4i−1

code to +4zm−4i−2

the binary +2zm−4i−3)10i

code m = 4s, zi ∈ {0, 1}

5. Conversion f (z1, . . . , zm) = {0m, 1m} 10s − 1
from the excess

∑s−1
i=0 (zm−4i

3 BCD +2zm−4i−1

code to the +4zm−4i−2

binary code +8zm−4i−3 − 3)10i

6. Linear f (z) = az + b {0m, 1m} a(2m − 1)
function z ∈ {0, . . . , 2m − 1} +2b

7. Scalar product f (x, y) {0nm, 1nm}2 n(2m − 1)2

=∑n

i=1 xiyi

xi, yi ∈ Cm
2

8. Rademacher fi(z) = Ri(z) = (−1)zi−1 {0m, 0i−110m−i} 0
function z = (z0, . . . , zm−1)

9. Walsh Wi1,...,is {0m, 0i1−110m−i1 } 0
function = (−1)zi1 +zi2 +...+zis

1 ≤ s ≤ m

continued
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TABLE 10.2.1 (Continued).

N Name T2 d2

1. Multiplication {0m, 101m−2, 011m−2, 110m−2}2 4(2m − 1)2

2. Conversion {0m, 10101 . . . , 0101, . . . , 10m−1} 2(2m − 1)
from the
binary to
the inverted
code

3. Conversion {0m, 1110m−3, 010m−2, 101m−3} 2(2m − 2)
from the
inverted
to the
binary code

4. Conversion {0m, 14041m−8, 04141m−8, 180m−8} 2(10s − 1)
from the
2421 BCD
code to
the binary
code

5. Conversion {0m, 14041m−8, 04141m−8, 180m−8} 2(10s − 1)
from the excess
3 BCD
code to the
binary code

6. Linear {0m, 101m−2, 011m−2, 110m−2} 2a(2m − 1) + 4b

function

7. Scalar product {0nm ∪ {101m−2}n ∪ {011m−2}n 4n(2m − 1)2

∪{110m−2}n}2

8. Rademacher {0m, 10i−210m−i} 0
function

9. Walsh {0m, 0i2 10m−i2 } 0
function

Here 0i = 0 . . . 0︸︷︷︸
i

, 1i = 1, . . . 1︸ ︷︷ ︸
i

, A2 = {a1a2|a1, a2 ∈ A},

At = {(a1, . . . , at)|ai ∈ A}.
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The following two theorems (Theorems 10.2.4 and 10.2.5) describe error-detecting
and error-correcting capabilities of n orthogonal checks for memoryless and memory-
aided decoding.

Let for any set E of errors, the error e = 0m belong to E.

Definition 10.2.1 A set E of errors with checks (10.2.40) is detected by a memoryless
decoding if, for any e ∈ E and for every given z ∈ G, it follows from e(z) �= 0 that
there exists j ∈ {0, . . . , n − 1} such that S

(e)
j (z) �= 0, where G = Cm

2 .

Definition 10.2.2 A set E of errors is corrected by a memoryless decoding, if for any
e1, e2 ∈ E and for every given z ∈ G, it follows from e1(z) �= e2(z) that there exists
j ∈ {0, . . . , n − 1} such that S

(e1)
j (z) �= S

(e2)
j (z).

Definition 10.2.3 A set E of errors with checks (10.2.40) is detected by a
memory-aided decoding if, for any e ∈ E, it follows from e �= 0m that there exist
j ∈ {0, 1, . . . , n − 1} and z ∈ G such that S

(e)
j (z) �= 0.

Definition 10.2.4 A set E of errors is corrected by a memory-aided decoding if
for any e1, e2 ∈ E, it follows from e1 �= e2 that there exist j ∈ {0, 1, . . . , n − 1} and
z ∈ G such that S

(e1)
j (z) �= S

(e2)
j (z).

Theorem 10.2.4 For any system of n orthogonal checks, we have for memoryless
decoding

1. All errors with multiplicity at most n are detected and all those with multiplicity
at most �n/2� are corrected.

2. There exist errors with multiplicity n + 1 and �n/2� + 1, which are not detected
and not corrected, respectively.

Proof.

1. The error e is not detected by memoryless decoding if there exists z ∈ G such
that e(z) �= 0 and from (10.2.41)

S
(e)
i (z) =

∑
τ∈Ti

e(z ⊕ τ) = e(z) +
∑

τ∈Ti−0m

e(z ⊕ τ) = 0, (10.2.43)

for all i = 0, 1, . . . , n − 1.
By orthogonality of the checks, it follows from (10.2.43) that there exist at

least n different Z0, Z1, . . . , Zn−1 ∈ G such that Zi ∈ Ti − 0m and e(Zi) �= 0
for all i = 0, 1, . . . , n − 1. Thus, ‖e‖ ≥ n + 1, and any error with multiplicity
‖e‖ ≤ n, will be detected by n orthogonal checks.

Suppose that there exist e1(z), e2(z) such that ‖e1‖, ‖e2‖ are less or equal
than �n/2�, and S(e1)(z) = S(e2)(z) for all z. Then, for e(z) = e1(z) − e2(z), we
have ‖e‖ ≤ n, but if S(e)(z) = 0 for all z, e(z) is not detected.
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2. We define e0 as follows

e0(0) = 1,

e0(Z0) = · · · = e0(Zn−1) = −1,

e(Z) = 0, if z /∈ {0, Z0, . . . , Zn−1},

where Zi ∈ Ti, Zi �= 0, (i = 0, 1, . . . , n − 1), 0 = 0m = 0, . . . 0︸ ︷︷ ︸
m

.

Then, ‖e0‖ = n + 1, but by (10.2.43) and orthogonality of the checks,
S

(e0)
i (0) = 0 for all i = 0, 1, . . . , n − 1, and e0 is not detected.
Defining

e1(0) = 1,

e1(Z0) = · · · = e1(Z�n/2�−1) = −1,

e1(z) = 0, if z ∈ {0, Z0, . . . , Z�n/2�−1},

and

e2(Z�n/2�) = · · · = e2(Zn−1) = 1,

e2(z) = 0, if z /∈ {Z�n/2�, . . . , Zn−1},

if Zi ∈ Ti, Zi �= 0, i = 0, 1, . . . , n − 1, we have

‖e1‖ = �n/2� + 1,

‖e2‖ = n − �n/2� ≤ �n/2� + 1,

e1(0) �= e2(0),

but

S
(e1)
i (0) = S

(e2)
i (0) =

{
0, i = 0, 1, . . . , �n/2� − 1,

1, i = �n/2�, . . . , n − 1,

and errors e1, e2 cannot be corrected by memoryless decoding.

Note that for error correction with memoryless decoding, use may be made of a
majority decoding (similar to majority decoding for error-correcting codes (347)).

Let n = 2l + 1 and ‖e‖ ≤ l. Then, to correct an error e with the multiplicity at most
l by 2l + 1 orthogonal checks, we need that for any z ∈ G = Cm

2 , there are at least

l + 1 components with the same value e(z) in a vector S(e)(z) = (S(e)
0 (z), . . . , S(e)

2l (z)).
Thus, we have a simple majority decoding method for computing e(z) by S(e)(z).
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We will consider now maximal multiplicities of errors detected or corrected with
memory-aided decoding.

For any binary vector σ = (σ0, . . . , σn−1), we denote

M(σ) =
n−1⊕
i=0

σi(Ti − 0m)

= {
n−1⊕
i=0

σiτi|τi ∈ Ti − 0m; σiτi = τi if σi = 1, and σiτi = 0m if σi = 0}.

For memory-aided decoding, we will require that for any σ = (σ0, . . . , σn−1) and
σ′ = (σ′

0, . . . , σ
′
n−1), (σ �= σ′) we have

M(σ) ∩ M(σ′) = ∅. (10.2.44)

Note that by setting σ = (0, . . . , 0︸ ︷︷ ︸
i

, 1, 0, . . . , 0) and σ′ = (0, . . . , 0︸ ︷︷ ︸
j

, 1, 0, . . . , 0)

we have from (10.2.44) the orthogonality condition Ti ∩ Tj = 0m, (i, j = 0, 1, . . . ,

n − 1; i �= j).
Condition (10.2.44) essentially implies that

⊕n−1
i=0 Ti is a subgroup of G = Cm

2
and n ≤ m.

Theorem 10.2.5 For any system of n orthogonal checks (satisfying (10.2.44), we
have for memory-aided decoding

1. All errors with the multiplicity at most 2n − 1 are detected, and all those with
the multiplicity at most 2n−1 − 1 are corrected.

2. There exist errors with the multiplicity 2n and 2n−1, which are not detected and
not corrected, respectively.

Proof.

1. Let e(z) �= 0 for some z ∈ Cm
2 . We shall show that if the error e is not detected by

memory-aided decoding then, for any σ = (σ0, . . . , σn−1), (σi ∈ {0, 1}), there
exists at least one zσ ∈ z ⊕ M(σ) (z ⊕ M(σ) = {t|t = z ⊕ y, y ∈ M(σ)}) such
that e(zσ) �= 0. Since from (10.2.43) ∪σ∈{0,1}nM(σ) ≥ 2n, it follows from the
above that ‖e‖ ≥ 2n, which proves (1).

The proof of (2) will be by induction on ‖σ‖ =∑n−1
i=0 σi.

Let e(z) �= 0 and set σ = (0, . . . , 0). Then, ‖σ‖ = 0, and setting zσ = z, we
have z ∈ z ⊕ M(0) and e(zσ) = e(Z0) �= 0.

Let it further be assumed that e(z) �= 0, e is not detected and for any σ′ ∈ Cn
2

such that ‖σ′‖ = l, (l ∈ {0, 1, . . . , n − 1}), there exists zσ′ ∈ z ⊕ M(σ′) such
that e(zσ′ ) �= 0.
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Select σ such that ‖σ‖ = l + 1. By the definition of M(σ) (see (10.2.44),
there exist σ′ and some Ti (Ti �= {0}) such that ‖σ′‖ = l and

M(σ) =
⋃

y∈Ti−0

{y ⊕ M(σ′)}. (10.2.45)

Since by the assumption e(zσ′ ) �= 0, and, if e is not detected, then

∑
τ∈Ti

e(zσ′ ⊕ τ) = e(zσ′ ) +
∑

τ∈Ti−0

e(zσ′ ⊕ τ) = 0,

and there exists at least one τ ∈ Ti − 0 such that, if we set zσ = zσ′ ⊕ τ, then
e(zσ) �= 0.

But zσ′ ∈ z ⊕ M(σ′), and in view of (10.2.45), we have zσ = zσ′ ⊕ τ ∈ z ⊕
M(σ). Consequently, all e such that 0 < ‖e‖ ≤ 2n − 1 are detected.

Let now ‖e1‖ ≤ 2n−1 − 1, ‖e2‖ ≤ 2n−1 − 1, e1 �= e2. Then, for e = e1 ⊕
e2, we have e �= 0, ‖e‖ < 2n, e is detected and there exists z ∈ Cm

2 such that

S
(e)
j (z) = S

(e1)
j (z) − S

(e2)
j (z) �= 0. Thus, all errors with the multiplicity at most

2n−1 − 1 are corrected.

2. We will now construct a nondetected error e0 with the multiplicity 2n.
Let us fix an arbitrary Zi ∈ Ti − 0 for all i = 0, 1, . . . , n − 1 and set

e0(z) =




(−1)‖σ‖, if there exists σ = (σ0, . . . , σn−1)

such that z =⊕n−1
i=0 Ziσi,

0, otherwise.

(10.2.46)

It follows by (10.2.46) that ‖e0‖ = 2n. We will show now that for any z ∈ Cm
2

and any i ∈ {0, 1, . . . , n − 1}

S
(e0)
i (z) =

∑
τ∈Ti

e0(z ⊕ τ) = 0.

If for some z ∈ Cm
2 and some τ ∈ Ti, e0(z ⊕ τ) �= 0, then in view of (10.2.46)

there exists σ such that

z =
n−1⊕
i=0

Ziσi,

and

S
(e0)
j (z) =

∑
τ∈Tj

e0(z ⊕ τ) = e0

(
n−1⊕
i=0

Ziσi

)
(10.2.47)
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+
∑

τ∈Ti−0

e0


 j⊕

i=0

Ziσi ⊕ τ ⊕
n−1⊕

i=j+1

Ziσi


 .

Now, if σj = 0, then in view of (10.2.44) and (10.2.47) we have

e0


 j⊕

i=0

Ziσi ⊕ τ ⊕
n−1⊕

i=j+1

Ziσi


 �= 0,

iff τ = Zj , and by (10.2.47)

∑
τ∈Tj−0

e0


 j⊕

i=0

Ziσi ⊕ τ ⊕
⊕

i=j+1

Ziσi


 = (−1)‖σ‖+1.

Hence, in this case,

S
(e0)
j (z) = (−1)‖σ‖ + (−1)‖σ‖+1 = 0.

Analogically, if σj = 1, then in view of (10.2.44) and (10.2.47) we have

e0


 j∑

i=0

Ziσi ⊕ τ ⊕
n−1⊕

i=j+1

Ziσi


 �= 0,

iff τ = Zj = 1 ⊕ Zj , and

∑
τ∈Tj−0

e0


 j⊕

i=0

Ziσi ⊕ τ ⊕
n−1⊕

i=j+1

Ziσi


 = (−1)‖σ‖−1.

(Note that ‖σ‖ ≥ 1 since σj = 1.) Thus, by (10.2.46) and (10.2.47) we have

S
(e0)
j (z) = (−1)‖σ‖ + (−1)‖σ‖−1 = 0,

and e0 is not detected.
To conclude this proof, we note that existence of errors with the multiplicity

2n−1, which cannot be corrected, follows from the fact that otherwise any error
with the multiplicity 2n would be detected.

Thus, it follows from Theorems 10.2.4 and 10.2.5, that the error-detecting and
error-correcting capabilities of a system of n orthogonal checks increase exponentially
on transition from memoryless to memory-aided decoding.
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Applications of the error-detecting and error-correcting techniques described in
this section for testing of Read-Only Memories and Random-Access Memories by
two orthogonal checks will be given in Section 10.9.

To conclude this section, we note that Theorems 10.2.4 and 10.2.5 can be gener-
alized for the case of functions f (z) defined over any finite Abelian and non-Abelian
groups G and for the case when the verification of the check (10.2.40) is implemented
in a finite field K (280, 281, 302). In this case f is a mapping from G to K and the
summation in (10.2.40) is in K.

10.3 LINEAR CHECKS FOR PROCESSORS

It was shown in the previous section that there are very simple linear checks for addi-
tion and multiplication with complexities |T (x + y)| = 2 and |T (x · y)| = 4. Optimal
linear checks for basic computer components are given in Tables 10.3.1–10.3.3. (Here
0i = 00, · · · 0︸ ︷︷ ︸

i

and 1i = 11 . . . 1︸ ︷︷ ︸
i

.)

If we view the arithmetic/logic instructions of an n-bit processor as functions of two
variables over group Cm

2 , where m = 2n, then it is easy to verify using the approach
presented in Section 10.2.3 that for almost all arithmetical/logical instructions there
exist integer constants d, such that for all pairs (x, y) of binary n-vectors

f (x, y) + f (x, y) + f (x, y) + f (x, y) = d. (10.3.1)

The right-hand constant d depends only on the function f and the number n of bits
in representations of operands. These rightmost constant are given in Table 10.3.4 for
the basic arithmetic/logic instructions. In this table, we use the following conventions:

1. For instructions 13–19, the value is viewed as a binary 2n-vector.

2. C0, C1, C2, and C3 are the carries before the evaluation of f (x, y), f (x, y),
f (x, y), and f (x, y), respectively.

3. B0, B1, B2, and B3 are the borrows before the evaluation of f (x, y), f (x, y),
f (x, y), and f (x, y), respectively.

4. We assume n = 4s, X is the decimal s-vector (X0, X1, . . . , Xs−1), where
Xi ∈ {0, 1, . . . , 9}, for which x is the Binary Coded Decimal (BCD) rep-
resentation (similarly for Y ), Xi = 9 − Xi, i ∈ {0, 1, . . . , s − 1}, and X =
(X0, X1, . . . , Xs−1).

The testing procedure consists of verifying (10.3.1) for every instruction f for
several pairs of operands (x, y).

For example, for verification of addition (x, y) can be selected as

(1, 0 · · · 001), (1, 0 · · · 010), . . . , (1, 10 · · · 000)
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TABLE 10.3.1 Optimal Linear Equality Checks for Some Basic Hardware
Components.

N Device Function f Implemented by the Device

1. AND f (z1, . . . , zm) =∏m

i=1 zi

2. OR f (z1, . . . , zm) = ∨m

i=1 zi

3. Parity checker f (z1, . . . , zm) =⊕m

i=1 zi

4. Majority voter f (z1, . . . , zm) =
{

0, ‖z‖ ≤ 0.5(n − 1),
1, ‖z‖ > 0.5(n − 1)

m = 2s + 1, ‖z‖ =∑
i
zi

5. Voter with the threshold f (z1, . . . , zm) =
{

0, ‖z‖ ≤ 1,

1, ‖z‖ > 1
equal to 2 (m = 2α − 1)

6. PLA (product terms are f (z1, . . . , zm) = ∨
i
fi(z1, . . . , zm)

orthogonal, AND circuits where fi(z1, . . . , zm) is a product
have at most t inputs) of at most t literals, and

for any z = (z1, . . . zm), fi(z)fj(z) = 0

7. Autonomous linear ft(z1, . . . , zm) = At
[
z1, · · · , zm

]T
feedback register [z1, . . . , zm]T transpose of [z1, . . . , zm]
with initial state (z1, . . . , zm)

A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

0 0 0 · · · 1 0
0 0 0 · · · 0 1

a1 a2 a3 · · · am−1 am




ai ∈ {0, 1}, At is a tth degree of
A over GF (2).

to verify that in each bit position a carry can be both generated and propagated.
Similarly, for subtraction verification, one can use

(0, 0 · · · 001), (0, 0 · · · 010), . . . , (0, 10 · · · 000)

to test borrow generation and propagation.
Every general-purpose and data-address register should be used as a source register

(for operands x and y) and as a destination register (for the result f (x, y)).
The number of reference values d required to be stored for testing by linear checks

is equal to the number of instructions to be verified.
It is possible that different instructions have the same right-hand constant d for

their linear checks. For example, for instructions Clear and Subtract this constant is
equal to 0. Thus, linear checks will not detect some errors in instruction decoding,
resulting in replacement of one instruction by another instruction, no instruction,
multiple instructions, or an invalid instruction.
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TABLE 10.3.2 Optimal Linear Equality Checks for Some Basic Hardware
Components (Continued).

N Device Function f Implemented by the Device

8. m-bit shifter f (Cl, Cr, z
(1), . . . , z(m))

=




(z1, z2, . . . , zm−1, zm), Cl = Cr = 0,

(z2, z3, . . . , zm, 0), Cl = 1, Cr = 0,

(0, z1, . . . , zm−2, zm−1), Cl = 0, Cr = 1,

(0, 0, . . . , 0, 0), Cl = Cr = 1,

9. n-bit counter f (z1, . . . , zm) =∑m

i=1 zi, m ≤ n

10. n-bit up and down f (x1, . . . , xn, y1, . . . , yn)
counter =∑n

i=1 xi −∑n

i=1 yi, n ≤ m

11. m by 1 multiplexer f (s0, s1, . . . , sα, z1, . . . , zm) = zi iff∑m

j=0 sj2α−1−j = i, m = 2α

12. n-bit adder f (x, y) = x + y, x, y ∈ {0, 1}n

13. n-bit subtractor f (x, y) = x − y, x, y ∈ {0, 1}n

14. n-bit multiplier f (x, y) = xy, x, y ∈ {0, 1}n

To detect these errors, it is sufficient to execute all the instructions and verify the
results for a pair of operands (x∗, y∗) such that for any two instructions f1 and f2 we
have f1(x∗, y∗) �= f2(x∗, y∗). For most instruction sets one can choose x∗ and y∗ as
x∗ = 1 00 · · · 0︸ ︷︷ ︸

n−4

101 and y∗ = 1 00 · · · 0︸ ︷︷ ︸
n−4

011.

Verification of instructions that are neither arithmetical nor logical (such as Branch,
Skip) can be done by exhaustive exercising of all combination of internal states for
status flip-flops.

To conclude this section, we note that for functions, describing basic hardware
components and basic instruction sets, linear equality checks have very low check
complexities.

The simple network implementation of the linear check for a device satisfying
(10.3.1) (e.g., adder, subtractor, multiplier) is given in Fig. 10.3.1.

10.4 LINEAR CHECKS FOR ERROR DETECTION IN POLYNOMIAL
COMPUTATIONS

In this section we apply the spectral techniques to construct linear checks (10.2.1) for
devices or software computing polynomials of one or several variables.

We will see that complexities |T (f )| of these checks are growing with increasing
degrees of the polynomials.

We also note that the checks developed for polynomials can be used for error
detection in software for numerical computations of analytical functions or for testing
Read-Only Memories storing the values of these functions (see Section 10.9), since
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TABLE 10.3.3 Optimal Linear Equality Checks for Some Basic Hardware
Components, T (f ) and d.

N Device T (f ) d

1. AND {0, 1}m 1

2. OR {0, 1}m 2m − 1

3. Parity checker {0m, 0m−11} 1

4. Majority voter {0m1m} 1

5. Voter with (2α − 1, 2α − α − 1) 2α − α − 2
the threshold
equal to 2 (m = 2α − 1) Hamming code (347)

6. PLA (product terms V⊥(n, t + 1)
∑

z
f (z)|V⊥(n, t + 1)|−1

are orthogonal, dual code
AND circuits to a maximal code
have at most with the Hamming
t inputs) distance t + 1

7. Autonomous linear {0m, A−t1m} 2m − 1
feedback register A−t is the inverse
with initial state of At over GF (2)
(z1, . . . , zm)

8. m-bit shifter {000m, 001m, 5 × 2m−1 − 4
100m, 101m,

010m, 011m,

110m, 111m}
9. n-bit counter {0m, 1m} m

10. n-bit up and down {0m, 1m} 0
counter

11. m by 1 multiplexer {0α0m, 0α1m} 1
(m = 2α)

12. n-bit adder {02n, 12n} 2(2n − 1)

13. n-nit subtractor {02n, 12n} 0

14. n-bit multiplier {02n, 0n1n, 1n0n, 12n} (2n − 1)2

in many cases analytical functions like sin(x) are computed by their polynomial
approximations.

We consider the problem of error detection in the process of computing polyno-
mials

f (x1, . . . , xm) =
s1∑

i1=0

· · ·
sm∑

im=0

a(i1, . . . , im)xi1
1 x

i2
2 · · · xim

m , (10.4.1)
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TABLE 10.3.4 Linear Check Constants for Basic Instructions.

No. Instruction (f ) f (x, y) d

1. Clear (CLR) 0 0
2. Transfer (TRN) x 2(2n − 1)
3. Complement (CMP) x 2(2n − 1)
4. Increase (INCR) x + 1 2(2n + 1)
5. Decrease (DECR) x − 1 2(2n − 3)
6. Twos complement

(CMPL2) x + 1 2(2n + 1)
7. Shift left (SHL) (x1, x2, . . . , xn−1, 0) 2(2n − 2)
8. Shift right (SHR) (0, x0, x1, . . . , xn−2) 2(2n−1 − 1)
9. Rotate left (ROTL) (x1, x2, . . . , xn−1, x0) 2(2n − 1)
10. Rotate right (ROTR) (xn−1, x0, x1, . . . , xn−2) 2(2n − 1)
11. 4-bit shift (x4, x5, . . . , xn−1, 0, 0, 0, 0) 2(2n − 16)

left (SHL4)
12. 4-bit shift (0, 0, 0, 0, x0, x1, . . . , xn−3) 2(2n−4 − 1)

right (SHR4)
131. Binary shift (SHL(x), SHL(y)) 2(22n − 2n − 1)

left (BSHL)
14. Binary shift (SHR(x), SHR(y)) 2(22n−1 − 2n−1 − 1)

right (BSHR)
15. Binary rotate (ROTL(x), ROTL(y)) 2(22n − 1)

left (BROTL)
16. Binary rotate (ROTR(x), ROTR(y)) 2(22n − 1)

right (BROTR)
17. Binary 4-bit shift (SHL4(x), SHL4(y)) 2(22n − 15 · 2n − 16)

left (BSHL4)
18. Binary 4-bit shift (SHR4(x), SHR4(y)) 2(22n − 2n + 2n−4 − 1)

right (BSHR4)
19. Exchange (EXCH) (y, x) 2(22n − 1)
20. And (AND) x ∧ y 2n − 1
21. Or (OR) x ∨ y 3(2n − 1)
22. Exclusive or (EXOR) x ⊕ y 2(2n − 1)
23. Add (ADD) x + y 4(2n − 1)
242. Add with carry x + y + C 4(2n − 1) +∑3

i=0 Ci

(ADDC)
25. Subtract (SUB) x − y 0
263. Subtract with borrow x − y − B −∑3

i=0 Bi

(SUBB)
27. Multiply (MPY) x · y (2n − 1)2

284. BCD add
(BCDADD) X + Y 4(10s − 1)

29. BCD subtract
(BCDSUB) X − Y 0

30. BCD multiply
(BCDMPY) X · Y (10s − 1)2

f (x, y) = f (x0, . . . , xn−1, y0, . . . , yn−1).
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... A block computing f(x,y)

Anadder/accumulator with
the initial state –d.

FIGURE 10.3.1 Network implementation of check (10.3.1) for basic computer components.

where xt ∈ {0, . . . , 2nt − 1}, (t = 1, . . . , m), and all the computations are in the field
C of complex numbers or in a finite field GF (p), (p > 2 is a prime). The set of all
polynomials of this type we denote Ks1,...,sm [x1, . . . , xm].

The errors to be detected are errors in the texts of the programs, in the case where
f is calculated by a computer program, and they are catastrophic structural failures
in the case where computations are carried out by a specialized digital device.

For practical reasons, we suppose that the variable xt is represented in binary
form, xt = (xt,0, . . . , xt,nt−1). Notice that the generalization of the results presented
below to the case when xt is represented by qt-ary vectors may be done without any
difficulties.

Denote by Cn
2 the group of binary vectors with n components, where n =∑m

t=1 nt ,
with respect to componentwise addition modulo 2. For error detection, we shall use
linear checks over GF (2)∑

τ=(τ1,...,τm)∈T

f (x1 ⊕ τ1, . . . , xm ⊕ τm) = d, (10.4.2)

for every x1, . . . , xm, when T (check set for f ) is a subgroup of Cn
2 , n =∑m

t=1 nt , τt ∈
C

nt

2 , d — some constant, the symbol ⊕ stands for componentwise addition modulo 2
of binary vectors, and summation is carried out in the same field as in (10.4.1).

The verification of whether condition (10.4.2) is satisfied for the given assignment
of variables x1, . . . , xm constitutes the error-detection method. It may be effectively
used for the testing of manufacturing acceptance of the program or of the device
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computing the given polynomial. In the case of network implementation (see Sec-
tion 10.6), the method may be used for testing during installation and maintenance
of the corresponding devices.

We note also that although all the examples given below deal with computations
in the field of real numbers, the same error-detecting technique may be used for the
computations of polynomials with complex coefficients.

We shall denote by T (f ) a check set T with minimal cardinality. We shall use the
cardinality |T (f )| as a criterion for the check complexity of the polynomial f .

The first problem is to find for a given polynomial f ∈ Ks1,...,sm [x1, . . . , xm] a
minimal set T (f ).

The implementation of the check (10.4.2) and error-detecting capability of these
checks will be considered in Sections 10.7 and 10.9. For the construction of T (f ) for
a given f , we shall use the method proposed in Section 10.2.

We note also that there is another simple method of error detection for polynomial
computations by linear checks based on the finite differences of orders s1, . . . , sm for
polynomial (10.4.1). In this case we have the following check:

s1∑
τ1=0

· · ·
sm∑

τm=0

(−1)τ1+...+τm

(
s1

τ1

)
· · ·
(

sm

τm

)
(10.4.3)

f (x1 + s1 − τ1, . . . , xm + sm − τm) = a(s1, . . . , sm)
m∏

t=1

st!

The number of values of f involved in check (10.4.3) is
∏m

t=1(st + 1), and it
is, generally speaking, smaller than the corresponding number |T (f )| for the check
(10.4.2), but there are at least three disadvantages of the check (10.4.3). These are as
follows:

1. For implementation of (10.4.3) we need arithmetical shifts of variables xi,
whereas in (10.4.2) we need only componentwise additions mod 2.

2. For check (10.4.3) we need additional multiplications by the constants

(−1)τ1+...+τm

m∏
t=1

(
st

τt

)
.

3. Check (10.4.3) cannot detect errors in coefficients a(i1, . . . , im) resulting in
the replacement of a given polynomial f ∈ Ks1,...,sm [x1, . . . , xm] by another
polynomial 	 ∈ Ks1,...,sm [x1, . . . , xm] with the same a(s1, . . . , sm). Almost all
errors of this type are detected by (10.4.2), see Section 10.5.

Additional results on testing by checks with arithmetic shifts can be found in
References 621 and 622.
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10.5 CONSTRUCTION OF OPTIMAL LINEAR CHECKS FOR
POLYNOMIAL COMPUTATIONS

Let for f ∈ Ks1,...,sm [x1, . . . , xm],

f (x1, . . . , xm) =
s1∑

i1=0

· · ·
sm∑

im=0

a(i1, . . . , im)xi1
1 · · · xim

m ,

where xt ∈ {0, . . . , 2nt − 1}, xt = (xt,0, . . . , xt,nt−1) ∈ C
nt

2 , xt,j ∈ {0, 1}, st < nt , t =
1, . . . , m.

Denote by V (nt, st + 1) a maximal linear code in C
nt

2 with the Hamming distance
st + 1, that is, V (nt, st + 1) is a maximal subgroup in C

nt

2 such that the Hamming dis-
tance between any two vectors from V (nt, st + 1) is at least st + 1. Methods for con-
struction of maximal linear codes with given distances can be found in Reference 347.

Therefore,

V⊥(nt, st + 1) = {(τt,0, . . . , τt,nt−1)|
nt−1⊕
j=0

τt,jyt,j = 0,

where for every (yt,0, . . . , yt,nt−1) ∈ V (nt, st + 1)} and

V⊥ =
m∏

t=1

V⊥(nt, st + 1)

= {τ = (τ1, . . . , τm)|τ1 ∈ V⊥(n1, s1 + 1), . . . , τm ∈ V⊥(nm, sm + 1)}.

Theorem 10.5.1 (Linear checks for polynomial computations)

1. For every f ∈ Ks1,...,sm [x1, . . . , xm]

∑
τ=(τ1,...,τm)∈V⊥

f (x1 ⊕ τ1, . . . , xm ⊕ τm) = d, (10.5.1)

where

d =
m∏

t=1

|V (nt, st + 1)|−1
∑

x1,...,xm

f (x1, . . . , xm). (10.5.2)

2. For every s = (s1, . . . , sm), (n1, . . . , nm), (st < nt), there exists f ∈
Ks1,...,sm [x1, . . . , xm] such that T (f ) = V⊥.
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Proof.

1. Consider the Walsh spectrum Sf of f ∈ Ks1,...,sm [x1, . . . , xm] over Cn
2 , where

n =∑m
t=1 nt .

If for a given w there exits t such that

‖wt‖ =
nt−1∑
j=0

wt,j ≥ st + 1,

then

Sf (w) = 0, w = (w1, . . . , wm), wt ∈ C
nt

2 . (10.5.3)

Denote

SδV (w) =
{∏m

t=1 |V (nt, st + 1)|−1, if w ∈ V,

0, if w /∈ V,
(10.5.4)

where V =∏m
t=1 V (nt, st + 1).

Then,

Sf (w)SδV (w) = δw,02−n
m∏

t=1

|V (nt, st + 1)|−1 (10.5.5)

×
∑

x1,...,xm

f (x1, . . . , xm),

where δw,0 is the Kronecker symbol.
From (10.5.2) and (10.5.5), we have

f ⊕⊗ δV = d, (10.5.6)

for every x ∈ Cn
2 .

For δV , we have, from (10.5.4) and the definition of V⊥(nt, st + 1),

δV =
{

1, x ∈ V⊥,

0, x /∈ V⊥,
(10.5.7)

and (10.5.1) follows from (10.4.1) and (10.5.7).

2. Let

f (x1, . . . , xm) =
m∑

t=1

c(t)ft(xt), c(t) > 0,
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and

ft(xt) = a(t, 0) + a(t, 1)xt + . . . + a(t, st)x
st
t

for t = 1, . . . , m, where

xt = xt − 1

2
(2nt − 1),

and a(t, j) > 0 if j = 2k, and a(t, j) < 0 if j = 2k + 1.
Then, at it was shown in Section 6.4, we have

Sf (w1, . . . , wm) > 0, ‖wt‖ ≤ st, (t = 1, . . . , m), (10.5.8)

and

Sf (w1, . . . , wm) = 0,

if there exists t such that ‖wt‖ ≥ st + 1.
Now, let δT be the characteristic function of the subgroup T of Cn

2 ,

δT (x) =
{

1, x ∈ T ,

0, x /∈ T .

Then,

T⊥ = {w = (w1, . . . , wm)|

for which
⊕m

t=1
⊕nt

i=0 wt,ixt,i = 0, for all x = (x1, . . . , xm) ∈ T }.
If T is a check set for f , then there exists the constant d such that

Sf (w)SδV (w) = δw,02−md. (10.5.9)

Since

V =
m∏

t=1

V (nt, st + 1),

is a maximal subgroup in the set {(w1, . . . , wm)|∃t‖wt‖ ≥ st + 1}, it follows
from (10.5.8) and (10.5.9) that T (f ) = V⊥, and this completes the proof of
Theorem 10.5.1.

Theorem 10.5.1 generates a simple method of constructing an optimal check
(10.4.2) T (f ) with minimal |T (f )| for a given polynomial f ∈ Ks1,...,sm [x1, . . . , xm].
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This method reduces to the following operations:

1. Choose maximal error correcting codes V (nt, st + 1) with the Hamming dis-
tances st + 1 in nt-dimensional spaces of binary vectors (t = 1, . . . , m).

2. Construct the corresponding orthogonal codes V⊥(nt, st + 1), (t = 1, . . . , m).
Methods for constructing V (nt, st + 1) and V⊥(nt, st + 1) may be found in
Reference 347.

3. Construct the direct product

T (f ) = V⊥ =
m∏

t=1

V⊥(nt, st + 1).

4. Compute by (10.5.2) the right-hand constant d.
We note that the check set V⊥ for f ∈ Ks1,...,sm [x1, . . . , xm] depends only

on degrees s1, . . . , sm of coefficients of f , but the right-hand constant d of the
check depends on coefficients of f .

For estimation of the check complexity of polynomials from Ks1,...,sm [x1, . . . , xm],
one may use the following corollary from Theorem 10.5.1.

Denote

〈a〉 = 2i, iff 2i−1 ≤ a < 2i (10.5.10)

Corollary 10.5.1 For every f ∈ Ks1,...,sm [x1, . . . , xm],

log2 |T (f )| ≤
m∑

t=1

〈
st−1∑
j=0

(
nt − 1

j

)
〉. (10.5.11)

Proof. From Theorem 10.5.1, we have

|T (f )| ≤ |V⊥| = 2n
m∏

t=1

|V (nt, st + 1)|−1,

and (10.5.11) follows from the Varshamov–Gilbert bound for |V (nt, st + 1)| (347).
We note that lower bounds for

maxf ∈ Ks1,...,sm
[x1, . . . , xm](log2 |T (f )|),

may be also obtained from Theorem 10.5.1 by the Hamming–Rao bound or from the
Plotikin bound for |V (nt, st + 1)| (347).

It follows from Theorem 10.5.1 and Corollary 10.5.1 that it is expedient to use
linear checks in the case of relatively small number m of variables.
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Example 10.5.1 Consider a program computing a determinant |X| over the field of
real numbers of a (3 × 3) matrix X = [xi,j], where xi,j ∈ {0, 1, . . . , 232 − 1}.

In this case, f = |X|, m = 9, s1 = s2 = · · · = s9 = 1, n1 = n2 = · · · = n9 = 32.
We construct a check set T (f ) for f = |X| by taking as V (32, 2) the even parity

code with |V⊥(32, 2)| = 2 (347).
Then, we have

|T (f )| = |
9∏

t=1

V⊥(nt, st + 1)| = |(V⊥(32, 2)9| = 29.

We notice that for f = |X| where X is a (t × t) matrix, and xi,j ∈ {0, 1, . . . ,

2n − 1}, we have for any n, log2(|T (f )|) = t2.
We also note that V⊥ is a check set for every f ∈ Ks1,...sm [x1, . . . , xm], but, for

some special f , checks may be considerably simplified. For example, it is easy to
show that if f depends only on even (or only on odd) degrees of xt = xt − 1

2 (2nt − 1)
for all t, then

f (x1, . . . , xm) + (−1)
∑m

t=1
st f (x1 ⊕ 1, . . . , xm ⊕ 1) = 0, (10.5.12)

where 1 = (1, 1, . . . , 1).
We now consider from the practical point of view, the important case of small-

degree polynomials st = 1, 2, 3, and t = 1, . . . , m.
Let

f (x1, . . . , xm) =
∑

i1,...,im∈{0,...,s}
a(i1, . . . , im)xi1

1 · · · xim
m ,

where 0 ≤ xt ≤ 2nt − 1.
We say that a given f depends on x

j
t if there exist i1, . . . , it−1, j, it+1, . . . , im ∈

{0, . . . , s}, such that

a(i1, . . . , it−1, j, it+1, . . . , im) �= 0.

The set of all polynomials, which depend on all x
j
t , t = 1, . . . , m, j = 1, . . . , s,

we denote by Ks[x1, . . . , xm].

Corollary 10.5.2 The following properties are satisfied:

1. If f ∈ K1[x1, . . . , xm], then

log2 |T (f )| = m. (10.5.13)
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2. If f ∈ K2[x1, . . . , xm], then

log2 |T (f )| =
m∑

t=1

log2〈nt〉. (10.5.14)

3. If f ∈ K3[x1, . . . , xm], then

log2 |T (f )| = m +
m∑

t=1

log2〈n − 1〉. (10.5.15)

Proof. Note that, if f ∈ Ks[x1, . . . , xm], then

Sf (w1, . . . , wm) = 0,

if ‖wt‖ > s for t = 1, . . . , m.
Because

|T (f )| = |V⊥| = 2n
m∏

t=1

|V (nt, st + 1)|−1, (10.5.16)

with n =∑m
t=1 nt , and (347)

log2 |V (nt, 2)| = nt − 1, (10.5.17)

log2 |V (nt, 3)| = nt − log2〈nt〉, (10.5.18)

log2 |V (nt, 4)| = nt − log2〈nt − 1〉 + 1, (10.5.19)

we have (10.5.13)–(10.5.15) from (10.5.17)–(10.5.19).
For polynomials of one variable f ∈ Ks[x], x ∈ {0, . . . , 2n − 1}, using the con-

struction of Bose–Chaudhuri–Hocquenghem codes (BCH) (347), we have the fol-
lowing upper bound for the check complexity:

log2 |T (f )| ≤ log2 |V⊥(n, s + 1)| (10.5.20)

≤
{

α log2〈n〉, if s = 2α,

α log2〈n − 1〉 + 1, if s = 2α + 1.

Check complexities |T (f )| and right-hand constants d for polynomials f ∈ Ks[x]
of one variable are given in Table 10.5.1, where Bν stands for Bernoulli numbers.

By the proof completely analogous to the proof of Theorem 10.5.1, one may obtain
the following result.
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TABLE 10.5.1 Parameters of the Optimal Checks for Polynomials of One Variable.

Degree of a Check Complexity Right-hand Constant
Polynomial s |T (F )| d

1 2 2a(0) + a(1)(2n − 1)

2 〈n〉 〈n〉 (a(0) + 1
2 a(1)(2n − 1)

+ 1
6 a(2)(2n − 1)(2n+1 − 1)

)
3 2〈n〉 2〈n − 1〉 (a(0) + 1

2 a(1)(2n − 1)
+ 1

6 a(2)(2n − 1)(2n+1 − 1)
+ 1

4 a(3)2n(2n − 1)2
)

. . .

. . .

. . .

s 2n|V (n, s + 1)|−1 |V (n, s + 1)|−1

×∑s

i=0 a(i) 1
i+1

∑i

ν=0

(
i + 1

ν

)
2(i+1−ν)nBν

Theorem 10.5.2 Let

f (x0, . . . , xn−1) = a(0) +
n−1∑
i1=0

a(i1)xi1 (10.5.21)

+
∑

0≤i1<i2≤n−1

a(i1, i2)xi1xi2

+ . . . +
∑

0≤i1<...<is≤n−1

a(i1, . . . , is)xi1 . . . xis ,

where xi ∈ {0, 1}, i = 0, . . . , n − 1, s < n, and a(0), a(i1), a(i1, i2), . . . , a(i1, . . . , is)
are real or complex numbers.

Then,

1. For every x = (x0, . . . , xn−1)

∑
τ∈V⊥(n,s+1)

f (x ⊕ τ) = |V⊥(n, s + 1)|2−s (10.5.22)

×

2sa(0) + 2s−1

n−1∑
i1=0

a(i1) + . . . +
∑

0≤i1<...<is≤n−1

a(i1, . . . , is)


 .

2. If a(0) �= 0, a(i1) �= 0, . . . , a(i1, . . . , is) �= 0 for all i1, . . . , is, then the check
set V⊥(n, s + 1) is minimal, that is, T (f ) = V⊥(n, s + 1).
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We note that checks constructed by the Theorem 10.5.2 for polynomials of one
variable coincide with checks constructed by the Theorem 10.5.1, but for polynomials
of a small degree and of a large number of variables, checks constructed by Theo-
rem 10.5.2 may be simpler. This may be the case when we are dealing with matrix
computations.

For example, let F (X) = AX, where A, X are matrices of dimensions (k × m)
and (m × r), and Xij ∈ {0, . . . , 2n − 1}. Then, every (F (X))ij may be considered as
a linear function of mn binary variables, and we have by Theorem 10.5.2

F (X) + F (X) = (2n − 1)A, (10.5.23)

where Xij = Xij ⊕ (1, 1, . . . , 1).
We also note that Theorems 10.5.1 and 10.5.2 provide us with multiplicative checks

for exponential functions, which are described by the following corollary.

Corollary 10.5.3 Let

fi ∈ Ks1,...,sm [x1, . . . , xm], i = 1, . . . , r,

and

φ(x1, . . . , xm) =
r∏

i=1

a
fi(x1,...,xm)
i , (10.5.24)

where xt ∈ {0, . . . , 2nt − 1}.
Then, for every x1, . . . , xm,

∏
(τ1,...,τm)∈V⊥

φ(x1 ⊕ τ1, . . . , xm ⊕ τm) = d, (10.5.25)

where

d =
{ ∏

x1,...,xm

φ(x1, . . . , xm)

}λ

,

V⊥ =
m∏

t=1

V⊥(nt, st + 1),

λ =
m∏

t=1

|V (nt, st + 1)|−1.
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470 SPECTRAL METHODS FOR TESTING OF DIGITAL SYSTEMS

Proof. From (10.5.24), we have

log φ(x1, . . . , xm) =
r∑

i=1

fi(x1, . . . , xm) · log ai ∈ Ks1,...,sm [x1, . . . , xm].

Then, by Theorem 10.4.2∑
(τ1,...,τm)∈V⊥

log φ(x1 ⊕ τ1, . . . , xm ⊕ τm) (10.5.26)

= λ
∑

x1,...,xm

log φ(x1, . . . , xm),

and (10.5.25) follows from (10.5.26).
The network implementation of a multiplicative check (10.5.25) may be ob-

tained from the network implementations of an additive check (10.5.1), (10.5.2) (see
Fig. 10.6.1) by the replacement of adder accumulations by multiplier accumulations.

So far we have supposed that every variable xt , for t = 1, . . . , m, is represented in
the binary form

xt = (xt,0, . . . , xt,nt−1), xt,i ∈ {0, 1}.

In the case, where xt is represented in the qt-ary form, qt ≥ 2, t = 1, . . . , m, all
the previous results remain valid, but the check set

m∏
t=1

V⊥(nt, st + 1),

must be replaced by the set

m∏
t=1

V⊥
qt

(nt, st + 1),

where Vqt (nt, st + 1) is the maximal linear code in nt-dimensional space of qt-ary
vectors, qt is a prime, with the Hamming distance st + 1 (347), and

V⊥
qt

(nt, st + 1) =
{

(y0, . . . , ynt−1)|
nt−1⊕
i=0

xiyi = 0

}
,

for (x0, . . . , xnt−1) ∈ {Vqt (nt, st + 1)}, where xi, yi ∈ {0, . . . , qt − 1}, and the sym-
bol ⊕ stands for modulo qt addition. (For the computations in a finite field GF (p),
we need the additional requirement that the least common multiple of q1, . . . , qm will
be a divisor of p − 1, because only in this case we have the convolution theorem for
the corresponding Fourier transform (see Section 2.8).
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FIGURE 10.6.1 Network implementation of a linear check for a polynomial f of m variables.

10.6 IMPLEMENTATIONS AND ERROR-DETECTING CAPABILITIES
OF LINEAR CHECKS

Network implementations of linear checks for polynomials Ks1,...,sm [x1, . . . , xm] of
m variables are similar to the implementations of checks (10.2.1) for functions of one
variable (see Section 10.2.4 and Fig. 10.2.2).

The block diagram for a network implementing a linear check for a polynomial
f ∈ Ks1,...,sm [x1, . . . , xm] is given in Fig. 10.6.1.

Denote by L(f ) a minimal number of two-input gates in a check network for f .
The asymptotic behavior of L(f ) is given by the following theorem.

Theorem 10.6.1 If nt → ∞, and st is a constant for t = 1, . . . , m, then for every
f ∈ Ks1,...,sm [x1, . . . , xm],

L(f ) �

m∑
t=1

� st

2
�nt

(
log2 nt)(log2 log2 nt

)−1
, (10.6.1)
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472 SPECTRAL METHODS FOR TESTING OF DIGITAL SYSTEMS

where �c�is the greatest integer ≤ c, and

a(n) � b(n) iff lim
n→∞ a(n)b−1(n) ≤ 1,

a(n) ∼ b(n) iff a(n) � b(n) and b(n) � a(n).

Proof. Denote log2 |V (nt, st + 1)| = Kt . Then, V⊥(nt, st + 1) is an (nt, nt − Kt)-
linear code, and a check network for every f ∈ Ks1,...,sm [x1, . . . , xm] may be
implemented by the network in Fig. 10.6.1, where every encoding network t, for
t = 1, . . . , m, is a network linear over GF (2) with nt − Kt inputs and Kt outputs.

If st > 1, then nt − Kt → ∞, as nt → ∞, and the encoding network t may be
realized by the method described in Section 6.1.6 with the complexity

Lt �
(nt − Kt)Kt

log2(nt − Kt)
. (10.6.2)

If st = 1, then nt − Kt = 1, V⊥(nt, 2) = {(0, . . . , 0), (1, . . . , 1)} and Lt =
constant. Because nt − Kt = log2 |V⊥(nt, st + 1)|, nt ∼ Kt , and from the BCH
bound (347) (nt − Kt) � �st/2� log2 nt , we finally have from (10.6.2)

Lt �
Kt�st/2� log2 nt

log2(�st/2� log2 nt)
∼ � st

2
�nt(log2 nt)(log2 log2 nt)

−1.

We also note that there exists a constant Ct such that the complexity of the counter
t with nt − Kt bits is no greater than

Ct(nt − Kt) � Ct� st

2
� log2 nt,

and we finally have

L(f ) �

m∑
t=1

(
�st/2�nt(log2 nt)(log2 log2 nt)

−1 + Ct� st

2
� log2 nt + nt

)

∼
m∑

t=1

�st/2�nt(log2 nt)(log2 log2 nt)
−1.

Thus, for a polynomial f of degree s that is defined in 2n points, the network
complexity L(f ) of the optimal check increases almost linearly with increasing s or
with increasing n.

We also note that upper bound (10.6.1) for complexity L(f ) may be decreased
if V (nt, st + 1) and V⊥(nt, st + 1) are cyclic codes, and the encoding network in
Fig. 10.6.1 is implemented by linear sequential networks (347), but this results in an
increase in the time required to implement the check.
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We shall now describe the error-detecting capabilities of linear checks for polyno-
mials.

We consider three classes of errors. These are errors in

1. Coefficients

2. Variables

3. Values of the polynomial.

We assume also that every coefficient a(i1, . . . , im) (or the variable xt , or the
value f (x1, . . . , xm) of the polynomial) is represented by a M-bit binary vector
(M = n1 = · · · = nm).

By an error with multiplicity l, that is, an l-fold error, in coefficients (variables,
values of the polynomial) we mean any error resulting in the replacement of l coef-
ficients (variables, values of the polynomial) by some constants C1, . . . , Cl (binary
representation of Cr, r = 1, . . . , l, contains M-bits).

We denote the fraction of l-fold errors that cannot be detected by our check for the
above three classes by η̂a(l), η̂x(l), η̂f (l), respectively.

The result of an error e(x1, . . . , xm) is to replace the given polynomial
f (x1, . . . , xm) by f (x1, . . . , xm) + e(x1, . . . , xm).

Corollary 10.6.1 For every

f (x1, . . . , xm) =
m∑

t=1

st∑
it=0

a(i1, . . . , im)xi1
1 · · · xim

m ,

we have

ηa(l) ≤ (1 − δl,1)(2M − 1)−1

(
0 < l ≤

m∏
t=1

st

)
, (10.6.3)

ηx(l) ≤ 2−M max
r

sr ≤ M2−M, (0 < l ≤ m), (10.6.4)

ηf (l) ≤ (1 − δl,1)(2M − 1)−1, (0 < l ≤ 2Km ), (10.6.5)

where δl,1 = 1, iff l = 1, and δl,1 = 0 if l > 1.

Proof. An error with multiplicity l in coefficients ea(x1, . . . , xm) (in variables
ex(x1, . . . , xm) in values of f , ef (x1, . . . , xm)) may be represented as

ea(x1, . . . , xm) =
l∑

r=1

(Cr − a(i1,r, . . . , im,r))x
i1,r

1 · · · xim,r
m , (10.6.6)
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where it,r ∈ {0, . . . , st}, Cr �= 0, and

ex(x1, . . . , xm) = f (xi1 = C1, . . . , xil = Cl) − f (x1, . . . , xm), (10.6.7)

where 1 ≤ i1 < · · · < il ≤ m and f (xi1 = C1, . . . , xil = Cl) is the function of m − l

variables obtained from f (x1, . . . , xm) by the replacement of xir by Cr, r = 1, . . . , l.
For an error in values of the polynomial, we have

‖ef ‖ = l, (10.6.8)

where ‖ef ‖ is the number of nonzero values of ef (x1, . . . , xm).
If an error e is not detected, then by (10.2.25),

∑
τ∈V⊥

(f (x ⊕ τ) + e(x ⊕ τ)) = d,

where x = (x1, . . . , xm), τ = (τ1, . . . , τm), and

∑
τ∈V⊥

e(x ⊕ τ) =
∑

x1···xm

e(x1, . . . , xm) = 0. (10.6.9)

We have from (10.6.6), (10.6.7), and (10.6.9), ηa(1) = ηf (1) = 0. Next, from
(10.6.6)–(10.6.8) for every C1, . . . , Cr−1, Cr+1, . . . , Cl, there exists at most one Cr

such that (10.6.9) is satisfied for errors in coefficients and values of the polynomial,
and there exists at most sr different values of Cr such that (10.6.9) is satisfied for
errors in variables. This completes the proof of Corollary 10.6.1.

Thus, for every polynomial f (x1, . . . , xm) that is defined in 2n = 2M points, if M

is large enough, then by a linear check we may detect almost all stuck-at errors in
coefficients, variables, and values of the polynomial.

10.7 TESTING FOR NUMERICAL COMPUTATIONS

10.7.1 Linear Inequality Checks for Numerical Computations

In this section, we will consider the problem of error detection in programs or devices
computing real-valued functions f (z), where z is represented in the binary form
(z = (z0, . . . , zm−1) ∈ Cm

2 ). By errors we mean errors in the texts of programs or the
catastrophic failures in the corresponding devices.

In Sections 10.2–10.6, we described spectral methods for constructing linear equal-
ity checks (10.2.1), their complexities |T (f )| for a given integer-valued function f (z),
and the optimal equality checks for basic computer instructions, standard hardware
components, and optimal checks for polynomials of several variables. Notice that
these tests can be effectively used in the case where f (z) is an integer for every
z ∈ {0, 1, . . . , 2m − 1}, and very few nonlinear functions have nontrivial checks.
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In this section, we shall generalize linear check methods to the case of noninte-
ger computations. These generalized checks will be constructed for such important
noninteger computations as exponential, logarithmic, and trigonometric computations
(see Table 10.8.1). For error detection in noninteger computations we shall use linear
inequality checks.

The method described in this section may be effectively used for the testing of
manufacturing acceptance of the program or the device computing the given numerical
function f (z). In the case of hardware implementation, this method may be used for
maintenance testing of the corresponding devices or memories where values of these
functions are stored.

10.7.2 Properties of Linear Inequality Checks

Let f (z) be a real number for every z ∈ {0, 1, . . . , 2m − 1}, z = (z1, . . . , zm), and
zi ∈ {0, 1}, and let ε ≥ 0 be some small constant.

For error detection, we shall use linear inequality checks

|
∑
τ∈T

f (z ⊕ τ) − d| ≤ ε, (10.7.1)

where d is a constant and T is a subgroup of the group Cm
2 of binary m-vectors. (Check

(10.2.1) is a special case of (10.7.1) discussed below with ε = 0.)
We shall discuss in this section, the cardinality |T (f, ε)| of a minimal check

subgroup T = T (f, ε) of Cm
2 for a given function f and ε ≥ 0. These results will

be the generalizations of the corresponding results from Section 10.2.2 (T (f, 0) =
T (f )).
Linear transform of variables

Let σ be an (m × m) binary nonsingular over GF (2) matrix, y = (y0, . . . , ym−1)
be a binary vector and

φ(z) = f (σz ⊕ y) (10.7.2)

for every z = (z0, . . . , zm−1). Then, by definition of T (f, ε), there exists a constant d

such that

|
∑

τ∈T (f,ε)

f (z ⊕ τ) − d | ≤ ε,

for every z, and we have from (10.7.2) that

|
∑

τ∈σ−1T (f,ε)

φ(z ⊕ τ) − d | = |
∑

τ∈T (f,ε)

φ(z ⊕ σ−1τ) − d |

= |
∑

τ∈T (f,ε)

f (σz ⊕ y ⊕ τ) − d | ≤ ε,
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where σ−1 is the inverse of σ over GF (2), σ−1T (t, ε) = {σ−1τ|τ ∈ T (f, ε)}, and
σ−1T (f, ε) is a check set for φ(z).

Notice that σ−1T (f, ε) is a minimal check set for φ(z), since |σ−1T (f, ε)| =
|T (f, ε)|. Thus, we have, that for any φ(z) defined by (10.7.2)

T (φ, ε) = σ−1T (f, ε), (10.7.3)

and check complexities are invariant under linear transforms of variables.
Linear transform of functions

Let f1, . . . , fr be some real-valued functions and ε1 ≥ 0, . . . , εr ≥ 0 be some
small constants

|
∑

τ∈T (fi,εi)

fi(z ⊕ τ) − di | ≤ εi, i = 1, . . . , r, (10.7.4)

and

φ(z) =
r∑

i=1

αifi(z). (10.7.5)

Denote

T =
r⊕

i=1

T (fi, εi) (10.7.6)

= {τ1 ⊕ · · · ⊕ τr|τ1 ∈ T (f1, ε1), . . . , τr ∈ T (fr, εr)}. (10.7.7)

Since T (fi, εi) s, by definition, is a subgroup of the group Cm
2 of binary m-vectors,

T is also a subgroup of Cm
2 .

Denote by Ti a subgroup isomorphic to the factor group T/T (fi, εi). Then, we have
from (10.7.4)–(10.7.6),

|
∑
τ∈T

φ(z ⊕ τ) −
r∑

i=1

αidi| = |
r∑

i=1

αi

∑
τ∈Ti

∑
τi∈T (fi,εi)

fi(z ⊕ τ ⊕ τi) −
r∑

i=1

αidi|

= |
r∑

i=1

αi

∑
τ∈Ti


 ∑

τi∈T (fi,εi)

f (z ⊕ τ ⊕ τi) − di


 |

≤
r∑

i=1

εi|αi||Ti|. (10.7.8)
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It follows from (10.7.8) that for the function φ(z) defined by (10.7.5),

T =
r⊕

i=1

T (fi, εi)

is a check set and

|T
(

φ,

r∑
i=1

εi|αi||Ti|
)

| ≤ |
r⊕

i=1

T (fi, εi)| ≤
r∏

i=1

|T (fi, εi)|. (10.7.9)

Thus, a check complexity of a linear combination of functions does not exceed the
product of check complexities of individual functions.
Convolution of functions

Denote

φ(z) =
∑
v∈G

f1(v)f2(z ⊕ v), G = Cm
2 . (10.7.10)

If

|
∑

τ∈T (fi,εi)

fi(z ⊕ τ) − di| ≤ εi, (i = 1, 2),

then we have from (10.7.10),

|
∑

τ∈T (f2,ε2)

φ(z ⊕ τ) − d2

∑
v∈G

f1(v)|

= |
∑

τ∈T (f2,ε2)

∑
v∈G

f1(v)f2(z ⊕ τ ⊕ v) − d2

∑
v∈G

f1(v)|

= |
∑
v∈G

f1(v)


 ∑

τ∈T (f2,ε2)

f2(z ⊕ v ⊕ τ) − d2


 |

≤ ε2

∑
v∈G

|f1(v)|. (10.7.11)

It follows from (10.7.11) that T (f2, ε2) is a check set for φ(z) and

|T
(

φ, ε2

∑
v∈G

|f1(v)|
)

| ≤ |T (f2, ε2)|. (10.7.12)
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By a similar proof, we can also show that

|T
(

φ, ε1

∑
v∈G

|f2(v)|
)

| ≤ |T (f1, ε1)|. (10.7.13)

Superposition of functions
Let z = (z0, . . . , zm−1) and f (z) = (f (0)(z), . . . , f (m−1)(z)) be a system of m

Boolean functions of m variables.
We say that τ = (τ0, . . . , τm−1) is a self-duality point for f (z), that is, f (i)(z ⊕ τ) =

1 ⊕ f (i)(z) for all i = 0, . . . , m − 1.
We denote by Di the set of all self-duality points for f (i), i = 1, . . . , m. (If

(1, . . . , 1) ∈ Di, then f (i) is self-dual.)
Suppose

ψ(z) = φ(f (z)), (10.7.14)

and for φ(z) we have for every z

|φ(z) + φ(z ⊕ (1, . . . , 1)) − d| ≤ ε, (10.7.15)

where d and ε are some constants.
Then, we have for every τ ∈ ⋂m

i=1 Di,

|ψ(z) + ψ(z ⊕ τ) − d| = |φ((f (z)) + φ(f (z ⊕ τ)) − d| (10.7.16)

= |φ(f (z)) + (φ(f (z ⊕ (1, . . . , 1))) − d| ≤ ε.

It follows from (10.7.16) that, for ψ(z) and every τ ∈ ∩m
i=1Di,

T (ψ, ε) = {(0, . . . , 0), τ}. (10.7.17)

We also note that for any function φ(z), (10.7.15) is satisfied for every ε ≥
0.5(maxz(φ(z) + φ(z ⊕ (1, . . . , 1))) − minz(φ(z) + φ(z ⊕ (1, . . . , 1)))), if we choose
d = 0.5(maxz(φ(z) + φ(z ⊕ (1, . . . , 1))) + minz(φ(z) + φ(z ⊕ (1, . . . , 1)))).

Example 10.7.1 Consider the following functions with m = 3, f (0)(z0, z1, z2) = z0,
f (1)(z0, z1, z2) = Maj(z0, z1, z2) = z0z1z2 ∨ z0z1z2 ∨ z0z1z2, where ∨ denotes log-
ical addition, f (2)(z0, z1, z2) = EXOR(z0, z1, z2) = z0 ⊕ z1 ⊕ z2, and φ(z) = az,
where z =∑3

i=1 zi2i−1.
Then, f (0), f (1), f (2) are self-dual (f (i)(z ⊕ (1, 1, 1)) = 1 ⊕ f (i)(z)), since

(10.7.15) is satisfied for ε = 0, d = 7a, and from (10.7.16) and (10.7.17) for ψ(z) =
φ(f (z)) we have ψ(z) + ψ(z ⊕ (1, 1, 1)) = 7a for every z = (z0, z1, z2).
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10.7.3 Check Complexities for Positive (Negative) Functions

Let f (z) be a positive function (f (z) ≥ 0 for every z ∈ {0, 1, . . . , 2m − 1}). By the
definition of T (f, ε), there exists a constant d such that

|
∑

τ∈T (f,ε)

f (z ⊕ τ) − d| ≤ ε, (10.7.18)

or

d − ε ≤
∑

τ∈T (f,ε)

f (z ⊕ τ) ≤ d + ε,

for every z ∈ {0, 1, . . . , 2m − 1}.
Then, we have from (10.7.18)

(d − ε)2m|T (f, ε)|−1 ≤
∑
Y∈G

f (Y )

=
∑

z∈G/T (f,ε)

∑
τ∈T (f,ε)

f (z ⊕ τ) (10.7.19)

≤ (d + ε)2m|T (f, ε)|−1,

where G is Cm
2 and G/T (f, ε) is a subgroup isomorphic to the factor group of G with

respect to T (f, ε) and |G/T (f, ε)| = 2m|T (f, ε)|−1.
Since log2 |T (f, ε)| is an integer, we have from (10.7.19)

m + �log2(d − ε) − log2

∑
Y∈G

f (Y )� ≤ log2 |T (f, ε)| (10.7.20)

≤ m + �log2(d + ε) − log2

∑
Y∈G

f (Y )�,

where �α� (�α�) is the smallest (greatest) integer ≥α (≤α).
For positive functions, d ≥ min{z|f (z)�=0} f (z), and we have from (10.7.20)

log2 |T (f, ε)| ≥ m + �log2( min
{z/f (z)�=0}

f (z) − ε) − log2

∑
Y∈G

f (Y )�. (10.7.21)

The bounds similar to (10.7.20) and (10.7.21) may be obtained also for negative
functions (f (z) ≤ 0 for every z).

We also note that the bounds in (10.7.20) and (10.7.21) are exact, and there exist
positive functions such that these bounds are reached (see Example 10.7.2).

Example 10.7.2 Let z =∑m−1
i=0 zi2i, where zi ∈ {0, 1}, N = 2m, ε = 0.5(20.5N −

2−N+1), and f (z) = zm−1(a + 2−z), where a ≥ 1.
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Then,

min
{z|f (z)�=0}

f (z) = a + 2−N+1,

∑
Y∈G

f (Y ) =
N−1∑

z=0.5N

(a + 2−z) = 0.5aN + 2−0.5N+1 − 2−N+1,

and by (10.7.21), for every a ≥ 1, m > 1,

log2 |T (f, ε)| ≥ m + �log2(a + 2−N+1 − 0.5(2−0.5N − 2−N+1))

− log2(0.5aN + 2−0.5N+1 − 2−N+1)� = 1.

Choose

d = a + 0.5(2−0.5N + 2−N+1).

Then, it follows from (10.7.20) for every a ≥ 1, m > 1,

m + �log2(a + 2−N+1) − log2(0.5aN + 2−0.5N+1 − 2−N+1)�
= m + �log2(a + 2−0.5N )

− log2(0.5aN + 2−0.5N+1 − 2−N+1)�
= log2 |T (f, ε)| = 1.

We note that for f (z) = zm−1(a + 2−z), N = 2m,

|f (z) + f (z ⊕ (0, 0, . . . , 0, 1)) − (a + 0.5(2−0.5N + 2−N+1))|
≤ 0.5(2−0.5N − 2−N+1),

for every z, and the bounds (10.7.20) and (10.7.21) are reached.

10.8 OPTIMAL INEQUALITY CHECKS AND ERROR-CORRECTING
CODES

The problem that we consider in this section is to construct, for a given function f (z)
and a given ε ≥ 0, nontrivial inequality checks (10.7.1). (For every function f (z)
there exists the trivial check with |T | = |G| = |Cm

2 |, d =∑z∈G f (z) and ε = 0.)
Let Ps(z) =∑s

i=0 aiz
i be a polynomial of the degree s, (s < m), which is the least-

absolute-error approximation for f (z) over the set {0, 1, . . . , 2m − 1}, with maximum
absolute error �s

�s = max
z∈{0,...,2m−1}

|�s(z)| = max
z∈{0,...,2m−1}

|f (z) − Ps(z)|. (10.8.1)
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Methods for the construction of the optimal polynomial approximation Ps(z) min-
imizing �s and the estimations on the error �s for the givenf (z) are well known (237,
344, p. 86).

Suppose that we have already found a check set T and a constant d such that
Ps(z) satisfies the equality check (10.2.1). Then, we have, for f (z) = Ps(z) + �s(z),
(|�s(z)| ≤ �s) for every z ∈ {0, . . . , 2m − 1}

|
∑
τ∈T

f (z ⊕ τ) − d| = |
∑
τ∈T

Ps(z ⊕ τ) − d +
∑
τ∈T

�s(z ⊕ τ)| (10.8.2)

= |
∑
τ∈T

�s(z ⊕ τ)| ≤ �s|T |.

Thus, it follows from (10.8.2) that the check set T and constants d and ε satisfy
the inequality check (10.7.1), if T and d satisfy the equality check (10.2.1) for the
polynomial approximation Ps(z), and

�s|T | ≤ ε. (10.8.3)

For the construction of the check set T and the constant d satisfying linear equal-
ity check (10.2.1) for polynomials Ps(z), we may use the results from the previous
Section 10.4.

Let V (m, t) be a maximal binary linear error-correcting code with code words of
length m and distance t. Recall that code words of V (m, t) are m-bit binary vectors
and a Hamming distance between any two vectors from V (m, t) is at least t.

If V⊥(m, t) is the dual (orthogonal) code to V (m, t) (347), then,

V⊥(m, t) = {τ = (τ0, . . . , τm−1) ∈ G|
m−1⊕
i=0

τizi = 0,

for every z = (z0, . . . zm−1) ∈ V (m, t)} G = Cm
2 .

Methods for constructing V (m, t), V⊥(m, t), and for estimating their cardinalities
may be found in Reference 347.

It has been shown in Section 10.7, (see Table 10.5.1) that if

Ps(z) =
s∑

i=0

aiz
i, as �= 0,

and z ∈ {0, 1, . . . , 2m − 1}, then

∑
τ∈V⊥(m,s+1)

Ps(z ⊕ τ) − d = 0, (10.8.4)
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and

d = |V (m, s + 1)|−1
∑
z∈G

Ps(z) = |V (m, s + 1)|−1
s∑

i=0

ai(i + 1)−1

×
i∑

ν=0

(
i + 1

ν

)
2(i+1−ν)mBν,

where Bν stands for Bernoulli numbers.
Thus, we have from (10.8.2–10.8.4)

|
∑

τ∈V⊥(m,s+1)

f (z ⊕ τ) − d | ≤ �s|V⊥(m, s + 1)|, (10.8.5)

and the dual code V⊥(m, s + 1) is the check set for f (z) if �s|V⊥(m, s + 1)| ≤ ε.
Thus, to construct the optimal inequality check

|
∑
τ∈T

f (z ⊕ τ) − d | ≤ ε, z ∈ G = Cm
2 ,

for a given function f (z) and ε ≥ 0 minimizing |T |, we have to approximate f (z) by
a polynomial Ps(z) of a minimal degree s, (s ≤ m), with the minimum absolute error
�s (see (10.8.1)) such that

�s|V⊥(m, s + 1)| = 2m(V (m, s + 1))−1�s ≤ ε

and the best equality check for the approximating polynomial Ps(z) is the best in-
equality check for f (z).

Example 10.8.1 Let m = 24, z ∈ {0, 1, . . . , 224 − 1}, z = (z0, . . . , z23), and

f (z) = exp(−(log2 e)2−24z),

where e is the base of natural logarithms, and ε = 10−6.
The function f (z) may be approximated by the polynomial P7(z) of degree 7 with

the maximum absolute error �7 = 2 × 10−10 (237).
Choose the (24, 12)-Golay code V (24, 8) with the distance 8 as V (m, s + 1) =

V (24, 8) (347).
Then,

|V (24, 8)| = |V⊥(24, 8)| = 212, �7|V⊥(24, 8)| ≤ 2 × 10−10 × 212 < 10−6,

and T (f, 10−6) = V (24, 8) = 212.
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FIGURE 10.8.1 Function �s|V⊥(m, s + 1)| for f (y) = 100.25y.

10.8.1 Error Detection in Computation of Numerical Functions

We note that for the great variety of analytical functions, �s|V⊥(m, s + 1)| decreases
very rapidly with the increase of the degree s, (s < m) of an approximating polyno-
mial.

Denoting y = 2−mz, 0 ≤ y < 1, an example of the behavior of �s|V⊥(m, s + 1)|
is given by Fig. 10.8.1 for f (y) = 100.25y. The maximum absolute errors �s for this
example are taken from Reference 237.

Using Varshamov bound (347) for |T | = |V⊥(m, s + 1)|, we have from (10.8.5),
sufficient condition for the minimal degree s of the approximating polynomial Ps(z)

�s

s−1∑
j=0

(
m − 1

j

)
≤ ε. (10.8.6)

For estimating �s, we may use the Taylor expansion for f (y), (y = 2−mz),

f (y) =
s∑

i=0

(i!)−1f (i)
(

1

2

)(
y − 1

2

)i

(10.8.7)

+((s + 1)!)−1f (s+1)(θ(y))

(
y − 1

2

)s+1

,
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where f (i+1)(y) is the (i + 1)th derivative of f (y) and 0 ≤ θ ≤ 1. Then, we have from
(10.8.7)

�s = max
y∈[0,1)

|�s(y)| (10.8.8)

≤ max
y∈[0,1)

|(s + 1)!)−1f (s+1)(θ(y))

(
y − 1

2

)s+1

|

≤ ((s + 1)!)−12−(s+1) max
y∈[0,1)

|f (s+1)(y)|.

Thus, from (10.8.6) and (10.8.8)

((s + 1)!)−12−(s+1)( max
y∈[0,1)

|f (s+1)(y)|)
s−1∑
j=0

(
m − 1

j

)
≤ ε, (10.8.9)

and then there exists d such that

|
∑

τ∈V⊥(m,s+1)

f (y ⊕ τ) − d | ≤ ε.

Formula (10.8.9) provides us with a good upper bound for the cardinality |T (f, ε)|
of the minimal check set for the given f, ε.

Let s(f, ε) be the minimal s satisfying (10.8.9). Then, by using the Varshamov–
Gilbert bound, we have

|T (f, ε)| ≤
s(f,ε)−1∑

j=0

(
m − 1

j

)
. (10.8.10)

It follows, also, from (10.8.9) that simple inequality checks may be constructed
only for “smooth” functions f (y), such that maxy∈[0,1) |f (s+1)(y)| increases very
slowly (or not at all) with the increase of s.

In Table 10.8.1, the minimal s satisfying �s|V⊥(m, s + 1)| ≤ ε is given for several
analytical functions for m = 23 and ε = 5 × 10−3. The table also gives corresponding
approximation errors �s taken from Reference 344, the parameters (m, k, t) of the
codes V (m, s + 1), and check complexities |T |. Thus, we see from Table 10.8.1 that
many important analytical functions have very simple inequality checks of the type
(10.7.1).

Example 10.8.2 Consider an optimal inequality check for the function

f (y) = y−0.5 sin
π

2
y0.5,
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TABLE 10.8.1 Optimal Inequality Checks for Some Numerical Computations for
m = 23, ε = 5 × 10−3, y = 2−23z, z∈{0, 1, . . . , 223 − 1}.

N Function s �s × 10−7 log2 |T | (m, k, t)

1. ey 7 2 12 (23, 11, 8)
2. 100.25y 5 17 10 (23, 13, 6)
3. y100.25y 6 17 11 (23, 12, 7)
4. ln(1 + y) 6 15 11 (23, 12, 7)
5. ln(1 − ay), a = 1 − 0.5

√
2 5 4.1 10 (23, 13, 6)

6. y ln(1 − ay), a = 1 − 0.5
√

2 6 4.1 11 (23, 13, 7)
7. y2 ln(1 − ay), a = 1 − 0.5

√
2 7 4.1 12 (23, 11, 8)

8. sin y 7 10 12 (23, 11, 8)
9. sin π

2 y 7 11 12 (23, 11, 8)
10. sin π

4 y 5 5 10 (23, 13, 6)
11. y sin π

4 y 6 5 11 (23, 12, 7)
12. y2 sin π

4 y 7 5 12 (23, 11, 8)
13. y−1 sin π

4 y 4 12 9 (23, 14, 5)
14. y−1/2 sin π

4 y1/2 1 31 × 102 1 (23, 22, 2)
15. cos π

4 y 4 99 9 (23, 14, 5)
16. cos π

4 y1/2 1 1.92 × 104 1 (23, 22, 2)
17. cos π

2 y1/2 4 0.5 9 (23, 14, 5)
18. y cos π

2 y1/2 5 0.5 10 (23, 13, 6)
19. y2 cos π

2 y1/2 6 0.5 11 (23, 12, 7)
20. y3 cos π

2 y1/2 7 0.5 12 (23, 11, 8)
21. y1/2 cot π

4 y1/2 1 1.2 × 104 1 (23, 22, 2)
22.

(
π

2 − sin−1 y
)√

1 − y 3 5 × 102 6 (23, 17, 4)
23. cosh

√
y 5 10−2 10 (23, 13, 6)

24. y cosh
√

y 6 10−2 10 (23, 12, 7)
25. y2 cosh

√
y 7 10−2 12 (23, 11, 8)

s—Minimal degree of an approximating polynomial
�s × 10−7—Approximating error
log2 |T |—Complexity of a check
(m, k, t)—Parameters of the chosen code V (m, s + 1)
In this table, m is the length of the code, k is the number of information bits, and t is the distance for
V (m, t = s + 1), |V (m, s + 1)| = 2k .

with ε = 5 × 10−3, where y = 2−23z, z ∈ {0, 1, . . . , 223 − 1}. This function can be
approximated by the polynomial P2(y) of the degree 2 (344)

y−0.5 sin
π

2
y0.5 = P2(y) + �2(y),

where

P2(y) = 0.07287y2 − 0.64338y + 1.57064,
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and

maxy�2(y) = �2 ≤ 14 × 10−5.

Choose (23, 18) code with the distance 3 and the check matrix H with 5 rows as
V (m, s + 1) = V (23, 3) (347).

Recall that code words of V (23, 3) form the null space for H and V⊥(23, 3) is the
linear span of H .

Then, |V⊥(23, 3)| = 25 and �2|V⊥(23, 3)| ≤ ε = 5 × 10−3.
For the constant d, we have

d = 2−18
∑

y

P2(y) = 40.74372.

Thus, we finally have the following optimal inequality check for the given function:

|
∑
τ∈T

(2−23(z ⊕ τ))−0.5 sin
(π

2
2−3(z ⊕ τ)0.5

)
− 40.7437| ≤ 5 × 10−3,

for every z ∈ {0, 1, . . . , 223 − 1}, where T = V⊥(23, 3) is the set of all 32 linear mod
2 combinations of the rows of H .

Notice also that all the results given above may be generalized to the case when
z is represented in a nonbinary form. If z is represented as a q-ary m-vector z =
(z0, . . . , zm−1), zi ∈ {0, 1, . . . , q − 1}, the symbol ⊕ stands for mod q addition and
Vq(m, s + 1) is the maximal linear code in m-dimensional space of q-ary vectors with
the Hamming distance (s + 1) (347).

We conclude this section by noticing that all the checks considered above can be
represented as a convolution over GF (2)

|
∑

τ

a(τ)f (z ⊕ τ) − d| ≤ ε, (10.8.11)

where a(τ) ∈ {0, 1} for every τ. We note that the check complexity (number of nonzero
values of a(τ)) may sometimes be essentially decreased if we use checks with a(τ) ∈
{0, ±1} for every τ.

For example, if

f (z) = zt + b1

zt + b2
, z ∈ {0, 1, . . . , 2m − 1}, b1 ≥ b2 > 0,

then we may construct the following check:

|f (z) − f (z ⊕ (0, 0, . . . , 0, 1))| ≤ b1 − b2

b2(b2 + 1)
. (10.8.12)
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The problem with constructing optimal checks (10.8.11) with a(τ) ∈ {0, ±1} for
the given f (z) seems to be difficult.

10.8.2 Estimations on Probabilities of Error Detection for Inequality
Checks

As in the previous sections, we shall use the additive way of describing the influ-
ence of errors, that is, by the error e in a program or device computing f (z) =
f (z0, . . . , zm−1), zi ∈ {0, 1}, we mean the function e(z) = e(z0, . . . zm−1) such that
as a result of the error a program or device computes f (z) + e(z).

We also suppose that for every T ⊆ {0, . . . , 2m − 1}, either
∑

z∈T e(z) = 0 or
|∑z∈T e(z)| > 2ε. The last condition can be used for the choice of ε for practical
applications.

The detecting capability of the linear inequality checks described in Sections 10.7.2
and 10.8.1 depends on a specific implementation of a computational process for
f (z). We shall consider below three widely used types of computational processes—
polynomial approximationsf (z) ∼= P(z), rational approximationsf (z) ∼= P(z)/Q(z),
and continued-fraction approximations

f (z) ∼= P1(z)/Q1(z) + P2(z)/Q2(z) + · · · + Pt(z)/Qt(z), (10.8.13)

where P1, . . . , Pt, Q1, . . . , Qt represent polynomials (see 344).
By an error of multiplicity l ≥ 1, we mean any error resulting in the replacement in

a program computing f (z) of l coefficients in some of these polynomials by constants
c1, . . . , cl. We assume that every coefficient of these polynomials is stored in the
corresponding M-bit memory cell, thus, the binary representation of constants cr,
r = 1, . . . , l each contains M bits.

Suppose that (10.7.1) is satisfied for f (z). Then, for the error e such that

|
∑
τ∈T

e(τ)| > 2ε,

we have |∑τ∈T (f (z ⊕ τ) + e(z ⊕ τ)) − d| > ε, and this error will be detected by the
inequality check (10.7.18). Thus, if an error e cannot be detected, then

∑
τ∈T e(z ⊕ τ)

= 0 for every z. The last condition may be used for estimating the error-detecting
capability of inequality checks. We may verify (10.7.1) for any given test pattern z.

We now describe the error-detecting capability in this case.
Denote the fraction of errors of the multiplicity l, which cannot be detected by

η̂(l). (If the number of all possible errors of the multiplicity l tends to infinity, then
1 − η̂(l) tends to the probability of the detection of errors with the multiplicity l.)

If the error e is a unidirectional error (i.e., e(z) ≥ 1 for every z, or e(z) ≤ 0 for
every z), and for the given test pattern z, there exits τ ∈ T such that e(z ⊕ τ) �= 0,
then η̂(l) = 0 for every l, since for unidirectional errors

∑
τ∈T e(z ⊕ τ) �= 0.

Since for polynomial, rational, or continued-fraction approximations, any single
error is a unidirectional error, all single errors are detected.
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For any error e of a multiplicity l > 1 and for any type of the approximation
for every c1, . . . , cr−1, cr+1, . . . , cl, there exits at most one cr, such that∑

τ∈T e(z ⊕ τ) = 0 for the given test pattern z.
Since the binary representation of cr contains M-bits, we have for η(l)

η(l) ≤ (1 − δl,1)(2M − 1)−1, (10.8.14)

where δl,1 is the Kronecker symbol.
Formula (10.8.14) illustrates the good error-detecting capability of inequality

checks for errors in coefficients in the case of polynomial, rational, or continued-
fraction approximations.

As a disadvantage of these checks, we note that if we use for the computation of
f (z) an expansion in the orthogonal polynomials Pi(z) (e.g., Chebyshev, Legendre,
or Hermite polynomials), that is,

f (z) ∼=
s∑

i=1

aiPi(z),

(where the degree of Pi(z) is i), then for an error of the multiplicity l in coefficients
ai1 , . . . , ail we have

e(z) =
l∑

r=1

(air − cr)Pir (z), (air �= cr, r = 1, . . . , l).

If i1 < i2 < · · · < il ≤ s, we have from (10.8.4) for every given test z

∑
τ∈T

e(z ⊕ τ) =
∑

τ∈V⊥(m,s+1)

e(z ⊕ τ) =
l∑

r=1

(air − cr)
∑

τ∈V⊥(m,s+1)

Pir (z ⊕ τ) = 0,

and this error cannot be detected by (10.7.1). Thus, the inequality checks are inefficient
for computations by expansions in orthogonal polynomials.

For a further improvement of the error-detecting capability of linear inequality
checks, we may verify (10.7.1) for several test patterns z, which, however, causes
increasing of the time required for testing.

By an output error e of the multiplicity l, we mean any function e(z) different from
0 at l points (i.e., the multiplicity of the output error in computing the function f is the
number of distorted values f (z)). This definition is natural if errors in computing f (z)
are independent for different z as, for example, in the case when f (z) is information
stored in a memory cell whose address is z.

An output error e(z) cannot be detected by (10.7.1) if, for every z,∑
τ∈V⊥(m,s+1)

e(z ⊕ τ) =
∑
τ∈G

e(τ) = 0, G = Cm
2 .
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Thus, if the computed values of f (z) + e(z) are stored in M-bit memory cells, then
we have, as before, for every l > 1,

η̂(l) ≤ (2M − 1)−1.

We also note that all results in this section have been obtained for the case where
fault-free programs or devices compute exact values of functions f (z), but for many
practical cases our program or devices computes f (z) only with some finite accuracy
δ. Hence, all the previous results remain valid only for δ � ε, and the proposed error-
detection method may be effectively used for functions with good least-absolute-error
polynomial approximations.

10.8.3 Construction of Optimal Systems of Orthogonal Inequality
Checks

It follows from the previous section that with one inequality check, some multiple
errors with ‖e‖ > 1 are not detected and even single errors with ‖e‖ = 1 are not
located. (By error location we mean a procedure identifying all z such that e(z) �= 0.)

Similarly, to the case of equality checks (Section 10.2.6), to improve an error-
detecting capability and to provide for error location, we will introduce systems of
orthogonal inequality checks.

The system

|
∑
τ∈Ti

f (z ⊕ τ) − di | ≤ ε, (i = 0, . . . , n − 1), (10.8.15)

of n inequality checks is orthogonal iff for any i, j ∈ {0, 1, . . . , n − 1}

Ti ∩ Tj = (0, 0, . . . , 0) = 0m, (i �= j). (10.8.16)

Example 10.8.3 Suppose that we have a ROM containing the value f (z) in a cell
whose address is z, where

f (y) = π

4
y cot

π

4
y, and y = 2−23z, z ∈ {0, 1, . . . , 223 − 1}, (m = 23).

Let us construct two orthogonal inequality checks with e = 5 × 10−3 for f (y).
The function f (y) can be approximated by the polynomial P1(y) of the degree 1

(344)

π

4
y cot

(π

4
y
)

= P1(y) + �1(y),

where

P1(y) = 1.0012 − 0.2146y,
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and

maxy�1(y) = �1 ≤ 1.2 × 10−3.

Choose

T1 = V⊥
1 (23, 2) = {023, 123}

and

T2 = V⊥
2 (23, 2) = {023, 10121, 01121, 11021}.

(We denote ai = aa · · · a︸ ︷︷ ︸
i

for a ∈ {0, 1}).

Then, T1 ∩ T2 = 023, the condition (10.8.3) is satisfied, and d1 =
|T1|2−m

∑
y P1(y) = 1.7878, d2 = |T2|2−m

∑
y P1(y) = 2d1 = 3.5756.

Thus, we finally have the following two orthogonality checks for function consid-
ered

|π
4

2−23z ·cot
(π

4
2−23z

)
+ π

4
2−23(z⊕123) · cot

(π

4
2−23(z⊕123)

)
−1.7878| ≤ 5×10−3,

|π
4

2−23z · cot
(π

4
2−23z

)
+ π

4
2−23(z ⊕ 10121) · cot

(π

4
2−23(z ⊕ 10121

)
+π

4
2−23(z ⊕ 01121) · cot

(π

4
2−23(z ⊕ 01121)

)
+π

4
2−23(z ⊕ 11021) · cot

(π

4
2−23(z ⊕ 11021)

)
− 3.5756| ≤ 5 × 10−3.

Consider now the detection and location of errors by a system of n orthogonal
inequality checks.

For an error e resulting in the replacement of f (z) by f (z) + e(z) for all z, the
syndrome S(e)(z) = {S(e)

0 (z), . . . , S(e)
n−1(z)} is defined as a binary vector such that

S
(e)
i (z) =

{
0, if |∑τ∈Ti

{f (z ⊕ τ) + e(z ⊕ τ)} − di| ≤ ε,

1, otherwise, (i = 0, . . . , n − 1).
(10.8.17)

From now on, we suppose that

min
{z|e(z)�=0}

|e(z)| > 2ε. (10.8.18)
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For a single error, e(z) = δz,te(t), where t ∈ z ⊕ Ti for some z ∈ G = Cm
2 and

i ∈ {1, . . . , n}, δz,t is the Kronecker delta, ‖e‖ = 1, we have

|
∑
τ∈Ti

e(z ⊕ τ)| = |e(t)| > 2ε. (10.8.19)

Thus, for a single error e(z) = δz,te(t), t ∈ z ⊕ Ti, we have from (10.8.16) and
(10.8.17), S

(e)
i (z) = 1, and this error is detected.

Similarly, to detection and correction of errors by systems of orthogonal equality
checks (see discussions in Section 10.2.6), we shall consider two methods of error
detection and/or error location by the previously computed binary syndrome vector
S(e)(z) = (S(e)

0 (z), . . . , S(e)
n−1(z)) in (10.8.17), that is, memoryless (combinational) and

memory-aided (sequential) decoding.
In the case of memoryless decoding, for a given z, we first compute S(e)(z) and

then by an analysis of S(e)(z), in the case of error detection, we decide whether there
exists τ ∈ ∪n−1

i=0 Ti, such that e(z ⊕ τ) �= 0, and in the case of error location we decide
whether e(z) �= 0.

In the case of memory-aided decoding, for every given z, we first compute

S(e)(z) =
{

S(e)(z ⊕ τ)|τ ∈
n−1⊕
i=0

Ti

}
,

where

n−1⊕
i=0

Ti = {t0 ⊕ · · · ⊕ tn−1|ti ∈ Ti, i = 0, . . . , n − 1},

and, then, by the analysis of the set S(e)(z) of syndromes, in the case of error detection,
we decide whether there exists τ ∈⊕n−1

i=0 Ti, such that e(z ⊕ τ) �= 0.
In the case of error location, we compute the error locator

l(t) = 1 − δ0,e(t), (10.8.20)

for all t ∈ z ⊕⊕n−1
i=0 Ti, where

∑
s∈G

l(s) = ‖e‖, G = Cm
2 .

Notice that these definitions of error detection and error location by memory-
less and memory-aided decoding are very similar to the corresponding definitions of
error detection and error correction by systems of orthogonal equality checks (see
Section 10.2.6).
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The main difference is that in the case of inequality checks, for every z syndrome,
S(e)(z)is a binary vector, and instead of computing the error e(z), we compute the
error locator l(z) as in (10.8.20).

The following results have been proven in Section 10.2.6 for n orthogonal equality
checks.

For memoryless decoding

1. All errors with the multiplicity at most n are detected, and there exist errors
with the multiplicity n + 1 that cannot be detected.

2. All errors with the multiplicity at most �n/2� (�a� is the greatest integer less or
equal to a) are corrected, and there exist errors with the multiplicity �n/2� + 1
that cannot be corrected.

For memory-aided decoding

1. All errors with the multiplicity at most 2n − 1 are detected, and there exist
errors with the multiplicity 2n that cannot be corrected.

2. All errors with the multiplicity at most 2n−1 − 1 can be corrected, and there
exist errors with the multiplicity 2n−1 that cannot be corrected.

We will see in the next section that for memoryless decoding, the error-detecting
and the error-locating capabilities of equality and inequality checks are equal.

For memory-aided decoding, the error-detecting capabilities of equality and in-
equality checks are equal, but the error-locating capability of inequality checks is less
than the error-correcting capability of equality checks.

10.8.4 Error-Detecting and Error-Correcting Capabilities of Systems
of Orthogonal Inequality Checks

In this section, we will consider the error-detecting and error-locating capabilities of
a system of n orthogonal inequality checks (10.8.15) for the cases of memoryless and
memory-aided decoding.

Theorem 10.8.1 For any system of n orthogonal inequality checks, we have for
memoryless decoding

1. All errors with the multiplicity at most n are detected, and all those with the
multiplicity at most �n/2� are located.

2. There exist errors with the multiplicity n + 1 and �n/2� + 1, which are not
detected and not located, respectively.

The proof of this theorem is similar to the corresponding proof of Theorem 10.2.4
for systems of equality checks.
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For error locator (10.8.20), we have for memoryless decoding

l(z) =
{

0, if ‖S(e)(z)‖ ≤ �n/2�,
1, if ‖S(e)(z)‖ > �n/2�, (10.8.21)

and the location of errors by memoryless decoding may be implemented by the fol-
lowing 1-step majority decoding procedure:

1. If ‖S(e)(z)‖ = 0, then e(t) = 0 for all t ∈ ∪n
i=1(z ⊕ Ti).

2. If 1 ≤ ‖S(e)(z)‖ ≤ �n/2�, then e(z) = 0, but there exists t �= z such that t ∈⋃n−1
i=0 (z ⊕ Ti) and e(t) �= 0.

3. If ‖S(e)(z)‖ > �n/2�, then e(z) �= 0.

We also note that for memoryless decoding, a high percentage of errors with
the multiplicity greater than n, (�n/2�) are detected (located). To illustrate this, we
assume, as before, that for every T ⊆ {0, 1, . . . , 2m − 1} either

∑
τ∈T e(t) = 0 or

|∑τ∈T e(t)| > 2ε.
For any error e with the multiplicity l, such that e(z) �= 0, there exists zij ∈ z ⊕ Ti,

i = 0, . . . , n − 1, such that e(zij) �= 0, (j = 1, . . . , li,
∑n−1

i=0 (li − 1) ≤ l − 1), and for
any e(zij), (i = 0, . . . , n − 1, j = 1, . . . li − 1), there exists at most one e(zi, li) such
that

∑
τ∈Ti

e(z ⊕ τ) =
li∑

j=1

e(zij) =
li−1∑
j=1

e(zi,j) + e(zi,li ) = 0, (10.8.22)

for i = 0, . . . , n − 1.
If M is the number of bits in the binary representation of f (z) (or e(z) = 0), then

the fraction of errors satisfying (10.8.22) for any given i ∈ {0, . . . n − 1} is at most
(2M − 1)−1.

Thus, in view of the orthogonality of checks and Theorem 10.8.1, we have for the
fractions η̂d(l) or η̂L(l) of errors with the multiplicity l, which cannot be detected or
located by n orthogonal checks for memoryless decoding

η̂d(l) ≤
{

0, l ≤ n,

(2M − 1)−n, l > n
(10.8.23)

η̂L(l) ≤
{

0, l ≤ �n/2�,
(2M − 1)−�n/2�, l > �n/2�.

(10.8.24)

If the original function f (z) is computed by a polynomial approximation f (z) ∼=
P(z), or by a rational approximation f (z) ∼= P(z)/Q(z), or by a continued-fraction
approximation f (z) = P1(z)/Q1(z) + P2(z)/Q2(z) + · · · + Pt(z)/Qt(z), and an er-
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ror with the multiplicity l results in the replacement of l coefficients in some of these
polynomials by constants (see Section 10.8.2), then, using a similar proof, we have
for errors in the coefficients in these polynomials

η̂d(l) < (2M − 1)−n for all l > 1,

η̂L(l) ≥ (2M − 1)−�n/2�, for all l > 1, (10.8.25)

η̂d(1) = ηL(1) = 0,

where, in this case, M is the number of bits in the binary representation of the coef-
ficients.

We shall now consider the error-detecting and error-locating capabilities of a sys-
tem of n orthogonal inequality checks for the case of memory-aided decoding.

For any binary vector σ = (σ0, . . . , σn−1) ∈ {0, 1}n, we denote

M(σ) =
n−1⊕
i=0

σi(Ti − 0m) =
{

n−1⊕
i=0

σiτi

}
,

where τi ∈ Ti − 0m, σiτi = τi, if σi = 1, and σiτi = 0m, if σi = 0.
Utilizing conditions similar to those described in Section 10.2.6, we also require

that for any α, β ∈ {0, 1}n, (α �= β),

M(α) ∩ M(β) = ∅, (10.8.26)

where ∅ is the empty set.

Theorem 10.8.2 For any system of n inequality checks satisfying (10.8.26), we have
for memory-aided decoding

1. All errors with the multiplicity at most 2n − 1 are detected.

2. There exist errors with the multiplicity 2n that are not detected.

3. All errors with the multiplicity at most n are located.

4. There exist errors with the multiplicity n + 1 that are not located.

Proof. Proofs for (1) and (2) are similar to the proof of Theorem 10.2.5.

To prove (3) we note that for any two errors e1 and e2 with different locators
(see (10.8.20)), there exists z ∈ Cm

2 such that

e1(z) = 0, |e2(z)| > 2ε. (10.8.27)

www.it-ebooks.info

http://www.it-ebooks.info/


OPTIMAL INEQUALITY CHECKS AND ERROR-CORRECTING CODES 495

Denote

Lj(σ) =




1, if there exists τσ ∈ z ⊕ M(σ)

such that |ej(z ⊕ τσ)| > 2ε,

0, otherwise,

(10.8.28)

where j = 1, 2.
Since ‖e1‖, ‖e2‖ ≤ n, we have

|{σ|L1(σ) = L2(σ) = 1}| < n.

Thus, there exist α, β ∈ Cn
2 and i ∈ {0, 1, . . . , n − 1} such that




M(α) = M(β) ⊕ {Ti − 0m},
L1(α) = L2(α) = 0,

L1(β) �= L2(β).

(10.8.29)

Then, by (10.8.28) and (10.8.29), there exists τβ ∈ z ⊕ M(β), such that we have
for locators l1 and l2 of e1 and e2

l1(z ⊕ τβ) �= l2(z ⊕ τβ). (10.8.30)

For any τ ∈ Ti − 0m, it follows from (10.8.29) that

e1(z ⊕ τβ ⊕ τ) = e2(z ⊕ τβ ⊕ τ) = 0, (10.8.31)

and we have from (10.8.29) and (10.8.31)

∑
τ∈Ti

ej(z ⊕ τβ ⊕ τ) = ej(z ⊕ τβ), j = 1, 2. (10.8.32)

Thus, we finally have from (10.8.30) and (10.8.32)

S
(e1)
i (z ⊕ τβ) �= S

(e2)
i (z ⊕ τβ).

Consequently, all errors with the multiplicity at most n are located.
To prove (4), we now construct two errors e1 and e2 such that ‖e1‖ = n + 1,

‖e1‖ �= ‖e2‖, but S(e1)(z) = S(e2)(z) for all z ∈ G = Cm
2 .

Let us fix arbitrarily τi ∈ Ti − 0m, (i = 1, . . . , n − 1), and set

e1(z) =
{

3ε, z ∈ {0m, τ0, . . . , τn−1},
0, otherwise,

(10.8.33)
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e2(z) =
{

3ε, z ∈ {τ0, . . . , τn−1},
0, otherwise.

Then, l1(0m) = 1, l2(0m) = 0, where e1(z) and e2(z) are locators of e1(z) and e2(z),
‖e1‖ = n + 1, ‖e2‖ = n, and we have

S(e1)(z) = S(e2)(z) (10.8.34)

=




1m, z ∈ {0m, τ0, . . . , τn−1},
0i−110n−i, z ∈ {Ti − 0m − τi}

∪⋃j �=i{τj ⊕ {Ti − 0m − τi}},
0i−110j−i−110n−i−j, z = τi ⊕ τj,

0n otherwise,

and errors e1 and e2 defined by (10.8.33) cannot be located.
Theorems 10.8.1 and 10.8.2 and formulas (10.8.22–10.8.24) illustrate the very high

error-detecting and error-locating capabilities of systems of orthogonal inequality
checks.

We note that proofs of Theorems 10.8.1 and 10.8.2 may easily be generalized to the
case when the group G of all inputs z is an arbitrary (not necessarily Abelian) finite
group (e.g., z is represented in decimal form and ⊕ is the componentwise addition
mod 10 of decimal numbers, or z is a permutation and ⊕ is the superposition of
permutations).

The error-detecting and error-locating capabilities of a system of n orthogonal
inequality checks do not depend on the group G or on the choice of the checking
subgroups T0, . . . , Tn−1.

The error-detecting capability increases exponentially on transition from memo-
ryless decoding to memory-aided decoding, as in the case of equality checks (see
Section 10.2.6), whereas the error-locating capability of inequality checks increases
only by the factor of two with this transition.

Note also that for inequality checks, the error-detecting capability of memoryless
decoding is equal to the error-locating capability of memory-aided decoding.

Using the approach described in Sections 10.3 and 10.4, it can be shown that
the hardware complexity of n inequality checks (defined as the minimum number of
2-input gates necessary to implement networks for the syndrome computation and
for the decoding of the syndrome) increases about linearly with increasing n for
memoryless decoding and exponentially for memory-aided decoding. For memory-
aided decoding, n-bit memory cells are needed for storing a set of syndromes

{
S(e)(z ⊕ τ)|τ ∈

n−1⊕
i=0

Ti

}
,
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where

S(e)(z ⊕ τ) = (S(e)
0 (z ⊕ τ), . . . , S(e)

n−1(z ⊕ τ)), S
(e)
i (z ⊕ τ) ∈ {0, 1}.

For error detection, the syndromes have to be computed for every z ∈ G/
⊕n−1

i=0 Ti,
and for error location for all z ∈ G. Thus, for memory-aided decoding, the error-
locating procedure is at least

∏n−1
i=0 |Ti| times more complex than the error-detecting

procedure.
Combining these results with Theorems 10.8.1 and 10.8.2, we note that it is ex-

pedient, from the practical point of view, to use memoryless decoding for error
location (all errors with the multiplicity at most �n/2� are located, and e(z) �= 0
iff ‖S(e)(z)‖ > �n/2�), and to use memory-aided decoding for error detection (all
errors with the multiplicity at most 2n − 1 are detected, and e(z ⊕ τ) = 0, for all
τ ∈⊕n−1

i=0 Ti iff S(e)(z ⊕ τ) = 0 for all τ ∈⊕n−1
i=0 Ti).

Consider now memoryless and memory-aided decoding for the special case of two
orthogonal inequality check (n = 2), which is of a practical interest.

It follows from Theorems 10.8.1 and 10.8.2 that in this case

1. All single and double errors are detected and all single errors are located by the
memoryless decoding.

2. All single, double, and triple errors are detected, and all single and double errors
are located by the memory-aided decoding.

For memoryless decoding, we have in this case

1. If ‖S(e)(z)‖ = 0, then e(t) = 0 for all t ∈ {z ⊕ T1} ∪ {z ⊕ T2}.
2. If ‖S(e)(z)‖ = 1, then e(z) = 0, but there exists t ∈ {z ⊕ T1} ∪ {z ⊕ T2}, t �= z,

such that l(t) = 1.

3. If ‖S(e)(z)‖ = 2, then |e(z)| > 2ε and l(z) = 1.

Suppose that |T1| ≥ |T2|. Then, for detection of all single and double errors by
memoryless decoding, it is sufficient to compute syndromes S(e)(z) only for all z ∈
G/T1, where G/T1 is the set of coset representatives of the subgroup T1. Note also
that if we compute S(e)(z) for all z ∈ G, then we can locate all single errors by
memoryless decoding and detect all single, double, and triple errors by memory-aided
decoding.

Applications of the error-detecting and error-locating techniques described in this
section to memory testing will be discussed in Section 10.9.
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10.9 ERROR DETECTION IN COMPUTER MEMORIES BY LINEAR
CHECKS

10.9.1 Testing of Read-Only Memories

In this section we consider the problems of error detection, location, and correction
for Read-Only Memories by systems of orthogonal checks. It is well known that
memory testing is one of the bottlenecks in the computer industry.

The errors we shall consider may result from a wrong masking in ROM, faults in
cells and the address decoder, and bridging between cells and wrong decoding of an
address.

To solve these problems, we shall use the techniques developed in Sections 10.2
and 10.7. These techniques are based on error-correcting codes, Walsh transforms,
and least-absolute-error polynomial approximations.

Let z = (z0, . . . , zm−1), (zi ∈ {0, 1}) be an address of the cell containing the data
f (z). We denote by G the set of all binary m-vectors, and we shall consider G as a
group with respect to the operation ⊕ of componentwise addition mod 2.

In Section 10.2, the methods of error detection based on linear equality checks,

∑
τ∈Ti

f (z ⊕ τ) − di = 0, (10.9.1)

for every z ∈ {0, 1, . . . , 2m − 1}, i = 0, 1, . . . , n − 1, have been developed.
In (10.9.1), Ti is a subgroup of G and di is a constant.
The verification of whether (10.9.1) is satisfied constitutes the error-detection

method. In the case T = G, the check is the well known control-sum check (269).
Methods of error detection based on linear equality checks may be effectively used

in the case where f (z) is an integer for every z ∈ {0, 1, . . . , 2m − 1}, but very few
noninteger functions have nontrivial checks of this type. To overcome this difficulty,
we are going to use the following inequality checks for error detection in the case of
noninteger computations

|
∑
τ∈Ti

f (z ⊕ τ) − di| ≤ ε (10.9.2)

for every z ∈ {0, 1, . . . , 2m − 1}, i = 0, 1, . . . , n − 1, where Ti is a subgroup of G,
di is a constant, and ε ≥0 is a small constant. The general properties of a minimal
check set T = T (f, ε) for a given function f and ε, methods of construction for these
minimal check sets, the advantages and limitations of inequality checks, and their
error-detecting capability were considered in Sections 10.7–10.8.4.

In this section we shall use systems of equality and inequality checks for error-
detection, error-location, and error-correction in memories.

The testing methods proposed in this section may be used for manufacturing quality
control and for maintenance testing of ROMs and RAMs.
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We attribute an error e(z) to our memory if the latter yields f (z) + e(z) instead of
f (z), that is, as before, we are using an additive functional description of errors.

By the multiplicity of an error e(z), we mean the number of nonzero values of
the error function e(z), which is a number of cells containing distorted data. Thus,
an error with a multiplicity l appears in a memory as a result of a wrong masking or
stuck-at faults in l cells, wrong decoding of l addresses, and so on.

10.9.2 Correction of Single and Double Errors in ROMs by Two
Orthogonal Equality Checks

Syndromes of errors
Suppose we have a memory containing the value f (z) in a cell with the address z,

where f is the given integer function and z is a binary vector with m components.
Suppose we have a system of two linear orthogonal equality checks for f

∑
τ∈Ti

f (z ⊕ τ) − di = 0, i = 1, 2, (10.9.3)

for all z ∈ G = Cm
2 , where Ti is a subgroup of G, di is a constant, and

T1 ∩ T2 = 0m = (0, . . . , 0︸ ︷︷ ︸
m

).

Methods for the construction of optimal linear equality checks were described in
Section 10.2.

Error detection and error correction are carried out by analyzing results of the
check (10.9.3). We say that the result S(z) = (S1(z), S2(z)) of the check (10.9.3) is
the syndrome of the error e(z), where

Si(z) =
∑
τ∈Ti

(f (z ⊕ τ) + e(z ⊕ τ)) − di =
∑
τ∈Ti

e(z ⊕ τ), i = 1, 2. (10.9.4)

By error correction, we mean computation of the error function e(z) by the syn-
drome S(z).

In this section, we shall discuss the techniques for the correction of single and
double errors and the detection of multiple errors by the analysis of the syndrome
S(z) = (S1(z), S2(z)).

It was proven in Section 10.2.6 that, theoretically, it is possible to detect all single,
double, and triple errors, and correct all single errors by two orthogonal linear checks
using a rather complicated memory-aided decoding technique. In this section, we
shall describe a simple algorithm that will correct all single errors and almost all
double errors by two orthogonal linear checks. We shall also discuss, in this section,
the complexity of this algorithm (the number of READ operations required for its
implementation) and its error-correcting capabilities.
Algorithm for correction of single and double errors
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Now let us describe the algorithm for the correction of single and double errors by
two orthogonal checks (10.9.3).

For a single error in a cell with the address z1 and magnitude e(z1), we have

e(z) = δz,z1e(z1), (10.9.5)

where δz,x is the Kronecker delta. In this case, we have

S1(z1) = S2(z1) = e(z1), (10.9.6)

and for any z �= z1, at least one of the components of (S1(z), S2(z)) is equal to 0.
Let us consider now the problem of correction of double errors by the checks

(10.9.3).
For a double error in cells with addresses z1, and z2

e(z) = δz,z1e(z1) + δz,z2e(z2), (10.9.7)

we suppose that if

z1, z2 ∈ τ ⊕ T1 ⊕ T2 = {τ ⊕ t1 ⊕ t2|t1 ∈ T1, t2 ∈ T2},

for some τ ∈ G (otherwise e(z) may not be corrected), then

|e(z1)| �= |e(z2)|. (10.9.8)

At the first step in the error-correction procedure, we find v ∈ G such that S1(v) �= 0
and S2(v) �= 0 (this v always exists in the case of double errors since we can choose
v = z1).

Denote by G/T1 the set of coset representatives of the subgroup T1 in G. To
find v ∈ G such that S1(v) �= 0 and S2(v) �= 0, we shall first find x ∈ G/T1 such that
S1(x) �= 0 and then find v ∈ x ⊕ T1 = {x ⊕ t|t ∈ T1} such that S2(v) �= 0.

At the second step (after we have already found v ∈ x ⊕ T1 such that S1(v) =
S1(x) �= 0, S2(v) �= 0), we are looking for w ∈ x ⊕ T1 such that S2(w) �= 0, (w �= v).

1. If there is no such w, then the following two cases may occur:

(a) If S1(v) = S2(v), then there exists v′ ∈ y ⊕ T1, x �= y such that S1(v′) �= 0,
S2(v′) �= 0. In this case, z1 = v, e(z1) = S1(v), S1(v′) = S2(v′) (if this condi-
tion is not satisfied, then there is an error with a multiplicity at least three),
z2 = v′ and e(z2) = S1(v′). This situation is illustrated by Fig. 10.9.1a and
the cosets of T1 and T2 are represented by segments). Note that from the or-
thogonality of T1 and T2, we have for any x ∈ G and any v ∈ x ⊕ T1 that
|x ⊕ T1 ∩ v ⊕ T2| = 1.

(b) If S1(v) �= S2(v) (see Fig. 10.9.1b), then in view of (10.9.8), z1 = v, e(z1) =
S1(v), and there exists v′ ⊕ T2 such that e(v′) �= 0 and z2 = v′. (This v′ = z2
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FIGURE 10.9.1 Correction of double errors e(z) = δz,z1e(z1) + δz,z2e(z2), case 1, solid dots
indicate error locations, horizontal and vertical lines represent cosets with respect to T1 and T2,
respectively.

and e(z2) will be computed at a later step of the algorithm, since S1(v′) �= 0,
S2(v′) �= 0, S1(v′) �= S2(v′), and e(z2) = S1(v′).)

2. If there exists w �= v such that w ∈ x ⊕ T1, and S2(w) �= 0, then in view of
(10.9.8), only the following three cases may occur:

(a) If S1(v) = S2(v) �= S2(w) (see Fig. 10.9.2a), then z1 = v, e(z1) = S1(v), and
there exists w′ ∈ w ⊕ T2, (w �= w′) such that e(w′) �= 0, and z2 = w′, and
e(z2) will be computed at a later step of the algorithm.

x T1
x T1

x T1

v T2
w T2 v T2

v T2 w T2

v z= 1

w' z= 2

v w z= 2

v' z= 1

w T2

v z= 1
w z= 2

( )a ( )b

( )c

w

FIGURE 10.9.2 Correction of double error e(z) = δz,z1e(z1) + δz,z2e(z2), case 2, solid dots
indicate error locations.
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(b) If S1(v) �= S2(v), S1(v) = S2(w) (see Fig. 10.9.2b), then z2 = w, e(z2) =
S1(w) = S1(v), and there exists v′ ∈ v ⊕ T2(v′ �= v) such that e(v′) �= 0 and
z1 = v′.

(c) If S1(v) �= S2(v), S1(v) �= S2(w) (see Fig. 10.9.2c), then z1 = v, e(z1) =
S2(v), z2 = w, and e(z2) = S2(w).

Complexity of error correction
We shall now estimate the time for correction of single and double errors by the

number N of READ operations,

1. If there is no error, then

N = N0 = |G| = 2m. (10.9.9)

2. If there is a single error, then

N = N1 ≤ 2m + |T1| × |T2| ≤ 2 × 2m. (10.9.10)

3. If there is a double error, then

N = N2 ≤ 2m + 2|T1| × |T2| ≤ 3 × 2m. (10.9.11)

The block diagram of the algorithm for corrections of single and double errors by
two orthogonal equality checks is given in Fig. 10.9.3.

Denote by Pi the probability of an error with the multiplicity i (P0 + P1 + P2 = 1,
we suppose that for any i > 2, Pi = 0).

Thus, we have for the expected number N of READ operations

N = P0N0 + P1N1 + P2N2 ≤ 2m + |T1| × |T2|(P1 + 2P2). (10.9.12)

As a weaker upper bounder for N, one can use the formula

N ≤ 2m(1 + P1 + 2P2). (10.9.13)

Error-correcting capability of two orthogonal checks
Let us describe now an error-correcting capability of two orthogonal linear equality

checks.
First, we note that all single errors are corrected by the algorithm in Fig. 10.9.3.

All double errors satisfying (10.9.8) are also corrected by this algorithm.
Denote by M the number of bits in a memory word. Then, for the large M, we have

the following estimation of the probability Pc(2) of the correction of double errors

Pc(2) ≥ 1 − |T1| × |T2|2−m−M. (10.9.14)
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FIGURE 10.9.3 Block diagram of the algorithm for the correction of single and double errors
by two orthogonal equality checks.

In the case when a double error results in a distortion of data in two binary cells
(bitwise errors), we have to replace 2m by 2m in (10.9.14).

Formula (10.9.14) illustrates the good error-capability of two orthogonal checks. It
also follows from (10.9.14) that to maximize the error-correcting capability, we have
to choose T1 and T2 for the given f (z) with the minimal |T1| × |T2|. This will also
provide with the minimal complexity of the error-correcting procedure (see (10.9.9)–
(10.9.14)).

Results of the computer experiments illustrating a high error correcting capability
of this algorithm are given in Tables 10.9.1 and 10.9.2. Here, Pc(l) is the percentage
of errors with the multiplicity l corrected by the algorithm. In these experiments, first
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TABLE 10.9.1 Error-Correcting Capability of Two Checks.

Pc(l)

Function z1 + z2 z1 − z2 z1z2 z − 1 z2 − z − 1
f (z) = f (z1, z2)

l

2 100 100 100 100 100
3 99.90 99.90 97.00 99.93 58.06
4 99.90 99.90 88.86 99.90 23.46
5 99.33 99.26 76.43 99.56 6.36

Results of computer experiments on error-correcting capability of two orthogonal equality checks
(M = m = 8), for every l and every f (z), 3000 experiments have been made to estimate Pc(l).

we write in the RAM f (z) (f (z) are the data written in a cell with the address z),
then randomly generate locations and magnitudes of errors, distort correspondingly
the data, and estimate the percentage of errors that are corrected by the algorithm.

Table 10.9.2 represents experimental results on error-correcting capability Pc(l)
for the special case when an error with the multiplicity l distorts data in l binary
cells of the RAM (bitwise errors). For every f (z) and every l ∈ {2, 3, 4, 5}, 3 × 103

computer experiments have been made to compute Pc(l).

10.10 LOCATION OF ERRORS IN ROMS BY TWO ORTHOGONAL
INEQUALITY CHECKS

Binary syndromes of errors
The error-correcting procedure described in Section 10.9.2 may be effectively used

in the case where all values of a given function f (z) that are stored in the memory
are integers, since very few noninteger functions have nontrivial equality checks.

TABLE 10.9.2 Error-Correcting Capability of Two Checks for Bitwise Errors.

Pc(l)

Function z1 + z2 z1 − z2 z1z2 z − 1 z2 − z − 1
f (z) = f (z1, z2)

l

2 99.93 99.83 99.13 99.83 98.50
3 99.70 99.53 94.93 99.46 54.63
4 99.43 99.13 84.96 99.08 20.96
5 98.70 98.60 71.43 98.43 6.26

Results of computer experiments on error-correcting capability of two orthogonal equality checks
(M = m = 8), for every l and every f (z), 3000 experiments have been made to estimate Pc(l)).
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In this section, we shall use two orthogonal inequality checks,

|
∑
τ∈Ti

f (z ⊕ τ) − di| ≤ ε, i = 1, 2, for all z ∈ G. (10.10.1)

Here T1 ∩ T2 = 0m.
Denote by l(z) the error-locating function (error locator) for the error e(z), where

l(z) = 1 − δe(z),0. (10.10.2)

Thus, l(z) = 1 if there is an error in the cell with the address z.
By error location we mean computation of l(z) by the binary syndrome S(z) =

(S1(z), S2(z)), where

Si(z) =
{

0, if |∑τ∈Ti
(f (z ⊕ τ) + e(z ⊕ τ)) − di| ≤ ε, (i = 1, 2),

1, otherwise.
(10.10.3)

Error location is carried out by analysis of the syndrome S(z) defined by (10.10.3).

Algorithm for error location

It was shown in Section 10.8.4 that using two orthogonal inequality checks and
memory-aided decoding procedure, it is possible to detect all single, double, and
triple errors, and locate all single errors. In this section, we shall describe a simple
algorithm that will locate all single errors and almost all double errors by two orthog-
onal inequality checks. Again, we suppose that for the double errors, the condition
(10.9.8) is satisfied.

First, as in the algorithm described in Section 10.9.2, we shall find x ∈ G/T1 such
that S1(x) = 1, and v ∈ x ⊕ T1 such that S1(v) = S2(v) = 1 (this v always exists if
there is at least one error).

Next, we check whether there exists w ∈ x ⊕ T1, such that S2(w) = 1.
If there is no such w, (Fig. 10.9.1a, b), then there is an error in the cell with the

address v and we set l(v) = 1.
If there exists w ∈ x ⊕ T1, w �= v, S2(w) = 1, then we check whether there exists

v′ ∈ v ⊕ T2, (v′ �= v), such that S1(v′) = 1. If such a v′ exists, (Fig. 10.9.2b), then we
set l(v′) = 1, l(w) = 1.

If there is no such v′, then we check whether there exists w′ ∈ w ⊕ T2, w′ �= w,
such that S1(w′) = 1. If such a w′ exists (Fig. 10.9.2a), then we set l(v) = 1, l(w′) = 1.

If for any v′ �= v, v′ ∈ v ⊕ T2, w′ �= w, w′ ∈ w ⊕ T2, we have S1(v′) = 0 and
S1(w′) = 0 (Fig. 10.9.2c), then we set l(v) = 1, l(w) = 1.

The block diagram of the algorithm for the location of single and double errors by
inequality checks is shown in Fig. 10.10.1.

www.it-ebooks.info

http://www.it-ebooks.info/


506 SPECTRAL METHODS FOR TESTING OF DIGITAL SYSTEMS

start

l z z G

x G T
S x

1

1 1

find v x T
S v

1

2

,
( )=1?

v T
S w

1

2

,
( )=1?

' v T
S v'

2

1

,

( )=1S w'

2

1

all /

considered?

x G T
S x
1

1

stop

a b

no

no

no

no

yes

yes

yes

yes

l v'
l w
( )=1
( )=1

l v
l w'
( )=1
( )=1

l v
l w
( )=1
( )=1

l v( )=1

(2)b (2)a (2)c a b

FIGURE 10.10.1 Block diagram of the algorithm for the location of single and double errors
by two orthogonal inequality checks.

Complexity of error location

For the number Ni of READ operations in the case of errors with multiplicity i,
(i = 0, 1, 2), we have

N0 = 2m,

N1 ≤ 2m + |T1| × |T1|, (10.10.4)

N2 ≤ 2m + 3|T1| × |T2|,
and, for the expected number of N of READ operations,

N ≤ 2m + |T1| × |T2|(P1 + 3P2) ≤ 2m(1 + P1 + 3P2). (10.10.5)

www.it-ebooks.info

http://www.it-ebooks.info/


DETECTION AND LOCATION OF ERRORS IN RANDOM-ACCESS MEMORIES 507

TABLE 10.10.1 Error-Locating Capabilities of Two Orthogonal Inequality.

f (y) m q PL(2) PL(3) PL(4) PL(5)

1√
y

sin
(

π

2

√
y
)

12 9 99.9 99.6 99.3 99.0

cos
(

π

4

√
y
)

12 4 97.0 84.0 72.5 56.0(
π

2 − sin−1 y
)√

1 − y 15 3 94.4 66.8 42.3 22.0

q = m − log2 |T1| − log2 |T2|
Results of computer experiments on error-locating capabilities of two orthogonal inequality checks (an
error with multiplicity l distorts data in l memory cells, M = m, y = 2−mz, z ∈ {0, 1, . . . , 2m − 1}) for
every l and every f (y), 3000 experiments have been made to estimate PL(l)).

Here P1 and P2 are probabilities of single and double errors.
Comparing (10.9.12), (10.9.13), and (10.10.4), we can see that the transition from

equality to inequality checks results in an increase by P2|T1| × |T2| of the expected
number of READ operations.

To estimate the error-locating capability of two orthogonal inequality checks, we
suppose that, as in Section 10.7, for every T ⊆ {0, 1, . . . , 2m − 1} either∑

z∈T

e(z) = 0,

or

|
∑
z∈T

e(z)| > 2ε.

Notice that the last condition may be used for the choice of ε for practical appli-
cations.

Then, all single errors are located by the algorithm illustrated by Fig. 10.10.1, and,
similarly to the case of equality checks, the probability of the location of double errors
is at least 1 − |T1| × |T2|2−m−M .

Experimental estimations on probabilities PL(l) of location for errors with the
multiplicity l by the algorithm of Fig. 10.10.1 are given in Table 10.10.1 for memories
containing tables of several functions f (y) = f (z · 2−m).

In this table, y = z2−m, M = m, z ∈ {0, 1, . . . , 2m − 1} and 3 × 103 experiments
with randomly generated locations and magnitudes of errors have been made to com-
pute probabilities of correct location PL(l) of errors of the multiplicity l for every
l = 2, 3, 4, 5 and every f (z).

10.11 DETECTION AND LOCATION OF ERRORS IN RANDOM-ACCESS
MEMORIES

Testing of a RAM
All the previous techniques based on linear checks can be used for error detection,

location, or correction in a Random-Access Memory.
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To implement this, we first have to choose the function f (z) that we write
in the RAM. Since the expected testing time N for linear equality or inequality
checks increases linearly with the increase of |T1| × |T2| (see (10.9.12), (10.9.13)),
or (10.10.5)), it is expedient for these checks to choose f (z) in such a way that
|T1| × |T2| will be minimal. This will provide also the maximal error-correcting
(locating) capability of checks (see (10.9.14)).

After choosing f (z), we have to construct the corresponding checks for this f (z)
using the techniques from Section 10.2 or 10.7. Next, for any z ∈ {0, 1, . . . , 2m − 1},
where m is the number of bits in an address, we write in a cell with an address z

the value f (z). After this we scan out the memory and compute a syndrome (see
(10.9.4), (10.10.3)). Then we detect, locate, or correct errors by the analysis of
a computed syndrome using the algorithms described in previous sections. If the
implementation of a decoding algorithm analyzing a computed syndrome requires
N READ operations, then the total number of READ and WRITE operations for a
testing of a RAM is N + 2m.

Complexity and error-detecting capability

Comparing the decoding algorithms represented in Figs. 10.9.3 and 10.10.1, we
can see that both algorithms have about the same running time, but the linear equality
checks algorithm (Fig. 10.9.3) have the maximal error-correcting capability. Thus, it
is expedient to use orthogonal linear equality checks for RAMs testing.

The best choice of f (z) to minimize |T1| × |T2| for equality checks is f (z) = c,
where c is a constant for all z ∈ G, but in this case we cannot detect, locate or correct
errors in the address decoder or bridgings between cells.

The next best choice to provide error correction for decoding errors is to choose
f (z) as a linear function, for example,

f (z) = f1(z) = 2m−M

(
2m − 1

2
− z

)
,

where M is the number of bits in a memory word, M ≥ m. In this case, we minimize
|T1| × |T2|, thus, minimizing the number of READ operations (see (10.9.10) and
(10.9.12)) and maximizing the error-correcting capability of equality checks (see
(10.9.14)). To correct all single stuck-at errors in memory cells, we have also to
repeat our procedure for

f (z) = f2(z) = 2M − 1 − 2M−m

(
2m − 1

2
− z

)
,

(for any z, the binary representation of f2(z) is the componentwise negation of the
corresponding representation for f1(z)). For

f1(z) = 2M−m

(
2m − 1

2
− z

)
,
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it is expedient to use the following orthogonal equality checks with |T1| = 2 and
|T2| = 4,

f1(z) + f1(z ⊕ 1m) = 0, 1m = (1, 1, . . . , 1︸ ︷︷ ︸
m

), (10.11.1)

f1(z) + f1(z ⊕ 101m−2) + f1(z ⊕ 011m−2) + f1(z ⊕ 110m−2) = 0.

For f2(z) = 2M − 1 − f1(z), we can use the same T1 and T2 as for f1(z), and we
have the following two checks:

f2(z) + f2(z ⊕ 1m) = 2(2m − 1), (10.11.2)

and

f2(z) + f2(z ⊕ 101m−2) + f2(z ⊕ 011m−2) + f2(z ⊕ 110m−2) = 4(2m − 1).

For the expected number N of READ and WRITE operations for the correction of
single and double errors in a RAM, we have, from (10.9.12), (10.11.1), and (10.11.2)

N ≤ 2(2m+1 + 8(P1 + 2P2)) � 2m+2, (10.11.3)

and for the probability Pc(2) of the correction of double errors, we have, from
(10.9.14),

Pc(2) ≥ 1 − 2−M−m+3. (10.11.4)

If we are interested only in the error detection, but not the error correction, we
again can use the same two orthogonal checks for f1(z) and f2(z). In this case, we
have to check whether S1(z) �= 0 for at least one z ∈ G/T1 or S2(z) �= 0 for at least
one z ∈ G/T2. This will require N = 2m+2 READ and WRITE operations. By doing
this we shall detect all single and double errors, and for a probability Pd(l) of the
detection of an error with the multiplicity l ≥ 3, we have

Pd(l) ≥ 1 − (2M − 1)−2. (10.11.5)

For bitwise errors, all single and double errors are detected and for l ≥ 3, we have

Pd(l) ≥ 1 − (2M − 1)−2. (10.11.6)

We note that many stuck-at faults in cells of a RAM and at the outputs of the address
decoder and bridging (short circuits) between output lines of the address decoder may
result in unidirectional errors (269) such that e(z) ≥ 0 for all z (or e(z) ≤ 0 for all z).
For example, all AND (or OR) bridging between rows in a RAM, errors in address
decoders, and faults that affect power supply or READ/WRITE circuits in many cases

www.it-ebooks.info

http://www.it-ebooks.info/


510 SPECTRAL METHODS FOR TESTING OF DIGITAL SYSTEMS

result in unidirectional errors (269). (Each row in a RAM corresponds to a cell storing
a value of f (z).)

All unidirectional errors with any multiplicity will be detected.
Since any bridging between two rows results in a distortion of at most two values

of f (z), it follows from (10.11.4) that almost all the bridging will be corrected.
We also note that many errors in the address decoder may be detected and/or

corrected by two orthogonal checks. We shall say that there exists an error with the
multiplicity l in the address decoder if there exists z1 . . . , zl ∈ {0, 1} such that the
output of the RAM is f (yi) for the address zi �= yi, (i = 1, . . . , l). In this case,

e(z) =
l∑

i=1

δz,zi (f (yi) − f (zi)). (10.11.7)

Thus, for errors in the address decoder, all single and double errors are detected,
all single errors are corrected, and in view of (10.11.4)–(10.11.6), almost all multiple
errors are detected and almost all double errors are corrected.

To conclude this section, we note that the complexity of testing (the testing time)
for the presented approaches is about the same as the complexity of testing for such
well known test procedures as Column bars, Checkboard, Marching 1s and 0s, and
for our approaches the test complexity is less than for such procedures as Shifted
diagonal, Galloping columns, Walkpat, Galwrec and Galpart (5, 269).

Linear equality checks are efficient for detection or correction of errors in a ROM,
when f (z) is an analytical function with integer values. For example, when a ROM
is storing the multiplication table, f (z) = a · b is a number stored in a cell with the
address z = (a, b).

Equality checks may also be very efficient for detection or correction of errors in
a RAM. This approach provides us with detection of all single, double, and triple
errors and correction of all single errors. Moreover, almost all double errors and a
high percentage of multiple errors can also be corrected. The lower bounds on the
probability of the correction of double errors are given by (10.9.14) and (10.9.9).
From the computer experiments (see Tables 10.9.1 and 10.9.2), we can see that at
least 98.5 of all double errors have been corrected and a high percentage of errors
with the multiplicities up to five have also been corrected by equality checks.

Linear inequality checks may be efficiently used for detection or location of errors
in a ROM when f (z) is an analytical function with noninteger values. For example, a
ROM is storing tables of trigonometrical functions. In this case, it is possible to detect
all single, double, and triple errors, and locate all single and almost all double errors.
In computer experiments (see Table 10.10.1) at least 94.4% of all double errors also
been located and a high percentage of multiple errors have also been located by two
inequality checks.

We note that for all the approaches discussed above, probabilities of not detecting
(or not locating, or not correcting) of multiple errors decrease exponentially with the
increase of a number of bits in a memory word.
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BIBLIOGRAPHIC NOTES

Fault models in logic networks are discussed in References 4,121,225, and 422. A very useful
discussion of basic principles of testing digital devices can be found in Reference 269. For
testable design, see Reference 5. Testing by using Walsh coefficients has been considered in
References 398,251,260, and 276. For testing by the Reed–Muller transform, see References
115,116,290,305,332, and 415, and by the arithmetic transform See References 241,242, and
397. For testing by linear checks, see References 280 and 300.
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CHAPTER 11

EXAMPLES OF APPLICATIONS AND
GENERALIZATIONS OF SPECTRAL
METHODS ON LOGIC FUNCTIONS

In preceding chapters, we discussed some particular applications of spectral log-
ics in switching theory (including extensions to multiple-valued functions), cir-
cuit synthesis with emphasis to the optimization problems, design of devices with
self-error-correction, and testing of digital systems. Main tools were several trans-
forms on finite Abelian groups, primarily the groups were Cn

2 and Cn
p and related

operators.
Spectral techniques, however, are a more general theory and have interesting and

important applications in many other areas, including, for instance, signal and image
processing, communications, pattern recognition, system identification and design,
as well as in solving certain problems in applied mathematics. These applications are
mostly based on the fact that the Walsh transform is the Fourier transform on dyadic
groups (6), which has simple implementations both in hardware and in software by
binary digital circuits, since the basis functions take values 1 and −1.

In order to illustrate the power of spectral methods in various areas of computing
and engineering, this chapter presents a few examples of applications of transforms
that are considered in this book, as well as discusses some ways to the extensions and
generalizations of spectral methods.

We make no attempt to comprehensively cover the vast field of applications of
spectral methods in general. Instead, we try to convey the basic principles behind
the power of the methods as well as indicate a few directions to which the standard
approaches can be extended.

Spectral Logic and Its Applications for the Design of Digital Devices by Mark G. Karpovsky, Radomir
S. Stanković and Jaakko T. Astola
Copyright © 2008 John Wiley & Sons, Inc.
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To compensate the necessary uncomplete coverage, we try to provide an extensive
list of related references, where much more information about the considered topics
can be found.

The applications of spectral techniques have been extensively reported in the
literature, for instance, several monographs in this area used as references to clarify
and support the discussions in this book, and references therein (7,8,16,21,22,43,
51,52,62,75,151,215,233,234,235,255,258,282,289,323,353,379,550,555,567,576,
584,587,604,611,617,658,661,663,671,673,675,676).

We start with discussion of transforms tailored to share properties of some
other transform to suit better the needs in some particular applications. We use the
Hadamard–Haar transform as an example.

This is also an example of application driven transforms, that is, transforms whose
basis functions are constructed after analysis of the features of particular applica-
tions. The slant transforms, slant-Hadamard and slant-Haar transforms, are used as
further examples. The latter has parameterised versions, which provides links to the
wavelet transforms. These in turn have connections back to applications in switching
theory and logic design through the discrete wavelet packet transforms. These trans-
forms are used for compact representations of multiple-output functions and may be
constructed separately for each function after gathering some information about the
functions to be represented. We conclude this part with a discussion of Fibonacci
transforms defined on Fibonacci interconnection topologies, that have been sug-
gested as an alternative overcoming certain restrictions inherently imposed in Boolean
interconnection topologies.

Then, we outline basic theoretical facts necessary for understanding ap-
plication of spectral methods in image processing and coding as well as
introduce a few transforms that have been found particularly efficient in these
fields.

To conclude, we briefly discuss the use of the Walsh transform in Code Division
Multiple Access (CDMA) communication systems.

11.1 TRANSFORMS DESIGNED FOR PARTICULAR APPLICATIONS

In this section, we will discuss examples of discrete spectral transforms that are
designed intentionally to meet requirements of a particular application or to serve
special purposes.

11.1.1 Hybrid Transforms

Every transform has some good features and certain less advantageous properties
when used to solve a particular task. In order to utilize the good features of different
transforms, various new transforms have been defined by combining existing trans-
forms in such a way that the new one has their good features and hopefully does not
have their less wanted properties.
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We will discuss this approach by the example of the Hadamard–Haar
transform.

11.1.2 Hadamard–Haar Transform

The Hadamard–Haar transform of order r, denoted as HHTr has been defined
recursively by the transform matrix Lr defined as in Reference 457.

Lr = 2−mHHr(m) = 2−m (W(r) ⊗ H(m − r)) ,

where W(r) and H(m − r) are the (r × r) Walsh and (m − r × m − r) nonnormal-
ized Haar matrices, respectively. Different transforms can be obtained for different
values of the parameter r, which allows to adapt a transform to the targeted
application.

The inverse transform is defined by the transpose matrix HHT
r .

Example 11.1.1 For r = 1 and m = 3, the Hadamard–Haar transform is

L1(3) = 2−3HH1(3) = 2−3W(1) ⊗ H(2)

= 2−3




1 1 1 1 1 1 1 1

1 1 −1 −1 1 1 −1 −1√
2 −√

2 0 0
√

2 −√
2 0 0

0 0
√

2 −√
2 0 0

√
2 −√

2

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 −1 −1 1 1√
2 −√

2 0 0 −√
2

√
2 0 0

0 0
√

2 −√
2 0 0 −√

2
√

2




.

It is obvious that rows of this matrix are obtained as linear combinations of rows
of the Haar matrix of the same order and, at the same time, some of the rows are
identical to the rows of the Walsh matrix. In this way, the transform shares features
of both of original transforms.

Because of the factorization properties of these transforms, the Hadamard–Haar
transform can be factorized in a similar way, which ensures existence of a fast calcu-
lation algorithm.
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Example 11.1.2 For r = 1, the Hadamard–Haar matrix can be factorized as

HH1(n) = W ⊗ H(m − 1)

=
[

I(m − 1) I(m − 1)

I(m − 1) −I(m − 1)

]
·
m−1∏
j=i

[
Cj(m − 1) 0(m − 1)

0(m − 1) Cj(m − 1)

]
,

where I(m − 1) is the ((m − 1) × (m − 1)) identity matrix, Cj(m − 1) are the
matrix factors in the factorization of the Haar matrix, and 0(m − 1) is the ((m − 1) ×
(m − 1)) zero matrix.

It is clear that the flow-graph of the corresponding fast algorithm consists of steps
of the fast algorithms for the Walsh and Haar transforms.

The Hadamard–Haar transform has proved useful in feature selection in pattern
recognition, Wiener filtering, and data compression in image processing. See Refer-
ences 16 and 587 for more information about this and some other related transforms.
An excellent unified interpretation of a variety of these transforms has been developed
by Leonid Yaroslavsky in a series of publications by exploiting matrix representations
and using the characteristic common properties of transform matrices, see References
662–665, and references therein. In this context, see also References 180,214,631,
and 670.

The above example of the Hadamard–Haar transform illustrates a trend in devel-
oping spectral techniques, that consists in combining different transforms and pooling
their good features, or emphasizing features especially required in a concrete applica-
tion. Such transforms are also called hybrid transforms (457), composite transforms
(12,180), and so on.

Introducing some parameters, as the parameter r in the Hadamard–Haar transform,
that can be tuned for different applications, provides flexibility in adapting transforms
to target applications. This method leads to the class of the so-called parameterized
transforms, that will be briefly illustrated by the example of the parameterization of
the slant-Haar transform (12,13) in the following Section 11.1.3.

The majority of hybrid transforms consist of transforms derived by combining
transforms on the same domain group, most often restricted to the finite dyadic group
of order 2m. A different step forward has been done in Reference 566 by introducing
the arithmetic-Haar transform sharing properties of both the arithmetic and the Haar
transforms on the Abelian finite dyadic groups of order 2m and the Fourier transform
on the non-Abelian quaternion groups that have been presented in Section 2.9. In
this transform, instead of using parameters, the flexibility is provided by allowing
extensions to higher dimensions either by repetition of the same (8 × 8) basic trans-
form (given in the Example 11.1.3 below), or by selecting various basic matrices on
constituent not necessarily Abelian subgroups of the domain group. In this way, a
family of transforms can be generated in a straightforward way. For more details see
Reference 567.

Example 11.1.3 The basic arithmetic-Haar transform matrix is an (8 × 8) matrix,
since the underlined domain group is the quaternion group that has an order 8. This
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matrix is given by

X−1
q = 1

2




1 0 1 0 0 0 0 0

−1 1 −1 1 0 0 0 0

−1 0 −1 0 1 0 1 0

1 −1 1 −1 −1 1 −1 1

1 0 −1 0 0 0 0 0

0 1 0 −1 0 0 0 0

0 0 0 0 1 0 −1 0

0 0 0 0 0 1 0 −1




.

Its inverse matrix defines the set of basis functions in terms of which the arithmetic-
Haar transform is defined. In Reference 566, these functions have been derived by
expressing basis functions in Fourier transform on the quaternion group Q2 in terms of
binary valued variables. It is obvious that the same can be done with basis functions
in the arithmetic-Haar transform. This allows to define Fixed-polarity arithmetic-
Haar expressions (566), in the same way as Fixed-polarity arithmetic expressions are
defined.

11.1.3 Slant Transform

In this section, we will briefly illustrate transforms driven by needs of particular
applications by the example of the Slant transform (150).

The development of this particular class of transforms originates in 1971 (150),
and as it is noticed in Reference 454, has been motivated by the following consider-
ations.

Consider a random vector of length N and an (N × N) transform matrix. In
typical realizations, the random vector happen to be representable just with a few
basis functions of the transform, so that the average error is small. We say that the
transform packs the energy to the particular coefficients of the transform. If we need
to transmit the random vector (representing, e.g., a segment of a line in an image),
it is clear that we can transmit just the coefficients where energy is packed, without
loosing much information. Each process has its optimal transform, the so-called
Karhunen–Loève transform (KLT) that depends on the second error statistics of the
process.

The Discrete Cosine Transform (DCT), to be discussed later in this chapter,
approximates well the KLT for many natural processes. However, for processes
that exhibit linear change, the DCT performs less well and for this reason the
Slant transform with uniformly changing basis functions have been introduced
(150).
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In Reference 454, the slant transform has been generalized to arbitrary orders of
the form 2m and defined as follows

S2m = 1

21/2




1 0 1 0 0

a2m b2m 0 −a2m b2m

0 I2m−1−2 0 I2m−1−2

0 1 0 −1

−b2m a2m 0 b2m a2m 0

0 I2m−1−2 0 −I2m−1−2




×
[

S2m−1 02m−1

02m−1 S2m−1

]
,

where the scaling factors a2m and b2m can be computed from the recursive relation
given in Reference 596

a2 = 1,

b2m = (1 + 4(a2
2m−1 ))−1/2,

a2m = 2b2ma2m−1 ,

or by the formulas (454)

a2m+1 =
(

3 · 22m

4 · 22m − 1

)1/2

,

b2m+1 =
(

22m − 1

4 · 2m+1 − 1

)
.

This transform is also called slant-Hadamard transform, see References 12 and
178, due to the obvious resemblance to the Walsh transform in Hadamard ordering.

Example 11.1.4 For n = 1, the Slant transform matrix is

S2 = 1

21/2

[
1 1

1 −1

]
.

For n = 2,

S4 = 1

21/2




1 0 1 0

a4 b4 −a4 b4

0 1 0 −1

−b4 a4 b4 a4


 ·

[
S2 02

02 S2

]
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= 1

21/2




1 1 1 1

a4 + b4 a4 − b4 −a4 + b4 −a4 − b4

1 −1 −1 1

a4 − b4 −a4 − b4 a4 + b4 −a4 + b4




and, since a4 = 2b4 and b4 = 1
51/2 , it follows

S4 =




1 1 1 1
3

51/2
1

51/2
−1
51/2

−3
51/2

1 −1 −1 1
1

51/2
−3
51/2

3
51/2

−1
51/2


 . (11.1.1)

Example 11.1.5 Figure 11.1.1 compares waveforms of the Walsh in sequency
ordering and slant functions for m = 4.

Further generalizations of the slant transform are obtained in the same way as
discussed in Section 11.1.2, by combining, for example, the Haar transform and the
slant transform resulting in the slant-Haar transform (179), or another version of it
in Reference 456, see also Reference 12.

11.1.4 Parameterised Transforms

The flexibility of a class of transforms driven by a certain application to the concrete
particular application can be improved by allowing some parameters to be suitably
tuned. The following example illustrates such transforms.

Example 11.1.6 The parametric slant-Haar transform of order 2m, m = 3, 4, . . .,
is defined by a transform matrix S2m defined recursively as (12)

S2m = S2m (β4, β8, . . . , β2m )

= Q2m ·




A2 ⊗ S2,2m−1

...

I2 ⊗ S2m−2,2m−1


 ,

for −22m−2 ≤ β2m ≤ 22n−2 and n ≥ 3, where S2,2m−1 is a (2 × 2m−1) matrix com-
prised of the first two rows of S2m−1 and S2m−1−2,2m−1 is a ((2m−1 − 2) × (2m−1))
matrix comprised of the third to the (2m−1)th rows of S2m−1 , and

A2 = 1√
2

W(1) = 1√
2

[
1 1

1 −1

]
,
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FIGURE 11.1.1 Slant functions and Walsh functions in sequency ordering for m = 4.
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and S4 is the 4-point slant-Hadamard transform in (11.1.1), and Q2m is a recursion
kernel matrix defined as

Q2m =




1

b2m a2m

a2m −b2m

1

. . .

0

. . .

1




,

with

a2m =
√

3(22m−2)

4(22m−2) − β2m
, b2m =

√
(22m−2) − β2m

4(22m−2) − β2m
,

for −22m−2 ≤ β2m ≤ 22m−2 and n ≥ 3.
The matrix S2m is a parametric matrix with parameters β2, β4, . . . , β2m , which

1. Reduces to the classical slant-Haar transform considered in Reference 179 for
βi = 1, i = 4, 8, . . . , 2m.

2. It is the constant-β slant-Haar transform, for β4 = β8 = β and β ≤ ‖4‖.

3. In general, it is called multiple-β slant-Haar transform.

This transform does not preserve orthogonality if β2m > ‖22m−2‖.

The parametric slant-Haar transform preserves all useful properties of the slant
transform, including the parametric slant basis vector that appears as the second row
in the transform matrix. This transform may be useful in signal and image compression
and denoising (12).

It may be remarked that the application oriented basic features of the slant trans-
form, extend to the generalizations of it, and have fulfilled a continuous interest in
these transforms over the years as well as new applications (477). It is worth noticing
that besides applications in the areas where spectral transforms are classical methods
(681,682), the same transforms have been exploited in more recent research areas as,
for example, watermarking (248,686).

Moreover, classical transforms may serve as models or prototypes in designing
new transforms as it was the case, for instance, with the slant-Haar transform and the
slantlet transform defined in Reference 514, which gives us a link to consider in the
following Section the wavelet transforms.
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11.2 WAVELET TRANSFORMS

As discussed in Section 2.3.3, the set of Haar functions can be split into packets,
and functions within the same packet can be obtained form each other by sifting
along the interval [0, 1]. Functions in a packet can be derived from functions in the
preceding packet by scaling on the interval where these functions are different from
zero followed by the multiplication with a power of

√
2.

Because of these properties, the Haar functions introduced in 1910 are related to
the more recently developed wavelet theory, where the Haar wavelet (function) is
viewed as the canonical example of an orthonormal wavelet and being at the same
time the simplest possible wavelet.

Figure 11.2.1 shows the basic Haar wavelet. Disadvantage of the Haar wavelet is
that it is not continuous and therefore not differentiable in the classical sense.

In general, in wavelet transforms basis functions are derived by scaling and trans-
lating copies of a finite length or fast decaying oscillating waveform that is called the
mother wavelet (118).

A well known example of a mother wavelet is

�(t) = 2sinc(2t) − sinc(t) = sin(2πt) − sin (πt)

πt
,

where the sinc function is sinc(t) = sin x
x

.
Figure 11.2.2 shows Meyer, Morlet, and Mexican hat wavelets.
The other wavelets,

�a,b(t) = 1√
a
�

(
t − b

a

)
,

obtained from the mother wavelet by scaling and shifting, are required to form
either a complete orthonormal set of basis functions, or an overcomplete set of frame
functions.

The feature that the mother wavelet is concentrated on a finite interval, makes
essential difference with the classical Fourier analysis, where the basis, sine and cosine

0

1

–1

1

FIGURE 11.2.1 Haar wavelet.
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FIGURE 11.2.2 Meyer, Morlet, and Mexican hat wavelets.

functions, undulate infinitely in both directions. Due to that, in Fourier analysis, to
represent a detail of a signal, a large number of infinitely many Fourier coefficients
is needed. In wavelet transforms, the detail may be represented as a combination of
few basic elements concentrated at the detail.

The Discrete Wavelet Transform (DWT) is a wavelet transform where the wavelets
are discretely sampled.

The above mentioned Haar wavelet is usually viewed as the first DWT due to the
following interpretation of the discrete Haar transform, that is obvious form either
fast Haar algorithm or the computation of the Haar spectrum by decision diagrams.

For a signal defined in 2m points, the Haar transform calculates the sum and the
difference for each pair of input data. The difference is stored as the corresponding
Haar coefficient, while the sum is forwarded to further processing as the input in
another step of a recursive procedure (step in the fast Haar transform, or processing
of nodes at the succeeding upper level in the decision diagram).

In general, we say that at each step of this recursive procedure, the previously
obtained sequence is subjected to a high pass and low pass filters, the outputs of which
are called the detail and the transform (approximation) coefficient, respectively.

In this way, for a signal defined in 2m points, all the Haar spectral coefficients are
calculated during m steps. It follows that the computational complexity is O(2m).

Since this transform examines a signal at different scales (Haar functions are
nonzero at intervals of different length), it captures both the frequency content of the
signal and the temporal content of it, meaning times at which these frequencies occur.

These two properties, computation complexity that approximates to O(2m) for
a signal of length 2m and simultaneous frequency and temporal analysis, are basic
features of the Fast Wavelet Transform (FWT) that is often viewed as an alternative
to the conventional Fast Fourier Transform (FFT).

In the Wavelet Packet Transforms (WPT), both the detail and the approximation
coefficient are further decomposed. In this way, in a Wavelet Packet Decomposition
(WPD), the related recursive procedure with m steps produces 2m different sets of
coefficients instead (m + 1) sets in the discrete wavelet transform. Due to the down-
sampling (reducing the sampling rate, equivalently multiplying the sampling time),1

the overall number of coefficients remains the same and there is no redundancy.

1If the downsampling factor is M, we pick up every Mth sample.
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The complex wavelet transform is a complex-valued extension of the discrete
wavelet transform intended primarily, but not restrictively, for applications in image
processing.

Referring to the finite support of basis functions, as well as scaling of them,
links between wavelet transforms and Reed-Muller and arithmetic transforms are
obvious.

The following considerations motivated particular applications of wavelet packet
analysis in representations of switching functions and circuit design.

Wavelets packets are a particular linear combination of wavelets. A Discrete
Wavelet Packet Analysis (DWPA) is a transform of a given input signal into coef-
ficients with respect to a collection of wavelet packets. Wavelet packet basis is any
basis selected among the assumed collection of wavelet packets in a DWPA. There-
fore, DWPA is a collection of Discrete Wavelet Packet Transforms (DWPT), each of
them performed with respect to a particular basis. There may be many wavelet packet
bases in a collection and, therefore, a DWPA should be specified by describing the
chosen basis.

Similarly to classical discrete transforms and related series expressions, a DWPT
performs a decomposition of the input signal with respect to the wavelet packet
components. Since in a DWPA there are more wavelet packet components than is
required for a basis, a DWPA is a class of transforms, allowing to choose the most
suited transform for a given signal f . DWPA for a chosen basis is specified by the
depth of the decomposition and two filters H and G used in the decomposition and
determined by the chosen basis.

In Reference 146 the DWPA for the Walsh basis and the arithmetic transform
basis has been considered for the derivation of compact word-level expressions for
multiple-output switching functions. The corresponding filters are H = [1, 0] and
G = [−1, 1] for the arithmetic transform basis, and H = [1, 1] and G = [1, −1] for
the Walsh basis. The same method has been used in Reference 145 for the design of
logic circuits based on these expressions.

Three-structured Haar transforms, see Reference 144 and references therein, are a
related class of transforms, since are defined by referring to the decomposition trees.
However, in this case, the tree structure is applied in the time domain.

11.3 FIBONACCI TRANSFORMS

In this section, we will return to the application driven transforms with applications
in switching theory and logic design, and briefly present the Fibonacci transforms as
an example of such transforms.

The adapted wavelet packet transforms discussed in the previous section, aim at
exploiting properties of signals in their spectral processing. Fibonacci transforms
contribute to this area, since extend the spectral methods to Fibonacci cubes and at
the same time permit adaptation to the requirements of particular applications by
choosing suitable values for the corresponding parameters.
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Switching theory and logic design as implementation of it are greatly based on
exploiting Boolean algebraic structures. However, in some applications, they express
some inconvenience originating in their inherent features, as for example, restrictions
to the power of two in the number of nodes or inputs, etc. For this reason, the Fibonacci
interconnection topologies are offered as an alternative (9,142,143,141,535).

There are several reasons to consider the Fibonacci cubes as the algebraic structures
suitable for applications in this area. We want to point out the following:

1. Boolean n-cube is included in the set of generalized Fibonacci cubes.

2. The order of a generalized Fibonacci cube that can be embedded into a Boolean
n-cube with k = 1, 2 faulty nodes is greater than 2n−1.

3. The k dimensional Fibonacci cube of the order n + k is equivalent to a Boolean
n-cube for 0 ≤ n < k.

4. It follows that the algorithms developed for a generalized Fibonacci cube are
executable on the Boolean cube of the corresponding order.

Fibonacci topologies are defined from the generalized Fibonacci p-numbers and
codes (143,142,147).

11.3.1 Fibonacci p - Numbers

Definition 11.3.1 A sequence φ(n) is the Fibonacci sequence if for each n ≥ 1,

φ(n) = φ(n − 1) + φ(n − 2),

with initial values φ(0) = 1, φ(n) = 0, n < 0. Elements of this sequence are the
Fibonacci numbers.

A generalization of Fibonacci numbers is given in References 143, and 535 as
follows.

Definition 11.3.2 A sequence φp(i) is the generalized Fibonacci p-sequence if

φp(i) =




0, i < 0,

1, i = 0,

φp(i − 1) + φp(i − p − 1), i > 0.

Elements of this sequence are the generalized Fibonacci p-numbers.

Example 11.3.1 Table 11.3.1 shows the generalized Fibonacci p-numbers for
p = 0, 1, 2, 3, and i = 0, 1, . . . , 9.
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TABLE 11.3.1 Generalized Fibonacci Numbers.

φp(i) i = 0 1 2 3 4 5 6 7 8 9

p = 0 1 2 4 8 16 32 64 128 256 512
1 1 1 2 3 5 8 13 21 34 55
2 1 1 1 2 3 4 6 9 13 19
3 1 1 1 1 2 3 4 5 7 10

11.3.2 Fibonacci p - Codes

The Fibonacci p-representation of a natural number B is defined as

B =
n−1∑
i=p

wiφp(i).

The sequence w = (wn−1, . . . , wp)p is the Fibonacci p-code for B (143). Since
with thus defined weighting coefficients, a given number B may be represented by
few different code sequences, the normal unique Fibonacci p-code is recursively
introduced obtaining wn−1 from

B = wn−1φp(n − 1) + m,

where φ(n − 1) is the greatest Fibonacci p-number smaller or equal to B, and 0 ≤
m < φp(n − p − 1).

11.3.3 Contracted Fibonacci p - Codes

The following property of normal Fibonacci p-codes permit definition of the
contracted Fibonacci p-codes.

Lemma 11.3.1 (143) In the normal Fibonacci p-code for a given number B, if
wi = 1, then wi−1 = wi−2 = · · · = wi−p = 0.

Utilizing this property, the contracted Fibonacci p-code is defined by deleting p

zeros after each 1 in the Fibonacci p-code for B.
In this section, we introduce the Fibonacci codes by the following example.

Example 11.3.2 Table 11.3.2 shows encoding for the first 8 nonnegative integers in
Boolean topology, the Fibonacci 1-codes and contracted Fibonacci 1-codes. The con-
tracted Fibonacci codes are derived by deleting the underlined zeros in the Fibonacci
code.

Figure 11.3.1 compares the Boolean cube of the order m = 3 and the Fibonacci
cube of the same order derived form these encodings.

Generalized Fibonacci transforms could be used to extend possibilities of adapted
wavelet packet analysis (647). Classical Haar wavelet packets provide a class of
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TABLE 11.3.2 Boolean Codes, Fibonacci 1-codes, Contracted Fibonacci 1-codes, and
Fibonacci Minterms for m = 3.

Boolean Fibonacci Contracted Fibonacci Fibonacci Minterms

i b1b2b3b4 k1k2k3k4 r1r2r3r4 w1w2w3w4

0 000 0000 0000 w1w2w3w4

1 001 0001 0001 w1w2w3w4

2 010 0010 001 w1w2w3

3 011 0100 010 w1w2w4

4 100 0101 011 w1w2w4

5 101 1000 100 w1w3w4

6 110 1001 101 w1w3w4

7 111 1010 11 w1w3

Haar-type transforms. Among them a transform can be chosen, which is the most
adapted to peculiarities of a signal using some information cost function (e.g., en-
tropy). This can be done by a tree pruning procedure known as a “best basis” selection
algorithm (647). Generalized Fibonacci p- transforms (p-GFT) provide a paramet-
ric (on p) class of Haar-type transforms, defined on a tree structures—generalized
Fibonacci trees. This class contains, as a particular case, the class of Haar wavelet
packets. Thus, GFTs can be used for adapted generalized Fibonacci wavelet packet
analysis that can be performed in the following two stage optimization procedure.
First, for each p we define the corresponding Fibonacci p-tree (for p = 0, this is the
complete binary tree, for p = 1 this is the classical Fibonacci tree, etc.), and apply a
“best basis” selection algorithm for each of them. Then, among those “winner” bases
for different p, we choose the final basis that is the best suited for spectral processing
of a given signal with respect to the properties of it.

In References 142, and 143, definition of some discrete orthogonal transforms,
as for example, the Walsh transform, the Haar transform, (8,258,278), is generalized
into transforms defined by transform matrices whose orders are equal to the arbitrary
Fibonacci p-numbers. These transforms are denoted as the generalized Fibonacci
transforms.
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FIGURE 11.3.1 Boolean cube and Fibonacci cube for m = 3.
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Let f be a function defined in φp(i) points. We assume that f is given by a sequence
F = [f (0), . . . , f (φp(i) − 1)]T . We denote by Tp(i) a transform matrix defining a
particular Fibonacci p-transform of order φp(i).

Definition 11.3.3 The Fibonacci p-spectrum for f with respect to Tp(i) is defined
as a sequence

ST,f = Tp(i)F.

11.3.4 Fibonacci–Walsh Hadamard Transform

Definition 11.3.4 The Fibonacci–Walsh p-transform in the Hadamard ordering
(FWpHT) is defined by the transform matrix determined as

W(p,n) =

 −

W
(p,n−1) √

2Ŵ(p,n−1)
−
W

(p,n−1)

(
√

2)pW(p,n−p−1) 0 −(
√

2)pW(p,n−p−1)


 ,

for n > p, and

W(p,m) = [1], for m ≤ p, W(p,p+1) =
[

1 1

1 −1

]
,

where
−
W

(p,n−1)
and Ŵ(p,n−1) are the rectangular matrices formed from the matrix

W(p,n−1) by taking its first φp(n − p − 1) columns, and its last φp(n − 1) − φp(n −
p − 1) columns, respectively.

Example 11.3.3 The FWHT for φ1(5) is given by the matrix

W(1,5) =




1
√

2
√

2
√

2 2 1
√

2
√

2

1 −√
2

√
2

√
2 −2 1 −√

2
√

2√
2 0 −2 2 0

√
2 0 −2√

2
√

2 0 −2 −2
√

2
√

2 0√
2 −√

2 0 −2 2
√

2 −√
2 0√

2 2
√

2 0 0 −√
2 −2 −√

2√
2 −2

√
2 0 0 −√

2 2 −√
2

2 0 −2 0 0 −2 0 2




.

For a function f given by the vector F = [1, 0, 1, 0, 1, 1, 1, 1]T , the FWHT
spectrum for f is given by SFW,f = [4 + 3

√
2,

√
2, −4 + 2

√
2, −2 + 3

√
2, 2 +√

2, −2, 2, 0]T .
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11.3.5 Fibonacci-Haar Transform

The Fibonacci–Haar p-transform in the Hadamard ordering (FHpHT) is defined by
the transform matrix determined as

H(Had,p,n) =

 −

H
(Had,p,n−1) √

2Ĥ(Had,p,n−1)
−
H

(Had,p,n−1)

(
√

2)n−p−1I 0 −(
√

2)n−p−1I


 ,

for n > p, and the initial matrices are defined as in Definition 6, where
−
H

(Had,p,n−1)

and Ĥ(Had,p,n−1) are the rectangular matrices formed from the matrix H(Had,p,n−1)

by taking its first φp(n − p − 1) columns, and its last φp(n − 1) − φp(n − p − 1)
columns, respectively, and I is the identity matrix of order φp(n − p − 1).

Note that in Reference 143, the FFT-like algorithm for the Fibonacci–Haar trans-
form is derived from the Hadamard ordering. Therefore, it is assumed that the input
sequences is given in the bit-reverse ordering with respect to the Fibonacci p-code,
and the Fibonacci-Haar spectrum is obtained in the direct ordering. This convention
will also be adapted in the further considerations of the Fibonacci-Haar spectrum in
this paper.

Example 11.3.4 The Fibonacci-Haar transform for φ1(5) is given by the transform
matrix determined as

H(Had,1,5) =




1
√

2
√

2
√

2 2 1
√

2
√

2

1 −√
2

√
2

√
2 −2 1 −√

2
√

2√
2 0 −2 2 0

√
2 0 −2

2 0 0 −2
√

2 0 2 0 0

0 2 0 0 −2
√

2 0 2 0

2
√

2 0 0 0 0 −2
√

2 0 0

0 2
√

2 0 0 0 0 −2
√

2 0

0 0 2
√

2 0 0 0 0 −2
√

2




.

For f in Example 11.3.3, the vector F in the bit-reverse ordering with respect to
the Fibonacci p-code is given by F′ = [1, 1, 0, 1, 1, 0, 1, 1]T . The multiplication of
H(Had,1,5) with F′ produces the Fibonacci-Haar spectrum in the direct ordering as
SFH,f = [3 + 4

√
2, −1,

√
2, 2 − 2

√
2, 4 − 2

√
2, 2

√
2, 0, −2

√
2].

11.3.6 Fibonacci SOP-Expressions

The previously discussed Fibonacci transforms are examples of word-level trans-
forms. For applications to binary-valued functions on Fibonacci topologies, it may
be useful to have defined bit-level Fibonacci transforms. That was the task in Ref-
erence 574 that has been accomplished by first defining Fibonacci minterms as
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illustrated in Table 11.3.2, and related Fibonacci Sum-of-Product (SOP) expressions.
In matrix notation, the Fibonacci SOPs are defined as follows.

Definition 11.3.5 Consider a function f defined on a Fibonacci cube for m = 4 by
the vector F = [f (0), . . . , f (φp(i)]T . The Fibonacci canonic SOP for f is defined as

f = Y(p, i)B(p, i)F,

where

Y(p, i) =
⊗n

j=1

[
wj wj

]
,

where B(p, i) is the (φp(i) × φp(i)) identity matrix, and ⊗ denotes the Kronecker
product performed under the mentioned restrictions appreciating properties of
Fibonacci p-codes.

The following example illustrates the application of this restricted Kronecker prod-
uct and generations of Fibonacci SOPs.

Example 11.3.5 For functions defined in φ1(5) = 8 points, the Fibonacci SOP is
defined as

f = ([
w1 w1

] ⊗ [
w2 w2

] ⊗ [
w3 w3

] ⊗ [
w4 w4

])
B(3)F

= f0w1w2w3w4 ⊕ f1w1w2w3w4 ⊕ f2w1w2w3

⊕f3w1w2w4 ⊕ f4w1w2w4 ⊕ f5w1w3w4

⊕f6w1w3w4 ⊕ f7w1w3.

11.3.7 Fibonacci Reed–Muller Expressions

The Fibonacci positive-polarity Reed–Muller expressions (FibPPRMs) have been
introduced in the matrix notation in the same way as that is done for Reed–Muller
expressions for switching functions (574). The method will be introduced here by the
following example.

Example 11.3.6 The product terms appearing in a FibPPRM for functions defined
in φ1(5) points are generated as follows.

Z(1, 5) = [
1 w1

] ⊗ [
1 w2

] ⊗ [
1 w3

] ⊗ [
1 w4

]
= [1, w4, w3, w2, w2w4, w1, w1w4, w1w3].

The product terms appearing in a FibPPRM for functions defined in φp(i) points
determine columns of the Fibonacci Reed–Muller matrix FibR(p, i).
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Example 11.3.7 For f defined in φ1(5) points,

FibR(1, 5) =




1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0

1 1 0 1 1 0 0 0

1 0 0 0 0 1 0 0

1 1 0 0 0 1 1 0

1 0 1 0 0 1 0 1




.

The Fibonacci Reed–Muller matrix is a self-inverse matrix over GF (2). It satisfies
the following recurrence relation

FibR(p, i) =
[

FibR(p, i) 0φp(i−1) × φp(i−p−1)

FibR(p, i − p − 1) 0φp(i−p−1) × φp(i−p−2) FibR(i − p − 1)

]
,

Extensions to fixed-polarity Fibonacci expressions are defined in the same way as
fixed-polarity expressions on Boolean interconnection topologies.

When Fibonacci Reed–Muller expressions are defined, extension to arithmetic
Fibonacci expressions was a matter of their proper interpretation and change of the
algebraic structure for the range of basis functions (42).

Fibonacci decision diagrams have been defined as a tool to calculate efficiently in
terms of space and time Fibonacci spectral transforms (575). Circuit implementations
from these diagrams have been discussed in Reference 556. A summary of these
research results in Fibonacci transforms can be found in Reference 571.

11.4 TWO-DIMENSIONAL SPECTRAL TRANSFORMS

Signals are mathematically modeled by functions whose domain and range, as well
as number of variables are adopted to the space-time topology of mathematical rep-
resentation of a particular phenomenon to be considered.

In this settings, two-dimensional signals, such as images, are represented by func-
tions of two variables. Signals defined on finite sets can be represented by (N1 × N2)
matrices f = [fi,j], i ∈ {0, 1, . . . N1 − 1}, j ∈ {0, 1, . . . , N2 − 1}, with entries fi,j in
the field of complex numbers, real numbers, or some finite fields in the case of digital
signals.

Thus, the spectrum for a discrete transform of a two-dimensional signal is also
represented by a matrix F = [Fu,v], u ∈ {0, 1, . . . , N1 − 1}, v ∈ {0, 1, . . . , N2}, and
expresses properties analogous to that of discrete spectral transforms for single-
dimensional signals.
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In general, for a two-dimensional signal [f (i, j)], the spectrum of a transform
defined with respect to a complete set of two-dimensional functions {φ(i, j, u, v)} is
defined as

F (u, v) =
N1−1∑
i=0

N2−1∑
j=0

f (i, j)φ(i, j, u, v).

The inverse transform is defined as

f (i, j) =
N1−1∑
u=0

N2−1∑
v=0

F (u, v)ζ(i, j, u, v),

looseness-1 where the set of functions ζ(i, j, u, v) is determined depending on the
basis φ(i, j, u, v), such to satisfy the above relation between the signal and the
spectrum.

The determination of the kernel ζ(i, j, u, v) of the inverse transform is simplified
if the kernel of the transform is separable, that is, can be represented as

φ(i, j, u, v) = ζ1(i, u)ζ2(j, v).

In this case the transform can be performed in two steps

F1(j, u) = 1

N1

N1−1∑
i=0

f (i, j)ζ1(u, i),

F2(u, v) = 1

N2

N2−1∑
j=0

F1(u, j)ζ2(j, u),

which can be interpreted as the application of the corresponding one-dimensional
transform to rows and columns of the two-dimensional signal f (i, j), i ∈
{0, 1, . . . , N1 − 1}, j ∈ {0, 1, . . . , N2 − 1}.

This requirement for separable transform kernels is easily satisfied if the two-
dimensional transform basis is defined as a product of orthogonal one-dimensional
functions, for example, as the product of a vector φT (u) and the vector φ(v), that is,

φ(u, v) = φT (u)φ(v),

where T denotes the transpose.
For this approach, a two-dimensional transform can be assigned to each orthogonal

single-dimensional transform, that is, there can be defined two-dimensional Walsh,
Haar, Vilenkin–Chrestenson, etc. transforms.
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It follows that in the matrix notation, the two-dimensional transform with respect
to a separable kernel and its inverse can be defined respectively as

F = TN1 f T−1
N2

,

f = T−1
N1

FTN2 ,

where TN1 and TN2 are (N1 × N1) and (N2 × N2) matrices whose columns are
elements from the function sets of the cardinalities N1 and N2 selected to define
the two-dimensional transform considered.

Example 11.4.1 The two-dimensional Walsh transform for signals x represented by
(8 × 8) matrices is defined as

FW (3) = W(3)f W−1,

where W(3) is the Walsh transform matrix.
In the same way, the two-dimensional Haar transform is defined as

FH (3) = H(3)f H(3)−1,

where H(3) is the Haar transform matrix.
Figures 11.4.1–11.4.3 show the two-dimensional Walsh functions for different

orderings discussed in Section 2.3.2.1. The function values 1 and −1 are repre-
sented by black and white colors, respectively. The function wal(q, x) × wal(r, y) is
positioned at the crossing of the column and the row corresponding to wal(q, x) and
wal(r, y), respectively. In these figures, it is assumed that −1/2 ≤ x, y ≤ 1/2, and
N1, N2 = 0, 1, . . . , 7.

FIGURE 11.4.1 Two-dimensional Walsh functions in sequency ordering, −1/2 ≤ x, y ≤
1/2 and N1, N2 = 0, 1, . . . , 7.
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FIGURE 11.4.2 Two-dimensional Walsh functions in natural ordering, −1/2 ≤ x, y ≤ 1/2
and N1, N2 = 0, 1, . . . , 7.

These figures illustrate and visualize the impact of different orderings for Walsh
functions.

Figure 11.4.4 shows two-dimensional Haar functions. The values 1, −1 an 0 are
represented by the black, white, and gray colors respectively. The parameters take
the same range as in the case of Walsh functions.

FIGURE 11.4.3 Two-dimensional Walsh functions in natural ordering, −1/2 ≤ x, y ≤ 1/2
and N1, N2 = 0, 1, . . . , 7.
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FIGURE 11.4.4 Two-dimensional Haar functions, −1/2 ≤ x, y ≤ 1/2 and N1, N2 = 0,

1, . . . , 7.

11.4.1 Two-Dimensional Discrete Cosine Transform

To illustrate the construction of two-dimensional transforms, we will introduce
the Discrete Cosine Transform (DCT) as used in image processing, which at
the same time explains essential reasons for application of this transform in that
area.

Some properties of this transform are based on the fact that the Fourier transform
of a real symmetric function contains just Fourier coefficients whose indices are even
numbers. Thus, these are coefficients corresponding to cosine terms in the Fourier
transform. In the following, we derive the DCT from this point of view.

The same statement holds for the two-dimensional Cosine transform that has very
important applications in image processing and it is accepted as a standard tool in this
area within the recommendations for the JPEG standard.

For practical applications, the image is converted into a symmetric array by either
of the two following approaches.

In the first approach, the (N × N) image array [f (i, j)] is converted into a
(2N × 2N) symmetric array [fs(j, k)] as

fs(j, k) =




f (j, k), j ≥ 0, k ≥ 0,

f (−1 − j, k), j < 0, k ≥ 0,

f (j, −1 − k), j ≥ 0, k < 0,

f (−1 − j, −1 − k), j < 0, k < 0,

(11.4.1)

where j, k ∈ {−N, −N + 1, . . . , N − 1}.
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By the application of the Fourier transform, due to its properties, it follows that
the Fourier transform of the two-dimensional signal (11.4.1) is given by

Fs(u, v) = 2

N

N−1∑
j=0

N−1∑
k=0

fs(j, k) cos

(
π

N
u(j + 1

2
)

)
cos

(
π

N
v(k − 1

2
)

)
. (11.4.2)

The transform thus defined is called Even symmetric transform (69, 663).
The second approach converts the image array into a symmetric image array as

fs(j, k) =




f (j, k), j ≥ 0, k ≥ 0,

f (−j, k), j < 0, k ≥ 0,

f (j, −k), j ≥ 0, k < 0,

f (−j, −k), j < 0, k < 0,

(11.4.3)

where j, k ∈ {−N, −N + 1, . . . , N − 1}.
Because of the properties of the Fourier transform, it follows that to determine the

Fourier spectrum of this symmetric two-dimensional signal, it is sufficient to calculate
the Fourier coefficients Fs(u, v) for the nonnegative values of u and v, that is,

Fs(u, v) = 4

2N − 1

N−1∑
j=0

n−1∑
k=0

f̃s(j, k) cos

(
2π

2N − 1
ju

)
cos

(
2π

2N − 1
kv

)
,

where

f̃s(j, k) =




1
4f (j, k), j = 0, k = 0,

1
2f (j, k), j = 0, k 	= 0,

1
2f (j, k), j 	= 0, k = 0,

f (j, k), for all other values of j, k.

This consideration leads to the definition of the Cosine transform as follows

F (u, v) = 1

N

N−1∑
j=0

N−1∑
k=0

f̃ (j, k), u = 0, v = 0

and

F (u, v) = 2

N

N−1∑
j=0

N−1∑
k=0

f̃ (j, k) cos

(
2

2N − 1

)
cos

(
2

2N − 1
kv

)
, u, v 	= 0.
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The corresponding inverse transform is given by

f̃ (j, k) = 1

N

N−1∑
u=0

N−1∑
v=0

F (u, v), u = 0, v = 0

and

f̃ (j, k) = 2

N

N−1∑
u=0

N−1∑
v=0

F (u, v) cos

(
2

2N − 1
ju

)
cos

(
2

2N − 1
kv

)
, j, k 	= 0.

It is obvious that the original image can be reconstructed as

f (j, k) =




4f̃ (j, k), j = 0, k = 0,

2f̃ (j, k), j = 0, k 	= 0,

2f̃ (j, k), j 	= 0, k = 0,

f̃ (j, k), otherwise.

Figure 11.4.5 shows the two-dimensional discrete Cosine functions for N = 4.

11.4.2 Related Applications of Spectral Methods in Image Processing

Spectral methods have found important applications in many aspects of image pro-
cessing, including edge detection, image enhancement and restoration, denoising,
filtering, compression, and so on. There is a voluminous literature on this subject,
thus, we will avoid specific referencing for each particular subject, and point to cou-
ple of classical references in this area are References 8,483, and 663.

FIGURE 11.4.5 Two-dimensional discrete Cosine functions for (4 × 4) signals.
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Watermarking and steganography are relatively recent new areas of application of
spectral methods related to image processing (642).

Recall that digital watermarking is a procedure of hiding information into multi-
media data, for instance, into images, in a robust and invisible manner. The hidden
information should be imperceptible for an ordinary observer, but detectable from the
host media when required.

The watermarking is intended to identify the source or ownership of the original
data, the legitimacy of the usage of them, and some other accessory information that
may be required for particular purposes.

Steganography is usually defined as the art and science of inserting hidden mes-
sages into a carrier, for example an image, in such a way that none except the intended
recipient cannot observe it. Thus, steganography is opposite to cryptography, since in
this case, the existence of an inserted message is known, but the contents is obscured.

Therefore, steganography implies an opposite procedure. Steganalysis is the pro-
cedure of detecting steganographically encoded messages into a carrier signal, for
instance, an image.

Many of the algorithms used in these areas are based on manipulating with spectral
coefficients, or by exploiting convolution and correlation, where the spectral trans-
forms are often used for calculation purposes (73). Therefore, methods discussed
in this book, especially the autocorrelation functions, as well as methods for effi-
cient calculation of spectral transforms, can be directly applied or after some adapta-
tions converted into convenient tools for performing various tasks in watermarking,
steganography and steganalysis.

Some generalizations of Walsh–Hadamard transform (11) and Haar transform (10)
have found interesting applications in steganogrpahy (10).

In particular, tree-structured Haar transforms (144) have also been advantageously
used in this area (50,87).

11.5 APPLICATION OF THE WALSH TRANSFORM
IN BROADBAND RADIO

This section is devoted to a particular application, the broad band radio, where the
Walsh transform has proven useful in solving certain problems imposed by the tech-
nology and the desires therein for highly efficient exploiting resources in order to
meet requirements from practice.

The current popularity of cell phones has prompted a large research and devel-
opment effort to design more effective ways to utilize the limited radio frequency
spectrum. A widely used scheme is Code Division Multiple Access (CDMA) in which
a wideband in the spectrum is shared by many users simultaneously2. In this method
of multiple access, the communication channel is not divided by time or frequency
as in Time Division Multiple Access (TDMA) or Frequency Division Multiple Access
(FDMA), but encodes data with a special code associated to each channel with codes

2This section has been written with the help by Dave Henderson of Coherent Logix Corp., Austin, Texas,
USA.
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TABLE 11.5.1 Walsh Codes for n = 1, 2, 4 and k = 0, 1, . . . n − 1.

W(0, 1) = 1

W(0, 2) = 1, 1
W(1, 2) = 1, −1

W(0, 4) = 1, 1, 1, 1
W(1, 4) = 1, −1, 1, −1
W(2, 4) = 1, 1, −1, −1
W(3, 4) = 1, −1, −1, 1

selected in such a way that they permit multiplexing. CDMA is used in many commu-
nication systems, as cellular telephony, Global Positioning Systems (GPS), and the
OmniTRACS satellite system for transportation logistics.

Currently, the most widely used system in cellular telephony is the Global System
for Mobile Telephony (GSM) which uses narrowband time division multiple access.

CDMA provides a larger capacity for voice and data transmission thus allowing
more subscribers to connect at the time. Therefore, it is a basic platform for 3G

telephony.
In CDMA approach the shared signals will interfere with each other. CDMA solves

this problem, for instance, by using Walsh functions, that are in this application usually
called Walsh codes.

Example 11.5.1 Table 11.5.1 shows the Walsh codes for W(k, n) for n = 2m, m =
0, 1, 2 where k = 0, 1, . . . , n − 1.

Other modulation schemes such as Orthogonal Frequency Division Multiplexing
(OFDM) (48, 173) and Frequency Hopping can also make use of the orthogonal Walsh
functions (685).

As an example, consider the standard IS-95 CDMA from 1993. It uses length
64 Walsh functions for modulation. If each transmitter is modulated by a different
Walsh function, then the orthogonality of the functions provides a means of separating
them at the receiver. In Direct Sequence CDMA the transmitted signal is multiplied
by the same continuously repeating Walsh function that spreads the spectrum of the
information carrying signal in a unique way. At the receiver, many such signals are
present at once and appear noiselike. However by multiplying the combined signals by
the same Walsh function used by a specific transmitter, the desired signal is recovered.

The Walsh functions act as unique identification codes for every transmitter. This
is of course a highly simplified explanation, but it shows why Walsh functions are an
important factor in CDMA.

The following example illustrates basic principles of application of Walsh functions
in CDMA.

Example 11.5.2 Assume that transition of the sequences 1001 and 1110 is required.
For convenience, these sequences are written as vectors [1, 0, 0, 1] and [1, 1, 1, 0].
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From the basic Walsh matrix W(1) =
[

1 1
1 −1

]
, we derive two chip codes as

v0 = (1, 1) and v1 = (1, −1).
By using these codes, the initial sequences are encoded as

[1, 0, 0, 1] ⊗ (1, 1) = [1, 1, −1, −1, −1, −1, 1, 1] and [1, 1, 1, 0] ⊗ (1, −1) =
[1, −1, 1, −1, 1, −1, −1, 1]. The encoding can be formally interpreted as
componentwise multiplication of the initial sequences by chip codes. After com-
ponentwise addition of encoded sequences, we get the transmission sequence
[2, 0, 0, −2, 0, −2, 0, 2].

At the receiving side, the decoding is performed as follows by using the rule that
negative and nonnegative values correspond to 0 and 1, respectively,

(2, 0)(1, 1) = 2 · 1 + 0 · 1 = 2 → 1,

(0, −2)(1, 1) = 0 · 1 + (−2) · 1 = −2 → 0,

(0, −2)(1, 1) = 0 · 1 + (−2) · 1 = −2 → 0,

(0, 2)(1, 1) = 0 · 1 + 2 · 1 = 2 → 1,

which produces the first sequence.
Similarly,

(2, 0)(1, −1) = 2 · 1 + 0 · (−1) = 2 → 1,

(0, −2)(1, −1) = 0 · 1 + (−2) · (−1) = 2 → 1,

(0, −2)(1, −1) = 0 · 1 + (−2) · (−1) = 2 → 1,

(0, 2)(1, −1) = 0 · 1 + 2 · (−1) = −2 → 0,

which reconstructs the second sequence.

This example shows how two users can be multiplexed together in a synchronous
system. In general, a (2n × 2n) Walsh matrix can be used to multiplex 2n users.

There are several technical problems faced by designers of CDMA systems. For
example, Walsh functions are only orthogonal if they are synchronized. Since there is
a finite delay between the transmitter and the receiver, which varies with location, the
demodulating Walsh function must be adjusted to align with the transmitter. A cor-
relation operation is done to determine the degree of misalignment of the transmitter
and the receiver functions. Cross and autocorrelations were defined in Chapter 2. In
this case, the sum of all the signals present in the frequency band is correlated against
a single predetermined Walsh function.

Walsh functions are used due to orthogonality, but have multipeaked autocorrela-
tions that make it difficult to build a circuit that can quickly and unambiguously deter-
mine the signal alignment. For this reason, the Walsh functions are used in conjunction
with Pseudo Noise (PN) sequences that have good autocorrelations properties. This
method is applied in the Asynchronous CDMA and related techniques.
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Another problem in such applications is the optimization of the Power to Average
Power Ratio (PAPR), where a direct application of Walsh and similar sequences
allow room for improvements. Several attempts have been recently made to construct
new orthogonal codes optimized for this application, see, recent work reported in
References 439, and 440.

BIBLIOGRAPHIC NOTES

Reviews of various applications of spectral methods exploiting transforms discussed in this
book, can be found, for example, in References 8,16,21,52,665,671, and 675.
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APPENDIX A

This appendix presents 21 classes of switching functions (Table A.0.1) that often
appear in engineering practice. For these functions, Walsh and the autocorrelation
can be expressed analytically.

Table A.0.2, shows their Walsh spectra in Paley ordering (see Section 2.3.2.1).
The corresponding autocorrelation functions are shown in Tables A.0.3.
In Table A.0.4, we present complexities of functions (numbers of nonzero spectral

coefficients) in terms of Walsh spectra.
Spectral complexities in terms of Haar series for the same functions are given in

Table A.0.5.
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542 APPENDIX A

TABLE A.0.1 Switching Functions and Their Analytical Expressions.

Name Function
f (z0, . . . , zm−1)

1 Constant 1

2 Elementary conjunction ∧m−1
s=0 zs, (n ≤ m)

3 Elementary disjunction ∨m−1
s=0 zs, (n ≤ m)

4 Conjunction ∧n−1
s=0 zis

5 Disjunction ∨n−1
s=0 zis

6 Linear function ⊕m−1
i=0 cizi, (ci ∈ {0, 1}), mod 2

7. Elementary symmetric
function with operating number 1

{
1, if ‖z‖ = 1,

0, otherwise.

8. Elementary symmetric
function with operating number i

{
1, if ‖z‖ = i,

i ∈ {0, 1, . . . , m},
0, if ‖z‖ �= i.

9 Majority

{
1, if ‖z‖ ≥ 	m

2 
,
0, otherwise.

10. Indicator of
group code V, |V| = 2k

{
1, if z ∈ V,

0, if z /∈ V.

11. Equality indicator
(indicator of repetition code)
(m = 2k)

{
1, if zi = zi+k,

i = 0, 1, . . . , k − 1,

0, otherwise.

12. Sum indicator
(m = (s + 1)k)




1, if zi ⊕ zi+k ⊕ · · ·
⊕z(s−1)k+i = zsk+i,

i = 0, 1, . . . , k − 1,

mod 2,

0, otherwise.
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TABLE A.0.1 (Continued).

Name Function
f (z0, . . . , zm−1)

13 Nonrepetitive quadratic form
(m = 2k)

⊕k−1
i=0 zizi+k, mod 2

14 Quadratic form
⊕m−1

i,q=0cidqzizq mod 2
where ci, dq ∈ {0, 1}

15 k-ary form
(1 ≤ k ≤ m)

∏k

i=1 ⊕m−1
s=0 ais zs, mod 2

16 Sign of sine
(0 < i < m)

sign(sin(2−iπz))a

17 Sign of cosine
(1 < i < m)

sign(cos(2−iπz))

18 Sign of tangent
(cotangent)
(1 < i < m)

sign(tan(2−iπz))
(= sign(cot(2−iπz)))

19 Sign of logarithm sign(log2 z)b

20 Unit step function
A = 2a(2k + 1)

f (z) =
{

1, if z < A,

0, if z ≥ A.

21 Unit impulse function f (z) =




1, if 2i − A ≤ z < 2i + A,

A < 2i,

i ∈ {0, 1, . . . , m − 1},
0, otherwise.

asign(z) =
{

1, if z > 0,

0, if z ≤ 0
sign(f (z)) = sign(f (z + 0)), z ∈ {0, 1, . . . , 2m − 1}.

bsign(log2 0) = 0.
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TABLE A.0.2 Functions and Their Walsh Spectra.

Function Walsh transform
f (z0, . . . , zm−1) S(w) = Sf (w0, . . . , wm−1)

1 Constant

{
1, if w = 0,

0, if w �= 0.

2 Elementary
conjunction

2−mW2m−1(w)

3 Elementary
disjunction

{
1 − 2−m, if w = 0,

−2−m, if w �= 0.

4 Conjunction




0, if there exists
l such that
l /∈ {is}, wm−1−l = 1,

1
2n Wβ(w), where
β = ∑n−1

s=0 2m−1−is , otherwise.

5 Disjunction




1 − 2−n, if w = 0,
0, if there exists

l such that
l /∈ {is}, wm−1−l = 1,

−2−n, otherwise.

6 Linear function




1/2, if w = 0,

−1/2, if w = ←−c , ←−c = ∑m−1
s=0 cs2s,

0, otherwise.

7 Elementary
symmetric
function
with operating
number 1

2−m(m − 2‖w‖),

8 Elementary
symmetric
function
with operating
number i

1
2m

∑i

l=1(−1)l
(

m − ‖w‖
i − l

)(
‖w‖

l

)
,

www.it-ebooks.info

http://www.it-ebooks.info/


APPENDIX A 545

TABLE A.0.2 (Continued).

Function Walsh transform
f (z0, . . . , zm−1) S(w) = Sf (w0, . . . , wm−1)

9 Majority 1
2m

∑m

i=	m/2

∑i

l=0(−1)l

×
(

m − ‖w‖
i − l

)(
‖w‖

l

)

10 Indicator of
group code V

2−m
∏k

i=1(W←−v i
(w) + 1),

where vi = ∑m−1
s=0 vis2s. a

11 Equality indicator
(indicator of code with repetition)

1
2m

∏k

i=1(Ri(w)Ri+k(w) + 1)

=
{

2−k, if wi = wi+k,
i = 0, 1, . . . , k − 1,

0, otherwise.

12 Sum indicator




2−k, if wi = wi+k = · · ·,
· · · = wi+sk,

i = 0, 1, . . . , k − 1,
0, otherwise.

13 Nonrepetitive
quadratic form




1
2k+1 (2k − 1), if w = 0,

1
2k+1 , if f (w) = 1,

and w �= 0,

− 1
2k+1 , if f (w) = 0,

and w �= 0.

14 Quadratic form




1
4 , if w = 0, w = ←−c ⊕ ←−

d ,
− 1

4 , if w = ←−c , w = ←−
d , b

0, otherwise.
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TABLE A.0.2 (Further Continued).

Function Walsh transform
f (z0, . . . zm−1) S(w) = Sf (w0, . . . , wm−1)

15k-ary form




(−1)‖c‖2−k, if w = c1
←−a 1⊕

c2
←−a 2 ⊕ · · · ⊕

ck
←−a k (mod 2),

0, otherwise.

16Sign of sine

{
1
2 , w = 0, 2m−i−1,

0, otherwise.

17Sign of cosine

{
1
2 , if w = 0, 2m−i + 2m−i−1,

0, otherwise.

18Sign of tangent
(cotangent)

{
1
2 , if w = 0, 2m−i,

0, otherwise.

19Sign of logarithm

{
1 − 2−m, if w = 0,

−2−m, if w �= 0.

20Unit step function 2−mJw(A)c

21Unit impulse function
2−m(Jw(2i + A) − Jw(2i − A))d

= 2−m(1 + Ww(2i+1 − 1))
×(Jw(2i) − Jw(2i − A)).

a(vis), i = 0, . . . , k − 1, s = 0, . . . , m − 1 is the generating matrix of V.
b←−c =

∑m−1
i=0 ci2i,

←−
d =

∑m−1
i=0 di2i.

cJw(y) =
∑y−1

i=0 Ww(z), Jw(2i) =
{

2i, if w < 2m−i,

0, otherwise.

df (z) =
{

1, if 2i − A ≤ z < 2i + A,

0, otherwise.
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TABLE A.0.3 Functions and Their Autocorrelation Functions.

Function Autocorrelation
f (z0, . . . , zm−1) Bf (τ) = Bf /(τ0, . . . , τm−1)

1 Constant 2m

2 Elementary
conjunction

{
1, if τ = 0,

0, if τ �= 0.

3 Elementary
disjunction

{
2−m − 1, if τ = 0,

2−m − 2, if τ �= 0.

4 Conjunction

{
2m−n, if τis = 0,

s = 0, 1, . . . , n − 1,
0, otherwise.

5 Disjunction

{
2m − 2m−n, if τis = 0,

s = 0, . . . , n − 1,

2m − 2m−n+1, otherwise.

6 Linear function 2m−2(W←−c (τ) + 1)

7 Elementary
symmetric
function
with operating
number 1

{
m, if τ = 0,

2, if ‖τ‖ = 2,

0, otherwise.

8 Elementary
symmetric
function
with operating
number i




(
m − ‖τ‖
i − ‖τ‖/2

)(
‖τ‖

‖τ‖/2

)
,

if ‖τ‖ is even,

0, otherwise,((
p

q

)
= 0, if p < q, or q < 0

)
.
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TABLE A.0.3 (Continued).

Function Autocorrelation
f (z0, . . . , zm−1) Bf (τ) = Bf (τ0, . . . , τm−1)

9 Majority




2
∑�‖τ‖/2

i=0

(
‖τ‖
i

)

×∑�m/2
j=0

(
m − ‖τ‖
m − j − i

)
,

if ‖τ‖ is odd,

2
∑‖τ‖/2−1

i=0

(
‖τ‖
i

)∑�m/2
j=0

(
m − ‖τ‖
m − j − i

)

+
(

‖τ‖
‖τ‖/2

)∑�m/2
j=0

(
m − ‖τ‖

m − ‖τ‖/2 − j

)
,

if ‖τ‖ is even,((
p

q

)
= 0, if p < q, or q < 0

)
.

10 Indicator of
group code V

{
2k, if τ ∈ V,

0, if τ /∈ V.

11 Equality
indicator
(indicator
of code with
repetition)

{
2k, if τi = τi+k,

i = 0, 1, . . . , k − 1,

0, otherwise.

12 Sum indicator




2sk, if τi ⊕ τi+k ⊕ · · ·
· · · ⊕ τi+(s−1)k) = τi+sk,

i = 0, 1, . . . , k − 1,
0, otherwise.

13 Nonrepetitive
quadratic form

{
22k−1 − 2k−1, if τ = 0,

22k−2 − 2k−1, if τ �= 0,

14 Quadratic form 2m−4(W←−c (τ) + 1)(W←−
d

(τ) + 1).
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TABLE A.0.3 (Further Continued).

Function Autocorrelation
f (z0, . . . , m − 1) Bf (τ)

15 k-ary form 2m−2k
∏k

i=1(W←−ai
(τ) + 1), (←−a i = ∑m−1

s=0 ais2s)

16 Sign of sine

{
2m−1, τm−i−1 = 0,

0, otherwise.

17 Sign of cosine 2m−2(W2m−i+2m−i−1 (τ) + 1).

18 Sign of tangent
(cotangent)

{
2m − 1, if τ = 0,

0, otherwise.

19 Sign of logarithm

{
2m − 1, if τ = 0,

2m − 2, if τ �= 0.

20 Unit step function

∑A−1
z=0 sign(A − (z ⊕ τ))

=




A, if τ = 0,

2Am−t(A − A(m−t)) + A(m−t−1),

where t = �log2 τ + 1,a

if τ ≥ 1.

21 Unit impulse function

∑2i+A−1
z=2i−A

sign((2i + A − (z ⊕ τ)))
×((z ⊕ τ) − (2i − A) + 1)

=




2A, if τ = 0, τ = 2i+1 − 1,

4Am−q(A − A(m−q)) + 2A(m−q−1),

whereb

q = �log2(τ ⊕ τm−1−i(2i+1 − 1)) + 1,

if τ ≥ 1, τ �= 2i+1 − 1.

aA =
∑m−1

s=0 As2m−1−s, A(q) =
∑q

s=0 As2m−1−s, (A(m−1) = A).

bf (z) =
{

1, if 2i − A ≤ z < 2i + A,

0, otherwise.
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TABLE A.0.4 Functions and Their Walsh Complexities.

Function Spectral Complexity
f (z0, . . . , zm−1) LW (f )

1 Constant 1

2 Elementary
conjunction

2m

3 Elementary
disjunction

2m

4 Conjunction 2n

5 Disjunction 2n

6 Linear function 2

7 Elementary
symmetric
function
with operating
number 1




2m, if m is odd,

2m −
(

m

m/2

)
,

if m is even.

8 Elementary
symmetric
function
with operating
number i




2m, if

(
m

i

)
is odd,

2m − ∑
i

(
m

qi

)
,

otherwise,
where {qi} is
the set of integer solutions x of∑i

p=0(−1)pXY = 0, X =
(

m − x

i − p

)
, Y =

(
x

p

)
.

.
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TABLE A.0.4 (Continued).

Function Spectral Complexity
f (z0, . . . , zm−1) LW (f )

9 Majority

2m − ∑
l

(
m

ql

)
,

where {ql} is the set of integer solutions x of∑m

i=	m/2

∑i

l=0(−1)lXY = 0,

X =
(

m − x

i − l

)
, Y =

(
x

l

)
.

10 Indicator of
group code V

2m−k

11 Equality
indicator
(indicator
of code with
repetition)

2k

12 Sum indicator 2k

13 Nonrepetitive
quadratic form

2m

14 Quadratic form 4

15 k-Ary form 2k

16 Sign of sine 2

17 Sign of cosine 2

18
Sign of tangent
(cotangent)

2

19 Sign of logarithm 2m

20 Unit step function 2m−a, A = 2a(2k + 1)

21 Unit impulse function 2m−a−1, A = 2a(2k + 1)
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TABLE A.0.5 Functions and Their Haar Complexities.

Function Spectral Complexity
f (z0, . . . , zm−1) LH (f )

1 Constant 1

2 Elementary
conjunction

m + 1

3 Elementary
disjunction

m + 1

4 Conjunction n + 1

5 Disjunction n + 1

6 Linear function 2‖c‖−1 + 1

7 Elementary
symmetric
function
with operating
number 1

m(m + 1)

2
, if m > 1

8 Elementary
symmetric
function
with operating
number i

≤ max

((
m + 1

i

)
,

(
m + 1
i + 1

)
+ 1

)

9 Majority
3

4
2m

10 Indicator of
group code V

≤ 2k(m − k) + 1
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TABLE A.0.5 (Continued).

Function Spectral Complexity
f (z0, . . . , zm−1) LH (f )

11 Equality
indicator
(indicator
of code with
repetition)

≤ 2kk + 1

12 Sum indicator ≤ k2m−k + 1

13 Nonrepetitive
quadratic form

1

3
(22k − 1) + k + 1

14 Quadratic form
2m−2 + 2a−1 + 1
where
a = min(‖c‖, ‖d‖)

15 k-Ary form

≤ LH (F )2‖aq‖−1 + 1
min1≤i≤k ‖ai‖ = ‖aq‖,
F = fq(zs1 = 0, . . . , zst = 0)
is the subfunction of
fq(z) = ∏k

i=1,i�=q

⊕m−1
s=0 ais zs

for zs1 = zs2 = · · · = zst = 0.

16 Sign of sine 2

17 Sign of cosine 3

18 Sign of tangent
(cotangent)

2

19 Sign of logarithm m + 1

20 Unit step function m − a + 1, A = 2a(2k + 1)

21 Unit impulse function 2(m − a)(m − i)
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551. Stanković, R.S., Some remarks on basic characteristics of decision diagrams, Proceedings
of the 4th International Workshop on Applications of Reed–Muller Expansion in Circuit
Design, August, 20–21, 1999, pp. 139–146.

www.it-ebooks.info

http://www.it-ebooks.info/


REFERENCES 585
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555. Stanković, R.S., Astola, J.T., Spectral Interpretation of Decision Diagrams, Springer,
2003.
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564. Stanković, R.S., Moraga, C., Reed–Muller-Fourier representations of multiple-valued
functions over Galois fields of prime cardinality, in: Kebschull, U., Schubert, E., Rosentiel,
W. (eds.), Proceedings of IFIP WG 10.5 Workshop on Applications of the Reed–Muller
Expansion in Circuit Design, Hamburg, Germany, September 16–17, 1993, pp. 115–
124.
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570. Stanković, R.S., Stanković, M., Calculation of the Gibbs derivatives on finite Abelian
groups through decision diagrams, Journal of Approximation Theory and Its Applications,
14(4), 1998, 12–25.
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579. Stanković, R.S., Stanković, M., Janković, D., Shmerko, V., Yanushkevich, S., Calculation
of logic derivatives through decision diagrams, Proceedings of the International Confer-
ence on Computer-Aided Design of Discrete Devices, Minsk, Belarus, Vol. 1, 1997, pp.
46–53.
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585. Stanković, S., Astola, J., XSLT-based method for automatic generation of a graphical
representation of a decision diagram represented using XML, 7th International Workshop
on Boolean Problems, Freiberg, Germany, September 21–22, 2006.
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687. Zilić, Z., Vranesić, Z.G., Polynomial interpolation for Reed–Muller forms for incom-
pletely specified functions, Multiple-Valued Logic, 2, 1997, 217–243.

www.it-ebooks.info

http://www.it-ebooks.info/


INDEX

Abelian group, 32
Abstract automata, 308
Abstract harmonic analysis, 17
Abstract harmonic analysis on finite

groups, 31
Accuracy of DFG, 299
Additive approximations, 249
Additive group, 87
Advanced Cryptography Standard, 211
Algebraic error, 371
Aliasing probability, 212
α-(Anti)-self-dual, 204
Amplitude spectrum, 373
(AN + B)-code, 415
Anti-self-dual, 203
Anti-self-duality group, 205
Approximated system, 245
Approximation of the system, 250
Arithmetic code distance, 415
Arithmetic distance, 415
Arithmetic error, 371

Spectral Logic and Its Applications for the Design of Digital Devices by Mark G. Karpovsky, Radomir
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