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Preface

This book is motivated by the challenges faced in designing a high speed low
power on-chip communication framework in modern digital ICs. As VLSI fabri-
cation technology scales, an increasing number of processing elements (cores) on a
chip makes on-chip communication a new performance bottleneck. The Network-
on-Chip (NoC) paradigm has emerged as an efficient and scalable infrastructure to
handle the communication needs for such multi-core systems. In most existing NoCs,
design decisions are made assuming that the NoC operates at the same or lower clock
speed as the cores, which slows down the communication system. Since the NoC
connects the cores across the entire chip, it becomes difficult to operate the NoC
at a high frequency. Another major challenge in designing a high speed NoC is the
difficulty of distributing a high speed, low power clock across the chip.

This book consists of three parts. In the first part, we propose several tech-
niques to address the issue of distributing a high-speed, low power, low jitter clock
across the IC. We primarily focus our attention on resonant standing wave oscillators
(SWOs), which have recently emerged as a promising technique for high-speed, low
power clock generation. In addition, we also present a dynamic programming based
approach to synthesize a low jitter, low power buffered H-tree for clock distribution.

In the second part of this book, we use these efficient clock distribution schemes
to present a novel fast NoC design that relies on source synchronous data transfer
over a ring. In our source-synchronous design, the clock and data NoC are routed
in parallel yielding a fast, robust design. The source synchronous NoC is clocked
by SWOs, which operate significantly faster than the cores that are served by the
rings. This allows us to significantly improve the cross section bandwidth and the
latency of the NoC. We develop a deadlock-free routing protocol for the source-
synchronous ring-based NoC. Our modified source-synchronous design allows the
cores to extract a low jitter clock directly from the high speed ring clock by division,
and hence the cores operate synchronously with the NoC. This is significant since
it eliminates synchronizer latencies that are typically incurred in an asynchronous
design. Using the above modified design, we propose a class of source-synchronous,
floor-plan friendly NoC topologies which consume significantly lower area compared
to a state of the art mesh. Architectural simulations on synthetic and real traffic show
that our source-synchronous NoC designs can provide significantly lower latency

vii



viii Preface

while achieving the same or better bandwidth compared to a state of the art mesh,
while consuming lower area. In addition, our routing scheme performs well under
adversarial traffic as well. The fact that the our ring-based NoC runs significantly
faster than the mesh contributes to these improvements. Moreover, since our proposed
NoC designs are fully synchronous, they are very amenable to testing as well.

In the final part of this book, we explore an alternate scheme of achieving high-
speed on-chip data transfer. Traditional pulse-based on-chip data transfer achieves a
maximum data transfer rate of one bit per wire per clock cycle. Instead, we propose
the use of sinusoidal signals of different frequencies as information carriers for on-
chip data transfer. The key advantage of our method is the ability to superimpose
such sinusoids and thereby effectively send multiple logic values along the same wire
in a clock cycle. Experimental results show that for the same throughput as that of
a traditional scheme, we require significantly fewer wires. The proposed sinusoidal
data transfer scheme can be used for fast off-chip data transfer as well.

In summary, this book presents techniques to address the issue of chip-wide clock
distribution, as well as the issue of designing a fast NoC in addition to exploring
alternate schemes of achieving high-speed on-chip data transfer.

College Station, TX Ayan Mandal
College Station, TX Sunil P. Khatri
College Station, TX Rabi N. Mahapatra

September 2013
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Chapter 1
Introduction

Abstract In this chapter, we first define some terminology that we will be using
throughout this book. Then, we talk about the common performance evaluation
metrics for a Network-on-Chip (NoC), followed by its design aspects. Next, we
motivate the need for designing a fast NoC. After this, we briefly introduce our high-
speed clock distribution schemes followed by our fast source synchronous NoC
design. Finally, we briefly introduce our work on sinusoidal based on-chip data
transfer.

1.1 Terminology

• VLSI: Very Large Scale Integration (VLSI) refers to a methodology of designing
integrated circuits (ICs) with a high level of functional integration.

• CMP: A Chip Multi-processor (CMP) consists of multiple computational cores
integrated onto a single integrated circuit (IC) die.

• PE: A Processing Element (PE) is another name for a computational core in a
CMP.

• PTM: A Predictive Technology Model consists of circuit level (SPICE) models
for PMOS and NMOS transistors in a VLSI fabrication process, and is used for
circuit-level projections of speed, power and other electrical characteristics of a
proposed circuit design.

• TWO: A Traveling wave oscillator (TWO) is a resonant oscillator circuit. It com-
prises of a sufficiently long wiring ring, such that its capacitive and inductive
parasitics result in a high frequency oscillatory network. Oscillations in this net-
work are sustained by a plurality of inverter pairs spaced along the ring. The phase
of the generated clock varies along the ring, and this is advantageous for Clock
Data Recovery (CDR).

• SWO: Standing wave oscillator (SWO) is another type of resonant oscillator cir-
cuit. It comprises of a long wiring ring, and oscillations are sustained in this
resonant ring by using a single inverter pair. By making a mobius connection at
the end of the ring, the clock signal at any point in the ring is sinusoidal, and has
the same phase at all points along the ring. An SWO is very useful in the design
of synchronous integrated circuits (ICs).

A. Mandal et al., Source-Synchronous Networks-On-Chip, 1
DOI 10.1007/978-1-4614-9405-8_1, © Springer Science+Business Media New York 2014
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center of H–Tree

end–points of H–Tree driver
H–Tree (loads)

Fig. 1.1 H-Tree based clock distribution network

• Q-factor: An important parameter that determines the characteristics of a resonant
oscillator is its quality factor (Q-factor). The Q-factor is a dimensionless quantity
that determines how under-damped an oscillator is. High Q and low Q oscillators
have their own advantages. High Q oscillators oscillate with a smaller frequency
range, and have very high amplitudes at their resonant frequency. Such an os-
cillator would perform better by filtering out noise signals at frequencies other
than the resonant frequency. On the other hand, the oscillation range is large for
oscillators with low Q, which allows them to be useful in circuits which have a
wider span of operating frequencies.

• H-Trees: The H-tree is a clock distribution network which is arranged in a
recursive-H geometric pattern. Figure 1.1 shows a two level H-Tree. A H-tree
that connect a central clock source to a multitude of clock loads (end-points),
such that the electrical characteristics from the source to any load are nominally
identical. Also, all the end points of the H-Tree are uniformly spaced with respect
to the central clock driver. In practice, modern H-trees consist buffer circuits that
are inserted symmetrically on each path from the source to the loads. This is done
to ensure that the slew-rates of the clock signal at all the loads are sufficiently
high. Hence all the end-points receive their clock signals after traveling through
identical wire segments (in terms of length and width) and the same number of
identical buffers (which are depicted as triangles in Fig. 1.1). A large buffer drives
the clock signal to the center of the tree, while the length of the wires and sizes of
the buffers can be progressively reduced as we traverse each path from the center
of the H-tree to any end-point.

• Skew: Clock skew refers to the maximum difference in the clock arrival time
between any two different end-points in a clock distribution network. Clock skew
is graphically shown in Fig. 1.2. In this figure, node1 and node2 are two different
end-points of the clock distribution network. Nominally, the clock is expected to
arrive at node1 and node2 at the same time, but in practice these arrival times may
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Fig. 1.2 Clock Skew
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differ. The main reasons for clock skew in a network are mismatches in device
and interconnect, and temperature or voltage variations across the die. Nominally,
we design a clock distribution network to have zero skew. A low value of clock
skew is important for VLSI IC designs.

• Jitter: Jitter refers to the uncertainty in timing at a single end-point (clock load
of the clock distribution network). Jitter is pictorially depicted in Fig. 1.3. In this
figure, the clock period of node1 varies over time from a minimum value T1 to
a maximum value T2, yielding a jitter of T2 − T1. Jitter is typically computed
by measuring the difference between maximum and minimum clock period over
a long duration of operation. Sources of jitter can be power supply noise or
capacitive cross-talk induced noise. Another form of jitter measurement measures
the difference in the clock period on a cycle-to-cycle basis.

• PLL: A PLL is a negative feedback control system that generates an output clock
which is both phase and frequency locked to the input reference signal. A block
diagram of a basic PLL is shown in Fig. 1.4. In this figure, out is the output clock
generated by the PLL which is phase locked to refclk (which is the input clock).
The out clock is frequency divided to yield a divided_clk signal, which is phase
and frequency locked to refclk.
Typical oscillators in a digital IC use some form of Voltage Controlled Oscil-
lator (VCO) (Tasic et al. 2005; Megej et al. 2000; Hiroshi and Takaaki 1993;
Thamsirianunt and Kwasniewski 1997; Hajimiri et al. 1999), and implement a
PLL with the VCO in a closed-loop configuration (as depicted in Fig. 1.4). A
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divided_clk 

Vctl

out

Loop
Filter

Divider

Charge
Pump VCO

refclk

Phase
Frequency
Detector

Fig. 1.4 Block diagram of a basic PLL design

Fig. 1.5 Analog voltage
controlled oscillator (AVCO)

Vctl Vctl Vctl

phase frequency detector (PFD) determines the phase error, and accordingly ei-
ther speeds up or slows down the oscillation frequency of the VCO. VCOs are
typically implemented in one of two ways
– Analog VCOs (ACOs) (Jovanovic and Stojcev 2006; Chen and Sheen 2002), in

which a ring oscillator with a small (odd) number of inverters is typically used.
This ring oscillator’s frequency is modified by means of a voltage or current
signal. Figure 1.5 shows an implementation of an Analog VCO. The frequency
of oscillation of the ring oscillator is controlled by modulating the gate voltage
(Vctl) of the stacked NMOS transistors, thereby achieving a current-starved
ring oscillator based ACO.

– Digitally Controlled Oscillators (DCOs) (Hiroshi and Takaaki 1993; Thamsiri-
anunt and Kwasniewski 1997; Hajimiri et al. 1999), in which a large number
of inverters are implemented such that inverter i drives the input to inverter
i + 1. By closing the loop at the kth inverter (where k is odd), the oscillator
can be made to oscillate at variable (discrete) frequencies. The oscillator can
be sped up or slowed down by decrementing or incrementing k respectively,
using a control signal bk which closes the loop at the kth inverter. Figure 1.6
shows an example of a DCO implementation. The number of inverters that act
as part of the ring is controlled by setting the values of b3, b5, b7, . . . , bk , . . . ,
bn in a one-hot fashion.

• Asynchronous Communication: A communication paradigm which has commu-
nicating islands which operate asynchronously.
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b5 bnb3

Fig. 1.6 Digitally controlled oscillator (DCO)

• Mesochronous Communication: A communication paradigm between two com-
municating islands which have the same frequency by not necessarily the same
phase.

• Multi-synchronous Communication: A communication paradigm between two
communicating islands which have different phase and frequency.

• Synchronizer: Synchonizers are used to reliably transfer data from one clock
domain to another clock domain.

• Packet: A packet is the smallest unit of formatted data used to communicate
between two PEs. A packet consists of two types of information: control (for
example source/destination addresses) and data (for example memory read/write
information).

• Flit: A flit is the unit of transfer supported by a NoC. A packet is typically broken
into multiple flits.

• Router: A NoC router is a responsible for routing flits from a source to a desti-
nation. When a flit arrives at a router, it reads the address information in the flit
to determine its final destination. Then, based on the routing policy, it directs the
flit to the next router on its destination path.

• Network Interface: A network interface (NI) is a logical block which connects the
PE with a NoC router. An NI is typically responsible for converting core messages
to network packets and vice-versa.

• Link: A link is the physical interconnection between two routers and also between
a router and an NI.

• FIFO:A First in first out (FIFO) buffer queues incoming data, and when requested,
drives out the data that had arrived earliest.

• Injection Rate: The probability with which a PE injects a flit into the NoC every
PE clock cycle.

1.2 Performance Evaluation Metrics for a Network-on-Chip

Multi-core processors require an efficient and scalable NoC infrastructure to han-
dle the inter-processor on-chip communication needs. In this section, we discuss
some common metrics that are used by the research community to evaluate NoC
performance.



6 1 Introduction

• Throughput: Throughput quantifies the rate at which data can be transferred
across the NoC. It is defined as the average number of packets received per PE
per clock cycle.

• Latency: Latency can be categorized in following two parts:
– Network Interface latency: Latency incurred by the packet at the network

interface before getting inserted into the communication fabric of the NoC.
– Network latency: Latency incurred in the communication fabric from the point

the packet is injected into the network till it reaches its destination.
• Area: The NoC area comprises of router (switch) and link area.

– Router Area: The router is the most complex component of the NoC, providing
routing, arbitration and flow control for network packets. Hence, the router
typically accounts for a large part of the NoC area.

– Link Area: The links are responsible for connecting routers to each other, in a
manner dictated by the routing topology of the NoC.
• Wiring area: The link width (flit width) and the physical dimensions of the

wires determine the wiring area.
• Repeater area: Long links may need multiple repeaters (buffers) along the

path, thus adding to link area.
• Power: A significant amount of total chip power is consumed by the NoC (e.g.

the NoC in the RAW (Taylor et al. 2002) system consumes as much as 36 % of
the total power). Hence, power needs to be treated as a major design metric for
NoC design. Power consists of 2 components:
– Static Power: Static power consumption due to leakage currents is a significant

contributor to total system power and is primarily technology dependent.
– Dynamic Power: As a packet is transferred over links or stored in FIFOs,

dynamic power is consumed as a result of a capacitive load being charged and
discharged, as well as due to transient currents during transistor switching.

• Reliability and Fault Tolerance: The communication links connecting PEs are
subject to failures. It is highly desirable to have a NoC design which can provide
reliable data transfer under node or link failures.

• Scalability: Productivity, cost and strict time to market requirements demand a
scalable NoC system design, in which performance metrics scale acceptably as
the NoC size grows.

• Quality of service: Since NoC is a shared resource, it needs to implement support
for Quality of Service (QoS). The essence of QoS is the ability to offer different
levels of performance (in terms of latency or throughput) to different applications,
with guarantees on performance bounds.

• Deadlock Avoidance: NoC routing is required to be deadlock free, otherwise it
may lead to performance degradation or system failure.
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1.3 Network-on-Chip Design Aspects

1.3.1 Topology

Conceptually, the simplest topology for an NoC is the crossbar, in which each PE has
dedicated links to every other PE. However, the crossbar has a quadratic overhead,
and as such is useful only for very small NoCs. The simplest and most ubiquitous
NoC topology is the 2D mesh. Dally and Towles (2001) first proposed a 2D mesh as
an NoC architecture. The topology consists of a 2D mesh of links, with switches at
the intersections of horizontal and vertical links. Every switch has five ports, one con-
nected to the local resource (PE) and the others connected to the closest neighboring
switches. The torus architecture was proposed in Duato et al. (2002), with switches
at the edges connected to the switches at the opposite edge through wrap-around
channels. The long end-around connections can yield excessive delays which can be
avoided by folding the torus Dally and Seitz (1986). The inherent disadvantage of
the mesh or torus topologies is their large communication radius, resulting in large
amounts of interconnect and large numbers of arbiters at the N-S-E-W crossings.
These in turn leads to a large power consumption. Karim et al. (2002) proposed the
Octagon architecture. The Octagon network consists of a basic octagon unit having
eight nodes and 12 bidirectional links. It has a simpler implementation compared to
the 2D mesh, with a higher throughput. Unlike the crossbar, the Octagon’s imple-
mentation complexity increases linearly with the number of nodes. A 2D Flattened
Butterfly was proposed in Kim et al. (2007). The 2D flattened butterfly is derived
by flattening the routers in each row of a conventional butterfly topology and hence
provides the connectivity of a mesh with additional links. The fat tree Leiserson
(1985) connects routers in a tree manner, with sources and destinations at the leaves.
The major advantage of the fat tree is the large amount of bandwidth available, with
the downside of the requirement for large-radix routers toward the root of the tree.
The Ring Samuelsson and Kumar (2004) topology implements concentric connected
rings (similar to a ring road in city), which helps to reduce the risk of congestion in
the central parts of the network.

1.3.2 Flow Control

Flow control refers to the policy of network resource allocation by a router as pack-
ets travel from source to destination. Next, we discuss three main flow control
alternatives of an NoC.

• Store-and-Forward: Packets are fully buffered at each network node (router)
they traverse. This technique, used in Sethuraman et al. (2005), incurs a high
packet latency (directly proportional to packet size). Flow control is done at the
packet level in this scheme.



8 1 Introduction

• Virtual Cut-Through (VCT): VCT flow control allocates downstream buffer
space and transmits a packet to the next router as soon as its header arrives, instead
of waiting for the whole packet to be buffered as in store-and-forward flow control
Kermani and Kleinrock (1979). In effect, VCT creates a circuit switched network.
However, the buffer requirements are in terms of multiples of packet sizes for both
the above approaches. In addition, the pre-allocation of downstream buffer space
may cause increased delays for other traffic in the NoC. As in store-and-forward,
flow control is done at the packet level in VCT.

• Wormhole: Dally and Seitz proposed a modification of the VCT by breaking
packets up into flits, or flow control digits Dally and Seitz (1986). Flit based flow
control, also known as wormhole routing, reduces the amount of storage required
at each node in the network because buffers may be smaller than the size of a
whole packet. In wormhole routing, only the first flit carries address information,
which is used to reserve the route for the remaining flits in the data transmission.
In effect, wormhole flow control is VCT at the flit level, and also effectively
constructs a circuit-switched network.
A NoC design which does not support wormhole routing is called flit-switched,
where every flit of a packet is routed independently. Wormhole implementation
increases the design complexity, thereby slowing down the NoC architecture. In
this work, we focus our attention on a high-speed NoC design, and hence opt
for flit-switched flow control. Flit-switched is not energy optimal as every flit
needs to have the header information (for example source/destination addresses).
However, in our NoC design, we have quantified this overhead to be minimal.
Flit-switched flow control also has a negative impact on the packet latency. Since
each flit is routed independently, the packet delay equals the worst delay faced
by any flit. Since our NoC design runs at a much higher clock than the PEs, the
overall latency incurred by the flits, as validated by our experiments, is minimal.
Flit-switched flow control increases the network interface (NI) complexity. At
the receiver side, flits can arrive out of order, and the corresponding NI requires
complex logic to reconstruct the packet from the flits. This can be achieved by
using a re-order buffer (Kwon et al. 2009) in the NI.

1.3.3 Routing

The routing mechanism determines the path taken by a packet from source to des-
tination. The route can be determined either at the source node (Source Routing)
or independently across the routers of the network (Distributed Routing). Source
routing does not provide path diversity. Another orthogonal classification of routing
schemes is based on adaptivity of the routes to network conditions such as congestion.
Thus, routing schemes can be classified as:

• Deterministic routing: The route between a source and destination always stays
the same, and is independent of the network state. Dimension Order Routing
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(DOR) is a widely used, low complexity, deadlock-free routing mechanism. DOR
chooses a specific dimension order (x followed by y, or vice versa) and routes
packets using this dimension order, with at most one turn in their route. DOR
has been used in many experimental and commercial interconnection networks
(Taylor et al. 2002; Lenoski et al. 1992).

• Adaptive Routing: In adaptive routing, the paths taken will vary with network
conditions such as congestion. However, routers incur additional complexity to
support this mechanism. Adaptive routing is often used to reduce congestion or
avoid network faults. Adaptive routing has been used in commercial systems like
(Muller et al. 1998; Adiga et al. 2005).

1.3.4 Arbitration

Within a router, arbitration is required while servicing conflicting requests. When
multiple input ports request a common output port, the requested output port deter-
mines the order in which requests are serviced. There are two types of arbitration
schemes in use:

• Static: The arbitration is predetermined and does not depend on the state of the
router. Such a scheme may not be able to guarantee fairness.

• Dynamic: The arbitration depends on the state of the router. The Round-Robin
scheme is a popular fair dynamic arbitration approach. Dynamic arbitration can
also provide QoS guarantees to certain classes of applications.

1.3.5 Buffering

At the intermediate nodes (routers), packets need to be temporarily stored (buffered),
while waiting for channel access. Buffering is classified under following two
categories:

• Input Buffering: Packets are buffered only at the input port. This prevents addi-
tional requests from upstream routers when the input buffer is full. Head-of-Line
(HOL) blocking, in which an upstream router may not be able to send requests,
despite the fact that output links are unoccupied.

• Output Buffering: Packets are buffered at the output port contending for the out-
put link. With this style of buffering HOL blocking is avoided, thereby decreasing
the average latency of the packets.
An NoC design can use both input and output buffering.
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1.4 The Need for a Fast Network-on-Chip Design

The number of PEs on chip multiprocessors (CMPs) continues to grow as VLSI
fabrication technology scales. Hence it is becoming increasingly difficult to connect
the different PEs of a CMP in a scalable and efficient way. Traditional shared bus
based communication suffers from poor scalability, high arbitration complexity and
low bandwidth. Adding more PEs to a shared bus also adds parasitic capacitance,
degrading electrical performance as well. The arbitration delay in a shared bus also
grows with number of PEs. The available bandwidth is limited and shared by all PEs
attached to the shared bus.

The NoC paradigm has emerged as an alternative to the traditional shared bus
by improving the bandwidth, power efficiency and scalability of on-chip commu-
nication. All links in an NoC can be simultaneously used for data transmission,
which provides a high level of parallelism. The NoC also enables pipelining of data,
providing a much greater aggregate bandwidth than shared buses.

A typical NoC design is modular, with basic units of network interfaces, routers
and links. This reduces design complexity as the above units can be designed once
and then replicated across the chip. The NoC architecture can also improve de-
sign productivity by serving as a reusable communication sub-system across chip
generations.

Since NoCs connect PEs across the chip, it becomes difficult to operate the NoC
at a high frequency. One reason for this is the difficulty of distributing a high speed,
low power clock across the chip. Moreover, most of the existing NoC designs use
complex routers which slows down the NoC clock. A router provides connectivity to
neighboring routers with the help of links, and usually has multiple input and output
ports. Hence the router has to manage several complex tasks such as arbitration of
output links, buffering and flow control of network data. A pipelined router architec-
ture achieves a higher frequency at the cost of higher latency, but does not address
the issue of router complexity.

1.5 Clock Distribution for fast Networks-on-Chip

As mentioned in the previous section, high speed clock distribution is a major chal-
lenge in designing a high speed NoC. In this work, we propose several techniques
to address the issue of distributing a high-speed, low power, clock for the NoC and
the PEs. We mainly focus our attention on resonant ring-based oscillators which
have recently emerged as a promising technique for high-speed, low power clock
generation.

Traditionally, clock distribution networks have been optimized to minimize end-
to-end delay of the distribution network. However, since most ICs have an on-chip
PLL, we argue that the design goal of minimizing end-to-end jitter is more relevant.
Hence, we focus on minimizing jitter for clock distribution networks.
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We present a novel low-jitter phase-locked clock generation and distribution
methodology which uses resonant standing wave oscillators (SWOs). The same clock
signal is used to serve both the NoC and the PEs. We also present an all-digital con-
trol loop to phase-lock the SWO to an external reference clock. Experimental results
demonstrate that the jitter of our approach is dramatically lower (by ∼ 4.6×) than
existing schemes, while the power consumption is significantly lower (by ∼ 2×) as
well.

We also present a dynamic programming based approach to synthesize a minimum
cost buffered H-tree for distributing a clock signal to the PEs. Our primary goal is to
minimize the end-to-end jitter of the synthesized H-tree, while the secondary goal
is to minimize power as well. Compared to a manually constructed buffered H-tree
network, our approaches are able to reduce both jitter (by as much as 28 %), and
power (by as much as 46 %).

We also propose a tiled SWO design to distribute a high speed synchronous
resonant clock across the chip, and demonstrate that an SWO approach can be used
to practically implement a high-frequency, low-power clocking approach with high
and uniform area coverage over an IC. Our design also allows the PEs to extract a low
jitter clock directly from the high speed resonant clock by division. Our simulations
indicate that this tiled structure can oscillate at about 7.25 GHz, with low power
(about 68 mW per SWO tile) and low jitter (about 3.1 % of the nominal clock
period).

1.6 Source Synchronous Network-on-Chip Design

Using the high-speed, low power resonant clock introduced in the previous section,
we propose a novel high-speed NoC design that relies on source synchronous data
transfer over a ring. The source-synchronous data rings are interconnected to provide
complete connectivity across the CMP. The source synchronous ring data is clocked
by the standing wave resonant clock (which is routed parallel to the data), which
operates significantly faster than the PEs that are served by the ring. The PEs are
connected to the fast data ring and can inject data into the ring and extract data from
the ring.

We implement a deadlock-free routing protocol for the source-synchronous ring-
based NoC. Architectural results obtained on synthetic and real traffic demonstrate
that the source-synchronous ring-based NoC has significantly lower latency and
higher maximum sustained injection rate compared to a state of the art mesh-based
NoC. In addition, we show that our routing scheme performs well for adversarial
traffic as well.

We also propose a modified source-synchronous design where the clock and data
NoC are routed in parallel, with the PEs extracting a low jitter clock directly from
the high speed ring clock by division. The PEs are thereby synchronous with the
NoC, yielding improved latencies since synchronization are not required. Using the
above modification, we first propose a class of source-synchronous NoCs organized
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in an H-tree pattern which use fewer buffers and lower wire length compared to a
state of the art mesh. Architectural simulations on synthetic and real traffic show
that our H-tree based NoC designs can provide significantly lower latency and are
able to sustain a higher injection rate compared to a state of the art mesh. Using the
synchronous modification, we also evaluate two additional floorplan-friendly NoC
topologies, which use fewer buffers and lower wire length compared to a state of
the art mesh. Architectural simulations on synthetic and real traffic show that these
NoC topologies can provide significantly lower latency while achieving same or
better maximum sustained injection rate compared to a state of the art mesh. Since
our proposed NoC designs are fully synchronous, they are very amenable to testing.
When multiple clock domains are involved in a multi-synchronous paradigm, there
are uncertainties involved in terms of event scheduling during testing. Since our
design are fully synchronous, these uncertainties are eliminated.

1.7 Fast On-chip Data Transfer Using Sinusoid Signals

There is a significant incentive to improve the speed of on-chip communication. It is
well known that ICs have substantially followed Moore’s Law, doubling their speed
and/or complexity approximately every two years. In contrast, data communication
rates between the processing cores within an IC, and also between ICs have improved
less rapidly, proving to be a bottleneck in the quest for faster computing. The fun-
damental reason for this is that data is traditionally communicated as a sequence of
pulses. With such a choice, noise and signal are parallel vectors, making fast reliable
data transfer difficult. For this reason, on-chip data transfer achieves a maximum
data transfer rate of one bit per wire per clock cycle. In this work, we explore the use
of sinusoidal signals of different frequencies as information carriers for on-chip data
transfer. The advantage of our method is the ability to superimpose such sinusoids
and thereby effectively send multiple logic values along the same wire in a clock
cycle. Experimental results show that for the same throughput as traditional scheme,
we require significantly fewer wires. Our sinusoidal data transfer scheme can be used
for efficient off-chip data transfer as well.
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Chapter 2
Clock Distribution for Fast Networks-on-Chip

Abstract As mentioned in first Chapter, high speed, low-jitter and low-power clock
distribution is a major challenge in designing a fast Network-on-Chip (NoC). In this
chapter, we propose several techniques to address the issue of distributing a high-
speed, low power, low jitter clock across an IC. We focus our attention primarily on
resonant ring-based standing wave oscillators (SWOs) which have recently emerged
as a promising technique for high-speed, low power clock generation. In Sect. 2.1,
we describe the basics of resonant ring-based oscillators. In Sect. 2.2, we present
a novel low-jitter, low-power clock generation and distribution methodology which
uses resonant standing wave oscillators (SWOs). We also present an all-digital control
loop to phase-lock the SWOs to an external reference clock. Experimental results
demonstrate that the jitter of our approach is dramatically lower (by ∼ 4.6×) than
existing schemes, while the power consumption is significantly lower (by ∼ 2×)
as well. Next, in Sect. 2.3, we present a dynamic programming based approach to
synthesize a minimum cost buffered H-tree for clock distribution. Our primary goal
is to minimize the end-to-end jitter of the synthesized H-tree, while the secondary
goal is to minimize power as well. Compared to a manually constructed buffered
H-tree network, our approach is able to reduce both jitter (by as much as 28 %, and
power by as much as 46 %). Finally, in Sect. 2.4, we present a tiled SWO structure
with a plurality of ring-based SWO tiles arranged in a 2D fashion, oscillating at a
high frequency. We validate that in this manner, an SWO approach can be used to
practically implement a high-frequency, low-power clocking approach with high and
uniform area coverage over an IC. Our simulations indicate that this tiled structure
can oscillate at about 7.25 GHz, with low power (about 68 mW per SWO tile) and
low jitter (about 3.1 % of the nominal clock period)

2.1 Resonant Oscillators

Recently, there has been some interest in mobius ring based resonant oscillators as
a means to generate the clock signal for digital ICs. These resonant oscillators use a
metallic ring along with a single (or multiple) cross coupled inverter pairs(s). Since
charge is recirculated in these configurations, they exhibit a low power consumption.
Resistive losses in the ring, as well as the power consumed by the inverter pair(s)
contribute to the power consumption of these structures. By choosing the length
of the ring carefully, oscillations of high frequencies can be sustained, as long as
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the inverter pair(s) can switch at these frequencies. Ring based resonant oscillators
can be categorized into following two types: Traveling Wave Resonant Oscillators
(TWOs) and Standing Wave Resonant Oscillators (SWOs).

2.1.1 Traveling Wave Oscillators

A traveling wave resonant oscillator circuit (also referred to as a rotary clock) was
introduced in (Wood et al. 2001; 2006). The authors utilize a sufficiently long wiring
ring, such that its capacitive and inductive parasitics result in a high frequency os-
cillatory network. This resonant clock topology is described in Fig. 2.1. Figure 2.2
shows the (overlayed) waveforms of the clock signals extracted from different lo-
cations along the ring. Oscillations in this network are sustained by a plurality of
inverter pairs uniformly spaced along the ring (Fig. 2.1). However, a key drawback
of the rotary clock is that the phase of the generated clock varies along the ring (as
shown in Fig. 2.2), making traditional synchronous clock based design extremely
difficult. Also, the clock signal at every point of the ring is a full-rail signal, resulting
in a larger power consumption.

2.1.2 Standing Wave Oscillators

A standing wave resonant oscillator circuit was proposed in Cordero and Khatri
2008. In this approach, a long wiring ring is used, and oscillations are sustained in
this resonfant ring by just using a single inverter pair (Fig. 2.3). The clock signal at
any point in the ring is sinusoidal, and has the same phase at all points along the
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Fig. 2.2 Sample waveforms (Overlaid) for traveling wave resonant oscillators

ring as shown in Fig. 2.4. The SWO consists of a wire ring, with a mobius crossing
(shown at the top). An inverter pair is inserted at the mobius crossing location (see
Fig. 2.3) to provide the negative resistance necessary to sustain oscillations. At any
point in the ring, the outer wire sustains a sinusoidal oscillation of the same phase,
while the inner wire sustains a sinusoidal oscillation as well, but of the opposite
phase. The point diametrically opposite to the mobius crossing has a zero amplitude
and is a virtual ground point (in an AC sense). A full-amplitude square wave clock
is recovered at any point in the ring by using a clock recovery circuit which consists
of a differential amplifier.

By using differential amplifiers at different points in the ring, full rail clock signals
are extracted at the locations desired (Fig. 2.5). Thus, this approach yields full-
amplitude square wave clock signals that have the same phase everywhere along
the ring. This is a key improvement over the rotary clock of (Lin and Kaiser 2001),
since it is compatible with synchronous IC design. In addition, the reduced ring
capacitance due to the use of significantly fewer inverters (in particular, just one),
increases the operating speed and reduces the power consumption as well. Note that
there is an AC null (virtual “zero”) point in the center of the ring as shown in Fig. 2.3.
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As a result, the phases of the signals on the right and the left of the null point are 180◦
apart. Therefore, clock recovery circuits on the left have their connections reversed
compared to recovery circuits on the right of the null point. Note that clock recovery
is not performed near the null point, since the signal amplitude is very low near the
null point. Both Figs. 2.4 and 2.5 were obtained using the same simulation conditions
that were used in (Cordero and Khatri 2008).

2.2 Phase Locked Clock Generation and Distribution Using
SWOs

As mentioned in the previous section, an SWO has following advantages over a
TWO: (1) SWO yields clock signals with same phase everywhere along the ring,
and hence can be naturally used as a synchronous clock distribution scheme; (2)
SWO uses significantly fewer inverters compared to a TWO, which results in an
increasing operating speed as well as reduced power consumption. Hence, we focus
our attention on an SWO-based design. In the following section, we propose a
phase-locked SWO-based high-speed, low power clock generation and distribution
scheme.
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Fig. 2.4 Sample waveforms (Overlaid) for standing wave oscillator

2.2.1 Introduction

Clock generation and distribution are critically important aspects of VLSI IC design.
For large digital ICs, the clock signal can contribute significantly to the power con-
sumption of the IC. Additionally, process, voltage and temperature (PVT) variations
can result in a variation in the clock arrival time at the different sinks (end-points) of
the clock distribution network. This can lead to systematic skew in the clock arrival
times at the different sinks, and also a dynamic variation (jitter) in the clock arrival
times at the sinks due to cycle-to-cycle variations in the power supply signal at dif-
ferent locations in the die. A good phase-locked clock generation and distribution
scheme needs to minimize the power consumption, systematic skew as well as the
cycle-to-cycle jitter. Traditionally clock distribution networks have been designed
using end-to-end delay of the clock signal as the key metric to minimize. We believe
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Fig. 2.5 Recovered clock waveforms (Overlaid) for standing wave oscillator

that since most ICs have an on-chip phase-locked loop (PLL), the relevant metric to
minimize is instead the jitter and the systematic skew.

In this section, we present a resonant standing wave oscillator (SWO) based phase-
locked clock generation and distribution scheme. Given that the scheme is resonant in
nature, it exhibits a significantly lower power consumption than a traditional buffered
H-tree.

Additionally, since the resonant oscillator has a relatively high Q-factor (of about
5), our scheme has superior systematic skew and jitter characteristics as well. On the
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other hand, a buffered H-tree exhibits poor jitter characteristics since the buffers on
any path exhibit delay variations due to local cycle-to-cycle power supply variations.

The SWO in our work is based on a ring-based oscillator shown in Fig. 2.3. Our
initial experiments with the above structure indicated that the jitter characteristics
of the ring-based SWO were very good. As a result, we design an all-digital control
loop to vary and phase-lock the SWO frequency to an external reference, and also
use the same ring topology to distribute the clock all over the IC.

Our phase-locked SWO is controlled by an all-digital control loop, which consists
of coarse as well as fine frequency control. Coarse frequency control is accomplished
by varying the number of oscillating wires in a bundle of wires (instead of just 2
wires as shown in Fig. 2.3). Fine frequency control is also accomplished in a digital
manner, using a bank of binary-weighted capacitors connected at the inverter pairs
of the ring. We present the analysis and circuit simulation results that validate the
correct phase-locking behavior of the SWO-based, all-digitally controlled PLL. In
addition, we utilize the same ring-based structure to distribute the clock signal all
over the IC as well, in a “comb” like clock distribution topology. Our proposed clock
distribution is entirely resonant in nature, and hence consumes low power. Because
of the relatively high Q-factor of the SWO, jitter and systematic skew are reduced as
well.

The complete SWO-based phase-locked clock generation and distribution scheme
has been simulated in HSPICE (Inc Meta-Software) using a 32 nm (PTM 2013)
technology. The key contributions of this work are:

• We present an all-digital control loop to phase-lock the SWO to an external clock,
by combining a coarse and fine control loop over the frequency of interest (which
is between ∼3.1 GHz to ∼3.6 GHz). Our phase-locking circuit does not require
any external analog supply voltages for operation.

• The phase-locked SWO is also used as a clock distribution mechanism, by routing
the SWO wires in a “comb” like manner to all the clock distribution end-points
on the die.

• Due to the resonant nature of the clock generation and distribution scheme, a
reduced power consumption (upwards of 2× lower) is achieved.

• Additionally, the jitter and systematic skew characteristics of our clock genera-
tion and distribution scheme are significantly (about 5×) better than those of a
traditional buffered H-tree scheme with an overlaid mesh.

The remainder of this section is organized as follows: We discuss some previous work
for clock design in Sect. 2.2.2, while Sect. 2.2.3 provides the details of our SWO-
based clock generation and distribution methodology. Section 2.2.4 presents results
from experiments which we conducted, while Sect. 2.2.5 presents conclusions.
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2.2.2 Previous Work

Recently, there has been some interest in mobius ring based resonant oscillators as
a means to generate the clock signal for digital ICs. Both traveling wave (Wood et
al. 2001; Chan et al. 2004; MultiGig 2013; Nedovic et al. 2007 and standing wave
Cordero and Khatri 2008; Karkala et al. 2009) oscillators have been proposed in
the literature. Since charge is recirculated in these configurations, they exhibit a low
power consumption. Resistive losses in the ring, as well as the power consumed
by the inverter pair(s) contribute to the power consumption of these structures. By
choosing the length of the ring carefully, oscillations of high frequencies can be
sustained, as long as the inverter pair(s) can switch at these frequencies.

A TWO (referred to as a rotary clock) was described and implemented (Wood et
al. 2001; 2006). The topology is similar to SWO (Cordero and Khatri 2008; Karkala
et al. 2009), except that oscillations in this network are sustained by a plurality of
inverter pairs spaced along the ring. The key drawback of the rotary clock is that the
phase of the generated clock varies along the ring, making traditional synchronous
clock based design extremely difficult. Also, the clock signal at every point of the
ring is a full-rail signal, resulting in a larger power consumption. Hence, we focus
our attention on a SWO-based design.

Both the traveling wave and standing wave oscillators generate a free-running
clock signal. In practice, however, it is crucial that any oscillator in a digital system
has the ability to modify its phase and frequency in a predictable manner, so as to
allow it to be integrated into a PLL. In this section, we design a SWO-based PLL as
well as a clock distribution network, with minimal power, jitter and systematic skew.

The authors of (Nedovic et al. 2007) describe a 2.5 GHz PLL using a traveling
wave oscillator. The design recovers 16 bits within a clock period. Though it is ad-
vantageous for Clock Data Recovery (CDR), the varying phase of the traveling wave
clock makes synchronous clock based design difficult. In contrast, our work uses an
SWO-based PLL, and simultaneously accomplishes resonant clock distribution as
well, with low power, jitter and skew.

In Mahony et al. (2003), a high-frequency standing wave PLL was proposed. It
uses multiple coupled oscillators, each comprised of an NMOS cross-coupled pair
to sustain the oscillation, and a PMOS diode connected load for setting the common
mode voltage. Unlike our approach, (Mahony et al. 2003) achieves a very small
(6.4 %) locking range (while we achieve a ∼ 15 % locking range from ∼3.1 GHz to
∼3.6 GHz). Further, the approach of (Mahony et al. 2003) does not focus on jitter,
systematic skew or power, and does not concern itself with clock distribution, unlike
our approach.

PLLs have been important blocks in the field of VLSI for the past few decades.
Several PLLs have been designed with a coarse and a fine tuning approach. For
example, the authors of (Lin and Kaiser 2001; Wilson et al. 2000; Lin and Lai 2007)
have implemented a PLL using a combination of an analog and digital control loop
for coarse and fine tuning. However, none of the oscillators in (Lin and Kaiser 2001;



2.2 Phase Locked Clock Generation and Distribution Using SWOs 23

Wilson et al. 2000, Lin and Lai 2007) were resonant. Also, in further contrast, our
work uses an all-digital control, and provides resonant clock distribution as well.

Recently, in (Karkala et al. 2009), a SWO-based PLL was presented with a digi-
tally controlled coarse frequency loop, and an analog control for the fine frequency
loop. Although we borrow the coarse control approach from (Karkala et al. 2009),
there are significant differences between this work and (Karkala et al. 2009). In partic-
ular, (Karkala et al. 2009) utilizes an extra 2·VDD supply for the analog control of the
fine frequency, which we avoid in our all-digital control approach. Also, (Karkala
et al. 2009) does not address the problem of clock distribution, while our design
performs resonant clock distribution as well. Without using a resonant clock distri-
bution, the jitter and systematic skew could be significant (if distribution was done
by traditional means such as a H-tree). Additionally, unlike (Karkala et al. 2009), we
compare our approach with a H-tree based clock distribution approach with a mesh
overlay, and quantify the gains in power (more than 2× lower), systematic skew
(about 5.5× lower) and jitter (about 4.6× lower).

In Chueh et al. (2004), the authors experimented with a 4-level H-tree, with
energy-recovering flip-flops and a resonant clock distribution. The resonant clock
generator was operated at 250 MHz. By varying the width and spacing of the wires,
they evaluated the clock skew at different leaf nodes. Unlike our approach, they did
not focus on a PLL, and rely on a small design (4-level H-tree, 4 mm die size) for
their experiments. Despite this, their best case reported skew was larger than ours,
even with significantly wider distribution wires that were spaced much further apart.
Also, no discussion or comparison of jitter was provided in (Chueh et al. 2004).

2.2.3 Our Approach

In the following section, we first briefly discuss our proposed resonant oscillator
based phase-locked clock generation and distribution scheme, followed by a brief
discussion of the H-tree based clock distribution scheme (with an overlaid mesh) we
compare our work with. Next, we discuss the details of our all-digital PLL to phase
lock the resonant clock with an external reference.

2.2.3.1 SWO-based Clock Distribution

Our clock distribution scheme is based on resonant standing wave oscillators (SWOs).
The physical topology of our SWO is shown in Fig. 2.3, while the equivalent circuit
for our SWO is shown in Fig. 2.6. In this figure, Lw and Cw refer to the parasitic
inductance and parasitic capacitance of the ring wires respectively. The capacitance
due to the cross-coupled inverter pair (i.e. twice the sum of the diffusion and gate
capacitances of any inverter in the pair) is C. Since C and Cw are in parallel, we
obtain the equivalent circuit shown in Fig. 2.6.
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Fig. 2.6 Equivalent circuit
for our resonant oscillator
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Fig. 2.7 Longer SWO
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The oscillation frequency of the equivalent circuit is given by

f = 1

2�
√

Lw(C + Cw)
(2.1)

For reasonable oscillation frequencies, the area covered by an SWO is very small
compared to the area of the typical digital IC. Hence, in order to realize a SWO
based clock distribution scheme, we need to increase the size of the ring to cover
a larger area of the chip. However, increasing the length of the ring decreases the
oscillation frequency (due to the increase in its parasitic capacitance and inductance).
Figure 2.7 shows a SWO consisting of three cross-coupled inverter pairs, placed at
an equal distance from each other. The SWO of Fig. 2.7, with a length of 3 × L,
oscillates at the same frequency of a single SWO of length L with one cross coupled
pair of inverters. The SWO is bootstrapped with PMOS devices (using a BS signal)
as shown in the Fig. 2.7 to provide the initial condition for the system to oscillate. In
this manner, the SWO in Fig. 2.7 covers

√
3 times the chip area as compared with

a SWO with just one inverter pair, and oscillates at the same frequency. In general,
we can implement an SWO with a large perimeter k ×L (where k is odd). To ensure
that the clock is distributed to 2P uniformly spaced points on the die, we propose to
snake the wires of the ring to implement a “comb” topology as shown in Fig. 2.8. In
this figure, we assume P = 6. Since the SWO has the same phase everywhere along
the ring, this “comb” structure is able to distribute the clock signal to the 64 sinks
on the IC with the same phase. Note that for such a SWO design, we require an odd
number k of inverter pairs, and a single mobius connection (as shown in Fig. 2.7).
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Fig. 2.8 Comb topology

Sink

Snaking
SWO

Fig. 2.9 Coarse frequency
configuration

0         1        1

1         1        1

1        0        0 0         0        1

1        1        0

1        1        1
Coarse config 1

Coarse config 3

Coarse config 2

x0 x1 x2 x2 x1 x0

inner ringouter ring

2.2.3.2 Phase-locked SWO

We realize a phase-locked SWO by modifying the base design of SWO (Cordero and
Khatri 2008). Frequency control of the SWO consists of coarse frequency control as
well as fine frequency control, as discussed next.

Coarse Frequency Control: We implement coarse frequency control by modulat-
ing the inductance and capacitance of the ring. The two wires of the ring (Fig. 2.3)
are replaced by 2n parallel wires in our approach, just as in (Karkala et al. 2009). We
realize a variable frequency SWO by selecting a subset (of even cardinality) of the
2n wires for oscillation. The wires used for oscillation are selected symmetrically
about the center of the 2n-wire bundle. Each subset of the 2n wires that we use for
oscillation is referred to as a coarse configuration.

Figure 2.9 illustrates the coarse configurations for n = 3, while Fig. 2.10 illustrates
the ring circuit structure for n = 3, at the mobius crossing point. In Fig. 2.9, x0 refers
to the outermost wire of the outer ring as well as the innermost wire of the inner ring,
while x1 refers to the middle wire, and x2 refers to the innermost wire of the outer
ring, and the outermost wire of the inner ring. In this figure, a ‘1’ against xi indicates
that the corresponding wires are oscillating, and a ‘0’indicates that the corresponding
wires do not oscillate. Therefore, coarse configuration 1 (2) uses a total of 6 (4) wires
for oscillation (indicated by the values ‘1’ against the configuration). Note that the
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Fig. 2.10 SWO coarse and fine configuration

oscillating wires in a coarse configuration are chosen in a symmetric manner around
the midpoint of the bundle of 2n = 6 wires. We simulated our oscillator with n = 30.

In practice, the wire locations that are labeled as ‘0’ in Fig. 2.9 are actually left
floating by the control logic. Assuming that the supply voltage of the inverter pair
is VDD, the oscillating wires oscillate around a DC value VDD/2, with sinusoidal
waveforms which are always in phase, but whose amplitude vary as we traverse the
ring (as shown in Fig. 2.3). Since a null oscillation point exists at a distance L/2 from
the inverter pairs, we short all 2n wires at this virtual ground location. As a result,
all wires that are left floating by the control logic actually have a VDD/2 voltage on
them due to the short at the virtual ground location (and therefore these wires act as
ground wires in an AC sense).

From Fig. 2.9, suppose we have two configurations with numerical indices P and
Q respectively. Let P < Q, so that there are more oscillating wires in the inner (and
outer) rings for P as compared to Q. Also, the distance between oscillating wires in
the two rings is lower for P . This has two effects.

• The capacitance of the oscillating wires is larger for P as compared to Q, since
P has more oscillating wires.

• The inductance of P is lower than that of Q, since the current return loop is
smaller in P compared to Q, due to proximity effect.

The ratio of the increase in capacitance of P over Q is less than the ratio of the increase
in inductance of Q over P . As a result, based on the expression for the frequency of
oscillation of the ring (Eq. 2.1), P oscillates at a higher frequency than Q.
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Fig. 2.11 H-Tree with
overlaid mesh Sink

Clock Source

The coarse frequency of our resonant standing wave oscillator is controlled by
varying the values of the n-bit vector x.

The circuitry for coarse frequency control is illustrated in Fig. 2.10. This circuit
takes as an input the vector x. Based on the values of this vector, the appropriate wires
among the 2n wires of the oscillator are made to oscillate. If coarse configuration 2
is chosen, for example, only the top 2 and the bottom 2 wires in Fig. 2.10 oscillate.
Note that this circuit resides at the mobius point of the resonant oscillator, and the
cross-coupled inverter pair is shown in the figure as well. The mobius connection of
the 2n wires is illustrated to the right of Fig. 2.10.

Fine Frequency Control: For fine frequency control, we use a set of binary
weighted NMOS capacitors. In particular, we connect four NMOS capacitors at
either end of the cross-coupled inverter pair for fine frequency control, as shown
in Fig. 2.10. In practice, the switches in Fig. 2.10 are NMOS passgates. We tried
complementary passgates, but the diffusion capacitance of complementary passgates
caused a noticeable drop in oscillation frequency. In order to decrease the body effect,
we connect the source and bulk terminals of these NMOS passgates.

The capacitor bank switches are controlled by the input vector w. By applying
a certain value of w, we modulate the overall capacitance of the SWO and hence
change its oscillating frequency. The capacitors are chosen such that they can cover
the largest of the frequency intervals between any two coarse frequency points.

2.2.3.3 H-Tree Combined with Overlaid Mesh

We compare our approach with an H-tree with an overlaid mesh. The H-tree is a
popular clock distribution approach, due to its simplicity and low power and area
requirements. The structure of a 6-level H-tree clock distribution network is shown
in Fig. 2.11 (with solid lines). There are 26 = 64 sinks (end-points) in the H-
tree (indicated by solid dots), which are uniformly spaced to cover the entire IC.
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Fig. 2.12 Block diagram of the proposed PLL design

The buffers of the H-tree (omitted in Fig. 2.11) are placed symmetrically along the
branches, to ensure equal delays from the clock source to all the sinks, and fast
switching at the sinks. The wire segments in a buffered H-tree exhibit minimal delay
variations as a consequence of PVT variations, since the delay of a wire depends
solely on the RC parasitics of the wire. However, power supply variations across
the die affect the delay of the buffers, resulting in an increased skew at the sinks of
the buffered H-tree. Moreover, there are cycle-to-cycle variations in the VDD value,
and hence the different buffers experience different delays on a cycle-to-cycle basis.
This results in an increased cycle-to-cycle jitter. Both skew and jitter reduce the
maximum operating frequency of the IC. A common industry practice to reduce the
skew and the jitter is to implement a mesh on top of the H-tree (shown by dotted
lines in Fig. 2.11). However, by introducing short circuit current paths between the
sinks with delay differences, this topology consumes more power than the H-tree
alone. Moreover, the delay variation compensation of the mesh is a strict function of
the RC product of the mesh wires. This implies that in order to reduce the skew and
the jitter, we require a more dense mesh, with wide wires, thereby incurring a large
area and power overhead.

2.2.3.4 Proposed Digital PLL Design

Figure 2.12 shows the block diagram of our digital PLL with the SWO of Fig. 2.10
incorporated. The phase error between the reference clock (CLKref) and the divided
clock (CLKdiv) is detected by the Phase-Frequency Detector (PFD) and is quantized
into a digital code by the Time to Digital Converter (TDC). The TDC output is
processed by the two Digital Loop Filters (DLF) for the coarse and fine frequency
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Fig. 2.13 Phase frequency
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controls. The output of the DLFs are added to coarse and fine DCO configuration
words, which are registered in Coarse Register and Fine Register respectively. Note
that these registers get updated every Tref. A thermometer converter performs a binary
to decimal encoding of the coarse control words. The output of the TC and the Fine
Register are provided as input to the SWO as discussed in Sect. 2.2.3.2.

Next, we discuss the circuit details of the individual components of the PLL.

Phase Frequency Detector (PFD): The PFD consists of two flip-flops and an AND
gate connected as shown in Fig. 2.13. The output of the PFD is dependent on both
the phase and frequency difference between the input signals. The PFD has two
input clocks, the external crystal clock (CLKref) and the divider output (CLKdiv) and
produces two outputs UP and DN.

The PFD is a simple state machine which has three states. Consider that the
UP and DN outputs are initially low. When CLKref leads CLKdiv, the UP output is
asserted on the rising edge of CLKref. The UP signal stays high until a low to high
transition of CLKdiv. At this point of time, DN rises, causing both the flip-flops to
reset through the asynchronous reset signal. There will be a small pulse on the DN
output, the width of which is equal to the sum of the delay through the AND gate
and the Reset-to-Q delay of the flip-flop. The pulse width of the UP signal is thus the
phase error between the two signals. A similar situation arises when CLKdiv leads
CLKref (the phase error in this case is the width of DN pulse).

Under a lock condition, equally short pulses will be generated on both the UP
and DN outputs. The transfer function of the PFD can be approximated as:

PFD(z) = Tref

2π
(2.2)

Time to Digital Converter (TDC): We implement a variant of the traditional TDC
with a re-circulating delay line, as shown in Fig. 2.14. It consists of m delay elements
followed by aK-bit counter. Each delay element consists of 4 minimum size inverters.
We define �TDC as the delay of a single delay element, which is the TDC resolution.
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Hence, 4 ∗ m inverters and one NAND gate enabled by TDCOR form an effective
ring oscillator. TDCOR is the logic OR, and TDCAND is the logical AND of the UP
and DN pulses output by the PFD. Note that, when TDCOR is zero, all the outputs
of the delay elements are initialized to ‘1’. On the rising edge of the TDCOR pulse,
the delay elements start toggling, causing the output TDCOUT to toggle once every
m × Td seconds, where Td is the delay of one delay element. The counter counts the
number of times TDCOUT toggles. On the rising edge of the TDCAND , the state of
the m-element delay chain and the state of the counter are latched. Together, they
perform the quantization of the phase error into a digital word. In practice, we use
m = 5, and a counter with K = 7 bits. The output of the TDC is EP[7 : 0]. The 7
outputs of the counter can have 128 values. An additional 5 values (for a total of 133
values) are produced by state of the delay chain. These 133 values are encoded into
EP[7 : 0] and driven to the DLF blocks. The transfer function of the TDC can be
approximated as:

TDC(z) = 1

�TDC
(2.3)

Digital Loop Filter (DLF) Figure 2.15 shows our implementation of the DLF. We
define two error terms called the phase error (EP) and the frequency error (EF). EP is
the measured phase error between the Tref and Tdiv. EF is the instantaneous frequency
error between the Tref and the Tdiv. We observe that we can approximately obtain
EF by taking a derivative of the phase error (EF = dEP

dt
). As shown in Fig. 2.15, we

store the EP of the last reference cycle in a register. We compute EF for the current
reference cycle as EF(n) = EP(n)−EP(n−1). Finally, we obtain the DLF output error
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e as e(n) = KP ∗ EP(n) + KF ∗ EF(n), as shown in Fig. 2.15. Note that from control
theory, KP is defined as the proportional gain and KF is defined as the differential
gain. Hence, our DLF functions as a Proportional-Derivative (PD) controller. The
proportional action improves the response of a system by providing an instantaneous
response to the control error. Derivative action provides a fast response as opposed
to the integral action, but cannot accommodate constant errors. PD control is useful
for fast response controllers that do not need a steady-state phase error of 0. Though
Proportional-Integral (PI) controllers are more common in PLL designs, we opt for
a PD controller since it theoretically has an improved damping, reduced maximum
overshoot as well as a very fast time to lock. Since our design implements a clock
generation and distribution scheme, large overshoots result in a high cycle-to-cycle
jitter. Moreover, our experiments suggest that the steady-state phase error obtained
is very small and is at most 25 ps, which is less than 0.15 % of the reference clock
cycle (Tref). Note that we use two different DLFs (one for the coarse, and another for
the fine frequency control). The only difference between the two is that they have a
different pair of gain values for KP and KF. The transfer function of the DLF is given
by the following equation:

DLF(z) = Kp + Kf ∗ (1 − z−1) (2.4)

Thermometer Converter (TC): Figure 2.16 shows our implementation of a ther-
mometer converter (TC) with 4 inputs and 16 outputs, to drive the coarse configuration
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vectors [x15 . . . x0]. Lets say the decimal value of the input (vector w) is m (where
0 ≤ m ≤ 15). Then exactly m outputs (from x0 to xm−1 are ‘1’, and the rest of the
(16 − m) outputs (from xm to x15) are ‘0’.

Divider: In our experiments, we nominally assume an external 50 MHz reference
crystal clock. Hence we require a division factor of 64 in order to achieve an oscillator
operating at a center frequency of of 3.2 GHz. We implement the divider as a 6-bit
ripple counter, as shown in Fig. 2.17. The clock to the first stage of the ripple counter
is the recovered clock from the oscillator (CLKVCO). The output is the divided clock
(CLKdiv) which serves an input to the phase frequency detector.

2.2.4 Experiments

We implemented our design in the 32 nm (PTM 2013) technology, with VDD =
0.9 V . All simulations were conducted in HSPICE (Inc Meta-Software). RLC par-
asitics for all the wires were extracted using (Raphael Interconnect Analysis Tool:
User’s Guide). We assume a square die of size 1 cm × 1 cm for our experiments.
We compare the jitter, skew, area and power of our approach with that of a buffered
H-tree with an overlaid mesh (see Sect. 2.2.3.3).

2.2.4.1 Coarse Frequency Control

The inner and outer wiring rings of the oscillator consist of n = 30 wires each. Each
of the 60 wires were 1 μm wide, with an inter-wire spacing of 0.5 μm. We implement
the SWO in form of a comb topology as shown in Fig. 2.8. For a square die of size
1 cm × 1 cm, the required length of the comb is 80 mm. We implemented a 17 × L

SWO, where L (the distance between two consecutive cross-coupled inverter pairs)
was taken to be 5000 μm. Note that as discussed in Sect. 2.2.3.1, the frequency of
the SWO is determined by the length L, and the length of the comb should be an odd
multiple of L.

The 16 coarse configurations that we used are shown in Table 2.1. Note that for
each configuration, we report the 30 values of x. Note that the x0 value is the leftmost
bit of any row of Table 2.1. Also, the 2 highest order bits are always zero, and their
corresponding NMOS devices are omitted from the circuit (see Fig. 2.10). Similarly
the 2 lower order bits of x are always 1, and their corresponding NMOS devices
are also omitted from the circuit of Fig. 2.10. These 2 outermost wires are statically
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Table 2.1 Coarse
configurations used in our
experiments

Configuration x value

0 111111111111111111111111111100
1 111111111111111111111111100000
2 111111111111111111111110000000
3 111111111111111111111000000000
4 111111111111111111100000000000
5 111111111111111110000000000000
6 111111111111111000000000000000
7 111111111111100000000000000000
8 111111111110000000000000000000
9 111111111000000000000000000000

10 111111100000000000000000000000
11 111111000000000000000000000000
12 111110000000000000000000000000
13 111100000000000000000000000000
14 111000000000000000000000000000
15 110000000000000000000000000000

connected to the cross-coupled inverter pair. With 2 outer wires always oscillating
and 2 inner wires always floating, we can choose to oscillate any number between
zero through 26 of the remaining wires, giving us a total of 27 coarse configurations.
However, we use only 16 of these 27 values as shown in Table 2.1. For example, while
going from configuration 15 to 14, we turn on one more wire. However, while going
from configuration 10 to 9, we turn on 2 extra wires. We skip some intermediate
configurations because the frequency difference between some configurations and
their neighbors was very small. We also ensured that we can cover the frequency
difference between any two coarse configurations with the help of the fine frequency
control circuitry.

We next size the cross-coupled inverters such that they can provide the negative
resistance for any configuration of the SWO. Note that the cross-coupled inverters
are the only active elements in the SWO. Hence, the capacitance of the cross-coupled
inverter (and hence the capacitance of the SWO) depends on VDD, which can there-
fore result in cycle-to-cycle variations in the clock period (jitter). We found that
the minimum width of the cross-coupled inverters is 40μm (20 μm) for the PMOS
(NMOS) device, which allowed all configurations to sustain oscillation even at a
10 % lowered VDD.

To size the NMOS passgates that drive the xi signals in Fig. 2.10, we conducted a
SPICE sweep starting with minimum sized passgates. As we increased the passgate
size, we found that more configurations were able to sustain oscillation. For an
NMOS passgate of size 2.5μm, oscillations were sustained by every configuration
of Table 2.1.

We verified that our oscillator provides a continuous frequency response from
∼3.1 GHz to ∼3.6 GHz, with a center frequency of 3.3 GHz. Figure 2.18 illustrates
the set of frequencies achievable by our coarse tuning approach. The fine-frequency
control value for these simulations is fixed at half of its maximum value, allowing
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us to minimally extend the range reported in Fig. 2.18 in both directions. We thus
achieve around 15 % tuning range around a center frequency of 3.3 GHz.

2.2.4.2 Fine Frequency Control

We ensured that our fine frequency circuitry can cover the largest frequency difference
between any two adjacent coarse configurations shown in Fig. 2.18. We use 4 binary
weighted NMOS capacitors for the fine frequency control. The width of the smallest
NMOS capacitor was chosen to be 0.2u. The NMOS pass gates which are used to turn
on these capacitors are also binary weighted. The width of the smallest NMOS pass
gate is 0.4u. Figure 2.19 illustrates the continuous fine frequency range achievable
for one of the coarse configurations (Configuration 9).



2.2 Phase Locked Clock Generation and Distribution Using SWOs 35

2.2.4.3 Phase Locking Results

From Eqs. 2.2, 2.3 and 2.4, the open loop transfer function of the of the PLL is given
by the following equation:

H (z) = Tref

2π
∗ 1

�TDC
∗ [Kp + Kf ∗ (1 − z−1)] ∗ KDCO (2.5)

where KDCO is the DCO gain. The DLF coefficients depend on two factors KDCO and
�TDC. KDCO varies from 34.2 MHz/unit to 68.3 MHz/unit for the coarse frequency,
and is ∼2.1 MHz/unit for the fine frequency control. We implement the smallest
delay element in our TDC with a chain of 4 minimum size inverters. Hence the delay
resolution of TDC (�TDC) is the sum of delay of these 4 inverters (∼25 ps). We
choose the DLF coefficients in order to (a) ensure the stability of the control loop
and (b) minimize the maximum overshoot in frequency during PLL locking. For
fine frequency control, we choose the phase gain (Kp) as 1

2 and the frequency gain
(Kf) as 1. For the coarse frequency control, we choose the phase gain (Kp) as 1

32 and
frequency gain (Kf) as 1

16 . Note that the gain of the DCO is at most ∼16× larger
for the coarse frequency control compared to the fine frequency control. Hence,
we adjust our DLF gains by the same amount. We verified the stability of the both
coarse and fine frequency control by doing extensive MATLAB simulations around
the values listed above.

Figure 2.20 shows the DCO frequency (top plot) and the measured phase error
between the divided clock and the reference clock (bottom plot). For all our simu-
lations, we observe that the PLL locks within 15-25 CLKref cycles. With a reference
crystal frequency of 50 MHz, the above locking time is only ∼ 0.5us. Note that we
make changes in both fine and coarse frequency every Tref cycles. Hence, we observe
that there are flat lines in the DCO plot in Fig. 2.20, during which the configurations
(and hence the DCO frequency) remain constant. We have verified that our PLL was
able to correctly lock to any reference frequency (in the locking range) by testing it
with different reference frequencies and different initial phase errors. Figures 2.21
and 2.22 show the simulation results of two such experiments. Observe that in both
Figs. 2.20 and 2.21 we lock to the same target frequency of 3.33 GHz. However,
the initial phase errors (as shown by the left portion of the two bottom plots) are
different. In Fig. 2.22, the PLL locks to a different target frequency of 3.38 GHz.

To recover a rail-to-rail clock from any location on the SWO, a clock recovery
circuit is implemented as shown in Fig. 2.23. This circuit is essentially a differential
amplifier with a buffered output. A plot of several recovered signals from all the 17
inverter points around the SWO is shown in Fig. 2.24. From this figure, the rising
slew is 5.83 ps, while the falling slew is 6.23 ps (for a clock of period of 300 ps).
Note that the clock edges from all the inverter points coincide, suggesting almost
zero skew (under no PVT variations).
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Fig. 2.20 PLL locking for a target frequency of 3.33 GHz

Table 2.2 Comparison
between H-tree and
SWO-based clock
distribution

Scheme Wiring Area Circuit Area Power Jitter Skew

H-tree 2.48 mm2 137.85 μ2 198.1 mW 30.5 ps 192.8 ps

SWO 8.67 mm2 141.54 μ2 81.31 mW 6.65 ps 34.7 ps

2.2.4.4 H-tree with Overlaid Mesh—Comparison

We construct a 6-level H-tree with an overlaid mesh as shown in Fig. 2.11. The width
of the clock wire for the H-tree was taken to be 0.45u. The mesh was implemented
with wires of thickness 10u. Our clock buffer consists of a 85× inverter followed
by a 256× inverter. We insert two buffers at every bifurcation of the H-tree, one for
each branch. We also make sure that the longest wire that we drive is less than 1.25
mm, to ensure that the slew is less than 50 ps at the buffer inputs.

Table 2.2 compares our SWO clock distribution with the H-tree combined with
an overlaid mesh. We assume 60 mV of VDD variation from cycle-to-cycle in our
experiments to calculate cycle-to-cycle jitter (variation in clock period between con-
secutive clock cycles). The VDD variation of 60 mV was obtained based on similar
data measured from contemporary ICs (Juniper Networks 2010). To calculate the
skew (variation of clock edges across different clock sinks on the die), we divide the
die into 4 quadrants. For the North-East quadrant, we assume all the transistors to
be in slow corner (10 % lower VDD, 10 % higher Vt , 80◦C operating tempurature).
The North-West and South-East quadrants have nominal VDD and Vt , and operate at
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Fig. 2.21 PLL locking with a different initial phase error

room tempurature. For the South-West quadrant, we assume all the transistors to be
in fast corner (10 % higher VDD, 10 % lower Vt , 0◦C operating tempurature). Our
experimental conditions are pessimistic in order to compare the performance under
worst case variations.

From Table 2.2, we note that our scheme has a much lowered power requirement
(by ∼ 2.4×) over the H-tree with overlaid mesh. In practice the power improvement
would be larger, since we do not model the PLL power for the H-tree with overlaid
mesh (while this portion of the power is accounted for in our method). This reduced
power is attributed to the resonant nature of the SWO. The jitter of our approach is
a mere 6.65 ps, which is 4.6× lower than that of a buffered H-tree with an overlaid
mesh. Again, this attributed to the relatively high Q-factor (which is approximately
5) for our SWO.Also, the skew of our approach is about 5.5× better than the buffered
H-tree with an overlaid mesh, for the same reason that results in improved jitter. The
circuit area of the two approaches are similar, while the wiring area of our approach
is ∼3.5× higher. Clearly for high-performance processors, where clock skew, jitter
and power are significant concerns, our SWO provides a significantly improved clock
generation and distribution scheme.
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Fig. 2.22 PLL Locking for a Target Frequency of 3.38 GHz

2.2.5 Conclusion

In this work, we have presented a resonant SWO based phase-locked clock gener-
ation and distribution scheme with superior jitter, skew and power characteristics.
Phase locking is accomplished by a fully digital control loop consisting of a coarse
frequency control and a fine frequency control. The SWO frequency is modulated
in a coarse manner by changing the ring inductance, by modifying the number of
oscillating wires. Fine frequency control is achieved by modifying ring capacitance
via a binary-weighted capacitor bank. The digital control loop has been analyzed and
implemented in HSPICE. Clock distribution is performed by routing the resonant
ring on the die in a “comb” manner. Our approach is compared to an H-tree with an
overlaid mesh. Given the relatively high Q-factor of the SWO, this clocking approach
exhibits a very low cycle-to-cycle jitter (about 4.6× better) and very low skew (about
5.5× better) compared to the H-tree with overlaid mesh. The power consumption of
our scheme is upwards of 2.4× improved as well, given the resonant nature of the
approach.
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Fig. 2.23 Clock recovery circuit

2.3 Automated Methodology to Generate Low Jitter Buffered
H-tree

In the previous section, we presented an SWO-based clock generation and distribu-
tion methodology and compared it with a traditional buffered H-tree, with an overlaid
mesh. However, in recent fabrication technologies, the buffered H-tree clock distri-
bution network has been quite commonly used. In the following section, we present
a dynamic programming based approach to synthesize a minimum cost buffered H-
tree clock distribution network. Our primary cost function is the end-to-end jitter of
the synthesized H-tree, while the secondary goal is to minimize power as well.

2.3.1 Introduction

In recent VLSI fabrication processes, with decreasing feature sizes, wire widths have
been shrinking. The direct consequence of this is an increase in wire resistance (Rw),
since Rw = ρ·L

W ·T , where ρ is the resistivity of the wire material, and L, W and T

are the length, width and thickness of the wire respectively. Since wiring delays on
a die are proportional to the RC time constant of the wires, this increase in wire
resistance results in increased wiring delays, especially for long wires on a chip
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Fig. 2.24 Overlay of recovered waveforms

(which do not scale with technology). The classical approach to solve this problem
is to partially compensate for the reduction of W by increasing T , but this results
in wires which are thin and tall, leading to an increased cross-coupling capacitance
among wires, thereby again resulting in an increased RC time constant. The design
of the wiring stack (i.e. the height and minimum width of wires on each metal layer
of the IC) is therefore a complex problem. Despite significant research in academia
as well as industry, it remains true that wiring delays in VLSI are on the rise (The
International Technology Roadmap for Semiconductors 2007), and this problem is
particularly acute for global signals which need to be driven at high frequencies with
tight slew-rate constraints.

The global clock signals on an IC are particularly impacted by this problem. The
clock signal is operated at high frequencies, and in addition to having stringent slew-
rate constraints, the clock signal also has very tight jitter constraints. Consider the
rising (falling) edge of the clock. Over a number of cycles, this edge may appear
early or late. Jitter is difference between the latest arrival time and the earliest arrival
time of a clock signal edge. The clock period of the IC is determined by adding
the worst-case clock jitter value to the longest delay between any two sequentially
adjacent flip-flops in the circuit. The longest delay between two sequentially adjacent
flip-flops is computed as the sum of the longest combinational delay of the circuit
plus the setup time and the clock-to-output delay of the flip-flops of the design. As
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Fig. 2.25 Buffered H-tree
Clock Distribution Network
with 6 Levels
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a result, a high clock jitter results in a reduced frequency of operation of the IC, and
hence it is important to keep jitter to a minimum.

Given the timing critical nature of the clock signal, it is very important to distribute
this signal carefully on an IC, to ensure high slew-rates, high frequency and low jitter.
Over the years, several clock distribution methodologies have been developed, such
as the H-Tree, mesh and star, among others (Friedman 2001; Anceau 1982). The
H-tree is a popular clock distribution approach, due to its simplicity and low power
and area requirements. In this work, we therefore focus our attention on an H-tree
based clock distribution network.

The structure of a 6-level H-tree clock distribution network is shown in Fig. 2.25.
The numbers on each of the branches of the H-tree indicate the level of that branch.
The × notation in the center indicates the source of the H-tree. There are 26 = 64
sinks (end-points) in the H-tree, indicated by dots. Note that the end-points of the
H-tree distribution network are uniformly spaced, and cover the entire IC area. The
lengths of the i th branch of the H-tree is given by Li = S

2� i
2 �+1

, where S is the

dimension of any side of the (square) die. For example, for a chip which is 20 mm
wide, the lengths of the branches of a 6-level H-tree are 5 mm, 5 mm, 2.5 mm,
2.5 mm, 1.25 mm and 1.25 mm, for levels 1 through 6 respectively.

The unbuffered H-tree network is a zero-skew balanced network (if process and
temperature variations are not considered). A traditional H-tree is designed assuming
that the clock driver at the center of the H-tree is large enough to drive the entire clock
tree. Wire widths and driver sizes are fixed to make sure that the clock signal can
drive the local clock regenerators at the leaves (sinks) of the H-tree for the required
frequency of operation, with a sufficiently high slew-rate. The optimal (with respect
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to having a high slew-rate clock signal and also in terms of reducing the clock
distribution area and delay) wire sizing methodology dictates that we utilize wider
wires near the center of the H-tree, and narrower wires as we get closer to the leaves.
This is referred to as a tapered wire sizing approach.

Note that with increasing wiring delays in recent technologies, it is no longer
feasible to utilize unbuffered H-trees for ICs of reasonable size (greater than ∼ 5 mm).
For this reason, buffered H-trees are commonly utilized in today’s IC designs. The
buffers of the H-tree are not shown in Fig. 2.25, and can be at arbitrary locations along
any path from the source to a sink, provided the locations and sizes of each buffers
is the same for all 64 paths of the H-tree. Typically, when an H-tree is manually
designed (which is the common practice), designers typically place identical buffers
are regular intervals along the H-tree, so as to simplify the design process. Also, in a
manually designed H-tree the wire topologies are typically fixed from source to all
sinks. For example, a common practice is to place buffers at each branching site in
the H-tree. Note that with a buffered H-tree, tapered wire sizing (commonly used in
unbuffered H-trees) is no longer necessary, and the wire widths of each level of the
H-tree are typically dependent on the size of the driving buffer.

The buffered H-tree alleviates the wiring delay problem in recent technologies,
and enables a designer to deliver a high frequency, high slew-rate clock at all the
sinks, with low end-to-end delay. However, the disadvantage of such a buffered
H-tree is an increase in the jitter at the sinks. In practice, there are cycle-to-cycle
variations in the VDD value across the die. On one hand, the wire segments in a
buffered H-tree do not exhibit delay variations as a consequence of the cycle-to-
cycle VDD variations along the die, since the delay of a wire depends solely on the
RC parasitics of the wire. However, the cycle-to-cycle variations in the VDD value
across the die affect the delay of the buffers in a buffered H-tree, since the delay of an
inverter depends on its supply voltage. Hence, in practice, the different buffers in a
buffered H-tree experience different delays on a cycle-to-cycle basis. This results in
an increased jitter at the sinks of the buffered H-tree. This can reduce the maximum
operating frequency of the IC, since the operating frequency has to be guard-banded
to account for worst-case jitter, as discussed earlier.

Typically a buffered H-tree network is designed to minimize the end-to-end delay
of the tree. However, most modern ICs have an on-chip Phase Locked Loop (PLL)
to synchronize the off-chip clock (typically generated by a crystal oscillator) to the
on-chip clock. As a consequence, the end-to-end delay of the H-tree (or any other
clock distribution network) is not of consequence. Rather, our position is that the
H-tree should be designed for minimum jitter. This is the key guiding principle of
this work. We show that designing a buffered H-tree for minimum end-to-end delay
can yield different results compared to designing the buffered H-tree for minimum
jitter.

Our approach automates the design of the buffered H-tree, thereby availing sig-
nificant optimization flexibility that is not possible to leverage in a manual H-tree
design process. In particular, we select the best H-tree by exploring various (a) wiring
configurations (referred to as wire-codes in the sequel), (b) buffer sizes (c) segment
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lengths and (d) segment topologies. Any given wiring segment in our approach has
a total of 2745 choices for its implementation.

The automatic H-tree synthesis procedure utilized in this work is based on dy-
namic programming (DP). First, we statically characterize a large number of ways
of implementing a segment, by computing their power, segment delay and seg-
ment jitter and output slew, as a function of input slew. This is done for all 2745
segment choices up-front. Then a dynamic programming engine selects the low-
est cost H-tree implementation that satisfies constraints such as output slew limits
and cycle-to-cycle jitter. Our approach is implemented to minimize one of two cost
functions—a weighted sum of power and jitter, and a weighted sum of power and de-
lay. The resulting H-trees are simulated in HSPICE, and the end-to-end delay, power
and end-to-end jitter estimated by our DP engine matches the HSPICE results with a
maximum error of 4.6 %. We also compare our DP based buffered H-tree synthesis
with a manually designed H-tree. Results demonstrate that our approach, when run
with jitter minimization as its goal, produces H-trees with strictly better jitter (by as
much as 28 %) and power (by as much as 46 %) compared to a manually designed
H-tree. Also, it achieves better jitter performance than the DP based approach run
with delay minimization as its goal.

The key contributions of this work are:

• We argue that buffered H-trees should be designed to minimize jitter (as opposed
to minimizing end-to-end delay which is the typical approach). We demonstrate
that synthesizing an H-tree for minimal end-to-end delay does not necessarily
minimize jitter, underscoring the importance of the above observation.

• We present a DP based automated approach to synthesize a buffered H-tree. This
approach simultaneously explores a large number of wiring wire-codes, buffer
sizes, segment lengths and segment topologies.

• With the cost function of minimum jitter, our approach produces an H-tree which
has up to 28 % lower jitter than a manually designed H-tree. The power as well
as the end-to-end delay of our approach is better by up to 46 % and 16.6 %
respectively.

• Our DP engine can produce H-trees with a cost functions of a weighted sum of
power and jitter, and a weighted sum of power and delay.

The rest of this section is organized as follows: Sect. 2.3.2 describes previous
approaches in this area. Section 2.3.3 describes our approach, while Sect. 2.3.4
describes the results of experiments which we performed to validate our approach.
In Sect. 2.3.5, we draw conclusions.

2.3.2 Previous Work

Several clock distribution methods (such as the H-trees, meshes, stars etc.) have
been studied in the past. Some excellent survey style papers in this area are
(Friedman 2001; Anceau 1982). Most of previous works on clock network design
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(Chen and Wong 1996; Liu et al. 2000; Tsai et al. Tsai et al. 2004) attempt to obtain
zero skew, while others try to bound the clock skew within a given hard constraint
(Cong et al. 1998). Some clock synthesis works generate unbuffered clock networks
that require a separate buffer insertion stage using conventional or specialized buffer
insertion algorithms. In other works (Rajaram and Pan 2006; Chaturvedi and Hu
2004), buffer insertion and clock tree routing are integrated. The Deferred-Merge
Embedding (DME) algorithm (Chao 1992) is the fundamental technique used in
many recent clock tree synthesis approaches. It consists of a bottom-up stage and a
top-down stage. A tree of merge segments, which represent the possible locations
of merge nodes, is constructed in the bottom-up stage. Once all the merge segments
are constructed, the exact locations of merge nodes are determined in the top-down
stage. Merge segments are calculated to balance the delays of the two sub-trees. A
key difference between DME and our approach is that DME is used for clock tree
synthesis for ASICs, unlike the H-tree approach of our work which is more pertinent
for custom IC designs. In this work we intend to develop an optimal H-Tree that will
minimize the appropriate cost function by exploring a large number of wiring wire-
codes, buffer sizes, and segment length and segment topologies. This automatic tool
gives the flexibility to the designer to optimize delay, power and/or jitter across the
clock tree. None of the previous approaches attempts to minimize jitter as a design
goal.

2.3.3 Our Approach

Traditionally, buffered H-trees have been designed manually, with the goal of mini-
mizing end-to-end delay. Since the end-to-end delay is unimportant in an IC which
has a PLL, and since the buffers in the H-tree introduce jitter at the clock sinks, the
goal of this work is to automatically synthesize a buffered H-tree, which minimizes
the end-to-end jitter of the synthesized H-tree. The secondary goal is to minimize
power as well.

In the remainder of this section, we will discuss the design scenario for this effort,
along with the electrical constraints which we impose on the resulting synthesized
buffered H-tree. We end with a discussion of our dynamic programming (DP) based
automated buffered H-tree synthesis approach.

2.3.3.1 Buffered H-tree Construction

We conduct our experimentation on a 6 level buffered H-tree, implemented in a
45 nm (PTM 2013) fabrication process. The H-tree is implemented on METAL9,
and we assume that 10 metal layers are available. A variety of buffers are used. Each
buffer consists of two inverters, with the driving inverters of size 32× to 51264× of
a minimum sized inverter, in increments of 32×. The other inverter in the buffer is
sized 3× smaller than the driving inverter.
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Fig. 2.26 Cross section of
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Table 2.3 Wire-codes and
their characteristics

Wire-code W (μ) S(μ) Res. (�/mm) Cap. (F/mm)

WC1 0.45 0.45 69.78 1.68E-13
WC2 0.45 0.9 69.78 1.08E-13
WC3 0.9 0.45 34.89 1.84E-13
WC4 0.9 0.9 34.89 1.23E-13
WC5 1.35 0.45 23.27 1.98E-13
WC6 1.35 0.9 23.27 1.38E-13

A total of 6 wiring configurations (referred to as wire-codes) are available for any
buffered segment of the H-tree. There is no restriction on the number of wire-codes
utilized for the synthesized H-tree. These wire-codes are referred to as WC1 through
WC6, and their details are described next. Each wire-code consists of a METAL9
wire, shielded on either side as well as above and below by grounded wires, as shown
in Fig. 2.26.

Table 2.3 describes the details of the 6 wire-codes, along with their parasitic
resistance and capacitance values, which are extracted using Raphael (Raphael
Interconnect Analysis Tool: User’s Guide). All resistive values are reported for an
operating temperature of 100◦C, to model the worst case wiring delay condition. For
all wire-codes, we assumed T = 0.9 μm, H = 1.4 μm and a dielectric constant
κ = 2.5. The shield wire has a width of 0.45 μm in all wire-codes.

A variety of segments are selectable during the automatic synthesis of the buffered
H-tree using our approach. These segments fall into three categories, as shown in
Fig. 2.27. These segments are (a) a straight segment (b) an I segment and (c) a T

segment. The total length of these segments is referred to as x. The straight portion of
a T segment has a length y. For all segments, x ∈ [1 mm, 2.5 mm], with increments
of 0.25 mm. For a T segment, y ∈ [0.25, x − 0.5 mm], with increments of 0.25 mm.

As discussed earlier, jitter in a buffered H-tree occurs due to cycle-to-cycle local
variations of VDD across the die, which result in relative changes in the clock buffer
delays. We next discuss our methodology for computing jitter. For our 45 nm process,
the supply voltage is 1.1 V. The maximum variation in the VDD value is assumed
to be 10 % of VDD, or 110 mV. This variation is due to various sources, including
variations in the voltage regulator output, IR drops in the power distribution network,
etc. Of this 110 mV, about 70 % is attributed to cycle-to-cycle variations, and 30 %
constitutes long term variations. Therefore the cycle-to-cycle variation of the supply
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Fig. 2.27 Types of wire
segments used For Buffered
H-Tree construction

a) Straight segment
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x − y

b) T segment

x

voltage is 77 mV. For purposes of jitter measurement, we therefore consider jitter
to be the difference in delay of the clock buffer for VDD values of 990 mV and
1067 mV (i.e. 990 mV + 77 mV). These assumptions are supported by experimental
data obtained from an industrial IC design (Juniper Networks 2010).

The jitter measurement methodology is illustrated in Fig. 2.28. Consider the clock
buffer operating at 1067 mV.Assume that the solid thick line is the input to the buffer,
and the dashed thick line is its output. Therefore its propagation delay at 1067 mV is
T 1067

pd as marked. Now consider the clock buffer operating at 990 mV. Assume that
the solid thin line is the input to the buffer, and the dashed thin line is its output.
Therefore its propagation delay at 990 mV is T 990

pd as marked. The jitter of the clock
buffer is therefore J = T 990

pd - T 1067
pd .

Tpd
990

Tpd
1067

Fig. 2.28 Measuring Jitter
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5 ns
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Fig. 2.29 Wake-up Jitter experiment

Note that the input to the clock buffer operating at 1067 mV and 990 mV in our
experiments could be driven in one of two ways—with the same slew-rate (Method
A) or with the same transition time from rail to rail (Method B). Figure 2.28 shows
the input of the clock buffer being driven using Method B. We use Method B instead
of Method A based on experiments in which we drove a long chain of identical H-
tree segments with inputs of both kinds. We noticed that the output after the signals
traverse 5 H-tree segments closely match Method B, which is why we utilize this
method to drive the clock buffer inputs when measuring jitter.

We additionally invoke several constraints on the wire segments utilized by our
buffered H-tree synthesis algorithm

• First, if any segment being considered by the synthesis algorithm has a output
slew greater than 150 ps, we reject that segment. The output slew is computed as
the 10 % to 90 % (or 90 % to 10 %) transition time for the output of the segment,
divided by 0.8. This constraint ensures that the clock signal at the sinks has a
high slew-rate which is essential for a clock signal, and also results in reduced
crow-bar currents and hence lower power.

• We also ensure the cycle-to-cycle (“wake-up”) jitter is less than 1 ps. Figure 2.29
illustrates this idea. Modern ICs frequently need to be designed in a manner in
which the IC needs to be put in “sleep”, in order to save power. In such a case,
the clock signal is held static during the “sleep” mode. After the IC “wakes”
up, the pulse widths of the first two clock pulses must be tightly controlled for
correct functionality. The wake-up jitter is defined as |T2 −T1| (see Fig. 2.29). We
constrain each segment to have a wake-up jitter of less than 1 ps. All segments
which fail this requirement are rejected. This requirement essentially requires
that each segment be able to drive its clock signal to rail values during normal
operation of the IC. If this is not true for any segment, such a segment will fail
the wake-up jitter test.
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2.3.3.2 Buffered H-tree Construction

Our DP based algorithm for automated synthesis of the buffered H-tree is described
next. We begin by first characterizing (using HSPICE (Inc Meta-Software)) each
possible segment configuration, which consists of the different wire-codes, buffer
sizes, segment lengths and segment types described earlier in this section. There are a
total of 2745 unique segment configurations available to the DP algorithm. For each
such segment configuration, we drive it with varying input slews (ranging from 20 ps
to 300 ps, with 1 ps increments). We record the jitter, output slew, delay and the power
of the segment configuration as a function of its input slew. This characterization
data is now used by the DP algorithm. We implement two cost functions for the DP
algorithm. Suppose that the cost is being computed for a segment configuration i

which builds upon a partial solution with total jitter J , total delay D and total power
P . The segment configuration i has jitter Ji , delay Di and power Pi .

• A weighted sum of power and jitter. This cost function is expressed as
CPJ = α (P+Pi )

P ∗ + (1 − α) (J+Ji )
J ∗

Note that P + Pi and J + Ji are the total power and total jitter after segment
i is appended to the partial solution. Also note that P ∗ and J ∗ are the average
power and jitter values respectively, for all candidate segment configurations that
may be used for segment i. Since the scale of power and jitter are different, these
values are introduced in order to equalize the contribution of power and jitter to
the cost function.

• A weighted sum of power and delay (or slew). This cost function is expressed as
CPD = α (P+Pi )

P ∗ + (1 − α) (D+Di )
D∗

Note that P +Pi and D +Di are the total power and total delay after segment i is
appended to the partial solution. Also note that P ∗ and D∗ are the average power
and delay values respectively, for all candidate segment configurations. Since the
scale of power and delay are different, these values are introduced in order to
equalize the contribution of power and delay to the cost function.

Suppose we have a optimal solution to the buffered H-tree construction problem
S. Clearly, this solution consists of making a choice of the last segment s (closest
to the sink) to be selected. Hence the solution to the buffered H-tree construction
problem from the source of the H-tree to the input of segment s must also be optimal
(otherwise we contradict the optimality of S). Since the cost functions of jitter, delay
and power are additive, an optimal solution to the buffered H-tree construction at
any location n can be constructed from the optimal solution of the buffered H-tree
construction problem for every location m which is downstream from n (i.e. m is
closer to the source of the H-tree than n). Hence the criterion for optimality of DP is
satisfied and as a result, DP can yield an optimal solution (for the cost functions of
delay, jitter or power) to the buffered H-tree construction problem.

The DP based algorithm selects the lowest cost buffered H-tree implementation
that satisfies constraints such as output slew limits and cycle-to-cycle wake-up jitter.
The resulting H-trees are simulated in HSPICE, and the end-to-end delay, power and
end-to-end jitter estimated by our DP engine are compared with the corresponding
values obtained via HSPICE.
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2.3.4 Experimental Results

We implemented our DP algorithm in the C programming language. We assumed that
the H-tree is implemented in a 45 nm (PTM 2013) technology, with VDD = 1.1 V .
All the segment configurations were pre-characterized using HSPICE (Inc Meta-
Software). We used the accurate option in HSPICE. We set the parameter delmax
set to 1 ps, for maximum accuracy, which ensures that the maximum timestep that
HSPICE takes is limited to 1 ps. We observed that the slew rate at the end of each
segment was substantially constant for a given segment configuration, independent
of the slew rate at the input to the segment.

In order to compare our results with a manually generated buffered H-tree, we
consulted an industrial clock tree designer and constructed a minimum delay H-tree
based on their input. This H-tree utilized the wire-code with the lowest RC delays
(WC-2), with the first 6 segments of length 2.5 mm, and the last 2 segments of
length 1.25 mm. 512× buffers used were used exclusively to minimize the delay.
The DP algorithms’ results were compared with the manually generated H-tree, and
the comparison is presented next.

We split the experiments into three sets. In the first set, the maximum buffer size
allowed was limited to 512×, while in the second and third sets, up to 256× and
128× buffers were allowed respectively. Figures 2.30, 2.31 and 2.32 corresponds to
the first set of experiments (with up to 512× buffers). Figures 2.33, 2.34 and 2.35
corresponds to the second set of experiments (with up to 256× buffers). Finally,
Figs. 2.36, 2.37 and 2.38 corresponds to the third set of experiments (with up to
128× buffers). We report the power results, delay results, and the jitter results. For
each plot, the x-axis corresponds to α, while the y-axis corresponds to the quantity
expressed by the plot. Also, for each plot, the DP results are presented for both cost
functions described in Sect. 2.3.3. The results of the manual buffered H-tree are
reported in each plot as well.
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Fig. 2.31 Delay (512×
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Fig. 2.32 Jitter (512×
Maximum Buffer size)
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From these plots, we note that for all 3 experiments, the lowest jitter of the
buffered H-tree returned by the DP engine is strictly lower than that of the manually
synthesized design, by as much as 28 %. This indicates that our DP based buffered
H-tree synthesis technique is of value. Further, since our approach is able to select
segment configurations freely, it is able to produce strictly better values of power
compared to the manual approach, for all values of α. The CPJ cost function yields
lower jitter values compared to the CPD cost function, especially for α > 0.5. For
values of α < 0.5, CPJ achieves better jitter results than CPD, but the improvement is
lower. However, for power-constrained designs, it may be desirable to use α > 0.5.
The delays of the DP based approaches are higher than the manual design for α > 0.5,
but this is not of importance for PLL based designs, as we have mentioned earlier.

To validate the accuracy of our DP engine, we simulated the buffered H-tree
returned by our DP engine (for the cost functions of minimum jitter, minimum
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Fig. 2.33 Power (256×
Maximum Buffer size)

0

0.5

1

1.5

2

2.5

 0 0.2 0.4 0.6 0.8 1

P
ow

er
(m

W
)

alpha

PD_cost_fn
PJ_cost_fn

Manual

Fig. 2.34 Delay (256×
Maximum Buffer size)
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power and minimum delay) in HSPICE. The results were compared for the DP
engine running with a maximum allowed buffer size of 128×, 256×, and 512×
respectively. Table 2.4 reports the results of this comparison. The delay, jitter and
power estimated by our DP engine are reported in Columns 3, 4 and 5 respectively.
Columns 6, 7 and 8 report the percentage error in the DP estimate of delay, jitter and
power respectively, compared to the HSPICE value. Note that the maximum error
in any of these estimates is 4.6 %. The DP’s estimate of these three quantities was
always lower than the value returned by HSPICE.

The segments selected by the DP engine (for a maximum allowable buffer size of
512×) are reported in Tables 2.5 and 2.6 (for the cost function of minimum jitter and
minimum delay respectively). Segments with lower indices (Column 1) are closer
to the H-tree source. For each segment, we report the segment index, wire-code
(Column 2), segment length in mm (Column 3), segment style (one of Straight (S),
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Fig. 2.35 Jitter (256×
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Fig. 2.36 Power (128×
Maximum Buffer size)
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T or I ) (Column 4) and buffer size (Column 5). Note that the segment lengths for
Tables 2.5 and 2.6 are quite different, indicating that the minimum delay buffered H-
tree is not the same as minimum jitter buffered H-tree. Also, only 2 of the wire-codes
end up getting used. All segments use a 512× buffer since power is not constrained.

2.3.5 Conclusion

Buffered clock distribution networks have become increasingly popular due to in-
creasing on-chip wiring delays. Since clock buffers are liable to add jitter in the clock
signal on account of cycle-to-cycleVDD variations in the die, we argue that the design
goal of minimizing end-to-end jitter is more relevant for buffered H-tree synthesis
than minimizing end-to-end delay (which is irrelevant for PLL based designs). In this
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Fig. 2.37 Delay (128×
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Fig. 2.38 Jitter (128×
Maximum Buffer size)
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work, we therefore present a dynamic programming based approach to synthesize
a minimum cost buffered H-tree clock distribution network. Our cost functions are
a weighted sum of power and jitter, Juniper Networks (2010) or a weighted sum
of power and end-to-end delay of the distribution network. After pre-characterizing
the delay, jitter and power of buffered segments (2745 in all) of different lengths,
topologies, buffer sizes and wire-codes, a dynamic programming (DP) engine auto-
matically generates the optimal H-tree that minimizes the appropriate cost function.
Compared to a manually constructed buffered H-tree network, our approaches are
able to reduce both jitter (by as much as 28 %) and power (by as much as 46 %).
When optimizing for minimum jitter, the DP engine generates a H-tree with lower
jitter than when optimizing for minimum delay, thereby validating our approach, and
proving its utility.
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Table 2.4 Comparison of DP results with HSPICE

DP Estimate Difference versus HSPICE (%)

Cost Func. Delay Jitter Power Delay Jitter Power
(ps) (ps) (mW) (ps) (ps) (mW)

Up to 128× Min. Delay 1114.7 193.5 1.21 0.59 1.88 4.58
Min. Power 1334.9 247.6 1.08 0.57 1.94 2.44
Min. Jitter 1114.7 193.5 1.21 0.59 1.88 4.58

Up to 256× Min. Delay 1000.1 157.7 1.46 0.80 2.23 4.58
Min. Power 1334.9 247.6 1.08 0.57 1.94 2.44
Min. Jitter 1000.1 157.7 1.46 0.80 2.23 4.58

Up to 512× Min. Delay 994.2 152.0 1.55 0.89 2.69 2.52
Min. Power 1334.9 247.6 1.08 0.57 1.94 2.44
Min. Jitter 999.3 149.0 1.66 1.11 2.17 2.92

Table 2.5 Segments selected
by Our DP Algorithm (Min.
Jitter, 512× max)

Seg. # Wire-code Length (mm) Seg. type Buf. size

1 WC1 1 I 512×
2 WC2 2 S 512×
3 WC2 2 S 512×
4 WC1 1 I 512×
5 WC2 2 S 512×
6 WC2 2 S 512×
7 WC1 1 I 512×
8 WC2 1.5 S 512×
9 WC1 1 I 512×

10 WC2 1.5 S 512×
11 WC2 1.25 I 512×
12 WC2 1.25 I 512×

Table 2.6 Segments selected
by our DP Algorithm
(Minimum Delay, 512×
Maximum)

Seg. # Wire-code Length (mm) Seg. type Buf. size

1 WC1 1 I 512×
2 WC2 1.75 S 512×
3 WC2 2.25 S 512×
4 WC1 1 I 512×
5 WC2 1.75 S 512×
6 WC2 2.25 S 512×
7 WC1 1 I 512×
8 WC2 1.5 S 512×
9 WC1 1 I 512×

10 WC2 1.5 S 512×
11 WC2 1.25 I 512×
12 WC2 1.25 I 512×

2.4 Tiled SWO-based Clock Distribution

In the above section, we present a dynamic programming based approach to syn-
thesize a minimum cost buffered H-tree clock distribution network. However, in
Sect. 2.2, we observe that buffered H-tree suffers from a high jitter. Moreover,
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buffered H-tree has a high power consumption at higher frequencies. In order to
address the above issues, we explore a SWO-based high-speed clock distribution in
the following section. We validate that a SWO approach can be used to practically
implement a high-frequency, low-power, low jitter clocking approach with high and
uniform area coverage over an IC.

2.4.1 Introduction

As discussed in Sect. 2.1, there has been much interest in ring-based resonant oscil-
lators as a means to generate the clock signal in digital ICs. The parasitic inductance
and capacitance of the rings are fixed once the ring perimeter, wire dimensions, layer
and spacing are determined. The oscillation frequency of a resonant oscillator is
determined by the parasitic inductance and capacitance values, provided the inverter
pair(s) can switch at this frequency. The equivalent circuit for such a resonant oscil-
lator is shown in Fig. 2.6. In this figure, the parasitic inductance of the ring is referred
to as Lw. The parasitic capacitance of the ring is called Cw. The capacitance due to
the cross-coupled inverter pair (i.e. twice the sum of the diffusion and gate capaci-
tances of any inverter in the pair) is C. Since C and Cw are in parallel, we obtain the
equivalent circuit shown. The oscillation frequency of the equivalent circuit is given
by Eq. 2.1.

Although the resonant oscillator structure has tremendous potential as a means
to generate a high-frequency on-chip clock signal with low power consumption, it
has one fundamental drawback. To enable high-frequency oscillations, the parasitic
inductance and capacitance of the ring need to be held at low values, which means
that the ring perimeter necessarily needs to be small. Typical values of the ring
perimeter are ∼2 mm. Since ICs can be as large as 20–30 mm on a side, the resonant
clocking idea cannot practically be used to generate a high-frequency chip − wide

clock signal. This key focus of this section is to address this issue. Since a SWO
Cordero and Khatri (2008) generates a clock signal which has identical phase at each
point along the ring (unlike a TWO), we focus our attention on SWOs.

An SWO with a large area coverage on the IC die can be generated in one of two
ways.

• Option A: Implement a k · λ/2 ring: Consider an SWO with perimeter p. If
we traverse such a ring once, the total phase change is λ/2. To ensure a larger
area coverage, we can increase the size of the ring to k · p, where k is odd, while
forcing the total phase change over a single traversal of the ring to be k ·λ/2. This
approach does not compromise oscillation frequency, and grows the area coverage
of the clock signal by a factor of

√
k. This approach was used in Sect. 2.2.

• Option B: Tile several SWO on a 2D plane: Another approach is to arrange
several identical SWO rings in a 2D tiled structure. Each SWO ring oscillates at
the same frequency. We additionally force each adjacent ring to oscillate with an
identical phase.



56 2 Clock Distribution for Fast Networks-on-Chip

Even though we can set k to a very high value in principle, the first option may be
impractical since it realizes a single ring with a very large perimeter, with no clock
coverage in the regions in the center of the ring. We overcome this limitation in
Sect. 2.2 by snaking the wires of the ring to ensure a uniform clock coverage.

The second approach solves the uniform clock coverage issue, but since each
individual SWO has a small perimeter, the second approach alone would require a
large number of SWO rings to be implemented. For example, with a chip of size
1 cm on a side and a ring perimeter of 2 mm, 400 SWO rings would be required,
making the approach impractical.

In this section, we propose to use a combination of the above two approaches to
achieve a large area coverage for the clock signal, in a uniform manner. We present
our approach by means of an example in which k = 3, and a 3×3 tiling structure
is used. We show that k = 3 is a good choice since it results in an elegant 2D
embedding of the SWO tiles. We have experimented with k = 5, 7 and 9 as well,
and have validated correct operation of such SWOs. Also, our tiling structure can be
easily generalized to an arbitrarily large n×n arrangement of SWO tiles. With k = 3,
and a chip of size 1 cm on a side, the number of required SWO rings for complete
chip coverage is reduced by a factor of 8, compared to the case where k = 1.

The remainder of this section is organized as follows: Previous work is described
in Sect. 2.4.2, while Sect. 2.4.3 provides the details of our tiled high-speed, low-
power and high area coverage clock distribution strategy using SWOs. In Sect. 2.4.4
we present results from experiments which we conducted to validate our approach.
We conclude in Sect. 2.4.5.

2.4.2 Previous Work

In Sect. 2.1, we introduced resonant ring-based oscillators. A traveling wave resonant
oscillator (TWO) circuit (referred to by the authors as a rotary clock) was described
and implemented (Wood et al. 2001; 2006). The key idea in this approach is to
utilize a sufficiently long wiring ring, such that its capacitive and inductive parasitics
result in a high frequency oscillatory network. The main problem with a TWO is the
phase change incurred around the ring. In response to this, a standing wave resonant
oscillator circuit was proposed (Cordero and Khatri 2008). The clock signal at any
point in the ring is sinusoidal, but has the same phase at all points along the ring. To
recover a full-rail clock anywhere along the ring, differential amplifiers need to be
connected to the ring signals at these locations.

In (Mahony et al. 2003; Karkala et al. 2009), a high-frequency standing wave
oscillator was used to implement a clock Phase Locked Loop (PLL). The work of
(Mahony et al. 2003) is based on the use of multiple coupled oscillators (each com-
prised of an NMOS cross-coupled pair to sustain the oscillation, and a PMOS diode
connected load for setting the common mode voltage). The approach of Karkala et
al. (2009) implements a resonant SWO based PLL, with an inductance control based
coarse frequency adjustment mechanism. Fine frequency adjustment is achieved by
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controlling the body bias of the PMOS transistor of the inverter pair. Unlike the ap-
proach proposed in this work, these approaches did not address the key problem of
the IC area coverage of resonant SWOs or TWOs. This work has the ability to cover
large die areas with a high-frequency, low power clock signal by using interlinked
tiled SWOs, each of which have a total phase change of 3λ/2 across the ring.

In Mahony et al. (2003), the authors present a tiled SWO based resonant grid for
high frequency clock distribution. Each SWO is implemented as λ/2 ring, using a
short circuit at the far end (instead of a mobius connection as in our case). Multiple
SWOs are coupled by injection locking. The key differences between (Mahony et al.
2003) and our approach are i) we utilize 3λ/2 rings (which results in fewer SWOs
being required) and ii) we utilize a mobius termination in each SWO ring, while
(Mahony et al. 2003) utilizes a short circuit termination for each SWO ring. It was
shown (Cordero and Khatri 2008) that short circuit termination results in a lower
oscillation frequency as well as higher power in comparison to a mobius termination
based SWO.

2.4.3 Our Approach

Resonant oscillators (SWOs as well as TWOs) are a promising technique to generate
a high-frequency on-chip clock signal with low power. However, they possess a
key weakness when used in typical ICs, where the goal is to uniformly distribute a
chip-wide, high-frequency, low power clock signal. To achieve a high frequency of
operation, the typical values of inductance and capacitance required for the resonant
oscillators are such that the total perimeter of the resonant ring is small (typically ∼
2 mm). Since many complex ICs can be as large as 20-30 mm on a side, the ratio
of the chip area to the area covered by a typical resonant ring is as high as ∼ 3600.
Hence it would be impossible to distribute a chip-wide, high-frequency resonant
clock signal with a single SWO or TWO ring. Our goal is to present approaches to
achieve complete and uniform area coverage of the resonant clock signal across the
IC die. By uniform area coverage, we mean that at any position on the IC die, a
resonant clock signal is no further away than the perimeter of an individual resonant
ring (i.e. ∼ 2 mm). Since a SWO (Cordero and Khatri 2008; Karkala et al. 2009)
generates a clock signal which has identical phase at each point along the ring (unlike
a TWO), we focus our attention on SWOs.

From the equivalent circuit for our resonant oscillator (Fig. 2.6) and the equation
for the oscillation frequency of the resonant oscillator (Eq. 2.1), we observe that
increasing the perimeter of the ring is not an acceptable option to achieve high clock
coverage on the IC die. This is because increasing the perimeter of the ring increases
both Cw and Lw linearly, resulting in an unacceptable drop in clock frequency. As a
result, we explore two alternative options:

Option A: For an SWO with perimeter p, if we traverse the ring once, the total
phase change is λ/2. To ensure a larger area coverage, we can increase the perimeter
of the ring to k · p, where k is odd, thereby making the total phase change over a
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single traversal of the ring to be k ·λ/2. In such a design, we require p equally spaced
inverter pairs, and an odd number (typically one) of mobius connections. The circuit
configuration for a 3 ·λ/2 ring is shown in Fig. 2.7. Note that it in order to ensure that
the resonant structure bootstraps in a standing wave configuration, the signals at the
inverter pair are initialized using a global bootstrap signal (labeled BS in Fig. 2.7).
We have validated that the k · λ/2 SWO ring oscillates correctly and reliably, and at
the same frequency as the corresponding λ/2 ring, for k = 3, 5, 7 and 9.

Although the k · λ/2 approach does not compromise oscillation frequency, and
also increases the area coverage of the clock signal by a factor of

√
k, it still possesses

a significant drawback. For large ICs, the value of k needs to be significantly large.
For example, for a chip of size 30 mm on a side, a k value of about 61 is required.
With such a configuration, a key problem is the uniformity of the coverage of the
clock across the die. The center of the ring in such a case is about 15 mm from the
nearest resonant clock location, making the approach impractical. Implementing the
resonant SWO ring in a snaked manner (as designed in Sect. 2.2) is one solution to
this problem.

Option B: Another approach is to arrange several identical λ/2 SWO rings in a
2D tiled structure. Each SWO ring oscillates at the same frequency. We additionally
force adjacent rings to oscillate with an identical phase by introducing an appropriate
number of shorts across these rings. Suppose our chip size is 10 mm on a side. In this
case, assuming λ/2 = 2 mm, we would require 400 SWO rings. The advantage of
this approach is that it enables us to achieve a uniform and complete area coverage
of the clock signal on the IC die, but the drawback is that we need a large number of
SWOs.

Option C: The third option is a hybrid of the Options A and B. In this case, we
arrange several identical kλ/2 SWO rings in a 2D tiled structure. This approach
therefore retains the best features of both Options A and B. This work utilizes Option
C (with k = 3) to implement a complete and uniform chip-wide resonant clock
distribution network.

Next, we discuss the details of our approach.

2.4.3.1 Tiled SWO Topology

For a tiled kλ/2 SWO, we first need to choose the value of k. The problem be-
comes that of embedding a regular k-sided polygon on a plane. This is illustrated via
Fig. 2.39.

The internal angle of a regular k-sided polygon is given by Z = (n−2)·180
n

◦
. In order

that the k-sided polygon can be embedded on a plane, we require that nZ = 360◦,
where n is an integer. Given that k is odd, the only value of k that satisfies the above
condition is 3. Hence we choose k = 3. Figure 2.39 illustrates how a uniform triangle
can be embedded on a plane, while a uniform pentagon cannot. Note that each dot
in Fig. 2.39a represents six inverter pairs (one for each SWO ring).
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Fig. 2.39 Embedding a triangle and a pentagon on a 2D plane
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Fig. 2.40 Rectilinear realization of a triangle on a 2D plane

Note that the embedding of the equilateral triangle on a 2D plane shown in Fig. 2.39
cannot be directly implemented in a VLSI IC, since wires on an IC are constrained
to be rectilinear. In order to perform the embedding of a 3λ/2 SWO ring on a 2D
surface (using rectilinear wires), we first remove every alternate SWO ring. Now
the resulting structure (shown in Fig. 2.40a) has half as many SWO rings. Each dot
in this figure represents 2 inverter pairs in the even numbered rows, and 4 inverter
pairs in the odd numbered rows. We rectilinearize the segments of Fig. 2.40a, and
the result is shown in Fig. 2.40b.

In order to achieve the rectilinearized embedding of 3λ/2 SWO rings, we trans-
form each non-rectilinear wire of the embedding of Fig. 2.40a and convert it into a
single wire with a horizontal and a vertical segment. Thus each 3λ/2 ring is trans-
formed into a rectangle with length L and height L/2, where L is the perimeter of
the corresponding λ/2 ring. Each edge in Fig. 2.40b represents 4 wire segments,
with one pair of wire segments being utilized by each of the two separate 3λ/2 rings
which share the edge. Each dot of Fig. 2.40b represents 2 inverter pairs, with each
inverter pair being utilized by the two separate 3λ/2 rings which share the dot.



60 2 Clock Distribution for Fast Networks-on-Chip

1

0

01 0 1

0 101

1 0 0 1 1 0

0

01

1

01

0

0

0

0

1

1

1

10

0

0

0

1 0

L/2

Inverter Pair

Fig. 2.41 Layout organization of a 3x3 SWO tile

A more detailed view of the tiled 3λ/2 SWO rings (for a 3×3 tiled array) is shown
in Fig. 2.41. Each ring consists of 2 (inner) wires, with two outer wires corresponding
to rings that are above, below, or on either side of the said ring. We need to make
all rings oscillate with the same frequency and phase. In addition, we need to ensure
that all 4 wires of any segment, at any location, have the same voltage at any time
instant. In order to guarantee these conditions, we utilize bootstrap devices, to force
initial conditions at various locations along the tiled SWO structure. Although the
bootstrapping devices are not shown in Fig. 2.41, the values that are asserted at
various locations in the ring by these devices are shown (by means of the ‘0’ and ‘1’
labels). In order to guaranteed that all rings oscillate with the same frequency and
phase, it is crucial to ensure that the electrical environment around each location of
any ring is identical to the electrical environment around the same location of all
other rings. In order to do this, we insert an outermost peripheral ring as well, whose
length is 9 L. This ring also oscillates, ensuring that the electrical environment of each
tiles is identical. Note that the mobius connections of each of the tiles are illustrated
in Fig. 2.41. The outer ring has 4 extra mobius flips (in addition to those required to
sustain oscillations) shown along its lower edge. These flips are introduced in order
to ensure that every location of the outer wire oscillates with the same frequency,
phase and amplitude as the wire in the SWO tile adjoining it. We experimented with
several ways of connecting the outer ring (such as grounding it at regular intervals
and leaving it floating), and found that in order to ensure low jitter and uniform
oscillation frequency, it was essential to connect the outer ring in the configuration
shown in Fig. 2.41.
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2.4.4 Experiments

We implemented the tiled SWO described in this work, using a 90 nm BSIM3 (PTM
2013) process technology. The power supply voltage was 1.2 V, and all simulations
were conducted in HSPICE (Inc Meta-Software). We simulated a 3×3 tiling structure
(as described in Fig. 2.41). The ring consisted of 7 wires in all, each of which
had a width of 20 μm and a inter-wire spacing of 20 μm as well. The outermost
and innermost wires as well as the middle wire are connected to ground, with the
remaining wires are utilized to carry the 4 oscillating signals. The RLC parasitics of
the 7-wire bundle were extracted using (Raphael Interconnect Analysis Tool: User’s
Guide), and adjusted for skin-effect in our simulations. The nominal oscillation
frequency of each of the 9 SWO rings was 7.267 GHz (yielding a nominal clock
period Tnom = 137.6 ps. Each SWO ring consists of 72 smaller segments in our
HSPICE simulation deck.

The two wires of any SWO ring sustain a sinusoidal oscillation. To recover a rail-
to-rail clock from any point on the ring, a clock recovery circuit (shown in Fig. 2.3)
is required. This circuit is essentially a differential amplifier with a buffered output.
We implemented 42 regenerator circuits per SWO ring. An overlay plot of all 42×9
recovered signals is shown in Fig. 2.42. From this figure, we observe that the falling
skew is 4.56 ps, while the rising skew is 1.45 ps (for a clock of period of 137.6 ps).

The power consumption of our oscillator is 55.07 mW per SWO ring (without
any regenerators) and 68.56 mW per SWO ring (with 42 regenerators per SWO
ring). This would indicate that for a chip with size 10 mm per side, the total power
consumption in the clock distribution network would be ∼ 2.75 (3.43) Watts without
(with) regenerators.

To measure the quality of the tiled SWO based clock distribution network, we
report several quantities obtained after simulating the structure for 140 clock cycles.
These quantities serve as figures of merit of the design, and are listed below:

• We computed, at each of the 27 inverter pair sites (3 for each of the 9 SWO rings),
the clock period for each clock cycle. Let Tmax and Tmin be the maximum and
minimum clock periods, and �T = Tmax −Tmin. The worst case value of �T

Tnom
over

all the 27 inverter pair locations was 1.56 % (measured at the ring) and 2.61 %
(measured after the regenerators).

• Recall that the location between two inverter pairs is a virtual ground location.
Therefore the amplitude of the sinusoidal signal on either side of the virtual ground
location is small, making it hard to reliably regenerate a square wave clock from
the ring locations on either side of the virtual ground. In our experiments, we did
not connect regenerators to ring locations which were within .345 mm on either
side of a virtual ground node (which yielded 42 regenerators per ring, for a total
of 42×9 = 378 regenrators). We found that the worst case value of �T

Tnom
over all

points (where the clock can be extracted) over all rings was 1.89 % (measured at
the ring) and 3.13 % (measured after the regenerators).

Figure 2.43 displays an overlay plot of 3 virtual ground nodes (for rings A, G and H
as labeled in Fig. 2.40b). The virtual ground waveforms have a peak-to-peak voltage
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Fig. 2.42 Overlay of recovered waveforms from all 378 regenerators

of about 200 mV over all 27 virtual ground locations. Finally, Fig. 2.44 displays the
overlay plot of the SWO ring waveforms (for ring A). The waveforms correspond to
all 24 internal ring nodes encountered between two adjacent inverter pairs of ring A.

We also computed the Q factor for any of the 9 rings of our tiled SWO oscillator.
To compute the Q factor, we first removed the inverter pairs of the ring, and replace
them by the equivalent average capacitance of the inverter pair terminals. Now an
differential AC current with differential amplitude of 1 A is applied across these
terminals. The resulting voltage across the terminals is measured as a function of
the frequency of the differential current. The voltage has a peak at the oscillation
frequency of the ring. The Q factor is computed by finding the ratio of the resonant
frequency to the 3dB bandwidth of the voltage waveform. We determined the Q
factor of of our tiled SWO oscillator to be about 19.

2.4.5 Conclusion

Resonant oscillators can sustain extremely high oscillation frequencies with very
low power consumption. However, a single resonant oscillator covers a very small
fraction of the area of a typical IC. In this work, we present an approach to com-
pletely and uniformly cover an IC using an SWO. This is achieved by combining two
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Fig. 2.43 3 Overlaid virtual ground waveforms

techniques. The first technique increases the area coverage of an individual SWO
by ensuring that it sustains 3 standing waves along the ring. The second approach
further increases the area coverage by tiling multiple such SWOs side by side, and
connecting them such that they oscillate with the same high frequency and phase.
We carefully ensure that the electrical environment around each SWO ring is iden-
tical. Skin effect adjusted 3D RLC parasitics are utilized for our experiments. For a
90 nm process, our tiled SWO based resonant clock distribution approach achieves
an oscillation frequency of about 7.267 GHz, with a low power consumption of about
68.5 mW per SWO ring, and a jitter of 3.1 % of the nominal clock period.

2.5 Chapter Summary

In this chapter, we address the issue of distributing a high-speed, low power, low
jitter clock with the aim of serving the NoC and the PEs in a CMP. In Sect. 2.1,
we introduce resonant ring-based oscillators, which have recently emerged as a
promising technique for high-speed, low power clock generation. In Sect. 2.2, we
use a resonant SWO based phase-locked clock generation and distribution scheme
with superior jitter, skew and power characteristics. Phase locking is accomplished
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Fig. 2.44 Overlaid waveforms of ring signals between 2 Adjacent inverter Pairs

by a fully digital control loop consisting of a coarse frequency control and a fine
frequency control. The SWO frequency is modulated in a coarse manner by changing
the ring inductance, by modifying the number of oscillating wires. Fine frequency
control is achieved by modifying ring capacitance via a binary-weighted capacitor
bank. Clock distribution is performed by routing the resonant ring over the die in
a “comb” manner. Our approach is compared to an H-tree with an overlaid mesh.
Given the relatively high Q-factor of the SWO, this clocking approach exhibits a
very tight cycle-to-cycle jitter (about 4.6× better) and very low skew (about 5.5×
better). The power consumption of our scheme is upwards of 2× improved as well,
given the resonant nature of the approach.

In recent fabrication technologies, increasing on-chip wiring delays have con-
tributed to the popularity of buffered clock distribution network. In Sect. 2.3, we
present a dynamic programming based approach to synthesize a minimum cost
buffered H-tree clock distribution network. Our two cost functions are a weighted
sum of power and jitter, and a weighted sum of power and end-to-end delay of the
distribution network respectively. After pre-characterizing the delay, jitter and power
of buffered segments (2745 in all) of different lengths, topologies, buffer sizes and
wire-codes, we invoke a dynamic programming (DP) engine to automatically gen-
erate the optimal H-tree that minimizes the appropriate cost function. Compared to
a manually constructed buffered H-tree network, our approaches are able to reduce
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both jitter (by as much as 28 %), and power (by as much as 46 %). When optimizing
for minimum jitter, the DP engine generates a H-tree with lower jitter than when
optimizing for minimum delay, thereby validating our approach, and proving its
utility.

In general, SWO based clock distribution networks can suffer from a non-uniform
clock coverage at different die locations. In order to address this issue, we explore
a tiled SWO-based high-speed clock distribution in Sect. 2.4. We validate that a
SWO approach can be used to practically implement a high-frequency, low-power,
low jitter clocking approach with high and uniform area coverage over an IC. This
is achieved by combining two techniques. The first technique increases the area
coverage of an individual SWO by ensuring that it sustains 3 standing waves along
the ring. The second approach further increases the area coverage by tiling multiple
SWOs side by side, and connecting them such that they oscillate with the same high
frequency and phase. We carefully ensure that the electrical environment around each
SWO ring is identical. Skin effect adjusted 3D RLC parasitics are utilized for our
experiments. Our tiled SWO based resonant clock distribution approach achieves an
oscillation frequency of about 7.267 GHz, with a low power consumption of about
68.5 mW per SWO ring, and a jitter of 3.1 % of the nominal clock period.
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Chapter 3
Fast Network-on-Chip Design

Abstract In previous Chapter, we showed how resonant clocking can be used as a
high-speed, low power, stable, on-chip clock generation and distribution schemes.
In this chapter, we use such a clock to design a high speed source-synchronous
ring-based NoC architecture. In Sect. 3.1, we introduce our NoC design, which
comprises of extremely fast, intersecting source-synchronous data rings. These
source-synchronous data rings traverse the CMP in both the horizontal and vertical
directions providing complete connectivity to all the PEs in a CMP. In our approach,
the interconnection network operates on a different clock domain which runs signifi-
cantly faster than the PE clocks. This helps us achieve inter-processor communication
with minimal latency. We perform architectural simulations of the ring-based NoC
in Sect. 3.2. We propose a deadlock-free routing protocol of the source-synchronous
ring-based NoC by using link ordering and virtual channel based buffered flow con-
trol. Architectural results obtained on synthetic and real traffic demonstrate that the
source-synchronous ring-based NoC has significantly lower latency and higher max-
imum sustained injection rate compared to a state of the art mesh-based NoC. Next,
in Sect. 3.3, we propose a modified source-synchronous design in which the PEs ex-
tract a low jitter clock directly from the high speed ring clock by division, and hence
are synchronous with the NoC. This is feasible due to the extremely good jitter char-
acteristics of the SWO based clock generation and distribution scheme of Sect. 2.2.
Using the above modified design, we propose a class of source-synchronous NoCs
organized in an H-tree topology which consume lower logic and wiring area com-
pared to a state of the art mesh. Architectural simulations on synthetic and real traffic
show that our H-tree based NoC designs can provide significantly lower latency and
are able to sustain a higher injection rate compared to a state of the art mesh. Using
the modified source-synchronous design proposed in Sect. 3.3, we also evaluate two
more floorplan-friendly NoC topologies in Sect. 3.4. These two floorplan-friendly
NoC topologies consume significantly lower logic and wiring area compared to a
state of the art mesh. Architectural simulations on synthetic and real traffic show that
they can provide significantly lower latency while achieving same or better maximum
sustained injection rate compared to a state of the art mesh.

A. Mandal et al., Source-Synchronous Networks-On-Chip, 67
DOI 10.1007/978-1-4614-9405-8_3, © Springer Science+Business Media New York 2014
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3.1 Circuit Design of a Source Synchronous Ring-based NoC

In this section, we introduce our source-synchronous ring-based NoC design. Our
proposed NoC runs significantly faster than the PEs, which help us achieve an ultra
low latency inter-processor communication.

3.1.1 Introduction

As discussed in Sect. 1.4, multi-core processors require an efficient and scalable NoC
infrastructure to handle the inter-processor on-chip communication needs. There has
been significant research in NoC topologies (Bononi et al. 2007; Kim et al. 2008;
Tota et al. 2006), global wire management (Balasubramonian et al. 2005), and power
optimization (Peh et al. 2003) in this context. In terms of topology, a 2D mesh
interconnection network has received the greatest attention by NoC designers due
to its simple implementation, high bandwidth and overall scalability. However the
large diameter of the mesh has a negative effect on the communication latency. Other
popular topologies include Ring (Samuelsson and Kumar 2004), Fat Tree Leiserson
(1985), 2D Flattened Butterfly (Kim 2007), Octagon (Karim 2002) and Torus (Duato
2002).

As the size of a chip multi-processor (CMP) grows, it becomes increasingly
difficult to distribute a synchronous clock over the entire chip. Hence, designers
are opting for a separate synchronous communication network between the regions
on the die, while each region is clocked in a synchronous manner. This is referred to
as multi-synchronous or mixed clock communication approach. Most of the NoCs
are implemented using the multi-synchronous paradigm. In this section, we propose
a high-speed, source-synchronous NoC architecture, where the PEs communicate
with the NoC using the multi-synchronous paradigm.

In Sect. 1.7, we showed that resonant clocking can be used to develop a high-speed,
low power, stable on-chip clock generation and distribution schemes. In this work, we
utilize such a clock to develop a high-speed, source-synchronous NoC architecture.
Each PE operates in a synchronous manner, and is assumed to operate at 2 GHz.
The NoC is comprised of a series of (horizontally and vertically arranged) flattened
rings. Each ring operates significantly faster (about 7× faster from our HSPICE
(Inc Meta-Software) simulations) than the PEs. The data on the ring is transmitted
in a source synchronous manner with reference to a fast resonant clock. A Junction
Station (JS) is placed wherever these rings intersect, allowing data to switch between
the horizontal ring and the vertical ring (or vice versa) at the junction. Each PE is
connected to a ring by means of an Insertion-Extraction Station (IES), which allows it
to insert/extract data into/from the ring. Each IES contains two asynchronous FIFOs.
One FIFO is written from the ring NoC, and read by the PE. The other FIFO is written
by the PE and read by the ring NoC driver logic.

The block diagram of a single (flattened) ring of our ring based NoC is shown in
Fig. 3.1. Note that since this figure depicts a single ring, JS’ are not shown. The ring
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Fig. 3.1 Single ring based NoC architecture

carries three fields of information—d bit data, k bit address, and 1 valid bit. If there
are P PEs in the CMP, then k = log2P . A high speed resonant clock signal Rclk runs
parallel to the ring signals mentioned above, as shown in Fig. 3.1. The data, address
and valid signals are source synchronous with the Rclk signal.

The rest of this section is organized as follows: Sect. 3.1.2 describes some popu-
lar approaches for NoC design. Section 3.1.3 presents our approach on high-speed
NoC design, while Sect. 3.1.4 describes the results of HSPICE Inc Meta-Software
(Inc Meta-Software) experiments which we performed to validate our approach. In
Sect. 3.1.5, we draw conclusions.

3.1.2 Previous Work

Any NoC architecture should have a combination of the following desirable features:
(1) scalability and modularity, (2) low interconnect latency, (3) minimal power and
(4) high link data-rates. There have been several NoC topologies that have been
developed to satisfy these requirements.

For small NoCs, a good solution is the crossbar, which connects each pair of the
PEs with dedicated links. However, this topology has a complexity that is quadratic
in the number of PEs, and does not scale well. The simplest and most ubiquitous
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NoC topology is the 2D mesh. Dally and Towles (Dally and Towles 2001) first
proposed a 2D mesh as a NoC architecture. The topology consists of a 2D mesh
of wires, with routers at the intersections of horizontal and vertical wires. Every
router has five ports, one connected to the local resource (PE) and the others con-
nected to the closest neighboring routers. The torus architecture was proposed in
(Duato 2002), with routers at the edges connected to the routers at the opposite edge
through wrap-around channels. The long end-around connections can yield exces-
sive delays which can be avoided by folding the torus (Dally and Seitz 1986). The
inherent disadvantage of the mesh or torus topologies is their large communication
radius, resulting in large amounts of interconnect and large numbers of arbiters at the
N-S-E-W crossings. These in turn leads to a large power consumption. Karim et. al.
Karim (2002) proposed the Octagon architecture. The Octagon network consists of
a basic octagon unit having eight nodes and 12 bidirectional links. It has a simpler
implementation compared to the 2D mesh, with a higher throughput. Unlike the
crossbar, the Octagon’s implementation complexity increases linearly with the num-
ber of nodes (PEs). A 2D Flattened Butterfly Kim (2007) is derived by flattening the
routers in each row of a conventional butterfly topology and hence provides the con-
nectivity of a mesh with additional links. The Fat Tree Leiserson Leiserson (1985)
connects routers in a tree manner, with sources and destinations at the leaves. The
major advantage of the Fat Tree is the large amount of bandwidth available, with the
downside of the requirement for large-radix routers toward the root of the tree. In
Thonnart (2010), the authors propose an asynchronous 2D mesh NoC infrastructure.
Compared to a synchronous mesh, their realization increases the area utilization by
more than 3×, with a 30–50 % gain in speed and a 5× reduction in power and a 6.9×
energy improvement. The Ring Samuelsson and Kumar (2004) topology implements
concentric connected rings (similar to ring road in city), which helps to reduce the
risk of congestion in the central parts of the network. The approach is motivated by
the smooth flow of traffic in ring roads. Their approach is fundamentally different
than ours in its topology, as well as in the fact that their simulations are conducted
purely at the architectural level.

In Ludovici et al. (2011), the authors implemented a power-efficient mesoch-
ronous NoC which is mesochronous with the PEs with no area and latency overhead.
Our NoC design is multi-synchronous, and it operates at a significantly higher speed
than the PEs. Additionally Ludovici et al. (2011) uses a traditional mesh topology in
contrast with our source-synchronous ring.

In all the above implementations, design decisions are made based on the fact
that the interconnection network operates at the same or lower frequency as the PEs.
In contrast, our focus is an NoC architecture which runs significantly faster (7× in
our simulation) than the PEs. This allows more architectural flexibility compared to
existing NoC solutions. For example, the significantly higher bisection bandwidth
allows the designer to implement our NoC architecture with narrower links (yielding
a lower area and power for the same bisection bandwidth). The significantly lower
latencies allow our approach to scale more elegantly for larger CMPs. In this section,
we devote our attention to the circuit aspects, showing the validity of the approach



3.1 Circuit Design of a Source Synchronous Ring-based NoC 71

by means of thorough circuit simulations. We evaluate performance in terms of total
available contention-free bandwidth.

In 2010, Sanchez et. al. compared various network topologies of interconnection
networks in terms of latency, throughput, and energy dissipation Sanchez et al.
(2010). The authors report that for a 64-core CMP, the total area utilization is lowest
in case of the mesh topology. The flattened butterfly was shown to consume the largest
area (by a factor of ∼ 3×). In terms of power consumption, the flattened butterfly
(the topology with the largest occupied area) consumes only slightly more power
than the mesh due to the higher leakage of the extra links in the butterfly network.
On the other hand, the fat tree consumes the most power because of the large number
of high-radix router hops and link stages that a flit traverses, on average. Based on
these observations, it was concluded that the 2D mesh is best NoC topology overall.
As a consequence, the results of our work are compared with the 2D mesh results
shown in (Sanchez et al. 2010). Other popular mesh based NoCs are reported in
(Bjerregaard 2005; Tran et al. 2010).

In this work, we present circuit design results for a fast, low-latency,
source-synchronous ring-based NoC architecture. Inter-processor communication
is achieved with minimal latency with the use of extremely fast, intersecting source-
synchronous data rings, which traverse the CMP in both the horizontal and vertical
directions. Our approach is multi-synchronous since the interconnection network
operates on a different clock domain than the PEs. The router complexity as well
as the link lengths determines the frequency of operation of the network. We have
simulated the routers and links in HSPICE (Inc Meta-Software), with link parasitics
extracted from (Raphael InterconnectAnalysis Tool: User’s Guide). A 4×4 section of
the NoC is simulated, to validate routing functionality, as well as to provide accurate
circuit-level delay, area and power estimates.

3.1.3 Our Approach

In this subsection, we first provide an overview of our source-synchronous ring-based
NoC design. Next we discuss our processor modeling assumptions, followed by a
discussion of the key logic blocks of our design.

3.1.3.1 Overview

A single ring of our ring-based NoC is shown in Fig. 3.1. Each ring is flattened, and
consists of k bits of address, d bits of data and 1 valid bit. These wires are driven
source-synchronously, along with a high speed resonant standing-wave clock. The
clock operates at 14 GHz, and the transmission rate of the address, data and valid bits
is also 14 GHz. The PEs of the CMP connect to the ring at discrete locations through
Insertion-Extraction Stations (IESs) which contains two FIFOs as shown in Fig. 3.1.
PEs are assumed to operate at 2 GHz. Note that the ring-based NoC operates at a
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Fig. 3.2 Ring-based NoC architecture

significantly faster clock speed than the cores (or PEs). Because of the extreme high
speed of the ring, the latency and transfer characteristics of our ring-based NoC are
extremely good.

Figure 3.2 illustrates a section of the CMP, with 2 horizontal rings and 3 vertical
rings. The vertical and horizontal rings are shaded with different diagonal patterns, to
distinguish them. Regions where the vertical and horizontal rings overlap are shaded
using a pattern which consists of the overlay of the horizontal and vertical patterns.
Each IES (marked with a × symbol) services a single PE. Also, a Junction Station
(JS) (marked with a ◦ symbol) is located at each location where the horizontal and
vertical rings intersect. Since there are a total of 20 IES’s in Fig. 3.2, therefore 20
PEs are serviced in the NoC fragment shown in this figure. Each PE is shown with
a dotted outline. Our source-synchronous rings are unidirectional. Without loss of
generality, we assume that each ring transmits data in a counter-clockwise manner.
The distance between two adjacent IES’s or JS’s in the ring is fixed. A ring based
NoC is not natively fault tolerant. This can be fixed by using bidirectional rings.

In the following subsections, we discuss our processor modeling assumptions,
followed by a discussion of the key components of our design (resonant clock, asyn-
chronous FIFO design, IES and JS design). All plots, tables and figures in this work
are generated for a 22 nm PTM (2013) fabrication process.

3.1.3.2 Processor Modeling Assumptions

The most important determinant of the speed of our source-synchronous ring-based
NoC is the link length. A long link will force the ring-based NoC to operate slower.
This section discusses our methodology to determine the length of each link. Based
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Table 3.1 Area and power
projections for the cores
based on the Sun Niagara2
and Intel Atom Designs.
Sanchez et al. (2010)

Core Area (mm2) Core TDP (mW)

Niagra2 1.418 0.483
Atom 1.607 0.220

on Fig. 3.2, we notice that each side of the PE corresponds to two links. This is
because JS’s and IES’s alternate along each horizontal section of any ring. Therefore,
assuming a square PE, the length of each link is half the side of the PE.

In Sanchez et al. (2010), the authors studied architectural implications of inter-
connect design for CMPs with up to 128 cores. The authors approximate the core area
and power by scaling down two existing core designs: the Sun Niagara 2 (Nawathe
2007) and the Intel Atom (Gerosa et al. 2009) to a 32 nm process. Since our process
is a 22 nm process, we further scale their numbers. Table 3.1 shows the area and
power for a 22 nm implementation of the Niagara 2 and the Atom processors. Power
numbers in this table are scaled from those of (Sanchez et al. 2010) by multiplying
their numbers by the ratio of the square of the saturation Ids at 22 nm and 32 nm
respectively, from 22 nm and 32 nm PTM (2013) processes. Just like (Sanchez et al.
2010), we take our PE area to be the average of the two areas shown in Table 3.1.
Assuming a square die, this means that each link is 615 μm long.

3.1.3.3 Asynchronous FIFO

Asynchronous FIFOs are used to reliably pass data from one clock domain to another
clock domain. Our IES implementation utilizes two asynchronous FIFOs (an Infifo
and an Outfifo). We implemented the design of these FIFOs as suggested in (Cum-
mings and Alfke 2002). In the following discussion, signals with a “R_” prefix refer
to ring signals, while signals with a “P _” prefix refer to PE signals. We describe the
Infifo in this section. The Outfifo is identical, except that “R_” signals are replaced
with “P _” signals and vice versa.

• Block Diagram of Infifo: The block diagram of the Infifo is shown in Fig. 3.3. The
asynchronous FIFO read (P_Read_en) and write (R_Write_en) enable signals are
clocked by independent read (Pclk) and write (Rclk) clocks respectively. Din con-
tains the input data to be written, Dout contains the output data. The Reset signal
is used to initialize the FIFO. Two status flags denote whether the FIFO is empty
(Empty_infifo) of full (Full_infifo). Additionally, the read pointer P_read_ptr and
the write pointer R_write_ptr are outputs of the FIFO. We next discuss how the
Write/Read operations are done, followed by how the FIFO full/empty conditions
are detected.

• Infifo Write and Read: The write pointer (R_write_ptr) always points to the next
word to be written and the read pointer (P _read_ptr) always points to the current
FIFO word to be read. Figure 3.4 illustrates the core of the FIFO (the block for the
FIFO core is also shown in Fig. 3.3). Writing is done by converting R_write_ptr
to a one-hot signal, and ANDing it with R_write_en. A single FIFO entry
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Fig. 3.3 Asynchronous FIFO (Infifo) block diagram

(the one that is selected) is therefore written. All other unselected entries are
re-written into the FIFO through the ‘0’ input of their corresponding MUXes.
For a read operation, the P _read_ptr appropriately selects a FIFO entry, which
is driven out on the Dout output of the FIFO on Pclk unless the FIFO is empty.

• Infifo Full and Empty Detection: A FIFO full condition occurs when the write
pointer (R_write_ptr) catches up to the synchronized and sampled version of the
read pointer (P _read_ptr).
Before checking the full condition, the P_read_ptr is synchronized to the Rclk do-
main to generate P _read_ptr_Rclk. This value is compared with the R_write_ptr
and when the two are equal, Full_Infifo is asserted.
FIFO empty condition happens when the read pointer (P _read_ptr) catches up
with the synchronized and sampled version of the write pointer (R_write_ptr).
Before checking the empty condition, the R_write_ptr is synchronized to the
Pclk domain, to generate R_write_ptr_Pclk. This value is compared with the
P_read_ptr and when the two are equal, Empty_Infifo is asserted.
Synchronization is performed using a 2 flip-flop synchronizers (Dally and Poulton
1998) as shown in Fig. 3.3. In order to achieve a higher MTBF, we can use more
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flip-flops in the synchronizer. Another way of implementing the synchronizer is
outlined in Chelcea and Nowick (2000).
For a FIFO depth of n, we need logn + 1 bits for the read and write pointers.
One extra bit is required to distinguish between full and empty condition. When
the write pointer increments past the maximum FIFO address, it will increment
the unused MSB while setting the rest of the bits back to zero. The same is done
with the read pointer. If the MSBs of the two pointers are different, it means that
the write pointer has wrapped around one more time that the read pointer. If the
MSBs of the two pointers are the same, it means that both pointers have wrapped
the same number of times. This allows us to implement both the empty and the
full condition and requires only XOR and XNOR gate for the logic.
Assuming there are n FIFO entries, the empty and full conditions are computed
as:

Empty_infifo = (R_write_ptr_Pclk[3 : 0] == P_read_ptr[3 : 0])

Full_infifo = ([R_write_ptr[3], R_write_ptr[2 : 0]] ==
P_read_ptr_Rclk[3 : 0])

Gray code counters are used to keep track of the read and write pointers, as shown
in Fig. 3.3. Gray codes only allow one bit to change for each clock transition,
eliminating the problem associated with trying to synchronize multiple changing
signals on the same clock edge. The XNOR gate for the gray counters were
implemented using pass-gates.
Dynamic flip-flops were used as these had to operate at a very high frequency. For
the FIFOs of PEi , Rclk and Pclk were taken to be 14 GHz and 2 GHz respectively.
We have verified 100 % correct functional as well as at-speed operation of the
FIFOs.
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3.1.3.4 Insertion-Extraction Station

Each PE communicates with one ring in the ring-based NoC. This communication is
achieved using an Insertion-Extraction Station (IES). An IES consists of two FIFOs,
and the related logic to insert and extract data into and from the FIFOs. Figure 3.5
shows a section of the data ring in detail. This figure shows three IES’s and PE’s
(indexed i − 1, i and i + 1). The i th IES and PE are expanded in the center of the
figure. Each IES can perform one of three operations – it can insert data into the
ring, or extract data from the ring, or simply repeat the data and pass it along. The
IES communicates with the PE through an inbound asynchronous FIFO (Infifo), and
with the ring through an outbound (Outfifo) asynchronous FIFO. We next discuss the
three operations of the IES, using Fig. 3.5 as a guide.

Insert Operation: This operation requires a read operation from the Outfifo. From
the left portion of the ith IES of Fig. 3.5, we see that the FIFO output (which is the
data stored in the entry pointed to by R_read_pointer) is captured in the fifodata_out
register on the rising edge of Rclk whenever the Outfifo is not empty. If valid is low,
indicating that the link is not carrying valid data in this clock cycle, then this data
is driven out over the link. Hence, we only drive out data from the Outfifo when the
link is not carrying valid data.

Extract Operation: This operation requires a write operation in the Infifo. From
the right part of the i th IES of Fig. 3.5, we note that the link data is captured at each
cycle of Rclk into a snoop register. If R_write_en is true, then, on the rising edge of
Rclk, data is entered into the Infifo, into the location pointed at by R_write_pointer
(as shown in Fig. 3.4).

R_write_en = (valid) · (addrmatch · Full_Infifo)
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In other words, data is extracted if the packet is valid (first term above) and if the
address matches, and the input FIFO is not full (second term).

If there is data in the Infifo (i.e. empty_infifo is false), then data is captured into the
register fifodata_in synchronous with Pclk, for consumption by the PE, as shown in
the bottom right of the PEi block in Fig. 3.5.

Repeat Operation Based on Fig. 3.5, we note that data or address information

repeated iff the packet satisfies (valid) · ((addrmatch · Full_Infifo)). In other words,
data or address information is forwarded if the packet is valid, and does not match
the IES address, or if the Infifo is full. In case valid is not true, address information
is sent out from the Outfifo on to the ring, provided the Outfifo is not empty.

Valid information is forwarded when the disjunction of (valid) ·
((addrmatch · Full_Infifo)) and (valid) · Empty_outfifo is true.

3.1.3.5 Junction Station

A Junction Station (JS) operates in a same manner as an IES, other than the fact that it
does not have any PE attached to it. Figure 3.6 depicts a JS present at the intersection
of two rings.

A JS consists of 2 asynchronous FIFOs. The H2V FIFO is responsible for col-
lecting data from the horizontal ring and transferring it to the vertical ring. The V2H
FIFO is responsible for collecting data from the vertical ring and transferring it to
the horizontal ring. Both clocks in both these FIFOs operate at 14 GHz (but are
mesochronous). Instead of asynchronous FIFOs, mesochronous FIFOs may be used
as well Chelcea and Nowick (2000).
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Each JS station can perform the following two operations – it can transfer data
from one ring to the other or simply repeat the data and pass it along in the same
ring. WLOG, we discuss the horizontal to vertical (H-V) transfer and horizontal to
horizontal (H-H) repeat operations. The vertical to horizontal (V-H) transfer and
vertical to vertical (V-V) repeat operations are similar.

Transfer Operation: Consider the input from the horizontal ring on right bottom
of Fig. 3.6. If Hvalid is true (indicating that there is a valid packet in the horizontal
ring), and the data is destined for the vertical ring, and the H2V FIFO is not full,
the packet is inserted into the H2V FIFO. In this case, Hvalid is driven low on the
horizontal ring as the packet is being consumed in the H2V FIFO. In subsequent
cycles, when Vvalid is low (indicating that the vertical ring is free) and the H2V
FIFO is not empty, a packet is driven from the H2V FIFO through the vertical link
(top left). In this case, Vvalid is driven high on the vertical ring.

Repeat Operation: Repeat operation relays the data in the same horizontal ring.
This happens when the destination PE is present in the same horizontal ring where the
packet is traveling, or if the H2V FIFO is full. Consider the input from the horizontal
ring on right bottom of Fig. 3.6. If Hvalid is true (indicating that there is a valid
packet in the horizontal ring), and the data is destined for the horizontal ring, then
data is driven out through the horizontal link (bottom left) in the same cycle.

3.1.4 Experimental Results

We implemented our design in the 22 nm PTM (2013) technology, with VDD =
0.8 V . All simulations were conducted in HSPICE Inc Meta-Software (Inc Meta-
Software). RLC parasitics for all the wires were extracted using Raphael (Raphael
Interconnect Analysis Tool: User’s Guide). Next, we provide our circuit simulation
results followed by the network performance projection of our ring-based NoC on a
16 × 16 CMP.

3.1.4.1 Circuit Validation

For at-speed validation purposes, we simulated a 4×4 tile where each PE tile was
assumed to be 1.229 mm × 1.229 mm. Hence the length of each link was taken to
be 0.615 mm. Since the JS were 1.229 mm apart in the vertical ring, we had to a
put a repeater between two JS’s in the vertical ring. The address field (k) has 4 bits
(to address 16 PEs) and the data width (d) was taken to be 9B, 18B and 36B. There
are 2 horizontal and 2 vertical rings each of length 12.29 mm. Our circuit simulation
successfully routed a packet which traversed several IES’s and JS’s before reaching
its destination. We have calculated the power assuming that 26 % of the links are
active. The benchmark used in Sanchez et al. 2010 (2010) for power consumption
had a link activity of 26 %, hence this choice. The areas reported are standard cell
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areas. The ring clock (Rclk) was assumed to be 14 GHz (since the IES and JS operate
at this frequency with a nominal guard-band) while the PE clock (Pclk) was 2 GHz.

The wire dimensions for the links between two stations are shown in Fig. 3.7.
Wires are implemented in Metal 9. In both the IES and the JS, a driver of size 30×
of a minimum sized inverter was used to drive a single bit link with a stage ratio of
3×. The delay of the driver was 13.86 ps, while the delay of the mux was 16.08 ps.
As the length of the link being driven is very small, the wire delay was found to be
negligible. The clock-to-Q delay and the setup time adds to sum of the delay of the
driver and the mux to determine the clock frequency. We found the entire 4 × 4 NoC
operates with 100 % functional correctness at 14 GHz. PVT or On-Chip variation
(IR drop, local hot spots etc) can reduce the operating frequency of our ring-based
NoC. Currently we address this issue by adding a nominal guard-band, which results
in a operating speed of 14 GHz for the NoC. All IES operations (Insert, Extract and
Repeat), and all JS operations (Transfer and Repeat) were simulated to complete
correctly at 14 GHz.

We have verified the correct operation of the Outfifo and Infifo for Rclk of 14 GHz
and Pclk of 2 GHz, while randomly varying the phase between the Rclk and the Pclk.
In addition, we also verified the correct operation of the FIFOs in the JS where both
the clocks were 14 GHz.

The ring which distributes the 14 GHz clock at the IES and JS was assumed to be
laid out on Metal 8, with wires of width 1μm, spacing 1μm and height 0.9μm. For a
ring of length 1.229 mm between two stations and an inverter of size Wp = 2.5μm

and Wp/Wn = 2, the oscillation frequency of 14 GHz was obtained. In order to
achieve a ring of length 12.29 mm, we have implemented a 11 ·λ/2 ring. The power
consumed by a single λ/2 ring was 2.67 mW .

3.1.4.2 Performance Projections

• Power and Area In order to compare our results with a 16×16 mesh topology
in Sanchez et al. (2010), we have scaled the area and power appropriately to
account for the additional IES’s, JS’s and different k values. The area and power
comparison is given in Table 3.2. Ring results are expressed as a ratio of their
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Table 3.2 Power and area comparison with Mesh Topology in. Sanchez et al. (2010)

Flit Mesh Power (mW) Mesh Area (mm2) Ring Power Ring Area
Width

Router Link Total Logic Wire Total Router Link Total Logic Wire Total
d=9B 0.70 5.81 6.51 3.400 8.976 12.376 2.24 0.36 0.57 0.66 1.12 1
d=18B 1.41 7.74 9.15 6.616 17.952 24.568 1.4 0.46 0.6 0.64 1.06 0.95
d=36B 2.46 11.97 14.43 14.936 35.904 50.84 1.17 0.54 0.65 0.55 1.03 0.89

Table 3.3 Comparison of network configurations with Mesh in. Balfour and Dally (2006)

Topology H tr (cycles) BC BB (bits)
BB

T NoC
clk

(Gbits/sec) Tc(cycles) T0(cycles)

Mesh 12.25 2 32 4608 9.216 10.6 35.10
(16×16)

Fast Ring 24.25 3/14 16 2304 32.256 0.88 6.08
(16×16)

Mesh
3n + 1

4
2 2n 288n 576n n × 0.6625 2.1625×

(n×n) n + 0.5

Fast Ring
6n + 1

4
3/14 n 144n 2016n

3n + 1

56

21n + 4

56(n×n)

corresponding values compared to the mesh. Area and power values for the ring-
based NoC are normalized to the corresponding values for the mesh. For a flit
width of 36 bytes, we achieve a 35 % gain in total power and a 11 % gain in total
area. The reason why our approach yields a better area is that we utilize unidirec-
tional rings, which reduces the number of ports per intersection of horizontal and
vertical links.

• Latency and Bandwidth In Balfour and Dally (2006), the authors have pre-
sented detailed area and energy models for on-chip interconnection networks.
Table 3.3 compares the network performance reported in Balfour and Dally
(2006), with our approach, for a 16 × 16 NoC as well as an n × n NoC.
We report the average contention-free latency (T0) incurred by a flit from source
s to destination d which includes: (1) the average hop count (H ) from s to d,
(2) router traversal latency (tr ) and (3) the average channel traversal latency (Tc),
which is the latency induced by repeaters in long links.
T0(s, d) = H (s, d) ∗ tr + Tc(s, d)
In order to calculate the average hop count for an n × n NoC, we first select
a source with co-ordinates (i, j ), where (0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n − 1).
Next, we calculate the average distance of all possible destinations (n2 in all).
Then, we perform the average over all possible values of i and j (for a total of n2

sources). The obtained average is reported as the average hop count for a given
NoC topology. The router latency (tr ) for the mesh as reported in Balfour and
Dally (2006) is 2 PE clock cycles. For our ring-based NoC, we use a deflection
based routing scheme in which a flit follows the shortest path from a source to
a destination, switching between rings (making turns) at JS’. However, if a flit
cannot make a turn at a JS due to congestion, it continues to travel in the same
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direction. The JS which acts as a router consumes only 1 cycle if the data stays in
the same ring, else it takes a minimum of 3 cycles if it has to switch rings. Since
the horizontal and vertical rings communicate through asynchronous FIFOs, we
incur a 2 cycle penalty for synchronization. The IES always consumes only 1 cycle
to repeat or drop the data. Hence the average router latency (tr ) is 1.5 cycles since
it will encounter the IES (with 1 cycle latency) and a JS (with expected penalty of
2 cycles) equally often. Since our NoC clock is 7 × faster than the PE clock, we
further divide by 7 to arrive at a tr value of 3/14 PE clock cycles. BC corresponds
to bisection channel count and BB corresponds to bisection bandwidth (in bits), as
defined in Balfour and Dally (2006). The flit width is taken to be 144 bits for both
the topologies. Recall that the mesh has bidirectional links, while the ring-based
NoC does not. BB

T NoC
clk

defines the aggregate bandwidth (expressed in Gbits/sec)

available. Tc for the mesh as reported in Balfour and Dally (2006) is 10.6 PE
clock cycles for a 16 × 16 NoC. Note that for our scheme, we do not introduce
any link repeaters in the horizontal ring. However, in the vertical direction, we
insert one repeater between two JS’. Hence, Tc is zero by design for horizontal
rings and 1 NoC clock cycle for vertical rings. Similar to the way we calculate
the average hop count, we consider every possible source and destination and find
the average delay in terms of NoC cycles introduced by the repeaters. Since our
ring-based NoC operates 7× faster, we further divide this number by 7.
In Balfour and Dally (2006), the clock frequency for the NoC was assumed to
be same (2 GHz) as the PEs. Our source synchronous ring based NoC runs 7×
faster than the PEs. We report the results in Table 3.3 in terms of PE clock cycles.
For a 16 × 16 topology, we improve the average contention free latency by 5.8×.
This is achieved because our NoC clock is 7× faster than the PE clock. For the
same reason, available aggregate bandwidth is 3.5× compared to a regular mesh.
Note that our rings are unidirectional and hence we have half the number of
links between two PEs compared to a bidirectional mesh as reported in Balfour
and Dally (2006). Also, our projections on a general n × n NoC (last 2 rows)
suggests that for large n, we achieve a significantly lower contention free latency
(5.76× lower) and higher bisection bandwidth (3.5× higher) for ring-based NoC
compared to a mesh.

3.1.5 Conclusion

Traditionally, Network-on-Chip (NoC) architectures are based on mesh interconnec-
tion structures. We propose a ring based NoC architecture which is based on a source
synchronous data transfer model over a ring. The source synchronous ring is clocked
by a resonant clock which operates significantly faster than the individual processors
that are served by the ring. This allows us to significantly reduce the area devoted
to the NoC logic and wiring. We have validated the design using a 22 nm predictive
process. Results indicate that our approach achieves 3.5× better bandwidth, 5.8×
better contention free latency with lower area and power than a 2D mesh.



82 3 Fast Network-on-Chip Design

3.2 Architectural Simulations of a Source Synchronous
Ring-based NoC

In the previous section, we only considered the circuit design aspects of the ring-
based NoC, without performing architectural simulations. In this section, we perform
architectural simulations of the ring based NoC. Moreover, in the previous section,
we assumed all the SWO clock rings to be mesochronous, and hence requiring
asynchronous FIFOs at the junction of horizontal and vertical rings. In the following
part of our work, we propose a design where all the ring clocks are synchronous.
The above is achieved by using a SWO-based “comb" clock distribution topology as
discussed in Sect. 2.2 or a SWO-based tiled clock distribution topology as discussed
Sect. 2.4. The above modification improves the NoC performance by allowing us
to avoid the synchronization latency when switching rings at the intersection of
horizontal and vertical rings. Also, the PE clocks and the NoC clock are multi-
synchronous.

3.2.1 Introduction

The mesh interconnection network has been preferred by the Network-on-Chip
(NoC) research community due to its simple implementation, high bandwidth and
overall scalability. Most of the existing NoCs operate at the same or lower clock
speed as the processing elements (PEs), hence slowing down the communication
system. In the previous section, we introduced a new source-synchronous ring based
NoC architecture, which runs significantly faster than the PEs and offers a high band-
width and low contention free latency. We validated the NoC design at the circuit
level, using a 22 nm predictive process technology, and showed that the proposed
architecture can operate at a clock speed of 14 GHz, with the clock derived from a
standing wave resonant oscillator. In this section, we explore the architectural aspects
of the fast ring based NoC. Our architectural simulations show that the ring-based
NoC design as described in Sect. 3.1 suffers from deadlock. In this work, we avert
deadlock by using link ordering and virtual channels. This requires a redesign of the
routers used in Sect. 3.1, as described in this sequel.

We showed the block diagram of a single ring for the ring based NoC in Fig. 3.1.
The ring data path comprises of three fields of information – d bit data, k bit address,
and 1 valid bit. A high speed resonant clock signal Rclk runs parallel to the ring
signals mentioned above, as shown in Fig. 3.1. The data, address and valid signals
are source synchronous with the Rclk signal. Each ring operates significantly faster
(14 GHz) than the PEs (2 GHz). We used a deflection based routing scheme in which
a flit follows the shortest path from a source to a destination, switching between
rings (making turns) at JS’. However, if a flit cannot make a turn at a JS due to
congestion, it continues to travel in the same direction. The above routing protocol
results in a deadlock due to the cyclic dependency of the resources on various paths
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in the network. Hence, we present modifications to the IES’ and JS’ to provide
deadlock free routing. We also perform HSPICE based circuit simulations of these
modifications. Next, we present architectural simulations of the ring-based NoC on
synthetic and real traffic patterns, showing significant improvements in latency and
throughput compared to a state of the art mesh-based NoC.

The rest of the section is organized as follows: Sect. 3.2.2 describes previous
approaches in NoC design. Section 3.2.3 presents our design of a deadlock-free
routing of our ring-based NoC, while Sect. 3.2.4 describes the circuit and architec-
tural experiments which we performed to validate our approach. We conclude in
Sect. 3.2.5.

3.2.2 Previous Work

The performance of an NoC depends on the combination of several characteristics
such as topology, routing algorithm, flow control mechanism and router micro-
architecture. The topology determines the way in which the PEs are connected,
affecting the bandwidth and latency of a network. The routing mechanism deter-
mines the path taken by a packet from a source to a destination, and can be either
deterministic or adaptive. A primary requirement for any routing algorithm is that it
must be deadlock-free. Flow control refers to the policy of network resource allo-
cation as packets travel from source to destination. Popular approaches include (a)
deflection (bufferless) (b) virtual channel (buffered). The complexity of the router
micro-architecture and the link traversal delays determine the speed of operation of
the entire NoC.

As mentioned in Sect. 3.1.2, Sanchez et. al. (2010) compared the mesh, flattened
butterfly and fat tree topologies in terms of latency, throughput, and energy con-
sumption. Their results indicate that for a 64-core CMP, the total area utilization is
lowest for a mesh. The flattened butterfly was shown to consume the largest area (by
a factor of ∼ 3×), consuming slightly more power than the mesh due to the higher
leakage of the extra links of the butterfly. On the other hand, the fat tree, with a large
number of high radix routers and link stages consumes the most power. Based on
these observations, the authors concluded that the mesh is best NoC topology over-
all. In Michelogiannakis (2010), the authors compare following two flow control
mechanisms of the mesh topology: (a) bufferless with deflecting flow control and
(b) virtual channel (VC) buffered flow control. Results indicate that for a 64-core
CMP, VC flow control provides a 12 % smaller average latency and 21 % higher sus-
tained injection rate compared to deflection-based flow control. As a consequence,
we compare our architectural results with a state of the art mesh with virtual channel
buffered flow control.

In all the above implementations, design decisions are made based on the fact
that the NoC runs at the same or lower frequency as the PEs. In the Sect. 3.1,
we presented a fast source synchronous ring based NoC architecture which runs
significantly faster (7×) than the PEs. Data is driven in a source-synchronous manner
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along with a high speed resonant clock. This allows us to achieve significantly higher
bisection bandwidth with narrower links (yielding a lower area and power for the
same bisection bandwidth). The significantly lower latencies allow the proposed NoC
architecture to scale more elegantly for larger CMPs. We evaluated the performance in
terms of total available contention free bandwidth. In this section, our key focus is on
the architectural aspects of a ring-based NoC. We propose modifications to provide
deadlock free routing, using link ordering and virtual channels. We implement a
virtual channel based buffered flow control in contrast to baseline deflection-based
flow control as proposed in Sect. 3.1. We also propose and simulate (in HSPICE) a
modified router architecture to support our new deadlock-free design. We perform
architectural simulations and compare performance of the ring-based NoC with a
state of the art mesh-based NoC, using synthetic and real traffic.

3.2.3 Our Approach

In this section, we first show that the baseline ring-based NoC of Sect. 3.1 suffers
from deadlock. Next, we propose a modified NoC architecture to avoid deadlock by
the use link ordering and virtual channels.

3.2.3.1 Presence of Deadlock in Ring-based NoC of Sect. 3.1

We first perform architectural simulations of the ring-based NoC of Sect. 3.1. We use
our proposed deflection based routing scheme, in which a flit follows the shortest
path from a source to a destination, switching rings (making turns) at JS’. However,
if a flit cannot make a turn at a JS due to congestion, it continues to travel in the same
direction. Note that the architecture has no support for buffering at the routers and
hence the flit has to keep circulating in the ring(s) till it reaches it’s destination.

Figure 3.8 presents the total latency (in terms of PE cycles) of the ring-based
NoC of as a function of flit injection rate for uniform random traffic. On average,
the ring-based NoC of has a 4.3× lower latency compared to the mesh. The mesh
can only sustain a maximum injection rate of 38 % compared to the ring-based NoC,
which can sustain a 44 % injection rate. However, around an injection rate of 44 %,
the number of flits received for the ring-based NoC falls drastically, indicating a
deadlock situation. The deadlock occurs due to a cyclic dependency of resources
on the various paths in the network. In particular, the channel dependency graph
(defined in Sect. 3.2.3.2) is cyclic, resulting in the deadlock.

In the following section, we first devise mechanisms to avoid a deadlock in the
ring-based NoC. In practice, we use link ordering and virtual channels, as described
in Sect. 3.2.3.2. These modifications require changes in the routers (IES’ and JS’),
which we describe Sect. 3.2.3.3.
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Fig. 3.8 Latency comparison for Uniform Traffic

Fig. 3.9 Channel dependency
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3.2.3.2 Deadlock Avoidance in a Ring-based NoC

Consider the case of a unidirectional four-node network as shown in Fig. 3.9 a), with
nodes N = n1, n2, n3, n4 and links L = l1, l2, l3, l4. Let us assume that each node has
a queue of unit length and also the queue of each node is filled with the message
destined for the diametrically opposite node (for example, node n1 has a message
destined for node n3, node n2 has a message destined for node n4, and so on). Clearly,
no message can advance in this situation and this will cause deadlock.

The corresponding channel dependency graph D (Fig. 3.9 b) is constructed where
the vertices of D are channels, and edges are pairs of channels that are adjacent. In
Dally and Seitz (1987), the authors prove that the necessary and sufficient condition
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for deadlock-free routing is the absence of cycles in the channel dependency graph.
Clearly D in Fig. 3.9 has a cycle and hence suffers from deadlock. The authors
propose to remove cycles of the dependency graph by splitting a physical channel
into groups of virtual channels. Every virtual channel shares a physical channel but
needs to implement its own queue. We observe that the number of virtual channels
required grows exponentially with the number of cycles present in D. The ring-based
NoC proposed in Sect. 3.1 is constructed as a grid of unidirectional rings similar to
Fig. 3.9a. The dependency graph of such a ring-based NoC has cycles, and hence
exhibits a deadlock. This is confirmed by the simulation results in Fig. 3.8.

In order to avoid the deadlock, we use link ordering Chiu et al. (2002) and virtual
channels Dally and Seitz (1987). Consider a n × n ring-based NoC as shown in
Fig. 3.10. Each node corresponds to a JS in this figure. We split a link of width L in
the ring-based NoC into two bidirectional links, each of width L/2. Now we label
each link in the following way. For each row of nodes (JS11, JS12, . . .JS1n) we label
eastward links with an increasing index starting from zero. Hence the link JS11-JS12

has label 0, JS12-JS13 has label 1, etc. Then, we label the westward links with an
increasing index starting from n. The same labeling is used for every row of the
n×n ring-based NoC. Similar labeling techniques are used for vertical links as well.
Consider the column (JS11, JS21, . . .JSn1). Southward links are labeled in increasing
order starting with label 2n. Therefore the link JS11-JS21 has label 2n, JS21-JS31 has
label 2n+1, etc. Then, we label the northward links with an increasing index starting
from 3n. Using this labeling scheme, we induce a deadlock-free routing algorithm
between any two JS’ according to Chiu et al. (2002). The necessary and sufficient
condition for deadlock free routing is that routes use links only in increasing order
of labels. Suppose that there exists a total order of the labeling of the links in L. Also
let us consider that the minimum index link (with index lm in this order has a full
queue. Every link lk that lm feeds has a larger index than lm and thus does not have
a full queue. Hence, no flit in the queue for lm is blocked, and no deadlock exists.

We next show that our labeling honors this condition, yielding a unique path for
any source destination route. Consider a route from source s = (i, j ) to (a different)
destination d = (i ′, j ′) such that (i ≤ i ′, j ≤ j ′). There exists a unique route from s to
d, constructed as follows. Since row labels are strictly smaller than the column labels,
we first proceed eastward from (i, j ) to (i ′, j ) encountering labels i, i + 1, . . . Now
we proceed north from (i ′, j ) to (i ′, j ′) encountering labels j + 2n, j + 2n + 1, . . .

Note that there exists a unique route for any (s,d) and this route is same as the
dimension-ordered route (DOR)-XY for a mesh. This unique route satisfies the
necessary and sufficient condition for deadlock freedom.

The labeling of links in Fig. 3.10 guarantees that there exists a deadlock-free path
for any route. However, the nodes in Fig. 3.10 are JS’, and the first and last hop
of any route must travel in the horizontal ring (whose indices are lower than those
of a vertical ring). This violates the DOR-XY constraint, creating a cycle in the
channel dependency graph. To solve this problem, we borrow the idea of Dally and
Seitz (1987) and introduce a separate virtual channel for each JS to the IES on its
immediate right. Hence all the flits destined for any PE travel to the JS on its left,
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Fig. 3.10 Link ordering for ring-based NoC

and then uses this separate virtual channel to reach the destination, hence breaking
the cycle in the channel dependency graph.

In this work, we implement virtual channel based buffered flow control. We
assume that each link can support six virtual channels which can be allocated to the
three incoming ports of that router. We also implement an input buffer based router
micro-architecture. In this design, each input port sends a back-pressure signal to
its upstream router indicating the non-availability of input buffers. Output buffering
requires more complex arbitration and hence we avoid it in our design. Another
drawback of output buffering is that multiple back-pressure signals (one for each
output port) needs to be routed to upstream routers.

3.2.3.3 Router Architecture in the Ring-based NoC

The ring-based NoC uses two different types of routers called IES and JS. We split a
unidirectional link of width L in the original ring-based NoC into two bidirectional
links each of width L/2. Hence, the IES needs to be modified in comparison to
the baseline design. It has three input and three output ports (including a pair of
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ingress/egress ports connected to the local PE). A modified JS has a maximum of
four input and four output ports. Figure 3.11 shows the major components of a JS,
implemented as a 3 stage pipelined virtual-channel router. It has 4 pairs of input and
output ports, supporting 6 virtual-channels (VCs) per port. Note that the structure of
the IES is similar, except that it only has 3 pairs of input and output ports.

The three pipeline stages of the JS are described below:

• Buffer Write (BW) + Route Compute (RC): A flit arrives at the input port and is
registered at the Buffer_inlink block which is a register. In the first pipeline stage,
the address of the flit is sent to the route computation (RC) block to calculate the
output port. The flit, along with its output port, is written into one of the free
virtual channel buffers pointed by the VC_slto. A one bit back-pressure signal
(BP) is send by each input port to its upstream router, signifying the availability
of virtual channel buffers.

• Output Port Allocation (OPA): Individual flits waiting at the input virtual chan-
nel buffers (VC1 - VC6) arbitrate for access to physical channels at the output port.
Arbitration is performed in two stages. The first stage of arbitration is performed
between 6 input virtual-channels. This requires a 6 input arbiter for each input-
output pair (for a total of 12 arbiters since there are 4 input ports and 3 output
ports per input port). There is one less output port since flits do not return to the
direction they arrive from. Let us consider the arbiter (M1) from input port zero
to output port 3 as shown in Fig. 3.11. The rr_vc signal chooses one of the 6
virtual-channels. The rr_vc is generated with the help of a modulus 6 counter
(C1). However the rr_vc signal is updated with the new counter value only when
sel0 is true. The signal sel0 is a conjunction of two events: the virtual channel
buffer pointed at by the new counter value is not empty and the output port value
of the flit pointed at by the new counter is 3.
The second stage of arbitration occurs between the input ports. Once a flit is
selected from the input port for a certain output port, the output port performs
an arbitration between the three input ports. Let us consider the arbiter (M2) at
output port 3, whose control input is the rr_port signal. The rr_port signal is
generated with the help of a modulus 3 counter (C2). However the rr_port signal
is updated with the new counter value only when sel1 is true. This happens when
the port pointed by the new counter value is not empty. Note that the rr_port
signal is driven to zero when the corresponding back-pressure (BP) signal is low,
signifying the unavailability of buffers at the downstream router. The flit which
passes through both arbiters (M1 and M2) gets written into the Buffer_outlink.

• Link Traversal (LT): Flits from Buffer_outlink are driven out through the output
link in the third pipeline stage.

3.2.4 Experimental Results

In this section, we first present the circuit level simulation results for the virtual-
channel enabled JS/IES. Next we present the architectural simulation results of a
8 × 8 NoC under different synthetic traffic patterns.
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Fig. 3.11 Modified router architecture of a ring-based NoC
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3.2.4.1 Virtual Channel Enhanced Routers

We performed circuit simulations to validate our IES/JS router design as described in
Sect. 3.2.3.3. Our design was implemented in the 22 nm PTM (2013) technology, with
VDD = 0.8 V . All circuit simulations were conducted in HSPICE Inc Meta-Software
(Inc Meta-Software). RLC parasitics for all the wires were extracted using Raphael
(Raphael Interconnect Analysis Tool: User’s Guide). As discussed in Sect. 3.1.3.2,
we assume our PEs to be 1.229 mm × 1.229 mm. Hence the length of each link
(which is half of the PE side as shown in Fig. 3.2) was taken to be 0.615 mm. Since
the JS were 1.229 mm apart in the vertical ring, we had to a place a repeater between
two JS’ in the vertical direction.

The delay of the first stage pipeline (BW + RC) was found to be 44.2 ps. The delay
of the second stage pipeline (OPA) was found to be 42.8 ps. For the last pipeline
stage, which is the link traversal (LT), the delay was found to be 41.7 ps. Worst-case
cross talk patterns were assumed to occur among any 3 adjacent wires in a link. The
clock-to-Q delay and the setup time of the registers are added to each of the above
pipeline stage delays to determine the clock frequency. PVT or on-chip variations (IR
drop, local hot spots etc) can reduce the operating frequency of the ring-based NoC.
We address this issue by adding a nominal guard-band, which results in a operating
speed of 14 GHz.

3.2.4.2 Synthetic Traffic Results

We use a modified version of GEM5 (Binkert et al. 2011) for cycle-accurate micro-
architectural NoC simulations. We compare the performance of a state of the art
mesh and the ring-based NoC by running synthetic traffic (uniform, bit complement
and tornado). Let us consider an n × n NoC. Under uniform traffic, for each source,
the destination is selected uniformly and randomly from the remaining n2 − 1 cores.
Under tornado traffic, a source (x, y) will have its destination as (x + n/2 − 1)%n,
y). Finally, under bit complement traffic, a source (x, y) will have its destination as
(n − x − 1, n − y − 1).

We simulate a network with 64 PEs. We assume a clock frequency of 2 GHz for
the PEs. The link width in any direction is assumed to be 144 bits for the mesh and
72 bits for the ring-based NoC. We assume a single flit packet of 144 bits for the
mesh. Thus each 144 bit flit requires two sub-flits in the ring-based NoC. Currently
in our design, we do not have any support for the wormhole routing and hence we
route the two sub-flits of a single flit independently. As discussed in Sect. 1.3.2,
this flit-switched flow control results in a low overhead (less than 8 %). The routers
in the mesh support 6 virtual channels and perform a dimension-ordered (DOR)
XY routing. In the ring-based NoC, routers support 6 virtual channels and perform
routing as discussed in Sect. 3.2.3.2.

Figure 3.12 presents the latency (in terms of PE cycles) as a function of flit injection
rate for uniform random traffic. On average, the ring-based NoC has a 3.5× lower
latency compared to the mesh, across injection rates. At a sample 20 % injection rate,
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Fig. 3.12 Latency comparison for Uniform Traffic

the mesh has an average latency of 23.5 PE cycles, whereas the ring-based NoC has
an average latency of 6.6 PE cycles. The mesh can only sustain a maximum injection
rate of 0.38. Figure 3.13 presents the latency (in terms of PE cycles) as a function
of flit injection rate for uniform traffic (just as Fig. 3.12), but using a different scale
for the left y-axis. From Fig. 3.13, we observe that the ring-based NoC can sustain
a maximum injection rate of 1.1. From Fig. 3.13, the injection rate for which the
latency increases rapidly is the same as the injection rate for which the number of
flits received saturates (for both mesh and ring-based NoCs). However, we observe
that the latency curve for the ring-based NoC has a more gradual increase (kink)
between the injection rates of 0.55 and 1.1. Figure 3.12 illustrates the beginning of
the kink. The presence of this kink is because of the additional virtual channel from
each JS to the IES on its right. Since we provide only one virtual channel for a flit for
the last hop from a JS to the IES on its right, the corresponding virtual channel buffer
becomes a throughput bottleneck at higher injection rates, and hence we observe
the kink. The kink can be suppressed by providing additional virtual channels for
the last hop from each JS to the IES on its right. We have verified that removing
this virtual channel and assuming that the flit reaches the PE at the same time as it
reaches the last JS (located at the left of destination IES) in the route, erases this kink.
Figure 3.13 also illustrates that the number of flits received (right y-axis) saturates at
an injection rate of 0.38 for the mesh and at an injection rate of 1.1 for the ring based
NoC. Clearly the ring-based NoC can sustain a 2.9× higher maximum injection rate
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Fig. 3.13 Latency comparison for Uniform Traffic with scaled Y-axis

than the mesh. The fact that the ring-based NoC runs significantly faster than the
mesh (by 7×) contributes to these improvements.

Figure 3.14 (Fig. 3.15) presents the latency and the number of flits delivered as a
function of the flit injection rate for tornado (bit-complement) traffic, compared to
the mesh. The ring-based NoC achieves on average 3× and 3.5× lower latency for
tornado and bit-complement traffic respectively. Moreover, the ring-based NoC is
able to sustain a maximum injection rate of 82 % (65 %) compared to 35 % (25 %)
for the mesh, for tornado (bit-complement) traffic.

From Figs. 3.13, 3.14 and 3.15, we also observe that the ring-based NoC can
deliver 2.8×, 3.3× and 2.6×more flits than the mesh-based NoC for uniform, tornado
and bit-complement traffic respectively.

3.2.4.3 Effect on Virtual Channels

The number of virtual channels (VC) is a key aspect of NoC design. A virtual channel
splits a single physical channel into two channels, virtually providing two paths for the
flits to be routed. The use of VCs reduces the network latency at the expense of area,
power consumption, and production cost of the NoC implementation. Figure 3.16
presents the latency of the ring-based NoC with two to eight virtual channels for
uniform traffic. The x-axis represents the injection rate, while y-axis represents the
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Fig. 3.14 Latency comparison for Tornado Traffic

average latency in terms of PE clock cycles. We observe that with 2 and 4 virtual
channels, the maximum sustained injection rate is only 0.32 and 0.41 respectively.
The maximum sustained injection rate increases to 0.55 and 1.1 for 6 and 8 virtual
channels respectively. Since a state of the art mesh Michelogiannakis (2010) supports
a maximum sustained injection rate of 0.38, we opt for 6 virtual channels in our
ring-based NoC, to trade off complexity versus maximum sustained injection rate.

3.2.4.4 Effect on Adversarial Traffic Patterns

In our experiments, we use DOR-XY routing in the state of the art mesh. We also
use DOR-XY while routing flits from one JS to another JS in our ring-based NoC.
However, such a routing scheme is oblivious, which means given a source and
a destination, the path is always fixed. We next implement path diversity for the
baseline mesh topology and discuss the results.

We implement a path-diversity aware routing protocol called P-XY for the mesh.
In P-XY, the flits always move along the shortest quadrant from a source to desti-
nation, making a turn (if possible) at every router with 50 % probability. In order
to avoid deadlocks for P-XY, we split the virtual channels into two sets. If the des-
tination is on the right of the source, we use the first set of virtual channels. If the
destination is on the left of the source, we use the second set of virtual channels. If
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Fig. 3.15 Latency comparison for Bit-complement Traffic

the destination is on the same vertical line as that of the source then it can use any
of the two sets. Figure 3.17, 3.18 and 3.19 compares the latency and number of flits
delivered for P-XY and DOR-XY routing as a function of injection rate for uniform,
tornado and bit-complement traffic respectively. We observe that for all of the above
traffic patterns, the maximum sustained injection rate (left y-axis) and the number
of flits delivered (right y-axis) are better for DOR-XY than P-XY. The reasons are
as follows: (a) DOR-XY makes fewer turns (exactly one or zero). If more packets
in the network make turns, they are likely to create more conflicts in the routers.
(b) For P-XY, due to deadlock avoidance, we allocate two different virtual networks
depending on the location of source-destination pairs. Hence this hard allocation in-
troduces a negative impact on the available throughput. (c) For P-XY, more packets
tend to go through the diagonal creating a congestion at the center. The above can
be fixed by giving more weights to edges, but requires yet more complex hardware
to calculate the non-uniform probabilities required to implement such a feature.

Figure 3.20 compares the latency (left y-axis) and flits delivered (right y-axis) of
P-XY and DOR-XY routing as a function of flit injection rate for transpose traffic.
In transpose traffic, for a n × n CMP, the destination is (n − j , n − i) for a source
(i, j ). Let us consider all the source PEs in the column Ck of the n × n CMP. Under
transpose traffic, all of the source PEs of column Ck will have their destinations
in another column (say Cl). In case of DOR-XY, all the flits traveling from the
column Ck to the column Cl will first traverse the links along the x-axis and then will
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Fig. 3.16 Effect of VC on latency

traverse the y-axis links only in the column Ck . This will increase the link utilization
of the center of the column Ck and hence will become a throughput bottleneck.
Hence, transpose traffic is adversarial in nature for DOR-XY. We observe that for
transpose traffic, DOR-XY performs worse than P-XY. In case of transpose traffic,
DOR-XY heavily loads some specific links, where as P-XY distributes them equally.
However, we argue that an adversarial traffic situation like transpose can be avoided
at architectural level by ensuring that the source-destination pairs are placed in a way
that they do not overload specific links. Since DOR-XY performs much better for
other traffic patterns and is simpler to realize in hardware, we opt to use DOR-XY
in our ring-based NoC design.

3.2.4.5 Benefit of Synchronous PEs

We have implemented our design in a multi-synchronous paradigm where the NoC
and the PEs operate at two different clock domains. However, a multi-synchronous
design suffers from the following disadvantages: (i) it requires more area for the
asynchronous FIFOs present at clock crossing boundaries, (ii) it incurs an extra
latency due to synchronization latencies and (iii) the synchronizers present at the
clock crossing boundaries have a non-zero probability of failure due to metastability
issues. Hence, a common synchronous clock for the NoC and the PEs is desirable.
We achieve the above by implementing a common clock distribution scheme for the
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Fig. 3.17 P-XY and DOR-XY comparison for Uniform Traffic

NoC and the PEs as proposed in Sect. 2.2. In this scheme, the PEs can extract a low
jitter clock from the high-speed ring clock by division. Next we analyze the impact
of a synchronous design on the overall NoC performance. Figure 3.21 compares the
latency (left y-axis) and the number of flits delivered (right y-axis) of the ring-based
NoC with asynchronous and synchronous PEs, as a function of the flit injection
rate for uniform traffic. We observe that both the designs are able to sustain the
same maximum injection rate. However, the ring-based NoC with synchronous PEs
achieves on average 30 % lower latency than the ring-based NoC with asynchronous
PEs. This motivates us to design synchronous CMP where both the NoC and the
PEs are synchronous. Hence in our subsequent NoC designs that we propose in this
chapter, we utilize a common synchronous clock for both the NoC and the PEs.

3.2.4.6 Real Traffic Results

Realistic workload traces were captured for a 64-core CMP running a PARSEC
benchmark Bienia et al. (2008). The traces were captured from a CMP composed
of 64 in-order cores with 32-KB private L1 Instruction Cache and 32-KB private L1
Data Cache along with 16 MB of shared L2 cache. Coherence among the L1 caches
was maintained using a MESI protocol. The cache line size was 144 bits. A single
cache line comprised of a single-flit for mesh and 2 sub-flits for ring-based NoC.
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Fig. 3.18 P-XY and DOR-XY comparison for Tornado Traffic

A 100 million cycle segment of the PARSEC benchmark “region of interest” was
simulated. The traffic comprised of miss requests, coherence traffic and cache line
transfers.

Figure 3.22 shows the latency comparison of our ring-based NoC with mesh. The
X-axis shows the PARSEC benchmarks while Y-axis shows the latency (in terms of
PE cycles), normalized against the mesh. On average, the latency for our ring-based
design is ∼ 78 % lower than that of a mesh. We observe a very low injection rate for
all of these benchmarks (less than 10 %). The fact that our ring-based NoC runs 7×
faster than the mesh contributes to this improvement.

3.2.5 Conclusion

Traditionally, Network-on-Chip (NoC) architectures are based on mesh interconnect
structures. These existing NoCs operate at the same or lower clock speed as the
PEs, hence slowing down the communication system. In Sect. 3.1, we propose a new
source synchronous ring based NoC architecture, which runs significantly faster than
the PEs and offers a high bandwidth and low contention free latency. In this section,
we explore the architectural aspects of our fast ring-based NoC. Architectural simu-
lations show that the baseline design suffers from deadlock. We avert the deadlock



98 3 Fast Network-on-Chip Design

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5
0

20000

40000

60000

80000

100000

120000

140000

160000
La

te
nc

y 
(P

E
 C

yc
le

s)

Injection Rate (flits/node/cycle)

P-XY (latency)
DOR-XY (latency)

P-XY (Flits)
DOR-XY (Flits)

Fig. 3.19 P-XY and DOR-XY comparison for Bit-Complement Traffic

by using link ordering and virtual channels. This requires a redesign of the routers
of the circuit of the ring-based NoC. We perform both circuit level and architectural
simulations to validate our design. Architectural results obtained on synthetic traffic
demonstrate that the ring-based NoC has a 3.5×, 3× and 3.5× lower latency and a
2.9×, 2.3× and 2.6× higher maximum sustained injection rate for uniform, tornado
and bit-complement traffic respectively, compared with a state of the art mesh based
NoC.

3.3 Source Synchronous H-tree based NoC

Most NoCs are implemented using the multi-synchronous paradigm. In Sect. 3.1 and
Sect. 3.2, we explored the circuit and architectural aspects of a high-speed, source-
synchronous NoC architecture, where the PEs communicate with the NoC using
the multi-synchronous paradigm. In the following section, we propose a modified
source-synchronous design where the PEs extract a low jitter clock directly from the
high speed ring clock by division and hence are synchronous with the NoC. Using the
above modified design, we propose a class of source-synchronous NoCs organized
in an H-tree pattern which consume lower logic and wiring area while providing the
same or better performance compared to a state of the art mesh.
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Fig. 3.20 P-XY and DOR-XY comparison for Transpose Traffic

3.3.1 Introduction

Most NoCs are implemented using the multi-synchronous paradigm. In Sect. 3.1 and
Sect. 3.2, our high-speed, source-synchronous NoC architectures used the NoC using
the multi-synchronous paradigm. However, a multi-synchronous design suffers from
several disadvantages: i) it requires more area for the asynchronous FIFOs (present
at clock crossing boundaries), ii) it incurs an extra latency due to synchronization
and iii) the synchronizers present at the clock crossing boundaries have a non-zero
probability of failure due to metastability issues. Hence, a common synchronous
clock for the NoC and the PEs is desirable. In this section, we present a source
synchronous NoC (laid out in an H-tree topology) with each link being routed in
parallel with an SWO clock ring. The clock is implemented as a standing wave
oscillator (SWO). Multiple clock rings are used (one for each H-tree segment), and
each clock ring is injection locked with other clock rings that adjoin it. Hence the
entire NoC is synchronous. The PEs can extract a low jitter clock from the high speed
ring clock by clock division, making them synchronous with the NoC clock. We also
show that by recursively duplicating links in the H-tree based source synchronous
NoC (Hnoc) we can obtain new hybrid NoC designs. In the limit, in this manner, the
H-tree based NoC morphs into the mesh-based source synchronous NoC (Mnoc).
The performance of each such intermediate hybrid NoC structure is quantified. The
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Hnoc has the lowest area but worst performance. The Mnoc has largest area and
best performance. Based on the performance requirements and the area budget, an
NoC designer can select any intermediate hybrid NoC structure. All our designs are
compared with a state-of-the art mesh based NoC Michelogiannakis (2010).

The rest of the section is organized as follows: Sect. 3.3.2 describes previous ap-
proaches in this area. Section 3.3.3 presents our approach, while Sect. 3.3.4 describes
the experimental results which we performed to validate our approach. We conclude
in Sect. 3.3.5.

3.3.2 Previous Work

The goal of an NoC is to provide a high performance, modular connectivity between
PEs in a CMP. The NoC topology defines the way in which the PEs are connected, and
directly impacts the area requirement (logic and wire) and performance of the NoC.
NoC characteristics such as average hop count, routing protocol used, etc. affect the
power consumption and average latency of the NoC. In terms of topology, the mesh
(Dally and Towles 2001) and torus (Duato 2002) have received greatest attention
due to their regular and modular structure, making them easy to implement in an
IC. Application-specific topologies (Hu 2002) that can offer superior performance
while minimizing area and energy consumption have been also proposed. In Tran
et al. (2010), the authors implement a simple yet effective reconfigurable source-
synchronous NoC, which can sustain a peak throughput of one word per cycle. In
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Horak (2010), the authors have implemented a low-overhead asynchronous NoC,
which has significantly lower latency and competitive throughput for mid-range
injection rates, but suffers degradation at higher injection rates. There has been also
work on asynchronous mesh NoC (Thonnart 2010), which yield a 30–50 % gain
in speed and a 5× reduction in power, at the cost of 3× more area compared to a
synchronous mesh.

In all the above implementations, design decisions are made based on the fact that
the NoC runs at the same or lower frequency as the PEs. In Sect. 3.1 and Sect. 3.2
of this chapter, we present a fast source synchronous ring-based NoC architecture
which runs significantly faster (by a factor of 7×) than the PEs’ clocks. Data is
driven in a source-synchronous manner along with a high speed resonant clock,
providing significantly higher bisection bandwidth with narrower links (yielding
a lower area and power for the same bisection bandwidth). The significantly lower
latencies allow the NoC architecture to scale elegantly for larger CMPs. Architectural
results obtained on synthetic traffic demonstrate that the ring-based NoC has up
to 3.5× lower latency and up to 2.9× higher maximum sustained injection rate
compared with a state of the art mesh-based NoC. However, in Sect. 3.2, we assume
a mesh topology, where the ring clocks are synchronous amongst each other, and
the PE clocks are also synchronous amongst each other. The ring and the PE clocks
are asynchronous, thereby requiring asynchronous FIFOs for the communication
between the PEs and the NoC, simplifying the design further. In this work, in contrast,
we propose an unified synchronous clock distribution for the NoC and the PEs. In our
design, the PEs can extract a low jitter clock directly from the high speed ring clock
by division. Moreover, since the PE clocks are synchronous with the ring clocks, we
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eliminate the need for synchronizers and asynchronous FIFOs while communicating
between the PEs and the NoC.

In Chap. 1.7, we have proposed various resonant clock distribution schemes. We
propose a “comb” topology in Sect. 2.2 and a 2D tiled topology in Sect. 2.4. In
contrast, we focus our attention on resonant clock distribution, which uses an H-tree
topology. We rely on injection locking to synchronize the SWOs in any segment of
the H-tree with its adjoining SWOs, with an aim of distributing clock to the leaves
of the H-tree (where the PEs are located). We route the NoC datapath parallel to the
resonant clock grid, both of which are arranged in an H-tree pattern. This enables
the NoC logic blocks (routers) to derive a high speed, low jitter clock directly from
the ring. Also, PEs can extract their clocks from the ring as well (after division).

3.3.3 Our Approach

In this section, we first introduce the H-tree based baseline NoC architecture used
by our approach. Next, we discuss how the H-tree based source synchronous NoC
(Hnoc) is modified by link duplication, resulting in various hybrid intermediate NoC
structures, yielding a Mnoc in the limit. Finally, we discuss how deadlock-free routing
is accomplished in these hybrid NoC designs.

3.3.3.1 Proposed Architecture

Figure 3.23 shows the baseline architecture of our proposed resonant clock rings
(arranged in an H-tree pattern) and the overlaid datapath, for a three level H-tree
serving 8 PEs. Each of the clock rings (dotted lines) oscillate at the same frequency,
and they are injection locked with adjoining clock rings as shown in Fig. 3.23. This
ensures that all rings oscillate with the same phase and frequency. A bidirectional
link (solid line) is responsible for carrying the data for the NoC, and is routed parallel
to the corresponding clock ring. The PEs of the CMP connect to the ring at the leaves
of the H-tree through Insertion-Extraction Stations (IES’), which are labeled “×”
in Fig. 3.23. Junction Stations (JS’) are present where the links intersect (JS’ are
labeled as “◦” in Fig. 3.23) and are responsible for routing the flits. The IES’ and JS’
extract a high speed, low jitter clock directly from the clock rings. The PEs extract
their clock by division from the ring clock. The design thus eliminates the need of
synchronizers between the PEs and the IES’, which improves the communication
latency. Moreover, we avoid the need of extra hardware to maintain the read and
write pointers of the asynchronous FIFOs (responsible for data transfer between the
PEs and the IES’) in two different clock domains. This is because the FIFOs are
synchronous.

3.3.3.2 Baseline Hnoc Clocking

In this section, we discuss our approach towards the resonant clock distribution used
in our design.
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Fig. 3.23 Clock rings of
Hnoc (dotted) with Datapath
Overlaid (solid)
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As discussed in Chap. 1.7, for an SWO with perimeter p, the total phase change
is λ/2 while traversing the ring once. Since the different links of the H-tree have
different lengths, we need to implement SWOs with different perimeter, but same
frequency. Hence we increase the perimeter of the ring to k · p (where k is odd),
so that the total phase change over a single traversal of the ring is k · λ/2. Such
an implementation will require p equally spaced inverter pairs, and an odd number
(typically one) of mobius connections. Such a ring with perimeter k · p (where k is
odd) oscillates at the same frequency as a ring with perimeter p. We choose the k

value for each ring of Fig. 3.23 so that the ring has the desired length of the H-tree
segment. Intersecting SWOs (of the same frequency) use injection locking to ensure
identical phase across all the rings. Hence, we achieve a high-speed, synchronous
clock distribution across the die, laid out in an H-tree topology. Note that from
Fig. 3.23, we need a clock ring of perimeter 2x to serve a bidirectional link of length
x. Based on HSPICE Inc Meta-Software (Inc Meta-Software) simulations in a 22 nm
PTM (2013) process (discussed later), we obtain a 14 GHz clock frequency for the
NoC. The required length of the metal wire is 2.75 mm (corresponding to λ/2) which
can serve a bidirectional link of length 1.375 mm. For links with length greater than
1.375 mm, we use a ring perimeter of k · λ/2, (where k is odd, and appropriately
selected). The PEs (present at the leaves of the H-tree) can extract their clock by
division of the SWO clocks. The above design suffers from a drawback that the
clock provided to the PEs are not phase locked to the external reference. However,
this is reconciled by observing that only IO PEs need a phase locked loop (PLL) in
order to establish off-chip communication. Hence the IO PEs can have a separate
PLL, and would require a single synchronizer while communicating with the NoC.
The rest of PEs (which are not IO PEs) can derive their clock from the SWOs by
division, without requiring synchronizers.

3.3.3.3 H-tree Based Source Synchronous Topologies

In this section, we discuss how the H-tree based source synchronous NoC (Hnoc) is
modified by link duplication, resulting in various hybrid intermediate NoC structures,
yielding a source-synchronous mesh NoC (Mnoc) in the limit. We consider an m
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Fig. 3.24 Morphing of Hnoc into a Mnoc

level H-tree, serving n = 2m PEs. Figure 3.24 shows an example of the generation of
hybrid NoC structures starting with Hnoc1, for m = 4. In our baseline architecture,
we create two m − 1 level H-tree based source synchronous NoCs to serve the n

PEs (where m = log2(n)). These two H-tree based source synchronous NoCs are
connected (using dotted lines) to realize Hnoc1, as shown in Fig. 3.24 a). The dotted
connections are realized using a mesh based source synchronous NoC topology (as
discussed in Sect. 3.1 and Sect. 3.2). In the second variant, we create four m−2 level
H-tree based source synchronous NoCs. These four H-tree based source synchronous
NoCs are connected in form of a mesh (dotted lines) to realize the Hnoc2 (Fig. 3.24b).
In the third variant, we create eight 1-level H-tree based source synchronous NoCs
and connect these eight nodes in the form of a mesh to realize Hnoc3 (Fig. 3.24c).
Finally we create sixteen 0-level H-tree based source synchronous NoCs and connect
these sixteen nodes in the form of a mesh to realize Hnoc4. Note that Hnoc4 is same
as Mnoc in our example. In general, at i-th step, we create 2i (m − i) level H-tree
based source synchronous NoC. We connect the centers of these 2i H-trees in the
form of a mesh based source synchronous NoC, to realize Hnoci . Note that Hnocm

is identical to a Mnoc.
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We compare the different hybrid NoC designs as constructed above, in terms of
area, bisection bandwidth and contention-free latency. We also perform experimental
simulations on synthetic traffic (uniform, tornado and bit-complement) as well as real
traffic to quantify latency and maximum number of flits delivered (as a function of
injection rate) for the various hybrid NoC topologies. In addition, we analyze the
average link utilization of all the links in the NoC. This provides an insight into the
bottlenecks that limit the maximum sustainable injection rate of any NoC topology.
Based on this study, we propose and quantify additional NoC variants, as described
in the sequel.

3.3.3.4 Deadlock Free Routing

In Dally and Seitz (1987), the authors prove that the necessary and sufficient condition
for deadlock-free routing is the absence of cycles in the channel dependency graph.
An H-tree by construction is acyclic. However, as we add additional links to get
hybrid NoC designs, we introduce cycles in the channel dependency graph. We
visualize each hybrid NoC design as a mesh with an H-tree rooted at each of the
mesh nodes. The routing in the H-tree part of the topology is deadlock free (since
H-tree is acyclic). We implement a deadlock free routing in the mesh by employing
virtual channels along with dimension-ordered routing (DOR)-XY. This achieves
deadlock free routing for all the hybrid NoC designs.

3.3.4 Experimental Results

We use a modified version of GEM5 (Binkert et al. 2011) for cycle-accurate micro-
architectural NoC simulations. We simulate a network with 64 PEs. In other words,
m = 6, and the baseline Hnoc1 has 6 levels. The link width in any direction is
assumed to be 18 bytes. We assume a single flit packet of 18 bytes. Note that, the
above assumption simplifies the routing logic with the overhead of transmitting the
header information in each packet. Since our NoCs have 64 PEs, the source and
destination addresses together require 12 bits. This amounts to a minimal overhead
of ∼8 % for a packet of 18 bytes. Each of the routers (IES’ and JS’) support 6 virtual
channels per port and perform routing as discussed in Sect. 3.3.3.4. We compare
our architectural results with a state of the art mesh with virtual channel buffered
flow control (Michelogiannakis 2010). The mesh operates at 2 GHz. Although Hnoc6

or Mnoc is topologically same as the mesh (Michelogiannakis 2010), Hnoc6 uses
high speed source synchronous links (operating at 14 GHz). The routers in the mesh
of (Michelogiannakis 2010) are 3-stage pipelined supporting 6 virtual channels and
perform a dimension-ordered (DOR)-XY routing. The routers in the mesh are capable
of supporting multi-flit packet (unlike our work) by the virtue of wormhole routing,
which requires complex logic. Moreover, the lack of availability of a faster on-
chip clock restricts the mesh design (Michelogiannakis 2010) to operate at the same
frequency (2 GHz) as the PEs.
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Table 3.4 Area comparison for Hybrid NoC Topologies

Topology Links Wiring (mm) Wiring (%) Buffers Buffers (%)

Hnoc1 126 206.64 75 1500 86.8
Hnoc2 124 216.48 78.6 1488 86.1
Hnoc3 122 226.32 82.1 1464 84.7
Hnoc4 120 236.16 85.7 1440 83.3
Hnoc5 116 265.68 96.4 1392 80.6
Hnoc6 (Mnoc) 112 275.52 100 1728 100
Mesh Michelogiannakis (2010) 112 275.52 100 1728 100

3.3.4.1 Area, Bandwidth and Contention-free Latency Comparison

Table 3.4 reports the number of links, wire length and the total number of buffers
across all the routers for different hybrid NoC structures. The number of links (Col-
umn 2) is intended to provide a coarse measure of connectivity. Note that the links
reported in Column 2 are not all of the same length. Hence, we report the total wire
length of all the links in Column 3. Column 4 indicates the wiring length as a fraction
of the wiring length of the state of the art mesh topology.

The buffers were shown to occupy 75 % of the total on-chip network area in the
TRIPS chip Gratz et al. (2006) and hence we use the buffer count as an indicator of
the global logical area requirement. Note that each router supports 6 virtual channels
and hence the number of buffers is six times the number of ports. The number of
buffers used is indicated in Column 5, while Column 6 presents the ratio of the
number of buffers to that required for a mesh design.

Clearly Hnoc6 (which has the same topology as a mesh) has the longest wire length
and the highest number of buffers. Wire length is lowest for Hnoc1 and increases
as we duplicate links to create other hybrid NoC designs. In particular, Hnoc1 and
Hnoc5 respectively have 25 % and 3.6 % lower wire length compared to a mesh. In
contrast, the number of buffers reduces from Hnoc1 to Hnoc5. The reason behind this
trend is that the number of routers decreases as we transform Hnoci to Hnoci+1 (for
i ≤ 4), since JS routers are reused in this transformation, by adding an extra port.
When transforming from Hnocm−1 to Hnocm, each of the IES requires an extra pair
of ports, resulting in a steep increase in the number of required ports. In particular,
Hnoc1 and Hnoc5 respectively have 13.2 % and 19.4 % fewer buffers compared to a
mesh.

Table 3.5 compares the analytical network performance of various hybrid NoC
structures for a 64 PE CMP. BC corresponds to the bisection channel count and BC

T NoC
clk

defines the aggregate bandwidth (in flits/sec) available. We also report the average
contention-free latency (T0) incurred by a flit from source s to destination d which
comprises: 1) the average hop count (H ) from s to d, 2) router traversal latency (tr )
and 3) the average channel traversal latency (Tc), which is the latency induced by
repeaters in long links. The average contention-free latency T0 is calculated as:

T0(s, d) = H (s, d) ∗ tr + Tc(s, d)
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Table 3.5 Network performance for Hybrid NoC Topologies and Mesh

Topology BC

BC

T NoC
clk

H Tc(cycles) T0(cycles)

Hnoc1 2 14 9.68 1.66 5.81
Hnoc2 4 28 8.92 1.48 5.30
Hnoc3 6 42 7.90 1.27 4.66
Hnoc4 8 56 7.22 0.89 3.98
Hnoc5 12 84 6.75 0.82 3.71
Hnoc6 (Mnoc) 16 112 6.25 0.75 3.42
Mesh Michelogiannakis (2010) 16 16 6.25 5.25 24

Note that we report results in Table 3.5 in terms of PE clock cycles. The bisection
channel count increases from Hnoc1 to Hnoc6 since we duplicate links to morph the
H-tree into a Mnoc. In particular, Hnoc1 and Hnoc4 respectively have 8× and 2×
lower bisection channel count compared to a mesh. The clock frequency for the state
of the art mesh was assumed to be same (2 GHz) as the PEs. Our source synchronous
hybrid NoC designs (Hnoc1 through Hnoc6) run 7× faster than the PEs. This helps us
achieve a higher available aggregate bandwidth for Hnoc2 through Hnoc5 compared
to a regular mesh, despite lower bisection channel counts. In particular, Hnoc2 and
Hnoc5 respectively have 1.75× and 5.25× better available aggregate bandwidth
compared to a mesh, with a 4× and 1.33× lower bisection channel count respectively.
Hnoc6, which has the same bisection channel count as the state of the art mesh, has
a 7× higher available aggregate bandwidth.

The router traversal latency (tr ) is 3 PE clock cycles for the mesh and 3/7 PE
clock cycles for the hybrid NoC designs (since the NoC clock runs 7× faster than the
PEs). The average hop count decreases as we duplicate links in a H-tree to get hybrid
structures. For link lengths greater the 0.615 mm, we introduce repeaters for both
mesh and source synchronous NoC designs and this contributes to an increase in the
average channel traversal latency (Tc). Note that only the links are buffered, not the
SWO itself. Note that for both the mesh and the hybrid NoC designs, we report Tc

in terms of PE clock cycles. We improve the average contention free latency (T0) by
4.1× for Hnoc1 and by 7× for Hnoc6.

3.3.4.2 Link Utilization

We next analyze the utilization of the various links for different hybrid NoC designs.
Figure 3.25 shows the histogram of the link utilization for various hybrid NoC de-
signs, obtained through experiments using uniform traffic. All links are assumed to
have the same width. Note that Hnoc1 and Hnoc6 are identical to an H-tree and a
mesh respectively, in terms of topology. The x-axis represents the link utilization in
units of flits/cycle and y-axis represents the number of links with a particular value
of link utilization. The PEs inject traffic uniformly and the injection rate is chosen
to ensure that the corresponding network is on the onset of saturation. Clearly for
Hnoc1, we observe a small number of links showing a very high link utilization. They
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Fig. 3.25 Experimental link utilization for Hybrid NoC Topologies

correspond to the lowest level links of the H-tree (the level that is farthest from the
leaves). We also observe a higher number of links with a very low utilization. They
correspond to links which are present towards the leaves of the H-tree, servicing
fewer PEs and hence exhibiting a lower link utilization. Next, we construct Hnoc2

by removing the lowest level of H-tree. We observe more links with higher link uti-
lization (corresponding to the mesh portion of the hybrid NoC design). As we keep
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Table 3.6 Area Comparison for Hybrid NoC Topologies with Wide Links

Topology Links Wiring (mm) Wiring (%) Buffers Buffers (%)

Hnoc1, fat 132 221.40 80.3 1560 90.3
Hnoc2, fat 128 226.32 82.1 1536 88.9
Hnoc3, fat 132 295.20 107.1 1560 90.2
Hnoc4, fat 144 354.68 128.7 1728 100
Hnoc5, fat 168 521.52 189.3 2064 119
Hnoc6, fat 224 551.04 200 3456 200
Mesh Michelogiannakis (2010) 112 275.52 100 1728 100

removing levels of the H-tree and growing the size of the mesh portion of the hybrid
NoC, the link utilization is spread in the mesh core. The peaks in the hybrid NoC
designs (Hnoc2 through Hnoc5) correspond to the links which are present towards
the leaves of the H-tree. They serve fewer PEs and hence exhibit a lower utilization.
As we morph from Hnoc5 to Hnoc6 (which is topologically same as the mesh), we
observe a major change in pattern of the link utilization. This happens because we
remove links that were responsible for serving a single PE in Hnoc5 and instead
create a grid of links. An ideal link utilization histogram needs to be unimodal with a
very low variance. The bandwidth of a NoC design is limited by the highest utilized
link. When there are a few links in the network with a high utilization, most of the
links are being under-utilized when the network saturates. Such a design will not be
able to sustain a high injection rate.

The purpose of the above experiment is to provide a systematic way to debug link
utilization. Based on the results of this experiment, we selectively widen congested
links. We widen the two lower level links (the ones farthest from the leaves) for
Hnoc1 and the mesh portion for the rest (Hnoc2 to Hnoc6) of the hybrid NoC designs
by a factor of two. The wiring and buffer overheads are reported in Table 3.6. Each
variant with widened links is referred to with a “fat” subscript. We observe that
Hnoc4, fat , Hnoc5, fat and Hnoc6, fat have significantly higher overheads compared to
the baseline mesh topology. So we only present the results for Hnoc1, fat , Hnoc2, fat ,
Hnoc3, fat , Hnoc4, Hnoc5 and Hnoc6 in the next section.

3.3.4.3 Architectural Simulations on Synthetic Traffic

In this section, we compare the performance of different hybrid NoC structures
described in Sect. 3.3.3.3 by running synthetic traffic (uniform, tornado and bit-
complement). Figure 3.26a, 3.27a and 3.28a present the latency (in terms of PE
cycles) as a function of injection rate, while Fig. 3.26b, 3.27b and 3.28b present the
number of flits delivered over 10 K PE cycles as a function of flit injection rate for
the three synthetic traffic patterns. Note that the legends in Fig. 3.26b, 3.27b and
3.28b corresponds to the legends in Fig. 3.26a, 3.27a and 3.28a respectively, and are
omitted for clarity.

We summarize the data of Fig. 3.26, 3.27 and 3.28 (normalized to the mesh
Michelogiannakis (2010)) in Table 3.7 and 3.8. Based on Table 3.7, we observe that
all Hnoc design variants achieve a better latency than the state of the art mesh of
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Fig. 3.26 Uniform Traffic
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Fig. 3.27 Tornado Traffic

Michelogiannakis (2010), for all three traffic types. The latency improvement varies
from 1.4× to 5×. From Table 3.8, we note that Hnoc3, fat , Hnoc4, Hnoc5 and Hnoc6

achieve a higher number of flits than the mesh of Michelogiannakis (2010) for all
traffic types. For tornado traffic, Hnoc2, fat improves over the mesh, while for bit-
complement traffic, all variants beat the mesh in terms of numbers of flits delivered.
The fact that the hybrid NoC designs run significantly faster than the mesh (by 7×)
contributes to these improvements.

For uniform traffic, we observe that Hnoc1, fat and Hnoc2, fat provide 1.9× and
2× lower latency compared to the mesh of Michelogiannakis (2010). However, we
observe that they can only sustain a maximum injection rate of 0.31 and 0.32 in
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Fig. 3.28 Bit-complement Traffic

Table 3.7 Latency
comparison

Topology Uniform Tornado Bit-Complement

Hnoc1, fat 1/1.9 1/1.4 1/2.3
Hnoc2, fat 1/2.0 1/1.6 1/2.4
Hnoc3, fat 1/2.3 1/1.9 1/2.8
Hnoc4 1/3.5 1/3.1 1/3.9
Hnoc5 1/3.5 1/2.9 1/3.8
Hnoc6 1/4.6 1/4.2 1/5.0
Mesh Michelogi- 1 1 1

annakis (2010)

Table 3.8 Maximum flits
delivered comparison

Topology Uniform Tornado Bit-Complement

Hnoc1, fat 0.8 0.9 1.1
Hnoc2, fat 0.8 1.2 1.6
Hnoc3, fat 1.8 2.1 2.2
Hnoc4 2.1 3.6 2.2
Hnoc5 2.1 3.0 2.5
Hnoc6 7.0 7.0 7.0
Mesh Michelogi- 1 1 1

annakis (2010)

comparison to 0.38 for the mesh. Hnoc3, fat , Hnoc4, Hnoc5 and Hnoc6 provide 2.3×,
3.5×, 3.5× and 4.6× lower latency compared to a state of the art mesh and are able
to sustain a maximum injection rate of 0.63, 0.7, 1 and 2.6 respectively.

For tornado traffic, we observe that Hnoc1, fat and Hnoc2, fat provide on average
1.4× and 1.6× lower latency compared to the mesh of Michelogiannakis (2010) and
can only sustain a maximum injection rate of 0.23 and 0.24 in comparison to 0.35
for the mesh. Hnoc3, fat , Hnoc4, Hnoc5 and Hnoc6 provide a 1.9×, 3.1×, 2.9× and
4.2× lower latency compared to a mesh and are able to sustain better injection rates
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than the mesh of Michelogiannakis (2010) (0.45, 0.6, 0.8 and 2.4 respectively). The
maximum number of flits delivered over 10 K PE cycles for Hnoc2, fat , Hnoc3, fat ,
Hnoc4, Hnoc5 and Hnoc6 are between 1.2× and 7× higher compared to the mesh of
Michelogiannakis (2010), as reported in Table 3.8. For bit-complement traffic, we
observe that Hnoc1, fat and Hnoc2, fat provide 2.3× and 2.4× lower latency compared
to the mesh of Michelogiannakis (2010) but can only sustain an injection rate of 0.18
and 0.19 respectively in comparison to 0.25 for the mesh. Hnoc3, fat , Hnoc4, Hnoc5

and Hnoc6 provide a 2.8×, 3.9×, 3.8× and 5× lower latency compared to the mesh
of Michelogiannakis (2010) and are able to sustain a higher injection rate than the
mesh (0.3, 0.37, 0.45 and 1.8 respectively). The maximum number of flits delivered
over 10 K PE cycles for all Hnoc variants are between 1.1× and 7× higher than the
mesh of Michelogiannakis (2010), as reported in Table 3.8.

Hence we conclude that Hnoc1, fat , Hnoc2, fat have significantly lower latency and
comparable maximum sustained injection rate in comparison to the state of the art
mesh. Moreover, Hnoc3, fat , Hnoc4, Hnoc5 and Hnoc6 provide a better latency and
are able to sustain a higher injection rate for all synthetic patterns in comparison to
a state of the art mesh. Among them, Hnoc5 has the lowest number of buffers and
Hnoc4 has the smallest wire length. By taking this tradeoff into account, a designer
can choose a hybrid NoC design depending on the area-performance characteristics
they wish to achieve.

3.3.4.4 Real Traffic Results

Realistic workload traces were captured for a 64-core CMP running a PARSEC
benchmark (Bienia et al. 2008). The traces were captured from a CMP composed
of 64 in-order cores with 32-KB private L1 Instruction Cache and 32-KB private
L1 Data Cache along with 16 MB of shared L2 cache. The cache line size was 18
bytes. A single cache line comprises of a single flit in all the hybrid NoCs. Coherence
among the L1 caches was maintained using a MESI protocol. A 100 million cycle
segment of the PARSEC benchmark “region of interest” was simulated. The traffic
comprised of miss requests, coherence traffic and cache line transfers.

Figures 3.29 and 3.30 shows the latency comparison of H-tree based NoCs and the
state of the art mesh. The x-axis shows the PARSEC benchmarks while y-axis shows
the latency (in terms of PE cycles), normalized against the state of the art mesh.
From Fig. 3.29, we observe that the latency for Hnoc1, fat , Hnoc2, fat and Hnoc3, fat

are on average 46 %, 51 % and 55 % lower than that of a state of the art mesh. From
Fig. 3.30, we observe that the latency for Hnoc4, Hnoc5 and Hnoc6 are on average
70 %, 72 % and 78 % lower than that of a state of the art mesh. We observe a very
low injection rate for all of these benchmarks (less than 10 %). The fact that these
hybrid NoC designs run 7× faster than the mesh contributes to this improvement.
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Fig. 3.29 Real Traffic comparison for Hnoc1, fat , Hnoc2, fat and Hnoc3, fat

3.3.5 Conclusion

In this section, we present a family of high-speed source synchronous NoCs organized
in an H-tree topology, with each data link being routed parallel to a clock ring. The
clock is generated with the help of injection locked standing wave oscillators of
varying length as required by the topology. PEs directly extract a low jitter clock from
the high speed ring clock by division. We compare different hybrid NoC designs with
a state of the art mesh (Michelogiannakis 2010) in terms of area, link utilization and
contention-free latency. We also explore hybrid H-tree based source synchronous
NoCs with selective link widening. We also perform experimental simulations on
synthetic traffic (uniform, tornado and bit-complement) as well as real traffic to
quantify latency and maximum number of flits delivered as a function of injection rate
for various hybrid NoC structures. Our results demonstrate significant improvements
over a state of the art mesh. The fact that the hybrid NoC designs run significantly
faster than the traditional mesh (by 7×) contributes to these improvements. Using
our results, a designer can choose any hybrid NoC design depending on the area-
performance characteristics desired.

In the previous section, we proposed a modified source-synchronous design where
the clock and data NoC are synchronous yielding a fast, robust design. In such
a source-synchronous design, the PEs extract a low jitter clock directly from the
high speed ring clock by division and hence are synchronous with the NoC. In the
following section, we use the above idea to propose and evaluate two additional
NoC topologies with significantly lower logic and wiring area with the same or
better performance compared to a state of the art mesh.
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Fig. 3.30 Real Traffic comparison for Hnoc4, Hnoc5 and Hnoc6

3.4 Exploring Ring of Star and Spine with Ring
Topology for NoC

3.4.1 Introduction

In Sect. 3.1 and Sect. 3.2, we introduced a high-speed, source-synchronous ring-
based NoC architecture. We refer to the topology used in Sect. 3.2 as Mesh of
Rings (MOR), which consumes the same buffer area as that of a state of the art
mesh. In an NoC design, the topology determines the way in which the PEs are
connected. In Sect. 3.2 and Sect. 3.3, we observe how topologies affect the bandwidth
and latency of a network. Our proposed ring-based NoC designs run significantly
faster than the PEs, yielding improved performance. In Sect. 3.3, we explore H-tree
based topologies, which consume lower logic and wiring area compared to a state
of the art mesh with the same link width. In this section, we explore two alternate
source synchronous ring-based topologies called the ring of stars (ROS) and the
spine with rings (SWR) which consume significantly lower logic and wiring area
than the state of the art mesh, and are able to provide better performance in terms
of communication latency compared to a state of the art mesh. The ROS topology is
constructed by connecting multiple star networks in form of a ring. Each star network
is hierarchically constructed by connecting smaller star networks. The smallest star
network directly connects the PEs. The SWR topology consists of concentric rings
with a horizontal and a vertical spine connecting all the rings. In both of the proposed
topologies, the data NoC is being routed in parallel to a clock ring, which is driven
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by a fast resonant clock. We use standing wave resonant oscillators (SWOs) to
implement the clock rings. Any SWO ring is injection locked with other SWO rings
that adjoin it and hence the entire NoC is synchronous. Our design allows the PEs to
extract a low jitter clock from the high speed ring clock by division, thus making the
PEs synchronous with the ring clock. Hence we eliminate the need of synchronizers
between the PEs and the NoC. We evaluate the area and performance of the two new
ring-based NoC topologies and compare them with a state of the art mesh.

The rest of this section is organized as follows. Section 3.4.2 describes previous
approaches in this area. Section 3.4.3 presents our approach, while Sect. 3.4.4 de-
scribes the experimental results which we obtained while validating our approach.
We conclude in Sect. 3.4.5.

3.4.2 Previous Work

The previous work reported in Sect. 3.3.2 is applicable for this section as well. In
2010, Sanchez et. al. (2010) compared various network topologies of interconnection
networks in terms of latency, throughput, and energy dissipation. The authors report
that for a 64-core CMP, the total area utilization is lowest in case of the mesh topology.
The two additional source synchronous ring-based topologies in this section consume
much lower area than the mesh, and are able to provide better performance in terms
of communication latency compared to a state of the art mesh.

3.4.3 Our Approach

In this section, we introduce the two alternate source synchronous ring-based
topologies followed by their corresponding deadlock-free routing approach. In the
following discussion, we assume a CMP with 64 PEs, for all NoC topologies.

3.4.3.1 The ROS Topology

• Architecture: Figure 3.31 shows our proposed ring of stars (ROS) topology. The
smallest star network (level-1) connects 4 PEs and consists of 4 IES’ (circles) and
1 JS (square). A level-2 star network is responsible for connecting 4 level-1 star
networks. Hence, a level-2 star network consists of 5 JS’ as shown. Finally, we
have a ring which connects 4 level-2 stars to provide full connectivity for the 64-
PE CMP. We highlight a portion of the NoC around the JS in the left of Fig. 3.31.
The JS is present at the intersection of two clock rings. The two intersecting clock
rings are injection locked and hence oscillate with the same frequency and phase.
We also show the five bidirectional links connected to the JS that are responsible
for carrying the data for the NoC. The JS extracts a high speed, low jitter clock
directly from these clock rings.
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Fig. 3.31 ROS Topology

• Deadlock-free Routing: In Dally and Seitz (1987), the authors prove that the
necessary and sufficient condition for deadlock-free routing is the absence of cy-
cles in the channel dependency graph. A star-topology by construction is acyclic.
However, as we introduce a ring to connect multiple stars, we introduce cycles in
the channel dependency graph. We visualize the ROS as a 2 × 2 mesh with a star
network rooted at each of the four mesh nodes. The routing in each of the star net-
work segments is deadlock free (since the star network is acyclic). We establish a
deadlock free route in the mesh by using virtual channels and dimension-ordered
routing (DOR)-XY. This achieves a deadlock free route for the entire ROS.

3.4.3.2 The SWR Topology

• Architecture: Figure 3.32 shows our proposed spine with rings (SWR) topology.
The topology consist of 4 concentric rings with a vertical and horizontal spine
connecting the rings. The innermost ring is the smallest ring and connects only
4 PEs at the center using IES’ (circles). The outermost ring is the largest and
connects 28 PEs which are present the periphery of the CMP. One vertical and
one horizontal spine connect all the 4 rings to provide full connectivity for the 64-
PE CMP. IES’s in Fig. 3.32 are shown as circles, while JS’ are shown as squares.
A portion of the NoC around the JS is highlighted in the left of Fig. 3.32. The two
intersecting clock rings at the JS are injection locked, and hence oscillate with the
same frequency and phase. We also show the four bidirectional links connected
to the JS which are responsible for carrying the data for the NoC. The JS extracts
a high speed, low jitter clock directly from these clock rings.
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Fig. 3.32 SWR Topology

• Deadlock-free Routing: The SWR is composed of 4 concentric rings and a verti-
cal and a horizontal spine connecting these concentric rings. Clearly the SWR has
cycles in the channel dependency graph. Each router (IES and JS) in our design
supports 6 virtual channels. We construct two virtual networks with the help of
these 6 virtual channels. Three of the virtual channels are reserved for flits which
travel from an outer ring to an inner ring. The other half of the virtual channels
is reserved for flits traveling from an inner ring to outer ring. Without two virtual
networks, deadlock can occur when traffic simultaneously is routed from inner
rings to outer rings, as well as from outer rings to inner rings. With two virtual
networks, the flits of these two virtual networks do not share resources and do
not create a cycle in the channel dependency graph. This achieves a deadlock free
route for SWR.

We compare the above ring-based NoC topologies in terms of area, average commu-
nication latency and maximum number of flits delivered. In addition, we analyze the
average link utilization (theoretical and experimental) of the links in the ring-based
NoCs, which provides an insight to the maximum injection rate sustainable by an
NoC structure, and allows us to debug the link(s) that are responsible for congestion.

3.4.4 Experimental Results

We use a modified version of GEM5 (Binkert et al. 2011) for cycle-accurate micro-
architectural NoC simulations. For all topologies, we simulate a network with 64
PEs. Each PE tile is assumed to be 1.229 mm× 1.229 mm (using the estimates from
Sect. 3.1.3.2). The link width in any direction is assumed to be 18 bytes. The routers
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Table 3.9 Area comparison for various NoC Topology

Topology Number of Wire Number of Number of
Links Length (mm) ports buffers

MOR 112 137.65 288 1728
ROS 84 206.10 168 1008
SWR 92 98.32 144 864
Mesh Michelogiannakis (2010) 112 275.30 288 1728

(IES’ and JS’) operate at 14 GHz and can drive a maximum link length of 0.615 mm.
For links greater than 0.615 mm, we insert repeater(s) to ensure that largest link
driven is 0.615 mm. We assume a clock frequency of 2 GHz for the PEs and a clock
frequency of 14 GHz for the various ring-based NoC designs. We assume a single
flit packet of 18 bytes. Each of the routers (IES’ and JS’) support 6 virtual channels.
We compare our architectural results with a state of the art mesh with virtual channel
buffered flow control Michelogiannakis (2010). The mesh operates at 2 GHz. The
routers in the mesh are 3-stage pipelined supporting 6 virtual channels and perform
a dimension-ordered (DOR)-XY routing.

3.4.4.1 Area Comparison

Table 3.9 reports the number of links, wire length, the total number of input ports
and the total number of buffers across all the routers for the MOR, ROS, SWR and
mesh Michelogiannakis (2010) topologies. The first column is intended to provide
a coarse measure of connectivity. Note that the links reported in Column 1 are not
all of the same length. Hence, we report the total wire length of all the links in the
second column. The buffers were shown to occupy 75 % of the total on-chip network
area Gratz et al. (2006) in the TRIPS chip and hence we use them as an indicator
of the global logic area requirement. Note that since each router supports 6 virtual
channels, the number of buffers is six times the number of ports.

Clearly the MOR and the state of the art mesh have the highest number of buffers.
MOR has 50 % lower wire length as the link width is half compared to the state of the
art mesh. The ROS and SWR have 25.2 % and 64.3 % lower wire length respectively
compared to the state of the art mesh. Moreover, the ROS and the SWR have 41.7 %
and 50 % fewer buffers respectively, compared to the mesh. In the rest of this section,
we show that our ROS and SWR topologies leverage the benefit of a high speed NoC
by reducing the wiring length and the number of buffers while still providing lower
communication latency compared to a state of the art mesh.

3.4.4.2 Link Utilization

In this section, we analyze the utilization of the various links for different ring-based
NoC designs. Figure 3.33 shows the histogram of the analytical and experimental
link utilization for the ROS and SWR topologies. For analytical link utilization, we
assume that each link is able to provide an unlimited bandwidth to the incoming flits.
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Fig. 3.33 Link utilization of ROR and SWR

For experimental link utilization, the PEs inject traffic uniformly and the injection
rate is chosen to ensure that the corresponding network is at the onset of saturation.
The injection rates used for both ROS and SWR were 0.35. The same injection rate
was used for the analytical experiment as well. For the ROS topology, the level-1
star networks have the lowest utilization since each of them serves only 4 PEs. The
utilization increases for the level-2 star network which serves 16 PEs. Finally, the
ring which connects four level-2 star networks has the highest utilization. For the
SWR topology, all the links present in the concentric rings have same utilization
due to symmetry. However, the spines which are responsible for connecting all the
concentric rings have the highest link utilization. From Fig. 3.33, we observe that
there is a very close resemblance between the analytical and the experimental link
utilization. Ideally, we prefer a link utilization distribution that is uniform across
all the links. For a ROS topology, the link utilization is non-uniform due to its
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Fig. 3.34 Uniform Traffic
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Fig. 3.35 Tornado Traffic

hierarchical topology. For the SWR topology, the link utilization is uniform across
all the links in the concentric rings but is highest for the links in the spine connecting
the rings. The above study provides an insight to the network load of each topology
and also gives an indication about the maximum sustained injection rate. The results
of the above experiment can allow the NoC designer to determine which links need
to be widened, and thereby fine-tune the performance versus the area trade off.

3.4.4.3 Synthetic Traffic Results

We compare the performance of different ring-based NoC designs with a state of
the art mesh by running synthetic traffic (uniform, tornado and bit-complement)
through these NoCs. Figures 3.34a, 3.35a and 3.36a presents the latency on the y-axis
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Fig. 3.36 Bit-complement Traffic

(in terms of PE cycles) as a function of flit injection rate on the x-axis. Figures 3.34b,
3.35b and 3.36b provides the number of flits delivered (y-axis) over 10 K PE cycles
as a function of flit injection rate (x-axis) for the corresponding traffic patterns. For
uniform traffic, we observe that MOR, ROS and SWR provide on average 3.6×,
3.9× and 2.3× lower latency compared to a state of the art mesh. Moreover, from
Fig. 3.34b, we observe that MOR, ROS and SWR can sustain an injection rate of
1.1, 0.42 and 0.36 respectively in comparison to 0.38 for the mesh.

We summarize the data of Figs. 3.34, 3.35 and 3.36 (normalized to the state of the
art mesh (Michelogiannakis 2010) in Tables 3.10 and 3.11. The maximum number
of flits delivered over 10 K PE cycles for MOR, ROS and SWR are 5.5×, 1.2× and
1.9× compared to the state of the art mesh as reported in Table 3.11. The fact that the
ring-based NoC designs run significantly faster than the mesh (by 7×) contributes
to these improvements.

For tornado traffic, we observe that MOR, ROS and SWR provide on average
3×, 3× and 1.7× lower latency compared to a mesh and can sustain a maximum
injection rate of 0.85, 0.38 and 0.2 respectively in comparison to 0.35 for the mesh.
The maximum number of flits delivered over 10 K PE cycles for MOR, ROS and SWR
are 6.6×, 1.8× and 1.6× compared to the mesh as reported in Table 3.11. Finally,
for bit-complement traffic, we observe that MOR, ROS and SWR provide on average
3.7×, 4.6× and 3× lower latency compared to a mesh and can sustain a maximum
injection rate of 0.66, 0.23 and 0.2 respectively in comparison to 0.23 for the mesh.
The maximum number of flits delivered over 10 K PE cycles for MOR, ROS and
SWR are 3.8×, 1.1× and 1.9× compared to the mesh as reported in Table 3.11.

Clearly, the MOR has the best performance in terms of latency and maximum
sustained injection rate. However, we also observe that the ROS and the SWR pro-
vide a better latency (with a minimum of 1.7× better) for all synthetic patterns in
comparison to a state of the art mesh. ROS is able to sustain the same or better max-
imum injection rate as that of the mesh across all synthetic traffic patterns. However,
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Table 3.10 Latency
comparison

Topology Uniform Tornado Bit-Complement

Mesh Michelogi- 1 1 1
annakis (2010)

MOR 1/3.6 1/3 1/3.7
ROS 1/3.9 1/3 1/4.6
SWR 1/2.3 1/1.7 1/3

Table 3.11 Maximum flits
delivered comparison

Topology Uniform Tornado Bit-Complement

Mesh Michelogi- 1 1 1
annakis (2010)

MOR 5.5 6.6 3.8
ROS 1.2 1.8 1.1
SWR 1.9 1.6 1.9

SWR sustains a lower maximum injection rate than that of the mesh across all syn-
thetic traffic patterns. In the SWR, as suggested by the link utilization discussion,
the spine becomes the throughput bottleneck at higher injection rates. Both the SWR
and ROS topologies use fewer buffers (upto 50 % less) and lower wire length (upto
64.3 % lower) compared to the mesh, and therefore are significant improvements
over the state of the art in this respect. Figures 3.34, 3.35 and 3.36 indicates that both
MOR and ROS are able to deliver a larger number of flits than the mesh, but with a
significantly lower latency and area utilization.

3.4.4.4 Real Traffic Results

Realistic workload traces were captured for a 64-core CMP running a PARSEC
benchmark Bienia et al. (2008). The traces were captured from a CMP composed
of 64 in-order cores with 32-KB private L1 Instruction Cache and 32-KB private L1
Data Cache along with 16 MB of shared L2 cache. The cache line size was 18 bytes. A
single cache line comprises of a single flit for the ring-based NoC designs. Coherence
among the L1 caches was maintained using a MESI protocol. A 100 million cycle
segment of the PARSEC benchmark “region of interest” was simulated. The traffic
comprised of miss requests, coherence traffic and cache line transfers.

Figure 3.37 shows the latency comparison of ROS and SWR with respect to the
state of the art mesh. The x-axis shows the PARSEC benchmarks while y-axis shows
the latency (in terms of PE cycles), normalized against the state of the art mesh. We
observe that the average latency for ROS is 49 % lower than that of the state of the
art mesh. The latency for SWR is 45 % lower than that of the mesh. We observe a
very low injection rate for all of these benchmarks (less than 10 %). The fact that
our ring-based NoC runs 7× faster than the mesh contributes to this improvement.
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Fig. 3.37 Latency comparison for real Traffic

3.4.5 Conclusion

In this section, we evaluate two additional source synchronous ring-based NoC
topologies which consume much lower area and are able to provide better perfor-
mance in terms of communication latency compared to a state of the art mesh. In our
proposed topologies, the clock and the data NoC are routed in parallel, yielding a fast,
robust design. Our design allows the PEs to extract a low jitter clock from the high
speed ring clock by clock division. The area and performance of these ring-based
NoC topologies is quantified. Experimental results on synthetic traffic show that the
new ring-based NoC designs can provide significantly lower latency (by upto 4.6×)
compared to a state of the art mesh. The proposed topologies use fewer buffers (upto
50 % less) and lower wire length (upto 64.3 % lower) compared to a state of the art
mesh. The proposed ROS topology is able to sustain the same or better injection rate
as that of the mesh across all synthetic traffic patterns. However, the SWR topology
sustains a lower injection rate for all synthetic traffic patterns compared to the mesh,
but has a significantly lower latency.

3.5 Chapter Summary

Traditionally, Network-on-Chip (NoC) architectures are based on a mesh intercon-
nection structures. In this chapter, we propose a ring based NoC architecture which
is based on a source synchronous data transfer model over a ring. The source syn-
chronous ring is clocked by a resonant clock which operates significantly faster than
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Table 3.12 Latency
comparison for various NoC
Topologies

Topology Uniform Tornado Bit-Complement

MOR 1/3.6 1/3 1/3.7
Hnoc1, fat 1/1.9 1/1.4 1/2.3
Hnoc2, fat 1/2.0 1/1.6 1/2.4
Hnoc3, fat 1/2.3 1/1.9 1/2.8
Hnoc4 1/3.5 1/3.1 1/3.9
Hnoc5 1/3.5 1/2.9 1/3.8
Hnoc6 (Mnoc) 1/4.6 1/4.2 1/5.0
ROS 1/3.9 1/3 1/4.6
SWR 1/2.3 1/1.7 1/3
Mesh Michelogi- 1 1 1

annakis (2010)

the individual processors that are served by the ring. This allows us to significantly re-
duce the area devoted to the NoC logic and wiring. We have validated the circuit-level
design of our proposed NoC components using a 22 nm predictive process.

Next, we explore the architectural aspects of our fast ring-based NoC. We avert
deadlock by using link ordering and virtual channels. Architectural results obtained
on synthetic traffic demonstrate that the ring-based NoC has a significantly lower
latency (upto 3.5×) a higher maximum sustained injection rate (upto 2.9×) for syn-
thetic traffic, compared with a state of the art mesh based NoC. Next, we present
a family of high-speed source synchronous NoCs organized in an H-tree topology,
with each data link being routed parallel to a clock ring.

Our design allows the PEs to directly extract a low jitter clock from the high speed
ring clock by division. Our baseline design resembles an H-tree, and we recursively
duplicate links to arrive at a mesh topology in the limit. We compare these different
hybrid NoC designs in terms of area, link utilization and contention-free latency. We
also perform experimental simulations on synthetic traffic to quantify the latency and
maximum sustained injection rate for the hybrid NoC structures.

Using our results, a designer can choose any hybrid NoC design depending on the
area-performance characteristics desired. Finally, we evaluate two additional source
synchronous ring-based NoC topologies which consume much lower area and are
able to provide better performance in terms of communication latency compared to
a state of the art mesh. Similar to our H-tree based NoC designs, the clock and the
data NoC are routed in parallel, yielding a fast, robust design. The design also allows
the PEs to extract a low jitter clock from the high speed ring clock by clock division.
The area and performance of these ring-based NoC topologies are quantified.

The proposed topologies use fewer buffers (upto 50 % less) and lower wire length
(upto 64.3 % lower) compared to a mesh. Experimental results on synthetic traffic
show that the proposed topologies are able to sustain the same or better injection rate
as that of the mesh across all synthetic traffic patterns but with a significantly lower
latency (upto 4.6×).

We summarize the average latency and maximum number of flits delivered for
various NoC topologies considered in this chapter (normalized to the mesh (Miche-
logiannakis 2010)) in Tables 3.12 and 3.13 respectively. In addition, we summarize
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Table 3.13 Maximum flits
delivered for various NoC
Topologies

Topology Uniform Tornado Bit-Complement

MOR 5.5 6.6 3.8
Hnoc1, fat 0.8 0.9 1.1
Hnoc2, fat 0.8 1.2 1.6
Hnoc3, fat 1.8 2.1 2.2
Hnoc4 2.1 3.6 2.2
Hnoc5 2.1 3.0 2.5
Hnoc6 (Mnoc) 7.0 7.0 7.0
ROS 1.2 1.8 1.1
SWR 1.9 1.6 1.9
Mesh Michelogi- 1 1 1

annakis (2010)

Table 3.14 Area comparison
for various NoC Topology

Topology Wiring Wiring Buffers Buffers
(mm) (%) (%)

MOR 137.65 50 1728 100
Hnoc1, fat 221.40 80.3 1560 90.3
Hnoc2, fat 226.32 82.1 1536 88.9
Hnoc3, fat 295.20 107.1 1560 90.2
Hnoc4 236.16 85.7 1440 83.3
Hnoc5 265.68 96.4 1392 80.6
Hnoc6 (Mnoc) 275.30 100 1728 100
ROS 206.10 74.8 1008 58.3
SWR 98.32 35.7 864 50
Mesh Michelogi- 275.30 100 1728 100

annakis (2010)

the wiring and buffer area for various NoC topologies considered in this chapter
(normalized to the mesh Michelogiannakis (2010)) in Table 3.14.

Clearly, from Tables 3.12 and 3.13 we observe that Hnoc6 or Mnoc which has the
same topology as a state of the art mesh, but operates significantly faster than the
state of the art mesh (7× faster), has the lowest latency and highest number of flits
delivered across all traffic patterns. However, from Table 3.14, we observe that Hnoc6

consumes the same wiring and buffer area as that of state of the art mesh. Among the
other Hnoc topologies, all of them have significantly lower latency compared to the
state of the art mesh while consuming comparable or lower wiring and buffer area.
Among these, Hnoc3, fat , Hnoc4 and Hnoc5 are able to deliver more flits compared
to a state of the art mesh. MOR consumes the same buffer area as that of a state of
the art mesh but only half the wiring area. MOR has significantly lower latency as
well delivers significantly higher number of flits compared to a state of the art mesh.
Also, we can further improve MOR performance by making the NoC clock and the
PE clock synchronous as is the situation with hybrid H-tree topologies as well as
SWR and ROS topology. Finally, we observe that both the ROS and SWR consume
significantly lower wiring and buffer area and still have significantly lower latency
compared with a state of the art mesh. The SWR topology is able to deliver more flits
than the SWR topology, and both of these topologies deliver more flits than the state
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of the art mesh. Hence depending on the desired throughput in a CMP, one designer
can select any of these NoC designs.
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Chapter 4
Fast On-Chip Data Transfer Using
Sinusoid Signals

Abstract In Chapter 2, we demonstrate that resonant clocking can be used as an ultra
high-speed, low-jitter, low-power, stable on-chip clock generation and distribution
scheme. In Chapter 3, we use such a clock to design a high speed source-synchronous
ring-based NoC architecture. This helped us achieve inter-processor communication
with minimal latency. In this chapter, we investigate an alternate design for high speed
on-chip data transfer, which utilizes resonant oscillators. Traditional (pulse-based)
on-chip data transfer achieves a maximum data transfer rate of one bit per wire per
clock cycle. In this work, we explore the use of sinusoidal signals (generated using
SWOs) of different frequencies as information carriers for on-chip data transfer. The
advantage of our method is the ability to superimpose such sinusoids and thereby
effectively send multiple logic values along the same wire in a clock cycle. Initial
experimental results show that for the same throughput as a traditional scheme, we
require 50 % fewer wires. This technique can be employed for off-chip data transfer
as well.

4.1 Introduction

There is a significant incentive to improve the speed of on-chip data communica-
tion. It is well known that ICs have substantially followed Moore’s Law, doubling
their complexity approximately every 2 years. In contrast, data communication
rates between the processing cores within an IC have improved less dramatically,
proving to be a bottleneck in the the quest for faster computing. The fundamental
reason for this is that data is communicated as a sequence of pulses. With such
a choice, noise and signal are parallel vectors, making fast, reliable data transfer
difficult.

In this work, we investigate the transmission of data as an additive superposition
of several sinusoidal tones. Two significant gains are obtained with this choice. First,
since the information is contained in the frequency of the sinusoidal tones, noise is
orthogonal to the signal, yielding an extremely robust communication scheme. A
second key feature of our scheme is that the data rate grows as more sinusoidal tones
are utilized. Our initial experiments using 4 sinusoids suggest that our proposed
scheme would yield a data communication rate which is at least 2× better than that
achieved by the traditional pulse based signaling, for the same wiring area. Currently

A. Mandal et al., Source-Synchronous Networks-On-Chip, 129
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our experiments focus on on-chip data transfer. However, the idea can be applied for
off-chip data transfer as well. Although our current experiments utilize 4 sinusoids,
we anticipate the ability to use significantly more sinusoids. As a consequence, this
scheme is expected to achieve much higher data rates for on-chip as well as off-chip
data transfer schemes.

The rest of this section is organized as follows: Sect. 4.2 describes previous
approaches in this area. Sect. 4.3 presents our approach, while Sect. 4.4 describes
the results of experiments which we performed to validate our approach. In Sect. 4.5,
we draw conclusions.

4.2 Previous Work

Transmission lines (Beckmann and Wood 2003) were proposed to implement a low
latency interconnect between the L2 cache banks and the cache controllers. The
authors of (Beckmann and Wood 2003) have outlined CMP floorplans optimized for
less complex circuitry, where the cache banks are located along the edges of the
chip and cache controllers reside at the center of the chip. While transmission lines
provide low-latency interconnects, they lack the capability of transmitting multiple
logic values on a single wire. In Ogras et al. (2006), the authors explored application-
specific long-range links between pairs of frequently communicating cores. They
implement their long-range links using a higher-latency point-to-point pipelined
bus. The application-specific nature of these long-range links makes them unsuitable
for use in a general-purpose architecture, and no algorithms are presented to adapt
their use to changing communication conditions. Moreover a higher-latency link
can degrade the performance of the cores which are communicating. In Kirman et
al. (2006), the authors employed optical technology to design a low-latency, high-
bandwidth shared bus. While their design does take advantage of low-latency and high
bandwidth via simultaneous transmission on different wavelengths, they examine
optical interconnect to augment a shared bus topology.

Radio Frequency Interconnect (RF-I) (Chang et al. 2008) was proposed as a
scheme for high aggregate bandwidth, low latency communication for off-chip as
well as on-chip data transfer. On-chip RF-I is realized by transmitting baseband
data on a carrier wave using amplitude and/or phase modulation. The modulation
of the baseband signal in (Chang et al. 2008) involves up-conversion with a Gilbert
Cell. The addition of multiple frequency bands along the same wire is performed
with the help of unwieldy on-chip inductors. In contrast, we use a CMOS common
source amplifier to add various sinusoidal tones with different phases. Moreover the
RF-I schemes use large passive devices to filter and process the baseband data at
the receiver. In contrast, we use a mixer and two stages of differential amplifiers
to recover the transmitted signal. RF-I requires multiple carrier frequencies in the
mm-wave range, which are typically generated on-chip using sub-harmonic injection
locking VCOs. These VCOs are LC-tuned cross-coupled pair with current control.
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In contrast, we use injection locked standing wave oscillators (SWOs) (Cordero and
Khatri 2008) to generate the sinusoidal tones. Recent research on such oscillators
suggests that they yield stable, low power, sinusoidal signal generators.

4.3 Our Approach

In this section, we first introduce our sinusoid-based technique of achieving on-chip
data transfer. Next, we briefly discuss our proposed transmitter and receiver design.

4.3.1 Overview

Our approach utilizes n sinusoidal tones as the carriers of information. We use
standing wave oscillators (SWOs) to generate these sinusoid signals. We generate
the n sinusoidal tones by using n SWOs, which are all injection locked to a common
SWO with a pilot frequency Fp. Each SWO generates two sinusoidal signals with 0◦
and 180◦ phase. Using n oscillators, and by selecting either phase for each oscillator,
we obtain 2n basis tones. We send these tones in a differential manner along two
wires. If the phase of any sinusoid is 0◦ (180◦) on the first wire, then it is 180◦
(0◦) on the second. A new set of n superposed sinusoidal tones are sent during each
period of the pilot frequency Fp. From the basis tones on any wire, we can perform
the superpositions to yield a hyperspace of 2n basis symbols. In effect, this means
that each differential pair of wires in our approach is equivalent to n wires in a
traditional pulse based data transfer scheme. The resulting signal, which is the sum
of all n sinusoids is transmitted differentially. The pilot signal is also transmitted
source-synchronously (for synchronization) at the receiver. The receiver also has n

SWOs, which are all injection locked to the incoming pilot signal. The received
signal (sum of n sinusoids) is separately mixed with the n sinusoidal tones to recover
the transmitted symbols.

4.3.2 Transmitter

Figure 4.1 shows our proposed transmitter circuit driving two differential on-chip
wires. On the left, we show n SWOs of frequencies F1, F2, . . . Fn respectively. All
the SWOs are injection locked to a common SWO with the pilot frequency Fp. Two
common source adders (CSAs) are used to add either a 0◦ or a 180◦ phase of each of
the n sinusoidal tones obtained from the SWOs. Two pass gates connect each of the
SWOs with the CSAs. The pass gate from the SWO with frequency Fi is controlled
by the complementary signals Ci and Ci . When Ci is high, the 0◦ phase of frequency
Fi is send to CSA-1 and 180◦ phase of frequency Fi is send to CSA-2, and vice versa.
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Figure 4.2 shows the internal circuit of the CSA. It has 2n parallel common source
stages pulled up by a resistor. Exactly n out of the 2n inputs are active during one
pilot clock cycle. The CSA performs the addition of these n sinusoids and drives a
wire of length 1.42 mm. We introduce analog repeaters (as shown in Fig. 4.3) every
1.42 mm of the wire to amplify the signal. This distance is maximum that the CSA
and repeaters can drive the signals, while guaranteeing that the data can be recovered.
The pilot signal is also transmitted in a source synchronous manner, as shown in
Fig. 4.1. We use regular inverters to regenerate the drive strength of the pilot signal,
since it is a digital signal. The inverters are inserted every 1.42 mm to ensure that the
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delay of the pilot and the two differential signals Rx+ and Rx− are identical while
traveling from the transmitter to the receiver.

4.3.3 Receiver

Figure 4.4 shows our proposed receiver circuit which is used to correlate the two
differential input signals (Rx+ and Rx−) with the basis sinusoidal tones. We use a
double balanced Gilbert cell (labeled as GCi in Fig. 4.4) and two stages of differential
amplifiers (labeled as DAj in Fig. 4.4) to recover the transmitted symbol. The circuit
for the Gilbert Cell and the differential amplifiers are shown in Figs. 4.5 and 4.6
respectively. The Gilbert Cell uses a linear, time-varying circuit to perform time
domain multiplication. The Gilbert Cell multiplies the time domain input signal RF

by a square wave signal at the LO frequency. Let us consider two time domain
signals:

x(t) = Acos(ωRF t) (4.1)

y(t) = Bcos(ωLOt) (4.2)
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When we multiply these two signals in the time domain, we get the product as

x(t) × y(t) = AB

2
cos(ωRF − ωLO)t + AB

2
cos(ωRF + ωLO)t (4.3)

Observe that when ωRF = ωLO , we get a DC offset along with a high frequency
term (corresponding to 2ωRF ). For ωRF �= ωLO , we obtain the sum and difference
of the two frequencies whose DC value is zero. The output is subjected to a low-pass
filter to remove any high-frequency component. By measuring the DC offset, we can
detect if ωRF and ωLO are identical in frequency.

Similar to the transmitter, we have n SWOs which are injection locked to the
incoming pilot signal. The 0◦ and 180◦ phase of the sinusoids obtained from the
SWOs are fed to a clock recovery circuit to extract differential square wave signals,
which are used as the local oscillator (LO) inputs for the Gilbert cell. The two
received differential input signals (Rx+ and Rx−) are used as the RF inputs to the
Gilbert cell. For a LO frequency Fi , we get two differential output signals V +

i and
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V i− from the Gilbert Cell, which are then fed to two differential amplifier stages to
finally recover the transmitted symbol Si . The Gilbert Cell produces a significant DC

offset for its two differential outputs. Hence we designed the differential amplifiers
at twice the rated power supply. In order to get the model cards for the transistors
operating at twice the rated power supply, we modify the gate-oxide thickness of the
CMOS. Such devices with thick gate-oxide are available on-chip near the IO pins
and are typically rated to operated at a significantly higher power supply, in order to
tolerate higher IO voltage spikes without puncturing the gate oxide.

4.4 Experiment

We implemented our design in the 22 nm (PTM 2013) technology, with V DD =
0.8 V. All simulations were conducted in HSPICE (Inc). RLC parasitics for all the
wires were extracted using Raphael (Raphael Interconnect Analysis Tool: User’s
Guide). Wires are implemented in Metal 9. The width of the wire was taken to be
0.45u and the spacing between the adjacent wires was taken to be 0.45u.

We assume a distance of 2 cmbetween the transmitter and the receiver. For a square
die of 1 cm× 1 cm, the longest distance between the two corners is 2 cm, hence this
choice. We select 4 sinusoidal tones of frequencies 10 GHz, 12 GHz, 14 GHz and
16 GHz. All the SWOs are injection locked to a common SWO of pilot frequency 2
GHz. Figure 4.7 shows the spice waveforms. The top plot is the common pilot signal
at frequency Fp at the transmitter. As mentioned earlier, a new set of sinusoidal tones
is transmitted every pilot cycle. The second plot shows the complimentary signals C1

and C1. We keep C2 = C3 = C4 = 1 throughput our simulation. Hence effectively
we are transmitting alternate “1” and “0” every pilot cycle with the tone Fi . The third
plot shows the output of CSA-1 which is the sum of 4 sinusoids. The last two plots
show the output of the two differential amplifier stages at the receiver. The output of
the second stage differential amplifier is registered every pilot cycle to recover the
transmitted symbol. We have verified correct operation for all possible combinations
of transmitted symbol tones.

We compare our results with a state-of-the-art pulse based data transfer operating
at 2 GHz. For pulse based data transfer, we assume repeaters every 2 mm and a buffer
size of 256× minimum size to regenerate the drive strength. We assume 64 parallel
wires for the pulse based scheme and 32 parallel wires for our sinusoidal scheme. The
above choice ensures identical throughputs for both the schemes. From Table 4.1, we
observe that for the same throughput, our sinusoid based scheme consumes 48.7 %
less wiring area and 55.3 % less circuit area compared to the pulse based data transfer
scheme. Our scheme consumes 25.3 % more power due to high speed operation and
active analog components. The time of flight from the transmitter to the receiver
for the pulse based signals is 542 ps and only 323.2 ps for the sinusoid signals.
Assuming the system clock to be 2 GHz (time period = 500 ps), the latency of the
pulse based scheme is 2 cycles compared to 1 cycle for our sinusoid based scheme.
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Fig. 4.7 Simulated Signal Waveforms

Table 4.1 Comparison between Pulse-based and Sinusoid Data Transfer

Scheme Wiring Area Circuit Area Power Latency Time of Flight Throughput

Pulse 1.15 mm2 79.29 μ2 275.8 mW 2 cycles 542 ps 128 Gbps

Sinusoid 0.59 mm2 43.88 μ2 345.73 mW 1 cycles 323.2 ps 128 Gbps

4.5 Conclusion

Traditional pulse-based on-chip data transfer achieves a maximum data transfer rate
of one bit per wire per clock cycle. In this work, we explore the use of sinusoidal
signals of different frequencies as information carriers for on-chip data transfer. The
advantage of our method is the ability to superimpose such sinusoids and thereby
effectively send multiple logic values along the same wire in a clock cycle. Initial
experimental results show that for the same throughput as a traditional scheme, we
require 50 % fewer wires. Using more sinusoids would further reduce the number of
wires required.
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Chapter 5
Conclusion and Future Work

Abstract In this work, we proposed a high-speed, low power, low jitter chip-wide
clock distribution. Using such a clock distribution network, we proposed a fast
source-synchronous ring-based NoC responsible for the communication among the
cores on a CMP. In the last part of this work, we explored an alternate scheme
of achieving high-speed on-chip data transfer using sinusoid signals generated by
standing wave oscillators. In this section, we discuss avenues for our future work.

5.1 Future Work on Resonant Clocking

This work addresses the issue of distributing a high-speed, low power, low jitter
clock with the aim of serving the NoC and the PEs in a CMP. In our SWO-based
clock generation and distribution scheme, we use the wiring resources to control
the frequency. Alternate means (like lumped LC tanks) could be explored to achieve
this goal. Such an implementation will trade-off the circuit area with the wiring
area. Since our rings operate at very high speed, one useful extension to our SWO-
based clock distribution scheme would be to run it in the sub-threshold mode of
operation. Such a design would provide a significant power improvement while
achieving comparable speeds as a state of the art clock distribution scheme.

5.2 Future Work on Fast Network-on-Chip

In this work, we proposed a ring based NoC architecture which is based on source
synchronous data transfer over a ring. The source synchronous ring is clocked by a
resonant clock which operates significantly faster than the individual processors that
are served by the ring. This allows us to significantly reduce the area devoted to the
NoC logic and wiring. We have validated the circuit-level design of our proposed
NoC components using a 22nm predictive process. Possible enhancements to our
NoC fall under the following categories:

• Handling Wormhole Routing: In our current routing scheme, each flit of a single
packet is routed independently. Wormhole routing allows the transmission of a
packet in a pipelined fashion, flit by flit, which improves the NoC performance.
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The routing decision is made upon reception of the header flit, and the remaining
flits follow the path taken by the header flit. Such an implementation would require
a more complex way of allocating virtual channels.

• Traffic Classes: In our current design, we support virtual channels. This allows
us the flexibility to support traffic classes. Currently, our implementation does
not handle different traffic classes. Traffic classes effectively realize separate
virtual networks in a time-multiplexed way in the NoC. Cache coherence protocols
require the support of traffic classes for sending different message types in order
to avoid protocol deadlocks.

• Quality of Service (QoS): Our current implementation does not support Quality
of Service (QoS). We can also use the virtual channels to support QoS. Since the
NoC is a shared resource, it needs to implement support for QoS. The essence
of QoS is the ability to offer predictable system behavior (in terms of latency or
throughput) to designers, and is crucial for optimum system performance.

• Path Diversity Routing: Currently, we use source routing. In this scheme, given
a source and destination, the route is always fixed. Such a routing scheme may
suffer from congestion under certain adversarial traffic pattern as well as due to
certain node/link failures. A useful avenue for future work would be to implement
an efficient path diversity aware routing with an aim of evenly distributing the
network load.

5.3 Future Work on Fast On-Chip Data Transfer

In this work, we explore the use of sinusoidal signals of different frequencies as
information carriers for on-chip data transfer. Initial experimental results show that
for the same throughput as a traditional scheme, we require 50% fewer wires. Future
work could optimize the design to incorporate more sinusoids, which would further
reduce the number of wires required. One option is to use a different pilot frequency.
Our current scheme uses only two phases (0◦ and 180◦) for each sinusoidal tones. We
could also explore the possibility of including quadrature phases and even continuous
phases which would enable the transmission of more symbols along a single wire.
Currently, we have designed only the transmitter and receiver circuit for on-chip link
transfer. A possible extension of this work is to integrate our scheme in an NoC and
validate its performance. Finally, the work can be extended to achieve fast off-chip
data transfer as well.



Index

A
AC null, 17
Adaptive routing, 9
All-digital control loop, 21
Analog repeaters, 132
Analog Voltage Controlled Oscillator, 4
Arbitration, 9
Asynchronous communication, 4
Asynchronous FIFO, 68, 73
Asynchronous NoC, 70

B
Back-pressure, 87
Bandwidth, 10
Baseband signal, 130
Basis tone, 131
Binary-wighted, 21
Bisection bandwidth, 81
Bisection channel count, 81
Body effect, 27
Bootstrap, 24
Buffer, 2
Buffered flow control, 83
Buffered H-tree, 21, 44
Buffering, 9
Bufferless flow control, 83

C
Channel dependency graph, 84
Chip multi-processor, 1, 68
Circuit switched, 8
Clock arrival time, 19
Clock data recovery, 1
Clock distribution, 10, 19
Clock division, 99
Clock domain, 73
Clock generation, 19

Clock recovery circuit, 17, 18, 35, 134
Clock sink, 19
Clock skew, 2
Clock-to-Q delay, 79
Coarse frequency control, 21, 25
Common mode voltage, 22
Common source adder, 131
Common source amplifier, 130
Complimentary passgate, 27
Congestion, 8
Contention-free bandwidth, 71
Counter, 75
Coupled Oscillator, 22
Cross-coupled pair, 22
Cross-talk, 3
Crossbar, 7, 69
Crystal clock, 29
Current-starved, 4
Cyclic dependency, 82

D
DC offset, 134
Deadlock, 82
Deadlock avoidance, 6
Deadlock-free routing, 86
Delay element, 29
Delay line, 29
Deterministic routing, 8
Differential amplifier, 17, 130
Differential gain, 31
Diffusion capacitance, 23
Digital Loop Filter, 30
Digital PLL, 28
Digitally Controlled Oscillators, 4
Dimension order, 8
Dimension-order, 86
Distributed routing, 8
Divided clock, 28

A. Mandal et al., Source-Synchronous Networks-On-Chip, 141
DOI 10.1007/978-1-4614-9405-8, © Springer Science+Business Media New York 2014



142 Index

Divider, 32
Dynamic arbitration, 9
Dynamic flip-flop, 75
Dynamic power, 6
Dynamic programming, 48

E
End-to-end delay, 10

F
Fat tree, 70
FIFO, 5
FIFO empty, 74
FIFO full, 74
Fine frequency control, 21, 27
Flattened butterfly, 70
Flit, 5, 8, 80
Flit-switch, 8
Flow control, 7, 83
Free-running clock, 22
Frequency control, 25
Frequency error, 30
Full amplitude, 17
Full-rail, 16

G
Gate capacitance, 23
Gate oxide, 135
Gilbert Cell, 133
Gray code, 75
Guard-band, 79

H
H-tree, 2, 27, 41
Head-of-line blocking, 9
Header, 8
Hop count, 80
HSPICE, 135
Hyperspace, 131

I
Inductor, 130
Initial condition, 24
Injection locked, 99, 131
Injection rate, 5
Input Buffering, 9
Insertion-Extraction station, 68, 76
Inverter pair, 16
IO pin, 135

J
Jitter, 3, 10, 20
Junction station, 68, 77

L
Latency, 6
Link, 5
Link area, 6
Link ordering, 84
Local oscillator, 134
Locking range, 22
Low-pass filter, 134

M
Mesh, 7, 70
Mesochronous communication, 5
Metastability, 99
Mixed clock, 68
Mixer, 130
Mobius, 1
Mobius crossing, 17
Modular, 10
Modulation, 130
Multi-core processors, 68
Multi-synchronous communication, 5, 99

N
Negative resistance, 17
Network interface, 5, 8
Network interface latency, 6
Network latency, 6
Network-on-chip, 68
NMOS capacitor, 27
NMOS passgate, 27

O
Octagon, 70
Output Buffering, 9

P
Packet, 5
Pass gate, 131
Path diversity, 8, 93
Phase error, 30
Phase frequency detector, 4, 29
Phase locked loop, 3, 20
Physical channel, 86
Pipeline, 10
Power, 6
Power supply noise, 3
Predictive Technology Model, 1
Process, voltage and temperature variations, 19
Processing element, 1
Proportional gain, 31
Proportional-Derivative controller, 31
Proportional-Integral controller, 31
Pulse, 129



Index 143

Q
Quality factor, 2
Quality of service, 6
Quantization, 30

R
Radio Frequency Interconnect, 130
Re-order buffer, 8
Read pointer, 73
Real traffic, 83
Reconfigurable, 100
Reference clock, 28
Reliability, 6
Repeater, 78, 135
Repeater area, 6
Resonant frequency, 2
Resonant oscillator, 1, 15
Ring, 70
Ring oscillator, 4, 30
Rotary clock, 16
Round-Robin, 9
Router, 5, 84
Router area, 6
Router latency, 80
Routing, 8, 83

S
Scalability, 6
Setup time, 79
Shared bus, 10
Sinusoidal oscillation, 17
Sinusoidal tones, 131
Slew rate, 2
Source routing, 8
Source-synchronous, 11, 67, 71
SPICE, 1
Square wave, 17, 134
Standard cell, 78
Standing wave oscillator, 1, 16, 20
State machine, 29
Static arbitration, 9
Static Power, 6

Store-and-Forward, 7
Sub-harmonic, 130
Superposition, 129
Switch, 7
Synchronization, 74
Synchronizer, 5
Synchronous, 17
Synchronous circuits, 1
Synchronous clock, 68
Synchronous NoC, 99
Synthetic traffic, 83
Systematic skew, 19

T
Thermometer Converter, 31
Throughput, 6
Time of flight, 135
Time to Digital Converter, 29
Topology, 7, 83
Torus, 70
Transfer function, 29
Transmission lines, 130
Traveling wave oscillator, 1, 16

U
Under-damped, 2

V
Variable frequency, 25
Very Large Scale Integration, 1
Virtual channels, 84, 86, 92
Virtual Cut-Through, 8
Virtual ground, 17
Voltage Controlled Oscillator, 3

W
Wormhole, 8
Write pointer, 73

Z
Zero amplitude, 17


	Preface
	Acknowledgements
	Contents
	Chapter 1 Introduction
	1.1 Terminology
	1.2 Performance Evaluation Metrics for a Network-on-Chip
	1.3 Network-on-Chip Design Aspects
	1.3.1 Topology
	1.3.2 Flow Control
	1.3.3 Routing
	1.3.4 Arbitration
	1.3.5 Buffering

	1.4 The Need for a Fast Network-on-Chip Design
	1.5 Clock Distribution for fast Networks-on-Chip
	1.6 Source Synchronous Network-on-Chip Design
	1.7 Fast On-chip Data Transfer Using Sinusoid Signals
	References

	Chapter 2 Clock Distribution for Fast Networks-on-Chip
	2.1 Resonant Oscillators
	2.1.1 Traveling Wave Oscillators
	2.1.2 Standing Wave Oscillators

	2.2 Phase Locked Clock Generation and Distribution Using SWOs
	2.2.1 Introduction
	2.2.2 Previous Work
	2.2.3 Our Approach
	2.2.3.1 SWO-based Clock Distribution
	2.2.3.2 Phase-locked SWO
	2.2.3.3 H-Tree Combined with Overlaid Mesh
	2.2.3.4 Proposed Digital PLL Design

	2.2.4 Experiments
	2.2.4.1 Coarse Frequency Control
	2.2.4.2 Fine Frequency Control
	2.2.4.3 Phase Locking Results
	2.2.4.4 H-tree with Overlaid Mesh---Comparison

	2.2.5 Conclusion

	2.3 Automated Methodology to Generate Low Jitter Buffered H-tree
	2.3.1 Introduction
	2.3.2 Previous Work
	2.3.3 Our Approach
	2.3.3.1 Buffered H-tree Construction
	2.3.3.2 Buffered H-tree Construction

	2.3.4 Experimental Results
	2.3.5 Conclusion

	2.4 Tiled SWO-based Clock Distribution
	2.4.1 Introduction
	2.4.2 Previous Work
	2.4.3 Our Approach
	2.4.3.1 Tiled SWO Topology

	2.4.4 Experiments
	2.4.5 Conclusion

	2.5 Chapter Summary
	References

	Chapter 3 Fast Network-on-Chip Design
	3.1 Circuit Design of a Source Synchronous Ring-based NoC
	3.1.1 Introduction
	3.1.2 Previous Work
	3.1.3 Our Approach
	3.1.3.1 Overview
	3.1.3.2 Processor Modeling Assumptions
	3.1.3.3 Asynchronous FIFO
	3.1.3.4 Insertion-Extraction Station
	3.1.3.5 Junction Station

	3.1.4 Experimental Results
	3.1.4.1 Circuit Validation
	3.1.4.2 Performance Projections

	3.1.5 Conclusion

	3.2 Architectural Simulations of a Source Synchronous Ring-based NoC
	3.2.1 Introduction
	3.2.2 Previous Work
	3.2.3 Our Approach
	3.2.3.1 Presence of Deadlock in Ring-based NoC of Sect. 3.1
	3.2.3.2 Deadlock Avoidance in a Ring-based NoC
	3.2.3.3 Router Architecture in the Ring-based NoC

	3.2.4 Experimental Results
	3.2.4.1 Virtual Channel Enhanced Routers
	3.2.4.2 Synthetic Traffic Results
	3.2.4.3 Effect on Virtual Channels
	3.2.4.4 Effect on Adversarial Traffic Patterns
	3.2.4.5 Benefit of Synchronous PEs
	3.2.4.6 Real Traffic Results

	3.2.5 Conclusion

	3.3 Source Synchronous H-tree based NoC
	3.3.1 Introduction
	3.3.2 Previous Work
	3.3.3 Our Approach
	3.3.3.1 Proposed Architecture
	3.3.3.2 Baseline Hnoc Clocking
	3.3.3.3 H-tree Based Source Synchronous Topologies
	3.3.3.4 Deadlock Free Routing

	3.3.4 Experimental Results
	3.3.4.1 Area, Bandwidth and Contention-free Latency Comparison
	3.3.4.2 Link Utilization
	3.3.4.3 Architectural Simulations on Synthetic Traffic
	3.3.4.4 Real Traffic Results

	3.3.5 Conclusion

	3.4 Exploring Ring of Star and Spine with Ring Topology for NoC
	3.4.1 Introduction
	3.4.2 Previous Work
	3.4.3 Our Approach
	3.4.3.1 The ROS Topology
	3.4.3.2 The SWR Topology

	3.4.4 Experimental Results
	3.4.4.1 Area Comparison
	3.4.4.2 Link Utilization
	3.4.4.3 Synthetic Traffic Results
	3.4.4.4 Real Traffic Results

	3.4.5 Conclusion

	3.5 Chapter Summary
	References

	Chapter 4 Fast On-Chip Data Transfer Using Sinusoid Signals
	4.1 Introduction
	4.2 Previous Work
	4.3 Our Approach
	4.3.1 Overview
	4.3.2 Transmitter
	4.3.3 Receiver

	4.4 Experiment
	4.5 Conclusion
	References

	Chapter 5 Conclusion and Future Work
	5.1 Future Work on Resonant Clocking
	5.2 Future Work on Fast Network-on-Chip
	5.3 Future Work on Fast On-Chip Data Transfer

	Index



