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Foreword 

A student that has attained a MSc degree in the physics of materials or 
electronics will have acquired an understanding of basic atomic physics and 
quantum mechanics. He or she will have a grounding in what is a vast realm: solid 
state theory and electronic properties of solids in particular. The aim of this book is 
to enable the step-by-step acquisition of the fundamentals, in particular the origin of 
the description of electronic energy bands. The reader is thus prepared for studying 
relaxation of electrons in bands and hence transport properties, or even coupling 
with radiance and thus optical properties, absorption and emission. The student is 
also equipped to use by him- or herself the classic works of taught solid state 
physics, for example, those of Kittel, and Ashcroft and Mermin. 

This aim is reached by combining qualitative explanations with a detailed 
treatment of the mathematical arguments and techniques used. Valuably, in the final 
part the book looks at structures other than the macroscopic crystal, such as quantum 
wells, disordered materials, etc., towards more advanced problems including Peierls 
transition, Anderson localization and polarons. In this, the author’s research 
specialization of conductors and conjugated polymers is discernable. There is no 
doubt that students will benefit from this well placed book that will be of continual 
use in their professional careers. 

Michel SCHOTT 

Emeritus Research Director (CNRS), 
Ex-Director of the Groupe de Physique des Solides (GPS), 

Pierre and Marie Curie University, Paris, France 



This page intentionally left blank



Introduction 

This volume proposes both course work and problems with detailed solutions. It 
is the result of many years’ experience in teaching at MSc level in applied, materials 
and electronic physics. It is written with device physics and electronics students in 
mind. The book describes the fundamental physics of materials used in electronics. 
This thorough comprehension of the physical properties of materials enables an 
understanding of the technological processes used in the fabrication of electronic 
and photonic devices. 

The first six chapters are essentially a basic course in the rudiments of solid-state 
physics and the description of electronic states and energy levels in the simplest of 
cases. The last four chapters give more advanced theories that have been developed 
to account for electronic and optical behaviors of ordered and disordered materials. 

The book starts with a physical description of weak and strong electronic bonds 
in a lattice. The appearance of energy bands is then simplified by studying energy 
levels in rectangular potential wells that move closer to one another. Chapter 2 
introduces the theory for free electrons where particular attention is paid to the 
relation between the nature of the physical solutions to the number of dimensions 
chosen for the system. Here, the important state density functions are also 
introduced. Chapter 3, covering semi-free electrons, is essentially given to the 
description of band theory for weak bonds based on the physical origin of permitted 
and forbidden bands. In Chapter 4, band theory is applied with respect to the electrical 
and electronic behaviors of the material in hand, be it insulator, semiconductor or 
metal. From this, superlattice structures and their application in optoelectronics is 
described. Chapter 5 focuses on ordered solid-state physics where direct lattices, 
reciprocal lattices, Brillouin zones and Fermi surfaces are good representations of 
electronic states and levels in a perfect solid. Chapter 6 applies these representations 
to metals and semiconductors using the archetypal examples of copper and silicon 
respectively. An excursion into the preparation of alloys is also proposed. 
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The last four chapters touch on theories which are rather more complex. Chapter 
7 is dedicated to the description of the strong bond in 1D media. Floquet’s theorem, 
which is a sort of physical analog for the Hückel’s theorem that is so widely used in 
physical chemistry, is established. These results are extended to 3D media in 
Chapter 8, along with a simplified presentation of silicon band theory. The huge gap 
between the discovery of the working transistor (1947) and the rigorous 
establishment of silicon band theory around 20 years later is highlighted. Chapter 9 
is given over to the description of energy levels in real solids where defaults can 
generate localized levels. Amorphous materials are well covered, for example, 
amorphous silicon is used in non-negligible applications such as photovoltaics. 
Finally, Chapter 10 contains a description of the principal quasi-particles in solid 
state, electronic and optical physics. Phonons are thus covered in detail. Phonons are 
widely used in thermics; however, the coupling of this with electronic charges is at 
the origin of phonons in covalent materials. These polarons, which often determine 
the electronic transport properties of a material, are described in all their possible 
configurations. Excitons are also described with respect to their degree of extension 
and their presence in different materials. Finally, the coupling of an electromagnetic 
wave with electrons or with (vibrating) ions in a diatomic lattice is studied to give a 
classical description of quasi-particles such as plasmons and polaritons. 



Chapter 1 

Introduction: Representations 
of Electron-Lattice Bonds 

1.1. Introduction 

This book studies the electrical and electronic behavior of semiconductors, 
insulators and metals with equal consideration. In metals, conduction electrons are 
naturally more numerous and freer than in a dielectric material, in the sense that they 
are less localized around a specific atom. 

Starting with the dual wave-particle theory, the propagation of a de Broglie wave 
interacting with the outermost electrons of atoms of a solid is first studied. It is this 
that confers certain properties on solids, especially in terms of electronic and 
thermal transport. The most simple potential configuration will be laid out first 
(Chapter 2). This involves the so-called flat-bottomed well within which free 
electrons are simply thought of as being imprisoned by potential walls at the 
extremities of a solid. No account is taken of their interactions with the constituents 
of the solid. Taking into account the fine interactions of electrons with atoms 
situated at nodes in a lattice means realizing that the electrons are no more than 
semi-free, or rather “quasi-free”, within a solid. Their bonding is classed as either 
“weak” or “strong” depending on the form and the intensity of the interaction of the 
electrons with the lattice. Using representations of weak and strong bonds in the 
following chapters, we will deduce the structure of the energy bands on which solid-
state electronic physics is based. 
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1.2. Quantum mechanics: some basics 

1.2.1. The wave equation in solids: from Maxwell’s to Schrödinger’s equation via 
the de Broglie hypothesis 

In the theory of wave-particle duality, Louis de Broglie associated the 
wavelength ( ) with the mass (m) of a body, by making: 

.
h

mv
 [1.1] 

For its part, the wave propagation equation for a vacuum (here the solid is 
thought of as electrons and ions swimming in a vacuum) is written as: 

1 ²
0.

² ²
s

s
c t

 [1.2] 

If the wave is monochromatic, as in: 

2( , , ) ( , , )i t i ts A x y z e A x y z e  

then s = A i te  and ²
²

²s
t

i tAe  (without modifying the result we can 

interchange a wave with form 2( , , ) ( , , ) ).i t i ts A x y z e A x y z e  By 

introducing 2 c  (length of a wave in a vacuum), wave propagation 

equation [1.2] can be written as:  

²
0

²
A A

c
 [1.3] 

 
4 ²

0.
²

A A   [1.3’] 
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A particle (an electron for example) with mass denoted m, placed into a time-
independent potential energy V(x, y, z), has an energy: 

1
v²

2
E m V  

(in common with a wide number of texts on quantum mechanics and solid-state 
physics, this book will inaccurately call potential the “potential energy” – to be 
denoted V ). 

 
The speed of the particle is thus given by  

2
v .

E V

m
  [1.4] 

The de Broglie wave for a frequency E
h

 can be represented by the function 

 (which replaces the s in equation [1.2]): 

22 .
E E

i t i t
hi t i te e e e  [1.5] 

Accepting with Schrödinger that the function  (amplitude of ) can be used in 
an analogous way to that shown in equation [1.3’], we can use equations [1.1] and 
[1.4] with the wavelength written as: 

,
v 2

h h
m m E V

 [1.6] 

so that: 

2
( ) 0.

²
m

E V  [1.7] 

This is the Schrödinger equation that can be used with crystals (where V is 
periodic) to give well defined solutions for the energy of electrons. As we shall see, 
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these solutions arise as permitted bands, otherwise termed valence and conduction 
bands, and forbidden bands (or “gaps” in semiconductors) by electronics specialists. 

1.2.2. Form of progressive and stationary wave functions for an electron with 
known energy (E) 

In general terms, the form (and a point defined by a vector )r  of a wave 
function for an electron of known energy (E) is given by: 

( , ) ( ) ( ) ,
E

j tj tr t r e r e  

where ( )r  is the wave function at amplitudes which are in accordance with 
Schrödinger’s equation [1.7]: 

– if the resultant wave ( , )r t  is a stationary wave, then ( )r  is real; 

– if the resultant wave ( , )r t  is progressive, then ( )r  takes on the form 
.( ) ( ) jk rr f r e  where ( )f r  is a real function, and 2k u  is the wave vector.  

1.2.3. Important properties of linear operators 

1.2.3.1. If the two (linear) operators H and T are commutative, the proper functions 
of one can also be used as the proper functions of the other 

For the sake of simplicity, non-degenerate states are used. For a proper function 
 of H corresponding to the proper non-degenerate value ( ), we find that: 

H  

Multiplying the left-hand side of the equation by T gives: 

.TH T T  
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As , 0,H T  we can write: 

.HT T  

This equation shows that T  is a proper function of H with the proper value . 
Hypothetically, this proper value is non-degenerate. Therefore, comparing the latter 
equation with the former ( ,H  indicating that is a proper function of H for 
the same proper value ), we now find that T  and are collinear. This is 
written as: 

.T t  

This equation in fact signifies that is a proper function of T with the proper 
value being the coefficient of collinearity (t) (QED). 

1.2.3.2. If the operator H remains invariant when subject to a transformation using 
coordinates (T), then this operator H commutes with operator (T) associated with 
the transformation 

Here are the respective initial and final states (with initial on the left and final to 
the right): 

energy:   '

Hamiltonian:   = '  =  (invariance of  under effect of )

wave function:    = '.

T

T

T

E E

H TH H H H T

T

 

Similarly, the application of the operator T to the quantity ,H  with H being 
invariant under T’s effect, gives: 

'  = '  = 
 ( ) = ' '  =  '  =  .

TT H H
H T H H H HT  



6     Solid-State Physics for Electronics 

We thus find: 

,TH HT  

from which: 

, 0    H T QED. 

1.2.3.3. The consequence  

If the operator H is invariant to the effect of the operator T, then the proper 
functions of T can be used as the proper functions of H. 

1.3. Bonds in solids: a free electron as the zero order approximation for a weak 
bond; and strong bonds 

1.3.1. The free electron: approximation to the zero order 

The electric conduction properties of metals historically could have been derived 
from the most basic of theories, that of free electrons. This would assume that the 
conduction (or free) electrons move within a flat-bottomed potential well. In this 
model, the electrons are simply imprisoned in a potential well with walls that 
coincide with the limits of the solid. The potential is zero between the infinitely high 
walls. This problem is studied in detail in Chapter 2 with the introduction of the state 
density function that is commonly used in solid-state electronics. In three 
dimensions, the problem is treated as a potential box. 

In order to take the electronic properties of semiconductors and insulators into 
account (where the electrons are no longer free), and indeed improve the 
understanding of metals, the use of more elaborate models is required. The finer 
interactions of electrons with nuclei situated at nodes throughout the solid are 
brought into play so that the well’s flat bottom (where V = V0 = 0) is perturbed or 
even strongly modified by the generated potentials. In a crystalline solid where the 
atoms are spread periodically in certain directions, the potential is also periodic and 
has a depth which depends on the nature of the solid. 

Two approaches can be considered, depending on the nature of the bonds. If the 
well depth is small (weak bond) then a treatment of the initial problem (free 
electron) using perturbation theory is possible. If the wells are quite deep, for 
example as in a covalent crystal with electrons tied to given atoms through strong 
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bonds, then a more global approach is required (using Hückels theories for chemists 
or Floquet’s theories for physicists).  

1.3.2. Weak bonds 

This approach involves improving the potential box model. This is done by the 
electrons interacting with a periodical internal potential generated by a crystal lattice 
(of Coulumbic potential varying 1/r with respect to the ions placed at nodes of the 
lattice). In Figure 1.1, we can see atoms periodically spaced a distance “a” apart. 
Each of the atoms has a radius denoted “R” (Figure 1.1a). A 1D representation of the 
potential energy of the electrons is given in Figure 1.1b. The condition a < 2R has 
been imposed. 

Depending on the direction defined by the line Ox that joins the nuclei of the 
atoms, when an electron goes towards the nuclei, the potentials diverge. In fact, the 
study of the potential strictly in terms of Ox has no physical reality as the electrons 
here are conduction electrons in the external layers. According to the line (D) that 
does not traverse the nuclei, the electron-nuclei distance no longer reaches zero and 
potentials that tend towards finite values join together. In addition, the condition 
a < 2R decreases the barrier that is midway between adjacent nuclei by giving rise to 
a strong overlapping of potential curves. This results in a solid with a periodic, 
slightly fluctuating potential. The first representation of the potential as a flat-
bottomed bowl (zero order approximation for the electrons) is now replaced with 
a periodically varying bowl. As a first approximation, and in one dimension (r  x), 
the potential can be described as: 

V(x) = w0 cos 
2

.x
a

 

The term w0, and the associated perturbation of the crystalline lattice, decrease in 
size as the relation a < 2R becomes increasingly valid. In practical terms, the smaller 
“a” is with respect to 2R, then the smaller the perturbation becomes, and the more 
justifiable the use of the perturbation method to treat the problem becomes. The 
corresponding approximation (first order approximation with the Hamiltonian 
perturbation being given by H(1) = w0 cos 2 )

a
x  is that of a semi-free electron and is 

an improvement over that for the free electron (which ignores H(1)). The theory that 
results from this for the weak bond can equally be applied to the metallic bond, 
where there is an easily delocalized electron in a lattice with a low value of w0 (see 
Chapter 3). 
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Figure 1.1. Weak bonds and: (a) atomic orbitals (s orbitals with radius R) 
 of a periodic lattice (period = a) respecting the condition a < 2R; (b) in 1D,  

the resultant potential energy (thick line) seen by electrons 

1.3.3. Strong bonds 

The approach used here is more “chemical” in its nature. The properties of the 
solid are deduced from chemical bonding expressed as a linear combination of 
atomic orbitals of the constituent atoms. This reasoning is all the more acceptable 
when the electrons remain localized around a specific atom. This approximation of 
a strong bond is moreover justified when the condition a  2R is true (Figure 1.2a), 
and is generally used for covalent solids where valence electrons remain localized 
around the two atoms that they are bonding.  

Once again, analysis of the potential curve drawn with respect to Ox gives 
a function which diverges as the distance between the electrons and the nuclei is 
reduced. With respect to the line D, this discontinuity of the valence electrons can be 
suppressed in two situations, namely (see also Figure 1.2b): 

– If a >> 2R, then very deep potential wells appear, as there is no longer any real 
overlap between the generated potentials by two adjacent nuclei. In the limiting 
case, if a chain of N atoms with N valence electrons is so long that we can assume 
that we have a system of N independent electrons (with N independent deep wells), 
then the energy levels are degenerate N times. In this case they are indiscernible 
from one another as they are all the same, and are denoted Eloc in the figure. 

                  e-    
 (a)    (1)                     (2)           R            R        
          O 
            
     
 Potential                                          a 
 energy                                                                      r 
            
 (b) 
 
 
 
  

Potential generated  
 by atom (1) 

Potential generated 
 by atom (2) 

 Resultant  
 potential  
 with respect  
 to (D) 

Resultant potential  
with respect to Ox 

(D) 

 x 
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Figure 1.2. Strong bonds and: (a) atomic orbitals (s orbitals with radius R)  
in a periodic lattice (of period denoted a) where a  2R; (b) in 1D,  

the resulting potential energy (thick curve) seen by electrons 

– If a  2R, the closeness of neighboring atoms induces a slight overlap of nuclei 
generated potentials. This means that the potential wells are no longer independent 
and their degeneration is increased. Electrons from one bond can interact with those 
of another bond, giving rise to a spread in the band energy levels. It is worth noting 
that the resulting potential wells are nevertheless considerably deeper than those in 
weak bonds (where a < 2R), so that the electrons remain more localized around their 
base atom. Given these well depths, the perturbation method that was used for weak 
bonds is no longer viable. Instead, in order to treat this system we will have to turn 
to the Hückel method or use Floquet’s theorem (see Chapter 7). 

1.3.4. Choosing between approximations for weak and strong bonds 

The electrical behavior of metals is essentially determined by that of the 
conduction electrons. As detailed in section 1.3.2, these electrons are delocalized 
throughout the whole lattice and should be treated as weak bonds.  

                                                e-

 (a)              (1)                       (2)  R        

             
    (D)      

                                             a         
 Potential                                                                                  r  
 energy 
 
 (b) 
 
  
 
 
 

   
                                  Eloc                 Eloc                Eloc 
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by atom 1 

Resultant 
potential with 
respect to Ox

Potential generated 
by atom 2 

Resultant 
potential 

with respect  
to D when  

a  2R  
(strong bond)  

Deep 
independent 
wells where 
Eloc level is 
degenerate  

N times 

R x 

Potential wells 
with respect 
to D where  

a >> 2R 
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Dielectrics (insulators), however, have electrons which are highly localized 
around one or two atoms. These materials can therefore only be described using 
strong-bond theory. 

Semiconductors have carriers which are less localized. The external electrons 
can delocalize over the whole lattice, and can be thought of as semi-free. Thus, it 
can be more appropriate to use the strong-bond approximation for valence electrons 
from the internal layers, and the weak-bond approximation for conduction electrons. 

1.4. Complementary material: basic evidence for the appearance of bands in solids 

This section will be of use to those who have a basic understanding of wave 
mechanics or more notably experience in dealing with potential wells. For others, it 
is recommended that they read the complementary sections at the end of Chapters 2 
and 3 beforehand.  

This section shows how the bringing together of two atoms results in a splitting of 
the atoms’ energy levels. First, we associate each atom with a straight-walled potential 
well in which the electrons of each atom are localized. Second, we recall the solutions 
for the straight-walled potential wells, and then analyze their change as the atoms 
move closer to one another. It is then possible to imagine without difficulty the effect 
of moving N potential wells, together representing N atoms making up a solid.  

1.4.1. Basic solutions for narrow potential wells 

In Figure 1.3, we have W > 0, and this gives potential wells at intervals such that 
[– a /2, + a/2] where – W < 0. 

 
We can thus state that ² ²

2
0,

m
W  and the energy E is the sum of kinetic 

energy ² ² ²
2 2

( )c
p k
m m

E  and potential energy.  

 
As the related states are carry electrons then E < 0, and we can therefore write 

that: 

² ² ²
² ² 0.

2 2
cE W E k

m m
 

By making ² ² ²k > 0,  is real.  
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Schrödinger’s equation ² 2
² ²

0d m
dx

E V  (where V is the potential energy 

such that V = – W between –a/2 and a/2 but V = 0 outside of the well) can be written 
for the two regions: 

2

2 2
2

2
2

2
 – region I for x  : 0, 

2

    so that 0

a d m
E

dx
d

dx

 [1.8] 

2

2 2
2

2
2

a 2
– region II for – : ( ) 0,  

2 2

   so that 0.

a d m
x E W

dx
d

k
dx

 [1.9] 

The solutions for equation [1.8] are (with the limiting conditions of (x) being 
finite when x ): 

– for 
2

: ( ) x
I

ax x Ae  

– for 
2

: ( ) .x
I

ax x Ae  

 
The solution to equation [1.9] must be stationary because the potential wells are 

narrow (which forbids propagation solutions). There are two types of solution: 

– a symmetric solution in the form II ( ) cos ,x B kx  for which the conditions 
of continuity with the solutions of region I give: 

Figure 1.3. Straight potential wells of width a

Ep 

0 

– W 

+ a/2 – a/2 x 

Region II

R
eg

io
n 

I 

R
eg

io
n 

I 
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2 2

2 2
I II

I II
a a

x x

a a

x x

 [1.10] 

from which it can be deduced that 
1

tan ,
2

ka ka a  

– an asymmetric solution in the form II ( ) sin .x B kx  Just as before, the 
conditions of continuity make it possible to obtain the relationship written: 

1
 cotan .

2
ka ka a  [1.11] 

Equations [1.10] and [1.11] can be combined in the form: 

2
tan .

² ²
k

ka
k

 [1.12] 

In addition, equations [1.10] and [1.11] must be compatible with the equations 
that define  and k, so that: 

2
² ² ² .

²
mW

k  [1.13] 

 

ka 

a 

0              a 2        3  

Figure 1.4. Solutions for narrow potential wells 
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The problem is normally resolved graphically. This involves noting the points 
where a = f (ka) at the intersection of the curves described by equations [1.10] and 
[1.11] with the curve given by equation [1.13] (the quarter circle). The latter 
equation can be rewritten as: 

1/ 22 2 .a ka a  [1.14] 

The solutions for  and thus E (as ² ²
2

)
m

E  correspond to the points where 

the circle of equation [1.14] crosses with the deduced curves from equations [1.10] 
and [1.11]. 

If: 

 one symmetric solution one energy levela  

  2 two asymmetric solution
two energy levels

                           two asymmetric solution
a

 

  – 1  energy levelsn a n n  

 

Figure 1.5. The first four energy levels along with the appearance  
of the corresponding wave functions in the narrow potential wells 

Energy 

1st symmetric level 

2nd symmetric level 

2nd asymmetric level 

1st asymmetric level 

( )x  
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Figure 1.6. Scheme of the potential energies  

of two narrow potential wells brought close to one another 

1.4.2. Solutions for two neighboring narrow potential wells  

Schrödinger’s equation, written for each of the regions denoted 1 to 5 in 
Figure 1.6 gives the following solutions (which can also be found in the problems 
later on in the book): 

– Symmetric solution: 

1

2

3

4

5

 cos
 
cos

.

x

x

Ce

B kx

A ch x

B kx

Ce

 

Conditions of continuity for x = d/2 and for x = d/2 + a/2 make it possible to state 
that: 

2

2

tan  
;

1 tan    

d
k

d
k

ka th

k ka th
 [1.15] 

– Similarly, for the asymmetric solution we obtain: 

2

k 2

tan  coth
.

1 tan  coth   

d
k

d

ka

k ka
 [1.16] 

E

x 
– W

a d/2  d/2                         d/2      a+d/2 

 (1)      (2)                          (3)        (4)         (5) 
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1.4.2.1. Neighboring potential wells that are well separated 

If d is very large, equations [1.15] and [1.16] become: 

 

k

tan

1+ tan    
k

ka

k ka
 [1.17] 

and tend to give the same solutions as those obtained above for narrow wells. In 
effect, by making tan

k
, equation [1.17] is then written as tan tan ka  

for which the solution is 1
2

.ka n  This in turn gives: 

– if n is even then 
2

tan ;ka
k

 

– if n is odd then 
2

cotan .ka
k

 

 
In effect, we again find the solutions of equations [1.10] and [1.11] for isolated 

wells, which is quite normal because when d is large the wells are isolated. Here 
though with a high value of d, the solution is degenerate as there are in effect two 
identical solutions, i.e. those of the isolated wells. 

1.4.2.2. Closely placed neighboring wells 

If d is small, we have 1de  and: 

2

2

tanh 1 2
equations [1.15] and [1.16] give:

coth 1 2

d

d

d

d

e

e
 

- d1 - 2

- d1 - 2e
k

e

 

tan  

1+ tan a
k

ka

k
 [1.18] 

and 
- d1 + 2

- d1 + 2e
k

e 

1+ tan a 
k

tg a

k
 [1.19] 



16     Solid-State Physics for Electronics 

For the single solution ( 0) in equation [1.17] (if the wells are infinitely 
separated) there are now two solutions: one is s from equation [1.18] and the other 
is a from equation [1.19]. For isolated or well separated potential wells, all states 
(symmetric or asymmetric) are duplicated with two neighboring energy states (as s 
and a are in fact slightly different from 0). The difference in energy between the 
symmetric and asymmetric states tends towards zero as the two wells are separated 
( ).d  In addition, we can show quite clearly that the symmetric state is lower 
than the asymmetric state as in Figure 1.7. 
 

 
Figure 1.7. Evolution of energy levels and electronic  

states on going from one isolated well to two close wells 

The example given shows how bringing together the discrete levels of the 
isolated atoms results in the creation of energy bands. The levels permitted in these 
bands are such that: 

– two wells induce the formation of a “band” of two levels; 

– n wells induce the formation of a “band” of n levels. 

( )x  

1st symm. 1st symm. 

1st asymm. 

1st asymm. 

2nd asymm. 

2nd symm. 

isolated wells 
2 wells in proximity 



Chapter 2 

The Free Electron and State Density Functions 

2.1. Overview of the free electron 

2.1.1. The model 

As detailed in Chapter 1, the potential (V) (rigorously termed the potential 
energy) for a free electron (within the zero order approximation for solid-state 
electronics) is that of a flat-bottomed basin, as shown by the horizontal line in the 
1D model of Figure 2.1. It can also be described by V = V0 = 0. 

For a free electron placed in a potential V0 = 0 with an electronic state described 
by its proper function with energy and amplitude denoted by E0 and 0 ,  
respectively, the Schrödinger equation for amplitude is:  

0 0 02
0.

²
m

E  [2.1] 

2.1.2. Parameters to be determined: state density functions in k or energy spaces 

With: 

02
² = ,

²
mE

k  [2.2] 



18     Solid-State Physics for Electronics 

equation [2.1] can be written as: 

0 0² 0.k  [2.3] 

 
Figure 2.1. (a) Symmetric wells of infinite depth (with the origin taken at the center  
of the wells); and (b) asymmetric wells with the origin taken at the well’s extremity  

(when 0 < x < L, we have V(x) = 0 so that V(- x) =  for a 1D model) 

We shall now determine for different depth potential wells, with both symmetric 
and asymmetric forms, the corresponding solutions for the wave function ( 0) and 
the energy 0( ).E  To each wave function there is a corresponding electronic state 
(characterized by quantum numbers). It is important in physical electronics to 
understand the way in which these states determine how energy levels are filled. 

In solid-state physics, the state density function (also called the density of states) 
is particularly important. It can be calculated in the wave number (k) space or in the 
energies (E) space. In both cases, it is a function that is directly related to 
a dimension of space, so that it can be evaluated with respect to L = 1 (or V = L3 = 1 
for a 3D system). In k space, the state density function [n(k)] is such that in one 
dimension n(k) dk represents the number of states placed in the interval dk (i.e. 
between k and k + dk in k wave number space). In 3D, n(k) d3k represents the 
number of states placed within the elementary volume d3k in k space. 

Similarly, in terms of energy space, the state density function [Z(E)] is such that 
Z(E) dE represents the number of states that can be placed in the interval dE (i.e. 
inclusively between E and E + dE in energy space). The upshot is that if F(E) is the 
occupation probability of a level denoted E, then the number N(E) dE of electrons 
distributed in the energy space between E and E + dE is equal to N(E) dE = Z(E) 
F(E) dE. 

V = V0 = 0 

V(x) 

L/2 – L/2 0 

V  V  

V = V0 = 0 

 V(x) 

L O 

V  V  

x x 
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2.2. Study of the stationary regime of small scale (enabling the establishment of 
nodes at extremities) symmetric wells (1D model) 

2.2.1. Preliminary remarks  

For a symmetric well, as shown in Figure 2.1a, the Hamiltonian is such that H 
(x) = H(– x), because V(x) = V(– x) and ² ²

² ²
d d
dx d x

. If I denotes the inversion 

operator, which changes x to – x, then  

IH(x) = H(– x) = H(x). 

H(x) being invariant with respect to I, the proper functions of I are also the proper 
functions of H (see Chapter 1). The form of the proper functions of I must be such 
that ( ) ( ).I x t x  We can thus write: ( ) ( ) ( )I x t x x , and on 
multiplying the left-hand side by I, we now have: 

2( ) ( ) ² ( )
1, and 1

( ) ( )

I I x tI x t x      
t   t .

                I x x
 

The result is that  

( ) ( ) ( )
( ) ( ).

I x t x x      
x x           (– x)   

 [2.4] 

In these cases, the form of the solutions are either symmetric, as in 
( ) ( )x x , or asymmetric, as in ( ) ( ).x x  

2.2.2. Form of stationary wave functions for thin symmetric wells with width (L) 
equal to several inter-atomic distances ( L a ), associated with fixed boundary 
conditions (FBC) 

0.
2 2
L L

 [2.5] 
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This limiting condition is equivalent to the physical status of an electron that 
cannot leave the potential well due to it being infinitely high. The result is that 
between 

2
Lx  and 

2
Lx =  there is a zero probability of presence, hence the 

preceding FBC: 

0
2 2
L L

. 

The general stationary solution to equation [2.3] is: 

0 ( ) cos sinx A kx + B kx.  

The use of the boundary conditions of equation [2.5] means that: 

0  cos  +  sin 0
2 2 2
L L L

A k B k  

or 

0  cos  sin 0.
2 2 2
L L L

A k B k  

These last two equations result in the two same conditions: 

– either A = 0 and 
2

sin 0LB k , so that both 0 sinB kx  and 
2

kL n  (n is 

whole), so that 2
L L

k n N  where N is an even integer. The solution for 

solution 0 is thus 0 sin N
LN B x , with N being even;  [2.6] 

– or B = 0 and cos 0L
2

A k , so that 0 cosA kx  and 
2 2

kL n  (n is an 

integer), so that 2 1
L L

k n N  where N is an odd integer. The solution for 

0 is thus: 0 cos N
LN A x , with N being odd. [2.7] 
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The normalization condition 0 ( )
2/ 2

/ 2 1xN
L
L dx  gives 2

L
A B , and the 

two solutions in equations [2.6] and [2.7] can be brought together in: 

0 2
sin

2N
N L

x
L L

, where N = 1, 2, 3, 4, etc. [2.8] 

For both symmetric and asymmetric solutions, k is of the form 

,Nk k N
L

 [2.9] 

where N is an odd integer and the symmetric solution and is an even integer for the 
asymmetric solution. Thus, N takes on successive whole values i.e. 1, 2, 3, 4, etc. 
The value N = 0 is excluded as the corresponding function 0 0sin 0B k x  has 
no physical significance (zero probability of presence). The integer values N' = – 1, 
– 2, – 3 (= – N) yield the same physical result, for the same probabilities as 

0 0 02 2 2
.N NN'  Summing up, we can say that the only values worth 

retaining are 1, 2, 3, 4, etc.N  
 
This quantification is restricted to the quantum number N without involving spin. 

As we already know, spin makes it possible to differentiate between two electrons 
with the same quantum number N. This is due to a projection of kinetic moment on 

the z axis which brings into play a new quantum number, namely 
1

.
2sm   

 
We thus find that each N state can be filled by two electrons, one with a spin 

1/ 2sm  and wave function 0 ,N  and the other with a spin 1/ 2sm  and 

wave function 0 .N  

2.2.3. Study of energy 

From equation [2.2] we deduce that: ² ²
2

0 .k
m

E  With k given by equation [2.9], 

we find that the energy is quantified and takes on values given by: 
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2
0 ² ² ² ²

² ²,
2 2 ² 8 ²

N
N

k h
E N N

m m L mL
 [2.10] 

where N = 1, 2, 3, 4, etc. 

The graphical representation of E0 = f(k) is given in Figure 2.2. The energy states 
0( )NE  are associated with the electronic states denoted by wave functions in the 

form 0
N  and 0

N  that correspond to the spin states characterized by the 

quantum numbers 1
2sm  and 1

2sm , respectively.  

 
Figure 2.2. Curve E0 = f(k) for stationary functions  

The filling of energy levels is carried out from the bottom up. The fundamental 
level (E1) is filled with electrons in the states 0

1  and 0
1 .  Each level is thus 

filled with two electronic states that are differentiated by their spin. 

2.2.4. State density function (or “density of states”) in k space  

As defined in section 2.1.2, the density of states is a function [n(k)] in terms of a 
unit of direct space (L = 1) such that n(k) dk represents the number of states that can 
be held within the interval dk that is between k and k + dk. The electronic states are 
represented (and numbered) by the wave functions 0 .N  

0
5E

2 3 4 5

N = 1     2      3      4      5

             
L L L L L  

0 0    4 4  

k 
O

0
3E

0
4E

0
2E
0
1E

0E



The Free Electron and State Density Functions     23 

On average, each interval of size 
L

dk  can hold 1 orbital (without taking spin 

into account). In fact, this interval corresponds to 2 orbital states; however, each is 
shared with the adjacent intervals. For example, in the interval 2 3,

L L
 we can place 

the orbital states 0
2  and 0 ,3  but 0

2  is shared with 2 3
,

L L
 and 2

, ,
L L

 just as 

0
3  is shared with 2 3

,
L L

 and 3 4
, .

L L
 From this we can see that the resulting 

average is 1 orbital state per interval .
L

dk   

By taking spin into account, we can now place twice the number of states, so that 
in the interval 

L
dk  we now have two states. It is thus possible to write 

( ) 2
L

n k , so that with L = 1 (density function) we have: 

2
( ) .n k  [2.11] 

NOTE.– When dk = 1 we have n(k) dk = n(k), so that the state density function n(k) 
represents the number of states in a unit k space with the whole having a single unit 
dimension in direct space (L = 1). 

2.3. Study of the stationary regime for asymmetric wells (1D model) with L  a 
favoring the establishment of a stationary regime with nodes at extremities 

The general solution for equation [2.3] is still 0 ( ) cos sinx A kx  B kx,  but 
the boundary conditions are now such that: 

0 0(0) ( ) 0.L  [2.12] 

From the condition 0 (0) 0,  we deduce that A = 0, from which 
0 ( ) sin .x B kx  

 
The condition 0( ) 0L  thus gives sin 0B kL  where kL = N , so that: 

,Nk k N
L

 [2.13] 
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in which N = 1, 2, 3, 4, etc. noting that N < 0 does not change the probability of 
presence; in other terms it has no physical significance. We finally arrive at: 

0 0( ) sin sin sin ( ).N N
N

x B kx B k x B x x
L

 

B can be determined using the normalization condition, as in: 0 ( )
2

0 1xN
L dx  

that which gives 2
L

B , from which 

0 2
( ) sin .N

N
x x

L L
 [2.14] 

This solution (with N = 1, 2, 3, 4, etc.) replaces the solution for equation [2.8] for 
a symmetric system.  

 
For its part, energy is still deduced from equation [2.2]. With the condition 

imposed by equation [2.13] on kN, we are brought to the same expression as 
equation [2.10]: 

0 0 2 0
1

² ² ² ²
².

2 2 ²N N
N

E E k E N
m m L

 [2.15] 

The representation of E0 = f (k) is also still given by Figure 2.4 and the state 
density function [n(k)] is the same as before, i.e. as in equation [2.11]. 

2.4. Solutions that favor propagation: wide potential wells where L  1 mm, i.e. 
several orders greater than inter-atomic distances 

2.4.1. Wave function 

This problem can be seen as that of a wire, or rather molecular wire, with a given 
length (L) tied around on itself as shown in Figure 2.3.  

 

 

Figure 2.3. Molecular wire of length L 

0 
L x x + L
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For a point with coordinate x, the probability is the same whatever the number of 
turns made, so we can write ( ) ( )x x L . Generally, after making n turns of 
length L we would end up at the same point, so we can write ( ) ( )x x nL  
where n is an integer. The boundary condition: 

( ) ( )x x L  [2.16] 

is called the periodic boundary condition (PBC) or the Born-von Karman condition. 
When x = 0, it can be simplified so that: 

(0) ( ).L  [2.17] 

That several revolutions are possible means that the solution must be 
a progressive wave. The amplitude of the free electrons wave function must take the 
form (see Chapter 1) given by: 

0 0( ) ( ) .ikx
kr x Ae  [2.18] 

In effect, with the form of the wave being that presented in section 1.2.2, the 
function ( , )r t  here becomes the propagation wave 0 ( )( , ) ,i kx tx t Ae  
which propagates towards x > 0 as k > 0. As propagation in the opposite sense is 
possible, we find that k < 0 is therefore also physically possible. 

 
The normalization condition 2

0 ( ) 1L
k x dx  makes it possible to determine 

1 .
L

A  For its part the condition expressed in equation [2.17] gives 0 ,ik ikLe e  

so that 1 ,ikLe  from which kL = 2N , which in turn means that: 

2
Nk k N

L
, where N = 0, ± 1, ± 2, ± 3, ± 4....  [2.19] 

(the solution for N = 0 simply gives a probability for a constant presence). 

 
Placing these results into equation [2.18] we finally have for the amplitude function: 

2
0 0 1

( ) ( ) .N

N

i Nx
Lik x

N kr x Ae e
L

 [2.20] 
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NOTE.– We can immediately say that for the conditions that favor propagation, we 

now have 10
2

00 ( ) ² ,
N k LNkN

x Ak  a constant value wherever along (x) 

an electron might be. The electrons move freely, without any specific localization 
(i.e. the probability of their presence is constant, whatever the value of x). 

2.4.2. Study of energy 

By taking the expression for k given in equation [2.19] and placing it into 
equation [2.2], we obtain: 

2
20 0 ² 2

2NE E N
m L

,   with N = ± 1, ± 2, ± 3, ± 4....  [2.21] 

 
Figure 2.4. Curve of E0 = f(k)  

for progressive solutions 

0 ( )NE f k  is represented in Figure 2.4. Without taking spin into account, at 
each electronic level there are two electronic states (associated with the two possible 
values of N, as in N N ). Including spin, each level actually corresponds to 

 0
2E  

2 4 6

1 2 3

                   
L L L

N =                            
 

0 0
3 3    

k 
6 4 2

3 2 1

–     –     –  
L L L

  –         –         –      
 

0 0
3 3    

E0

O

 

 0
1E  

 0
3E  
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four states. To put it another way, we can state that each point on the curve 
corresponding to either a negative or a positive value of N is associated with two 
states (up and down spin).  

When taking spin into account, we also find that the degree of degeneracy is 
four as each energy level can accommodate four electrons, each corresponding to 
a specific wave function. Thus, at the Nth level these four functions are: 

0 ,N  0 ,N  0 ,N  0 .N  

2.4.3. Study of the state density function in k space 

Taking electron spin into account, we can now place on average two electrons 
into the interval 2

L
dk . There are four electrons in all, but with two in each 

division. Thus, 2( ) 2
L

n k , so that with L = 1: 

1
( ) .n k  [2.22] 

To conclude, we can see that with progressive solutions, the number of states 
that can be placed in a unit interval in reciprocal space is equal to 1/ . One half of 
that can be placed in stationary solutions, even though the available k space is twice 
as large. It should be noted that the negative values of N and thus of k must also be 
taken into account. 

2.5. State density function represented in energy space for free electrons in 
a 1D system 

The curves given by E = f (k) give a direct relation between k and energy spaces. 
In the space that we have defined, as detailed in section 2.1.2, the Z(E) state density 
function is such that Z(E) dE represents the number of energy states between E and 
E + dE with respect to a material unit dimension (in 1D, L = 1 unit length). 

Rigorously speaking, Z(E) should be a discontinuous function as it is defined, 
a priori, only for discrete values of energy corresponding to the solution of the 
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Schrödinger equations [2.10] and [2.15] or [2.21] as below, respectively for 
stationary or progressive cases: 

2
0 ² ² 4 ² ²

² ².
2 2 ² 2 ²

N
N

k h
E N N

m m L mL
 [2.21] 

A numerical estimation can be carried out to find the typical value for free 
(conduction) electrons and, in this example, shows that EF  3 eV (Fermi energy 
measured with respect to the bottom of the potential wells). 

By making L = 1 mm (which is small enough to be at the scale typically used for 
lab samples, and large enough to contain a sufficiently high enough number of 
particles to give a statistical average), equation [2.18] gives N  1.5 × 106. 

The difference in energy between two adjacent states [N + 1] and N is thus 
given by: 

2 2

1 2 2(2 1) ,
2

N N
h h

E E E N N
mL mL

 

giving E  4 × 10-6 eV. 
 
This holds where EF is small and in effect the conduction electrons show 

a discrete energy value that can be neglected in an overall representation of electron 
energies (see below).  

 

To conclude, the energy levels are quantified but the difference in their energies 
are so small that the function Z(E) as defined above can be considered as being 
quasi-continuous around EF. Often the term quasi-continuum is used in this 
situation.  

        Energy 
EF      3 eV 

E 
          2 eV 
 
          1 eV 
 
          0 
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2.5.1. Stationary solution for FBC 

Here, as shown in Figure 2.2, only values with k > 0 are physically relevant. 0
1E  

pertains to a single value (k1) in k space. Similarly, 0
2E  corresponds to a single value 

(k2). A consequence of this relationship between energy and k spaces is that for 
a number of states with energies between E and E + dE there is a corresponding and 
equal number of states between k and k + dk. This can be written as: 

Z(E) dE = n(k) dk. [2.23] 

From this it can be deduced that ( )( ) .n k
dE
dk

Z E   

 

With E from equation [2.2], i.e. ²
2

²,
m

E k  we also equally have 2mEk  

and thus ² ² 2 2
2

1/ 2 1/ 22 .dE mE
dk m m m

k E   

 
From this it can be deduced that, for n(k) given by equation [2.11] (or rather 

2( ) )n k : 

1 2
( ) .

m
Z E

E
  [2.24] 

Thus, when E increases, Z(E) decreases, as shown in Figure 2.5. 

 

Z(E) 

E 

Z(E) dE

 E  E + dE 

Z(E)

Figure 2.5. State density function for a stationary or progressive 1D system 



30     Solid-State Physics for Electronics 

2.5.2. Progressive solutions for progressive boundary conditions (PBC) 

As shown in Figures 2.4 and 2.6, here the interval dE corresponds 
simultaneously to the intervals dk+ (for k > 0) and dk – (for k < 0).  

 

As in both dk+ and dk– we can place the same number of states, it is possible to 
state that: 

( ) ( ) ( ) 2 ( ) .Z E dE n k dk n k dk n k dk  

Thus, ( )( ) 2 .n k
dE
dk

Z E  

With n (k) given by equation [2.22], 1( )n k , we obtain: 2 1( ) ,dE
dk

Z E  

where dE
dk

 was calculated in the preceding section.  

We again find the same expression for Z(E), as shown in equation [2.24] and 
thus the same graphical representation as shown in Figure 2.5. 

2.5.3. Conclusion: comparing the number of calculated states for FBC and PBC 

Stationary waves: FBC 

0 ² ²
²

2 ²NE N
m L

 

Figure 2.6. Plot of E = f(k) for progressive solutions 

   k-2       k-1                      k+1        k+2 

E 

k 

dk+dk –

dE
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2
( )n k  

Progressive waves: PBC 

2
0 ² 2

²
2NE N
m L

 

1
( )n k  

 
Figure 2.7. FBC and PBC states 
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0
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0
4

² ²
4²

2 ²
E

m L
 

0
2E  
0
1E  

0E   
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k 
O

2
0
2
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2
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m L
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0E  
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The total number of states calculated over all the reciprocal space is in fact the 
same for the two types of solution, as with the FBC there is the involvement of only 
one half-space and n(k) = 2/ , while under PBC both half-spaces are brought in (i.e. 
k > 0 and k < 0) and n(k) = 1/ . It can be seen in Figure 2.7 that there are eight states 
represented when taking into account spin for the two cases (four states not 
accounting for spin associated with the points on the plots in Figure 2.7) with: 

– k varying from 0 to 4 /L or from 0 to 4 /L; 

– E varying from 0 to 
2 2 2 20 0

4 222 2

22 24 2 .E E
m m LLFBC PBC

 

2.6. From electrons in a 3D system (potential box) 

2.6.1. Form of the wave functions 

 
Figure 2.8. A parallelepiped box (direct space)  

We assume that the free electrons are closed within a parallelepiped box with 
sides of length L1, L2, L3 as shown in Figure 2.8. The potential is zero inside the box 
and infinite outside. The Schrödinger equation is thus given by: 

0 0 02
( , , ) ( , , ) 0.

²
m

x y z E x y z   

By making 2
²

0² ,mk E  it can be rewritten as: 0 0² 0.k  

L1 

L2

L3 

O 

x 

y

z 
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The resolution of this equation can be carried out after separating the variables. 
In order to do this, we make: 0 0 0 0

1 2 3( , , ) ( ) ( ) ( )x y z x y z  and 0 0
1E E  

0 0
2 3E E . From this we can deduce three equations with the same form: 

a) 
2 0 ( ) 2 21

2 2 2
0 0 0
1 1 1( ) 0, so that on making

d x m m

dx

2
xE x   k E  we have: 

0
2 01

1
² ( )

( ) 0
² x

d x
k x

dx
 

b) 
2 0 ( ) 2 22

2 2 2
0 0 0
2 2 2( ) 0,  so that on making 

d y m m

dy

2
yE y k E  we have: 

0
2 02

2
² ( )

( ) 0
² y

d y
k y

dy
 

c) 
2 0 ( ) 2 23

2 2 2
0 0 0
3 3 3( ) 0,  so by making 

d z m m

dz

2
zE z k E  we have: 

0
2 03

3
² ( )

( ) 0
² z

d z
k z

dz
 

2.6.1.1. Case favoring fixed boundary conditions 

Here the FBCs are: 

– with respect to Ox: 0 0
1 1 1(0) ( ) 0,L  

– with respect to Oy: 0 0
2 2 2(0) ( ) 0,L  

– with respect to Oz: 0 0
3 3 3(0) ( ) 0.L  
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The use of these boundary limits means that we can solve these differential 
equations directly from the equivalent 1D system (the boundary limits are identical 
to those in the 1D system with an origin at an extremity – see section 2.3): 

0 0 0 0 0

1 2 3

( , , ) ( , , ) ( ) ( ) ( )

                                         sin sin sin ,

x y z
n n n n

yx x

x y z x y z x y z

nn n
A x y z

L L L

 [2.25] 

where 
1 2 3

,  ,  
L L Lx x y y z zk n k n k n  and nx, ny and nz are positive integers. 

 
Energy is given by: 

0 0 0 0 2 2 2
1 2 3

2 2 2
2 2 2
1 2 3

²
2

² ² ² ²
.

2

x y z

x y z

E E E E k k k
m

n n n
m L L L

      
  [2.26] 

2.6.1.2. Case favoring progressive boundary conditions 

Analogously to the case for limiting conditions, we have: 

– with respect to Ox: 0 0
1 1 1( ) ( ),x x L  

– with respect to Oy: 0 0
2 2 2( ) ( ),y y L  

– with respect to Oz: 0 0
3 3 3( ) ( ).z z L  

 
The use of these boundary limits means that we can solve these differential 

equations directly from the equivalent 1D system (the boundary limits are identical 
to those in the 1D system where propagation is favored – see section 2.4.1): 

22 2

31 2

0 0 0 0 0

1 2 3

( ) ( , , )

           = 

x y z

yx z

i n zi n x i n y zx y LL L

n k k k k

ik yik x ik z
x y z

r x y z

A A A e e e Ae e e

 [2.27] 



The Free Electron and State Density Functions     35 

in which 1 2 3x y zA A A A , 2 2 2

1 2 3
,  ,  

L L Lx x y y z zk n k n k n  and where nx, 

ny and nz are positive or negative integers. 
 
Energy is given by: 

22 2
0 0 0 0 2 2 2

1 2 3 2 2 2
1 2 3

² ²
.

2 2
yx z

x y z
nh n n

E E E E k k k
m m L L L

 [2.28] 

2.6.2. Expression for the state density functions in k space 

2.6.2.1. Where stationary solutions are favored 

In 3D, we can divide the k space into elemental cells (nx, ny, nz, which change 
values as integers) such that their smallest variation is given by nx = ny = nz = 1 
and that the sides of the smallest, elemental cell are given by 

1
,

Lxk  

2
,

Lyk
3

.
Lzk  The elemental cells are such that their nodes (upmost point) 

are associated with an electronic state represented by a wave function given by: 

0 0

0 0 0

1 2 3

( , , ) ( , , )

                  sin sin sin .
x y z

n

yx x
k k k

x y z x y z

nn n
A x y z

L L L

 

Each elemental cell thus has eight nodes, each of which corresponds to eight 
states that are, in turn, each shared across eight elemental cells. Without taking spin 
into account, we can assert that 8

8
1 state per cell on average. Taking spin states 

into account we can now place two electronic states into each elemental cell. 

The elemental cells have an elemental volume given by: 

3
3

1 2 3
  ,x y zk k k k

L L L V
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where V is the volume in direct space (starting with a parallelepiped, see Figure 2.8). 
For a unit volume in direct space (V = 1 given for the calculation of the state density 
function), we have 3 3

1
.k

V
  

 
Still using n(k) to denote the state density function, we can write that 

3
 1

( ) 2
V

n k k , so that 3( ) 2n k . In other words, 

3
2

( ) .n k  [2.29] 

2.6.2.2. Where progressive solutions are favored 

In 3D, we have 2 2 2

1 2 3
,  ,  ,

L L Lx y zk k k  and the elemental cells are 

such that each has a node associated with an electronic state represented by a wave 
function in the form: 

22 2

31 20 0 0 0( ) .
x y z

i n zi n x i n y zx y LL L
n k k kr Ae e e  

The elemental cells thus have an elemental volume given by: 

3
3

1 2 3

2 2 2 8
  x y zk k k k

L L L V
 

where V is the direct space volume. For a direct space unit volume (V = 1), we have 
3 3

 1
8 ,

V
k and then by using n(k) to denote the state density function, we 

can write that 3
 1

( ) 2,
V

n k k  so that 3( )8 2,n k  which in other words 

means: 

3
1

( ) .
4

n k  [2.30] 
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2.6.3. Expression for the state density functions in k space 

2.6.3.1. Where stationary solutions are favored 

The calculation for the state density function now denoted Z(E) can be carried 
out using two different routes: 

– using the correlation between k and energy spaces; 

– via a direct calculation in energy space using quantum numbers. 

Here we will use the direct method. 

First we can note that with stationary solutions where quantum numbers nx, ny 
and nz are positive, the quantum number space must be held within the first octet  
(nx, ny, nz > 0) as shown in Figure 2.8a. If the problem is dealt with in 2D only, then 
the space (or more exactly the plain) should be within the first quadrant, as indicated 
in Figure 2.8b. 

 

 
Figure 2.8. Nodes and states in quantum number space:  

(a) 3D space with nx, ny, and nz as whole integers; (b) likewise in 2D 

In quantum number space, just as in k space, the cells and their nodes are 
associated with electronic states that are characterized by their electronic wave 
functions, as in , ,n n nx y z  where each is denoted with respect to its specific 

quantum number nx, ny, and nz. Once we take spin into account, characterized by the 

    ny 

2,3 

3    

2 
1 
 

0     1    2    3   4           nx 

2,1,1

 
ny 

nx 

nz 

1,1,1 1, 1, 1x y zn n n

 

2,2,2

 

(a) (b) 
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quantum numbers 1
2sm  and 1

2
,sm  these functions in fact give rise to the 

electronic states , ,n n nx y z  and n ,n ,nx y z .  

From equation [2.23], we can see that the states of the equi-energy E = constant 

are spread out over a sphere of radius given by n = constant 8 ²
²

.mL
E

h
 Also, in the 

quantum number space shown in Figure 2.9, the state that have energies between E 
and E + dE are spread between the spheres of radius n and n + dn such that 

8 ²
²

mL
E

h
n and 8 ²

( )
²

.mL
E dE

h
n dn  This gives a volume which is equal to 

4 n²dn. With the quantum numbers being obligatorily positive we have restricted 
the quantum number space to the first octant (where nx, ny, nz > 0) in which the 
preceding volume (divided by eight) is reduced to 4 ² ²

8 2
.n dn n dn  

 

Figure 2.9. The relation between the quantum number  
and energy spaces 

The number of cells that can be placed in this volume is given simply by ²
2

n dn  

when the cells have a volume given by 31 1x y zn n n  (the quantum number 
can vary in single steps in each particular direction, as in Figure 2.8). Without taking 
spin into account, each cell contains eight states, but each state is shared between 
eight cells, so that on average we can therefore place one state in each cell. So, again 
without taking spin into account, the number of electronic states that can be placed 
is thus ²

2
.n dn  

 

             nz 
 
 

    
 
         
                ny 
 
 
nx 

n+dn E + dE

n  E
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Taking spin into account means that we can now place twice the number of 
states, so that the total number of electronic states is equal to n²dn. We can thus 
finally write that: 

( ) ² .Z E dE n dn   

With equation [2.26] (where 2 2 2² x y zn n n n  and it is supposed that  
L1 = L2 = L3 = 1 so as to have a unit volume from which the density functions can be 
obtained) which takes the form of ² ²

8 ² 8
² ²,h h

mL m
E n n  we have ²

4
,h

m
dE ndn  

from which 4
²

.m
h

dE ndn  

 

The result in that: 48
²²

² ( ) ,mm
E

hh
n dn dE Z E dE  so that: 

3 / 2

3
4 (2 )

( ) .
m

Z E E
h

 [2.31] 

The curve thus has a parabolic shape, as shown in Figure 2.10. 

  Z(E)   

E   

Z(E+dE) 
  Z(E) 

  

Z(E)dE 

E + dE  

Figure 2.10. State density function in 3D 
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NOTE.– If we use the correlation between k space and energy space, we can write: 

2
( ) 33 4 ² 1

( ) ( ) ( ) ² .
8 8 ²

n k
D

kdV k dk
Z E dE n k n k k dk  

With 2² mEk  we have on one side 2mEk , and on the other 
2 ,mkdk dE  from which we once again obtain equation [2.28]. 

2.6.3.2. Problem: where progressive solutions are favored (see also problems 5 and 
6 of this chapter) 

In this case, nx, ny, and nz are positive or negative integers and the quantum 
number spaces – just as that for k – is no longer restricted to the first octet but covers 
all space.  

By using the correlation between k space and energy space, we can thus 
write: 

1
( ) 343 1

( ) ( ) ( )4 ² ² ,
²

n k
D

kZ E dE n k dV n k k dk k dk   

from which we again find equation [2.31]. 

2.7. Problems  

The reader is advised that if he or she has not yet looked at the basics of 
statistical thermodynamics, including the use and significance of the Fermi-Dirac 
function, problems 1, 3 and 4 should be attempted after reading section 4.4.3.2 of 
this book. 
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2.7.1. Problem 1: the function Z(E) in 1D 

Here we are looking at free electrons in a small one-dimensioned medium with L 
being equal to several nanometers. The total number of electrons is equal to Nt and 
the filling of the energy levels at absolute zero is under consideration.  

1) What type of boundary conditions should we use? 

2) Give the value of N of the last occupied level. 

3)  

a) If EF(0)  EF represents the energy of the highest fully occupied level, 
express the value of EF as a function of Nt. 

b) From this and as a function of EF, deduce the expression of the total 
numbers of orbitals [N(EF)] (of electronic states including spin) for electrons with 
energies lower than EF. 

4) 

a) Generalize the last expression for any level E that is lower than EF. 

b) From this deduce the expression for the function [Z(E)] of the density of 
energy states. 

Answers 

1) The medium is of a sufficiently small size so that we can assume that there is 
a stationary regime and as a consequence the use of fixed boundary conditions, 
which takes into account the presence of a node at each extremity of the system. 

2) Being at absolute zero, the levels are filled as a continuum from the lowest 
level N = 1 to the highest. With two electrons placed into each level (each electron 
has a different spin), the highest level can thus be discerned using 

2
.NtN  

3) 

a) We can now write that 
10 ² ²

2 ² 2

2

2t

N t
m LF N N NE E ²

2 2

2
.Nt

m L
 

b) We thus have N(EF) = Nt, so that by taking the preceding equation into 
account, we now have: 

 1 2
1/ 22 ²

( ) .
2F F

L
N E E

m
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4) 

a) For any level E which is such that E < EF, the preceding relationship retains 
its validity when the level EF is replaced by the level E (which accords to the same 
filling rules as the level EF). The total number of electronic states with energy less 
than E, including spin states and denoted N(E) is thus given by: 

 1 2
1/ 22 ²

( )
2

L
N E E

m
 

b) The function Z(E) is such that [dN(E)]L = 1 = Z(E) dE (number of states with 
energies comprised between E and E = dE for a crystal with a unit dimension, i.e. 
L = 1), so that: 

1/ 2
1/ 21/ 2 1/ 2

1 1

( ) ² 1
( ) 2 .

2L L

dN E L
Z E E m E

dE m
 

Here we return to the expression given in equation [2.24] and plotted in 
Figure 2.5. 

2.7.2. Problem 2: diffusion length at the metal-vacuum interface 

The electronic representation of a metal using potential bowls with flat bottoms 
makes it possible to define the work function (Ws) (of electrons) of the metal. The 
origin of the potentials was taken as being the level of electrons in a vacuum at an 
infinite distance from the metal with the highest energy level (last occupied level) 
being in the metal (at absolute zero temperature) and situated at  
– Ws. The work function is thus equal to W = 0 – (– Ws) = Ws (where Ws is 
positive).  

This level corresponds to the Fermi level EF, which is generally defined with 
respect to the last occupied band (see also section 1.3 in [MOL 06]).  

The potential bowl is thus represented in the following diagram, and it is 
noticeable that it no longer resembles the infinitely high potential wells. The depth 
of the wells being finite means that the electrons situated at the Fermi level can now 
“penetrate” the vacuum. 
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For a value Ws = 3 eV, evaluate for x > 0 the penetration length Lx (of diffusion) 

into the vacuum for electrons at the Fermi level of the metal (divided by e for the 
wave function following the pathway Lx).  

Answer 
 
For electrons that are likely to be in the zone x > 0 where V = 0 with an energy 

corresponding to that of the level EF = – Ws, we have 
0V

sE V E W . The 

Schrödinger equation ² 2
² ²

( ) 0d m
dx

E V  can thus be written for these 

electrons as:  

² 2
0.

² ² s
d m

W
dx

 

By making 2
²

² m
sk W  (with Ws > 0), the solution is ( ) .kx kxx Ae Be  

When x > 0, the boundary condition ( ) 0 imposes A = 0, so that 

( ) .kxx Be  

The diffusion length Lx is defined by ( )
x

Lxx e , which is such that 
( ) 1
(0)
Lx

e
 (divided by e for the wave function following the pathway Lx), and we 

now have: 1
2k mWs

xL . 

Numerically speaking, with m = 0.9 × 10 30 kg, Ws = 3 eV = 3 × 1.6 × 10 19 J and 
with 1Js, we obtain Lx  10 10 m = 0.1 nm. 

Level of the vacuum 
Energy  

EF 

Ws 

 Ws  
x 0              Lx

(0)/e 

0 
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2.7.3. Problem 3: 2D media: state density function and the behavior of the Fermi 
energy as a function of temperature for a metallic state 

This section considers a square 2D metal in the Oxy plane with N atoms 
distributed with spatial periodicity with respect to both Ox and Oy. The sides of the 
crystal are denoted Lx and Ly and are such that Lx = Ly = L = (N + 1) a  Na as N is 
very large (N >> 1). The mono-valent atoms placed at the lattice nodes each liberate 
a free electron, which are thus present in numbers given by Nt = N², to which there is 
a corresponding electronic density given by ²

² ²
N Nt
L LeN . 

1) For the reciprocal space (k space) indicate: 

a) The dimension of an elementary cell. 

b) The form of the equi-energy curve. 

c) Which surface the electrons are placed on that have energy less than or 
equal to a given value of E. 

d) The maximum number of electrons that can be held in a unit surface. 

e) The maximum number N' of electrons with energies less than or equal to 
a given E, where N' = f [N, a, m, E]. 

2)  

a) Determine the expression of the energy states density function (Z(E) = g[m, E]), 
and conclude. 

b) Calculate the Fermi energy at absolute zero EF(0) defined by  
EF(0) = Emaximum for T = 0 K. What is the relation that exists between EF(0) and 
Z(E)? 

c) Numerical application: using a = 0.3 nm, calculate the value of EF(0). 

d) Given that the integration is 
1

0

1 ²
...

1 6 ²

1

1
0

0
E

E

pE dE p
p

e

pE , obtained 

from 0 ( ) ( )eN Z E f E dE , where f (E) is the Fermi-Dirac function given by 

( )

1

1 exp
( )

E E TF

kT

f E  (see section 4.4.3.2 if needed), show that the Fermi energy 

EF(T) for a 2D crystal is strictly independent of the temperature as in EF(T) = EF. 
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Answers 

1) 

a) We have 2 2 2 22 2( ) ( ) .
L L Lx y

k kx ky k  

b) The energy of free electrons is given by ² ²
2

k
m

E . In the k space, where 

2
²

,mEk  the energy is constant for 2
²

mEk constant (equation for a circle 

of radius 2
²

mER k ). The cells distributed around the circle contain electrons 

with a given equi-energy E.  

c) Electrons with energies lower than a given value E are thus spread around 

the inside of the circle surface with a radius 2
²

mEk constant, and surface 

value 2
²

² .mEk  

d) In a unit surface, the number of surface cells 2 2

L
that we can place are 

such that: 
2 2

2

2
1

.

L

L  The maximum umber of electrons that can thus be placed 

are (with two electrons per cell) 
2

2
2 .Lx  

e) Electrons with energies less than E are distributed on the inside of the circle 

of radius 2
²

mEk  and of surface 2
²

² .mEk  On this surface, we can thus 

distribute a maximum number of electrons equal to: 

N' =
2

2
2
L

x
2

²
mE

x
4 ² 4 ² ²

.
² ²

mL mN a
E E

h h
 

It should be noted that in order to attain the maximum number, the probability 
that each cell can be occupied by two electrons should be equal to unity. 
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2) 

a) On taking spin into account, each state corresponds to an electron (non-
degenerate problem). Thus, the maximum number N' of electrons with energies less 
than E is equal to the total number of states existing between 0 and the energy E.  

The state density Z(E) is such that the number per unit surface N'/L² of energy 
states below E are in accordance with: '

² 0 ( ) ,N
L

E Z E dE  from which 

'/ ²( ) d N L

dE
Z E , so that 4

² ²
( ) m m

h
Z E constant. 

The function Z(E) is thus a straight line in 2D space. 

 

b) When E = EF(0), all states below EF(0) are occupied by Nt = N² electrons 
of the system, and therefore (0)' ²

F
tE EN N N . Given the expression 

obtained in Question 1(e) for E = EF(0), we thus have: 

(0)
4 ² ²

' (0) ²,
²F

FE E
mN a

N E N
h

 

from which: 

² ² ²
(0)

4 ² ² ² ( )F
h N

E
ma ma L Z E

. 

c) Numerical application. With a = 0.3 nm, we obtain EF(0) = 2.7 eV. 

d) With ²
² (0)

( ) N
L EF

Z E , we can thus write: 

Z(E) 

E

Constant
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0 0

² ²
( ) ( ) ( ) ,

² ² (0)e
F

N N
N Z E f E dE f E dE

L L E
 

from which 0(0) ( ) ,FE f E dE  so that: 

( )
1

( )

0,

0

1
(0) ( ) 1 0 ( ).

1

F

E T EF
kT E TF

p E kT

F F FE dE E T E T

e

 

2.7.4. Problem 4: Fermi energy of a 3D conductor 

Show that the Fermi energy EF(T) of a 3D conductor described by a free 
electrons model is practically independent of temperature. In order to do this, 
consider that the total effective number of free electrons in a 3D conductor is Ne.  

1) For any given temperature T, determine the relation Ne = f (EF(T)) by using, 
just as for the 2D conductor, the fact that 0 ( ) ( )eN Z E f E dE , with 

1
( )

1 exp
( )

E E TF
kT

f E  and 1 ²
1 6 ²

1
01

1
0

0
... .

p pE dE
pE

Ee

pE  

2) For T = 0 K, find the relation Ne = g(EF0) with EF0 = (EF)T =0 K. 

3) Express EF as a function of EF0. Conclude, knowing that the value of the 
Fermi level for a metal is often of the order of 3 eV. 

Answers 

1) We have 0 ( ) ( )eN Z E f E dE , so that with 
3 / 24 (2 )

3( ) m

h
Z E E  (from 

equation [2.28] for the 3D model) we can write ( ) cZ E A E  with 
3 / 24 (2 )

3
m

h
cA . Hence, we can write: 
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1/ 2
( ) /

( ) ( )
1

( )

1/ 2 1/ 2

0 0

     
3 / 2

c 2

1 1

2 ² 1 ² ²
 A ( ) ... .

3 6 2 ( )

F

p
E T kT

E E TF E T EF
kT kT E TF

e c c

F
F

E E
N A dE A dE

e e

k T
E T

E T

 

2) At absolute zero, the number of electrons is unchanged. The levels are simply 
filled up to the Fermi level with an occupation probability of 100%. Using EF0 to 
denote the Fermi level at absolute zero, we can write that: 

0 0 1/ 2 3/ 2
0

0 0

2
( ) .

3

F FE E

e c c FN Z E dE A E dE A E  

3) Using the equations for Ne obtained in response to questions 1) and 2), and 
equating them, we obtain: 

3/ 2 3/ 2
02

2 ² 1 ² ² 2
( ) ...

3 6 2 3( )
F F

F

k T
E T E

E T
,  

from which  

2 / 3

0 02 2

2

0
0

² ² ² ² ² ²
( ) 1 ... 1 ...

8 12( ) ( )

²
                                                                  1 ... .

12

F F F
F F

F
F

k T k T
E T E E

E T E T

kT
E

E

 

In terms of numbers, when EF0  EF(T)  3 eV, T = 300 K (so that k = 8.6 ×  
10-5 eVK-1 and kT  2.6 × 10-2 eV), and the corrective term required is: 

222 2
5

0
5.8  10  eV.

12 ( ) 12F F

kT kT
E T E
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The value of the corrective term is negligible with respect to the 3 eV of the 
metal Fermi level. We can thus assume that the position of the Fermi level is 
practically independent of temperature, at least within reach of ambient 
temperatures. 

2.7.5. Problem 5: establishing the state density function via reasoning in moment 
or k spaces 

Derive the aforementioned equation for the state density function in 3D but this 
time by: 

1) using the space of moments (p) wherein Hesienberg’s relation can be written 
with respect to a specific direction, for example x so that ;xx p h  and 

2) in k space where the use of Heisenberg’s relation can be made and justified.  

Answers 

1) In 3D, Heisenberg’s equation is written: 3,x y zx y z p p p h  so 
that by making V x y z  (space within which the particle can move) we have: 

3

  .x y z
h

p p p
V

 

A free electron placed in a potential of zero exhibits a relation between E and p 
that is: ²

2
.p

m
E  Quantum states for energies between E and E + dE in moment 

space are situated between spheres with radii p ( 2mE )  and p + dp. The volume 
between two spheres is 4 ² .p dp  This volume can hold a number of cells of volume 

p3 = px py pz given by 4 ²
3 /

.p dp

h V
 

 
By making V = 1 (to obtain a given density) and recognizing that we can place 

two electrons per cell, the state density function Z(E) is such that 
4 ²

3( ) 2 .p dp

h
Z E dE  The differentiation of ² 2p mE  gives 2 2 ,pdp mdE  

from which 3/ 2 1/ 22 ² 2 ,p dp m E dE  and we directly obtain:  

3 / 2
1/ 2

2
2

( ) 4 .
m

Z E dE E dE
h
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2) With p k , we have x xp k , from which 2xx k  

(Heisenberg’s other equation!). From this we deduce that 
32

.
Vx y zk k k  

This relation is identical to that deduced for the quantification with progressive 
boundary conditions (PBC), where for a free electron we have ( ) xik x

k x Ae  

( ) ,x x Lik
k x L Ae  from which 1,xik Le  so that 2 ( ),xk L n  so that 

between adjacent values of n, kx varies by 2 .
Lxk  This result makes it possible 

to justify Heisenberg’s equation, as L is the space x in which the electron can 
probably be found. 

In k space, the volume for energies between E and E + dE is situated between the 
spheres of radii k ( 2mE )  and k + dk, equal to a volume of 4 k²dk. Into this 

volume we can place 4 ²
3(8 ) /

k dk

V
cells, so that to obtain the state density function when 

V = 1, we have ²
²

( ) k dkZ E dE  electrons. With 2
²

² ,mEk  we can state that 

 
²

,m dEkdk  and we once again obtain:  

3 / 2
1/ 2

2
2

( ) 4 .
m

Z E dE E dE
h

 

2.7.6. Problem 6: general equations for the state density functions expressed in 
reciprocal (k) space or in energy space 

1) Based on the reasoning given in problem 5 question 2, show how it is possible 
to write the 3D relation between the state density function in energy [Z(E)] and the 
state density function in k space [n(k)] in the form:  

3

( )
( ) ( ) ,

V E
Z E dE n k d k  detailing the significance of ( ).V E  

2) For theories more refined than that based on the free electron, the dispersion 
equation for E(k) can be quite complex, making the determination of ( )V E  more 
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difficult. Show how the following general equation for 3D space can be derived and 
detail the significance of S(E). 

3
( )

1
( ) .

4 S E k

dS
Z E

grad E
 

3) What happens to the preceding equation in 2D? Apply it to free electrons to 
obtain the equation for Z(E) as found in question 2 of the preceding problem 3. 

Answers 

1) By definition, the density function of energy states Z(E) is such that the 
number of states with energies between E and E + dE is given by Z(E)dE. For free 

electrons (where ² ²
2

,k
m

E  so that 2 ),mEk  the corresponding energy volume 

is situated in k space between two spheres of radii k and k + dk, that is, of volume 
dVk = 4 k²dk. The transition from the function n(k), i.e. the state density in k space k, 
to the function Z(E) – the density of state in energy space – is thus given via the 
equation: 

( ) ( )4 ² .Z E dE n k k dk  

Given that 1
34

( )n k  (see equation [2.27]), we once again find the equation in 

problem 5, i.e. ²
²

( ) .k dkZ E dE  

 
For free electrons, as n(k) is a constant in k space (equation [2.27]) we can thus 

write that 3
( )( ) ( ) V EZ E dE n k d k  where 3

( ) 4 ² .V E d k k dk  

 
( )V E  thus represents the volume of reciprocal space between the surface S(E) 

of the equi-energy E and the surface S(E + dE) of the equi-energy E + dE. 
 
In more general terms, if n(k) varies with k, the preceding relationship should 

thus be written as:  

3

( )
( ) ( ) .

V E
Z E dE n k d k  
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2) The elemental volume 3d k  can be seen as the product of elemental surface 
d2S carried through area S(E), in other words the surface of the equi-energy E in 
reciprocal space through the space between areas S(E) and S(E + dE) along a line 
normal to S(E). This normal S(E) is collinear to gradk E  so that we can state that: 

3 2 2grad .
gradE

k

dE
d k d S k dE d S

E
 

Placing this in 3
( )( ) ( )V EZ E dE n k d k  where 1

34
( )n k  (equation 

independent from the dispersion equation), we have ( )Z E dE  
21

3 grad4 ( )  ,d S

Ek
V E dE  from which: 

2

3
( )

1
( )

4 S E k

d S
Z E

grad E
 

where S(E) is the surface of the equi-energy E in reciprocal space. 

NOTE.– We can quickly verify the veracity of equation [2.28] for free electrons. 
Here, in effect we find: 

( ² ² / 2 )

² ²

2 2

3 3
( ) ( )

2
3 / 2

3 3 3
( )

1 1
( )

4 4grad

1 1 4 ² 4 4 2 4
2 .

² ²4 4

d k m
dk

k k
m m

S E S Ek

S E

d S d S
Z E

E

d S k mk m mE
m E

h h h

 

3) In 2D, n(k) must be such that n(k) 1² 2,Sk  so that with 

2 2 4 ²

1 21 11
² 4 ²

L L SS SS
k  we have 1

2 ²
( )n k . Analogously to 
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question 2, and on accepting that the equi-energy surface S(E) becomes an equi-
energy line L(E) in 2D, we have: 

( )

1
( ) .

2 ² gradL E k

dL
Z E

E
 

Its application to free electrons makes it possible to again find the equation for 
Z(E) previously given in the answer to problem 3. In effect, we now have: 

22 2 2
( )

1 1 2
( ) constant.

2 2grad k
m

L E k

dL k m
Z E

E
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Chapter 3 

 The Origin of Band Structures within  
the Weak Band Approximation 

3.1. Bloch function 

As presented in Chapter 1, the weak bond applies for electrons placed in 
a periodic potential, as represented in Figure 3.1. 

3.1.1. Introduction: effect of a cosinusoidal lattice potential 

For a free electron – in a zero order approximation – the potential is that of a flat-
bottomed bowl (as indicated by the line through the nuclei in Figure 3.1). For this 
system, already studied in Chapter 2, the potential (potential energy) is such that  
V = V0 = 0, and the Schrödinger amplitude equation is:  

2
²

0 0 0.m E   

With this and by making 2m
²

k² = E,  it is now possible to write solutions in the 

form 0 ikxe  for the wave function, and ²
2

0 ²
m

E E k  for the energy. Thus, 

at this level of the zero order approximation we have a parabolic form representing  
E = f (k). 
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Figure 3.1. Curve of the potential energy w(x) w0 
2cos ,
a

x  showing that w0 < 0 

The perturbation of potential by the lattice generates a periodic potential, as we 
have seen in Chapter 1. The first term of the Fourier series gives a first 

approximation, as in V  V(1)  w(x)  w0 
2cos .
a

x  The wave function is thus 
also perturbed. It takes on the form of a Bloch function which, as detailed below, is 
of the form 0( ) ( )  ( ),ikx

k x u x e u x  where u(x) is a periodic function (with 
a period equal to that of the lattice). 

3.1.2. Properties of a Hamiltonian of a semi-free electron 

In the approximation of a semi-free electron, the equation in proper terms, 
H ,E  is such that with 2

0 cos
a

V w x we have: 

² ²
,

2 ²
d

V E
m dx

 

so that in addition: 

² 2
( ) 0.

²
d m

E V
dx

 

The semi-free electron’s Hamiltonian is therefore: 

2 2

2 ( )        with ( ) ( ).
2

d
H V x V x V x a

m dx
 

Potential energy 
(origin at a nucleus) 

 ( ) ( )V x w x   

  w0
2cos
a

x  

   O 

x 
V = V0 = 0a 
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We can thus deduce that ( ) ( )H x H x a  as ( ) ( )V x V x a  and 
2

2
d

dx

2

2( )

d

d x a
 because, in simple terms, we have ( )

( )
d d d x a
dx d x a dx ( )

.d
d x a

 

We can consequently conclude that a semi-free electron’s Hamiltonian is 
invariant with respect to a translation (Ta) of modulus a.  

Using the properties established in Chapter 1, the search for the proper 
Hamiltonian functions associated with a semi-free electron can in fact lead us to 
search for the proper functions of the translational operator Ta. 

3.1.3. The form of proper functions 

We will denote the proper functions of translation operator Ta as ( ).k x  
 
They will be such that: 

,( ) ( ) a k k a kT x c x  

where ck,a is a proper value of operator Ta. 

Depending on the definition of operator Ta, we also have: 

( ) ( ).a k kT x x a  

Now, let us try and obtain the precise form of the coefficients , .k ac  In order to 
do this, we will apply two successive translations of modulus a1 and then a2 to the 
function ( ).k x  

In this example we will use 1 2 and a a a a  so that the application of 
operator 

2 1a aT T  results in a return to the departure point and thus leaves function 
( )k x  unchanged. We can thus write that: 

1

2 1 2 1 2

2 1

,

, , ,

, ,

            ( ) ( ) ( )

( ) ( ( )) . ( ) . ( )

    ( ( )) ( ) ( )

                             . 1.

a k k a k k

a a k a a k a k a k k a k a k

a a k k k

k a k a

T x c x x a

T T x T T x T c x c c x

T T x x a a x

c c
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An acceptable solution is ,
ika

k ac e  as it is in accordance with the preceding 

condition as 1.ika ikae e  

Finally, the equation for the proper values can be written as: 

( ) ( ).ika
a k kT x e x  

Now, let us determine the form of the proper function ( )k x of a semi-free 
electron (in first-order approximation). In order to do this, we can first of all note 
that the zero-order solution is of the form 0 ( ) .ikx

k x e  To reach the first-order 

approximation (where the function is denoted by 1 ( ) ( ))kk x x  the solution to 
the function of the zero order must be perturbed by a function u(x) such that: 

1 0( ) ( ) (x) ( ) ( ).ikx
k kk x x u x e u x   

Now we need to find the form that gives u(x). To do that, we look at the proper 
functions ( )k x  that can be chosen in the form ( ) ( ) ikx

k x e u x  with the 
condition that u(x)  u(x + a). These functions are called Bloch functions. In effect, 
we have: 

k,a

" " " "

c  ( ) ( )
ikx

, ,

   ( ) ( )
( )

( ) ( ) e u(x) =  ( )

and

( ) ( ) ( )
( ) ( ).

ikaikx
k

ikx
k x x a x x a

ex e u x
ika ikx

a k k a k k a

x e u x
ik x a

a k k

T x c x c e e u x

T x x a e u x a

u x u x a

 

( )k x  
2 1 1 2( ) ( )a a k kT T x x a a  

1 1( ) ( )a k kT x x a  

1aT

2 1a aT T

2aT
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To conclude, the proper functions for the semi-free electron are in the form 
( ) ( ) ikx

k x e u x and are called Bloch functions. Function u(x) is periodic with a 
period equal to a, the lattice repeat unit. 

3.2. Mathieu’s equation 

3.2.1. Form of Mathieu’s equation 

The form of this equation is that of the Schrödinger equation where 
2

0 cos .
a

V w x  By denoting the mass of the electron as  we thus have the 

following Mathieu’s equation: 

0
² 2 2

cos 0.
² ²

d
E w x

dx a
 [3.1] 

3.2.2. Wave function in accordance with Mathieu’s equation  

Following on from Bloch’s theorem, Mathieu’s equation should be written 
( ) ( ),ikx

k x e u x  where u(x) is a periodic function of period a, the lattice repeat 
unit. On introducing the angular frequency  that is tied to the repeat unit of the 

lattice by equation 2 ,a  it is possible to develop the periodic function u(x) as a 

Fourier series, such that: 

( ) in x
n

n
u x A e  

where n is an integer and 22
 ( ) .in x

nA u x e dx  

To within a normalization factor (A0), the function ( )k x must therefore be in 
the form: 

0
( ) 1 .ikx in x

k n
n

x e A e  [3.2] 
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In equation [3.2], the first term (associated with unit 1 of the square bracket) 
corresponds to the zero-order wave function of an electron 0( ( ) ) ,ikx

k x e  and 
can perhaps be seen as the principal part of this wave function. As a consequence it 
is possible to write (still within the normalization term) that: 

( )

0
( ) .ikx i k n x

k n
n

x e A e   [3.3] 

From this we can deduce that: 

( )

0
2

2 2 ( )
2

0

( )

( ) .

ikx i k n xk
n

n

ikx i k n xk
n

n

ike i k n A e
x

k e k n A e
x

 [3.4] 

The solution for zero order energy E, written as ² ²
2

0 ,k
m

E  can be introduced 

into equation [3.1], so that we then obtain the energy E as a precise function of E0 
and bring in the term [E – E0] (which is a small term for the first order term). This 
gives:  

0
0

² 2
( cos ) ² 0.

² ²
d

E E w x k
dx

 [3.5] 

Substituting equations [3.3] and [3.4] into equation [3.5] gives terms in ² ikxk e  
that cancel out: 

0
0

² 2
² cos 0,

² ²
d

k E E w x
dx

² ikxk e  

and hence we can now write that: 

( ) 2 2 0
02

0

( )
0 02

0

2
( ) cos

2
         cos 0.

i k n x ikx
n

n

i k n x
n

n

A e k k n E E w x e

E E w x A e
 [3.6] 
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In equation [3.6], the third term brings in the coefficients 0( ) nE E A and 

0 ,nw A  which are second-order terms, as 0( ),E E  0w  and 0n nA  are all small 

terms of the first order that can be neglected in an approximate calculation. This is 
because to zero order, the energy is 0 ,E  the potential energy is 0  = 0,V V  and 
the development of wave function is constrained to the single term for A0, so that 

0 0.n nA  

Mathieu’s equation is now reduced here to: 

( ) 0
0

0

2
² [ ]² cos 0.

²
i k n x ikx

n
n

A e k k n E E w x e  [3.7] 

The resolution method, i.e. to obtain coefficient Am (of the development of ),  

is to multiply equation [3.7] by ( )i k m xe  and then integrate over a repeat unit, in 
other words from 0 to a. 

Thus, the first step, multiplication by ( ) ,i k m xe  gives us: 

( ) 0
0

0

2
² ( )² cos 0.

²
i x m n im x

n
n

A k k n e E E w x e  

Here though we should note that:  

– the only term of the first sum which does not cancel itself out on integration is 
when m = n, and corresponds in the summation to the coefficient Am. The value of 
this term after integration is: 

2 2 2 2

0
2 2 2 2

( ) ( )

                                           2

                                           2 ;
2

a

m m

m

m

A k k m dx A k k m a

aA k k m km

m
m aA k
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– 0
0 ( ) 0;a im xE E e dx  

– the second term will be different from zero only for terms in cos² that will be 
obtained when 1.m  

Thus, we can conclude that except for 1A  and 1A  the coefficients of Am are all 
zero. 

When 1,m  we have (noting that 0 cosa i xxe dx  0 cos ²a xdx  

2
0

0 cos sin ):aai x xdx  

2

1 0 02 2
0

0
1 2

2
2 cos

2

                        .
2

a
i x μ

aA k w xe dx w a

μw
A

k

 [3.8] 

Similarly when 1m  we have:  

2

1 02
0

0
1 2

2
2 cos

2

                            .
2

a
i xaA k w xe dx

μw
A

k

 [3.9] 

Finally, within a first-order approximation, the form of equation [3.2] for the 
wave function is now limited to: 

2 2

01 .
2 ²

i x i x
ikx μw e e

e
k k

 [3.10] 
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3.2.3. Energy calculation 

Here we are seeking to determine the term 0( )E E  introduced into 

equation [3.6]. The expression is multiplied by ikxe  and then integrated from 0 
to a. Stepwise, we obtain the initial multiplication by ikxe which gives 

0
0

0

0
0

0

2
² ( )² cos

²
2

           cos 0
²

in x
n

n

in x
n

n

A e k k n E E w x

E E w x A e
 

– The first sum integrated is zero. 

– The second integrated term gives 2
²

0( )μ E E a (and now we realize that if we 

had restrained equation [3.6] to [3.7] we would have simply found E E0, which 
would not have given E in this new approximation). 

– As only 1A  and 1A  are different at zero, the third and final sum gives non-
zero terms: 

2 2

0
0 1 1 1 1

0

0
4

2
cos ( )

² ²

² ² 1 1
                                                                    

2

                                               

a
i x i xμ μw a

w x A e A e dx A A

μ w a

k k

²
4

0
4

² ²
                     .

2 ²

μ w a

k

 

We finally obtain: 

² ²
4 4

0 00 0
4 4

2 ² ² ²
( ) ,

² 2 ² 4 ²

μ μ w a μw
a E E E E

k k
 [3.11] 



64     Solid-State Physics for Electronics 

so that with 
2

:a  

²
²

0 0 ²
.

4 ² ²
a

μw
E E

k
 [3.12] 

When deducing equation [3.6] from equation [3.7] to determine the coefficient 
An, and coefficients A1 and A–1 (the latter are also used in the determination of E – 
E0), we made the assumption that the terms for An were small (and importantly a 
posteriori A1 and A–1) much as [E – E0]. The results confirm that the assumption was 
reasonable except when k is close to .

a
 When 

a
k  we can see that [E – E0] 

(in equation [3.11]) and A1 and A–1 (equations [3.8] and [3.9]) become very large. 
A direct calculation is thus required for these values when .

a
k  We will now 

look at the calculation of energy when .
a

k  

3.2.4. Direct calculation of energy when 
a

k  

In this calculation we will limit ourselves to the case of .
a

k  The other case, 

,
a

k  leads to a similar result. Following from the preceding example 

(equation [3.5]), we can see that when ,
a

k  only coefficient A1 is large: the other 

An coefficients remain small. Hence, the only approximation made this time outside 
of what remains a direct calculation gives us a new form of equation [3.3] (still 
within a normalization factor) for the wave function:  

( )
1( ) .ikx i k x

k x e A e  [3.13] 
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With ²
²

2 ( )
1² ( ) ,d k

dx
ikx i k xk e k A e  Mathieu’s equation [3.1] can be 

written as: 

2 ( )
1 0

1 0

2
² ( ) ( cos )

²
2μ

               + ( cos ) 0.
²

ikx i k x ikx

i k x

μ
k e k A e E w x e

A E w x e
 

This equation can be rearranged in the form: 

0

2 ( )
1 0 1

2
( cos ) ²

²
2μ

         + ( cos ) ( ) 0.
²

ikx

i k x

μ
E w x k e

A E w x A k e
 

To resolve this equation and determine the energy, we again use the general 
principles that were applied to Mathieu’s equation. That is, we successively multiply 
the equation by ikxe  and then by ( )i k xe  (the conjugated terms of the 
imaginary exponentials in Mathieu’s equation), each time integrating the obtained 
equations over the range 0 to a. Thus, the two following equations are obtained: 

0
1

2
² 0

² ²
μE μw

k a A a  [3.14] 

20
1

2
( ) 0.

² ²
μw μE

a A k a  [3.15] 

In order to ensure that these two equations are compatible, the determinant of the 
system must be equal to zero. This gives the following relation (which can also be 
obtained by eliminating A1 from equations [3.14] and [3.15]): 

2
2 0

4
2 2 ²

² [ ] .
² ²
μE μE μ w

k k  [3.16] 
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On multiplying the two members by 
4

4 ²
,

μ
 we obtain:  

2 2
0² ² ²[ ]

,
2 2 4
k k w

E E
μ μ

 [3.17] 

so that when 
a

k  (and using 2 )
a

 we have  

22
2
0

²
,

2 4
a w

E
μ

  

from which we find: 

2

0
²

.
2 2

a

a
k

w
E

μ
 [3.18] 

 
NOTE.– When ,

a
k  a similar set of calculations will yield the same energy 

values as found in equation [3.18]. 

3.3. The band structure 

3.3.1. Representing E  f (k) for a free electron: a reminder 

For a free electron (in a zero-order approximation), the potential is considered to 
be like a flat-bottomed bowl (V  V0  0 where a horizontal line passes through the 
nucleus depicted in Figure 3.1). As shown in Chapter 2, the progressive solutions for 
this system are in the form ikxe  (wave function) and E  E0  ²

2
²

m
k  

(energy). E f (k) is thus shown as being parabolic at a zero-order approximation. 
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3.3.2. Effect of a cosinusoidal lattice potential on the form of wave function and 
energy  

3.3.2.1. When k is very different from 
a

 

We have seen above how the wave function is given to the first order by equation 
[3.10] and corresponds to a progressive wave. For its part, the energy is given by 

equation [3.12], as in: 
²

²
²

0 0 ²
.

4 ² k
a

μw
E E  This curve is taken away from the 

parabolic form shown in Figure 3.2 by the presence of the term 
²

²
²

0 ²
.

4 ² k
a

μw
 

3.3.2.2. When 
a

k  

3.3.2.2.1. Evolution of energy 

Noting that the expression for energy obtained at zero order is ² ²
2

0 ,k
μ

E  we 

can insert this into equation [3.12] to obtain an energy equation for when :
a

k  

0 0 .
2k

a
k

a

w
E E  [3.16] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2. Curve E = f(k) 
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²
4 ² ²

²

μw
E E

k
a

 

0 0
0 02 2E w E w  

 

2
L

 

E

E0 



68     Solid-State Physics for Electronics 

We can thus see in Figure 3.2 (where k values are quantified according to 
2 )nk n L  that as k tends towards ,

a
 the energy moves away from the value 

given in equation [3.8] and tends towards: 

0 0| |
[ ] [ ] .

2
a a

k k

w
E E   

In algebraic terms, as w0 < 0 (see Figure 3.1), we should write that E tends 
towards: 

²
²0 0 0

²
[ ] [ ] .

2 2 2
a

a a
k k

w w
E E

μ
 

As k increases towards the value ,
a

 energy passes abruptly to the value given by: 

²
²0 0 0

²| | | |
[ ] [ ] ,

2 2 2
a

a a
k k

w w
E E

μ
 

and then increases so that it closes in on the curve given by the relation: 

²
²

0 0 ²
.

4 ² ²
a

μw
E E

k
 

3.3.2.2.2. Stationary form of wave functions when 
a

k  

When ,
a

k  the wave function given by equation [3.9] is in fact in the form: 

2
( )

0 1 0 1 0 1( )
i x i x i x

a aa a a
i xikx i k x

k x A e A e A e A e A e A e  

where 2
a

 and A0 is introduced as a normalization factor. 
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In fact, the function for the incident wave (amplitude term 0 )
i x

aA e  and the 

reflected wave (amplitude 1 )
i x

aA e  is a stationary solution (see also, for example, 
Chapter 6 [MOL 07b]). Found by calculation, this result can also be determined 
using more direct physics (see section 3.4), where a greater understanding of the 
forbidden bands is possible. This is because the two stationary solutions (in terms of 
cosine and sine in section 2.2.2) – and each for a solution in energy – define the 
values in which a forbidden band resides. Their energy difference is equal to the 
width of the forbidden band (or “forbidden energy”) of the material.  

3.3.3. Generalization: effect of a periodic non-ideally cosinusoidal potential 

In the most general of terms, the potential interacting with the lattice must be 
seen as simply periodic (with the period being that of the lattice repeat unit). It has 
a form P(x) that is non-ideally cosinusoidal, which up till now has been introduced 
using the function 2

0( ) cos .
a

V x w x  

 
Equation [3.1] can thus be written as: 

² 2
( ( )) 0,

² ²
d

E P x
dx

 

and as such corresponds to the general form of Mathieu’s equations. The general 
method to resolve these equations is similar to that shown in section 3.2. The 
periodic potential P(x) is thus treated as a Fourier series that brings in the terms 
cos cos 2 x

a
n x n . It is thus possible to find that in the wave function expression, 

coefficients An and A–n are non-zero and not small when k is close to .
n
a

 These 

discontinuities, which decrease as n increases, occur for energy values found around 
²

²
²

2
² a

μ
n . 

 
We thus obtain a representation of the energy bands, as shown in Figure 3.3.  



70     Solid-State Physics for Electronics 

 

Figure 3.3. E = f(k) with discontinuities when 
a

k n  that decrease as n increases 

3.4. Alternative presentation of the origin of band systems via the perturbation 
method 

3.4.1. Problem treated by the perturbation method 

For a weak bond, the perturbation potential 2
0( ) cos

a
V x w x  can be assumed 

to be small (the amplitude w0 is small) and hence the perturbation method widely 
used in quantum mechanics can be applied. If 0 represents the wave function of the 
non-perturbed state characterized by the energy E0, then the energy of the system 
perturbed by the Hamiltonian perturbation Hpert (  V(x) in this case) is given by: 

E E0 + Epert    where    Epert E 0 0
pert|H | .   

k 
a

 
a

 

E 

2
a

 
3
a

 
2
a

 
3
a

 O 
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3.4.2. Physical origin of forbidden bands 

 

Figure 3.4. Bragg reflection for a 1D crystal 

Figure 3.4 shows a periodic chain subjected to an incident ray, which is reflected 
by the atoms of the lattice. There is an additive wave interference following 
reflection if the difference in step ( ) between two waves is equal to a whole 
multiple of the incoming waves wavelength. For a 1D system, the value of  
between wave 1 and wave 2 following reflection is given by  = 2a so that only 
incident waves of wavelength ( n), such that 2a n n, will give a maximum 
reflection. With the wave vector module being k 2 ,  the incident waves which 

undergo the maximum reflection (otherwise known as diffraction) are also such that: 

2
.n

n
k k n

a
 [3.19] 

In other words, they satisfy the Bragg condition. 
 
For a weak bond, we can assume that the incident wave associated with an 

electron in the bond is only weakly perturbed by the linear chain and that its 
amplitude can be written using a zero-order approximation, that is in the form:  

0 .ikx
k Ae   

The time-dependent incident wave is thus 0
inc.[ ( , )]k x t  ( ) .i kx tAe  This is 

the expression for an incident plane progressive wave moving towards x > 0.  

When the equation k kn is precisely fulfilled, then this incident wave 
( )0

inc.[ ( , )] n

n

i k x t
k x t Ae  is reflected as a wave propagating towards x < 0 and 

is given by ( )0
refl.[ ( , )] .n

n

i k x t
k x t Ae  The superposition of these two types of 

waves (incident and reflected) establishes a stationary wave regime. This regime has 

(1)                a 
                      (2) 
                                a 
                  a 
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two solutions (symmetric and asymmetric, as established in section 2.2.2) that can 
be written, to within the proximity of a normalization coefficient, as follows: 

+
 cos  

n n
i x i x

a a i t i tn
e e e x e

a
 [3.20] 

and 

+
 sin  .

n n
i x i x

i t i ta a n
e e e x e

a
 [3.21] 

These two wave function equations for electrons that conform to k kn n
a

 
each have a corresponding presence probability, that can be written as:  

+ = + +*  cos ²
n

x
a

 [3.22] 

and 

– = *  sin² .
n

x
a

 [3.23] 

For the same given value of kn, Figure 3.5 shows the presence probability densities 
denoted +,  and , which are for electrons with stationary wave +, stationary wave 

, and progressive wave ( )[ ( , )]  ,i kx t
k x t A e  respectively. 

Given its shape, for  the progressive wave is constant. When k kn, this 
progressive wave can only exist when neglecting the effect of reflection on a lattice 
with a spatial period equal to a, i.e. with the zero-order approximation V V0 0. 
Also, when V  V0, this type of wave can only exist when k  kn. 

For example, when k /a, function + has a spatial period given by 
2

/
2 ,

k k a
a  whereas + takes on the form | |2 cos ² 1

a
x  

2cos ,
a

x  in other words its period is determined by the term for a period given by a. 



The Origin of Band Structures     73 

 

Figure 3.5. Electron presence probabilities +, , and  for the stationary  
waves  +,   (when k= /a) and the progressive wave, respectively 

Figure 3.5 shows that when k /a: 

– + has its maximum concentration of electrons close to the nuclei. This 
configuration has the lowest average energy (w+) as the Coulombic energy is 
negative and has a high modulus due to the short distance between the electrons and 
nuclei; 

– – has a maximum concentration of electrons midway between nuclei. This 
configuration has the highest energy (w–) as the Coulombic potential has a low 
modulus and the distance between electrons and nuclei is greatest; 

–  is equal to a constant due to an equal spread of electrons at an intermediate 
distance from nuclei and, correspondingly, displays an intermediate energy which 
approximates to that of a free electron. 

The existence of two physical solutions, + and , with the same value of kn 
(k kn n )

a
 generates two values for energy when in the presence of a periodic 

potential such as P(x). Figure 3.6 shows the energy dispersion curve, i.e. E f (k). In 
the zero-order approximation (free electron with P(x) V0 0), the problem is 
a degenerate one with solutions in sine and cosine for the same single energy 

0 ² ² / 2 .E k m  

In the presence of a periodic potential, the gap between the two energy values is 
equal to an energy “gap” given by EG E   E+ w   w+. This is the so-called 
forbidden band as there is a flip (for the same value of k kn) from the energy w+ to 
w . The calculation of EG using perturbation theory is detailed in the following 
section. 
 

 
(x) 

                                +    
 
                               
                                               
 
                       

                                                                                atomic nucleus 

      = constant 

x 
a 
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Figure 3.6. Plot of E = f(k). A zero order approximation (which assumes a perturbation 
potential of V(x) 0 as interactions between electrons and the lattice are neglected) results in 

an energy given by E0

2
² k ²

.
m

 The effect of the lattice, through reflection at atoms in the 

periodic chain of electron waves, is to give two energy solutions (w+ < w –) for each value of 

k, as in k kn n
a

. 

If k is significantly different from the values given by ,
ank n  the wave 

function takes on a progressive form with two types of propagation being possible 
(towards the left or the right), each having the same energy value. This is the 
degenerate value of E0 when V V0 0, and it remains degenerate in the presence of 
the periodic potential V(x)  0 and has a value given by equation [3.8]. 

3.4.3. Results given by the perturbation theory 

3.4.3.1. Simple estimation of the size of the forbidden band, with 1 a
k  

The functions + and , normalized over a 1D chain containing N atoms such 
that N + 1  N and thus of length L N a, are such that, with 1 a

k : 

0
² ( ) ² dx  1

L Na
A x , so that 

2
( )  cos

a
x x

L
 

  
 E            E0   
  

             EG 

 
w  

        EG 
w+ 

 
 

  O              a          a
2       k 



The Origin of Band Structures     75 

0
² ( ) ² dx  1

L Na
A x , so that 

2
( )  sin .

a
x x

L
 

The energy gap is thus equal to EG w   w+, so that on applying the result 
gained from the perturbation theory presented in section 3.4.1, we obtain: 

  ( )GE E E w w V x V(x)  

    0

0

2 2
cos   sin² cos²

a a a

Lw
x x x dx

L
 

    

4

0 0
0

0 0

1 cos  2 2 2
cos ²  .

a 2
a

L L xw w
x dx dx w

L L
 

Finally, we obtain EG – w0. This is a positive value as w0 is negative, as can be 
seen in Figure 3.1, where the energy curve reaches a minimum at the nuclei. 

 
Thus, with EG |w0|, we can conclude that the higher the value of |w0|, in other 

words the stronger the electron-lattice interactions, the greater the forbidden band. 
The origin of the forbidden band is thus from the rise of degeneracy in  

a
k  from the initial energy level 

²
²

2
0 ² a

m
E  caused by periodic potential V(x). 

The two proper functions ( )x  and ( )x  thus have corresponding energy 
levels denoted w  and w+ separated by EG |w0|. 

3.4.3.2. Degeneracy of the restricted problem, with 
a

k  

With these values of k, the wave function is progressive. In the zero order, the 
wave is given by: 

( / ) ( / )( , )  ikx i E t i E t
k kx t Ae e e   
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or 

( / ) ( / )( , )  ,ikx i E t i E t
k kx t Ae e e  

where 1A L  for normalized wave functions that satisfy 1 k k  

2 2
0 .L A dx A L  The energy correction made by inserting the (cosinusoidal) 

potential of the lattice is zero, so that in effect we have: 

2

0

2 2
0

0 0

( ) ( )

2
        = ( ) cos 0

L
ikx ikx

k k

L L L Na

E V x A e V x e dx

A V x dx A w xdx
a

 

and similarly  

2

0
( ) ( ) 0.

L
E V x A V x dx  

We thus finally have: 

0.E E E  

There is no longer a rise in degeneracy for k values (in contrast to when k /a) 
as now with 

a
k  we have 0 0.E E E E E   

When k is very different from /a, this result is practically in agreement with that 
given by equation [3.12] where the second term is in effect negligible.  

When k is close to /a, the calculation becomes too crude to give a precise 
expression for the energy where the second term of equation [3.12] is non-negligible 
(small denominator). We must therefore abandon the use of the zero-order wave 
function in calculations using the perturbation method and turn to equation [3.10] 
where a first-order wave function is used, even though the use of the expression is in 
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itself debatable for values of k close to /a. For these values of k, where the use of 
stationary solutions could be justified, the perturbation method still does not allow 
a more exact determination of the energy as the stationary solutions are periodic and 
the energy corrections terms are thus calculated as being zero. 

3.4.4. Conclusion 

To conclude, we can see that the use of perturbation theory is useful when 

a
k  as it makes a simple calculation of the gap value possible, and enables us to 

physically determine the origin of the forbidden bands. When ,
a

k  the 

perturbation method used in a simple calculation is not sufficient, and it is rather the 
resolution of the Mathieu equation that is required. 

Put simply, we can note that at the level of zero-order approximation, the 
solutions for the wave function are given by Ae  ikx (where the  sign comes 
from degeneracy of the problem that in turn results from the physical possibility that 
the electronic wave can propagate in one direction or another), and the stationary 
solution c cos(kx) or s sin(kx) is obtained by a linear combination of the two 
exponential solutions. We can also note that these stationary solutions can be seen as 
real or purely imaginary parts of progressive solutions. In fact, the stationary 
solutions can only be obtained when the wavelengths ( n) of particular electrons in 
a 1D lattice satisfy the relation n n 2a so that 

ank n  from equation [3.19]. 

Given that it is these waves that are reflected from the crystal, the electrons cannot 
propagate as their wavelengths are commensurable with the lattice period. The result 
is the establishment of a system of stationary waves (one with sine and the other 
with cosine forms). 

So, when the wavelength  of an electronic wave is large, or rather, k 2 /  is 
small, the electrons only weakly sense the effect of the periodic potential V(x) 
generated by the atom cores (shown in Figure 3.7a). The wave functions (Figure 
3.7b) thus evolve relatively free of V(x) and at the limit (   ) can be thought of 
as being completely disconnected. This results in a constant presence probability 
across the whole lattice (see also Figure 3.5, which shows how the density 

constant as a solution for a free electron). 

In contrast, when  is small and k moves towards the values k /a, the 
functions c and s (see section 3.4.2) tend towards + and  (with period 2a as 
shown in Figure 3.7c). For these functions, amplitudes of the presence probabilities 
(of period a) evolve exactly with variations in V(x) as these probabilities are centred 
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on or between atoms (see Figure 3.5). These two very different functions, 
represented physically as presence probabilities with maximums out of phase by a/2 
when k /a, corresponding to two different energies that are separated by an 
“energy gap” denoted by E EG and shown in Figure 3.6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7. (a) Periodic potential V(x); (b) functions c and s when  is large; (c) functions + 
and   when  is small and k = /a; and (d) functions + and   when  is small and k = 2 /a 

When k  2 /a, functions 2cos  
a

x  and 2sin  
a

x have the 

period given by a while the period of their presence probability is equal to a/2.  
 
In general terms, when k n /a, the period of the wave functions is 2a/n 

( 2 /|k|) and that of the presence probability is a/n. The wave functions and, more 
particularly, their presence probabilities (for the different k values) are in perfect 
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accordance with the terms in cos cos 2 x
a

n x n  (of period a/n) of the Fourier 

series development for the periodic potential interacting with the lattice P(x) (see 
section 3.3) and give rise to degeneracy in k n /a. 

3.5. Complementary material: the main equation 

The central equation, as far as band theory is concerned, is the Schrödinger 
equation in which the crystalline potential V(x) can, in its most general form, be 
written as a periodic potential (with the period being that of the lattice) and where 

k (x) is a Bloch function. The Schrödinger equation is the most widely applied in 
band theory. 

3.5.1. Fourier series development for wave function and potential 

In 1D we have V(x) V(x + a), that is, a periodic function with a period that can 
be developed as a Fourier series: 

0

0

m
2

G

( ) ,       with  
1

( ) .
m

m

iG x
x am

iG xm
m

x

m
a

V x v e
v e V x dx

a

 

Taking into account the symmetry of the problem, as given by vm v–m, and by 
choosing an origin for the potentials as being such that v0 0, we can write that: 

0
    0 1

1

( ) ( ) 2 cos .m miG x iG x
m m m

m m
m

V x v v e e v G x  

For its part, wave function k (x) is a Bloch function that is periodic but where 
the period is equal to L, i.e. the complete length of the crystal. So, by using the 
periodic Born von Karmen conditions we have: 

( ) ( ) ( ) ( ).ik x Likx
k kx e u x x L e u x L  
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As also shown in problem 1 in section 3.6.1, this function ( )k x  does not contain 
the period a. As ( ) ( ) ( ) ( )u x u x a u x a a u x Na  [with L Na], we 
have 1,ikLe  so that 2 ,nk k L n  and the wave function k(x) is thus written 
as: 

0

0

n

n

2
k   and n = 0, 1, 2

( )          with 
1

c ( ) .
n

n

ik x
x Lk n

ik xn
k

x

n
L

x c e
e x dx

L

 

3.5.2. Schrödinger equation 

This equation, 
² ²

2 ²
,

m x
V E  becomes, on substituting the 

developments for V and , and on noting that 
²

²
2 :n

x
ik x

n nn k c e  

2

( )2

²
2

²
       .

2

n m n

n n m n

ik x iG x ik x
n n m n

n m n

ik x i k G x ik x
n n m n n

n m n n

k c e v e c e
m

k c e v c e E c e
m

 

In most classic textbooks kn K and Gm G, so that the preceding equation is 
written as: 

2 ( )
( ) ( ) ( )

²
.

2
iKx i K G x iKx

K G K K
K G K K

K c e v c e E c e
m

 

Then we make ²
2

² .
m KK  It should be noted that the preceding equation can 

only be satisfied if the coefficients in front of the same Fourier component are 

identical. The coefficient iKxe  is obtained for the left member’s second term when 

K also assumes the value (K – G) (because [ ] ).i K G x iKx
K K Ge e  For each 

given value of K, we should therefore satisfy the following equation: 

( ) ( ) ,K G K G KK
G

c v c Ec   
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so that: 

( ) 0.K G K GK
G

E c v c  

This is called the central equation due to its pivotal role in solid state physics. 
Given that the addition over G should, a priori, account for an infinite number of 
terms, its resolution may at first appear difficult. However, the rigid decrease in the 
coefficient vG means that only treatment of the first two or four G vectors of the 
reciprocal lattice are required. If in the development of V(x) we only bring in the two 

smallest G vectors, given by 2 ,
a

G g  the only vG coefficients which come 

into play are 2 2 .
a a

v v V  

3.5.3. Solution 

For a given value of k in the first zone, the group of equations for the system 
only account for the coefficients denoted c(K), c(k – Gi) which represent the different 
vectors of the reciprocal lattice. The initial problem is therefore to resolve N 
independent problems, each one for a permitted value of k in the first zone.  

Finally, the possible values for the energy will be obtained by writing that the 
determinant of the preceding linear system of equations must be equal to zero. This 
is because the system of linear equations under consideration (that carry unknowns 
given by the coefficients denoted by c) only have solutions if the determinant is 
zero.  

3.6. Problems 

3.6.1. Problem 1: a brief justification of the Bloch theorem 

The wave function of a semi-free electron placed within a periodic potential (and 
of a period such that the dimension of the crystal is given by L N a) is given by 

( ) ( ),ikx
k x e u x  where ikxe  is the zero order solution (free electron). To 

determine the condition that the function u(x) must satisfy: 

1) Write the condition that imposes the interaction potential on electron presence 
probability. From this deduce the wave function that satisfies the relation 

( ) ( ),x a C x  in which C is determined and is written for N times over. 
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2) By comparing the expression obtained in the paragraph above with that giving 
the progressive boundary conditions (PBC), deduce the condition on u(x). 

Answers 

1) The periodicity of the potential energy involves the periodicity of the electron 
presence probability, as the electron perceives the same interaction before and after 
a displacement that is equal to the lattice period. We can thus write that: 

2 2( ) ( ) .x x a  [3.24] 

This means that the wave function must satisfy a relation of the sort given by: 

( ) ( )ix a e x  [3.25] 

which can be rewritten as 

( ) ( )x a C x  [3.26] 

having made 

.iC e  [3.27] 

Equation [3.26] N times over gives us: 

( ) ( ).Nx Na C x  [3.28] 

2) In addition, the periodic Born von Karmen conditions (also called the PBC) 
can be written for a 1D material of length defined by L N a, as: 

( ) ( ),x Na x  [3.29] 
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from which identification with equation [3.28] finally yields 1.NC  C thus 
appears here as an Nth root of the unit so that: 

2
exp ,

s
C i

N
 [3.30] 

where n 0, 1, 2,…, N – 1.  
 
The comparison of equation [3.30] with [3.27] shows that  must therefore of the 

form 2 .
N

n  

 
Finally, seeking (x) in the form  

( ) ( ),ikx
k x e u x   [3.31] 

is quite legitimate as the zero-order solution is given by 0 ( ) ,ikx
k x e  and results 

in finding: 

2

2

(6)

(2') (5)

(7)
ikx

( ) ( ) ( )

                   = C ( ) ( ) u(x) ( )

                                       e u(x) 

N

N

ik x a ikx ika
k

i n
k k

i n

x a e u x a e e u x a

x e x u x a

e

 

with 2 ,
N

ka n  so that k was of the form 2 2 .
Na Lnk n n  
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3.6.2. Problem 2: comparison of E(k) curves for free and semi-free electrons in 
a representation of reduced zones 

The representation of E(k) within a system of smaller zones, with the help of 
a translation of modulus 2

a
n  (where n is a positive or negative integer), makes its 

tracing for a domain possible in k where , .
a a

k   

1) In question 2 below, where we will see if 'k  is a wave vector outside of the 

interval , ,
a a

 the use of a translation of modulus 2
a

A n  makes it possible 

to bring the extremity of the vector k  (defined by ' )k k A  into the interval 

, .
a a

 To justify such a geometrical transformation, show – in particular – that if 

in k' the Bloch function is given by '
' '( ) ( ),ik x

k kx e u x  and in k if the new wave 

function ( ) ( )ik x
k kx e u x  is still a Bloch function that describes the new state.  

 
NOTE.– In Chapter 5 the chosen vector A  is in fact a base vector of the reciprocal lattice. 

2) Trace the relative positions of the reduced zones for free and semi-free 

electrons with respect to an initial trace of k in the domain 3 , 3 .
a a

 

 
Answers 

1) We first introduce the vector 'k k A  in a simplified form for one 
dimension, ' ,k k A  into the expression for ' ( )k x  where ' ( )ku x  is a function 
that has the period denoted a of the lattice and that satisfies the equation 

' ( )ku x ' ( )ku x a  as ' ( )k x  is hypothetically a Bloch function. 

With k ' k A , we have '
' ' '( ) ( ) ( )ik x ik x iA x

k k kx e u x e e u x  

( ),ikx
ke u x  if we make '( ) ( ).iA x

k ku x e u x   

As 2 ,
a

A n  we have 
2 2

,a a
in x in x a iA x aiAxe e e e  so that 

'( ) ( ) ( ).iA x
k k ku x e u x u x a  The result is that the function ( )k x  

( )ikx
ke u x  is a Bloch function, as we have shown that ( )ku x  has the periodicity of 

the lattice. 
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Figure 3.8. Diagram of reduced zone for free and semi-free electrons 
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Chapter 4 

Properties of Semi-Free Electrons, Insulators, 
Semiconductors, Metals and Superlattices  

4.1. Effective mass (m*) 

4.1.1. Equation for electron movement in a band: crystal momentum  

4.1.1.1. Preliminary comments: free electrons 

As the internal potential energy of free electrons is zero, the Schrödinger 
equation is written as ² 2

² ²
0.d m

dx
E  We have seen in Chapter 2 that it is 

possible to write energy (purely kinetic origin with V 0) as kE E  
2² ²

2 2
p k
m m

 (where )p mv  when making 2
²

² .mEk  In fact, we have k kN 

(where N is an integer), and the quantification of k results form the application of the 
limiting conditions to the function . From the relationship we can deduce that: 

.p mv k  [4.1] 

Vector ,k  called the crystal momentum, is equal to the quantity of electron 
movement when, as here, we are studying electrons. If a free electron is under an 
external electric field denoted E,  then it is subject to a force given by extF qE  
that results in a variation, given by ,dp  in its quantity of movement, itself given by 

the dynamic fundamental equation. As the total force ( )TF  experienced by free 
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electrons is only the external force, with no contribution from the internal force, (it 
is assumed that Vinterior 0) then: 

ext .T
dv dp

F F m qE
dt dt

 [4.2] 

The introduction of equation [4.1] into [4.2] results in 

dk
qE.

dt
 [4.3] 

4.1.1.2. Semi-free electrons 

When these electrons are subject to an external force, we again find ext .F qE  
The electrons are assumed to move within a permitted band and have a velocity 
given by .d

dkgv  The Bloch functions being extended over all space means that at 

a given instant an electron is localized in a wave vector that is not much different 
from the average wave vector denoted k. The permitted energy is given by ,E  
so that: 

1
g

dE
v

dk
 

where E is tied to k by the so-called dispersion relation E = E(k).  
 
We thus have: 

– on one side, gdE v dk  (deduced from the expression for vg); 

– and on the other, E gdE q v dt  (obtained after stating that the variation in 
the energy dE is equal to the work produced by an external force given by –qE). 

 
From this we have: 

,
qE

dk dt   
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so that in terms of vectors: 

ext .
dk

qE F
dt

  [4.4] 

Nevertheless, unlike free electrons, the crystal moment for semi-free electrons 
k  differs from the quantity of movement given by .gp mv  Semi-free electrons 

are simultaneously subject to both external ext( )F qE  and internal int( )F  forces, 
the latter being due to the interaction of electrons with internal potential V(x) 
produced by lattice ions. In place of equation [4.2] for free electrons, the 
fundamental dynamic equation means that for semi-free electrons we now have: 

(4)
ext int ext .g

T
dv dk

F F F m F
dt dt

  [4.5] 

The upshot is that gp mv k  and the quantity of movement of the semi-
free electron is different from its crystal moment. 

4.1.2. Expression for effective mass 

With the internal potential and, more importantly, the instantaneous force 
working on a semi-free electron being unknown for an external observer, we can 
write an equation that replaces the dynamic fundamental equation. This new 
equation ties the excitation (the electric field E  that generates the external force 
given by extF – )qE  to the response of the electron in terms of its displacement 

(characterized by the velocity gv ): 

ext * .gdv
F m

dt
 [4.6] 

The coefficient denoted m* thus introduced has the dimension of mass and is 
called the effective mass (or effective masses). 

 
We thus have: 

(4) (6)
ext * ,gdvdk

F m
dt dt
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from which we derive: 

* dv g
dk

m  

where 1 ,dE
dkgv  so that 1 ²

²
,

dv d Eg
dk dk

 and finally we obtain: 

²
²

²
* .d E

dk

m  [4.7] 

NOTE 1.– For a free electron where ² ²
2

,k
m

E  we have ² ²
²

,d E
dk m

 and 

equation [4.7] gives m = m* in a result that would seem physically correct, given 
that for a free electron we have Fint 0, or rather Fext FTotal m m* . 

 

NOTE 2.– For a 3D problem, if the function E(k) is anisotropic in space, then the 
effective mass is a tensor with the components ²

² /
* ,

d E dk dki j
ijm  where i and j are 

Cartesian coordinates (i, j x, y, z).  

4.1.3. Sign and variation in the effective mass as a function of k  

4.1.3.1. Preliminary comment: the curve of E = f (k) for the dispersion relation 

presents a horizontal tangent at the zone limit (in 
a

k n ) 

In effect, at the zone limit, the solutions for the wave function are in stationary 
form (see  and   in Chapter 3) and have no propagation. As a consequence, 
the velocity of the group at the zone limit is zero: 

zone limit[ ] 0gv  

and so with d
dk

  dE
dk

E
gv  we have: 
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zone limitzone limit
 0.g

dE
v

dk
 [4.8] 

A longer, more mathematical demonstration is detailed in problem 1 at the end 
of this chapter. 

4.1.3.2. Sign of the effective mass at the zone limit 

 
Figure 4.1. Dispersion curve and sign of the effective mass 

At the zone limit ( ),
a

k  the dispersion curves E f (k) present a horizontal 

tangent following equation [4.8]. 

For values of k slightly above 
a

 (in 
a

 where we are at the bottom of the 

band), the curve E f (k) is above its tangent as at this point the second derivative is 
positive, i.e. ²

²
0,d E

dk
 and according to equation [4.7] the effective mass of the 

electron at the bottom of the band is therefore positive. 

For values of k slightly above 
a

 (in 
a

 where we are at the top of the band), the 

curve E f (k) is below its tangent as at this point the second derivative is negative, 
i.e. ²

²
  0,d E

dk
 and according to equation [4.7] the effective mass of the electron at 

the top of the band is therefore negative (Figure 4.1). 
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4.1.3.3. Variation in the effective mass as a function of k 

In general, we can state that when the curve E f (k) gives an inflection point, 
we have ² ² 0,d E dk  and for the corresponding values (for example in 

2k a  in Figure 4.1), the effective mass tends towards infinity in agreement 
with equation [4.7]. Equation [4.6] indicates that at this point the electron does not 
accelerate when acted upon by only the external force ext .F   

In 3D crystals, m* only takes on an infinite value in a given direction; in the 
other directions, its value is finite. 

When k 0, the dispersion curves of free and semi-free electrons are the same 
and m m* (Figure 4.2). 

 
Figure 4.2. Plot of m* = f(k) 
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4.1.4. Magnitude of effective mass close to a discontinuity 

This subject is also covered in problem 2 later on in this chapter. When effective 
masses close to a discontinuity are experimentally determined using cyclotron 
resonance where we can apply: 

*c
qB
m

 

in which B is the magnetic field. 

4.2. The concept of holes 

4.2.1. Filling bands and electronic conduction 

The energy levels at absolute zero are progressively filled, bottom up, to the 
highest permitted energy level, by electrons that are distinguished by their electronic 
state, that is, by their electronic wave function N  determined by their quantum 
number (N) and spin. If the number of electrons generated by the medium is just 
sufficient to entirely populate the permitted energy levels of a given band, then this 
band is described as being full. With all the electrons having been used up, the next 
band is empty. 

 
In the full band a slight external perturbation, such as an electric field or 

a thermal excitation that does not carry enough energy to move electrons from the 
full to the empty band, cannot change the total spread of electrons. This is because 
there are no energy levels free within the full band to accept electrons. The resultant 
current density is thus zero. Electrons can swap places but cannot give rise to 
a resultant electronic transport. 

 
A more mathematical demonstration of this property is shown below. In effect, 

given the definition of the current density vector we can write that: 

   full 
        band

( ).
k

j e v k  

Then by using the fact that in 1D we have (see section 4.1.1.2) 1 ,dE
dkgv  and 

vectorially 1 grad ( ),g kv E k  the current density becomes: 
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 full
      band

grad ( ).k
k

e
j E k  

With the functions ( )E k  paired in respect of k  (see Figure 4.1), we have 

 full
      band

grad ( ) 0,k
k

E k  so that the current density produced by a full band is zero, 

as in full
band

0.j  

4.2.2. Definition of a hole 

We will now look at a band that is missing just one electron, that is, a material 
with a band that when full has n electrons and where the electron is lost from the top 
of the band, given the filling rules. From the conduction point of view, the state has 
(n – 1) electrons of the material, i.e.: 

[material with (n – 1) electrons]  [material with n electrons] – [one electron]. 

The electron removed is from the band summit, and is a particle with charge  e 
and negative effective mass, as in ( e, |m*|) particle. We can thus write: 

[material with (n – 1) electrons] [material with n electrons] – [( e, |m*|) 
particle]. 

With the conduction of a material with n electrons being zero (full band), the 
preceding expression can be rewritten simply in terms of conduction: 

[material with (n – 1) electrons] – [ ( e, |m*|) particle]. 

Taking part of this expression and combining it with the contribution due to the 
conduction of a particle of charge +e and with effective mass +|m*|, i.e. (+e, +|m*|) 
particle we can then write that in terms of conduction: 

[material with (n – 1) electrons]  –[( e, |m*|) particle] – [(+e, +|m*|) 
particle] + [( +e, +|m*|) particle]. 
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The first two terms of the second member can in effect be stated as: 

–[( e, |m*|) particle] – [(+e, +|m*|) particle]  –[( e +e, |m*| +|m*|) 
particle]  0, as this particle has zero charge and zero effective mass. 

The definitive conduction term can thus be written: 

[material with (n – 1) electrons]  [(+e, +|m*|) particle]. 

It is this particle with a charge denoted +e and an effective mass +|m*| that is 
called a hole. The generalization of the preceding reasoning makes it possible to 
state that if p electrons are removed from the energy states at the top of the band in a 
material, then we have, in terms of conduction, a material with p holes. 

 
Figure 4.3 shows, for a given electric field going from left to right, the direction 

of the vectors ext , ,  ,  F v j associated with the transport of electrons and holes (at 
different energy levels in the permitted bands). We can see straight away that 
electron current density vectors at the base of the permitted bands and of holes at the 
top of the band (of course) are going in the same direction. 
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Figure 4.3. An electric field applied from the left towards the right ( E ). The direction 

of the vectors ext ,F , ,v j  is shown by:    
– the arrow                       for electrons with charge q =  e and effective mass m* < 0 at the 
band summit and m* > 0 at the bottom of the permitted band; and 
– the arrow                             for holes of charge q = +e situated by definition at the summit 
of the permitted band (effective mass +|m*|)

forbidden band 
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4.3. Expression for energy states close to the band extremum as a function of 
the effective mass 

4.3.1. Energy at a band limit via the Maclaurin development (in k = kn = a
n ) 

Around k = k0 the Maclaurin development for the energy (E) can be written as: 

2 2

( ) ( ) 2
( )

( ) .
2n

n n

n
k k n

k k

E k k E
E E k   k  

k k
 [4.9] 

As in k = k0 we have a horizontal tangent (as 
[4.8]

0)
n

dE
dk k k

 while the 

effective mass is defined by m*= ²
2 2( )

*
E k

m  [4.7], we obtain using equation 

[4.9] when k  kn: 

n( ) (k )
²

( )².
2m*k nE E k k  [4.10] 

Note that this is the expression that replaces the expression ² ²
2

k
m

E  obtained 

for free electrons. 

NOTE 1.– In the neighborhood of the zone center, where n = 0 and k0  0, we thus 
find:  

0( ) (k )
²

 E   ².
2m*kE k  [4.11] 

NOTE 2.– Equation [4.10] for the energy of an electron can be given as a function of 
|m*|. In this case we can write that: 

n( ) (k )
²

 E   ( )²
2 m*k nE k k  [4.12] 

where the + sign is for m* > 0, that is, an electron at the bottom of the band, while 
the  sign is for m* < 0, meaning an electron high up the band. 
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4.4. Distinguishing insulators, semiconductors, metals and semi-metals 

4.4.1. Required functions  

Insulators, semiconductors and metals are discerned by the way in which the 
energy levels are filled by their electrons, the latter being characterized with respect to 
their electronic state (orbital wave function and spin, or so called “spin-orbit” as in 

).N  For a rigorous treatment, we should determine the (available) energy state 
density function for semi-free electrons, denoted Z(E) and the occupation probability 
function, similarly, denoted F(E) for these energy states in the different bands. The 
function produced, n(E) = Z(E)F(E), thus represents the density function of occupied 
(full) electronic states for each energy level (E). Also, n(e)dE represents the number of 
electrons per unit volume for which the energy is between E and E + dE. 

 
In an original and simplifying step, we can state that for n(E) possible filling 

configurations, each results in a particular electronic behavior and these behaviors 
can be classed with respect to four types of material, i.e. insulators, semiconductors, 
metals and semi-metals. 

4.4.2. Dealing with overlapping energy bands 

Generally, in a representation of E = f (k), shown in the upper part of Figure 4.2, 
the last band to be totally occupied by electrons is called the valence band. Its 
highest energy level is denoted EV. The first empty or only partially occupied band is 
called the conduction band. Its lowest energy level is signified by EC. However, 
when looking at 2D or 3D materials, it is no longer possible to see E simply as a 
function of k kx as in Figure 4.2 (that is, traced for a 1D system). In effect, the 
propagation wave vector k  for each electron can be specified for each direction of 
propagation which might be listed as 1, 2, 3 and so on. This means that for the 
directions x, y and z of a material with optical/electronic axes Ox, Oy and Oz, there 
are different k values, i.e. k1, k2, k3, etc. The upshot is that different representations 
of E f (k) must be made for each direction. For example, say that direction (1) 
corresponds to the direction x used exclusively until this point. Along with this we 
have another direction (i) that has no specific alignment. In Figure 4.4 we can see 
how the representation of E f (k) can give rise to two different positions for the 
band limit energy levels denoted EVi and ECi for direction (1) with respect to the 
energy levels EV1 and EC1 for direction (1). Specifically, in case  (Figure 4.4b) we 
have EV1 < EVi < EC1. Thus there is a resultant forbidden band in the crystal, of a size 
given by 1 .C Vi GE E E E  In case  (as in Figure 4.4b), we have EVi > 
EC1 and the forbidden band disappears because the energy levels of the conduction 
band of direction (1) start filling prior to the valence band of direction (i) being 
totally filled.  
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Figure 4.4. Plots of E = f(ki) for: (a) values of EV1 and EC1 fixed by a given direction k1;  
(b) the resulting cases  and  with different positions of EVi and ECi 

Generally, when the forbidden band appears, it has a size given by the minimum 
value of E obtained from the difference between the minimum value of all the 
energies at the bottom of the conduction band (ECj) (for all directions j = 1, I, etc. 
under consideration) and the maximum value reached by the highest energy of the 
valence band (EVj) (again for all directions j = 1, I, etc.).  

4.4.3. Permitted band populations 

4.4.3.1. State density function Z(E) 

As we saw for free electrons in Chapter 2, the state density function can be 
defined either in wavenumber (k) space (reciprocal space) or in the energy space 
given by E. For the latter and in 3D space, the relevant expression is given by (see 
also equation [2.31] in Chapter 2):  

3/ 2
3

4
( ) (2 ) .Z E m E

h
 [4.13] 

For these free electrons, where there is no interaction potential with the lattice, 
the function Z(E) is thus parabolic.  
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For semi-free electrons or holes, the interaction of carriers with the lattice means 
replacing the mass (m) of free electrons with the effective mass of the carrier under 
consideration. Semi-free electrons, which have an effective mass denoted by me*, are 
distributed in the conduction band from the bottom up, the bottom being level EC 
rather than zero energy, as would be the case for free electrons. The state density 
function can be calculated just as for free electrons, with the exceptions that m and 
(E – 0) E are respectively replaced by me* and (E – EC). Equation [4.13] now takes 
on a form shown below as equation [4.14]. This equation also shows a parabolic 
evolution for energies such that E > EC (see Figure 4.5). 

* 3/ 2
3

4
( ) (2 ) ( ).C e CZ E m E E

h
 [4.14] 

Similarly, semi-free electrons are distributed in the valence band from the 
summit of the band, i.e. EV downwards so that the state density function is parabolic 
towards energies, such that E < EV. With function Z(E) still being positive, it is the 
absolute value of the effective mass that must be brought into play, so that we now 
obtain: 

* 3/ 2
3

4
( ) (2 ) ( ).V e VZ E m E E

h
 [4.15] 

To take these differences into account, if we denote the band limit by En (so that 
En is equal to either EC or EV), and make m* the general term for the effective mass 
of the carrier (be it electron or hole), then the general expression for the state density 
function for all types of carriers is: 

* 3 / 2
3

4
( ) (2| |) .nZ E m E E

h
 [4.16] 

We can now represent the overall evolution of the state density function Z(E) for 
electrons in Figure 4.5, where just as in section 4.4.2 we can distinguish two specific 
situations: 

– case  where there is no band overlapping and there is an energy gap such that 
E EG; 

– case  where there is an overlap of valence and conduction bands and as 
a consequence a suppression of the forbidden energy zone. 
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 Figure 4.5. State density function for semi-free carriers  

where there: ( ) is no band overlap; and ( ) is band overlap 

4.4.3.2. Occupation probability function F(E) 

Fermi-Dirac distribution is necessary when describing the distribution of 
electrons (or holes), as it governs the quantum behavior of a range of specific 
particles: 

– under thermodynamic equilibrium; 

– without mutual interactions; and 

– likely subjection to an external field. 
 
This is in effect a Boltzmann distribution modified by a condition due to the 

Pauli principle. Using Fermi statistics (details of which can be found in most 
courses on thermodynamic statistics) the occupation probability of a given energy 
level E by electrons is described by the Fermi-Dirac function (where EF is Fermi 
energy): 

1
( ) .

1 exp E EF
kT

nF E  [4.17] 

This function is such that Fn(EF) =1/2. When T 0K we have Fn (E < EF) = 1 and 
Fn (E > EF) = 0 (see Figure 4.6b). When T 0K, we obtain the result plotted in 
a continuous line in Figure 4.7b. 
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To obtain the distribution law for holes denoted Fp(E), we first note that a given 
energy level E is either occupied by an electron or occupied by a hole (electron 
vacancy). This trivial condition is transcribed as Fn(E) + Fp(E) = 100% = 1, so that 
we can state that: 

Fp(E)  1 – Fn(E)  1  
1

1 exp .FE E
kT

 [4.18] 

This function is such that Fp(EF)  1/2, and when T 0K we have Fp (E < EF)  0 
and Fn (E > EF) = 1 (see Figure 4.6b). When T 0K, we find the representation 
given as a broken line in Figure 4.7b.  
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Figure 4.7. For T  0K, qualitative evaluations of the function n(E) from functions Z(E)  

and F(E) when EF is well localized in the middle of the forbidden band for a system  
of bands that: ( ) do not overlap; ( ) overlap 

4.4.3.3. Electronic densities in the permitted bands: distinction between insulators, 
semi-conductors, metals and semi-metals 

If n(E)dE represents the number of electrons per unit volume having energy 
between E and E + dE, the electronic density n(E) is equal to the product of the 
number of available states between E and E + dE (or rather Z(E)dE) and the 
occupation probability Fn(E) of these states. This can be stated as n(E) Z(E)Fn(E). 

Similarly, for holes we will have a density p(E) given by p(E) Z(E)Fp(E). The 
equations for these densities will be developed in the second volume entitled 
Electronics and Optoelectronics of Materials and Devices. For now, we will limit 
ourselves to qualitatively studying the filling of permitted bands. 
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4.4.3.3.1. When at absolute zero  

In Figure 4.6 the Fermi level is placed broadly in the middle of the gap – 
a position that will be justified later on for semiconductors – however, it can be 
found in the permitted band as in the case of certain metals.  

 
Qualitatively, at absolute zero, when there is no band overlap, as in case  on the 

left, the last occupied band is totally filled (valence band) while the following band 
is totally empty (conduction band) as in Figure 4.6c. The electronic gap EG (width of 
the forbidden band) is thus determined by the difference in energy between the base 
of the conduction band (EC) and highest point of the valence band (EV). When this 
gap EG  EC – EV is:  

 sufficiently large (typically > 5 eV) to stop significant passing of electrons 
between bands by thermal agitation kT (Figure 4.7), the material is considered to be 
an insulator;  

 sufficiently narrow (typically < 3 eV) to allow significant passing of electrons 
from the valence to the conduction band by thermal agitation kT (Figure 4.7), the 
material is considered an intrinsic semiconductor. 

 
Qualitatively, at absolute zero, when there is a band overlap, as in case  on the 

right-hand side of the figure, all the levels below EF are filled while those above 
remain empty. This partially filled band is in reality a conduction band. The position 
of the Fermi level at absolute zero EF(0) is thus defined by the equality:  

pot

(0)
( )  

FE

E
Z E dE  density of electrons in the conduction band 

where Epot is the potential energy at the base of the conduction band. In fact two 
situations can be distinguished in this latter situation: 

– either the overlap of the bands is weak and few states are involved so as to give 
a semi-metal; or 

– the overlap of bands is strong with many states involved and we have a metal. 
 
Outside the case presented in Figure 4.6 where the Fermi level is in the center of 

the forbidden band, we should also consider the case where EF is found within a 
permitted band. In this situation, the states of the permitted band are filled up to the 
level EF and then bands above EF are empty. With the occupied states not separated 
from the empty states by a forbidden band, we have a metal. 
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4.4.3.3.2. When T  0K  

Here the function Z(E) is not modified, while the Fermi function does not 
suddenly pass from a value equal to one to being equal to zero (and vice versa) in 
E  EF. The change occurs progressively, more so as T increases. 

In case  on the left-hand side of Figure 4.7, there is no overlapping of the 
bands. We can now see that there are states at the top of the valence band (VB) that 
are unoccupied (partially filled band) while there are some states at the bottom of the 
conduction band (CB) that are becoming filled. The movement of electrons from the 
valence to the conduction band is even greater when EG is small (as in 
semiconductors) and when the temperature is high. With the total number of 
electrons remaining constant in a given volume, the number of empty levels in the 
VB must be equal to the number of filled levels in the CB. Because function Z(E) 
varies as a parabola in both the heights of the VB as well as in the depths of the CB 
and function F(E) is symmetric around the Fermi level (at point EF, ½), the Fermi 
level must be placed well near the middle of the forbidden band so that the empty 
and hatched surfaces shown in Figure 4.7c of the VB and the CB, respectively, are 
equal, so that: 

1
.

2F V CE E E  

In case  on the right-hand side of Figure 4.7, where there are overlapping bands, 
the abrupt transition at T 0K between the full and empty level is considerably 
smoothed at T 0K. The permitted band levels remain partially empty and the 
metallic or semi-metallic behavior is retained when T 0K, regardless of temperature. 

4.4.3.3.3. Conclusion 

A normal representation of the band scheme is given in Figure 4.8, where we are 
now dealing with an intrinsic semiconductor. The electronic and hole state density 
functions, n(E) and p(E) respectively, are detailed. 

 Other band representation schemes are used, in particular that of reduced zones 
(see also section 3.6.2). Instead of representing the dispersion curve E f (k) over all 
variations in k (which would bring in various values of k as in , 2 ,3 ,

a a a
k  etc., 

for which we would see the discontinuities shown in Figure 4.2 for insulators and 
semiconductors), the E = f (k) is represented simply for values of k between 

a
 and 

.
a

 However, this is also for the whole energy range brought into the zone given 
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by , .
a a

 The curves represent energy with the help of an appropriate 

translational modulation of the form 2 
a

n  (translation modulation equal to that of 

an appropriate vector of the reciprocal lattice so that the translation conserves its 
Bloch function properties in each zone. This is further described in Figure 4.9 where 
the number of each zone is also shown. 

 
Figure 4.8. (a) Band filling for a intrinsic semiconductor; (b) state density  

functions; (c) occupation probability functions; and (d) concentration functions 

The representation shown in Figure 4.9 is that of a 1D medium (see 
section 3.6.2) when the extremities of the curves are at k  0. In a 2D or 3D media, 
where the overlapping zone is not necessarily in the same direction, we can end up 
with the schemes shown in Figure 4.10. In the direction kx where the lattice repeat 
unit is denoted by a, the various zones are brought back into the zone defined by the 

interval 0, .
a

 Similarly, in the ky direction where the lattice repeat unit is 

denoted by b, the various zones are brought back into interval 0, .
b

 Figure 4.10a 

thus represents an insulator/semiconductor (lower band full and upper band empty at 
T OK), Figure 4.10b for a metal with the last occupied band being partially full 
(leaving free the upper part of the band where electrons can move when influenced 
for example by an electric field), and Figure 4.10c for a semi-metal due to the weak 
overlap of bands. 
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 Figure 4.9. Diagram of reduced zones, where each zone is given an n number 

 

k 

a
 

a
 

E 

O 

n  1 

n  3 

n  2 

Figure 4.10. Band structure for: (a) an insulator with a fully occupied  
last band; (b) a metal where the last occupied band is only partially filled;  

and (c) a semi-metal with band overlap 
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4.5. Semi-free electrons in the particular case of super lattices 

A practical example can be given using the problem below. 

A heterostructure is based on three pieces of semiconductor (SC) as shown in the 
figure just below. A thin SC1 slice of thickness denoted d along Tz and in the order of 
10 nm is sandwiched between two layers of the same SC2. In directions Tx and Ty the 
L dimensions of SC1 and SC2 are considerably greater than d. Finally, the “gaps” of 
SC1 and SC2, respectively denoted as EG1 and EG2, are such that EG1 < EG2. 
 

 
 Figure 4.11. Heterostructure based on three pieces of semiconductor 

The heterostructure can be represented by a theoretical model in which 
movement is separated into a particular plane of the structure (plane cTy) and in the 
perpendicular direction (Tz). The function is thus given as: 

(x, y, z)  (z) (x, y), 

and it is assumed that the electronic states at the SC1 level of the SC are those of an 
electronic gas (at zero potential) in 3D, with an effective mass m* (which thus takes 
interactions between electrons and the lattice into account as m* m where m is the 
mass of a free electron). 

 
It is also assumed that these electrons: 

– move freely in planes parallel to xTy; and  

– exhibit limited displacements within zone 0  z  d due to the existence of 
potential barriers (that are assumed to be infinite within z  0 and z  d in this 
theoretical study). 
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Before approaching the example problems, we should note that if the wave 
function is the product of two functions, as in (x, y, z)  (z) (x, y), then the 
energy solution from the Schrödinger equation is given by E  Ez + Ex,y and the 
behavior in this system is the same as that in a classical potential box. 

1)  

a) Write the Schrödinger equation for the displacement of electrons (in SC1) in 
the perpendicular direction (Tz). 

b) Give the form of the wave function [ (z)] using fixed boundary conditions 
(FBC) that gives a stationary solution and for which the wave function takes nodes 
as extremities. Justify this choice. 

c) Deduce the conditions for quantification (with the help of a quantum 
number denoted nz for which the values will be given) of the wave vector 
(component kz) and corresponding energy Ez. 

d) With m* (AsGa) = 0.066 m (where m is the ususal mass of the electron) and 
d = 10 nm, give the numerical value of the first three permitted energies 

1 2 3
,  ,  z z zE E E  in eV. 

2) 

a) Write the Schrödinger equation for the displacement of electrons (in SC1) in 
the plane xTy. 

b) Give the form of the wave function (x, y). Justify the use of progressive 
boundary conditions (PBC, otherwise called Born Von Karman boundary 
conditions) to determine the quantification conditions (with the numbers nx and ny to 
be determined) of the wave vector (components kx and ky). As indicated in the figure, 
extensions of the semiconductor in directions Tx and Ty are equal to L, where L is 
considerably greater than d by several orders of size. 

c) Deduce the energy values , .x yE  

3) Give the final expression for the quantified energy of the electrons of SC1 and 
determine the minimum value (E1) of this energy. 

4) Making k//  2 2
x yk k  and k = kz: 

a) give on the same plot the dispersion curve for Ex,y  f (k//) and Ez  f (k ), 
and then E  f (k//) and E  f (k ); 

b) detail the progressive filling of the permitted level. Determine, in particular, 
the conditions on nx and ny when going from nz  1 to nz  2; 



Properties of Semi-Free Electrons     109 

5) For direction Tz, we suppose that the touching semiconductors have the same 
reference potential (vacuum level) and it is with respect to this that we place the 
bottom of the conduction bands (due to electronic affinities 1 for SC1 and 2 for 
SC2). The structure used in this example is: AlAs/GaAs/AlAs where in eV we have:  

EG1 (GaAs) = 1.43, 
EG2 (AlAs) = 2.16,  

1 (GaAs) = 4.07,  

2 (AlAs) = 3.5. 

a) Describe the positions of the conduction band minimums and valence band 
maximums for structure SC2/SC1/SC2 with respect to Tz. It should be noted that, if 
required, the electronic affinity is the difference in energy between the vacuum level 
and base of the conduction band. 

b) Indicate the height of the potential barrier at the interface SC2/SC1. Give an 
approximate position of the above evaluated energy levels 

1
,zE  

2
,zE  

3zE on the 

diagram. Detail the nature of approximations made on this result in order to give the 
approximate energy levels. 

c) Also give the position Ez1(t) of the holes in GaAs by taking for their 
effective mass the value |m*(t)| = 0.68 m. 

d) From this deduce the radiation energy that might be emitted from GaAs. 

Answers 

In order to study the electronic states in a superlattice structure, where there are 
two semiconductors that are such that EG1 < EG2, we can denote two types of 
movement: 

– one along Oz where SC1 presents a small dimension d, for which we will 
privilege the stationary solutions for the wave function through the use of FBC; and 

– one along directions Ox and Oy where SC1 has a large dimension with respect 
to d (plan0065 xTy). Progressive solutions are favored for the wave function through 
the use of PBC. 

We make ( , , ) ( ) ( , )x y z z x y (separation of variable), and the energy will 
be in the form , .z x yE E E  

1) 

a) With respect to Tz, the Schrödinger equation is written as: 
*² 2

² ²
0m

z zE . 
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b) By making 2 *
²

² ,m
z zk E  the stationary solutions for the wave function 

can be written as: ( ) .ikz ikzz Ae Be  

The use of FBC for the direction Oz where SC1 has a small dimension makes it 
possible to state that the wave function presents a node at the origin: (0) 0,  from 
which 0,  or rather  A B A B  and from which it can be deduced that 

2
( ) 2 ,

ikz ikze ez A  which can also be written in the form: 

2
( ) 2 2 sin .

ikz ikze e
zz A iA k z  

Assuming that the wave function has a node at each extremity is the same as 
assuming that at these extremities the barrier between adjacent semiconductors is 
practically infinite, which will require verification a posteriori. 

c) The alternate limiting conditions thus give (d) = 0, which results in sin 
kzd  0, from which ,,  so that also 

dz z z zk d n k n  where nz  1 and 

an integer and not equal to zero. The latter is because otherwise the solution would 
give (z) = 0 which would correspond to the absence of particles with a presence 
probability equal to zero. 

We can go on to deduce that ² ² ² ² ²
2 * 2 * ² 8 * ²

² ².k hz
m m d m dz z zE n n  

d) We find: 

1

2

3

0.057 eV,
0.23 eV,
0.52 eV.

z

z

z

E
E
E

 

2) 

a) Schrödinger’s equation for the plane xTy is written as: 

*

,
² ( , ) ² ( , ) 2

( , ) 0
² ² ² x y

x y x y m
E x y

x y
 

b) The separation of variable is obtained by making: 

( , ) ( ) ( ),x y X x Y y  
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from which we find energy in the form , .x y x yE E E  Placing this in to the 
Schrödinger equation we obtain the sum for the two equations independently in x 
and y directions: 

² ( ) 2 *
( ) 0

² ²
² ( ) 2 *

( ) 0.
² ²

x

y

X x m
E X x

x
Y x m

E Y y
y

 

By making 2 *
2

2 m
x xk E  and 2 *

2
2 ,m

y yk E  the search for progressive 

solutions with respect to these large dimensions x and y leads us to (with respect to x):  

( ) .xik xX x Ce  

The use of the corresponding PBC for progressive solutions makes it possible to 

write that: ( )( ) ( ) ,x x
CLP

ik x ik x LCe X x X x L Ce  from which is deduced that 

1.xik Le  

The upshot of this is that we should have 2x xk L n  with .xn  nx is 
an integer that can be positive, negative or zero. The last value will simply yield 
a constant probability presence. 

Similarly, for Oy we obtain: 2  with *.y y yk L n n  

c) From the preceding values of kx and ky we can deduce the value of the 
energy for movement in the plane xTy: 

2 2
,

2

²
2 *

² 2
                             ² ²

2 *
²

                             ² ²
2 * ²

x y x y x y

x y

x y

E E E k k
m

n n
m L

h
n n

m L
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3) The final expression for the quantified energy E of electrons in SC1 can thus 
be written as: 

,

2
2 2

2
2 2

² ² 4
  

2 * ² ²

² 4
  .

8 * ² ²

z x y

z
x y

z
x y

E E E

n
n n

m d L

h n
n n

m d L

 

The minimum value in E, denoted E1, for the lowest values in nz, nx and ny, i.e. 
1zn  and 0x yn n  gives: 

11
0

²
.

8 * ²
z

x y

n
n n

h
E E

m d
 

4) 

a) By making 2 2
/ / x yk k k  and ,zk k  we can trace the dispersion 

curves for Ez  f (k ) and Ex,y  f (k//), from which we can deduce the curves 
E  Ez + Ex,y  f (k//) and E  f (k ). See the following figure obtained by 
observing the comments below. 

 
In particular, we can note that: 

– on the other hand:
2 2 2 2

22 * 2 * 2 *
2 2 2 ,

m m m d
z z zE k k n where nZ 1, 2,  

3,… and 
d

 is large as d is small (with respect to L), so that zE  is large (compared 

to , ),x yE  and that 1 1( ) ;
zz nE E  

– on the other hand: 
2 2 2 2

2 * 2 * 2 *

22 2 2 2 2
, ( )  = ( )

m m m Lx y x y x yE k k k n n  

where xn  and yn  and 2
L

 is small, as L is large (with respect to d). 

 
The result is that ,x yE  is small (with respect to ),zE  and that k  can be 

written as 2 2 2 40, , 2, 2 ,...
L L L L

k  
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b) The progressive occupation of levels is in the order E1, E 2, E 3, E 4 and so 
on, as shown in Figure 4.11. As long as 2 1 , ,[ ] ,

x yz z x y n nE E E  the obtained 

energy E remains that obtained with nz 1, so that: 

2
2 2 2 2² ² ² ² ² 2

2 1 ,
2 * ² 2 * ² 2 * x yn n

m d m d m L
 

from which we can deduce: 

2 2² 4 ²
3 ,

² ² x yn n
d L

 

thus giving the condition: 3 ²
4 ²

2 2 .L
dx yn n  

d
 

2
d

 

2
L

 

2
2

L
 

4
L

 

k
 

k
 

E 

O
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n

E
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n
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Figure 4.12. Dispersion curves of Ez = f(k ) and  Ex,y = f (k//) from which 
we can obtain the curves of E = Ez + Ex,y = f (k//) and E = f(k ) 
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Thus, to go from nz 1 to nz 2, it is necessary that 3 ²
4 ²

2 2 .L
dx yn n  

5) 

a) Taking the potential energy origin to be the vacuum level, the energies in 
the direction Tz are spread as indicated in Figure 4.12. 

 
In direction Oz, the energy levels are quantified and the discrete levels 

correspond to those of a potential well, as shown in the figure above for levels Ez1, 
Ez2, and Ez3. Due to the energy difference between conduction bands, the electrons in 
the conduction band of SC2 accumulate in the potential wells formed in the 
conduction band of SC1. If SC2 is doped, this number of electrons is high while SC1 
is highly degenerate without even being doped. In other words, there is a high 
number of electrons in the conduction band so that the semiconductor degenerates 
towards a metallic state. The spatial separation of a high number of electrons into 
SC1 as diffusion centers (as many as there are doping agents in SC2) favors a high 
mobility of electrons in SC1.  

 

 
Figure 4.13. Energy levels in the structure AlAs/Ga As/AlAs 

b) The potential height of the interface between SC2 and SC1 is: 

W0 = 1(GaAs) – 2(AlAs) = 0.57 eV. 
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In the potential wells, along Oz we can place the Ez levels (relative to the base of 
the conduction band): 

1

2

3

0.057 eV,
0.23 eV,
0.52 eV.

z

z

z

E
E
E

 

Finally, the approximation of an infinite height for the potential wells previously 
used to determine wave functions and energies is acceptable when electrons are 
situated on the level denoted Ez1; however, it is no longer acceptable for level Ez3. 

 
For holes, the barrier is given by: 

2 2 1 1 5.66 5.50 0.16 eV.G GE E  

c) With respect to the summit of the GaAs valence band (with EV = 0), the 
position of the hole accepting layer is given by: 

0
2 2 2 2 21

2 2
1 * * 2 2*
( ) 5.7 meV.

2 2 2

V

z

E
n

z V z V z
t t t

E t E k E n
m m d dm

 

d) The transition has a frequency  such that: 

1 1 1( ) 1.6 eV.z G zh E E E t  

We should note that Ez1, like Ez1(t), can be adjusted by a change in the value of d 
(width of the GaAs slice). This makes it possible to change the frequency (and thus 
the wavelength) of the emission. 

We can also note that the frequency that is emitted is as high as that emitted by 
GaAs alone. In addition, as the extrema of the CB and VB bands are localized on the 
same SC1 (GaAs), recombinations are direct and very easy, and this it what defines a 
so-called type I heterostructure. They find applications in devices such as lasers, due 
to their high efficiency in photon emission. They were first described by L. Esaki, a 
winner of the Nobel Prize for physics in 1973. 

The deposition of such structures in multi-layer structures, with a periodic 
repetition along Tz, introduces a supplementary periodicity that spreads the Ez levels 
into bands of electrons or holes.  
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4.6. Problems 

4.6.1. Problem 1: horizontal tangent at the zone limit (k  /a) of the dispersion curve  

Using the relation E f (k) obtained in Chapter 3 for 
a

k  (equation [3.16]), 

show by calculation how the energy curves E f (k) give a horizontal tangent at 
the points where the energy becomes discontinuous. 

Answers 

The theory for semi-free electrons in a 1D medium (section 3.2.4) makes it 
possible to state that for values of k close to 

a
 (coefficient A1 being large) there is 

a double condition on the value of the energy that equation [3.16] translates as: 

2
2 0

4
2 2 ²

²
² ²
μE μE μ w

k k  

where 2 .
a

 

 
The left-hand side member is a function of E and k, while g (E, k) is such that 

2² 0
4( , ) .

μ w
g E k  If we differentiate this equation, we obtain ' ' 0,E kg dE g dk  

or rather 
'

' .dE gk
dk gE

 As we wish to show that 0,dE
dk k

a

 it suffices from the 

preceding equation to show that '[ ] 0.
k

a
kg  So, calculating '

kg  gives us: 

2
' 2 2 2 2

2 ² 2 ,
² ²k

g μE μE
g k k k k

k a a
  

from which  

' 2 2 ² 2 ²
2 0,

² ² ² ²k k
a

μE μE
g

a a a a
 

which is the answer required. 
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4.6.2. Problem 2: scale of m* in the neighborhood of energy discontinuities  

1) The preceding sections detailed two conditions on energy for semi-free 
electrons placed in a potential defined by V(x) w0 cos x. Now show that: 

20 0 0 0 2
0

1
.

2 k k k kE E E E E w  

2) In the neighborhood of a discontinuity, we can state that 
a

k k  where 

a
k  and k > 0 or k < 0. By making ²

2

20 ,
m aBE  show that: 

0
0 0

0

² 4
² 1 .

2 2
B

B
E w

E E k
m w

 

3) Give the limiting values for E for a discontinuity obtained for 
a

k .  From 

this deduce the size of the forbidden band. 

4) In this problem, |w0| 2 eV and a 0.3 nm. Calculate the ratio *m
m

 for the 

bottom of the second band and for the top of the first band. 

Answers 

1) The theory for semi-free electrons in a 1D medium makes it possible to state 
that for values of k close to 

a
 there is a double condition on the energy value. The 

compatibility of these two conditions brings us to equation [3.16]: 

2 2
0²² ²

.
2 2 4

kk w
E E

μ μ
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By making ² ²
2

0 k
μkE  and 

2²
2

0 k

μkE  (where 2 ),
a

 this equation 

can also be written as 
2
0

4
0 0( )( ) ,

w
k kE E E E  which is a second degree 

equation: 

0 0
2

0 0 0² ( ) 0.
4k k

w
E E E E E Ek k  

Its solution is written as: 

220 0 0 0 0 0 01
4 ,

2 4k k k k k k
w

E E E E E E E  

which is also written as: 

20 0 0 0 2
0

1
.

2 k k k kE E E E E w  

2) The preceding equation is for energy in the neighborhood of 
2

.
a

k  

 
Making 

2
,

a
k k k  where k > 0 at the top of the band, and k < 0 

at the bottom of the band, and in addition assuming that ,
a

k  we have for 

values of 
2

k k  the equations ² ²
2 4

0 ²
μkE k k  and 

² ²
2 4

0 ² .
μkE k k  

 
Under these conditions the preceding equation for E can be written as: 

1/ 22

0 2
0

1 ² ² ² 4 ² ²
2 ² 1 .

2 2 2 2
k

E k w
m m w
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By making 

2
2 2

0 0² ²
,

2 2 2

a
B k aE E

m m a
 

the two solutions for energy are such that: 
– first solution: 

1
2 2 2 2 2 20 2 0

(1) 2
0

1
2 2 2 22 00

2
0

2 0
2 0

0

4.4
1

2 2 2 2 4

4.4
                1

2 2 2

4
                1

2 2

B

B

B

w k
E E k

m m m w

w k
k E

m m w

E w
k

m w

 

– second solution: 

0
0 0

(2)
0

² 4
² 1 .

2 2
B

B
E w

E E k
m w

 

Both solutions can be brought together in the equation written: 

0
0 0

0

² 4
² 1 .

2 2
B

B
E w

E E k
m w

 

3) At the limit, as 0:k  
– the second solution goes towards  

0 0
(2) .

2B
w

E E  
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 With w0 < 0, this solution is for the bottom of the band where the value of k 
introduced into the initial expression, ,

a
k k  must be negative. 

– the first solution tends towards 0 .
2

0
(1)

w
BE E  

 
With w0 < 0, this solution is for the top of the band where the value of k must 

be positive. 

 
 
The gap between the two solutions for the energy is equal to |w0| = EG. 

4) To calculate the effective mass at the top of the band (where it must be 
negative), we will use the expression for E corresponding to the first answer to 
problem 2, that is: 

0
0 0

(1)
0

² 4
² 1 .

2 2
B

B
E w

E E k
m w

 

This gives the effective mass as 
²1 1 (1)

* ² ²(1)
.

E

km
 Because 

2
,k k  we can 

note that  

(1) (1) (1) (1) (1)² ²
.

² ²

E E E E Ek
k k k k k k

 

k

E 

EB
0        w0 

first solution 

second solution 
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With  

0
(1)

0

² 4
1 ,BE E

k
k m w

 

from which 

0
(1)

0

² ² 4
1 ,

²
BE E

k m w
 

we deduce that: 

0
(1)

*
0(1)

²1 1 1 4
1 .

² ²
BE E

k m wm
 

Numerically, with w0 = –2 eV and a 0.3 nm, we obtain 0 4.2 eV,BE  from 
which: 

*
(1) 0.135.

m

m
 

To calculate the effective mass at the bottom of the second band (where it must 
be positive) we use the second expression for E found in the answer to problem 2, 
i.e.: 

0
0 0

(2)
0

² 4
² 1 .

2 2
B

B
E w

E E k
m w

 

This gives the effective mass as: 

0
(2) (2)

*
0(2)

² ²1 1 1 1 4
1 ,

² ² ² ²
BE E E

k k m wm
so that *

(2) 0.106.m m  
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In the figure above, we can note that if w0 is large (strong interaction with the 

lattice) the permitted bands are relatively narrow (flat) and ² ²d E dk  is small. Close 
to the discontinuity, 1* ² ²m d E dk is thus just as large (or small) as the 
interaction is strong (or weak). When k increases (on the right of the discontinuity) 

² ²d E dk decreases and m* increase up to a infinite value in the middle of the 
permitted band (m* is at a minimum at the base of the band). 

4.6.3. Problem 3: study of EF(T) 

We showed in Chapter 2, problem 4 that Fermi level of a 3D metal was practically 
independent of temperature, assuming the conduction electrons are free electrons. Is 
this property still valid if the electrons of the metal are assumed to be semi-free? 

Answers 

For a 3D metal that has a metallic character originating from electrons placed in 
an incompletely full conduction band (typically half-full as indicated in Chapter 6), 
the state density function [Z(E)] takes on the same form for semi-free electrons as 
for free electrons. Only the nE E  term must be replaced by the term ,E  
where En EC is the potential energy of the bottom of the conduction band. The 
other functions (Fermi-Dirac notably) remain invariable. Simplifying, so as to not 
have to go through the calculations again, we can suppose that a judicious choice of 
origins at the bottom of the conduction band will suffice (so that En EC 0), as this 
choice is the same as fixing the value of nE E  to that of .E  Z(E) thus takes 
on exactly the same form as for the free electrons as long as the mass of the electron 
is replaced by the effective mass of the semi-free electron. The property of quasi-
invariability of the Fermi level with temperature is thus retained when going from 
using free to semi-free electrons to represent metal electrons.  

k

E 

EB
0     w0  

                large 
w0  
small 

² ²   
large
d E dk  

² ²  smalld E dk  



 

Chapter 5 

Crystalline Structure, Reciprocal Lattices  
and Brillouin Zones 

5.1. Periodic lattices 

5.1.1. Definitions: direct lattice 

A lattice is a periodic (hence regular) arrangement of points called nodes. At 
each node the base of an atom is attached, the nature of which depends on the 
solid.  

In 3D, the lattice is defined by three fundamental vectors denoted , ,a b c  that are 
such that the atomic arrangement is identical around a point P defined with respect 
to the origin O by ,r OP  and around a point P’ defined by ' '.r OP  The vector 

'r  must be such that 'r r T  where T  is a translational vector defined by 

1 2 3 ,T n a n b n c  and where n1, n2 and n3 are integers. 

Furthermore, we can see that the lattice, which is characteristic of crystalline 
structures, is created by the addition (superposition) of the base (ellipsoid) to each 
node (point) of the crystal.  

Thus, any two points of a lattice are always linked to one another by an 
appropriate translational vector .T  
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Figure 5.1. Imaginary crystal element where nodes are represented  
by points encircled by an ellipsoid, representing the base of an atom 

In the 2D figure above we can see that the atomic environment is identical 
around points P and P’ with each being linked to one another by the vector 

1 2T = n a + n b  which is such that n1 = 2 and n2 = 3. The vectors a and b  shown in 
the figure are fundamental vectors. 

The parallelepiped defined by the fundamental vectors , ,a b c  is called the 
primitive unit cell, and is the smallest unit possible. The volume of the primitive unit 
cell is equal to  | ( ) |.cV a b c  On average, each parallelepiped unit cell 
contains one node, and each node is shared with four cells below and four cells 
above the base plane of the node itself. In effect, each node is shared between eight 
cells and as there are eight nodes per cell (at the eight tops of the parallelepiped) 
with each being shared with eight other cells, we have an average of one node per 
cell.  

 

Figure 5.2. Parallepipedic structure with an average one node per cell  

The various crystalline structures belong to different types of lattice. In all there 
are fourteen Bravais lattices (or “space lattices”), with the simplest structures being 
simple cubic (sc), body-centered cubic (cc), face-centered cubic (fcc), tetragonal, 
orthorhombic, hexagonal, triclinic, etc. (see any good book on crystalline structures 
for futher details). 
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5.1.2. Wigner-Seitz cell 

There is another type of primary cell with a volume equal to = | ( ) | .cV a b c  
It is the Wigner-Seitz cell that is found in the following manner. As shown in 
Figure 5.3: 

– the lines between a given node and its neighbors are traced; 

– another line (or plane in the case of 2D lattices) is drawn normal to the first 
lines at their mid-points; and 

– the volume (or the smallest surface) enclosed by these lines (or plane) is the 
Wigner-Seitz primary cell. This cell can cover or fill the whole space of the lattice.  

Figure 5.3. Wigner-Seitz cell 

5.2. Locating reciprocal planes 

5.2.1. Reciprocal planes: definitions and properties 

All nodes of a lattice can be grouped into classes of parallel and equidistant 
planes called reticular planes (there are in reality an infinite number of reticular 
planes). The position and orientation of a reticular plane is determined by any 
three points (nodes) in this plane. If the base contains only one atom, then the plane 
contains three unaligned atoms. These nodes can, in certain cases, determine the  
so-called cleavage plane. 

5.2.2. Reciprocal planes: location using Miller indices 

5.2.2.1. Definition of indices 

If each of the three nodes that define the reciprocal plane are on an axis that 
carries the fundamental vectors , , ,a b c  then the reciprocal plane can be determined 
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using the abscissae of the nodes with respect to the axis. So if, for example, the three 
nodes defining the reciprocal plane have the coordinates (with respect to the origin 
of the fundamental vector) (m, 0, 0), (0, n, 0) and (0, 0, p), then the plane can be 
found using the respective numbers indicated by m, n, and p. An example is shown 
in Figure 5.5a using the nodes M, N and P. 

If a reciprocal plane is parallel to one of the fundamental vectors, then the 
preceding numbers are infinite (see Figures 5.5b and 5.5d). To remove this slight 
inconvenience, we can use Haüy indices, which are the inverse of the preceding 
numbers. The result is given in simple fractions (that Haüy termed rational indices) 
that are rather difficult to manipulate. Because of this, Miller proposed the use of 
whole indices obtained from the multiplication of simple fractions 1 1 1, ,

m n p
 by the 

same number K. K should be as small as possible so that the result is a succession of 
integers (hkl). These numbers are called Miller indices, and are such that:  

1 1 1
,  ,  .h K k K l K

m n p
 

For example, the coordinates of the point of intersection between a reciprocal 
plane and the axis of the fundamental vectors , ,a b c  are: (4, 0, 0), (0, 1, 0) and (0, 
0, 2). With K 4, we have: 

1 1
4 1 ;  1 4 4 ;  4 2 .

4 2
h k l  

The resulting Miller indices are written in brackets, i.e. (142). 
 
If a reciprocal plane cuts through the negative part of the axis, then the 

corresponding index is negative. This is indicated by writing the negative sign above 
the index concerned, as in ( )hkl  for an intersection between the reciprocal plane and 
the axis carrying c (see Figure 5.5c). 

 
The directions in a crystal are also defined by the three integers h, k and l, but 

this time using square brackets, as in [hkl]. They are also such that they are the 
smallest possible integers proportional to the directing cosines of the angles formed 
between the direction considered and the cell axis. The direction given by [hkl] is 
only perpendicular to the planes defined by Miller indices in very specific cases, 
such as when involving the cubic structure. 
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5.2.2.2. Equation for reciprocal planes located with Miller indices 

Figure 5.4 shows a system of axes and a plane ( ). OH is the line that passes 
through the origin O and is normal to the plane ( ). u  is the unit vector in the 
direction OX that carries OH. The vector has components (cosine directors) denoted 

, , . 

 

Figure 5.4. Location of the plane ( ) 

For a point (A) (with coordinates x, y, z) to belong to the plane ( ), it suffices that 
its projection on the axis OH is at H. Thus,  ,u OA OH  and by making 

,OH e  we obtain: 

,x y z e  

which can be rewritten as: 

1.
e

x y
e e

 

If A  M (m, 0, 0), where M is the point of intersection between ( ) and Ox, the 
preceding equation for the plane where y z 0 gives 1,

e
m  so that 1 .

e m
 

Similarly, by making A tend towards N (0, n, 0) and P (0, 0, p) we can successively 

( ) 

u  

X 

x y 

z 

H 

A (x, y, z) 

i j  

k

O 

e
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deduce that 1
e n

 and 1 .
e p

 On substituting these values into the equation for 

the plane ( ), we now obtain: 

1.
x y z
m n p

 

The Miller indices of the plane ( ) are: 1 1 1, , ,
m n p

h K k K l K  and the 

equation for the plane (hkl) is thus given by: .hx ky lz K  

5.2.2.3. Examples using the simple cubic system 

Figure 5.4 shows four examples of a simple cubic structure with its side length 
equal to a and with different reciprocal planes located by Miller indices.  

5.3. Conditions for maximum diffusion by a crystal (Laue conditions)  

5.3.1. Problem parameters  

A crystal can be seen as made up of nodes that carry charges (being attached to 
atoms or ions) capable of re-emitting (more often called diffusing) an incident wave 
in any direction. Here we are concerned with discovering the directions in which 
diffusion is at a maximum.  

 
If ( , k ) and ( , k ' ) are the angular frequency and wave vector of an incident 

wave and a diffused wave, respectively, then for a crystal that is assumed to be 
linear we can state that  =  so that 'k k . Here we have an elastic diffusion 

for which the incident wave’s quantum energy conservation, meaning that 
'  so that '  and '.k k  We will thus look at the form of the diffused 

wave which is located with the vector , , .m n p m a n b p c  We will then 
deduce the conditions required for maximum diffusion. 

NOTE.– Diffusion and diffraction 

When a crystal is irradiated (with X-rays in crystallography) each charge diffuses 
the rays as if it were the source diffusing in all directions. All the diffused rays 
interfere with one another, resulting in a cancelling out of some rays in certain 
directions (destructive interference) and reinforcement in other directions. The latter 



Reciprocal Lattices and Brillouin Zones     129 

gives rise to diffracted rays. In other words, diffraction corresponds to the maximum 
resultant diffusion. 

 
 

Direction [110]

m = n = a, p =  
h = k = K/a, l = K/ , with K = a, 

h = k = 1, l = 0 

m = n = p = a 
h = k = l = K/a with K = a, 

h = k = l = 1 

x 

y 

z 

(1,1,1) 

M (m, 0, 0) 

N (0, n, 0) 

P (0, 0, p) 

(a) 

x 

y 

z 

m = n = a, p =  a/2 
h = k = K/a, l = 2K/a, with K = a, 

h = k = 1, l = 2

 
(c) 

x 

y 

z 

(1,1,0)

(b) 

m = a, n = p =  
h = K/a, k = l = K/ , with K = a, 

h = 1, k = l = 0 

x 

y 

z 

(1,0,0)
(d) 

Direction [100]

(1,1, 2 ) 

 

Figure 5.5. Examples of Miller indices determination in a cubic structure (cube of side a) 

5.3.2. Wave diffused by a node located by , ,m n p m a n b p c  

5.3.2.1. Ray diffused by charged particles: a reminder  

Here we consider a simple model for the elastic diffusion of a monochromatic 
electromagnetic wave that has the form 0 0exp ( ) exp( )E E i k r t E j t  
by a charge that is initially in a relaxed state and is denoted in q. Neglecting 
frictional and steric effects, q is accelerated by the incident wave as described by the 
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equation * .F m qE  At a point M, placed at a great distance r from q, the 
incident wave diffused by q gives rise to a single contribution E  along e , as in 

sin
4 ²0

.q

c r
jkr j tE e e  This can be rewritten as 0

j tE E e  where 

sin
4 ²00 .q

c r
jkrE e  If we substitute 

* 0
q

m
E  into this equation, then we end 

up with:  

0 0
0

0

1 ² sin
4 ² *

jkr jkrE Eq
E e C e

c m r r
. [5.1] 

 
Figure 5.6. Incident wave diffusion by the charge denoted q 

5.3.2.2. Determination of the diffraction conditions for a crystal 
 
 
 
 
 
 
 
 
 

Figure 5.7. Electromagnetic wave diffusion by a crystal 

Here, the equation for the plane incident wave (with wave vector k ) at a point 
determined with respect to O by the vector  is given as 

00 exp( ) exp ( ).E E j t E j k t  In accordance with theory, the wave is 
diffused by charges in the lattice and propagates in the direction given by the wave 
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vector ',k  where ' .k k  From a given observation point, defined by vector r  

with respect to the diffusion point, the complex amplitude of the diffused wave is, 
from equation [5.1], given by: 

00
diff exp ' exp exp ,

E E
E C j k r C j k jkr

r r
 

and 

diff 0diff
exp

exp .j t j kr t
E E e CE j k

r
 [5.2] 

where 'r k  and ' ' .k r k r kr  
 
In addition, as we assume that the observation is made at a great distance from 

crystals, with respect to the size of the crystal, we can state that: 
cos( , ).r R R  In effect, as the angle given by ( , )r R  is small, we have: 

proj cos ,
R

r r r R r  and 
proj

cos , R
R r R r

R  

where proj
R

r  stands for the projection of r on R. 
 
Equation [5.2] for the diffused wave can also be written as 

exp
diff 0 exp( ),j

r
E CE j t  is thus such that exp( ) expj j k kr  

exp exp ( cos[ , ]).jkR j k k R  
 
With cos , ' cos , ' ' ,k R k k k  we can now write that: 

exp exp exp ' exp( )expj jkR j k k jkR j k  

where ' .k k k  
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Figure 5.8. Brillouin zone limits 

Finally, with ,r R  we can rewrite the wave diffused by a center that is located 
in a lattice by a positional vector , , ,m n p ma nb pc  in the following way: 

0
diff , ,exp

jkR j t

m n p
C E e e

E j k
R

.  

Here the term m,n,pexp j k  is the form factor. 

 
To conclude, the total wave diffused in a direction determined by the lattice is 

the sum over all diffused waves. This sum extends to all lattice nodes denoted by 
vectors , , .m n p ma nb pc  The generalized form factor denoted A is defined 

by considering all lattice nodes, as in , ,, , exp( )m n pm n pA j k  which is the 

form factor characterising the lattice. The amplitude of the diffusion thus goes 
through a maximum when each term of the sum is equal to one, i.e.: 

, , 2  ( )m n p k ma nb pc k n   

where n is an integer. 
 
As , ,exp(  ) exp(  ) exp(  ) exp(  ),m n pj k j ma k j nb k j pc k  

the condition for maximum diffusion is given when q, r, and s are whole numbers 
and the three following equations are simultaneously satisfied. 

2     2     2  a k q b k r c k s  [5.3] 

k k

'k
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These are called Laue equations and define the point of maximum diffusion. 
They make it possible to determine the vector ,k  which combined with 

' ,k k k  determines the directions of 'k  for maximum diffusion. 

5.4. Reciprocal lattice 

5.4.1. Definition and properties of a reciprocal lattice 

We can write the k  vectors that verify equation [5.3] as: 

,k hA kB lC  [5.4] 

where h, k, and l are natural integers and , ,A B C  are the vectors that will be 
determined. To ensure k  verifies Laue conditions in equation [5.3], it suffices that 
the , ,A B C  vectors are such that: 

2         0            0

0          2           0

0          0            2 .

A a B a C a

A b B b C b

A c B c C c

 [5.5] 

From the first column we find that A b  and A c  so that A  is collinear to 
the vectorial product of ( ).b c  From this we can deduce that ( ),A K b c  and 
then by performing a scalar multiplication of both members with a  the first 

condition 2A a  gives 2
( )

.
a b c

K  From this we can deduce the vector A  

and then by circular permutation the vectors B  and ,C  as in: 

2
b c

A
a b c

, 2
c a

B
a b c

 and 2 .
a b

C
a b c

 [5.6] 

Because the dimensions of these vectors are inverse to length, they are reciprocal 
vectors. The property that will be defined is such that these vectors will be 
considered as (base) fundamental to the reciprocal lattice. It is worth remembering 
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that the vectors , ,A B C  are only mutually orthogonal when , ,a b c  are also 
mutually orthogonal. 

 
Just as in a direct lattice (DL), the position of the nodes are indicated by the tips 

of the vectors , ,m n p ma nb pc  (where [ , , ]a b c  are the base vectors of the 

DL). Similarly, the vectors , ,h k lG hA kB lC  (where [ , , ]A B C  should 
therefore also be the same base vectors of the reciprocal lattice) describe the 
reciprocal lattice nodes. 

 
The result is that for the reciprocal lattice given by 

, ,h k lG hA kB lC  [5.7] 

the vectors verify the Laue conditions because according to equation [5.4] they are 
such that:  

, ,h k lG k  [5.8] 

where k  follows Laue conditions set out in equation [5.9].  
 
Conversely, and in a practical sense, we can say that if a vector k  is equal to 

a vector of the reciprocal lattice (given by , , )h k lG hA kB lC  then the vector 

k  verifies Laue conditions for maximum diffusion (i.e. diffraction).  

5.4.2. Application: Ewald construction of a beam diffracted by a reciprocal lattice 

Here we use the conditions for an elastic diffusion so that there is energy 
conservation between the incident and diffused waves, i.e. '  and  = ’ 
and k  k’. In equation [5.8] we saw that the condition for maximum diffusion for 
the wave vector is such that , ,h k lk G  and in turn ' .k k k  Here we thus 
have: 

, ,' .h k lk k G  [5.9] 
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From the DL we can build the reciprocal lattice [ , , ].A B C  The vector k  is then 
traced parallel to the incident ray and its end point is at a node in the reciprocal 
lattice. We then draw a sphere (called an Ewald sphere) of radius k and a center of 
origin .k  The nodes of the reciprocal lattice that belong to this sphere thus make it 
possible to determine the 'k  vectors for maximum diffusion. In effect, they are in 
accordance with both k  k’ and , ,' h k lk k G  as two nodes in the reciprocal 

lattice belonging to the Ewald sphere are exactly united by the vector , , .h k lG  The 

diffused ray is thus parallel to , ,' .h k lk k G  
 
 
 
 
 
 
 
 

 
 

5.5. Brillouin zones  

5.5.1. Definition 

Briefly, we can define Brillouin zones as being zones delimited by Wigner-Seitz 
cells in a reciprocal lattice. 

5.5.2. Physical significance of Brillouin zone limits  

Squaring up equation [5.9] for the maximum diffusion of a wave with wave 
vector k  gives us: 

22 2 2
, , , , , ,' 2 ,h k l h k l h k lk k G k G k G   

so that with k  k’ (linear crystal): 

2
, , , ,2 0.h k l h k lk G G  [5.10] 

 

k '  
 

 

  

  

 

 

    

G  

Reciprocal lattice 

Ewald 
sphere 

Figure 5.9. Ewald sphere in a reciprocal lattice 
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This relation can also be written for vector , , h k lG  because if , ,h k lG  (as 

defined by equation [5.7]) is a vector of the reciprocal lattice, then , , h k lG  is also 
a vector of the reciprocal lattice (as it is also in accordance with equation [5.7]).  

 
Equation [5.10] thus gives:  

2
, , , ,2 ,h k l h k lk G G   [5.11] 

so that:  

2

, , , ,
1 1
2 2h k l h k lk G G  [5.12] 

 
Figure 5.10. Tracing out Brillouin zone limits  

Figure 5.10 shows a simplified 2D representation (only  and  BA  vectors are 
involved) of a reciprocal lattice obtained by taking a node at origin O and using the 
fundamental vectors  , B  and  C.A  The , ,h k lG  vector of the reciprocal lattice joins 

the origin node with any other of the reciprocal lattice ( 1,0G A  and 

2,1 2G A B  in the example given in Figure 5.10) so that the mediating plane 

     

     

     

     

     

1,0A G  

B  
2,1G  

( 1) 
( 2) 

1k  

2k  
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( ) is the segment of modulus , , .h k lG  For the system shown in Figure 5.10, 1 and 

2 are in fact the mediators. As shown in Figure 5.10, 1k  and 2k  tie O to 1 and 2, 

respectively, and indeed all k  wave vectors going from the origin to this type of 
mediator plane ( ) are in accordance with equation [5.12] which relates k  to the 
maximum wave diffusion.  

 
In a regular solid, electrons associated with a wave vector that has an extremity 

at the plane  (the Brillouin zone limit or the Wigner-Setz cell of the reciprocal 
lattice) undergoes the maximum diffusion. These electrons are reflected by the DL 
nodes (ions) and therefore cannot propagate. This is in effect the same property as 
that found for semi-free electrons of a wave vector that is in accordance with 

a
k n  at the band limits. 

 
In section 5.6.3 it is thus shown that equation [5.10] from which equation [5.12] 

is derived is equivalent to the Bragg condition for maximum wave diffusion 
(diffraction) (presented in section 3.4.2). 

5.5.3. Successive Brillouin zones 

By definition, the first Brillouin zone is the smallest volume in 3D, or the 
smallest surface in 2D, that is generated by mediating planes created by the 
segments joining the origin of the reciprocal lattice with its first neighboring nodes. 
The second zone brings in a similar volume with the exclusion of the first Brillouin 
zone. This process is repeated ad infinitum.  

5.6. Particular properties 

5.6.1. Properties of , ,h k lG  and relation to the direct lattice  

Here we show that the reciprocal lattice vector , ,h k lG hA kB lC  is 

normal to the reticular plane (hkl) of the direct lattice and that 2

, ,
, , ,

dh k l
h k lG  

where , ,h k ld  is the inter-reticular distance between Miller index planes (hkl). 

According to the definition of Miller indices, plane (hkl) goes through points M, 
N and P (Figure 5.9) situated in that order on the three axes x, y and z at distances 

, ,K K K
h k l

 from the origin (O) of the DL. K is a constant whole number. To show 
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that , ,h k lG  is normal to the plane (h, k, l), we need to show that with two vectors in 
the plane its scalar product is equal to zero. This can be done by using equations 
[5.5] shown above. Thus we find: 

, , , ,

K
                   (hA+kB+lC)

k
                   2 K - 2 K = 0.

h k l h k lG HK G OK OH

K
b a

h
 

Similarly, we find that , , 0,h k lG KL  which indicates the perpendicular 

nature of , ,h k lG  to the plane (hkl). 
 
If we now denote the projection of O on the plane MNP (plane (hkl)) as H, i.e. 

OH  goes in the same direction as , ,h k lG  given the aforementioned property, and 

then by making hklOH d  which is the inter-reticular distance between planes 

(hkl), we can calculate the scalar product , ,h k lG OM  by remembering that OH is 

the projection of OM on , , :h k lG  

, ,
, ,

, , , ,

2 ( ) 2

                  =  

h k l
h k l

hklh k l h k l hkl

K
G OM hA kB lC a K

G Kh
dG OH G d

. [5.13] 
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z
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H

, ,h k lG  

O
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Figure 5.11. Relation between , ,h k lG  and the direct lattice 

c  
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5.6.2. A crystallographic definition of reciprocal lattice 

Crystallographers determining inter-reticular distance generally prefer to use 
equation [5.14] in place of equation [5.13]. Equation [5.14] relates the reciprocal 
lattice to the direct lattice more simply. This is because the inter-reticular distance 
between (hkl) planes is simply the inverse of the reciprocal lattice vector modulus 
(corresponding to , ,h k lG  which is normal to planes (hkl)). 

, ,
1

.h k l
hkl

G K
d

 [5.14] 

To obtain this equation, the base vectors of the reciprocal lattice must verify the 
following equations [5.15] which take the place of equations [5.5]: 

1           0            0

0          1             0

0          0             1.

A a B a C a

A b B b C b

A c B c C c

 [5.15] 

The base vectors defined above by equations [5.6] are now redefined by the 
following equations [5.16] (which lose their physical significance at the Brillouin 
zone limits, excepting that the wave vector modulus is given by 1k  in place of 

the more normally used 2 ):k  

,
b c

A
a b c

 
c a

B
a b c

 and .
a b

C
a b c

 [5.16] 

5.6.3. Equivalence between the condition for maximum diffusion and Bragg’s law 

Now let us show that we have an equivalence between the vectorial relation 
given in equation [5.11], as in 2

, , , ,2 ,h k l h k lk G G  and the diffraction condition as 
given by Bragg (detailed in section 3.4.2). The latter describes the condition for 
incident rays, reflected by crystal reticular planes, to give constructive interferences.  
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Figure 5.12. Establishing Bragg’s law 

Consider the (hkl) planes with an inter-reticular distance denoted by dh,k,l and 
an incident ray with a wavelength ( ) such that  is the angle between the wave 
vector of the incident wave and the (hkl) planes. The difference in step between the 
reflected waves 1 and 2 (shown in Figure 5.12) is such that: 

2 sin .hkld  

The constructive interferences (i.e. maximum diffusion points) occur when 
  n  (n being an integer), so that: 

2 sin .hkld n  [5.17] 

If we compare equations [5.17] and [5.11] we can see that the latter is of the 
form: 

2
, , , ,2 cos

2h k l h k lk G G  

(remember from Figure 5.12 that the vector , ,h k lG  is perpendicular to the (h,k,l) 

plane so that , ,h k lG  and k  make an angle equal to 
2

).  Using 2 ,k  we can 

rewrite this equation to give: 

, ,h k lG  

 
k  

 =  2dhkl sin  

dhkl 
Plan (hkl) 

Incident ray Reflected ray (1)

(2)
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, ,

(11)

2
2 sin

2
          ( ), where  is is the integer  from equation [5.13]

h k l

hkl

G

n n K
d

 

2 sin ,hkld n  

so that in effect we have derived equation [5.17] from equation [5.11]! 

 
NOTE.– In order to be true, equation [5.17] requires that the wavelength  of the rays 
should be a similar order of size to that of the distance (dh,k,l) between reticular 
planes. With dh,k,l typically being in the order of tens of nanometers, this means that 
the incoming rays should be X-rays.  

5.7. Example determinations of Brillouin zones and reduced zones  

5.7.1. Example 1: 3D lattice 

To take the simplest example i.e. a simple cubic lattice, we have  
a b  c a  where a is the lattice repeat unit. The direct lattice is shown in 

Figure 5.13.  

 

Figure 5.13. Direct lattice of the simple cubic (sc) structure 

As ,a b c  the defining equation for the base vectors of the reciprocal lattice 
clearly show that .A B C  

 

   z 
  c 
       
 
 
 OO          b        y 
     a 
x 
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In addition, with 3( )a b c a , i.e. the volume of the primitive unit cell of side a 

and 2b c a  (vector b  and c  being orthogonal and of modulus a), we have: 

2
2 .

( )

b c
A B C

a b c a
 

With the base vectors of the reciprocal lattice being orthogonal and of identical 
modulus 2( )

a
 the reciprocal lattice of the simple cubic lattice also takes on a cubic 

structure (and with repeat unit 2
a

 in three directions). 

The direct application of the Brillouin zones definition shows that the first zone 
(and those following) is cubic with side 2 ,

a
 and therefore of volume given by:  

2 3
.

aZBV  

The geometric representations for a 2D structure are given in the following 
section along with a plan figure.  

Finally, we can show that for such a structure, we have: 

.
² ² ²hkl

a
d

h k l
 [5.18] 

We have 2 2 2 2 2 2 2 2
, , ( ) ,h k lG hA k B lC h A k B l C  as a b c  

and given the values for , ,A B C  we obtain ² ² ²
² ² ²

22
, , 2 .h k l

a a ah k lG  

Using equation [5.13] in the form 2

, ,
, , ,

Gh k l
h k ld  makes it possible to obtain 

equation [5.18] as planned. 
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5.7.2. Example 2: 2D lattice 

As a simple example of a real plane crystal we can use the square cell of side a 
(as in a = b) shown in Figure 5.14. In the direct lattice, we have for equation [5.15] 
applied to 2D, as in: 

2 2
,hk

a
d

h k
 

so that 
211d .a  In addition, we know that 1,1G  is normal to the reticular plane 

(see equation [5.13]) with a modulus equal to 2 /d11, and so that 2
1,1 2.

a
G  

This can be verified in the Figure shown for the reciprocal lattice (Figure 5.15a). 

 

 

Figure 5.14. Square direct lattice 

At the level of the reciprocal lattice, the base vector A  should be such that 
2  and 0,  so that  and // .A a A b A b A a  Similarly, B b  and in terms 

of modulus, we have: 

2 2 2
and .A B

a b a
 

       
          
 
      (02) 
      
       (01)             
                           
 
 
              (10)    (20)              
 
direct lattice          (11)    d11    (11) 

y 

a  

b  

x 

1,1G  
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Figure 5.15. (a) Reciprocal lattice of a square direct lattice;  

and (b) Brillouin zones 

We can deduce that: 11 ,G A B  so that 2 2 2
11G A B  

2 24 4
2 2 ,

a a
 and 

2 2

11
11 2

a d
G  where 

211 .ad  We also have, for example with 
52,1

ad  

such that 2 2 5

21
21 2 .

d a
G A B  Given the general definition, the Brillouin 

zones are represented in terms of the reciprocal lattice, as shown by the first gray zone 
in Figure 5.15a and the three zones in Figure 5.15b. The first zone is a square with 
sides equal to 2 .

a
 The following zones have the same dimensions. We can check this 

in Figure 5.16 where we have placed the second zone into the first to give 
a representation of reduced zones as already used for dispersion curves (Figure 4.9).  

In order to do this, we simply need to apply a translation of modulus 2
a

A  

with a direction and sense appropriate to each of the elements that make up the second 
zone (2a, 2b, 2c, 2d) in order to exactly cover the square surface of the first zone 

(surface of value 2 2
).

a
 A similar transformation can also be carried out taking the 

third zone into the first, and so on. It is thus shown that in this case, the Brillouin zones 
(BZ) are all exactly the same size. 

 

(b)

 

A

B

First Brillouin zone 
Second Brillouin zone 
Third Brillouin zone 

 
 
  4 /a 
 
    
  2 /a                   

 
 

                 

1,1,1G  

A  
2
a

 a
 

(a) 

kx 

ky 

B  
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Figure 5.16. Reduction of the second zone to the first by  

translation of modulus 2 /a for each element (2a, 2b, 2c, 2d) 

5.7.3. Example 3: 1D lattice with lattice repeat unit (a) such that the base vector in 
the direct lattice is a  

The direct lattice with the lattice repeat unit denoted by a can be simply 
schematized as below in Figure 5.17.  

 
Figure 5.17. 1D periodic lattice 

The fundamental vector A  of the reciprocal lattice is such that 2 ,A a  and 

its modulus verifies 2 .
a

A  

 
The reciprocal lattice along with the successive Brillouin zones are traced in 

Figure 5.18. We can see without too much difficulty that the various Brillouin zones 
are of the same size (length 2 /a). 

 
Figure 5.18. Reciprocal lattice and the Brillouin zone (BZ) of a 1D lattice 

2a 

2d 

2c 

2b 

(b) 

1st BZ  2a 

2d 

2c 

2b 

2
a

2
a

O 

(a) 

a a

a a  O

         -A = -2 /a              O       A = 2 /a              2A 
 
          - /a       first BZ       /a   

   second BZ third BZthird ZB second  BZ 
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5.8. Importance of the reciprocal lattice and electron filling of Brillouin zones 
by electrons in insulators, semiconductors and metals 

5.8.1. Benefits of considering electrons in reciprocal lattices  

In Chapter 4 we saw that dispersion curves can take on different forms for the 
various directions of the k  vector, and that a plot of E = f (ki) occurs for each of the 
i directions that k  takes on (see in particular Figure 4.4). 

 
Working in the reciprocal lattice obviates the inconvenience of looking for more 

or less arbitrary directional variations in some parameter (generally electron energy) 
as we now have a direct expression over all k  directions, once the reciprocal lattice 
is plotted. This benefit becomes all the more important given that the Brillouin zones 
are defined and plotted within the reciprocal lattice for which the zone limits 
actually have a physical significance. We have seen, significantly, that these limits 
separate two adjacent zones where electrons can propagate, and where waves 
(associated with electrons) touch the zone with the extremities of their k  vectors 
limit and are stationary, there being two electrons’ energy values separated by a gap. 

 
Rather than filling permitted bands with electrons in accordance with the 

representations given by E = f (ki) (sufficient for 1D media where there is only one 
kx direction to consider), it is interesting to study the electronic filling of successive 
Brillouin zones so as to obtain precise information on the capacity of each band to 
accept electrons (capacity being directly comparable over all k  directions) and on 
the directions that are permitted for filling. 

5.8.2. Example of electron filling of Brillouin zones in simple structures: 
determination of behaviors of insulators, semiconductors and metals 

5.8.2.1. Cubic structure 

5.8.2.1.1. The basics: cells in reciprocal space  

Firstly, we can recall that k space can be divided into primitive cells attached to 
electronic states. For free electrons associated with a progressive wave, we have 
seen in section 2.6.2.2 that the sides of each primitive cell can be described by 

2 2 2

1 2 3
,  ,  

L L Lx y zk k k  so that the volume of each cell is 

383
Vx y zk k k k  where 1 2 3V L L L  is the volume of a crystal with 

sides L1, L2, L3 in direct space. 
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We should also note that the size of the primitive cell is conserved for semi-free 
electrons. In effect, the wave function is like a Bloch function for which the 
amplitude changes with x, as in: ( ) ( ).x

x

ik x
k x e u x  The separation of variables 

means writing the wave function in the form of a product of three functions, each 
dependent on x, y and z. The condition due to periodic limits (that of Born 
von Karman) can thus be written with respect to x as: 

( )( ) ( ) ( ) ( ).x x x
x x

ik x ik x L
k k x xx e u x x L e u x L  

As u(x) is periodic and because x xL N a  if Nx is the number of atoms along 

Ox, then we can deduce that 1x xik Le  and in turn that 2
Lx

x xk n  where nx is 

an integer. We therefore find that the partition in k space along Ox is with cells of 
dimension 2 ,

Lx
xk  and is identical to that for free electrons (see for example the 

partition along k in Figure 3.2). 

5.8.2.1.2. Filling the Brillouin zone of a simple cubic crystal structure 

For a cubic crystal at the direct lattice level, and whatever the cell repeat unit in 
the three directions x, y, and z, the volume of the elementary cell is equal to a3. The 
number of primitive cells in the direct lattice of volume denoted V is therefore 

3 .V

a
N  As each cell contains on average one node, and each node is attached to 

the base of each atom, the total number of atom bases is also N. The reciprocal 
lattice, as we have seen in section 5.7.1, is also a simple cubic structure, while the 

first Brillouin zone is a cube of side 2
a

 and therefore of volume 
38

3 .
a

 We can 

therefore place into this Brillouin zone a number of primitive cells equal to: 

38
3 3

3 3 3 3
8

,
8

a V V

k a a
 

where 3
V

a
N  is precisely equal to the number of atom bases in the direct lattice. 

Given that there is spin, we can place up to two electrons into each primitive cell. 
This means in turn that we can put two N electrons into each Brillouin zone.  
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So, if in the direct lattice, an atom base liberates two electrons, the first Brillouin 
zone is just filled by those free electrons leaving the following zone completely 
empty. The two zones are separated by a “gap” characteristic of the material under 
consideration. If the gap is in the order of 5 eV or more, then the material is 
an insulator, but if the value is in the order of 0.5 to 3 eV then it can be thought of as 
a “moderate” semiconductor. 

 
A bivalent material (based on one atom liberating two electrons) crystallized into 

a simple cubic structure is therefore an insulator or a semiconductor with a full 
valence band and an empty conduction band (at absolute zero). The same result 
would be obtained with a material that had an atomic base containing two 
monovalent atoms. However, if the material had an atomic base consisting of 
a single monovalent atom, then the first band would be half-filled so that the 
electrons could find themselves in free levels and be easily moved under a weak 
electric field: in other words the material would be a metal. 

5.8.2.2. Filling Brillouin zones in a 2D square structure  

That stated above for the 3D structure can equally be applied to a 2D structure. If 
S is the surface of a 2D crystal, the number of primitive cells that can be placed in it 
in a direct lattice is given by: 2 (2).

S

a
N  This number is equal to the number of 

atom bases in the direct lattice. 
 

The surface of all the Brillouin zones is the same, and is given by 2 2
,

a
 as we 

have seen in the scheme of reduced zones (see Figure 5.14). In the Brillouin zones 
we can place a number of cells equal to: 

4 ²
²

(2)
4 ²

.
² ² 4 ² ²

a S S
N

k a a
 

Once again the number of cells in each Brillouin zone is equal to the number of 
atom bases. Finally, if each atom base liberates an even number of electrons (Np) 
then the first Brillouin zones will be full and the material will be an insulator or 
a semiconductor. If Np  2, then only the first Brillouin zone will be full; if Np 4, 
then the first two Brillouin zones will be full; if Np 6 then the first three Brillouin 
zones will be full; etc.  

 
When Np is odd, then we have a metal, as in for example Np 5, and the first two 

Brillouin zones are full and the third is half full. 
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5.9. The Fermi surface: construction of surfaces and properties 

5.9.1. Definition  

The Fermi surface is the name given to an equi-energy surface (a constant energy 
EF) plotted in wavenumber k space (reciprocal space). Given the Fermi-Dirac 
function at absolute zero, the Fermi surface separates the occupied electronic states 
(full orbitals) from the empty states (unfilled orbitals) at this temperature.  

5.9.2. Form of the free electron Fermi surface  

5.9.2.1. Establishing the form of equi-energy surfaces 

In 3D, free electron energy is given by: ²
2

2 2 2( ),
m x y zE k k k  where for a 

cubic crystal of length L we have 2 ( ).
Lx y zk k k n  The equi-energy surface 

E EF can be obtained in k space when: 

2 2 2 2
( )   constant .F

F x y z F
mE

k k k k k  

This surface is thus a sphere with a radius given by ,
FE FR k  where kF is 

defined by the preceding relation. 
 
For a crystal shaped as a parallelepiped, and with sides given by 1 2 3L L L  

the Fermi surface as given above transforms into an ellipsoid. 

5.9.2.2. The form of Fermi surfaces as found in different representations 

The free electron Fermi surface for a 2D crystal of a square lattice is traced in 
Figure 5.19a for an arbitrary electron concentration. It can be a hindrance that parts 
of the Fermi surface belong to the same zone, e.g. the second, and appear separated 
from one another. This can be avoided by using the zone schemes presented earlier. 
Figure 5.19b simply gives the area of the Fermi surface for the first Brillouin zone, 
while Figure 5.19c shows the Fermi surface in the second zone as a diagram of 
reduced zones (that is to say brought back as in the first zone). So that Figure 5.19c 
is not overloaded, only the contribution from the 2a part of the second Brillouin 
zone is shown (as a dotted surface). This figure can be compared with that in 
Figure 5.17.  
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Figure 5.19. (a) Circular Fermi surface for an arbitrary concentration of electrons; (b) part 
of the Fermi surface situated in the first zone; and (c) part of the Fermi surface situated in the 
second zone brought to the first zone with a contribution from 2a, shown as the dotted area. 
The central areas are the only ones not occupied by electrons. 

5.9.3. Evolution of semi-free electron Fermi surfaces  

The filling-up of electronic levels is accomplished from the bottom level up (the 
origin of the reciprocal lattice), and also in the corresponding equi-energy circular 
levels (or spheres in 3D) of which the radius (k) increases along with the filling. 
From a circle (or a sphere) of radius greater than 2

a
 (side of the square representing 

the first Brillouin zone), that is to say from the limit of the Brillouin zone in the 
directions kx and ky (see Figure 5.13) the second zone will start filling before the first 
Brillouin zone is completely filled. There is an overlap between zones, as long as the 
potential barrier between the Brillouin zone is small. 

 
It should be said that at this level there is a distortion caused by Brillouin zones 

being defined from a periodic potential. So while the sphere (or circle in 2D) is 
drawn based on a hypothesis of free electrons (using the relation 

²
2

2 2 2( )
m x y zE k k k  for free electrons, the electrons are actually semi-free. 

 
So as to have a reasoning closer to reality, we need to have an idea of the form of 

the Fermi surfaces in an approximation of semi-free electrons. Qualitatively, we can 
state that (and this applies to a base of atoms liberating two electrons so as to fill the 
first zone, as is the case for bivalent atoms with one atom per base): 

– if the barrier is sufficiently high, the electrons remain in the first zone (as for 
example, in diamond) and as shown in Figure 5.20a. First they are placed around the 
center and then fill the first zone up to the point where the circle (sphere) just 
touches the boundaries. Then they fill up the areas towards the corners, as they do 
not have enough energy to break the barrier to the second zone; 

(a) (b) (c) 

2a 
2a 
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– if the barrier is not too high, electrons in the second zone are less energetic 
than those in the first, and now Figure 5.20b gives a better representation of the 
minimum energy. 

 

Figure 5.20. Deformation of at the limit of the Fermi surface  
when there is: (a) a high barrier; and (b) a small barrier 

Approximate constructions of semi-free electron Fermi surfaces are based on the 
following two facts: 

i) The Fermi surface meets the limits of the Brillouin zone at a right angle 
 
In effect, the velocity of the group associated with the electron wave packet is 

written as: 

1
,

E

g
d dE

v
dk dk

  

so that vectorially 1 grad .g kv E  The vector gradk E  being normal to equi-

energy lines traced in k space (reciprocal space) means that the equi-energy lines are 
normal to .gv  

Looking at a Brillouin zone limit, and working in terms of H as shown in 
Figure 5.21, the wave vector y is written as: [ ] .

k
a

x yk k k  

The velocity (y) is given in the form: ,x yv v v  and is collinear with k  as 
*k m v  (crystalline moment). 

1k  

(a) (b) 
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As 
/

0,
x

dE
dk k a

 vx = 0 and ,y yv v k  the velocity is directed with 

respect to yk  and the equi-energy lines are normal to the zone limit (limit directed 

with respect to ).yk  

A

B

xk  

yk  
k

yv v  
 

H 

E = const.

 
Figure 5.21.  Electron velocity in the band limits 

ii) The crystal potential has the effect of bending the Fermi surface close to the 
energy extremes 

 
In effect, within a vector k  of the energy extreme (defined in the reciprocal 

space by, for example, 
1

1),
n

nk k  the energy that is developed (following 
MacLaurin) can be written using: 

2² 1
2 *1( ) ( ) .k k

m
E k E k   

The equi-energy surfaces are spheres in #D or circles in 2D with centers at 1k  

and radii defined by 
2 * 1

1 .
m E E

k k  This explains the shape of the equi-

energy spheres at the limit of the zone. 

5.9.4. Relation between Fermi surfaces and dispersion curves 

As already discussed, we should consider all possible directions in the reciprocal 
lattice because an energy that is forbidden in one direction (kx in kx = /a) may be 
permitted in another (kxy again with kx = /a). This configuration is described in 
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Figure 5.22 for a 2D Brillouin zone of a material with a square lattice (equivalent to 
a simple cubic lattice in 3D).  

 

 

The circles shown in the zone are the geometric points for an energy EN where 
N = 1, 2, 3, etc. The circles are pushed one against another as N increases. When we 
reach the zone limit, the circle is deformed and at the very limit a discontinuity of 
the equi-energy curves occurs. While energies are forbidden in the kx and ky 
directions, they are still allowed in the kxy direction, up to the point where the whole 
zone is filled if the gap between the two zones is large enough.  

In general terms, we cannot obtain any quantitative results without performing 
some calculations but qualitatively we can see that the equi-energy surface of the 
second Brillouin zone (Figure 5.19c for free electrons) will develop into a form 
shown in Figure 5.23. 

 

Figure 5.22. Relation between the curves of E f (k) and equi-energy 

E

kx or ky

kxy

E

kx 

ky 

a
 

kxy 
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5.10. Conclusion. Filling Fermi surfaces and the distinctions between insulators, 
semiconductors and metals 

5.10.1. Distribution of semi-free electrons at absolute zero 

Generally, at absolute zero, the electrons occupy the minimum energy cells close to 
the origin of the reciprocal lattice. These cells are distributed inside the Fermi surface. 

 
If the element making up the solid liberates few electrons per atom, for example 

crystalline monovalent elements in a centered cubic system (alkali metals) or in 
a face centered cubic lattice (e.g. Cu, Ag, Au as detailed in Chapter 6), the number of 
occupied cells is much lower than the number of cells contained in the first Brillouin 
zone. The equi-energy surface (Fermi-surface) is very close to that of a sphere (see 
Figure 5.24 below for a square lattice) and the representation of the free electrons 
scheme is very close to reality.  

 

Figure 5.24. Representation of a square lattice 

If the atoms of the element making up the solid liberate two electrons or more (in 
general an even number), then the first (or the next) Brillouin zone can be practically 
totally filled. However, there are two particular situations that can arise: 

– if the gap between the first and the second Brillouin zone (or more generally 
between adjacent Brillouin zones) is large, then the Brillouin zone under 
consideration can end up being totally filled, as in Figure 5.25 below; 

 

kx 

ky 

equi-energy 
surface 

Figure 5.23. Fermi surface (in gray)  
in the second Brillouin zone (scheme f reduced zones)
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Figure 5.25. A totally filled Brillouin zone 

– if the gap is small, or even better the bands overlap, causing the gap to 
disappear, then the second zone starts to fill up before the first zone under 
consideration is completely full. 

 

Figure 5.26. A partially filled Brillouin zone 

5.10.2. Consequences for metals, insulators/semiconductors and semi-metals 

If the last occupied zone (band) is only partially filled (generally half-way) there 
are numerous empty cells that remain available to transport electrons under the 
effect of an external perturbation (for alkali metals and monovalent noble metals see 
the example of copper given in Chapter 6). 

 
If the last occupied zone (band) is completely full, and if the gap with the 

following zone (band) is considerable (greater than 4 or 5 eV), the electrons cannot 
leave the band under consideration and the material is an insulator. If the gap is 
relatively small (typically less than 3 or 4 eV), the insulating material at absolute 
zero becomes a semiconductor at ambient temperature as there are a few electrons 
that can pass with thermal agitation to the following zone (band) to leave holes 
behind (for example see germanium or silicon detailed in Chapter 6). The presence 
of a reasonably high gap (in the order of 5 eV such as in carbon based diamond) can 
nevertheless be used to furnish a material with semiconductor properties that can 
resist intense “flashes”, such as nuclear explosions, and can be used in devices of 
military importance. 

kx 

ky 

 

kx 

ky 
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If the last band can be totally filled but there is an overlap of bands, we end up 
with a semi-metal (for example, alkaline-earth metals have two valent electrons per 
primitive cell, which would be insulators except that the energy bands overlap and 
hence they have to a limited extent some metallic properties). 

5.11. Problems 

5.11.1. Problem 1: simple square lattice 

Show that for a simple square lattice (2D) that kinetic energy of a free electron in 
a corner of the first Brillouin zone is twice as high as that of an electron situated in 
the middle of one side of the zone. What is the result when the lattice is cubic (3D)? 

Answer 
For a free electron, the kinetic energy is written: ² ²

2
,k

m
E  and we find in 

2D that: 

– in the middle of one side of the zone: 
22² ,

axk k  and 
2

2

2
side m a

E ; 

– and at a corner of the zone: 
22 2² 2

ax yk k k and 
2

2

2
side 2 .

m a
E  

 
We thus find that: 

corner

side
2.

E
E

 

In a 3D medium, the value of Eside is unchanged while: 

2
2 2 2

corner
² ²

( ) 3 ,
2 2x y zE k k k

m m a
 

from which in 3D: corner

side
3.

E
E
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5.11.2. Problem 2: linear chain and a square lattice 

1) This question concerns a linear chain made up of n identical atoms that are 
spaced an equal distance apart from one another so that the length of the chain L is 
given by L  na. 

a) What is the dimension of a cell in the reciprocal space? 

b) How many cells can we place in each energy band? 

c) Show that a 1D body is an electrical insulator (or semiconductor) at T = 0K 
if it carries an even number of valence electrons per atom. 

2) This question carries on from the question concerning a square lattice (of side 
L  na) that contains in all N atoms (N = n2) and each primitive cell has a side of 
length a. 

a) Describe the direct lattice and then the reciprocal lattice. 

b) Trace the first two Brillouin zones. Indicate the maximum number of 
electrons that can be placed in the first and the second zone. Conclude. 

3) The atoms in this question are bivalent. 

a) Sketch the scheme of the energy bands for semi-free electrons: E = f (k1,0) 
and E = f(k1,1) (where kij designates the wavenumber in the direction [i, j]). 

b) Point X designates the middle of the side of the square that is the first zone. 
Point M is at the summit of the same square. The modulus of the wave vectors have 
their ends at X and at M and are denoted by kX and kM. When k = kX, the 
corresponding energies are denoted E(XC) for the bottom of the conduction band and 
E(XV) for the summit of the valence band. In addition E(XC) – E(XV) = w1,0 and is the 
energy gap in the direction [1, 0]. 

Similarly, when k = kM, the energy is denoted E(MC) for the bottom of  
the conduction band and E(MV) for the summit of the valence band, with  
E(MC) – E(MV) = w1,1 being the energy gap in the direction [1, 1]. 

What relations are there between E(MV) and E(XC) when the material that is 
made up of bivalent atoms is at T = 0K an insulator or a conductor? 

c) Within the last hypothesis, detail the appearance of the Fermi and first 
Brillouin zone surfaces. 

4) Numerical analysis:  

w1,0 = 4 eV, w1,1 = 2 eV, 
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² ²
4.2

2 ²m a
 eV (when a  0.3 nm). 

Is the material a conductor or insulator at absolute zero? 

Answers 

1)  

a) For a direct space of dimension L, the dimension of one cell in reciprocal 
space is given by 2 ,

L
k  where L = na, with n making p the number of atoms 

that go into a linear chain. 

b) For a periodic system of period a, an energy band is localized between 

a
k  and .

a
k  Its width is thus given by 2 ,

a
 and inside it can be placed 

2

2
a

L

L
a

n cells. 

c) With the possibility of placing two electrons per cell, we can thus place 2n 
electrons per band (each band being the same size, as in 2

a
) in all. If the atoms each 

liberate an even number (Np) of valence electrons, then the number of bands that the 
nNp of electrons that will be able to fill at absolute zero (temperature at which the 
Fermi function is equal to one when E < EV < EF) will be: 

– 1 band if Np = 2,  

– 2 band if Np = 4, 

– 3 band if Np = 6, 

– etc. 

with, in all cases, a last band that is completely full. The material is thus an insulator 
if there is a large gap and a semiconductor if the gap is small (i.e. less than 3 eV). 

2) 

a) The problem is now 2D with a square direct lattice of side L = na and N = n2 
atoms in all. 
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Figure 5.27. Sketches for Answer 2: square direct lattice (left) and 
 the base vectors on the reciprocal lattice (right) 

The base vectors of the reciprocal lattice are such that 2 ,
a

A B  where 

0,A b  so that A b  and similarly .B a  

b) The first two zones shown above are of the same surface (as detailed in 

many university courses on how to use reduced zones) and equal to 2 2
.

a
 The 2D 

cells in reciprocal space are of a size given by 4 ²
²

,
Lx yk k  and therefore in 

each zone we can place 
2 2 ²2 2

²
²L

aa L
n N cells, which is equal to the 

number of atoms in the system. With two electrons per cell, we can put in 2N 
electrons per zone. If the N atoms have a valency of two, they will liberate 2N 
electrons that can only just fully fill the first zone. This complete filling will only 
occur if the barrier between the two zones is sufficiently high to push electrons to 
the corners at the end, and will result in insulating (or semiconducting) behavior. If 
the atoms have an odd number valency (monovalent), the last band to be occupied 
will be half-full in respect of equi-energy circles with a maximum radius of  

kf =
2 * .m EF  If kf < ,

a
 then the circles do not reach the second Brillouin zone, the 

bands will not overlap and a metal is formed. If kf > ,
a

 there is a risk of two bands 

overlapping with the ensuing formation of semi-metallic behavior. 
 

 
L = na 

L = na 
a

b

a

a

a

a

first 
BZ 

second 
BZ 

2
A

a

2
B

a

direction [10] 

direction [11] 

X

M
2

a
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3) The atoms are bivalent, and when the extremity of a wave vector touches the 
zone limit, the energy levels of the different bands need to be compared. 

 
Figure 5.28. Diagram of the band scheme with respect to the directions [1,0] and [1,1] 

a) Schematically, and from the perspective of the bands, the representation 
above shows the two principal directions [1, 0] and [1, 1]: 

– If E(MV) < E(XC), the first band and hence the first Brillouin zone is 
completely filled with up to 2N electrons. Being completely filled it is thought of as 
an insulator or semiconductor with a gap given by: E(XC)  E(MV) = wG. 

– If E(MV) > E(XC), the second band starts to fill before the first band is 
completely full. The two bands are incompletely filled and have overlapping energy 
bands – the materials is semi-metallic (no resultant gap). Within the free electron 
theory, the Fermi surface takes on the shape shown below as a dashed line circle. 
For these semi-free electrons, the circle becomes deformed as shown in 
section 5.9.3. 

 

Figure 5.29. Incomplete bands with overlapping energy levels (as when E(MV) > E(XC)) 

 
First BZ 

Fermi surface 
of free 

electrons 

a
 

2
a

E 

X 

k1,0 k1,1 

M 

MV 

MC 

XV 

XC 

MV 

w1,0 

w1,1 wG 
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These ideas can be extended to 3D materials and can explain how Mg, Be and Pb 
are metallic, while Si, Ge and Se are semiconductors.  

Given the relationship that exists at the band limit, we can quantitatively write 
that for the preceding two inequalities in a square lattice: 

2.

X

M

k
a

k
a

 

Knowing w1,1 and w1,0, and hence ² ²
2 ²

4.2
m a

eV, we can discover whether or 

not the bivalent material is an insulator or a semi-metal. 

With w1.0 = 4 eV and w1,1 = 2 eV we have: 

2 11 11
11

² ² 2 ²
( )

2 2 2 ² 2
2

              4.2  2 7.4 eV
2

V
w w

E M k
m m a  

2 10 10
10

² ² ²
( )

2 2 2 ² 2
4

             4.2 6.2 eV.
2

C
w w

E X k
m m a  

Thus E(MV) > E(XC), which implies a semi-metallic character. 
 
NOTE.– In the numerical calculation, there is: 

234
0.3nm 19

/ 30 20

6.62 10² ² ² 1 1
6.76 10 J,

2 ² 8 ² 8 0.9 10 9 10

a
a

xh
E

m a m a
 

or rather: 

19

/ 19
6.76 10

eV 4.227 eV.
1.6 10

aE  



162     Solid-State Physics for Electronics 

5.11.3. Problem 3: rectangular lattice 

This problem concerns a 2D material in a rectangular lattice that has the 
following parameters: the primitive cell is such that a = 2 Å and b = 4 Å; the lengths 
of the real crystal are L1 = N1a and L2 = N2b; and the number of nodes (where there 
are placed A-type atoms) is given by N  N1N2. We assume that the base is defined 
by two atoms: atom A placed at (0, 0) and atom B placed at (1/4, 1/4). The outer 
layer electrons dispersion relationship (valence electrons) follows that of the semi-
free electrons theory. That means for a given direction [m, n] the curve E = f (k) 
follows that of free electrons (of energy E) except when in the vicinity of 
discontinuities, where the energy for the first discontinuity can be written as: 

Em,n = Em,n  wm,n/2 (discontinuity amplitude is wm,n where in this case wm,n > 0). 

In terms of notation: 

EV[m, n] = E m,n = Em,n – wm,n/2 and EC[m, n] =E+
m,n = Em,n + wm,n/2. 

And we have ² 2 3.82 eVm  Å2. 

1) Show:  

a) the direct lattice with base vectors that are written as xa ae  and yb be ; 

b) the reciprocal lattice and the base vectors that we will determine the first 
two Brillouin zones and their geometric forms. 

2) Give the expression for the energy at zero order in k space at the first point of 
discontinuity that appears with the first-order approximation (semi-free electrons) in: 

a) the direction [1, 0]; 

b) the direction [0, 1]; 

c) the direction [1, 1]. 

In the figure also sketch the dispersion curves [E = f (km,n)] for semi-free electrons 
with various energy levels, namely: w1.0 = 1.5 eV; w0.1 = 2 eV; and w1.1 = 1 eV. 

3) This question studies the filling of Brillouin zones at absolute zero. Each AB 
atomic basis set liberates two electrons that are semi-free. 

a) Indicate the number of electrons that the first Brillouin zone can accommodate. 

b) What inequality exists between the parameters wm,n and a and b of the direct 
lattice cell so that a crystal is an insulator?  
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4) Applying the result from above. 

a) The values that are given are: w1,0 = 1.5 eV; w0,1 = 2 eV; w1,1 = 1 eV; 
2 /2m = 3.82 eV Å2. Determine whether or not the crystal is an insulator or a 

conductor at absolute zero. 

b) Now the material is a conductor at absolute zero. Schematically show the 
form of the equi-energy curve EF (corresponding to the Fermi level for which the 
significance of absolute zero should be noted). 

5) From now on B is placed at (1/2, 1/2) and the atoms A and B are chemically 
identical. The direct lattice can now be thought of as part of a centered rectangle.  

a) Show the geometric form of the direct lattice with its new primitive cell 
(along with the two fundamental vectors and their components). 

b) Give the base vectors of a traced reciprocal lattice and give its structure. 

c) Trace the first Brillouin zone and show its geometric form. 

d) We will assume that the A atoms are monovalent. From the determination of 
the Fermi circle line, show if the material is a conductor or an insulator. 

e) The A atoms are now supposed to be bivalent. Indicate the new position of 
the Fermi circle. From this can it be deduced, using the given data, whether the 
material is an insulator or a conductor? 

Answers 

1) 

a) 

a
 

b  

� � 

� � 

� � 

� � 

� � 

� � 

� 

� 

� 

� Atom B (1/4, 1/4) 

         Atom A (0,0) 

o

o

,  with  = 2 

,  with  = 4 

x

y

a ae a A

b be b A

 
Figure 5.30. Direct lattice with base vectors 

b) The base vectors of the reciprocal lattice are such that 2 ,
a

A  with 

0,A b  so that ;A b  and similarly, 2 ,
b

B  with 0,B a  we have .B b  
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Figure 5.31. Reciprocal lattice with base vectors 

In the figure it can be seen that the two upper and lower triangles are empty. 
They do not belong to the second Brillouin zone but to those at higher numbers. 

2) The answer can be given as: 

a) In the [1, 0] direction (which is that of ):A  k = k1,0 = ;
a

 and we thus have 
a = 2 Å 

2
0
1,0

² ²
1.57 3.82 9.43 eV

2 4
E k

a m a
 

b) In the [0, 1] direction (which is that of ):B  k = k0,1 = ;
b

 and we thus have 
b = 4 Å  

2
0
1,0

² ²
0.79 3.82 2.36 eV

2 16
E k

b m b
 

c) In the [1, 1] direction (which is that of 1,1):G  k = k1,0 = ;
a

 and 

0
1,1

2 2

1 / ² 1 / ² 1.76

² 5 ²
            3.82 11.78 eV.

2 16

E k a b

m a b

 

1 – c:  
first BZ 
 
second 
BZ 

1,1OG A B  and 

1,1
1 1

² ² 2
² ²

OG A B
a b

 
[1, 1] 

A

B  

[1, 0] 

[0, 1] 

1,1OG  

a  

b  
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Figure 5.32. Band structures in the directions: a) [1,0];b) [0,1]; c) [1,1] 

3) Filling Brillouin zones: 

a) Each atomic base liberates two electrons and in the direct lattice we have on 
average one base per rectangular cell (four bases are attached to each cell, and each 
base is shared between four cells so there is on average one atom base per cell). If S 
is defined as the surface of the direct lattice, then S = L1L2 = N1N2ab. With each cell 
having the surface ab, we find S/ab = N1N2 = N which is the number of atoms (or 
nodes) in the direct lattice. 

 
In the reciprocal lattice, the surface of the first Brillouin zone is given by 

4 ²2 2* .
aba b

S  The surface of a primitive cell is such that x yk k  

4 ²2 2

1 21 2
,

N N abL L
 so that in the first Brillouin zone we can place 

4 ² 4 ²

1 2
1 2ab N N ab

N N N  cells. Being able to place two electrons per cell, the first 

Brillouin zone is totally full with 2N electrons. As a consequence, the first Brillouin 
zone may receive 2N electrons freed by the base of N atoms. 

b) In order to determine if the material is an insulator/semiconductor or semi-
metallic, we need to know if the bands are overlapping or not. This means finding 

w1,0 = 1,5 eV 

w1,1 = 1 eV 

w0,1 = 2 eV

1,0k  0,1k  1,1k  

a
 

b
 

1 1
² ²a b

 

E1,0 

E0,1 

E°1,1 

E E E 

EV[1, 1]  

EC[0, 1]

EV[1,0] 

EC[1, 0] 

a) c) b) 
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out whether or not the band filling in the direction [0, 1] (corresponding to the 
lowest energies) of the second band starts before filling of the first band in other 
directions is complete. 

 
So that there is no overlapping whatsoever, the lowest level of the conduction 

band should not be filled before the highest level of the valence band is complete. 
For this to happen, there should simply be no overlap between the directions [0, 1] 
and [1, 1] that correspond, respectively, to the lowest and highest energy directions.  

 
In order to have the insulating (or semiconducting) state, we therefore need to find: 

EV[1, 1] < EC[0, 1],  

so that:  

E 1,1 = E1,1 – w1,1/2 < E+
0,1 = E0,1 + w0,1/2. 

This condition can also be written as: 

w0,1 + w1,1 > 2(E1,1 – E0,1) =
2 ² 1 1 1

² ² ,
2 ² ² ²m a b b

  

so that: 

w0,1 + w1,1 >
² ²

.
²ma

 

4) Numeric application: 

a) With w0,1 = 2 eV and w1,1 = 1 eV, we have: w0,1 + w1,1 = 3 eV. 

With a = 2 Å and 2 /2m = 3.82 eV Å2, we can deduce:  

² ²
²ma

= 18.85 eV, from which w0,1 + w1,1 = 3 eV < 
² ²

²ma
= 18.85 eV.  

The material is therefore semi-metallic. 
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b) If the material is a conductor, we have: E°0,1 + w0,1/2 > E1,1 – w1,1/2. At 0 K, 
the Fermi level (EF) penetrates the second band along the direction [0, 1] as EF must 
be higher than EC[0, 1]. Nevertheless, it will be at the interior of the first band in the 
[1, 1] direction as it is in this direction that EF must be less than EV[1, 1]. This can 
also be compared against the figure in problem 2, which describes the characteristics 
for a semi-metallic state. 

 
In the direction [1, 1] the Fermi ray kF[1, 1] increases continually while in the 

direction [0, 1], kF[0, 1] has to go through a step before starting to increase again. 
On taking into account the deformation of the Fermi circles near the angles, we find 
that the Fermi surface takes on the form shown below.  

 

 

Figure 5.33. Truncated Brillouin zone 

5) The B atoms are now placed at (1/2, 1/2) and are the same as the A atoms. 
They are pictured below: 

 
Figure 5.34. Direct latice with B atom localized in (1/2, 1/2) 

b 

a

'a  

'b  

[1, 1] 

A

B

[1, 0] 

[0, 1
]

Fermi “deformed circle”
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a) The direct lattice is thus a centered rectangle. The primitive cell is rhombus 
shaped, and a base vector for the vectors such that: 

/ 2 / 2
'   and  ' .

/ 2 / 2
a a

a b
b b

 

The surface of the elementary cell is: 

1
' 4

2 2 2 2
a b a b

s ,  

and the number of elementary cells that we can place in a sample of the surface is 
given by S = L1L2 = N1N2 ab = Nab and is equal to 

'
2 .S

s
N  As each rhombic 

primitive cell contains on average one atom (four atoms shared between four 
adjacent cells), a sample of the surface S contains 2N atoms in all.  

 

NOTE.– If instead of considering the preceding primitive cell, we look at a centered 
rectangular cell, the surface is now given by s = ab. In the sample given by the 
surface S = L1L2 = N1N2 ab = Nab, we can place S/s = N rectangular cells. As this 
cell contains on average two atoms per cell (one atom at the center of the cell and on 
average one atom at the top of the cell, with four atoms at four summits being shared 
between four adjacent cells), we can place a total of 2N atoms in the sample surface 
S, i.e. a result identical to the preceding case. 

b) The base vectors of the reciprocal lattice, '* X
Y

A  and '* V
W

B  are such that 
they should agree with: 

'* ' 2       (1)             '* ' 2       (2)
2 2 2 2

'* ' 0        (3)             '* ' 0        (4)
2 2 2 2

a b a b
A a X Y B b V W

a b a b
A b X Y B a V W
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We thus have a system based on four equations with four unknowns (X, Y, V, W). 
So: 

(1) + (3)  X a = 2   X = 2 /a 
(1)  (3)  Y b = 2   Y = 2 /b 
(2) + (4)  V a = 2   V = 2 /a 
(2)  (4)  W b = 2   W = 2 /b 

As a consequence, the elementary cell of the reciprocal lattice has the same 
conformation as the reciprocal lattice cell. The reciprocal lattice is also a centered 
rectangle. Mathematically, we in effect need only to equate the components of '*A  
and '*,B  as in 2 /a = c/2 and 2 /b = d/2, to see that the fundamental vectors '*A  
and '*B  have the same components as the fundamental vectors 'a  and 'b from the 
direct lattice when: 

/ 2 / 2
'*    and    '* .

/ 2 - / 2
c c

A B
d d

 

c) The first Brillouin zone takes on a rhombic shape – shown as a gray surface 
in the figure below. 

 

 
Figure 5.35. Rhombic-shaped first Billouin zone (gray area) 

2 a

2 b
A '*

'*B

 

 

  

  

 

 

  

 C 
D 

K 

kF 

 

 
2 / 2 /

'*  and '*
2 / -2 /

a a
A B

b b
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We can state that: 

1 1
OC 2

a² b²
; 

and its mediator delimits (in the direct lattice of the centered rectangle) the first 
Brillouin zone, and is identical to that which delimits the second Brillouin zone of 
the direct lattice of the preceding example based on a simple rectangle. The same is 
true for OD = 2.2 /b and its mediator. 

 
We can immediately conclude that the surface of the first Brillouin zone is the 

centered rectangular lattice is equal to the sum of the surface of the first Brillouin 
zone and second Brillouin zone of the preceding simple rectangle lattice. 

d) As seen in problem 5a where there were 2N electrons to place, in the direct 
lattice if the A type atoms are monovalent, we have 2N atoms to place that take up 

the reciprocal space of N cells on a surface given by: 4 ²2 2

1 2
.

NabL L
 

 
These cells should be spread throughout the Brillouin zones with the first zone 

being filled first, it having dimensions given by: 

2 2
1.57

4 4
OL

b
Å-1 

2 21 2 2 1 1
1.76

2 ² ²
OK

a b a b
 Å-1 

The line detailed by kF of the Fermi circle, at the interior of which are placed all 
the 2N electrons of the N cells if the line is inside the Brillouin zone is such that 

4 ²2 (Surface of a cell) .
abFk N  From this can be deduced that Fk  

2
4

2 1.26

a
b

ab
 Å-1. 

 
The Fermi circle thus appears smaller than the smallest dimension (here along 

OL) of the first Brillouin zone so that all the electrons can be placed inside the Fermi 
circle while maintaining empty cells in all directions. The material is therefore 
a conductor. 
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e) If the A atoms are divalent, we have 4N electrons to place into 2N cells, and 

the Fermi circle must therefore follow: 8 ²4 ²2 2 ,
abNabFk N  so that 

2
4

22 1.78

a
b

abFk  Å-1. This time, kF > OL and even kF > OK, so the Fermi circle 

reaches the second zone and what remains to be known is what happens at the points 
L and K: 

– either there is little or no potential barrier and the second zone starts to be 
populated before the first is completely full. The material is thus a semi-metal; 

– or there is a high barrier that displaces electrons into the corners of the first 
zone and we thus need to know if we can just fill the first zone of the rectangular 
center, in which case the material would be an insulator. 

 
Taking the representation for the Brillouin zone from problem 1b, it is possible 

to see that with the simple rectangular structure we can use the first zone’s scheme 
of reduced zones for the second zone, which has the same surface. The figure below 
shows how part (1) of the second zone can be placed into the first. The same can be 
done with other parts of the second zone, as for example the surfaces of small 
triangles t1 and t’1 are identical. The result is that we can place, in all, 
2 × 2N electrons, or rather, 4N electrons in the first two Brillouin zones of the 
centered rectangular structure. This is just the number of electrons liberated by the 
bivalent A atoms. In effect, the material is an insulator. 

 

 

Figure 5.36. Diagram of the reduced zones showing that first 
 and second zones are of the same area 
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Chapter 6 

Electronic Properties of Copper and Silicon 

6.1. Introduction 

This chapter is mostly concerned with the face centered cubic (fcc) structure that 
is taken up by a large number of crystalline elements, such as aluminum, nickel, 
copper, silver, calcium, neon, argon and krypton. In addition, we find that the 
elements in column IV of the periodic table, silicon and germanium, crystallize in 
the same form as diamond carbon. In this structure, half of the atoms are in the same 
environment as those in a fcc structure. The other atoms are also in a fcc lattice that 
is displaced with respect to the former lattice by a quarter cell unit in the direction 
[1,1,1]. The two types of atoms differ simply in their orientation with respect to their 
bonds with their nearest neighbors. 

 
Copper and silicon are both standard bearers in their respective classes of metals 

and semiconductors. Given their industrial and academic importance, it is easy to 
see why the study of their crystalline structures in order to understand their 
electronic properties is so crucial.  

6.2. Direct and reciprocal lattices of the fcc structure 

6.2.1. Direct lattice 

The fcc structure (side d) is shown in Figure 6.1. Two forms of unit cell can be 
constructed: 

i) A rhombohedric cell based on the vectors , ,a b c  joining the origin O to the 
center of the faces of the cube.  
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The component of the , ,a b c  vectors on the x, y, z axes are: 

                              
     /2      /2         0

     /2       0          /2
       0       /2        /2

x y z
a d d

b d d
c d d

 

 

The rhombohedron is the smallest cell possible; it is therefore called the 
primitive cell and has, on average, one node per cell (a node for each of the eight 
points of the rhombohedric cell, with each being shared with eight other 
rhombohedric cells). 

 
ii) A cubic cell with the base vector being vectors , ,A B C  (from the d 

components respectively along the x, y, z axes) with the nodes at the summit of the 
cell and at the center of each d face side. This fcc cell contains, on average, four 
nodes per cell. There are eight nodes at the summit of each face that are each shared 
with eight other cells and that contribute, on average, one node per cell. However, 
there are also six nodes at the center of six faces that are each shared between six 
faces and therefore bring an extra 6/2 = 3 nodes per cell. 

 
With a total of four nodes per cell, the centered cubic cell is four times larger 

than the rhombohedric primitive cell. 

a  

b  
c  

d
x 

z 

O 
A

C  

B

Figure 6.1. Fcc structure 
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6.2.2. Reciprocal lattice 

6.2.2.1. Base vectors deduced directly from the direct lattice 

Using the primitive cell in the direct lattice as a starting point, the base vectors 

, ,A B C  of the reciprocal lattice are such that, for example with 
( , , )

* 2 ,b c
a b c

a we 

have:  

²
4
²

4
²

 
4

d

d
b c

d

 and 
3

( , , )
8

d
a b c a b c ,  

so that: 

3
² 4 2

2
4

2
*   

2
 

d
dd

a
d

d

 

Finally, by a circular permutation, we find the components of the three base 
vectors of the reciprocal lattice: 

                                  
2 2 2

*                 

2 2 2
*                 

2 2 2
*                 

x y z

a
d d d

b
d d d

c
d d d
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and the modules of these vectors are such that (see Figure 6.2): 

2 2 22 2 2 2
* 3 * *a b c

d d d d
 

The vectors of the reciprocal lattice are in the form * * *, ,G ha kb lch k l , 

and the nodes closest to the origin are given by the vectors 
*1,0,0
*0,1,0
*0,0,1

G a

G b

G c

. The Brillouin 

zones, which are in themselves difficult to geometricly construct, can be traced from 
the mediating planes of the vectors denoted *,a  *,b  * .c  An additional 
simplification is made by changing the base.  

6.2.2.2. Changing base in a reciprocal lattice 

A new base can be more easily constructed in a reciprocal lattice by using the 
new base vectors given by: 

* *  *

* *  *

* *  *

A a b

B a c

C b c

 

In effect, the vectors *,A  *,B  *C  make up a base as they correspond to the 
maximum number of linear vectors (equal to three). To confirm this property, we 
can create a linear combination given by 1 2 3* * *,μ A μ B μ C  and show that if 

1 2 3* * * 0,μ A μ B μ C  then μ1 = μ2 = μ3 = 0. Given the definition of *,A  

*,B  *,C  the linear combination gives: 

1 2 3*  * *  * *  * 0μ a b μ a c μ b c   

so that: 

1 2 1 3 2 3* * * 0.a μ μ b μ μ c μ μ  
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As *,a  *,b  *c  are the base vectors, this equation implies that 1 2μ μ  

1 3 2 3 0,μ μ μ μ  so that 1 2 3
   2 3

1 2 3and
0,μ μ μ

μ μ
μ μ μ  which in 

turn shows that *,A  *,B  *C  are linearly independent. 
 
Given the definition of the vectors (see Figure 6.2), the components of *,A  

*,B  *C  are thus: 

                                
4

*             0          0

4
*       0                0

4
*       0          0        

x y z

A
d

B
d

C
d

 

 
Figure 6.2.  Centered cubic (cc) of the reciprocal lattice of the fcc structure 

 
The new cell obtained for the reciprocal lattice is thus a cubic centered cell (ccc) 

with sides equal to 4
,

d
 a node at each summit and a node at the center of the cube (see 

also the components of the primitive vectors of the reciprocal lattice *,a  *,b  *).c  
 
This is a classic result that can be stated simply enough, the reciprocal lattice of a 

fcc lattice is a cc lattice. Reciprocally, the reciprocal lattice of a cc lattice is a fcc. 

x 

z 

 
y 

4
d

 

4
d

 *A

*B

*C  
*a  

*b  

*c  

4
d
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6.3. Brillouin zone for the fcc structure 

6.3.1. Geometric form 

In the reciprocal lattice, the closest nodes to the origin are localized at: 

 six coordinate points 4 ,0,0 ,
d

 40, ,0 ,
d

 40,0, ,
d

 situated in the six 

directions normal to the planes [1,0,0], [
_
1 ,0,0], [0,1,0], [0,

_
1 ,0], [0,0,1], [0,0, 

_
1 ]. 

The vector of the reciprocal lattice  1,0,0G  normal to the planes [1,0,0] is such that 

1,0,0 *G A , with 4
1,0,0 d

G ; 

 eight cube centers from the combinations of 2 2 2, ,
d d d

, and situated in the 

eight directions [1,1,1] (normal to planes [1,1,1], [
_
1 ,1,1], [1,

_
1 ,1], [1,1,

_
1 ], [

_
1 ,

_
1 ,1], 

[
_
1 ,1,

_
1 ], [1,

_
1 ,

_
1 ], [

_
1 ,

_
1 ,

_
1 ]). The vector of the reciprocal lattice normal to planes 

[1,1,1] and with an extremity at the center of the cube (in the first octant) is the vector:  

.
* * *1,1,1

2 2 2 2

G A B C
 

Its module is such that:  

22 2 21,1,1
2

2 2 2
3G

dd d d
 

 

[100] 

[010] 

[001] 

[111] 

2
,0,0

d
 

, ,
d d d

 

Figure 6.3.  First Brillouin zone of the fcc structure 
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The first Brillouin zone described by the mediating planes of segments joining 
the origin node to its closest neighbors is shown in Figure 6.3. In the [1,0,0] 
directions the faces are squared and in the [1,1,1] directions they are regular 
hexagons. The coordinates of the intersection of the mediating planes with vectors 

1,0,0G  and 1,1,1 2G  are indicated in the figure. 

6.3.2. Calculation of the volume of the Brillouin zone 

Figure 6.4 schematically illustrates the Brillouin zone (or more exactly an eighth 
of the Brillouin zone) in the first octant. 

 

 

In the [1,1,1] direction, the node is found at the extremity of vector 1,1,1 ,
2

G
 and 

the intersection with the mediating plane (Brillouin zone) of this segment is thus at 

the point denoted G’ that has the co-ordinates , , .
d d d

 The equation for this 

mediating plane can be found by considering a vector V  (with components x, y, z) 
that has an extremity in the plane that is such that 2' | '| ,V OG OG  so that 

d d
x y ²

,
²

3
d d

z  and hence .3
d

x y z  

 
The intersection of this plane with axis x is such that when y = z = 0, we have 

3
d

x  (the point H in Figure 6.4). 

Figure 6.4. Brillouin zone in the first octant
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z 

3 d  

3 d  
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2 d  
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2 d  
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Similarly, the intersection between axes y and z occurs, respectively, at 3
d

y  

and 3
d

z  (indicated as points L and K, respectively, in Figure 6.4). The points 

situated at (2 ,0,0),d  (0, 2 ,0),d  (0,0,2 )d  correspond for their part to the 
intersectional points at the x, y and z axes on the Brillouin surfaces, which were 
obtained as mediating planes in the [100], [010] and [001] directions.  

The volume V '  of the first Brillouin zone of the first Brillouin zone in the first 
octant thus takes on the form V '  = v – 3v1, where v is the volume enclosed by three 
axes denoted (Ox, Oy, Oz) and the plane defined by the intersectional points HKL, 
and v1 represents each of the small triads at the point H, K and L of the bases clipped 
off in Figure 6.4. It is the removal of these pyramids that result in the truncated sides 
of the Brillouin zone. We thus find 

– 1 3 3
3

21
, where   and  

2d d
v S h h S  so that 

39
32d

v ; 

– 1
31 1 1,v S h  where 1 d

h  and 1
2

2
1 d

S  so that 
3

,361
d

v  or rather, 

3
.3213

d
v  

 

We thus find that 
34

,31' 3
d

V v v  and that the total volume of the sliced 

octahedron, and therefore also of the first Brillouin zone is given by: 

3

3
32

8 'V V
d

 

6.3.3. Filling the Brillouin zone for a fcc structure 

If V0 is the volume of the starting crystal (i.e. in direct space), then the number of 
(fcc) cells with a volume given by 3d  and containing an average of four nodes is 

given by 0 .3
V

d
 In direct space we therefore have 0

34V

d
N nodes. 

The volume of a cell in reciprocal space is 
38

.
0V

 In the volume V of the Brillouin 

zone of the fcc structure, we can therefore place: 
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38

0

3
0 0

3 3 3
32 4

8
V

V V V
N

d d
cells 

that is, the same number as there are nodes in the direct space. 

Being able to place two electrons per cell into the reciprocal space means that the 
fcc Brillouin zone structure will be filled with 2N electrons. However, this will only 
happen if the set of atoms (attached to each node) each liberate an even number of 
electrons. 

6.4. Copper and alloy formation 

6.4.1. Electronic properties of copper 

The atomic number (Z) of copper is 29. Its electronic configuration is [Ar] 
3d10 4s1. It is thus a mono-valent atom and therefore its fcc lattice carries N nodes on 
which are located N atoms that altogether liberate N electrons. The first Brillouin 
zone is thus half-filled meaning that copper is a metal. 

We can also note that silver (Z = 47) and gold give rise to the same behavior. 
Their electronic configurations are, respectively, [Kr] 4d10 5s1 and [Xe], 4f14 5d10 6s1 

(Z = 79). 

The formation of alloys of copper with other more electronically rich elements is 
of particular interest given that copper has a Brillouin zone that is only half-full. 

6.4.2. Filling the Brillouin zone and solubility rules 

6.4.2.1. Filling the Brillouin zone and the consequences 

At absolute zero, electrons occupy the minimum energy cells (starting from the 
origin of the reciprocal lattice) and are distributed inside the interior of the Fermi 
surface.  

For the mono-valent elements (notably Cu, Ag, Au) that are crystallized in fcc 
structures, the number of cells occupied is considerably smaller than the number of 
cells that can be placed in the first Brillouin zone. The external surface of the 
distribution of full cells is very close to a sphere, and the scheme that represents the 
free electrons is very close to reality. 
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In contrast, if the element is richer in electrons, for example if it is divalent, then 
the first zone can be filled. However, as discussed in Chapter 5 for an equi-energy 
sphere that is tangential to the zone limit, there are two situations that can arise: 

i) if there is a gap between the first and second zones, then the first zone fills up 
and the material exhibits insulator/semiconductor properties; or 

ii) if the gap is small, then the second zone can start filling up before the first is 
completely filled, and this results in a semi-metallic behavior. 

Thus, these two scenarios are separated by the point at which the electrons are 
just able to fill the sphere within the first Brillouin zone. The position of the equi-
energy sphere, at a tangent to the zone limit, is important when evaluating the 
formation of alloys. 

6.4.2.2. Conditions for alloy formation: the Hume-Rothery rules 

6.4.2.2.1. Conditions for alloy formation 

In order for alloys to be formed, the diameters of the atoms should be very close 
to one another, or otherwise a disparity in electrons can make it very difficult to 
form a solid solution. An excessive number of electrons can, however, make alloy 
formation quite easy. For example, mono-valent copper is only slightly soluble (1%) 
in bivalent zinc (Z = 30) which has the electronic structure [Ar] 3d10 4s2. But zinc is 
highly soluble in copper (up to 1/3 zinc and 2/3 copper). Similarly, copper is 
insoluble in silicon (valency of four), whereas silicon can be placed into copper (up 
to 6%). 

 
Figure 6.5. (a) Variation in the maximum energy of n(E) and denoted as Em; 

(b) scheme showing how the greatest number of cells filled by electrons with a given  
energy E is obtained with an equi-energy sphere that is tangential to the Brillouin zone 

In addition, we can note that the maximum of the curve n(E) (which describes 
n(E)= Z(E)f(E) for the electronic density) gives the maximum value of the attained 
electronic energy (Em) (see also Figure 4.7). 

(b)

n(E) 

E Em 
(a) 

kx 

ky 

mk  
Em 
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Given the remarks above, we can easily see that this energy value relates to the 
position of the equi-energy sphere tangential to the zone limit. In effect, it is at a 
position where the sphere covers the greatest surface that can surround the 
maximum number of cells that accommodate electrons of the same energy E (which 
is equal to the maximum value of n(E) for E = Em). At a smaller radius, the surface 
is smaller, but at higher values the surface is broken by the limits of the zone; see 
Figure 6.5b, which sketched a simplified example of a 2D square lattice that results 
in a square Brillouin zone; and Chapter 5, where the radius of the circle tangential to 
the zone limit is equal to: 

2 m
m

mE
k  

This concentration of electrons at the maximum of n(E) is very important in 
metallurgy. If we increase the electronic concentration above this limit, then the 
energy of the structure increases considerably (as the gap at the zone limit must be 
crossed) and becomes unstable. 

6.4.2.2.2. The Hume-Rothery solid solubility rules 

These rules are deduced from the preceding results and the resulting general rule: 
the electronic concentration observed for a stable alloy is given by the Fermi sphere 
tangential to the Brillouin zone limit. 

NOTE.– As above, the value given by E = Em the structure becomes unstable, the 
value of E = Em becomes the maximum energy attained and is therefore the Fermi 
energy (EF) of the alloy. 

RESULT.– For a fcc lattice the limiting (maximum) electronic concentration is 1.36 
electrons per atom (see section 6.4.3). For a cc structure, the limiting concentration 
is around 1.48 electrons per atom (see problems, section 6.6). 

6.4.2.2.3. Simple examples  

For a square lattice (2D) of length and unit spacing denoted L and a, 
respectively, the surface of the direct lattice is S = L2 and the cell of the primitive 
cell is given by a2. The number of cells is thus given by N = L²/a² which is also the 
number of nodes (there is on average one node per cell). In the reciprocal lattice, the 
surface of the primitive cell is given by (2 /L)2.  
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The Brillouin zone is a square of side (2 /a) and the (maximum) radius of the 
equi-energy circle is equal to ( /a). Within this circle that has a surface of ( /a)2 
we can place: 

3 2 ²
2 4 ² 42

a L
N

aL
 cells,  

or rather 
2

1.57N N  electrons. If the atomic base is equal to 1, that is, one atom 

at each node, then there are N atoms in all with a concentration of electrons equal to 
1.57 electrons per atom. 

For a cubic lattice of side L and unit spacing a, the volume of the direct lattice is 
V = L3 and that of a primitive cell is equal to a3. The number of cells is thus 
N = L3/a3 which is also the number of nodes (an average of one node per cell). In the 
reciprocal lattice, the volume of the primitive cell is (2 /L)3, the Brillouin zone is 
a cube with sides equal to (2 /a), and the (maximum) radius of the equi-energy 

sphere is ( /a). Within the volume of the sphere 4
3

3

a
 we can place 

334 8
333 6 6

3 L

a aL
N  cells, so that there are 

3
1.05N N  electrons. If we 

again have an atomic base equal to one (that is one at each node), we find that for 
the total N atoms the electronic concentration is equal to 1.05 electrons per atom.  

6.4.3. Copper alloys 

This section looks at copper alloy formed with electronically richer atoms (for 
example bivalent atoms) and uses the same notation as in section 6.2. A stable 
structure is obtained when the equi-energy sphere is at a tangent to the limit of the 
zone. This happens when this sphere centered at the origin reaches the point G '  
shown in Figure 6.4, so that ' 3

d
OG . The volume of the sphere is now given 

by 
44 4 3

33

3
3

a a
sV  and a number 3 0

3 38 2

0

' V Vs
d

V

N  of cells of volume 

38

0V
 can be placed within the sphere. It should be noted that 

3

40
dV N  (see also 

section 6.3.3 where N is the number of nodes that is in this case the number of atoms 
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in the direct space as only a single atom can occupy each node, be it copper or the 
added metal). The number of electrons that fill this volume is now given by 

3
4

2 ' 1.36N N N . In other words, for the sphere to be thought of as being 

just-filled, the electronic concentration should be at 1.3 electrons per atom. This is 
the sort of level of electron density that can be attained in copper alloys when zinc is 
added and an alpha ( ) phase alloy is acquired. A higher level can be attained when 
the alloy takes up a cubic centered beta ( ) phase with around 1.48 electrons per 
atom (see the problem at the end of the section 6.6, question 5). 

6.5. Silicon 

6.5.1. The silicon crystal 

Silicon is classed as the 14th element in the periodic table and it possesses four 
peripheral electrons in the M layer. In a silicon crystal, each atom is engaged in four 
bonds with four neighboring atoms. The silicon crystal is thus covalent and the four 
bonds take up tetrahedral positions (with an angle of 109  28’) to give a structure not 
unlike that of diamond. 

 

Figure 6.6. Silicon’s: (a) electronic structure; and (b) crystal cell 

Silicon atoms are placed at the nodes of two cubic face centered lattices that are 
shifted with respect to one another by a quarter cube diagonal. This results in the cell 
shown in Figure 6.6b, which can also be used to represent diamond carbon (hence its 
common name, the “diamond lattice”) or germanium crystals. In the case of silicon, 
the primitive cube has a lattice constant (d) equal to 5.43 Å, whereas for carbon, 
d = 3.56 Å and for germanium d = 5.62 Å. Each primitive fcc cell with a volume of 

(a) 
(b)

K 
 L 

M 

d
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d3 contains on average eight atoms: there are four belonging to one fcc lattice and 
four belonging to the other. We can assume that on average that there are four 
atomic bases per fcc cell. With two atoms per base, there are in all eight atoms per 
fcc cell. 

6.5.2. Conduction in silicon 

Given its structure, and that it crystallizes in an fcc system, with two silicon 
atoms per node (base = two silicon atoms so as to account for the two imbricating 
lattices), the N nodes are for 2N silicon atoms. Given that their valency is equal to 
four, they liberate 8N electrons which can fill several successive Brillouin zones 
(each with 2N electrons). The bands do not overlap and the width of the forbidden 
band has been determined as being EG = 1.12 eV, indicating that silicon is 
a semiconductor. The size of forbidden band decreases slightly as temperature 
increases due to the dilatation of the crystalline structure, so that at 100 C, we find 
that EG = 1.09 eV. Of note is that the forbidden band width of germanium is 
0.66 eV. 

6.5.3. The silicon band structure (see also section 8.4) 

Determining the band structure of a material means finding the correspondence 
between the wave vector and the energy at all points in different zones (in general 
reduced to the first zone) or the different bands. 

 
For a 1D material, the energy of the semi-free electrons is given by equation 

[4.10] in section 4.3 that states 
n

²
2m*

2
( ) (k ) E   ( )k nE k k , where k0 n is the 

value of k at the limit of the zone which has remained till now in the form 

ank n . For a 3D material (where the transport and therefore the effective mass 

can differ with respect to the x, y and z directions), in the preceding expression m* 
can take on various values, namely: mx*, my* and mz* for the respective directions x, 
y and z. In addition, it is possible that the extreme values for the energy are not 
obtained at the band limits (in the direction kx for kx = knx and similarly for ky and kz) 
but at other points in the kx, ky or kz directions.  

6.5.3.1. Properties of the conduction band 

We thus find that silicon shows a conduction band in the [100] direction with a 
minimum at 20.85

amk , where 2
a

 is the limit of the Brillouin zone in these 
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directions (see Figure 6.3 and 6.4). As there are six [100] type directions, there are 
six minimum equivalents, and in the neighborhood of km the energy is given by: 

2 2 2
* *

² ²

2 2
C x m y z

t
E E k k k k

m m  

with  

*

2

²
²

x

m
E

k

 and *

2 2

² ²
² ²t

y z

m
E E

k k

 

In practical terms, the values of * and  *
tm m  are obtained through cyclotron 

resonance characterizations (performed using a magnetic field on conduction 
electrons). With m0 being the electron rest mass, we find that: 

*
0 00.90  and  0.19 *

tm m m m  

 
Figure 6.7.  Correspondence between wave 

vector and energy in the [100] and [111] 
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6.5.3.2. Properties of the valence band 

The valence band shows a maximum when k = 0. Outside of this value of the 
wave vector, the band is separated into three curves due to spin-orbital interactions 
giving rise to the h,  and s bands. In the case of silicon, these arise from the 3p2 
electronic configuration states that are in the outer 3s2 3p2 layer. To the 3p2 states 
there are two types of electrons that are associated with two j values, namely: 

– 3
2

j  states obtained when j s  that give rise to four states 

characterized by 2j+1 values of mj. This means that we have  mj = 3 1 1 3
2 2 2 2

, , , . The 

four states denoted p3/2 have greater energies than the following states (denoted p1/2) 
and give rise to bands denoted h and  (degenerated as the two bands are for four 
states). With the band having an acute maximum, it is populated with light holes 
(hence the name -band for light hole) as shown in Figure 6.7, while the other gives 
rise to heavy holes (hence the name h-band). 

– 1
2

j  states obtained when 1
2

j  that give rise to the s band (see 

Figure 6.7) which has a parabolic character. This band is also degenerate as there are 
two states for each mj, as mj = 1 1

2 2
, . 

6.5.3.3. Consequences expressed in opto-electronic-properties 

When the extremes of the valence and conduction bands are obtained for the 
same value of k (see Figure 6.8b) we have a direct band structure that has a direct 
(vertical) transition between the lowest point of the conduction band and the highest 
of the valence band. The direct transition is thus one where there is only a variation 
in the energy (between EC at the base of the conduction band and EV at the summit 
of the valence band we have E = EC – EV), and without variation in k (EC and EV 
are levels with the same value in k terms, i.e. k0). 

However, in the case of silicon, we have a material which exhibits a so-called 
indirect gap (see Figure 6.8a) and the transition between the lowest point in the 
conduction band the summit of the valence band entails both a variation in energy 
given by E = EC – EV and a change in k. The extrema of the conduction (EC) and 
valence (EV) bands are obtained at different values of k so that the transition involves 
a change in k given by k = kC  kV. 

While a photon suffices to give a change in energy in a vertical transition, an 
indirect transition needs the simultaneous intervention of another particle which will 
give (absorption) or receive (emission) the variation in k given by k. These 
vibration levels (represented by a quasi-particle called a phonon; see Chapter 10) 
ensure this otherwise unlikely transition, unlikely as it necessitates the concomitant 
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intervention of three particles: electron, photon and phonon (see the second volume 
of Materials and Electronics for more information).   

 
Figure 6.8. Band structures: (a) with an indirect gap (as in Si);  

 (b) with a direct gap (as in GaAs) 

6.5.4. Conclusion 

The structure of the silicon band shows how this material is particularly 
important in electronics as the size of its gap (1.1 eV) is well adapted to the 
semiconductive filling of its bands (see the second volume of materials and 
electronics for more information). However, the indirect structure of its gap means 
that it is not so useful for opto-electronic applications, a field in which it is bettered 
– by other semiconductors such as GaAs (and the materials in columns III–V of the 
periodic table) that have direct gaps.  
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6.6. Problems 

6.6.1. Problem 1: the cubic centered (cc) structure 

A cc lattice is shown in the figure below.  

 

                               

       /2      /2  /2

  /2      /2      /2

      /2  /2      /2

x y z

a d d d

b d d d

c d d d

 

With respect to axes x, y and z, the fundamental vectors of the direct lattice 
( , ,a b c ) have the following components where d is the side of a conventional cube 
as shown in the figure: 

1) Determine the fundamental vectors , ,A B C of the reciprocal lattice. Give the 
structure of the reciprocal lattice of the cc direct lattice.  

2) What are the 12 small vectors of the reciprocal lattice?  

3) Deduce the form of the first Brillouin zone of the cc lattice. 

4) Calculate the total volume of this first Brillouin zone. 

5) Determine the number of electrons per atom that must be present in order to 
just fill this Brillouin zone (assuming that the atomic base is equal to 1, i.e. there is 
one atom at each node). 

6) And alloy of two crystalline materials is prepared in a cubic centered system. 
What is the optimum number of electrons per atom to give a stable alloy? 

 x 

 y 

  z 

a

bc

d 
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Answers 

1) We can use for example 2 b c
V

A , where 
3

2
( ) dV a b c  is the volume 

of a cubic cell. With b c  that has components (d²/2, d²/2, 0), we thus obtain: 

2 0 2

2 02           

2 2
0

0

d d

A B C
d d

d d

 

These vectors exhibit the same components as the fundamental vectors of a face 
cc lattice for which each side of the cube is worth 4

d
 (rather than just d as is the 

case in the direct lattice as shown in section 6.2.1). The up-shot is that the structure 
of the reciprocal lattice (of the cc direct lattice) is fcc.  

2) The vectors of the reciprocal lattice are defined by: 

, ,

2
.

h k l

x y z

G hA kB lC

h l e h k e k l e
d

 

The smallest vectors (G ) are vectors given by the following expressions, in 
which the signs vary independently from one another: 

2
x ye e

d
, 

2
y ze e

d
, 

2
x ze e

d
. 

3) The first Brillouin zone is delimited by the mediating planes of the preceding 
12 G  vectors. The vectors that join the origin to the centers of the faces of these 
zones are one-half of the preceding vectors:  

x ye e
d

, y ze e
d

, x ze e
d
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We thus find ourselves with a regular dodecahedron. In an octant there are three 
faces given by AFC, BFC and AFB (see the figure). In all there are 3 × 8 = 24 faces, 
each sharing an adjacent octant so that there are in effect 12 faces throughout all 
space. 

 
4) The volume in the first octant of the first Brillouin zone can be obtained as a 

difference between the volume of the pyramid ABGCO and the pyramid FBGC.  
 
Thus, with: 

2 3

ABGCO 3
1 2 2 8
3 3

V
d d d

 and 
2 3

FBGC 3
1 1 2 2
3 2 3

v
d d d

 

we find the Brillouin zone volume in the first octant to be: 

3 3 3

ZB1Oc 3 3 3
8 2 2

3 3
V

d d d
 

from which the total volume of the Brillouin zone over all space is given by: 

3

ZB1Oc 3
16

8V V
d

 

5) In a direct lattice with an atomic base equal to one atom per node, a cell with 
volume d3 contains on average two atoms per cell. The eight atoms situated at the 
eight corners of the cube are each shared between eight cells altogether bring one 

F 

A 

B 

C 

kx 

ky 

kz 

2
, 0, 0

d
 

2
0, , 0

d
 

2
0, 0,

d
 

G

O



Electronic Properties of Cu and Si     193 
 

atom per cell, and the atom at the center of the cell that is not shared with any other 
cell also brings one atom per cell, thus giving a total of two atoms per cell. If the 
volume of the material is equal to V, there are 3

V

d
 cells in direct space, so that there 

are 2
3

V

d
N  atoms in the direct lattice. 

 

In the reciprocal space, the volume of a cell is equal to 
38

V
. Therefore, in the 

Brillouin zone we can place 
3 3 216 8

33
V

V dd
= N cells. There are therefore in the 

first Brillouin zone as many cells as atoms in the direct lattice, so all cells will be 
filled (with two electrons) if each atoms liberates two electrons. The Brillouin zone 
is thus totally filled if the atoms are divalent (a result identical to that found for a 
simple cubic or fcc lattice). 

6) A stabilization of an alloy based on monovalent atoms (which by themselves 
can only fill half of the Brillouin zone) using divalent atoms is obtained when the 
equi-energy sphere tangential to the zone limit is filled with electrons. This means 
that the radius of this sphere is equal to: 

1 2
2 2

2 2

OG
R

d d
 

and that its volume is given by: 

VF = 
4

3
3

4 4
2 2

3 3
R

d
 

The sphere thus contains 
44 2
3 33 3

32 2 (8 ) '
d d

V V N  cells whch is 

equal to 2N '  electrons when filled. Under these conditions and with a population of 

N atoms, we have 2N ' /N electrons per atom so that there are 2 2
3 33

2 V

d d
V  

2
3

1.48  electrons per atom. 
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6.6.2. Problem 2: state density in the silicon conduction band 

To determine the form of the state density function for the silicon conduction 
band, we should note that in the neighborhood of mk  (wave vector for a minimum 
in the conduction band where the minimum energy Emin = EC), we can write that the 
energy of a semi-free electron (of non-isotropic effective mass) is given by: 

2 2 2
* *

² ²

2 2
C x m y z

t
E E k k k k

m m
 

where: 

*

2

²
²

x

m
E

k

 and *

2 2

² ²
² ²t

y z

m
E E

k k

 

1) When introducing the vectors: 

'
*

'
*

'
*

*

*
'

*
t

t

x x

y y

z z

m
k k

m

m
k k k

m

m
k k

m

         and     

' '
*

' '

'

*

0

0

mx m m

m my

mz

m
k k k

m

k k

k

 

what is the form of E = f(EC, 'k , '
mk ,m*)? 

2) The reasoning used is with respect to k’ space, but what is the dimension of 
a primitive cell is this space? What is the equi-energy surface in this k’ space? 

3) Determine the new expression for the state density function. What happens to 
this expression on taking into account the fact that the conduction band in reality 
displays six minima corresponding to six [100]-type directions that are equivalent 
and shown in Figure 6.3 (limited to the first octant and the equivalent directions 
[100], [010] and [001])? 

4) Show how we are driven to defining a new effective mass (called the electron 
state density effective mass). How can it be expressed as a function of *m  and *

tm ? 
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Given that *
00.90 m m  and *

00.192 tm m (with m0 = 0.9 × 10-30 kg), use 
the new expression for the effective mass as a function of m0.  

Answers 

1) We have ² ²
* *2 2

2 2 2
m mt

C x m y zE E k k k k , so that  

– either 
*

*
' m

mx xk k  and 
*

*
' ,m

mm mk k  from which 2( )x mk k
*

*
' ' 2( ) .m

m x mk k  

– or 
*

2 '2mt
my yk k  and 

*
2 '2 ,mt

mz zk k  in which case 

* * *2' ' '2 '2
* * *

2' ' '2 '2

² 1 1 1
2 * * *

²
2 *

t t
C x m y z

t t

C x m y z

m m m
E E k k k k

m m mm m m

E k k k k
m

 

By introducing 

'

'

'

'
k x

k y

k z

k  and 
'

0
0

'
k m

mk , we finally reach: 

2
' '²

2 *C mE E k k
m

 

2) In reciprocal space, the dimension of a cell is 
383

Vx y zk k k k  
(where V is the volume of the direct lattice). From: 

*'
*

*' ,
*

*'
*

m
k kx x

m

m
k ky y

m
t

m
k kz z

m
t
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we deduce that: 

*'
*

*' ,
*

*'
*

m
k kx x

m

m
k ky y

m
t

m
k kz z

m
t

 

from which the dimension of a primitive cell in 'k  space is: 

3/ 23
' ' '

* * 1/ 2* *

** * 8
.x x x x x x

t t

mm m
k k k k k k

Vm m m m
 

The relation obtained from question 1, i.e. ²
2 *

2
' '

mC mE E k k , makes it 

possible to state that the equi-energy surface is a sphere centered at '
mk  and with 

radius given by 
2 *'' .

m E EC
mk k  

3) In the k '  space, the volume corresponding to the energies between E and  

(E + dE) is given by that between two spheres of radius '' mk k  and 

'' ' ,mk k dk  in other words a volume 
2'

' 4 ' '.k mdV k k dk  From 

2'' mk k  2 *
,

²
m E EC  we deduce that 2 *

²
'2 ' ' m dE
mk k dk , and then that: 

2'
3

* 2 *
' ' .C

m
m m E E

k k dk dE  
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In turn from this we have: 

' 3

* 2 *
4 C

k
m m E E

dV dE  

The number of cells that can be placed in this volume is given by: 

1/ 2* *
'

' ' ' 3 3/ 23

1/ 2* *
3

* 2 *  
4

 8 *

2  
4   

tCk

x y z

C
t

V m mm m E EdV
dE

k k k m

E E
m m V dE

h

 

Finally, relative to the unit volume of the material (V =1), we can place between 
the energy surfaces E and E + dE a number denoted Z(E) dE of electrons. This is 
given by (with two electrons per cell): 

1/ 23/ 2 * *
3

4
( ) 2  t CZ E dE m m E E dE

h
 

Taking the six minima into account, the state density function can be written as: 

1/ 23/ 2 * *
3

4
( ) 6 2  t CZ E m m E E

h
 

4) If 
2/3* 1/ 2 *6[ ] ,c tm m m  we have 4

3
1/ 23/ 2( ) 2 ,

h
c CZ E m E E  

which is an equation analogous to that obtained classically for 3D space. With 
*

00.90 m m  and *
00.192 tm m , we find mc = 1.05 m0. 
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Chapter 7 

Strong Bonds in One Dimension 

This chapter starts with a concise description of the origin and construction of 
atomic and molecular orbitals found in a covalent solid (molecular films and 
polymers included). The results are then applied to energy levels in 1D covalent 
materials (notably molecular wires). 

7.1. Atomic and molecular orbitals 

7.1.1. s- and p-type orbitals 

In the approximation for an atomic configuration (that gives the quantum 
numbers n, l, m…), we assume that each electron of an atom moves in a potential 
that has a spherical symmetry. The result is that: 

– the potential of the nucleus varies with respect to 1/r; 

– this spherical potential gives a first approximation to the action of the other 
electrons. 

 
The electronic state is thus represented by a wave function denoted n,l,m that is 

dependent on three quantum numbers n, l and m, while the energy is only dependent 
on n and l (the degree of degeneration is equal to the number of values that m can 
take on). More details on this can be found in most basic courses on wave and 
atomic physics that use hydrogen as an example of a system with a spherical 
potential symmetry. 
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When l = 0, the atomic orbitals are denoted by the letter s and the wave functions 
only depend on n: n,l,m = R(r) ( ) ( ) = Rn,l l,m m = Rn,0 0,0 0, where: 

0,0 0
2 1  and    

2 2
 

These wave functions do not depend on  nor ; only R(r) takes only different 
values as n, the principal quantum number, varies. The s-orbital thus has a spherical 
symmetry (as shown in Figure 7.1). The general expression for the radial functions 

is given by 2 2

1 1 1
2 1

, ( ) expr r r
na na na

l
l

n l nl n lR r N L  where L represents the 

Laguerre polynomials and a1 is the first Bohr radius (0.53 Å). The fundamental state 
is written using 1/

0,1
r aR Ce . 

 

 

Figure 7.1. Representation of s orbitals 

When l = 1, m = 1, 0, 1 and the orbitals are denoted by the letter p: 

m = 0: 1,0 = ( 6 /2) cos    and 0 = 1/ 2  
m = 1: 1,1 = ( 3 /2) sin    and   1 = (1/ ) cos  

m = 1: 1,-1 = ( 3 /2) sin  and   -1 = (1/ ) sin  

If R(r) represents the Rn,1 function, which does not change as m changes, the wave 
functions for the three preceding p states are of the form: 

0
1 3 ( )  cos
2

R r  [7.1] 

                  z                                z 
 
 
        n = 1                 n = 2 
         y            y 
 

       x            x 

O 
O
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1
1 3 ( ) sin  cos
2

R r  [7.2] 

1
1 3 ( ) sin  in
2

R r s  [7.3] 

with R(r) = R(rf) such that rf has a value defined by the relation: 

2

0

( )  ² 
fr

R r r dr = 95%  

(that indicates that the probability of the presence of an electron being inside the 
sphere of radius rf is equal to 95%), functions [7.1]–[7.3] give a conventional 
representation of the orbitals. 
 
NOTE.– The position of the M points are such that  = OM, as shown in Figure 7.2. 
 

 

We can use as a simple example the case where: 

0
1 3 ( )cos
2 2

R r = OM = OM. 

Figure 7.2.  The shape of the pz orbital. The + and  
– signs give the sign of 0   which is that of cos  

                     z  
                     D 
                           M 
                    
 
                           
 
 

pz orbital 

O

   

x 

y 
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Here D is the point on the Oz axis where  = 1, and therefore we have: 

1 3 ( )
2

OD R r  

In other words OM = OD cos . If   [0, /2], we have OM > 0. The position of 
M points, as  varies, is thus that of a sphere placed above the plane (xOy). If   
[ /2, ], cos   0, and the M points are placed like a symmetric sphere below the 
plane (xOy).  

 

 

In addition, the signs of the 0, 1 1, orbitals can be obtained directly as 
a function of the signs taken on by the variables x, y and z. To do this, we use the 
correspondence between the spherical and Cartesian coordinates given (see 
Figure 7.3) by: 

sin   cos x
r

 

sin   sin y
r

 

cos  z
r

 

(for example, if cos  < 0,  z < 0 and 0; see also Figure 7.2). 
 

              z 
                      M 
 
 
               
                       
                                           y 

 
   x                         m 

Figure 7.3. Usually chosen 
spherical coordinates 
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With 1 ( )3
2

( )  R r
r

f r  > 0 (and r  rf), the functions 0, 1 and 1 can thus 

be written in the following way: 

1 = X = x f(r) = px  ( px > 0 or < 0 depending on whether x > 0 or x < 0) 

1 = Y = y f(r) = py     ( py > 0 or < 0 depending on whether y > 0 or y < 0) 

0 = Z = z f(r) = pz     ( pz > 0 or < 0 depending on whether z > 0 or z < 0) 

Finally, the shape of the s- and p-orbitals can be schematically illustrated as in 

Figure 7.4 (r is fixed to a value denoted rf which is such that 2
0

² ( )fr
r R r dr  

95%). 
 
To conclude, we can state that the s-orbitals are non-directional, as opposed to 

the p-orbitals that are. 
 
 
 

 
 
     
 
 
 

Orbitals: ns      npx                     npy         npz 
   
nodal plane:                          (yOz)                              (xOz)                       (xOy) 
(nodal plane is where there is zero probability of presence) 

Figure 7.4. Representations of ns and np atomic orbitals 
 
 

NOTE.– The orbitals represented above are for one electron; these are the orbitals 
that will be used when building molecular orbitals when there is one electron that 
will be shared with a neighboring atom, as in a covalent bond. The atomic orbitals 
for an atom with i electrons are given by  = i i where the i are wave functions 
for each i electron. The former  are asymmetric (Pauli) and are placed under a 
Slater determinate form.  

z 

y 

x 

z 

x 

y 

z 

x 

y 

z 

x 

y 
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7.1.2. Molecular orbitals 

7.1.2.1. Classic case of the H2
+ molecular ion  

 

 
 

A simple example is that of the first approximation where the overlap of adjacent 
orbitals is neglected (otherwise the supplementary condition E/ k = O should be 
used where there is a minimization of the energy according to a method of 
variation). With the two nuclei (protons) being situated at 1R  and 2R  and with the 
electron common to r  (see Figure 7.5), the Hamiltonian of the system is (assuming 
that the nuclei are fixed in an adiabatic approximation): 

0 1 0 2

² ² ²      
2 4 4

e e
H

m r R r R
  

If (r) = A exp(  r/a1) is the wave function of the fundamental state of the 
hydrogen atom, this function is still a solution to the problem for (H2

+) if we assume 
that the electron is localized preferentially on one of the two nuclei:  

– if the electron is localized about (1), (r)  AD  = 1r R  = 1; 

– if the electron is localized about (2), (r)  BD  = 2r R  = 2. 

 
If the electron is localized between the two nuclei, the solution must correspond 

to a mixture of the two preceding states. This implies a search for a wave function  
for the molecular ion H2+ with a wave function in the form  = c1 1 + c2 2. If the 
electron is localized at (1) then c1 1 and c2 = 0; if the electron is localized at (2), 
then c1 = 0 and c2  1. 

 
 
 
            eD 
            (2)         r              (1) 
   B         2R             O         1R             A 

Figure 7.5. Layout of ions and electron in H2
+ 
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This function must satisfy the equation for proper values: 

H |  > = E |  >    so that    H | c1 1 + c2 2 > = E |c1 1 + c2 2 > 

On multiplying the left-hand side of the equation by < 1 | we obtain: 

c1< 1 |H| 1 > + c2 < 1 |H| 2 > = E c1< 1 | 1 > + E c2 < 1 | 2 > 

With the simplifying hypothesis which makes it possible to neglect the overlap 
integral S = < 1 | 2 > = 0, and with making H11 = < 1 |H| 1 > and H12 = < 1 |H| 

2 >, we find that: 

c1 H11 + c2 H12 = E c1 

Similarly, multiplying the left-hand side with < 2 |, and with Hij = < i |H| j >, 
we have: 

c1 H21 + c2 H22 = E c2 

We thus obtain a system with two equations and two unknowns (c1 and c2), that 
can now be written as: 

c1 (H11 – E) + c2 H12 = 0 [7.4] 

c1 H21 + c2 (H22 – E) = 0 [7.5] 

In addition, 

– the wave functions 1 and 2 are real, thus making it possible to state that: 

H12 = < 1 |H| 2 > = < 2 |H| 1 > = H21 =   (with  > 0); 

– also, the problem (and hence the Hamiltonian) remains invariant with respect 
to any permutation of the nuclei A (index 1) and B (index 2), such that H11 = H22 =  

 (when  > 0). 
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The preceding system of equations [7.4]. [7.5] with two unknowns finally yields 
a non-trivial solution when its determinate is zero. Using our notation, we have the 
equation (  + E)²  ² = 0, which gives two solutions (  + E) =  for energy that 
can be written as: 

– EL =     (the lowest energy corresponding to the bonding level as  and  
are positive); and 

– EA =   +  (the highest and therefore most unstable energy which 
corresponds to an anti-bonding level). (It can also be noted along the way that EA – 
EL = 2 .)  

 
Placing EA into equations [7.4] and [7.5] gives us (c1 + c2)  = 0, so that  

c1 =  c2 = cA. Similarly, by moving EL into [7.4] and [7.5], we obtain (  c1 + c2)  = 0, 
so that c1 = c2 = cL. 

 
The wave function for the H2

+ system thus accepts two solutions and they can be 
written as: 

L = cL ( 1 + 2) 

A = cA ( 1  2) 

The normalization condition for the two functions L and A: 

< L| L > = < A| A > = 1 

makes it possible to determine that cL = cA = (1/ 2 ) and that: 

1 2
1 ( )
2L  [7.6] 

1 2
1 ( )
2A  [7.7] 

We can thus go onto schematically represent these wave functions. Figure 7.6 
shows the bonding solution where the electron has a high probability of presence 
between the two nuclei, so that the strong attraction between the electron and the 
nuclei bond the system. However, for the anti-bonding solution, the electron has a 
strong probability of presence on either outer side of the two nuclei such that the 
strong electrostatic repulsion between nuclei (1) and (2) destabilize the system. 
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NOTE.– With S = < 1 | 2 >  0 (overlap integral), the same but longer calculation 
gives: 

1 2

1 2

          
12(1 )

           
12(1 )

L L

A A

E
SS

E
SS

 [7.8] 

 

 

 

Figure 7.6. Wave functions and orbitals for H2
+  

(bonding state on the left and anti-bonding state on the left) 

7.1.2.2. The H2 molecule  

In this system, there are two electrons and they are assumed to be at the same 
potential as the electron in the H2

+ system. This is because to a first approximation it 
is possible to assume that the interaction potential between the two electrons is 
negligible.  
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Each electron has orbital states L and A, the lowest energy corresponding to 
the two electrons both being in a bonding orbital. In this state the electrons are 
localized between the two nuclei (where their probability of presence is highest) and 
the energy of the system is minimized because the electrons benefit from the 
attractive potential (negative potential energy) generated by the overlapping 
Coulombic potentials of the positive nuclei. This bonding charge, localized between 
the two nuclei (indicated by the maximum electronic density), is the basis for the 
concept of covalence. 

 
The final outcome is as if we had melted the states of each hydrogen into one 

another so as to increase the local electronic density between the two nuclei. The 
bonding state is again obtained with the help of a linear additive combination of the 
two individual orbitals of the atoms. This can be schematically illustrated as in 
Figure 7.7.  

 

 

Figure 7.7. Energy and electron states of H2 

The wave function written in general terms for bonding or anti-bonding states as 
 = c1 1 + c2 2 appears as a linear combination of atomic orbitals (LCAO) and is a 

well known method for finding molecular orbitals. 
 

NOTE.– The L function is symmetric while A is asymmetric. Given that there are 
two electrons to position for the example of molecular hydrogen, we find that:  

– on the EL level, the spins of the two electrons must be anti-parallel in order to 
be distinguished and thus S = 0 (singlet state); 

– on the EA level, the spins of the two electrons can be parallel as they are 
already differentiated by their orbital levels ( A changes sign if the electrons are 
permuted). In this case, S can equal both 0 or 1 (i.e. singlet or triplet states). 
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7.1.3. - and -bonds 

7.1.3.1. -bonds 

These are molecular orbitals which have a symmetry about an axis drawn 
between the two atoms that are covalently bonded. From s-orbitals (the fundamental 
state for hydrogen) we have as an example the structure shown in Figure 7.8.  

 

 

Figure 7.8.  1s and * 1 s-orbitals 

If the axis (Ox) is that on which the two atoms A and B are placed then the 2px 
orbitals will have an appearance much like that shown in Figure 7.9. 

 

 

Figure 7.9.  2p and * 2p orbitals 

where:  

1
2 2 2( )

x xL A p B p   and  1
2 2 2( )

x xA A p B p . 

7.1.3.2. -bonds 

These are molecular orbitals that take on a plane of symmetry than goes through 
the line Ox that joins the atoms and is perpendicular to the direction Oy for 2pz 
orbitals or perpendicular to the direction Oz for 2py orbitals. 
 

+ 
*u 

 g 

C 
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Figure 7.10.  2pz , * 2pz ,  2py , and * 2py orbitals 

NOTE.– The molecular orbitals are termed paired (and denoted g for “gerade” from 
the German) and when following a symmetric operation around the center (C) of 
symmetry of the molecule the sign of the orbital does not change. When the sign 
does change, the orbitals are denoted by with the letter u to indicate “ungerade”. So, 
bonding -orbitals are paired and denoted g, while anti-bonding orbitals * are 
unpaired and denoted *u. Bonding -orbitals are unpaired and denoted u, while 
anti-bonding *-orbitals are denoted *g. 

7.1.4. Conclusion 

Following the introduction of the principal types of atomic and molecular 
orbitals (bonding across two atoms) we will now look at an assembly of bonds in a 
linear atomic chain (1D solid). 

7.2. Form of the wave function in strong bonds: Floquet’s theorem 

7.2.1. Form of the resulting potential 

An infinite chain of atoms each spaced a distance a apart (thus a is the lattice 
period) is shown in Figure 7.11. The distance a is such that a  2R where R is 
defined in the figure. The atoms in the chain are numbered …(0), (1), (2), …(s–1), 
(s),…, so that by placing the atom denoted (0) at the origin, any atom called s has 
a distance from the origin given by rs = sa. 

O
+

+

 u 

*g  C 
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(0) (s) (s - 1)(2)(1) 

asrs

a

'r 'rr

ar r
a)2s(r

asr

a)1s(r 1s 1srr

 

Figure 7.11. Layout of atoms in an infinite 1D chain 

So within this geometric system, the potential generated by an atom (s) at a point 
in space located by r , such that vs( r ), is the same as that generated by an atom (0) 
at a point 'r  and similarly denoted v0( 'r ). By making  sr sa , and on remarking 
that r s + 'r  = r , we finally have vs( r ) = v0( 'r ) = v0( r - r s). 

 
Outside of the action of an atom (s), an electron placed at r  will be subject to 

the action of neighboring atoms, with the atom (s – 1) generating at r  the potential 
vs-1( r ) = v0( 1sr r ), and so on. 

 
The resulting potential at r  can thus be defined for a chain of infinite length by: 

V( r ) = 0( ) ( )
s s

s s
s s

v r v r r    [7.9] 

Now we can state that the resultant potential V( r ) is periodic with a period of 
a , as the symmetry of the problem of an infinite chain demands that the resultant 
potential at r  is the same as that calculated at r a , …, r sa , and so on whether 
the whole number s be negative or positive. This means that: 

V( r ) = V( r a ) = V( r sa ) [7.10] 

Each electron is dropped into a potential V( r ) that displays a periodic function, 
and therefore the wave function is a Bloch function. This result will be used in 
section 7.2.3 to establish Floquet’s theorem. 
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7.2.2. Form of the wave function 

   e-
(s –1) (s) (s +1) 

 a

 

Figure 7.12. A system of practically independent atoms 

If the atoms are well spaced out from one another, as in Figure 7.12, the valence 
electron attached to each nucleus s is not affected by the nucleus’s neighbors. And in 
this case the potential discerned by an electron placed at r  can be reduced to: 

vs( r ) = v0 sr r  

and thus we have V ( )r  v0 sr r . 
 
Similarly, the wave function for the electron is that obtained for a single atom s, 

that is an atomic wave function [ s( r )]. 
 
If the atoms are brought closer to one another, then neighbors will start to 

provoke effects on the electron placed at r , and the form of the wave function will 
resemble that given for a molecular orbital by the LCAO method (see section 7.1.2), 
as in: 

( ) ( )s s
s

r c r  [7.11] 

where ( )s r  is the wave function of an electron placed at r and belonging to an 
atom denoted s. 

 
We can see that the form of equation [7.11] resembles that of [7.9] for the 

potential followed by the electron. 
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Using an argument similar to that applied to the potential makes it possible to 
state that the wave function ( )s r for the electron placed at r  belonging to the 
atom s is identical to that of the same electron placed at 'r  on the atom 0, so that: 

( )s r  = 0 ( ')r , and then with 'sr r r , ( )s r  = 0 ( )sr r  

As a definition, and by analogy to the potential described in equation [7.9], we 
can write that: 

0( ) ( )s s
s

r c r r  [7.12] 

7.2.3. Effect of potential periodicity on the form of the wave function and Floquet’s 
theorem 

We can now state that the wave function for an electron placed at r  and 
belonging to an infinitely long chain can be written: 

– either in the form of a linear combination from equation [7.12]:  

( )r  0 ( )s s
s

c r r , this being a Hückel development of the wave function;  

– or in the form of a Bloch function, with the potential to which the electron is 
submitted being periodic so that (see Chapter 3): 

( ) ( )ikr
k r e u r , where ( ) ( )u r u r a     [7.13] 

The Bloch form applied to a wave function calculated for  r a  makes it 
possible to state that: 

ik(r  a) ika ika( ) ( ) ( ) ( )ikr
k kr a e u r a e e u r e r  [7.14] 

and, by developing ( )k r  as found in equation [7.14] and according to Hückel from 
equation [7.12], we find an initial expression for ( )k r a : 
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0 0 1 0

0

( ) [... ( ) ( )
                          ... ( ) ...]

ika
k

s

r a e c r c r a
c r sa

 [7.15] 

However, the Hückel development directly carried out on ( )k r a  gives: 

0 0 1 0

0 s 1 0

( ) ... ( ) ( ) ...
 ( ) ( [ 1] ) ...

k

s

r a c r a c r a a
c r a sa c r a s a

 [7.16] 

The identification, term by term, between equation [7.15] and [7.16] gives, for 
example: 

0 0 1 0( ) ( )ikae c r c r , so that .
1 0=  .ik ac c e  

1 0 2 0 ( ) (     2 )]ikae c r a c r a a , so that 2 1=  ikac c e  

0 ( )]ika
se c r sa 1 0 ( [ 1] ),sc r a s a  so that 1= ika

s sc c e  

In general terms we thus have: 

2
1 2 0 0=  =  = ... = = .sik rika ik a ik sa

s s sc c e c e c e c e  [7.17] 

With this we are brought to the final form of the wave function (Floquet’s 
theorem) that can be written in two equivalent forms (using the notation 

( ) ( )kr r ): 

0

0 

( ) ( ) so that with 

( ) ( ) ( ),

s

s

ik r
s s s

s

ik r
k s

s

r c r c c e

r r c e r
 [7.18] 

or rather: 

.
0 0 0( ) ( ) ( ) with =sik r

k s s s s
s s

r c r r c e r r r sa  [7.19] 
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7.3. Energy of a 1D system 

7.3.1. Mathematical resolution in 1D where x  r 

For an atom s in a linear chain as shown in Figure 7.13, the resultant potential 
V(x) is that shown with a dotted line. If the atoms are far enough apart so that each 
atom can be considered independent, then the potential follows U0(x). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.13. Explanation of the W(x) = V(x) – U0(x) function 

As shown in Figure 7.13, the potential U0(x) generated along x by the single 
atom s is the same as the potential U0(x + a) generated by the atom (s + 1) along (x + 
a). We thus find that U0(x) = U0(x + a) and the potential U0 produced by the 
independent atoms is periodic. We note also that for 

2 2 
 ,  a a

s sx r r  we have 

V(x)  U0(x), and this becomes all the more true the closer we are to rs (at a mid-
point from rs  a/2 and rs + a/2). We thus make W(x) = V(x) – U0(x) where W(x) is 
small. In addition, as V(x) < U0(x), we also have W(x) < 0.  

 
So going through the successive Schrödinger equations: 

– for an electron described by the wave function k(x) and placed along x so that 
the resulting potential is V(x) (and where k(x) and V(x) take into account the 
effects of neighboring atoms): 

                    rs – 1           rs-a/2         rs          rs+a/2        rs + 1  x 

                       O’ 

U0(x) 

V(x) 

W(x) = V(x) – U0(x) 

  a 
U0(x+a)

potential 
energy 
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²( ) ( )  V( ) ( )
2k k kE x x x x

m
 [7.20] 

– for an electron positioned with respect to x and belonging to an isolated atom 
numbered s, its wave function is s(x) = 0(x – sa), while the potential is  
U0(x) = U0(x – sa). Denoting its energy with E0, we have: 

0 0 0 0 0
²( ) ( )  U ( ) ( )

2
E x sa x sa x x sa

m
 [7.21] 

Multiplying the two sides of this equation by c0 sikre (where rs = sa) and summing 
over s: 

0 0 0 0 0

0 0

²( ) ( )
2

                                      ( ) ( ).

s s

s

ikr ikr
s s

s s
ikr

s
s

E c e x r c e x r
m

U x e x r
 

This equation can be rewritten with equation [7.19] in mind: 

0 0
²( ) ( )  U ( ) ( )

2k k kE x x x x
m

 [7.22] 

Taking the difference between equations [7.20] and [7.22], we have: 

(E – E0) k(x) = [V(x) – U0(x)] k(x)  [7.23] 

With the potential V(x) being periodic, we have V(x) = V(x – rs), such that: 

W(x) = [V(x) – U0(x)] = [V(x – rs) – U0(x – rs)] = W(x – rs)  [7.24] 

Note that W(x – rs) is a periodic function of a, and as such is independent of s. 
This parameter can therefore be included or omitted from .

s
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Finally, equation [7.23] gives, by developing k(x) according to Floquet, as in 
equation [7.19], 

(E – E0) k(x) = c0 0( ) ( )sikr
s s

s

e W x r x r  [7.25] 

7.3.2. Calculation by integration of energy for a chain of N atoms 

Multiplying equation [7.25] by k*(x) and integrating over all N atoms numbered 
from 0 to (N – 1) directly gives: 

0

0 0

( ) ( )

        c ( ) W( ) ( ) .s

k k

ikr
k s s

s

E E x x

e x x r x r dx  [7.26] 

With the help of equation [7.19], the calculation of ( ) ( )k kx x  that appears 
in equation [7.26] can be performed:  

1 1
2 ( )

0 0 s 0 t
0 0

( ) ( ) ( r ) ( r )
s N t N

i ks kt a
k k

s t

x x c e x x  

As 0 0( ) ( )s tx r x r = t
s  (with t

s  = 1 if s = t; t
s  = 0 if s  t), we have: 

1 1
2 ( )

0
0 0

1
2 2( )

0 0
0

( ) ( )

                         .

s N t N
i ks kt a t

k k s
s t
s N

i ks ks a

s

x x c e

c e c N

 

The normalization condition of the function k(x), < k(x)| k(x)> = 1 = |c0|² N, 
makes it possible to obtain: 

0
1

c
N

 [7.27] 
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Equation [7.26] makes it possible to deduce (with equation [7.19]): 

 k*(x) = c0* 
0
( )tikr

t
t

e x r  

(E – E0) 
2

0 0 0 ( ) W( ) ( )s tikr ikr
t s s

s t

c e e x r x r x r dx  

so that with equation [7.27], 

E – E0 ( )
0 0

,

1 ( ) W( ) ( )ik s t a

s t

e x ta x sa x sa dx
N

 

This expression can also be written as: 

E = E0 ( )
0 0

,

1 ( )  W( ) ( )ik s t a

s t

e x ta x sa x sa
N

 [7.28] 

Using the Hückel conditions, which only retain couplings between first neighbors: 

0 0( ) ( ) ( )

when  (with  > 0 as < 0)
 ( ) ( )  when 1

0  for other cases.
t s

x ta W x sa x sa

s t W
x W x s t

 [7.29] 

(as W < 0, then  > 0 if the orbitals t and s have the same sign). In this 
approximation, expression [7.28] for energy following the sum over s (that varies 
from s0 = 0 to sN-1 = N –1) gives 

0
0

1
1

1
1

( )
0

( )

( )

1  

                  

                  N
N

ik s t a
t s

t
ik s t a

t s
t

ik s t a
t s

t

E E e W
N

e W

e W

 [7.30] 
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Each term of the sum between the brackets that carries N terms (as s has N 
values) in fact gives the same contribution, with each being of the form: 

( )  j

j

ik s t a
t s

t

e W  

    = eik(0) a (  ) + eik(  1) a (  ) + eik(+1 ) a (  ) =     e  ika   eika 

 

                       sj = t              sj = t – 1           sj = t + 1 

Finally the bracket of equation [7.30] is equal to N [     e  ika   eika], and 
the energy (E) for the expression is now: 

E = E0     e  ika   eika = E0  2
2

ika ikae e  

   = E0 – [  + 2  cos ka], 

which can be rewritten: 

E = E0 –   2  cos ka   [7.31] 

The graphical representation of E = f(k) (energy dispersion curve) is given in 
Figure 7.14. It shows that the amplitude of the variation in E as a function of k 
amounts to 4 ; the permitted bands are as wide as  are large (strong transfer 
integral between electrons on closest neighbors). 

 
Figure 7.14. The dispersion curve E = f(k) from strong bond and Hückel approximations 

     E 
           E0 -  + 2   
     
                
 
 
 
           E0 -  - 2  
 
          
   - /a   - /2a        0        /2a          

/

k 

 
4  

E0 
 
E0  
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7.3.3. Note 1: physical significance in terms of (E0 – ) and   

From equation [7.21],  

²
20 0 0 0 0( ) ( ) U ( ) ( )

m
E x sa x sa x x sa , 

and equations [7.29]: 

0 0 0 0
²( )    U ( ) ( )

2
E x sa x x sa

m
 [7.32] 

0 0( )  W( ) ( )x sa x sa x sa (one of the Hückel  
            conditions [7.29]) 

so that with W(x – sa) = W(x) (period of W: equation [7.24]): 

E0   = 0 0 0
²( ) U ( ) W( ) ( )

2
x sa x x x sa

m
 

                     = 0 
²( ) U ( ) W( ) ( )

2s sx x x x
m

 

so that: 

(E0 - ) = ²( ) (x) ( )
2s sx V x

m
 [7.33] 

as V(x) = U0(x) + W(x). 
 
The bracketed terms indicate that: 

– the E0 term represents the energy of an electron situated on a given atom s 
within a potential generated only by that atom (potential is U0(x) as detailed in 
equation [7.32]); 

– the ( ) term represents the energy of an electron (on a given atom s) 
influenced by atoms that are neighbors to the principal atom (potential is W(x) as 
given in equation [7.29]); 
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– the (E0  ) = E ' 0 term represents the energy of an electron situated on a given 
atom s and placed within the general resultant potential given by V(x). This comes 
from equation [7.33], where the potential V(x) = U0(x) + W(x) generated by this 
atom gives potential U0(x) and its neighboring atoms (potential W(x), can be seen in 
zone I of Figure 7.15. 

 

 

Figure 7.15. Schematic illustration of the effect of coupling between  
electrons in the same electronic state (in zone II, we find that “a”  

decreases and the interaction between atoms and (a) increase) 

For its part,  was defined such that (equations [7.29]): 

 = 0 0( )  W( ) ( )x ta x sa x sa  =  t sW  

where s = t  1. This term thus gives the coupling energy between an electron on 
a given atom s with electrons in the same state but belonging to t adjacent atoms (i.e. 
t = s  1). The coupling is through the perturbation potential W(x), which is 
produced by neighboring atoms. It is this that gives rise to the level of degeneration 
(zone II of Figure 7.15) which corresponds to the band of permitted energies shown 
in Figure 7.14. This mechanism is similar to that of two interacting wells detailed in 
the supplementary study at the end of Chapter 1. The term thus corresponds to the 
bonding energy of an electron of a given atom s. As the perturbation (W) caused by 
adjacent atoms increases as they come closer to one another (or in other words as the 
lattice period a decreases), the permitted band also increases, and  = (a) (zone II in 
Figure 7.15). In addition, the term  can also be seen as the energy, of the 
electronic population, associated with the overlap integral, as in ,t s t sS . 

   
                                       

                                
      
                          
 
 
 
  
           (I)              (II) 
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7.3.4. Note 2: simplified calculation of the energy 

With ²
2

( )
m

H V x , according to equation [7.32] we have: 

(E0  ) = E ' 0 = ( )  ( )s sx H x   

Often, the term (E0  ) = E ' 0 is simply denoted by  as it can be obtained 
through a more direct and simple route (that has the inconvenience of hiding several 
physical realities). 

 
In effect, it is possible to state directly that: 

( )

( )( )

ik s t a
s t

k k s t
ik s t a

k k s t
s t

e H
H

E E k
e

. 

Using the fact that s t = st and noting that the Hückel approximations can 
be given by: 

– Hss = s sH =   = Coulomb integral = a negative constant by taking the 
origin of the energies as those of an electron at infinity; 

– Hst = s tH =   when s  t and s and t are adjacent (  < 0, is the 
resonance integral, also called the transfer integral, between electron s and 
electron t).  

 
It is possible to directly obtain (as the number of upper and lower terms are 

identical as the sum making it possible to avoid the tortuous double sum): 

E = E(k) =     eika   e ika =    2  cos (k · a). 
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It should be noted that in this version of the Hückel approximation: 

– on one hand, the term Hss =   is identical to that of E ' 0 = E0   from section 
7.2.2; and 

– on the other hand, the term Hst =  when s = t  1, can be written as: 

Hst = s tH = ²-   ( )
2s tV x

m
 

      = 0
²   ( )  ( )

2s tU x W x
m

 

      = E0 s t +  s tW = .s tW  

and the value of  is that proposed at the start of section 7.2.2. 

7.3.5. Note 3: conditions for the appearance of permitted and forbidden bands 

So that a forbidden band appears (zone II in Figure 7.16), the rupture of the 
bands must come from two or more distinct levels (zone I in Figure 7.16). This can 
give the system summed in Figure 7.16, where there is a chain of atoms of which 
each has two distinct states given by  and  and such that 0' |E H  and 

0' |E H . The gap EG can therefore appear in a crystal made up of atoms 

that incorporate various different types of electrons (for example s and p), in a 
crystal made up of different type of atoms (see section 7.4.1), and indeed in a crystal 
with an asymmetric cell (see section 7.4.2). 

 
In zone II of Figure 7.16, where the atoms are brought together, each degenerate 

level breaks down to permitted bands, with each of these at least initially being 
related to the starting state. When the rupture is sufficiently large, i.e. when a is 
small enough, for the states to mix, then the two permitted bands are separated by a 
forbidden band, this being at the point M in the figure. Figure 8.10, for carbon, 
shows this state of affairs more closely for 3D.  
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Figure 7.16. A first approximation to the appearance of the forbidden band  
taking into account the electrons in the two states denoted  for  of each atom 

7.4. 1D and distorted AB crystals 

7.4.1. AB crystal 

A 1D crystal made up of an alternating distribution of A and B type atoms 
(Figure 7.17 with in all 2n = N atoms) has N/2 A–B atom pairs. 

 
 

 

Figure 7.17. Alternating chain of n pairs of A  
and B atoms, where n varies from 1 to N/2 

It is possible to see straight away that the primitive cell (which encloses one 
whole AB unit) has a period of 2a. EA and EB denote the energy levels of electrons 
situated on atom A and atom B, respectively, and A and B are the corresponding 
wave functions.  

                          0'E  + 2  

        0'E  = H                                                (permitted band)    

                                                                           0'E – 2                       
                                    M  

                         0'E  + 2  

 0'E  = H          0'E   2             (permitted band) 
           
 
 
   
 
 

Two degenerate energy levels 
corresponding to the two states,   and 

, of each atom. Adjacent atoms are 
electronically independent (no 

electronic coupling). 

Coupling effect between adjacent atoms 
each with two, different electronic 
states,  and  (where for example,  

 = t sW ). 

 EG 
Forbidden 
band 

Atoms move closer, i.e. a 
decreases 

(I) (II) 

    A1        B1        A2       B2             Aj      Bj   An-1      Bn-1      An       Bn 

a         a 
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The problem can be put into two equations similar to that of equation [7.20]. One 
equation relates to each atom, A or B. The states in themselves can then be sought 
through a linear combination of atomic orbitals for a chain of N/2 A and B atoms, 
as in: 

N/2

kj
j 1

  k Aj kj Bj  

with, according to Floquet’s theorem, 2ikj a
kj ka e  and 2ikj a

kj kb e . Once again 
using assuming poor overlap between adjacent neighbors, we have: 

Ai Aj ij Bi Bj  and 0Ai Bj  

and the wave function, following normalization using 2 2 1k ka b , is: 

/2
1/2

1
exp 2

N

k k Aj k Bj
j

N ikj a a b  

The equation for proper values is k k kH E , with: 

²
2 Aj Bj

j j

H V V
m

 

and the VAj and VBj potentials are defined as for a single type of atom. 

Successive multiplication of the equation for proper values by Aj  and then by 

Bj  gives rise to two types of equations with a compatibility that is given by 
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a second-order equation carrying the coefficients A and B of the form 
A A B AV  and B B A BV .  

 
The upshot is that there are two solutions for the energy. The separation between 

them, E = E+
min  E max, is equal to the forbidden band. This conclusion is shown 

schematically in Figure 7.18. When k = 0, the state with the lowest energy belongs 
to the curve denoted E . It is represented by a bonding orbital, here called L. Still 
with k = 0, the state with the highest energy is found in the curve E+ and is 
represented by an anti-bonding orbital, here denoted by A. 

 

 

Figure 7.18. Dispersion curve, E = f(k), for the AB diatomic system of period 2a 

7.4.2. Distorted chain 

7.4.2.1. Representation 
 

 

                
                  a          a        
      u        u       u= a1/2         u=a1/2 
   A1                       A’1             A2                    A’2               Aj                    Aj    
   
               a + a1            a-a1       
                       2a distorted chain 

undistorted chain 

 

Figure 7.19. Distorted AA’ chain, where the atoms A and A’  
are identical but separated by bonds of alternating lengths 

 E 

k 
/2a + /2a 

E+
min=EB 2 B 

E max = EA 2 A 

E+

E
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Reduction to the 
first zone, i.e. an 
interval between 
[ /2a, + /2a] for 
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to 2a.  
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If each atom (A) is displaced by a distance given by u =  1
2
a

 with respect to its 

initial rest position in a chain with period a, then the result is the structure shown in 
Figure 7.19. The period is now equal to 2a (as in section 7.4.1), but now there is 
only one type of atom, i.e.  A ' ), and hence EA = EA’. 

 
The upshot is the band scheme shown in Figure 7.20. The E(k) curve for the 

undistorted chain (with a period equal to a) is traced by the dashed line, while that 
for the distorted crystal (with a period of 2a) is drawn as a full line. The distortion 
gives rise to a gap (EG) that changes with k =  /2a.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.20. E = f(k) dispersion curves for distorted (continuous line) and undistorted  

dashed line) crystals. Making '
1 HA Aj j  = - 1 and 'HA Aj j = - 2 , we have:  

E(k = /2a) = EG = 2 ( 1 - 2). In addition, supposing that 1 and 2 are of the form - 1 = -  
+  u and - 2 = -  -  u (where  > 0), calculation gives EG  4 |u|. 

7.4.2.2. Conditions to generate a distorted chain 

Whether or not a distorted chain will arise is governed by the energy required to 
produce a chain deformation (bond alternation) and the electronic energy gained 
through relaxation, respectively denoted Edefor and Erelax, following the opening of a 
gap:  

– Edefor is the energetic cost of going from a chain of period a to a structure of 
period 2a, which alternates “long” and “short” bonds, as in (a + a1) – short bond 
(a  a1). It can be stated as Edefor = 1

2
2 ²eNk u = 2keNu² , where N is the number of 

atoms of type A or A ' , |2u| is the stretching or contraction modulus of the spring that 
mechanically ties two adjacent atoms. This brings in the harmonic coupling of atoms 

EG 
Erelax 

E 

k /a /a 
/2a + /2a 

E+

E

E 

EA - 2 ’A 

EA  2 A 
O 

Reduced to the first zone [- /2a,  
+ /2a]  for a distorted crystal of  
period 2a 
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through an elastic force (fe) with a constant (ke) where fe = - ke (2u). If 2u > 0, fe < 0 
and is a force of attraction. 

– The electronic relaxation energy (Erelax) is the drop in energy of the system in 
going from the filling with electrons of the system with period a to the filling of the 
system based on the period 2a. See Figure 7.20, where Erelax is only an approximate 
value corresponding to the drop in energy of electrons that may participate in the 
conduction of the most energetic electrons. See the notes in section 7.5.3 for a more 
rigorous treatment. 

 
If E = Edefor - Erelax < 0, that is to say that the gain in energy during the 

relaxation is greater than that of the deformation, then there is a drop in the system’s 
energy. This stabilizes to a point of deformation with a value (u0) such that 

0

 0.E
u u u

 So, the dimerization of the system, that is the generation of 

alternating short and long bonds, leads to an opening in the gap that changes with 
k = /2a. This is the so-called Peierls transition, which corresponds to a metal–
insulator transition. 

7.5. State density function and applications: the Peierls metal-insulator transition  

7.5.1. Determination of the state density functions 

First, a quick recall of the evaluation of the n(k) function (see also Chapters 2 
and 5). In reciprocal space, the electrons are spread throughout cells of size 

2
.

L
k  This cell dimension is the quantification of the k space and is obtained 

through the progressive boundary condition (PBC, or Born-von Karman conditions). 
At the interval 2

,
L

k  it corresponds to an average of the electronic function 

denoted ( )k x , which in turn can give two states if spin is taken into account. This 

also makes it possible to obtain, for the same k state, the two functions ( )k x  and 

( )k x . It is therefore possible to state that:  

n(k). k = n(k).
1

2

LL
= 2   n(k) = 1  
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The energy state density function [Z(E)] is now related to n(k) by Z(E) dE = 2 
n(k)dk, from which we deduce that: 

Z(E) = 2 1
dE
dk

 

Using this with a chain of N atoms, we have equation [7.31], where E = E0 –   
2  cos ka, and then as 2   sin dE

dk
a ka , it is possible to state that  

1 1( )
sin  

Z E
a ka

 

With: 

sin²(ka) = 1 – cos²(ka) = 1  
2

0   
2

E E
  

we obtain: 

2
0

1 1( )
  

1
2

Z E
a E E

 

For a chain of length (L) given by L = Na, the number of states is: 

N(E)  Na Z(E)  
  0

2

2

1

1 E E

N   

         
2 2

0

2 1 .
(2 ) ( )  

N

E E
 

The graphical representation is given in Figure 7.21b. 
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Figure 7.21. (a) E = f(k) dispersion curve; and  
(b) state density curve for a chain of N atoms 

7.5.2. Zone filling and the Peierls metal–insulator transition 

7.5.2.1. Filling an undistorted zone  

For an undistorted chain with N atoms (length equal to Na) and N electrons (one 
electron per atom in a single quantum state), the number of primitive cells of 
dimensions 2 /L = 2 /Na that can be placed in a Brillouin zone of size 2 /a (placed 
between k = - /a and k = /a) is given by: 

2

2
a

Na

N  

As spin makes it possible to place two electrons into each primitive cell, we can 
place, altogether, 2N electrons into the zone. Given that the system only liberates N 
electrons, this zone (also described by the dashed line in Figure 7.20) is only half 
full. The electrons can therefore easily move about as there are numerous available 
places, and the system is metallic. 

7.5.2.2. The metal–insulator transition  

When the distortion is energetically favored, as in the distorted crystal discussed 
in section 7.4.2 that gave the continuous line for E = f(k) in Figure 7.20, the zone has 
the dimension /a (as it is only between k = – /2a and k = /2a), and only N/2 cells 
can be placed, that is only N electrons. The zone is totally filled by the system’s N 
electrons, which can no longer move (now placed on the inside of the E = f(k) line 

   - /a   - /2a        0          /2a          /a  

k 

 
4  

E0 
 
E0  

E0 -  + 2  

E0 - - 2

E 

k = 2 /L 
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EF 

N(E) 

=Z(E).L N/

(b) (a) 

EF 
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shown in Figure 7.20). A transition from a metallic to an insulating state has 
occurred; in other words the system has undergone a Peierls transition. 

7.5.2.3. Wave vector at the Fermi level: the position of EF 

For a linear chain of N atoms, each liberating a single electron from the state 
under consideration, that has a period a and hence length L = Na, we can evaluate 
the wave vector (kF) at absolute zero for electrons that have the highest energy, i.e. 
the Fermi energy which separates the occupied states from the empty states at  
T = 0 K. At absolute zero, the temperature at which the Fermi-Dirac distribution 
function F(E) = 1 when E < EF (and F(E) = 0 when E > EF), the number of N 
electrons in the chain of length L can be calculated with the help of the state density 
functions Z(E) or n(k) and must be such that: 

N = 

min

( ) ( )
E

F E N E dE =

min

( )
FE

E

N E dE =

min

. ( )
FE

E

L Z E dE  

N = ( ) ( )N k F k dk  = ( )
F

F

k

k

N k dk  

   =
F F

F F

F
1( ) (2 )

k k

k k

Na
L n k dk Na dk k  

from which: 

F 2
k

a
 

where N(E) is the state density for the chain of length L. We can thus see in Figure 7.21 
that for an undistorted chain, the energy EF that corresponds to 

2aFk  is such that EF 

= E0  . For a distorted chain, that contains N atoms liberating N electrons, we again 
have 

2
.

aFk  The Fermi level, at 0K situated midway between the occupied and 

empty levels, is in the middle of the gap EG shown in Figure 7.20. 
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7.5.3. Principle of the calculation of Erelax (for a distorted chain) 

Section 7.4.2.2 detailed how the relaxation energy is the difference between the 
energy of electrons belonging to an undistorted chain (End) and those same electrons 
in a distorted chain, i.e. Erelax = End  Ed.  

 
The estimation of Erelax shown in Figure 7.20 uses the knowledge that: 

– for the undistorted chain, (dashed line for E = f(k)), the electrons participating 
in the conduction are the most energetic and hence situated at EF. As we have just 
seen, this energy varies with k = 

2aFk , and as shown in the figure, corresponds 

to the energy EF at the intersection of the energy and 0K axes; 

– for the distorted chain, the zone between 
2a

 and 
2a

 is just filled, so that the 

most energetic electrons, which participate in transport, are at the summit of the 
band denoted E , that is at EA  2 A. 

The energy Erelax shown in Figure 7.20 thus corresponds to the difference in 
energy of the transport electrons in the undistorted and distorted (or so-called 
dimerized in chemistry) chains.  

A more rigorous estimation of Erelax= End  Ed can now be carried out knowing 
that in both cases (calculating End and Ed) the electrons fill cells between –kF and +kF 
in the k space. 

 
We thus have: 

End = ( ) ( )
F

F

k

k

E k N k dk =
/2

/2

( ) ,
a

a

L
E k dk  with E(k) = E0 –  – 2  cos ka 

(E(k) for the undistorted chain). 

Similarly, the energy (Ed) of the distorted system is given by Ed = 
/2

/2
( ) ,La

a
E k dk  where E (k) is the energy function of the distorted system traced 

in Figure 7.20. The resulting calculations are rather long, and can be carried out as 
an exercise! 
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7.6. Practical example of a periodic atomic chain: concrete calculations of wave 
functions, energy levels, state density functions and band filling 

This section looks at the electronic properties of a 1D (along x) atomic chain of 
length L and made up of N atoms regularly spaced apart by a periodic distance 
called a, so that L = Na. A concrete treatment will be made of a closed, cyclic chain 
using N = 8. 

7.6.1. Range of variation in k 

The range is obtained from the progressive boundary conditions (PBC, or Born-
von Karman conditions). As we have seen, these conditions indicate that when the 
chain is turned back on itself, the presence probability for an electron at a certain x 
coordinate is unique and does not depend on the number of turns (of length L) 
carried out by the electron on the chain and hence ( )  ( ).x x L  

 
The PBC conditions applied to the Bloch function (section 5.8.2.1.1) yield 

eikL = 1. 
 
As in general terms, 1 = ei2p  (with p being whole) and here with L = Na, we can 

deduce that: 

2p
p

k k
Na

 

(where p is a positive or negative integer or zero, as in p = 0, 1, 2, 3,…). 

In addition, the energy is given by equation [7.31], so that: 

E = E0 –   2  cos ka = E0 –   2  cos kpa  

   8  0           1 
   7                     2   
 
  6                        3    
 
        5             4  

Figure 7.22. A cyclic “linear” chain with N = 8 
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With the E(k) curve being periodic, we can limit the representation to one period 
(all other periods will give the same solution for energy). This gives E(k) over a 
reduced zone that extends from –   ka  , and such that with k = kp we have: 

  pk
a a

 

(reduction to the first Brillouin zone). As  2 p
Napk , we also have 

2
 N  

,
2
Np  so that p takes on N successive values. 

7.6.2. Representation of energy and state density function for N = 8 

As we have seen, the domain in which 2 p
Napk  varies can be reduced to: 

pk
a a

 

When N = 8, and  
4pk p
a

, the successive values of kp (where 
2 2
N Np , 

so that p  4, 3,..0,...3, 4 ) are therefore: 

kp = 3 3,   ,   ,   ,  0,  ,  ,  ,  .
4 2 4 4 2 4a a a a a a a a

 

Equation [7.31] for energy can thus be written as:  

E = E0 –  - 2 cos pk a  = E0 –  - 2  cos
4

p  

E = f(kp) and Z(E) are represented in Figures 2.23a and b. 
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Figure 7.23. (a) E = f(kp); (b) Z(E); and (c) the number of states, all for N = 8 

With respect to 4 a
k  and 4 a

k  the states are shared with adjacent zones, 

such that only one of these states is compatible.  
 
It should be mentioned that the states at the top (k–3 , k3 and k4) and the bottom 

(k–1, k1 and k0) of the band are “squashed” and in contrast to those at the middle (k–2 
and k2) of the band. This arises from the cosine shape of the energy curve that is 
flattened towards the top and bottom, and more vertically inclined near the middle. 
This effect increases with N, but to show this in Figure 7.23 would end up with an 
overload! This is because as N increases and along with it the number of values that 
kp takes on, the energy levels will become extremely close to one another at the 
bottom and top of the band. Qualitatively, this explains the shape of Z(E). In 
addition, this function gives the peaks at the band limits as the E = f(k) curve gives a 
horizontal tangent to these limits. The result is that the state densities are high at the 
summit and bottom of the band and low in the middle (Figure 7.23b). It can also be 
said that if a higher value of N were given, the number of functions to trace would 
increase along with the complexity of the representations, without necessarily 
showing any more clearly what is going on. 

7.6.3. The wave function for bonding and anti-bonding states 

With k = kp and N = 8, equation [7.19] for the wave functions can be written as: 

8

0 0
0

( )  c exp( ) ( )
pk p

t

x ik ta x ta  

a
     

2a
             0              

2a
         

a
   kp 

   k – 4       k – 3       k – 2    k – 1       k0        k1       k2        k3            k4 

  E  (b) 
 
 
 
 
 
 
 
 
 

                  Z(E) 

 
1 
2 
 
2 

 
2 
1 
number of 
states (c) 

(a) 
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where c0 =1/ N  after normalization. 

The following example of this function concerns the case where 0(x – ta) = t(x) 
correspond to the s state (for which the wave functions s correspond to the quantum 
number l = 0, such that the notation for 0(x – ta) = t(x) is written as t(x) = st(x), 
where ,l 0R ( ) x

st nA Cex  (see section 7.1.1). 
 

NOTE.– in equation [7.19], the letter t is used to denote the number of atoms in the 
chain rather than the previously used letter s, which is now reserved for use with the 

s orbital (s state characterized by l = 0). We can also note that t = 0  8 as these two 
values “close” the circle, as shown in Figure 7.22. 

7.6.3.1. Atoms without interactions (where N =8) 

 
Figure 7.24. Wave function for a chain of atoms (N = 8)  

that do not interact and show s states 

 
Figure 7.24 gives the initial form of the wave function for each s state of each 

non-interacting atom in the chain. 

7.6.3.2. Representation of the 
pk  functions at the base (bonding state) and at the 

top (anti-bonding state) of the bond for L = Na = 8a 

States at the bottom of the band where p = 0. When p = 0, kp = k0 = 0 and  
exp(i kpta) =1 whatever value t takes on, we thus have (to within the normalization 
coefficient c0): 

0
 k = s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 0  

This is represented in Figure 7.25. 

s0            s1              s2             s3              s4                  s5                s6               7          s8   s0       

L = Na 
x 

k 
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Figure 7.25. Representation of 

0k  

States at the top of the band, where p = 4. Here kp = k4 = 
a

. The successive 

values of t, 4 ,k ta t  and i t  = cos t  are given in the table below.  
 

T 0  8 1 2 3 4 5 6 7 
k4ta = t 0  4   2  3  4  5  6  7  
cos ( t) 1 1 1 1 1 1 1 1 
 
We also have 2

44 2
k

a , and 
4k is represented in Figure 7.26. 

 

 

s0        - s1                s2           - s3            s4        - s5               s6          - s7           s8  s0                

exp(ik4ta) 
= cos( t) 

x 

4 = 2a 4k  

N
od

al
 p

oi
nt

s 
P(

x)
 =

 |
k(x

)|2 
= 

0 

 

Figure 7.26. Representation of 
4k where the atomic wave function ( s)  

exhibits a sinusoidal modulation, in this case based on the function cos t 

s0            s1                s2               s3     s4       s5                s6         s7                    s8  s0                

L = Na 

k0 

x 
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Figure 7.27. Energy levels and states in a chain where N = 8 

Bonding and anti-bonding states. For the states at the bottom of the band, where 
k0 = 0, all the coefficients exp(ik0ta) are equal (to one) and all the atoms are in phase 
(Figure 7.25). There are no nodal points in the resulting wave function k0, which 
explains why this is the most bonding state. The electron presence probability is 
reinforced between each atom. 

As kp increases, the energy increases and nodal points start appearing in the wave 
function. This can be seen in the first figure of problem 1 at the end of this chapter. 
There, the real component of the wave function k1 for k1 is shown.  

In the middle of the band, when k2 = 
2a

, the states are neither bonding nor anti-

bonding and this is the part shown in the second figure of problem 1, which looks at 
the real part of k2. 

In contrast to the above, for the states at the top of the band (where k4 = 
a

 and 

k4a = ), the successive values of exp(i t) = cos( t) alternate between 1 and –1, 
which results in nodes midway between the atoms (see Figure 7.26). The presence 
probability for electrons is zero between atoms and they are distributed according to 
an anti-bonding combination which, evidently, results in an anti-bond. 

In terms of energy, and as in Figure 7.27, the bonding states ( k0, k1, k-1) 
correspond to a drop in energy (a more stable state). In contrast, the anti-bonding 
states ( k4, k3, k-3) are associated with an increase in energy and are more unstable 
states. 
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The energy levels for kp and k-p are identical. As kp =  k-p, we have  
cos kpa = cos[k-pa], and Ekp = Ek-p according to equation [7.31]. The two functions are 
simply associated in terms of the directions of waves’ propagation. As for a free 
electron, the physical solutions can be retained using cos(Re{exp[ikpta]}), which is 
represented in the two figures of the aforementioned problem 1. 

Most notable is that the interaction between neighboring atoms increases the 
degeneration as there are eight levels obtained, each associated with a 

pk function. 
Here, the rise in degeneration is only partial, because as indicated above, the two 
different functions, kp and k-p are at the same energy level.  

When incorporating spin, each 
pk function gives rise to two functions, namely: 

+k p  and k p . Considering that each atom gives one electron to the bond, and 

that there are eight atoms, hence there are eight electrons to share throughout the 
energy levels. Thus only the eight states in the lower half of the permitted band are 
occupied (as in Figure 7.27). The permitted band is half-filled, and therefore, 
a priori, the material is a conductor. There could be a Peierls metal–insulator 
transition, as detailed in previous sections. 

7.6.4. Generalization to any type of state in an atomic chain 

Section 7.6.3 looked at a system with just s-type states. This example can be 
extended to other states, most notably p-type, and the most classic of these 
representations are treated in the problems at the end of the chapter. 

7.7. Conclusion 

The energy bands in a periodic lattice are determined by the degree of overlap of 
the contributing atomic orbitals. The overlap in turn is a product of the competition 
between the period of the lattice (and the evolution of the potential generated by the 
atoms) and the value of the radius R of these atomic orbitals. 

 
The semi-free electron model is particularly appropriate when the overlap is 

sufficiently high for the atoms to lose their own identity (weak bond when a < 2R). 
Chapter 3 is particularly relevant to this. 

 
In the case of strong bonds, we find a more chemical-like representation of the 

bond between atoms. While the space between atoms is considerable, and the local 
periodic potential varies sufficiently for atomic orbitals specific to each atom to 
retain their identity, the bonding orbitals are tied through their linear combination. If 
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a single type of orbital exists, then the energy that is evolved is as a permitted band, 
with a height equal to 4 , where  is the coupling between adjacent atoms. 

 

 

Figure 7.28. The energy levels of a chain of atoms where each atom contributes  
an s electron and results in the formations of an energy band without a gap 

If the only atomic orbitals under consideration are s-type, the states at the base of 
the band are bonding combinations of orbitals, whereas the states at the top of the 
band are anti-bonding orbitals (see Figure 7.28, with an s-electron per atom). The 
amplitude of the wave function is modulated by exp(ikpta). When p = 0, kp = 0 and 
the wavelength p = 2 /kp tends towards infinity. Therefore there are no nodes if the 
states is bonding. When kp = /a, then p = 2a and, between two adjacent atoms, the 
atomic orbitals are in opposite phases with nodes between each atom, and thus 
display what is an essential characteristic of anti-bonds. Problem 2 shows that this 
characteristic behavior of –s-bonds appears in –p-bonds.  

If there are N atoms, then there are N levels in all, with N/2 bonding. As two 
electrons can be placed per level (given the effect of spin), the N electrons (be they 
s-electrons in -orbitals, or p-electrons in -orbitals) will fill N/2 of the bonding 
levels. N/2 of the anti-bonding levels will remain empty. It is worth noting that the 
permitted band will still be equal to 4 , so the higher that N is, the closer the levels 
will be. 

Chapter 8 details the extension of this 1D model to the 3D model. The sizes of 
the permitted bands will be tied to the coordination number (number of bonds for the 
given atom) of the alternating systems. 

Given that the alternation of bond lengths in a 1D chain results in a gap in the 
middle of the band (as in Figure 7.20), it is also notable that when different types of 
orbitals interact, then there is also a gap in the energy band. In addition, if during the 
formation of a solid state, there are two types of orbitals (s and p for example) that 
fuse to give hybrids, then once again there is a formation of bonding and anti-

       isolated      2 atoms     4 atoms           N atoms 
         atom 

    

 
  
 
 
 

anti-
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bonding orbitals. The difference in energy between bonding and anti-bonding 
orbitals generates the energy gap. This problem, using the example of sp3 orbitals, 
will also be treated in Chapter 8. 

7.8. Problems 

7.8.1. Problem 1: complementary study of a chain of s-type atoms where N = 8 

Trace the real part of the wave functions for 1 4
k k

a
, and 

22 a
k k . 

 
Answer 

This scenario was delved into in section 7.6.3. In the chain are eight atoms, each 
in an s-state. The energy levels are presented in Figure 7.27. The representative 
functions of the bonding states at the base of the band ( k0 function) and the anti-
bonding states at the top of the band ( k4 function) are shown in Figures 7.25 and 
7.26, respectively. In addition, between k = k0 and k = k4 there are the intermediate 
states. These have been shown for k = k1 (in Figure 7.29) and k = k2 (in Figure 7.30). 

1
'k And 

2
'k , the real parts the wave functions, are such that: 

8

0 0
0

' ( )  ( ( )) c' cos  ( ) ( )
p pk k p

t

x R x k ta x ta  

where 2
0' N

c , = 2 p
Napk   and 0(x – ta) = C xe . 

– When p = 1, we have k1 = 
4a

 and 2

11 8
k

a . 

The successive values of t, 
41k ta t , and 

4
cos t  are given in the table below.  

T 0  8 1 2 3 4 5 6 7 

k1ta = 
4

t 0 
4

 
2

 3
4

  
5
4

 3
2

 7
4

 

cos 
4

t  1 2 0.707
2

0 –0.707 –1 –0.707 0 0.707 
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From this can be deduced (to within c ' 0) the expression for ' k1: 

1
'k = s0 8 + 0.707 s1 + 0 s2 – 0.707 s3 – s4 – 0.707 s5 + 0 s6 + 0.707 s7 

We thus find that when k = k1, the nodal points start to appear at the level of the 
wave function shown in Figure 7.29. 
 

 
Figure 7.29. Representation of 

1
'k with: 

1
'k = Re 1( )k = s0 8 + 0.707 s1 + 0 s2 – 0.707 s3 – s4 – 0.707 s5 + 0 s6 + 0.707 s7 

 

– When p = 2, we have k2 = 
2a

, and 2 = 2 4
2

d
a

 

The successive values of t, k1 ta = 
2

t , and cos 
2

t  are given in the table below.  

 
t 0  8 1 2 3 4 5 6 7 

k1 ta = 
2

t 0  4  
2

  
3
2

 2  
5
2

 3  
7
2

 

cos 
2

t  1 0 –1 0 1 0 – 1 0 

 

     
s0       0.7 s1        0 s2      -0.7  s3            - s4  0.7 s5       0 s6    0.7  s7        s8  s0        

Re[exp(ik1ta)]   node P(x) =  
 ( ) ²k x = 0 

1 = 8a 

1
'k  
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Figure 7.30. Representation of 2'k with  
2'k = Re 2( )k =  s0 8 + 0 s1 - s2 + 0 s3 + s4 + 0 s5 - s6 + 0 s7 

Finally, we can see that in the middle of the band when k = k2, the states are 
neither bonding nor anti-bonding (Figure 7.30). 

7.8.2. Problem 2: general representation of the states of a chain of –s-orbitals  
(s-orbitals giving -overlap) and a chain of –p-orbitals 

1) 

a) For a chain of atoms from which the s-electrons give rise to -orbitals (see 
Figure 7.4), determine the energetic level of bonding and anti-bonding states. Give 
the band scheme. 

b) Show, using the appropriate scheme, how a qualitative result can be found 
by taking into account the phase associated with the wave function of each atom in 
the chain. 

2) 

a) Deal with the same problem but using atoms in a p-configuration (see 
Figure 7.4) that give rise to a -type overlap. Add to the figure of question 1a) the 
scheme for the corresponding band.  

b) Same question as 1b) but this time for a chain of -p-orbitals. 

 s0          0. s1      -  s2           0. s3              s4 . s5                -  s6    . s7            s8  s0      
 

Re[exp(ik2ta)] 

 = 4 a 2
'k  



244     Solid-State Physics for Electronics 
 

Answers 

1) 

a) For s-orbitals, which are always positive when alone as one s-state per atom, 
then in the atomic chain we have from equation [7.29],  

– s = 0 0( )  W( ) ( )x ta x sa x sa  =  t sW  < 0 

as t and s have the same positive sign (orbital on a single atom t or s) while 
W < 0. In terms of energy, the result is that from equation [7.31], where E is now 
denoted Es:  

Es = E0s – s – 2 s cos ka. 

From the lower half of Figure 7.31, the energy of the s-orbitals: 

– drops at the bottom of the band as – s is always negative and cos ka > 0 (– 
/2  ka  /2 at the bottom of the band) and thus is a bonding state ( –s-band); and 

– increases at the summit of the band as – s is always negative while cos ka < 
0 ( /2  ka   and –   ka  – /2 at the top of the band), and thus is an anti-
bonding state ( *–s-band).  

 
b) This result can be found by taking the phase term associated with each wave 

function on each atom into account (in Floquet’s development this means the cos 
k.rs term): 

– for s-type bonding orbitals, the orbitals of two adjacent states are in phase 
(k = 0 as in Figure 7.25), and have the same sign. This situation can also be 
represented using the sign and geometric shape of the orbital, as in Figure 7.32a. 
The interaction, or rather, coupling, of the two states decreases the -s-band energy; 
and 

– for their part, the anti-bonding states are adjacent to orbitals that have an 
opposite phase (when k =  /a), and hence an opposite sign, as in Figure 7.32b. 
Their interaction results in an increase in the energy (disfavored state) as shown in 
Figure 7.31 for the *-s-band. 
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Figure 7.31. E = f(k) plots for -overlaps from s- and p-orbitals 

 
Figure 7.32. Distribution of (a) bonding –s-orbitals; and (b) anti-bonding  

*–s-orbitals; the arrows indicate the direction of the phase 

2) 

a) General representation of the states in a chain of –p-orbitals ( -overlap of 
p-orbitals)  

 
Once again, we find for p = orbitals that: 

p = 0 0( ) ( ) ( )x ta W x sa x sa  = t sW  with W < 0. 

Now t and s represent p-orbitals and take on the shape shown in Figure 7.33, 
that is of a positive lobe adjacent to a negative lobe, so that – p is positive (upper 
half of Figure 7.31) and now: 

      E 
       

                       E ' 0p - 2 p 
     * - p band  

                         E ' 0p          

       - p band 
              E ' 0p + 2 p                     
                                      E ' 0s + 2 s 

              * - s band 
             E ' 0s   
                - s band              E ' 0s - 
2 s                  k 
   - /a      - /2a        /2a          /a   

k = 0 
 
 
k = /a 

(a) 

(b) 



246     Solid-State Physics for Electronics 
 

– when – /2  ka  /2, cos ka > 0 and the energy is increased with respect to 
E ' 0p = E0p – p; 

– when /2  ka   and –   ka  – /2, we have cos ka < 0 and the energy is 
decreased with respect to E ' 0p = E0p – p. 
 

 
Figure 7.33. Distribution of (a) anti-bonding *–p-orbitals; and (b) bonding –p-orbitals 

b) This result can be found by considering that: 

– when k = 0, the wave functions are in phase and can be shown geometricly 
as in Figure 7.33a with the example of px orbitals. With respect to the Floquet 
development, the term cos kpsa is equal to 1. A positive lobe interacts with 
a negative lobe forming an anti-bonding state with an increase in energy ( *–p-band 
shown in Figure 7.31). This behavior is opposite to that of the s-band in the same 
k region. 

– when k =  /a, the phases alternate (cos kpsa alternately equals +1 and –1) 
so that the geometry can be shown as in Figure 7.33b. The same type of lobes 
interact and result in the bonding –p-band shown in Figure 7.31.  

7.8.3. Problem 3: chains containing both –s- and –p-orbitals 

A chain of atoms contains both –s- and –p-bonds. Taking the geometric shape 
of the s- and p-orbitals, along with their distributions, show with respect to k = /a the 
formation of the forbidden band. The top and the bottom of the forbidden band are 
linked to the probability of electron presence due to the overlap of s- and p-orbitals.  

Answer 

As Chapter 3 showed, with respect to k = /a, a system of stationary waves can 
easily arise with wave functions of solutions for the probabilities of presence given by: 

– +  cos ( x/a) and P+ = cos² ( x/a). The electronic charges are essentially in 
the neighborhood of the lattice nodes. 

–   sin ( x/a) and P  = sin² ( x/a). The electronic charges are essentially 
midway between the lattice nodes. 

k = 0 
          
         
k = /a 

x 

x 

(a) 

(b) 
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Given the geometric shape of the s- and p-orbitals and their corresponding 
electronic distributions, we can state that: 

– the probability P+ concentrates the electronic charges associated with s-orbitals 
around the atomic nodes; and  

– the probability P  concentrates the electronic charges associated with px-
orbitals at points midway between atoms.  
 

In terms of energy, these two orbitals (and their associated electronic 
concentrations) are separated by the gap in energy denoted EG that appears at exactly 
k = /a. 

 
In addition, as the + waves associated with the s-states concentrate the electrons 

at the centers of the atoms, the electrostatic interaction energy, at best, decreases the 
energy of these electrons making them more stable. 

 
For their part, the  waves associated with p-states concentrate their electrons 

midway between atoms (i.e. at the greatest distance apart) so that the electrons are 
held furthest from electrostatic interactions with the nuclei of the atoms. This 
increases their energy making them less stable than the electrons associated with the 

+ wave due to s-states. 
 
We have thus shown that an energy gap can appear in 1D when two (or more) 

types of orbital are present. Figure 7.31 can be compared with Figure 7.16, which 
gives details for –s- and –p-orbitals.  

7.8.4. Problem 4: atomic chain with -type overlapping of p-type orbitals: –p- 
and *–p-orbitals 

For the pz-type orbitals tied to one another by -bonds, as shown in Figure 7.34, 
give a geometric representation of the bonding and anti-bonding orbitals in a chain. 

 

 
Figure 7.34. –p-orbital 

 

x 

z 

pp  
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Answer 

The resonance integral, – p, essentially includes interventions from the overlap 
of two positive lobes and two negative lobes, as shown in Figure 7.34. When W < 0, 
then – p is negative (just as – s), resulting in a behavior similar to that of  

–s-bonds. So Figures 7.35a and b show the geometric representation of bonding 
(low energy) and anti-bonding (high energy) orbitals.  

 

 

Figure 7.35. Distribution of (a) bonding  –p-orbitals;  
and (b) anti-bonding *–p-orbitals 

 

k = 0 
          
 
 
 
 
k = /a 

(a) 

(b) 



Chapter 8 

Strong Bonds in Three Dimensions:  
Band Structure of Diamond and Silicon 

This chapter is devoted to the band structure in periodic, 3D solids and contains 
three studies. The first is on a periodic 3D lattice that has an atom at each node 
contributing one s-electron.  

The cubic lattice will be looked at in detail and there is a determination of the 
height of the permitted (valence) band its effects on the charge mobilities. At this 
level, the forbidden bands do not yet appear as they require a system with several 
atomic levels (see Chapter 7 for a comparable study using a 1D system). 

The second study focuses on strong covalent bonds in the carbon diamond 
structure, where each atom is at the center of a tetrahedral and sp3 hybridization, of 
which the details of the associated wave functions will be given. This system will 
then be used to demonstrate the structure of permitted and forbidden bands, as the 
carbon atoms involve several orbitals. 

The third study looks at the band structure of a 3D lattice based on carbon 
diamond. We will, show in particular, the origin of the band structure with 
a generation of the forbidden band that separates the bonding and anti-bonding 
bands (with examples of diamond and silicon). 
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8.1. Extending the permitted band from 1D to 3D for a lattice of atoms 
associated with single s-orbital nodes (basic cubic system, centered cubic, etc.) 

8.1.1. Permitted energy in 3D: dispersion and equi-energy curves 

8.1.1.1. General expression 

Equation [7.29] that describes the energy (E) of an electron in a strong bond for 
a 1D system, can also be written as: 

0
1, 1

– – .ikta

t
E E a b e  [8.1] 

This summation brings in the two nearest atoms on either side of the atom under 
study. Most simply, equation [8.1] can be rewritten for more than one dimension as: 

0 mik a

m
E E a b e  [8.2] 

where ma  represents the vectors joining the reference atom to its nearest “m” 
neighbors. 

8.1.1.2. Expression for energy in the simple cubic system: equi-energy and dispersion 
curves 

For a simple cubic lattice, as in Figure 8.1a, the ma  vectors obtained for nearest 
neighbors, have the components: 

( a, 0, 0) in x 

(0, a, 0) in y 

(0, 0, a) in z 

The energy thus takes on the form: 

E = E0 –  – 2  [cos kxa + cos kya + cos kza] [8.3] 

where kx, ky, kz are the components for k  in the three direction Ox, Oy, Oz. 
 



Strong Bonds in Three Dimensions     251 

2
A

a
  

M 

W 

X 
[100] 

[110]

[111] 

2
a

 

2
a

 
2
a

 

(b) 
a 

(a) 
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Figure 8.1. (a) Structure of the cubic direct lattice; 
(b) Brillouin zone in the reciprocal lattice 

8.1.1.2.1. Dispersion curves for the simple cubic system 

– At the center of the zone, i.e. the point  where k = 0 (and kx= ky = kz = 0), the 
energy is at a minimum and is given by: 

E = E0 –  – 6  = E( ) [8.4] 

– With respect to direction [100], we have kx = k, ky = 0 and kz = 0, from which, 
according to equation [8.3], [100] 0 4 2 cos ,xE E k a  and thus in X, 

where X  0

0

,
k ax
k y
k z

 we have cos 1xk a and hence 0( ) 2 .E X E  

– With respect to [110], we have kx = ky = 
2

,k  kz = 0, so according to 

equation [8.3], [110] 0 2 4 cos ,xE E k a  and in M where 
0

,
k ax
k ay
k z

M  

we have, with cos 1,xk a  the result 0( ) 2 .E M E  

– With respect to [111], we have kx = ky = kz =
3

k  (as 2² 3 ),xk k  so that 

[111] 0 6 cos ,xE E k a  and in W, where ,
k ax
k ay
k az

W  with cos 1xk a  

we have: 

0( ) 6 .E W E  [8.5] 
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It should be noted that in W, 3 3.
axk k  

 
The E(k) dispersion curve with respect to the [100] and [111] directions is given 

in Figure 8.2. It is notable that the size of the permitted band is given by: 

( ) ( ) 12 .E E W E  

a
 3

a
 

X 
k100 k111 

W 
 

( )E X

( )E W  

E0    6  

E0   + 6  
 

E0 111E  

100E  
E0   – 2  

E

    12  

 

Figure 8.2. E(k) dispersion curve for the cubic system 

8.1.1.2.2. Equi-energy curves for the simple cubic system 

In addition to the calculation shown below, a related and detailed calculation of 
the equi-energy curves for a 2D simple square lattice can be found in problem 1 at 
the end of this chapter. 
 

– In the neighborhood of the zone center ( ), k  k0  0, so that kx  ky  kz  0, 

and 
2

2
cos 1 k ax

xk a  (and likewise for cos ky and cos kz). So the energy can be 

written as: 

E(k  k0) = E0 –  – 6  + a² (k²x + k²y + k²z)  

                = E( ) + k² a². [8.6] 
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From this we deduce that 60
²

2 2 2 2.E E
a x y zk k k k  In the reciprocal k 

space, for a constant E, we have 2
0 6k E E a constant. Thus, in 

the neighborhood of , the equi-energy surfaces are spheres with radii equal to k as 
given in the proceeding equation. 

– In the plane of 0,zk  equation [8.3] becomes 0 2E E  
2 (cos cos ).x yk a k a  This means that in this plane, the equi-energy curve 

(1)
0( 2 )E E  is obtained with cos kxa + cos kya = 0. This condition results 

in 
ay xk k  (see problem 1 (section 8.5.1), question 3c), of which the ky = 

f (kx) representation gives lines that generate a square in the plane along 0zk  and 

with sides equal to 2.
a

 The summits are at X ( ,0,0),
a

 X1 (0, ,0),
a

 X2 ( ,0,0),
a

 

X3 (0, ,0).
a

 

 
By analogy and in the planes defined by 0xk  and 0,yk  we find the exact 

equi-energy surface; (1)
0 2E E  being that of a cube, the six corners of 

which have the coordinates ( ,0,0),
a

 (0, ,0),
a

(0,0, ).
a

 

– When E = E0 –  (equi-energy lines (2)
0E E ) we should have, 

according to equation [8.3], cos kxa + cos kya = cos kza. 
 

In the plane with side 
2zk
a

, where cos kxa + cos kya = 0, we should again 

have ,
ay xk k  of which the ky = f (kx) representation in the plane of side 

2zk
a

 gives straight lines that generate a square (see Figure 8.3). 
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kx 

ky 

kz 

zk
a

 

2zk
a

 
square

 

Figure 8.3. Constant energy surface when E(2) = E0 -  

In the planes with sides ,
azk  we should have cos kxa + cos kya = 1. 

Notably, Sommerfeld and Bethe showed (see Kittel in Figure 6, Chapter 11, 
Quantum Theory of Solids, Wiley, 1963) that it is in this place that the equi-energy 
surface is practically circular. This means that the radius (k) of this surface is 
constant in all directions of the plane (from which kx  ky), so that 

2 2 2.
x yk k

x y xk k k k  As kx  ky then cos kxa  cos kya, so that cos kxa + 

cos kya = 1 and cos kxa  cos kya  1
2

 (and kxa  kya  
3

),  so that 

2
3

2 .
axk k  This is the radius of the circle associated with the equi-energy 

line (2)
0( )E E   in the plane of side given by .

azk  

 
In the intermediate planes with kz sides and such that 

2
,

a azk  or 

2
,

a azk  the equi-energy lines which start in the shape of a square (in 

2
)

azk  evolve towards a pseudo-circular shape, as represented in Figure 8.3. 

8.1.1.3. Expressions for energy in centered cc and fcc systems – see problem 2 

These calculations, which are rather long, are detailed in problem 2 at the end of 
this chapter: question 1a for the cubic centered lattice, and 2a for the cubic face 
centered lattice. 
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8.1.2. Expression for the band width 

8.1.2.1. Reminder of the expression for energy in the neighborhood of k0 at the 
center of the zone, obtained through a Maclaurin development of E  

Briefly recalled, the MacLaurin development for the E(k) energy can be written 
for the neighborhood of k0 as 

0

0 0

2 2
0

( ) (k ) 0 2
E (  - k ) E

  E   (k - k ) 
k 2 k

k
k k

k
E  

Remembering that at the center of the zone there is a horizontal tangent, 

0

0,E
k k

 and with the introduction of an expression for the effective mass (see 

Chapter 4), when k  k0 we have for the energy: 

0( ) (k ) 0
²

 E   ( )².
2m*kE k k  [8.7] 

In the neighborhood of the zone center, where k0  0, we thus have  

0( ) (k )
²

 E   ².
2m*kE k  [8.7’] 

8.1.2.2. The simple cubic lattice 

The identification of the coefficients in kn (n = 0 and n = 2) for equations [8.6] 
and [8.7’] yields: 

0kE = E0    6  (which returns equation [8.4]) 

²
²

2 *
a

m
, so that 

²
* .

2 ²
m

a
 [8.8] 

Incidentally, equation [8.8] shows that the greater the transfer integral ( ), that is 
the easier it is for electrons to pass from one site to an adjacent site, the smaller the 
effective mass. 
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The size of the band can be obtained from the amplitude in the variation of the 
dispersion energy curve (Figure 8.2) which is such that: 

– when kx = ky = kz = 0, then:  

E = 0( 0)E k  = E0    6  [8.4] 

– when kx = ky = kz = 
a

 then: 

E = E , ,x y zk k k
a a a

 = E0   + 6  [8.5] 

From this it can be deduced that: 

E = E , ,x y zk k k
a a a

 – E(k0) = 12 ,  

so that on using the notation given as E = B, we find: 

B = 12  [8.9] 

8.1.2.3. Generalization 

Looking back on the structures that have been studied up to now, which include 
the linear chain in Chapter 7, the square place lattice in problem 1, the simple cubic 
lattice in section 8.1.1.2, and the centered and centered face cubic lattices in 
problem 2, the most bonding state came from the s-orbitals for k = 0 (  point). The 
corresponding energy is given by 0( ) ,E E Z  where Z is the coordination 
number that is equal to the number of “closest neighbor” sites. This can number 2 
for a linear chain, 4 for a square plane lattice, 6 for a cubic lattice, 8 for a centered 
cubic (cc) lattice, and 12 for a face centered cubic (fcc) lattice.  

 
For alternating structures, that is all of the aforementioned except for the fcc 

structure (see comment at the end of section 8.5.2), in which all closed circuits link 
the close neighbor atoms to a paired number of branches, the most anti-bonding state 
has an energy given by 0( )E X E Z . 
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For numerous alternating structures, equation [8.9] can therefore be written as 

B = 2 Z  [8.10] 

Finally, in all cases, be they alternating structures or not, the size of the band is 
proportional to . From equation [8.10], for alternating structures, the weaker the  
coupling between neighboring atoms, the narrower the permitted bands. Non-
alternating structures are dealt with in section 8.5.2.  

8.1.3. Expressions for the effective mass and mobility 

For the effective mass, we note that equation [8.8], m* = ²
2 ²

,
a

 established 

around the  point (the origin of the reciprocal lattice) for a simple cubic lattice is 
also valid for square plane lattices (problem 1, question 4), cc and fcc lattices 
(problem 2, question 1c and 2c, respectively). 

 
The mobility of electrons with a charge denoted -q, and a velocity ,v  subject to 

an external electric field ,E  is defined by the relation .v μE  The integration 

of the fundamental dynamic equation, over an average time ,t  where  is the 
relaxation time for electrons colliding with the lattice, written in the form 

exterior * ,dv
dt

F qE m  gives 
*

,q
m

v E  from which by identification with 

the defining v μE  we have 
*

.q
m

 

 
For alternating structures, the introduction of  deduced from equation [8.10]  

(  = B/2Z) and from equation [8.8] gives: 

²
* .

²
m Z

Ba
 [8.11’] 

Placing this into μ, gives: 

q a²
.

²
B

μ
Z

 [8.11] 
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For non-alternating structures, there are similar laws for the variation of m* and 
μ as a function of B (only the coefficients are different, see the problem in 
section 8.5.2), so that 1*

B
m  and .μ B  

 
We can conclude that the semiconductors with narrow permitted bands i.e.  

E = B and  are small due to poor coupling between atoms (equation [8.10]), and 
are semiconductors with high effective masses and low mobilities. 

8.2. Structure of diamond: covalent bonds and their hybridization 

8.2.1. The structure of diamond 

A study of the energy bands that can appear in materials such as carbon diamond 
requires a determination of the involved orbitals and wave functions. 

 
d 

 

Figure 8.4. Positions of atoms with the first cell shown in black,  
the second shown in white 

Diamond has the same crystalline system as silicon (Si) or germanium (Ge). As 
described in Chapter 6, this system can be reduced to a fcc system as it is based on 
one fcc imbricated within another. The second cell has its edges parallel to those of 
the first but is shifted along a diagonal of the cube. This shift is equal to one quarter 
of a full diagonal (see Figure 6.6b). 

 
Figure 8.4 shows the position of all the atoms in the first cell, those in the first 

cell coloured black, and those in the second coloured white. This figure shows that 
each atom has four immediate and symmetrically placed neighbors. It is in effect 
placed in the center of a regular tetrahedral, the top of which is occupied by 
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a neighboring atom. The cell has the dimensions of d = 3.56 Å for diamond, 
d = 5.43 Å for silicon, and d = 5.62 Å for germanium. The distance between two 
neighboring atoms is equal to 3 16 ,d  i.e. 3.08 Å for C, 4.7 Å for Si and 4.86 Å 
for Ge. 

 
As the bonds between the reference atom and its four neighbors are equally 

placed in space, they are all the same and necessitate the hybridization of the 
original atomic orbitals. Before going into this so-called sp3 hybridization in detail 
(in section 8.2.3), the next section deals with the fundamentals of hybridization. 

8.2.2. Hybridization of atomic orbitals 

8.2.2.1. The notation of hybridization 

The carbon atom has the atomic configuration 1s2 2s2 2p2. It should act as 
a divalent element, such as in CO2, but this configuration does not explain the 
formation of CH4 (sp3 tetragonal hybridization), of CH2=CH2 (sp2 triagonal 
hybridization), or of C2H2 (sp1 diagonal hybridization). 

 
This behavior can be interpreted using the example of two carbon atoms 

“uniting”. Each atom has valence states, 2s and 2p, that are represented by one  
s-orbital and three p-orbitals. This first excited state, 1s2 2s1 2p3, is favored if the 
resulting energy levels show a drop, as is the case when these orbitals “mix”, or 
rather, are hybridized.  

 
Such molecular orbitals can be denoted in the following way, where each carbon 

atom A and B is identified using the numbers 1 and 2, respectively: 

| > = A1 |2s>1 + A2 |2px>1 + A3 |2py>1 + A4 |2pz>1  

           + B1 |2s>2 + B2 |2px>2 + B3 |2py>2 + B4 |2pz>2 

        = | 1> + | 2>. 

8.2.2.2. Various levels of hybridization 

There are in fact different levels of coupling that can be attained, each bringing 
into play stronger or weaker couplings, or in other terms, varying levels of 
hybridization. 
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8.2.2.2.1. The sp1 diagonal hybridization 

This is due to coupling between s and px, for example: 

|  > = A1|2s >1 + A2|2px >1 + B1|2s >2 + B2|2px >2 

        = | 1 > + | 2 >  

where | 1 > and | 2 > each correspond to two possible orbitals. In all this gives two 
bonding orbitals ( )  and two anti-bonding orbitals ( a*). Therefore, | 1 > can be 
such that 1  = a1|2s >1  a2|2px >1 and | 1a > = a’1|2s >1  a’2|2px >1, with the 
+ and – sign being attributed as a function of the sign of the hybridizing orbitals.   

 
The remaining -orbitals that have not been used during the sp1 hybridization 

process are thus obtained only in the directions (Oy) and (Oz), as shown in 
Figure 8.5. 

8.2.2.2.2. The triagonal sp2 hybridization 

This hybridization leaves, for example, the |2pz> state outside of a linear 
combination which only involves the |2s >, |2px > and |2py> states. In effect, 

 = A1|2s >1 + A2|2px >1 + A3|2py >1 + B1|2s >2 + B2|2px >2 + B3|2py >2  

  = | 1 > + | 2 > 

 

Figure 8.5. *- and -orbitals 
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The three hybrid orbitals have their axes in the same plan and are generally 
denoted 2spa

2, 2spb
2, 2spc

2. The fourth orbital, 2pz, remains as it is in a plane 
perpendicular to that above, and gives rise to a -orbital. 

 
So, for this molecule: 

C C
H

H

H

H  

Figure 8.6 gives a schematic illustration. 
 

Figure 8.6. Ethene (C2H4) orbitals 

The angle between the three hybrid -bonds on the same carbon atom must 
equal 120. A calculation that is identical to that developed in section 8.2.3 (for sp3 
hybridization) makes possible a determination of the three sp2 orbitals: 

h1 = 1/ 2
1/ 2
1

  2
3

xs p , h2 = 
1/ 2

1/ 2 1/ 2 1/ 2
1 3

    
3 2 2

x
y

p
s p ,  

h3 = 
1/ 2

1/ 2 1/ 2 1/ 2
1 3

    
3 2 2

x
y

p
s p . 
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8.2.2.2.3. The tetragonal sp3 hybridization  

This hybrid brings in all states (at least of those we have looked at) without 
exclusion. As noted above it is this hybridization that is present in diamond. Given 
its importance and prevalence for elements in the IV column of the periodic table, it 
will be dealt with in more detail in the following section.  

8.2.3. sp3 Hybridization 

8.2.3.1. Orbital revolution symmetry 

The normalized wave functions of the s and p states (where r  rf for the 
expansion zone for the orbitals) of the valence electrons of carbon (n = 2) are the 
result of preliminary calculations already performed in Chapter 7 (see section 7.1.1, 
where the atomic wave functions are denoted , while here they are denoted using 

 and  is now reserved for hybrid orbitals), as in: 

s = Rn,0 (r) 0,0 0 = h(rf) = S (n = 2, l = 0, m = 0) 

0 2
1 3

( ) cos ( ) cos ( ) Z
2

      (  = 2, l = 1,  = 0)

zz f pp R r g r zf r

n m

 

1 

2

1 3
  ( ) sin  cos ( ) sin  cos  

2
           ( ) X     ( 2, l 1, 1)

x

x f

p

p R r g r

x f r n m
     

1

2

1 3
   ( ) sin  sin ( ) sin  sin  

2
          ( )      ( 2,  1,  1)

y

y f

p

p R r g r

y f r Y n l m
      

The f (r) and g(r) functions are related by the simple equation g(r) = r f (r). 
 
The four proper functions, S, X, Y and Z, make up the orthonormalized base in 

a space with four dimensions.  
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For the carbon sp3 hybrid state, in which the S, X, Y, and Z orbitals play no 
particular role, a new base can be obtained using the preceding base. It comprises 
four functions that account for the dimensionality of the system:  

1 = 1 S + a1 X + b1 Y + c1 Z 

2 = 2 S + a2 X + b2 Y + c2 Z 
3 = 3 S + a3 X + b3 Y + c3 Z 

4 = 4 S + a4 X + b4 Y + c4 Z 

| 1 >, | 2 >,| 3 >,| 4 > are the hybrid orbitals corresponding to the 1s2 2s2 

2p2  1s2 2s2 2p2 then
 1s2 2t4 that are only possible if the energy states undergo a 

gain in energy required by the initial excitation of the atomic orbitals. 

 

Figure 8.7 illustrates the denoted terms. The unit vector in the direction OM is 
denoted m  and the point M has spherical coordinates rf,  and . In terms of 
Cartesian coordinates, where ,xe  ,ye  and ze  are the unit vectors for the axes Ox, 

Oy and Oz, the respective components of OM  are: 

x = rf  sin  cos , y = rf sin  sin  and  

z = rf  cos . 

Figure 8.7.  Representation of i 
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The components of m (unit vector where |rf| = 1) in the Ox, Oy, and Oz axes 
system are thus: 

sin  cos  = . xm e  
m  sin  sin  = . ym e  

cos  = . zm e  

Taking into account the form of X, Y and Z given at the beginning of this section, 
it is possible to write that 

X = g(r). .xe m  

Y = g(r). .ye m   

Z = g(r). .ze m   

With i = 1, 2, 3, and 4, it is now possible to state that: 

i = i S + g(r) (ai xe + bi ye + ci ze ) m  

where the vector it  = ai xe + bi ye + ci ze  is introduced. It has the components ai, 

bi, and ci, for the Ox, Oy and Oz axes. 
 
Each i function can thus be written as: i = i S + g(r) it . m . With | m | = 1, 

| it | = 2 2 2
i i ia b c  and by making  = ( it , m ), we find that: 

i = i S + g(r) 2 2 2
i i ia b c cos   

This finally gives  i = i S + i, where the i orbital, thus introduced, is in the 
form: 

i = ai X + bi Y + ci Z = g(r) it . m  
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Here the i orbital is collinearly normalized with i, and therefore is such that  
< i| i> = 1 and i = i i.   i is thus written as: 

1i
i

i i
(ai X + bi Y + ci Z) = (a’i X + b’i Y + c’i Z) 

       = 
1

( ) .i
i

g r t m  = g(r) i

i

t
m = g(r) 'it . m , with 'it =

'

'

'

i
i

i

i i
i

i i

i
i

i

a
a

t b
b

c
c

 

 

As < i | i > = 1 = a’i² + b’i² + c’i² = | 'it  |² we can state that i = g(r) 'it . m   = 

g(r) cos ( 'it , m ) = .OD m , with OD = g(r) 'it . 
 
With  = ( 'it , m ), we have i = OD cos , and the M’ points are placed such 

that i = OM’ is a sphere with a diameter, given by |OD | = g(r), is directed along 
the unit vector 'it . Figure 8.8 shows how, in the plane of this sheet of paper, this 
system is similar to Figure 7.2 that was used to describe pz-orbitals. Similarly, the M 
points are placed such that OM = i = i i is a sphere of radius i OD. 

 

Figure 8.8.  Representation of i 
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So, using Figure 8.7, the hybrid orbital i is obtained by addition of the S orbital 
(that has a spherical symmetry around O, as shown in the figure) with the orbital 
denoted by i = i i, which also revolves around 'it  or it  ( = i 'it ). If i > 0, this 
addition is wholly positive in magnitude with respect to i when i > 0.  

8.2.3.2. Angle between the direction of equivalent hybrid orbitals 

This angle can be determined between the two directions around which revolve 
i- or i-type orbitals, with the condition for hybridization being that the 1 and 2 

orbitals are equivalent. If the two orbitals are denoted 1 and 2, then for example: 

1 = 1 S + 1 = 1 S + 1 1 = 1 (S + 1 1) where 1 = 1 1 

2 = 2 S + 2= 2 S + 2 2 = 2 (S + 2 2)  where 2 = 2 2 

The condition of orthogonality between 1 and 2 (to an orthonormalized base) 
gives: 

< 1 | 2 > = 1 2 <S + 1 1|S + 2 2> 
                   = 1 2 [1 + 1 2< 1 | 2>] = 0  

where the S and i functions are orthonormal to each other. 
 
With 1 and 2 not being equal to zero, we can deduce that we should see  

1 + 1 2 cos 12 = 0, where 12 = ( 1 't , 2't ) represents the angle between the two 
axes of rotation of the normalized wave functions denoted 1 and 2. The 
equivalence imposed on the 1 and 2 also means that 1 = 2. In the case of 1 
and 2, the S orbitals are similarly equivalent because when using the same 
coefficient (1) in the brackets, we should find that 1 = 2 =  such that 1  2). 

 

Finally, the 1 and 2 orbitals are equivalent if cos 12 = –
1

.
²

 

8.2.3.3. Wave functions in the sp3 hybridization  

In this case the carbon is at the center of a tetrahedron and its orbitals are aligned 
along axes that run between that center and the extremities of the tetrahedron, as 
shown in Figure 8.9. These lines form angles that can be calculated using, for 
example, the components 1 't  and 2't . 
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Figure 8.9. sp3 hybridization  

As | 't 1| = 1, and the carbon is at the center of a tetrahedron, we should find that  

a’1² + b’1² + c’1² = 1 and a’1 = b’1 = c’1, so that a’1 = b’1 = c’1 = 1
3

.  

 
Similarly, for 't 2 on taking its geometric position into account, we find that  

a’2 = b’2 = 1
3

 and c’2 = 1
3

. Thus, cos 12 = 't 1. 't 2 = - 1
3

,  and 12 = 109 ° 28 ’ 

while 1 1
² 3

,  and μ = 3 . From the equation 1 = 1 (S + 1 1), it is possible 

to write that 1 = 1 (S + 3 1). The normalization condition for 1 gives a value 

for 1: < 1 | 1> = 1 = 1
2 [1 + ( 3 )²] = 4 1

2, so that 1 = 1
2

.  We find that:  

1 = 1
2

 (S + 3  1) = 1
2

 [S + (a’1 X + b’1 Y + c’1 Z) 3 ], where (a’1, b’1, c’1) are the 

cosine directors for the direction of the first orbital that has been chosen such that  
a’1 = b’1 = c’1 = 1

3
.  This gives:  

1 = 
1
2 2 2 2

1 1 1
S 3 .

3 3 3x y zp p p  
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At the end of all this, we finally obtain: 

1 = 
1
2

 (S + 2 xp + 2 yp + 2 zp ) = 
1
2

(S + X + Y + Z) 

2 = 
1
2

 (S  2 xp 2 yp + 2 zp ) = 
1
2

 (S  X  Y + Z) 

3 = 
1
2

 (S + 2 xp 2 yp 2 zp ) = 
1
2

 (S + X  Y  Z) 

4 = 
1
2

 (S  2 xp + 2 yp 2 zp ) = 
1
2

 (S  X + Y  Z) 

As observed at the end of section 8.2.3.1, the i functions revolve around '
it . It 

must be noted that these functions are directed towards the summit of the 
tetrahedron as shown in a covalent bond. 

8.3. Molecular model of a 3D covalent crystal (atoms in sp3-hybridization states 
at lattice nodes) 

8.3.1. Conditions 

The carbon atoms in diamond exhibit a sp3-hybridization. The various forms that 
carbon orbitals take in 3D space are detailed in the preceding section. If the atomic 
orbitals are effectively equally spread in different directions, then we have a sp3-
hybridization. And in this case, using the carbon atom denoted C as reference, then 
the orbitals are expressed using the four functions that have previously been 
calculated, namely | 1 >, | 2>, | 3 >, | 4 >.  

 
Figure 8.10 details the various stages during the formation of the electronic states 

and energy levels in diamond.  

8.3.1.1. It all starts with isolated carbon atoms  

Initially, the isolated carbon atoms are characterized by two energy levels, Es and 
Ep, for the electronic configuration 1s² 2s² 2p². This is shown in Figure 8.10a and in 
zone (1) of Figure 8.10b. The atoms C, C’, C’’… shown in Figure 8.11 are at this 
stage presumed to be separated by a great distance. As the atoms C’, C’’, C”’ and 
C”” move nearer to the reference atom C, there are s and p bands that form, as 
shown in Figure 8.10a. This is concurrent with the overlapping of the orbitals of 
each atom, for example the s-orbitals give bonding combinations towards the bottom 
and anti-bonding combinations towards the top (see Chapter 7). 

x 

y 

z 

1 

2 

3 

4 
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Figure 8.10. (a) Formation of bands with coalescing carbon atoms; (b) evolution  
of the electronic energy levels with successive couplings; and (c) schematic  
illustration of orbital evolution for the associated changes in energy levels 
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Figure 8.11. Layout for the different atoms along  

with the possible couplings using sp3-hybridization 

8.3.1.2. At the critical point M  

The two bands, s and p, meet at the critical point M and the s and p states mix 
(the so-called process of hybridization). With this hybridization being energetically 
favorable, we obtain sp3-hybrid states denoted by the 1, 2, 3, 4 functions for 
the atom C (see section 8.2). Similarly, the hybrid states for the atom C’ are 
represented by the functions ’1, ’2, ’3, ’4 , and so on in similar terms of 
notation for the C’’, C’’’ and C’’’’ atoms (for example the sp3-states of the last atom 
are described by the functions 1’’’’, 2’’’’, 3’’’’, 4’’’’). Each group of states, 
shown in zone (2) of Figure 8.10b, are represented by the functions i)i = 1,2,3,4,  

’i)i = 1,2,3,4 and so on (so that there are 4N states if the system contains N atoms) with 
the same energy levels, as in Esp3 = Eh.  

 
Eh can be calculated simply as, for example: 

Eh = < 1| H | 1 > = <
1
2

 (S + 2 xp + 2 yp + 2 zp )|H|
1
2

  

        × (S + 2 xp + 2 yp + 2 zp ) 

     = 
1
4

{<S |H| S> + < x |H| x > + < y |H| y> + < z |H| z>  

     = 
1
4

{Es + 3Ep}, 

where also: 

Eh = < 2| H | 2 > = < 3 H | 3 > = < 4| H | 4 > = < ’1| H | ’1 > = E’0. 

(Ep and Es represent, respectively, the energy levels of the 2p and 2s states; see zone 
(1) of Figure 8.10b).  

        C’’ 
                         C’ 
               (2)        (1) 
                    C       C 
 
         (3)            (4) 
                C’’’’ 
     C’’’  
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We thus find that : 

Ep – Eh = Ep - 
1
4

{Es + 3 Ep}= 
1
4

(Ep – Es). [8.12] 

8.3.1.3. Initial follow-up study of the effect of type A coupling between nearest 
neighbor carbon atoms  

This section is limited to dealing with coupling between the bonds denoted (1), 
(2), (3), and (4), as identified in Figure 8.12. Put in other terms, it is limited to 
looking at coupling effects between the bonds denoted: C–C’, C–C’’, C–C’’’, and 
C–C’’’’, without considering the effects of other bonds between those atoms and 
their other nearest neighbors. There is a formation of bonding and anti-bonding 
states, qualitatively described in zone (3) of Figure 8.10b, and more quantitatively 
detailed in section 8.3.2. 

 

Figure 8.12. Representation of A and B couplings considered  
successively (obtained as a projection from Figure 8.11) 

8.3.1.4. Initial study of the supplementary effect of B-type coupling (see Figure 8.12) 
between molecular orbitals  

The coupling between (1) and (2), and between (2) and (3), and so on, that 
generates energy bands is shown in zone (4) in Figure 8.10b. Once again, a more 
quantitative approach will be developed in section 8.3.3.  
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8.3.2. Independent bonds: effect of single coupling between neighboring atoms 
and formation of molecular orbitals 

Zone (3) corresponds to the states appearing following paired coupling between 
two atoms using the sp3 hybridization (for example between atoms C and C’). This 
atomic orbital coupling result in a formation of molecular orbitals for which there 
are  solutions that can be given in the form of a linear combination of atomic 
orbitals (with the | > orbital for the C atom, and the | ’> orbital for the C’ atom), i.e.: 

 = c | > + c'| ’>. 

If the direction denoted 1 represents the bond between atoms C and C’, the 
resulting molecular orbital ( 1) can be bonding or anti-bonding (see sections 7.1.2 
and 7.1.3), as in: 

1L = 
1
2

(| 1> + | 1’ >) [8.13] 

1A = 
1
2

(| 1> - | 1’ >) 

With the pairs being tied to one single carbon atom but nevertheless independent, 
that is to say without affecting one another, there appear (in addition to 1L and 1A) 
the following molecular orbitals around the atom C: 

2L = 
1
2

(| 2> + | 2’’>)  and  2A = 
1
2

(| 2> - | 2’’ >) 

3L = 
1
2

(| 3> + | 3’’’>)  and  3A = 
1
2

(| 2> - | 3’’’ >) 

4L = 
1
2

(| 2> + | 4’’’’>)  and  4A = 
1
2

(| 2> - | 4’’’’ >) 

The energies associated with these bonding and anti-bonding states are the 
respective energies EL and EA. They have the same form as those determined in 
section 7.1.2, as in: 

EL = E’0 -   and  EA = E’0 +   [8.14] 
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where: 

E’0 = Hii = < i |H| i> = Eh = Esp3 

–  = Hii’ = < i |H| i'> (coupling parameter between paired near-neighbors) 

NOTE.– With N being the number of atoms in a crystal, the number of L-type bonds 
is equal to 2N as each carbon atom gives rise to four bonding bonds (each containing 
two electrons) with each being shared between two atoms (therefore on average each 
carbon atom has two bonding bonds).  

 
With the number of valence electrons per atom being four (2s2 2p2  2t4, with t 

representing the hybrid states), the fundamental state corresponds to the placement 
of 4×N  electrons, and this can also be written as (2× 2N) as it represents the number 
of electrons per bonding orbital multiplied by the number of bonding bonds. 

 
The consequence of this is that all bonding bonds are full and the anti-bonding 

bonds ( A, that are present in an equal number) are all empty.  

8.3.3. Coupling of molecular orbitals: band formation 

In effect, the reasoning in section 8.3.2 highlights that for a crystal of N atoms 
the level denoted EL (just like EA) is degenerated 2N times (as it is for 2N bonding 
orbitals). The following discussion centers on the effect of coupling between orbitals 
on their degeneracy.  

8.3.3.1. Effect of the bonding energy between hybrid orbitals around the same 
carbon atom  

This energy can be stated as < 1 | H | 2> = – , so that with the forms given for 
1 and 

2 in section 8.2, 

–  = <
1
2

(S + X + Y + Z | H | 
1
2

(S – X – Y + Z)> 

      = 
1
4

(Es – Ep –Ep + Ep) = 
1
4

(Es – Ep) 

The effect is apparently non-zero, meaning that in a 3D covalent crystal we 
should expect a non-zero coupling between the molecular orbitals bonding two 
adjacent atoms. 
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8.3.3.2. Effect of coupling between neighboring bonding orbitals in the heart of the 
crystal  

This coupling, denoted by the letter B in Figure 8.12, has matrix elements in the 
form: 

< 1L | H | 2L> = <
1
2

(| 1> + | 1’ >) | H | 
1
2

(| 2> + | 2’’ >)> 

Neglecting the coupling integrals between non-adjacent neighbors (so that for 
example, < 1’| H | 2>  0), we obtain:  

< 1L | H | 2L> = 
1
2

< 1 | H | 2 > =
1 1
2 4

(Es – Ep) = 
2

  [8.15] 

By modifying the energy levels (type EL), the coupling of molecular bonds 
increases the degeneration by EL = E’0 – . 

 
By analogy to the 1D model, the wave functions of the crystal need to be written, 

at this level, as a linear combination of bonding ( L) or anti-bonding orbitals ( A). 
These functions, characteristic of a periodic lattice, should always satisfy the Bloch 
and Floquet theorems, and therefore should take on the form: 

.L
k 0

s
( )   c  ( )sik r

L sr e r r  

.A
k 0

s
( )   c'  ( )sik r

A sr e r r  

These are the additive Bloch functions for bonding and anti-bonding functions. 
They delocalize the electrons throughout the 3D lattice, just as the equations 
verifying Floquet’s theorem do in a 1D system (see equation [7.16]). 

 
Just as in the 1D systems detailed in Chapter 7 and the 3D system based on  

s-orbitals described in this Chapter 8 (section 8.1), these functions result in the 
approximate levels EL and EA (zone 3 of Figure 8.10) breaking down into bands 
(zone 4 of Figure 8.10).  
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This gives rise to 2N functions of the type ( )L
k r  (in fact 4N if you take spin 

into account). The bond of bonding states is therefore full, justifying the terminology 
“highest occupied molecular orbital” or HOMO for short, otherwise known to 
physicists as the valence band (VB). For its part, the band of anti-bonding states, 
known as the lowest unoccupied molecular orbital or LUMO, and conduction band 
(CB) is empty. These two bands are separated by the so-called “gap” that has 
a height denoted EG.  

 
In quantitative terms, we have seen in section 8.1 that for s-orbitals characterized 

by the coupling parameter –  = < s |H| s 1>), the width of the thus formed bands I 
equal to 2Z  in the alternating systems (see equations [8.10]). For the example 
treated in Figure 8.11, the coordination number of Z is 4 and the coupling parameter 
is given by < 1L | H | 2L> =  

2
. An estimation of the width of the HOMO and 

LUMO bands can thus be given by assuming that equation [8.10] is acceptable for 
the orbitals is acceptable, so that B  2.4.(| |/2) = 4 | |  (zone 4 in Figure 8.10b). 

 
In addition, the height of the gap can be directly evaluated from Figure 8.10b 

where GE 2   4| | . The values of  and  depend on the cell parameters and the 
sizes of the atoms. For example, with the gap EG = 5.4 eV, diamond is more of 
an insulator than a semiconductor. 

 
On going to the bottom of column IV in the periodic table, that is from carbon 

through silicon towards germanium, i.e. with increasing atom size, there is 
an increase (  4 ) in the permitted bands, so that the gap decreases (5.4 eV for C, 
1.1 eV for Si, 0.7 eV for Ge).  

8.4. Complementary in-depth study: determination of the silicon band structure 
using the strong bond method 

This study comes from the work of G. Leman in “Annales de physique”, vol. 7, 
pages 505–533 (1962). Given the complexity of the calculations, this work is 
considered as a complementary study to the simplified version shown in section 8.3 
that deals with diamond, that has the same structure as silicon. 

8.4.1. Atomic wave functions and structures 

The structure of silicon is similar to that of the carbon diamond; it is based on an 
inter-penetration of two fcc lattices, one being displaced with respect to the other by 
a quarter diagonal (see Figures 6.6b, and 8.4). The atoms represented by an empty 
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circle, those of the second fcc, in Figures 8.4 and 8.13 are positioned by the vector 
'
jr  shifted by a vector b  with components 

4 4 4
, ,d d d  with respect to the jr  vector, 

which locates the full circled atoms of the first fcc. In effect, '
jr  = jr +b . The 

vectors are defined as follows so that we have a systematic and coherent set of 
notation: 

0 1 2 3

0 / 2 / 2 0
0,      / 2 ,     0 ,     / 2
0 0 / 2 / 2

d d
a a d a a d

d d
 

 

The first four atoms neighboring the atom located by '
jr  (belonging to the 

second lattice) are located by the vectors j nr a . Similarly, the first four atoms 

neighboring the atom located by jr  (belonging to the first lattice) are located by the 

vectors '
j nr a . Each atom located by jr (or by '

jr ) is at the center of a regular 

tetrahedron, while the atomic orbitals that bond them to their closest neighbors are 
hybrid orbitals with a form determined in section 8.2.3.3 and denoted 1, 2, 3, 4 
(the electronic configuration of the external layer of silicon is given by 3s²3p², so the 

 functions are obtained from the 3p  orbitals instead of the 2p orbitals used in 

the case of carbon). Here, the hybrid functions for the atoms located by jr or '
jr  are 

denoted using ji  and '
ji , with i = 0, 1, 2, 3, such that: 

Figure 8.13.  Location of atoms in the silicon based structure 

 

 
 

 

o 

d 

'
jr  

1jr a  

0j jr r a  

3jr a  
2jr a  

b  
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 j0 = 
1
2

 (S + 3 xp + 3 yp + 3 zp ) goes in the direction [111]   

 j1 = 
1
2

(S – 3 xp – 3 yp + 3 zp ) goes in the direction [-1-11]    

 j2 = 
1
2

(S + 3 xp – 3 yp – 3 zp )       goes in the direction [1-1-1]     

 j3 = 
1
2

 (S – 3 xp + 3 yp – 3 zp )    goes in the direction [-11-1]     

 ’j0 = 
1
2

 (S’ – 3' xp – 3' yp – 3' zp ) goes in the direction [-1-1-1] 

 ’j1 = 
1
2

 (S’ + 3' xp + 3' yp – 3' zp ) goes in the direction [11-1] 

 ’j2 = 
1
2

 (S’ - 3' xp + 3' yp + 3' zp ) goes in the direction [-111] 

 ’j3 = 
1
2

 (S’ + 3' xp – 3' yp + 3' zp ) goes in the direction [1-11]  

These functions (atomic orbitals) make up a useful base for describing 
tetrahedral bonds, but they are not the proper functions of a crystalline system 
(orbitals described by following the LCAO method). So, each function points 
towards a tetrahedral summit, the identity of which depends on the identity of the 
covalent bond being studied. Schematically, for a bond between an atom of the first 
lattice located by jr (= 0jr a ) and an atom of the second lattice located by '

jr  

(= '
0jr a ), Figure 8.14 shows the line along which runs the direction of the bond. 

 

 

0j  '
0j  

Figure 8.14. Bond between atoms located by jr and '
jr  
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If H represents the Hamiltonian for an atom, of form ²
2m

H  

( )jV r r for the atom centered on jr , we can use the calculations in sections 

8.3.1.2 and 8.3.3.1, respectively: 

– a matrix cell with a form given by: 

0 0
1

| | 3
4

| |

j j s p

ji ji

H E E

H
 

– a matrix cell with a form given by: 

0 1
1

| |
4

| | ,  with   

j j s p

ji j

H E E

H i
 

Evidently this gives the same results as those with the '
ji  functions. 

8.4.2. Wave functions in crystals and equations with proper values for a strong 
bond approximation  

8.4.2.1. Wave functions and their properties 

For a crystal and point located by r , the Hamiltonian is in the form: 

2
'

cryst ( ) ( ) ,
2 j j

j
H V r r V r r

m
  

where '( ) and  ( )j jV r r V r r  are the Coulombic potentials centered at atoms jr  

and ' ,jr  respectively. 
 
The wave function at a point r  in the crystal, within a strong bond 

approximation, must appear as a linear combination of atomic orbitals for which 
there is a limit in the number of cells directed towards the first four neighbors. 
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Similarly, this function should have in front of it a Bloch function and the final 
solution should in the (Floquet) form 

. ' '

0,1,2,3
( ) ( )jik r

k i ji j i ji j
j i

r C e A r r A r r  

where there is a sum over all sites (j) in the lattice, the index i represents one of four 
orbitals at a j site and C is the normalization factor. In the simplified model 
developed here, all ji  or '

ji  pseudo-orthogonal functions are considered, while 

neglecting the overlap integrals (before the unit) of the type 
| 0ji m j

 which is the overlap integral for orbitals in the same fcc lattice 

centered on different atoms ( j ); and '| 0ji m  which is the overlap 

integral between orbitals from different lattices (for whatever , even j ). 
 

The only overlap integrals between atomic centers taken into account are those 
for immediate neighbors (that also therefore belong to two different fcc lattices) and 
only their atomic orbitals that point directly towards one another (Hückel type 
approximation). The only integrals that are studied are therefore given by (wherein j 
and  denote the first neighbors): 

' ' '| ( ) | | ( ) |ji j li ji liV r r V r r  

Thus '
j nr r a  locates the first neighbor to that at jr  towards which points 

the ji function. The parameter  is positive because the potentials (V) are negative 

(attracting potentials). These hypotheses of course neglect completely any influence 
of second neighbors. So to resume, we can use  and  to denote the functions 
on neighboring atoms that point towards one another so that the strong bond 
approximation and the overlap integrals between immediate neighbors (Hückel) can 
be written, respectively as 

'| 0  and ' '| | | ' | .V V  
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8.4.2.2. Equation using proper values 

To simplify the problem, we can consider just the atom at the origin. If H is the 
Hamiltonian of the electron placed at the central atom, the Hamiltonian for the 
crystal can be: 

'
cryst

0
( ) ( )j j

j j
H H V r r V r r  

Using 0i  and '
0i  as the hybrid functions for, respectively, the atom at the 

origin and the atom situated with respect to b  by components 1 / 4,1 / 4,1 / 4 , we 
can perform a scalar multiplication on the left-hand side successively with 0i  

and '
0i  to give the equation with proper values:  

cryst ( ) ( )k k kH r E r  

and obtain the two equations (with i = 0, 1, 2, 3): 

0 cryst 0( ) | ( )i k k i kH r E r  

'
0 cryst 0' ( ) | ( ) .i k k i kH r E r  

At the origin, the atomic orbital ( 00) points towards a site placed along b  found 
(according to our simplified hypothesis) uniquely coupled with the orbital '

00 , and 

with a coupling coefficient given by 
0

0
0

. 0e 1
a

ik a e . Similarly, at the origin, the 
01 orbital directed along [-1-11] is only coupled with the orbital centered on the site 

with coordinates (–a/4, –a/4, a/4), vector components ' ,jr b a  and points 

towards [11-1], so that we have the orbital given by '
1,1 1( [ ])r a  

'
1,1 1( ).r a  As '

jr  = jr + ,b  we here have 1,jr a  and the corresponding 

coupling coefficient (in the form . )jik re  is 1. .ik ae  By extending these results over 
all 0i orbitals, the two preceding equations arising from the proper values equation 
then give: 



Strong Bonds in Three Dimensions     281 

. '

. ' '

3
0

4 4

3
0

4 4

m

m

s p s p ik a
k m i m

i m

s p s pik a
m k m i

i m

E E E E
E A A e A

E E E E
e A E A A

 

By making ( ),k px E E  ,nik a
n e  and as stated above 

4
,

E Ep s  

the preceding system can be written as: 

'

* ' '

0
2 2

0.
2 2

m i m m
i m

m m m i
i m

x A A A

A x A A

 

This system based on 2 4 8  linear equations (as i takes on the four values 0, 
1, 2, 3) gives eight coefficients (Ai and A’i) from which the wave function k(r) can 
be deduced. In order to do this, we shall write that the compatibility of the eight 
equations necessitates that the determinant of the system is equal to zero, hence we 
have the following secular equation: 

0

1

2

3
*
0

*
1

*
2

*
3

0 0 0
0 0 0
0 0 0
0 0 0

0.0 0 0

0 0 0

0 0 0

0 0 0

x
x

x
x

x

x

x

x

 

By making 1
4

,nn  a long calculation shows that the secular equation can 

be written as: 

2² ² ² 4 ² 4 ² 4 ² 4 0x x x x x  
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where  is a Bloch function that depends on the k  vector and is given by 

1/2
1

( ) 1 cos cos cos cos cos cos 0
2 2 2 2 2 2 2

y yx x z zk a k ak a k a k a k a
k  

When k  is directed along [100], such that y  and   k 0x zk k k , we 

thus have cos
4

ka
. 

8.4.3. Band structure  

x  can be determined using the secular equation, and then we can find the 

dispersion relation ( )E k . As  depends on the direction of k , the energy Ek = Ep 

+ x  also depends on the direction of k . The equi-energy surfaces in the 
reciprocal space are undulated spheres, undergoing so-called “warping”. The energy 
E (  Ek) is in fact a function of two parameters, on the one hand 1

4
( )p sE E  

which depends on the nature of the free atom, but also varies little with each type of 
element (between C, Si, and Ge), and on the other hand, the overlap integral ( ) for 
two neighbors that depends on the parameter of the crystalline lattice (d), which is in 
fact a function that decreases with the distance ( ) between atoms. The energy is 
generally studied as a function of 2 /  and we can show that the electronic structure 
changes considerably depending on whether or not  is higher or lower than 2 . 

8.4.3.1. Flat bands 

These relate to the solution found for the secular equation when: 

2² ² 0x  

in that: 

1 1

2 2

 (twice degenerate solution)

 (twice degenerate solution).

p

p

x E E

x E E
 

These bands are flat in the sense that the values of E1 and E 2 of the energy does 
not depend on k. 
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8.4.3.2. Wide bands 

These are associated with solutions other than those of the secular equation, and 
correspond: 

– on the one hand to ² 4 ² 4 0x x , with solutions: 

3 2 4 ² ² 4x  

4 2 4 ² ² 4x  

– on the other hand to ² 4 ² 4 0x x , with solutions: 

5 2 4 ² ² 4x  

6 2 4 ² ² 4x  

In the direction [100] where 
4

cos ,ka  when k varies from 0 to 2 ,
a

  

changes from 1 to 0 and the energies are given as solutions xi (i = 3,4,5,6) that vary 

continuously from (0)ix  to 2 ,
aix  leading to wide bands. 

 
With k = 0, we have 5 2x  and 6 2x , which shows 

that when 2  we have a change in behavior.  

8.4.3.3. Practical study of E = f (k), or more exactly x = E – Ep as a function of k 
when k is parallel to the direction [100] and for which cos( / 4)ka  

Over the width of the zone, k varies from 0 to 2 / a  and  respectively takes 
on 1 and 0. 

 
When  < 2 , the solutions for x, with respect to k values, are the following (see 

also Figure 8.15a): 
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Figure 8.15. Curves for x = f(k) when: (a)  < 2  which  

corresponds to having a large ; and (b)  > 2  as when  is small 

When  > 2 , the solutions for x, depending on k values, are (also see 
Figure 8.15b): 

 

In Figure 8.15, we can see that when, as in the scenario (a),  < 2 , the two 
highest and lowest bands have the same width (2 ) and the overlap integral ( ) is 
small. This is quite a complicated function of distance ( ) between atoms, but in 
general it just results in a steady decrease, even though we should state that in this 
case, the atoms are so far apart they could almost be called independent. Indeed at the 
limit of this, the energies of the atoms resemble those of isolated atoms. In the second 
case denoted (b), where  > 2 , the two upper and lower bands have the same width 
(4 ). The overlap integral is large and the distance ( ) between atoms is small.  

x = E – Ep 

x1  

 x2 

-
2

 – 4  

–  – 4  
–2  – 4 ² ²  

x

x5 

x6 

x4 

0 

k 
2
a

 

(a)   
  < 2  

empty band 

x = E – Ep 

x1  

x2 

–2 + 4 ² ²  

 – 4  

–  – 4  

–2  – 4 ² ²  

x

x5 

x6 

x4 k 
2
a

 0 

EG 

empty band

(b)  
  > 2  
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8.4.3.4. Study of band filling 

Let us look at how levels fill up with electrons in practical terms. The 
assumption is made that in directions other than the [100] shown in Figure 8.15, the 
bands are similarly distributed throughout the ranges of energies. This can be 
compared against other works, for example, G. Fishman where the curves are traced 
in the directions [100] and [111], and for the same scenario as in (a)  = , and then 
when scenario (b) is looked at, Fishman uses  = 3 . 

A priori, we should be able to place all 8N electrons into the system, as it was 
assumed that there were two electrons in each N cells, and that each atom liberates 
four electrons. As there are N cells, k takes on all N values with energy levels that 
have two places for electrons of opposing spin. Finally, the 8N electrons should fill, 
in both cases, the lowest 8N energy levels, as shown in Figure 8.15 for the four 
solutions x4, x6, and x2 (twice degenerated). Each of these four solutions, in effect, 
contains N levels (equal to N values of k) filled with 2N electrons, such that the 
four solutions can take on all the 8N electrons spread over the whole extent of the 
bands.  

The result is that in for case (a), as shown in Figure 8.15a, the medium is 
a conductor as the last two occupied levels, resulting from solution x2, can easily 
mix their states with those of the empty levels from solution x5. Conversely, in 
scenario (b), as shown in Figure 8.15b, the medium is an insulator (or 
semiconductor) as the last occupied levels (x2) is far, in terms of energy, from  
EG = (2  – 4 ) of the first empty level of x5. This inhibits state mixing (that can only 
happen now with a high activation energy). In case (b) the two upper and lower 
bands have a width equal to 4 . 

8.4.3.5. Study of the wave functions: the s and p characters 

From the solution for the secular (otherwise termed characteristic) equation, xi, it 
is a simple matter to obtain the coefficients denoted iA  and '

iA  which give the 
linear combinations for the atomic orbitals that result in a determination of the wave 
function ( ) in the crystal.  

The result, shown in Figure 8.16, is that the flat bands remain p-type (and are 
denoted p) over the whole of the k values (but with an evolution of the orbital linear 
combination 

, ,3 x y zp and 
, ,3' ).

x y zp  When k = 0, the functions are strictly s or p; 

however, when k  0 they are a mix of s and p, but remain mostly either s- or p-type, 
and are therefore respectively denoted s0 or p0.  
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Figure 8.16. Generation of wave functions from atomic orbitals  

for: (a) when  is large (i.e.  < 2 ); and (b)  is small (i.e.  > 2 ) 

8.4.3.6. Representation of energy as a function of distances between atoms 

Figure 8.17 shows the energy diagram in direct space, i.e. in respect of the space 
between atoms. 

 
Figure 8.17. Energy (E) (or the parameter x = E – Ep)  

and the bands as a function of distance ( ) between atoms 
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The two places where 2  = , on either side of A, give us two types of behavior 
(metallic on the right where  is large, and insulator on the left where  is small). On 
the right there are two p0 bands (definitely p when k = 0, and mostly p when k  0) 
which are in the conduction band (CB), and two s0 bands (definitely s when k = 0, 
mostly s when k  0) which are in the VB. The high band for s0 is in the CB. For the 
two flat bands (each doubly degenerated), the upper p band is always in the CB, 
while the lower band is in the CB on the right and in the VB on the left. 

8.4.4. Conclusion 

The results shown above come from using several simplifications, such as ignoring 
next-nearest neighbors and an imposed hybridization on the s- and p-states in the 
overlap integration. More elaborate theories have made it possible to get a more 
accurate vision of the system. The example opposite, drawn from Chelikowsky and 
Cohen, Phys. Rev. B 14, 556 (1976), shows the minimum of the CB and the maximum 
of the VB obtained or different k values, leading to an indirect gap.  

 

k

E ( eV)

EC

EV

EG

 

Figure 8.18. Silicum band scheme in agreement with Chilikowsky and Cohen 

8.5. Problems 

8.5.1. Problem 1: strong bonds in a square 2D lattice 

For a square crystalline structure, which has a cell length denoted by a and a = 
0.3 nm, there are identical atoms each tied to their neighbor by a single orbital (s in 
this case so as to simplify). In the approximation for the strong bond, the energy is 

always written such that E = E0 –  –  ,mik a
m e  where ma  represents the 

vectors joining the reference atom to its nearest m neighbors (here  > 0, as we are 
dealing with s orbitals). 
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In reciprocal space, , X and M denote the points respectively situated at the 
center of the zone (wave vector is zero), at the limit of the zone in the direction [10] 
(such that 10 2),X G  and at the limit of the zone in the direction [11] (such that 

11 2).M G  

1) Determine the value of the energy at the points , X and M. 

2) 

a) Give, for directions [10] and [11], the expressions for E = f (k) resulting 
from a strong bond representation, and the expressions for E0 = f (k) for an 
approximation for free electrons. 

b) In section 5.11, problem 2, there is: 
2 2

22
4.2

m a
 eV (when a  0.3 nm). 

For  = 1 eV and  = 0.5 eV, give the numerical value that will be taken on by E0 in 
order that the two curves E = f (k) and E0=f (k) go through the same origin with 
respect to . Compare on the same scheme, for the directions [10] and [11], the 
evolution of the curves E = f (k) and E0 = f (k).  

3) 

a) Show the form of the equi-energy curves around the points .  

b) Same as question 3a for the point M. 

c) Give the specific equi-energy curve for E = E0 – , and state to what the 
curve corresponds for a system of monovalent atoms.  

4) Give the form of the effective mass around the point . 

5) Using the general expression for the state density function in 2D (see Chapter 
2, problem 6), i.e. 1

2 ² grad( )( ) ,dL

Ek
L EZ E  give a qualitative indication of the 

form of the state density function of Z(E). 

Answers 

1) For the square lattice, an atom situated at the origin of the lattice has four near 
neighbors giving rise to four vectors denoted ma  with the components: 

( a , 0) along x 
(0,  a) along y 
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Figure 8.19. Reciprocal lattice of the square structure 

The facing figure shows the reciprocal lattice obtained in problem 2 of Chapter 5 
with the notation used therein. 

 
By making kx and ky the components of the wave vector ,k  the energy can be 

written as: 

E = E0     mik a

m
e = E0    2 cos cosx yk a k a  

For the point , we have 0,k  such that kx = ky = 0, from which E( ) = E0   

 4 . In terms of X, we therefore have 10 2,xk k X G  so that 
axk  

and yk = 0, and hence 0 0( ) 2 cos cos 0 .E X E E  
 
For the point, we have 11 2,x yk k k M G  such that .

ax yk k  

The upshot is that 0 0( ) 2 cos cos 4 .E M E E  

2) 

a) In the direction [10] with respect to X , we have yk = 0, and the energy 
along y is given by: 

– 010 2 cos xE E k a  in the strong bond approximation; 

a
 

a
 

a
 

a
 

first 
BZ 

second 
ZB 

10
2

A G
a

 

2
B

a
 

direction [10] 

direction [11] 

X

M
2

a
 

kx

ky 

11G  



290     Solid-State Physics for Electronics 

– 0 2
10

²
2 xE k

m
 in the free electron approximation. 

In the direction [8.11] along M , we have x yk k k  such that (square 

lattice) 
2

k
x yk k  and the y energy is in the form: 

– 011 4 cos
2

k
E E a  for the strong bond approximation 

– 0 2 2
11

² ²
²

2 2x yE k k k
m m

 for the free electron approximation 

b) Here we have E( ) = E0    4  and with the free electrons, 
² ²

2
0

0
0.k

m k
E  So as to have the same origin for the energies at , we can 

make E( ) = 0, and then E0   = 4 , so that with  = 0.5 eV, we find E0   
= 2 eV. When  = 1 eV, we now have E0 = 3 eV. Numerically, with 

2 2

22
4.2

m a
 eV, we have: 

– 010 ( ) ( )E X E X E = 2 eV and 
2 2 2

22 2
0 2 4.2 eV

m m a
xXE k  

– 011 ( ) ( ) 4E M E M E = 4 eV and 
2

2
0 2 2[ ]

m x yME k k  

2 2

2m a
 8.4 eV  

In the graphical representation below, we can see that around the point  the two 
curves are in good agreement. However, at the limits of the zone (points X and M), 
the free electrons are no longer influenced by bonds with the lattice. The band width 
is equal to E = E(M) – E( ) = 8 . This scheme should also be compared with that 
shown in Chapter 5, problem 2 for semi-free electrons in a weak bond. 
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3) The equi-energy curves are defined by the relation: 

E = E0    2 cos cosx yk a k a = constant [8.16] 

a) In the neighborhood of  where 0,x yk k , we can write that 
²

2
cos 1 k ax

xk a  and 
( )²

2
cos 1 .

k ay
yk a  Placing this into the preceding 

equation [8.16] gives 40
²

2 2 .E E
a x yk k  In the reciprocal k space, E = 

constant, which implies that 2 2 2 constant.x yk k k  In the neighborhood of , 

the equi-energy curves are circles centered about . 

b) In the neighborhood of M (where MM k  and has the components 

axk  and )
ayk  the vector k  has components kx and ky which can be written 

such that 
ax xk k  and ,

ay yk k  where 0.x yk k  From 

this, ( )²
2

cos cos( ) cos 1,a k x
x x xk a a k a k  and similarly, 

cos yk a  
( )²

2
1.

a k y  Equation [8.16] thus gives: 

2 2 0
2

4
constantx y

E E
k k

a
 

a
 2

a
 

E 

X 
k10 k11 

M 

8 eV 

4 eV 

 

10 ( )E X

11 ( )E M  
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XE  
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ME  

Free 
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10E
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10E  
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when E = constant. The equi-energy lines in reciprocal space are circles centered 
about 

axk  and 
ayk  (components of M ) and have a radius 2 2k kx y  

40E E

a
. 

 
c) When E = E0 – , equation [8.16] gives cos cos .x yk a k a  As 

cos cos  implies that , we should here have .
ay xk k  In 

the representation of ky = f (kx) the equation has straight slopes at 1  and 
an ordinate 

a
 at the origin. The equi-energy curve, circular around , transforms 

(while passing through the intermediate forms as shown in the preceding scheme) 
with E tending to (E0 – ) to finally bring the lines together. This results in the first 
zone of the square having high points at X, X1 (kx = 0, ky = ),

a
 X2 (kx = ,

a
 ky = 0), 

and X3 (kx = 0, ky =  ).
a

 This result is quite normal given that we have obtained 

above [10] 0( ) ( ) .E X E X E  The side of the square, equal to the half-length 

of the diagonal of a square with side 
a

 represents the Brillouin zone and thus is 

equal to: 2.
a

 The surface of this square is thus equal to the half-surface of the 

Brillouin zone and can only contain N/2 cells when the Brillouin zone contains N. 
This square surface of side 2

a
 can therefore contain N electrons, and is such that 

the sides constitute the limit of the Fermi curve if the atoms making up the lattice are 
monovalent.  

 X 

M 

kx 

ky 

kx 
ky 

a
 

a
 X

X2 

X3 

a
 

a
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4) Around the point  where k (and therefore kx and ky) is small, we can perform 
a limited development of the cosine functions involved in the expression for the 
energy: 

0

2 22 2
2 2

0 0

2 cos cos

2 2 4 ;
2 2

x y

yx

E E k a k a

k ak a
E E k a

  

and from this it can be deduced that ²
²

22 ,E
k

a  such that ²
2 ²

* .
a

m  

5) In the neighborhood of point  (energy E = E0 –  – 4 ), the dispersion curve 
is close to that of the free electrons and Z(E) should be pretty much constant in this 
region (as Z(E) is a constant in 2D with respect to free electrons, as detailed in 
Chapter 2, problems 3 and 6). 

 
In the neighborhood of E = (E0 - ), we can use the relationship 

1
2 ² grad( )( ) dL

Ek
L EZ E  where L(E) is the equi-energy curve. 

 
For free electrons, the equi-energy curve is given by L’(E) = 2  X’ (circular 

equi-energy curve with radius X’, where X’ is defined in the scheme in problem 2 
and is such that X’ < X). For electrons in strong bonds, the equi-energy curve has 
a length L(E) = 4 X 2  (square of the equi-energy curve, the side of the square 
being equal to X 2 ). As X > X’, in principle, we have L(E) > L’(E). All is at 
least of the same order of size, and the exact calculation is not of interest given the 
importance in the variation of |grad |k E  between the two approximations, as we 
shall see. 

 
In the neighborhood of E = (E0 – ), the slope of the curve E = f (k) is 

considerable for free electrons, but is practically zero for (tangent horizontal in X) 
for electrons in a strong bond so that in this case 

grad( )
dL

Ek
L E  is considerably 

greater than for cases with free electrons. Z(E) for these electrons in a strong bond 
increases in size (at a point of singularity). 
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Beyond E = (E0 – ), and on coming closer to the point M (energy E = E0 –  + 4 ), 

the equi-energy curves for electrons in strong bonds tends to that of free electrons 
(circular arcs in the corners of the first Brillouin zone), and it can be expected that 
the state density functions for the two representations will tend towards one another. 
This ends up giving us the representation shown on the right. 

8.5.2. Problem 2: strong bonds in a cubic centered or face centered lattices 

This question first deals with a cubic centered (cc) crystalline structure (also 
called case 1) and then a face centered cubic (fcc) structure (called case 2). The 
atoms in both cases are all identical and, so as to make the problem simpler, tied to 
neighboring atoms only by s-orbitals. In the strong bond approximation, the energy 

is still written using E = E0     ,mik a
m e  where ma  represents the vectors 

joining the reference atom (at the origin) to its nearest m neighbors (and here,  > 0 
as we are dealing in s-orbitals). We can then go on to use the results from Chapter 6 
on the cc structure (see section 6.6.1, problem 1) and on the fcc structure 
(sections 6.2 and 6.3). 

 

1a and 2a) Establish the dispersion relation for both cases. 

1b and 2b) Determine, for both cases, the energy values at the center of the zone, 
i.e. E( ), at the point X at the intersection between direction [100] and the first 
Brillouin zone, i.e. E(X), at the point M at the intersection between direction [110] 
and the first Brillouin zone, i.e. E(M), and at the point W at the intersection between 
direction [111] and the first Brillouin zone, i.e. E(W). 

1c and 2c) Indicate for both cases the width of the band E and establish the 
expression for m* around the point . 

E0 -  - 4  E0 -  + 4  E0 -   

Constant 

E 

Z(E) 
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Answers 

1) 

a) For the cc structure, the reference atom (at the origin) at the highest point of 
the cube has eight near neighbors situated at the center of the eight adjacent cells. 
The components of the vectors ma  joining the origin-based atom with its closest 
neighbors is thus of the form (associating two by two and including components 
with opposing signs): 

/ 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2
/ 2  / 2    / 2  / 2    / 2  / 2   / 2  / 2  
/ 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2

m

d d d d d d d d
a d d d d d d d d

d d d d d d d d
 

Under these conditions the energy is written (with eight terms) as:  

/ 2 / 2
0

/ 2 / 2

/ 2 / 2

/ 2 / 2

x y z x y z

x y z x y z

x y z x y z

x y z x y z

i d k k k i d k k k

i d k k k i d k k k

i d k k k i d k k k

i d k k k i d k k k

E E e e

e e

e e

e e

 

from which it is deduced that: 

0 2 cos cos
2 2

cos cos
2 2

x y z x y z

x y z x y z

d k k k d k k k
E E

d k k k d k k k
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b) At the point , we have 0,x y zk k k  and E( ) = E0    8 . The 

point X (  B on the figure shown in problem 4 of section 6.6.1) is such that X  
( OB  in the figure of problem 4, section 6.6.1) has the components given by: 

2 ,
dxk  0,yk 0.zk  The result is that E(X) = E0   + 8 . 

 
The point M is such that M  ( 2OG in the figure of section 6.6.1) has the 

components ,
dxk  ,

dyk 0.zk  The upshot from all this is that: 

E(M) = E0   2 [cos  + cos 0 + cos 0 + cos ] = E0  . 

The point W is such that W  ( OF  from the same figure) has the components 

,
dxk  ,

dyk .
dzk  The result is that E(W) = E0  . 

c) Here we have E = E(X) – E( ) = E(M) – E( ) =16 . Around  where k is 
small, we can use the limited development of ²

2
cos 1  which makes it possible 

to write the energy in the neighborhood of  as: 

0 0
1 ²

2 4 4 ² 8 ² ².
2 4

d
E E k E d k  

Thus, near , the effective mass, which is such that ²
²

²

* E
k

m  and here 

²
²

2 ²,E
k

d  is therefore give by ²
2 ²

* .
d

m  

 
NOTE ON THE SUBJECT OF QUESTION 1A.– The sought-after energy of problem 1a can 
be written with the following notation: 

2( )
0

, ,
.x x y y z z

x y z

i d k k kE E e  
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And, in general terms, it is possible to state that: 

( )

, ,

8cos cos cos 8
2 2 2

( )( )( )

,a b c

a b c

ia ia ib ib ic ic

ia ia ib ib ic ic

i a b c

e e e e e e
a b c

e e e e e e

e

 

The energy for question 1a can also be written in the form: 

0 8 cos cos cos .
2 2 2

yx zk dk d k d
E E  

The results from problems 1b and 1c remain unchanged. 

2) 

a) For the fcc structure, the reference atom (origin) at the summit of a cube has 
closest neighbors at the centers of the three faces of eight adjacent cells. The three 
faces are along the planes Oxy, Oxz and Oyz. Each node at the center of the faces is 
shared with two cells and this gives in all 3  8

2
12  nodes that are immediate 

neighbors. We can equally state that in each plane, there are four nodal “centers” so 
that in all there are 4 × 3 = 12 nodes that are immediate neighbors. The components 
of the ma  vectors that join the origin-based node to the 12 neighbors are given by 
(again, grouped two by two): 

/ 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 0 0 0 0
/ 2  / 2 / 2  / 2 0  0 0  0 / 2  / 2 / 2  / 2
0 0 0 0 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2

m

d d d d d d d d
a d d d d d d d d

d d d d d d d d
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The energy written under these conditions (with 12 terms) is: 

/ 2 / 2
0

/ 2 / 2

/ 2 / 2

/ 2 / 2

/ 2 / 2

/ 2 / 2

x y x y

x y x y

x z x z

x z x z

y z y z

y z y z

i d k k i d k k

i d k k i d k k

i d k k i d k k

i d k k i d k k

i d k k i d k k

i d k k i d k k

E E e e

e e

e e

e e

e e

e e

 

0 2 cos cos
2 2

                             cos cos
2 2

                             cos cos
2 2

x y x z

y z x y

x z y z

d d
E E k k k k

d d
k k k k

d d
k k k k

 

b) At the point , we again have 0x y zk k k  and E( ) = E0    12 . 

The point X (  H’ in Figure 6.4) is such that X  ( 'OH  in Figure 6.4) has the 

components 2 ,
dxk  0,yk 0.zk  The result is that: 

E(X) = E0   – 2  (cos cos cos 2 cos cos cos 2 ) = E0   + 4 . 

The point M is such that M  ( OM  Figure 6.4) and has the components 
3
2

,
dxk  3

2
,

dyk 0.zk  The result is that: 

E(M) = E0   – 2
3 3

cos cos 2 4cos
2 4

 = E0   + 2 2 2 1 .  
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The point W is such that W  ( ',OG  Figure 6.4) and has the components 

,
dxk  ,

dyk .
dzk  The result is that 

E(W) = E0   2  3cos 3cos 2  = E0   

c) For the fcc system, we have E = E(X) – E( ) = 16  (which does not accord 
with E = 2Z  because in this case where Z = 12 we now have E = 24 ). 

 
The use of the limited cosine development in the neighborhood of  gives: 

2 22
0

2 22

1 ²
E   E  -  - 2 6

2 4
1 ²

                                .
2 4

x y x z y z

x y x z y z

d
k k k k k k

d
k k k k k k

 

From this we deduce that 

E( )  E0    12  
1 ²

2 4 ²
2 4

d
k  = E0    12  + k²d². 

Once again, we obtain the effective mass: ²
2 ²

*
d

m . 

 
NOTE ON THE SUBJECT OF PROBLEM 2A.– In a manner similar to that of problem 1a, 
we can note that for problem 2a, the following relation can be used: 

,

4cos cos 4
2 2

( ) ( )

.a b

a b

ia ia ib ib

ia ia ib ib

i a b

e e e e
a b

e e e e

e
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This makes it possible to state E for the fcc system: 

E = E0    4 cos cos cos cos cos cos .
2 2 2 2 2 2

y yx x z zk d k dk d k d k d k d
 

The results for questions 2b and 2c are identical. 
 

Comment on alternating and non-alternating structures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
NOTE.– The structure of carbon diamond (based on two fcc imbricated lattices), 
along with its tetrahedral bonds and coordination number equal to 4, behaves 
different to the fcc structure. 

 + 

+  A B 

C 
D 

 

+ 

+ C B 

A 

Alternate structure  
All closed pathways (loops) 
joining nearest neighbors contain 
an even number of atoms (square 
lattice, simple or cc for 
example). If the signs of the 
wave functions between A and B 
are reversed, and the between B 
and C, then C and D, the sign 
between the nearest neighbors D 
and A remains alternate. In such 
a structure, the most anti-
bonding bond is that which has 
an energy equal to E0   + Z , 
where Z is the number of nearest 
neighbors.  

Non-alternate structure 
There are pathways which are based on an odd 
number of atoms, for example the triangular 
pathway in the [111] plane of a fcc lattice. In 
this system the alternation of the wave function 
signs on a route from between A and B, then B 
and C, means that the sign between C and A is 
non-alternate. In such a structure, the most anti-
bonding state thus has an energy which is below 
E0   + Z  (and we find E(X) = E0   + 4  in 
place of E(X) = E0   + 12 ). The width of the 
band B nevertheless remains proportional to . 
In the fcc structure, E  B = 16 . As 

²
,

2 ²
*

d
m  the result is that 1*

B
m  and 

the mobility μ B  (with the same law of 
variation for m* and μ as a function of B as 
those established in section 8.1.3 for alternate 
systems; only the coefficients are different). 



Chapter 9 

Limits to Classical Band Theory:  
Amorphous Media 

This chapter will evaluate the limits of classical band theory, for which we have, 
up until now: 

– assumed that there were no electronic defaults such as dangling bonds which 
normally arise in column IV semiconductors at the edges of finite volumes, where 
the covalent bond arising from one atom (C, Si) dangles away from the bulk of the 
material; 

– neglected electron–electron (Fermi gas, or free electron gas) interactions; and 
– only looked at perfect, crystalline solids.  

9.1. Evolution of the band scheme due to structural defects (vacancies, dangling 
bonds and chain ends) and localized bands 

Figure 9.1 takes up where the band scheme for tetrahedral carbon shown in 
Figure 8.10b left off and gives a summary of the formation of valence and 
conduction bands in a perfectly ordered medium. As detailed in Chapter 8, the initial 
s2p2 configuration gives rise to the formation of four molecular sp3 orbitals, each one 
yielding bonding ( ) and anti-bonding ( *) orbitals. On moving to the solid state, 
there is a breakdown in the  and * levels into bands, with the former generating 
the valence band, and the latter the conduction band. 

 
Nevertheless, in a real crystal, its finite dimensions result in bond defaults. At the 

end of a chain at the edge of the crystal, a carbon atom is only tied to three other 
carbons, and this leaves an unsatisfied sp3 bond. This is called a dangling bond, and 
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intrinsically contains one electron, but is electrically neutral. The electron is 
therefore on the Esp3 level, and the dangling bond has a localized (ELoc) level 
associated with it that is situated in the middle of the gap, taking into account the 
construction of the permitted bands (Figure 9.1). 

 
There are other structural faults that can also give rise to similar levels in a real 

crystal. These include site vacancies (generated during the preparation of the 
crystal), dangling bonds introduced through a physical treatment (irradiation; ionic 
implantation which results in bond rupture as the ions pass through the material). 

 
Figure 9.1. The formation of localized levels associated  

with dangling bonds in tetrahedral carbon 

The presence of more than one structural default from dangling bonds results in 
an opening (for example due to the disorder created by fluctuations in bond angles) 
in levels in the middle of the gap as a default band. The precise position of these 
bands is in effect tied to the relaxation phenomena produced on formation of the 
defaults. It is also related to the exact origin (valence of conduction band) of the 
states giving rise to the defaults (dangling bond). 

 
The lower band at the middle of the gap in Figure 9.1 thus corresponds to 

a neutral dangling bond that contains a single electron. It is a donor-type band and is 
thus neutral in the occupied state. The upper band at the middle of the gap 
corresponds to the same default but exhibits a different charge state (that is that it 
has received an extra electron). This is an acceptor-type band that is neutral when 
empty. The energy difference between the two types of default is equal to the 
Hubbard correlation energy (U) which takes on a value given by U = <q²/4 0 rr12>. 
r12 Denotes the distance between two electrons on the same site. An average is made 
over all possible configurations. We shall now try to determine the general effect of 
such electronic repulsion. 

E

N(E) 

E

dangling bond

2s² 

2p² 

* 

sp3 
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*-band

-band
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9.2. Hubbard bands and electronic repulsions. Mott metal–insulator transition 

9.2.1. Introduction 

In the discussion up to now on band theory in this book, it has always been 
assumed that each electron moved in an average potential resulting from atomic 
nuclei and other electrons considered together, rather than including individual 
electron–electron interactions. This assumption can seem erroneous, especially when 
realizing that the electrostatic repulsive energy (Coulomb) is of the same order as 
the kinetic energy of electrons in the Fermi gas. It is thus surprising that band 
theories that just account for global interactions of electrons with the lattice can have 
the success that they have had. There are possible reasons for this, for example the 
assumption that the electrostatic interactions between two electrons can be screened 
by a conjugation of moving electrons that form a potential sphere. Other examples 
include the Pauli exclusion principle that largely decreases the probability of 
proximity between electrons. It can equally be thought that independent particles are 
not electrons but quasi-particles that are tied to their complementary particles 
(holes).  

 
Nevertheless, there are cases where the default method is to take the independent 

interactions between electrons into account. Using this method it is possible to see 
the transition between insulating and metallic states simply by modifying the 
“electronic concentration”. It is also possible to see a state predicted by band theory 
to be metallic to in fact be an insulator. This effect can be seen as a result of the 
effect of competition between kinetic and potential electron energies. For example, 
the metallic state is favored if the gain in kinetic energy is equal to moving electrons 
from the electronic state to the available empty atomic Bloch states in the 
conduction band (and as a consequence close to the Fermi level EF). Indeed, 
Heisenberg’s principle also explains this behavior because if x increases with 
delocalization, the V decreases; the cost in potential energy is equal to that given to 
the electrons so that they can overcome the electrostatic potential energy which 
concentrates them in the lattice. It should be noted also that this occurs with an 
electrostatic potential energy that is all the greater as the permittivity of the medium 
decreases (hence leading to an insulating material). Conversely, if the material tends 
towards the metallic state (   ), then the potential energy goes towards zero. This 
condition will be used in section 9.2.3 to derive the criteria for the Mott transition.  

 
NOTE.– The term Fermi gas is reserved for media in which we neglect electron–
electron interactions, while the term Landau liquid is used in situations where these 
interactions are accounted for. 
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9.2.2. Model 

Using the Hubbard model and hypotheses, we assume that the only electron–
electron interactions that are of interest are those due to two electrons on the same 
site (the same atom when looking at the example of a chain of atoms). This repulsive 
energy (Hubbard energy) can be evaluated. It can then be shown that it is 
considerable in certain situations, and makes possible an interpretation of the origin 
of some metal–insulator transitions. In order to carry out this evaluation, we shall 
use the example of a line of alkaline metals.  

 
In band theory, until now, we have considered that each electron existed in an 

average potential resulting from a collection of atoms and other electrons. In the 
case of alkali metals (Li, Na, K,…), which have one free electron per atom, the 
transfer of an electron from one atom to its neighbor through a conduction band 
occurs via electronic levels situated just above the Fermi level (EF) and the energy 
utilized is extremely small, of the order of a fraction of a meV. 
 
 
 
 
 
 
 
 
 

Figure 9.2. Highlighting electronic repulsions in a chain of atoms with s-orbitals 

The alkali metals shown in Figure 9.2a can be used to evaluate the problem. We 
will assume that overlapping between atoms is poor and the transport of electrons 
from one atom to the next requires a great deal of energy. Movement of an electron 
thus generates a supplementary repulsive energy which can be estimated by: 

– calculating the ionization energy required (Ip) to separate an electron from the 
atom A1’ to which it is attached which subsequently becomes A1 (this change is 
shown in going from Figure 9.2a to Figure 9.2b); 

– and calculating the energy recovered, or the electron affinity ( ) when the free 
electron is placed on the independent, adjacent atom A2', which subsequently 
becomes A2. 

(a)               A1’         A2’ 
 
  
 
 
 
(b) 

        

      

d 
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The total energy thus required, equivalent to the repulsive energy, is UH = Ip - . 
For hydrogen Ip = 13.6 eV and  = 0.8 eV, and thus UH = 12.8 eV, showing how UH 
can attain a relatively high value of several eV. 

 
Mott showed how the repulsive energy can be calculated using r12, which 

represents the distance between two electrons on the same site or atom, and (r) 
which is the wave function corresponding to the value proposed at the end of 
section 9.1: 

²
 ( ) ² ( ² .1 2 1 24 0 12

e
U r r dr drH r

 

Practically speaking, this energy is particularly important with respect to 
transition metal oxides, such as NiO, for which electron transport occurs via  
d-orbitals and can be written as: 

Ni 2+ + Ni 2+  Ni 3+ + Ni +  

For a chain of alkali metals, however, the same electron transfer, via s-orbitals, is 
written: 

Cs + Cs   Cs+ + Cs-   

In Figure 9.2, A1’  A2’  Cs while A1  Cs+ and A2  Cs  . When the arrows are 
removed from Figure 9.2 that represent the division of electrons throughout a chain 
of atoms, we can consider that for NiO,  

A1’  A2’  Ni2+,  A1  Ni 3+  and   A2  Ni + 

Placing an electron on a Ni2+, to form a Ni+ ion, would require the energy given 
by UH = I –  if the Ni + and Ni 3+ ions, at positions A2 and A1 in Figure 9.2b, 
respectively, are sufficiently far apart, so that it can be assumed that the transported 
electron passes through a free state, and so that its energy En at the level n   
tends towards 0, as do the successive energies Ip and - , as described above. 
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Energy levels of isolated ions can be represented in terms of –Ip (the energy of an 
orbital which loses an electron, i.e. Ni3+ or A1 in Figure 9.2) and -  (the energy of a 
supplementary electron situated on Ni+ or A2 in Figure 9.2). When the ions are well 
separated, as shown in the far left part of Figure 9.3, each energy level is separated 
by UH = Ip –  which appears as a band gap between the upper and lower levels, the 
former having received an electron, the latter having lost one. 

 
On bringing the ions closer to one another, as described in going from the left to 

right side of Figure 9.3, transport by charge carriers becomes possible via the 
permitted bands which start to form. These newly formed discrete bands give rise to 
permitted bands (the Hubbard bands), upper level bands of electrons (in which Ni+ 
or A2 can be found) and lower level bands containing holes (where Ni3+ or A1 of 
Figure 9.2b can be found). 

 
As the size (B) of the bands grows with increasing proximity of atoms, the 

difference UH – B decreases and eventually disappears when B reaches UH 
(Figure 9.3). Beyond this value – obtained when the atoms are close enough to each 
other – the upper and lower Hubbard bands overlap and the band gap is removed; 
this point is also known as the Mott–Hubbard transition from an insulator to metallic 
state. 

 
Figure 9.3. Evolution of the Hubbard bands as a function of band size (B):  

B = 0 for atoms far apart; B = UH , where the band gap UH – B  
disappears to give a metal–insulator transition 
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9.2.3. The Mott metal–insulator transition: estimation of transition criteria 

Different theories have been elaborated to establish, in a quantitative manner, the 
parameters surrounding transitions from insulator to metallic states (see 
problem 9.5.1). As we have seen in section 9.2.1, this transition can result from 
competition between localization effects, themselves resulting from electron Fermi 
kinetic energies (EF) and the electrostatic energies to which the electrons are subject.  

To take into account the effect of the medium in which the electrons reside, we 
introduce into the expression for electrostatic potential a distance of action written as 
K1a*. K1 is a constant that takes into account the imprecision that reigns over much 
of the knowledge concerning interaction distances (and can be thought of as a rule of 
thumb), and is dependent on the hypotheses made on the various phenomena that 
can act, such as polarization (where K1 = r) or screening as detailed in section 9.5.1. 
a* is the distance that should have a form similar to a1, in that a1 = [ 0h²]/[ me²]), 
and is the radius of the first Bohr orbital (with the condition of taking into account 
the interaction with the lattice which transforms the mass of an electron to an 
effective mass, i.e. m*. This transforms the equation to a* = [ 0h²]/[ m*e²], so that 
a* = a1(m/m*). 

The electrostatic potential energy (which tends to localize the electrons) must 
therefore be written as ²

4 *0 1
.e

K aelW  

For its part, the kinetic energy of metallic electrons placed on the Fermi level 
(EF) is written as ²

2 *
2

F FmcE k  (where kF is the wave number for the Fermi level 

and where interactions between the electrons and the lattice are simply taken to 
account through m*). The number of electrons (N) contained in the Fermi sphere is 
equal to the number of elementary cells that are present multiplied by two so as to 
account for spin. This gives us: 

3 3
F 3

F3
4 / 3

2 .
3 ²2 /

k L
N k

L
  

By introducing the electronic concentration, 3/ ,eN N L  we have 
1/3

F (3 ² )ek N  and then substituting into EcF:  

2/3
F

²
(3 ² ) .

2 *c eE N
m
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The gain in kinetic energy by the electron gas is thus 
2/3²

4 ² *F 2 ,h N e
mcE K  where 

K2 is therefore a constant. The metallic state for an electronic concentration (nc) 
when ( ) ,

e cc N n elE W  so that: 

2/3

2
0 1

²( ) ²
4 ² * 4 *

e cN nh n e
K

m K a
 

can also be written as: 

2/3

1 2 0

1  * ²
*

²c
m e

a n
K K h

 

As a* = [ 0h²]/[ m*e²], this condition can be written more simply as: 

21/3

1 2

1
* ca n

K K
 

By making 1/ 2
1 2[1 / ]C K K  we finally obtain the condition for the transition 

to the metallic state:  

1/3* ca n C  

Experimentally, the constant C is about eight orders greater than nc. For example, 
an evaluation gave C  0.26, and the transition is with a* = a1(m/m*) for the 
effective Bohr radius:  

1/3* 0.26ca n  
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Physically speaking, this criterion means that all materials can become metallic 
if they are sufficiently compressed so that the electron density reaches the value nc. 
The corresponding metal-insulator transition (M-I transition, which also occurs at 
n = nc) is called the Mott transition and originates from localization of electrons 
through electrostatic interactions, not from any material disorder. We shall see in 
section 9.3 how disorder alone can result in the so-called Anderson transition. 

9.2.4. Additional material: examples of the existence and inexistence of Mott–
Hubbard transitions 

9.2.4.1. Charge transfer complexes 

Charge transfer complexes (CTCs) are materials in which the effective 
correlation energy is high. In this case, the effective energy (Ueff) is defined as the 
difference between the electronic repulsion energy for a site occupied by two 
electrons (Uo) and the electronic repulsion energy between two electrons on adjacent 
sites (U1), i.e. Ueff = U0 – U1. 

 
For a system with N sites:  

– If we can assume that Ueff is negligible, each site can be occupied by two 
electrons (spin up, , and spin down, ). In addition, as in Figure 9.4a, if the system 
is half filled by N electrons then the material is metallic. 

– If the system is one in which Ueff is high, we can place only one electron per 
site. Again, if the system carries N electrons (i.e.  = 1, in which  designates the 
number of electrons per site) then all energy levels are occupied and the band is full 
as shown in Figure 9.4b. Only B inter-band transitions are allowed, demanding a 
high energy of activation, Ea; the system, in other words, is an insulator (Mott 
insulator) or semiconductor. For example, the complex HMTTF–TCNQF4, in  
regular columns, has  = 1, Ea = 0.21 eV with a room temperature conductivity  

RT = 10-4 -1 cm-1. 

– Once again, if the system is one in which Ueff is high and we can only place 
one electron per site but  < 1 because bonds at the interior of each column are not 
fully occupied, both A intra- and B inter-band transitions are possible with the 
former requiring little activation energy and the latter a high activation energy. This 
is shown in Figure 9.4c. As an example, TTF+0.59–TCNQ-0.59 displays a metallic 
character with  = 0.59 and RT = 103 -1 cm-1.  
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Figure 9.4. Electron transport with respect to electronic structure. Upper  
parts of the figures represent band schemes and lower parts represent  

electron positions (  = occupied state, o = empty state) 

9.2.4.2. -conjugated polymers 

Polymers conjugated by -orbitals are, in principle, not subject to Mott 
transitions as transfers from one site to another in the same chain have  integral 
values which are too high (typically of the order of 4  10 eV for polyacetylene), 
well above electron–electron interaction energies (U, below 1 eV for 
polyacetylene). Figure 9.4a therefore sufficiently describes these materials, 
although they do display insulating characteristics, which in the case of 
polyacetylene results from a Peierls distortion due to electron–phonon interactions 
which open the band gap (Figure 9.5). 

 

 
(a) Ueff  0:  electrons  

in 2 states, and , 
allowed per site.  

If system has N sites  
and N electrons, have 

semi-full band and  
a metallic state. 

 
(b) Ueff high, and only  

1 electronic state allowed 
per site. If system has  
N sites for N electrons  

(  = 1), implies full band 
and material is insulator 

or semiconductor and only 
inter-band B transitions 

are allowed.

 
(c) Ueff high, and only  

1 electronic state allowed 
per site.  If  < 1, band 
partially full and both A 
intra- and B inter-band 
transitions are possible. 
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Figure 9.5. (a) Characteristics of -conjugated polymers, with the example  
of polyacetylene under a Peierls transition, verifying that U<<4 , in contrast  

to (b) Mott insulators for which U>>4  (and possible for CTCs) 

9.3. Effect of geometric disorder and the Anderson localization 

9.3.1. Introduction 

The effect of geometric disorder has for the most part been studied within 
theories on amorphous semiconductors developed by Mott and Davies (Mott and 
Davis, Electronic Processes in Non-crystalline Materials, Clarendon, 1979).  

 
The theory is based on two fundamental ideas: 

– The first idea was taken from the work of Ioffe and Regel who observed that 
there was no great discontinuity in the electronic properties of semi-metallic or 
vitreous materials when going from solid to liquid states. It was concluded that the 
electronic properties of a material cannot be only due to long-range order, as was 
proposed by Bloch for properties of crystals, but are also determined by atomic and 
short-range properties in which the average free path of an electron is inter-atomic. 
It is worth noting also that, even though a material may be amorphous, this does not 
exclude it from having bands. For example, glass, which is a non-crystalline 
material, is transparent in the visible region of light ( 1.5–3 eV), that is to say that 
while absorption of photons with energy below 3 eV does not occur, glass does 
actually have a band gap of greater than 3 eV. 
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– The second idea is based on the evidence given by Anderson for a material 
without long range order that nevertheless have localized states with permitted 
energy bands for electrons. This theoretical model comes from observations made 
on certain amorphous semiconductors in which charge carriers cannot move. 

9.3.2. Limits of band theory application and the Ioffe–Regel conditions 

Bloch functions, i.e. ( )k r , can be used to describe electron wave functions in 
perfectly crystalline materials. The electronic states are delocalized and spread out 
over space, as denoted by 2| ( )| .k r  Because of perfect delocalization, the mean 
free path of an electron can be considered equal to infinity.  

 
It is only when studying a real crystal though that the mean free path of an 

electron takes on significance because of effects due to quasi-imperfections caused 
by vibrations, called phonons (see Chapter 10), and imperfections caused for 
example by doping agents and impurities which perturb the regularity of potential 
throughout the network. It is only when these electron scattering effects, which limit 
the free path of electrons, are considered that the statistical average term  of the 
free path length of an electron between two successive collisions can be introduced. 
In addition, there are two terms to note: “lattice scattering” which indicates 
collisions due to the material network; and for a similar effect caused by ionized 
impurities, the term “impurity scattering” is used. 

 
On disordering a lattice by introducing vibrations and/or impurities,  appears 

and takes on a decreasing value as disorder increases. If there is a low amount of 
impurities, then local levels appear, most notably in the forbidden band (FB), but if 
the number of impurities increases, the localized levels grow to form impurity bands 
which can reach a size DEe, close to that of the valence band (VB), the conduction 
band (CB) and the FB introduced in Bloch’s model. Bloch's model however loses all 
semblance of reality when values of DEe reach the same values of the bands. 

 
Put another way, we can go from the crystalline state to the amorphous state with 

 decreasing until Bloch’s theory is no longer acceptable. The limit for  was fixed 
to k  ~ 1 (for a perfect crystal, k  >> 1) by Ioffe and Regel after following the 
reasoning of the uncertainty principle, i.e.: 

E. t   and x. k  1 [9.1] 



 Amorphous Media     313 

To arrive at the result shown above, we can consider that the trajectory of an 
electron after a collision is random, and at the very best can only be defined between 
two collisions, i.e.: 

( t)max =  [9.2] 

in which  is the relaxation time – the average time between two collisions – and: 

( x)max =  [9.3] 

From equation [9.1] we can thus directly derive the best precision in E, ( E)min, 
and in k, ( k)min, (1) when the equivalence of [9.1] is verified, as in E t =  and 

x. k = 1;, and (2) when t and x are at their highest value in equations just above 
and equal to ( t)max =  and at ( x)max = . 

 
We then arrive at: 

( E)min.    [9.4] 

and: 

( k)min.   1 [9.5] 

The question that we are therefore brought to ask is, with increasing disorder, 
what are the lowest values that  (and thus the mobility μ = q /m) and  can go to 
while ( E)min and ( k)min retain acceptable values, i.e. values which are compatible 
with classic band theory for real crystals.  

 
The response can be given using simple calculations which show that: 

– When μ 1 cm2 V-1 s-1 (and   6 x 10 16 s), from equation [9.4] ( E)min  1 
eV. Thus, ( E)min  EG (band gap size) or ( E)min is the same order of size as the 
permitted bands. When μ  1 cm2 V-1 s-1, the uncertainty in the energy of the carriers 
tends to the same order of size as the permitted and forbidden bands, to such an 
extent that the band scheme loses its relevance to real systems. It will be shown 
though that the Anderson model band scheme has to take into account localized 
bands with a gap which eventually becomes the mobility gap, Eμ. 
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– When  a few ångström, that is to say   a, in which a is the lattice 
constant and is typically of the order of 3 × 10-8 cm, equation [9.5] results in ( k)min 

 1/  1/a  3 × 107 cm-1  k. In effect, with  = h/mv in which v = vthermal  100 km 
s-1 and   7 × 10-7 cm, we have k = 2 /   107 cm-1. We can directly infer that in 
the band scheme, conduction electrons will be such that k  1/a. At these values, 
where   a, we thus have ( k)min  k, and k can no longer be considered a good 
physical parameter to which we can apply quantification. In addition, when k ~ k, 
Fermi's sphere is badly defined (to the point of being totally deformed) and the 
concept of carrier speed looses significance as k = m*v, just like the mean free 
path which is expressed as a function of v, i.e. = v . 

 
Finally, as soon as   a, and more strictly speaking as soon as   a that 

occurs when the interaction between an electron and the material network becomes 
increasingly strong, an electron no longer goes any further than the limits of the 
atom to which is tied. The electronic wave function localizes over a small region in 
space and is generally supposed to diminish exponentially with respect to R (as 
exp(– R)).  

 
The work of Mott and Anderson has introduced a new concept of localized 

states. The permitted density of states, N(E), always results in an energy band 
beneath a single EC for a conduction band and above a single EV for a valence band, 
and, in other words, an activation energy is necessary for carriers to pass from one 
state to another with an emission or absorption of a phonon. 

9.3.3. Anderson localization  

9.3.3.1. The model 

Systems in which disorder is due to a random variation in the energetic depth of 
regularly spaced sites (with interstitial distances always equal to a) are considered in 
Anderson’s model, and can relate, for example, to a random distribution of 
impurities. Different authors, including Mott, have tried to take into account lateral, 
spatial disorder and the results have been close to those of the Anderson model, to 
which we will limit our discussion.  

 
In Chapters 1 and 3, we saw that if we take into account effects resulting from 

a network of atoms at nodes by constructing a regular distribution of identical 
potential wells, then a permitted energy band of height B appears, as shown in 
Figure 9.6. 
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Figure 9.6. Regular distribution of identical potential wells and permitted band 

Section 8.1 showed that in the strong bond approximation: 

– B = 2Z  , where Z = the number of adjacent neighbors, and  is the resonance 
integral between two adjacent sites; and 

– m* = 
²

2 ²a
 = 

²
²

Z
a B

 [9.6]  

so that μ = ²
²

,q a B
Z

 and semiconductors possessing a narrow B band exhibit low 

mobilities. 
 
For Anderson’s model we can replace the preceding distribution (Figure 9.6) by 

one of randomly deep potential wells which represent disorder, as shown in Figure 9.7.  

 
 

Figure 9.7. Periodic distribution of wells with random depths 

9.3.3.2. Variation in wave functions with respect to V0/B (Anderson) and  (Ioffe and 
Regel) 

We will show here how permitted energy bands change into localized states if 
V0/B goes beyond its critical value. In order to do this, we need to look at the 
following scenarios: 

 

V 
a E

N(E) 
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– Real crystal: V0/B is very low and  is high. In this case, the wave function is 
given using Floquet’s theorem (equation [7.19]) which can be written with the 
normalization constant:  

0( )  (  - )nikr
k n

n

r e r r  [9.7] 

The mean free path can be estimated from the Born approximation, by realizing 
that the wave vector of an electron (kn) changes to km once the electron has 
undergone a collision of probability Pmn and that Pnm = 1 = ,v  and in addition Pnm is 

given by Fermi’s “golden rule”: Pnm = 1 2
4

2
ave ( )mN E  (see Mott and Davis), 

where here ave  = (V0/2) and the relation is given for a unit volume. For 

conduction electrons, for which Em  EF, spread throughout a volume V = a3 with 
a distribution of wells with random depths but averaging around V0/2, we here have: 

1
= nmP

v
=

2
301 2 ( )

4 2
FV N E

a
v

 [9.8] 

where N(EF) is the density of states at the Fermi level and v the velocity of 
an electron at the Fermi level. As  is large, the system is almost a perfect crystal, 
and therefore it is possible to state that: 

N(E) = 
3/ 2 1/ 2

3
4 (2 *)m E

h
  and  v = 

1/ 22 
*
E

m
  

Using equation [9.6] for the effective mass, equation [9.8] gives 
2/0

32 
,Va  

and with B = 2Z : 

2
02 /

 
32 

ZV Ba
 [9.9] 

– When (V0/B)  1 (lowest disorder) corresponding to  a , i.e. threshold 
disorder. When   a, equation [9.9] written for a cubic system in which Z = 6 
results in (V0/B) = 0.83  1. At this point when   a (and V0  B), the disorder is 
such that k  k (following Ioffe and Regel), and under such conditions, at each 
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collision, k randomly varies by k, the closest neighbor to k. In going from one 
potential well to the next, the wave function in equation [9.7] randomly changes and, 
according to Mott, loses its phase memory. It should thus be written in the 
approximate form: 

0( )   (  - )k n n
n

r A r r  

with An = cn exp(i n), where An is a function with a random phase and practically 
constant amplitude.  

 
Moreover, this amplitude is more constant than the variation between depths of 

neighboring potential wells, i.e. V0 is low in Figure 9.7. In a model using two wells 
with potential depths V1 and V2 (as in Miller and Abrahams, 1960) the resulting 
wave function can take on either a symmetric or antisymmetric form, respectively, 

S = A1 1 + B 2 or A = A1 1 - B 2 . We can therefore show that when V1- V2 << 
| | (i.e. V0 is low), so A1  A2, the difference in energy (E1 – E2) between the two 
possible states is such that 1 2 E E   2| |. A representation of this function is 

shown in Figure 9.8a for a network of several potential wells. 
 

– When (V0/B) > 1 (V0/B) (just above threshold value): initial delocalization and 
medium disorder. In a system which corresponds to a great increase in disorder, and 
for the model of just two wells corresponding to an increase in the depth between 
the wells as in 1 2 0| – | ,V V V  the difference in energy, 1 2|   |,E E  increases to 
a corresponding level and A1 differs from A2. The amplitudes of the functions are no 
longer constant and the wave function displays increasing disorder both in amplitude 
and in phase (Figure 9.8b).  

– System in which (V0/B) >> 1 ((V0/B) well above threshold value): considerable 
delocalization and disorder. In this system a highly localized state is formed, as 
shown in Figure 9.8c, and as V0 increases the localization is accentuated. In addition, 
there is no longer propagation along a line of potential wells and states are thus 
localized. An exponential decrease in the wave function starts to appear and is 
increasingly noticeable with increasing values of V0. The wave function takes the 
form: 

0( ) ( ) r
n n

n
r A r r e  
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from which it is possible to write: 

0( ) ( )

r

n n
n

r A r r e  [9.10] 

where  is the localization length.  
 

 
Figure 9.8. Variations in wave functions with delocalization: (a) delocalization– 

localization only; (b) weak delocalization; and (c) strong delocalization 

To conclude, the factor V0/B is a crucial term in deciding whether only localized 
states form (V0/B > 1) or whether both localized and delocalized states can co-exist 
(V0/B  1). 

 

r
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9.3.3.3. Band scheme and form of the state density function N(E) 

From a realistic scheme of the distribution of potential wells, we can see that 
states should be localized within one energy domain and delocalized in another. 
Accordingly, Figure 9.9 describes a system with non-negligible disorder: 

– all states at the tail end of the function N(E) which correspond to a high enough 
value of V0 and from energies E < Ec and E > E’c appear localized as before in the 
scheme of potential wells; and 

– however, the middle of the band corresponds to shallow states with small V0, 
such as V0/B, and is a zone of delocalized states which have E’c < E < Ec. 

 
Figure 9.9. Representation of localized and delocalized states in co-existence 

9.3.4. Localized states and conductivity. The Anderson metal-insulator transition 

9.3.4.1. Mott’s definition 

Mott’s definition is based on continuous conductivity relative to electrons with 
a given energy ( E(0)) and delocalized states are on average, at T = 0 K, those for 
which E(0) is zero, i.e. (0)E = 0. To arrive at an average though, all possible 
configurations which have the energy E need to be considered, and while some 
electrons may have a non-zero energy, the average over all possible states with the 
corresponding energy E gives zero as a result. These states and the mobility they 
represent are in effect thermally activated.  

 
However, at T = 0 K, delocalized states average to give E(0)  0, that is to say 

metallic behavior occurs.  

 V 
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9.3.4.2. State properties  

In Figure 9.9, two types of states – localized and delocalized – are separated by 
energies Ec and E’c which together are called the mobility edge. In the two zones 
Einstein’s relation holds true if EF is outside the bands of non-degenerate states. We 
thus have μ = qD/kT, but the diffusion coefficients (D) have different forms. Here,  
D = Pa² in which P represents the probability of movement to neighboring sites. 
This brings us to the origin of the expressions used in courses on electronics and 
materials: 

– When E > E’c and E < Ec , D = (1/6) ph a² exp(-w1/kT) (with ph being the 
phonon frequency and w1 the energy of activation) and < E(0)>T=0K = 0. Here as T 

 0, we can verify that D and μ tend towards zero, as does the conductivity. 

– When Ec < E < E’c, D= (1/6) e a² and E(0)  0 where e is the frequency of 
electronic vibrations. 

9.3.4.3. Distinction between insulator (or semiconductor (SC)) and a metal in a 
slightly disorder material (poor localization and small ) 

 

Figure 9.10. Metallic character resulting from the position of EF 

As for classic (crystalline) materials, the properties are tied to the position of 
EF (as shown in Figure 9.10): 

– when EF is situated in the domain of delocalized states, (Ec < EF < E’c), we 
have a degeneration corresponding to a metallic character; and 

– however, when EF is situated in the zone of localized states, where typically 
E < Ec, charge carriers can only be thermally excited and conductivity can occur 
only by jumps or by excitation to Ec, and indeed at 0 K conductivity tends towards 0 
which is typical of an insulator. Materials for which the Fermi level is situated in an 
energy zone in which states are localized are called Fermi glasses. 

position of EF 
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9.3.4.4. Transition from metal to insulator or semiconductor  

For a given material which has a Fermi level fixed by its charge density, 
displacement of EC, for example by increasing the disorder as shown in Figure 9.11, 
moves the Fermi level from an initial state in a domain of delocalized states 
(metallic) to a zone of localized states. The result is a metal to insulator or 
semiconductor transition. 

 

9.3.4.5. Anderson transition from order to disorder and the change in conductivity 

Even though we do not detail transport properties in this book, we should 
nevertheless introduce an expression for metallic conductivity written in the 
relatively simple form of  = qnμ = nq²  /m*, in which n is electron concentration 
and  is the relaxation time relative to the Fermi level.  

With  = v  we have  = nq² /m*v, and on introducing the crystalline 
momentum, k = m*v, we reach  = nq²  /  kF in which kF is the wave vector at 
the Fermi surface. 

We can also note that the number n of electrons within a unit volume V (V=1) 
can be obtained by use of the reciprocal space, that is to say the number of cells 
within the Fermi volume is ([4/3]  kf 3)/ 8 3, each with volume 8 3/V= 8 3 for V =1.  

On taking into account electron spins (i.e. doubly occupied cells), we have  
n = 2([4/3]  kf 3)/ 8 3 and metallic conductivity can therefore be written as: 

2 2

3
4   

12  
F

B
k q

 [9.11] 
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Figure 9.11. Using disorder to displace EC 
and effect the metal-insulator transition 
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Figure 9.12. Anderson’s transition from metal to insulator at absolute zero following  
1/(V0/B) = B/V0 . The same behavior occurs when EF is displaced with respect to EC 

When considering a metallic state, the Fermi level can be considered more or 
less in the middle of the band (so that in 1D, kF  /a) as shown in Figure 9.10. 
With increasing disorder, Ec and E’c tend towards each other at the band center Em 
( EF) in which case all states are localized. This change is called Anderson’s 
transition, as shown in Figure 9.12.  

 
At the same time, we have V0/B  1 with  tending towards a. For its part, with 

 = a, conductivity  thus tends towards min = IR = ( B)
l =a= q²/3a . In mono-

dimensional media this abrupt transition is a point of controversy as it is known to 
occur progressively in 3D. When a is of the order of 3 Å, IR = 700 S cm-1, it is 
often a value of saturation for conductivity in rising temperatures. 

9.4. Conclusion 

This chapter has shown how supplementary effects, defaults in the periodicity, 
caused by such as dangling bonds, chain-ends and holes within the structure 
introduced into the band gap localized levels can open to form a band when their 
fluctuation is brought into account. This band can split as a function of electron 
filling, in a manner analogous to the perturbations caused by electron repulsions, 
which were not taken into account in the band theory. These electronic repulsions 
were looked at in detail and we have shown how they can help to explain metallic or 
insulating behaviors that the classic band theory cannot deal with. 

 
By introducing modifications of crystal regularity by considering network 

thermal vibrations (phonons) and defects, both chemical (impurities) and physical 
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(dislocations), the notion of a real crystal was studied. This resulted in determining 
the mean free pathway of electrons, which can no longer be considered as 
completely delocalized within the network – as in the case of a perfect crystal. It was 
shown that an increase in disorder reduced the mean free path length up to the point 
of localizing electrons in neighborhoods of deep defaults, resulting in energy levels 
localized at extremities, or “tails”, of permitted bands.  

 

 

Figure 9.13. Band models for amorphous semiconductors: (a) following CFO; (b) following 
μ(E) at T = 0 K; (c) following μ(E) at T > 0 K; (d) following Mott and Davis 

Finally, it can be noted that all models postulate for amorphous media, such as 
crystalline semiconductors, that there are conduction and valence bands which are or 
are not separated by a band gap, depending on the all-important band tails. And that: 
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– Bands result in part from short-range order (from approximations of strong 
bonds giving rise to bonding and anti-bonding states, i.e. valence and conduction 
bands separated by a band gap) and from disorder created by phonons or impurities 
shown by tails of delocalized states. Tail states are neutral when occupied in the case 
of the valence band and when empty in the conduction band. The Fermi level is thus 
placed in the middle of the band gap, as shown in Figure 9.13a and following the 
model proposed by Cohen, Fritzsche and Ovshinsky (Frizsche, 1970). 

– The form of the bands depends on the type of the implicated orbitals. For p or 
d orbitals, which are less stretched overall into space than s-orbitals, the form of 
N(E) is different and the bands are smaller.  

– In a perfect crystal, the band gap is an forbidden energy in which N(E) = 0, 
while in an amorphous material it is a mobility gap and N(E) is not necessarily zero 
but the mobility μ(E) however does becomes zero at T = 0 K (localized states), as 
shown in Figures 9.13b and c). 

 
By taking into account the disorder caused by not only phonons and impurities 

but also by structural defects such as dangling bonds and chain ends, additional 
offsetting defaults localized in the middle of the band can generate two bands at 
compensating levels (Hubbard’s bands) following the model of Mott and Davis as 
shown in Figure 9.13d. 

9.5. Problems 

9.5.1. Additional information and problem 1 on the Mott transition: insulator–
metal transition in phosphorus doped silicon  

9.5.1.1. Additional information: evidence for the Mott transition in phosphorus 
doped silicon 

The Mott transition can be illustrated by way of the conductivity of silicon at low 
temperatures as a function of the concentration of phosphorus atoms (see Figure 9.14).  

 
Substituting silicon atoms, four or five electrons in the external phosphorus layer 

are engaged in covalent bonds with neighboring silicon atoms; the fifth electron 
dopes the silicon. When T = 300 K, we have kT 0.024 V so that the bonding energy 
of this fifth electron is of the order of 0.045 eV and the P atoms are easily ionized to 
P+ at ambient temperatures. The phosphorus plays the role of a donor for n-type 
doping of silicon.  

 
At very low temperatures though, kT is very small as the phosphorus electrons 

are tied to the P+. The fifth electron therefore tends to follow a Bohr radius 
calculated in section 9.2, as in a*  r a1(m/m*), which in silicon is given by 
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*a 25 Å. The material is therefore an insulator in the domain of very low 
temperatures, at least when concentrations of phosphorus are below a critical point 
(found experimentally to be around 3.8 × 1018 P atom cm-3). An abrupt insulator–
metal transition is found around this concentration. 

 

It is possible to consider that at high concentrations of phosphorus atoms, their 
orbitals overlap so that electrons can pass by tunneling from one P+ ion to another. 
The resulting electronic cloud can play a role as electrostatic screen between the P+ 
and the fifth electron so that the latter end up being delocalized in the cloud. Once 
this process of liberation (with respect to the atom of origin) has occurred, it gains 
strength through a growing screening effect. 

9.5.1.2. Problem: the Mott transition as an equation and its resolution 

The mechanism for the Mott transition can be characterized physically in the 
following manner: if a nucleus with a positive charge (denoted here Ze ) is placed in 
a free electron gas, the electrons will be attracted to the positive charge and generate 
in the neighborhood of the nucleus a surplus negative charge density. This negative 
space charge will then screen the positive charge and the potential generated by the 
nucleus (

4 0
0 )Ze

r
V  in the vacuum will be reduced so that in the material, 

Figure 9.14. Conductivity of silicon doped with phosphorus near absolute zero 
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4 0
.Ze

rr
V  Parameter r is introduced to account for the nature of the material. If 

it is a dielectric, the electronic charges are tied by covalent bonds to the cores of the 
ions and are, as a consequence, not very mobile. The “screening” is therefore poor 
and r is small (typically of the order of two or three). If the medium is metallic, the 
electrons are very mobile and the screening effect can be complete some distance 
from the nuclei. In such cases, V  0 and therefore r   (total “screening”). 

 
Nevertheless, this screen is effective right from the very shortest distance, of the 

order of an ångström. At greater distances the electrons no longer see the potential 
of the nuclei and it is for this reason that electrons behave independently from the 
nuclei at distance greater than the screen. It is this distance that we will try to 
evaluate. 

 
The most mathematical treatment of the screen effect can be carried out within 

the Thomas–Fermi approximation. It is assumed that the local perturbation created 
by the electronic cloud has a potential V (generated by the positive charge) and 
reduced locally by the energies of the electrons by dE = |e| V. The result is that the 
electronic density function is modified by n. 

1) Express n using the density of states function in EF (function Z(EF)). 

2) Write the Poisson equation that ties n and V at a point far from the positive 
cores. 

3) Assuming that the medium is isotropic, the perturbation potential can be 
thought of as being constant for a given r, i.e. it has a spherical symmetry. Write the 
Poisson equation for these conditions. 

4) Give the physical solution to this differential equation by introducing the 

parameter ²

0

1/ 2

F( )e
TF Z E  which is the Thomas–Fermi screening length.  

5) Determine the solution using the limiting condition that V tends towards the 
Coulombic potential as TF  . Make a comparison using a graphical 
representation. 

6) Give the equation for the spatial variation in the dielectric permittivity. 

7) Express TF as a function of the electronic concentration (Ne) and the 
parameter a* = a1(m/m*) (where a1 = [ 0h²]/[ me²]).  

8) What relation should one have between a* and TF for the medium to be 
considered metallic? From this deduce the relation that gives the critical electronic 
concentration (nc) above which the medium is metallic. 
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Answers 

1) If a local perturbation V (by an electronic cloud) of the potential reduces the 
potential energy of the electrons by dE = |e| V, the electronic density is modified by 
n = Z(EF) dE = Z(EF) |e| V, where Z(EF) is the density of states function (or state 

density function – the term is interchanged in this book) at the Fermi level (EF), the 
level at which the conduction electrons are transported. 

2) Far from the cores of the positive charges, where the volume density of the 
charge is  =  e n, the Poisson equation that relates n and V is 

0
0e nV  (with the medium of the material being represented by charge 

that bath in a vacuum, the permittivity being used is thus 0). With n = Z(EF) 
|e| V we thus find: 

F
0

 ²
( ) 0

e
V Z E V  

3) Supposing that the medium is isotropic, the potential due to the perturbation 
( V) can be assumed to be constant for a given r, that is within a spherical 
symmetry. In this case, the Laplacian is in the form: 

²²1 2 1
²

² ² ²

r VV V V
r

r r r r r r r r
 

so that the Poisson equation takes the following form: 

F
0

² r V1  e²
Z(E ) V 0

r r²
 

which can then be written in the form of a classic differential equation: 

F
0

² r V  e²
Z(E ) r V 0

r²
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4) The solution for this differential equation is: 

1/ 2 1/ 2
² ²

0 0
( ) ( )

[ ( )]
F F

e e
Z E r Z E r

r V Ae BAe  

so that: 

1/ 2 1/ 2
² ²

0 0
( ) ( )

.

F F
e e

Z E r Z E r
e e

V A B
r r

 

As: 

lim ,
x

mx

e

x
 

with m > 0, the second term diverges and we have to take B = 0, so that: 

1/ 2
²

0
( )

.
F

e
Z E r

e

r
V A  

By making the hypothesis, ²

0

1/ 2
( )e

TF FZ E  for the Thomas–Fermi 

screening length we thus find .TF

r

e
r

V A  

5) In the exponential, if r  0, or what comes to the same thing, if ,TF  
for an infinitely long screen, the potential must tend towards that produced by one 
single atomic core, that is its normal Coulombic potential, such that: 

0
,

4

r

e A Ze
A

r r r
 from which 

0
.

4
Ze

A  
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Finally, we have: 

TF

r

0

e
V Ze .

4 r
 

The electrostatic potential therefore decreases much more rapidly with distance 
than if it were simply the Coulombic potential.  

 
 

6) In a representation of the medium with the help of the dielectric permittivity, 
0 r, where r is the relative dielectric permittivity, and takes into account the 

polarization of the medium, the potential generated by the charge Ze is given by  

4 0
.Ze

rr
 Identification with the preceding form of the equation, 

4 0
,

r

TFe
r

V Ze  

gives .TF

r

r e  It is possible to see that when r >> TF, r  .  
 
This result is normal as in this region the electrons are not subject to any 

influence from the charge Ze, which would tend to localize them. When r >> TF the 
electrons are free as in a metal, for which the permittivity also tends towards 
infinity. 
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7) In addition, 
3/24 (2 *)

3( ) m

h
F F c FZ E E A E , where 

3/24 (2 *)
3

m

h
cA  

2 *
2

3/ 2
4 ,m

h
 and where EF can be expressed as a function of the electronic density 

by writing, for example, that at absolute zero (see problem 4 in Chapter 2):  

1/ 2 3/ 2

0 0

2
( )

3

F FE E

e c c FN Z E dE A E dE A E  so that 
2/3

3
,

2
e

F
c

N
E

A
 

from which  

1/3
2/3 3

( ) .
2F c eZ E A N  

The result is that: 

1/3 1/61/ 2
1/60 0

2/3
1 2 1 1 ²

3 ,
3 2 ² *

TF e
ec

h
N

e NA e m
 

so that with a1 = [ 0h²]/[ me²] and a* = a1(m/m*): 

1/61/61/ 2 3* *
0.5 .

2 3TF
e e

a a
N N

 

8) The condition for electronic behavior is that a* (which gives the position of 
the electron in its orbit) is greater than the screening length. This is because above 
this distance, the electron is no longer held by its starting atom. The result is the 
condition * .TFa  



 Amorphous Media     331 

This condition is fulfilled when Ne attains a critical concentration ( ) *cn a  
1/2*1

1/32
,a

nc
 so that: 

1/3 * 0.25cn a  

in a condition practically identical to that found in section 9.2.3. 

9.5.2. Problem 2: transport via states outside of permitted bands in low 
mobility media  

1) What is the condition that the width of the B band of a material must verify for 
the effective mass approximation to be valid when used in an expression for 
mobility? 

2) Considering a system where the permitted bands are wide (such as in  
-conjugated polymers), of the order of 1 eV, and where the mobility is of the order 

of 10–3 cm² V–1 s-1. Can electronic transport occur in the permitted bands? 

3) We now consider solids as molecular solids where intermolecular bonds are 
through weak van der Waals bonds. Can it be said that this system has a narrow 
band? In this example where the mobility can be taken as being in a general form 
(for a 1D system), ,q

kT xv  and where it may reach 1 cm² V–1 s–1, does the 

transport occur through these narrow permitted bands? Using the example of 
anthracene, the intermolecular distance is given by a  6 × 10-8 cm. For cases where 
we know the resonance integral (   0.01 eV for anthracene), give an alternative 
rationale. 

Answers 

1) To define the effective mass, as in section 8.1, the width (B) of the permitted 
bands must be such that B >> kT, or otherwise the band width will approach kT 
(0.0026 eV at ambient temperature), and it will not be just the lowest levels of the 
band that are occupied but all possible levels that can be taken up through thermal 
agitation. The form of the mobility for a strong bond is no longer acceptable. 
Expression [8.11] from Chapter 8, μ = ²

²
,q a B

Z
 obtained with the help of the classic 

expression for mobility 
*

,q
m

μ  in which is introduced the effective mass 
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²
²

*
Ba

m Z  (see equation [8.11’] where Z is the coordination number). In effect, to 

obtain this expression for m*, we use an approximation that excludes the states at 
the base of the band (k  0, and situated at the center of the zone for which E is 

a minimum, so that 
0

0E
k k

 also allows the limited development over cosines 

which is involved in the expression for a strong bond). 

2) From the preceding section the approximation of the effective mass is valid 
when considering wide bands, for example HOMO and LUMO bands in  

-conjugated polymers. Inside these bands, the carrier mobility can be evaluated 
with the help of the equation μ = ²

²
.q a B

Z
 

 
In addition, and as has been detailed in this chapter (see section 9.3.2), for bands 

to retain a physical significance B > E, where E  (equation [9.4]). Under these 

conditions for there to be conduction in these large bands of delocalized states, we 
should also verify that: 

²
²

q a B
μ

Z
> 

²
²

q a E
Z

 
² 1

.
qa

Z
 

This equation, μ > ² 1 ,qa
Z

 is the condition for conduction in the B bands of 

delocalized states. With a  several Å (length of strong bonds in -conjugated 
polymers) and Z  2, we find the condition: μ > 10–1 cm² V-1 s–1. As the mobilities 
in -conjugated polymers are of the order of 10–3 cm² V–1 s-1, we can conclude that it 
is not reasonable to expect the transport observed in these materials to be in the 
bands of delocalized states. As a consequence, we can think that in such polymers, 
the mobility associated with delocalized states is greatly reduced by charge transport 
through more localized states. 

3) Molecular solids give rise to narrow permitted bands, as the intermolecular 
bonds are through weak bonds, for example van der Waals bonds. The poor overlap 
of intermolecular orbitals results in low values for the overlap integrals ( ). The 
width (B) of the permitted bands being of the order of several  (B = 2Z , see 
equation [8.10]), means that the system is based on narrow permitted bands. In this 
case, and taking the argument developed in answer 1 into account, the 
approximation for the effective mass used to evaluate the mobility is no longer 
acceptable.  
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We can therefore use the following expression for mobility: .q
kT xμ v  As 

the speed can be given (in a dualistic theory) by ,
kgv v  so that with E  

and in 1D we have 1 .E
k x

v  With E  B while k  1/a (order of size of the 

Brillouin zone in the reciprocal space and corresponding to the height of the 
permitted band (B) (see the representation of E = f (k) in Chapter 4) we thus have: 

vx  ,
Ba

 so that .
q Ba

μ
kT

  

At this level we can reason in one of two ways (which lead, of course, to similar 
conclusions). Either: 

– we consider that to have conduction in the localized states, we should have  
> a (Ioffe and Regel’s second condition – see section 9.3.2), which means that: 

μ > 
²qa B

kT
 must be true. 

In these small molecules, with the band width B  kT, we find the same condition 
as in polymers:  

μ > 
²
.

qa
  

Taking a  5 × 10–8 cm, we should have μ  1 to 10 cm² V–1 s–1. It should be 
noted that here a represents the intermolecular distances that are slightly longer than 
the covalent bonds , so that we can reasonably state that a2 for small molecules is at 
least an order greater than for polymers. With μ 1 cm² V–1 s-1 and a  6×10–8 cm for 
anthracene, we do not find that the inequality is verified, which shows μ  5 cm²  
V–1 s–1; or 

– we consider that we know the mobility (μ 1 cm² V–1 s-1 for anthracene) and 
given that B   (where the resonance integral   0.01 eV for anthracene), and 
with a  6×10–8 cm, we can therefore estimate  with the help of ,q Ba

kT
μ  which 

gives us   3×10–8 cm. The mean free pathway appears to be less than 
the intermolecular distance a, which again is not compatible with conduction in 
delocalized states (Ioffe and Regel). 
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Chapter 10 

The Principal Quasi-Particles  
in Material Physics 

10.1. Introduction 

In a physical system there are a variety of particles that exist under constant 
perturbation, even excitation, due to external forces that are mostly interacting with 
the lattice. A slightly perturbed or excited state can dissipate into elementary 
perturbations (excitations) that propagate through the lattice just like a particle with 
a degree of energy, movement, and even a spin moment. A change in the perturbed 
(excited) state of a material can be described using variations in these parameters of 
energy, movement and so on. And these variations can be due to collisions between 
quasi-particles that can also be described using the same parameters. These quasi-
particles are the result of interactions (perturbations and excitations) between real 
particles or the same particles with the lattice. 

 
Depending on the nature of the interactions, the quasi-particles can be, for 

example: 

– phonons: these describe the state of a lattice in which the atoms are excited by 
thermal vibrations. The main applications are in the domains of materials and 
thermal properties; 

– polarons: these appear when accounting for coupling between electronic 
charges and the resulting lattice deformations. They are well evident in descriptions 
of transport phenomena in materials with low mobilities; 
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– excitons: these are coupled electron-hole pairs with energy levels in the 
neighborhood (but outside) of the permitted bands. They are essential to descriptions 
of the optical properties of materials; 

– plasmons: these detail the collective oscillations occurring in an electron gas. 
 
There are other quasi-particles that can be present. These include polaritons, that 

describe the transverse optical coupled modes of photons and phonons, magnons, 
that describe systems based on coupled spin moments, and solitons that correspond 
to a default in the conformation of a chain of atoms that may or may not be coupled 
to a charge. However, this text will detail only the main types of quasi-particles. 

10.2. Lattice vibrations: phonons 

10.2.1. Introduction 

With the bonding forces between atoms being finite, an external perturbation 
such as thermal energy can result in atoms being distanced from the equilibrium 
position.  

 
In this example the forces and atomic displacements are directed along r. With 

F(r) denoting the bonding force on an atom at r with the corresponding potential 
energy W(r), then: 

( ) grad ( ) dWF r W r
dr

 

If r0 represents the equilibrium position of an atom (located with respect to the 
origin of the displacements), and if r denotes the displacement that is such that 

0r r r , we can write that: 

0

0
1 ²( ) ( ) ²
2 ² r

d W
W r W r r

dr
 

(as the first derivative is zero with respect to r0 where W(r) is a minimum and an 
equilibrium position). The result is: 

0

( ) ²( ) ,
² r

dW r d W
F r r k r

dr dr
 when 

0

²
² r

d W
k

dr
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and we have Hooke’s law. With dr d r , the fundamental dynamic equation is 
written as: 

²
²

d r
m k r

dt
 

for which the physical solution is of the form: 

cos cos 2k
r A t A t

m
 

where 1
2

.k
m

 This represents the sinusoidal oscillatory movement with 

frequency . 

 
In a crystalline system it is no longer a single atom that vibrates but rather a set 

of atoms and a coupling between the vibrations. This is because the vibrations of 
atoms will affect those of neighboring atoms. 

 
If we have a system with N atoms, and each atom has three degrees of freedom, 

then the vibrational system will have 3N waves with different frequencies (normal 
vibrations). The movement of each atom is determined by the superposition of the 
3N waves (or 3N normal vibrations) and will be determined in this chapter. 

10.2.2. Oscillations within a linear chain of atoms 

10.2.2.1. Form of the solutions 

Here we study the longitudinal vibrations in a chain of N identical atoms that 
each have a mass M and are at equilibrium distances a apart. The length of the chain 
is thus given by L = (N – 1)a  Na, as N is very high (N >> 1).This example uses a 
simple cubic structure and the propagation in the directions [100], [110] and [111] 
are considered. This means that the vibration goes along a chain of atoms.  

The frequency of the oscillatory movement of one atom will be a function of the 
wave number K (3D vector) of the supposedly elastic vibration of the lattice. 
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Figure 10.1. Displacement of atoms at T  0 K through thermal agitation 

The spread of an atom denoted n from its equilibrium position by thermal 
agitation is denoted by un. Each atom is tied to its neighbors by a bond and, 
following the movements of the atoms, there is at the level of each atom a set of 
forces that tends to correct the movements. To simplify the problem, we can assume 
that each atom can only respond to the influence of its two nearest neighbors (any 
coupling beyond this is neglected), so that the atom numbered n is subject to only 
two forces, i.e. a force due to a bond with the atom numbered n - 1 and the other 
with n + 1. Assuming a linear approximation, these two forces are each proportional 
to the variation in the distance separating the atoms. If  denotes the proportionality 
constant (which shows the elastic properties of the lattice), the force against an atom 
n is given by: 

1 1n n n n nF u u u u  

and the fundamental dynamic equation for this atom labeled n is: 

1 1
²

2
²
n

n n n
d u

M u u u
dt

  [10.1] 

We can now look for solutions in the form of progressive plane waves of the 
type: 

( , ) expu r t A i Kr t  

where 2K  is the wave number and 2  is the angular frequency (also 

known as pulsation). 

n  2 n  1 n  n + 2n + 1 
T = 0 K 

T  0 K 

un  1 un  un+ 1 

a 
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This means looking for the solution for the movement of the atom n located by 
r = na, and such that ( , ) expnu na t A i Kna t . Similarly, we also look for: 

1 exp 1nu A i K n a t   

and: 

1 exp 1nu A i K n a t .  

 Substituting this into equation [10.1] we obtain: 

² 2 2 cos 1iKa iKaM e e Ka ,  

so that, using 2sin ² 1 cos 2x x , we find: 

2 sin
2

Ka
M

 [10.2] 

This is a dispersion equation based on ( )f K , and is periodic with respect to 

K with a period given by 2
a

 as: 

2( ) 2 sin ( ) 2 sin
2 2

Ka Ka
K K

M a M
 

The representation is given in Figure 10.2a. However, given the periodicity it 
suffices in fact to represent the function (K) in an interval equal to 2

a
 which is 

chosen to be between 
a

 and 
a

 (Figure 10.2b). The width of the first Brillouin 

zone contains non-equivalent K values (the positive and negative values represent 
the two opposite directions in which the wave can move). This can be compared 
with the results in the following section. 
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Figure 10.2. (a) Dispersion curve [ (K)] for a chain of atoms;  

and (b) representation for the first Brillouin zone  

10.2.2.2. System properties 

– Variations in the useful K zone. We have 1un
un

iKa ie e . When Ka =  

between   and + , Ka takes n all possible independent values that give the 
dephasing ( ) in the movement of two neighboring atoms. For example, if two 
atoms are out of phase by 

10
x  (with 0 10x ) it is the same as stating that 

they are dephased by 10
10

x . The range of variation in K is thus 
a a

K . 

– Difference with the continuous medium (where a  0), and number of modes 
for a long chain. For the difference in a continuous medium where a  0, such that 
K    (as maxK a ), with the example of a discrete chain of atoms, the 

extreme values of K are max a
K . For a progressive wave solution, such that in 

terms of r we would have ( , ) expu r t A i Kr t , the use of the condition of 

periodic limits u(r) = u(r + L) results in (see also section 2.4) 2
LnK K n , where 

n = 0, 1, 2.... Here the quantification is located at n as N represents the number of 
atoms in the chain such that L = Na. These values are the permitted values for K in 
the expression for the progressive wave u(r,t) solution for the system. The spectrum 
given by  = f(K) is therefore discrete (see Figure 10.2b) and the interval denoted 

K between two successive K values is simply 2
L

K , such that with the width 

of the Brillouin zone being given by 2
aBrilK , K can take on 

2
2

a L
L a

N values. 

K 

 

2
a

 
2

2
a

 
2
a

 
a

 
a

 
0 

(a) 

K 

(K) 

a
 

a
 0 

M 2
M

 

2
L

 

4
L

 
6
L

 

sv K  

(b) 
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– Number of modes for a system with a limited extension (length L = Na where is 
small and will give preference to stationary systems – see also section 2.3). In this 
case, there is a node at both extremities of the chain and the limiting conditions (at r 
= 0 and r = L where we should have (0, ) ( , ) 0u t u L t ), results in a stationary 

solution of the form (see section 2.3): ( ) sinu r A Kr , where 
LnK K n  and n = 

1, 2, 3... and only takes on positive values (n = 0 would give u(r) = 0, so that there 
would be no more vibrations). Here 

L
K , and the spectrum  = f(K) is also 

discrete and retains the same shape with intervals between 0 and /a, to which the 
system is limited in this configuration. For this stationary system and over the with 

/a (zone of presence as K > 0), the number of normal modes possible is therefore 
given by /

/
a L
L a

N . This is the number of normal vibrational modes for this 

stationary system (identical to the number of modes obtained in the preceding 
section for a long chain). 

– Mode densities. With the interval 
L

K  corresponding to a vibrational 

mode, such that over a unit interval of K space we can “place” 1
/

L
L

 modes. This 

is the mode density in the K space. The mode density [D( )] in the pulsation space 
must therefore be such that D( ) Ld dK , an expression that can also be written 

as D( )
/

L d
d dK

d . The velocity group (d /dK) appears in the denominator and 

this can be obtained from the dispersion curve. If the group velocity is zero (tangent 
horizontal to the dispersion curve), D( ) appears as a singularity. 

– Crystal vibration frequency. Equation [10.2] shows that the crystal can vibrate 

between  = 0 and 2
MM  (see Figure 10.2b). 

– The shortest and longest wavelengths. As 2 2L
K nnn , we have min

n N
 

2a  while 
1

max 2 .
n

L  The shortest wavelength results directly from the 
discontinuous chain of the atomic chain for which the concept of a wavelength with 

 < 2a, i.e. one that is associated with at least three atoms, would not make any sense. 
 

 

2a 
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– Propagation velocity and wave frequency. For a small value of K (equivalent 
to having large wavelengths corresponding to acoustics vibrational modes), an 
approximation can be made as in 

2 2
sin Ka Ka . Equation [10.2] then becomes linear, 

as in 
M sa K v K  and we have the straight line  = vs |K| from Figure 

10.2b. We thus find a remarkable property in that 
K sv v  d

dK gv . Thus the 

phase velocity and the group velocity have the same value, both equal to vs or rather 
the velocity of sound in solids (of the order of 105 cm s-1). This can be compared 
with the figure above and section 7.2.1 of [MOL 07b]. 

 

 
 
Thus setting sv a M , expression [10.2] can be written as: 

2 sin
2

sv Ka
a

 [10.3] 

For ,
a

k  we have: 

2 2

2 cos 0
2 2g kak

a

d a ka
v

dk M
 

The dispersion curve gives rise to a horizontal tangent with respect to 
a

k  

(see Figure 10.2b). The wave at this point is stationary with a maximum angular 
frequency (pulsation) (see Figure 10.2) with a value deduced from equation [10.3] 
equal to max 2 vs

a
. With vs  105 cm s-1 and a  10 8 cm, we find that max = 

max/2  1013 Hz, which is in the infrared region. 

 

K

slope vS 
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10.2.3. Oscillations within a diatomic and 1D chain 

This section considers a chain made up of two types of atoms with masses m  
and M (M > m), each regularly spaced by a distance denoted a. The atoms with  
mass m are assumed to be placed at every 2na and those of mass M are at  
(2na  a) = (2n  1)a, as shown in Figure 10.3.  

 

 
Figure 10.3. Diatomic chain 

Supposing that each atom interacts, once again, only with its closest two 
neighbors, and that the interaction constants ( ) are identical between paired 
neighbors, the equations for movement can be written as: 

2
2

2 1 2 1 22

2
2 1

2 2 2 2 12

 for atoms of mass  , then  2

 for atoms of mass , then  2

n
n n n

n
n n n

d u
m m u u u

dt

d u
M M u u u

dt

 [10.4] 

Once again we are looking for solutions in the form of progressive waves, but 
with amplitudes and frequencies different for each type of atom (as their mass is 
different): 

2 1

2 1 2

exp 2

exp 2 1
n

n

u A j t Kna

u B j t n Ka
 [10.5] 

 Given the form of these solution, we thus have: 

2 2 2 exp 2n nu u jKa  and 2 1 2 1 exp 2n nu u jKa  

  a              a 

m M M M m m m 

2n 2n  1 2n+1 
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 On introducing [10.5] into [10.4] we find that: 

2
1 2 2 1 2 1 exp 2 2n n nm u jKa u u  [10.6] 

2
2 2 1 2 2 1 1 exp 2 2n n nm u jKa u u  [10.7] 

 From equation [10.7] we can pull out that: 

2 1 22
2

1 exp 2

2
n n

jKa
u u

M
 [10.8] 

 Equation [10.8] must be true for all values of time (t). According to [10.5], u2n 
varies with 1 and u2n+1 as a function of 2. We must therefore find that 1 = 2 = . 

Inserting equation [10.8] into [10.6], we find that: 

2 ² 2 ² 4 ² cos ² 0M m Ka  

 From this we deduce that: 

4 2 ² sin ²2 4 0M m Ka
Mm mM

 [10.9] 

 This equation has two solutions for ² which can be denoted 2  and 2  and are 
such that: 

2
2

4 sin ²1m M mM Ka
mM m M

  [10.10] 

so that also: 

2
2 1 1 1 1 4sin ²Ka

m M m M mM
 [10.11] 
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Figure 10.4. Acoustic and optical branches, with M > m 

This result (equation [10.11]) shows that for a chain made up of atoms of varying 
nature there can be two types of vibrations with different frequencies, namely + 
and . In other terms, a value for K can correspond to two values for , and 
therefore two vibrational modes. 

 
The solution + (upper branch of Figure 10.4) shows the optical branch of the 

vibrational spectrum, whereas the  solution (lower branch of Figure 10.4) is 
associated with the acoustic domain (low frequencies). 

 

NOTE 1.– Using 2sin ² 1 cos 2Ka Ka , equation [10.11] can be rewritten as: 

2
2 2 1 cos 21 1 1 1 Ka

m M m M mM
 

– When Ka is small we have cos 2 1Ka , and 1 12 2 ,
m M

 so that with 

1 1 1
μ m M

(reduced mass) then 2 .  

Still in the condition of Ka being small, we have 
0

0
K

. 

K 

(K) 

2a
 

2a
 0 

2 M  

(b) 
 acoustic 

branch 

2 m  

Forbidden band 

+  Optical branch 

2
μ
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– When 
2a

K , such that 
2

Ka  which gives cos 2 cosKa  1 , 

we have: 

2
2

2

1 1 1 1 4

1 1 1 1
    

m M m M mM

m M m M

 

from which 2
m

 and 2 .
M

 

 

 
NOTE 2. 

– In the acoustic branch with modes for very low frequencies (K  0 and   0), 
equation [10.8] shows that u2n+1  u2n. This means that the atoms and the centers of 
their mass vibrate together (identical direction) and there is a translation of the 
complete cell, as shown in the top half of the figure above. 

– For the optical branch, and when K  0, using 1 12 2
m M

 in equation 

[10.8] we find that: 

1 1
2 1

2

2

2 2
m M

n

n

u m
u MM

 

and the atoms vibrate with respect to one another but with the center of their mass 
fixed, as shown in the bottom part of the figure above. 

 
NOTE 3. 

– If two atoms carry opposing charges, we can imagine generate a vibration of 
this type using the electric field of a light wave – hence the name optical branch. 

– Vibrations in the acoustic branch are tied to thermal effects and the passing of 
sound. 

m M M m 

m M M m 
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10.2.4. Vibrations of a 3D crystal 

– Transverse and longitudinal modes. In 3D, the wave vector becomes 3D and 
the vector gives three corresponding vibrational modes. In addition to the 
longitudinal mode of the preceding section, there are also two transverse modes 
polarized at 90  to each other (for a definition of the various mode types see, for 
example, section 6.2 of [MOL 07b]). These two new transverse modes are also 
characterized by the curve (K) carrying acoustic and optical branches and a 
forbidden band. 

 

 
Figure 10.5. Vibrational modes for a chain of atoms in  

a 3D lattice: (a) longitudinal modes; and (b) transverse mode 

– Number of modes. If the whole crystal encloses N atoms, then we have in all 
3N vibrational modes with 2N of those being due to transverse vibrations and the 
other N being longitudinal (see problem 10.6.1). 

– If the lattice contains two types of atoms (section 10.2.3), and taking into 
account note 2 of the preceding section, for the transverse modes and along the 
acoustic branch the two types of atoms oscillate in phase. However, along the 
optical branch, they vibrate in a mutually opposing phase. 
 
 
 

 
 

 

Figure 10.6. Transverse modes for a lattice made up of two types  
of atoms: (a) acoustic branch; and (b) optical branch 
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10.2.5. Energy of a vibrational mode 

Here we use Debye’s theory where it is supposed that: 

– Atomic oscillations in a lattice resemble a harmonic oscillator. The 3N 
vibrational modes are assumed to correspond to the same number of harmonic 
oscillators which have energy levels that are quantified by: 

0
1
2nE E n ,           n = 0, 1, 2... 

(see a course on quantum mechanics). The proper frequencies of the oscillator are 
equally spaced by an interval of 0. In Debye’s model, we can simplify the 
relatively complicated dispersion curve (and given by equations [10.2] or [10.11] for 
example) by considering the right-hand side,  = vs|K|, no longer with the terms  
Kmax = a

, but rather with just Km being the total number of unnumbered modes equal 

to 3N. Thus the Kn values of K are regularly spaced, the dispersion curve 
straightened, and the corresponding values for n are also regularly separated by 

0
Debyenotation

, just as in a harmonic oscillator.  

– Oscillators are energetically distributed according to Boltzmann statistics. This 
indicates that the probability that a particular mode will have an energy En is 
proportional to exp En

kT
. 

 
So, at thermal equilibrium, the average energy for a pulsation mode given by 

0 =  is written as: 

1 1
2 2

1
2

0

0

exp

exp

n n

n

n

n

kT

E

kT

 [10.12] 
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By making 
kT

x , we obtain: 

1 3

2 2

/2 3 /2

/2 3 /2

/2 2

/2

...

...

Ln 1 ...

1
Ln

1

1 1 1
Ln 1

2 2 exp / 1

x x

x x

x x x

x

x

x

e e
E

e e

d
e e e

dx

d
e

dx e

d
x e

dx kT

 [10.13] 

If T = 0K, then 1
20T K

E  and this is the energy of what are generally 

called the lattice zero vibrations. They are normally ignored when studying the 
thermal properties of crystals. In this approximation, we can therefore write from 
equation [10.13] that: 

exp / 1
E

kT
 [10.14] 

NOTE.– The vibrational modes where ,kT  with kT  0.026 eV at T = 300 K 
(i.e. acoustic modes with low energies and long wavelengths) have, according to 
equation [10.14], an average energy given by: 

acoustic .
1 1

kT

AE E kT  [10.15] 

 When these conditions are present, the mode is termed as being completely 
excited. If T is sufficiently high so that this can be spread to 3N modes, the internal 
vibrational energy of the crystal is equal to 3NkT. 

 



350     Solid-State Physics for Electronics 

 

10.2.6. Phonons 

10.2.6.1. Definition 

Charge carriers (electrons, holes) continuously interact with the lattice, and give 
or gain energy from it. These exchanges of energy operate through transitions in 
vibrational modes. As the energy of each vibrational mode is quantified, the 
exchanges can only be quantified between energy levels of the form 

1/ 2nE n . The transitions are in accordance with the selection rule n = 
1, and the carrier–lattice interactions occur through absorption or emission 

(generation) of  quanta of energy. 
 
By analogy with photons, these quanta are termed phonons and they too can lead 

a double life by exhibiting both wave and particulate natures. They are characterized 
by having: 

– energy pnE  

– quantity of movement K  

– zero mass, like a photon 

– and an absence of spin – such that the statistical form used to study them is that 
of Bose-Einstein (see equation [10.14] in which there is the Bose-Einstein 

occupation factor given as 1exp / 1kT ). 

10.2.6.2. Properties of phonons and the physical role of semiconductors 

Each normal pulsation ( ) contains n phonons of energy . This energy is, in 
reality, a pretty small amount. As we saw above, even when fully excited (in the 
acoustic mode), then kT  0.026 eV. However, the amount of movement can 

actually be quite high, as K can reach 
a

 which is of the order of the quantity of 

movement of electrons in the Brillouin zone.  
 

E 

r r0 

 

n = 0 
n = 2 

n = 1 
E0 

E3 n = 3 

Figure 10.7a. Levels in a harmonic oscillator 
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The electron-lattice vibration interaction can therefore be thought of as the 
interaction of two bodies, namely electrons and phonons with a conservation of 
energy and a quantity of movement.  

 

 
 
Given a phonon’s characteristics, a collision between an electron and a phonon 

can little change the energy of the electron but may greatly change its quantity of 
movement. This is the mechanism used in transitions between permitted bands in 
indirect gap semiconductors (from the extrema of valence and conduction bands 
obtained for wave vector different values, i.e. ki and kf as shown in Figure 10.7b). 
The variation in energy is assured by the photon that produces the vertical transition 
(i.e. without change in quantity of movement) and the phonon that gives the quantity 
of movement, as in i fk k  which makes an oblique transition possible. 

Numerically, the wave vector for the photon is given by ptk
3

2 10 nm
 

2 110 nm , while that of the phonon is better written as 
0.3 110 

a

a nm
pnK nm . 

10.2.7. Conclusion 

To resume, it is possible to represent, indifferently, the vibratory states of a 
crystal: 

– either as a sum of 3N vibrational modes of which the average energy for a 
pulsation mode (otherwise known as the angular frequency and denoted ) is given 
by 

exp / 1kT
E ; 

– or as a free “phonon gas” in which the quasi-particles exhibit their double 
character of wave or particle with a low energy and a high degree of movement. 

Figure 10.7b. Indirect (oblique) transition 
causing introduction of a phonon 

E 

k

phonon o

BC 

BV 

kf ki 

h  
photon 
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It is also possible to state that, in contrast to electrons, the number of phonons for 
a given energy state is not limited. There is a constant annihilation and creation of 
phonons in the lattice. The conservation of the number of phonons present is not 
obligatory. 

10.3. Polarons 

10.3.1. Introduction: definition and origin 

Simplistically put, we can think of electrons or holes moving in a crystal. Due to 
the charges they carry, they displace the ions, which are of opposite charge, in the 
lattice and can even create a polarization associated with the resulting deformation. 
This force for such a change is occasionally called a constraining field. The charged 
particle (electron or hole) and the associated deformation (by polarization) form the 
so-called polaron quasi-particle. As the charged particle moves in the crystal, it 
“pulls” on the deformation increases its effective mass and correlatively decrease its 
mobility (see section 8.1.3). 

 
The polaron can be thought of as an electron-lattice coupling, as it is the latter 

that provokes, in some senses at least, the localization of the charge into the 
deformation where it represents a reduced mobility with respect to a configuration 
where the deformation of the lattice would be inexistent or negligible. The latter 
case happens in covalent crystals as these are made up of neutral atoms which have 
weak interactions with the charges (electrons or holes). The effects are considerably 
greater in ionic crystals because of the strong Coulombic interaction between 
charges and ions.  

 
The pairing can also be thought of as an electron-phonon coupling, where it is 

the longitudinal phonons that stimulate deformations and with them propagate with 
the charges. This is a mechanism that would explain the transport of polarons. In the 
case of non-polar solids, the dominant interaction is with acoustic longitudinal 
polarons. However, in polar media, it is the optical longitudinal polarons that are 
strongly coupled with electrons. This is due to great variations in the active dipolar 
moments associated with atomic displacements in opposition to the phases induced 
by optical phonon modes (see also note 2 in section 10.2.3). 

10.3.2. The various polarons 

10.3.2.1. Dielectric polarons 

If we take an ionic crystal lattice, as shown in Figure 10.8a, and then place an 
electron on an ion, as detailed by the black point in Figure 10.8b, then we can see 
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that surrounding ions undergo a force due to the additional electron. This electron–
lattice interaction results in new positions for the ions, as shown in the same figure 
by dotted lines. This displacement of ions always results in a reduction of the energy 
of the electron, and also results in a potential well within which can be found the 
electron. If the well is deep enough then the electron will find itself in a tied state, 
incapable of moving to another site unless there is modification in the positions of 
neighboring ions. We can label the electron “self-trapped” and as such, it and its 
associated lattice deformation is termed a “polaron” The term originated from 
phenomena observed in polar materials; however, such quasi-particles can also 
occur in covalent materials. 

 

 

Figure 10.8. (a) Lattice of ions in relaxed state; (b) repositioning of ions in directions of 
arrows following placement of electron at E in the lattice; (c) and (d) polaron formation in 
covalent materials going from a regular arrangement of rare gas atoms in (c) to a deformed 
atomic lattice after a hole has been placed at D. 

10.3.2.2. Molecular polarons 

Molecular polarons form in covalent materials in which the resulting distortion is 
confined to neighboring atoms, which can subsequently form a chemical bond while 
the charge is trapped. A good example is of Vk centers in alkali metal-halogen 
crystals, in which a hole trapped on a Cl  ion results in attracting a neighboring Cl  
ion to yield a “molecular ion” of form Cl2 . Similar phenomena can occur in solid 
rare gases in which there is a trapped hole, as detailed in Figures 10.8c and d, and 
similarly in certain mineral glasses in which dangling bonds at a neutral site (D0) can 
result in a more favorable local rearrangement such that 2 D0  D+ + D- where D+ 

(a) 
 
 
 
 
 
 
 
 
 

 

 

 

 

(c) 
 
 
 
 
 
 
 
 
(d) 

D

E 
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and D- are the previously neutral dangling bonds (D0) that have, respectively, lost or 
gained an electronic charge.  

 
Section 10.3.4 will detail the origin of polarons in molecular crystals (using the 

Holstein model). 

10.3.2.3. Small and large polarons 

If the wavefunction associated with a self-trapped electron takes up a space equal 
to or smaller than the lattice constant, then the polaron is called a “small polaron” 
and the deformation is localized only in the neighborhood of the charge carrier. This 
type of quasi-particle is formed in covalent materials as they are essentially made up 
of neutral atoms which undergo only weak interactions with the charges (electrons 
or holes). The dielectric polaron can itself result in a small polaron when the 
distortion of the lattice is limited to the immediate neighborhood of the charge (as in 
Figure 10.8b). In the opposing case, then a large polaron, otherwise termed a 
“Fröhlich polaron”, can be formed in polar media in which Coulombic forces are 
involved that polarize the crystal over long distances (such as in metallic oxides). 
Small and large dielectric polarons are distinguished by a determination of the 
Fröhlich polaron coupling constant. 

10.3.3. Dielectric polarons 

 
Figure 10.9. Energy levels for an electron introduced in:  
(a) an isolated atom; (b) a solid wherein it delocalizes;  

and (c) in a polar lattice where is becomes localized 

If an electron is introduced into an unfilled orbital of a given atom in a solid, this 
electron can display one of two types of behavior, depending on the nature of the 
solid. They are: 

– either the electron delocalizes into the bands resulting from an overlap of the 
orbitals of the atoms in the solid, and the electron is stabilized in the solid due to a 

(a) introduction of an 
electron on an isolated 

atom 

(c) polarized lattice with 
the localization of the 

electron (polaronic state) 
(b) solid state, with 
delocalization in a 
band of width B 

B 
B/2 

Ei 
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decrease in its energy by an amount that is of the order of B/2, where B represents 
the width of the permitted band (as in Figure 10.9a);  

– or the electron will polarize the crystal, if the crystal will allow it, and there 
will be a displacement of neighboring atoms resulting in a deformation by 
polarization of the lattice. If it is assumed that the each electronic charge, denoted e, 
is spread around a spherical orbital with a radius r (associated with the assumed 
deformation of the lattice) then the energy of the charged sphere (assumed to be in 
equilibrium) can be written as 1 ²

2
e
CpE . Here, C is the capacitance of the sphere 

and is given by 04 rC r  where r is the relative permittivity. The change in the 
energy of the polarization by the charge in going from vacuum (localized on a single 
atom surrounded by a vacuum) to solid states, where the solid has a relative 
permittivity r, is given by: 

2 2

solid vacuum
0 0lattice

2

0

1 1
2 4 2 4

1         1
8

po
r

r

e e
E E E

r r r r

e
r r

 [10.16] 

If we assume that the lattice deformation is only produced by the ionic and 
electronic polarizations, then the permittivity can be limited to the ionic and 
electronic components, as in ion optr , where opt , the electronic component 

only appears in the optical domain (see section 3.4 of [MOL 07a]). r is the resulting 
permittivity which accounts for the establishment of the various polarizations (which 
a priori takes an infinite time) or zero frequency if r is static permittivity. 

 
The decrease in electronic polarization energy is thus given by substituting opt 

for r in [10.16], as in: 

0

² 11
8e

opt

e
E

r r
  [10.17] 
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With po e iE E E , the decrease in energy ( Ei) by the single ionic 

polarization is given by: 

0 0

0

² 1 ² 11 1
8 8

² 1 1      
8

i
r opt

opt r

e e
E

r r r r

e
r r

 [10.18] 

Returning to Figure 10.8, it is possible to see that if Ei > B/2, the localized state 
(polaronic) is more stable than that that the electron would use. This condition can 
be seen as a proviso for the formation of a polaron. In this polaronic state, where the 
electron is spread over a radius r, its kinetic energy resembles that which it would 
have were it in a potential sphere of radius r such that 

22 2 2 2

kin 2 2 2
2

2 * 2 *2 * 2

k h h
E

m r m rm
 

(the effective mass accounts for the fact that the electron is tied to the lattice and is 
therefore not free). 

 
The total energy of an electron localized in the sphere is thus the sum of this 

kinetic energy and the energy gained through lattice deformation (ionic 
polarization). By deriving the energy with respect to r, and by making it equal to 
zero, we can work out the value of r that gives a stable state:  

0

opt

8 ²
* ² 1/ 1/ r

h
r

m e
 [10.19] 

A small value of r is favored by a large effective mass and a strong ionic 
polarization (that makes [ r – opt] large). In this case, and especially when m* is 
large, with have a narrow band system with a low mobility. Finally, if r < a (the 
lattice repeat unit) it can be said that we have a small polaron, however, if r > a, then 
it is called a large polaron. 
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10.3.4. Polarons in molecular crystals 

10.3.4.1. Holstein’s model in equations 

Molecular crystals can be used to obtain a simple, generalized model for small 
polarons (as with Holstein’s model in “Studies of polaron motion: Part I. The 
molecular-crystal model”, Annals of Physics, 1959, 8, 325). Just one excess 
electronis placed in a regularly aligned, flexible lattice of molecules (mass M). With 
each molecule denoted g we associate a coordinate xg that represents the movement 
of the molecule under a harmonic vibration of pulsation 0 with frequency: 

M
k

2
1

0
  

Starting with a single molecular site and excluding coupling effects with 
surrounding molecules, (r) represents the potential energy of an oscillator and the 
vibrational force is given by )r( grad -  )r(F . When r0 is in an equilibrium position, 
such that xg = r = r – r0 represents the local deformation of a molecule, we have 
(see section 10.2.1),  

W(r) = W(r0) + 1

2
 kxg² ,  

where k is in accordance with the harmonic equation F(r) = M ²dt
x²d g =  kxg. The 

solution, xg = X cos 0t, necessitates the introduction of an actual pulsation 

0
k

  
M

, and finally we obtain (with k = M 2
0 ): 

W(r) = W(r0) + 2
1 M 2

g
2
0x  

Then 0 can be estimated for an elongation (xg) around about the same size as the 

lattice constant (a) because the vibrational energy given by 2
1 M ²a2

0  is of the same 

order as that of a bond energy (EL) in the molecule and EL  1 eV. With a  1 Å and M 

= 
N

310  (hydrogen atom mass 10-3 kg), we have 2
0

22
23

3
 )10( 

10x02.6
10.

2
1

= 1.6 × 

10-19 J and thus 0  1014 rad s-1. If a = 1 nm though, we now have 0 1013 rad s-1 and 
therefore, for heavier atoms, the frequencies are even lower.  
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On taking into account the coupling between the vibrational movement of a 
molecule and that of its neighbors, resulting in the transfer of vibrational energy 
throughout the lattice, we have to bring the phenomenon of frequency dispersion 
into play:  = f(k). The Hamiltonian corresponding to the molecular crystal, without 
free charges, is written: 

2 2
0 g

L 0 b g g h2
g hg

M x² ²
H      M x x }

2M 2x
 

where h is the nearest neighbor, M is the reduced mass and 6 b is the size of the 
band of the optical phonons. 

 
When an additional excess electron is introduced into the lattice, the electron-

lattice interactions can be accounted for by considering the excess carrier energy at a 
site in the lattice. We accept that the energy is a linear function of movement within 
the lattice, and the greater the induced movement then the greater the absolute value 
of the electron-lattice energy and the more easily the charge is self-trapped. This 
trapping is actually greater than any coupling. 

 

For a carrier localized on a site g, we can write 
g'

g'0g  xg) - f(g' - E  E , in which 

f(g'  g) is a weighting factor which carries electron-lattice interactions. Assuming 
interactions are over short distances, f(g'  g) = A g' g, and the above equation 
changes to Eg = E0  A xg, where E0 is the energy of a non-distorted site, Eg is E0 = 
0 plus a constant and A represents the electron-site coupling force, as in 

E grad -  0 - x
E - E

 -  A
g

0g . In general, we write Eg = E(xg) =  Axg. 

 
Thus in the scenario we are considering, molecular deformations induced by the 

charge carrier are mostly localized around the carrier itself, and it is the presence of 
vibrational coupling between neighboring molecules that distribute distortion effects 
beyond the occupied site. Figure 10.10, otherwise known as an Emin representation, 
presents a scheme of the distance from equilibrium of diatomic molecules – 
represented by vertical lines – in a linear molecular crystal about a site with an 
electron (black dot). 

 
The complete resolution of this problem will require the use of Hamiltonian 

operators (He) for strongly bonded electrons in a crystal of covalently bonded 
molecules, which will add a Hamiltonian for vibrational energies (HL). 
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Figure 10.10. Scheme of equilibrium separation distances for diatomic molecules  
in a linear chain, in which an electron (black dot) is placed at the center of a molecule 

10.3.4.2. Limiting case of a single molecular site: polarons and bipolarons 

10.3.4.2.1. One electron 

In this limited example, we will place one excess electron on a single site, the 
molecule of which undergoes a deformation x. The potential energy of the site can 
be expressed as: 

E = M 2
0

² 
2
x  + (E0 – A x) = B x²  A x where E0 = 0 and B = 1

2
M 2

0  

  
 
 

 
 

E is optimized for a value x = x0 such that: 

0x x

E
x

 0, so that M 2
0 x0 – A = 2x0 B – A = 0  x0 = 2

0

A A
  

2BM
 

Following a deformation (x0) of the lattice through vibration and electron-lattice 
interactions, the energy of electron-lattice interactions is accordingly reduced by Ax0 
( Ax0 written algebraically). Nevertheless, the system undergoes a distortion 
associated with a vibrational energy equal to B x0

2 which is such that: 

 

Vibrational 
energy of 
molecular 
site 

Energy of electron- 
lattice interaction  
(electron-vibration  
coupling) 

Energy when 
there is no 
distortion 
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B x0
2 = B 0 

2
A

x
B

=
1
2

Ax0. 

Thus the energy of the system is decreased by Ep, where: 

Ep = B x0
2 – A x0 = – 

1
2

Ax0 = – 
A
4B

= – 2
0

A²

2M  

The various energies are shown in Figure 10.11. 
 

 

Figure 10.11. Different energy terms with respect  
to lattice deformation by an excess electron 
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Just as in polarized media, the formation of a polaron is favored by the distortion 
energy being less (in absolute terms exactly one half) than the energy recovered 
from the reduction in the electron–lattice interaction energy. 

10.3.4.2.2. Two electrons: the bipolaron 

It is possible to simply adapt the single site model to a situation where there are 
two electrons localized on a deformed molecule. The energy is now  

E = M 2
0

x²
 

2
 – 2A x + U = B x² – (2A + C) x + U0 

 

On replacing A in the preceding section with 2A + C, the minimum E is now 
given by  

1 2
0

2A  C
x x

M
 and EBP = 

2

02
0

2A  C
  U

2M
 

Two electrons localized on a single deformation is called a bipolaron and it is 
stable if the energy required for its formation is less than twice the energy of two 
isolated polarons, i.e. when 

2

02
0

2A  C
   U

2M
 < 2

0

A²

M
 

The above relationship can be true when A and C are of the same sign and when 
U0 is not too high. The deformation x1 imposed by the two particles (here two 
electrons, but it could also be holes) can be advantageous in overcoming moderate 
Coulombic repulsions. 

10.3.5. Energy spectrum of the small polaron in molecular solids 

As we have just seen, an electron that distorts the molecule onto which it is 
placed reduces its energy –Ax0 = 2Ep. The vibrational energy of the deformed 

Coulombic repulsion due to 2 electrons on 
the same site.  We can suppose that U 

varies following U = U0 – Cx, in which U0 
is the repulsion at zero deformation. 

virbrational 
energy 

electron lattice 
coupling energy 
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molecule increases by B x0
2 = |Ep|, and results in an overall reduction in energy for 

the system (equal to Ep) with respect to the energy of an electron in a rigid crystal of 
molecules where xg = 0. 

 
Within the limits of the preceding calculation, in which we have ignored 

vibrational dispersions due to coupling with non-existing neighboring molecules, it 
is possible to state that: 

p 2
0

A²
E    

2M
  

(see Figure 10.12). 
 
 

  

Figure 10.12. Energy scheme for the small polaron 

If a small polaron (charge carrier and associated lattice deformation combined) 
can be equally situated at any other of the geometrical equivalents in a crystal, then 
we find that the actual states of the system are shared in a polaronic band as shown 
in Figure 10.12. Using a modified method of that used for strong bond 
approximations (equation [10.2] and the following equations from Chapter 8), we 
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can consider that the proper states of a small polaron in a cubic crystal display an 
energy in the form: 

Ek = – 2 J exp (– S) [cos kx a + cos ky a + cos kz a] – Ep  

where: 

– 2 2 2
x y zk k   k   k  is the polaron wave vector, and a the lattice constant;  

– J is the resonance integral between two “electronically coupled” neighbors and 
is in the form exp(– R) to account for the exponential form of the electron 
wavefunctions; and 

– exp(–S) is an overlap factor associated with chain vibrations. It represents the 
superposition integral between two wavefunctions, which detail the vibrational state 
of the system when the charge carrier is on one or another of two adjacent sites in a 
crystal. In the limiting case of a rigid lattice, the vibrational wavefunction remains 
unchanged during charge transfer from one site to its neighbor, and the overlap 
factor is equal to 1. However, here where we are looking at a distortable lattice, then 
exp(–S) can be considered to relate the necessary overlapping of atomic sites 
between which the required tunnel effect can occur to allow a complete 
displacement of atomic site and charge and is accounted for by J. 

 
In fact, the transfer of a polaron requires two tunneling effects. One is associated 

with moving a charge between two neighboring sites (electron resonance integral), 
while the other is the movement of the deformation and any sites geometrically tied 
to the deformation. Exp(–S) is a factor of the same order as the atomic tunnelling 
effect as it assimilates atomic site transfers. As it is associated with the high mass of 
atoms, relative to the charge carriers, its value is extremely low. For a cubic crystal, 
the polaronic band size is Ek = 12 J exp (–S) and is extremely narrow, of a width 

typically below that of vibrational energies, which are at least kT  10-4 eV at 
temperatures not too close to zero. 

 
NOTE.– The displaced deformation is equivalent to an “exchange” in position for two 
neighboring sites as demonstrated in Figure 10.13. Evidently, it is not two actual 
atoms which change place but their position relative to the deformation propagated 
with a charge.  
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Figure 10.13. “Permutation” of two neighboring sites on propagation and vibration  
(and with the polaron!) where i denotes the initial state and i’ the final 

10.4. Excitons 

10.4.1. Physical origin 

In simple terms, just as an electron and a positively charged default are tied by 
an electrostatic force in a solid, an electron and a hole generated by an excitation can 
be attracted to form a tied state – or quasi-particle – termed an exciton. Depending 
on the nature of the solid, the excited state of electron and hole pair can be localized 
on one or more molecules. The former is called a Frenkel exciton, and is detailed in 
Figure 10.14a. For an electron and hole separated over several molecules, the result 
is called a Wannier exciton (Figure 10.14b). The intermediate between these two is 
the charge transfer exciton, where electron and hole are on adjacent molecules, as 
shown in Figure 10.14c. 
 
 
 
 
 
 
 
 
 
 

Figure 10.14. Various excitons: (a) Frenkel; (b) Wannier; and (c) charge transfer exciton 
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10.4.2. Wannier and charge transfer excitons 

In solids such as semiconductors that have large permitted bands (B), electrons 
and holes exhibit high mobilities (μ) with μ being proportional to B (as detailed in 
band theory for covalent solids). Holes and electrons can easily separate, meaning 
low interaction energies. 

 
Given that an electron and hole pair, with energy levels schematically illustrated 

in Figure 10.16a are: 

– buried within a continuous medium with permittivity given as  = 0 r where r 
is relatively high for a reasonably well conducting medium (quite high mobility); 
and 

– trace an orbit around one another in the material; thus this pair can be 
compared to the hydrogen atom where the nucleus is represented by the hole. The 
exciton is generally termed a Wannier exciton. With the energy levels quantified, 
and located with respect to the width of the gap of the material (EG) (see 
Figure 10.15), they are given by: 

* 4
ex

Gn G 2 2 2 2
0 r

m  e 1
E E

32 ² n  

where *
exm  is the reduced effective mass of the electron-hole system and defined by 

the expression * 1
exm  = * 1

em + mt
*-1 where *

em  and mt
* are, respectively, the 

effective masses of the electron and the hole. 
 
The dissociation of the exciton can be thought of as n   and places the 

electron and hole into free states with the electron in the conduction band. Their 
interaction energy is equal to zero but they are separated by an energy given by EG = 
EG . If the excitonic state corresponds to a given level denoted n, the electron and 
the hole are thus tied by a bonding energy Ebn such that  

* 4
ex

bn G Gn 2 2 2 2
0 r

m  e 1
E E E

32 ² n
  

In other words, this energy is what would be required to separate the electron and 
the hole from their bands where they are free (and such that n  , Ebn  0).  
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With the energy of separation for an electron–hole pair in an exciton being given 
as EGn, the lowest frequency absorption corresponds to the energy transition EG1 
rather than Eb1 (bonding energy). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.15. The EGn energy level of an exciton with respect o the bonding energy level Ebn 

The radius of the exciton (rn) can be evaluated using the electron–hole distance 
for a system based on hydrogen and is therefore written as rn = n² (4 0 rh²/m*e²). 
The distance r1 (n = 1) is the shortest as we have the lowest energy level for a 
Wannier exciton and thus the most bonded exciton state (like an 1 s-orbital). From 
the expressions for En and rn, we can see that bonding strength is essentially 
dependent on two parameters: 

– the dielectric permittivity of the medium: the larger it is, the weaker the 
electron–hole attraction; and 

– the reduced effective mass *( )exm  for electron-hole pairs: the smaller it is, the 
greater the electron–hole distance (and by consequence the harder it is to retain the 
exciton). 

 
Thus, for semiconductors which exhibit a large permitted band, high 

permittivities and charge mobilities μ (with a low effective mass m* as, classically, 
μ = q /m*), only low bond energies appear (Wannier excitons). For semiconductors 
with an indirect gap, excitations of the lowest energy are forbidden as they require 
phonon intervention. For example, Wannier excitons have only been observed in 
semiconductors such as GaAs that have a direct gap. 

 
Wannier excitons are theoretically possible for polymers. The bonding energy of 

the exciton is of the order of 0.4 eV and exhibits an ellipsoid geometry. These values 
are representative of molecular excitons with a high degree of localization on a 
chain under strong electron–lattice interactions (and electronic and vibrational state 

 

 

EG 

exciton bonding 
energy Ebn  

EG

O

energy

BV 

BC 

  EG1             EGn
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coupling). Polymers with a wide gap (insulators) must, nevertheless, present a 
weaker intra-chain delocalization and inter-chain interactions can be greater. In 
effect, charge transfer excitons (intermediate to Wannier and Frenkel excitons) are 
possible. The optimization of inter-chain contacts can result in excitons termed 
excimers (excitons shared over several identical molecular units) or exciplexes 
(excitons shared over two or more different molecular units). 

Figure 10.16. Representations of excited states: (a) in a classic 
 band scheme for semiconductors with a Wannier exciton; and  

(b) in a molecular state with discrete levels for a Frenkel exciton 

10.4.3. Frenkel excitons 

In molecular crystals, the covalent bonds between atoms that make up the 
molecule are much stronger than intermolecular van der Waals bonds. Transitions 
between electronic levels of a practically isolated molecule in a dilute state and one 
in a condensed, solid state are only slightly changed in terms of frequency. Frenkel 
excitons are generally used to explain luminescence phenomena in molecular 
crystals through an excited state on a strongly bonded host molecule. The 
corresponding energy scheme is shown in Figure 10.16b. 

 
Frenkel excitons are thus in a strong bond approximation with the excitation 

localized on the same molecule or on an adjacent neighbor. They have been 
observed during – * transitions in aromatic molecules such as anthracene. Another 
example is that of excitations in ligand fields of d electrons, such as for nickel oxide.  

 
While the particles that make up the electron-hole pair are bonded to one another 

on the same lattice site, together they constitute a quasi-particle which can move 
through the crystal by transferring energy to neighboring sites. This representation 
of energy migration is confirmed by the fact that in crystals which contain 
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impurities, the excitations are trapped. It is in this manner that anthracene (which 
fluoresces on optical excitation), once doped with several parts per million of 
tetracene, sees its own fluorescence decrease and that of tetracene appear. This 
effect demonstrates that tetracene efficiently traps excitons, which can move across 
relatively large distances without relaxing. Given the relatively low concentrations 
of impurities, the distance covered can be of the order of a hundred molecules or 
more. 

 
The movement of excitons can be due to overlapping of orbitals between 

adjacent sites. However, it should be noted that during the permitted – * 
transitions, it is the electrostatic interaction tied to the dipolar momentum which 
gives rise to the greatest coupling energy between fundamental and excited states. 
This term is expressed in the form μij

2/R3 in which μij is the dipolar momentum for 
the transition between fundamental (i) and excited (j) states. 

For adjacent molecules of different types, the excitation energy transfer 
mechanisms with long (dipolar interactions) and short (orbital overlapping) action 
radii will be detailed, along with Förster and Dexter transfers. These transfers help 
explain the interest in the use of optical doping of fluorescent molecules especially 
for organic LEDs and can also help get round selection rules to increase LED 
yields. 

10.5. Plasmons 

10.5.1. Basic definition 

A plasma is a medium in which the concentrations of positive and negative 
charges are equal and at least one of the charges is mobile. In a solid, the negative 
conduction charges (electrons) have a concentration equal to that of the positive 
ions. 

10.5.2. Dielectric response of an electronic gas: optical plasma 

10.5.2.1. Dielectric function 

To a first approximation, a solid contains a fixed number n of ions per unit 
volume with n free electrons that are placed in a vacuum. A good example of such 
a material could be an alkaline metal. The dielectric response of the electron gas to 
an electric field that is such that 00 e j t kzj t

x xE E e e E e  is obtained by 
working out the integration of the fundamental dynamic equation. We can assume 
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that the electrons are not subject to recall or frictional forces. The equation, with 
respect to Ox is written as: 

²
²

d xm eE
dt

 

From this equation, looking for forced solutions of the form 0
j tx x e  gives us  

²
eE

x
m

 

The movement over a distance x by a charge (denoted -e) generates a moment 
dipole given by p ex , and the polarization (the dipole moment per unit volume) 
is therefore P = np. This means that 

²
²

neP E
m

 

The dielectric function is such that 0 0() ( ) ( ) ( ) ( ),rD E E P  so 

0 0

²1 1
²r

P ne
E m

 

With the plasma frequency being defined by ²

0
2 ne

mp , the dielectric function 

can be written as: 

2
1

²
p

r  

10.5.2.2. Optical plasma 

The equation, ² ² ² rk c , for the dispersion of electromagnetic waves 
shows that there are two differing regions (see Figure 10.17). If: 

–  > p, r( ) > 0 and the wave number (k) is real, then the wave 

0 e j t kzE E  is progressive and the dispersion is given by 2 ² ²c kp . 
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–  < p, r( ) < 0 and k is imaginary, as in k = jk ''  then the wave E  
''

0 0e j t kz k z j tE E e e  is evanescent, i.e. it has no propagation term but just 
terms for oscillation and attenuation at the surface. 

 

Figure 10.17. High band filtering characteristics of a plasma 

In effect, the plasma behaves much as a high-band filter. As  > p corresponds 
to  < p, waves of lengths less than p can pass through the medium with '' = 0k , 
that is, without attenuation (without absorption). Alkaline metals where p  300 nm 
should therefore be transparent to wavelengths less than 300 nm, i.e. ultra-violet 
light. 

 

 
Figure 10.18. Plasma dispersion curve 
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For 2 ² ²p c k , the transverse wave dispersion curve is shown in 

Figure 10.18. The group velocity, = d
dkgv , is the dispersion curve slope and is less 

than the slope of the curve  = ck , and hence lower than c. 

10.5.2.3. Longitudinal optical modes in a plasma 

The function ( ) is equal to zero at a frequency denoted L, so when  

2
1 0

²L

L

p
r , 

then also L p . A solution can arise for a longitudinal wave moving along x 

(with a wave vector k ). For more details see a course of electromagnetism, also 
section 2.6.2, problem 6. 

 
Therefore there is a mode of longitudinal oscillation for a gas of electrons in a 

plasma. The angular frequency (or pulsation) L of these oscillations is in fact equal 
to the plasma pulsation p which in turn corresponds to the cutting frequency of the 
transverse electromagnetic waves. 

 

 
 
Physically speaking, we can expect that a longitudinal oscillation of a plasma 

through an elongation given by u will displace, for example, the electron gas 
upwards. The result of this negative charge in a section of width u is the formation 
of a layer with a surface charge given by  = –neu (the charge found in 
a parallelepiped with a unit surface and a height u tending to zero). Similarly, at the 
bottom there is a surface layer with a charge  = +neu. A field neu

0
E  is generated 

inside the layer, which tends to push the electrons back to their equilibrium position. 

Figure 10.19. Sections of a plasma placed in  
longitudinal oscillations with elongations denoted by u 

 ++++++++++++++++++++
++++++++++++++++++++
++++++++++++++++++++

u 

0

neu
E  
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The field makes a recall force which is such that the dynamic fundamental equation 
relative to a unit volume of plasma can be written as: 

0

² ² ²
²

d u n e u
nm neE

dt
 

so that with 2

0

²
p

ne
m

 we have: 

2² 0.
² p

d u u
dt

 

This is the equation for a harmonic oscillator with an angular frequency p , 
otherwise called the plasma frequency. The same value of p is found via an 
alternate route in section 10.5.2.1. 

10.5.3. Plasmons 

10.5.3.1. Definition and generation 

From what we have just seen, a plasma oscillation is a collective longitudinal 
oscillation of a conducting electron gas. By definition, the quantum energy p  of 

this collective plasma oscillation is called a plasmon, and ²

0

1/2
.ne

mp  

 

 
 

 

incident 
electrons

diffused electron 
(1 plasmon formed)

diffused electron 
(2 plasmons formed)

Figure 10.20. Generation of plasmons by electron diffusion 
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The pulsation, p, is of the order of 1016 rad s-1, and the energy of a plasmon in 
a wide range of solids can vary from around 3 to 30 eV. Simple thermal excitation 
of plasma oscillations is therefore impossible (kT  0.026 eV for T = 300 K). To 
excite plasmons it is necessary to, for example, have a flux of electrons penetrate the 
lattice. On moving to the interior of the crystal, each electron can excite several 
successive plasmons. Each plasmon is symbolized by .     

10.5.3.2. Some properties 

The high energies of plasmons can be explained by their oscillations being the 
result of a high number of electrons. The excitation of plasmons can be obtained 
either by making electrons (or ions or photons) traverse or reflect the film under 
study. 

 
In a dielectric, it is also possible to excite collective plasma oscillations. Here it 

is the valence electron cloud that as a whole oscillates with respect to the positive 
ions. 

 
In semiconductors, two plasma oscillation modes can arise. One is at high 

frequencies and involves all the valence electrons in an oscillation. The other, a low 
frequency oscillation, is associated with the electrons in the conduction band where 

the plasma pulsation given by ²
*0

1/2
' ne

mr
p  is such that '

p  (  0.01 eV) is 

small. 
 
At the interface between a metal and a dielectric (for example in the case of a 

metal oxide layer on a metal) the surface plasmons can be excited and propagate 
with an energy that is less than those in the bulk. The study of surface plasmons 
makes it possible to gain information on the permittivity and thickness of the surface 
insulating layer. 

10.6. Problems 

10.6.1. Problem 1: enumeration of vibration modes (phonon modes) 

This problem is based on a volume V of sides Lx, Ly and Lz belonging to a simple 
cubic system. It encloses N cubic elementary cells of sides a:  

1) Determine the number of the vibrational modes. 

2) Calculate the density of the vibration modes for each type of polarization by 
using the Debye approximation where  = vs|K|. 
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Answers 

1) For the cubic crystal (of sides Lx, Ly, Lz), the periodic limiting conditions 

applied to the three components of the vector K  gives x y zi K x K y K ze  
x y zi K x L K y L K z Le  and hence the values 2

Lxx xK n , 2
Lyy yK n , 

2
Lzz zK n . The extremities of the K wave vectors are found at the nodes of an 

orthorhombic lattice based on 2 /Lx, 2 /Ly, 2 /Lz. There are three nodes associated 
with each node (1L + 2T), and these three nodes give the elemental cell with a 

volume given by 
32 2 2 8

L L L Vx y z
. The number (N3m) of these cells (associated with 

three nodes) that can be placed in the first Brillouin zone with a volume of 2 3

a
 in 

a cubic lattice is thus given by 
3 32 8

3 ,V
a V a

N  where N is the number of cells 

in the direct lattice, and hence also the number of atoms in the lattice (if on average 
there is one atom per crystal cubic cell). Definitely, we have N3m = N, and as N3m is 
the number of cell associated with three modes, then the total number of modes is 
3N. 

2) For a given polarization, we have a mode (with a given value of |K|) 

associated with a cell of volume 
32 2 2 8

L L L Vx y z
. with a unit of reciprocal space, 

there is therefore associated 1
3 38 / 8

V

V
modes/polarization. 

 
In addition, the mode density D(K) (where each is associated with a K value) 

must be such that D(K)dK represents the number of modes characterized by a value 
of K between K and K+dK. These K values must therefore be found between the 
spheres of radius K and K + dK, i.e. within a volume 4 K²dK.  

 

In this volume can be placed 4 ² ²
3 2 ²8 /

1K dK K dK

V

V
cells for each mode (for a certain 

polarization). We can set V = 1 so as to calculate the density. From this we find 
²

2 ²
( ) KD K .  

 



The Principal of Quasi-Particles     375 

As we should have D( )d  = D(K)dK, we deduce that D( ) = D(K) dK
d

, so that 

with the Debye approximation where  = vs|K| (and 1dK
d vs

) we find 

( )D ²
32 ²vs

 for the mode density for each type of polarization. 

10.6.2. Problem 2: polaritons 

In a 3D crystal there is a chain of ions separated by a distance denoted a. There 
are two types of ions; the positive and negative charges are alternatively placed. Ions 
with a charge +e and mass m are situated at z = 2na, while ions with the charge e 
and mass M are placed at z = (2n  1)a. Make a diagram of this. 

 
The system is subjected to a transverse sinusoidal electric field xE Ox  which 

propagates along Oz. The equation for its form is xE  0 expE j t kz , where 

the angular frequency is in the infra-red (IR) range, i.e.   1013 rd s-1. 

1) Show that the IR wavelength is very large with respect to a (  0.3 nm), and 
this makes it possible to neglect the propagation term in the expression for the IR 
wave. Write the new, approximate form of the equation, which will then be used in 
the following questions. 

2) Taking only interactions between nearest neighboring ions, give the 
expression for the spread (A–B) in the distances between the two types of ions A and 
B. The result should be expressed as a function of the masses of the ions, their 

charges and angular frequencies ( ) and 2
μT , where  is the coupling 

constant between ions and μ is their reduced mass. 

3) Give the general equation for the dipole moment with respect to x for a system 
based on two ions and their nearest neighbors. From this deduce the model for the 
ionic polarization vector in a solid containing N pairs of ions (of the type studied) 
per unit volume.  

4) 

a) Establish the expressions for the dielectric permittivity [  ( )] as a function 
of N, μ, , T, and .  

b) Introduce the parameter ²2 Ne
μp  into the equation for ( ) and from this 

deduce the (Born) equation for the static permittivity [ (0)] which is such that (0) = 
s by notation. Finally, express ( ) as a function of s, , T, and . 
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5) Make 2 2 s
L T (in the Lyddane-Sachs-Teller equation). Express ( ) as a 

function of , T, L, and . From it deduce the physical significance of L, and 
then the domain of the angular frequency (otherwise called pulsation) for which the 
electric waves are reflected by the crystal.  

6) Plot the curve ( ) = f( ). Study, in particular, the pole and the zero points of 
the dielectric function ( ). Show how the pulsation ( L) corresponds to a 
longitudinal mode wave. Detail the consequence of this.  

7) Show that in an ionic crystal where both phonons (vibrational movements) 
and plane transverse electromagnetic waves in the IR region that the dispersion 
equation can be written as 4 2 2 2² ² ² ² 0r rs T Tk c k c . Note that the 

IR wave is in the domain of the proper pulsation ( T = 2
μ

) of transverse optical 

phonons, and the index r of the permittivities designates that they are relative 
dielectric permittivities. 

8) The quantum of fields coupled with photons (transverse electromagnetic 
waves, xE  0 expE j t kz ) and of transverse phonons is called a polariton. 

Show graphically the dispersion curves for these fields that are initially uncoupled 
and then coupled. 

Answers 

1) 

 

 

 

 

 

We have 2c c , so with   1013 rd s-1, we find that   200 μm. With a  

0.3 nm it is possible to state that  >> a. The wave remains practically constant over 
a large part of the z length of the chain – and makes it possible to neglect the term 
for the propagation. The form of the wave can thus be reduced, by neglecting the 
propagation term, to 0 exp .xE E j t  Mathematically speaking, we can also say 
that as k = 2 /  is very small especially when  is becomes very large with respect 

+           + + + + 
z 

k

Ex 

M, 2n - 1 

m, 2n 
x 
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to z, the product kz tends towards zero, and therefore the term 
exp( ) exp 0 1jkz  and Ex is reduced to: 

0 0exp exp( ) expxE E j t jkz E j t  

2) The movement equations are forced by the electric field to give:  

– for atoms of mass m, we have 

2
2

2 1 2 1 2 02 2 j tn
n n n

d u
m u u u eE e

dt
 

– and for atoms of mass M, then 

2
2 1

2 2 2 2 12 2 j tn
n n n

d u
M u u u eEe

dt
 

The search for forced solutions written as 2
j t

nu Ae  and 2 1
j t

nu Be , 
substituted in to the preceding equations gives: 

– 0² 2m A B A eE  

– 0² 2M B A B eE  
 
By dividing the first equation by m and the second by M, then subtracting term 

by term, we find that by making 1 1 1
μ m M

 and 22
μT

 
(frequency of the branch 

of optical phonons when K  0) that: 

0
2 2
T

eE
A B

μ
 [10.20] 

The equation that is thus obtained shows that there is a resonance frequency 
attained when  = T (between the excitation of the pulsation wave  and the 
optical phonons when K  0). 
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3) The negative and positive charged ions are therefore displaced in the opposite 
sense to the electric field and generate a dipole moment of an amplitude |me| = e(A – 
B). By definition, the polarization is the dipole moment per unit volume. If N 
represents the number of ion pairs (and hence dipoles) per unit volume, then the 
modulus of the ionic polarizability (associated with the displacement of only the 
ions) is Pion = N me (A – B), so that: 

ion 02
²

²T

NeP E
μ

 [10.21] 

4) 

a) In general terms, 0 .P E  The polarization P( ) of a given pulsation 
 can be composed of two terms: 

– one for the polarization which establishes itself instantaneously and is 
associated with the electronic polarization (where the electrons can instantaneously 
follow and applied field) and takes on a frequency  = [1/(t 0)] =  : 

0P E ; 

– and another (Pion) here associated with a slower ionic polarization that that 
above. 

 
We therefore have: 

0 0

ion 0 0 02
²

²T

P E

Ne
P P E E

μ
 

b) With ²2 Ne
μp , and ²

0
2 Ne

μp  where p is the plasma pulsation, we have: 

2

2 2
²( )

² ²
p

T T

Ne

μ
 [10.22] 
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From equation [10.22] it is possible to deduce the Born equation, as in: 

2notation

2(0) p
s

T
 [10.23] 

The result is 2 2
p s T . Taking the last equation and placing it into 

equation [10.22], we have: 

2

2
( )

²
T

s
T

 [10.24] 

5) Here we make: 

2 2 s
L T  [10.25] 

In passing, we can write equation [10.25] in another form, i.e.: 

2

2
T

s L
 [10.26] 

and it is this that makes up the so-called Lyddane-Sachs-Teller equation and in 
which we can determine the physical significance of L. 

 
To make equation [10.25] appear in [10.24] we can write: 

2 2

2 22 2

2 2 2 2

2 2

( ) 1 T T
s

TT

T T T s

T
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So that with equation [10.25]: 

2 2

2 2
L

T
 [10.27] 

And then we see straight away that 0
L

.  

 
As s >  , then according to equation [10.25] L > T. The result is that when 

T <  < L, we have ( ) < 0. In this case, the relation for the dispersion of 
transverse electromagnetic waves: 

0

² ² ( )² ( )
² ²rk

c c
, 

shows that when ( ) < 0, k² < 0, then ''k ik  must be true and contains a pure 
imaginary number. The wave thus becomes: 

0 exp[ '' ]exp[ ]xE E k r j t  

and is retarded (evanescent) in the material and no longer propagates. This 
corresponds to a forbidden band for pulsation waves between T and L. 

6) Especially when using equation [10.27] we can see that the limiting values are 
as follows:  

– when  = 0, we have ( ) = s; 

– when   , ( )  ; 

– when   T , ( )  + ; 

– when   T
+, ( )   ; 

– when  = L, ( ) = ( L) = 0. 
 
From this it is possible to deduce the curve shown in the figure on the next page. 
 
The highest point for the dielectric function is at T (resonance frequency 

between the IR wave and the transverse optical phonons). The zero point for this 
dielectric function is obtained when  = L.  
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In general terms, the Gauss equation, div ( )div 0D E , has in fact two solutions: 

– either div 0E  (and hence  ( )  0, which happens when   L), from 
which we deduce that . 0ik E . We therefore have E k  which corresponds to a 
transverse wave structure; 

– or ( ) = 0, which is the precise result when  = L. In this case, the Gauss 
equation is true without the wave necessarily being transverse (as div 0E  no 
longer has to be true). We can now go on to look for the form of the wave.  

 
Here, as usual, we have: 

div 0 . 0B ik B  
                      0B  

0 0rot 0 0
LE

B μ j μ E ik B
t

 

The wave can therefore only be purely electrical. The Maxwell-Faraday equation 
makes it possible to state that rot 0,B

t
E  so that in addition, rotE j B 0.  With 

0,B  we have rot 0,E  and 0,jk E  and hence .E k  This means that E  is 
directed along k  and the wave has a longitudinal structure. Finally the pulsation 
denoted L appears either as the upper limit for the forbidden band, either as the 
pulsation with which is associated a longitudinal phonon. 

s 

 

T L  

( ) 

0 

forbidden 
band
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7) Taking the equation for the wave dispersion, ² ² ( )
² ² 0

² ( )
c crk , the 

expression given in [10.27] can be written dividing through the members with 0, as 

in 
2 2

2 2
L

T
r r . We obtain: 2 2² ² ² ² ² ² ²T r Lk c k c , such that 

4 2 2 2² ² ² ² 0r r L Tk c k c . Using the Lyddane-Sachs-Teller 

equation, i.e. 2 2
r L rs T , we find: 

4 2 2 2² ² ² ² 0r rs T Tk c k c   [10.28] 

8) The solutions for equation [10.28] are in the form: 

22 2 2 21
² ² ² ² 4 ² ²

2
rs T rs T r T

r

k c k c k c  [10.29] 

In addition, the dispersion relation ²
²

² ( )
c rk  associated with equation 

[10.27] written in the form 
2 2

2 2
L

T
r r , shows that: 

– when k  0, there are two possible solutions: 

- either   0, which corresponds to the smallest obligatory solution for 
equation [10.29], as can also be directly verified by placing k  0 in to the equation 
for , 

- r( )  0, which can be obtained when   L. This is also in accordance 
with the LST equation in which

 

2 2s
L T . This solution corresponds to the 

solution + as can be directly verified in equation [10.29] when placing k  0 in +; 

– when k  , there are two further solutions: 

- either 
c

 and rc
k  and hence the solution for +. The 

introduction into equation [10.29] for k  , such that k²c² >> 2
rs T , where 

k²c² >> 2
r T  and goes towards a solution for + as 

r

ck , 



The Principal of Quasi-Particles     383 

- or 
2 2

2 2
L

T
r r  , which is obtained when   T, and 

corresponds for the solution for  in equation [10.29]. 
 

The  = f(k) plot shows two sets of curves associated with the transverse waves 
(set T) for two solutions + and . These are the coupled modes for photons and 
transverse optical photons in an ionic crystal containing the polaritons.  

 

 
 

As shown in the figure above, these two solutions are separated by a forbidden 
zone (or band) with respect to the propagation of the electromagnetic waves: 

 the value  = L corresponds to a longitudinal wave (L) and is the vibration of 
longitudinal optical phonons;  

 the value  = T is for a transverse wave (T) and is the vibration of transverse 
optical phonons. 

 
The dotted line represents the (straight) dispersion curve for single photons in a 

crystal (uncoupled with the lattice vibrations). 
 
This coupling effect, that modifies the resonance frequencies (for photons with 

angular frequencies  with phonons with angular frequencies denoted T and L), 
the propagation property of the electromagnetic wave is therefore reflected when  
is such that T <  < L. 

 
In this zone, the electromagnetic wave vector is purely complex. This can be 

considered as a breaking of the wave in the neighborhood of the surface of the solid. 
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