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Preface to the Second Edition

Solid state electronic devices are devices that are built entirely from solid materials
and in which electrons, or other charge carriers, are confined entirely within the solid
material. Prior to the use of solid state devices, most electronic devices used vacuum
tubes, in which electricity passed through various elements inside a heated vacuum
tube. In many applications, solid state devices have replaced vacuum tubes since they
last longer and are smaller, cheaper, and more efficient and reliable.

While solid state devices can be built from crystalline, polycrystalline, and
amorphous solids, the building material is most often a crystalline semiconductor.
Common solid state devices include transistors, microprocessor chips, and dynamic
random access memory (DRAM) chips. The first solid state device was the ‘cat’s
whisker’ detector which was first used in 1930s as radio receivers. The transistor,
invented in 1947 by Bell Labs and named an IEEE Milestone in 2009, was the first
solid state device to come into commercial use in the 1960s. More recently, the
integrated circuit (IC), the light-emitting diode (LED), and the liquid crystal display
(LCD) have evolved as further examples of solid state devices.

The semiconductor industry is seeing steady change, based on continued
technological innovations and the requirement of reducing cost. The next big
development in semiconductor manufacturing is the transition from 300 mm
wafers to 450 mm wafers, which can lead to reduction in die cost and subsequently
production cost. Other exciting recent developments in semiconductor industry are
the extreme ultraviolet (EUV) lithography and nano-chip technology. A nano-chip
can carry billions of transistors, and its applications include high-performance servers
and supercomputers, virtual reality and advanced electronic games, and ultra-fast
telecommunications devices. It is these types of applications that could lead to a new
revolution in how electronics goods are designed and manufactured.

Recognizing the importance of this industry in our everyday lives, this
second edition of Solid State Electronic Devices offers an improved coverage of
the fundamental concepts of solid state electronics. This edition is an attempt to
incorporate most of the feedback received from educators in terms of improvement
of content presented in the book.

About the Book

This book contains 14 chapters which provide a thorough coverage of solid state
electronic devices. Starting with the fundamentals of solid state physics such as electron
dynamics, growth and crystal properties of semiconductors, energy bands, and charge
carriers, the book goes on to the study of p-n junctions, metal-semiconductor contacts,
BJTs, and FETs (including JFET, MESFET, MOSFET, and HEMT technologies). An
analysis of special devices, such as opto-electronic devices, microwave devices, and
power devices, follows. Finally, the book covers ICs, MEMS, rectifiers, and power
supplies.
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Each chapter has been divided into small sections that are independent in
themselves. A unique feature of the book is the additional information in shaded
boxes at the end of relevant sections. These inputs offer a few extra facts outside the
limits of the curriculum to draw the interest and attention of students.

A large number of numerical problems along with answers and hints have been
provided at the end of each chapter. This is followed by a recapitulation of the salient
features of the chapter. Numerous review exercises and numerical problems along
with answers and hints have been provided as well. A list of references is presented
at the end of the book for those interested in further reading. A special attempt has
been made to include topics that are a part of courses offered by a large cross-section
of educational institutions.

New to the Second Edition

e New sections such as reciprocal lattice, band structure modification, electrons and
holes in quantum wells, Early effect, short channel MOSFET 1-V characteristics,
and photoluminescence and electroluminescence

e Detailed explanation and coverage

e New illustrations

Extended Chapter Material

Chapter 1 Applications of cathode ray tubes (CRTs) have been added.

Chapter 2 Reciprocal lattice, diffraction due to crystal planes, floatzone (FZ) method
of crystal growth, and four-probe method for the measurement of conductivity of
semiconductors are explained.

Chapter 3 The concept of phonon has been introduced and band structure modifica-
tion in semiconductors has been described.

Chapter 4 Deep impurity levels, Auger recombination process, and gradient in
quasi-Fermi levels have been described.

Chapter 7 Formation of practical ohmic contacts has been explained and a new
section on quantum confinement of carriers has been introduced.

Chapter 8 Input and output characteristics of BJTs, Early effect in BJTs, thermal
runaway and thermal stability in BJTs, Kirk effect, and Webster effect have been
described.

Chapter 9 Significantly expanded by introducing sections on short channel effect,
control of threshold voltage, substrate bias effects, sub-threshold characteristics,
equivalent circuits for MOSFET, MOSFET scaling and hot electron effects, drain-
induced barrier lowering, short channel and narrow width effect, gate-induced drain
leakage, and comparison of BJTs with MOSFETs.

Chapter 10 The phenomenon of photoluminescence has been explained.

Chapter 11 Two power semiconductor devices have been introduced — Gate Turn-off
Thyristor (GTO) and Insulated-Gate Bipolar Transistor (IGBT), and also the formula
to calculate intrinsic stand-off ratio has been included.
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Chapter 12 The process of photolithography, different etching techniques such as
wet etching and dry etching, and Moore’s law have been described.

Coverage

Chapter-wise details of content coverage are as follows:

Chapter 1 presents important aspects of electron dynamics, including the analysis
of motion of charged particles under the influence of electric and magnetic fields. The
last section of this chapter discusses the cathode ray tube in detail.

Chapter 2 presents the salient properties of semiconductor materials with a special
emphasis on the crystalline forms of these materials. Important concepts used for
classifying and defining crystal lattices have been outlined in this chapter. Bulk and
epitaxial growth techniques have also been included.

Chapter 3 introduces semiconductor physics, including energy bands and charge
carriers. E-k diagrams have been discussed in detail as they form the basis of
understanding the operation of many solid state electronic devices. It also presents a
comprehensive treatment of the two most important physical processes, namely drift
and diffusion of charge carriers. To make the treatment complete, a section has been
added to include graded impurity profiles.

Chapter 4 offers details about the nature and behaviour of excess carriers created by
external stimuli. A combination of drift and diffusion also governs the lives of excess
carriers. It also presents the very important concept of the continuity equation that
forms the core of any useful device physics model.

Chapter 5 initiates the study of solid state devices with the p-n junction. Beginning
with a brief discussion about the different methods used for fabricating p-n junctions,
the chapter also presents forward- and reverse-biased junctions.

Chapter 6 discusses the small-signal model of a p-n junction. An important aspect
of p-n junctions is the way it behaves when the polarity of the applied bias is suddenly
changed. A thorough treatment of transients that are critical to many applications is
provided in this chapter.

Chapter 7 discusses metal-semiconductor contacts or junctions, including ohmic
and Schottky contacts.

Chapter 8 discusses the bipolar junction transistor, without which the stupendous
growth in the field of solid state electronics would not have been possible. The
treatment includes different models of the device along with an explanation of their
relative merits and demerits. Ordinary transistors cannot be operated at very high
frequencies. Methodologies involved in the design of high-frequency transistors are
presented in this chapter.

Chapter 9 focuses on the field effect transistor which is a key ingredient for the

development of IC technology. Since the MOS structure forms the basis of this
device, the chapter also includes important features of this structure.

Chapter 10 describes opto-electronic devices, such as photovoltaic cells, photo-
detectors, LEDs, and laser diodes, which find a variety of applications in the field
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of light wave communication. It also includes the basic principle of operation and
important semiconductor structures involved.

Chapter 11 develops a focused understanding of the special measures required
to enable solid state devices to handle high power, through the discussion of some
important aspects pertaining to power devices. Some special devices, such as
semiconductor-controlled rectifiers (SCR) and unijunction transistors (UJT) are also
presented.

Chapter 12 discusses how the individual devices discussed up to Chapter 11 are put
together using standard processes to build widely used ICs. The three most important
technologies— namely MOSFET, MESFET, and bipolar technologies—are discussed
along with their salient features. This chapter also includes a discussion on micro-
electromechanical systems.

Chapter 13 focuses on some important microwave devices such as Gunn, IMPATT,
TRAPATT, and BARITT diodes. This chapter attempts to present the basic physics
of these devices so that students can understand their operation at microwave
frequencies.

Chapter 14 discusses some basic circuits such as rectifiers, filters, and regulators
that combine to form power supplies, which are one of the most important application
areas of solid state devices. This is because all modern electronic systems need power
supplies to operate. The last section of this chapter deals with switched mode power
supply (SMPS), which is being increasingly used in various electronic systems.

Authors would be grateful for further suggestions and feedback with regard to
this edition.

D.K. Bhattacharya

Rajnish Sharma
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Symbols

Force

Acceleration

Mass

Work done

Voltage

Rest mass

Magnetic field

Radius

Electronic charge

Pitch

Deflection

Deflection sensitivity for electric
deflection

Deflection sensitivity for
magnetic deflection

Pressure

Segregation coefficient

Wave function

Effective mass

Equilibrium electron
concentration

Equilibrium hole concentration

Intrinsic carrier concentration

Fermi—dirac distribution function

Effective density of states in
conduction band

Density of states effective mass

Effective density of states in
valence band

Donor concentration

Acceptor concentration

Mobility

Hall voltage

Hall coefficient

Diffusion coefficient of electrons

Diffusion coefficient of holes

Generation rate

Recombination rate

Band gap

Excess electron concentration

Excess hole concentration

Trap energy

Minority carrier electron lifetime

Minority carrier hole lifetime

Surface recombination velocity

Built-in voltage

Depletion region capacitance

Hole concentration in n-type
semiconductor

Electron concentration in p-type
semiconductor

Diffusion length of electrons

Diffusion length of holes

Conductivity

Conductance

Diffusion capacitance

Specific contact resistance

Collector current

Base current

Emitter current

Common-emitter current gain

Voltage gain

Diffusion resistance

Emitter junction capacitance

Parasitic capacitance between
base and emitter

Electron saturation velocity

Collection-region series resistance

Collection-to-substrate
capacitance

B-c junction capacitance

Cut-off frequency

Heterojunction bipolar transistor

Potential barrier for electron
injection

Potential barrier for hole injection

Collector supply voltage

Base supply voltage

Delay time of transistor

Rise time of transistor

Storage time of transistor

Channel length of JFET

Channel width of JFET

Channel depth of JFET

Gate voltage with respect to
source for JFET
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Vps Drain voltage with respect to V400 Potential drop across the
source for JFET oxide for zero gate voltage

R Resistance By Surface potential for zero

P Resistivity applied gate voltage

A Area s Work function difference

Ny Donor concentration Vox Voltage across oxide

w, Width of depletion region (oF Charge per unit area in the

I Drain current semiconductor

V pssat) Drain—source voltage at Ps Charge density in
saturation semiconductor

& Dielectric constant of Oy Charge per unit area in metal
semiconductor E,, Electric field across oxide

vV Voltage fox Oxide thickness

Ip Pinch-off current £y Dielectric constant of oxide

Vp Pinch-off voltage C Total capacitance

n Drain conductance Cox Oxide capacitance

Vi Threshold voltage C, Depletion-layer capacitance

HEMT High electron mobility Chin Minimum capacitance
transistor of MOS under strong

JFET Junction field-effect transistor inversion

MODFET Modulation doped field-effect Vg Flat band voltage
transistor 0, Charge per unit area within

MOS Metal-oxide—semiconductor oxide

Ec Conduction band edge E, Electric field within oxide

Eg; Intrinsic fermi energy level Oy Interface-trapped charge

Er Fermi energy level O Fixed oxide charge

E, Valence band edge Out Oxide-trapped charge

(] Potential 0, Mobile ionic charge

@, Surface potential z Channel width

N, Acceptor concentration g5 Channel conductance

(o Difference between Ef; MOSFET  Metal-oxide-semiconductor
and Ef for a p-type field-effect transistor
semiconductor E Energy

Wr Maximum space-charge v Frequency
width h Planck’s constant

O Difference between Ef; C Velocity of light
and Ef for an n-type E, Energy band gap.
semiconductor Iy Photon flux with frequency v

o, Modified work function of o Absorption coefficient
metal g Generation rate of EHP due

¢, Work function of metal to photons

X Electron affinity of 1, Photocurrent
semiconductor Iy Short-circuit current

x’ Modified electron affinity of Voc Open-circuit current
semiconductor P Power
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Rth

Rth(d—p)

Rth(p-s)

Rth(s-a)

Voltage across solar cell under
maximum power condition

Current through solar cell
under maximum power
condition

Maximum power

Incident optical power

Conversion efficiency of
solar cell

Fill factor

Air mass

Series resistance

Conduction band step

Valence band step

Conductivity

Photo generation rate of
excess carriers

Drift velocity

Electron transit time

Photoconductor gain

Transit time

Modulating frequency

Critical angle

Refractive index

Maximum rated power

On-state resistance

Channel contribution to
resistance

Drain contact resistance

Thermal resistance

Thermal resistance between
device and package

Thermal resistance between
package and heat sink

Thermal resistance between
heat sink and ambient

Maximum power dissipation

Device temperature

Maximum junction

temperature

DRIE
LIGA

SMPS

Z

QngNNe N<R U3 v

P

max
lon
RFI

IMPATT
TRAPATT
BARITT
Hr

Vz
MSM

Base-to-base voltage

Peak-point voltage

Valley-point voltage

Conductance

Sheet resistance

Micro-electromechanical
system

Deep reactive ion etching

LI (Rontgen llthographie),
G (Galvanik),
A (Abformung).

Switched mode power
supply

Peak voltage

Load resistor

Load voltage

Rms current

Ac power

Conversion efficiency

Peak reverse voltage

Ripple factor

Time period

Angular frequency

Zener diode current

Input voltage

Output voltage

Maximum power

On time

Radio frequency
interference

Impact-avalanche
transit-time

Trapped-plasma avalanche-
triggered-transit

Barrier-injected transit-time

Mobility in central valley

Avalanche-zone velocity

Metal-semiconductor—-metal
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Electron Dynamics

» Conduction of electricity through gases

» Motion of charged particles in electric field

» Motion of charged particles in magnetic field

» Motion of charged particles in combined electric and magnetic field
> Cathode ray tube

Learning Objectives

After going through this chapter the student will be able to

>
>
>

understand how gases conduct electricity
understand the different regions of glow discharge

derive expressions for the position and velocity of a charged particle moving in an
electric field

derive expressions for energy acquired and transit time of a charged particle
moving in an electric field

derive expression for the radius, time period, and pitch of a charged particle
moving in a magnetic field

understand important characteristics of the motion of charged particles in
combined electric and magnetic field

understand important parts of a cathode ray tube
understand the focussing mechanism using electric and magnetic fields

derive expressions for the deflection sensitivity of electric and magnetic deflection
systems

compare electric and magnetic deflection systems
understand important characteristics of fluorescent screens

solve numericals based on the motion of charged particles in electric and magnetic
fields

solve numericals based on electric and magnetic deflection systems
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Introduction

We will start our study of electronics first by understanding the phenomenon
of conduction of electricity through gases. Though solid-state electronics has
robbed a lot of glory of this very interesting field, one cannot afford to forget
that the foundations of modern electronics were established on this phenomenon.
Vacuum tubes, invented in 1904 by J. A. Fleming, used the phenomenon of
conduction of electricity through gases to a great extent. Many modern devices
such as neon signs, night lamps, and tubelights also use this phenomenon. This
chapter begins with an attempt at understanding the issues involved in considering
the flow of electricity through gases. A great many applications in electronics
and related instrumentation are based on the ability to modify the dynamics of
charged particles in an electric field, a magnetic field, or a combination of the
two. We will study why electrons modify their trajectory in the presence of these
fields. Although we will not discuss these issues here, it is pertinent to remember
that some natural phenomena such as lightning and Northern Lights are also due
to interaction between charges and gases. We will then discuss a very important
instrument that combines all that we will learn in this chapter, namely the cathode
ray tube or simply the CRT. This instrument is at the heart of modern electronic
devices such as oscilloscopes, television, and so on.

1.1 Conduction of Electricity through Gases

Under normal temperature and pressure conditions, gas is an excellent insulator.
At extremely high temperatures or very low pressures, gas starts conducting
electricity. Suppose we have an arrangement in which a given volume of gas can
be enclosed with the facility to apply different magnitudes of potential difference
(pd) across two electrodes at the two ends of the tube containing the gas. Let us
also assume that the tube can be evacuated to varying degrees with the help of a
suitable vacuum pump, as shown schematically in Fig. 1.1.
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Fig. 1.1 Set-up for evacuating the tube to varying degrees
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At atmospheric pressure, as the pd applied across the pair of electrodes is
increased, a dark discharge occurs first. A small flow of current can be recorded,
but there is no accompanied visible evidence of discharge. As the pd is increased
further, a visible brush discharge makes its appearance. A typical example is the
bluish streamers of the brush discharge into the air. If the pd is increased further, the
streamers extend from one electrode to the other, the discharge being described as a
spark discharge. If large current densities are possible then an arc discharge can be
obtained. At pressures below 1 atm, a glow discharge occurs instead of a spark.

1.1.1 Glow Discharge

A steady supply electro-magnetic force (emf) of at least 2 kV across the electrodes
placed within an enclosed gas is needed to observe the phenomenon of glow
discharge. The glow discharge characteristics observed as the pressure is reduced
to various measured values are shown in Fig. 1.2. At pressures of the order of
1 cmHg and above, thin streamers of a colour that depends on the nature of the
gas are observed. The most striking effects however start at a pressure of around
1 mmHg. A well-defined region can then be observed as shown in Fig. 1.2.
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Fig. 1.2 Glow discharge characteristics

As we proceed from the cathode to the anode, the following regions can be
identified:

1. A thin luminous layer is spread over a part or the whole of the cathode
surface. This luminosity is called the cathode glow.

2. The Crookes dark space occurs next to the cathode glow. The length of this
dark space is gas pressure dependent, increasing with decreasing pressure.
An empirical relation between the dark space length, d, and the gas pressure,
p, 1s given by

_A
d » +B (1.1)
where A and B are constants.

3. Beyond the Crookes dark space there appears a luminous region called the
negative glow.
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4. On proceeding further towards the anode, we come across an almost dark
region called the Faraday dark space. Considerable variation is observed in
the width of this region even when the pressure is maintained constant.

5. Finally, on reaching the surface of the anode, we get the positive column.
This is the most brilliant region of the glow discharge. The region may be
continuous or striated, depending upon the pressure and the current density.
These striations are most prominent at pressures below 1 mmHg. On
reducing the pressure further, the dark regions between the bright spaces in
the striations increase in width.

If the length of the discharge tube is increased, the positive column length also
increases. The other regions of the glow discharge remain nearly constant in length.

If the pressure inside the discharge tube is reduced, the Crookes dark space
increases in width till the pressure reaches between 102 and 10* mmHg
depending upon the tube dimensions and the current density. At this pressure, the
dark space pervades the entire tube, i.e., the glow discharge disappears. This state
is called the black discharge. This expansion of the dark space is accompanied
with fluorescence of the glass walls of the tube.

1.2 Motion of a Charged Particle in Electric Field

We will discuss the motion of a charge particle kept in a uniform electric field.
The treatment to follow makes the following assumptions:

(1) The charge density is low enough for us to consider the mutual repulsive
force to be negligible.

(i) The charged particle moves in high vacuum, therefore no collisions with gas
atoms take place.

(ii1) The mass of the charged particle is so small that gravitational forces can be
neglected in comparison to electrostatic forces.

The force F experienced by a charged particle carrying a charge ¢ when kept
in an electric field E is given by

F=¢E (1.2)
As shown in Fig. 1.3, the force F and electric field E are vector quantities

directed from the positive to the negative electrode.
For the case of an electron carrying a charge e we get

F,=—¢E (1.3)
Using Newton’s second law of motion, we can write
F,=—cE=ma (1.4)
yielding
_du _ —cE
A= " (1.5)

where u represents the velocity of the electron and m its mass.
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Fig. 1.3 Force experienced by a charge Fig. 1.4 Motion of an electron between
kept in a uniform electric field infinite parallel electrodes

Let us at this stage make a simplifying assumption. We will assume that the
electron is released at the origin of the chosen coordinate system with an initial
velocity u,, in the x-direction. Let us also assume that a voltage /" has been applied
between the two electrodes placed a distance / apart as shown in Fig. 1.4.

We can then write

E, = % (1.6)
Obviously for the chosen conditions, we have
E,=E=0 (1.7)
Using Eqn (1.5), we can write the equations of motion as
_du, —eE,
0 T m (1.8)
du,,
4G =g T 0 (1.9)
du,
a,=— = 0 (1.10)
By integrating Eqn (1.8) we get
ek,
ux——f odt+C, (1.11)
yielding
—eE t
ux_T—‘rCu (1.12)

We have assumed
u,=uy at t=0 (1.13)
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Using Eqn (1.3) in Eqn (1.12) we get

Cu = Uy
resulting in
—eE t
= +
u, m Upy ( 1. 14)

Using Eqn (1.6) in Eqn (1.14) implies
eV

le Wt+u0,c (115)

Suppose the electron has initial velocities u, and u,, at ¢ = 0 in the y and z
directions respectively. Since the field is directed in the x direction, the velocity
components u, and u,, remain unaltered with time. The total velocity u at any
given time ¢ is then given by

u= /u§+u02y+u022 (1.16)

The position of the electron at any time ¢ can be obtained by integrating
Eqn (1.15). This leads to

=J.uxdt L i+, (1.17)

where the constant c, can be evaluated using the boundary conditionx=0atz=0
in Eqn (1.17), which yields

c,=0 (1.18)
Equation (1.17) thus gets simplified to
- ZeVlt2+uoxt (1.19)

1.2.1 Energy Acquired by an Electron

The external electric field does work on the electron. This work increases the
kinetic energy of the electron.
The work done, W, is given by

W:J.Fe dl (1.20)

where A and B represent the initial and final positions, respectively.
For the situation presented in Fig. 1.4, we have
2_ .2
I’I’l(Z/lr — qu)

W= —eJ. E dx= 5

(1.21)
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The integral of the electric field intensity is equal to the negative of the applied
potential difference, V, between the initial and final points. Thus, Eqn (1.21)
results in

m(u; — ug,)
2
The energy acquired by the electron is not dependent upon the specific path taken
to go from A to B due to the conservative nature of electric field.
Equation (1.22) can be rewritten as

20
ui-up == (1.23)

W =Ve= (1.22)

If the initial velocity u,, = 0, then Eqn (1.23) results in
_ [2Ve
u=,|= (1.24)
Substituting the value of e/m for an electron,
Eqn (1.24) yields
u=5.94x103v (1.25)
Equation (1.25) is valid under non relativistic (u# < ¢) conditions.

The energy acquired by the electron, W, is given by

W=Lmu? = eV =1.602x107°V (1.26)
1.2.2 Electron Transit Time

Referring to Fig. 1.3, the velocity u,, with which the electron strikes the plate p
can be obtained using the principle of conservation of energy, we can write

1 2 1 2

o i, = eV+§mqu (1.27)
so that
2eV
u, = %mgx (1.28)

The transit time #;, taken to travel between the plates is given by

! (1.29)

t, =——
e Ug+u,
2

If the electron leaves the first plate with zero initial velocity, then we can write

= (1.30)
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o Electric field lines originate from positive charges and terminate at negative
charges. Positive charges are therefore sometimes referred to as sources and
negative charges as sinks. This nomenclature is analogous to the description
of fluid flow.

e Poisson equation relates the potential, ¥, to charge density through the
form,

vy =-£
€

1.3 Motion of a Charged Particle in Magnetic Field

In this section we will discuss the motion of a charged particle in a magnetic field.
The force Fj experienced by a charged particle ¢ is given by

F;=quxB (1.31)
where u is the velocity of the charged particle, X represents the cross product,
and B is the magnetic flux density in Wb/m?. A schematic representation for the
electron is shown in Fig. 1.5.

In Fig. 1.5 the electron is assumed to
be injected into the region of uniform B
magnetic field of flux density, B, with
its velocity making an angle ¢ with the
positive direction of B. The force, Fj, on

Fg

the electron can be written down using e
Eqn (1.31) in the form 90° »1 \q()
: Yo .
Fp =—Beusing (1.32) 7 “u
From Eqn (1.32) we can conclude that

an elecFron injected in the dir.ection of Fig./l.S Force experienced by
magnetic field would not experience any an electron moving in a
force since ¢ = 0. magnetic field

Thus an electron (any charged particle
would do) would experience a force in a magnetic field only if the following two
conditions are met:

(1) The charged particle is in motion.
(i) The direction of motion is not along the magnetic field.

From Eqn (1.31) we can also infer that the force experienced by a charged
particle moving in a magnetic field is always perpendicular to its velocity. Thus a
magnetic field does not do any work on a charged particle moving in its influence.
The kinetic energy of a charged particle moving in a magnetic field does not
change; the magnetic field can only result in a change of the direction of motion
of the charged particle.

Figure 1.6 shows an electron’s trajectory when it enters a region of uniform
perpendicular magnetic field. The velocity of the charged particle has been



Electron Dynamics 9

Field frei»:«— Uniform magnetic field, B >
space

X X X X X

Circular trajectory
of electron

X X X X X

Fig. 1.6 Motion of an electron in a uniform perpendicular magnetic field

assumed to be u and the flux density of magnetic field has been assumed to
be B.
The magnitude of the force experienced by the electron is given by

Fy = Beu (1.33)

Thus a constant force would be felt by the electron. This constant force will in
turn produce a constant acceleration at right angles to the direction of motion of
the electron. Such a situation implies that the electron trajectory is circular. The
force due to the magnetic field provides the necessary centripetal force. Thus

2

_mu
Beu = p (1.34)
which results in
_mu
"=, (1.35)
Angular velocity, o, is then given by
_u_eB
== (1.36)
The time period, 7, required by the electron to complete one revolution is
_2x _2nmm
T= © _ eB (1.37)

The time period, T, of the revolution is thus independent of the electron velocity. A
higher velocity results in a higher radius of the circular path to ensure a constant
time period.

An interesting situation is one in which the electron acquires velocity u by
being accelerated through a potential V. In such a situation

2elV
u=,| . (1.38)
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Putting the expression for « in Eqn (1.35) yields

_m [2eV _337x10°¥

In case the electron has a constant speed but its direction of motion when it
enters the region of magnetic field is not perpendicular to the field, the trajectory
will be a helical path. This is because the component of velocity perpendicular to
the field will yield a circular motion, which will be superimposed on a constant
velocity in the perpendicular direction. A schematic diagram of this situation is
shown in Fig. 1.7.
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Fig. 1.7 Helical path of an electron moving in a uniform magnetic field

The electron in Fig. 1.7 has an initial velocity u in the x-y plane, making an
angle 8 with the y-axis. The electron starts from the origin. The uniform magnetic
field has a flux density B along the negative y-axis. The component of velocity
u cos Owill not be affected by the magnetic field, ensuring that the electron keeps
moving in the y-direction with constant velocity u cos 6. The perpendicular
component « sin 6 will give rise to a force F5, which also provides the centripetal
force. The projection of the helical path of the electron on the x-z plane is a circle
with its radius 7 given by

mu sin 0
F=—

Be (1.40)
The time 7 required to complete one revolution is given by
2nr  _ 2mm
~usin®  Be (1.41)
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The distance travelled by the electron along the y-axis during a time interval
T is called the pitch of the helix. Using Eqn (1.41) we can see that the pitch is
given by

2mwmu cos 0

P =u cos B

(1.42)
Thus for small 0 values the pitch is independent of the angle 6. This property is
made use of for focussing electron beams produced by electron guns in cathode
ray tubes and high-voltage X-ray tubes. The beams consisting of divergent
electrons are forced to follow helical trajectories of varying radii but same pitch
by applying a magnetic field parallel to the axis of the tube.

1.4 Motion of a Charged Particle in Combined Electric
and Magnetic Field

When a charged particle ¢ moves in a region having electric and magnetic field,
the net force F;, experienced by it is given by

F;, =gE+quxB (1.43)

The trajectory of a charged particle under the influence of a combined electric and
magnetic field is in general quite complex. The following simple cases however
deserve special mention.

Case | Suppose the charged particle starts from rest and enters a region having
electric and magnetic fields that are parallel to each other. The magnetic field then
has no effect on the motion of the charged particle, and it moves in the direction of
the electric field. The trajectory of the charged particle is thus a straight line.

Case Il A charged particle is given an initial velocity and then injected into
a region having the electric and magnetic fields perpendicular to each other.
Furthermore, the electric and magnetic field directions are perpendicular to the
direction of the initial velocity of the charged particle. In such circumstances, for
a certain ratio of the magnitudes of electric and magnetic fields, the path of the
charged particle is not deflected. This occurs because the force on the charged
particle due to the electric field is completely balanced out by the force due to the
magnetic field. Under these conditions we have

leading to
E_ 5 _
§_5'94X10 \/?—u (1.45)

Thus the charged particle continues to move in a straight line as long as the
condition indicated in Eqn (1.45) holds true.
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Case lll A charged particle starts from rest and enters a region having electric
and magnetic fields that are perpendicular to each other. The charged particle first
experiences a force due to the electric field and starts moving in its direction. As
long as the velocity of the particle is low, the magnetic field has no influence on its
motion. When the velocity picks up, a sideways deflection takes place due to the
magnetic field. The charged particle ultimately turns around and comes to rest at
a point that corresponds to its initial position slightly displaced to one side. This
action then repeats itself. The path traversed by the charged particle is a cycloid.

1.5 Cathode Ray Tube

The cathode ray tube (CRT) works on the principles of electron ballistics (the
study of the trajectory of electrons in electric and magnetic fields). It has diverse
applications such as cathode ray oscilloscope, television, and radar. The cathode
ray tube can produce visual display of electrical effects with extremely high speed
due to the high velocity of electrons striking its screen.

Figure 1.8 is a schematic diagram of a cathode ray tube with electric focussing
and deflection. Cathode ray tubes using magnetic deflection have current-carrying
coils mounted on the side of the tube instead of deflection plates.

The electron gun consists of a heated cathode K which emits electrons. A
control grid G helps in varying the electron current density. 4 is the accelerating
electrode and anodes 4, and 4, serve as a focussing arrangement.

Cathode K is generally in the form of a nickel cylinder coated with barium
oxide. A heater filament wire, H, indirectly heats cathode K. A nickel cylinder

Electron gun Deflection
assembly plates
b\
_IG A 4, | D Dy  paho___-
P g ol Bl e Y
T=1 LLJ ] Y.
S K A T D, Dy Fluorescent
T7 m
Aquadag coating
.MNVIj|.|¢ﬁ|.|le|.h11
o =

o

Control voltage

H—Heater a—Aperture in 4

K—Cathode A;—First anode of focussing lens
S—Heat shield A,—Second anode of focussing lens
G—Control grid D, D,—Vertical deflection plates
A—Accelerating electrode D3 D —Horizontal deflection plates

Fig. 1.8 Schematic diagram of the cathode ray tube with electric focussing
and deflection
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surrounds the cathode at a clearance of a few micrometres. This second cylinder
serves as a heat shield and helps to concentrate the electrons to form a fine beam.
As shown in Fig. 1.8, the control grid G consists of a cylinder surrounding the
cathode and heat shield. It has an aperture in the centre of the end surface. The
electrode is maintained at a low, negative potential with respect to the cathode.
There is a provision for applying additional variable control voltage on this grid.
This allows a control on the number of electrons in the beam and hence ultimately
sets the brightness of the spot on the screen. The accelerating electrode A4 is
maintained at a high, positive dc voltage with respect to the cathode. Due to this
applied potential difference the electrons emitted by the cathode are accelerated to
a very high speed. The divergent electrons in the beam are removed as the electron
beam passes through one or two apertures in the accelerating electrode cylinder.
During their transit the electrons in the beam experience a mutual coulombic
repulsive force, making them spread away from the main beam. Some focussing
arrangement is therefore required to bring the beam to a sharp focus at the screen.
Two methods of focussing are generally practised: (i) focussing with electric
fields and (ii) focussing with magnetic fields. The electric- and magnetic-field-
based focussing arrangements used to focus electrons are somewhat analogous
to the way in which optical lenses are used to control and focus light. These
arrangements are therefore sometimes aptly referred to as electric and magnetic
lenses for electrons. The final beam consists of a fine pencil of electrons having
extremely high velocities directed along the major axis of the tube. The situation
reminds one of bullets being shot out of the barrel of a gun, thereby justifying the
name electron gun.

1.5.1 Focussing with Electric Fields

The anodes 4, and 4, shown in Fig. 1.8 constitute an electron lens system that
focusses the beam into a fine spot on a fluorescent screen. The inside surface
of the glass tube between the final anode (4,) and the screen is coated with a
conducting layer of graphite particles, termed as aqguadag. This conducting layer
is ultimately electrically connected to the final anode. The two anodes, 4, and
A,, are kept at a positive potential with respect to the cathode, the potential of the
first anode being lower than that of the second anode. The second anode is either
kept at the same potential or at a potential slightly higher than the accelerating
electrode. The second anode has an aperture that provides a well defined electron
beam emerging from it. The ultimate velocity with which the electron strikes
the screen depends upon the potential difference between the cathode and the
second anode.

The electron gun sketched in Fig. 1.8 contains a three-lens system. The
first lens consists of the cathode surface, the control grid, and the accelerating
electrode. A schematic diagram of the first lens is shown in Fig. 1.9 along with
the equipotential contours.

The electrons emitted from common points such as P, and P, on the surface
of the cathode in different directions converge at P and Py, respectively in the
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Fig. 1.9 Focussing action of electric field

plane bb under the influence of the lens system. All the electrons emitted from
different points on the cathode surface cross the axis in the plane aa. The electron
beam has the minimum diameter at the plane aa, which is termed as crossover.
The crossover has a diameter much smaller on the screen by the subsequent lens
action that follows.

The accelerating electrode and the first anode constitute the second lens. The
third lens consists of the first anode and the second anode. The equipotential
contours for the corresponding electric field between the first and the second
anode are sketched in Fig. 1.10.

The electrons move normal to
these equipotential contours. The Equipotential contours
shape of these contours decides the

. ) v Second anode
converging action of the Ienses, —

which are in turn dependent upon the —
geometry or the ratio of the diameters ’_ AR _\‘. _________
of the cylindrical electrodes and the A

ﬂ

ratio of the potentials of the electrodes
with respect to the cathode surface. e
The ratio of the potential of the first
anode to that of the second anode is
generally kept in the region of 1.5.
The potentials of the accelerating Fig.1.10 Equipotentials between the first
electrode and the second anode are and second anodes

usually kept fixed at a few kilovolts.

The potential of the first anode is kept variable to realize optimum focussing of
the crossover on the screen.

The ultimate size of the focussed spot on the fluorescent screen is dependent
upon the magnification of the lens system and the size of the crossover. The aim is
to have the smallest possible size of the spot on the screen. The magnification of
the lens system can be made appreciably less than unity. Also, the aperture in the
electron gun is made very small, thereby eliminating more divergent electrons.
The minimized spot size achieved is however limited by the mutual repulsion
between electrons and unequal electron velocities at the emission point.

Voltage

i
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The brightness at the centre of the spot is the maximum and falls gradually
away from it. This is due to the fact that although the highest number of electrons
are focussed towards the centre of the spot, not all of them can be focussed to a
single point on the screen. As can be seen from Fig. 1.8, the fluorescent screen
is given a slight curvature to ensure that the focussing of the beam remains
undisturbed as it is deflected in different directions.

1.5.2 Focussing with Magnetic Field

Some cathode ray tubes use magnetic field to focus the electron beam. The
requisite magnetic field can be produced either by a permanent magnet or by
using current-carrying coils with an axis coincident with the beam. Cathode
ray tubes using magnetic focussing use a single anode. Cathode ray tubes used
in picture tubes of television receivers and radar indicators use a concentrated
magnetic field caused by a coil. The image orthicon camera tube in television
uses extended coils to produce a uniformly distributed magnetic field along the
entire path of the electrons.

A schematic diagram of a typical magnetic focussing system is shown in
Fig. 1.11.

Current carrying coil
Electron

trajectorios™>k

Magnetic
flux line

Weak field
Optimum field

Strong field

Screen
(image plane)

Crossover
(object plane)

Fig. 1.11 Magnetic focussing system

To keep the figure simple, a localized concentrated magnetic field has been
assumed. We have already learnt that an electron that has a component of velocity
at right angles to the magnetic flux direction experiences a force that makes it
rotate about the axis. The combined effect of this rotation and the axial velocity
bends the path of the electrons through an arc. It is possible to adjust the strength
of the magnetic field such that all the electrons leaving point P on the object plane
at different angles with the axis of the system are deflected so that they return to a
common point P’ on the image plane or screen. The crossover is thus made to focus
on to a point on the screen using the magnetic field. The magnetic field strength
can be varied by varying the dc current through the coil. This adjustment is critical
for effective focussing. A weak magnetic field would not bend the electron paths
sufficiently to ensure their meeting at a single point on the screen. A very strong
field on the other hand would lead to too much bending as shown in Fig. 1.11.
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1.5.3 Deflection Systems

The deflection of the electron beam emanating from the electron gun can be
achieved using either electric or magnetic field. In a typical electric deflection
system, two pairs of deflection plates at right angles to each other are used (see
Fig. 1.8). The parallel plane plates D, and D, are horizontally oriented whereas
the plates D; and D, are oriented vertically. On application of an applied voltage
between plates D, and D,, the electrons get attracted towards the positive plate.
This gives the electrons a vertical velocity component, which gets added to
their axial velocity. The spot on the screen thus gets vertically displaced with
reference to the original undisplaced position of the spot. Plates D, and D, are
therefore called vertical deflection plates or y plates. Similarly, a voltage applied
between plates D, and D, deflects the electron beam horizontally towards the
more positive plate. Plates D, and D, are therefore called horizontal deflection
plates or x plates.

A magnetic deflection system ) ] )

. Horizontal deflection coil

uses a set of current-carrying \
coils mounted on the sides of S _
the cathode ray tube, as shown 7
schematically in Fig. 1.12.

Vertical deflection coil CRT

/

When a current is made
to flow through the vertical
deflection coil, the resulting
magnetic field has flux lines that
are horizontal and perpendicular
to the direction of motion of Fig.1.12 Position of the current-carrying coils
electrons. This results in a force for producing magnetic deflection of
on the electrons in the vertical the beam
direction. Current flow through the horizontal deflection coil gives rise to a force
on the electron beam in the horizontal direction.

Electric deflection

In this section we will study electric deflection in detail. Figure 1.13 shows a pair
of vertical deflection plates of length / and separated by distance d.

Suppose, a voltage V is applied between the plates. Further assume that an
electron that has been accelerated through voltage V; enters the region within the
plates with an initial velocity u,,,.

The acceleration a, experienced by the electron as it passes through the electric
field between the plates is given by

P 1.46
Y d[ m ( . )
where
-V

E, =7 1.47)
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Fig. 1.13 Deflection produced by electric field
Putting £, from Eqn (1.47) into Eqn (1.46) leads to
du
_ _er
Assuming a constant V, integration of Eqn (1.48) results in
u, = %, (1.49)
On further integration of Eqn (1.49) we get
_er

The velocity component u,,, of the electron in the x direction remains constant
during its travel within the plates. Thus

X =ugyt (1.51)
Using Eqgs (1.51) and (1.50) we can write
eV
= X
4 2mdul, (1.52)

Thus the trajectory of the electron between points O and 4 is parabolic. The path
AP’ of the electron is a straight line. The direction of 4P’ is along the tangent to
the parabolic path at point A. The slope of the parabola at x =/ can be evaluated
by differentiating Eqn (1.52), which yields

ﬂ eV

= [ =tan 1.
dx mdu%x ¢ (1.53)

For triangle O’ AB, we can write
OB=_Y —__ e*  _1
tang  2mdul tang 2

(1.54)

Thus one can conclude that point O’ lies at the centre of the deflecting plates.
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Suppose L represents the distance between the fluorescent screen and the
centre of the deflection plates. The deflection D of the spot on the screen of the
cathode ray tube is then

LeVl
D=Ltan¢ =——"—
o=— dud. (1.55)
From the conservation of energy principle we can write
1.2

jmuo_x =el
leading to
2eV,
ud =1 (1.56)

m

Putting the expression for ugx from Eqn (1.56) into Eqn (1.55) yields

D= LeVI(m) __LVI
md(2eVy) 2dV,
The deflection sensitivity, S,, of the electric deflection system is defined as the
magnitude of deflection, D, in metres per volt of deflecting potential, V. Thus
g =D __Ll
¢ V24
We can, therefore, draw the following conclusions about deflection sensitivity
from Eqn (1.58).
(1) Deflection sensitivity is directly proportional to the distance L between the
centre of deflection plates and the screen.
(i1) It increases with increase in the length of the deflection plates, /.
(i11) It is inversely proportional to the spacing d between the deflection plates.
(iv) It is inversely proportional to the anode voltage V.

(1.57)

(1.58)

There are, however, other considerations to be taken into account while
attempting to increase the deflection sensitivity. If the length / of the deflection
plates is made too large, the electron beam would strike the plates for large
deflections. The same consequence is linked to reducing the inter-plate spacing
to very low values. To circumvent these problems, some cathode ray tube designs
use larger deflection plates that are kept inclined at an angle with respect to the axis
of the tube to ensure a wider spacing at the outer edges. Any increase in L leads
to an increase in the mechanical size of the cathode ray tube. The accelerating
voltage V| needs to be low to ensure a high deflection sensitivity, but it needs to
be high enough to ensure maximum spot brightness and good frequency response.
A good cathode ray tube design has therefore to make suitable compromises on
the above factors for optimization. A typical deflection sensitivity is of the order
of 0.2-0.8 mm/V. The simple analysis presented here has neglected the effect
of fringing field at the edges of the deflection plates. Taking this fringing field
into account leads to an effective length of the deflection plates that exceeds the
physical length by approximately the spacing between the plates.
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The electrons in the beam lose their energy on striking the screen. A part of this
energy is utilized in the emission of light and the rest is dissipated as heat. It is
therefore advisable to avoid a stationary spot at any one point of the screen for an
extended period of time. This safeguards the screen material from overheating.

Magnetic deflection

Electrons can also be deflected using magnetic fields. Figure 1.14 shows an
electron with an initial velocity u,, entering a region having a perpendicular
magnetic field of flux density B.

1 4 \\\\\\ D
Region having | / \\‘\\
magnetic field iﬁ //,* N
l T
Screen

Fig. 1.14 Deflection due to magnetic field

In the schematic diagram the magnetic field has been assumed to act over an
axial distance /,,. The electron emerges out of the magnetic field at point 4 and then
travels in a straight line along the tangent to the circular path at point 4. Point O
represents the point of intersection between the axis of the tube and the tangential
line AP’. The screen is at a distance of L metres from point O. Unlike electric
deflection, point O will not, in general, lie at the centre of /,. However, for small
angles of deflection, wherein cos ¢ =1, point O can be assumed to approximately
lie at the centre of the magnetic field region /,,. From Fig. 1.14 we can write

, l
sm¢)=% (1.59)

where r is the radius of the circular motion of the electron within the region /,,.
Using Eqn (1.35), we can write

mu,
— x 1.
r=—-s (1.60)
Using Eqn (1.60) in Eqn (1.59) leads to
. eBl,
sing = (1.61)

mu,.
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Also, from Eqn (1.41)

tan¢=% (1.62)

In actual practice » has large values and B has small values and / , is also reasonably
small. Under these conditions the deflection angle ¢ is small, and we can write

tan @ =sin¢ (1.63)
Using Eqs (1.61) and (1.62) in Eqn (1.63) leads to

D _ eBlm
L mug,
implying that

_eBl L Bl L\e/m

mu, \/ﬁ

where u, has been substituted using Eqn (1.38).
Deflection sensitivity, S,,, in a magnetic deflection system is defined as the
amount of deflection, D, per unit magnetic flux density, B. Thus

D (1.64)

S _D_lnlyelm (1.65)

m B \/ﬁ

From Eqn (1.65) it is clear that S, is

(a) directly proportional to length /,, in which the magnetic field exists,

(b) directly proportional to the distance L between the fluorescent screen and the
centre of the field, and

(c) inversely proportional to the square root of the anode voltage, V.

Magnetic deflection sensitivity can also be defined as the magnitude of
deflection produced when a current of 1 mA is made to flow through the deflection
coils. When defined in this manner, it has units of mm/mA.

Comparison of electric deflection and magnetic deflection

The two deflection systems we have discussed so far have special fields of
applications because of their special properties. Magnetic field coils require large
currents (due to large inherent losses) implying large power requirements. On
the other hand, electric deflection needs little or no power. Deflection produced
in a magnetic deflection system based on air-cored coil is a direct function of the
coil current. The coil current on the other hand is a function of the time integral
of the applied voltage. Thus magnetic deflection is unsuitable for direct display
of applied voltage. Furthermore, electric deflection is usable at much higher
frequencies as compared to magnetic deflection. This makes electric deflection
very suitable for use in instruments that operate at high frequencies.
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Cathode ray tubes emit a small number of negative ions in addition to electrons.
Some stray, negatively charged gas atoms are also present in the tube. The
negative ions if allowed to bombard a particular part of the fluorescent screen for
a long time can lead to a brownish appearance at the centre, also called ion spot
or burning. These negative ions have the same charge as electrons but are much
heavier. In electric deflection these negative ions are deflected through the same
angle as are electrons. In magnetic deflection, however, the deflection produced
is much smaller for ions in comparison to electrons. As a consequence, the ions
continue to bombard a very small region around the centre of the undeflected
position of the beam. This long-term bombardment damages the screen, rendering
it insensitive to electron bombardment. In some applications electric deflection
is preferred to magnetic deflection for this reason. In some applications, such
as television, magnetic deflection is the preferred method of electron deflection.
Here, some innovative techniques have to be incorporated to get over the ion spot
or ion blemish problem. In one such technique a very thin aluminium coating is
used on the inner surface of the fluorescent screen. The coating is thin enough for
high-velocity electrons to pass through and excite the fluorescent screen but stop
the larger ions. The coating also serves as a reflector of light to the front of the
tube. In the absence of this reflector this light is lost into the interior of the tube.

An ion trap is another technique that can be used to avoid ion spotting. A
schematic diagram of a typical ion trap is shown in Fig. 1.15.

Trajectory of negative ions

égffrl(e){a;?dg electrode \ Trajectory of electrons

:;I\Jh }@ i) . @<r Ma&z{\jvcct;i )ﬁcld

Cathode A : Second anode
Magnetic field First anode

Fig. 1.15 Ion trap for avoiding ion spotting

In this technique, the electric field between the accelerating electrode and
the first anode is given a transverse component by using a slot between these
electrodes inclined at an angle with the major axis of the electron gun. The
transverse component of electric field produces equal transverse deflection for
electrons and negative ions. A magnetic field of suitable strength is also imposed
in the region of transverse electric field, nullifying the deflection of the electrons.
Negative ions, being much heavier, are not much affected by the magnetic field.
As a consequence of this arrangement the electrons start moving along the axis
of the electron gun, whereas the negative ions continue to be deflected (as shown
in Fig. 1.15). Ultimately the negative ions strike the sides of the second anode
and get trapped.
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Fluorescent screens

We will begin this section by first understanding the meaning of luminescence,
Sfluorescence,and phosphorescence. The term luminescence refers to the visible and
non-visible radiation given off by a certain class of materials both during and after
excitation. Fluorescence is the luminescence during excitation. Phosphorescence
is the luminescence occurring after excitation. In cathode ray tubes, this is
the radiation given off by the fluorescent material after excitation through the
electron beam has ceased. Since both fluorescence and phosphorescence are
involved in the operation of cathode ray tubes, it is more apt to refer to the screen
action as cathode luminescence. Materials that show luminescence are called
phosphors. The electron bombardment on this material gives off visible light.
Since the screen is well insulated from other electrodes by the glass, the constant
electron bombardment tends to make the screen acquire a negative potential,
leading to repulsion of further electrons. This negative charge build-up needs to
be removed. In practice, the electrons striking the screen produce not only light
but also electrons through a process called secondary emission. These secondary
electrons (the number of electrons emitted may be more than one per incident
electron) are attracted to the graphite coating, popularly known as aquadag, on
the inside of the walls of the glass bulb, which is connected to the second anode of
the electron gun. Table 1.1 lists some important characteristics of a few common
phosphors.

Table 1.1 Characteristics of common fluorescent screens

Phosphor  Fluorescent Persistence Application
No. colour (milliseconds)
P-1 Green Medium short (30-50)  General purpose oscilloscopes
P-2 Blue-green Long Transient visualization
P-3 Yellow-green Medium (50) Oscilloscopes
P-4 White Short (5) Television
P-5 Blue Very short (0.005) Fast photographic oscillography
P-7 Blue-white;
yellow Very long Radar screens
P-11 Blue Very short (0.01) Photographic oscillography
P-12 Orange Long Radar screens
P-16 Bluish purple Very short (0.01-0.1) Television pick-up
P-19 Orange Long Radar indicators

Applications of cathode ray tube

Cathode ray tubes with large screen and incorporating sweep circuits are used
for generation of images in television receivers. These CRT based television
receivers are being replaced with modern devices such as TFT monitors, LCD,
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LED, plasma monitors, and so on. Cathode ray tubes are also used in radar to give
visual indication of position (azimuth angle, elevation angle, and distance) of a
target. These targets could be aeroplanes, ships, etc. By far, the most important
application of CRT is in cathode ray oscilloscopes that are used as a test-
equipment for several types of analysis such as study of waveform, measurement
of voltages, measurement of currents, and measurement of frequency. To study
the waveform of a given alternating voltage, it is applied to the y-input terminals
of the oscilloscope. An internally generated saw-tooth shaped time base voltage
is applied to the x-deflection plates of the oscilloscope. The oscilloscope screen
then displays the input waveform for analysis. The whole process is shown
schematically in Fig. 1.16. In this figure, (a) is the input waveform, (b) is the time
base voltage, and (¢) is the oscilloscope display.
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Fig. 1.16 Display process in a cathode ray oscilloscope

The size of the pattern obtained on the screen can be varied by adjusting the gain
control. The pattern obtained on the screen becomes steady only when the time
period of the input alternating voltage is either equal to or is an exact submultiple
of the time period of time base voltage. The time period of the time base voltage
can be varied using the coarse and fine frequency controls. The pattern displayed
can then be used to carryout measurements of voltages, currents, frequency, phase
difference, etc.
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e The study of motion of electrons in electric and magnetic fields is called
electron ballistics.

e The wave-form display on the face of a CRT can be measured visually
against a set of horizontal and vertical scale marks, called a graticule.

o A storage CRT can retain the display much longer, up to several hours, after
the image was first written on the phosphor.

Solved Problems

1.1 An electron is accelerated through a potential of 20,000 V. Calculate the
percentage change in the mass of the electron at this speed.

Solution

The speed u after acceleration through a potential V' is given by
U= %:5.9“105\/? (1.1.1)
Putting the given value of V'in Eqn (1.1.1), we get

1 =5.94%10° /20,000 = 8.40x107 m/s (1.1.2)

The mass of the electron moving with velocity m,, is related to the rest mass m,, of the
electron through the expression

oMo (1.1.3)

()

where c is the velocity of light and has a magnitude of 3 x 108 m/s. Putting the value
of u from Eqn (1.1.2) into Eqn (1.1.3) yields

m, = o = 1.042m,

2

|| 840x107
3x10°

The change in mass is given by

m, —my = (1.042—=1)m, = 0.042m,

Thus the percentage change in the mass of the electron is 4.2%.

1.2 Two parallel plane plates 4 and B are separated by a distance of 3 mm. A potential
difference of 400 V is applied between the two plates. An electron enters the region
between the plates through a small hole in plate 4. Calculate (i) the velocity with
which the electron strikes the plate B; (ii) the kinetic energy acquired by the electron
in joules and eV; (iii) the transit time of the electron as it travels from plate 4 to
plate B. Assume that the initial velocity of the electron is zero.
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Solution
(1) Velocity u, with which the electron strikes plate B is given by

Uy = }%=5.94x105x\/7 (1.2.1)

Putting the given value of V' in Eqn (1.2.1) yields
up=11.8 X 10° m/s
(i) Kinetic energy acquired by the electron in joules, KE, is

KE =eV =1.602x107" x400 = 6.408x107'7J

KE ineVis
KE =400¢eV

(iii) Transit time, ¢ 5, is given by

_ 2l _2x3x107

= =0.505%10"% s =0.505 ns
ug  11.88x10°

AB

1.3 An electron enters a region having a perpendicular magnetic field of flux
density 0.02 Wb/m?. The initial speed of the electron is 5 x 107 m/s. Calculate the
radius of the circular path followed by the electron. Assume e = 1.6 X 107°C and
m,=9.1 x 107! kg.

Solution
The radius 7 of the circular path followed by the electron is given by

_mu
r=2 (1.3.1)

Putting the given values in Eqn (1.3.1) yields

91X 107! x 5x 107
1.6 X107 % 0.02

resulting in
r=142x107m

1.4 A cathode ray tube electric deflection system consists of deflection plates 3 cm
long, with a uniform spacing of 4 mm between them. The fluorescent screen is 30 cm
away from the centre of the deflection plates. Determine the deflection sensitivity if
the final anode has a potential of 2.5 kV.

Solution

The deflection sensitivity S, is given by

__L
Se =347 (1.4.1)
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where the symbols have the same meaning as in Eqn (1.58).
Putting the given values in Eqn (1.4.1), we get

g _30x1072x3x1072
¢ 2x4x107 %2500
leading to

S, =4.5x10" m/V

1.5 An electron is placed in a cathode ray tube. An electric field of 3 x 10* N/C is
generated by a nearly uniform distribution of charges on the deflecting plates of the
tube. The direction of the electric field is shown in Fig. 1.5.1. Find the acceleration of
the electron and comment on the result obtained.

Solution y

Using the given data we can find the electric

. Deflecti
force being exerted on the electron by the E epthC eéon
electric field in the vertically upward direction. /

X
F=¢E
_ ?—e) < E Fig. 1.5.1 Direction of the

electric field
If the y-axis is vertically upward

E, =3x10*N/C and

E_ =0 [i.e., the force has only y-component]

F,=(-e)xE,
= (-1.6x107" C)x (3x10* N/C)
=—48x107°N

Now, as per Newton’s second law, we can say that this force gives the electron an
acceleration

£, —48x10°N
m, 9.1x107 kg
=-5.3x10" m/s?

Cly =

The negative sign tells us that the direction of this acceleration is downward, i.e.,
opposite to the direction of the electric field.

Comment: In this calculation, we have neglected the acceleration due to gravity,
since this acceleration is much smaller than that due to the electric field.

1.6 Thebeam of electrons which hits the phosphor screen in a cathode ray oscilloscope
has to undergo complex deflection mechanisms. An experiment on the motion of
electron beam in an oscilloscope was conducted. A potential of 2000 V was applied
to the vertical deflection plates. Estimate the velocity with which the electron beam
will travel.
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Solution
Assuming initial velocity

Uy, =0

u (i.e., velocity of electron beam) = f%

_[2x1.6x107"7 x 2000
9.1x107

=26.5x10° m/s

1.7 For the situation described in Problem 1.6, assume that the electron leaves the
first plate with zero initial velocity. How much time will it take to cover a distance
of 5 cm?

Solution

Length to be covered (/) =5 cm
u,, (as calculated in Problem 1.6)

=26.5x10° m/s

_ 2X5cm
26.5x10° x 10% cm/s

__ 10
26.5x10%

=3.7ns

1.8 If a particle moves in a uniform magnetic field, find an expression for the radius
of the circular orbit along which this particle will move.

Solution

The above figure shows a region with a uniform magnetic field, directed perpendicu-
larly into the plane of the page.

Suppose that the given positively charged particle
has an initial velocity in the plane of the page. This
initial velocity is perpendicular to the magnetic
field. Magnetic force is then in the plane of the ) «
page, perpendicular to both the velocity and the

magnetic field.

Now, the acceleration caused by this force has X v
magnitude
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and its direction is perpendicular to the velocity. Such an acceleration is characteristic
of uniform circular motion. Thus, the particle will move in a circle of radius » with

an acceleration given by
B
m
This acceleration will play the role of the centripetal acceleration é, that is,

qvB _\?

m r

_my
I"—qB

Recapitulation

e A steady supply of at least 2 kV and pressure below 1 atm. leads to glow
discharge.

e Crookes dark space length, d, and the gas pressure, p, are related through the
empirical relation

d=4.p
p

e The velocity, u, acquired by an electron starting from rest and accelerating
through potential ¥ is given by

2Ve
m

e The time period, 7, of revolution of an electron in a perpendicular magnetic
field is given by
_2mm
eB
¢ In a non-perpendicular magnetic field the path of the electron is a helix with
pitch p, given by
_ 2mmu cos 6
P = Be
where 6 is the initial angle of launch with respect to the magnetic field.
e The deflection sensitivity, S,, in an electric deflection system is given by
__Ll
¢ 2dV,

e The deflection sensitivity, S,,, in a magnetic deflection system is given by

l,L./e/m
S =

m ﬁ
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Review Questions

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
1.10

1.11
1.12

1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20

1.21

Explain the following terms:

(a) dark discharge (b) brush discharge

(c) spark discharge (d) arc discharge

Describe the different regions of a glow discharge using a suitable schematic
diagram.

What is black discharge?

Derive expressions for the velocity and position of an electron moving in a
region with applied uniform electric field £, j. Assume the initial velocity of
the electron to be zero.

Derive expressions for increase in the kinetic energy of an electron moving in
a region of uniform electric field. Assume the electron to enter the region with
zero initial velocity.

Derive an expression for the time period of revolution of an electron in a
perpendicular magnetic field.

An electron enters a region of magnetic field with an initial velocity in a
direction that is not perpendicular to the magnetic field. Draw a schematic
diagram of the trajectory of the electron.

A charged particle is moving in a region having electric and magnetic fields.
The electric field, magnetic field, and initial velocity are perpendicular to one
another. Under what condition would the charged particle pass through this
region undeflected?

Draw a schematic diagram showing the important parts of a cathode ray tube.
Explain with the help of a suitable schematic diagram the process of focussing
of electron beams using electric field.

How is magnetic field used to focus a beam of electrons?

Derive an expression for the deflection sensitivity of the electric deflection
system.

Derive an expression for the deflection sensitivity of a magnetic deflection
system.

What is an ion spot? How is it avoided using suitable designs?

Differentiate between fluorescence, luminescence, and phosphorescence.
Explain the important regions of a glow discharge.

How does displacement of a charged particle moving in a uniform electric field
depend upon the transit time?

Derive an expression for the transit time of a charged particle between two
parallel plates maintained at different potentials.

Derive an expression for the radius of the circular path of an electron moving
in a perpendicular magnetic field.

Derive an expression for the pitch of an electron moving in a non-perpendicular
magnetic field.

Explain three important components of a CRT.
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1.22

1.23

1.24
1.25

1.26
1.27
1.28

1.29
1.30

Differentiate between the focussing effect of electric field and magnetic field
with suitable diagrams.

On what factors does deflection sensitivity for the electric and magnetic
deflection system depend?

Derive the functioning of an ion trap.

Why does cathode luminescence more aptly describe the screen action in a
CRT?

What type of devices are replacing CRT based television receivers?

How are CRTs used in radar?

Give a schematic representation of the display process in cathode ray
oscilloscope?

What are phosphors?

What is aquadag?

1.1

1.2

1.3

A potential difference of 2.5 kV is used to accelerate an electron. Calculate the
final speed of the electron and the percentage change in its mass at the final
velocity.

Hint:u = [% and mzL
m 2
1—-| &
()
Ans. u=2.97x10" m/s; 0.5%

Consider the situation presented in solved numerical 1.1. Assume that the
initial velocity of the electron is 2 x 10°m/s directed towards plate B. Calculate
(1) velocity with which the electron strikes plate B; (ii) kinetic energy acquired
by the electron in joules and eV; (iii) transit time of the electron as it travels
from plate A4 to plate B.

{Hint: Up = 2;V +u? }

Ans. (i) 12.04 x 105m/s; (ii) 652.33 x 107197, 407.71 eV (iii) 0.43 ms

A parallel plate diode consists of a cathode and an anode spaced 4 mm apart. The
anode is kept at a dc potential of 250 V with respect to the cathode. Determine
the velocity and the distance travelled by an electron after 0.6 ns if the initial
velocity of the electron is zero.

‘:Hint: u,= %t and x = ;—thz}

Ans. 6.596x10° m/s; 1.98 107> m
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1.4

1.5

1.6

1.7

1.8

1.9

An electron enters a region of uniform perpendicular magnetic field of flux
density 0.04 Wb/m?. The initial speed of the electron is 6 x 107 m/s. Calculate
the radius of the circular path of the electron. Assume e = 1.6 x 107!° C and
m,=9.1 x 107" kg.

Hint: ="
int:r B
Ans. 0.853 cm

An electron with a speed of 5 x 107 m/s enters a region having a uniform
magnetic field at an angle of 60° with the electron’s velocity. Determine the
magnetic flux density required to make the electron go through a helical path of
0.8 m diameter. Also calculate the time taken by the electron to complete one
revolution.

{Hint: r :w and T zzﬂm}
Be

Be

Ans. 0.308x107° Wb/m*; 115 ns
An ionized hydrogen atom and an electron, both having an initial velocity
corresponding to 250V, are projected perpendicular to a uniform magnetic field
of flux density 5 x 107> wb/m?. Calculate the ratio of radii of the circular paths
followed by the particles.
[Hint: my,=1837m, |

Ans. ™ = [1837 = 42.9

e
The electric deflection system of a cathode ray tube consists of deflection plates
4 cm long with a uniform spacing of 3 mm between them. The fluorescent
screen is located 30 cm from the centre of the deflection plates. Determine the
deflection sensitivity in mm/V if the anode is maintained at a potential of 3 kV.

{Hint:S - _Ll }

<24V,

Ans. 0.375 mm/V
The deflection plates of a cathode ray tube are 4 cm long and have a spacing of
5 mm between them. The screen of the tube is at a distance of 25 cm from the
centre of the deflection plates. The final anode voltage is 2000 V. A voltage of
50 V is applied between the deflection plates. Determine the displacement of the
spot produced on the screen.

.oy LVI
{Hlnt.D 2dVl}

Ans. 2.5 cm
A cathode ray tube uses a magnetic deflection system. The system consists of
a screen located 25 cm from the centre of the deflection coils. The length of
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1.10

1.11

1.12

1.13

1.14

1.15

the region having a uniform magnetic field along the tube’s axis is 3 cm. A
deflection of 2 cm is required on the screen. Calculate the amount of magnetic
flux density required if the final anode voltage is 1000 V. Also calculate the
deflection sensitivity.

Hint: B= ﬂ

1 LJel
miN €l Ans. 2.846x10~* Wb/m?; 70.27 m/(Wb/m?)

An electron moving through an electric field is observed to have an acceleration
of 10'® ¢cm/s? in the x-direction. What must be the magnitude and direction of
the electric field that produces this acceleration?

Ans. =5.7x10* N/C

Our planet earth possesses both a magnetic field as well as an atmospheric
electric field. On a typical clear day, clectric field strength is about 100
N/C and it points vertically downward. Considering this value of electric field
and also taking gravity into account, what should be the acceleration of a dust
particle of mass 1 x 108kg carrying a single electron charge?

Ans. 6.2 m/s?

In an X-ray tube, electrons are exposed to an electric field of 8 x 10° N/C. What
is the force on an electron? What is its acceleration?

Ans. 1.3 x 103N, 1.4 x 107 m/s?

An electron of speed 4.0 X 10° m/s is observed to move in a circular orbit of
radius 0.4 m in a magnetic field. What is the strength of the magnetic field that
will lead to such circular motion?

Ans. 1.0x 102T

An electron enters a region having a pd of V volts. The final velocity of the
electron as it exits the region is 9 X 107 m/s. Calculate the accelerating potential
if the initial velocity is zero.

Ans. 22,958 V

An electron enters a region having a perpendicular magnetic field. Initial
speed of the electron is 107 m/s. Radius of the circular path followed by the
electron is 1.5 X 102 m. Determine the magnitude of the magnetic field. Assume
e=1.6x10" Candm,=9.1 x 103" kg.

Ans. 3.8 X 1073 wb/m?2.
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Learning Objectives

After going through this chapter the student will be able to
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understand different types of solids and define amorphous, polycrystalline, and
single crystal solids

understand the concepts of crystal lattice including unit cell and primitive cell
understand different types of atomic bonding

understand the nature of imperfections and impurities in solids

define Miller indices, Van der Waals bond, ionic bond, covalent bond, and metallic
bond

understand point and line defects and substitutional and interstitial impurities
understand the salient features of bulk and epitaxial crystal growth including
pseudomorphic layers, reaction chamber, and critical thickness

solve numericals based on hard sphere packing, Miller indices, density calculation
from known values of lattice constants, surface density of atoms in different
planes, and the Czochralski growth technique
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Introduction

The present age is being called the age of electronics. To be more precise, it
can be called the age of semiconductor electronics. From individual discreet
devices to very large scale integrated circuits, the progress in semiconductor
technology has been stupendous. Why do semiconductors behave the way they
do is the topic of discussion in this chapter. To answer this we need to know the
different types of solids and the arrangement of individual atoms in them. Also
some typical techniques of epitaxial growth would be covered in this chapter.

2.1 Semiconductor Materials

Semiconductors comprise a group of materials that have their electrical
conductivities lying between metals and insulators. Furthermore, their
conductivities can be modified by introducing controlled amounts of desirable
impurities. Optical excitation and temperature also affect their electrical
conductivity. Semiconductors are of two types, namely elemental semiconductors
and compound semiconductors. Silicon and germanium are two common
elemental semiconductors. Elemental semiconductors are found in group IV
of the periodic table and are composed of single species of atoms. Compound
semiconductors on the other hand are made up of a combination of more than
one single species of atoms. Some common compound semiconductors are
made up of either a combination of group III and group V atoms (GaAs is the
most common example) or a combination of group II and group VI atoms (ZnS
is a prominent example). Two group IV elements can also combine to form
a compound semiconductor. Table 2.1 lists some elemental and compound
semiconductors.

More complicated ternary (Al, Ga, As) and quarternary (InGaAsP)
compound semiconductors are also finding increasingly sophisticated
applications.

2.2 Types of Solids

There are three general types of solids depending upon the arrangement of the
constituent atoms. The three types are crystalline/single, polycrystalline, and
amorphous crystal solids. Atoms are arranged in a regular manner in a crystalline
solid. A three-dimensional repetition of a certain basic pattern constitutes the
solid. In a single crystal the periodicity of the basic pattern extends throughout the
material. The periodicity of the structure gets interrupted at certain boundaries in
polycrystalline material. These so called boundaries are called grain boundaries.
Specific grain sizes may vary from several Angstroms to macroscopic
dimensions. An interesting situation is one in which the size of the grains
within the grain boundaries becomes comparable to the size of the basic pattern.
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Table 2.1 (a) The region of the periodic table where semiconductors occur;
(b) Elemental and compound semiconductors

(a) 1T 11 v A\ VI
B C N
Al Si P S
Zn Ga Ge As Se
Cd In Sb Te
(b) Binary I11-V Binary I1-VI
Elemental IV compounds compounds compounds
Si SiC AlP ZnS
Ge SiGe AlAs ZnSe
AlSb ZnTe
GaN Cds
GaP CdSe
GaAs CdTe
GaSb
InP
InAs
InSb

The periodicity is completely absent at this stage and the material is now called
amorphous. Figure 2.1 is a schematic two-dimensional representation of the three
types of solids.

Grain @ /eram boundary

Crystalline Polycrystalline Amorphous
(@) (b) (c)
Fig. 2.1 Three types of solids

2.3 Crystal Lattices

Crystalline materials consist of a periodic arrangement of the constituent atoms.
In this section we will discuss some important characteristics of crystalline
materials.

2.3.1 Unit Cell

We will here focus our attention on single crystals. As outlined above, in a single
crystal a basic pattern consisting of a single atom or a group of atoms is repeated
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at regular intervals in all the three dimensions.

This periodic arrangement of atoms in a crystal o & 06 0 0 0O
is called a lattice. Atoms can be arranged in e 0o 0 0 0 o
different forms in a lattice. The distance between
atoms and the relative orientation of the atoms
can have different forms. Every lattice consists of
a regular repetition of a fundamental unit called © © © © ® @

a unit cell. The entire crystal can be constructed Fig. 2.2 Two-dimensional
from this unit cell. Figure 2.2 shows an infinite single crystal lattice
two-dimensional array of lattice atoms.

Each dot represents a particular atom and is referred to as a lattice point. Any
lattice point can be translated through a distance @ in one direction and a distance
b in a second noncolinear direction to create the two-dimensional lattice. There
is no need for the two translation directions to be perpendicular to each other. A
three-dimensional lattice can be created using translation in a third noncolinear
direction through a distance c. A general three-dimensional lattice can be obtained
by a periodic repetition of a fundamental unit called a unit cell. A unit cell is thus
a small volume of the crystal that reproduces the entire crystal through periodic
repetition. There is nothing unique about a unit cell as shown schematically for a
two-dimensional lattice in Fig. 2.3.

e @ 6 o6 o6 o o o o o
\

© o9 0 00
b,
® o s>0 0 0

b\ "\
[ ]
b/ c
.al........

Fig. 2.3 Two-dimensional single crystal lattice showing
various possible unit cells

The smallest unit cell that can be repeated periodically to form a crystal is
called a primitive cell. The primitive cell is however not always a good unit cell
to represent a lattice. Very often a different choice of
a unit cell leads to a better representation. A unit cell ’
involving orthogonal directions can, for example,
lead to some simplifications. In general a unit cell can
be characterized by a set of three vectors—a, b, and
c—which may or may not be orthogonal or equal in

9}

lengths (Fig. 2.4). A lattice point is indistinguishable a
from another lattice point if the displacement vector Fig. 2.4 A generalized
between the two can be represented by unit cell

r=pa+qgb+sc 2.1
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where p, g, and s are integers and vectors a, b, and ¢ are called basis vectors.
These basis vectors are also referred to as direct basis vectors. For a given set of
direct basis vectors, we can define three reciprocal lattice basis vectors a*, b*,
c* as,
bxc cxa axb

2 2

, b*=2rm- , c*=2m-
a-bxc a-bxc a-bxc 22)

a*=2rw

From Eqn (2.2) we can see that a-a* =2, a-b* =0, etc. The general reciprocal
lattice vector g is given by,

g = ha* 4+ kb* + [c* (2.3)

where 4, k, and [ are integers.

Using Eqs (2.1) and (2.2) we can conclude that g-r = 2 7 X integer; thus each
vector of the reciprocal lattice is normal to a set of planes in the direct lattice.
Furthermore, the volume v* of a unit cell of the reciprocal lattice happens to be
inversely proportional to the volume v, of unit cell involving the direct lattice.
The exact expression is

3
Vi = _(2:) (2.4)
where, v,=a-b Xc¢ (2.5)

2.3.2 Cubic Lattices

The simplest form of a lattice is called a cubic lattice. It is called so because the
unit cell for such a lattice is a cubic volume. For a cubic lattice, the vectors a, b,
and c are equal in length and perpendicular to each other. The three most common
cubic lattices are simple cubic (sc), body-centered cubic (bec), and face-centered
cubic (fcc). These three lattice types are shown in Fig. 2.5.

BEggP <

(a) Simple cubic (b) Body-centered cubic (c) Face-centered cubic

od
L\~
S

Fig. 2.5 Unit cells for cubic lattices

The simple cubic structure consists of an atom located at each corner. The
body-centered cubic structure has an additional atom at the centre of the cube.
The face-centered cubic structure has additional atoms on each face of the cube.

2.3.3 Crystal Planes and Directions

Semiconductor devices are generally fabricated on surfaces of semiconductor
wafers (circular pieces of semiconductor crystals of varying sizes). Many
properties of semiconductors are also direction dependent. A standard method of
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indicating planes and directions in semiconductors is, therefore, very useful. A set
of three integers /, k, and / shown within brackets [i.e., (4k/)] is generally used
to indicate a particular plane. These integers can be found using the following
simple procedure:

1. Determine the intercepts of the plane with the crystal axes and express
them as integral multiples of basis vectors. A translation of the plane with
respect to the origin is permitted as long as the direction of the plane is
maintained.

2. Find the reciprocals of the three integers obtained in step (1) and reduce them
to the smallest set of integers maintaining their relationship. Designate these
integers /, k, and /.

3. Finally label the plane as (hk7).

Some common lattice planes for a cubic crystal are shown in Fig. 2.6.

c c c
— - y \
| |l I\
I el I
| | oo
| | I N
it iy — f——'7 = //.'——'—/—/'77
/ b /= b Ly - b
/ /- v
a a a
(a) (b) ()
Fig. 2.6 Three lattice planes for a cubic lattice (a) (100) plane, (b) (110) plane,
(c) (111) plane

The set &, k, [ is called the Miller indices. These numbers define a set of parallel
planes inside the lattice. Many planes in a lattice are equivalent. Any given plane
with a set of Miller indices can be shifted within the lattice by choosing a suitable
position and orientation of the unit cell. For example, the cube faces of a cubic
lattice are crystallography equivalent since the unit cell can be rotated in various
directions without affecting its form and appearance. Equivalent planes are
shown enclosed in curly brackets { }. The six equivalent faces of a cubic lattice
are designated as {100} and are shown schematically in Fig. 2.7.

Directions in a lattice are determined using the following procedure:

1. Choose the basis vectors with a suitable origin.

2. Express the vector components for the particular direction in multiples of the
basis vectors.

3. Reduce the three integers to their smallest values while maintaining the
relationship between them.

4. Express the specific direction within square brackets, e.g., [abc].

The body diagonal of a cubic lattice has a [111] direction as shown in
Fig. 2.8.
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(001)

>t

(100) 001)
(010)
(010)

xY (100)
Fig. 2.7 Equivalent {100} planes

Many directions in a lattice are equivalent. This depends upon the choice
of the orientation of axes. Equivalent directions are expressed within angular
brackets <>. Some equivalent <100> directions are shown in Fig. 2.9.

z zA [001]
A
[111]
A
[010]
c y
¢ I b [110]
/ ) o >
0 4' a
T~ X
[100]
Fig. 2.8 Schematic diagram of Fig. 2.9 (100) equivalent
the [111] direction directions

For cubic lattices, the [kl ] direction is perpendicular to the 44/ plane as shown
in Fig. 2.10.

|
Ql
(9}

N [111]

\ 7/
w[

[100] [110]

Ql
Ql
Ql

(@) (b) (©)

Fig. 2.10 Orthogonality of three lattice directions and planes: (a) (100) plane and [100]
direction, (b) (110) plane and [110] direction, (c) (111) plane and [111] direction
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The crystal structure of a crystalline material can be studied using X-ray
diffraction (XRD) technique. In this technique, a beam of X-rays having a single
wavelength that is of the same order of magnitude as the atomic spacing of the
material is made to strike the material. These X-rays are then scattered in all
directions. Though most of the radiation scattered from one atom cancels out
the scattered radiation from other atoms, X-rays striking certain crystallographic
planes at specific angles get reinforced instead of cancelling out. This phenomenon
is called diffraction. The condition that needs to get fulfilled for this reinforcement
to take place is given by,

2d,,sin® = A

where d,,, represents the interplanar spacing between the planes and A is the
wavelength of the incident X-rays.

2.3.4 Diamond Lattice

The modern semiconductor industry uses a variety of semiconductor materials
such as Si, Ge, GaAs for different applications. Many semiconductors have a
diamond lattice as the basic lattice structure. Elemental semiconductors such as
Si and Ge have a pure diamond lattice. Some compound semiconductors such as
GaAs have a zincblende lattice, which is also closely related to a diamond lattice
with two different types of atoms in the lattice. We will now discuss some salient
features of the diamond lattice. The unit cell of a diamond lattice is shown in
Fig. 2.11.

The diamond lattice can be obtained by inserting one fcc lattice into another
fcc lattice displaced along the space diagonal by one-fourth of its length.
Figure 2.12 shows a tetrahedron shown by a dotted line.

Edge length

Fig. 2.12 Schematic diagram of
a tetrahedron within
the diamond unit cell

In the diamond lattice every atom is surrounded by four nearest neighbours
located at the apexes of the tetrahedron with an edge a/2.
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All atoms shown in Fig. 2.11 are
similar. If alternate atoms differ, then
what results is a zincblende structure.
Thus in a zincblende structure the
two interpenetrating sublattices are
composed of different atoms. For
example, in a GaAs lattice one of the
sublattice is of Ga and the other of
As (see Fig. 2.13). Most compound
semiconductors have the zincblende
structure though some II-VI compound Fig. 2.13 The zincblende (sphalerite)

semiconductors display a slightly lattice of GaAs
different structure, called wurtzite
lattice.

o There are lattices of two types: the translational Bravais lattice and the
lattice with a basis.

e The diamond lattice is an example of a three-dimensional lattice with a
basis.

e Some solids have two or more crystal structures, each of which is stable
for a particular range of temperatures and pressures.

2.4 Atomic Bonding

A solid exists in that state due to the forces of interaction between its constituent
particles. These forces of interaction result in bonds between the atoms of the
solid. We will now learn the salient features of some of these bonds.

2.4.1 Van der Waals Bond

The most general bond that exists between any two atoms or molecules is due to
Van der Waals forces. You would know that these forces are introduced in order
to explain the equation of state of real gases. Van der Waals equation is of the
form

[p +Va2j(V—b):RT (2.6)

where the correction terms a/V? and b account for the forces of attraction and
repulsion acting between the real gas molecules, respectively. Van der Waals
forces manifest in the interaction between molecules with saturated chemical
bonds (O,, H,, N,, CH,, etc.) and also between the atoms of inert gases. This
makes it possible for them to exist in both liquid and solid states.
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2.4.2 lonic Bond

Atoms occupying places in the periodic table next to inert gases have a tendency
to acquire the electronic configuration of inert gases by either accepting or giving
away electrons. The valence electron of alkali metals, which immediately follow
the inert gases, moves outside the closed shell and thus is only weakly connected
to the nucleus. The halides immediately preceding the inert gases lack an electron
required to complete a stable shell, which is a characteristic of an inert gas.
Therefore, the halides exhibit a high affinity towards an excess electron.

Atoms such as metals and halides are bonded in the following way. First, a
recharging of the atoms takes place. The electron from the metal moves over to
the halide, enabling it to become a positively charged ion. The haloid atom in turn
becomes negatively charged. The interaction between these ions is governed by
Coulomb’s law as applicable to two opposite charges. Such a bond is known as an
ionic bond. Some common ionic crystals are sodium chloride (NaCl), potassium
iodide (KI), rubidium bromide (RbBr), etc.

2.4.3 Covalent Bond

In a covalent bond neighbouring atoms share their valence electrons. A hydrogen
molecule is an example of covalent bonding. Each hydrogen atom has one electron
and needs one more electron to complete the lowest shell. Covalent bonding leads
to the sharing of electrons between atoms so that the valence energy shell of each
atom is full.

Group IV atoms such as silicon (Si) and germanium (Ge) also form covalent
bonds. These elemental semiconductors have four valence electrons. They need
four more electrons to complete the valence energy shell. Let us understand this
using the example of silicon. Each silicon atom has four valence electrons. It also
has four nearest neighbours. Each valence electron is shared with the valence
electron of a neighbouring atom in a covalent bond as shown in Fig. 2.14.

A hydrogen atom in a hydrogen molecule does not have additional electrons
after forming a covalent bond with another hydrogen atom. However, the silicon
atom has additional electrons with which it can form covalent bonds with electrons

@
I I I I7C§IID7I
© -9 G- -0=0=0-
©
@
(@) (b)

Fig. 2.14 (a) Silicon valence electrons and (b) covalent bonding between neighbouring
electrons
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of neighbouring atoms. The process can go on, and silicon arrays can lead to a
large crystal. In this crystal, each silicon atom has four nearest neighbours and
eight shared electrons. As discussed earlier, these nearest neighbours along with
the host atom have a tetrahedral structure and have a diamond lattice structure.
We can thus see that the atomic bonding and crystalline structure are correlated.

2.4.4 Metallic Bond

Metals are a special group of substances occupying places at the beginning of
every period of the periodic table. Metallic bond cannot be explained by the
presence of ionic or covalent bond. This is because this type of the bond exists
between identical atoms having identical affinity for electrons. Metallic atoms
do not have enough valence electrons to form covalent bonds with their nearest
neighbours. A copper atom, for example, has one valence electron and thus can
form a bond only with a single atom. However, it is known that in the copper
lattice every atom is surrounded by 12 neighbours, which is impossible without
the presence of suitable lines of force. In metallic atoms the external valence
electrons are rather weakly coupled to the nucleus. The atoms come so close
together in liquid and solid states that the valence electrons are able to leave
their respective parent atoms and wander throughout the lattice. This results in
a homogeneous distribution of negative charge in the lattice. The metallic bond
is due to the interaction of positive ions with the electron gas. All the atoms of
the crystal take part in the so called collectivization (no special attachment to
respective atoms) process.

2.5 Imperfections and Impurities in Solids

In our discussion on solids so far we have limited ourselves to ideal perfect
systems. Though technology has reached high levels of perfection, the ideal
single-crystal structure is still nearly impossible to reach. Two types of
irregularities usually manifest themselves in a real crystalline structure. One of
them is imperfections in the basic arrangement of atoms constituting the crystal
and the other is the introduction of impurities during the various growth and
processing steps. These imperfections and impurities can play a key role in the
electrical characteristics of the material. We would now give a brief outline of
this important topic.

2.5.1 Imperfections

There are several imperfections in a crystal lattice. Some of the more important
ones are the following.

Thermal vibrations An ideal single crystal consists of atoms at well-defined
lattice sites separated by a constant distance between themselves. At any finite
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temperature the crystal has a temperature-dependent thermal energy. This thermal
energy in turn leads to random vibration of the atoms about an equilibrium lattice
point. The distance between atoms is no more a constant but fluctuates randomly,
disrupting the ideal geometric arrangement of atoms. This imperfection is
called lattice vibration. Some electrical parameters are affected due to this
imperfection.

Point, line, and plane defects When the absence of an atom or dislocation
in a crystal is limited to individual lattice sites, the defect is called a point defect.
If an atom is missing from a particular lattice site, the defect is called a vacancy.
The presence of an atom at locations between lattice sites is called an interstitial.
Figure 2.15 is a schematic representation of a vacancy and an interstitial.

PR

° ° ° ° /

Vacancy /'/ /'/ f ,‘ /

d d ET defect iti /l~——~# 74/
/
/

"\0/___~—0’/” -
[ [ ° ) 7 A //
- - -6 -9
(a) (b)

Fig. 2.15 Two-dimensional single-crystal lattice showing (a) vacancy defect and
(b) interstitial defect

Vacancies and interstitials change the electrical properties of a material. This is
often due to the deviations produced in the nature of chemical bonding between
atoms. Sometimes a vacancy and an interstitial may occur in close proximity.
Thus atoms may move from their natural sites to interstitials, thereby creating
a vacancy. This vacancy—interstitial defect is called a Frenkel defect. Frenkel
defects produce effects that are characteristically different from the ones produced
by simple vacancies or interstitials.

More complex defects can also occur in crystals. One such defect is Schottky
defect. In this type of defect the vacancies are not o
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accompanied by a simultaneous transitionofatoms | 1 1 1 I | | | |
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to interstitials. If an entire row of atoms ismissing | | | | | | | | |
from the normal lattice site, the defect is called a T T T T T T T T T
line defect. A line defect is also referred toasaline @ ® @ @ © & ¢ ¢ o
dislocation. A two-dimensional schematic diagram ‘9 \Q \Q \Q 9’ 9’ p’ 9’
of a line dislocation is shown in Fig. 2.16. e e o 9 00 0
Line dislocations also disturb the ideal atomic N
. .. . . . e 6 6 o o ¢ o o
periodicity and affect the ideal atomic bonds in the
Fig.2.16 A line dislocation in

crystal. Due to these reasons, a line dislocation can
alter the electrical properties of a semiconductor
material.

a two-dimensional
lattice
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2.5.2 Impurities

Contemporary refining techniques cannot guarantee absolute purity of crystals.
A very pure material may contain up to 10~ per cent of impurities, which
corresponds to an impurity atom concentration of about 10! m= of the material.
This level of impurity concentration corresponds to a grain of rye contained in
about 10 tonnes of wheat. Such levels of impurities can, however, have appreciable
effects in altering chemical, optical, electrical, and mechanical properties of the
material. When impurity atoms are located at the normal lattice sites, they are
called substitutional impurities. On the other hand, if the impurity atoms are
located between normal lattice sites, they are called interstitial impurities. A
schematic representation of these two types of impurities is shown in Fig. 2.17.

Substitutional |
impurity

Interstitial
impurity

(b)
Fig. 2.17 (a) Interstitial and (b) substitutional impurities

The controlled addition of desirable impurities to modify the conductivity

of a semiconductor material is called doping. Impurities such as B and Al are
called acceptor impurities in silicon because they can accept electrons, whereas
impurities such as P and As are called donor impurities in silicon because they
can contribute additional electrons. These acceptor and donor impurities are
substitutional impurities in silicon. Some impurities such as Mn and Ni are
interstitial impurities in silicon. Doping of an impurity is carried out using two
main techniques, namely impurity diffusion and ion implantation.
Impurity diffusion For carrying out impurity diffusion, the semiconductor
crystal is kept at a high temperature (around 1000°C) gaseous atmosphere of the
desired impurity atom. At such high temperatures the crystal atoms can move
randomly around their lattice sites. Vacancies can be created due to this random
motion and impurity atoms can move through the crystal by hopping from vacancy
to vacancy. In the impurity diffusion process, the impurities move from a region
of high concentration to a region of lower concentration within the crystal. When
the temperature is reduced, the impurity atoms get permanently frozen in the
substitutional lattice sites. Diffusion of desirable impurities is a key process step
towards the development of complex semiconductor devices and circuits.

lon implantation This is another process by which a known amount of dopant
atoms can be introduced into a semiconductor. In this process, a beam of high-
energy (50-100 keV) dopant ions is directed towards the semiconductor surface.
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The ions penetrate the crystal and come to rest at some average depth. Thus ion
implantation allows the device engineer to introduce impurity atoms into specific
regions of the semiconductor crystal. This is a relatively lower temperature process
than diffusion. All this is however achieved at a price. The incident impurity
ions collide with the crystal atoms, leading to lattice-displacement damage. This
displacement damage can be removed by a process called thermal annealling,
in which the temperature of the crystal is raised for a short duration. Thus ion
implantation is always followed by a thermal annealling step.

2.6 Bulk Crystal Growth

The tremendous growth in the semiconductor industry is completely dependent
upon the supply of high-purity single-crystal semiconductor material. Using
specialized techniques it is possible to obtain silicon with impurities less than
one part in 10 billion. Such a high level of purity requires careful handling and
treatment at all the stages of the fabrication process.

2.6.1 Starting Material

The starting raw material for a Si crystal is silicon dioxide (SiO,). Silicon dioxide
reacts with carbon in the form of coke using an arc furnace. Temperatures used
are in the region of 1800°C. This reduces SiO, according to the reaction

Si0, +2C — Si + 2CO 2.7

The silicon obtained is called metallurgical grade silicon Si (MGS) and has
impurities such as Fe, Al, and heavy metals at several hundred to several thousand
parts per million (ppm). (You would recollect that 1 ppm of Si corresponds to an
impurity level of 5 X 10'® cm™). The metallurgical grade Si is not single crystal
and is not pure enough for electronic applications. It needs to be further refined to
electronic grade Si (EGS), which has impurities in the region of parts per billion.
MGS is reacted with dry HCI to form trichlorosilane (SiHCl;) according to the
reaction

Si + 3HC1 — SiHC1, + H, 2.8)

Chlorides of some impurities present (FeCl;, for example) are also formed
during this process. SiHCl, is a liquid having a boiling point of 32°C, whereas the
chlorides of impurities have different boiling points. Fractional distillation is then
used to separate pure SiHCl; from the impurities. SiHCl, is then reacted with H,
to yield EGS, according to the reaction

2SiHC1, 4+ 2H, — 2Si + 6HCl1 2.9)

2.6.2 Single-crystal Ingots

The EGS obtained in the above process is polycrystalline in nature. The most
common technique to convert the polycrystalline EGS to single-crystal ingots is
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the Czochralski method. EGS is melted Pull direction
in a quartz-lined graphite crucible by T

heating it to the melting point of Si
(1412°C). Resistive heating is used
to achieve this. A seed crystal is then Seed —| 7
lowered into the molten EGS and then

raised slowly. The seed crystal serves

as a template for growth. The crystal is Resistive
also rotated slowly as it grows to ensure ~ heaters ~
temperature uniformity and to provide

a slight stirring effect. A schematic — Crucible
diagram of the Czochralski growth
process is shown in Fig. 2.18.

The shape of ingots is determined by
two competing processes. On one hand,
the crystal structure gives the growing ingot a polygonal shape. On the other
hand, the surface tension of the melt supports a circular cross-section just like
any other liquid that is allowed to acquire the equilibrium shape. Large ingots are
nearly circular in cross-section. The ingots so grown contain some undesirable
impurities. These are removed by using a technique called zone refining. A high-
temperature coil or RF induction coil is made to slowly pass along the length
of the boule. A thin layer of liquid is formed. A distribution of impurities takes
place between the two phases. This distribution is decided by the segregation
coefficient, which is the ratio of the concentration of impurities in the solid to the
corresponding concentration in the liquid. A segregation coefficient of 0.2 implies
that the concentration of impurities in the liquid is a factor of 5 greater than that in
the solid. As the liquid zone moves through the material, the impurities get driven
along with the liquid. When the RF coil is made to repeat the process several
times, most impurities are present at the end of the bar. This end is then cut off.

The fully grown boule is then mechanically trimmed to a proper diameter.
A flat perpendicular to the [110] direction [or the (110) plane] is then ground
over the entire length of the boule. The boule is then sliced into wafers. Most
silicon ingots are grown along the (100) direction. For (100) Si wafers, the {110}
cleavage planes are orthogonal to each other. The notch is then used to orient
the individual integrated circuit chips along the {110} planes so that sawings of
individual chips can be carried out with high yield.

The individual wafers so produced then undergo chemical-mechanical
polishing. The process uses a slurry of very fine particles of SiO, in a basic NaOH
solution. The end result is a surface with a mirror-like finish. Several applications
require only one of the two surfaces to be polished to this degree. Some special
processing sequences however require mirror finish on both sides of the wafer.

Intentional doping is also carried out to obtain Si wafers with specific electrical
characteristics.

Another crystal growth technique is called the floatzone (FZ) technique. A
schematic of the typical floatzone technique is shown in Fig. 2.19.
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Fig. 2.18 Schematic diagram of
Czochralski growth technique
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In this process, the refined
polycrystalline material is first
made into a rod. A small portion
of the rod is then melted locally
using a radio-frequency (RF) coil,
while the rod is slowly rotated.
The melting starts from the
lowermost portion of the rod which
also has the seed crystal. The
seed crystal thus determines the
orientation of the growing crystal.
The RF coil is slowly moved
upwards. This moves the molten
zone upwards towards the top
of the rod. The lower portion of
the rod then solidifies and forms
single crystal silicon. Unike the
Czochralski no crucible is used in
this technique, thus eliminating
contamination from the crucible.
This results in good doping
uniformity in the upper crystal
layers by optimizing the rod
rotation and RF coil movement
parameters.

Conductivity of semiconductors
measurement  method. A
schematic of a typical set-up
is shown in Fig. 2.20.

The set-up consists of four
equally spaced probes that can
be placed on the surface of the
semiconductor. In Fig. 2.20
the inter-probe distance is
indicated by s. The two outer
probes are used to drive a
small current through the
semiconductor. The two inner
probes are used to measure
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Fig. 2.19 Schematic of floatzone growth

technique

is generally measured using the four-probe

Fig. 2.20 Schematic of four-probe measurement
technique

voltage using a very high impedance meter. The high impedance meter ensures
negligible current flow through the contacts, thereby eliminating the effect of
contact resistance. For sample thickness w < s, the conductivity of the sample

is given by
IIn2
O =
vVITw




Growth and Crystal Properties of Semiconductors 49

The equation for ¢ is valid only if the thickness of the wafer is such that
the current is uniformly distributed throughout the thickness and the distance
between the probes is much smaller than the diameter of the wafer.

If w > s, conductivity o, is given by

_ I
T 2msV BI;‘

cd
The four contacts can also be realized on the

corners of a square as shown in Fig. 2.21 This
structure is called van der Pauw measurement
set-up. The expression for ¢ remains the same D
if the current source is connected between 0
two adjacent corners and voltage is measured gjg 2.21 Van der Pauw
between the other two. configuration

04

2.7 Epitaxial Growth

The process of growing a single-crystal layer with a specific orientation on a
substrate wafer is called epitaxial growth or simply epitaxy. Epitaxial growth
plays a very important role in the development of semiconductor devices.
When the epitaxial layer grown is the same as the substrate material, epitaxy
is referred to as homoepitaxy. If, on the other hand, the growing layer is of
a different material from the substrate, the process is termed heteroepitaxy.
The substrate serves as a seed for the growth of the epitaxial layer, but the
temperatures involved are much lower than those required to melt the material.
The growing crystalline layer maintains the structure and orientation of the
substrate. Thus in heteroepitaxy the substrate and the epitaxial layer material
must have the same lattice constant and lattice structure. Thus GaAs can be
grown on Ge substrates. Heteroepitaxy also opens up some very interesting
possibilities. GaAs and AlAs both have the zincblende structure with a lattice
constant of 5.65 A. Therefore, the composition x of the ternary compound Al
Ga,_, As can be chosen to have any value without affecting its lattice-matching
property to a GaAs wafer. The particular device requirement determines the
choice of a specific value of composition x.

Figure 2.22 shows the energy band gap E|, for several I1I-V ternary compounds
as a function of the lattice constant for a variation over a composition range.
Different ternary compound systems are shown in the figure. For ternary
compound InGaAs, the band gap changes from 0.36 to 1.43 eV and the lattice
constant changes from 6.06 A to 5.65 A as one goes from InAs to GaAs. Any
particular binary substrate is not suitable for the growth of the entire range from
InAs to GaAs. A particular composition of In, 5;Ga, 4,As is, however, possible to
be grown lattice matched on an InP substrate as shown in the figure.

Quarternary alloys such as InGaAsP can permit an even broader range of
semiconductor characteristics with lattice-matched substrates.
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Fig. 2.22 Lattice constants of III-V compounds

The epitaxial layers have a varied set of applications. For applications
involving some materials, it may not always be possible to grow these layers
on perfectly matched single-crystal substrates. For some applications, very thin
(~100 A) epitaxial layers on lattice-mismatched crystals are needed. For thin layers
with mismatch within a few per cent, the epitaxial layer grows with a lattice constant
in compliance with the substrate crystal. As the lattice constant of the epitaxial
layer adapts to the substrate, the layer is in compression or tension along the surface
plane. Such layers are strained and are called pseudomorphic layers. This situation
persists up to a particular thickness, called the critical layer thickness. The
magnitude of the critical layer thickness depends upon the magnitude of lattice
mismatch. Beyond the critical thickness, the strain energy leads to the formation
of defects called misfit dislocations. Strained-layer superlattice (SLS) structures
are grown using thin alternating layers of slightly mismatched crystal layers.
In an SLS, alternate layers are in tension and compression. The effective lattice
constant of an SLS is the average of the two bulk constituent materials. Figure 2.23
shows a schematic diagram of SiGe—Si heteroepitaxial system with two different
conditions.

2.7.1 Vapour-phase Epitaxy

The growth of epitaxial layers using crystallization from the vapour phase is
called vapour-phase epitaxy (VPE).
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t<t, t>t,

(@) (b)

Fig. 2.23 Heteroepitaxy of a SiGe layer on Si, (a) For layer thicknesses less than the
critical layer thickness, #., pseudomorphic growth occurs (b) Above ., misfit
dislocations form at the interface

In one method, silicon tetrachloride gas reacts with hydrogen gas to give Si
and anhydrous HCI according to the following reaction, at ~1150-1250°C:

SiCl, +2H, —= Si+4HCI (2.10)

The growth of an epitaxial silicon layer is possible on heated substrates. The
HCI remains gaseous at growth temperatures and is swept out of the reactor.
Sharp profiles of the dopant concentration are possible to be achieved using this
technique. The arrangement consists of a chamber, into which the gases can be
introduced and a provision exists for heating the substrate. The chamber is called
a reaction chamber or simply a reactor. A schematic diagram of a barrel-type Si
VPE reactor is shown in Fig. 2.24.

Gas inlet 7% /Gas baffle
__________ _4&T|
Wafers < Quartz chamber
:g *** ) A ¢¢¢ g (reactor)
o o
RF § Q é Q Lt /E/ Susceptor
> h
source § Q Q Q § (graphite)
ol [OIOIO] |}
:g g
Pedestal

] |4
L> Vent
Fig. 2.24 A barrel-type reactor for Si VPE
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The two gases along with other dopant gases are introduced into the reactor
through the gas inlet. The Si wafers are kept on a graphite susceptor, which is
heated with an RF heating coil. Tungsten halogen lamps can also be used for
heating the silicon wafers.

Other reactions like pyrolysis of silane (SiH,) are also used for obtaining
epitaxial layers of silicon. Pyrolysis of silane takes place at 1000°C and involves
the following reaction:

SiH, — Si + 2H, (2.11)

The vapour-phase epitaxial growth technique is also used for obtaining
epitaxial layers of III-V compounds such as GaAs, GaP, and ternary alloy GaAsP.
Compound semiconductors can also be obtained as epitaxial layers using a
technique called metal-organic vapour-phase epitaxy (MOVPE). GaAs epitaxial
layers can be obtained by reacting arsine with the organometallic compound
trimethylgallium to form GaAs according to the reaction

(CH,), Ga + AsH; — GaAs + 3CH, (methane) (2.12)

This reaction takes place at around 700°C. Other organometallic compounds
such as trimethyl-aluminium can be added to the gas mixture mentioned above to
obtain epitaxial layers of AlGaAs.

2.7.2 Liquid-phase Epitaxy

Liquid-phase epitaxy technique makes use of the fact that a compound of a
semiconductor with another element may have a lower melting point than the
semiconductor itself. The semiconductor seed substrate is held in the liquid
compound. The temperature profiles are such that the substrate does not melt.
A single-crystal semiconductor epitaxial layer then grows on the seed substrate
as the solution is slowly cooled. In another version of this technique, a GaAs
substrate is dipped in molten gallium saturated with GaAs. The melt is supercooled
just below its solidification point

and an epitaxial layer is then y Slider

obtained on the crystalline GaAs PN

substrate. A schematic diagram LxJ LA~ ]
. . Substrate

of a liquid-phase epitaxy (LPE)

system is shown in Fig. 2.25. A Melts

slider is used to move the GaAs
substrate over the surface of the
molten material.

Fig. 2.25 Schematic diagram of a liquid-phase
epitaxy system

2.7.3 Molecular Beam Epitaxy

Molecular beam epitaxy (MBE) is a sophisticated evaporation technique
performed in ultra high vacuum. The substrate is held in a high-vacuum
environment and elemental species are evaporated from ovens (also referred to
as effusion or K-cells) and impinged upon the heated substrate where they get
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deposited into single-crystal epitaxial layers. GaAs epitaxial layer can be obtained
using Ga, As, Al, Si effusion cells. Silicon and aluminium serve to provide dopant
atoms. Extremely sharp profiles can be obtained with resolutions of virtually one
atomic layer at substrate temperatures in the region of 500°C to 600°C for GaAs.
A schematic diagram of a typical GaAs MBE system is shown in Fig. 2.26.

Vacuum chamber

\ Ga
Shutter y‘/
Substratek'\ As

- Sources

Rotating stage %_(\

Al ™ Effusion cells
Il

Vacuum plumbing

Fig. 2.26 A typical molecular beam epitaxy system

e Silicon MBE systems use an electron beam to create an atomic beam of
silicon.

o GaAs crystals are grown using the liquid encapsulated Czochralski (LEC)
technique.

e LPE is very popular in university environment.

Solved Problems

2.1 Hard spheres are packed in a bcc lattice in such a manner that the atom at the
centre just touches the atoms present at the corners of the cube. Calculate the fraction
of the bee unit cell volume filled with hard spheres.

Solution

Each corner sphere of the bce unit cell is shared with eight neighbouring cells. Thus
each cell contains one eighth of a sphere at all the eight
corners. Each unit cell also contains one central sphere.

Spheres per unit cell = 8 X % (corner)
+1(centre) =2

Nearest neighbour distance (along diagonal AE

3
in Fig. 2.1.1) = a3
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Radius of each sphere = #

Volume ¥/ z%[a(ﬁﬁ a3

4 16
The maximum fraction f of the unit cell filled is given by

_ No. of spheres x volume of one sphere
B volume of unit cell

s

leading to
2xma*[3/16 w3
f= 3 =3 =0.68
a

Thus 68% of the bee unit cell volume is filled with hard spheres.

2.2 Describe the plane shown in Fig. 2.2.1 in terms of the corresponding Miller
indices.

Solution

The given plane has intercepts a, 2b, and 3¢
along the three crystal axes.

Lattice points in the three-dimensional
lattice are given by the expression,

r=pa+qgb + sc (2.2.1)

From Fig. 2.2.1 and Eqn (2.2.1), we can
conclude

p=1lg=2ands=3 Fig. 2.2.1 Plane in a crystal
Taking reciprocals we get

11
L+ L1
( b 2 b 3]
Multiplying all the numbers by the lowest common denominator 6, we have

(6,3,2)
Thus the plane we have depicted in Fig. 2.2.1 is denoted as (6, 3, 2).

2.3 Lattice constants of Si and GaAs are 5.43 X 10® cm and 5.65 x 1078 cm,
respectively. Calculate the densities of Si and GaAs. The atomic weights of Si, Ga,
and As are 28.1, 69.7, and 74.9, respectively.

Solution
(a) Si
Lattice constant ¢ = 5.43 X 10%cm
Also,
n = No. of atoms/cells = 8
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Atomic concentration N = 88 _ 5% 10% atoms/cc

a®  (543x107%)
5x10%% % 28.1

502 X107 =233 g/cm’

Density =

(b) GaAs
In the GaAs crystal each cell has 4 Ga and 4 As atoms. Atomic concentration of Ga

and As = % = éﬂ =2.22 x10?? atoms/cc.
a (5.65x107°)

Thus,

2.22x10%2(69.7 + 74.9)
6.02 x10%

Density = =5.33 g/em?

2.4 Calculate the surface density of atoms in the
(111) plane of a body-centered cubic structure. / (111)
Assume the lattice constant @ = SA. Also assume

the atoms to be hard spheres, with closest atoms /ﬁg\ —— a2
touching each other. /ﬁ/ <
Solution I 7 ////\2

To calculate planar concentration n,,, on a given
(hkl) plane, only atoms whose centres lie on
bound area A are to be considered. Fig. 2.4.1 Fig. 2.4.1
shows a (111) plane for a bee crystal.

The shaded area is an equilateral triangle defined by face diagonals of length

ay2.

Height of the triangle = ¢ \/%

Thus, the area of the triangular portion (shaded) is

2/
1, /3
2 2Xa 2

Each atom at the corner contributes 1/6 to this area. Thus the planar concentration
(1 1S given by

3
”(111>=L= 21
az\/j aﬁ

Putting the given value of a we get

Ny = — 1 —3x%10"% atoms/m?

(5x10719)2./3
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2.5 Si crystals are being grown using the Czochralski technique. The requirement is

to have 5 X 10'P atom/cm? in the ingot.

(a) Calculate the concentration of P atoms that should be present in the melt to result
in the desired impurity concentration in the growing crystal in the initial phase of
growth. Assume that the segregation coefficient for P in Si is &, = 0.35.

(b) The initial load of Si in the crucible is 4 kg. How many grams of P should be
added to the melt? The atomic weight of P is 31.

Solution

(a) The segregation coefficient kg is given by

kg =<8
ST ¢, (2.5.1)
where Cg and C; represent impurity concentrations in the solid and liquid,
respectively.
Thus,
C
C, =
L kS
Putting the given values in expression (2.5.1), we get
5%10'° 3
CL ZWZI.“SX]O” cm

(b) At such a low P concentration, the density of Si is not expected to change much.
Assuming the density of Si to be 2.33 g/cm’, the volume V of the melt is

_ 4000 _ 3 :
V_72.33 1717 cm” of Si

No. of P atoms = 1.43x10"7 x1717 = 2.46 x 10*° atoms

20
Weofp= 240X107 X311y o010 g

6.02 x10%

The concentration of P atoms in the growing crystal is 1/0.35 times that in the
melt. Silicon is thus used up more rapidly than P and the melt becomes richer in P
as the growth proceeds. To obtain a uniformly doped ingot, the factor & is modified
by suitably adjusting the pull rate. Czochralski growth systems have computerized
controls for adjusting pull rate, temperature, etc.

2.6 List some of the most popular semiconductors which you have studied. Which
one of these is the most popular and why?

Solution

Some of the most common semiconductors are silicon (Si), germanium (Ge), and
gallium arsenide (GaAs).
Si is the most popular among all these due to the following fundamental advantages.

(i) Si possesses a higher value of band gap =1.1eV at room temperature
in comparison to its counterpart germanium (Ge), which has an energy
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band gap = 0.7 eV. Due to this reason Si poses less of a problem with regard to
leakage current in electronic devices.

(i1) Siis abundant in nature. Si originally comes from silica and earth’s crust contains
around 97% silica.

(iii) Although GaAs possesses a higher value of band gap = 1.43 eV as compared to Si
and Ge, it is particularly used for faster switching applications. GaAs boasts this
feature due to very high mobility of carriers, especially electrons, as compared to
that in case of silicon and germanium.

Other compound semiconductors are used for dedicated applications such as light
emitting diodes (LEDs), lasers, and microwave devices.

2.7 Find the Miller indices of a plane that makes intercepts equal to 3, 4, and 5 times
the basis vectors along the three crystal axes.

Solution
We can find out the intercepts in terms of basis vectors as
3a, 4b, and 5c¢

To calculate the Miller indices, reciprocals are first obtained for these intercepts.
These reciprocals are

1 1 1

=,-,and =

3°4 5
Now we must reduce these fractions to the smallest triad of integers having the same
ratio; so, multiplying these numbers by 60 we get Miller indices of plane as

(20, 15, 12)

2.8 What is the basic lattice structure for:
(a) Silicon and germanium

(b) Gallium arsenide

How are these different?

Solution

Both silicon and germanium possess the ‘diamond’ lattice structure. In GaAs as well,
atoms are arranged in the basic diamond structure, but are different on alternating
sites. This is called the zincblende lattice and is typical of the III-V compounds.

2.9 (a) Considering a typical diamond lattice structure, find out the number of atoms in
each cell. (b) If the value of lattice constant, L, for silicon has been provided as 5.43 A,
then estimate the density of atoms in silicon.

Solution

For a typical diamond structure eight atoms are shared by eight cells, six atoms are
shared by two cells, and four atoms are internal to the cell.

(a) So, we can find the number of atoms in each cell = % + g +4 =8



58 Solid State Electronic Devices

(b) Volume of the cell is given by the cube of the lattice constant, L

. Volume of the cell = (5.43x107%)* cm?

_ 8
Volume

3

. Density = =5x10%? atoms cm™

2.10 Determine the packing density [in terms of (mass per unit volume)] for silicon.
Given Avogadro’s number = 6.023 x 10 atoms/mole.

Solution

Atomic weight of silicon = 28.09g/mole
Density of silicon atoms in diamond structure = 5 X 10?? cm™
(from Problem 2.9)

5 x 10%2 atoms/cm® x 28.09 g/mole
6.023 x 10%* atoms/mole
=2.33gcm™

.. Density (mass per unit volume) =

Recapitulation

e Van der Waals bonding is due to Van der Waals forces between atoms and
molecules.

e Metals and halides are bonded with ionic bonds.

e Sodium chloride, potassium iodide, and rubidium bromide are important ionic
crystals.

e Covalent bonding leads to the sharing of electrons between atoms.

e Group IV atoms such as silicon and germanium form covalent bonds.

e In metallic atoms the external valence electrons are weakly coupled to the
nucleus and get a collectivization with respect to the crystal.

e Imperfections and impurities play a key role in deciding the electrical
characteristics of a material.

e Thermal vibrations lead to non-constant distances between atoms.

e Vacancies and interstitials are two important point defects.

e A vacancy and an interstitial occurring in close proximity lead to a Frenkel
defect.

¢ In Schottky defect a vacancy is not accompanied by a simultaneous transition of
atoms to interstitials.

e An entire row of atoms is missing in a line defect.

e Impurities can be interstitial or substitutional.

e In impurity diffusion process, the impurities move from a region of high
concentration to a region of low concentration.

e In the ion implanation process, a beam of high-energy dopant ions is directed
towards the substrate semiconductor.

e The displacement damage resulting in ion implantation can be removed with
thermal annealling.
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Silicon dioxide is the starting raw material for obtaining Si crystals.
The silicon obtained by reducing SiO, is called metallurgical grade silicon or
MGS.
SiHCl, is reacted with H, to yield electronic grade Si (EGS).
Single-crystal Si ingots can be grown using the Czochralski method.
The silicon boule is given a flat perpendicular to the [110] direction.
In homoepitaxy, the epitaxial layer is the same as the substrate.
In heteroepitaxy, the epitaxial layer is different from the substrate.
Thin lattice mismatched layers are called pseudomorphic layers.
The growth of epitaxial layers using crystallization from the vapour phase is
called vapour-phase epitaxy.
Liquid-phase epitaxy uses a compound of the semiconductor in the liquid
form.
Molecular beam epitaxy is a sophisticated evaporation technique carried out
under ultra-high vacuum conditions.
Semiconductors constitute a group of materials with electrical conductivities
between metals and insulators.
Conductivity of semiconductors can be modified by introducing controlled
amounts of desirable impurities.
Semiconductors are of two types, namely elemental and compound
semiconductors.
Elemental semiconductors are found in column IV of the periodic table.
Some common compound semiconductors are made up of either a combination
of column III and column V atoms or a combination of column II and column
VI atoms.
Ternary and quarternary compound semiconductors are being increasingly used
for special applications.
Amorphous, polycrystalline, and crystalline are the three general types of
solids.
In a single crystal a basic pattern unit is repeated periodically throughout the
material.
In polycrystalline materials the periodicity of the basic pattern gets interrupted
at certain boundaries called grain boundaries.
In amorphous materials the grain boundaries become comparable to the size of
the basic pattern.
The periodic arrangement of atoms in a crystal is called a lattice.
The fundamental building block of a three-dimensional lattice is called a unit
cell.
The smallest unit cell is called a primitive cell.
The displacement vector between two lattice points is given by a vector r
expressible as

r = pa+qgb +sc
where p, ¢, and s are integers and a, b, and c¢ are called basis vectors.
Simple cubic, body-centered cubic, and face-centered cubic are three common
cubic lattices.
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e Miller indices 4, k, / within braces, i.e. (hkl) are used to indicate specific planes
in a crystal.

Equivalent planes are shown enclosed in curly brackets { }.

Direction in a crystal is expressed within square brackets, i.e. [abc].
Equivalent directions are expressed within angular brackets ().

Elemental semiconductors have a pure diamond lattice, which can be obtained

by inserting one fcc lattice into another fcc lattice.

In a diamond lattice every atom is surrounded by four nearest neighbours.

e Alternate atoms are different in a zincblende structure, which is otherwise
identical to a diamond structure.

(2n)’
o |/ =
C VC
_1ln
e For the four-probe measurement system, 0 = Vv

Review Questions

2.1
2.2
23
2.4
2.5

2.6
2.7
2.8
2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

221
222

What are semiconductors?

Name some elemental and some compound semiconductors.

What are compound semiconductors?

What are quarternary compound semiconductors? Give one example.
Differentiate between crystalline, polycrystalline, and amorphous semicondu-
ctors with suitable diagrams.

What is a lattice?

Explain the concept of unit cell. What is a primitive cell?

Explain the concept of basis vectors.

Show simple cubic, body-centered cubic, and face-centered-cubic lattice with
suitable sketches.

What are Miller indices? How are they determined?

How are directions within a crystal depicted?

Differentiate between diamond structure and zincblende structure.

What is a Van der Waals bond? Give one example.

How are ionic bonds formed?

Sketch the covalent bonds existing in silicon.

Explain the process of collectivization in the formation of metallic bond.
Explain the terms: (i) point defect (ii) line defect, and (iii) plane defect.

What are thermal vibrations?

Define vacancy and interstitial defects.

Explain substitutional and interstitial defects using suitable sketches. Give one
example of each.

Differentiate between impurity diffusion and impurity ion implantation.
What is the role of annealling in the process of ion implantation?
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2.23
2.24
2.25
2.26
227
2.28
2.29
2.30
231
2.32
233
2.34

2.35
2.36
237

2.38
2.39
2.40

241
242
243
2.44
2.45
2.46
247
2.48
2.49

Give the reduction reaction of SiO, resulting in Si.

How is MGS converted into EGS?

Draw a schematic set-up for the Czochralski growth process.

Differentiate between homoepitaxy and heteroepitaxy.

What are ternary and quarternary compounds?

What are pseudomorphic layers?

What is a reactor in a VPE system?

Briefly explain the VPE process.

Give a schematic diagram of the LPE process.

Explain the molecular beam epitaxy process with a suitable sketch.

Explain the different types of solids with suitable sketches.

Explain the terms, (i) lattice; (ii) unit cell; (iii) primitive cell; (iv) basis
vectors.

What are Miller indices? Explain with suitable examples.

Indicate the salient features of a diamond lattice.

Give a brief account of the different types of atomic bonding. Give suitable
examples.

How are point defects created in a crystal?

Explain the Czochralski technique of crystal growth.

What are the factors to be taken into account for carrying out successful
heteroepitaxy?

Describe the vapour-phase epitaxy process with the help of a suitable sketch.
What is molecular beam epitaxy? Give its salient features.

What are reciprocal lattice vectors?

Write an expression for the volume of unit cell of the reciprocal lattice.

Give a schematic representation of FZ technique.

Describe the process of chemical-machanical polishing.

How is the XRD technique used for determining the interplanar spacing?
Describe the four-probe conductivity measurement method.

Give a schematic of the Van der Pauw configuration.

2.1

2.2

Hard spheres are packed in an fcc lattice with maximum packing density.
Calculate the fraction of the cell filled.
[Hint: Atoms per unit cell = 1(corners) + 3 (from faces) = 4

Radius of each sphere = %(aﬁ )]
Ans. 74%
Assume each atom to be a hard sphere with the surface of each atom in contact
with the surface of its nearest neighbour. Calculate the percentage of the total
unit cell volume that is occupied in a simple cubic lattice.
[Hint: A cubic unit cell contains only one sphere and the edge length is exactly
equal to the diameter of the sphere]
Ans. 52.4%
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2.3 Find the percentage of the total unit cell volume that is occupied in a diamond
lattice.
[Hint: There are 8 atoms per unit cell.]

Ans. 34%
2.4 Sketch the following principal planes in a cubic crystal:
(a) (100) (b) (010) (c) (001)
Ans. 7ZA 7 7
2a
L Y Y Ty
= >
av_ L
2a )L
a 2a
X (100) X (010 X (001)
(a) (b) (c)
2.5 Sketch the planes (110), (101), and (011) in a cubic lattice.

Ans.

(101)
2.6 Show the planes (111) and (212) in a cubic crystal.

Ans. (236)
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2.8

2.9

2.10

2.11

2.12

2.13

2.14

Calculate the Miller indices for a plane that cuts the intercepts a = %, b=2,and

c= % along the x, y, and z axes, respectively.

[Hint: Common denominator = 2]
Ans. (416)

A single-crystal material has a body-centered cubic structure with lattice
constant a = 5.5 A. Calculate the Volume density of atoms in a unit cell.
[Hint: Each unit cell has 8 ><— (corner atom) + 1 (body centre atom)
= 2 atoms]

Ans. 1.2 X 10*2atoms/cm?
Calculate the surface density of atoms on the (110) plane of a silicon
crystal.
[Hint: (110) plane has 4x%+2xl+2=4atoms/cell. Surface density

4 : 2
=— 2 witha =543 4]

a(a\/E) Ans. 9.59 x 104 atoms/cm?
Silicon single-crystal ingot is being grown using the Czochralski method. The
desired level of P in the ingot is 10'¢ P atoms/cm?.

(a) Calculate the concentration of P atoms in the melt assuming the segregation
coefficient kg to be 0.35.
(b) If the initial load of Si in the crucible is 6 kg. How many grams of P needs
to be added? Assume the atomic weight of P to be 31.
[Hint: See solved numerical 2.5]
Ans. (a) 2.86 X 10'°cm™, (b)3.79 x 1073 ¢
B atoms at a concentration level of 5 X 10'® atoms/cm? are added to Si as a
substitutional impurity. Calculate the percentage of the Si atoms that have been
displaced in silicon single crystal.
[Hint: Volume density of Si atoms = 5 X 10?2 cm™]
Ans. 1 X 107%
Describe the plane shown in Fig. 2.P13.1 in terms of Miller indices.

Ans. (1,1,1)
The surface density of atoms in the (111) plane of a body-centered cubic
structure is 4 X 10'® atom/m?. Determine the lattice constant. Assume the atoms

to be hard spheres, with the closest atoms touching each other.
Ans. 3.8 A
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Learning Objectives

After going through this chapter the student will be able to
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understand the concept of band formation and conduction and valence bands

derive the E-k relation for a free electron and understand E-k diagrams for
common semiconductors

understand the concepts of electron, hole, and EHP formations
understand the Fermi—Dirac distribution function and define Fermi level

derive the expressions of equilibrium electron and hole concentrations and
conductivity of a semiconductor

define mobility and conductivity effective mass

differentiate between lattice-scattering-based mobility and impurity-scattering-
based mobility

derive the expressions for Hall voltage and diffusion current density
derive the Einstein relation
solve numericals based on the above concepts
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Introduction

Why do semiconductors have the electrical characteristics that allow scientists
and engineers to develop such interesting devices and circuits? How do we
predict the reaction of semiconductors to different stimuli such as heat, light,
and injected current? The answer to these questions lies in the specific band
structure of semiconductors. In this chapter we will look at the origin of
bands in semiconductors and then discuss the specific band structures of some
common semiconductors. Nothing interesting happens till the charge carriers in a
semiconductor move. The two most common physical processes responsible for
the movement of charge carriers are drift and diffusion. The salient features of
both these processes are also discussed in this chapter.

3.1 Bonding Force and Formation of Energy Bands

A crystal consists of a collection of atoms. As atoms are brought together,
various interactions start occurring between the neighbouring atoms. Some
of these interactions and the resulting bonding forces have been discussed in
Chapter 2. The system consisting of a collection of atoms is in many ways
completely different from the individual atoms. One of the fundamental functions
characterizing an electron in an atom is its radial probability density, which is
defined as the probability of finding the electron at a particular distance from the
nucleus. The radial probability density function for the lowest electron energy
state of a single, non-interacting hydrogen atom is shown in Fig. 3.1(a). The
parameter a, is equal to the Bohr radius. The probability density functions for two
atoms in close proximity are shown in Fig. 3.1(b).

Probability Probability
density | | | density
P[] P[] [P
I I I
| | |
a r— a a
0 (Spacing) 0 0

(a) (b)

Fig. 3.1 Radial probability density function for (a) one hydrogen atom, (b) two hydro-
gen atoms in close proximity

One can easily infer from Fig. 3.1(b) that the probability functions of the two
electrons overlap, indicating an interaction. Thus the two electrons now form one
system and, therefore, cannot have the same energy level according to the Pauli’s
exclusion principle. The discrete quantized energy level of the individual atom
therefore splits into two states as shown in Fig. 3.2.
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Suppose now we generalize the above discussion and bring a large number of
hydrogen-type atoms in close proximity in a periodic arrangement. Consistent
with the Pauli’s exclusion principle, the individual initial quantized levels of
individual atoms would now split into a band of discrete energy levels as shown
schematically in Fig. 3.3.

The parameter 7, represents the equilibrium interatomic distance in the periodic
arrangement of atoms.

In this example we have considered a regular periodic arrangement of atoms
having one electron. Suppose we now consider a periodic arrangement of atoms
containing electrons up to the n = 3 energy level. When the atoms are separated
by large distances, there is no interaction between individual atoms and each atom
has its allowed discrete energy levels. When the atoms are brought together, the
outermost electrons (n =3 energy shell) start interacting. This results in the discrete
energy levels splitting into a band of allowed energies. When the atoms come still
closer, electrons in the n = 2 shell start interacting and the corresponding energy
levels also go through the same fate. When the atoms get sufficiently closer, the
innermost electrons (r = 1 shell) also interact. The process of the formation of
allowed energy bands is shown in Fig. 3.4.

Electron energy ——
3
Il
[\)

|

70 Interatomic distance —>

Fig. 3.4 Splitting of three energy states into allowed bands

The parameter r, represents the equilibrium interatomic distance. Some
interesting characteristics of Fig. 3.4 are as follows:
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e Discrete energy levels of individual atoms get split into allowed energy
bands.

o Allowed energy bands exist corresponding to every energy level.

o Forbidden bands exist, separating any two allowed energy bands.

Let us now look at the consequences of the band theory of solids (what
we have just discussed is part of a more complex subject called band theory
of solids) for a semiconductor such as silicon. A silicon atom has 14 electrons,
10 of which occupy deep-lying energy levels close to the nucleus, as shown in
Fig. 3.5. The remaining four valence electrons are relatively weakly bound and
participate in chemical reactions. These are also shown in Fig. 3.5. The n = 3
energy level consists of the 3s and the 3p states. The 3s state corresponds to
n=3and /=0 and contains two quantum states per atom. At 7= 0 K, the state
contains two of the four valence electrons. The 3p state corresponds to n = 3 and
/=1 and contains six quantum states per atom. This state contains the remaining

n=2
8 electrons

—_ Six allowed levels
at same energy
Two allowed levels
at same energy

n=1 sp
2 electrons =3

Fig. 3.5 Energy levels of an isolated silicon atom

two electrons of an individual silicon atom. Let us now take a large number N of
silicon atoms and arrange them in a periodic manner. When we bring the atoms
closer, the 3s and 3p states go through a band splitting as shown in Fig. 3.6.

There are a total of 8N states in 3s-3p levels. After splitting 4N states exist in
the lower level and 4N states in the upper level.

At the equilibrium interatomic distance a,, we have four quantum states per
atom in the lower band and
four quantum states per atom 4N states
in the upper band. At absolute 0 electrons
zero, all the valence electrons
are in the lower band, and for
this reason, this band is often
referred to as the valence band.
The upper band is completely
empty at absolute zero and is
called the conduction band.
The gap between the top of the |
valence band and the bottom of alo (Equilibrium) r —>
the conduction band is called
the band gap energy Eg, Fig. 3.6  Splitting of 3s and 3p states of silicon

6N states
2N electrons

I
(Band gap) E,
4N states |

4N electrons 2N states
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Formation of energy bands in a semiconductor plays an important role in
deciding the electrical characteristics of semiconductors. The concept of energy
bands can also be used to differentiate between the three types of solids, namely
insulators, semiconductors, and metals. Insulators have a band gap separating a
filled valence band and a conduction band. The band structure of insulators is
thus quite similar to that of semiconductors, as shown in Fig. 3.7. The energy
band gap of insulators is however much larger than semiconductors.

Typically speaking, the energy band gap E, of semiconductors is of the order
of 1 eV, whereas insulators have energy band gaps in the range of 5-15 eV.
Metals on the other hand present a completely different type of band structure.
The valence band may merge into an empty band, resulting in overlapping bands.
The last filled band may overlap the first empty band, resulting in a partially
filled band. The high conductivity of metals such as Cu is due to the energy band
structure.

'
Conduction -
band Free 8
electrons S|
\.\\o\\g\\g v EfE:
o
Eg=1¢eV °
g=le SOOI
_ RIS
;/ /O/ / 4 o] T ERRZRLRLRRLS
Q
Holes £
Valence = §
band >
(a) Semiconductor (b) Metal having overlapping bands
Conduction
band
Eg=5¢eV
or
mire S0 Partially 20
oo filled s
Val band
alence
band N
(c) Insulator (d) Metal having partially filled band

Fig. 3.7 Energy band diagrams of semiconductors, metals, and insulators
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3.2 E-k Diagrams

The movement of a free electron along the x-axis is described by the Schrodinger
equation given by

I’y om

+==Ey =0

A Ey (3.1
where y is the wave function (generally a function of both x and ), m is the mass,
h=h/2r, and E is the electron energy.

Since a free electron has only kinetic energy, we have

2

_pr
E=1- 3.2)

Using the de Broglie formula for waves associated with the electron, we can
write

h h
= —= = k
P = iy (-3)
where Kk is called the wave vector of the electron, having a magnitude equal to
27/ Aand adirection coinciding with the direction of the electron wave propagation.
Using p from Eqn (3.3) and putting it in Eqn (3.2) we get

n’ 2
E= %k (3.4
Equation (3.4) is then the FE-k relation for a
single free electron in one-dimensional motion. The
relationship between £ and k is thus quadratic and the
corresponding parabolic curve is shown in Fig. 3.8.
A completely different situation presents itself for k
an electron travelling through a perfectly periodic 0
lattice of atoms. A few important characteristics of this

situation are as follows. Fig. 3.8 E-k diagram

.- . for a single free
(a) The probability of detecting an electron at a electron

specified point of the crystal is a periodic function
of x, since positions displaced from one another by a multiple of the lattice
constant a are equiprobable for the electron.

(b) Positions of an electron inside a period a are all different.

Keeping in mind these characteristics, the space-dependent wave function for
the electron turns out to be

Y (1) =U(k,, x)e’* (3.5)

The wave function of the electron is thus assumed to be in the form of a plane
wave moving in the x direction with the function U(k,, x) modulating the wave
function according to the periodicity of the lattice. As a consequence of this the
relationship between energy E and wave vector k undergoes a change from the
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one given in Eqn (3.4). The resulting (£, k) diagram has to be plotted for the
various crystal directions, since the periodicity of most lattices changes with
the direction. In general, the relationship between E and k is a complex three-
dimensional surface.

The typical band structure for GaAs is shown schematically in Fig. 3.9.

Its conduction band minimum and valence band maximum exist at the same
k (k=0). Thus an electron can make a transition, involving smallest energy, from
the conduction band to the valence band in GaAs without involving any change
in the k value. Such semiconductors are called direct band gap semiconductors.
The E-K relationship is symmetric in k for the one-dimensional model. Thus no
useful purpose is served by giving the E£-k diagram for both positive and negative
axes. Instead, it is normal to plot the [100] direction along the normal +k axis
and to plot the [111] portion of the diagram in a manner that +k points to the left.
Figure 3.10 shows the E-k diagram for GaAs. The valence band maxima and
the conduction band minima both occur at k = 0. The minimum conduction
band energy and the maximum valence band energy thus occur at the same
value of k.

4 GaAs Conduction
band
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2
>
20
o
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AN h\) = Eg
Eg
_1 =+
A > Valance
Val k 5 band
alence -
band [111] 2 [100]
\ (@)
Fig. 3.9 Typical band structure of GaAs Fig. 3.10 E-k diagram for GaAs

The E-k diagram for silicon is shown in Fig. 3.11.

For silicon, the maximum valence band energy occurs at k = 0. The minimum
conduction band energy occurs at k # 0 and along the [100] direction. 4
semiconductor for which the maximum valence band energy and the minimum
conduction band energy do not occur at the same value of K is called an indirect
band gap semiconductor.



Energy Bands and Charge Carriers in Semiconductors 71

Suppose an electron is to make a 4
transition between the conduction band and Si Conduction
the valence bands of a semiconductor. The band
law of conservation of momentum must be
satisfied in such a transition. For an indirect
band gap semiconductor, such a transition 2 F
must necessarily include an interaction with
the crystal so that the crystal momentum
stays conserved. Examples of indirect |
semiconductors are Ge, GaP, and AlAs. I

This interaction with the lattice can be 0 Y !
understood by assuming a particle-like :
wave called phonon. The crystal lattice can :

:
|
|

Energy (eV)
T

be assumed to behave like a mechanical

system of masses and springs. Phonons Valance

represent the mechanical vibration of the 2 band

lattice and are quantized just like photons. (1] 2 (100]
Phonons are also responsible for carrying (a)

energy within the lattice. They can also give
up their energy to cause transitions of charge
carriers. Phonons associated with long-
wavelength vibrations of the lattice are called acoustic phonons. If the frequency
of vibrations is in the optical range, then such phonons are called optical phonons.
Three-dimensional lattices with one atom per unit cell that include simple cubic,
body-centered, or face-centered cubic lattice, have only three acoustic modes of
vibration. Three-dimensional lattices with two atoms per unit cell, such as Ge, Si,
and GaAs have three acoustic modes and three optical modes of vibration.

Fig. 3.11 E-k diagram for Si

Electron effective mass Mass is the property of a particle by virtue of which
it resists any change in its state of motion. The relation between the momentum of
a free electron and its wave vector Kk is given by the de Broglie formula,

p=rhk
From Eqn (3.4) we get

_ W
E—2mk

The second derivative of energy E leads to
1 d*E _ 1

KW dk> m
ie.,

" (3.6)
m=—s——— .
(d?E/dk*)

So, far, we have considered the electron to be free. It turns out that the expression
for momentum of electrons moving in a periodic crystal is also given by
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p=hk 3.7
Differentiating the expression for £ once with respect to k, we get

2
Z_i:%k (3.8)

which leads to
—m dE
72 dk
Putting this in Eqn (3.7), we get
_mdE
which yields (for velocity v)
_1dE
YT hdk
Suppose an external electric field E is set up in the crystal. The force F acting on
the electron is then given by
F=—¢gE
The corresponding acceleration a, is then
g odv_1d(dE)_1d°E dk
Yodt  hdt\dk | hogr? dt

(3.10)

(3.11)

Work dW done by force F in a time interval dt is

- Fvdr = £ dE
AW = Fvdt = -t

This work done increases the electron’s energy by an amount dE. Thus,
_FdE
dE = T dt
which leads to
F _dk
o d (3.12)
Putting the value of F/% in Eqn (3.11) results in
_Fd*E_—9E ’E _ —4E

S hodk? R dk? meg (3.13)

a

Equation (3.13) is a statement of Newton’s second law. Thus, the electron
acted upon by an external force moves in a periodic crystal field on the average in
the same manner as a free electron would move if its mass is given by

2

 dPE/dk?
The mass m is called the effective mass of the electron. The effective mass may

be positive or negative, many times larger or many times smaller in magnitude
than the electron’s rest mass, m.

Mg (3.14)
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3.2.1 Band Structure Modification in Semiconductors

Band structure of a naturally occurring semiconductor is determined by its
composition. This band structure in turn decides the semiconductor’s optical
and electrical characteristics. Material scientists need to therefore modify or
tailor the band structure of semiconductors as they come up with new and novel
device concepts. This field of band structure modification is also called band
gap engineering. There are three main techniques by which the electronic band
structure of a semiconductor can be modified. These techniques are:

1. Alloying of two or more semiconductors
2. Quantum confinement or superlattice formation using heterostructures
3. Built-in strain developed using lattice-mismatched epitaxy

Many semiconductors form alloys over a large range of concentration. This
miscibility allows alloys to be grown over a large range of band structure for
specific applications. This field is also called band gap engineering. The band gap
of the alloy formed using different semiconductors can then be used to fabricate
devices with different characteristics. Group III-V compounds have a direct band
gap large enough to result in a wavelength covering the visible range 750 nm
to 400 nm. This is however possible using the three alloy systems Ga,_ Al As,
Ga,_In As, and GaAs,_ P, for different x values. Another interesting example is
the II-1V alloy Hg,_ Cd,Te which has a continuous direct band gap all the way
from —0.3 eV (for HgTe) to 1.6 eV (for CdTe). This material is very important for
long-wavelength (Eg; < 0.1 eV) device applications.

Suppose a thick layer (several hundred
nanometres) of a wide-band gap material ~E¢2 ——— —— E¢
such as GaAlAs is first grown followed by Well Barrier
a thinner (5-100 nm) layer of a narrower Ecl
band gap material such as GaAs. A final
layer of wide-band gap material is then
grown over the GaAs layer. The resultant
band diagram is shown in Fig. 3.12.

From Fig. 3.12, we can see that a one-
dimensional potential well gets created Fig. 3.12 Band diagram for GaAlAs-
in the conduction and valence band in the GaAs-GaAlAs structure
narrow band gap material. The electron
and hole levels are then the bound states of the well, also known as subbands.
Transitions taking place between hole and electron subbands then decide the
optical absorption or emission characteristics of the quantum well. A large
number of such quantum wells kept close to each other is called a superlattice.
Carriers within the different quantum wells can then tunnel. The process results
in the introduction of a new set of energy gaps.

Heterojunctions are not always formed using semiconductors that are
lattice matched. If two lattice mismatched semiconductors are used to form a

EVl

EV2 —_— — EV2
GaAl As GaAs GaAl As
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heterojunction, a mismatched interface results in the formation of strained
layers on either side of the interface. GaAs epitaxy on Si substrates could lead
to technology resulting in the integration of III-V semiconductor optoelectronic
devices and Si-based processing circuitry. There is however a 41 per cent
mismatch between the lattice constants of Si and GaAs. Such a large mismatch
would produce misfit dislocations. One way of getting rid of the problem is to use
extremely thin (< 100 A) strained layers that can be used as a buffer layer. For Si
and GaAs, a strained superlattice such as Ga,_ In As/GaAs,_ P, where y =2x can
provide the elastic strain to accommodate the required lattice mismatch.

o Electrons close to the bottom of an energy band have a positive effective
mass, whereas electrons close to the top of the energy band have a negative
effective mass.

e A particle having a negative effective mass gets accelerated in a direction
opposite to the acting force.

3.3 Charge Carriers in Semiconductors

Semiconductors owe their special properties to the availability of two types of
charge carriers, namely electrons and holes. We will discuss some characteristics
of these charge carriers in this section.

3.3.1 Electrons and Holes

Suppose a semiconductor, initially at 0 K is heated to raise its temperature. Some
valence band electrons get sufficient thermal energy to cross the energy gap and
reach the conduction band. This results in some electrons existing in the earlier
empty conduction band and some vacant unoccupied states in the valence band. An
empty state in the valence band is called a #ole. When the hole and the conduction
band electron are created due to the excitation of an electron from the valence
band to the conduction band, it is called an electron—hole pair (EHP). This process
is shown schematically in Fig. 3.13. The electron on reaching the conduction
band finds itself surrounded by a large number of unoccupied energy states. For a
sample of pure Simaintained at room temperature, there are around 10'° EHP/cm?®,
whereas the Si atom density is 5 X 102 atoms/cm®. The small number of
conduction band electrons
are thus free to move in the o o o o o o o o |? Conduction band
conduction band owing to ¢ 7
the availability of the large E
number of empty states. The £
charge transport process in the

valence band is slightly more

complicated to visualize. The
wave vector k has been shown Fig- 3.13  Electron-hole pairs in a semiconductor

- E, —
|<f Valence band
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to be proportional to electron E,
momentum. In the valence band,
all available energy states are
occupied. Figure 3.14 shows an
electron i with a wave vector k;
and a corresponding electron i’
with a wave vector —k,. Since
the two electrons are oppositely
directed, they do not give rise to
any net current.

If the valence band has N Fig.3.14 A valence band with all states filled,
e]ectrons/cm3’ then for every including states 7 and i’. The ith elec-
electron moving with a particular tron with wave Ve.c/:tor. k; is matched

. . by an electron at ;” with the opposite
velocity, there exists another
T wave vector —k;
electron whose motion is exactly
oppositely directed (the velocity is equal in magnitude but opposite in direction).
Thus for a filled valence band, the current density J can be written as

Wv

N
J=(=)) V;=0 (3.15)
i=1

Suppose a particular electron (say, the jth electron) is now given sufficient
energy such that it gets excited to the conduction band. The jth electron does not
now contribute to the current density, which becomes

N

J=()) Vi~ (=), (3.16)

i=1

The first term on the RHS is zero from Eqn (3.15). This leads to

J=qV;
The current contribution is thus equivalent to that of a positively charged particle
of velocity +V,. For mathematical simplicity, the vacant states in the valence
band can therefore be treated as charge carriers with positive charge and positive
mass. One must, however, remember that the contribution to the current density
actually arises due to the motion of the uncompensated electron ;.

Current flow in a semiconductor can be accounted for by considering the
motion of electrons and holes. We should however remember one important
point. The hole energy increases oppositely to the electron energy because the
two carriers have opposite charge. Thus in Fig. 3.14, the hole energy increases
downwards, whereas in the conduction band, the electron energy increases as we
go upwards. Holes thus seek the lowest energy states available at the top of the
valence band. Due to the same reason, conduction electrons are generally found
at the bottom of the conduction band.

For routine semiconductor device analysis the E-k diagrams are not normally
used. In such an analysis we use simplified band diagrams, which are plots of the
conduction and valence band edges as a function of position. Since the bottom
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of the conduction band corresponds to zero Conduction band
electron velocity and the top of the valence
band corresponds to zero hole velocity, the Electron

and co p Y, energy

simplified band diagram is in effect a plot of Valence band v

the potential energy as a function of position. o _
A simplified band diagram of a typical Fig-3.15 Simplified band diagram
semiconductor is sketched in Fig. 3.15.

3.3.2 Intrinsic Semiconductor

A perfect, pure semiconductor crystal containing no impurities or lattice
defects is called an intrinsic semiconductor. At 0 K, the valence band of such a
semiconductor is filled with electrons and the conduction band is empty. Such a
material therefore has no charge carriers at 0 K. As the temperature is increased,
the valence band electrons acquire energy and get thermally excited across the
band gap and start moving to the conduction band. Electron—hole pairs are created,
and these EHPs are the only charge carriers in the intrinsic semiconductor. The
physical mechanism underlying EHP creation can be understood with the help of
the broken bond model of the Si crystal, as shown in Fig. 3.16.
At 0 K, all the covalent bonds

are intact. As the temperature O O O/ Si
. Covalent
increases, some valence electrons < /7 N  ovaien

. . s _

acquire sufficient energy to break \O em e & \Q bond
. =7 I i

away from their position in the N NS T
bonding structure and become free O
to move about in the lattice. This is N2 (PIRAE
how a conduction band electron is O Q Q
created and a hole (broken bond) is

left behind in the valence band. The
energy required to break free from
a covalent bond is the band gap
energy E,. One must however emphasize at this stage that the above picture is
deceptively simplified and at best qualitative. This model seems to indicate that
the free electron and the hole created during the process of EHP generation are
localized in the lattice site. The actual picture is not this since the electron and
hole are spread out over several lattice spacings.

All the charge carriers created in an intrinsic semiconductor are due to the
process of EHP production. The concentration of electrons n (electrons per cm?)
in the conduction band is therefore equal to the concentration of holes in the
valence band p (holes per cm®). A symbol »; is used to represent each of these
intrinsic carrier concentrations. Thus, for an intrinsic semiconductor,

n= p = ni (317)
At a given temperature, two competing processes decide the equilibrium

concentration of electron—hole pairs. One of them is the generation of EHP
through the process of transition of a valence electron to the conduction band.

Fig. 3.16 Electron—hole pairs in the covalent
bonding model of the Si crystal
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Annihilation of these pairs takes place through a process, called recombination.
Recombination occurs when a conduction band electron makes a transition to an
empty state (hole) in the valence band. Such transitions can be direct or indirect.
Suppose g; is the generation rate of EHPs (EHP/cm’s) and ; is the recombination
rate. Then at equilibrium, we must have

=8 (3.18)
Both g;and r; are functions of temperature. If n, and p, represent the equilibrium
concentrations of electrons and holes, respectively, then we can write

1= 0Py =0, 0 =g (3.19)
where o, is a constant of proportionality and is dependent upon the particular
recombination process.

3.3.3 Extrinsic Semiconductor

We began our discussion on semiconductors by emphasizing the importance of
the introduction of controlled amounts of known impurities. This process is called
doping. An extrinsic semiconductor is one which has been doped such that the
equilibrium carrier concentrations ny and p, become different from the intrinsic
carrier concentration n;. There are two types of doped semiconductors, n-type
and p-type. Electrons are the majority charge carriers in the n-type semiconductor
and holes are the majority charge carriers in the p-type semiconductor.

Let us now look at the process of doping using the band diagram picture.
Introduction of impurities or lattice defects in a perfect crystal leads to the creation
of additional level in the energy band structure, generally within the band gap. If
we introduce an impurity from column V of the periodic table (P, As, and Sb), an
energy level is created near the conduction band of semiconductors such as Ge or
Si. This energy level is filled with electrons at 0 K; but as depicted in Fig. 3.17,
very little thermal energy is required to excite these electrons to the conduction
band. At temperatures in the region of 50-100 K, practically all the electrons in
these additional levels get excited to the conduction band. Such an impurity level
is called donor level and the corresponding impurities are called donor impurities,
since these levels donate electrons to the conduction band. The donor level can

Conduction band

(Donor Conduction band O 0O 0 0O 0 O E,
level) Eg 0 0 0 0 O O iiiiii (Donor
level)
E, E
Valence band Valence band
T=0K T=50-100K

Fig. 3.17 Donation of electrons from donor level
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contribute significant concentration of electrons to the conduction band even at
temperatures that are low for the appreciable intrinsic EHP concentration. For a
semiconductor doped with a considerable concentration of donor atoms, we have
at room temperature

ny > (n;, py) (3.20)

Such a doped semiconductor is thus an n-type semiconductor.

Introduction of impurity atoms from column III (B, Al, Ga, and In) results in
the creation of impurity levels near the valence band of semiconductors such as
Ge or Si. This is shown schematically in Fig. 3.18. These energy levels are empty
at 0 K. At other temperatures (which are still low enough), the available thermal
energy is sufficient to excite electrons from the valence band to occupy these
levels. These additional levels are called acceptor levels and the corresponding
impurities are called acceptor impurities since they accept electrons from the
valence band. Acceptor impurities can result in an equilibrium hole concentration
P, much greater than the conduction band electron concentration, n,. Thus

Po > (1;, 1) (3.21)

Such an extrinsic semiconductor is called a p-type semiconductor.

Conduction band Conduction band

(Acceptor E, — — — — — O 0O 0 O O Oy
1S N N O O B

Valence band Valence band
T=0K T=50-100K

Fig. 3.18 Acceptance of valence band electrons by acceptor level

Figure 3.19 is a schematic representation of the introduction of a donor and
an acceptor atom in the Si lattice. The dopant atoms can be seen to occupy
substitutional sites. If the dopant atoms do not occupy substitutional sites, they
do not behave as donor or acceptor impurities.

The As atom in the Si lattice has an extra electron sharing four of its valence
electrons with the neighbouring Si atoms. The fifth electron is loosely bound to
the As atom since it does not fit into the bonding structure of the lattice. At 0 K,
there is no thermal energy available; but at low enough temperatures, sufficient
thermal energy is available to this extra electron to overcome its coulombic
binding to the impurity As atom. This extra electron thus gets donated to the
crystal and takes part in current conduction. The column III impurity B atom
has only three valence electrons. These three electrons participate in covalent
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Fig. 3.19 Donor and acceptor atoms in the covalent bond model

bonding with neighbouring Si atoms, but one bond stays incomplete. At low
enough temperatures, an electron from an adjacent neighbouring atom Aops to
the incomplete bond at the B site, creating an incomplete bond at its original
location.

The energy required to excite the fifth electron of a donor atom to the conduction
band is called its binding energy. For the purpose of an approximate calculation
of the binding energy, let us assume that the four covalent bonding electrons
are tightly bound and the fifth extra electron is loosely bound to the atom. This
situation can be approximated to the case of the loosely bound electron around
the tightly bound core electrons in a hydrogen-like orbit. The total energy of the
electron in the nth orbit in accordance with the Bohr model is given by

mq4

b= ke
For the ground-state energy, we need to put n = 1 in the above equation to yield
mq*
= K2R (3.22)
The constant K is given by
K =4neg e, (3.23)

where €, is the relative permittivity of the semiconductor material. The mass
m in Eqn (3.22) must be replaced with the conductivity effective mass m, for
the semiconductor, where the conductivity effective mass is the harmonic mean
of the band curvature effective masses for the band structure of the particular
semiconductor.

In Si, the donor and acceptor energy levels lie between 0.03—0.06 eV from the
band edges. For Ge, the corresponding donor and acceptor levels are in the region
0f 0.01 eV from the band edges.

The situation for group I11-V semiconductors is different. Group VI impurities
such as S, Se, and Te act as donors in GaAs. These impurities substitute the group
V atoms As and thereby provide an extra electron. Similarly, group Il impurities
such as Be, Zn, and Cd substitute for the column III atom Ga in GaAs and form
acceptors. An interesting case is when a group III-V compound is doped with a
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group IV impurity. If the impurity resides on the group III sublattice of the crystal,
it serves as a donor. On the other hand, if it resides on the group V sublattice, it
serves as an acceptor. Such impurities are called amphoteric impurities. Si or
Ge are some examples of amphoteric impurities for group III-V compounds.
In GaAs, Si usually occupies Ga sites and thus serves as a donor. If, however,
an excess of As vacancies arise due to processing or during growth, Si impurity
atoms can occupy As sites, thereby acting as acceptors.

With suitable doping, a semiconductor can become n-type or p-type. In the
n-type semiconductor, the conduction band electrons far outnumber the holes.
Electrons are therefore called majority carriers in the n-type semiconductor,
whereas holes are called minority carriers in the n-type semiconductor. The
corresponding majority carriers in the p-type semiconductor are holes and
minority carriers are electrons.

3.4 Carrier Concentrations in Semiconductors

In the preceding section, we learnt about doping of semiconductors. For standard
doping impurities, one majority carrier is obtained from each impurity atom.
Thus, for heavily doped semiconductors, the majority carrier concentration can
be easily known from the known doping level. We still need to, however, calculate
the minority carrier concentration. Carrier concentrations in semiconductors are
also temperature dependent. These and many other important characteristics of
semiconductors can be obtained by studying the distribution of carriers amongst
the available energy states.

3.4.1 Fermi Level

Electrons existing in solids obey Fermi-Dirac statistics. The distribution of
electrons over the range of allowed energy levels at thermal equilibrium is given
by the Fermi—Dirac distribution function, f(E), which is

_ 1
S(E) T4 o E-E T (3.24)

where k is Boltzmann’s constant (k =8.62x107°eV/K =1.38 x107>* J/K). The
Fermi—Dirac distribution function, f(£'), gives the probability that an available
energy state at £ will be occupied by an electron at absolute temperature 7 . The
quantity E in the function f(£) is called the Fermi level. To gain more insight
into the physical meaning of £y, let us put £ = E in Eqn (3.24). We get

SER) = [1+ b= BN
implying

f(EF)=llﬁ=% (3.25)
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Thus the Fermi level Ej represents  f(E)
that energy which has a probability )
1/2 of being occupied by an electron.
A plot of f(E) for some temperatures
is shown in Fig. (3.20).

A few salient features of the 172
function f(£) are the following:

1

(1) At O K, the distribution function
f(E) takes a simple rectangular
shape. This is because at

Fig. 3.20 The Fermi—Dirac distribution

T=0K, function for different temperatures
__ 1 _
f(E)= a1+ 0) =1for E<Ey
and
__ 1
f(E)—(1+oo) 0for £> Ep

The rectangular shape implies that at 7 = 0 K, all states up to E are filled
with electrons and states above E. are empty.

(i) At temperatures greater than 0 K, some probability exists for states above
the Fermi level to get filled with electrons. At any temperature, 7}, there is a
probability f(E) that states above Ej. are filled. A corresponding probability
[1 — f(E)] exists that states below E are empty.

(ii1) The Fermi function is symmetrical about £ for all temperatures. Thus the
probability f(E. + AE) that a state AE above Ej is filled is equal to the
probability [1 — f(Er— AE)] that a state AE below Ej is empty.

(iv) Owing to the symmetry of the function f(£) about the Fermi level Ep, the
Fermi level becomes a natural choice as a reference point for electron and
hole concentrations in semiconductors.

In applying the distribution function f(£') to semiconductors, it must be borne
in mind that the existence of a finite value of f(E£) does not always ensure an
electron’s presence at that energy level. The distribution function can have a finite
value in the band gap of a semiconductor, but there is no possibility of an electron
existing within the band gap. Figure (3.21) shows the Fermi distribution function
turned on its side. A little reflection would help us appreciate the relevance of this
figure for semiconductors.

For intrinsic semiconductor, the concentration of holes in the valence band is
equal to the concentration of electrons in the conduction band. The Fermi level £
must therefore lie at the middle of the band gap in an intrinsic semiconductor. The
function f(£) is symmetric about E as already discussed, therefore the electron
probability tail of f(E) extending into the conduction band [Fig. 3.20(a)] is
symmetrical with the hole probability tail [1 — f(£)] in the valence band. Within
the band gap, although the distribution function has values, there are no energy
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states available. Thus the finite f(£) in the band gap does not result in any actual
electron occupancy. Let us now look at the actual magnitudes of the probability of

occupancy f(E). For Si at 300 K, n, = p, =10'° cm™. The densities of available

states at £, and E,. are of the order of 10! cm™. Thus the probability of occupancy

J(E) for electron occupancy for an individual state in the conduction band is very
small. Similarly, the probability of occupancy of a valence band state by a hole
[1 — f(E)] is also a very small quantity. Small changes in f(£) can lead to
significant changes in the free carrier concentration.

An n-type semiconductor has a high concentration of electrons in the
conduction band in comparison to the concentration of hole in the valence band.
The distribution function f(£') therefore lies above its intrinsic position on the
energy scale, as shown in Fig. 3.21(b). The distribution function f(E) retains its
shape at any particular temperature. A larger concentration of electrons at £, in
the n-type semiconductor leads to a correspondingly smaller hole concentration
at E,. Another interesting observation can be made from Fig. 3.21(b). As E
moves closer to £, the value of f(£) for each energy level in the conduction band
increases. This also implies an increase in the total electron concentration #,, as
E, moves towards E..

The corresponding situation for the p-type semiconductor is shown in
Fig. 3.21(c). Here the tail [1 —f(£)] below E, is larger than the tail of /(E) above E...

<
fE) 1 12 0 fEY 1 12 0
(@) (b)
[1-7(EW] E

fE) 1 12 0
(©)

Fig. 3.21 The Fermi distribution function for (a) intrinsic material (b) n-type material,
(c) p-type material
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The concentration of holes in the p-type material depends upon the difference
(Er— E,). Thus the position of £ in a band diagram for a particular temperature
is indicative of the electron and hole concentrations.

3.4.2 Equilibrium Electron and Hole Concentrations

To evaluate the electron and hole concentrations in a semiconductor, we need to
know the density of states in a particular energy range. Let N(E)dE represent the
density of states (in cm™) in the energy range dE. The electron concentration n,
in the conduction band at equilibrium is then given by

m = [ FEIN(E)AE (3.26)
E,
The function N(E) can be calculated using standard techniques of quantum

mechanics and the Pauli’s exclusion principle, and can be shown to be given by
the equation

\/E m* )’ 1/2
N(E)= 71:2(/‘12) E (3.27)
where m* is the effective mass given by Eqn (3.14). Since N(F) is proportional to
E'2, the density of states in the conduction band increases with electron energy.
The Fermi function f(£) however, as we have seen, has extremely small values
for large energies. The product f(E)N(E) in Eqn (3.26) thus decreases rapidly
above the conduction band edge E,. This is the reason why very few electrons
are at energy levels far above the conduction band edge. A similar effect is also
observed for holes in the valence band. The probability of finding a hole in the
valence band [1 — f(£)] decreases sharply below £, and therefore most holes exist
near the top of the valence band. Figure 3.22 shows the band diagram, density
of states, Fermi—Dirac distribution function, and the carrier concentrations for
intrinsic, n-type, and p-type semiconductors at thermal equilibrium.

We can replace the density of states N(£') in Eqn (3.26) with an effective density
of states N, located at the conduction band edge £,. The conduction band electron
concentration n, can therefore be written as

ny=N.f(E,) (3.28)
where f(E,) is the probability of occupancy at £,.. The Fermi function f(£,) is
given by

_ 1

J(E)= 1 + o Ec—Ep)/kT

If the Fermi level £ is assumed to lie several kT below the conduction band,
then the above equation can be simplified as

_ 1 AE.~E.)kT
J(E)= AT " (3.29)
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Electrons
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R EV
NME) [1-f(E)]
© 0 0.5 1.0 Carrier
N(E) f(E) concentration

Fig. 3.22 Thermal equilibrium band diagram, density of states, Fermi—Dirac
distribution, and the carrier concentrations for (a) intrinsic, (b) n-type, and
(c) p-type semiconductors at thermal equilibrium

Using Eqn (3.29) in Eqn (3.28), we get

ny = N e (B Er)kT (3.30)
The effective density of states N, can be shown to be given by
2rm#kr "
N, :Z(h—;’] (3.31)

where m), is the density of state’s effective mass of electrons. This effective
mass is different from the band curvature effective mass m*. This is because
in any particular direction in a crystal there are often more than one equivalent
conduction band minimas. For Si, for example, there are six equivalent conduction
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band minimas along the x-direction. Thus we Conduction band
have more than one band curvature to deal
with in arriving at the effective mass. There is a
longitudinal effective mass along the major axis
of the ellipsoid (see Fig. 3.23) and the transverse ky
effective mass m, along the two minor axes. e
By using dimensional equivalence and adding
contributions from all six valleys, we get m,

(m*)*% = 6(mm?)""? (3.32)

Thus the density of states effective mass is the
geometric mean of the effective masses. Fig.3.23  Ellipsoidal constant
Similarly, the concentration of holes in the energy surface for Si,

g . near the 6 conduction
valence band, at equilibrium, is given by band minima along

po =N, [1-f(E)] (3.33) the x direction
where N, is the effective density of states in the
valence band. The probability of finding an empty state (hole) at E, is given by
—(Er—E,)
- 1 -
1—f(EV)—I—W—€ kT (334)

mp

ky

if E is several kT larger than E,. Using Eqn (3.34) in Eqn (3.33) leads to
po =N, e Frm BT (3.35)

The effective density of states in the valence band reduced to its band edge is
given by

3/2
2mm kT

From Eqn (3.35) it is clear that the hole concentration increases as £, moves
closer to the valence band.

For an intrinsic semiconductor, the equilibrium electron and hole concentration
are represented by n; and p,, respectively. Using Eqs (3.30) and (3.35), we get

where E; is the position of the Fermi level E for an intrinsic semiconductor. E,
lies near the middle of the bandgap, as shown in Fig. 3.21(a). Multiplying #, and
P, we have

np, = (N e*(ELfE,-)/kT )(N e*(E,-*EV)/kT) =NN e*(EﬁfE‘,)/kT
|2l c v c v

which leads to

—~E /KT

n,p;, =N_N e (3.38)
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The equilibrium concentrations 7, and p, are in general given by Eqgs (3.30) and
(3.35). Taking the product of n, and p,, results in

Mo Py = (Nce—(E‘,—E,,)/kT)(NVe—(E,, ~E,)/KT)
which yields
nopo = N, N,e B BT — Nche—Eg/kT (3.39)

Thus, the product of electron and hole concentrations at equilibrium is a constant
for a particular material and temperature.
For an intrinsic semiconductor, #; = p,, implying

nypy = n; (3.40)
Using Egs (3.40) and (3.39) results in

m = NN, e "2 (3.41)

From Eqs (3.41) and (3.37) we can conclude that £, — E, = E /2 if the effective
densities of states, N, and N,, are equal. In general, however, N, and N, are slightly
different due to some difference between the effective mass for electrons and

holes. The displacement of E; from the middle of the band gap is more for GaAs
than for Si or Ge.

From Eqn (3.30), we get
no = Nce—(E,—E,,)/kT _ (Ngef(E{fE,.)/kT>ef(E,_ —E,)/kT

which on using Eqn (3.37) results in
(Ep—E,)/IKT

Ny = nye (3.42)
Similarly, we can write
Do = nie(E'_EF)/kT (3.43)

Equations (3.42) and (3.43) lead to the following two important conclusions:
(1) ny=p,=n,when E.=E,

(i) The equilibrium electron concentration n, increases exponentially as

the Fermi level moves away from E; towards the conduction band. The

equilibrium hole concentration p, increases exponentially as the £, moves
away from E; towards the valence band.

3.4.3 Temperature Dependence of Carrier Concentrations

The equilibrium electron and hole concentrations #n, and p, are dependent
upon temperature as given by Eqs (3.42) and (3.43). The dependence of n; on
temperature is given by Eqn (3.41). The Fermi level E is also a function of
temperature. From Eqn (3.41), we can write for n,,

~E,/2kT
n=N,N, e =
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Putting the expressions for N, and N, from Eqs (3.31) and (3.36) in the above Eqn
for n, leads to

3/2
"= 2(27Z—I§T) (e (3.44)

The temperature dependence of »; is dominated by the exponential term. The
variation of n, with temperature, neglecting the 72 term and the slight variation
in E, with temperature, is shown in Fig. 3.24.

For a given temperature 7, n, can be determined from Fig. 3.24. If the Fermi
level E position with respect to £, is known, then the carrier concentrations can
be determined by using Eqs (3.42) and (3.43).

500 T®

300 250
T

1016

1014
2.5x 1010¢m-3

1012 —
&
£ |
3
= 1.5% 1010

1010 —

108

2% 106
106 | |

S

1000/7 (K)-!

Fig. 3.24 Intrinsic carrier concentration for Ge, Si, and GaAs as a function of inverse
temperature
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The temperature dependence of an n-type Si with a donor concentration N, of
105 cm™ is shown schematically in Fig. 3.25.

1017 ¢
Intrinsic
3 Extrinsic (complete ionization)
1015+
o« \ Tonization
= | \
o \
= \
1013 | \
L \\ N
\
] 01 1 1 1 1 1 1 1
0 2 4 6 8 10 12

1000/7 (K)-!

Fig. 3.25 Carrier concentration vs inverse temperature for doped Si (N, = 10> cm™)

The curve in Fig. 3.25 has the following characteristics:

(1) At very low temperatures (high 1/7 values), negligible EHP exist. Due to
low thermal energy, the donor electrons are bound to donor atoms.

(i) As the temperature increases, electrons are donated to the conduction band.
This process is called ionization.

(iii) Ataround 100 K, i.e., 1000/T = 10, all donor atoms are ionized. The region
of temperature where the donor atoms contribute electrons to the conduction
band is called the ionization region.

(iv) ny= N,= 10" cm™ when all donor atoms are ionized.

(v) The carrier concentration is constant in the extrinsic region till n, starts
becoming comparable to N,.

(vi) At higher temperatures the carrier concentration is dominated by n,, which
increases with temperature.

(vii) Semiconductor devices generally use doping levels that ensure an extrinsic
region beyond the highest temperature of operation.

3.4.4 Compensation

So far, in our discussions involving extrinsic semiconductors, we have considered
either the donor type or the acceptor type doping. Very often a semiconductor
may contain both donors and acceptors. In such a situation, two possibilities
arise. One of the dopant types may be in excess of the other type or the two
dopant types may be comparable. Figure 3.26 is a schematic diagram of a band of
a semiconductor with both donor and acceptor type impurities with N, > N,.



Energy Bands and Charge Carriers in Semiconductors 89

Since the material is having Conduction band
a larger number of donors, O O O O O o
it behaves as an n-type g S S S S S|
semiconductor. The Fermi - L I 1T T 1T &
level Ej is therefore more Ep
towards the conduction band.

Ej
The acceptor states are filled
with valence band electrons, O O O O O O £La
and this results in the creation Ey T T T T T T

of holes in the valence band.
The holes are in turn filled with
conduction band electrons by Fig. 3.26 Compensation effect in n-type

the process of recombination. semiconductor (N, > N,)

Thus the net concentration of

electrons in the conduction band is N, — N,. This process of partial neutralization
of one type of dopant by another type of dopant is called compensation. Suppose
we start with an n-type semiconductor and dope it with acceptor impurities
till N, = N, the effective density of donated electrons becomes zero. In such a
compensated semiconductor, ny = p, = n,.

Any semiconductor material is electrostatically neutral due to the requirement
of space charge neutrality. Thus the sum total of the positive charges (holes and
ionized donor atoms) must equal the sum of the negative charges (electrons and
ionized acceptor atoms). This implies

po+Nj=ny+N, (3.45)

Valence band

For a compensated semiconductor with N,> N,, we have
ny=po+(Ng —N,) (3.46)

If the donor concentration is far greater than the acceptor concentration, we can
assume

oy >> Py
which leads to, using Eqn (3.46),
ny=(Ng —N;) (3.47)

3.5 Carrier Drift

Let us now try and understand what happens when an electric field is applied
across a semiconductor. The charge carriers present in the semiconductor would
experience a force due to this field and this would lead to a net acceleration. This
net movement of charge carriers due to the presence of electric field is called drift.
Charge carriers in a semiconductor are generally scattered by lattice vibrations,
impurities, other electrons, and defects. An individual electron therefore goes
through a random motion as shown in Fig. 3.27.
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Although the electron has
a very small probability of
returning to its starting point
after any finite time ¢, any large
enough group of electrons does
not undergo any net motion over
any period of time. Thus, there Fig. 3.27 Typical rgndom behaviour of an
is no preferred direction of elect.ron in a semiconductor without
motion for a group of electrons applied field
and hence no current flows. If
an electric field is applied, the
situation undergoes a change.
Individual electrons do not
undergo an appreciable change
in their random motion, but
when the motion of a group ~—— Electric field

of electrons is averaged, a ) )
. . Fig.3.28 Typical random behaviour of an
net motion does take place in : . .
electron in a semiconductor with

the direction opposite to the applied electric field
electric field direction. This is
shown schematically in Fig. 3.28.

3.5.1 Mobility and Conductivity

Suppose p, is the x component of the total momentum of a group of n electrons
present per cm?. If E_is the applied electric field in the x-direction, then each of
the n electrons experiences a force —gE, due to the electric field. For the group,
we can write

~ngE, = p, (3.48)
Electric field

Electrons are at the same time decelerated due to the collision processes. In
steady state the acceleration due to the electric field is exactly balanced by the
deceleration due to collisions. The net rate of change of momentum is therefore
zero under steady state current flow.

For random collision, there will be a constant probability of collision at any
time for each electron. Let us assume that the group consists of N, electrons at
time ¢ = 0 and let N(¢) represent the number of electrons that have not suffered a
collision in time ¢. The rate of decrease of N(¢) is proportional to N(?), i.e.,

_dN(1)
— =N
which implies
_dN() _N@)

i C T (3.49)
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where 7/, the constant of proportionality, is called the mean fiee time. It gives
the mean time between consequent scattering/collision events. The solution to
Eqn (3.49) is of the form

N(t)=Nye "' (3.50)

The probability that an electron has a collision in a time interval dt is given by dt/
t7. The differential change in momentum dp, due to collisions in time dt is thus

dp, = —px% (3.51)
A
Resulting in
dpx _ _;Dx

= (3.52)

dt Collisions tf ’

At equilibrium the net rate of change of momentum must be zero. Using
Eqgs (3.48) and (3.52) leads to
P -ngE. =0 (3.53)
I
The average momentum per electron is then
p —
<p>="=—qiE, (3.54)
The average velocity <v, > in the negative x-direction is, therefore
<p.> 1
P> 4l E,

<y >=— =

m nc m nc

(3.55)

where m, is the conductivity effective mass. Conductivity effective mass is
different from the density of states effective mass. One must remember that the
individual electrons constituting the group move in many directions by thermal
motion during a given time interval. A net drift however takes place of an average
electron due to the applied electric field, and it is this average velocity that is given
by Eqn (3.55). The average drift velocity is much smaller than the random speed
on account of thermal motion. The current density J, due to this drift is given by
the number of electrons crossing a given unit area per unit time multiplied by the
charge carried by an electron. Thus

J, =—gn<v, > (3.56)
Using Eqn (3.55) for <v.>in (3.56) leads to
y—
nq-t
J =2 1 (3.57)
m

From Ohm’s law, we know
J, =GE, (3.58)
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From Eqgs (3.57) and (3.58), we can conclude

-

nq- ity
o=—"1" (3.59)
m}’lC

o is called the conductivity and has units of (€ cm)~!. Conductivity, o, can also
be written as

o=nqu, (3.60)
Using Eqn (3.59), we can see that
qt,
My, = % (3.61)
m}’lC
Comparing Eqgs (3.61) and (3.55) leads to
[ <ve> 160
Hy = E, (3.62)

Thus, mobility is the average carrier drift velocity per unit electric field. It is
expressed in units of cm*Vs. Since <v,> and E, are oppositely directed, u, is a
positive quantity.
The current density J, given by Eqn (3.56) can be written as

Jo=nquE, (3.63)
We have so far restricted ourselves to the x component of current density and
electric field. The general expressions for mobility and current density for
electrons are

—<v,>
My =— (3.64)
and
J, =nqu,E (3.65)
The corresponding equations for holes are
<v,>
Hp =% (3.66)
and
J, =pqu,E (3.67)

When both electrons and holes contribute to the conduction process, the total
current density becomes

J =(nqu, + pqu,)E (3.68)

The hole and electron mobilities for some typical semiconductors at room
temperature are given in Table 3.1.

The term 77, used in Eqn (3.61) is the conductivity effective mass of electrons.
Silicon has six equivalent conduction band minima along the x-direction. The
band curvature longitudinal effective mass along the major axis of the ellipsoid
is represented by m,, and m, represents the transverse effective mass along the
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Table 3.1 Typical mobility values at 7= 300 K and low doping concentrations in
common semiconductors

Up(cm?/Vs) pp(em?/Vs)
Silicon 1350 480
Gallium arsenide 8500 400
Germanium 3900 1900

two minor axes. Equation (3.61) for mobility involves the reciprocal of m:c and

considering dimensional equivalence we can write

L _1(1 .2
” —3(m[+m[j (3.69)

m,.

The conductivity effective mass is thus the harmonic mean of the band curvature
effective masses.

The carrier mobility in a semiconductor is decided by the associated scattering
processes. There are two such dominant scattering processes in a semiconductor,
namely, phonon or lattice scattering and ionized impurity scattering. The atoms
in any semiconductor crystal possess thermal energy at temperatures above the
absolute zero. This causes the atoms to vibrate randomly about their mean lattice
positions. These lattice vibrations lead to disruptions in the perfect periodic
potential function within the crystal. These disruptions lead to an interaction
between the charge carriers and the vibrating atoms. This scattering is referred
to as lattice or phonon scattering. The random vibration of the atom increase as
the temperature of the semiconductor increases. This leads to an increase in the
rate at which scattering takes place and results in a decrease in the corresponding
mobility. If ul represents the mobility due to lattice scattering, then a detailed
theoretical treatment shows that to first order we can write

py o T2 (3.70)

Lattice scattering dominates in lightly doped semiconductors. Figure 3.29 shows
the temperature dependence on electron and hole mobilities for silicon. The
temperature dependence of mobility at low doping levels is found to obey 7"
dependence with n # 3/2. This is because the relationship given in Eqn (3.70) is
not exact and is based on the first-order scattering theory.

We have learnt that extrinsic semiconductors are created by doping impurity
atoms. At reasonable temperatures, the impurity atoms are ionized. A coulomb
interaction takes place between the charge carriers and the ionized impurities.
This coulombic interaction results in scattering and alters the velocity of the
charge carriers. This interaction that affects the carrier mobility is called ionized
impurity scattering and the corresponding mobility is denoted by y;. When the
temperature of the semiconductor increases, the random thermal velocity of
the charge carriers increases. The charge carriers then spend lesser time in the
vicinity of the ionized impurity, lowering the scattering effect. An increase in the
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temperature of a semiconductor therefore results in an increase in mobility i, as a
result of ionized impurity scattering. According to the first-order theory,

T3/2
oc 3.71
:LLI N] ( )

where N; = N + N, is the total ionized impurity concentration. As expected, a
higher N, leads to an increase in the probability of a charge carrier undergoing
scattering with an ionized impurity centre, resulting in a smaller y,. Figure 3.30
is a plot of electron and hole mobilities for some common semiconductors at
T=300K as a function of impurity concentration. At higher impurity concentration
values, decrease in mobility with impurity concentration can be seen to be more

pronounced.
The net mobility u involves both the scattering mechanisms. Thus

1_1,1 (3.72)
L
The net mobility is thus lower than the lowest contribution.
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Fig. 3.30 Electron and hole mobilities versus impurity concentration for Ge, Si, and
GaAsat 7=300K
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3.5.2 High-field Effect

In the treatment presented in Section 3.5.1, it has been assumed that the drift
current is proportional to electric field, with the proportionality constant not
showing any dependence on field £. This is in fact due to the validity of Ohm’s
law assumed in that section. This assumption is indeed valid over a wide range
of values of electric field. The total velocity of a charge carrier is the sum of the
random thermal velocity and drift velocity. At 7= 300 K, the average random
thermal velocity can be found using the equation

%m V2 = %kT - % (0.0259) = 0.03885 eV (3.73)

For an electron in silicon, this leads to v, =107 cm/s. Let us take a typical value
of u, = 1400 cm?/Vs in low-doped silicon and consider an applied electric field of
100 V/em. Using the definition of u,, we can write

Vi = M,E =1400x100 =1.4x10° cm/s

Thus, at such fields the energy due to drift velocity is small as compared to that due
to thermal velocity. As the drift velocity approaches the mean thermal velocity,
the added energy imparted by the field starts getting transferred to the lattice
rather than increase the carrier velocity. A constant scattering limited velocity
is then reached by the charge carrier. Figure 3.31 shows plots of average drift
velocity as a function of applied electric field for electrons and holes in some
common semiconductors.

A linear variation of velocity with electric field is observed at low electric
fields. The slope of this linear region gives the mobility of the charge carrier. At
high electric fields, a substantial deviation from the linear behaviour is observed

108
o~ GaAs (electrons)
: paili
5 107 7 ==
& =Ge=HA =
5] P y ~
z bz ANE:
5 1AM T T=300 K
5 100 £ / 3 —Electrons
‘B Z— == ! ----Holes
S Z4aniy
/ U
4 2
/7
105 u
102 103 104 105 106
Electric field (V/cm)

Fig. 3.31 Carrier drift velocity versus electric field for high-purity Si, Ge, and GaAs
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from Fig. 3.31. For electrons in silicon, with electric field in the region of
30 kV/cm, the drift velocity of electrons saturates at approximately 107 cm/s. The
drift current density J, due to electrons is given by

J,=nqu, E (3.74)
which on using the definition of u, leads to
Sy = G Vgrigy (3.75)

A saturated drift velocity thus also leads to a saturation of drift current density
and makes it independent of electric field.

The plot of carrier drift velocity versus electric field for electrons in GaAs is
however distinctly different. At low electric field values, the drift velocity varies
linearly with electric field, the slope giving the low-field electron mobility. The
typical low-field electron mobilities for gallium arsenide are around 8500 cm?/Vs,
a value substantially higher than that for silicon. As the electric field magnitude
increases, the electron drift velocity reaches a peak and then decreases. We may
define the instantaneous slope of the v, versus E plot to be the differential
mobility of the charge carrier. Thus from Fig. 3.30 it is clear that GaAs displays
a negative differential mobility. This negative differential mobility leads to a
negative differential resistance which can be used to design oscillators.

The cause for the negative differential mobility can be inferred from the E-k
diagram for GaAs shown in Fig. 3.32.

In the band diagram shown, two different valleys are present. The density-of-
states effective mass of electrons in the lower valley is 7, = 0.067 m,,, where m,
is the rest mass of the electrons. Electrons have a density-of-states effective mass

GaAs Conduction
band

Upper

my; = 0.55my

~— m;;=0.067my

Valence
band

[111] 0  [100]

Fig. 3.32 Energy band structure for GaAs showing the upper valley and the lower
valley in the conduction band
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of 0.55m in the upper valley. If the applied electric field is increased, the energy
of the electrons increases. These more energetic electrons then get scattered from
the lower valley to the upper valley, where the larger effective mass leads to
a smaller mobility. Due to this transfer of electrons from the lower valley to
the upper valley, the average drift velocity of electrons starts decreasing with
increasing electric field, as shown in Fig. 3.31.

3.5.3 Hall Effect

Moving charges experience forces in the presence of applied electric and magnetic
fields. One interesting consequence of these forces is the Hall effect. Simply put,
Hall effect is the process leading to the development of a voltage across one of
the faces of a semiconductor slab when a crossed electric and magnetic field is
applied across the other two pairs of faces of the slab. Hall effect can be used
to distinguish between n-type and p-type semiconductors, measure majority
carrier concentration, and majority carrier mobility. The effect can also be used
to develop a magnetic probe for circuit application.

Figure 3.33 shows a schematic diagram to explain the Hall effect. A current /_
flows through the semiconductor in the x-direction. A magnetic field B, is applied
in the z-direction. Charge carriers present in the semiconductors experience a
force due to the magnetic field.

B, (Magnetic field)

(Hall Voltage)+ Vi

Ey

\
A
L

I
. Hil=
V. (Applied voltage)

Fig. 3.33  Typical set-up for observing the Hall effect

This magnetic force is felt in the (—y)-direction by both electrons and holes.
In an n-type semiconductor (n, > p,), a build-up of electrons would take place
on the y = 0 surface. For a p-type semiconductor (p, > n,), the build-up would
be of holes on the y = 0 surface. This charge build-up would result in an induced
electric field in the y-direction. The resulting force on the charge carriers due
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to this induced electric field would be in steady state exactly balanced by the
magnetic force. Thus, at equilibrium we can write

4E, = qv,B; (3.76)
where the induced electric field £, is called the Hall field and the corresponding
voltage is called the Hall voltage. Designating the Hall voltage as V;; and the Hall
field as E,,, we can see from Fig. 3.33,

Vy =EyzW =EW (3.77)

where £, is assumed to be positive in the +y-direction and ¥}, is considered
positive if it has the polarity as shown in the figure.

For a p-type semiconductor, the Hall voltage would be positive; for an n-type
semiconductor, it would be negative. Thus the polarity of the Hall voltage can be
used to determine the type of the extrinsic semiconductor.

Using Eqn (3.76) in Eqn (3.77) leads to

Vv, =v.WB, (3.78)
For a p-type semiconductor, we can write for current density J,,
Jx = €PViyx
which leads to
JX Ix
=2* = = 3.79
&y T epWd) G7)

where v, is the drift velocity and the product (Wd) represents the relevant face
area and e is the magnitude of the electron charge. Putting the expression for v,
from Eqn (3.79) into Eqn (3.78), we get
_ ! sz _ IxB z
H — epid T d H
where R, = 1/ep is called the Hall coefficient. For an n-type semiconductor,

(3.80)

which yields
—_ IXBZ

j2
edV, (3.81)

Thus, the majority carrier concentration can be determined from the knowledge
of current, magnetic field, and Hall voltage using Eqn (3.81). The corresponding
equations for the n-type semiconductor are

I.B.
VH = _W (382)
and
IXBZ
n=——iz (3.83)

edVy
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Since the Hall voltage is negative for electrons, the electron concentration
arrived at using Eqn (3.83) is positive as expected. The current density, J, can
be expressed as

J.=epu,E, (3.84)
where w, is the low-field hole mobility. Equation (3.84) can be rewritten as
I, epu,Vy
wd L
which leads to
1L
The corresponding equation for i, would be
I.L
Mo = en V. wd (3.:86)

Equations (3.85) and (3.86) can be used to calculate the low-field carrier
mobilities.

3.6 Carrier Diffusion

Drift as a process leading to the flow of current through a semiconductor has
been discussed in the preceding section. Diffusion is another process by virtue of
which current can flow through a semiconductor. Diffusion is a process that leads
to the flow of particles from a region of high concentration towards a region of
low concentration. The resulting current is called diffusion current.

3.6.1 Diffusion Current Density

To understand the diffusion process in detail, let us assume that a particular piece
of an n-type semiconductor has an electron concentration as given in Fig. 3.34.

(Electron concentration)
3
—~
S
N

. |
x=—/ x=0 x=+/  x —> Distance

Fig. 3.34 Electron concentration versus distance leading to diffusion current
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In this figure, / has been assumed to be one mean-free path of the electron, i.e., the
mean distance travelled by an electron between two collisions (/ = vy, 1, where
7., is the mean time between collisions, for electrons). Let us assume that the
semiconductor has a uniform temperature, resulting in a uniform average thermal
velocity v,,. Let us evaluate the net flow of electrons per unit time per unit area
crossing the plane at x = 0. On an average, electrons moving towards the right at x
=—[ and electrons moving towards the left at x =/ will be able to cross the plane at x
=0. At any given instant of time, one half of the electrons at x =/ can be assumed to
be travelling towards the right. Similarly, on an average, one half of the electrons at
x =+ can be assumed to be travelling towards the left at any given instant of time.
The net rate of electron flow, ¢, in the +x-direction at x = 0 is given by

0. = %n(—l) vy — %n(+l)vth - %vth[n(—l) —n()] (3.87)

where n(—/) and n(/) represent the electron concentration at (—/) and (+/),
respectively. Expanding the electron concentration in a Taylor series about x =0
and keeping only the first two terms, we get from Eqn (3.87)

Bur =3V {[nw) - 1;”;} - [nm) + /g,’ﬂ}

This leads to
- dn
e =Vl 5 (3.88)
Since the electrons carry a charge (—e), the corresponding current density J,,, 4
can be written as

_ _ dn
Joxsdift = —€Pnr = vyl dx

which can be rewritten in the form
_ dn
Jovaite = €Dy dx (3.89)

where D, is called the electron diffusion coefficient, and it has units of cm?/s.

The diffusion of electrons from a region of high concentration to a region
of low concentration leads to a net flow of electrons in the negative x-direction
in the specific case considered. The conventional current flow is in the positive
x-direction. Figure 3.35(a) shows a schematic diagram of the electron diffusion
current.

The corresponding current density expression for the diffusion current due to
holes is given by

dp

J die = —€D, ——
px/diff P dx

where D, is the hole diffusion coefficient. The situation is shown in Fig. 3.35(b).
Holes diffuse from a region of high concentration to a region of low concentration,
producing a hole flux and conventional diffusion current density in the negative
x-direction.
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Flux of electrons

» Diffusion current
density due to
electrons

Electron concentration, 7

x —> (Position)

(@)

Flux of holes

¢ Diffl.lsion current
density due to
holes

Hole concentration, p

x —> (Position)

(b)

Fig. 3.35 (a) Diffusion of electrons due to a density gradient (b) Diffusion of holes due
to a density gradient

3.6.2 Total Current Density

In general, there can be four possible different current sources in a semiconductor.
These are

electron drift
electron diffusion
hole drift

hole diffusion

The total current density in the most general case can therefore be written as
- dan dp
J=enu,E, +epupE +eD, n er i (3.90)

for the case of an electric field and concentration gradient in the x-direction.
Equation (3.90) can be generalized in three dimensions to read

J =enp,E +epp,E+eD,Vn—eD, Vp 3.91)
Mobility and diffusion coefficients are however not independent quantities but

are related to each other through the Einstein relation, which we shall derive in
a later section.
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3.7 Graded Impurity Distribution

In our discussion in this chapter so far, we have assumed a uniformly doped
semiconductor. In many circumstances, there may exist regions in a semiconductor
having non-uniform doping. The thermal equilibrium state of a non-uniformly
doped semiconductor would be discussed in this section.

3.7.1 Induced Field

Let us suppose that a semiconductor is doped with an n-type impurity such
that the doping concentration decreases in the positive x-direction as shown in

Fig. 3.36.
/ EC (ConduCtiOn band)
/ EV (Valence band)

—_—>X

Fig. 3.36 Energy band diagram for a semiconductor in thermal equilibrium with a
non-uniform donor impurity concentration

As we have seen, the closeness of the Fermi level £ to the conduction band
gives a measure of the donor concentration. At thermal equilibrium, the Fermi
level is constant throughout the semiconductor. The Fermi level £y is therefore
moving away from the conduction band as one moves in the positive x-direction.
The intrinsic Fermi level is shown in Fig. 3.36 using a symbol E,. A diffusion of
majority carrier electrons takes place in the +x-direction. The diffusing electrons
leave behind ionized donors, which are positively charged. The separated opposite
charges create an electric field in the +x-direction. This induced electric field
exerts a force on the electrons in the —x-direction. A¢ equilibrium, the induced
electric field stops any further diffusion of electrons. The electron concentration at
equilibrium is thus not exactly equal to the fixed impurity concentration. Since, in
most cases of practical interest, the space charge induced by the diffusion process
is small in comparison to the impurity concentration, the difference between the
electron concentration at equilibrium and the fixed impurity concentration is
however too small.

The potential ¢ across the semiconductor is given by

9= i(EF —Ep) (3.92)
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For a one-dimensional situation, Eqn (3.92) leads to

__d9 _1dEn
B == =0y (3.93)

This equation uses the invariance of £, with distance at thermal equilibrium. Let
us now assume the quasi-neutrality condition, i.e., the electron concentration is
nearly equal to the donor impurity concentration. In this case, we can write

E. —E
ny=m exp{%} =~ Ny (x) (3.94)
which leads to
Ep —Ep =kT ln{N"n—(x)} (3.95)

Taking the derivatives of both sides results in
_ dEp; k1T dNg4(x)

dc  N,y(x) dx (3.96)
Using Eqn (3.93) in Eqn (3.96) yields
_ (kr) 1 dN4(x)
E = ( . )Nd @ d (3.97)

Thus a non-uniform doping leads to a built-in electric field and a built-in potential
difference within the semiconductor.

3.7.2 Einstein Relation

Consider a non-uniformly doped semiconductor kept in the open circuit condition
at thermal equilibrium. Then the individual electron and hole currents must be
zero. Thus we can write

—0= dn
J, =0=eny,E, +eD, 9" (3.98)

Assume the semiconductor to be represented by Fig. 3.36. If quasi-neutrality is
valid, then n = N,(x). Now using Eqn (3.98), we get

dN4(x)
0=ep,Ny(x)E, +eD, — - (3.99)

Substituting the expression for £, from Eqn (3.97) into Eqn (3.99) leads to

__ AT 1 ANy |y N ()
0=—eu,N, (x)( . )Nd o) d +eD, . (3.100)
Equation (3.100) is valid, provided
D
Zn kT (3.101)

u, e
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Considering the hole current and equating it also to zero leads to

D
Zp _kT (3.102)
u, e
Combining Eqs (3.101) and (3.102) yields
D
D, _Zp _kT (3.103)

H, M, e
Equation (3.103) is known as the Einstein relation. It emphasizes the
interdependence of the diffusion coefficient and mobility. Table 3.2 lists the
diffusion coefficients and mobility values of some common semiconductors.

Table 3.2 Typical mobility and diffusion coefficient values at 7= 300 K (1= cm?/V s
and D = cm?/s)

Hu D, Hy D,
Silicon 1350 35 480 124
Gallium arsenide 8500 220 400 10.4
Germanium 3900 101 1900 49.2

One must however remember that the diffusion coefficients and mobilities are
themselves functions of temperature and therefore Eqn (3.103) oversimplifies the
real temperature dependence of the diffusion coefficient and mobility.

¢ In addition to the scattering mechanisms, other mechanisms such as intra-
valley and inter-valley scattering also affect the electron mobility.

¢ Under strong magnetic fields, a significant increase is observed in resistivity
due to the magneto-resistance effect.

e For GaAs the high-field velocity approaches 6 x 10° cm/s.

Solved Problems

3.1 The velocity of an electron initially travelling with a velocity of 5x107 cm/s
increases by a value of 2 cm/s. Calculate the corresponding increase in the kinetic
energy of the electron.

Solution

The increase in kinetic energy, AE, is given by

1 2 _ 2
AE=E (vf—vi ) (3.1.1)
where v,and v, represent the final and initial velocities, respectively. Let us assume
vy =v;+Ay
Then we get

v} = (v, +Av)? = v +2v,Av+(Av)?
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Since Av is a small quantity, the term (Av)? can be neglected. This gives

v} =V +2v,Av
which implies

Vi =v =2vAv (3.1.2)
Using Eqn (3.1.2) in Eqn (3.1.1) yields

1
AE = —m(2v;Av) = mv;Av
2" ) (3.1.3)

Putting the given values in Eqn (3.1.3), we get

AE =(9.11x1071)(5x10°)(0.02) =9.11x107%" J

Then the increase in kinetic energy AE in eV is

_9.11x107%
L.6x107"

The energy change involved between adjacent energy states within an allowed
band is typically ~107'? eV. Such changes are very small indeed. Thus an allowed
energy band can be treated as a quasicontinuous-distribution.

=57x10%ev

3.% Evaluate the approximate donor binding energy for GaAs. Assume &, = 13.2 and
m,, =0.067m,,.

Solution
Using Egs (3.22) and (3.23), we get
* 4
m,q
=— 3.21
8(g€, )" h? (3-21)

Substituting the given values of mj, €,, and the known values of other quantities in
Eqn (3.2.1) leads to

~(0.067)(9.11x107°1)(1.6 x 1077)*
8(8.85x 10712 x13.2)?(6.63 x 10734)?

yielding

E=834x10"2J=0.0052eV
Thus an energy of 5.2 meV is required to excite the donor electron.
3.3 Determine the density-of-states effective mass of electrons in silicon. Assume
m; = 0.98m, and m, = 0.19m,, where m,, is the rest mass of electrons.
Solution
From Eqn (3.32) we get

(my)"? = 6(mm})"?
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This gives
m, = 6 (mym} )3 (3.3.1)

Substituting the given values in Eqn (3.3.1) results in
m: = 6%3[0.98(0.19)*1/3 my =1.1m,

3.4 A Si wafer is doped with 10'® P atoms/cm®. Calculate the equilibrium hole
concentration p, at 300 K. How is E}; located relative to £,? Sketch the resulting band
diagram. Take n,= 1.5 x 10" cm™.

Solution

For N,>> n;, we can assume n, = N,. This leads to

n;  225x10%

p0=%_ 1016

From Eqn (3.42), we can write

=2.25%10*cm™

ny =1 Ep—E)KT

This gives
n
EF—Ei=kT1an‘_) 34.1)

1

Putting the given values in Eqn (3.4.1), we get

16
Ep—E =0.02591n| —0" —|=0347cv
1.5x10
The resulting band diagram would be
EpP——————————————— E,
T 0.347 eV
lleVv ———F——— E;

3.5 Determine the conductivity effective mass of electrons in Si. Use the m; and m,
values given in solved example 3.3.

Solution

From Eqn (3.69), the conductivity effective mass m:fc is given by
1o_1(1,2
m:‘C 3\ m  m, (3.5.1)

Putting the given values in Eqn (3.5.1) results in

S S B
mt 3\ 0.98m,  0.19m,
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This yields
L —0.26m,

- =
mnc

3.6 A particular sample of germanium has a donor density N, = 10" atoms/cm®.
Assuming all donor atoms to be ionized, calculate the resistivity of the sample.

Solution

For n >> p, the conductivity, o, is given by

o =nell,
This implies
_1__1
p= nert, (3.6.1)

From Table 3.1, i, = 3900 cm?/V s for Ge at 300 T. Thus resistivity p, using
(3.6.1), is

1
= =16.03 Qcm
p 10" x 1.6 x 107" x 3900

3.7 A sample of Si is doped with As to a level of 5 x 10'¢ atoms/cm?. Calculate the
resistivity of the sample. Determine the Hall coefficient and the Hall voltage if the
thickness of the sample is 200 um , /. = 2 mA, and B, = 5 kG = 5 x 107> Wb/cm?.
Assume u, = 800 cm?/Vs.

Solution

1 1
Resistivity P = = i 3.7.1)

Putting the given values in Eqn (3.7.1) results in

1
= =0.156 Q cm
P L6x10 x800% 5 x 10'°
Hall coefficient, R, for an n-type semiconductor is given by
1
Ry =——
on 3.7.2)

Putting the given value in Eqn (3.7.2) yields

1 1 3
R, =——=— =-125cm’/c.
17 en ™ 1.6x107 x5x10'
The Hall voltage V;; using Eqn (3.82) is given by
[)CBZ
Vy = y Ry (3.7.3)

where d is the sample thickness. Putting appropriate values in Eqn (3.7.3) results in
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~(2x107)(5x1077)(-125)
(2x1072)
=-62.5x107 V

Vi

3.8 Two possible conduction and valence bands are shown in the E versus & diagrams
given in Fig. 3.8.1.

(1) Identify the particles for which each of these diagrams is valid.

(i1) Which band will have heavier particle mass in each of the figures and why?

. (b)
Fig. 3.8.1 E versus k plots

Solution

(1) Figure (a): Electrons (because, we are showing a conduction band)
Figure (b): Holes (because, we are showing a valence band)

(i1) Using Eqn (3.6) we get

LE_R

This means that effective mass of a particle is inversely proportional to the
curvature of the energy band. Therefore, for Fig. 3.8.1(a) we get
Curvature of 4 > Curvature of B
Hence effective mass of a particle at 4 < effective mass of a particle at B
For Fig. 3.8.1(b),
Curvature of 4 > Curvature of B
Hence effective mass of a particle at 4 < effective mass of a particle at B

3.9 A silicon crystal is known to contain 10~ atomic per cent of Sb (antimony) as
an impurity. It is then uniformly doped with 3 x 10! P (phosphorus) atoms/cm? and
then with 10'® B (boron) atoms/cm?. A thermal annealling treatment then completely
activates all impurities.

(i) What is the conductivity type of this silicon crystal?

(i1) What is the density of the majority carriers?

Solution

Sb is a group V impurity, and, therefore, acts as a donor.
Since silicon has 5 x 10?2 atoms/cm?, 10~* atomic per cent implies that the silicon is
doped to a concentration of

5%10% x107° =5x10'° Sb atoms/cm?
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Added doping of 3 X 10'® P atoms/cm® increases the donor doping of the crystal to 8
x 106 cm™.

Additional doping 10'® atoms/cm? of B (a group III impurity) converts the silicon
from n-type to p-type because the density of acceptors now exceeds the density of
donors.

(i) Hence the silicon is p-type.

(ii) Density of majority carriers (holes) = 10'® — 8 x 10'©=9.2 x 10'7 ¢cm

3.10 In an intrinsic semiconductor (band gap = 1.1 ¢ V) 4000 EHPs/cm? are created
under an applied electric field. The valence band contribution to the current density
is about 14.14 x 107! A/m?. Assuming that all the holes are moving in the same
direction, calculate the drift velocity of one of the group of holes (out of four
groups, each with 1000 holes), if the values for the remaining three groups are
3x10°m/s, 5% 10° m/s, and 6 X 10° m/s.

Solution
From Eqn (3.15) we get

J=q) (3.10.1)
We have

J=14.14x107"1" A/m?
=14.14x107"* A/em?

The drift velocities of three groups of holes are given as 3 X 10> m/s, 5 X 10° m/s, and
6 x 10° m/s. Hence, using Eqn 3.10.1 we get

1414 x 107 A/em? = 1.6 X 1072 x 1000 (3 X 107 + 5 X 103+ 6 x 10° + x)
where x = unknown velocity of fourth group of holes

14.14x107* =1.6 x107" x[1000(3% 107 +5x10% + 6 x10® + x)]

14.14 x 107
1.6 1072 % 1000

=(3x107)+(5x10%)+(6x10%) +x

= 8.8375x10% =107 [3 +50 + 60+ﬁ}

=
107 107

= x=-113x10%cms™!

From here x ~ —11.3 x 10% cm/sec or —11.3 x 10° ms™'. The negative sign indicates
that the velocity of at least one group of holes is in the opposite direction to produce
the given current density.

3.11 For a piece of GaAs semiconductor (E, = 1.43 ¢ V):
(a) Determine the minimum frequency of an incident photon that can interact with a
valence electron and elevate the electron to the conduction band.
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(b) What is the corresponding wavelength?

Solution
(a) E=hv
= 143=(4.14 x 107 ¥)v

_143 15
V=514 %10

=3.454x10" Hz
(Here the value of Planck’s constant, 4, has been taken to be 4.14 x 1075 ¢ V s)
Therefore, the minimum frequency = 3.45 X 10'* Hz

(b)) 1=%

14
~ 3x10° ms™!
3.45x10'* Hz
=8.69%10"7 m

Therefore, the wavelength = 8.69 X 10" m.

3.12 Design a semiconductor resistor of resistance 10 K which is to be operated at
300 K. The resistor should be able to handle a current density of 50 A/cm? when a
potential of 5 V is applied across it. Given that the semiconductor material has been
initially doped with a donor concentration of N, =5 x 10" cm™ and acceptors are to
be added to form a compensated p-type material.

Solution
For 5 V applied to a 10 KQ resistor, the total current is given as
I=V/R
=5/(10x10%)
=0.5mA
According to design constraints, the current density is supposed to be limited to
50 A/cm?. The cross sectional area of the resistor is then given by
A=1/J
=0.5%x107%/50
=107° cm?
The next thing to be calculated for designing the resistor is its length. Now to
calculate the length of the resistor we must fix a limit for the value of electric

field, which can be handled by the resistor to be designed. Let us limit this electric
field to 100 V/cm, then the length of the resistor can be calculated as

L:V/E
=5/100
=5%x102cm
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Now, we know that

pL
R=—
A

Substituting the values for 4, L, and R in Eqn (3.12.1) we get

(3.12.1)

p % (5x1072 cm)

10KQ =
(107 cm?)

3 -5
10x10° X107 _ 5y oy
5%1072

Now the conductivity, o, is given as

=p=

o=1
p

__ 1 _ -1
= o= 0.50 (Qcm) ™.

Now, for a compensated p-type semiconductor we have

o=ql,p=ql,(N,—N,)

(3.12.2)

In Eqn (3.12.2), the values of o and N, are known. But, to complete the design of
the resistor, we have to choose a value of N, which will give us a realistic value of
hole mobility, 4,. We know that if the doping is of the order of 10'-10'7 atoms/cm’,
then the mobility value falls. Therefore, here come in the skills of a professional
design engineer, who can always guess what is going to be the value of mobility for
a particular doping concentration. So, using trial and error we have

If N, =1.25 x 10'® cm™, then N, + N, = 1.75 x 10'® cm™ and the hole mobility
~410 cm?/V s.

Substituting these parameters in Eqn (3.12.2) we get

0 =1.6x10"" x410x(1.25x10'° —=5x10')
=1.6x107" x410x(0.75)x10'
=0.492(Q cm)~! which is very close to the value we need.

Therefore, the following parameters must be followed for designing the resistor
Limiting electric field, £ =100 V/cm

Length of resistor, L =5 X 1072 cm

Area of cross-section, 4 = 1075 ¢cm?

Acceptor doping concentration, N, = 1.75 x 10'® cm™.

3.13 A piece of intrinsic silicon at room temperature is kept at thermal equilibrium.

The position of some random level £, is to be fixed at 0.9 eV above the valence band

edge. Probability of capture of an energy state by an electron at £, is 50%.

(a) Calculate the amount of doping required to satisfy this condition.

(b) Which impurity (name the exact element) should be chosen so that the energy
required for transition of 100% doped carriers to conduction band is never more
than 4.4% of silicon energy band gap (E,= 1.1 ¢ V)?
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(c) Compare the resistivities of the doped and undoped pieces of silicon. Interpret
the result obtained. Take u, = 1400 cm*/V's and u, = 500 cm*/V's.
Given data:

Table 3.13.1 Ionization energies for different
impurities in silicon

Impurity Ionization energy (e V)
Phosphorous 0.045
Arsenic 0.050
Boron 0.045
Aluminum 0.060

Solution

Probability of capture of an energy state by an electron at £, is 50%. This means that

E, is actually the Fermi level.

(a) The Fermi level is to be 0.9 eV above valence band edge and the band gap of
Siis 1.1 e V. So, it means that the Fermi level is 0.2 eV below the bottom of the
conduction band edge. And £, — E;=0.35eV
Now

(Ep—E,)/kT (3.13.1)

ny = ne
Substituting the known values in Eqn (3.13.1) we get

1y =1.5x 1010 x 035/0.0259
=1.109x10' cm™
(b) 4.4 % of Si band gap =0.0484 ¢V
From Table 3.13.1 it can be seen that the IE of phosphorus in Si is less than the
value calculated above (0.0484 eV). Therefore, phosphorus is the impurity that
should be used for doping the given silicon sample.
(c) Conductivity, 0= g (n, +pi,).
Therefore, for the doped substrate

0 =1.6x10"""[1.109 x10'® x1400]

=2.484(Qcm)™!
Now, resistivity, p =%
__1
2.484
=0.4025 Qcm

For the intrinsic (undoped substrate), n =p =n;
Thus, conductivity, o becomes

0=1.6x10"91.5x 10" x 1400 + 1.5 x 10'* x 500]
yelding
6=45.6x 107 (Q cm)!
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resulting in

p=L=— 1 _21x10°Qem
o 456x107

3.14 For the silicon sample in the previous problem (3.13) the position of energy
level, E, is to set exactly 0.6 eV above the intrinsic level. What concentration of
doping is required to satisfy this condition? What are these types of semiconductors
called?

Solution
Fermi level 0.6 eV above intrinsic level means that the Fermi level has moved into
the conduction band.

ny =n, o Er—E)/IkT

— (15 X 1010) eO.6/0A0259
=1.725%x10* cm™
Such semiconductors are called degenerate semiconductors.

3.15 The electron concentration in an n-type GaAs semiconductor maintained at 7

=300 K varies linearly from 1 x 10'® to 8 X 107 cm™ over a distance of 0.12 cm.
The electron diffusion coefficient for the material is D, = 225 cm?/s. Determine the
diffusion current density.

Solution
From Eqn (3.89) we get,
—eD dn
Supaite = €D, dx (3.15.1)
Putting values in Eqn (3.15.1) gives,

(1.6 x10719)(225)(1x 108 =8 x10'7)
Jugite = 0.12

resulting in,

(1.6x1071)(225)(2 x 10'7)
sdite = 0.12

giving,
Jaiee = 60 A/em?

3.16 The electron concentration in n-type silicon at 7= 300 K is given by,
n(x)=2x108e¥M for x>0

Calculate the electron diffusion current density at x = 0. Assume In = 10™#cm and

D, =25 cm?/s.
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Solution
Eqn (3.89) gives,
dn
Jn/dlff n
Putting values in Eqn (3.16.1) we get,

(3.16.1)

J s =D, x2x10' x(—ﬁ) e(——x

At x =0, we have,

Jaite = (1.6x1077)(25)(2 1015)(__101_4 j
=—(1.6x25x%x2) 10-19+15+4

=-80 A/em?

Recapitulation

¢ Individual quantized levels of individual atoms split into a band of discrete
energy levels for a collection of atoms in close proximity.

e Splitting of energy states results in the formation of valence and conduction
bands.

e The E - k relation for a single free electron is given by

n? 2
E=—"—k
2m
o Electron transitions in direct band semiconductors do not involve change in k.
e The effective mass m g of an electron in a crystal is given by
h2

M =———
7 2 E/di>

e For an intrinsic semiconductor,
n=p=mn;
e For an n-type semiconductor, n, >> (n,, p,) and for a p-type semiconductor,
p >> (nia no)-
e The ground-state energy of an electron according to the Bohr Model is given
by
4

E=-"9__ith K =4r gy, .
2K?nh?

e The Fermi—Dirac distribution function f(E) is given by

_ 1
f(E)_ 1+e(E—EF)/kT
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where, E, is the Fermi level.
e Conduction band electron concentration #, is given by

— N (B~ Ep)IkT
ny=N_e &

where N, is the effective density of states in the conduction band.

® np, = nypy = NCNVe_Eg/kT, where N, is the effective density of states in the
balance band and £, is the band gap.
e Equilibrium electron and hole concentration n, and p, are given by

(Ep— E;)/kT (E,— Ep)/kT

ny = n;e and p, = ne

respectively, where E; is the intrinsic Fermi level.
e For a compensated semiconductor with N,> N,

ny=N,—N,

a

e Conductivity o for an n-type semiconductor is given by

0 =ngl,
where (1, is electron mobility expressed as v/e.
o Total current density J for a semiconductor is

J =(ngu, + pqu, ) E

* Mobility due to lattice scattering is 1, «< 7->* and due to impurity scattering is
792
Hyo< L7
e Hall voltage V,, is expressible as

= [XBZ = [XBZ
1 epd d 1
for a p-type semiconductor. For an n-type semiconductor,
1
W ==—
1 en

e Total current density J including diffusion is given by

d dp
J=enl,E, +epu,E +eD, —’;—er i
for an applied field in the x direction and a concentration gradient in the x

direction.

* D, /1, =D, /1, =kTle s called the Einstein relation.

e Phonons associated with long-wavelength vibrations of the lattice are called
acoustic phonons.

e Phonons associated with vibrations in the optical frequency range are called
optical phonons.

e Band gap engineering involves the modification of band structure.

e Large number of quantum wells kept close to each other constitute a
superlattice.
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Review Questions

3.1
32
33

34
3.5

3.6
3.7

3.8
39
3.10

3.11
3.12
3.13
3.14
3.15
3.16

3.17
3.18

3.19

3.20
3.21

322

3.23
3.24

Define radial probability density.

What is Pauli’s exclusion principle?

Why do discrete quantized energy levels associated with individual atoms split
up when atoms are brought in close proximity?

Explain the formation of forbidden bands with the help of a suitable diagram.
Describe the process of formation of valence band and conduction band for
silicon.

Distinguish between insulator, semiconductor, and metal on the basis of energy
band diagrams.

Write down the Schrédinger equation for a free electron moving along the
X-axis.

Sketch the shape of the E-k relation for a single free electron.

What are direct band gap semiconductors? Give one example.

What is the role of momentum conservation in electron transitions in an
indirect semiconductor?

Define electron effective mass.

What does a negative electron effective mass imply?

Describe the process of EHP generation using a suitable diagram.

Compare the electron and hole energy depiction in a band diagram.

Explain the process of EHP generation using the broken bond model.

What is an extrinsic semiconductor? How is it produced from an intrinsic
semiconductor?

What are amphoteric impurities? Give some examples.

Describe the Fermi—Dirac distribution function and schematically show its
dependence on temperature.

Draw diagrams indicating the Fermi-Dirac distribution function for (a)
an intrinsic semiconductor (b) an n-type semiconductor, and (c) a p-type
semiconductor.

Write an expression giving the conduction band electron concentration as a
function of temperature.

Prove that the equilibrium electron concentration is given by

1y = nie(EF—E,)/kT

Plot n,, versus 10](,)0

Explain the process of compensation with the help of a suitable diagram.
Show that conductivity o is given by the relation

for moderately doped silicon.

ng? 1
e




118 Solid State Electronic Devices

3.25
3.26
3.27
3.28

3.29

3.30
3.31
3.32
3.33

3.34

3.35

3.36
3.37
3.38
3.39

3.40

341

3.42
343
3.44
3.45
3.46
3.47

3.48
3.49
3.50
3.51

Distinguish between lattice scattering and ionized impurity scattering.

Why does the carrier drift velocity saturate at high electric fields?

Sketch the E-k diagram for GaAs.

Derive an expression for Hall voltage in terms of other experimental conditions
in a typical Hall set-up.

Give a one-dimensional derivation for the relation
dn
J=eD =~
" dx

Derive the Einstein relation.
Explain the process of formation of energy bands using suitable sketches.
Derive the E-k relation for a free electron.
Define (a) band curvature effective mass, (b) density-of-states effective mass,
and (c¢) conductivity effective mass.
For GaAs, the conduction band equi-energy surfaces are spherical. What is the
relationship between (a), (b), and (c) of Question (3) for GaAs?

2

Show that mg = — " from simple application of Newton’s second law.
T @k
Draw a graph of f(£) versus E and explain its salient features.

Show that n; = N exp[—(E, — E,)/kT]

Explain the temperature dependence of #;, using a suitable graph.

Draw a graph showing the temperature dependence of n, and explain the
distinctive regions.

Differentiate between intrinsic semiconductor and compensated semiconductor
of very high resistivity.
. . . . qt
Derive the one-dimensional expression <vx> = ——JEX.
m

nc
Explain the temperature dependence of u;, and y,.

Explain the origin of negative differential mobility of electrons in GaAs.
Derive an expression for Hall voltage.

Establish the dimensional consistency of the Einstein relation.

What are phonons?

Differentiate between acoustic and optical phonons. What are three main
techniques by which electronic band structure of a semiconductor can be
modified?

Find the band gap range for Hg, _,/Cd, Te.

Sketch a quantum well schematically.

What is a superlattice?

What are strained layers?
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3.1 Calculate the resistivity of an n-type germanium sample at 300 K. The sample
has a donor density N, = 10** atoms/m’. Assume all donors to be ionized and

take 1= 038,
. L
Hint: p=L=—1_
{m P=5 nqun}

Ans. 0.164 Qm.
3.2 A particular sample of n-type germanium has a resistivity of 0.1 Qm at
300 K. Calculate the donor concentration.

[Hint:nsz =9 }

e,

Ans. 1.64 x 10*°/m?
3.3 Mobilities of free electrons and holes in pure Ge are 0.38 and 0.18 m?/Vs,
respectively. Assume n, for Ge = 2.5 x 10" m™. Calculate the intrinsic
conductivity.
[Hint: ;= en(u, + 1,)]

Ans. 0.446 Qm

3.4 Find the intrinsic resistivity of silicon from the following data:

n,=1.5x'"%/m? p,=0.13, u, = 0.05 m%Vs.

[Him; b :(H
1
Ans. 2.314 x 10° Qm

3.5 Energy of photons is being used to excite electrons from the conduction band
to the valence band in semiconductors. Calculate the maximum wavelength of
incident photons that can result in EHP generation for (a) silicon (£, = 1.12 eV)
and (b) Diamond (E, =7 eV)
|:H1nt. Amax = E_c}

¢ Ans. (a) 11080 A; (b) 1774 A

3.6 Asample of n-type silicon material has a donor concentration of N;=2.5x 10 m™.
Calculate the temperature at which the Fermi level coincides with the edge of
the conduction band. Assume the effective mass of electron to be equal to its
rest mass.

Hint: (a) Ep=E_ if N;=N,

2”m*kT 3/2 m* 3/2
(b) N, =2| ——=—| =482x10""| | 1%
h My

Ans. T=0.14 K
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3.7

3.8

3.9

3.10

3.11

A Si sample is doped with As to a concentration of 10'® atoms/cm?. The thickness
of the sample is 500 um. A current /. = 1 mA is made to flow in the x-direction
and B, =5 x 10~ Wb/cm?. Calculate the Hall voltage.

1.B
I:Hint: Vy=—= 7 = Ry, where d is the thickness in the direction of the applied

magnetic field

Ans. —6.25 mV
The donor concentration in an n-type semiconductor held at 7= 300 K has an x
dependence given by
N,(x)=10" — 10" (cm™)
where x is in centimetres and varies between 0 <x < 1 pm. Calculate the resulting
field £ atx=0.

Hint: Use Eqn (3.97) for £, with

AN _ s
=10,
Thus,
£~ (0.0259)(-10")
' 10"

Ans. 25.9 V/em
In a particular sample of n-type semiconductor, the donor concentration
dependence on x at 300 K is given by
N, (x) = 10" — 10%%,
with x in the range of 0 < x < 1.5 um. Calculate the resulting field E, at
x=0.5 um.

{Hint: E.=- L7 — | N, (x)}

e Ny(x)dx

Ans. 518 V/iem
A semiconductor has a mobility of 500 cm?V s at T = 300 K. Calculate the
diffusion coefficient.

{Hint: D= (keT),u}
Ans. 12.95 cm?/s

Figure 3.P11.1 shows the carrier concentration versus inverse temperature plot
for silicon with about 10'> donors/cm?.

(i) Write the names of three regions mentioned as Region I, Region II, and
Region III in Fig. 3.P11.1(a).

(i) Out of the four values given below, what minimum value of doping
concentration must be chosen so that the device made out of this silicon
works up to a maximum temperature of 400 K? Justify your choice of doping
concentration briefly. Use Fig. 3.P11.1(b) for performing calculations and
for values of any required parameters.
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3.12

3.13

3.14

3.15

17 1014

10 Region 111
~ 1012
| - 3]
g 1015 Region II £ 1010
= Region | 2
S 1 -

1013 = 108

ny
1011 T T T T T 106 T
2 4 6 8 10 12 2 3 4
1000/T (K1) 1000/ (K-1)
(a) (b)

Fig. 3.P11.1 Carrier concentration versus inverse temperature

(@)~ 10" ecm™ (b)~102cm™ (¢)~10% cm™ (d) 10°%cm™
Ans. (i) Region [—Ionization region
Region II—Extrinsic region
Region III—Intrinsic region
(i) ()

(a) Find the equilibrium concentrations of electrons and holes, if a GaAs sample
at 300 K is doped with 10'? silicon atoms/cm?®. 90% of these atoms replace
the Ga atoms and 10% replace the As atoms. Assume that all the silicon
impurities are ionized.

(b) Calculate the resistivity of the sample, if mobilities of electrons and holes
are given as 8500 cm? Vs and 400 cm?/ Vs, respectively.

(c) Indicate the position of the Fermi level after doping with the help of an
energy band diagram.

Ans. (a) 8 x 10" cm™ electrons and 5 cm™ holes (b) 919.11 Qcm

Consider a silicon sample at 7= 300 K with doping concentrations of N, = 0

and N, = 10" cm™. Assuming complete ionization, calculate the drift current

density, if the applied electric field is £ =10 V/cm . Given y,, = 1350 cm?/ V's

and u, =480 cm?*/ Vs.

Ans. 21.60 A/cm?

A specimen of Si has a square cross section of 2 X 2 cm? and length of 2 cm. The

current is mainly due to electrons, which have a mobility of 1300 cm? Vs. An

applied dc voltage of 1 V across the bar produces a current of 8 mA in it.

Calculate (a) concentration of free electrons (b) drift velocity of electrons. Also

briefly discuss, what overall effect do you foresee on the performance of this

specimen, if you increase the doping concentration (at constant temperature)
while still retaining its non degenerate nature.
Ans. (a) 1.92 x 103 cm™ (b) 6.5 m/s

A silicon crystal is known to contain 10~* atomic per cent of As as an impurity.

It then receives a uniform doping of 3 x 10'¢ P atoms/cm® and a subsequent

uniform doping of 10'® B atoms/cm®. A thermal annealling treatment then

completely activates all impurities.

(a) What is the conductivity type of this silicon crystal?
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3.16

3.17

3.18

3.19

3.20

(b) What is the density of the majority carriers?
(c) Sketch the band diagram.
[Hint: Refer to the case of compensated semiconductors]
Ans. (a) n-type (b) 4 x 10'® cm™
A silicon sample at 7= 300 K contains a donor impurity concentration of 10
atoms/cm®. Determine the concentration of impurity to be added so that the
Fermi level is just 0.2 eV above the valence band edge.
Ans. 2.1 x 10'® atoms/cm?®
A silicon sample is doped with 6 x 10! cm™ donors and 2 x 10! cm™ acceptors.
Find the position of Fermi level with respect to E; at 300 K.
Ans. 0.3235eV
An intrinsic piece of silicon has been doped with a certain number of arsenic
impurity atoms. Draw the resulting energy band diagram clearly indicating the
position of the donor/acceptor level. What happens to the position of donor
energy level, if the original semiconductor is replaced by a piece of GaAs.
Comment on the result obtained.
Take £,(Si) = 11.8, £,(GaAs) = 13.2, g, = 8.85 x 1072 F/m., m* (Si) = 0.26m,,
m¥(GaAs) = 0.067m,,.
[Hint: Use the following relation (obtained from Eqn 3.22):
miq*
8(gye, )* h?
For Si, the donor doping level will set somewhere close to 0.03 eV to
0.06 eV from a band edge. Similarly, in case of donor doping level in case of
GaAs will settle somewhere close to 0.0052 e V. This means that lower amount
of energy is required to excite the electron from the donor energy level to the
conduction band in case of GaAs as compared to Si.]
The electron concentration in an n-type GaAs sample held at 7= 300 K varies
linearly from 3 x 10" to 5 x 10'7 cm™ over a distance of 0.1 cm. Calculate the
diffusion current density assuming, D, = 225 cm?/s.

. dn
Hint J ;.. =eD
l: nt J,qige eb, dx:|

Ans. 900 A/cm?
The electron concentration in a particular sample of n-type silicon maintained at
T=300 K is given by

n(x)=8x10"e—'  for x>0

Assuming In = 10 cm and D, = 25 cm?/s, determine the electron diffusion
current density at x = 0.

. di
I:Hmt S paiee = €D, d’)ﬂ

Ans. 32 Alcm?
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Introduction

The concept of extrinsic semiconductors having electrons and holes as charge
carriers was discussed in Chapter 3. Charge carrier concentrations were to be
considered under equilibrium conditions. In a variety of applications, semi-
conductor devices operate under non-equilibrium conditions. This can happen,
for example, when excess carriers are created by incident light or applied bias.
This chapter deals with the behaviour of the excess carriers under non-equilibrium
conditions. The mechanisms involved in the process of the decay of these excess
carriers over a period of time are discussed in detail. We will also revisit the topic
of diffusion, but this time we consider non-equilibrium circumstances. The study
of'excess carriers in semiconductors help us to understand the classical experiment
conducted by Haynes and Shockley at the Bell Telephone Laboratories. The Fermi
level introduced in the preceding chapter assumed thermal equilibrium. In this
chapter we introduce the concepts of the quasi-Fermi level for electrons and holes
to deal with the behaviour of excess carriers under non-equilibrium conditions.
This chapter also deals with the continuity equation, which will be very helpful in
the later chapter. Semiconductor surfaces play an important role in the operation
of semiconductor devices. In this chapter, we will study the effects of different
surface conditions and introduce parameters that will help us to identify different
surface conditions.

4.1 Semiconductor in Equilibrium

In this section we will recollect some important characteristics of a semiconductor
in equilibrium. A semiconductor, as we have understood, has a conduction band
and a valence band, with a band gap separating the two. Free electrons exist in the
conduction band and holes exist in the valence band. At any given temperature,
electrons are being continually excited from the valence band to the conduction
band. This happens due to the random nature of the thermal processes involved.
These electrons move randomly through the crystal in the conduction band. At
times the electrons come across empty states (holes) in the valence band. The
free electrons fall into these empty states in the valence band and in the process
annihilate themselves and the holes corresponding to the empty states into
which they fall. This process of annihilation of an EHP is called recombination.
At thermal equilibrium, the net carrier concentrations are independent of time,
therefore the rate of generation of electrons and holes must equal the rate of
recombination. The processes of generation and recombination are shown
schematically in Fig. 4.1.

Suppose G, and G, represent the thermal generation rates of electrons and
holes, respectively, in units of cm= s7!. Since electrons and holes are generated in
pairs in a typical EHP process, we get

Guo=Gy (4.1)

P!
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) @»\ Conduction band

E.
Electron—hole Electron—hole
generation recombination Band gap

E
@ X ‘“@ ' Valence band

Fig. 4.1 Electron-hole generation and recombination processes

Suppose the corresponding recombination rates of electrons and holes in
thermal equilibrium are represented by R, and R, respectively. R,, and R, are
expressed in units of cm™ s7!. If we consider direct band-to-band recombination,
then electron and holes always recombine in pairs, leading to

RnO = RpO (42)
Under thermal equilibrium conditions, the electron and hole concentrations
are independent of time, implying

GnO = GpO = RnO = RpO

(4.3)

4.2 Excess Carrier Generation and Recombination

Excess charge carriers can be generated in a semiconductor by a variety of
physical processes. A semiconductor with excess carriers is said to be in non-
equilibrium. One of the important methods of creating excess carrier is optical
absorption.

4.2.1 Optical Absorption

Suppose a beam of photons with a range of energies is incident on the surface of
a semiconductor material. These photons can interact with the electrons present
in the valence band of the material. Photons with energy /v greater than the band
gap E, will get absorbed in the semiconductor, whereas photons with energies
less than £, will be transmitted through the semiconductor. Absorption of photons
with energy greater than E, will lead to the transfer of a valence band electron to
the conduction band and will thus result in an EHP creation. One must however
remember that it is possible for an electron in the valence band to acquire energy
greater than the band gap energy E,. Such electrons initially reach the conduction
band with energies greater than the average conduction band electrons as shown
in Fig. 4.2. Subsequent scattering events with the lattice ultimately result in
electron velocities reaching the thermal equilibrium velocity of other conduction
band electrons. These electron-hole pairs created are excess charge carriers that
alter the conductivity of the semiconductor material.
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Fig. 4.2 Optical absorption of a photon with v > E,: (a) an EHP is created during
photon absorption, (b) the excited electron gives up energy to the lattice by
scattering events, (c) the electron recombines with a hole in the valence band

Suppose a photon beam of intensity 7, (photons/cm?s) is incident on a
semiconductor sample of finite thickness. Let us further assume that the
photons are of a fixed wavelength A. If #v > E, photons get absorbed within the
semiconductor. The photon that survives up to a depth x has no memory of the
distance travelled without absorption, therefore the probability of absorption in
any incremental depth dx is constant. The rate at which the intensity falls within
the semiconductor, —dI(x)/dx, is proportional to the intensity remaining at x;

thus

—_‘g}fx) — al(x)

(4.4)

where « is the proportionality constant. Equation (4.4) has solutions given by

Ix)=1e*

The coefficient o is called the
absorption coefficient and has the
unit of cm™'. It is a function of the
wavelength of the incident photons.
A typical plot of o as a function of
wavelength is given in Fig. 4.3.

Considerable absorption can be
concluded from Fig. 4.3. The photon
energy E is given by hv = hc/A. If A is
expressed in um, the photon energy in
units of eV is given by £ =1.24/1.

Appendix D gives the energy
band gaps of some common
semiconductors. The figure also gives

4.5)
hv=E

N

o (cm=1)

E, hv (eV) —>
~— A (um)

Fig. 4.3 Dependence of absorption
coefficient & on the wavelength A

the corresponding wavelengths of photons which will have their energies equal
to the band gap. Any of these semiconductors will absorb photons with energies
equal to or larger than the band gap. The most used semiconductor Si will, for
example, absorb photons with wavelengths less than or equal to 1 um.
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4.2.2 Excess Minority Carrier Lifetime

Suppose g, is the excess electron generation rate and g, is the excess hole
generation rate. Both g; and g, have units of cm™ s'. If we consider only direct
band-to-band generation of excess electrons and holes, then we must have

2,=g, (4.6)
If 6n and 6p represent the excess electron and hole concentrations, then for the
total electron and hole concentrations n and p we can write.

n=ny,+on 4.7)
and

P=py+dp (4.8)
where n, and p, are the corresponding equilibrium concentrations. It is also clear
that under non-thermal equilibrium conditions,

np # nyp, = n? (4.9)
The process of creation of electron—hole pairs by optical absorption is shown
schematically in Fig. 4.4.

5}’1 no
— G Conduction band
A A A E.
~
Incident
photon  EESEEEEE + + Ey
— — Valence band
op Py

Fig. 4.4 Creation of excess electron and hole densities by optical absorption

In additon to the excess electron—hole generation, there is a competing process
of excess electron—hole recombination. In this process, an excess electron in the
conduction band falls to the valence band and occupies the vacancy representing
a hole. Let R; and R, be the recombination rates of excess electrons and holes
in units of cm™ s7!. The process of recombination of excess carriers is shown
schematically in Fig. 4.5.

no
O O - __ _ - Conduction band
C
Y Y E
“ % LTJ Valence band

Py

Fig. 4.5 Recombination process of excess carriers re-establishing thermal equilibrium
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Once again, for direct band-to-band recombinations, we must have

R =R) (4.10)
The net rate of change in the electron concentration can be written as

D — o, [ - ntrpio) @1
where the net electron concentration n(z) is given by

n(t) =ny + on(?) (4.12)
A similar expression can be written for p(z),

p(0)=py+ 5p(0) (4.13)
Obviously,

on(t) =6 p() (4.14)

Since n, and p,, are time independent, Eqn (4.11) can be rewritten as
d _ 2
9 {sn(1)) = o1, {n? =Ly + 5n(1)]Lpy + 3P0}
which can be simplified to
- (6n(1)) =~ a,6n(1) [(ny + py) + 6n(1)] @.15)

Let us now assume low-level injection, which simply means that the excess
carrier concentration is much smaller than the thermal equilibrium majority
carrier concentration. For an n-type semiconductor, we have

ny > p, (4.16)
The low-level injection thus implies

op (1) < n, (4.17)
Similarly, for a p-type semiconductor we must have

on (1) < p, (4.18)
Thus for a p-type material under low injection, Eqn (4.15) reduces to

L (5n(1)) = ~a,pysn(t) (4.19)
Equation (4.19) permits solutions of the form

on (£) = 6n(0) e~ %P (4.20)

We now define a quantity 7,, = 1/a,p, to be the excess minority carrier lifetime.
Equation (4.20) can then be expressed as

sn(f) = 8n(0) e (4.21)

7, 1s the mean time available to an excess minority carrier before it recombines.
The recombination rate R’ using Eqn (4.19) is then
on(t)

@:-%@mm=mmMm=7gf (4.22)

where the negative sign is owing to the fact that R, is a positive quantity,
whereas the rate of change of excess minority carrier concentration is a negative
quantity.
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For the case of direct band-to-band recombination, we have
R, =R, =220 (4.23)
TnO
For a p-type material we have

’ ’ 6 t
R =R, =20 (4.24)
y4u
In general, the generation and recombination rates are functions of space
coordinates and time.

4.3 Carrier Lifetime (General Case)

In the preceeding section, we introduced the excess carrier lifetime for an ideal
semiconductor having no electronic energy states within the forbidden-energy band
gap. A perfect single-crystal semiconductor material does display this behaviour.
In reality, however, all semiconductors contain defects within the crystal. For a
reasonable number of defects, the result is the creation of discrete energy states
within the forbidden-energy band. These allowed-energy levels within the band
gap play a dominant role in determining the mean carrier lifetime. Some impurities
result in energy states that are far away from the energy band edges. Such energy
states are called deep impurity levels. Some common examples are gold, copper,
manganese, iron, etc. in silicon and germanium. These deep impurity levels play
an important role in recombination processes involving non-equilibrium charge
carriers. An exact analysis of the mean carrier lifetime can be undertaken using
the Shockley—Read—Hall theory of recombination, which we will discuss next.

4.3.1 Shockley—Read—-Hall Theory

Anallowed energy state within the forbidden gap is called a trap. A trap under some
circumstances can act as a recombination centre if it captures electrons and holes
with equal probability, leading to equal capture cross sections. The Shockley—
Read—Hall theory assumes the existence of a single trap or recombination centre
at an energy £, within the forbidden gap. The trap is called an acceptor trap if it
is negatively charged and contains an electron. A trap is neutral when it does not
contain an electron. We will assume the trap to be an acceptor trap.

The four possible processes involving the trap are shown schematically in
Fig. 4.6.

These four processes are as follows.

Process 1 An electron is captured from the conduction band by an initially
neutral empty trap.

Process 2 A trapped electron is emitted back into the conduction band.
Process 3 Ahole is captured from the valence band by a trap already containing
an electron. This process can also be viewed as emission of an electron from the
trap to the valence band.
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Process 1
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Fig. 4.6 Schematic representation of the four basic trapping and emission processes for
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band. This process can also be viewed as a capture of a valence band electron.

The rate at which electrons in the conduction band are captured by the traps
(process 1) is proportional to the density of electrons in the conduction band and
is also proportional to the density of empty trap states. If N, is the concentration
of trapping centres in the semiconductor, then the concentration of unoccupied
trapping centres is given by N, [(1 — fz (£,)] where f (E)) is the Fermi function of

the trap energy E,. Thus the capture rate R, is given by
ch = Cn ]vt [1 _fF (Et)]n

where n is the electron concentration and

fr(E)= L

Eqn (4.26).

Similarly, the rate R,, with which electrons are emitted from the filled traps

(process 2) is given by
Ren = En Nth (Et)

where the proportionality constant E, is called emission probability.

E -E
l+exp| - &
Xp( KT j

In Eqn (4.25), C, is a constant proportional to the electron-capture cross section.
In fact, C, = vy, o, where, vy, is the thermal velocity of the carriers and o, is
the trap-capture cross section. A degeneracy factor of 1 has been assumed in

R, in Eqn (4.25) and R,, in Eqn (4.27) have units of cm= s~
At thermal equilibrium, we must have

(4.25)

(4.26)

4.27)
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R, =R, (4.28)
Using Eqs (4.25) and (4.27) in Eqn (4.28) yields
E, N, fro (E) = C, N, [1 = fry (E)] 1 (4.29)

where f5, is the thermal-equilibrium Fremi function and 7, is thermal-equilibrium
electron concentration given by

ny=N, e (Ec = EDKT (4.30)
Using Eqn (4.30) in Eqn (4.29) yields

E, N, fr (E)=C, N, [1 = fr (E)] N, &5 = EKT (4.31)
the Fermi function for energy E is given by

1

Jr(E)= 1 + o(E— Ex)KT (4.32)
For (E — E) > kT, Eqn (4.32) can be rewritten as

fr(E)=e F AT (4.33)

Equation (4.33) is known as the Maxwell-Boltzmann approximation. Using
Eqgs (4.33) and (4.30) in Eqn (4.31) results in

E,=N, e BB (4.34)
which can be written in the form

E,=nC, (4.35)
where

n,= N, e (Em VKT (4.36)

Clearly, n, is equivalent to the electron concentration existing in the conduction
band if the trap energy level E, coincide with the Fermi energy level E,.

Under non-equilibrium conditions, R, # R,, and the net rate of capture of
electrons is then

R,=R.,~ R, (4.37)
Using Eqgs (4.25) and (4.27) in Eqn (4.37) yields
R,={C, N,n[l - f (E)]} — [E, N, fr (E)] (4.38)

where 7 is the total electron concentration and Fermi energy in the Fermi function
would have to be replaced with quasi-Fermi energy, which we shall discuss later
on in this chapter. At this stage, it is sufficient to recollect that Fermi energy
can no longer be defined under non-equilibrium conditions. The corresponding
equivalent energies are called quasi-Fermi levels and are different for electrons
and holes. Using Eqn (4.35) in Eqn (4.38) leads to

R,=C, N, in[1~fp(E)] = n,fr(E)} (4.39)
considering processes 3 and 4 from Fig. (4.6) an equation similar to Eqn (4.39)
can be derived for the rate of capture of holes. The final equation is

RP = Cp ]Vt {pfF (Et) —P [1 _fF (Et)]} (4.40)
where
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E-E,
pt=Nve><p[— T } (4.41)

If the trap density is not very large, the excess electron and excess hole
concentrations can be considered nearly equal. Under these circumstances,
R, =R, Equating Eqs (4.39) and (4.40) leads to

C, N An[1 = fr (E)] = n,fi (E)} = C, N, {pfi- (E) = p, [1 = f- (ED]}
yielding

. Cn+ Cpp, Add
I )= Greny+ C, (p 1) (442
Using Eqgs (4.36) and (4.41), we can write
E —-E
ntpt:Nch exp|:_(ck7~v)j|:ni2 (4'43)

Using Eqgs (4.43) and (4.42) in Eqn (4.39) or (4.40) leads to

C,C N,(np—n?)
R, =R, = nop ! =R (4.44)
’ Cn(n+nt)+cp(p+pt)

where R is the common recombination rate for electrons and holes.
At thermal equilibrium np = nyp, = n?, and Eqn (4.44) implies
R,=R,=R=0
Drawing a parallel with Eqgs (4.23) and (4.24), we may write Eqn (4.44) in the

form

R=91 (4.45)

T
where 6n represents the excess carrier concentration and 7, the mean excess
carrier lifetime.

4.3.2 Low Injection

For an n-type semiconductor under low injection, we have

ny>>py, hy>0p, ny>n, n,>p, (4.46)
where Op is the excess hole concentration. The assumptions #n, > n, and n, > p,
are valid if the trap energy level is close to the mid gap so that #, and p, are not
much different from the intrinsic carrier concentration. Under the low-injection
conditions given in Eqn (4.46), Eqn (4.44) reduces to

R=C,N,dp (4.47)
Thus the recombination rate of excess carriers in the n-type semiconductor is

proportional to the parameter C, which is dependent upon the minority carrier
hole-capture cross section o,. Comparing Eqs (4.45) and (4.47) leads to

R=7=CpN;5P=f (4.48)
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where 7, is the excess minority carrier hole lifetime and is given by
%ZC%
pt
From Eqn (4.49) we can conclude that the minority carrier lifetime decreases
with increasing N,. This is only to be expected, because the probability of excess
carrier recombination increases as the trap concentration increases.
A similar treatment for a p-type semiconductor under low injection assumes
Do>> Ny, Py 0n, py>n, po>p, (4.50)
This leads to
1
Tuo Cn Nt
Thus the excess-carrier lifetime for an extrinsic semiconductor reduces to the
minority-carrier lifetime under low-injection conditions. As we move from
extrinsic to intrinsic semiconductors, the number of majority carriers available
to recombine with excess minority carriers decreases, leading to an increase in
the mean lifetime.
Another type of recombination process is called the Auger recombination
process. It is a non-radiative recombination process. Two variants of Auger
recombination process are shown in Fig. 4.7.

@ Electron @ (3/%‘@

(4.49)

Conduction —————E, E. Conduction
band band
Valence E, Valence
Band Band

O
cleye ®
() (i)

Fig. 4.7 Two variants of Auger recombination process

Figure 4.7 (i) shows a process in which an electron and a hole recombine
and the resultant energy is transferred to another free hole. The second free hole
ultimately loses its energy to the lattice releasing heat. The variant (ii) shows the
recombination of an electron and a hole and the resultant energy being transferred
to another free electron. This electron would eventually lose its energy to the
lattice in the form of heat. Auger recombination becomes important for direct
band gap materials at high doping concentrations. Variant (i) would occur in
heavily doped p-type material, whereas variant (ii) would occur in heavily doped
n-type material.
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o The capture cross section of a trap is a measure of how close the electron has
to come to the trap to be captured.

o Steady state does not imply equilibrium.

o The term pn — n? can be identified to be the driving force for recombination.

4.4 Diffusion and Recombination

We discussed diffusion in a semiconductor due to a concentration gradient in
Chapter 3. Where, we neglected recombination effects in treatment. We will now
present a comprehensive discussion on the conduction process.

4.4.1 Continuity Equation

Let us consider a differential volume : 2;21323 T
element of side dx, dy, and dz as shown i &
in Fig. 4.8. Also assume that a hole [ () e (x + dl)
flux ¢, enters the differential element N ‘_%’
at x and leaves it at (x + dx). A N -7

)y has units of holes/cm’s. The dy
x-component of the particle current ¥
density has a dependence of the form X X+ dx

Fig. 4.8 Differential volume
N . px indicating the component of
px(x +dx) = px(x) + 3 dx hole-particle flux

(4.51)

+

In writing Eqn (4.51) we have assumed the element dx to be a small quantity and
therefore used the first two terms of the Taylor expansion of ¢, (x + dx).
The net rate of increase in holes within the volume element is given by

+

%dx dy dz = [;,(x) — ¢,(x + dx)]dy dz = gsz dx dy dz (4.52)
Thus the hole concentration within the elemental volume element increases when
the incoming hole flux is more than the outgoing hole flux. Equation (4.52) does
not take into account the generation and recombination rates. Let us assume
that the generation rate of holes is represented by G, and 7, represents the hole
lifetime. Taking generation and recombination into account, Eqn (4.52) can be
rewritten in the form

p _ =99 r

gdxdy dz = e dxdydz+ G, dx dy dz , dx dy dz (4.53)
Dividing both sides of Eqn (4.53) by dx dy dz, we get

p _ 99, p

= = - £ 4.54

ot ox *Gp T (4.54)

p
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Similarly, for electrons we can write

on _ —99, n
on _ _n 4.55
ot ox +G, T ( )

n
Equations (4.54) and (4.55) are called continuity equation for holes and electrons,
respectively. The charge carrier flux is expressed as the number of charge
carriers/cm’s. In Chapter 3 we derived the hole and electron current densities
to be

Ip
J,=eu,pE — erg (4.56)
and
J,=eu,nE+eD, 8_ 4.57)
The hole flux ¢, and electron flux ¢, are then
J, E)
t=_P =y pE-D,P 4.58
A o) HpPE =D, =" (4.58)
and
-_J on
= n_ = nnE —Dn e 459
0y = 2= o (4.59)

From Eqgs (4.58) and (4.59) we obtain
d 2
‘Pp:'u a(PE)_D 9°p
ox P ox P Ox2

(4.60)

and 2 S(nE) 5

DO _ _ ne) o 9°n

x| P ok D, a2

Substituting the expressions for d¢,/dx and d¢,/dx from Eqs (4.60) and (4.61) into
Eqgs (4.54) and (4.55) yields

4.61)

op APE) ., 0P
P _ +0,“L1G - 4.62
o = T T gy Tp (4.62)
and
on _ 9(nE) 9*n
S =t g+ DGy Tn (4.63)
We also have
ApE) _ 9E 9P
o P +E o (4.64)
and A(nE)
nL) o oE on
e nos +E%* o (4.65)

Substituting Eqs (4.64) and (4.65) into Eqs (4.62) and (4.63) leads to

dp _ . 9p o . JE p
at—Dpax—z—,Llp E‘a +pa +GP—E (466)
and

on 9°n on oF n

ZL=p v Pl - = 4.

o D, 2 +un(Eax+nax)+Gn . (4.67)
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Equations (4.66) and (4.67) are then the time-dependent diffusion equation for
holes and electrons, respectively. The carrier concentrations » and p include the
thermal-equilibrium concentrations 7, and p, and the excess concentrations.
For a homogeneous semiconductor, 1, and p, are independent of position,
whereas the excess concentrations 6z and dp can be position dependent. We can
then write

A(Sp) _ ,, 9*(5p) EJ(Sn) . JE P 4.68
or b, ox?2 T\ T TP )T G 7, (4.68)
and,
a(dn) _  9*(dn) Ed(6n)  JE n
T D, ™ + 1, o + Urw +G, —n (4.69)

4.4.2 Haynes-Shockley Experiment

J.R. Haynes and W. Shockley carried out a classic experiment at the Bell Telephone
Laboratories in 1951. This experiment can be used to evaluate minority carrier
mobility u and diffusion coefficient D independently. Figure 4.9 illustrates the
basic principle behind the experiment.

Incident
light pulse
x=/
R

(@ () 12' Semiconductor lli )
L ..

0

P
() = Oﬂ i 2 la

I

Fig. 4.9 Drift and diffusion of a hole pulse in an n-type semiconductor bar: (a) sample
geometry; (b) position and shape of the pulse for different times during its
drift along the bar

Apulse of holes is created at x = 0 using a light flash in an n-type semiconductor
(remember n, > p, for the n-type semiconductor). The n-type semiconductor
has an externally applied electric field E. The pulse of holes drifts in the field
and spreads out by diffusion. The excess hole concentration is then monitored at
another point x = ¢ using the set-up shown in Fig. 4.10(a).

The carrier concentration is monitored on an oscilloscope using a suitable
detector such as a reverse-biased junction (we will study a p-n junction in
Chapter 5). We assume that the electron concentration changes negligibly,
whereas a significant change takes place in the hole concentration.
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Oscilloscope

Ale=0.368 A
-~ [ —>

—— ¢ (time)

(b)

Fig. 4.10 (a) Schematic diagram of Haynes—Shockley experiment,
(b) A typical oscilloscope trace

If ¢, is the drift time for the hole pulse to reach x = ¢, we can write for drift
velocity v,

v, = R (4.70)
lq
The hole mobility u, is given by
Vd
b= 4.71)

One must at this stage mention that the mobility evaluated from Eqn (4.71) is the
minority carrier mobility, whereas the Hall effect described in Chapter 3 is used
to obtain the majority carrier mobility.

Neglecting drift, recombination (7, is long compared with time involved in
diffusion), and also the generation term, the time dependence of excess carrier
concentration is given by

9 _p 9>

5 or(x.=D, ™, op(x,1) 4.72)
Equation (4.72) has solutions of the form
Ap e—xz/(4Dpt)

2 Inert

where Ap represents the number of holes per unit area created over a negligibly
small distance at # = 0. Thus the peak value of the pulse (at x = 0) decreases with
time, as indicated by the term within the brackets in (4.73). The spread of the
pulse in the positive and negative x-directions is expressed in the exponential
factor of Eqn (4.73) and is plotted in Fig. 4.11.

op(x, 1) = (4.73)
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-Ax/2 0 A x/2

Fig. 4.11 Calculation of D, from the shape of the Jp distribution after time #,. Drift or
recombination is neglected

If 6 p is the peak value at time 7,, then at (Ax/2) 5p becomes 1/e of its peak value
6 p. Using Eqn (4.73), we can write
SD N 2
op _ Spe (Ax/2)%/4D,1, (4.74)
which leads to
_ (a)’

P16ty
The set-up described in Fig. 4.9(a) is used to display the detected pulse as shown
in Fig. 4.9(b). The pulse width Az is measured. Using the calculated value of v,
Ax is given by

Ax = At v, = At (ti] (4.76)

(4.75)

d
The diffusion coefficient is then calculated using Eqn (4.75).

4.5 Quasi-Fermi Energy Levels

We have already seen that the thermal-equilibrium electron and hole concentration
are given by

7= 1, €XP (%) (4.77)
and
E.—E
Po="1; €Xp (%j (4.78)

where n; is the intrinsic carrier concentration. E is the Fermi energy, and E;
is the intrinsic Fermi energy. Typical energy band diagram for n- and p-type
semiconductors are shown schematically in Fig. 4.12.

From Fig. 4.12 we can see that for the n-type semiconductor, E, > E,. This
according to Eqgs (4.77) and (4.78) leads to

ny>n; and p,<n; (4.79)



Excess Carriers in Semiconductors 139

Conduction band Conduction band

&y
o
—
&y
o

= Ep %
el Ep; B mmmmmmmmmmmoooooooooooooooo- Ep;
5 5 _______________ E F
=i =i
e E e E
2 Valence band v 2 Valence band v
[ [
(a) (b
Fig. 4.12 Thermal-equilibrium energy band diagrams for (a) n-type semiconductor and

(b) p-type semiconductor

Similarly, for the p-type semiconductor, £, < E; and we have

po>n, and n,<n, (4.80)
When excess carriers are generated, the semiconductor is no longer in thermal
equlibirium. The concept of Fermi energy is now not strictly defined. Instead we
now define the quasi-Fermi level for electrons and hole according to equations

ny+ 8n =n,; exp (Mj (4.81)
kT
and
Do+ Op=n;exp (%] (4.82)

where 6n and Jp are the excess electron and hole concentrations, respectively, and
Ep, and Ep, are the quasi-Fermi energy levels for electrons and holes, respectively.
The majority carrier concentration does not change appreciably under low-
injection conditions. The quasi-Fermi level associated with the majority carriers
is not much different from the thermal equilibrium Fermi level. The quasi-Fermi
energy level for the minority carriers, however, differs considerably from the
thermal-equilibrium Fermi energy level.

From Eqn (4.57) we have,

J(x) = ept,n(x) E(x)+eD, % (4.83)

From Eqn (4.81) we can write,

dn _ d Ep, —Ep;
dr dx[”" e"p( kT J]

resulting in
| dF dE; E. —E.
dn _ " |: Fn Fi :|6Xp( Fn Fl]

dx kT| dx dx kT

which on using Eqn (4.81) can be written in the form,

dn _ ”(x)|:dFFn dEFi:|

dc~ kT | dx  dx (4.84)
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Using Eqn (4.84) in Eqn (4.83) yields,

eD,n(x)| dFy, dEg
— E n n _ 1 .

J,(x)=eu,n(x)E(x)+ T { e e (4.85)
Einstein’s relation given by Eqn (3.103) is

eD,

e W, (4.86)
Using Eqn (4.86) in Eqn (4.85) results in,

dE dE ;

J,(x)=eu,n(x)E(x)+ ,Ltnn(x){ Fn —dx”} (4.87)

E(x) can be written as
—d
E(x)= V(") (4.88)

where v(x) is the electrostatic potential. Using £, as a reference, we can rewrite
Eqn (4.88) as,

Ep; 1 dEp;
E(x)= {( e)} o v (4.89)
Using Eqs (4.89) and (4.87) leads to,
J,(x)= Mnn(X) S fn(x
yielding,
E
J, (x)=unn(x>% (4.90)

Thus the spatial variation of the quasi-Fermi level leads to the current density due
to electron drift and diffusion.

4.6 Surface Effects

In our discussion on semiconductors, we have so far neglected the presence of
surfaces. We have thus assumed the semiconductors to be infinite in extent. In
actual applications, surfaces do exist between semiconductors and the adjacent
medium.

4.6.1 Surface States

The perfect periodic arrangement of an ideal single-crystal lattice gets abruptly
terminated at the surface. This disruption in periodicity results in the creation of
allowed-electronic-energy states within the forbidden energy gap. Thus, at the
surface of a semiconductor, a distribution of allowed-energy states exists along
with the discrete energy states within the band gap present in the bulk of the
semiconductor. This is shown schematically in Fig. 4.13.
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We have dealt with the Shockley—
Read—Hall recombination in an earlier 4 Electron
section of this chapter. According to energy
this theory, the excess minority carrier Conduction band E,
lifetime is inversely proportional to 0
the density of trap states [see Eqn Surface - E,
(4.49)]. The density of traps at the states
surface is higher than that in the bulk, -+ E,
therefore the excess minority carrier Valence band
lifetime at the surface is smaller than
the corresponding bulk lifetime. The
recombination rate of excess hole
in the bulk of an extrinsic n-type
semiconductor is given by

Surface

Fig. 4.13 Distribution of surface states
within the forbidden band gap

R=9P _9Ps (4.91)
Tpo  Tpo
where dpj; is the excess minority carrier hole concentration in the bulk of the
n-type semiconductor. The corresponding recombination rate R at the surface is
given by

Ry=5Ps. (4.92)
TPos
where dpgand 7, _are the excess minority carrier hole concentration and minority
carrier hole lifetime at the surface, respectively.

Let us assume that the generation rate of excess carriers is constant throughout
the semiconductor. At steady state, for a homogeneous and infinite semiconductor,
the generation rate has been shown to be equal to the recombination rate. Thus,
for a constant generation rate we must have

R=R (4.93)
Since 7,5 < 7,9, from Egs (4.93) and (4.92) we can conclude
Ops<Opg (4.94)

The excess-carrier concentration at the semiconductor surface is lower than that
in the bulk as shown is Fig. 4.14.

T

& Falling excess carrier concentration
9
s

Surface Distance x —>

Fig. 4.14 Steady state excess hole concentration versus distance from a typical
semiconductor surface
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4.6.2 Surface Recombination Velocity

An excess carrier concentration gradient exists near the surface of a semi-
conductor as shown in Fig. 4.13. Excess carriers diffuse towards the surface
under the influence of this gradient. This diffusion towards the surface can be
described using the equation

= s5p|S (4.95)
S

where 7 is a unit vector directed outward and normal to the surface, and s is
called the surface recombination velocity and has units of cm/s. For the geometry
sketched in Fig. 4.14, n is along the —x direction and is therefore negative,
[d(6 p)l/dx is along the +x direction. The surface recombination velocity is
therefore positive. With n = —1, Eqn (4.95) simplifies to

d(op)
Dp dx

= 56| S (4.96)
S

Two special cases deserve a mention at this stage.

Case A s = 0 The excess minority carrier concentration at the surface is the
same as that in the bulk. The surface has no effect.

Case B s = o The excess minority carrier concentration at the surface is zero.
The excess minority carrier lifetime at the surface is also zero.

o The transition of an electron from the conduction band to the valence band
is possible by way of emission of a photon (radiative process) or through the
transfer of energy to another free carrier (Auger process).

¢ Gold in silicon is an example of an efficient recombination centre.

e [ =./ D7 where L is called the diffusion length.

Solved Problems

4.1 Excess clectrons are generated in a semiconductor to a concentration of
6n(0) = 10'® cm™. The excess carrier lifetime in the semiconductor is 5 x 107 s.

The source generating the excess carriers is switched off at # = 0. Calculate the excess
electron concentration at =1 us.

Solution
The excess electron concentration at any time ¢ is given by
S n(t) = §n(0) e (4.1.1)
Putting the given values of 67(0) and 7, in the above equation, we get
dn())=10"x e =8.19 x 10" cm™3
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4.2 For the situation presented in solved numerical 4.1, calculate the recombination
rate of excess electrons for £ =5 us.

Solution
The excess electron concentration dn(f) at t =5 us can be evaluated using the Eqn,
&n (f)=8n (0) e/ (4.2.1)
Putting the given values in Eqn (4.2.1), we get
Sn(5us)=10"%¢"1=3.68x 10" (4.2.2)
The recombination rate R, for excess electrons is given by
R, =210 (423)
Tno

Putting 67 (5 us) from Eqn (4.2.2) and the given value of 7,, in Eqn (4.2.3) yields

15
I 3.68 x 10
5x107°

4.3 A sample of silicon maintained at 7 = 300 K has dopant concentrations of
N,=10" cm™ and N, = 0. Assume 7,y = 7, = 10 X 107 s and n, = p, = n, Calculate
the recombination rate of excess carriers if §n = 6p = 10'* cm™.

=0.74 x10*! cm™ s7!

Solution

Recombination rate R is given by

C”CPN, (np — niz)

= 4.3.1
C,(n+n)+C,(p+p,) ( )
Putting 7,, = 1/C,N, and 7,, = 1/C,N, in Eqn (4.3.1) yields
2
R= (np = ;) 432)
TpO (n + nt) + ) (p + pl)
Here
n=(ny+ on) and p = (p, + op)
Thus
(np = n?) = [(ny + 8n) (py + 8p) —n} ]
This yields
np —n? = ngpy + nydp + Snpy — n? = nydSp + dnp, + Snép + Sndp
(4.3.3)
Also, 5 0w
ny=N,= 1015, py= L1 = LIXT0T)" 5 555103
Nd 1015
and

n=ny+6n=10"+10"=1.1x10", p=p,+6p=2.25%x10°
+10"=10" (4.3.4)
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Using Eqn (4.3.4) in Eqn (4.3.3) results in
np—n?=10"x 10"+ 10" x 2.25 x 10° + 10%

which gives

np—n? =10 +10%=1.1 x 10% (4.3.5)
Putting Eqn (4.3.5) in Eqn (4.3.2) results in
1.1x10%

R =
101077 (1.1x 10" +1.5%10'0) +10 x 1077 (10" +1.5 x 10'%)
This leads to
~ 1.1x10% B 1.1x10%
T10x107(1.1x10% +10')  10x1077 (1.2 x10")
implying
R=9.17x 10" cm 357,
4.4 A particular sample of an n-type semiconductor at 7 = 300 K has a carrier
concentration n, = 5 X 10" em™, n, = 10'° cm™, and p, = 2 x 10* cm™. A source
creates excess carriers in the semiconductor such that 67 = §p = 5 x 103 cm™.
Calculate the position of the Fermi level for thermal equilibrium and positions of

quasi-Fermi levels for electrons and holes at non-equilibrium conditions with respect
to the intrinsic Fermi level.

Solution.
The position of the Fermi level at thermal equilibrium is given by
&)
Ep—Ep=kTIn| — (44.1)

Putting kT'= 0.026 eV and the given values of n, and n,; in Eqn (4.4.1) leads to

15
Ej— E;;=0.026 In (5 x10 J
1010

This yields
Ep—FE;=03412¢eV
The quasi-Fermi level for electrons in non-equilibrium is given by

n;

Ep, —Ep=kTn [MJ (4.4.2)

where 61 =35 % 10" cm™. Thus, Eqn (4.4.2) results in

15 13
Ep,—Ep=0.0261n| 2107 +5x10
10"

which implies
Ep,—Ep=03414¢eV

One can notice that E, is not much different from Ej. This is because & n does not
change the total electron concentration significantly.
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The quasi-Fermi level for holes in non-equilibrium is given by

Ep,

i

— Egy=kTn | Po : 517] (4.4.3)

with §p=5x 10" cm™
Equation (4.4.3) thus yields

E.o—FE. =00261n| 2x10* +5x10"
e 00
which implies
Ep— Ep,=02214 eV

Ep, is thus significantly different from £,

4.5 An n-type semiconductor sample is illuminated with light to create electron—
hole pairs uniformly throughout the sample. The generation rate of EHP pairs is
G cm™ s7!. Boundary conditions include £=0 and [0? (6 p))/dx % =[d (6 p)])/dx=0.
Derive an expression for the excess minority carrier concentration dependence on time
lapsed at steady state conditons. [This is the main idea behind the Stevenson—Keyes
method for measuring minority-carrier lifetime. The method, however, incorporates
a small variation by studying the photoconductivity decay.]

Solution
The time-dependent continuity equation for the situation presented is
G_6p _dép)
Tpo dt
This equation has solution of the form
5p(l) =G TpO (1 - eit/rpt))

This solution assumes a low-injection condition.

4.6 An experimental set-up based on Haynes—Shockley experiment uses an
n-type Ge sample (see Fig. 4.9). The length of the sample is 2 cm and the probes 1 and
2 are kept at a distance of 1.8 cm. The source battery voltage £, is 3 V. The time it takes
for a pulse injected at 1 to reach point 2 is 0.6 ms and the pulse width is A¢ =236 us.
Evaluate the hole mobility and diffusion coefficient for holes. Use the calculated
values to check the validity of the Einstein relation.

Solution

Hole mobility t , is given by

A%
u="t (4.6.1)

where

vy=—8 23000 cmvs
0.6 x10™
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Putting the value of v, into Eqn (4.6.1) results in

_ 3000
P 3/2

Diffusion coefficient D, can be calculated using the expression

(Ax)* _ (Atr)?
D =
Pooler 161

=2000 cm?/ Vs (4.6.2)

(4.6.3)

Putting the given values in Eqn (4.6.3) yields
b, - (236 107%)2(1.8)?

=52.22 cm?/s
P 16%(0.6x1073)3

Also,

D
b 5222 kT
w, = 2000 ~ 0%

Thus, the Einstein relation is valid.

4.7 A silicon sample is doped with 10'° donors/cm® and has a hole-lifetime of 0.5 us.

Assuming all the donors to be ionized, determine:

(a) the photo generation rate, which will produce 4 x 10'* excess EHP in steady
state.

(b) the sample resistivity before and after illumination and the percentage of conduct-
ivity due to minority carriers. Assume i, = 31, = 1200 cm?/ Vs, T =300 K.

(c) how far are the electron and hole populations from their equilibrium values while
under illumination?

Solution
8T, = Op =4 x 10"/cm’
8op = 4% 10'%/0.5x 1070 =8 x 10 EHPs/cm’ s
(b) Before illumination:
Po=1(q u,n)"'=521Qcm
After illumination:
n=ny+6n=10"+4x10"=14x10"% cm™
p=py+0p=4x10"cm
Now we know

1

P= q(np, + pu,)

_ 1
1.6 x 107"9[1.4 x 10" x 1200 + 4 x 10'* x 400]

10"
" 1.6(1680 x 10" + 1600 x 10'4)
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1019
1.6 x 10 (16800 + 1600)

__ 10
1.6 x 18400
=3.396 Q cm
Conductivity due to minority carriers = (g 1, p,)
=1.6x107x400x 4 x 10'

=25.6 x 10 mho cm™!
% of conductivity = (Conductivity due to minority carriers/Total conductivity)

x 100
_[25.6x107
( 1/3.396 jxloo

=8.69%
(c) To find how far the electron and hole populations are from their equilibrium
values, we have to find the position of quasi Fermi levels.

EFn — EF'i :|

kT
where £, is the position of the quasi Fermi level due to electrons.

n=niexp{

1.4x 10 =1.5x 10" exp [_(EF»« - EFi)}

0.0259
1.4x10"
= (Ep,—Er)=0.0259In| ————
(Ery = Er) L.smo“’}
Ep, —E;=029¢eV
= Ep,=Ep+02%¢eV
Now, to find the position of the quasi Fermi level corresponding to holes, we use

the relationship
P =n;exp[(Ep; — E,)/kT]
(where Ep, is the position of the quasi Fermi level due to holes)
1.4 x 107 = 1.5 x 10" exp[(Ep; — Ef,)/0.0259]

14
— E,—FE, =00259In 410"
Fi Fp 10
1.5%10

= Epy=Ep;—0264¢V

P

4.8 An n-type silicon sample with block geometry of unit volume is doped with
10'%cm™ donors. At 300 K, under equilibrium conditions, this sample experiences
thermal generation of EHPs at the rate of 2.25 x 10'%m=s"!. Assuming that all the
donor atoms are ionized at the given temperature, the given sample is uniformly
illuminated by a radiation to generate excess carriers at the rate of 102! cm—s~!. Based
on this information answer the questions that follow:
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(a)

(b)

(©

(d)

Determine the lifetimes of both types of carriers, taking into consideration only
thermal generation and assuming that only simple band-to-band recombination
is allowed.

What is the order of concentration of minority carriers under equilibrium and
steady state? Are they equal? Explain. Assume carrier lifetime due to optical
generation to be equal to carrier lifetime due to thermal generation.

This sample is to be used as a photoconductor in which the optically induced
change in current A/, is dominated only by the mobility u,, and lifetime for
electrons. If the transit time of electrons drifting down the length of the bar is
2.5 ms then find the value of A/ for this semiconductor.

Does the value of Al obtained in (c) affect the steady state value of the current
density in the semiconductor?

Solution

Here N,=10'® cm™ (Donors are added to silicon to make it n-type.)
Volume of the sample = 1 cm?

(a)

The sample is maintained at 300 K under equilibrium, therefore
G(T) = G(300 K) = Thermal generation rate of carriers under equilibrium = 2.25
x 10'%m= 57! (This is the generation rate of thermal EHPs provided and not the
concentration of thermally generated EHPs at 300 K)
Now under equilibrium
G(T)=0, n? (where n;=1.5x10"%cm>) (4.8.1)
= 225x10"=q, (1.5% 10'%)?
o, =107 cm’/s
Hence o, = 107'%m?>/sec (this value of proportionality constant implies that
to establish equilibrium, there are processes (such as scattering and velocity
saturation) which try to preserve the intrinsic carrier concentration value at a
given temperature against the thermal generation rate.)
Now, we have
T,= {a, (ny+po)} ! (4.8.2)
Now semiconductor being n-type; n, > p,,.
Therefore, neglecting p, in Eqn (4.8.2)
Tp = {ar n0}71
_ 1
10719x 10"
=10"°s
=1uyus
(In the above expression we use n,= 10'°cm™ because it is provided that all
donors are ionized at 300 K.)
Now as only simple band-to-band recombination is allowed, we have
7,=1,

Hence lifetime of electrons in the sample is also 1 us.
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(b)

(©

(d)

on=0p=g,T,gives excess carrier concentration of 10°cm™ (As §n = 3dp
=10 x 10 =10" cm™)
Hence the equilibrium value of minority carriers is of the order of 10*cm™ while
the steady state values are of the order of 10'%cm=.
We know that optically induced change in conductivity of a semiconductor is
given by

Ac=qénu,+qépH,
Now, 6n=G6pand u,>> 1, as given
Hence Ac=¢d nu,
Now for a given potential across the semiconductor

AJ=(AO)E.
AJ=qgénu,E.
Now by definition of excess carriers
On=gyT,
and drift velocity of electrons is given as
Va=H, E
AJ=q gypT,Va
Now A J=A I/4 implies that
Al=4AAJ
Al=qAg, Ty,
Also for a given potential
v,=LIT,
where 7,= transit time of electrons across the length of the block
Al=qAg,T, Lit,
The volume of block, V"= A4 x L and therefore
Al=qVg,T7,/T, (4.8.3)
Putting all the values in Eqn (4.8.3) gives
1.6x107"7 x1x10*! x 107
2.5x107
=0.064 A

This change in value of current does affect the value of steady state current but
not the equilibrium current which is used in part (c) above.

Al=

4.9 An experiment was conducted on a very small piece of silicon (E, = 1.1 ¢ V) of
length 100 um at room temperature. Energy band diagram for this silicon piece is
shown in Fig. 4.9.1
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()

(b)

(©

¢0.1ev

Fig. 4.9.1 Band diagram for the given silicon sample

Engineers tried to apply a potential difference varying from about 1 V to about
10000 V across the length of this sample and observed corresponding values of
current densities as recorded below in Table 4.9.1. Find the values of current
density denoted by ‘??” field in the table.

Table 4.9.1 Variation of current density with voltage

Voltage (V) 1 10 100 1000 10000

Current density (A/em?) 1696 x 10° 16.96 x 10* 67.84 x 10* 8.48x10°  2?

Electron mobility of an intrinsic piece of silicon at room temperature is given as
1400 cm?/Vs. Can we take the same value of mobility for making some useful
calculations for the silicon sample which has the energy band diagram as shown
in Fig. 4.9.1? Justify your answer.

The given silicon sample is uniformly excited at room temperature, such that 10°
EHPs are generated per cubic centimeter per second. How far are the electron and
hole populations from their equilibrium values under the effect of illumination?
(Given: electron and hole life times = 10 us, D, =12 cm?/s)

Solution

(a)

(b)

At 10000 V the corresponding electric field is given as

E =10000 V/100 um

=10°V/cm

At such a high value of electric field, the corresponding value of v, becomes
saturated.
Now,

J=—qnv,
Therefore, the current density for a 10000 V potential will be the same value as
that for 1000 V.

27 = 8.48 x 10° A/cm?
From the energy band diagram given in Fig. 4.9.1 we can find the doping
concentration as

ny=n exp{EF_E’}
0="1 —
kT
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_ 10 0.1
=1.5x10 eXp{O.OZSJ

=53x%x10"cm™
At such a high doping concentration, mobility gets drastically reduced due to the
effect of impurity scatterings. For example, electron mobility of intrinsic silicon
at 300 K is 1350 cm?V s. However, at donor doping concentration of 10!7 cm™3,
mobility of electrons is only 700 cm?/ V s.
(c) Using Eqgs (4.79) and (4.80) we get

—E,)/kT (Eri=Epp) /KT (4.9.1)

n=n;eErn andp=n;e
Also, the excess carrier concentrations, on and dp, are given as
on=906p=g,7
It is given that
8op =10 cm™ 57" and 7= 10 us
on =0p =g, x =(10")(107)
= 10" cm~ (which is less than the dopant concentration
=53%10"7cm™)
n=(53x%x10"7)+10"
=5.3%x10"7 cm3
po+ Op=niny,+ p
=2.25x 10%/[(5.3 x 10'7)] + 10" ~ 10 cm™>
Now using Eqn (4.9.1) we get

Ep,—Ep,=kTn [%J

n;

=0.0259 x In(5.3 x 10'7 x 1014)/2.25 x 102
=0.6781 eV

Recapitulation

e At thermal equilibrium,
GnO = GpO = RnO = RpO
where G represents thermal generation rates and R represents the recombination
rates.
e For optical absorption, intensity at any depth /(x) is given by
I(x)=1,e*"
where ¢ is called the absorption coefficient.
o When excess carriers are created in a semiconductor,
np # nypy = n,-2
e Excess minority carrier decay is given by

Sn(1) = 6n(0) ™o
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where 7, is excess minority carrier lifetime.

o Electron capture, electron emission, hole capture, and hole emission are the four
possible processes in the presence of traps.

e According to Shockley—Read—Hall theory,

_ CpNi(n,—n}) — _

@ (n+n,)+C (p+pt)
e The continuity equation for holes and electron is

9 2
P_p ap_#p( ap+paE)+G z
P

0 P

ot P ox2 0. )
and
on_p n
at—D,,ax2 u, Ea +na G, = Tn

e The Haynes-Shockley experiment can be used to determine mobility and
diffusion coefficients. These quantities are evaluated using the relations

v
,u=—d and Dp (Ax)
E 161,
where 2, is the delay time of the input pulse.
* Quasi-Fermi energy levels Ep, and Ep, for electrons and holes are defined
through the equations

ny+ 0 n=n; exp (—EF"k;EFi ]

and

E..—E
po+Op=mn;exp| —f1_"Fp
¢ [ kT

e The excess-carrier concentration at the semiconductor surface is lower than that
in the bulk.
¢ Surface recombination velocity s for hole can be evaluated using the relation

d(ép)
D, ——=| =56
Pode g =
e 5 =0 implies that the excess minority carrier concentration at the surface is the
same as that in the bulk.
e 5 = oo implies that the excess minority carrier concentration at the surface is
Zero.

K

dE/h
® J,(x)= ﬂn”(x)W

e In auger recombination, an electron and a hole recombine and the resultant
energy is transferred to another free hole.



Excess Carriers in Semiconductors 153

Review Questions

4.1
4.2

43
4.4

4.5

4.6

4.7

4.8

4.9
4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17
4.18

What is recombination? Give its measurement units.

Give the relationship between recombination rate and generation rate at
thermal equilibrium conditions.

Derive the relation /(x) = /,e”**. What is the measurement unit of ¢ ?

A semiconductior absorbs photons with energies equal to or larger than the
band gap. Justify this statement.

Show that for direct band-to-band recombination under low-injection
conditions,

0
R =R} =

Tho

for an n-type semiconductor.

Show the four possible processes involving a trap schematically and describe
each of them.

Show that according to Shockley—Read—Hall theory,
C,C,N,(np —n’
R =R —R=— s ((np—n7)
v Cn(n+n[)+Cp(p+p,)

Give the conditions for low-level injection in a p-type semiconductor and
show that

__ 1
Two = CnNt

Derive the one-dimensional continuity equation.

Write down the time-dependent diffusion equations for hole and electrons and
explain each term.

Describe a typical experimental set-up for carrying out the Haynes—Shockley
experiment.

What is the difference between the mobility determined using the Haynes—
Shockley experiment and the mobility determined using the Hall effect.
Describe a procedure for calculating the diffusion coefficient using the
Haynes—Shockley experiment.

What are quasi-Fermi energy levels? In what way are they different from
Fermi energy levels?

Sketch the typical distribution of surface states within the forbidden band gap
of a semiconductor.

The excess minority carrier lifetime at the surface is smaller than that in the
bulk. Justify this statement.

Define surface recombination velocity and give its units.

Show that at thermal equilibrium conditions

GnO = GpO = RnO = RpO
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4.19

4.20

4.21

4.22
4.23

4.24

4.25
4.26
4.27

4.28

4.29

4.30

431
4.32

What are the assumptions made in deriving the relation?
Ix)=1,e**
Justify the relation:

-2
np # ny py = n;
Show that the time dependence of excess minority carrier concentration & n of
electrons is given by

S n(t) = 8n(0) g="/o

Show the four processes involving a trap in the forbidden gap.
Explain the terms C,, C,, and n, in the expression

R =R - C,C,N,(n,—n}) s

P C,(n+n)+ Cp(p +p)

Using the expressions for R, and R, show that at low-injection conditions

;o= 1 o=

P~ C,N, "7 C,N,

Derive the time-dependent continuity equation for excess holes.
Describe the Haynes—Shockley experiment with suitable sketches.
Why do we have to define the quasi-Fermi levels for electrons and holes
separately?
Explain the role of surface in deciding the excess-carrier concentration profile
in a semiconductor.
What is the physical significance of surface recombination velocity, S = (i) 0
and (ii) eo?
How is the derivative of quasi-Fermi level related to current density?
What are deep impurity levels?
Show a schematic representation of Auger recombination process.

and

4.1

4.2

Excess holes are generated in a semiconductor to an initial concentration of
5p(0) = 5 x 10" cm™. The excess-carrier lifetime in the semiconductor is
known to be 10 us. The source used to generate the excess-carriers is switched
off at £ = 0. Determine the excess hole concentration at =2 us.
[Hint: Sp(f) = 8p(0) e "]
Ans. 4.09 x 10

Excess electrons are generated in a semiconductor. The initial concentration is
N cm™. The excess-carrier lifetime in the semiconductor is 7 pus. The source
generating the excess-carriers is switched off at 1 = 0. Calculate the excess
electron concentration at (i) ¢ = 7, (ii) # = 27, and (iii) = 37.
[Hint: én(f) = Ne™']

Ans. (1) 0.37 N (ii) 0.135 N (iii) 0.05 N
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4.3

4.4

4.5

4.6

4.7

Excess electrons are generated in a semiconductor to an initial concentration
of 8n(0) = 5 x 10" cm™. Excess-carrier lifetime in the semiconductor is
10 us. Calculate the recombination rate of excess electrons for =5 us.

|:Hint: R, = 6n(z):|
Tho

Ans. 0.304 x 10%! cm™ 57!
A sample of silicon is maintained at 7= 300 K. It has a dopant concentration
N, = 10" cm™ and N, = 0. The minority carrier lifetime 7, = 7, = 5 X
107 s and n, = p, = n,. The excess-carrier concentrations are given by §n =
Sp = 10" cm™. Calculate the recombination rate of excess-carriers using the
Shockley—Read-Hall theory. Assume n,= 1.5 x 10! cm™.

2 n. —n?
Hint: py=N,, ny= L, and R = ( r_i )
N, Tpo(n+nt)+1n0(p+p,)

Ans. 1.98 x 102 cm™ 57!
Excess EHP is being created in a piece of silicon at the rate of 10'* EHP/cm?
every 6 microseconds. For the sample, it is also given that n,=10"* cm™ and 7,
=7, =3 us. Calculate the position of electron quasi-Fermi level with respect to
E; at room temperature. Assume k7 = 0.026 eV.

Hint: steady state excess electron concentration

13
on=g,r, :711(())*6 x3x10%=3x 10" cm™

where g, = optical generation rate.

EFn—E,:len[”O +5”H

n;

Ans. 0.236 eV
Show that the condition np # n? is valid for the situation presented in Problem 4.5.
2
|:Hint.' dn=38p=3x10" p,= n,}
1y

A sample of an n-type semiconductor at 7= 300 K has a carrier concentration
of ny=5% 10 cm™ and n, = 2 x 10'° cm™. A source creates excess carriers in
the semiconductor, such that 7 = §p = 10'* cm™=. Determine the positions of
quasi-Fermi levels for electrons and holes with respect to the intrinsic Fermi
level.

{Hint: E;, — E,=0.026 In (”0 i S”J
n

i

Ep— Ep,=0.026 In [M’ﬂ

n;

Ans. Ep, — Ep, = 0383 €V, Ep, — Ep, = 0.1616 eV
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4.8

4.9

4.10

4.11

4.12

4.13

A sample of an n-type silicon has a dopant concentration of N, = 10'® cm™ at
T'=300 K. Assume 7,, =5 x 10 7 s and a generation rate G = 10°' cm™ s7".
Derive an expression for the excess hole concentraion dependence on time.
[Hint: $p(t) = G4 (1 — ¢ "0)]

Ans. Sp(f)=5x 1041 — /5107 ¢m3
Use the expression derived in unsolved numerical (8) to evaluate the excess
hole concentration at ¢ = 7, What is the excess hole concentration at
t=o0?
[Hint: for t = o0; 5p(t) = G, [see Problem (4.5)]

Ans. 3.16 x 10, 5 x 10"

An n-type semiconductor sample is used in the Haynes—Shockley experiment.
The length of the sample is 1.5 cm and probes (1) and (2) are at a distance
of 1.3 cm from each other. The supply battery voltage is £, = 3 V. The delay
time between the injection of the pulse at point (1) and its reaching point (2) is
At =200 ps. Calculate the hole mobility and diffusion coefficient for holes. Also
check the validity of the Einstein relation.

. vy (At0)?
Hint: u, =-%,D =
|: mt: U, P’ 161[31

Ans. p,=1300 cm* V''s™, D, =33.8 cm/s.
Boron is diffused into an intrinsic Si sample,
resulting in the acceptor distribution shown
in Fig. 4.P11.1. Sketch the equilibrium band
diagram and show the direction of the resulting
electric field, for N, (x) > n, Repeat for
phosphorous with N, (x) > n,.
[Hint: Write the equation for current densities
due to holes. At equilibrium J,(x) =0. So, find an -
expression for rate of variation of electric field
with respect to x. If it is positive, then electric

Fig. 4.11.1 Acceptor
distribution in

field will be in the positive x direction and if it silicon doped
is negative then the field will be in the negative with boron

x direction. The energy band diagram will get

tilted accordingly.]

A new semiconductor was brought in the lab. Its band gap was determined to be
2.45 e V. When light of wavelength 0.55 um was used, the sample exhibited a
5% increase in conductivity. Is this possible? Justify your answer.

[Hint: Yes. It is possible with the help of traps in forbidden energy band gap.
Discuss with your teacher in detail.]

A device engineer tried to use a sample of silicon doped with phosphorous
impurities of the order of 10'7 cm™ at room temperature . While performing
the experiment and making calculations, the value of diffusion coefficient for
electrons was required. After some theoretical calculations it was found to be
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4.14

4.15

4.16

4.17

4.18

34.965 cm?/s. But it was discovered that the experimental setup was predicting
a different value of diffusion coefficient for electrons, which was less than what
had been theoretically calculated. What went wrong? Does the experimental
setup require revision? If yes, then suggest a good experimental set-up to find
the diffusion coefficient for electrons in this n-type sample of silicon. Otherwise
provide a justification for the experimental result obtained by the device
engineer.
[Hint: Find the value of mobility at given values of doping levels and discuss
the answer with your teacher in detail.]
A semiconductor device engineer wants to design a photoconductive cell which
should be able to respond to pulses of frequency as high as 1 Ghz. The device
engineer decides to cut down the size of the device, so as to reduce the drift time
of the carriers. Will this compromise the performance of this photoconductive
device on some other account? Justify your answer. [Hint: Yes, the optical
sensitivity of the device will be compromised. ]
A silicon sample has 7, =5 x 10" em™ and z,= 1 x 107 s at 300 K. The
sample is illuminated uniformly with penetrating light which generates 10"
EHP per cm?® per second.
(a) Determine the steady state electron and hole concentrations in the sample
and predict whether it is a case of low or high level injection.
(b) Determine the photoconductivity change of the sample if i, = 3u, = 1260
cm?/Vs.
(¢) Determine the position of the electron and hole quasi-Fermi levels in the
sample and show these levels on the energy band diagram.
Excess electrons have been generated in a semiconductor to a concentration
of 6n(0) = 10'5 cm™. The excess carrier lifetime is 7,, = 10 s. The forcing
function generating the excess carriers turns off at # = 0, so that semi- conductor
is allowed to return to an equilibrium condition for # > 0. Calculate the excess
electron concentration for

(a) 1=0,
(b) t=1us
(c) t=4ups

Ans. (a) 10 cm™ (b) 3.68 x 10" cm™ (c) 1.83 x 103 cm™

Excess electrons are generated in a semiconductor to a concentration level of

6n(0) = 10'7 cm. The source generating the excess carriers is switched off at

t=0. At ¢=2us the excess carrier concentration becomes 7 x 10'*cm. Calculate

the excess carrier lifetime.

Ans. 5.6 us

The thermal equilibrium fermi level for an n-type semiconductor is given by

(Ep—Eg)=0.4 evat T =300K. The intrinsic carrier concentration at 300K is »;
=2x10"cm™. Calculate the equilibrium carrier concentration, 7.

Ans. 9.6 x 101 cm™
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understand different methods of fabricating p-n junctions
understand the process of thermal oxidation
understand predeposition and drive-in steps

derive expressions for built-in voltage and space charge width of an unbiased
junction

solve numericals based on predeposition and drive-in steps of diffusion
solve numericals based on built-in potential of unbiased p-n junctions

derive expressions for space charge capacitances of a p-n junction under applied
reverse bias and for a linearly graded junction

understand hyperabrupt junctions

understand different junction breakdown processes
derive conditions for avalanche breakdown
understand the operation of tunnel diode

solve numericals based on space charge region width of p-n junctions with
reverse bias

solve numericals based on junction capacitance of p-n junction under reverse bias
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Introduction

We have so far discussed different aspects related to individual intrinsic and
extrinsic semiconductors. The real immense developments in the area of
semiconductor electronics started with the understanding of the mechanisms in play
when a p-type semiconductor is paired with an n-type semiconductor. Such a pair
is called a p-n junction. Almost all useful applications involving semiconductors
use such a junction or a combination of such junctions. Although, simply put,
a p-n junction can be created by putting a p-type semiconductor on an n-type
semiconductor, the actual process of fabrication of a p-n junction is a lot more
complicated. Some of the steps/procedures involved in the fabrication processes
are presented in this chapter. Very dramatic differences arise as one changes the
polarity of the applied voltage across a p-n junction. These differences hold the
key to the secret of the operation of many devices. Some of these devices are
discussed in detail in this chapter. In fact, to put it briefly, our serious interaction
with the basics of semiconductor electronics starts with this chapter.

5.1 Fabrication of p-n Junctions

As explained above, a p-n junction requires some specialized processing
techniques. In this section we learn about some common techniques used to form
p-n junctions.

5.1.1 p-n Junction Formation

A number of different techniques exist for obtaining p-n junctions in
semiconductors. The particular process sequence decides the choice of the
technique to be used for realizing the p-n junction. In this section we will briefly
discuss the commonly used techniques.

Alloyed junction

In the alloying technique, the impurity material-semiconductor system is first
heated to a temperature slightly higher than the eutectic temperature. The
temperature is then lowered, leading to a recrystallization of the semiconductor,
which is saturated with the impurity atoms. Figure 5.1 shows the alloy junction
formation for the AI-Si system. A small pellet of aluminium is first placed on an
n-type {111)-oriented silicon wafer. The system is then heated to a temperature
slightly higher than the eutectic temperature (~580°C) for the AI-Si system. This
leads to the formation of a small puddle of molten AI-Si mixture.

e Al ’a Liquid Al 7

7770

A

1’ Vi)

n-type Si — n —

Substrate Heat Ohmic contact

Fig. 5.1 Alloy junction formation
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As the temperature is lowered further, the puddle begins to solidify. This
results in a recrystallized portion saturated with the acceptor impurities. The
recrystallized part maintains the crystal orientation of the original substrate. A
heavily doped (p*) region is thus formed on the n-type substrate. The location of
the junction formed by the alloy method depends critically on the temperature—
time cycle of alloy formation. This makes a precise control difficult.

Solid state diffusion

In this process, a diffusion of a suitable dopant is first carried out. Portions of
the surface are then protected (using wax or metal contacts), and the rest of the
exposed surface is etched to form mesa. A solid state diffusion method, involving
diffusion of boron (in the form BBr;) into an n-type silicon substrate, is shown
schematically in Fig. 5.2.

Dopant
diffusion

VY ¥l

[P
e v R

Fig. 5.2 Solid state diffusion method

Mesa

Planar process

One of the most popular methods of fabricating semiconductor devices and
integrated circuits is the planar process, shown schematically in Fig. 5.3.

Diffusion
through window
Si0, (Mask) / p
yom Hlul 21}
‘Y,
n — n — n
nt nt nt

Fig. 5.3 Planar process

In this process, a thin layer of thermally grown silicon dioxide (typically 1 pm)
is first obtained. Standard lithographic techniques are then used to open windows
in the oxide. Impurities are then allowed to diffuse through the exposed silicon
surface, thereby leading to the formation of p-n junctions in this region. The
substrate used in the process is heavily doped (#") to reduce the series resistance.
An epitaxial (derived from Greek words epi and taxis, meaning ‘on’ and
‘arrangement’ respectively) layer is used to grow the active layer. The epitaxial
growth ensures a lattice structure identical to the substrate.

lon implantation

Atechnique that gives excellent control over the impurity profile is ion implantation.
The technique replaces the high-temperature diffusion process. This technique can
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be used to fabricate complicated semiconductor devices. A beam of impurity ions
is first accelerated to kinetic energies in the range of several keV to several MeV.
The energetic beam is then directed towards the crystal, as shown in Fig. 5.4.

Ion-implantation Annealling and
window metallization

nml\

p

/— Si0, (mask)

nt nt

Fig. 5.4 Ion implantation process

The impurity atoms come to rest at some average penetration depth, called
the projected range. The projected range depends upon the impurity and its
implantation energy. It generally ranges between a few hundred angstroms to a
few microns. The implanted dose of ¢ ions/cm? is distributed approximately in
accordance with the Gaussian formula

Ny ® ool a[x=R) ‘
_\/Z_nARp P|=5 AR) (5.1

where N(x) represents the concentration at a particular depth and AR, is the half-
width of the distribution at e > of the peak, as shown in Fig. 5.5. AR, is also
called straggle.

1019

1018

Boron concentration (cm=3)

1017 | | |
0 0.2 0.4 0.6 0.8

Distance from surface (Lum)

Fig. 5.5 Gaussian distribution of boron atoms about a projected range Ry. Dose is 10'*
B atoms/cm? implanted at 140 keV.
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R, and AR, increase with increasing implantation energy. By carrying out several
implantations at different chosen energies, one can, in principle, create a uniformly
doped region, as shown in Fig. 5.6.

Sum of multiple Gaussians

e

Individual profile

Impurity concentration (cm=3)
(log scale)

Distance from surface (Lum)

Fig. 5.6 Summation of four Gaussians leading to a flat impurity distribution

A typical ion implantation system consists of the following components:
Source A gas containing the desired impurity in the ionized form.

Acceleration tube It provides acceleration to the ions to increase their kinetic
energy.

Mass separator It selects the desired ion species.
Drift tube This helps selected ions drift towards the target.

Target chamber The wafer to be ion implanted is kept in this chamber. This
chamber also has a facility to carry out repetitive scanning in a raster pattern.

Using ion implantation, desired impurities can be introduced into a
semiconductor at relatively low temperatures. This has a very interesting and
useful consequence. Any previously doped profile within the semiconductor does
not get much disturbed during the ion implantation process. The areas of the
semiconductor surface where no ion implantation is desired can be protected
using metal or photoresist layers. The technique is very adapted to very shallow
(~ 0.1 um) doped regions. A very precise control of the doping concentration
is also possible using this technique. Another important advantage of ion
implantation is its ability to introduce impurities that are not easy to diffuse into
semiconductors.

The technique, however, has one major disadvantage. The energetic ions
collide with atoms of the semiconductor lattice. This leads to crystal damage.
The damage can, though, be removed by annealling the semiconductor at high
temperatures. Silicon can be annealled at temperatures around 1000°C without
any problem. Compound semiconductors such as GaAs can, however, dissociate
at such high temperatures. The evaporation of As from GaAs surface can be
minimized by using a thin layer of silicon nitride. Another technique of annealling
that is gaining popularity is the rapid thermal processing (RTP) or rapid thermal
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annealling technique. In this technique, the ion implanted wafer is subject to a
high temperature for a very short duration (~ 10 s). Irrespective of the method
of annealling, some unwanted diffusion does take place during annealling. The
post-anneal impurity profile is given by

[ 1 (x_Rp)2

N(x)= expl—%| —5—— 5.2
V27 (AR) +2D1)"? 2{ AR, +2Dt 5-2)

where ¢ is the annealling time.

5.1.2 Thermal Oxidation

The planar process described earlier is one of the most popular methods to realize
semiconductor devices. The insulating silicon dioxide layer forms an integral
part of this processing technique. In this section, we will learn about the thermal
oxidation technique to realize this silicon dioxide layer. The semiconductor
wafer to be oxidized is placed in a suitable quartz (clean silica) boat inside a
tube of clean silica, which is heated to very high temperatures (~ 800—1100°C)
in a furnace. Excellent temperature control (~+0.1°C) is possible with modern
control electronics. An oxygen-containing gas such as dry O, or H,O is made to
flow through the tube at atmospheric pressure from one end and to come out of
the tube at the other end. Both horizontal and vertical furnaces are commonly
employed. In vertical furnaces, gases flow in from the top and flow out at
the bottom, ensuring a uniform flow. A schematic set-up of the furnace in the
horizontal format is shown in Fig. 5.7.

~—— Insulation

00000000000000 | Silicon wafers on boat

OLHZO: O .ﬁ/ / D —> Vent
/

Carrier gas

ooooooooooooooo

*~ Resistance heater
Quartz/silicon tube

Fig. 5.7 Thermal oxidation set-up

Oxidation follows the following chemical reactions:
Si(solid) + O, — SiO, (solid) [dry oxidation]
Si(solid) + 2H,0 — SiO, (solid) + 2H, [wet oxidation] (5.3)

Both the oxidation processes consume Si from the surface of the substrate.
From the densities and molecular weights of silicon, it can be shown that 0.44 um
of Si is consumed for every micron of grown SiO,. During oxidation, the oxidant
(O, or H,0) molecules diffuse through the already grown oxide to the Si—SiO,
interface. The reactions indicated in Eqn (5.3) take place at this interface. The
ability to obtain a stable thermal oxide holds the key to the success of the planar
process in realizing the semiconductor devices. The silicon dioxide, as we have
seen, thus grows from inside out (the detailed treatment is called the Deal-Grove
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model). The growth rate of oxide is determined by the slower process out of the
two competing processes of reaction and diffusion.

Figure 5.8 shows the plots of the oxide thickness as a function of time at
different temperatures for dry and wet oxidation of Si (100) .
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Fig. 5.8 Dry and wet thermal oxide thickness grown on Si (100)

5.1.3 Diffusion

Another important processing step involved in the planar process is diffusion.
The oxidation process described in the preceding section is first used to obtain an
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oxide layer over the substrate. A process, called photolithography, is then used
to open windows into the oxide. Dopants such as B, P, or As are then introduced
through these windows. These impurities are introduced at temperatures ~800—
1100°C using high-temperature furnaces, through a process called diffusion.
Gas or vapour sources are generally used. In diffusion, dopants are transported
from a region of high concentration near the surface to the surface where the
concentration is lower. The process of diffusion of dopants is similar to the one
involving carriers as discussed in Chapter 4. The maximum number of impurities
that can be dissolved in a given semiconductor surface is given by the solid
solubility of the particular impurity in the semiconductor. The solid solubility of
various impurities in Si as a function of temperature is shown in Fig. 5.9.
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Fig. 5.9 Solid solubilities of impurities in Si

Diffusivity, D, of dopants in solids has a temperature dependence given by
D =D,exp (-E /kT) 5.4)

where D is amaterial-and dopant-dependent constantand £ ; is called the activation
energy. Such a dependence on temperature is called Arrhenius dependence and
leads to high enough diffusivities only at high temperatures, enabling appreciable
diffusions only at such temperatures. Another important conclusion that can be
drawn from Eqn (5.4) is the fact that excellent control of temperature is required
to result in control of impurity profiles obtained using diffusion. The oxide over
the silicon surface serves as a mask against the dopants since they have a low
diffusivity in oxide. Figure 5.10 shows the diffusivities of some common dopants
in Si and SiO, as a function of temperature.
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The impurity distribution during the diffusion process can be calculated as a
function of time from the solution of the diffusion equation given by

oC _ n0°C
3—087 (5.5)

where C represents the impurity concentration. This equation assumes a zero

electric field and a constant value of diffusivity. Appropriate boundary conditions
need to be used alongwith this equation.

Case (i) The predeposition step In this step, the semiconductor sample is
kept in a furnace through which an inert gas containing the desired impurities
flows. Temperatures in the range of 800°C to 1200°C are generally used. The
surface concentration, Cs, of the impurity is maintained constant during the
predeposition process. The diffusion equation [Eqn (5.5)] has to be solved under
the boundary conditions

C, ) =Cq (5.6)
and

C(e0, ) =0 (5.7
with the initial condition

Clx,0)=0 (5.8)

The solution of Eqn (5.5) under the conditions given by Eqs (5.6), (5.7), and (5.8)
is the complementary error function given by

C(x,t) = Cgerfc—%
S5 I (5.9
The resulting concentration distribution using the above simplified theory is
shown in logarithmic scale in Fig. 5.11.

Case (ii) The drive-in step The predeposition step indicated above results in
a surface concentration equal to the solid solubility for the particular impurity.
It is often desirable to lower the surface impurity concentration to values below
the solid solubility value. Additionally, there always exists the need to move
the impurities deeper into the bulk of the semiconductor without modifying the
total number of impurity atoms within the semiconductor. These tasks can be
accomplished by a high-temperature heat treatment in a gas that does not contain
any impurities. This additional heat treatment is called the drive-in diffusion step.
It is generally carried out in an oxidizing ambient. Thus, the boundary conditions
for the drive-in step are
9« —g

5.10
ox 0.0 ( )

and
C(e0, ) =0 (5.11)
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Fig. 5.11 Normalized concentration versus distance for successive times assuming
constant surface concentration

The total amount of impurity, Q, is constant. The initial condition is given by

C(x,0) = Cyerfe——2c 512
2«[(D[)predep ( ’ )

This is because the impurity distribution at the start of the drive-in diffusion step
is the one that existed at the conclusion of the predeposition step. The solution of
Eqn (5.5) under the conditions given by Eqs (5.10), (5.11), and (5.12) is difficult
to obtain. However, in most practical situations, \/E for the drive-in step is much
larger than \/E for the predeposition step. Thus, the extent of the penetration of
the impurity profile during the predeposition step can be neglected in comparison
to the profile obtained at the end of the drive-in diffusion step. Under such an
assumption, the predeposition profile can be mathematically represented by a
delta function.

The impurity concentration distribution after the drive-in diffusion step under
this assumption is given by

C(x, t) — Q efx2/4Dt

\/ﬁ (5.13)

Equation (5.13) is the well-known Gaussian distribution. Figure 5.12 shows the
Gaussian profile normalized to Q in a logarithmic scale.
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Fig. 5.12 Normalized concentration versus distance for successive times assuming

constant amount of impurity

5.2 Basic p-n Junction

In Section 5.2, we looked at the various methods for fabricating p-n junctions. We
now take a closer look at some important characteristics of p-n junctions with and

without any applied bias.

5.2.1 Basic Structure

A p-n junction, as we have seen, is fabricated
by creating an interface which separates
n- and p-type semiconductors using any of the
common techniques described in Section 5.1.
Such an interface that separates the » and p
regions is called a metallurgical junction and
is shown schematically in Fig. 5.13(a). Figure
5.13(b) shows the corresponding simplified
doping profile.

As can be seen from Fig. 5.13(b), the
simplified picture presented assumes a
constant dopant concentration on either side
of the metallurgical junction. Furthermore,
the dopant type has been assumed to change
abruptly from one type to the other. Such a
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k Metallurgical

junction
(a)

\
~—— Abrupt

Ny

diffusion ——>

Electron
diffusion

Fig. 5.13 Schematic diagram of a
p-h junction,
(b) doping profile of a
uniformly doped p-n
junction
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junction is called a step junction. The metallurgical junction also has a very large
gradient in the electron and hole concentrations. Majority carrier electrons in the
n-region start diffusing into the p-region, whereas the majority carrier holes in
the p-region start diffusing into the n-region. The process of diffusion, however,
does not continue indefinitely. As electrons diffuse from the n-region, they leave
behind positively charged donor atoms. Similarly, the holes diffusing from the
p-region leave behind negatively charged acceptor atoms. The positive charge
due to the donor atoms and the negative charge due to the acceptor atoms induce
an electric field in the region near the metallurgical junction, (Fig. 5.14).
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Fig. 5.14 Space charge region, electric field, and forces acting on charged carriers

The electric field is directed from the positive to the negative charge, i.e., from
the n- to the p-region.

The two regions shown in Fig. 5.14, having a net positive and negative charge,
are collectively referred to as the space charge region. The space charge region
does not contain free electrons and holes and is, therefore, also referred to as the
depletion region. A density gradient exists in the majority carrier concentration at
the edges of the space charge region. The majority carrier concentration gradient
produces a diffusion force that pushes the majority carriers towards the space
charge region. The built-in electric field in the space charge region, on the other
hand, produces a force on the electrons and the holes in the direction opposite
to the diffusion force. At thermal equilibrium conditions, the diffusion force is
balanced out by the force due to the built-in electric field.

5.2.2 No Applied Bias

We still continue with the assumption of no applied external bias as well as the
absence of any other external excitation. The p-n junction under such circumstances
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is at thermal equilibrium and the Fermi energy level is constant throughout the
entire system. The energy band diagram for a p-n junction at thermal equilibrium
is shown in Fig. 5.15.

p Conduction band n

Valence band

Fig. 5.15 Thermal equilibrium energy band diagram for a p-n junction

The relative positions of the conduction and valence bands with respect to the
Fermi energy change as we go from the p-type to the n-type of semiconductor.
This leads to a bending of the conduction and valence band energies as we go
from one type of semiconductor to the other. As can be seen from Fig. 5.15, the
electrons in the conduction band of the n-region encounter a potential barrier as
they try to move over into the conduction band of the p-region. This potential
barrier is called the built-in potential barrier and the symbol Vy; is used for it. The
built-in potential barrier is responsible for maintaining an equilibrium between
the majority carrier electrons in the n-region and the minority carrier electrons
in the p-region. One must, however, remember that no current flows through the
junction under thermal equilibrium conditions. Unlike the emf of a cell, built-in
potential of a p-n junction cannot be measured by using any voltage-measuring
instrument.

The intrinsic Fermi level, £, in Fig. 5.15 is equidistant from the conduction
band edge through the junction. It is also clear from Fig. 5.15 that the built-in
potential barrier is simply the difference between the intrinsic Fermi levels in the
p and n regions. Thus, if ¢, and ¢y, represent the difference between the intrinsic
Fermi level and the Fermi levels in the » and p regions, respectively, then we can
write

Vei = 0l + 95| (5.14)
The electron concentration, 7, in the conduction band for the n-region is given

by
~(E.~ Ey)
ny =N, exp{kTF (5.15)

We also know that

_(Ec — EFi):|

nyg=n; =N, exp[ T (5.16)
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Combining Eqs (5.15) and (5.16), we get

- Ep—Ep;

ny =n; exp{ T }

The potential ¢, can be defined as
edp, = Ep; — Ep

Using Eqn (5.18) in Eqn (5.17) yields

_(e(PFn)

M = 1; eXp| —

leading to

N

e n;

Putting n, = N, = donor concentration in Eqn (5.20) results in

¢Fn = ﬂll’l [&]

e n;

Similarly, the hole concentration, p,, in the p-region is given by

Ep—-E
po=N,=n exp[%}

Once again, we can define the potential ¢, in the form

e¢p,=Ep— Ep

Using Eqn (5.23) in Eqn (5.22) and rearranging, we get

¢F P

1

kT (Naj
=—1In
e n,

Putting Eqs (5.21) and (5.24) in Eqn (5.14) for V}; leads to

1

e n;

where the factor V, = kT/e is referred
to as the thermal voltage. The terms N,
and N, represent the net acceptor and
donor concentrations in the p and n
regions, respectively.

5.2.3 Built-in Electric Field

The depletion region has a separation
of positive and negative space charge
densities. Such a region also has an
associated electric field. We will now
derive an expression for this electric
field. Figure 5.16 shows a schematic
diagram of the volume charge density

N,N, N,N,
Vb:k—Tln[—“szthln[—”sz

(5.17)
(5.18)
(5.19)
(5.20)
(5.21)
(5.22)
(5.23)
(5.24)
" (5.25)
p (C/em3)A
P n
+€Nd
Fixed charge
=X, +
- +x,,
Fixed
charge
—eN,

Fig. 5.16 Volume charge density in a
uniformly doped p-n junction
following abrupt junction
approximation
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disribution. The diagram assumes a uniform doping and an abrupt junction.
The space charge region extends from x = —x, in the p-region to x = x, in the
n-region. For a one-dimensional analysis, Poisson equation is given by

d*¢(x) _—p(x) _—dE(x)
o2 e dx (5.26)

S

where ¢(x) represents the position-dependent potential; E(x), the position-
dependent electric field; p(x), the position-dependent charge density; and &,
represents the permittivity of the semiconductor. From Fig. 5.16 we can infer

p(x) =—eN, for —x,<x<0 (5.27)
and

p(x)=eN, for 0 <x<ux, (5.28)
Integrating Eqn (5.26) leads to

_[PX)

N (5.29)

For the p-region, we can write
eN, —eN, x
E=—f g B=—1—+C, (5.30)

S S
where C, is a constant of integration. At thermal equilibrium, no currents flow
and, therefore, the neutral p-region is not expected to have any electric field.
Putting £'= 0 at x = —x,, in Eqn (5.30) results in

_eNyx,

+Cp
S

which implies

—eN,x,
S — (5.31)

Substituting the expression for C, into Eqn (5.30), we get for the electric field in
the p-region,

—eN,
E= . (x+x,) for —x,<x<0 (5.32)

N

Similarly, the electric field in the n-region is given by

_((eNy)dx eN,x
E—j e e TG (5.33)

N

The constant of integration C, is evaluated by putting £ = 0 at x = x,, since the
electric field can be assumed to be zero in the neutral n-region. One must also
remember that £ is a continuous function. Thus

eN,
E=0= < xn+Cn (534)

N
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which leads to
—eN, x,
Co=—% (5.35)

Putting Eqn (5.35) in Eqn (5.33) results in

N,
E= . (x, —x) (5.36)
The electric field must be continuous at the metallurgical junction, i.e., at x = 0.
Equating Eqn (5.32) and Eqn (5.36) at x = 0 leads to
Naxp =N;x, (5.37)
Thus the number of negative charges per
unitarea in the n-region equals the number E T
of positive charges in the p-region. —x =
The electric field in the depletion — =777 77"
region is plotted in Fig. 5.17. \ /
The electric field has the following \ /
important characteristics: \ ’
(a) It is directed from the n- to the \ L7
p-region. Emax
(b) For the uniformly .dop od ,Cond,ltlon Fig. 5.17 Electric field in the deple-
assumed, the electric field is a linear tion region for a uniformly
function of the distance through the doped p-n junction
junction.
(c) Its maximum value occurs at the metallurgical junction.
(d) The depletion region has an in-built electric field even in the absence of any
applied voltage across the junction.
The potential across the junction can be evaluated by integrating the expressions
for electric field. Using Eqn (5.32), we get for the potential in the p region,

N
o(x)= —J-E(x)dx = j eg:’ (x+x,)dx (5.38)
This leads to
¢(x)= eiv (% + xpxj +C, (5.39)

where C, is a constant of integration, which we will now evaluate. Since we are
more interested in the potential difference across the junction, nothing is lost by
assuming the potential to be zero at x =x, i.e., at the edge of the depletion region
in the p-region. Thus,

2
eN, | X ,
¢(—xp)=0=?[7p—x§]+Cp
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leading to
, eN, ,
C,= 2. X, (5.40)
Using Eqn (5.40) in Eqn (5.39) yields
eN,
o(x)= 28? (x-l—xp)z for —X, <x<0 (5.41)
Similarly, the potential in the n-region can be evaluated by using
eNd
o(x) =J Py (x, —x) dx (5.42)
This yields
eN, 2 ,
o(x)= e, (xnx - 7) + Cn (5.43)

Potential ¢(x) is a continuous function, therefore, Eqn (5.43) must become equal
to Eqn (5.41) at the metallurgical junction, i.e., at x = 0. Thus

, eN, ,
G = 26, 7 (5.44)
Putting Eqn (5.44) in Eqn (5.43) yields
_eNy, X2 eN, ,
o) =" (xnx - 7) T2 (5.45)
for0<x<x,

A plot of the potential function is shown in Fig. 5.18 displaying a quadratic
dependence.

/

x=0 +x, (Position)

Fig. 5.18 Electric potential in the space charge region for a uniformly doped
p-n junction

The built-in potential, V;, is the value of ¢(x) at x = x, and is given by

Vi =190 =x,)|= 5-(N gy + N x}) (5.46)

Electron potential energy PE = — e¢, which is also clearly a quadratic function of
the distance through the space charge region.
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5.2.4 Space Charge Region Width

Using Eqn (5.37), we can write

Ndxn
TN (5.47)

a

Putting the expression for x,, in Eqn (5.46), we get

2
N
Vo= Ndx3+Na(NdJ X,

a

This implies

[ 2
Vo = =% | Nyx? + =L x2
bi 283 d**n , n

resulting in

N
_ e d |.2
Vii = 2. (Na a