
This book describes the structure of simulators suitable for use in the
design of digital electronic systems. Such systems are increasing rapidly in
size and complexity, and the use of simulation provides a means to
'prototype' a design without ever building hardware. Other advantages
over hardware prototyping are that sections of a design can be simulated
in isolation, and that all internal signals are available.

This book includes the compiled code and event driven algorithms for
digital electronic system simulators, together with timing verification.
Limitations of the structures are also discussed. An introduction to the
problems of designing models is included, partly to point to how user
models might be constructed for application specific integrated circuits
(ASICs) and so on, and partly to expose the limitations of the modelling
process.

Simulators have two functions. The first is to confirm so far as possible
that a design meets its specification. The second is to check if the test
program will find a sufficient percentage of possible manufacturing faults.
In the former case the user must supply test vectors. In the latter, tests can
be generated by automatic means. As a guide to the use of simulators the
book includes chapters which introduce the subjects of testing and design
for testability. A major chapter is devoted to fault simulation. Finally, the
text has an introduction to hardware accelerators and modellers.

The book is suitable for electronic engineers using digital techniques,
including undergraduates using design software, and postgraduates and
practising engineers using simulation for the first time. It will also be useful
for computer scientists needing an introduction to simulation techniques.
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Preface

In attempting to come to grips with the problem of designing a simulator
the author found very little in the way of overall descriptions of what a
simulator is, what it does or how it works. The required information can be
winkled out from many different sources, but not all are easily available.
This book is an attempt to bring together in one place a comprehensive
introduction to all aspects of simulation in the design of digital electronic
systems.

The text begins with an introduction to the purpose of simulation, types
of simulation and some of the problems that are encountered in the use and
design of simulators. It continues with a brief review of computer aided
design suites in order to set simulation within its overall context.

In order to use a simulator it is necessary to prepare test information. To
get the best out of the simulator it is necessary to adopt good design
techniques. Hence the next two chapters give an introduction to design for
testability and to test program generation. These are followed by a brief
description of the preparation of test programs using the VHPIC high level
design language (VHDL). These three chapters are just an introduction for
completeness in the book as a whole, and the reader is referred to much
more comprehensive texts for a proper treatment.

Chapters 6 to 9 are the meat of this work. Chapter 6 describes the two
main types of straightforward simulator and gives some examples of their
use. That is followed by a description of a method by which the necessary
models can be written. Chapter 8 deals with timing verification and
Chapter 9 with fault simulation. So far as is known this is the only
introduction to modelling or to timing verification in one place. Chapter 6
is also the most comprehensive description of simulators known.

                                                                                            
                                              

                                                            



xiv Preface

Whilst in some ways Chapters 4 and 9 go together, the topics are put in
the order as here because that is the order in which the user would meet the
techniques in a typical design exercise. That is to say, a designer must
consider design for test and testability very early, but will then do much
functional simulation before beginning the test program generation and
fault simulation in earnest.

Although mentioned in Chapter 1, circuit simulation and switch level
modelling are not described in detail. Circuit simulation uses very different
techniques to digital work and is beyond the scope of this book. Much
switch level simulation can be handled by the techniques described in
Chapters 6,8 and 9, but some additional modelling considerations become
important. Some hints to these are given but a full description is omitted for
brevity.

The intended readership is undergraduates in Electrical and Computer
Engineering and those studying computer aided design of electronic
systems in Computer Science. It is aimed at both users of simulators and at
those who may wish eventually to be involved in their design. Whilst some
sections of the book will be more important to one group and other parts to
a different group, the whole book is relevant to all. An understanding of the
working of the simulator will lead to better use of it, and an understanding
of the needs of users will lead to better design. In particular, whilst users will
normally use models supplied with the CAD suite, they will still have to
write high level models for their own design, possibly at a fairly detailed
level.

A minimum of assumptions about the knowledge of the reader has been
made. The primary assumptions are that the reader understand the basic
operation of a gate and a flip-flop, although Chapter 1 contains a brief
description of the working of a flip-flop. It is assumed that the reader
understands the concept of there being a delay between application of an
input to a circuit and the output changing. An indication of how this can
become more complex is given. An awareness of the concepts of set-up and
hold time would be helpful but not essential. Attention is drawn to the
distinction between the terms 'latch' and 'flip-flop' given as a footnote in
Section 3.2.

Some understanding of simple computer data structures will be helpful,
as will some elementary knowledge of electronic circuits - current flow,
input and output limitations etc. In both cases readers without this
knowledge will need to take some statements on trust but should not find
the lack of background serious. Diagrams of logical devices more complex
than a gate are very few and use the dependency notation. Readers
unfamiliar with this should investigate it as it makes the function of



Preface xv

modules very easy to understand.
Conventional drawing conventions are assumed. That is, signal flow is

left to right and top to bottom unless otherwise indicated. Logic is drawn as
nearly as possible to the IEEE standard on dependency notation. Digital
signals are usually written as 1 or 0 as appropriate to indicate 'active' and
'inactive' respectively. Signal values are written in italic fount to distinguish
from numbers or literal signal names.

Some of the references are used in the text, but others are added as
pointers to additional reading. In many cases some comments are included.
The selection of references is inevitably that of the author. It is limited to
those which describe basic ideas well or which, in the author's opinion, are
most likely to be of long term use. Since early papers often come into the
former category there are rather more of them than might seem proper at
first sight.

There are no tutorial questions provided as such. As Chapters 3 to 5 are
introductory only, the reader should refer to specialist texts. In Chapters 6
to 9 some simple examples such as full adders or even just a two to one
multiplexer can be used. It is not difficult to work out from knowledge of
these devices what results the simulation and model should give and thus
provide a check on the working of the example. In some places, notably in
Chapter 9, some extensions of the example in the text are suggested and
results provided.
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1

An introduction to the
simulation of electronic
systems

1.1 Introduction
A few years ago a well known company stated that the size of

silicon chip that could be designed and built would be limited by 'engineer
blow-out' - what a single engineer could hold in his mind without going
crazy. To overcome that limitation, techniques for 'managing complexity'
have been developed. These have included methods for manipulating data
in different ways. The computer can handle large quantities of data without
becoming crazed and without error, leaving only the interesting and
intelligent work to the engineer.

Computer aids are not limited to chip design. It is not difficult today to
produce a chip which works first time according to its specification. But was
the specification correct? Thus there is no point in designing a 10 million gate
chip which works perfectly to specification if the specification is wrong. In the
late 1980s, estimates varied in the region 10% to 50% that the chip would
work within its intended system (Harding 1989, Hodge 1990). This was
clearly unsatisfactory, so there has been increasing emphasis on the need for
system design rather than purely chip design.

One of the problems with building hardware is that, once built, it is not
easily changed. In the case of designing on silicon, change is impossible. It is
estimated that the relative cost of finding faults at design time, chip-test
time, printed circuit board construction time, or in the finished machine in
the field is 1:10:100:1000 (Section 3.1.1). However, (any) software
running on a computer is (relatively) easily modified. Simulation is the
process by which a model of the hardware is set up in software, or better
still, in data structures that are 'run' by the software. The simulation can
then be used to test the 'hardware' before it is ever built. When errors are
found the data can be changed and further runs made until a correct design
is achieved. If budget and time to market considerations allow, it is possible

                                                                                            
                                              

                                                            



2 1 Introduction to simulation

to try out alternative designs - sometimes called 'playing "what if" games'.
Three important comments must be made before going further.

• A computer aided design system is what it says it is - an aid. It is not
a substitute for the intelligence of the designer.

• Obtaining a simulation run which does not result in error reports
is not the aim. That would be easy - just turn off the reporting.
Even without such drastic measures, the simulator can be tricked,
but that would leave a very bad design. The design time is reduced,
but redesign will be necessary. A simulator must be used intel-
ligently.

• Simulation does not generally reduce design time. It frequently
increases it, possibly by several hundred percent, since design and
test errors have to be corrected. The advantage gained is in
reduced commissioning time and hence probably a reduced time to
market. It should also lead to a more robust design having less
teething troubles and requiring less maintenance, which, as
already indicated, can be very expensive indeed.

It might also be noted that simulation is not cheap. For major system
designs, runs of 20 days (24 hours a day) on a single user multi-million
instruction per second machine have been reported (19851), and as systems
become more complex things are likely to get worse rather than better. This
emphasises the need for careful and intelligent use of the facility.

1.2 Four aims of simulation

1.2.1 Functional correctness
A simulator is required to give an accurate prediction of the

behaviour of a good system.
A simulator is required to give warning of a faulty system.

The most obvious purpose of simulation is to check that the system as
designed should perform the logical function for which it is intended. This
can be termed functional correctness (see Section 1.4.2). In order that
functional correctness can be checked, two matters must be considered.

• The correct operation must be known. This requires a specification
of the function which is unambiguous, and which is clearly
understood by both customer and designer. It must include a

1 Personal communication.
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definition of terms, which might otherwise mean different things to
the two parties.

• The functionality of the system under unusual conditions of
operation may be important. This can include what happens if one
or more faults appear (e.g. fail-safe railway signalling) or if input
data patterns are incorrectly generated. In some cases this
behaviour will be part of the specification. In others not. Checking
such behaviour is very difficult because it requires the particular
situations to be foreseen.

Consider the logic shown in Fig. 1.1, where the square boxes are pieces of
combinational logic. For the present purpose it is assumed that the 'loose'
inputs are set in such a way that a change of the connected input signal
results in a similar change in the output. The waveforms of Fig. 1.2 show the
result of a check for functional correctness. Z is seen to be A & B, and is
delayed relative to the edges of A and B only to demonstrate its dependence.

Fig. 1.1. Demonstration circuit.

Comb.
logic
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Comb.
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Fig. 1.2. Notional waveforms for Fig. 1.1.
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4 1 Introduction to simulation

1.2.2 Speed of the system
Most systems will have some form of limit on the time they take to

respond to given conditions. Even where this appears very relaxed
compared with the apparent speed of the electronics it needs to be checked.
For example, designs using logic with basic gate speeds of 10 ns will quite
easily build up delays of 500 ns in strings of gates, and without the designer
noticing. Hence it is important to check on speed of operation.

Speed of operation depends on three criteria.

• The basic circuit speed.
• How heavily the circuits are loaded and their driving capability.
• The time signals take to pass down the wires (which can be

significant).

For example, a simple TTL gate is specified to have a delay of 11 ns with a
load of 10 similar gates. However, it will be faster by about 0.25 ns for each
gate less than 10. Hence it has

Basic gate delay 8.5 ns,
Delay per unit load (one similar gate) 0.25 ns

Wiring delays may or may not be serious. Within a single printed circuit
board (PCB) of 300 mm x 300 mm, the time from corner to corner
diagonally using strictly x—y tracks will be about 3 ns. If the logic is TTL
with gate delays as above this could matter for the longest connections, but
not in general. For ECL logic with delays of around 1 ns per gate it is very
serious. The wiring delay is also important on chips with poly silicon
connections. The polysilicon is very resistive - say 50 Q per square. A track
2 urn wide and 1 mm long is 500 squares long, and hence has a resistance of
25 kft. The capacitance is likely to be of the order of 0.15 fF per |xm2, giving
a capacitance for the 1 mm by 2 urn line of 0.3 pF. The delay of a wire is of
the order of one or two time constants. In this case the time constant is
7.5 ns, which is very significant.

Wire delays are unknown until a late stage in the design process. In the
early stages a guess figure may be used. For later stages it is necessary to
have software capable of extracting wire characteristics from the layout and
feeding them to the data used by the simulator. The simulator is then run
with these additional delays to check that the speed specification can be
met. The feedback of layout data to the simulator is one example of what is
known as back annotation.

Referring back to Fig. 1.1, Fig. 1.3 shows the signals X, Y and Z produced
by a simulator which considers timing as well as logical operation. It is
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assumed that the output of a box changes several time units after its input
and that all boxes have the same delay. Thus a change passing from A to X
suffers about three times as much delay as one passing from B to Y. Fig. 1.3
shows that Z contains a short pulse (compare with Fig. 1.2) even though B
changes later than A.

1.2.3 Hazard detection
Fig. 1.3 illustrates why timing is important. Fig. 1.1 shows Z being

used as the clock input of a flip-flop. The function suggests that the pulse
shown in Fig. 1.3 should not be there. However, it is, and will probably
cause the flip-flop to trigger incorrectly. This is an example of a race or
hazard.

Other timing constraints include ensuring that

• data to a flip-flop does not change just before the clock (set-up
time),

• data to a flip-flop does not change just after the clock (hold time),
• timing to dynamic memories meets the chip specifications under

conditions of tolerance (RAS, CAS, R/W etc.).

It is important that the timing specifications should not be violated during
normal operation of the equipment, and so the simulator should be able to
detect and report if any such circumstances occur. However, this raises an
issue in relation to simulator operation, since when a simulator finds a timing
fault there is no way of knowing what the real logic would do. The question is:

Fig. 1.3. Waveforms for Fig. 1.1 - accurate timing.
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6 1 Introduction to simulation

Should the simulator

• try to mirror the real logic?
• set an unknown state and/or stop?
• guess the designer's intention and try to carry on?

1.2.4 Expected outputs for test and fault simulation
Once the system can be shown to be according to the specification

it will be necessary to develop a test program which will give an output that
is different from the good system for as many faults as possible. This will be
run on a machine to test the production hardware. To discover which faults
are being tested a fault simulation is run. In this a fault is introduced into the
good network and a simulation run. The outputs are compared with the
output of the good system. The procedure is repeated for every possible
fault. Simulation of every possible faulty system is an awful lot of work and
special techniques are available to help (Chapter 9).

Once all the tests have been run against all faults there will be a list of
untested faults. New tests are generated to check for these. Another purpose
of simulation will be to determine the outputs of the good circuit for each
new test as well as to fault simulate on the new tests.

It is important to notice that when these simulations are being run the
system is presumed to be functionally correct. This is not true of the first
three aims.

1.3 Components of a simulator
The process of simulation requires three sets of data and a

program.

• A description of the system to be simulated.
• A description of the inputs to the simulated system.
• A set of models of the components of the system being simulated.
• A mechanism to process these three in a manner which mimics or

'simulates' the system being designed.

Following simulation proper there is also a need for

• assistance to find and follow indications of errors to their source.

It is often felt useful to include the expected outputs of the system along with
the inputs, and the simulator will then report on differences between the
outputs found and those specified. When developing a system these
'expected' outputs should NEVER be generated by running the simulator.
If the logic is wrong then the outputs produced will be wrong and the
simulation will be useless (Sections 1.2.1 to 1.2.3).
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During test generation the design is regarded as functionally correct.
Hence the expected outputs for the test fixture to check against can be
derived by simulation. The same is true for fault simulation (Section 1.2.4).

A model of a component is a representation of its behaviour in a form
which the simulator can use. This definition will do for now. It will be
expanded in Section 1.5 and Chapter 7. The models of the components used
by the simulated system may be built into the simulator in some way.
However, the simulator is much more flexible if the models are held
separately in a library available to the simulator. In this way new
components can be added with relative ease and without having to
recompile the simulator itself. The number of possible components which a
simulator may at some time wish to use will run into thousands. It is better
if only that subset of models actually needed by a particular network is in
the computer memory at run time. This may be only 10 to 20 models,
possibly less.

1.4 Levels of simulation

1.4.1 System design
As a rule a customer will present the design engineer with a

specification of the system. The engineer will first divide this into functional
blocks-memory, CPU, control, etc. as shown in Fig. 1.4. Each of these major
blocks can then be specified clearly and passed to different people for more
detailed work. Eventually the individual circuits such as 4-bit arithmetic
logic units (ALUs) are designed. This is described as a top-down procedure.

However, it may well be apparent at an early stage that certain circuits or
small blocks of logic (e.g. the 4-bit ALU) will be required. It is possible to do
detailed work on these before their specific place in the system is fully
defined. This is bottom-up design. Indeed, these blocks may be so
commonly used as to be available as building blocks even in chip design.

In practice both high level and low level design are likely to happen at the
same time. Detailed work goes on with ALUs, shift registers etc., whilst the
system architects work on their inter-relationship. This has become known
as 'meet-in-the-middle' design.

In order to clarify the interface specification of the major blocks of the
system it is necessary to simulate these blocks without knowing their
detailed internal structure. A hierarchy of models reflecting the hierarchy of
the design is required. The high level blocks will be simulated with high level
functions. For example, a multiplier might be simulated with a statement
such as

a:=x*y;
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in PASCAL. Hardware description languages such as VHDL (Chapter 5)
usually have provision for use of such statements. This one makes use of the
multiplier of the computer rather than some simulation description. Care is
required for two reasons.

• If one is designing a 32-bit multiplier and simulating it on a
machine with a 32-bit number system, the results required may
differ from those of the machine. A particular case occurs if the
machine works with signed numbers and the new design with
unsigned numbers.

• The effects of special operands. For example, - 2 1 5 * - 2 1 6 is not
representable on a 32-bit machine, but - 2 1 5 * 2 1 6 is (true
complement number system). What does the system being design-
ed do in such cases, and how does that compare with the results
from the machine doing the simulation?

As the design progresses, simulation will take place at progressively
lower' or more detailed levels, at least until the logic in terms of gates is
reached. At this level the system is modelled in terms of ANDs, ORs and
NOTs, and possibly flip-flops.

There are two issues here.

• The system has to be described separately at each level of the
design, and these levels must be proved to be equivalent.

Fig. 1.4. A system hierarchy.
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• The design may not progress through the levels evenly, so there is a
requirement to be able to simulate some blocks as high level
statements and some at gate level.

The solution is to design a simulator which can handle all levels of design.
It should be possible then

• to check a low level simulation against a high level one,
• to run 'multi' level simulations where different blocks are at

different levels of description, which in turn:
o enables simulations to run faster, since only a few blocks are

simulated in detail,
o enables larger systems to be simulated since high level

blocks generally require less resource than the correspond-
ing low level blocks.

Benkoski (1987) gives an example of a 4-bit adder that took 293 seconds to
simulate at a component level (Spice), 0.5 seconds to simulate as four 1-bit
adders and 0.1 mi/Ziseconds to simulate as a single 4-bit adder. The use of
multiple VHDL architectures for one logical device is useful here, see
Chapter 5.

1.4.2 High level
This is the level of description equivalent to the high level language

procedure in programming. It may cover more than one level of design
development. Fig. 1.4 showed a complete system containing memory etc.
and an arithmetic unit (AU). This might have a functional description in
which its function is described in terms of addition, subtraction, division
etc. Within the AU are a series of smaller boxes. In particular the adder is
shown, and this is described in terms of 4-bit ALUs, and carry propagate
units. A multiplier is also shown. This is probably described in terms of
'carry save' adder units (what these are in detail does not matter here) and
carry propagate units.

The words 'functional' and 'behavioural' are frequently used in this area.
There is no universally agreed definition of what these mean. This book will
follow Abramovici et al. (1990) using the following (see also Section 7.1):

Functional describes the logic function only and no timing.
Behavioural describes logic and timing.

1.4.3 Gate level
This level of description uses models of 'simple' gates, though in

practice the models are anything but simple. The logical elements may
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include multiplexers and flip-flops, though both may be described in the
data books in terms of ANDs and/or ORs. Fig. 1.5 shows one possible form
of a 1-bit ALU. Care must be exercised in using such data book equivalents,
since the real circuits frequently make use of unconventional circuit
techniques. Special models not constructed of ANDs and ORs should
always be considered in these cases.

1.4.4 Circuit level
Circuit level simulation is essentially different from all the other

levels. The circuit is described in terms of resistances, capacitances and
voltage and current sources which are the models. A set of mathematical
equations relating current and voltage is set up and solved by numerical
techniques. With gate and higher levels of simulation one of two real
voltage levels is assumed, together with some 'unknowns,' and there are no
mathematical equations to solve.

Circuit simulators typically can handle only a few hundred circuit
components and nodes, since they require large in-store data structures and
large amounts of computing resource. They cannot handle complete
integrated circuits, never mind whole systems. Furthermore, they cannot
cope with linking to higher level simulators. Usually they are used to
characterise relatively small blocks (e.g. gates) which are then redescribed
for the higher level simulators.

Fig. 1.5. One bit of an ALU.

Sum
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Circuit simulators give analogue results. That is, the transient response is
seen as edges with real rise and fall times, and, where relevant, oscillations.
Other simulators are for digital circuits only, and the results give delays, but
the edges are of infinite speed (zero time). Circuit simulators can also give
frequency domain results - that is they compute the zero frequency working
point, substitute the small signal parameters into device models, and
compute frequency responses.

1.4.5 Switch level
Between circuit and gate level there are a number of modelling

methods with the trade off between speed and accuracy at different points.
The primary technique is to regard the transistors as switches that are either
open or closed. These techniques are known as switch level, therefore
(Bryant 1984).

At its simplest, no timing is involved. The circuit is divided into sections
starting from a gate output and proceeding to the following inputs. The
wires marked as area P in Fig. 1.6 are a complete set. The switches
producing signals A, B and C are included in P, but not those producing
signals R and S. They can be simulated as a unit. They affect no other set of
wires except via the gate/base of the driven transistors and no other wires
affect them except via the outputs of the driving gates. Thus the size of the
problem has been reduced.

Timing may be included in switch level simulation. One form of this is to
estimate the capacitance of each wire, the driving gate output and the
driven gate input, together with the source resistance of the driving
gate(s). Algorithms for combining the time constants to obtain
a delay have been developed. These may involve solving differential

Fig. 1.6. Section of circuit for switch level simulation.
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equations for the sub-networks. Mechanisms to handle feedback are also
known.

Many such simulators have been described, and some are available
commercially. Some give pseudo-analogue results, showing real rise and
fall times of the waveforms. Sometimes they are described as circuit
simulators and compared for speed and accuracy with true circuit
simulators. They are much faster, of course. They can handle only the
transient performance of digital circuits. They cannot give frequency
responses of true analogue circuits such as amplifiers. The reader is warned
to beware, and must make his/her own judgement as to the fairness of the
comparisons.

Switch level details are beyond the scope of this book. Many of the
techniques described are usable at higher levels also. References relevant to
switch level will be included as appropriate in later chapters.

1.4.6 Mixed mode
In recent times some effort has been made to try to link circuit

simulation (analogue) and digital simulation. There are at least three ways
in which this has been attempted.

• Write a link between a circuit and a digital simulator. The
analogue part runs for a short period of simulated time and then
the digital. Suitable pseudo-analogue to digital converters are
used. The digital sections also feed the analogue via appropriate
conversions. There is a problem of feedback between analogue and
digital, since the time scales are not really compatible. The whole
thing seems unsatisfactory.

• A circuit analysis system based on events has been developed
(Sakallah 1985). In the normal technique the differential equations
are solved for a given time step. If the changes that result are too
large, the solution is unwound and repeated with smaller time
steps. In this system an estimate is made of the largest time step
that can be made without the signals changing by too great an
amount. An event queue (see Chapter 6) is then sent a marker at
that time ahead. When that time is reached the marker will cause a
further computation to take place. The analogue circuit operates
in relatively small partitions to keep the solution simpler (compare
the switch level system). This can be made to work with feedback,
and, as will be seen in Chapter 6, the analogue and digital
simulations use the same basic mechanism. This approach must be
worth a lot more exploration.
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• 'Behavioural analogue' (Visweswariah et al. 1988). In this model of
the system the analogue blocks are simulated by a circuit simulator
and a model developed which describes the block in terms
understandable by the digital simulator. The block can then be
treated as a 'digital' component by the digital simulator. This
sounds obvious, but, as will be seen later, writing the 'digital'
model is very difficult.

Analogue simulation is also beyond the scope of this book.
We may now define a good simulator from the point of view of this book

as one which performs hierarchical and mixed level simulation of digital logic,
together with timing error detection, independent of technology, but recognis-
ing the distinct features of known technologies.

1.5 Models
Simulation is about building and exercising a model of a system

(electrical or otherwise) that is being designed. Different levels at which
parts of the design might be modelled have been mentioned and the
different purposes of the models discussed (logic correctness, timing, etc.).
These criteria also affect the required accuracy of the models.

Writing accurate models of components is a difficult and skilled activity
(Chapter 7). Several companies now specialise in this type of work. It has
been said that to produce a model may take as long as designing the circuit
in the first place.

Consider as an example a D-type flip-flop (e.g. 74ALS74) as shown in
Fig. 1.7. It has to respond to four inputs, namely preset, clear, clock and
data, to give an output, Q (Q is also available). An active signal on preset
(low in the particular case) sets Q to 7, whilst an active signal on clear sets Q
to 0. The situation with both active is undefined, but often leads to both Q
and Q being 1 as shown here. If either preset or clear is active, the clock and

Fig. 1.7. 74ALS74 type flip-flop.
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data have no effect. When preset and clear are inactive (high), an active edge
on the clock line (low to high in this case) causes the signal on data to be
transferred to Q. Delay from preset, clear or clock to output depends on
whether Q is changing from 0 to 1 or vice versa, but not on which input is
changing (the reader familiar with the gate level logic diagram might like to
consider why). The model must respond as described to signals whose
changes are well separated, but real circuits do not respond instantaneous-
ly, and signals must not be allowed to change too close together. The
following is a list of checks to be made.

• D must not change <tsu before the active edge of the clock.
• D must not change <th after the active edge of the clock.
• Clock must not have an active edge < tpc after preset or clear go

inactive.
• Preset and clear must have a minimum width.
• Clock must have a minimum period, high phase and low phase.

Few, if any, data books specify all these parameters. A further problem now
arises. What should be the value of Q when any of these checks fails? What
if several fail at the same time? Some solutions to these questions are
suggested in Chapter 7.

An accurate model for such a flip-flop requires upwards of 300 high level
programming language statements. It is to be hoped that any path through
as a result of an input change will require only a fraction of these to be
executed. For example, a change of the data input alone has merely to be
noted - no action is required, and a clock change while the preset or clear
are active can be ignored.

1.6 Test program generation
Once a simulator is in place, a network described and models are

available, the network must be exercised. This is done by means of a test
program. The goal of the test progam is to exercise the logic for two
purposes.

• To show that the design is correct and the system performs
according to specification. The test program must be agreed
between designer and customer. It must cover all individual
operations that the system is to perform and a range of data for
each operation. It must also be tested on unexpected conditions
and unexpected behaviour. For example, the reset function should
set the system to a known state regardless of any other system
inputs. It would be easy simply to test for initialisation with one set
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of data on the other pins, say all Os. However, if the design is faulty
the system may not initialise correctly with other data on the
inputs, say all Is. One cannot test with all possible data sets, but a
judiciously chosen set of tests should be performed.

This set of tests is used during the design phase, primarily in
simulation, to demonstrate that the design is correct.

• A second set of tests is required to detect faults in the implementa-
tion. For example, if a wire has a break in it due to faulty
manufacture, then the signal on the 'driven' end of this wire will
probably be at a fixed logical level. For TTL circuits, that will
generally be the higher voltage level, for instance see Fig. 4.1.
Ideally one would like a test for every possible fault or set of faults
in the system. Unfortunately that would be a very large set of tests.
It would also be prohibitively expensive to use. Methods of
limiting the number of tests will be described and assessed.

This second set of tests is needed to give a thorough test of each
system built. The data sets are usually chosen to detect specific
faults and are not related directly to the functionality of the system.
It is not possible, therefore, to assess the functionality of the system
using these tests. That was the purpose of the first set.

A further set of tests may be needed to check the system timing. Some of
the tests in the first set may be provided for this purpose but further tests
may still be needed. The simulator (including timing analyser here) can
perform a thorough testing of the design timing. A test fixture cannot. It can
merely tell whether that particular instance meets the timing criteria. Again,
both types of check are needed.

Producing a test program to exercise the specified functions of the design
must be done 'by hand' since only the designer understands the system.
Understanding what tests to apply to check that nothing happens when
nothing is supposed to happen is more difficult. Consider Table 1.1, which
represents a test of the clock and data sections of the flip-flop of Fig. 1.7,
preset and clear being assumed inactive. Each line in the table represents a
set of inputs applied to the flip-flop and the value of the output, Q, expected
after the circuit delay. It is assumed that the time between applying the
inputs and testing the output is 'long' relative to the circuit delay and that
the time between sets of inputs is 'long' relative to the settling time of the
circuit (set-up and hold times obeyed).

The output of the flip-flop is obviously to be checked for a change when
the clock changes from inactive to active (I to A, the active edge of the
clock) as shown in lines 11 and 20. However, it is important also to check
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Table 1.1. Tests on a flip-flop

Time

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Data

0
0
1
0
0
0
0
1
0
1
1
1
1
0
1
0
0
1
0
0
1
1

Clock

/
A
A
A
I
A
I
I
I
I
A
I
A
A
A
A
I
I
I
A
A
I

Q

unknown
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0

that the output does not change on an active clock edge if it should not, lines
6 and 13. Nor should the output change on an inactive edge under any
circumstances, lines 5, 7, 12, 17 and 22. It is also important to ensure that
the output does not change when D changes, regardless of the state of the
clock OR the output. All eight possibilities can be found in this test
program. In this program the first two lines are necessary for initialisation,
and only four checks are duplicated in setting conditions for other
necessary tests. This length of program for such a 'simple' device, and not
including effects of preset and clear, or checks for possible timing faults,
demonstrates the difficulty when many thousands of gates are involved.

The really big problem in test program generation is, how do we know
that the set of tests is comprehensive? Consider a 32-bit adder. There are at
least 26 4 input combinations - approximately 18 x 1018. If it was possible to
simulate one combination in 1 ns (which it is not) it would still take 585
years to simulate all combinations.

It is not necessary to simulate all combinations of the inputs to check the
operation fully. By careful selection of the input patterns it is possible to
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check all paths through a system with a much more limited set of tests.
However, the problem can be made easier if the design is done with
testability in mind. This implies making the nodes of the design controllable
by the system inputs and observable from the outputs. The topic is known
as 'design for testability' (Chapter 3). This itself is by no means easy, and the
result may still require a lot of effort to ensure that the design is testable and
that the set of tests provided is comprehensive.

1.7 Fault simulation
When a test program has been generated, it is required to check

which faults can be detected. This is done with a fault simulator. Basically, a
set of tests is run on a 'good' network and the results recorded. A fault is
now introduced into the network, the simulation re-run, and its outputs
compared with those of the good network. If a difference in the primary
outputs is found, the fault is detectable.

The number of possible faults is very large. However, when a system is
almost working, an assumption of only one fault is reasonable. One might
hope in other cases that multiple faults would not occur in such a way as to
mask each other relative to a 'single fault' model. It has been found in practice
that, if a test program will detect all faults in which a single node is stuck at
0(s — a—0) or stuck at 1 (s — a — 1) it will detect most other faults as well. With
MOS networks it may be necessary to test for transistors stuck open and
stuck closed. The primary omission from this is the 'bridging' fault where two
wires are stuck together but not at a fixed level. Again, experience suggests
that most such faults will be found by the single stuck at fault model.

The number of possible faults in a large network, and hence the number
of simulations to be run, is still very large. If each run were to take several
days the cost would be prohibitive. Techniques have been developed to
speed things up and include the following.

• Timing checks can be turned off.
• If a fault is detected at test 5, say, there is no point in running that

simulation to completion - a further several thousand tests
perhaps.

• By judicious choice of the first few tests, a large proportion of faults
can be found in this way.

• There are a number of methods for detecting faults the effects of
which cannot be separated.

• It is possible to run several test patterns in parallel and/or test for
several different faults in parallel. Again, judicious choice of early
tests reduces the run times.
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Even with all these methods, fault simulation is a time consuming and
expensive business. It is one which is ignored at one's peril.

1.8 Timing verification
Running a timing simulator, even with many test patterns, cannot

guarantee that all possible timing error conditions have been checked.
Consequently some workers reject such simulators altogether. Instead they
perform a simulation solely to check logical correctness, which greatly
simplifies the models. It often also allows the simulator to run faster. Once
the logic is correct, they run a timing verifier.

The timing verifier examines the structure of the network and determines
where the paths of groups of signals converge in such a way that a timing
error might occur. These include narrow clock pulses (Fig. 1.3) and the
usual flip-flop or memory timing problems. The procedure can be
guaranteed to find all such problems. However, it may be very pessimistic
due to including paths which would be improperly used if they became
active, and may report many narrow pulses which are of no interest because
they are not at critical points in the network or in the timing. There are
techniques to make timing verifiers less pessimistic, but care has to be taken
not to miss significant events as a result. To ensure this a verifier must
always err on the pessimistic side.

1.9 Conclusion
The previous sections have introduced some of the important

ideas, terminology and issues associated with the simulation of an
electronic system. The remainder of the book will expand upon many of
them. Firstly, simulation will be set in the context of electronic computer
aided design (ECAD) as a whole. The process of simulation may reveal that
some areas of the design are difficult to test. Thus, to reduce design times,
the designer should consider at an early stage how the system is to be tested
- before committing the design to the computer. The book will continue,
therefore, with an introduction to issues involved in design for testability,
testability measures and test generation strategies. It has been suggested
that the cost of testing is 60-70% of chip costs, so it is clearly a topic which
may not be ignored. The reader is warned that these are only introductions,
and should consult other texts dealing with such topics more fully. The
chapters here are intended as a guide to assist designers to progress to a
better use of the simulator. A brief outline of methods of applying 'tests' to
the logic description in a simulator is included.

The mechanisms involved in the simulator itself are then discussed,
exposing some of the difficulties of making the simulator emulate the
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behaviour of real electronics, and providing some warnings as to the
limitations of the results. This will include some of the problems of writing
accurate device models. Whilst discussion of timing is an important feature
of device modelling, a separate chapter is allotted to timing verification and
its difficulties.

This will be followed by a discussion of fault simulation. In a sense this is
tied in with test generation. However, fault simulation is not actually
performed until the functionality and basic speed of the design have been
confirmed. Thus it is felt appropriate to place this topic after discussion of
simulation.

Finally the book will introduce additional features of simulation, in
particular hardware simulators and their place in the tool set.



Electronic computer aided
design (ECAD) systems

2.1 The design process
Designing any piece of equipment (not necessarily electronic) is

not a straight path from start through to product, even when no mistakes
are made. At each stage problems occur which may require previous
decisions to be reviewed. For example, it may be found on simulation that a
particular part of the design will not operate fast enough to meet the
specification. That part of the design, and possibly others, will have to be
reviewed until the criteria are met or proved to be impossible. In the latter
case it will be necessary to reconsider the specification. Fig. 2.1 is a
summary of the process, and the reader should refer to it from time to time
whilst reading the rest of this chapter.

2.1.1 Specification
Every design begins with a customer specification, which describes

the function the design is intended to perform. This may include not only
the logical properties but the speed of operation, the output power driving
capability, the capability of circuits that drive the design, the power supply
available, perhaps limits on power dissipation and electromagnetic radi-
ation, operation in the presence of external radiation etc. Sometimes it is
difficult to satisfy all the criteria. Higher speeds will require higher power
dissipation and faster clocks. The latter increases the electromagnetic
radiation. Some criteria may not be important, or only marginally so. With
certain pieces of logic the power dissipation may be minimal so that power
limits are not important.

One important matter is to ensure that the specification is correct and
covers the whole design. The problem of specifying sub-systems has already
been noted (Section 1.1).

Ambiguity is a major problem in specification. A word which means one
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thing to one person may mean something quite different to another. One
approach to the resolution of this problem is to use a formal specification
language such as Z or VDM (Camurati 1988). The specification of the
floating point section of the INMOS T800 (Barrett 1987), and of the
VIPER (Cohn) processor both made use of such languages. The main
advantage is that they remove the ambiguity. A second advantage is that
there are algebraic methods of proving identity of that specification with the
supposedly equivalent specification of the design at a later and more
detailed stage. Such methods of proof are, as yet, limited in their capability,
but will almost certainly become a major force in the future. Better still, it

Fig. 2.1. A design system flow chart.
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may be possible to automate the design process once the specification is in a
formal language. The result should be 'correct by construction' and fast to
market, even if it is not the most compact. Apart from very high volume
parts, lack of compactness is unlikely to be important but time to market is
usually critical. Time to market may even be the overriding consideration
for high volume parts.

2.1.2 Partitioning the design
Once the system is specified it may well be that it is too complex to

be designed in detail by a single person. A single rack of equipment in
modern technology can contain many hundreds, or even thousands of
integrated circuits (ICs), and if application specific integrated circuits
(ASICs) are involved, each can contain from a few thousand to a million or
so gates. All these numbers will rise as time progresses. The sizes are well
beyond the capability of one person to comprehend in detail at any one time
and time to market will not permit sections of the system to be designed in
sequence. Hence it is necessary to split the design into smaller pieces in a
hierarchy until sections small enough for an individual are formed. Each
sub-design must be carefully specified in terms of its terminal functions, its
speed and possibly of its physical design. The most difficult part of this
process is not the hardware or software, but the interface between the people
in the design team. In one large design known to the author, a 64-bit data
highway between two sections of logic was named SH00-63 by one designer
and SL63-00 for corresponding bits by another. The two designers sat at
adjacent desks in the same room.

2.1.3 Test strategy
At the same time that the functional specifications are being drawn

up, the test strategy should also be specified and the test specification for
each block of logic produced. It is important that the test strategy is
considered at this time. Adding test logic at the end of the design process is
always difficult and expensive. It almost always results in unacceptable
penalties in speed. Including its consideration here leads to economies in
the logic and superior performance in all respects. It is still not common at
present, but becomes more critical as systems become larger.

This set of tests is not the final set, since it may require modification to
ensure the initial conditions for a particular test are appropriately set, or
some adaptation to particular detailed design conditions. At this point
decisions should be made on how to make registers and/or control signals
visible outside an IC or a PCB, how to initialise the system, whether to use a
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self-test strategy and whether this is to be at several points in the hierarchy
or just at system level, and so on.

2.1.4 Constructional issues
Also at this point in time the technology of the design should be

selected. This is not always a straightforward decision. It involves factors
like cost, time to market (ASICs need to be designed; off-the-shelf ICs do
not), whether it is important to use ASICs for privacy of the design, small
size, weight or lower power, type of packaging of ASICs or standard ICs
(small outline, etc.), racking, cooling, operator requirements and, by no
means least, aesthetic appearance.

Finally, arrangements for operator control and maintenance must be
considered. One always hopes equipment will operate correctly for ever.
Real life is rarely so pleasant. The design must be such that faults can be
located rapidly and corrected, even if 'corrected' means exchanging PCBs.
The cost of repair in the field is very high; three orders of magnitude higher
than the cost of getting things right at an early stage in the design. The effort
at this point in time gives a very high pay back later, though this may never
appear on the company balance sheet.

2.1.5 Logical design
The next step in the design process is to perform the logical design.

For those approaching a design for the first time this is often the starting
point. For example, logical design exercises in the early part of an
educational course usually require the detailed design of some piece of logic
or a circuit. It is vital that the reader realises just how much time and effort
has to go into the overall system design before this point is reached (see Fig.
2.1).

Precisely what is involved in logical design will depend on earlier
decisions. It will almost certainly require putting together a number of
integrated circuits. Today it is rare for this to include more than a very small
number of simple gates (NAND, OR, INVERT, etc., but see below). It is
more likely to include microprocessors, memory, shift registers, bus drivers,
arithmetic logic units (ALUs), and other major blocks, together with
devices for controlling the system. These will include programmable logic
devices (PLDs).

Again, it is worth sounding a warning. It is quite normal to begin a design
with the data paths, and feel one has almost finished very quickly. In terms
of the percentage of the logic involved one is well on the way. However, the
last 10-20% of the logic will require 80-90% of the design effort, for two
reasons.
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• The sequencing of the functions of the design and general control.
This usually requires examination of the fine grain timing of the
logic (memories, flip-flops, etc.) and ensuring that the many
restrictions are met under both fastest and slowest conditions of
the control logic. Indeed, one may have to consider the fastest path
through some logic and the slowest path through other parts. This
is an area in which it is very difficult to spot all the critical
conditions, and is thus an area where particular care should be
taken during simulation (Chapter 8).

• End effects. An example is what to do with an arithmetic overflow.
The dangers are illustrated by the following anecdote. It is said
that a prototype computer was used in the design of a rather
unusual roof for a building. Just before it was to be built an
observant civil engineer noticed something wrong with the results
of the calculations. The problem was eventually traced to the fact
that the arithmetic overflow logic of the computer had not been
connected - and obviously not tested. The calculations had just
ploughed on with a large number wrapping round to become a
small one. Without the observant engineer this would have cost
lives.

Thus there is a need to take care over such matters, but, as with late
consideration of testing, failure to consider them at an early stage can be
costly in logic and may also cause the design to run more slowly. In another
example, a design for a multiplier involving several clock cycles was laid out
very carefully to ensure that it would run as fast as possible with minimum
wiring effects. However, there was a small piece of logic tidying some end
effects of each cycle which was placed 'in any free space.' The delay down
the slightly longer wires to this piece of logic caused the whole multiplier to
run more slowly than the main arithmetic loop, and as a result was the
limiting factor on the speed of this unit.

2.1.6 ASIC design
If the system is to incorporate ASICs then design with simple logic

gates may be necessary, though today most vendors have libraries of higher
level functions including basic microprocessors often referred to as cores.
On the other hand, not all functions for every design will exist. The designer
will certainly work with gates, and may work with transistors to produce
basic functions. The latter may well be designed at switch level, and will not
require detailed knowledge of circuit design techniques. Each ASIC will
need to be designed as a small 'system' on its own using the principles



2.1 The design process 25

described earlier. The full system design should have resulted in a
specification appropriate to the chip environment. Provided this is met the
design should be suitable. Matters of speed, end effects, control and, above
all, testability must be considered. The reason for the latter is that methods
of probing the internal circuit of an IC for testing purposes are extremely
expensive to provide and operate. Few design teams can afford them and
normally they should be assumed to be unavailable. Even when they are
available they are still a last resort.

The logic design of PCBs is not essentially different from that of designing
ICs. Each IC on the board is comparable to an ASIC macro on the silicon.
Indeed, the logic in an ASIC today is equivalent to that which would have
been put on a PCB using standard ICs yesterday.

2.1.7 Interfaces and pin limitation
As a matter of experience, however many pins there are available

on a chip or PCB, some designer will want more. Except where a complete
(sub)system fits on a single chip or PCB, the number of pins rises in
proportion to the number of gates to a power between 0.57 and 0.75
(Landman and Russo 1971). In particular, data highways require large
numbers of pins. For example, consider a 32-bit processor. There is a
requirement for a 32-bit bidirectional connection to the processor.
However, there is also a need to be able to specify memory addresses.
Today these, too, require 32 bits. There will then be a requirement for a
selection of control signals, interrupt lines and priority signals etc. The total
easily reaches to over 100. If floating point facilities capable of handling
IEEE double format are to be included, then 64-bit numbers are essential.
To supply these as two 32-bit ones is slow. Processors with 64-bit integer
and address highways are now appearing.

In assessing pin requirements it is easy to forget the requirements of
power, or to suggest this is just two pins. There are two reasons why this is a
mistake.

• Power. A modern PCB may well consume several amps of current,
or even several tens of amps. Most PCB pins are limited to one or
two amps for proper performance. If inductive and resistive drops,
heat in the pins and metal migration are to be restricted, then an
adequate number of pins is needed for both the power and the
ground supplies. The numbers may be different, but similar
restrictions apply to ICs. A 10 W IC with a 5 V supply requires 2 A,
and IC pins cannot handle this much.

• Noise. Consider a 32-bit data highway at a time when all signals
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are changing together - which does happen. The ground return has
to handle the current of all 32 bits. TTL bus drivers typically drive
16 mA, which multiplied by 32 gives over 0.5 A. This has to pass
through the ground return. If the pin inductance is 5 nH and the
current changes in 15 ns then the noise voltage on the ground line is
170 mV, which is large enough to cause a spike on a clock line. The
resistive effect will generally be much less.

Providing several ground pins reduces this. For ICs the currents
are smaller but several ground pins should be provided. Very often
in ICs the pins supplying power to the pin drivers are separated
from those supplying the internal logic. Thus large current changes
due to output driver switching do not affect the more sensitive
internal logic.

As with other matters, these must be considered at an early stage in the
design, since, if there are too many pins for a sensible package, then some
revised partitioning of the design is necessary.

2.2 Design capture
As the design progresses it will be captured in a computer data

base. There is a school of thought which prefers a textual description as
more precise than diagrams. Standard hardware description languages
such as VHDL (Chapter 5) are textual. Whilst the data internal to a
computer may well be in that form, most engineers prefer a picture. Indeed
there are systems available where the input can be in graphical form.
Whether captured in graphical form or not, it is usual to produce graphical
representations.

In most cases the CAD software will contain libraries of components. In
the case of ASICs this will be predefined blocks of logic, but the principle is
the same. Each component will have several representations in the system.

• A graphical representation.
• A pin list.
• A model or models for simulation. Multiple models may be used

for simulating at different levels of abstraction.
• Physical data - where to place pads on a PCB for a commercial

component, or IC mask details for an ASIC macro.
• Electrical data to allow checking of compatibility with other

signals connected to its 'pins.' For example, high and low logic
levels and current source and sink capability of outputs.

• Power/current consumption figures, etc.
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This data is used in the different parts of the CAD suite.
The design capture software may have several outputs.

• A net list. This is a list of all pins (or pads for an IC macro)
connected in a given net. A net is simply a number of places in the
design that are connected together. The net list may or may not be
available in a textual form. For PCBs a print-out is almost
essential for fault finding.

• Logic diagrams, with cross references where a signal is used on
several different sheets.

• Parts lists, probably with ordering information.
• Total design power and current requirements, and separate figures

for each ASIC and PCB.

An important consideration is how the CAD system knows what is
connected to what. As the designer enters the data each signal is given a
name. In a textual description this should be something meaningful. For
example, if a division by zero is to be detected, the signal indicating this
might be named DIV_BYJZERO. A name such as '***????' (an actual
example) is not helpful! If a graphical input is used then signals may be
named in a random fashion by the software. So long as the designer does
not need to see them this is acceptable.

When the designer joins two IC pins (or equivalent in an ASIC) the
system assigns the same name at both ends of the connection. In the textual
form this is done by the designer giving the two points the same name Thus,
by scanning the list of signals connected to all pins, a list of pins by network
connection can be built. For example, Fig. 2.2 shows four ICs, which may
be on one drawing as here, or on separate drawings, or could be listed as
(for example)

ALU [aO,.. a3,bO,.. b3,sumO,.. sum3,G3,P3]
IC3 CGEN [G3, P3, G7, P7, . . . . C7]

etc.
The system library knows the IC type 'ALU' and contains a list of signals

in a known order, together with the pin numbers. In this case the first signal
could be pin 1. By positional association this will be signal aO. The next pin
in the library list may be 3, associated with al. Other associations follow
similarly. It is not usually necessary to specify the power and ground pins in
the list above. Fig. 2.2 shows a limited selection of pin designations for
clarity.

The details of all ICs are provided by the designer, enhanced from the
library and placed into a design file. A net list can be produced. At some
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point the software picks up the signal sum_0 and searches for all
occurrences of it. So far as this diagram is concerned it finds two places, an
output and an input. Thus a net list of the following form can be produced.

sum_0
G3
P3 IC3:2,

etc.
The same piece of software will probably perform some electrical rule

checks (ERCs) such as ensuring that a network contains only one signal
source OR all signal sources are capable of being connected together - all
TTL open collector or all tri-state devices.

2.3 Simulation
Once the design is under way and partitioned it will need to be

simulated. This implies that a model of the design is created in the
computer, together with a model of the environment in which it is to be
operated. The environment model is usually called a test program. In its
simplest form this is just a set of inputs such as might be applied to the
finished equipment in the field. The system model is 'run' and selected
signals displayed. It may be possible for the computed outputs to be
compared to 'expected' outputs. Very often it will be possible to simulate
blocks of the logic on their own for ease of finding problems once they have
been isolated to that block.

Fig. 2.2. Generation of a net list.

a4 a7 b5 b7
a4 a6 b4 b6

p 7

a1 a3 b1 b3
aO a2 bO b2

P7
I

G7
I

CGEN
IC3

P3

2

G3
|
1

C7

sum_7 sum_0

IC4



2.4 Test program generation 29

It cannot be stated too strongly that simulation will not result in the
design being completed faster. It will be slower, probably much slower.
However, it should lead to a design which is right first time and hence will
save time and money in correcting mistakes later. It should also be more
robust. It is repeated that the cost of correcting mistakes at this stage is very
low compared with having to do it later.

There are many dangers in simulation.

• The check on the design is limited in extent due to pressure to finish
the design work.

• The results of a simulation run are taken as the 'good results.' If
logic or test program or both are faulty this makes simulation
useless - or worse. That may seem obvious, but under pressure to
get the design finished the temptation is strong.

• The logic is 'adjusted' to make fault reports from the simulator 'go
away.' One designer working with 10 ns logic inserted a series of
1 ns delays to eliminate flip-flop timing complaints. In the real
circuit such accuracy was impossible to achieve because of the
wiring delays in the physical construction. A redesign was
necessary. Unfortunately this was not discovered until the hard-
ware was being commissioned - by someone else.

• Monitoring of results may be turned off. This is usually accidental,
but has been known to be deliberate. In one simulator the author
came across this was the default condition.

• Only sub-systems are simulated and the whole is not. Again,
pressure to get the design finished may lead to the temptation to
miss out the whole system simulation.

• During layout, adjustments to connections may be made. Errors in
typing or otherwise in doing this will alter the function of the
system. A post-layout simulation is essential (see Fig. 2.1).

2.4 Test program generation
Although this is being described after simulation, it will be clear

that the simulation will only be as good as the manner in which the system
model is exercised. It is no good just training an airline pilot to fly an
aircraft on a simulator. He must also be given realistic practice at handling
emergencies. It is said that the pilot of the aircraft involved in a crash in
1990 did not have such experience. The same must be true in electronics.
Indeed, in some applications the consequences of failing to do so could be
as disastrous as in the case of the pilot.
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There are several aspects to test program generation.

• Check that the logical function of the design meets the specifica-
tion.

• Check that the speed specification is met.

These are the obvious ones, and will be the designer's initial concern.
In production testing the design is assumed to be able to meet the

specification provided it is correctly manufactured, i.e. it is assumed to be
'good' under some criteria. If the machine testing the finished product is to
find faults introduced in manufacture, the result of testing a faulty system
must be different from that of testing a fault free one, whatever the fault.
This leads to a consideration of the types of fault that can occur - broken
wires, wires shorted to power or ground or to each other, broken transistors
- and the effects these have on the network. For example, if the input to a
TTL circuit becomes disconnected it behaves logically as if the signal is
stuck at the higher logic level. Thus there is a class of fault in which a circuit
node is stuck at a logic value. The test program must be able to check most,
if not all these faults. Hence there are further aspects to the test generation
process.

• What are the faults that can occur?
• How can those faults be modelled in the simulator?
• Assess the extent to which the test program can detect these faults.
• Generate tests to find the faults not detected by the test set so far

developed.

It should be realised that, when considering production tests of the
system, a design exists which is defined as free of faults. A simulation of this
fault free network can now be taken as the 'expected result,' and simulating
a network with a fault deliberately introduced should give a result which is
different to that found for the fault free network. Noting a difference can be
taken as an indication that the test can find that fault.

The total number of possible faults in a network is very large indeed, and
the cost of running such tests correspondingly high. If there are N nodes in
the design and a fault is defined as a node stuck at 0 or stuck at 1 then the
number of possible faults is proportional to N3. For example, for a circuit of
1000 nodes, the order of 109 tests would be needed. At 1 ms per test (which is
a long way from being possible) each system produced would take 11 days
to test (24 hours per day). Clearly some compromise between cost and
comprehensiveness of testing must be reached. A 1000 node circuit is very
small by today's standards. This does not take into account other types of
fault which may occur, such as two nodes stuck together.
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It is also found quite frequently that certain parts of networks are difficult
to test - even impossible. This leads on to the concept of designing a system
to be testable from the start. In recent years, a number of techniques for
doing this have been developed. Furthermore, there are procedures by
which the designer may assess the ease or otherwise with which the design
may be tested. Applying testability criteria to a network at any early stage
in the design will ease the test program generation problem later - and
reduce the time to market. Use of testability measures will enable redesign
to make the network more testable, and again, if this is done relatively early
in the design process, the cost in time, effort and wasted simulation
resources will be reduced. Of course, these matters do make the initial
design time longer. As stated before, attention to detail at this early stage is
much cheaper than attempting to correct matters later.

One possible technique for testing which does not rely on a tester is
self-testing. The 'tests' which are run need to be just as comprehensive as if
they were run on a test rig, and the techniques for generating tests may be
similar. There is one additional problem - the self-test logic must be able to
test its own operation!

2.5 Placement and routing
Once the logic has been designed and there is reasonable

confidence that it is correct as a result of simulation, the individual devices
must be connected either on an IC or a PCB or both. Where sub-modules
have been individually simulated, preliminary module layout can be
undertaken, even though other modules may not be so far advanced.

For a system design the first step is to partition the logic between PCBs
(assuming more than one is needed). This can often be done early on in the
design and, indeed, needs to be so done in order that sections of logic can be
reasonably self-contained. There are two possible exceptions.

• There may be a question as to which of two boards a particular
interface should be placed on.

• It may be decided at a relatively late stage to place two or more
relatively small modules on the same PCB.

Further partitioning may then take place to areas of the boards, and
decisions made as to whether some part of the system should be on custom
ICs. There are several reasons for using ASICs.

• Savings in space, power, cooling, racking, electromagnetic com-
patibility etc.
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• To make the design more difficult to copy.
• For cheapness in high volume applications.

High volume in this context can mean just a few hundred or even a few tens
of finished systems, since placing logic in ICs also results in savings of space,
power, etc.

Partitioning of logic within an IC follows roughly the same procedure,
where the 'system' is now bounded by the pins of the IC. However, layout of
ICs has other constraints. Consider an IC which is designed so that the
outputs will feed appropriate inputs of another IC of the same or different
type. Fig. 2.3 shows two possible pin configurations.

In Fig. 2.3(a) the IC pins have been assigned for convenience of IC design
with no consideration for system requirements. Even in this simple example
the wiring space is obviously significant and there are at least two places
where two wires cross. In Fig. 23(b) the internal connections of the IC are
probably a bit more difficult, but once made are reliable. The external
wiring is very simple and without doubt, more ICs can be packed into a
given area. This applies to ASIC modules as well. Hence it can only be
preliminary layout when system design is not complete.

The wiring of the individual components or logic elements is now done. If
the placement of the components was good the wiring will not be too dense.
However, there are a number of ways in which the layout might be
improved.

Fig. 2.3. Bad (a) and good (b) pin allocation in IC design.
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Consider Fig. 2.4(a). The two inputs of the gate have identical functions,
so exchanging inputs will produce a better layout as shown in (b). In the
former case, two wiring 'channels' are needed; only one in the latter. In Fig.
2.5 a similar situation applies but here two gates must be exchanged. At
present, automatic software is just becoming available for this.

Placement and routing are a pair of processes which need to interact with
each other. Unfortunately there is no way of confirming a good placement
without doing a great deal of work on the routing, and even minor changes
to the placement can require a total restart to the routing. A great deal of
research on the interface between the two remains to be done. The author
recommends that every student spend time laying out one substantial piece
of logic 'by hand' at an early point in his/her career. The exercise will
emphasise, as no amount of words can, the problems of routing and the
interaction with placement that will enable further designs using automatic
tools to be done with a much greater change of success, since in most cases
the tools accept (or require) suitable initialisation. Or, in other words, the
human brain is still superior for solving problems concerned with spatial
relationships.

Fig. 2.4. Interchanging gate inputs.

(a) ib)

Fig. 2.5. Interchanging gates.

(a) (b)
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Wiring delays
Once the board or IC has been routed the length of the connections

can be calculated. The characteristics of the tracks should be known to the
CAD system, so that wiring delays can be calculated. With connections
made in metal this will only be important for high speed logic. In general the
connections can be treated as L-C transmission lines and delays are easily
calculated (Gosling 1985). For connections in silicon or polysilicon, an
R-C transmission line is used. The reader should attempt to calculate the
equivalent time constant of a two-stage R-C filter as shown in Fig. 2.6. It is
immensely difficult. Various approximations have been proposed (Gaiotti
1989). However, by far the most important factor is the equivalent circuit of
the driving circuit, Vs and Rs, a fact which is not always made obvious in the
literature.

Having computed these wiring delays, the values should be inserted
automatically into the network description. This is known as back
annotation. The system must then be resimulated with critical timing tests
to ensure that the speed specification is still being met.

The number of elements to be simulated has now risen significantly.
Consider the network fragment in Fig. 2.7. The layout of the diagram is
intended to convey something of the physical layout. One or other of the

Fig. 2.6. Two-stage R-C transmission line.

Fig. 2.7. Wiring delay network.

A
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two open collector gates drives three load gates. The delay from A to G3 is
different to that from B to G3. The delay from A to Gl is different again.
There are at least six different delays needed here. These must be inserted as
additional pseudo-elements as in Fig. 2.8, and pseudo-gates to combine
them to three real gate inputs are needed. The pseudo-gates are shown as
AND gates, which is appropriate to TTL logic. The network is now much
larger.

For this purpose it can be presumed that the logical function of the
system is correct, and only the timing is to be checked. In particular, short
pulses could be generated as a result of the different delays. Hence a timing
verifier might be more appropriate (Section 1.8 and Chapter 8).

It should be stated that the use of a timing verifier at an earlier point in
the design cycle is useful. After all, there is no point in proceeding to layout
if the timing of the logic without wire delays is not satisfactory.

2.7 Silicon compilation
In the writing of computer software progress was made from writing

actual machine instructions to assembly language to high level languages.
This might be compared to progress from designing electronic systems with
gates to macros (e.g. ALUs, counters) and to processors. In software, a
compiler takes a high level description and reduces it to machine code to run
in the machine. By comparison, a silicon compiler takes a description of a
system and reduces it to ICs, gates or transistors as required. Since the
reduction is automatic it should be correct by construction, and the need for
functional and behavioural simulators is removed. Timing analysers are still
required. The automatic software should also do placement and layout.
Timing analysis after layout is also still needed.

Fig. 2.8. Pseudo-network of Fig. 2.7.

A
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This is the ideal. The practice has not yet been fully realised, though it is
being approached ever more closely. Hollingworth (1991) describes one
approach. It is unable to make all design decisions, so a measure of
interactive intervention is used. This gives opportunity for error, so some
functional simulation is still required.

Silicon compilation makes use of formal specification a real possibility.
Means to 'prove' a formal specification are available, though probably not
yet useable on any but quite small systems. The VIPER chip had only 25K
gates. However, they would probably work on a functional level descrip-
tion. Proof of that, followed by correct by construction implementation,
should be both fast and accurate. At this point it has to be asked how the
silicon compiler software itself can be proved correct! Formal specification
methods cannot be used to verify timing specifications.

Several formal specification systems currently proposed do not fit the
model described in the previous paragraph. To all intents and purposes
they are high level design languages. 'Proof of the design is done by
simulation, usually specially written and presented as 'something different'
from 'conventional' simulators. The reader is again warned to be discrimi-
nating.

2.8 Conclusion
This book is primarily about simulation. This chapter has

attempted to set simulation within the context of the total design. It has
demonstrated the close interaction of the different steps in the design
process, especially in relation to testability and testing with simulation, and
the need for simulation at several stages in the design sequence.
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3.1 Cost of testing

3.1.1 Advantages and penalties
Most electronic system designers will never need to design a

simulator. They will merely need to use one. An understanding of how the
simulator works will enable it to be used more effectively, and avoids
investing it with powers that it does not possess. However, most designers
will have to write test sequences which the simulator will use to exercise the
logic. They will also need to write programs for the equipment test rigs for
exercising the real logic. These two activities overlap to some extent.
However, checking that the system performs its specified functions is a
design phase procedure and is used primarily in the simulator. Once the
design is accepted as adequate it is necessary to check that any possible
manufacturing fault can be detected during testing. The latter set of tests
does not need to be 'understandable' in terms of the normal operation of the
system since testing during manufacture is mainly on a go/no go basis.
Developing and assessing the value of these tests is a major task and
requires much further simulation. It is for this reason that the main chapters
of this book begin with a look at the problems of writing test sequences.

The importance of careful testing of a design is illustrated by the costs
involved. For the sake of example, let the cost of simulation be 'one' in
whatever unit is appropriate.

Suppose now that the design is of a silicon chip, and an error is found
during testing. The chip has to be redesigned. Conventional wisdom,
quoted by a number of authors, suggests that the cost of this redesign will be
10 in the system of units mentioned above.

Suppose again that the fault is not discovered in the chip, perhaps due to
inadequate testing. Chips are built into printed circuit boards (PCBs) and
the fault discovered there. The cost of correction has now risen to 100. If the

                                                                                            
                                              

                                                            



38 3 Design for testability

design gets into production and the fault is found by a user in the field, the
cost is 1000. Worse still, a fault in the field could, in some cases, result in an
accident costing lives!

Clearly there is a great advantage in spending time and money on
simulation and the generation of good test programs. In an academic
establishment the pressures are different from those of industry, since in a
teaching exercise there is no real customer. Even in the industrial design
laboratory, the pressure to get the design finished on time may tempt the
designer to skimp on testing and simulation. These pressures must be
resisted. One particular example can be quoted.

In the late 1960s, when small scale integrated circuits were available, the
author was involved in the design of a unit consisting of about 1000 such
circuits. It was built on six very large PCBs. The simulator was very slow,
and, due to limited computer power, could only be run at nights and
weekends - there was no such thing as interactive computing! There was
much pressure to get the design completed quickly, but simulation
continued to indicate problems. In spite of the extended schedule, the
simulation was run to completion. The payback came when the final design
was commissioned by an inexperienced research student in three days. In
the same machine, another unit on which this author was involved was
simulated less thoroughly, and in some places not at all. It took many
months to commission. The design phase of the first mentioned section
took longer than originally estimated but in the end the total time to get the
unit working was reduced.

It has been suggested (Wunderlich 1987) that the cost of testing is
60-70% of the cost of designing an IC. With test synthesis techniques, the
statement will still be true, but the cost may be hidden within the synthesis
software. Such expense must be justification for doing everything possible
from the outset to improve the testability of a design.

3.1.2 Problem size
To test a design for all possible faults is a massive problem. There is

a divergence here between checking a design and possibly testing a
prototype on the one hand and production testing a 'proven' design on the
other. In the former case the designer wishes to know not only that there is a
problem but also what that problem is so that the design can be corrected.
Most, if not all of this type of 'testing' should be done by simulation. At this
stage one is interested only in the functionality and timing of the design. The
sort of errors that can occur include the following.
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• Missing some data dependency.
• Ignoring a special case in the data - for example, an arithmetic

operation with a result too large to be represented.
• An error in typing data into the computer. For example, typing the

inputs of a block of logic as block_in_0, block_in_O, block_in_2...
when the second input should (obviously) have been block_in__l.

• Timing errors of many types.

With the possible exception of timing errors, these faults are in no way
related to the technology and, in particular, should not be confused with
stuck at faults (see below).

Once the design has been proved to be functionally correct, then it is
necessary to consider how to test the production units. In this case it is only
necessary to know whether the unit is good or not. It is necessary now to
consider the effect of the technology. Faults are introduced into the unit by
the manufacturing process. What are these faults and, more importantly,
how do they affect the way the design behaves? Knowing this, it is possible
to design tests to detect the fault. For example, a broken track, whether on
an IC or a PCB results in an open circuit at a gate input. For TTL this is
equivalent to that input being stuck at the higher logic level. With ECL it is
equivalent to being stuck at the lower logic level.

Tests for system functionality need to be understandable to the designer.
In general they will be intelligently generated sets of data. They may well be
specified in the contract with the customer, though most designers will wish
to go some way beyond contractual obligations. Considerations of cost and
legal liability will dictate how far, especially in safety critical applications.

Test programs for production testing will also be run on .the simulator.
These need not be related in an obvious manner to the design function.
They must ensure, so far as is possible, that no manufacturing fault can
cause faulty operation. Means to assess the comprehensiveness of these
tests are required (Chapter 9).

The literature on testing ignores the need for tests which are understand-
able to the designer and hence can be used to find faults in the design. This
author believes the distinction between these and the more extensive tests is
critical to the design phase of a project. It may be that the distinction is
rarely made because the former case is not susceptible to automatic
analysis, generally speaking, whereas the latter is. Thus authors concen-
trate on the latter problem, the former being presumed 'easily solvable,'
which it is not. Both types of testing are of critical importance to the success
of any design.
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For production testing, much of the literature is based on the premise
that it should be possible to test for any fault, even down to faults within a
particular gate. There must be a question over the necessity for this. We
need to know the following.

• Is there any fault in the system that can cause it to operate
incorrectly? If a fault does not cause incorrect operation then there
is some redundant logic. This logic may be very necessary to
prevent spikes happening if signals change in the wrong order.
Faults in such logic cannot be detected by static tests, that is, tests
in which signals are allowed to become stable before checking their
values. Dynamic testing may also be very difficult or require very
expensive testing equipment. Other than in such cases, it should be
assumed that there is no redundant logic in a good design.

• Where is the fault, given that its effect has been detected? It is not
always necessary to know in great detail. If a circuit fault results in
the output of a gate being always 1, then a gate output stuck at 1
fault is adequate. It may even be possible to extend the same
argument to larger blocks of logic, especially when attempting to
repair a system in the field.

In both types of testing, the larger the block of logic used as the minimum
block the fewer and simpler the tests needed. For example, if the basic unit
of a 32-bit adder is a 2-bit adder block, tests will look for faults at input and
output of these blocks rather than the inputs and output of every individual
gate. The balance must be carefully chosen. Use of larger blocks could be
dangerous, as will be discussed later. Too many tests is very expensive in
the use of test equipment. Too few tests increases redesign or field repair
costs.

Reduction in tests is inevitable because a number of faults cannot be
distinguished. Consider the four-input AND gate shown in Fig. 3.1. No set
of tests can distinguish between the output stuck at 0 and one or more of the

Fig. 3.1. Equivalent stuck-at faults on an AND gate: (a) output s-a-0; (b)
one input s-a-0; and (c) multiple faults.
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inputs stuck at 0. The effect of all such faults is identical. Thus these faults
are equivalent. Fig. 3.1 shows three. The first is the output stuck at 0. In the
second, one input is stuck at 0. The third has multiple faults, including two
inputs stuck at 1. This approach is known as fault collapsing and will be
discussed in more detail in Chapter 9.

One very commonly used method of reducing the number of tests is to
assume that the design is nearly right and there will only be one fault. This
means that it is not necessary to test for multiple faults. The assumption
may well be valid when testing a proven design that has become faulty, but
is questionable for

• prototypes
• testing chips off a production line where faults on the silicon, dirt,

scratches, dislocations etc. may well cause multiple faults. In these
cases it is hoped that multiple faults will still show up, and not be
such as to mask all possible single faults. Abramovici (1980) and
Agarwal and Fung (1981) discuss the justification or otherwise of
this assumption.

Another common assumption is that all faults are of a node stuck at 1 or
stuck at 0, which will be written s-a-1 and s-a-0 in what follows. Where
either is meant, s-a will be used. In fact, due to bad metallisation or PCB
production, two wires stuck together but not at a specific value is quite
possible. These are known as bridging faults. They may well not be detected
by tests for s-a faults. A careful selection of test data, keeping in mind the
physical layout of the design, will help here. However, the problem of
bridging faults gets relatively little attention in the literature, probably
because of its intractability - see Chapter 9 and references.

Another type of fault results from the extremely high input impedance of
MOS transistors. If a driver never turns on then the driven signal will
remain at the last set value. As will be discussed more fully in Section 4.6,
this changes a combinational circuit into a sequential one, and two test
patterns are required to check the operation. This type of fault is known as
stuck open. Stuck closed faults, by contrast, almost always result in a s-a
fault.

A final method of reducing the problem of large numbers of faults is to
split the design into smaller blocks, each separately testable. Suppose there
are 10 blocks each of 1000 nodes. The number of possible s-a faults is 1012.
However, if the blocks are separately testable then only 10* 109 tests are
needed. Further, it may be possible to test several blocks at the same time
(in parallel), thus reducing still further the time to test (though not the
number of tests).
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3.1.3 Combinational and sequential logic
Testing of sequential logic has proved very difficult. The primary

reason is that it is necessary to supply several sets (known as vectors) of test
data per test. For example, to test a register it is necessary to supply the data
first, and a following vector with the clock change. This ensures that the
set-up times are obeyed (see Table 1.1 for example). The general case is very
difficult, so automatic test generation is virtually impossible, though
specific structures are testable in a reasonable manner.

Combinational logic does not suffer this disadvantage and automatic test
generation methods are known. One way to solve the sequential logic test
problem is to design the system as blocks of combinational logic separated
by registers. The registers are specially designed to be testable and to act as
input to and/or output from a combinational block, giving the advantage of
reduced logic size to be tested. This topic is discussed further in Section 3.3.

A form of sequential logic occurs when there are feedback loops within
logic which is otherwise combinational. The problem arises because the fed
back signals effectively provide second or possibly further input vectors for
each vector of the primary inputs. This makes the circuit behaviour difficult
to predict, especially under fault conditions.

It is questionable whether such feedback is ever good design, since it is
possible to generate pulses of a width which is always subject to
manufacturing tolerances. It is almost certain that a feedback system which
includes a clocked device will be more reliable than one which does not.
However, if such a feedback system is essential then the feedback loops need
to be broken during testing. Fig. 3.2 shows a block of combinational logic
with feedback loops each containing an AND gate. During testing the

Fig. 3.2. Breaking of feedback loops during testing.
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control on the AND gate is 0, ensuring that the feedback loops are broken.
If it is required to set the combinational logic inputs that are fed from here
during testing, then the AND gates must be replaced by multiplexers with
the other input under external control.

For synchronous designs, techniques such as scan and BILBO (see
below) can be used. The design procedure ensures that the combinational
logic blocks have no local feedback.

Of course, one cannot guarantee that a fault will not result in the
production of feedback loops. This will happen only with bridging faults,
not with s-a faults. This is another reason why testing for bridging faults is
so intractable.

3.1.4 Design for testability
It will now be appreciated that generating tests is by no means

simple. It does not need a great stretch of the imagination to realise that
some designs, and some design styles will be easier to test than others.
Hence the problem of test generation can be considerably eased if it is
considered at every stage in the design process. In particular, it helps if
certain additional logic is provided in some places, and if some particularly
awkward structures can be avoided. The remainder of this chapter will
introduce some of the methods available to the designer to make it easier to
generate a test program. It is included here because it leads to a reduction in
the number of tests needed, and thus to less simulation and faster design.
No attempt to provide a complete guide for testability is made. The reader
should consult specialist texts on the subject for that. The next chapter will
introduce test generation methods on a similar basis.

3.2 Initialisation and resetting
The simplest action to take to make a system testable is to ensure

that the design is easily initialised to a predictable state. In the majority of
cases this is necessary for normal operational reasons. However, there
could be some 'don't care' states in the early stages of normal operation
where a suitable initial value would aid testing.

Initialisation of a combinational circuit simply requires the application
of an appropriate input vector and time to allow the signals to propagate
through the network. Hence initialisation is only significant for sequential
circuits.

The obvious means of initialisation of flip-flops is to provide an
asynchronous clear, preset or both. This could require a very long wire and
very heavy drive capability. However, only one initialisation connection is
needed, or a small number in parallel to reduce driver loading.
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In initialising a system, it is necessary primarily to check that the state of
the system is as expected. However, the purpose of simulation is to find
faults in a design. The designer must try to visualise what might happen if
the design were faulty. For example, suppose it is required to reset some
control latches.1 If the clock input was inactive in the simulation then the
correct things happen. However, in real hardware the clock might initialise
to the active state, giving the wrong initial state to the system. The test
program must check that the system initialises correctly independently of
all other inputs which are regarded as 'don't cares' in a fault free system (see
Section 10.1 point (a)). Thus a test must be run with the clock in the active
state, or the design must be modified to ensure that that state cannot occur.
Visualising such circumstances requires a lot of imagination and very
careful consideration.

3.3 Scan design
A method which has been used successfully to ease the problem of

testing, and which also solves the problem of initialisation, is known as scan
design. In principle the design is divided into blocks of combinational logic
separated by registers. The system is limited to synchronous designs,

Fig. 3.3. Principle of scan design.
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The term 'flip-flop' is frequently used of a two-state device which is
triggered as a result of a clock edge (1 -» 0 or 0 -> 1). The term latch' is
used of a device which transfers data from data input to output when the
'clock' ('control' in this context) is in one state and blocks the transfer
when the 'clock' is in the other state. This usage will be observed in this
book.
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therefore. Each of the registers can be configured either as a parallel load
register for normal operation or as a shift register. In its basic form all the
shift registers are connected end to end. Fig. 3.3 illustrates the idea.

To test a combinational logic block Z, say, a test vector is shifted to the
appropriate part of the shift register, Ra at the input to block Z. This is
scan-in. The signals propagate through Z and are parallel loaded into the
register at the end of the block, Rb. The result can now be shifted out -
scan-out and the appropriate bits checked against the expected result.
Naturally there is a need to test the shift registers first.

This design technique has several advantages.

• Only combinational logic blocks have to be tested, which is a much
easier problem than a general sequential network.

• The system is split into blocks, reducing the number of tests needed
- see above.

• Several blocks can be tested at the same time. If R and Ra are built
with edge triggered flip-flops then the output of block Y can be
parallel loaded to Ra as the output from block Z is loaded to Rb. If
suitable data was shifted into R as the previously mentioned data
was shifted to Ra then both logic blocks are tested at the same time.

• Only two to four pins are needed for test purposes, namely,
scan-in, scan-out and mode control (may be two). Indeed, scan-in
and scan-out could be multiplexed. The advantage of using two
pins is that a new test can be scanned in as the results of the old test
are scanned out.

• The test structure - the registers - is part of the design in the case of
synchronous designs. Although they are more complex due to the
need for shift facilities, the equipment or silicon cost is relatively
small.

Testing of the shift registers themselves can be done by scanning in a
pattern and then scanning out the result. If the shift register chain is broken
then the output will be all Is or all Os. The position of the break will have to
be determined with the help of parallel loads. However, suppose that the
control allows the register to shift in either direction. Suppose a fault
equivalent to a s-a-0 occurs at the sixth bit of a 10-bit register as shown in
Fig. 3.4. If a pattern often Is is scanned in and then read out in the reverse
direction, the expected pattern is ten 1 s. With this fault, the pattern read out
is six Is and four Os. The position of the fault is where the pattern changes
from Is to Os, namely, at bit six. S-a-1 faults can be found in a similar
manner with an input pattern of Os.

Having established that a path through the shift register exists, a test
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sequence of 00110011... will exercise each flip-flop through all combina-
tions of present and future states (present state 0, future state 0 or 1; present
state U future state 0 or 1).

There is no restriction on the type of flip-flops used. However, IBM, in
particular, have used latches. This makes it possible to test the clocking
mechanism more thoroughly. This variation of the approach is known as
level sensitive scan design - LSSD. A second property of LSSD circuits is
that the steady state response (a long time' after the clock change) is
independent of the circuit delays.

Random access scan is a technique where every flip-flop (or latch) is
addressable. This requires each flip-flop to have its own address, and hence
an address decoder is required, and a separate wire for each flip-flop. It is
therefore costly in logic, pins and wiring space. The last two are frequently
the most important for compact designs.

The primary advantages of scan design are access to internal ports of the
design and a reduction in the number of test vectors and test time required.
However, the scan-in/scan-out of test vectors is a serial process and hence
time consuming. This could be offset by splitting the single long register
into several shorter parts. This would then require register selection signals
and hence pins. Pins are frequently a limitation of a design, so an increasing
pin requirement is undesirable. A method of connecting test points on a
chip is described in Gheewala (1989). Dual function pins are also becoming
common, with the function being selected for many pins by one (test) signal.

The amount of logic - silicon area - required for test purposes will vary
according to how many of the registers would be present without the scan
design. Estimates vary with the design, up to about 20%. Dervisoglu (1990)
gives a real example at 10%.

The scan system also prevents testing at full speed. This also applies to
many other techniques. Testing at full speed gives rise to a completely
different set of problems.

Finally, as with all testing methods, restrictions are placed on the
freedom of the designer. If a design is to be reliable, serviceable and to

Fig. 3.4. Testing a scan register.

. s-a-0

S c a n - i n p a t t e r n 1 1 1 1 1 1 1 1 1 1

S c a n - o u t p a t t e r n 1 1 1 1 1 1 0 0 0 0



3.4 Boundary scan 47

perform well, such restrictions are essential. One must learn to distinguish
between freedom and licence - and not only in the electronic design field!
Furthermore, it has been said that a chip can be designed and tested reliably
without scan techniques, but the chip designer must remember that the chip
will be built into a system and the system must be tested. A scan register on
the chip will assist that even when not really required for testing the chip
itself. This is of particular relevance in relation to the boundary scan
technique.

3.4 Boundary scan
In recent years the problem of access to points internal to a system

for test purposes has been the subject of considerable discussion. On PCBs
there is a question of how to find a faulty IC. In late 1985 a joint test action
group (JTAG) was set up to define a standard test interface. Led by
European companies, others have since joined, resulting in IEEE standard
1149.1 (Evanczuk 1989).

The test architecture proposed is a generalisation of the scan technique.
In essence a scan register 'surrounds' the board or chip (hence 'boundary'
scan). In test mode the register outputs feed various points within the
system to apply data more directly than could be done from the system
primary inputs. Simularly, various 'test points' within the system can be fed
as appropriate to the scan register to be read without having to control
paths to the primary outputs (see Section 3.6). Although described as
boundary scan, the scan register need not be physically on the boundary of
a unit. Indeed, for speed there may be several scan registers in parallel.

The intention is that components conforming to the standard can be
interlinked regardless of manufacturer. By suitable design, the scan chains
can be around sub-circuits within ICs and then linked to other ICs or even
between boards. The scan chains, or parts of them, are permitted to have
LFSR (Section 3.5) and signature compression facilities to allow for testing
of sub-systems. When the faulty component is identified, patterns entered
by pure scan can isolate the specific fault. Several parallel scan registers are
permitted. All four (or five) pins used by the test system are dedicated so
that data can be scanned in or out while the logic is operating normally.

Fig. 3.5 shows the basic architecture of IEEE 1149.1. There are four or
five terminals known as the test access port (TAP), a TAP controller, an
instruction register and one or more data registers in parallel. All the
registers are loaded serially from the input data terminal TDI and may be
read out via the terminal TDO. The controller is a state machine in which
most states can lead to one or other of two new states under the control of
the TAP signal TMS. Fig. 3.6 shows a fragment of the state diagram. The
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numbers 0 and 1 are values on TMS. If the system is in the reset state then it
will remain so while TMS remains 1. If TMS goes to 0 then the state will
change to run-test/idle on the next rising edge of the clock, TCK. It will
remain in this state until TMS again becomes 1. When TMS has changed,
the next rising edge of TCK moves the state to selecting the data register.
However, the data register scan does not begin until the next clock, and
then only if TMS has changed back to 0. If TMS has remained at 1 then the
state moves to selecting the instruction register. Instruction register scan
begins on the next clock provided TMS has changed to 0. If it has not then
the system returns to the reset state. The optional TAP signal TRST can
force an asynchronous reset. If this is not implemented (to save a pin) then
the reset state can be recovered in five clocks or less.

The test system may have many instructions, some of which are private

Fig. 3.5. Test access port (TAP) architecture.
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and will not be specified on the data sheet, and some of which are public. A
number of public instructions have been defined but only three are
mandatory. These are

• bypass - data passes from TDI to TDO in one shift register cycle,
bypassing the (possibly) long data register. The instruction code is
all Is,

• extest - external circuitry can be tested,
• sample - allows normal operation of the system with the ability to

sample signals without affecting system operation.

Fig. 3.7 shows the data register organisation (Whetsel 1988). Three
registers are shown. The scan bypass register is one bit and has been
mentioned already. The device identification register is optional. It
contains a compressed form of the JEDEC number, manufacturer's code
etc. If this is not implemented, selection of this register gives the bypass
register.

The boundary register can, in fact, be several registers in parallel, the
instruction selecting the appropriate clock with the address as shown in
Fig. 3.7. Fig. 3.8 shows one implementation of one such register. The
register consists of a set of flip-flops, Q, connected as a shift register.
Associated with each flip-flop is a latch, L. A multiplexer, A, selects from a
normal (system) data input, NDI, or the previous flip-flop in the shift
register to feed Q. A second multiplexer, B, in each cell selects from L or the
NDI to feed the system logic. At the output of the system logic a similar
arrangement applies, with the system logic output replacing NDI and the

Fig. 3.7. Boundary scan data registers.
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primary outputs, normal data output (NDO), replacing the logic input.
The flip-flops are shown in one register, but it might be sensible to have one
for the input pins and another for the output.

In normal operation system data passes from NDI to the system logic as
fast as possible, only one multiplexer being involved (B). A similar
arrangement applies at the output pins.

To shift test data into the system SHIFT is set. Data passes from TDI to
the flip-flops in turn on the rising edge of CLK, a version of TCK selected
under the control of data in the instruction register which chooses this data
register (see also Fig. 3.7). HOLD is in the mode which prevents the data
being passed to L. Notice that NDI can still pass to the system logic, and the
system logic output can pass to NDO. Once all the test data has been
shifted in, it can be transferred to the latches by changing the state of
HOLD. All latches change together, so even if the B multiplexers are open
there would be no rippling of data at the inputs of the system logic.

Parallel data capture can happen by setting SHIFT to control multi-
plexer A to receive data from NDI at the left of Fig. 3.8 or the system logic
on the right of the diagram. CLK is allowed to go high. This data can now
be scanned out. Of course, a new set of data can be scanned in at the same
time.

Fig. 3.8. Boundary scan boundary registers.
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3.5 Self-testing

3.5.1 Dedicated test logic
A way to avoid having to provide pins on a chip or PCB for testing

purposes is to make the logic self-testing. There are three approaches to
this. The most obvious is to provide a module within the design which
generates the test vectors, applies them to the logic and then checks the
result, Fig. 3.9. This module must be self-checking.

Such logic need not take up a large amount of space - perhaps up to 25%
of the total. The primary difficulty is that it is unique for each design and
hence needs full design effort. A scan register, for example, can be a
standard block which is the same for all designs. With self-testing one pin is
still needed to indicate whether the system is passing the tests or not.

A major advantage of any self-testing approach is that the tests can be
run regularly. For example

• at switch on,
• when the system is otherwise idle - not always possible,
• at specific time intervals.

This implies constant checking of the design and a rapid reporting of
problems.

3.5.2 Signature analysis
The other two approaches to self-testing involve the use of random

patterns applied to combinational logic blocks.
Suppose a set of test vectors is applied to a circuit under test. The signal at

a particular node is fed to a linear feedback shift register (LFSR) whose
initial contents are known - usually 0 (Fig. 3.10). As successive samples are
clocked into the LFSR, the value it holds, the signature, depends on both

Fig. 3.9. Self-testing arrangement.
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the incoming data and the previous contents. If the length of the LFSR is n
bits it can be shown that the probability of a corrupt circuit producing the
same resulting signature as a good circuit approaches 1 in 2n as the number
of samples clocked in exceeds n. Furthermore, the probability of two faulty
circuits giving the same signature is small, so the value of the signature can
be used to identify the fault causing failure as well as the fact of
failure.

The problem here is in finding the signatures. To be a good test, a large
number of test vectors must be applied. This will almost certainly be done
on a simulator. If one wishes to be able to identify faults from the signature,
then one also needs to simulate the full test for every possible fault and for
many, if not all nodes in the circuit. Whilst this has to be done only once, it is
extremely time consuming and expensive for any but small circuits.

3.5.3 Built-in logic block observation (BILBO)
The other disadvantage of signature analysis as described is that a

separate LFSR and set of signatures is required for each node to be tested. If
one wishes to test a large number of nodes, as is usual, this is prohibitive. A
modification to the scheme is to use an LFSR to feed the primary inputs of a
combinational logic block and a second one into which the primary outputs
are loaded in parallel as shown in Fig. 3.11. The second register acts as a
parallel input signature generator. This does not feed the inputs directly to

Fig. 3.10. Signature analysis.
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the LFSR feedback, but rather via a not equivalence gate, the other input of
which comes from another flip-flop in the register as shown in the fragment
in Fig. 3.12.

The value of random patterns for testing will be discussed further in the
next chapter. In certain cases their use is valid. Here the input register
generates a large number of input vectors for the logic under test and the
output register generates a signature. If the two LFSRs can be switched into
the scan mode then the LFSR seed can be scanned in and the signature can
be scanned out and checked (unless it is checked on chip).

With many blocks of logic, such as is illustrated in Fig. 3.13, several logic
blocks can be tested together. For example, blocks A and C can be tested at
the same time using Ra and Rc as inputs and Rb and Rd as signature
generators. In a second phase, block B is tested using Rb as input and Rc as
output. A block D would be tested at the same time. Feedback between
blocks is allowed only if the tests do not interfere.

This approach has the advantages of scan design and of reducing the size
of the combinational logic blocks and hence test size. It generates its own
test vectors rapidly, and so does not suffer the slow application of test
vectors of normal scan testing. It is also possible to test the combinational
logic at full operating speed.

Fig. 3.12. Parallel input LFSR

Parallel inputs

Clock

Fig. 3.13. Multiple logic block testing.
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In practice the registers have four modes of operation as illustrated in
Fig. 3.14.

C1=0, C2 = l; Reset: all flip-flop D-inputs are 0.
Cl = C2 = 1; Normal flip-flop: the parallel inputs are connec-

ted.
Cl = C2 = 0; Scan path: one flip-flop connected to the next in

shift register fashion.
C1 = 1,C2 = 0; LFSR: the parallel inputs are exclusive ORed

with the data from an adjacent flip-flop.

3.6 Controllability and observability

3.6.1 Concepts
Having made some effort to design a system that is testable, it is

desirable to have

• some measure of how successful the effort has been,
• some indication of areas of the system which are difficult to test,

and hence areas where improvement might be made. In particular
one needs to know what is actually not testable. Measures of
testability can be used to guide test strategy, as will appear in
Chapter 4.

Suppose there is a large block of logic as shown in Fig. 3.15. Only a few
gates are shown. All lines imply many more gates. The curved lines from C
and Q imply that these signals affect the signal from E to the top input of
gate Al and from P to the top input of A2 respectively through logic not
shown. In a test rig internal points cannot be monitored (e.g. the device
under test is a chip). The only access is via inputs to the unit known as

Fig. 3.14. One stage of a BILBO register.
Parallel input

To next
stage



3.6 Controllability and observability 55

primary inputs (Pis) and via outputs of the unit, the primary outputs (POs).
Suppose there is a potential fault at point W. The procedure is as follows.

• Find a path from the Pis to the point W and an input pattern such
that the signal at W in the fault free circuit is the opposite to that of
the faulty circuit. Thus, if the fault at W is s-a-0, try to place a 1 at W.
This is shown as the path B-E-W. Along the way other signals also
need to be set properly to allow the signal from B to pass along this
path. In particular, the signal from D must be such as to produce a 1
on the second input of the AND gate, Al, hence allowing the signal
from E to pass through. Similarly the signal from A must cause a 0 at
the input to the OR gate, thus allowing the signal from B to
determine the value at E. C will also have to be set appropriately and
many other similar combinations will be required. It is said that the
signal at W is being controlled and its controllability (CY) is a
measure of the difficulty of setting W to a known value.

• Find a path from the faulty point W to an output Z and an input
pattern which is compatible with that in the previous paragraph
such that the signal at Z under the condition of the fault at W is
different to that under the same input conditions in the fault free
circuit. The input conditions for a s-a-0 at W are such as to try to
place a 1 at W. If a 1 at W produces a 0 at Z for the fault free
network, then the 0 at W produced by the fault must produce a 1 at
Z for the fault to be observable. Again it will be necessary to set up
conditions on the Pis so that the path is open. For example, the Pis
P and Q must be such as to produce a 1 at the first input of the
AND gate, A2. This is the process of making the fault observable at

Fig. 3.15. Example of controlling and observing internal signal X.
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the POs, and a measure of the difficulty of doing so is called the
observability (OY) of W.

It should be appreciated that, to control a particular node deep within a
circuit, there may be many paths back to the Pis. As a simple example,
consider a fault at W in Fig. 3.16. A path W-J-A leads to a primary input.
For this to be used signal K must be 0 and hence so must C or D. C can be
selected arbitrarily for this example.

Similarly, for W to be observable at Z, N must be 1. This implies that M
should be 1, say, and hence that E and F must both be / . M was selected
arbitrarily; L would have been equally good. It will be seen that there is an
explosion of data, and the measurement of controllability and observability
must take into account the ease or difficulty of setting all these signals. The
selection of such signals is pursued further in Chapter 4.

Much can be done by a designer to ensure that all points in a block of
logic are both controllable and observable. However, intuitive methods can
miss particular cases and automatic methods of assessing how good a
design is have been developed. These should be used whenever possible.
They can identify particular points of difficulty for which redesign should be
considered. Whilst this may not always be possible or economical, it does at
least provide a warning. Regular use of such aids should also help users to
develop a good design style.

3.6.2 Controllability
Consider a two input AND gate. The controllability of the output

is a function of

Fig. 3.16. Illustration of data explosion finding CY and OY.
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• the difficulty of creating a path from input to output, which is a
function of the circuit - an AND gate,

• the controllability of the inputs.

One simple method of defining controllability for networks of simple
gates (Goldstein 1980) is to assume the first factor is always 1, and to define
the controllability of a node as the number of nodes that must be set in order
that the node in question can be set to the required value. This applies only
to combinational networks. Thus are defined

Combinational controllability 0 (CCO)
Combinational controllability 1 (CC1).

For the AND gate, any input set to 0 will cause the output to be 0. Hence
CCO of the gate output is the minimum of the O-controllabilities of the gate
inputs plus 1 - for the gate itself. To set a 1 to the output of the AND gate
requires all inputs to be 1. Hence CC1 is the sum of the 1 -controllabilities of
the inputs plus 1. For an OR gate all inputs must be 0 to place a 0 at the
output. Hence CCO is defined to be the sum of the O-controllabilities of the
inputs plus 1. Only one input need be a 1 to set a 1 at the output so CC1 is
the minimum of the 1 -controllabilities of the inputs plus 1.

Consider now point W in Fig. 3.16. If W is to be 0, J and K must both be
0, and hence one of A and B and one of C and D must be 0. The
controllability of an input is defined to be 1. Thus

CC0(J,K)= l(A,C)+ l(gate)-2

and the controllability of W is

CC0(W) = 2(J) + 2(K) +1 (gate) = 5

For a 1 at W either J or K must be 1 and both of (A and B) or (C and D).
Hence

CCl(J)=l(A)+l(B)+l(gate) = 3
CCl(W) = 3(J)+l(gate) = 4

Where sequential circuits are concerned, two further quantities are
defined. These are the sequential controllabilities SCO and SCI. A "sequen-
tial node' is a circuit node which is held constant for one time period. If a
node has to be held at 1 for five time slots in order to propagate a logic 0 to a
given other node then the given node has SCO of five. SCO and SCI are
clearly zero at Pis and for any purely combinational circuit. For a
sequential circuit, 1 is added to SC values but zero to CC values.

The values of controllability can, if required, be modified at each logic
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stage by a factor related to the function of the logic element. In the above for
an N input AND gate, the value of CC1 is increased to the sum of CC1 of the
inputs plus one. This is a measure of the gate function. On the other hand
CCO is only increased by 1 - again a measure of the ease by which a 0 is
passed to the output compared with that of passing a 1.

With this form of controllability, the values increase without limit. High
values represent poor control. Bennetts (1984) prefers a normalised value
between 0 and 1,0 being uncontrollable and 1 being perfectly controllable
(e.g. a primary input). He defines a controllability transfer function, CTF,
for a logic element which is independent of the logic level (0 or 1). If JV(O) is
the number of ways of producing a 0 on the output and N(l) the number of
ways of producing a 2, then

JV(0) + iV(l)

Consider a three-input AND gate. There are eight possible input patterns of
which one gives a / output and seven a 0 output. Hence

C T F = l - ( 7 - l ) / 8 = 0.25

The question now arises as to what function of the input controllabilities
should be multiplied by the CTF. Bennetts considers the geometric and
arithmetic means.

geo. mean = (CYX1 * CYX2... * CY^)1'"
arith. mean = (CYX1 + CYX2... + CYXn)/w

Consider Fig. 3.17. Input A is tied to a logic level in order to use a spare
two-input gate in an otherwise partly used IC, rather than an extra IC of
buffers. A has zero controllability since the primary inputs of the network
can never affect it. Hence the geometric mean function would be

Fig. 3.17. Zero input controllability.
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CYc = (0*CYB)1/2 = 0

which is clearly wrong. It should be

CYC = CTF&*CYB

The arithmetic mean gives

CYc = (0 + CYB)/2

which is not zero, but division by 2 ( V ) is still incorrect.
Both problems could be solved by preprocessing the network to find

situations like this. The CTFs are calculated once and held in a library, as
are the functions for calculating CY. For the case shown in Fig. 3.17, the
CTF and the function used should be that for a one-input gate rather than a
two-input gate. Thus, in the geometric mean case, the uncontrollable input
does not feature, and 'n' is 1 rather than 2 in both cases. Bennetts prefers the
arithmetic mean calculation with this modification. Notice that Goldstein's
controllability measures get this right - the tied off input adds nothing to
the controllability.

A second problem arises with a device such as a D-flip-flop with
asynchronous inputs as shown in Fig. 3.18 (for specification see Section
1.5). Quite clearly, if the preset or clear or both are set to 0, Q is not
controllable. Furthermore, if the preset or clear are to be set to 0 then the
controllability of D and clock are irrelevant. On the other hand, when both
preset and clear are 1, the controllability of Q is a function only of the
controllability of D and clock. Thus, a useful way of defining CYQ might be

CYQ = CTF * (CYclr + CYpr + CYD * CYclk)/3

However, if the preset and clear are tied off, this expression should be

CYQ = CTF*CYD*CYclk

Fig. 3.18. D-flip-flop with asynchronous inputs.

Data
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and not one third of this as would be obtained from the previous expression
withCYclr = CYpr = 0.

3.6.3 Observability
Observability is the ease with which a signal at a particular node

can be observed at a primary output. In general, to reach that output it
must pass through several circuit elements as shown in Fig. 3.15. For a
given circuit element, the observability at the output is a function of

• the circuit element,
• the observability of the inputs on the path to the primary output,
• the controllability of all other inputs affecting transfer of this signal

along the path to the primary output.

Referring to Fig. 3.16, the observability of W at Z is a function of the
observability at W (1 in this case as W is the signal of interest) and the
controllability of N, the signal which must be a 1 to allow the faulty signal
W to propagate to the output, Z.

A measure of observability corresponding to the combinational and
sequential controllabilities is constituted by the combinational and sequen-
tial observabilities CO and SO. These are the minimum number of
combinational or sequential nodes respectively which must be set to enable
a fault to pass from its source to a primary output.

For signal W in Fig. 3.16 the combinational observability is derived as
follows. The observability of an output is 0. The observability of the input of
an AND gate (W) is given by

CO(W) = CO(Z) + CC1(N)+1

This takes into account the fact that N must be 1 to allow W to be
observable at Z.

CC1(N) = CC1(L)+1

= 4

Hence

CO(W) = (

The factor corresponding to Bennetts' CTF is the observability transfer
factor, OTF. This must be 0 if the fault cannot propagate and 1 if it always
propagates. The OTF can be defined as

O T F = _ N —
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where Npass is the number of ways a fault can pass from its input to its
output and iVblock is the number of ways it can be blocked. For the
three-input AND gate there is only one way for a fault on a particular input
to pass to its output - all other inputs are 1. However, there are three ways
in which it can be blocked - either or both of the other two inputs being 0.
Thus

OTF = 1/(1 + 3) = 0.25

OTF values, like CTF values, can be held in a library.
Calculation of observabilities should start at the primary outputs where

the observability is 1 (Goldstein: CO = SO = 0). Using the values of the
product of OTF and supporting controllabilities, the observability of each
driving input is computed. This is now repeated back through the network.
In a single pass per primary output, the observability of all nodes is
computed. If one starts at a faulty node then a computation from node to
output has to be carried out for every node - a lot more computation.

3.6.4 Testability
The testability is a measure of how controllable and observable a

circuit is. It is a function of both controllability and observability. In
Goldstein's proposal using CCO, CC1, etc., a suitable weighted sum of the
six values is used. In Bennetts proposal

where TY; is the testability of node i.

TY=0i fCY = 0 orOY = 0
TY = 1 i f C Y = l andOY = l

Also if CY and OY are both 0.5 (say), TY = 0.25. In other words, if it is 50%
more difficult both to control and to observe a node then it is 75% more
difficult to test it.

The testability of a design is defined by Bennetts to be

-TY,

r n
where n is the number of nodes.

To use a testability analysis, one might do two things. First, plot a
histogram of node testability against number of nodes with that testability.
Separate histograms of controllability and observability may also prove to
be useful. This will indicate if any nodes have particularly poor testability. If
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the controllability is bad then some effort may be made by designing some
more direct control in the area of this node or the path leading to it. This can
be done with multiplexers as shown in Fig. 3.19. Suppose the node W in the
original design (a) is found difficult to control. A multiplexer is inserted into
the network somewhere before W. In normal operation the signal C is 1,
allowing the function of the network to proceed normally. In testing, when
node W must be controlled, C is set to 0 and P used as data to set the
required value of W. Insertion of this multiplexer will also improve the
controllability of signals which are affected by W, such as Y.

Poor observability is improved by designing easier access from the signal
to a primary output. This could be done by providing additional outputs
(test points) or by providing a multiplexer between an internal signal and

Fig. 3.19. Improving controllability.

(a) (b)

Fig. 3.20. Improving observability.
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an existing PO as shown in Fig. 3.20. This multiplexer effectively bypasses a
long chain of logic as represented by the dotted line. Again, this multiplexer
will improve the observability of the signals controlling W.

Of course, the multiplexers will reduce the speed of the system under
normal operation. It follows that the choice of position to place multi-
plexers is critical in order to improve the controllability and observability
of the largest possible section of difficult to control/observe logic, without
at the same time affecting the speed in too adverse a manner.

As an example of a sequential circuit, consider a long counter as shown in
Fig. 3.21 (a). To control W requires 256 clocks. A multiplexer before A
reduces this to 16 clocks. A multiplexer just before W makes it fully
controllable, Fig. 3.21 (b). The former still requires 256 clocks to control Z.
The latter leaves 16 clocks to control Z, but 256 clocks to control B. It might
be useful to put in both multiplexers.

There are numerous additional matters that are required for full
consideration of this subject. It is hoped that this account will serve as a
useful introduction. There appear to be few recent references in this area.

Fig. 3.21. Controllability of a sequential circuit.
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Exercising the design in
simulation and test

4.1 Objectives and approaches

4.1.1 Objective
The first objective of any set of tests must be to show that the

system does what it was designed to do. This means

• does it perform the necessary functions correctly?
• does it perform its function within the required time specification?
• are there any circumstances, normal or unusual, under which it

can get into a forbidden state from which it can only recover by
drastic action (e.g. system reset)?

The above presumes that any fault or group of faults which could possibly
occur would affect the operation of the system. If a fault or faults do not
affect the operation then there must be some logic which is redundant. It
will be assumed that none of the logic is redundant.

On the further assumption that the design is good, a second objective is to
be capable of detecting any fault or group of faults within that system.
However, there is some debate as to the level of detail into which it is
necessary to go and this will be the subject of further discussion. The
distinction between simulation testing and testing the manufactured
hardware was made in Section 3.1.2.

4.1.2 Modelling faults
Faults in the design, as opposed to those which occur in

production, cannot be 'modelled' in the usual sense of the word. A network
description is entered into the simulator and this is a model of the network.
If, as a result of simulation, outputs are obtained which are different from

                                                                                            
                                              

                                                            



4.1 Objectives and approaches 65

those expected from considering the specification, then the network as
described to the simulator is faulty. In that sense the fault model is a faulty
description of the network. A list of what might more usually be called fault
models was given in Section 3.1.2, which refers to both design and
manufacturing faults.

For production testing the design is presumed good. The question arises
as to what faults can occur, and how can they be represented in the
simulator in order to generate a set of tests which will indicate that the
system is faulty? This set of tests must give at least one output which is
different from the output which would be obtained from a fault free system
with the same inputs.

An obvious example of such a fault is a wire being broken, perhaps due to
rather thin aluminium going over a 'step' in an IC or over-etching on a
PCB. In a TTL circuit, the inputs are connected via a diode and a resistor to
the positive supply as illustrated by the input circuit fragment of Fig. 4.1.
Hence an open circuit input is equivalent to the higher logical voltage level.
This input can be described as 'stuck at 1.' Another possible fault is a wire
shorted to a power supply or ground giving a stuck at 1 or stuck at 0
respectively. On an IC there are other types of fault which could have other
effects. These include dislocations in the silicon crystal, dirt in the
processing etc. The electrical effect of these must be interpreted in logical
terms in each case. This is known as fault modelling. Gheewala (1989) has
identified 26 possible faults in a two-input CMOS gate and 150 for a
flip-flop. It is not said how many can be represented as s-a faults.

The conventional approach to testing is to model all faults as stuck at 1
or stuck at 0 at device inputs and outputs. This implies that any fault
internal to a gate can be represented as one or other of these two faults. It is
not too difficult to show that this is not so. For example, suppose there is a
break at the collector of a TTL circuit so that it can be represented as

Fig. 4.1. Input of a TTL circuit.

I

Input
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shown in Fig. 4.2. The transistor can pull the output down when switched
on. When switched off, the TTL circuit will not pull the output up, but the
input to the driven circuit (e.g. Fig. 4.1) will. This is neither stuck at 0 nor
stuck at 1. The rise of the output may be slow and show up as a delay fault
(Section 9.8.1). The designer is warned!

For MOS circuits, some internal faults require the gate to be treated as a
sequential circuit. These are due to a transistor stuck open and the very high
input impedance of the following MOS device (see Section 4.6). The
approach to testing also usually assumes single faults and hopes that
multiple faults will not mask all of the possible single stuck at faults and
hence will be detected. It has been calculated (Agarwal 1981) that a circuit
of 1000 nodes and multiple faults at up to six places has 1017 different faults.
The same author claims that a test set giving 100% coverage on single faults
will detect 98% of the multiple faults at up to six places for circuits where
the fan-out of each element is limited to one place. However, the cover
drops rapidly in real circuits which have higher fan-outs.

Another author (Schultz et al. 1988) claims that a test set that finds 100%
of single faults will also detect all multiple faults provided there are
restrictions on the connection method. This includes no reconvergent
fan-out, so systems using exclusive ORs are not allowed!

Schultz also reports that if two faults are found by only one test each, the
double fault involving these two faults is often undetectable. Thus a search
for faults found by only one test is made, and these specific vectors

Fig. 4.2. Internal fault in TTL gate is not stuck-at fault.

Broken wire
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simulated for double/multiple faults to check if there is any fault masking.
Where there is, new tests for these multiple faults are generated. This would
seem to be a useful addition to the test programmer's armoury.

Practice shows that the assumption of a single s-a fault usually works out
reasonably well. The assumptions of Agarwal (fan-out = 1) and Schultz (no
reconvergent fan-out) are not reasonable, but their work warns of the
limitations of the single s-a assumption.

Finally, faults resulting from two or more wires stuck together but not
s-a-0 or s-a-l, bridging faults, are usually ignored, probably because their
analysis and detection are very difficult. In fact, tests for s-a faults do not
find these faults. Some ad hoc methods can help (Section 4.2).

4.1.3 Assessment of test coverage
The question that now arises is that of how to assess the value of a

set of tests. The first step is to confirm that the specification is met, with
several (numerous?) sets of data for each operation where relevant. The
number of tests and hence confidence in the design must be balanced
against the cost of additional testing. The value of tests for a particular
purpose is somewhat subjective, and must be agreed between designer and
customer at the time the system is specified.

Assessment of the tests to find faults due to manufacturing defects is
generally done by running a simulation of the system without faults (fault
free) and then again with a fault introduced to see if the simulation results
are different from those of the good circuit. The number of tests is so large
that the designer could not possibly work out all the results for the fault free
circuit. Hence there must be some measure by which the fault free circuit
can be said to meet the system specification before the fault free simulation
is run. That was the purpose of the tests of the previous paragraph. The
simulation is then repeated for all faults which the tests are designed to find.
The proportion of faults detectable is known as the fault cover.

The number of possible faults is very large, and hence the necessary
simulation time is also very large. Note that these simulations are
performed to assess the value of the test program, not to prove the
excellence of the design. Much effort has been put into developing methods
of assessing fault coverage and this is the subject of Chapter 9.

4.2 Testing for design faults
This section is concerned with the generation of tests to prove that

the system that has been designed meets the specification. It is not
concerned with testing for manufacturing faults, though the tests produced
are often useful as a starting point for that purpose. There is no absolutely
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'right' way to do this, but application of 'common' sense will be of great
help.

Consider, first, an arithmetic logic unit such as the 74181 or equivalent
devices. This is a purely combinational logic block, so has no problems of
clocking. The chip is shown in Fig. 4.3. It performs 32 functions selected by
four S and one mode bits. Each function operates on two 4-bit operands, A
and B, producing a 4-bit output, F. For the arithmetic functions there is also
a carry_in data signal input and a carry_out data output. Finally, there are
two output signals, G and P, which are used in conjunction with the 74179
chip to build fast multibit adder/subtracters (G stands for carry generate, P
for carry propagate). In fact, many of the logic functions are of no interest.
The chip was designed to execute about 16 real functions with simple
control. The other functions are what happens 'by accident.' However, all 32
functions are specified on the data sheet and so must be tested.

First of all, try to set all the outputs to Os, then to 2 s and then back to Os.
To do this, select a simple function such as 'copy A to F.' Three input
vectors are needed.

A = 0101 A = 1010 A = 0101

The control and mode bits are set appropriately. Carry_in should be
irrelevant. If the values of F produced are copies of A then we have proved
the following.

• All outputs can be set to 0.
• All outputs can be set to 1.

Fig. 4.3. 74xxl81 ALU.
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• All outputs can be changed from 0 to 1 and vice versa. Hence also
there is no immediately obvious storage within the chip - possibly
due to faulty connections. In a simulation the 'faulty connections'
may be due solely to mistyping the circuit data.

• One function works - copy A to F.
• Supposing that the layout of the chip is linear in the order of bits,

adjacent bits are not stuck together (if the layout assumption is not
true, some other appropriate pattern should be chosen). Note that
input patterns 0000,1111,0000 would not have detected this. Note
also that the input patterns are dependent on the layout of the chip.
The chances of other pairs of bits being stuck together is remote if
none of these pairs are. During the design, the simulation needs to
use other patterns to show correct data entry.

It is now necessary to test all 32 functions in turn. Tests of the purely logic
functions should be done with several sets of operands and with the
carry_in varying in value to give confidence that the functions are, indeed,
independent of it. Similarly, one operand functions (such as copy A) should
be done with several values of the other operand (B in the example) to show
its independence of that operand. It is the tests with varying C_in and B in
this example which are frequently omitted and production of which,
therefore, need careful thought by the designer.

The three tests above will not test the carry chain nor the G and P signals.
To do this, the A and B input patterns for tests on the add and subtract
functions should be chosen to show that these two signals work correctly on
several input patterns. Fig. 4.4 shows the G circuit. Gt = Af & Bf;
p . = Af + Bf where i is the bit number (0 to 3). Operands should be chosen so
as to set G via each gate separately and in combinations.

Fig. 4.4. Generation of the 'G' signal of the 74181.
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For the arithmetic operations there are a very large number of paths
through the chip since carries can propagate by a number of different routes.
A careful study of the logic should show how to ensure that a 0-1-0 (or
1-0-1) pattern goes through most gates. Another important point is that
some faults, even in purely combinational logic, may well give an output
dependent on a previous value. This is particularly so in the design phase
where a wrong signal may have been specified accidentally. By ensuring two
changes rather than just the one, many such faults will be found.

For this particular logic element it is just about possible to apply all
possible input patterns - 16K - though not all sequences. However, this
chip only contains about 63 gates. For many thousands of gates and several
tens of inputs, applying all possible patterns is not possible. The author
estimates that a manually generated test set consists of three to six operands
for each function and perhaps 20 to 30 for one arithmetic function - or
shared by several. This gives less than 200 test vectors.

A point not well illustrated by this example is the need to ensure that
'special cases' are properly designed. For example, the designer of an
arithmetic unit will want to check extreme cases - what happens when a
result is too large to be represented, is the overflow set (there isn't one in this
example), what is the result of divide by zero? . . . In this example, the
addition of two operands giving a sum greater than 15 should be tried. The
result of not doing this can be disastrous. An anecdote was related in
Section 2.1.5 explaining why.

Although not stated, many of the tests on an ALU can be designed to test
for several faults at the same time. For example, the tests of the function
'copy A to F' tested four nominally independent routes together. As a
further example, consider the structure in Fig. 4.5. This represents part of
the data path of a system. The path is 32 bits wide and in the section shown
there is no interaction between the bits. Hence, with one test vector of 97
bits (32 x, 32 y, 32 z and enable), it is possible to test for a s-a-7 at the outputs
of all the exclusive ORs. Another vector tests for the s-a-0 and so on for
faults which are not equivalent. Thus each vector tests for 32 faults. This is
functional testing with an eye on hardware testing. Without special help an
automatic test generator would find some of these, but would be fortunate
to find them all. As before, if the layout is considered the test patterns can be
designed to check for many bridging faults.

For sequential circuits the problems are more difficult. Consider, for
example, a counter. It may be possible to parallel load an initial value, and
it is necessary to check maximum and minimum value indicators. A way of
making this more testable was shown in Fig. 3.21. Again, an understanding
of the structure of the circuit will result in functional checks giving a high
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fault coverage for relatively few tests, but here many of the tests will involve
several test vectors in sequence.

An interesting example from the author's experience is the testing of the
piece of pipelined logic shown in Fig. 4.6. Access for testing purposes was
through inputs, outputs and clock only. The logic was 3-bit wide arithmetic
and the total number of gates was about 180 (a 1976 ECL gate array). The
primary functions of the unit were tested with only 19 test vectors.

4.3 Testing for manufacturing faults
The development of tests to prove that the design meets its

specification is somewhat ad hoc. It requires a lot of very careful thought.
The test patterns and results must be meaningful to the designer(s). Testing
for manufacturing faults is different. The test patterns need not be

Fig. 4.5. Part of a system data path.
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meaningful. However, to check whether faults are detected, it is necessary
to begin with a fault free network. The approach of Section 4.2 is designed
to determine this.

Tests for manufacturing faults can be generated automatically by
systematic methods. They will find any fault if a test for that fault exists.
Most of the methods of test generation identify a fault for detection and
then generate a test to detect it by algorithmic methods. This and following
sections are concerned with how tests may be generated to find a possible
fault in the manufacture of a design which is known to be good.

Generating a full set of tests can take a lot of resources. The tests as
generated in the previous section already exist. In the example of Fig. 4.6
the 19 vectors were found to give a s-a fault coverage of around 90% which
included a separate vector for each clock change. This indicates that these
tests are a very good starting point for manufacturing test generation.

In the example of Fig. 4.6 the registers could be regarded as several shift
registers in parallel, with access at serial input and output points. The fault
simulation (Chapter 9) indicated which faults were not checked. Additional
vectors were generated (manually) to test these. In several cases a number of
input vectors had to be applied just to set up the internal states for the
required test. These last 10% of possible faults required over 100 vectors!
This graphically illustrates the difficulty of obtaining 100% fault coverage.
The example also shows the great effort needed to produce the additional
tests, and shows why automatic means to generate them are essential. It is
not clear what value the extra 100 test vectors had in terms of assessing the
functionality of the logic - no extra design faults were found. No attempt
was made to redesign the circuit to be more testable.

It is found in practice that a relatively small number of hand-generated
tests will find a relatively large proportion of faults. The experience of
several authors suggests that a 70% fault coverage can be obtained for a
quite tiny set of test vectors, as was also indicated above. The effort
expended by the designer is quite small, and it leaves the automatic system
to generate tests only for those faults which would take up a lot of manual
effort. Furthermore, if the structure of a diagram such as Fig. 4.5 reflects the
physical layout of the final product, then by testing with 0s and 2 s in
alternate data bits, one can be reasonably sure that adjacent data wires are
not stuck together. Other pairs of wires stuck together are much less likely,
other than for multiple shorts between the enable and several data lines.
The likelihood is that an automatic test generator would not attempt to find
these faults at all.

One approach to test generation is to apply a random set of patterns in
the test vectors. As with manually generated tests, 70-90% fault cover can
be achieved with relatively few test vectors. Care needs to be taken to
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Table 4.1. Cubes of a two-input AND gate

A B G

1 1 1
0 X 0
X 0 0

D 1 D
1 D D

control clock signals, and, possibly, some control inputs by non-random
inputs. This should lead to better fault coverage. For example, a reset input
should not be applied in 50% of test vectors as would happen with truly
random test patterns. These tests are unstructured by nature, and are of
little use for determining whether the design is correct. The technique is
again useful only for tests to check that a known good design has been
properly manufactured.

It has been reported that certain logical structures are resistant to
random pattern tests. This simply means that the fault cover for a given
number of randomly generated test vectors is disappointingly low. In one
example 12K patterns gave only 77% cover (Wunderlich 1987). The
provisions of the previous paragraph will help this problem but not
completely solve it. An alternative is to use a more sophisticated process of
selection for the patterns to use. In the case quoted, this improved the
coverage of the 12K patterns to 99.7%.

4.4 The D-algorithm

4.4.1 Basic ideas
In 1966 J. P. Roth of IBM published an algorithm by which tests

could be generated for any fault in a combinational network if such a test
existed (Roth 1966). Clearly these are also likely to be unstructured and hence
not much use for checking the correctness of the design without considerable
arrangement by the designer. It may be used to generate all patterns for
production testing. However, as has been indicated earlier, the manual
approach will probably find a large number of faults for relatively few vectors.

Since 1966 there have been many other papers published on this matter.
By far the greater number of them are derived from Roth's algorithm. An
understanding of the technique is essential for appreciation of later work.

Consider, first, an AND gate with inputs A and B and output G. The
operation can be described by the truth table shown in Table 4.1 or
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geometrically as shown in Fig. 4.7. Each line of a full table is seen to be a
vertex of the cube. The line 0X0 represents two vertices -000 and 010.
The values of D may take one of two values, 0 and 1. The line DID implies
that if A is 2 then so is G and if A is 0 then so is G.

The distinction between X and D is as follows. Suppose we wrote a vector
of signals a s l l l . Each value of X is independent. Thus, if the first X is 1,
the second could be 0. This is not true of the vector D D Lin this case both
values of D must be the same; either 1 or 0. Thus while XXI represents
four vertices of the cube, namely, 0 0 1, 0 1 1, 1 0 1 and 1 1 1, D D 1
represents only two vertices, namely 0 0 1 and 111.

Returning, now, to the AND gate, the vertex DID represents four tests.
Suppose we wish to test for input A s-a-1. To do so we need to try to set this
input to 0. B is set to 1 as in the vertex D 1 D. In the good circuit the 0 on A
will cause a 0 on G. However, in the faulty circuit A is s-a-1, so G will be 1.
Thus A is 0 in the good circuit and 1 in the faulty circuit. Similarly, to test for
A s-a-0, attempt to set A to 1. G will be 1 in the good circuit and 0 in the
faulty one. In each case G takes the same value as that to which we try to set
A.

Note now that, if G were s-a-1, the effect would be the same as if A were
s-a-1 and B were 1. Similarly for G s-a-0. The vertex 1 D D then caters for
the case where B is stuck. A is set to 1 to ensure that the fault propagates to
G.

Consider, now, a NAND gate with inputs A and B. The two D-cubes
corresponding to those of the AND gate are written (D 1 D or D 1 D) and
(1 D D or 1 D D). The first of these implies that if B is 1 and we wish to test
for A s-a-0, then we try to place a 1 on A. The result in the good circuit is a 0
on G - that is, the signal is of different value to that on A. It is sensible to

Fig. 4.7. Geometrical representation of AND gate operation.

01 1 1 1 1

00 1

0 0 0

0 1 0

1 0 1

/ i 00

1 1 0
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choose the first of each pair'or the second of each pair, but it is not essential
to do so.

Suppose, now, that we have a test vector on the primary inputs of a
circuit. Consider a given signal S somewhere within it.

• If S is 1 for both the fault free and faulty circuits then the D-cube
has this signal as a 1. Similarly if both circuits have S at 0.

• If the fault free circuit has S = 1 and the faulty circuit S = 0 then in
the D-cube S is represented as D.

• If the fault free circuit has S = 0 and the faulty circuit has S = 1 then
the D-cube represents S as D.

These assignments are more restrictive than those suggested earlier and
have been adopted as a convention. They are not essential to the use of the
technique. For this assignment to be always possible the circuit must not
contain feedback.

It should be noted that the D-cube produced by these considerations can
now be used as a definition of the test on the primary inputs. If a D-cube
represents a test then there must be a path from the point of failure of the
faulty circuit to a primary output which contains only Ds and Ds.

Three questions arise.

• How can the sets of signals on a logic element be determined to test
for a fault? These sets of signals are known as primitive D-cubes of
failure.

• How can a path to an output be found, and how can the signals
controlling this path be set from the primary inputs? A hint of the
answer to this was given in Section 3.6.1 in relation to controllabil-
ity and observability.

• How can the primary inputs be set to produce a signal in the fault
free circuit which is opposite to that produced by the fault?

To detect a fault it is necessary to perform the following.

(a) Find input patterns for which the good circuit, G, has a 0 output
and the faulty circuit, F, a 1 output, or vice versa. Then find
compatible inputs for G and F. Thus, referring to Fig. 4.8, if G = 1
and F = 0, find values of A which are both 1, both 0 or are IX or
XI, and similarly for the other three inputs.

(b) Having found the required inputs to this sub-circuit, trace back to
the primary inputs to find how they should be set to achieve the
required values of A, B, C and E.
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(c) For this case, set the output of the sub-circuit to D, and trace
forward to an output. At each logical element passed, set the other
inputs so that D is transmitted and trace these inputs back to the
primary inputs.

4.4.2 Primitive D-cubes of failure
This section deals with point (a) above. An important point to

make is that the type of fault that can be detected is not specified. The stuck
at fault on an AND gate is by no means the easiest to understand. Consider
the circuit shown in Fig. 4.8. Fig. 4.8(a) shows the fault free circuit in which

G = A.B + C.E

The faulty circuit has the logical function

F = A.

This might be due to C being stuck at 1, but need not be so. However, it can
be said that the faulty circuit is equivalent to a good circuit in which the
values of C is 1.

Write down two tables.

• In the first, write all the circumstances under which the fault free
circuit, G, gives a 1 output and the faulty circuit, F, gives a 0. This is
shown in Table 4.2(a). The lines of this table represent the vertices
of a five-dimensional cube - hence the references in the literature to
D-cubes even when not 'three-dimensional'.

• In the second, Table 4.2(fc), write down the circumstances in which
the fault free circuit gives a 0 output and the faulty circuit a 1
output.

Considering Table 4.2(a), the fault free circuit gives a 1 output if either A
AND B are 1 or if C AND E are 1. In the first case the values of C and E are
immaterial. They could be 1 1, but are written as 'don't cares' - X. The
faulty circuit will give a 0 output if both inputs to the OR are 0. For the first

Fig. 4.8. Example of D-cubes of failure: (a) fault free; and (b) faulty.

[j 1 (Go(Good) E r\-—* (Faulty)

(a) (b)
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Table 4.2. Fault free and faulty conditions in Fig. 4.1.

A

1
X

0
X

B

1
X

X
0

c

X
1

X
X

E

X
1

0
0

G

1
1

F

0
0

A

0
0
X
X

1
X

B

X
X
Q
0

1
X

c

0
X
0
X

X
X

E

X
0
X
0

X
1

G

0
0
0
0

F

1
1

(a) (b)

one either A OR B must be 0 - it is immaterial which. For the second input
to the OR, C or E must be 0 - C does not exist in the faulty function. If the C
is thought of as s-a-2 then what one tries to set it to is immaterial. Hence it is
written as X. Table 4.2(a) represents the case of a fault free circuit with an
output of 1 and a faulty circuit with an output of 0. If a set of compatible
inputs can be found, the output will be written D.

Table 4.2(fe) is derived in a similar manner. A set of compatible inputs will
result in an output of D - i.e. 0 in the fault free circuit and 1 in the faulty
circuit.

Now attempt to intersect the two groups of vertices. This is done as
follows. Start with the first row of Table 4.2(a) and compare (intersect) with
the third row. If any pair of corresponding inputs are 1 and 0 then these two
set of inputs are not compatible. For these two rows A for G is 1 and for F is
0. The procedure is repeated for rows 1 and 4. Indeed, every row in the 4G'
part of the table is intersected with every row in the 'F' part. For rows 1 and
4, B is 1 and 0 respectively, so the intersection is empty.

Now work with rows 2 and 3 and with 2 and 4. Here E is 1 in row 2 and 0
in both rows 3 and 4. The resulting set is still empty.

Moving to Table 4.2(ft), intersect row 1 with row 5 - A is 0 and 1
respectively. Comparing rows 1 and 6, A and C both intersect as 0, X. UX
took the value 0, as it may, the two are compatible, so write 0 in these
columns. For B, (X, X) is recorded as X and is also compatible. E is X9 1,
so choose X to be 1 and write that. The complete resulting D-cube is

0X01 D

D is chosen since G (for the good circuit) has 0 output and F (the faulty
circuit) has 1 output.



78 4 Exercising the design

Performing the full set of intersections on Table 4.2(fe), rows 3 and 6 will
give

X 00 1 D

and all other intersections are null. There is no intersection with a D output
since all intersection in Table 4.2(a) failed.

The interpretation of the line 0X01 D is that, for a fault free circuit
with inputs A = 0, C = 0 and E = 1, the output (G) is 0, but that with these
same inputs and a faulty circuit equivalent to that shown in Fig. 4.8(fc), the
output (F) is 1. This is because the C input does not exist in the faulty
circuit. The C value is not an X because in the fault free circuit C = 1 would
lead to an output of 1, not 0. The signal set X 0 0 1 D can be interpreted in
a similar way.

The conclusion to be drawn is that, if either of A or B is set to 0, E is set to
1 and we try to set C to 0, then the fault free and faulty circuits will have
different outputs. Hence the fault can be detected.

Notice once again that the cause of the fault is not part of this discussion.
Any fault resulting in the function F will be tested by either or both of the
signal patterns derived.

To fix ideas a little more, consider the two-input AND gate of Fig. 4.9(a)
and the faulty gates of Figs. 4.9(fe) and (c). In Fig. 4.9(b) A is stuck at 1.
Table 4.3(a) shows the cubes.

Take the first case of a s-a-1 on A, Table 4.3(a). In the fault free case G is 1
if both inputs are 1 and 0 if either input is 0. For the faulty gate, the output is
the same as B regardless of A. For D there is no successful intersection. For
Z), rows 1 and 3 lead to

01 D

Thus, if A is 0 and B is 1, the fault free circuit gives a 0 out, whilst the faulty
circuit gives a 1 since A is s-a-1.

For the case of A s-a-0, Table 4.3(b), the faulty output is always 0. Thus
the faulty circuit never has a 1 output, and the set of signals for D is empty.

Fig. 4.9. Two-input AND gate (a) with one input s-a-1 (b) and with one
input s-a-0 (c).

(a) (b) (c)
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Table 4.3. Cubes for a two-input AND gate: (a) s-a-1 and (b) s-a-0

ForD

For/5

A

1

X
0
X

X

B

1

0
X
0

1

G

1

0
0

F

0

1

For D

For D

A

1

X
0
X

B

1

X
X
0

empty

G

l

0
0

F

0

(a) (b)

The set of inputs for D, however, intersects to give the vertex

1 1 D

In other words, if A and B are both 1 the good circuit has a 1 output whilst
the faulty circuit with A s-a-0 has a 0.

4.4.3 Primitive D-cubes of a logic block (propagation
D-cubes)
In the previous section a method of finding a test for a fault in a

logic block was specified. This resulted in a D or D on the output. It is now
necessary to consider how the inputs derived above can be traced back to
derive the primary inputs to the network (point (b) in Section 4.4.1) and
how the fault may be propagated to a primary output of the network as
indicated in point (c) of Section 4.4.1.

Table 4.4 gives a full set of cubes for the two-input AND gate. Table
4.4(a) shows the usual truth table giving the primitive cubes. Tables 4.4(a)
and (b) are those shown in Table 4 .1 .DDD has been added. Clearly, if both
inputs are 1 the output is 1 and if both inputs are 0, so is the output. Table
4.4(c) shows the D-cubes of failure for A s-a-0 and s-a-i. The cube 1 0 D is
for input B what 0 1 D is for input A and hence detects B s-a-1. It will now
be realised that the first two lines of Table 4.4(c) also detect G s-a-1 and this
cannot be distinguished from A or B s-a-1. Line 3 gives a test for the single
fault G s-a-1, but cannot be distinguished from the double fault A s-a-1
AND B s-a-1. Similarly, it is not possible to distinguish between one or both
the inputs s-a-0 or the output s-a-0.

Suppose input A of Fig. 4.8 was a 1 and was supplied from an AND gate.
Table 4.4(a) shows that, for a 1 on the output, the inputs must all be Is (first
line). Each of these inputs must then be further traced back. Conversely, if A
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Table 4.4. Cubes for a two-input AND gate: (a) primary cubes; (b) primitive
D-cubes of logic; (c) primitive D-cubes of failure

(a)

A

1
0
X

(b)

A

D
1
D

(c)

A

B

1
X
0

B

1
D
D

B

G

1
0
0

G

D
D
D

G

0 1 D A s-a-1 or G s-a-1
1 0 D B s-a-i or G s-a-i
0 0 5 (A & B) or G s-a-1
1 1 D A or B or G s-a-0

had been specified as a 0, then lines 2 and 3 of Table 4.4(a) show that a 0 on
either input is required and the other input is a 'don't care' - X. Only the
input specified as 0 need be followed further.

To trace forward to the primary outputs, Table 4A(b) is used. Suppose
that the output in Fig. 4.8 is specified to be D and the following gate is an
AND gate. Table 4A(b) shows that, to propagate D to the output, the other
input(s) must be set to Is. This implies that those inputs must be traced back
to the primary inputs as described in the previous paragraph.

To fix ideas in relation to sets of cubes, the reader might like to derive the
cubes for a three-input OR gate. Table 4.5 gives the result.
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Table 4.5. Cubes of a three-input OR gate: (a) primary cubes; (b) primitive
D-cubes of logic; (c) primitive D-cubes of failure

(a)

A

0
1
X
X

(b)

A

D
0
0
D
D
0
D

(c)

A

1
1
0
0
1
1
0
0

B

0
X
1
X

B

0
D
0
D
0
D
D

B

1
0
1
0
1
0
1
0

c

0
X
X
1

c

0
0
D
0
D
D
D

C

I
0
0
1
0
1
1
0

G

0
1
1
1

G

D
D
D
D
D
D
D

G

D
D
D
D
D
D
D
D

(A & B & C) or G s-a-0
A s-a-0 or G s-a-0
B s-a-0 or G s-a-0
C s-a-0 or G s-a-0
A & B s-a-0 or G s-a-0
A & C s-a-0 or G s-a-0
B & C s-a-0 or G s-a-0
A or B or C or G s-a-i
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4.4.4 Example of use of D-cubes
As an example, return to the circuit of Fig. 3.16, redrawn as Fig.

4.10. The procedure is similar to that of Section 3.6.1. Table 4.6 reproduces
the cube tables for two-input AND and OR gates. We wish to test for W
stuck at 1.

First specify W to be D — 1 in the faulty circuit. Attempt to set it to 0 for a
fault free circuit.

Now try to propagate this to the output. To do so we use the propagation
D-cube of an AND gate.

The first input is D. For this purpose D and D are interchangeable. The
first propagation D-cube in which the second input is 1 is required, giving
the cube D 1 D. As the primary output has been reached, this phase of the
test generation is complete. It is called the D-drive phase and is shown in the
second line of Table 4.7. In this table all signals are initially set to X, and W
is set to D.

Now attempt to justify all the other required signals. Starting from the
output, the first (and only) signal to be justified is N. What is required is to
select a set of primary inputs such that N is a 1 as required by the D-drive
process. N is driven by an OR gate. The primitive cubes of the OR gate
show that a 1 on either input will justify the 1 on the output (second and
third line of Table 4.6(b)). For the sake of example choose L, Table 4.7, line
3. An automatic generator will choose one of the two possibilities at
random, presumably the first that it finds in its data base (but see below).

L is the output of an AND gate. Observe that the primitive cubes of the
AND gate require both E and F to be 1 to justify the 1 at L (line 3 of

Fig. 4.10. Example illustrating the use of D-cubes.
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Table 4.6. Cubes for two-input AND (a) and OR (b) gates

(a)

Primitive cubes

0
X
1

Primitive

D
1
D

Primitive

X
0
1

D-cubes

1
D
D

D-cubes

0
0
1

of logic

D
D
D

of failure

i/p or o/p s-a-0
i/p or o/p s-a-0

0
1
0
1

1
0
0
1

D
D
D
D

A or G s-a-7
B or G s-a-1
(A & B) or G s-a-1
A or B or G s-a-0

(b)

Primitive

0
X
1

Primitive

D
0
D

Primitive

cubes

0
1
X

D-cubes

0
D
D

D-cubes

0
1
1

of logic

D
D
D

of failure

1
0
1
0

0
1
1
0

D
D
D
D

A or G s-a-0
B or G s-a-0
(A & B) or G s-a-0
A or B or G s-a-1
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Table 4.7. Signal generation for Fig. 4.9

A B C D E F G H J K L M N W Z C o m m e n t

XXXXXXXXXXXXXDX initialise
1 D D D-drive

1 1 justify N
1 1 1 justify L

0 0 D justify W =
0 0 justify J

0 0 justify K

Table 4.6(a)). This is shown in Table 4.7 line 4. As E and F are primary
inputs, this path is complete.

It is now necessary to return to W and to justify a 0 for the good circuit
and 1 for the faulty circuit back to the primary inputs. The gate whose
output is W is the faulty gate. The three steps which follow are shown in
Table 4.7 lines 5 to 7. Observe the primitive D-cubes of failure of the OR
gate, Table 4.6(fc). To get D on the output we require 0 on both inputs. Begin
by processing J, so first mark K for later processing. J must be a 0.
Observing the primitive cubes of the AND gate making J, it is seen that A or
B must be 0. Choose A - quite arbitrarily. This is a primary input, so the
path is justified.

Now return to find any markers. There is one, namely that at K. This also
needs to be 0, so C is chosen to be 0. All paths are now justified since a
search will find no more markers. Hence a test for W stuck at 1 is

A B C D E F G H
0 X 0 X 1 1 X X

In practice, problems arise with reconvergent fan out. This occurs when
one signal fans out to two or more places and later in the network some of
the resultant signals combine. An exclusive OR circuit built from AND and
OR gates always contains such problems (some EXOR ICs have special
circuits which avoid these).

Consider Fig. 4.11. Generate a test for S stuck at 1. For the fault free
circuit S must be set to 0, so place a D on that signal. The D-drive will put D
on U. Justifying this requires 1 on T and hence 0 on R or Q. Let us choose to
place the 0 on R with Q as a 'don't care' (X), since R is the first input of the
gate producing T. This is shown in line 2 of Table 4.8. Justifying R requires 1
on P and Q, Table 4.8 line 3. Now return to S. To get D on S, that is, 0 in the
good circuit, a 1 is needed on both P and R; but a 0 has already been
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Table 4.8. Signal generation for Fig. 4.11

85

p

X

1
1
—

1

Q

X
X
1

—
0

0

R

X
0
0
1
—
X
1
1

s

D

D
—

D

T

1
1

—
1

U

D

—

D-drive
mark as choice point

Not consistent; return to choice point
for alternative

assigned to R in line 3. Hence lines 3 and 4 of Table 4.8 are inconsistent.
When this happens, it is necessary to return to the last place where a

choice was made. In this case, that place was in justifying T. The choice of R
or Q to be 0 fell to R. That point in the process should also have been
marked so that the return now required can be made. At this point, make
the alternative choice. Q is set to 0 and R is set to X as shown below the line
in Table 4.8. Q is a primary input, so this phase of the test generation ends.

Return to making another attempt to justify S. This requires 1 on P and R
which is now fully consistent with the previous decisions. R set to 1 requires
P or Q to be 0. P and Q are already 1 and 0 respectively as required. The test
for a s-a-1 at S is

P = l, Q = 0

4.4.5 Enhancements to the D-algorithm
The D-algorithm was first published in 1966. Since that time there

have been many papers attempting to improve on the methods of

Fig. 4.11. Exclusive OR gate made with NAND gates.
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generating these patterns. So far as this author can see, the vast majority use
the same principle. The differences lie mainly in the way that the D-drive
and calculation of primary inputs is carried out. Goel (1981) discovered
that the original approach was very slow for a particular class of circuits,
namely, those using exclusive ORs, and derived an alternative in a scheme
known as PODEM.

In PODEM one starts, as before, with the fault. Attempt to set the input
of the source gate to the required value, and trace that back to a primary
input. If this cannot be done, time is not wasted doing the D-drive. Having
reached the primary input a 'simulation' of the circuit is performed,
establishing all other signals in the network affected by this primary input.
Doing this may set or block other paths that will be required later, so some
incompatible choices can be avoided.

This procedure is repeated for all other signals from the fault until the
paths from the primary inputs to the fault are established. Thus the element
inputs for the faulty element are controllable by the primary inputs.

Now cause the fault D or D to move towards the nearest primary output
by one logical element. This is called moving the D-frontier. Any signals
required to establish that path are then justified. Again, the effect of all
primary inputs set is simulated and checks made for consistency with
previous settings.

Returning to Fig. 4.11, with S s-a-2 we require P and R to be 1. P is a
primary input. As Q is not specified, no further simulation can be done from
P. For R to be 1, either P or Q must be 0. P is already 1 so Q must be set to 0.
Simulating forward from here causes T to be set to 1. This is what is
required for the D-drive as the D-frontier is moved to U. There are no false
choices and no backtracking.

The process continues until the D-drive is complete. The advantage here
is that, if the inputs to the faulty element cannot be controlled, the D-drive
never happens. Furthermore, if, after the D-frontier is moved forward,
signals cannot be justified, then the D-drive is stopped. Thus it is probable
that the number of false choices and hence amount of wasted work are
reduced.

In performing the calculations, an estimate of the controllability of each
signal is used. Given a fault on an AND gate output where a 1 is required,
all inputs must be set to 1. An attempt is made to justify the least
controllable (most difficult to set) input first. If the least controllable input
can be justified then it is quite likely that the remaining inputs can be also. If
it cannot, then time is not wasted trying to justify the others.

If it is desired to establish a 0 on the AND gate output then any input at 0
will do. In this case the easiest to control input should be chosen.
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Corresponding choices for an OR gate are to choose the most controllable
input when establishing a 1 and the least controllable input first when
establishing a 0.

The process can be further improved. Consider Fig. 4.12 and suppose the
test is for L s-a-1. For this to be tested it is necessary to specify L as D, and
hence H, K and E are all 1. PODEM may select to trace back K first as the
most difficult. This leads to J = 0 and hence (say) B = 0. B = 0 implies H = 0,
which is inconsistent with the requirement that H be 1. PODEM then has
to start again and choose C to be 0 and B and A to be 1. In FAN (Fujiwara
and Shimono 1983) all signals forming L are traced back together. Thus

Stepl: H = K = E = 1;

Step 2: J = 0;A = B = l:

Step 3: C = 0.

A second improvement in FAN is to notice situations such as that
illustrated in Fig. 4.13. Here, elements El and E2 are on the path to the
primary output regardless of the splitting and reconverging of the path.
Hence these two elements are processed before either of the two split paths,

Fig. 4.12. Example for modification of PODEM as in FAN.

A

B

Fig. 4.13. Two paths to same primary output.

PO
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since if either is impossible to justify there is no point in following the
complexities of the multiple paths.

4.5 Reducing the number of test vectors
The D-algorithm and most of its derivatives will find a test for a

given fault if such a test exists. The type of fault is not specified, but the
faulty function that results from the fault must be known. The network
under test is restricted to combinational logic. There must be no feedback
within the section of logic concerned. It has already been suggested that
good design practice will confine feedback to sections of logic separated by
registers, or provide means by which such feedback paths can be broken
during testing.

The number of tests that must be performed can be reduced in a number
of ways. For example, s-a-0 on the input of a NAND gate cannot be
distinguished from a s-a-1 on the output or from a s-a-0 on any one or more
other inputs. Thus there is no point in testing for the s-a-0 faults on the
input. This is known as fault collapsing. Of course, these signals are the
outputs of other circuit elements. A test for s-a faults on these outputs is
required. Consider Fig. 4.14. For a TTL circuit, the second input of G2 will
appear to be s-a-1. However, it is possible that a test for Gl output s-a-1 will
use the path through G3 and will not show a fault. Thus it is still necessary
to test for a s-a-1 on G2 input separately from the s-a-1 on Gl output. The
distinction will show where the fault lies.

A second procedure is known as fault merging. Suppose that a circuit has
the following two test vectors, all signals being primary inputs.

1 0
X 0

X X 0 X
1 X X 0

Fig. 4.14. s-a-1 on G2 input not found by s-a-1 on Gl output.

G1
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It is seen that where a defined signal appears in both vectors it is the same -
both 0 or both 1. All other signals have an X in at least one of the vectors.
Hence these two vectors can be merged into a single vector which tests for
all faults found by the two vectors separately. This will be

1 0 1 X 0 0 1

Where one of the corresponding signals is a known value (0 or 1) and one is
X, the known value is used. If both vectors have an X then an X is still
appropriate. An example has been quoted of the SN74LS630 (McClusky
1985). This has 23 inputs giving about eight million tests. However, each of
the six outputs depends on no more than ten inputs. Hence 6 * IK tests is
sufficient. It is also possible to do each of the six tests in parallel, so only
1024 patterns are required.

It was suggested earlier that test vectors generated manually or using
random patterns could rapidly build up 70-90% fault cover with relatively
small numbers of vectors. The best approach to test generation is to use
one of these methods and then to assess the fault cover (see Chapter 9). In
the case of randomly generated tests, this may be done after every so many
vectors have been generated until a desired fault cover has been obtained
or until the improvement over the last assessment is 'small'. The fault
cover assessment will provide a list of faults that are found by the test set -
a fault dictionary, or better, a list of faults which have not been tested. This
list can then be used as input to an automatic test generation program
which only needs to find tests for the faults still untested. The automatic
program should begin with fault collapsing to eliminate equivalent faults
which cannot be separated, and the complete set of tests, including the
manual/random pattern generated tests should be subject to fault
merging.

A further suggestion is that the automatic test program generator
(ATPG) should start with faults near the primary inputs. This then has long
sensitised paths to the primary outputs, and hence many other possible
faults on this path can be included with a minimum of computation - only
the setting of D or D on the path needs to be varied.

The program CONT (Takamatsu and Kinoshita 1989) adopts another
approach. It begins by trying to find primary inputs as in PODEM.
However, when it finds it cannot make progress, it does not backtrack to
the original fault. Instead it tries to discover another fault which the
current set of primary inputs can detect. In this process a D will be replaced
by a 2 and a D by a 0 in appropriate places. The reference gives a good
example.
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4.6 The MOS stuck open fault
So far it has been assumed that faults can be modelled as a stuck at

1 or stuck at 0. There is another fault in MOS circuits which cannot be
modelled in this way (Elziq 1981). Consider the CMOS circuit in Fig.
4.15(a) and suppose that there is a broken wire at A. Fig. 4A5(b) shows the
equivalent gate symbol. Let us try to find a s-a fault which will find the stuck
open fault.

• Test for Z s-a-1. This requires an attempt to set Z low, requiring X
or Y to be high. If Y goes high, Z will go low as for a good circuit. If
X now goes high, Z will stay in its previous state, whatever that
was, since T4 is turned off. This is unsatisfactory as a test for a
stuck open, but suggests that a test for a fault on X might be more
useful.

• Test for Z s-a-0. An attempt is made to pull Z high, so both inputs
must be low. The circuit with A stuck open behaves as the good
circuit, so that stuck open is clearly not detectable.

• Test for X s-a-7. Y is set to low to allow X to be the controlling
input. Try to set X to low. Z goes high in both the fault free circuit
and that with A stuck open, since both T3 and T4 will be on. If X
were stuck high in an otherwise good circuit then Z would stay low.
This will not detect the stuck open.

• Test for X s-a-0. Y is still low and try to set X high. In the good
circuit Z goes low and if X is s-a-0 Z becomes high. With A stuck
open Z retains its previous value. Again, this is not a satisfactory
test in itself.

Fig. 4.15. CMOS NOR gate.

(a) (b)
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Thus a test for a s-a fault will not find the fault caused by the break at A in
Fig. 4.15(a). The reason is that the fault has caused a change of logic
function to

Z = XY + XYZn

where Zn is the previous value of Z. The circuit has become a sequential
circuit as shown in Fig. 4.16. A test for a s-a fault on one of the wires to the
OR gate will find the stuck open fault, but these are not 'real' gates. To use
this model in simulation of MOS systems makes them very complicated to
simulate.

The reason for this problem is that an MOS gate input requires very low
current indeed to drive it. Consequently output nodes such as Z drive
purely capacitive loads, and if none of the three paths to a power supply
conducts, Z remains at its previous value. This is in contrast to a TTL gate,
for example, where an open circuit output transistor drives inputs which
take a significant current, and which would pull the gate output high (Fig.
4.17). Thus a test for Z s-a-1 is sufficient.

Fig. 4.16. Model of CMOS NOR gate.

o-
Fig. 4.17. TTL equivalent to stuck-open circuit.

TTL output
circuit

TTL input circuit
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It is worth considering briefly other possible faults. A stuck open in T3 or
T4 of Fig. 4.15 would be found by a s-a-0 test on Z provided that X or Y had
at some point been taken high first, pulling Z low. The storage on Z would
ensure it never went high again. This requires at least one extra test vector at
some point and hence probably a pair of vectors per fault. Stuck closed
faults would alter the logic function, assuming that, if T3, T4 and one of Tl
and T2 were conducting, the result on Z was either a 1 or a 0 and not an
intermediate value. If the latter occurs then the circuit is untestable by
digital means. The D-algorithm can handle changes of logic function, but it
is not simply a matter of a s-a fault.

The points being made here are:

• the s-a model of faults at gate level is not always sufficient,
• there may be other types of fault in all types of logic which could be

untestable with the algorithms traditionally described.

Experience to date suggests that the s-a model works in most cases,
including many MOS faults. For MOS circuits, some additional tests are
required to cope with stuck open faults. Elziq used a search for pairs of
vectors needed to find the stuck open faults, and where they were not
present in the tests generated for s-a faults, he put them in. Gheewala has
discovered 26 different faults for an MOS gate, all of which can be
represented by the set of fault models suggested here. On the other hand,
Shen and Hirschhorn (1987) have cast doubt on whether the stuck open
fault deserves attention.

Unfortunately there is one further problem. Because an MOS gate
output possesses a storage property, any transient switching of the circuit
could 'store' to the wrong state, much as a random asynchronous input to a
flip-flop (see Fig. 4.16). This implies that great care must be taken to ensure
that inputs change in the correct order. Since most test machines (as
opposed to simulators) cannot guarantee the order of changes on a fine
time scale, it may be necessary to specify intermediate patterns. For
example, suppose it is desired to change X Y from 0 0 to 1 1 but at all costs
avoiding the pattern 0 1. The sequence

00
1 0
1 1

must be specified. For some testers, forcing this means forcing an extra test
with the intermediate pattern. There are now three test vectors for one fault!
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4.7 High level testing
As systems - or even ICs - become larger, the number of possible

transistor or gate faults gets out of hand, even accepting the possibility of
partitioning the logic into more testable blocks. There is a clear need to
extend testing methods to high level blocks of logic.

The second reason for high level testing is to reduce the time taken when
fault finding in the field. The priority is to keep expensive equipment
running, by keeping the test equipment simple. Once the faulty unit is found
it is 'repaired' by replacement, and if repair is done at all, it can be done in a
workshop with full facilities. There is only one of these.

There is a third reason for using high level testing. With large modules,
such as microprocessors, the fault modes and logic models are unknown.
Hence it is impossible to apply gate level test procedures.

Where the total logical system is being designed, an approach is to divide
the system into easily testable blocks (Noujain 1984). It is presumed that
these blocks would be smaller than the combinational blocks of a scan
designed system. One might think in terms of 4-bit adders. A set of test
vectors for each block capable of achieving 100% fault coverage is
designed. Groups of these blocks are then formed as shown in Fig. 4.18.
Means are devised for setting the necessary patterns at the inputs of block A
by setting the primary inputs to blocks B, C and D to get the appropriate
outputs. Inputs to B and D must also set the inputs to blocks P and Q in
such a way as to propagate the outputs of block A to the primary outputs of
the total network.

This second level block can now be combined with others in a
hierarchical system.

Chandra and Patel (1987) produced HIPODEM, a version of PODEM,

Fig. 4.18. Hierarchical test of block A.

PI A
100%

PO
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to operate in this manner. A set of D-cubes for the adders etc. is produced,
as well as controllability and observability measures.

Consider, a combinational module such as that in Fig. 4.19 (Murray and
Hayes 1990). Firstly, it is necessary to know the value of the controls to
propagate signals from data (in) to Z (out). Suppose a set of data, D, results
in an output, Z. Attempt to find a control input such that for any set of data
D' different to D the value of Z' will be different to Z. For example, in the
multiplexer shown in Fig. 4.20, if C = 0, Z = X1? so Xl9 Z is a 'pair.' If C = i,
Z = X2. Furthermore, if Xx = 0 and X2 = 1 then C, Z is a unique pair. This
circuit can be tested, therefore, and a set of D-cubes can be constructed as
shown in Table 4.9.

Unfortunately many of the higher level blocks that might be considered
are not purely combinational. Shift registers and counters, not to mention
processors, come immediately to mind. These not only have inputs and
outputs but also input states, the latter two of which are dependent on
sequences of inputs as well as the history of internal states and outputs.
Breuer and Freedman (1980) suggest an algorithmic solution for determin-

Fig. 4.19. Testing a combinational logic block.

Data :

P.nntrnl in

Combinational

logic

block

: z

„ Control out

Fig. 4.20. A multiplexer.

X2
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Table 4.9. Cubes for the multiplexer of Fig. 4.20

0
1
X
X
D
X
0

x2

X
X
0
1
X
D
1

c

0
0
1
1
0
1
D

z

0
1
0
1
D
D
D

ing the operation. They claim that the algorithms are often applicable to a
whole class of problems. They develop a language for expressing both
sequential and parallel events. D-drive and line justification are all time
dependent and may run into inconsistency problems in time as well as in
'space.' The reader is referred to the paper for a worked example.

Since 1990 the number of papers in this area has expanded rapidly.
Ghosh et al. (1991) and Sarfert et al. (1992) have both produced interesting
work. This expansion is in recognition of the fact that gate or lower level
testing of very large logic systems, including chips, is becoming progressive-
ly more expensive.

This chapter has given an introduction to test program generation. It
may seem strange that a main technique described is 25 years old. The
reason is that no fundamentally different method has been discovered. An
understanding of what has been described is sufficient to enable all newer
proposals to be understood quite easily.



Input/output of simulation
and specification of models

5.1 Input and output of simulation
When a complete system is being simulated there are relatively few

external inputs - a start key, a break key and possibly some inputs from
various peripherals such as tape drives, sensors etc. Similarly, there are few
outputs. In these cases the arrangements to pass 'test data' to the simulation
can be very crude.

The main purpose of simulation is to find errors in a design. To simulate a
complete system and expect to find detailed errors is very difficult,
especially as different parts of the design may be at different stages of
development. It is important to be able to simulate sub-units independently
of the total design in order to get the majority of problems solved before
trying to integrate the complete system (Fig. 1.4). Some means of supplying
and controlling test vectors is required.

In this form of testing there will be copious output, which comes in two
forms. The first is the values of primary output signals - the product of a
multiplier, for example. These values can be compared with a set of
'expected' values to check the overall operation. If the results of simulation
are different to the expected values then it is necessary to

• check the expected values - NoteW.
• if the expected values seem correct, trace back through the logic to

find where the error occurred and hence find the design error.

Therefore, secondly, internal signals must be available. This is always
possible with a simulator whereas it may be impossible in testing hardware,
especially ICs. Thus a simulator requires facilities for monitoring all signals
and for displaying them in a form which enables the user to trace through
the network easily.
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This emphasises two features of a simulator which are not available with
prototype hardware.

• Internal logic states can be monitored.
• Sub-units of the logic can be isolated and tested on their own.

In this chapter, an indication of the control of a simulation is given. The
description will make use of the ideas and notation of VHDL (VHDL 1987,
Perry 1991) - VHSIC1 Hardware Description Language. It is not intended
that this should be a definitive description of VHDL - it is not - and the
reader must consult specialist texts for that. Having said that, the reader
unfamiliar with VHDL should not despair. Many of the features will be
clear to anyone familiar with a programming language. With each example
there will be a suitable description.

VHDL is intended for describing hardware. Here the interest is solely in
controlling and monitoring certain signals. Details of the structure of the
hardware descriptions will be omitted. VHDL reserved words will be
printed in upper case.

The first feature of note is that VHDL does not contain a mechanism for
setting primary inputs to given values or for monitoring primary outputs.
In other words, a complete system with no inputs or outputs is presumed.
For a real design or a partial design the logic of interest is set alongside a
piece of pseudo-logic which generates the primary inputs, Fig. 5.1. A second

Fig. 5.1. Simulation of a system described in VHDL.
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generator

SYSTEM - No I/O
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1 Very High Scale Integrated Circuits - a project of the Department of
Defense in the USA.
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piece of pseudo-logic can be set up to check the outputs. These two are
sometimes described as a test bench. Hence VHDL is a modelling language
and not a driving instruction language.

As a rule, the simulation environment has facilities to monitor and
display signals and variables within a hardware description and possibly to
set primary inputs. This is not part of VHDL itself. VHDL does have a
facility for text output and input but it is rather awkward in use. It is useful
for good/bad indicators. There is also a mechanism for displaying messages
(ASSERT).

The primary interest in the present chapter is in modelling the primary
input (PI) generator (Fig. 5.1), but it will be useful to indicate facilities for
models of a more general nature.

5.2 Simple driver
In its crudest form, the primary input generator consists of a series

of statements setting each of the signals to a value. There is then a statement
requiring no further changes until the logic being simulated has had a
chance to settle to its new state. Thus one has statements such as

a<= '0 ' ;
b<=T;
WAIT FOR 50 NS:

In this series of statements a and b are two input signals. They are of type
BIT as defined in VHDL. A VHDL signal of type BIT can take one of two
values designated '0' and '1, ' the quotes being essential to distinguish from
the characters 0 and 1. a and b could, for example, be the inputs to a
two-input gate. The designer knows that the delay of the piece of logic
should be significantly less than 50 ns, so the WAIT statement allows time
for the output to settle even in the face of some error.

In a normal ARCHITECTURE all statements are executed in parallel.
In this example it is required that certain things happen in sequence. The
feature that allows this to happen is a PROCESS, so the statements above
must be embedded in such a program segment.

VHDL is a very powerful language which allows signals to have many
different TYPES. These may be anything, and can be (and often are) user
defined. They can be INTEGERS, colours, etc. Arrays of values are also
available, and in particular BIT_VECTORS. This allows a set of signals of
type BIT to be used together. For example, one could define

SUBTYPE two_bit IS BIT_VECTOR (0 TO 1);
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and then have a signal definition

SIGNAL D:two_bit;

whence the setting of the two input signals of the above example can be
written

D<=B"10";

The B here implies the following quoted string is a set of values in binary.
The string must have a length which exactly matches the type definition -
there is no assumption of left extension with zeros. However, there is a
general mechanism by which a short vector can be inserted in or extracted
from a longer one.

A question arises as to what causes a simulation to stop once started. If
allowed to run on 'for ever' much CPU resource (and hence money) is
wasted. In the very simple example just quoted, it is clear that all activity in
the circuit ceases at 50 ns, and this circumstance might be detected.
However, suppose there to be an error - possibly a typing error - causing
the output to be connected back to an input such as to cause an oscillation.
Looking for no activity in the circuit would never stop the simulation.
Similarly if two clock signals were used for testing the circuit. There is only
one safe procedure. The environment of the simulation must have a stopping
mechanism.

For example, on one system the 'simulation control' asks for how long
the simulation is to be run. The default is 0 ns. The user needs to be
judicious in choosing this value to conserve resources. Too long a run
wastes money. Too short a run will not achieve the objectives and a further
run will be needed, which is equally wasteful. This stopping mechanism is
essential. It is not part of VHDL.

To complete this example, suppose that the logic to be simulated in Fig.
5.1 is a two-input AND, and suppose this has been described in the
appropriate manner as an ENTITY called 2_input_and. Prog. 5.1 shows
how a test might be set up. There is an ARCHITECTURE called syst of an
ENTITY called system. It consists of an instance, Cl of the component
2_input_and. The signals x, y and z in the COMPONENT definition are
formal parameters, while a, b and c are the actual signals for the specific
instance Cl. To produce the device inputs, a PROCESS is used. It is given a
name (optional), pi_gen. The inputs are assigned and there is a WAIT FOR
the outputs to settle. The next statement, the ASSERT, does nothing if the
condition c = '0' is true, which it should be. If the logic of 2_input_and is
faulty, then a REPORT is produced. This is the output checker of Fig. 5.1.
A second set of inputs is then asserted and a further WAIT FOR and test of
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the output made. This is written in a different form to show a facility of
VHDL, but the effect is the same. Both tests could be written this way.
Alternatively the second test could be written

ASSERT (c = T ) . . . .

The final WAIT is a means to allow the PROCESS to end, but it waits for
ever. Thus the environment time limit on simulation is essential. The test
can be easily extended to the other two input possibilities.

It is worth pointing out that this simple test is a test of a logic subsystem.
Once the designer has decided it is acceptable 2_input_and can be
incorporated as a COMPONENT in other ARCHITECTURES, knowing
that its internal operation is correct to some degree.

5.3 Simulation output
The output of a good simulation as described will be nothing. Such

an output leaves the user with a degree of uncertainty. There could be a
mistake in the monitor part of the program. One student project observed
by the author actually had the monitoring turned off! To obtain something

Prog. 5.1. ARCHITECTURE of Fig. 5.1.

ARCHITECTURE syst OF system IS
COMPONENT 2_input_and

PORT (x, y : IN BIT; z : OUT BIT);
END COMPONENT;

SIGNAL a, b, c : BIT;

BEGIN
Cl : 2_input_and

PORT MAP (a, b, c);

pLgen : PROCESS
BEGIN

a < = '0';
b < = T ;
WAIT FOR 50 NS;
ASSERT (c = '0') REPORT "c = '1' from a = T , b = '0'"

SEVERITY ERROR;
a < = T ;
WAIT FOR 50 NS;
ASSERT (c = (a AND b)) REPORT "c = '0' from a = b = '1'"

SEVERITY ERROR;
WAIT;

END PROCESS;

END syst;
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more tangible, and to be able to fault find, it is necessary to be able to
observe some signals. On a small network, for a limited simulation, it will
be possible to observe all signals all the time. However, consider a network
of 1M signals simulated with a 1 ns time step for 1 ms. If each piece of
monitor data is only one byte, the output is 1012 bytes. This is clearly
nonsense. Even if it can be stored, it cannot be read by any real user in a
finite time.

There are several ways of reducing the quantity of data.

• Only record changes. With system activity of 1% in an event
driven simulator (Chapter 6) the number of data items is reduced
by a factor of 100. Time must also be recorded with each set of
data. This is not a big enough reduction.

• Only certain time periods are of interest. In an initial run record
results only at 'clock' times. If an error is detected, only switch on
recording for the period just prior to where the error occurs.

• Restrict the number of signals being monitored. In a hierarchical
description, limit recording in the initial run to high level signals.
When an error occurs, rerun looking at more detailed levels of the
design in the area where the error happened.

Suppose a large system as above is being simulated. Suppose it contains
an arithmetic unit with an adder and a multiplier (e.g. Fig. 1.4). The
arithmetic unit output is one of several sets of signals monitored. Let the
monitor interval be 500 ns. At 25 JXS the unit outputs are all as expected but
at 25.5 us the arithmetic unit outputs show a difference. It may be possible
to see that the arithmetic unit was doing a multiplication rather than an
addition. Assuming the fault cannot be further identified immediately, the
simulation should now be rerun without monitoring up to 24.5 |is, say.
Monitoring of the arithmetic unit outputs, and also of the multiplier
outputs and some of the multiplier internal signals, is then turned on. If it is
still not possible to monitor all of these, a judicious choice will help. For
example, if the error begins in the less significant part of the result then it is
in this area that the most detailed monitoring should be done. The
simulation is continued only as far as 25.5 jas. Alternatively it might be
possible to simulate the multiplier on its own with the operands from the
original simulation. This will save even more resources.

VHDL has very limited facilities for output. The ASSERT statement has
been mentioned. There is also provision to write to a file. This is not entirely
satisfactory. In practice implementors of VHDL are providing environ-
ments which enable signals or variables to be marked for monitoring and
then to display these in either tabular or graphical form or both. The ability
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to look at a short period of time selected from a longer one is available (e.g.
24.5 jis to 25.5 |is from lms).

The signals to be monitored must inevitably be selected prior to
simulation. Consequently the 'wrong' signals will be selected quite often,
and the simulation will have to be rerun with a different selection. In a bad
case it may take several runs to find the correct selection. In some
environments it may be possible to set a break point. At the break point
every signal in the network at all levels is recorded, together with any other
data held within the simulator (see Chapter 6). In the example the break
point would be at 24.5 us. It is now possible to reload these values into the
simulator and start the simulation from the break point, knowing that the
simulator will hold correct values and simulation history at that point.
Further, it will be possible to restart from the break point as often as may be
necessary. Thus repeated running of bits of simulation which are known to
be 'good' is avoided.

Returning to the example of Prog. 5.1, one might choose to monitor all
signals for all times, since the example is very simple. The resulting output
may appear as Table 5.1 or as Fig. 5.2. Table 5.1 is a textual form showing
the times at which signal changes occur. fphl is set to 23 units and tplh to 15
units. The second form shown in Fig. 5.2 is a waveform diagram as might be
observed on an oscilloscope or logic analyser.

5.4 Operation in parallel and in sequence
The simulator control commands so far introduced are probably

sufficient to enable most things to be done. In particular, automatically
generated test programs will generally produce large sets of test vectors
which are applied to the primary inputs at appropriate intervals. Such test

Fig. 5.2. Graphical output of simulation of Prog. 5.1.

23 50 65
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Table 5.1. Tabular output of the simulation of Prog. 5.1

timeO
time 23
time 50
time 65

a = 0
a = 0
a = 2
a = 7

programs are relatively 'unintelligent' and may not be very useful as test
sets for debugging the design.

In design checking, applying test sets using only the simple commands of
the previous section could be very cumbersome. Consider, for example, a
free running clock of period 100 ns. This requires a set of instructions as
shown in Prog. 5.2, interspersed among other drive waveforms and
repeated every 100 ns. This is clearly unsatisfactory. Two things are needed.

• The ability to separate out the clock driver from other driven
signals.

• The means to have several drive sections running in parallel and, at
the same time, to be able to force a correct time sequence.

The VHDL provisions to enable these have already been indicated in
outline. All signal allocations occur in parallel (i.e. at the same time) unless
otherwise specified. COMPONENTS within an ARCHITECTURE are
equally simulated in parallel. The COMPOMENT is simply a high(er)
level description of something which has a separate architectural descrip-
tion elsewhere. At the lowest level such a description will be of the form
shown in Prog. 5.2. Thus in Prog. 5.1 the AND gate will have an
ARCHITECTURE of the form shown in Prog. 5.3. In Prog. 5.1 there are
two items which are evaluated in parallel. These are the gate, Cl, for which
Prog. 5.3 can be specified as the low level description (see Prog. 5.4) and the
PROCESS pLgen.

To force things to happen in correct time sequence, the PROCESS is
used. In a PROCESS each statement is executed in sequence. In principle
there is a time delay between each statement. If no specific time is
mentioned then VHDL invents a special sub-interval called a delta.

Prog. 5.2. Simple clock generator.

clock < - '0';
WAIT FOR 50 NS;
clock < = T ;
WAIT FOR 50 NS;
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Considering Prog. 5.1, the assignment to a occurs at time T9 say, and that to
b must then occur at time T+8t. There is then a WAIT FOR 50 NS.

The AND gate of Prog. 5.3 evaluates as follows. 'and_gate' is simply a
name for the PROCESS and is optional. The term (x, y) is called a
sensitivity list. The PROCESS will be evaluated whenever any signal in the
sensitivity list changes value. The construction'--' means that the rest of the
line is a comment, p is a local VARIABLE. A VARIABLE is different to a
signal in a very significant sense. The assignment p: =x AND y happens
immediately, with no delta involved. If p had been a SIGNAL instead, then
the value of p would become a prediction for the future (see Section 6.3).
The IF clause would then operate on the old value of p. For example,
suppose x = T and y = '0' and the simulation has settled down, p is '0'. Now
let y change to' 1'. If p were a signal then it would be scheduled to become' 1'
at T+ 8t. The IF clause then operates with the value p = '0'. By specifying p
to be a VARIABLE, p becomes T immediately and the IF clause operates
as is required with p = ' l \

All PROCESSes must have a sensitivity list or a WAIT statement. The
WAIT statement causes the PROCESS to suspend until the specified
conditions are met (a length of time in the examples so far, but see below).
When the conditions are met the PROCESS is reactivated as if a signal in a
sensitivity list had changed. In Prog. 5.1 there is a WAIT without a condition.
This suspends the PROCESS for ever. PROCESSes may contain IF clauses
as indicated, and also CASE and LOOP clauses as will appear below.

An important difference between VHDL and a conventional program-
ming language should be noted. In a programming language there is a
strong concept of'control flow.' A 'main program' is in overall control, but
passes that control temporarily to a sub-program - procedure, function etc.
There may be a whole hierarchy of such sub-programs but only one can be

Prog. 5.3. ARCHITECTURE of an AND gate.

ARCHITECTURE and_2 OF 2_input_and IS
BEGIN

and_gate : PROCESS (x, y) --'and' is a reserved word
VARIABLE p : BIT;

BEGIN
p := x AND y;
IF (p = T ) THEN z < = p AFTER tplh;

ELSE z < = p AFTER tphl;
END IF;

END PROCESS;

END and _2;
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operating at any one time. In a circuit all elements are operating at all times
and this must be reflected in the hardware description language. In VHDL
there is no master control. All sub-programs (ENTITIES, PROCESSes,
FUNCTIONS, PROCEDURES) can be active at the same time and
without reference to any of the others. Interactions are controlled by the
network connections and by the passage of simulated time.

Prog. 5.4 shows another way of testing the AND gate. A generalised
clock generator is defined. The ENTITY clock_gen has three GENERIC
parameters which specify the mark (T), and space ('0') of the clock
waveform and a parameter, stop, which causes the waveform to end. The
associated ARCHITECTURE has several features.

• NOW is a VHDL variable for current time.
• The signal 'clock' can be set more than once in the same statement.

In this case it is set to '0' immediately (after one 8t) and to '1' after
the space period.

• The parameters of WAIT FOR and other similar clauses can be
expressions - in this case the sum of mark and space.

The clock generator will be entered at time zero. A full cycle is executed.
The current time, NOW, is then tested against stop. If NOW is less than
stop a complete further cycle is executed, even if stop is NOW+1. When
NOW is greater than stop on this test, control passes to an infinite WAIT
which ends the operation of this PROCESS. The infinite WAIT must be
present since otherwise there will be a path through the PROCESS without
a sensitivity list or a WAIT, which is incorrect.

The 'system' for testing the AND gate is the ENTITY test_and with the
ARCHITECTURE t_and. Two COMPONENTS are used, namely 2_in-
put_and and clock_gen. Two instances of clock_gen, c_gen_l and c_gen_2
are created. One of these will be set to run at half the speed of the other.
Hence, if stop is set sufficiently large, all four possible inputs will be
generated. Values of the GENERIC times must be supplied in the
ARCHITECTURE t_and, since it is possible to configure the system
without a CONFIGURATION section. The most general and flexible
system of setting GENERICs is shown. The values set by the CONFIGUR-
ATION con_t_and of the system will override those set in the ARCHITEC-
TURE t_and. These values are shown as mark = space = 50 ns for c_gen_l
and 100 ns for c_gen_2. In both cases stop is set to 200 ns, sufficient for the
four phases. The definition of 2_input_and in Prog. 5.3 is a general one, so
the CONFIGURATION in Prog. 5.4 must set the actual values of tplh and
rphl. Prog. 5.4 is one of several possible ways of achieving the required ends
and is believed to be the most general.
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Prog. 5.4. Test of a sub-circuit; a 2-input AND gate.

ENTITY clock_gen IS
GENERIC (mark, space, stop : TIME);
PORT (clock : OUT BIT);

END clock_gen;
ARCHITECTURE elk OF clock_gen IS
BEGIN

PROCESS
BEGIN

IF (NOW < stop) THEN
clock < = '0,' T AFTER space;
WAIT FOR (mark + space);

ELSE WAIT;
END IF;

END PROCESS;
END elk;

ENTITY test_and IS
END test_and;

ARCHITECTURE t_and OF test_and IS
COMPONENT clock_gen

GENERIC (mark, space, stop : TIME := 1 NS);
PORT (clock : OUT BIT);

END COMPONENT;
COMPONENT 2Jnput_and

GENERIC (tplh, tphl : TIME := 1 NS);
PORT (x, y : IN BIT; z : OUT BIT);

END COMPONENT;

SIGNAL a, b, c : BIT;

BEGIN
c_gen_l : clock_gen
PORT MAP (a);
c_gen_2 : clock_gen
PORT MAP (b);
gate : 2_input_and
PORT MAP (a, b, c);

END t_and;

CONFIGURATION con_t_and OF test_and IS
FOR t_and

FOR c_gen_l : clock_gen USE ENTITY WORK.clock_gen(clk)
GENERIC MAP (mark = > 50 NS, space = > 50 NS, stop = > 200 NS);
END FOR;
FOR c_gen_2 : clock_gen USE ENTITY WORK.clock_gen(clk)
GENERIC MAP (mark = > 100 NS, space = > 100 NS, stop = > 200 NS);
END FOR;
FOR gate:

2_input_and USE ENTITY WORK.2_input_and(and_2)
GENERIC MAP (tplh = > 15 NS, tphl = > 23 NS);

END FOR;
END FOR;

END con_t_and;
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5.5 More general modelling facilities
The VHDL PROCESS also permits the use of a number of other

control structures. Some of these are probably of more use in designing
element models than in modelling the setting of primary inputs to a
network. Nevertheless, in the work of design validation, the ability to alter
the course of a simulation under the control of the results being achieved is
very useful. It is totally useless for testing purposes, of course.

5.5.1 WAIT
When simulating some structures, it is more convenient to set a

sequence of actions going and then to wait for the network to reach some
predefined logical state. For example, a test sequence for a counter might be
written without knowing how long it would take to count through all its
states. It is more convenient to let the clock run until the counter reaches its
final state - say all ones. VHDL has a construct of the form

WAIT UNTIL < boolean expression >

where, in this case, < boolean expression > would be all the counter bits
being '1'.

Such a test is extremely dangerous in this form. Remember that the
intention is to check a design which may contain faults, whether in concept
or in execution (typing mistakes!). Such a fault may well result in < boolean
expression > never becoming true. To prevent the simulation running for
ever a construct

WAIT FOR <time expression >

should be included. <time expression > is a time that is long enough to
allow correct operation plus a bit to cover a small error in estimation of the
time required and/or get a better view of a fault if one occurs. It should be
small enough to prevent undue waste of computational resources when
something is seriously wrong.

It is also possible to write

WAIT ON < signal list >

Any changes of any signal in < signal list > will cause the WAIT to expire.
It is worth noting that a PROCESS with a sensitivity list has an implicit
WAIT ON immediately prior to the END PROCESS; statement. The
< signal list> is the PROCESS sensitivity list.

For full generality, a single WAIT statement can contain all three types of
condition. It will expire as soon as any one becomes true.
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5.5.2 The LOOP statement
An alternative method of generating a clock signal is the LOOP

construct. Prog. 5.5 shows one example in which the clock is to run up to the
user supplied time, stop. When testing networks such as counters it may be
preferable to specify the number of clock cycles. Prog. 5.6 shows a possible
fragment. The loop counter, i, is declared by its use in the LOOP construct
and must not have any other declaration (in contrast to most programming
languages). Note that i can be counted up or down as is convenient.

In some cases it is useful to be able to abandon a loop if some condition
becomes true. VHDL provides two mechanisms for different purposes.

• NEXT WHEN < condition > ;
If the condition becomes true, the current iteration of the LOOP is
abandoned and the next begun. It is effectively a jump to a place
immediately prior to the END LOOP; statement.

• EXIT WHEN < condition > ;
This is effectively a jump to immediately after the END LOOP;
statement, thereby abandoning the LOOP altogether. Prog. 5.7

Prog. 5.5. Use of the LOOP construct.

WHILE (NOW < stop) LOOP
CLOCK < = '0,' '1' AFTER space;
WAIT FOR (mark + space);

END LOOP;

Prog. 5.6. Alternative LOOP control.

FOR i IN 0 TO 15 LOOP - or i IN 15 DOWNTO 0 LOOP
clock < = '0,' T AFTER space;
WAIT FOR (mark + space);

END LOOP;

Prog. 5.7. Use of EXIT from a LOOP.

innerJoop : WHILE (NOW < stop) LOOP
clock < = '0';
WAIT FOR space;
IF (NOW > stop) EXIT; END IF;
clock < = T ;
WAIT FOR mark;

END LOOP;
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causes the clock to finish exactly on stop regardless of the value of
stop. Previous examples may behave unexpectedly if stop is
selected injudiciously.

If LOOPs are nested then the EXIT statement shown above applies to
the local LOOP only. However, a LOOP may have a label attached shown
as inner_loop in Prog. 5.7. If each LOOP in a nested set has a label, then, by
writing

EXIT <label> WHEN.. . .
the exit can be made to apply to the (non-local) LOOP with the name
< label > .

5.5.3 CASE statement
The CASE statement operates in a manner similar to that of any

programming language. Prog. 5.8 shows a multiplexer with a control
signal, c, data inputs a and b and output z. z is a copy of a if c is '0' and of b if
c is '1.' Each signal is of type BIT. Notice that as c can take one of only two
values, all the possibilities are enumerated. In the CASE statement all
possible values of the selector (c here) must be covered and there must not
be any duplicates.

The OTHERS construct is a catch all for a number of 'don't care' values
of the selector, or where the result is the same. The comment in Prog. 5.8 is
an alternative to enumeration of the T case of the selector. If a particular
selector leads to no action at all, the NULL statement can be used. If the
multiplexer used two selectors to select amongst four data inputs, care must
be taken in the way it is written. If a temporary value is used as a decode of
the two selectors then it must be a VARIABLE and not a SIGNAL. The
reason is as given earlier, that a SIGNAL is predicted, and hence the
PROCESS would use an old value of the decode to select amongst the data
inputs, rather than the new value.

Prog. 5.8. Use of the CASE statement.

mux : PROCESS (a, b, c)
BEGIN

CASE c IS
WHEN '0' = > z < = a;
WHEN T = > z < = b; -- or OTHERS z < = b;

END CASE;
END PROCESS;
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This chapter has given a flavour of the sort of facilities that are available
in a language which seems likely to be the de facto world standard for some
time to come. The emphasis of the chapter is on controlling simulations.
The facilities can also be used in writing element models. The description in
this chapter is far from being complete but should be a useful introduction
to the implementation of the type of facilities that are necessary for
controlling a simulation and for writing models.



Simulation algorithms

6.1 Introduction
There are two approaches to simulation.

• Simulate for functional correctness, ignoring all timing consider-
ations, and then use a timing verifier to check that time constraints
are met.

• Simulate in an environment in which the models include timing. As
one can never guarantee that all paths through the logic have been
exercised, it may still be advisable to use a timing verifier.

The simplest approach to simulation is to have a separate procedure for
every logical element in the network being simulated, and the connections
between the elements are then mirrored in the structure of the machine code
of the program. The entire structure of the network is thus mirrored in the
store of the machine doing the simulation. This takes up a great deal of
storage space, but is very fast in running, since there are no lengthy lists to
be searched and manipulated.

The amount of storage can be reduced by having only one procedure for
each element type, and a small amount of storage for every element holding
the element-specific data. In the previous description there is a copy of the
procedure for every element which uses it and hence no procedure entry and
exit as such. With only one copy each procedure requires a call. Procedure
calls need machine states to be saved temporarily and restored on exit. This
is expensive in CPU resources. Storage space is saved, since only one copy
of each different procedure is needed. The cost is the time taken in
procedure calling.

In the simplest simulator, all elements will have the same delay. The
number of gate evaluations can be considerably reduced by first examining
the structure of the network and putting gates in an appropriate order
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(Section 6.2). In this order it is guaranteed that, for a combinational
network, no gate will be simulated more than once per step. Special
arrangements are required to handle feedback. The particular case of
flip-flops is treated by regarding them as basic elements rather than as
devices with feedback.

This type of simulation is only useful for checking functionality, since all
element delays are the same. Since real gates have delays which depend on
the direction of change of the output (0 -+ 1 or 1 -• 0), to include real timing
would be impossible. It would mean that ranking would be dependent on
the data. Instead one constructs a set of 'event lists,' one for each time
interval. The details are given in Section 6.3. Briefly, when a change of gate
output is computed at time T, say, the change is placed in the list for time
r+8f, where dt is the gate delay. Lists are emptied in time order. When
items are taken off the list a second table is consulted to find which elements
are driven by this output.

The first type of simulator is designed to check logical correctness at
maximum speed. Timing accuracy is regarded as of little importance - it
will be checked in detail at a later stage in the design. It is an oblivious
simulator, as it evaluates every element whether it is essential or not. It is
usually run by compiling the network and is frequently known as the
compiled code simulator, since the structure is reflected in the machine store
and program. It is a static structure, allowing no timing detail to be seen.
Oblivious and compiled code do not necessarily go together. Following
convention, this type will be referred to as compiled code.

The most complex of the above simulators enables detailed timing to be
examined. It is based on sets of tables. The structure of the system being
simulated is reflected in some of these tables, and the dynamic timing in
others. It is referred to as a table based event driven simulator (or table based
or event driven for brevity). Such a simulator usually (but not necessarily) is
run interpretively.

Although a continuum of simulator designs is possible, and simulators
representing several points in the continuum have been implemented, this
book will limit itself to the simplest and the most complex as the basis of
the most important simulators in use. It will be seen that other features can
also be included in the event driven simulator, and that both compiled
code and event driven simulators can be useful when properly used by the
designer. It is important that the designer understands the strengths and
weaknesses of the tools available. As indicated earlier, they are aids, not
gurus.

There are other distinctions between the two. The compiled code
approach presumes a synchronous system is being simulated - that is a
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system consisting essentially of blocks of combinational logic separated by
clocked registers. The event driven approach can handle any system,
including asynchronous systems. In practice almost all systems have some
asynchronous connection, so special techniques are needed to handle these
in the compiled code case.

Section 6.2 describes the compiled code simulator in more detail and
Section 6.3 describes the event driven simulator. In each case a detailed
example is included. The reader may omit the examples if that detail is not
of interest.

6.2 Compiled code simulation

6.2.1 Basic procedures
The essence of a compiled code simulator is that the structure of

the system being simulated is reflected in the computer store, and that each
logical element has its own code. Timing is ignored in the simplest form.
Logical correctness alone is checked. Once the designer is satisfied, some
timing checks are made, usually with a different piece of software (timing
checks may be made earlier to find gross errors).

Consider the simple not equivalence circuit of Fig. 6.1. Suppose that, due
to the way the designer entered the data into the computer, G2 was to be
simulated first. Suppose the test architecture causes A to change from 1 to 0.
The output of G2, D, is evaluated. Some time later Gl is evaluated. If B is 1,
then C changes, and it will be necessary to recalculate D.

Since all delays are the same and detailed timing cannot be evaluated,
evaluating elements several times is wasteful. A reduction in work can be
achieved by a simple rank ordering of the gates.

To rank order the gates, proceed as follows, Fig. 6.1 being used as an
example.

Fig. 6.1. Simple example for simulation.
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• Primary inputs are assigned to level 0.
• Find all gates with inputs connected only to primary inputs. Gl is

the only such gate in the example, and is assigned to level 1.
• From the remaining gates, find those whose inputs are connected

to levels 0 and/or 1 only. G2 and G3 are assigned to level 2.
• Proceed further in this manner. At each step find gates not yet

assigned whose inputs are all assigned to a level. The level to which
a gate is assigned is one greater than the highest level of any of its
inputs.

Fig. 6.2 shows waveforms for some input changes as a result of simulating
Fig. 6.1 with the rank order just derived. Delays of one unit per rank are
shown in order to indicate the ranks. The model of the gate is a two-input
NAND. The inputs A and B are initially 0. The level 1 gate(s) is simulated,
giving a 1 at C.

G2 is simulated next, followed by G3 (G3 followed by G2 is equally
good). Each gives a 1 out (D and E). Finally G4 is simulated, giving a 0 at Z.

A now changes to 1. Gl is simulated, but, as B is still at 0, C does not
change. Next consider G2. Both inputs are now 1, so D becomes 0.
Simulation of G3 shows no change at E. Finally, in level 3, G4 is simulated.
D is now 0, so Z becomes 1.

The reader should repeat this simulation for the remaining part of the
waveforms of Fig. 6.2.

It will be seen later that, with real timing, it is possible for a narrow pulse
to occur at D or E. This does not invalidate the use of the compiled code
simulator. Indeed, as a check on the logical correctness of the design, and

Fig. 6.2. Waveforms for Fig. 6.1.



6.2 Compiled code simulation 115

when used with a timing verifier (Chapter 8), it is particularly useful.
Modifications to the technique may find some short pulses but not all of
them. That is worse than none at all, since the user is often misled into
thinking that the checks are comprehensive. When there are no checks then
there is less likelihood of that. Thus the simplest technique is the best. This
simulator is known as a levelised compiled code simulator, or LCC.

The next two sections give some details.

6.2.2 Simulator structures
As with any simulator, data describing the interconnection of the

network must be held in a suitable memory. For each logical element it will
be necessary to hold data on inputs and outputs. It is preferable to hold
signal data in a separate table, so the element inputs and outputs will be in
terms of addresses in the table describing the network. Hence, if a signal is
an output of one element and the input of two others, it is recorded only
once and has to be modified in only one place when a change occurs, not in
three. For generalised logic elements this could be a very large number of
addresses - several hundred. As other logical elements might require only
two (e.g. an inverter), making every logic element fit the same sized piece of
storage would be very wasteful. Further, whatever number was chosen it is
certain that some user would want a few more.

There are two solutions to this. The first is to have a large pool of storage
and let each element have a list of addresses. The lists must be ordered in a
form known to the routine which is to compute the element output, the
evaluation routine.

A second solution is to restrict the size of the logic elements. In the
Yorktown Simulation Engine (YSE) (Pfister 1982, Denneau 1982, Kron-
stadt and Pfister 1982; Denneau et al. 1983), a simulator built in hardware
by IBM, the elements are limited to four-input one-output devices. Other
simulators allow only three inputs. Libraries of more complex elements in
terms of these basic devices are available. Thus only five addresses are
needed per element in the YSE and all are provided for every element. There
will still be some wastage, but it will be strictly limited. The YSE structures
can equally well be put in software and are a useful example of how a
compiled code simulator can be constructed.

Each element in the network can be represented as a record holding

• the address of inputs and outputs
• the function.

This is described in the YSE as the instruction memory.
The connectivity of the network is implied in the addresses of the signals.
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The elements must be placed in an order implied by the levelising process.
Hence the first element evaluated must be at level 1. The levelising process
implies that the output of this element cannot be used in level 1. More
generally, the output of an element at level N cannot be used in any level less
than N +1 . Thus the order of evaluation within a level does not matter. The
input values used in evaluating an element in level N will always be the up to
date values from level N— 1 or earlier.

A second block of memory is assigned to values of the signals. This can be
in any order. The network compiler will ensure that connectivity of the
network is implied by signal addresses in the 'instruction memory.' These
signal addresses refer to the data memory.

6.2.3 Detailed example
Table 6.1 shows a possible structure of the instruction memory for

Fig. 6.1 and Table 6.2 shows the data memory. Table 6.1 is arranged in level
order as indicated in the comment column. Primary inputs A and B appear
first as they are at level 0. The first line for A contains an address in the data
memory, 5, where the value of signal A is to be found and a flag bit set to 0.
The flag implies that the next line is the function of the element, in this case
primary input. No evaluation is required. The function line is always the
last line for the element, implying that the next line is a new element if there
is one. The next two lines of the instruction memory are similar for B.
Following that are four lines relating to gate Gl. The first line is the address,
3, where the value of the output is stored in the data memory. The flag is a 1,
implying that the next line also belongs to Gl. Single output elements are
assumed in this description, so the second line contains the address of an
input, as does the third line. As an aid to the reader, the comment columns
in Table 6.1 indicate the signal in Fig. 6.1 to which the line in the table refers.
The flag in the third line of Gl is 0, indicating that the next line is the last for
this gate. The function in that line is two-input NAND. The remaining
gates follow similarly.

In the data memory (Table 6.2) it is assumed that all signals are initialised
to the 'unknown' value X. The evaluation process starts at the beginning of
the instruction memory. The primary inputs are obtained from a VHDL
PROCESS in a test bench architecture (Fig. 5.1), or from an equivalent
external source. Address 1 of the instruction memory is read and address 5
of the data memory set to 0. Similarly with B, data memory address 1 is set
to 0. Table 6.2 shows this at period 1 level 0. The function is 'primary input'
in both cases, so no evaluation is needed.

The next read of the instruction memory is for GL The input addresses in
the data memory are seen to be 5 and 1, which are both read. They are 0.
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Table 6.1. Instruction memory for Fig. 6.1. Note: blank lines for readability

only

Level

Level 0

Level 1

Level 2

Level 3

Comment
Element/signal

Input A
function

Input B
function

Gl output C
input A
input B
function

G2 output D
input A
Gl output C
function

G3 output E
Gl output C
input B
function

G4 output Z
G2 output D
G3 output E
function

Addr

5
PI

1
PI

3
5
1
NAND_2

2
5
3
NAND_2

4
3
1
NAND_2

6
2
4
NAND_2

Data
Flag

0

0

1
1
0

1
1
0

1
1
0

1
1
0

Table 6.2. Data memory for Table 6.1 and Fig. 6.1. Only changes shown for

clarity

Address Signal 0

Period 1
level

1 2 3 0

Period
level

1 2

2

3 0

Period
level

1 2

3

3 0

Period
level

1 2

4

3

1
2
3
4
5
6

B
D
C
E
A
Z

0
X
X 1
X
0
X

1

1
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The gate is evaluated according to the function (NAND). This is usually a
simple look-up table for an LCC simulator. The instruction memory
indicates that the output of this gate (C) is at line 3 in the data memory, and
the value is stored there (Table 6.2, period 1 level 1).

The system then steps through the instruction memory. G2 inputs are in
lines 5 and 3 of the data memory and have the values 0 and 1 respectively.
The output, D, is 2, therefore, and is placed in line 2 of the data memory
(address read from G2 output line in Table 6.1). Subsequent gates are
evaluated with the results shown in Table 6.2. When the system reaches the
end of G4, all elements have been evaluated once and once only. A new set
of primary inputs is now set and a new clock period commences. Table 6.2
shows the effect of three changes of the input, A to 1, B to 1 and A back to 0
as shown in Fig. 6.2.

6.2.4 Handling feedback
One problem that has to be solved is what to do with feedback.

Consider the simple R-S flip-flop shown in Fig. 6.3. The signals R and S are
both level 0. Gl is at a level one greater than the level of G2 output. G2 is at
a level one greater than the level of Gl output. This is a deadlock situation.

The way to deal with this is to break the feedback loop. Suppose that the
second input of Gl is disconnected from Q and treated as a primary input at
level 0 and with unknown logic value. The feedback loop is now broken as
shown in Fig. 6.4. When the circuit is simulated, Gl is evaluated at level 1,

Fig. 6.3. Simple R-S flip-flop.

R,

Fig. 6.4. R-S flip-flop redrawn with feedback broken.

NQ
Q
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Table 6.3. Simulation of Fig. 6.4

119

Signal Period 0 0

Period
level
1

1

2 0

Period
level
1

2

2 0

Period
level
1

3

2 0

Period
level
1

4

2

S
R
Gli/p
Q
NQ

1
1
X
X
X

0
1
X
X
X

0
1
X
X
X

0
1
X
1
X

0
1
1
1
X

0
1
1
1
0

0
1
1
1
0

0
0
1
1
0

0
0
1
1
1

0
0
1
1
1

1
1
1
1
1

1
1
1
1
0

1
1
1
1
0

Table 6.4. Alternative levelising - both feedbacks cut

Period 1 Period 2 Period 3 Period 4 Period 5
level level level level level

Signal Period 0 0 1 0 1 0 1 0 1 0 1

s
R
0
NQ

1
1
X
X

0
0
X
X

1
1
1
1

1
1
1
1

1
1
0
0

1
1
0
0

1
1
1
1

1
1
1
1

1
1
0
0

1
1
0
0

1
1
1
1

and subsequently G2 at level 2. Table 6.3 shows such an evaluation. S and R
start at 1 and Q and NQ are unknown, X. Primary inputs are shown bold.

Suppose S now goes to 0. Level 1 is not affected, but at level 2, Q is forced
to 1. As the feedback loop is broken, nothing further occurs. However, note
that the inputs to Gl are now known, so further simulation should take
place. Thus the feedback signal is a level 0 signal. Another cycle of
simulation takes place causing NQ to become 0 in level 1. There are no
changes at level 2. The simulation does take place.

In Table 6.3, period 3 shows what happens when R goes to 0. NQ is
forced to 1 at level 1, and, as S is already 0, Q remains at 1, so there is no
change at level 2. Again, the simulation takes place.

In period 4, R and S both return to 1 at the same time. At level 1 NQ is
driven to 0. This zero causes Q to remain at 1 in level 2. This will always be
the case with this simulator. However, in a real circuit it is not known which
state the flip-flop would assume. The user is warned that such misleading
results can be a feature of simulation. Part of the test program generation is
ensuring that such circumstances are properly separated and tested.

An alternative levelising is to break both feedback paths and regard both
gates as level 1. Table 6.4 shows the effect when S and R are both 0 and go to
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1 simultaneously. In period 1, Q and NQ become 1. S and R now go to 1. As
all gate inputs are 1, Q and NQ go to 0. Both gates now have a zero input, so
outputs change to 1. An oscillation is set up.

In all simulators there is a danger of oscillation in networks involving
feedback. This example shows that the LCC simulator can handle matters
reasonably if care is taken. It would seem that a feedback loop should be
broken only once, but there may be many loops in a large system, and all
must be broken. There may be problems ensuring that feedback loops are
broken just once in such systems.

This hints at a problem with any simulator. If the logic is correct, the
feedback loops can be broken. Oscillations should be detected under some
input conditions if a loop remains unbroken. Such conditions may result
from a fault in the design which introduces feedback where it was not
intended - for example as the result of a misspelt signal name on data entry.
This is clearly a method of finding design faults. However, these faulty
oscillations must be distinguished from the proper oscillations of clock
signals.

Arguments such as those above lead to the conclusion that LCC
simulators should only be used with synchronous systems such as that
illustrated in Fig. 6.5. Signals on the input to Ra are assumed to have settled. A
clock signal (or its effect) moves these values to the output of the register as a
level 0 simulation. The combinational logic, Y, is now simulated in levelised
form. Y must contain no feedback loops. Once complete, a second 'clock'
moves the output of the combinational logic to Rb, and new inputs to Ra.
Feedback from Rb to Ra is allowed, of course, since the registers have the effect
of breaking the feedback loop during any one phase of the simulation.

Fig. 6.5. A synchronous system.

Combinational
logic

Y

Combinational
logic

Z



6.2 Compiled code simulation 121

If the registers are latches (pass data when the 'clock' is in one state, stop
it when the 'clock' is in the other state), some modification to this structure
will be necessary, but the simulation will then work. If some blocks of logic
are known to be stable for half of the clock period, it may be possible to
reduce the amount of computation by separating memory into two parts
and only scanning one part in each half clock period.

The problem is that no system is completely synchronous. This leads to a
need for very careful examination of the asynchronous parts by a skilled
designer, or a need for simulation by a different type of simulator. In spite of
this, the LCC simulator is a very powerful tool, and is in full use by very
large sections of the industry.

The compiled code simulator runs very fast, since the code traces the
links between elements, and time is ignored (the significance of this remark
will appear later). Speed can be further improved by removing buffers and
inverters at 'compile' time, since buffers have no logical effect, and
evaluations use boolean equations which can take into account any
inversions. On the other hand, compilation times can be quite long and
must be included in the run times. Maurer (1991) claims 70% of the time is
in compilation. Any change in network or devices requires a full recompila-
tion. This is not true of the event driven simulator (see below).

6.2.5 Some comments
At this stage it is as well to be aware of several matters.

Every gate is evaluated every time any level 0 signal changes value. For
synchronous logic this corresponds to the activity in one clock period of the
system. Where the setting of a register causes no change, it might be
possible to reduce the work by not evaluating the following block of logic.
However, this would add to the control of the simulation and might save
little. After all, a system in which a block of logic is idle for a clock period is
designed to run inefficiently. On the other hand, workers at Hitachi
(Takamine et al. 1988) have suggested that 'clock suppression' can result in
considerable savings with an event driven simulator (see next section). With
multiphase latched systems, simulating a section of logic where the clock is
inactive is clearly wasteful of resources.

A 'time period' as applied to an LCC simulator generally refers to the
clock period of the synchronous logic and not to the simulation of one level.
As every logical element is evaluated in this time period, the activity is said
to be 100%. Indeed, in one design where there was some limited and strictly
controlled feedback, the authors claimed the activity was more than 100%!
(Wang et al. 1987). When the event driven simulator is considered in
Section 6.3, real timing is introduced. Time steps are much less than a clock
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period, and hence the number of elements that require evaluating is much
less than 100% - typically 1% or less. However, for the same piece of logic
and same test patterns, there are many more time steps. Many authors are
unclear on this point and frequently make improper comparisons. In
comparing the two methods of simulation, one must be clear as to what is
being compared.

6.3 Event driven simulation

6.3.1 Introduction
A compiled code simulator models the logical operation of a

system, but ignores the timing. The models for elements can be very simple,
since the problems of precise timing and events overtaking one another (see
Chapter 7) do not arise. An event driven simulator is capable of modelling
time at a very detailed level. In a compiled code simulator, a 'time step' is
equivalent to a clock period. In a clock period the activity can be very high.
The strength of an event driven simulator is its ability to provide detailed
timing. The timing units will be fractions of a gate delay. Hence there are
many time steps in a clock period, and the number of gates requiring
evaluation in each of these steps will be much less than those requiring
evaluation in a full clock period. Activity of less than 1% is quite normal,
and 20% would either be very high or a rather special design.

A compiled code simulator evaluates every logical element at every time
step regardless of whether there is an input change or not. Evaluating every
element at every time step with activity of, say, 5% is very wasteful. An
event driven simulator evaluates a particular element 'on demand' - only
when an input changes. However, the evaluation of a gate with in-line code
in an LCC simulator is very fast. The event driven simulator has to extract
data from tables, so many more machine instructions are needed. Even with
the same gate models as an LCC simulator, the activity needs to be less than
about 1 % for the event driven simulator to be faster. It must be emphasised
that the primary advantage of the event driven simulator is not speed, but
timing accuracy. In practice, the gate models are much more complex than
those needed for zero or unit delay simulation of the LCC simulator. In
these circumstances, the notion of unit delay event driven simulation as
proposed by a number of authors is not very sensible, at least in the opinion
of this writer. Someone quoted a speed gain for unit delay simulation in an
event driven simulator of less than a factor of two.

Fig. 6.6 outlines the operation of an event driven simulator. The
following describes what happens without explanation. The explanation
will appear in subsequent sections.



6.3 Event driven simulation 123

The simulator assembles potential output changes or events in order of
the time at which they are expected to occur. At a given time, T, the
simulator first examines any external drive for the primary inputs and adds
drives for the current time to the events in the main event list. Thus primary
inputs are treated as outputs of pseudo-logic elements as in the test bench of
Fig. 5.1.

The simulator then works with the set of events for time T. An event is
extracted from the list. The event data includes an address in the fan-out
table. Starting at this address, the fan-out table first contains a pointer to
the output driver. The value of this output signal is updated. Subsequent
fan-out table addresses point to element inputs driven by the current event.
For each of the driven elements in turn, the data is extracted from other
tables, the element type is determined and the model evaluated. Outputs
will be predicted to occur some time in the future, St say, and these will be
added to the event list for time T+ 8t. It will be seen later that these will be
passed on even though there may appear to be no change. For multiple
output elements, there will be multiple predictions, each with its own value
of 6t. For different element types, the values of 6t will also vary. Thus there
will be many different values for 5t, so there must be many sets of events;
one for each value which dt may assume.

The procedure is repeated for each event at this time. When all have been

Fig. 6.6. Outline flow of an event driven simulator.

Time = 7 = 0
Repeat

While (events for time T in test program)
place event into main set for time T

Repeat (with set of events for time T)

extract event
Repeat

find a fan-out from fan-out table
extract data for affected element
evaluate affected element model
Repeat place predicted output in set for time T+ 6t
Until no more outputs

Until no more fan-outs

Until no more events

Increment T

Until (all event sets are empty AND end of test program)
OR run out of computing time.
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processed, the current time frame is ended. Time is incremented and the
process repeated until the end of the simulation. The reader may find it
useful to refer to Fig. 6.6 from time to time in what follows.

6.3.2 Basic procedures
The outline structure of an event driven simulator is shown in Fig.

6.7. There follows a description of the operation in general terms. An
example with some typical figures for a small circuit will be found in Section
6.4. Readers might find it helpful to re-read this section in parallel with
Section 6.4.

The network memory contains the state of the network being simulated in
order of network element. Each record in the structure contains the state of
all inputs and outputs of one logical element together with a reference to the
relevant model. When the input of a particular element changes, all the data
relating to that element is passed to the evaluation routine for that element.
This data includes the 'new' input and output states, the 'old' states which
are not being changed, and possibly those which are. It also contains a
unique identifier for each output known as the fan-out index, FOI. This will
be used later as an address to a table, the fan-out memory, FOM,
containing information on where to find the inputs which are driven by that
output.

The effect of an input change is evaluated by the evaluation routine and
output predictions forwarded to the event memory. The model being

Fig. 6.7. Basic event driven simulator.
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evaluated knows the delay from input to output for the element. This may
be different for different input and output combinations. The delay, 5t in the
previous paragraph, is forwarded to the event memory.

All output predictions must be forwarded to the event memory, even if, at
this stage, there appears to be no change. Consider the logic element and
waveforms shown in Fig. 6.8. At time 0 input A goes to 0, and the evaluator
predicts that the output will change to 0 at 12 time units ahead, say. This
prediction is placed at time T+12 in the event memory lists. At time 5,
input B goes to 1, and a prediction that the output will change to 1 after 9
time units is made, i.e. at time 14. The output at time 5 is already 1, and it is
tempting to throw away this prediction. However, a prediction for a change
to 0 has already been made, but is not known to the evaluation routine,
since this is shared with other elements of the same type. If the prediction
made as a result of B changing is thrown away, the change of the output to 1
at time 14 will be lost and the final state of the output will be 0, incorrectly.
Thus all predictions must be sent to the event memory regardless of the
current state of the output. The reader will find many descriptions of event
driven simulation in which events are forwarded to the event memory only
when current and predicted outputs are different. Such a simulator will not
handle the situation just illustrated.

Note that there are alternative ways of achieving this effect. One might be
to place time markers in the network memory. However, the mechanism
above can be used for other purposes and so the author believes it is the
more general and useful method.

Fig. 6.8. Need for prediction at time 5.

U
12 14
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The event memory is a list of all predictions in time order. This could be a
single linked list in which records contained fields for value, fan-out index
and absolute time. To insert a prediction, the time fields of the list would be
searched to find an appropriate place to insert the new event. However, the
total number of events in the memory for a reasonable sized piece of logic
will be very large, and hence finding the place at which to insert an event
could take a long time.

The usual approach is to form a list of lists in time order, Fig. 6.9. The
first list is a set of pointers to the event memory. There is notionally one
pointer for each time interval from current time plus one. This could be a
very large number. For any given simulation, once can assume that the vast
majority of element delays are less than some number of time intervals - say
1000. Thus one might limit the number of pointers to 1024, and re-use them
at every 1024 time steps. The list of pointers is thus a circular list, and is
called a time WHEEL or chronwheel. The wheel itself is an array of pointers
and hence is accessed as indicated in Fig. 6.9. Searching is not required.
Clearly provision needs to be made for the occasional very long delay. This
will be discussed later.

Each pointer in the time wheel indicates the address of a list of events that
has been scheduled for that time, Fig. 6.9. Each list must be long enough to
hold the maximum number of events for any time interval. This cannot be
predicted. Furthermore, the lists for the times furthest ahead are likely to
have relatively few events. This is a very poor use of store and would reduce

Fig. 6.9. Time wheel and event memory.

Event memory
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the size of the network that could be simulated with given resources, or
increase disc thrashing and hence simulation time.

An alternative is to use a linked list for each time slot in the time wheel.
Each record in this list can be drawn from a large pool of memory. It is only
necessary to provide sufficient store for the sum of all the event lists, and
there is much less wastage.

The event memory consists of a series of records as shown in Fig. 6.10.
Each record holds the predicted value of a signal, the fan-out index (FOI)
and a pointer. When an element evaluation wishes to schedule an event, it
sends data to the event memory. The delay, 8t, is added to current time, T,
and the pointer at T+ ht read. The new event is added to the list indicated
by the pointer. If this pointer is null (there are no events scheduled for this
time slot as yet) it picks up a 'free' event memory address from a list of
unused locations ('free list'). Suppose the location found from the free list is
31 (Fig. 6.11 (a)). The predicted value of the signal, val(a), and its fan-out

Fig. 6.10. Format of an 'event' in the event memory.

Value Fan-out index Pointer

Fig. 6.11. Updating the time wheel and event memory.
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val(b) | foi(b) 31
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index, foi(a), are placed in record 31. The pointer of the event memory
record is set to null and the time wheel pointer set to the event memory
address, 31.

Fig. 6.1 l(b) illustrates the case where the pointer in the time wheel is not
null. It is 31, and points to the line in the event memory containing val(a)
and foi(a). The pointer of record 31 is null as this is the only event in this list.
A new event for this time is to be scheduled. The next location in the free list
is 137, say. The pointer, 31, is placed in the pointer field of line 137. Line 137
now points to line 31. val(b) and foi(b) are placed in the other fields of line
137. The time wheel pointer is set to 137. There are now two events in the set
for this time, the new event having been added to the front of the list. The list
is followed from the time wheel value of 137. The record 137 holds the
pointer 31, and the record 31 has a null pointer indicating the end of the list.
The order of events in a particular time slot is not important.

The reason for keeping a free list is that the events are placed in successive
locations in the event memory as they arrive, but these are not ordered in
time. When events are removed in time order, the free locations are
scattered at random. To tidy this up would cause unacceptable slowing of
the simulation.

Evaluation of events will continue until all elements scheduled for the
current time slot, T, have been evaluated. The current time pointer is
incremented to T+1 (Fig. 6.9). If the new time wheel pointer is not null the
event memory location to which it points is read. Return to the example of
Fig. 6.11 and recover the event from the time slot previously filled, T say.
The time wheel pointer is 137. The record at location 137 is read. The
pointer value, 31, is placed in the time wheel and the address 137 added to
the end of the free list. The event [val(b), foi(b)] will be processed and the
program then returns to see if the time wheel pointer at T is null. As it is not,
the (a) event will be processed, the T pointer set to the pointer from
location 31 - null - and address 31 returned to the free list. On the next
return to the time wheel, the pointer at T is null, so all events for this time
slot have been passed on.

Notice that the events are withdrawn from the event list in reverse order
to that in which they were placed there. It is axiomatic that all events in a
given list take place at the same time and the order of processing is
unimportant. If the order is important then some 'splitting' of time slots is
required. The function of deltas in VHDL is to force these extra time slots.

It will be appreciated that all events scheduled are for signals which are
outputs of logical elements. To determine which elements to evaluate in the
new time slot, it is necessary to know which circuits are driven. Each output
signal has an entry in the fan-out memory, Fig. 6.7. This is a table
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containing details of where the output is in the network memory. Fig. 6.12
illustrates this. A NAND gate drives two loads, a flip-flop and a logic block
called FRED. Suppose the record in the network representing the NAND
gate begins at address 258. The output is, say, the third entry in this record,
so is at location 258 + 2 (not 3!), designated 258.2 in the diagram. The
fan-out index of this output is 567, say. This is an address in the fan-out
memory. On reading line 567 of the fan-out memory the address 258.2 is
found. It will be appreciated from the example of Fig. 6.8 that the output of
the gate could not be changed at the time of evaluation. This entry in the
fan-out memory enables that change to be made.

A flag in the fan-out memory is set, indicating more data relevant to this
signal. The next line has value 9356.7, which is the eighth entry of record
9356, probably 9363, of the network memory. This is the input of the circuit
element FRED. The third entry, line 569 of the fan-out memory, indicates
that this NAND gate also drives the fifth entry of record 83, probably 87, of
the network, the D-input of a flip-flop. The flag of this line is 0, indicating no
more fan-outs of this NAND element.

Notice that this table holds the connectivity of the network.
It will be realised that the number of events leaving the fan-out memory

for the network memory is larger than the number arriving. Conventional
wisdom suggests that each output drives 2.5 inputs on average, so for each
event in there are 3.5 sets of data out, for the output and 2.5 inputs.

Fig. 6.12. Fan-out memory.
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The state table (Fig. 6.7) holds the current state of all outputs, and is a
copy of those in the network memory. It is shown in Fig. 6.7 as a separate
table for convenience, but in most software implementations the data
structures would be constructed in such a way that there would be only one
copy, that in the network memory. When an event reaches this point, the
outputs are actually changing. Referring back to the example of Fig. 6.8, at
time 12 the state table value of C will be 1 and the predicted value 0. At time
14 the values are 0 and 1 respectively. Hence both events are real ones.

The situation where the result of the event at B in Fig. 6.8 causes a fast
response and cancels the event due to the input A is a more complex matter
and will be discussed fully in Section 7.3. The alternate case of the use of the
state table is illustrated in Fig. 6.13.

Input A changing to 1 causes a prediction that C will change to 1 at time
12. At time 5, B changes to 1, and causes a prediction that C will change to 1
at time 17. Note that, if the evaluator had made a comparison with the
output, this would still be seen as a change since the output change due to A
has not yet been recorded in the network memory because it could be
cancelled. At time 12, the first change is propagated to the elements driven
by C, which are evaluated since C in the state table, 0, is different from the
predicted event, 1. At time 17, the same predicted change is again found
from the list in the event memory for this time, but all driven elements have
already been evaluated for this value of input, and do not need to be
evaluated again as a result of this event. The output signal value coming
from the fan-out memory is compared with that in the state table. If they are
the same, there is no need to pass this event on. This not only saves the
average 2.5 evaluations. As all predictions from the evaluator must be

Fig. 6.13. Use of state table.
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passed on, it also saves this happening, and avoids an explosion of
unnecessary work. This is a factor of 2.5, since once activity has built up, the
number of predicted events must be the same as those passed on or the
situation of all inputs active or no inputs active will soon be realised.

If the output prediction is different from the value in the state table, the
event is passed on to the evaluation routines. The signal value in the state
table is updated. This is, therefore, a good place to detect changes and
report them to the output process and hence the user, since it is at this point
that predictions of potential changes are confirmed as real changes.

6.4 An example - a four-gate not equivalence
circuit
Consider the simple not equivalence circuit shown in Fig. 6.14.

There are just four two-input NAND gates and two primary inputs, A and
B. The gates are numbered in an arbitrary way. There are four memories of
interest (Fig. 6.7). These are each allocated an area of the real machine
memory. Addressing of the memories will be written in the form of base and
offset. For ease of reference, the first address, or base, in each memory will
be given in literal form, namely

NM network memory e.g. 10000
EM event memory e.g. 20000
FOM fan-out memory e.g. 30000
ST state table e.g. 40000

To find a particular item of data the offset is added to the base to give the
real address. Thus NM243 will be address 10243.

A 'network compiler' will construct the various tables. Gl is assigned to
line NM1 of the network memory as shown in Table 6.5, and consists of five
lines (compare with Table 6.1). The first contains the base address of data
relating to Gl in the fan-out memory as described below (the fan-out

Fig. 6.14. Simple not-equivalence circuit (Fig. 6.1).



132 6 Simulation algorithms

Table 6.5. Network memory for example of Fig. 6.14

Address

NM 1
NM 2
NM 3
NM 4
NM 5
NM 6
NM 7
NM 8
NM 9
NM10
NM11
NM12
NM13
NM14
NM15
NM16
NM17
NM18
NM19
NM20

Network memory

Data

FOM5
1
0
0
NAND_2
FOM8
1
0
1
NAND_2
FOM10
1
1
0
NAND.2
FOM12
0
1
1
NAND_2

Flag

/
1
1
1
0
1
1
1
1
0
1
1
1
1
0
1
1
1
1
0

Gate Signal

Gl
C
A
B

G2
D
A
C

G3
E
C
B

G4
Z
D
E

Comment

Other

data = FOI

data = gate type
data = FOI

data = gate type
data = FOI

data = gate type
data = FOI

data = gate type

index). The second contains the output value and the next two contain the
input values. Putting the output value before the input values has
advantages for multiple output elements, but is not of the essence here. The
last line contains the element type (or a pointer to the evaluation routine for
this element). G2 data follows, occupying lines NM6 to NM10 and the
others follow on. The outputs are also assigned to lines ST1 to ST4 of the
state table (see Table 6.8 later). The flag bit is always set to 1 except in the
last line of data for an element. Thus, in lines NM1 to NM4 of Gl, the flag
indicates that there is more data relating to Gl. The flag of 0 in line NM5
indicates that this is the last line of Gl and line NM6 will be the first line of
the next element.

The inputs A and B are set by a process in the test bench architecture in
VHDL or can be considered to be the 'outputs' of some external circuit.
They also need an entry in the state table and are assigned to lines ST5 and
ST6 respectively in quite an arbitrary manner. They could be placed in the
network memory as well, but that would serve no useful purpose. Of course,
the state table is not essential, since gate output data is duplicated in the
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Table 6.6. Fan-out memory for the example

Address

FOM 1
FOM 2
FOM 3
FOM 4
FOM 5
FOM 6
FOM 7
FOM 8
FOM 9
FOM 10
FOM 11
FOM12

Base

NM 1
NM 6
NM 1
NM11
N M . l
NM 6
NM11
NM 6
NM16
NM11
NM16
NM16

Fan-out

Data offset

2
2
3
3
1
3
2
1
2
1
3
1

memory

Flag

1
0
1
0
1
1
0
1
0
1
0
0

State table
address

ST5

ST6

ST1

ST2

ST3

ST4

Comment

Signal

A

B

C

D

E

Z

network memory. If there is no state table then the primary input data must
be in the network memory.

Arbitrary values such as 0 might be assigned to all values in the circuit.
Those shown in Table 6.5 assume that A and B are set to 0 and a
'simulation' has been run to initialise the gate outputs. Thus C, D and E all
become 1 since one input is 0, and Z becomes 0 since both inputs are 1. The
input values are also appropriately set.

Table 6.6 shows the fan-out memory (FOM). Primary input A has
arbitrarily been assigned to line FOM1. The two pieces of data in line
FOM1 are a base and offset to the place where A is used in the network
memory. Thus the first fan-out of A is to be found in the network memory at
line NM(1 + 2) = NM3 (see Table 6.5 comments). The flag is 1, indicating
another fan-out of A, which is found in the network memory line
NM(6 + 2) = NM8. The flag now indicates that this is the end of the data for
signal A. The data in the state table column gives the address of the signal in
the state table, which was specified above to be ST5 for signal A. Other lines
of the fan-out memory can be interpreted similarly. Thus, for Gl, the
output C is on line NM(1 + 1), and the two fan-outs on lines NM(6 + 3) and
NM(11 + 2) of the network memory.

It will be seen that the network memory describes the logical elements
and the fan-out memory their interconnection. The network can be
reconstructed from these two tables. The element type indicates to the
evaluator which evaluation routine to use. The evaluation routine knows
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the order of the data in the network memory and what to do with it.
The data structures used would be easier to handle if they were single

lines for each element. However, with bigger elements the lines would have
to be long enough to handle the largest element, which would be wasteful
for the majority of elements which were smaller. The type of structure
described can handle elements of any size at the cost of a flag and some
minor additional processing.

Suppose that the circuit has 'settled down' to the state shown in Table 6.5
and that simulation time is reset to zero. The element model includes a
delay such that an input change resulting in a 0 to 1 change at the output
will take 9 ns and the opposite change 5 ns (tpLH, tpHL respectively). At time
0 the test harness architecture causes input A to change from 0 to 1. Time
units are taken as 1 ns.

The fan-out index of A is known by the primary input controller to be
FOM1. The fan-out memory (Table 6.6) is accessed at line FOM1. The
state table address is read as line ST5 and the value is read from there as 0
(Table 6.8). Comparison of the new value of A, 1, with the value from the
state table shows the two to be different. The state table value is updated.
The network memory reference in line FOM1 of the fan-out memory is to
line NM(1 +2) = NM3. The value in line NM3 of the network memory is
updated and all the data for Gl, including its type, are sent to the evaluator.
This is lines NMl to NM5. As the second input (B) is still 0, the predicted
output is 1. This is not a change, but, as indicated in Section 6.3.2, it must
still be sent to the event memory. The delay to a 1 is 9 ns, so an entry is made
in the time wheel at time 9, Table 6.7. The time wheel pointer is set to EMO
and location EMO of the event memory is set to contain the value 1 and the
fan-out index of FOM5, read from line 1 of Gl in Table 6.5. This index is the
line in the fan-out memory that will be referenced to get the fan-outs later.
Table 6.9 shows the history of the free list. The event memory address used
is the address at the front of the list. This table should be consulted both
when building event memory lists and when processing the events of Table
6.7.

The flag in line FOM1 of the fan-out memory, which refers to input A, is
1, indicating that another gate input is driven by A. A further line is read.
This points to line NM(6 + 2) = NM8 in the network memory. The value on
that line is updated, and the data of G2 are sent to the evaluator. Both
inputs are 1, so the output is predicted to change to 0 at time 5. The next free
memory location in the event memory is at address EMI. The value in this
location is set to 0 and the fan-out index to FOM8, Table 6.7, found from
line NM6 of the network memory. The time wheel pointer is set to 1. Notice
that this event is 'earlier' than the previous one in the time wheel.
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Table 6.7. Time wheel and event memory for example

135

Time

0
5
9

14

100
105

114

119
123

200
209

214
218
223

Time
wheel
ptr*

null
EMI
EMO
EMI

null
EMI
EMO
EMO
EMI
EM2
EMI
EM2

null
EMI
EMO
EMO
EMI
EMO

val

0
1
1

0
0
1
1
1
0
1

1
1
0
1
1

foi

FOM 8
FOM 5
FOM12

FOM 5
FOM10
FOM12
FOM 8
FOM10
FOM12
FOM12

FOM 5
FOM 8
FOM 10
FOM 8
FOM12

ptr

null
null
null

null
EMI
null
EMO
EMI
null
null*

null
EMI
null
null
null

val foi

0 FOM 5

1 FOM12
1 FOM 8

1 FOM 5

ptr val foi ptr

null

null
EMO 1 FOM12 null

null

Time wheel pointer is the event memory address.

'This event must be removed by some means or there will be an error - see later.
Event memory location 2 is presumed to be recovered after location 1 when
processing time 114.

As the flag in line 2 of the fan-out memory is 0, there are no further
fan-outs of signal A. Time now advances to find the next event, which is at
time 5 in the time wheel, Table 6.7. It should be appreciated that this circuit
is very small and hence the time wheel is very sparsely used. Experiments on
large circuits suggest that, if the time steps are chosen not too small in
relation to the gate delays, then most time steps contain some events once
the initial build up has taken place. Indeed, this example illustrates the need
to match the time step to the smallest gate delays. With the figures given (5
and 9), a better match would not be possible.

At time 5 the time wheel pointer is EMI. Address EMI of the event
memory has a fan-out index of FOM8. Reading line FOM8 of the fan-out
memory (Table 6.6) finds the state table line ST2. Considering Table 6.8
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Table 6.8. State table for example

ST

addr
ST1
ST2
ST3
ST4
ST5
ST6

T

< 0
1
1
1
0
0
0

T 5

= 0

0

1

9 14

(1)

1

100 105

0

0

1

114

1
1
(1)

119 200 209

1

(1)

0
0

214 218 223

(1)
0

1

line ST2, it is found that the value is 1 prior to time 5. The value from the
event memory is 0, so there is a change. The value in line ST2 of the state
table is updated as shown in Table 6.8. The fan-out memory line FOM8
points to line NM(6 +1) in the network memory. This is the output of G2,
D, which is also updated. As this is an output, an evaluation is not required.
Line EMI is returned to the free list, Table 6.9.

Line FOM8 of the fan-out memory has its flag set, so a further line is
read. This points to line NM(16 + 2) in the network memory, an input of
G4. This gate must be evaluated. The data are read from lines NM16 to
NM20 of the network memory. The inputs have the values 1 and 0. The
evaluation predicts that Z will change to 1 in 9 ns, at time 5 + 9= 14.

Event memory location EMI was recovered when reading the event at
time 5, so this is the next available location, see Table 6.9. It is written with
the value 1 and the fan-out index FOM12 from line NM16 of the network
memory (G4). The time wheel pointer at time 14 is set to EMI, the event
memory location used.

The flag at line FOM9 of the fan-out memory is 0, so there are no further
fan-outs for this output, D, to be considered. Fig. 6.15 shows the
waveforms.

Time now advances to 9, the next slot with an event (Table 6.7). The time
wheel pointer is EM0 and event memory address EM0 is read. Address
EM0 is returned to the free list. Note that the free list is now EM0,2,3...
Event memory location EM0 contained the fan-out index FOM5 and value
/. Fan-out memory location FOM5 refers to state table location ST1,
which contains the value 1. This is the same as that from the event memory
so no further processing is required. In Table 6.8, a bracketed value is
shown to indicate that a comparison took place but there was no change.

The next event to be found is at time 14. The fan-out index is FOM12 and
line FOM12 of the fan-out memory points to line ST4 in the state table.
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Table 6.9. History of the free list

Time

Time

Time

Time

Time

Time

Time

Time

Time

Time

Time

Time

Time

0

5

9

14

100

105

114

119

200

209

214

218

223

Comment

Gl prediction at time 9

G2 prediction at time 5

recover EMI
G4 prediction at time 14

recover EM0 - no change

recover EMI - end

Gl prediction at time 105
G3 prediction at time 105

recover EM0
G4 prediction at time 114
recover EMI
G2 prediction at time 114
G3 prediction at time 114

recover EM2
G4 prediction at time 123
recover EMI
G4 prediction at time 119
cancel event at 123
recover EM0 - Z

recover EMI - end

Gl prediction at time 209
G2 prediction at time 209

recover EM0 - no change
recover EMI
G2 prediction at time 218
G3 prediction at time 214

recover EM0
G4 prediction at time 223

recover EMI - no change

recover EM0 - end

Free list

0, 1, 2, 3,
1 ,2 ,3 ,4 .

2 , 3 , 4 . . .

1 ,2 ,3 ,4 .
2 , 3 , 4 . . .

0, 2, 3, 4 .

1, 0, 2, 3,

0 , 2 , 3 , 4 .
2 , 3 , 4 . . .

0 , 2 , 3 , 4 .
2 , 3 , 4 . . .
1 ,2 ,3 ,4 .
2 , 3 , 4 . . .
3 , 4 . . .

2 , 3 , 4 . . .
3 , 4 . . .
1 ,3 ,4 . . .
3 , 4 . . .
2,3,4...
0 , 2 , 3 , 4 .

1, 0, 2, 3,

0 , 2 , 3 , 4 .
2 , 3 , . . .

0 , 2 , 3 , 4 .
1, 0, 2, 3,
0 , 2 , 3 , 4 .
2 , 3 , 4 . . .

0 , 2 , 3 , 4 .
2 , 3 , 4 . . .

1 ,2 ,3 ,4 .

0, 1, 2, 3,

4 . . .

4 . . .

4 . . .

4 . . .

4 . . .

Note: it is by chance that the free list ends in numerical order. It would not have
been so if the simulation had ended at time 14 or 119.



138 6 Simulation algorithms

That contains the value 0, and the value from the event memory is 1. This is
a change, so the state table value is updated, as is the value in line
NM(16+1) of the network memory (G4, Z). There are no fan-outs of this
signal and there are no more events in the time wheel, so there is no further
activity as a result of this change of A. The free list now reads EMl,0,2,3...

This would be the end of the simulation, but the primary input controller
applies a new change at time 100. This is B going to 1. Tables 6.7 and 6.8
and Fig. 6.15 give the details of what happens, as well as for a further change
of A later on. These will not be described in detail. There are, however,
several points of interest.

(i) The change of B results in output predictions for both Gl (C) and
G3 (E), and for the same time, 105. The first of these is for Gl (C)
(line NM3 of the network memory). The address at the head of the
free list is EMI, and this is set to the time wheel pointer. Value 0
and fan-out index FOM5 are placed in event memory location 1
(Table 6.7, T= 105 first line). Address EM0 is now at the head of
the free list.

The second prediction is made and placed in location EM0 in
the event memory. The time wheel pointer is copied to the pointer
of this location, and EM0 placed in the time wheel pointer (Table
6.7, T= 105 second line). The prediction of E for G3 is again 0 and
the fan-out index is FOM10 from network memory line NM11.

When time moves to 105 these two predictions result in three
more predictions, all for time 114. Table 6.7 shows how these are
handled.

-r
Fig. 6.15. Waveforms for example circuit and inputs.
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105 114 214
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(ii) Consideration of the potential changes at time 114 illustrates
another problem. The first indicates a change of E to 1. As D is still
0 (data not yet read) a prediction that Z will change to 1 at time 123
is made. However, on reading the D change it is found that Z is
predicted to go to 0 at time 119. Consideration of the circuit shows
that the change predicted for time 123 must not be allowed to
happen. The mechanisms described so far would cause a wrong
output. It is assumed that the event at time 123 is deleted after the
second event is read on processing 7= 114, and so the free list at
time 120 reads EM 1,0,2,3 ...

This problem is a consequence of there being two (or more)
changes of the input of a logical element at the same time, and there
being an evaluation of the element G4 for each change. There are
two solutions, both of which are required. For this specific case it is
sufficient if it can be arranged to evaluate each element not more
than once in each time slot. This is described further in Section
6.5.1. Note that yet another table is required.

The second solution is to remove the event at time 123. This in
turn requires knowledge that the event has been placed, followed
by a search of all event memory lists which might contain the false
prediction. Even though the number of lists to be searched is
restricted, and may be limited to one, with large circuits such a
search could take a long time, since linked list searches are
essentially serial in nature. In software on a single processor, it may
not be serious. Where an attempt is made to use parallel processors,
it is potentially disastrous. However, the use of unequal rising and
falling delays, as here, makes it necessary to have some such
mechanism. Chapter 7 on modelling will discuss this in more detail.

There are two further points. Fig. 6.15 shows a short pulse on E. This
would really occur, and care must be taken in the design process to avoid
such a waveform being used as a clock signal, for example. Referring back to
Fig. 6.2, it is seen that the 'logic only' LCC simulator does not predict this.

Secondly, for the input change at T= 100, all the outputs have changed
by time 119. It might be assumed at this point that the longest delay
through the circuit is 19 ns. As Fig. 6.15 shows, changing A (or B) to 0 at
200 ns will result in a 23 ns delay for the circuit to settle. This points to the
need for great care in the design of test programs. In fact, no real test
program could be expected to analyse all these race conditions, so there is a
need for timing verification. A glance at the circuit in Fig. 6.14 suggests that
the longest delay is three gates, and for the largest value this will be



140 6 Simulation algorithms

(2*9 + 5) = 23ns, rather than (2*5 + 9)= 19ns. This is a crude timing
verification but real circumstances are rarely as simple and it may well be
pessimistic in particular circumstances. The aim of a timing verifier is to
perform a full analysis of the circuit independent of the input patterns and
this is described more fully in Chapter &.

6.5 Some refinements

6.5.1 Affected component list and memory
As described so far, each input change is sent in turn to an

evaluation routine and the effect of the change determined. If two inputs of
the same logical element change at the same time step, then the routine will
be entered for each change.

• Such a case will require two predictions to be made. A suitable
model will do this (see below).

• On the other hand, it may well result in a situation where
contradictory predictions are made, as in the example at time 114.
Once a prediction reaches the event memory it is costly to remove
it.

• In the case of a flip-flop or register where the clock and data inputs
change together and the clock change is evaluated first, the wrong
prediction is made (this assumes zero set-up time. It will be seen in
the discussion of modelling that 'data' is a pseudo-signal, and that
this condition is, indeed, possible).

• In the case of complex elements, evaluation routines may be quite
long, and running them adds significantly to the time to simulate.
Entering the routine several times in one time step is most
undesirable.

What is required is a mechanism to scan all changes for a given time step
before any of them causes an evaluation. Fig. 6.16 is a revised version of Fig.
6.6. Before any evaluations are performed, all events are extracted from the
event memory and all fan-outs followed, so as to build a list of affected
elements. The changes are assembled in order of the affected elements - that
is, for example, in the order in which the elements occur in the network
memory. To do this, an affected components list (ACL) is set up between the
fan-out memory and the evaluation routines (Fig. 6.7). This is yet another
table of pointers, one for each record in the network memory. The address
read from the fan-out memory accesses the affected components list. The
ACL pointers point to locations in an affected components memory (ACM),
Fig. 6.17. The affected components memory will hold the value for each
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Fig. 6.16. Outline flow of simulator with ACL and ACM (Fig. 6.6
modified).

Time=r=0
Repeat

While (events for time T in test program)
place event into main set for time T

Repeat (with set of events for time T)

extract event
Repeat

find a fan-out from fan-out table
extract data for affected element
evaluate affected element model
Repeat place predicted output in set for time T+bt
Until no more outputs

Until no more fan-outs

Until no more events

Increment T

Until (all event sets are empty AND end of test program)
OR run out of computing time.

Fig. 6.17. Affected components list and memory.
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change and the position within the network memory record. It will also
have a pointer field. When a change arrives, the ACL is accessed. If it is null,
the next empty record in the ACM is found and its address placed in the
ACL. The value and offset of the ACM record will be set. If the ACL pointer
was not null, its value placed in the pointer field of the new ACM record.
Thus this new change is added to a linked list of changes, all of which refer
to inputs or outputs of the same logical element. This structure and
procedure is similar to the time wheel and event memory.

When all changes for the current time have been assembled, they are read
from the affected components memory. All changes for one element are
read by following the linked list, the start of which is the affected component
list record. The data is fed to the evaluation routine and the model
evaluated. This is repeated for all elements, but if the ACL pointer is null
there are clearly no changes for that element.

One refinement is necessary. Output changes have to be sent to the
network memory as well as input changes (unless the state table is being
used for that purpose). If an element has ONLY output changes, an
evaluation is unnecessary. To avoid such evaluations, a flag can be set in the
affected components list record whenever an input change is received, but
not for output changes. This may well be 'set' more than once, which does
not matter. It is unset on reading the list.

6.5.2 Time wheel overflows
In any sensibly arranged simulation, the smallest delay of interest

will be identical to the time step of the simulator. Under these circumstan-
ces, the vast majority of logic delays will be less than the span of the time
wheel. This will result from a combination of appropriate time scaling in the
simulator environment and the design of the simulator. However, there is
always the possibility of longer delays. A common possibility is an
instruction in the test program to delay the next primary input drive by 'a
long time'. This may result in a special event in the time wheel which will
reactivate the test program when this time delay expires. Another example
might be in a simulation of a telecommunications system where the
response from the line might be milliseconds but the logic element delays
are in nanoseconds. Suitable provision must be made for these cases.

One way to handle them is to create a time ordered linked list of events
which are scheduled to happen beyond the last time wheel slot (T+n — 1).
The records in this list will be similar to those in the event memory, but
must also include the value of time. Such time ordering is acceptable for
this list where it was not for the main set of lists, because it is expected that
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there will be few events placed here. Finding the right place to put in a new
event should not take too long. As simulation time advanced to the point
where the event at the head of the list is at time (T+ n— 1), these events are
transferred to the time wheel. Alternatively the time of the event at the
head of the overflow list could be compared with current time (7") and
taken directly to the fan-out memory along with those from the event
memory.

Another possibility might be to allow time to advance until the event at
the head of the overflow list is at some other value within the range T to
(T+ n — 1). Tis a possibility. The overflow list is then transferred to the time
wheel for all events up to (T+n— 1).

6.5.3 Wiring delays
The delay between the input of one logical element and the input of

those driven by it consists of three parts.

• The basic delay of the logic element. This is a function of the logic
element and is built into the model.

• Increased delay due to loading of the circuit. This is a function of
the input capacitance and resistance of the driven circuits and the
driving capability of the logical element. It is, therefore, network
dependent, and cannot be built into the logic model.

• Wiring delay. In some cases this can be incorporated with circuit
loading. In others the wire is resistive as well as capacitive (e.g.
polysilicon connections on an MOS circuit), and R-C lines behave
differently from simple R-C networks. On a PCB with high speed
logic, the connections must be treated as L-C transmission lines.
This is a function not only of the network, but of its layout. This
will not be known when early simulations are run.

The basic gate delay is built into the logic model. The loading effect could
be added as a parameter to the output delay of the model. This would be
held in the network memory, loaded with the rest of the network, and
passed to the model with the rest of the network memory data. One system,
from IKOS, uses load capacitance and slew rate constant (in nanoseconds
per picofarad) of the signals to calculate the extra delay (Fazakerly 1988).
This paper also points out that certain MOS circuits also need input delays
added to cater for the effect of slow input rise and fall times on element
delay. These can be added as indicated below for the wire delay.

A similar procedure might be used for wire delays. For the reasons just
explained, this is added to each input of each driven circuit. The model
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becomes more complex. Fig. 6.18 shows a two-input AND gate. The delay
on output is the basic gate delay enhanced by a second delay to represent
the effect of the load elements. These can be combined. The input delays
add two pseudo-nodes, each of which needs space in the network memory
and on each of which there are events. Thus there are more events in the
event memory and a larger state table.

An alternative is to add an extra time wheel and event memory between
the fan-out memory and the affected components list (Fig. 6.16). The
number of time intervals would be a good deal less than that used by the
main time wheel. Since the number of events passing round the simulator
loop is stable, the number of events might be expected to be about the same.
That is, the increase of 3.5 due to fan-outs is reduced by the state table
finding non-events.

The wiring delays are precalculated since they are constant for a
particular network. A table of delay per unit length for each type of wire
that might be used is held alongside the network compiler. The network
then supplies the length of each wire.

The designer of the simulator has to decide whether the cost of the
storage required in either case is worth the extra accuracy achievable. This
special time wheel would be bypassed most of the time, since the necessary
layout data would not be available. It would only be used for a final run.

6.6 Groups of signals

6.6.1 Usefulness and problems
All the descriptions so far have assumed individual signals. There

are many places in digital design where it is convenient to treat a group of
signals as a unit. Examples might include

• memory address signals,
• data buses in a processor.

Treating such groups as a unit leads to more compact data representations
and to a reduction in processing.

Consider the event memory of a signal, Table 6.7. This consists of a value
and a fan-out index. The fan-out index is an address and may well be 20 bits

Fig. 6.18. AND gate model with load and wire delays.

>—C
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or more. The value in a 46-value system will be at least six bits. Thus an
event memory entry will need to be at least 26 bits and probably longer.

Suppose several signals to be combined in a group. The group requires
only one fan-out index. If four values are packed into a 32-bit word, say, and
one additional word is used, the group requires just two words instead of
four.

Since the group is treated as a unit, it requires only one fan-out index. As
there is only one set of fan-out data per group, the storage requirements of
the fan-out memory are also reduced (or conversely a larger system can be
simulated with the same resources). Savings can also be achieved in the
network memory, but these are relatively minor. Finally, as the group is a
single unit, only one event has to pass around the simulator for each group
when several (many) signals can be expected to change at the same time.
Even though the data for a group is larger than that for an isolated signal, it
is much less than for a fully split group. Thus the simulator runs faster.

The primary problem with including groups of signals lies in the region of
the state table. It will be recalled that the state table shown in Fig. 6.7 is
mainly for convenience of description. Physically the data resides in the
network memory. In practice, both multiple output elements and groups
would cause problems if the state table were physically separate. These
problems are beyond the scope of this text.

For the present purpose, the problem to be solved is how to compare the
signal values from the event memory with those in the state table. It will be
noted that all that needs to be known is their equality or not. Thus it is
possible to compare several values at the same time. Suppose, for example,
the group values are packed four to a 32-bit word. A 32-bit comparator
giving equality (or not) can compare four values at once. Suppose that there
are 24 values in the group. The first four compare as being equal. An
inequality may still occur, so the next four values are compared. If they
compare as being not equal then the comparison process can be ended
immediately - the new and old sets of values of the group are different.

6.6.2 User-defined values
The reader may well wonder why a word such as 'bus' has not been

used for a group. The reason is that the representation of a bus is just one
use of this mechanism. It is, in practice, a very general facility.

As an example, suppose a floating point arithmetic unit is to be
simulated. This may well perform a series of functions on up to 80 bits
(double extended format as defined in the IEEE standard). A floating point
number consists of three portions. In a 64-bit (double) format these would
have one, 11 and 53 bits (total 65, one is not stored, but is needed in
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arithmetic). If each bit is represented in, say, five-value form, the simulation
will be most complex. Indeed, at some point this may well be necessary.
However, such complexity is only necessary when doing detailed design of
the arithmetic unit itself. In the early stages of system design when the detail
is unknown, and in the later stages of system design when the unit has been
tested sufficiently to be accepted as 'good,' a two-value representation of
signals may be acceptable. In these cases, each bit of the floating point
number can be represented by one bit of a group. If the 'normal' group
values are of eight bits, then 10 such values can represent the 80-bit number
or nine the '64'-bit one. The point at issue is that the meaning of what is in
the value part of any signal or group is irrelevant in the various memories of
the simulator, so long as the evaluator can correctly interpret that meaning.
Only the evaluator needs to know the meaning. To the rest of the simulator
it is merely a collection of bits. VHDL integers etc. recognise this fact.

The value to the simulator of the floating point unit is that once the
evaluator has assembled the various values into 64-bit, 80-bit etc. sections,
the floating point simulation can be done by the floating point hardware of
the engine running the simulation - a hardware modeller without special
hardware (see Section 7.12). Relative to any other method of evaluation,
this is very fast, even allowing for assembling and disassembling the data.

One point of warning. When using the instructions of the host machine in
the evaluation, it is important to be sure what those instructions do. For
example, some floating point units are specified as working with numbers in
standard format. That may be very different indeed from giving results which
conform to the standard. Furthermore, many machine and chip manufac-
turers claim conformance to the standard, but when reading the small print
there are exceptions. In some cases one can only suspect exceptions. Similar
comments apply in other areas. The point is TAKE CAREl

6.6.3 Group splitting
Suppose a data word is read from a memory as a group of 32

signals and placed in a processor instruction register. The processor now
wishes to treat eight bits as instruction and 24 bits as an address of data.
There is a need to be able to split a group into smaller groups, possibly even
individual bits.

Suppose that some data has been received by a piece of logic as a series of
bytes from an external device. These are to be combined in fours to form
32-bit words. There is a need to combine two or more groups to form a
larger group.

Group splitting and group combination are both characteristics of the
network and not of the logical elements. For example, consider the
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instruction register example. It is required to split the 32-bit group into
subgroups of eight and 24 bits. The register model is a single element with a
32-bit group of data at the input and a 32-bit group of data at the output,
together with clock and control signals. The same register model is used for
other 32-bit registers - scratchpads, integers etc. Furthermore, other
registers may require other sub-divisions.

When the register has an input change, the data is sent to the evaluator
and the output predictions determined. These are then sent to the event
memory with a fan-out index in the usual way. There is a bit to indicate that
this is a group and some means of identifying the size of the group. The full
group must always be sent to the event memory because the outputs in the
state table and the network memory must be updated at the proper time.

The fact of there being subgroups is due to some of the signals being
fanned out to places to which other signals do not go. Fan-out information
is needed for each subgroup. This points to a method of splitting. A new
routine is placed in the simulator between the evaluator and the event
memory (Fig. 6.7). When the network is compiled, this unit is loaded with
the label of any group which has to be split. The label can be the fan-out
index, since this is unique. Associated with this is a procedure indicating the
split(s) required.

When the 32-bit register prediction reaches the group split unit, the unit
notices that it is a group rather than a single signal. It consults its table of
groups to be split and finds that this is such a group. The full group is sent
forward to the event memory as indicated above.

The group split unit now calls the splitting procedure for this group. For
the example quoted two new groups are formed. These have eight and 24
bits respectively. The network compiler has assigned a fan-out index for
each. It is attached to the value and the time_ahead data and sent to the
event memory in the usual way.

Fig. 6.19 shows a possible scenario. Rl has fan-out index 53, and line
FOM53 in the fan-out memory will point to the network memory
representation of Rl to set the outputs. FOM54 will point to R2 as a load
register. The network compiler will have given the first subgroup to fan-out
index 55. The subgroup will be specially marked as having no 'output' to
set, but it must still have a state table entry and comparison. FOM55 will
give the network memory address of R3 and FOM56 that of R4. Next,
FOM57 will point to the network memory representation of mem_l and
FOM58 will point to mem_2. The flags will be set for lines FOM53,55 and
57 and unset for lines FOM54, 56 and 58. Note that it is quite possible for
one subgroup to compare as being 'equal' in the state table, and the other to
compare as being unequal.
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6.6.4 Group combination
Group combination is essentially trivial. Each subgroup has

fan-out data in the fan-out memory consisting of a network memory line for
the start of the load element and an offset. Suppose that a combined group
starts at NM(1234 + 5). It consists of an 8-bit group, two single bits and a
20-bit subgroup. Each subgroup, including the single bits, will have address
NM1234 in the fan-out memory. The 8-bit subgroup has offset 5. It will
occupy network memory location NM1239 to NM1246. The two single
bits will have offsets 13 and 14 and so will occupy locations NM1247 and
NM1248. The 20-bit subgroup has offset 15 and will occupy locations from
NM1249 onwards. All these offsets are computed by the network compiler
at compile time.

It will be realised from this that the subgroups must be contiguous sets of
bits. If a subgroup is to be formed from alternate bits of a group, then the
group must be split to its constituent bits and then recombined into the
required new 'subgroup.' All this is invisible to the user, of course.

This chapter has limited itself to the basic compiled code and event
driven algorithms. A number of alternatives have appeared in the literature.
None has so far caught on. The references mention a few of these.

The major times involved in simulation are

• calling and evaluating models,
• extracting data from the timewheel, following fan-out linkages and

forming the affected components list,
• searching for erroneous data.

Fig. 6.19. Group splitting.
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The modelling methods to be described in the next chapter will emphasise
the avoidance of the last point.

Switch level simulators require different modelling approaches but many
of the simulators described in the literature use or adapt the techniques
described here. Again, the references give some indication of what this
author feels is the most useful work.



Models and model design

7.1 Some simple models
The previous sections on simulation algorithms and simulators

have assumed that when the input to a logical element changed, some
computation was performed on the input values and an output value (or
output values) was predicted. This output prediction might or might not be
a change from the previous value(s) of that/those output(s). The process
which transforms the element inputs to output(s) is called a model.

Models are not something new. Consider Fig. 7.1, in which a resistance,
R, is connected across a battery, B. From Ohm's law write / = V/R; but
think again for a moment. It has been assumed that Fis a constant. That is
not true of any real battery. In this calculation of current an approximate
model of the battery has been used. It would be more accurate if a small
resistor were put in series with it.

The assumption that R is a constant is also an approximation. In most

Fig. 7.1. Model of a simple electrical circuit.
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Table 7.1. Two-input AND gate

A B C

0 0 0
0 1 0
1 0 0
1 1 1

cases the value of R will vary with temperature. When current flows I2R
watts are dissipated as heat. The value of R will alter, causing an adjustment
of current and so on. The value of R is a function of/. For some purposes
this might be important, so a more complex model of R is needed. Notice
that the power is not expressed as VI, since the voltage across R is also a
function of /, especially for the 'real' battery.

For the present purposes, the simplest model for a digital device is a
boolean equation or a table of values. For example, for a two-input AND
gate, given inputs A and B, the output, C, is given by C = A & B, or by using
Table 7.1. If one or both of the inputs change, C may assume a new value
8r ns later. In a model for a 32-input adder, one might express the inputs and
outputs as three bit-vectors of 32-bits. The model could still use a table, but
it would be enormous. It is more 'efficient' to express the input and output
as 32-bit integers and to use the adder of the CPU to execute the model.

At this point it is as well to be clear about certain matters.

• Modelling involves taking a set of element inputs, predicting
changes in the output(s), and can involve internal variables which
may be set immediately or predicted.

• For digital simulation there are only two defined logic values per
bit, which in this text are denoted by 0 and 1. The electrical
interpretation of these will vary from circuit to circuit. Indeed,
there is no need for them to be electrical at all. They might be light
intensity or pneumatic pressure. Furthermore, there is no need to
associate 0 with a lower voltage than 1 - it could be the opposite.

• For the purposes of digital simulation, all changes of value take
place instantaneously. In other words the rise time and fall time of
all signals is zero. This will continue to apply when additional
values are defined later.

It is understood, of course, that real signals do not have zero rise and fall
times. Should such real values affect the circuit delays then the model of the
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elements must be modified to include rise time effects. This will also be
considered later.

• The simulator itself should have no knowledge of the circuit or
signal representation being used.

• For a (simple) compiled code simulator, the model will be limited
to boolean equations or a table. Time is not included. Most of the
'problems' of model design relate to timing, so models for an LCC
simulator will be relatively simple. The YSE uses a table for
four-input one-output devices. Such models can be used with an
event driven simulator but that would be to defeat the primary
advantage of such a simulator - the ability to reflect real timing.
Much of what follows, therefore, presumes an event driven
simulator. It is not too difficult to find the exceptions. Some of
what is said will also be applicable to timing verifiers discussed in
Chapter 8.

In many texts the authors write of functional, behavioural and structural
models. There is no universally agreed definition of what these are. The best
the author has seen is that of Abramovici (1990) which gives the following.

Functional model describes the logic function only and no timing.
These are mainly of use in LCC simulators.
Behavioural model describes logic and timing. These are used as
basic elements in event driven simulators. They need not be simple
elements.
Structural model describes a box as an interconnected set of smaller
boxes. The 'structure' is in the connections. A schematic diagram
(a box) is a structural model - an interconnection of smaller boxes
such as gates, ALUs, shift registers etc., or even other diagrams. At
the lowest level, the boxes have behavioural or functional models.

Most of the rest of this chapter will discuss the construction of
behavioural models of simple logical elements.

7.2 Delays
Most simulators define at least two types of delay. In a simple high

conductivity (copper or aluminium) connection the signal at the output end
of the wire reproduces exactly the shape at the input to the line. This is
known as transport delay, and is illustrated by OUT(T) in Fig. 7.2.

When a signal passes through a gate, it takes a certain amount of energy
to cause the output to change state. If the input is narrow, the amount of
energy supplied is insufficient for this purpose. It is said that the input pulse
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cannot overcome the inertia of the gate. An inertial delay is defined as one
which exactly reproduces the input shape at the output provided that the
time between two edges of the input in opposite directions is more than
some minimum, t{. If the time between the edges is less than t{, no output
change takes place. This is illustrated in Fig. 7.2 by OUT(I). In many
simulators, t{ is set to the gate delay, td. The value of t{ will be different for
the two edges in the general case.

The following description will presume that all delays are transport
delays, since this is all that can be implemented directly. However, in most
simulators the default delay is an inertial delay. Section 7.3.4 will describe
how an inertial delay can be realised.

7.3 Model of a buffer

7.3.1 Development of the algorithm
A buffer is a simple device which in principle takes one input signal

and produces an output signal which is identical to the input. Such a circuit
is usually used to take a relatively low powered signal whose rise time would
be badly affected by the capacitive loading of many driven circuits and
boost the drive power - in other words, a current amplifier. As the logical
function is simply 'copy' the timing effects of the model are the sole interest.
An inverter can also be regarded as a buffer whose function is 'copy and
invert.' In an LCC simulator both a buffer and an inverter would be
removed from the network description by preprocessing.

The first departure from the ideal is that any logical element introduces
delay. Again, an initial approximation is to say that the delay is
independent of the direction of output change - 0 to 1 or 1 to 0.
Unfortunately most real circuits do not work that way. Thus the model
requires two time parameters. These will be called tr for a 0 to 1 change and
tf for 1 to 0. In many places, these are called tpLH and tpHL respectively. Fig.

Fig. 7.2. Transport and inertial delays.
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7.3(a) shows the meaning of this. It is again emphasised that tr implies an
instantaneous change from 0 to 1 after an appropriate time delay from the
input change, and must not be confused with the 'rise time,' trise, of a real
signal changing from 0 to 1 as shown in Fig. 13(b).

It will be noticed from Fig. 7.3 that the output wave shape is not the same
as the input. It would be if tT and tf were equal. However, tr has been set to
10 ns and tf to 7 ns. The input is 30 ns at 1 and 30 ns at 0. The output spends
only 27 ns at 1 but 33 ns at 0. The difference is small, but, continued over
several stages, could be important. If there are five such gates in series, the
signal would spend 15 ns at 1 but 45 ns at 0. For clock signals which might
be running close to the maximum speed of the clocked devices and which
require a minimum width for both 2 and 0 part periods, this is significant.

Consider, now, what happens if IN changes twice close together. In Fig.
7.4 IN goes to 1 at time 0 and back to 0 at time 2. The real circuit would not
respond. The simulation predicts an output change to 1 at time 10 and a
change to 0 at time 9. Considering the event driven simulator, the event at
time 9 is found and there is no output change. At time 10 an event making
the output 1 is found. On this basis the simulator gets the wrong answer.
The model is too simple. Note that this effect is due to the difference between
tr and tf, and not due to inertial delay.

The solution is to remove the event causing the output to go to 1. Taking

Fig. 7.3. Delay of a buffer: (a) ideal signals in a simulator; and (b) more
realistic waveforms.
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this example, one procedure is that changes of 0 to 1 are scheduled for 10
time units ahead. When a 1 to 0 change occurs on the input, a prediction is
placed 7 units ahead and the system then searches for a 0 to 1 prediction for
this output in time slots 7 to 9 units ahead of current time. The input change
must be at least one unit after the 0 to 1 change; hence it is only necessary to
search up to 9 units ahead of here rather than 10. If a 0 to 1 prediction is
found, it is removed.

This is quite possible to do. However, the event lists could be quite long
and are in random order. As linked lists will be searched serially, the search
could take quite a long time.

The computation for this can be reduced. Whenever a 0 to 1 change takes
place, the time is recorded by the model in the network memory as an extra
value to those described in the last chapter. When this element is next
evaluated, a check against this time is made. If it is far enough in the past - 3
time units or more in this example - then the search of the event lists is not
necessary. This can be incorporated as a function to check the stability of a
signal for a specified length of time backwards from current time.

Consider the input waveform, IN, shown in Fig. 7.5. At time 0, IN
changes to 1 and the time is recorded in the network memory. At time 20,
IN changes to 0. A check on the difference shows that 20—0 is greater than
tr — t{= 10 — 7 = 3. No searching is necessary.

Fig. 7.4. Problem with a spike.
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Fig. 7.5. Model of a buffer.
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At time 40, IN again changes to 1 and time is recorded in the network
memory. At time 42, IN changes back to 0. 42—40 = 2 < 3, so the event
memory must be searched. As it is known when the input changed (time 40)
and tr is 10, it will be sufficient to search the list at time 50 only. The earlier
event is removed.

This is satisfactory here. However, for multiple input devices, the delay to
an output will vary with which input is changing. In this case, it may be
necessary to search several time slots for relevant events.

It should be noted that this problem occurs for only one edge. With a
narrow 0-pulse the 1 to 0 change will cause an output change 7 ns ahead and
the 0 to 1 change causes an output change 10 ns ahead. Hence the latter can
never 'overtake' the former. These are not incompatible. The output pulse
will be wider than the input.

Thus is deduced a very important principle in model and simulator
design. Models should be designed to avoid having to cancel events.

An alternative to searching lists is to postulate a special 'logic' function,
F, and a pseudo-variable, s. The logic function has the following definition.
'T' is a time variable held in the network memory representation of the
element and NO W is the VHDL term for 'current time'.

CASE input_change IS — from event memory
WHEN (/ - > 0 ) = > F < =0; T< =N0W;
WHEN (0 - > 1) = > s to event memory at

(NOW + t r - t f ) ; T<=N0W;
WHEN s = > IF (input = 1) AND

(ATOFF-T>tr-tf)THEN
F < = 1; (ELSE do nothing)
ENDIF;

Fig. 7.6 shows the 'logic' of the buffer. The 'delay elements' are
indications of where to place predictions in the event memory. th is the

Fig. 7.6. Model of the buffer.

IN

OUT

r, ff]; fb =



7.3 Model of a buffer 157

smaller of ta and rb, in this case being t{ = 7. Thus* for an input change 1 to 0
as at time 20 in Fig. 7.5, F gives an immediate change to 0 (see algorithm).
This prediction is placed in the event memory list addressed by current time
plus 7 in the time wheel, namely 27 as a result of the output delay of the
buffer. A similar prediction will take place at time 42, with the prediction
placed at time 49.

Consider, now, the 0 to 1 change of IN at time 0 (Fig. 7.5). The function,
F, causes an event, s, to be placed in the event memory at time 3. The time,
T = 0, is recorded in the network memory. Considering only this buffer, the
next time of interest is time 3, when s is read from the event memory, set on
the input in the network memory and the model evaluated. The value of
(current time —T) is 3, implying that the input has been stable for 3 time
units. It is thus safe to make the change of OUT to 1 in 10—3 = 7 time units,
which is, again, the output delay of the buffer. This prediction cannot be
cancelled by a subsequent change, since such a change cannot occur before
time 4 and requires at least 7 time units to affect the output.

The next event to occur is IN going to 0 at time 20. The output is
predicted to change at time 27 and time T = 20 is recorded in the network
memory.

Next IN goes to 1 at time 40. T is set to 40 and a prediction for s is made
for time 43. The change of IN to 0 at time 42 changes T to 42 and predicts an
output change for time 49.

At time 43, the event, s, is read and causes evaluation of the model. T is
now 42, and 43—42 < 3. Thus F is not set to 1 and no prediction is made.

Finally, the prediction F to 0, is read from the event memory at time 49.
Comparing this value with the current value in the state table shows no
change, so fan-out will not be affected.

The reader should repeat this exercise with several rapid changes of
input - to 1 at 60 and 62 and to 0 at 61, say. This will confirm that the
algorithm works for many changes. The output should go to 1 at 72 and at
no other time as a result of these input changes. An additional complica-
tion arises if a further change to 0 occurred at time 63. In this case, there are
two input changes - IN and the pseudo-input s - at time 63. The function,
F, must ensure that IN overrides s. As the algorithm is written, the change
1-+0 is considered first in the CASE statement, so correct operation
ensues.

Notice that the model is only stimulated when a change comes from the
event memory. The event s has no value as such. It is merely a device to
ensure that the model routine is re-entered at the appropriate time. A short
0 pulse is described below.

The description indicated that an sxtra event has to be processed.
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However, there is no searching of lists. There is a requirement to record in
the network memory the time at which the input changes, and a need for an
operation within the model to check that value against current time. This is
the price to be paid for the privilege of being allowed to specify the rising
and falling delays to be different.

Event cancelling, or its equivalent as just described, is common to most
models which include real timing. It would seem sensible to suggest that
this routine should be part of the simulation environment, relieving model
writers of the need to bother themselves with such detail. However, how
does the environment solve the problem? One possible answer is that it
inserts a pseudo-model after each element behavioural model in a manner
similar to Fig. 7.11. This may take a bit longer than using the combined
model of that figure but will make the job of the majority of model writers
much easier. The description of buffer models in this chapter can be
assumed to be that pseudo-model.

7.3.2 State machine representations
The above procedure can be specified in terms of a state machine as

shown in Fig. 7.7. This may seem an unnecessary complication for this
model, but will be seen to be important with more complex cases. (Readers
for whom model details are not essential might skip this section.)

Fig. 7.7 shows three states:

Definite_O (£_0)
Possible_l (P^l)
Definite_l (D_l)

Suppose that the input has been 0 for a long time. The state is definitely JO
and will remain so until the input changes. Suppose the input changes to 1

Fig. 7.7. State diagram for a simple buffer.

IN =

s & (N0W-T>3)
output change in 7

IN = 0
s A

IN = 0
output change in 7
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at time 0 as shown in Fig. 7.8, which is a copy of Fig. 7.5 with the states
added. It is not known whether the output will change to 2, so the state
changes to possible_l. This corresponds to placing the 5 prediction in the
event memory.

At time 3, the s event returns to the network memory and the model is
re-evaluated. The input can now be guaranteed to cause an output change.
The state changes to definitely_J immediately but the prediction of output
change is made for 7 time units ahead, i.e., time 10.

The state now remains D_l, while IN remains 1. When IN changes to 0,
an output change is guaranteed, so the state changes to DJ) immediately
and a prediction of an output change 7 time units ahead is placed in the
event memory. This happens at times 20 and 42 in Fig. 7.5. Notice that
there is no PJ) state, as the change to 0 is always guaranteed.

Now consider the change to 1 at time 40. The prediction s is placed in the
event memory and the state changes to P_l. At time 42, IN changes to 0.
The state must now change to DJ) immediately. When s appears the state is
DJ), SO a prediction of output change to 1 is not made. Such a prediction is
only made if the state is P_l as at time 3.

As in the suggested example with many rapid changes, the value of IN
must be considered before the effect of s. Thus, if there are changes to 1 at
times 60 and 62 and to 0 at times 61 and 63, then IN and s both appear at
time 63. The IN forces the state to DJ) before the effect of s is considered.
This is part of the function, F. However, suppose that IN goes to 1 again at
time 64 (Fig. 7.9). s returns at time 65 as a result of the IN change at 62.
Although the state is PJ this must not be allowed to cause an output
change. A check on T is still needed.

Notice that the states in the state diagram do not directly imply values for
the output, but rather values which will occur some known time after the
change to the state.

The short 0 pulse shown in Fig. 7.10 can be examined in a similar
manner. The initial state is DJ. IN goes to 0 at time 0 and T is recorded as

Fig. 7.8. Copy of Fig. 7.5 showing the states.
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0. The state has gone to DJ) and a 0 output prediction for time 7 is made. At
time 2, IN goes to 1 and T becomes 2. The state becomes P_l.
Pseudo-variable s returns at time 5, and 5 - 2 = 3. The state changes
immediately to £>_! and an output prediction of 0 to 1 made for time 12.
Notice that the output pulse is wider than the input. Again the states appear
to be out of synchronism with the waveforms because changes of state occur
immediately while output predictions placed in the event memory take
some time to take effect. However, all predictions in the event memory will
eventually happen. The purpose of s is to avoid incorrect predictions of
OUT being made.

In these examples, it is presumed that tr is greater than tf, as is generally
true for basic TTL gates. If the reverse is true then clearly it will be necessary
to reverse all that has been said above with respect to 0s and Is, and the
state diagram will contain a state possible JO rather than P_l.

To implement this model in the event driven simulator, the network
memory needs to hold the state variable. Values sent to the event memory
include predictions of 0 and 1 as appropriate, together with the SIGNAL, s,
whose purpose is simply to cause the model to be restarted. The model
involves a PROCESS which is evaluated whenever IN or 5 change, so these

Fig. 7.9. Illustrating multiple rapid input changes.
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Fig. 7.10. Simulation of a short 0 pulse.
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are in the sensitivity list (see Prog. 7.11). The state is a VARIABLE, as it
changes immediately. It is held in the network memory. OUT and s are
SIGNALS, and are predicted via the event memory. The PROCESS does
not use s, but s must be set and reset. There may be more than one
prediction of s; a change to 0 after one delta and a change to 1 after some
nanoseconds. The change to 0 will restart the PROCESS but, as IN will not

Prog. 7.1. Suggested implementation of Fig. 7.7 in VHDL.

TYPE state.l IS (D_0, P_l, D_l); - TYPE definition inside a
suitable PACKAGE

PROCESS (IN, s) -- activate by an input change.
VARIABLE state : state_.l;
VARIABLE T : TIME : = 0;

CASE state IS

W H E N D J = >
CASE IN IS

WHEN T = >
state := P_l; T := NOW;
s < = TRANSPORT T AFTER t r - t f ;

WHEN OTHERS = > s < = '0';
END CASE;

WHEN P_l = >
CASE IN IS

WHEN '0' = >
state := DJ); T := NOW;
s < = '0';

WHEN T = >
IF ( (NOW-T) > (tr-t f) ) THEN

state := D_l; s < = '0';
OUT < = TRANSPORT T AFTER tf;

ENDIF;
END CASE;

WHEN D_l =>
CASE IN IS

WHEN 0' = >
state := DJ); T := NOW;
OUT < = TRANSPORT '0' AFTER tf;

WHEN OTHERS = > s < = '0';
END CASE;

END CASE;
1 This model is designed to run on a simulator with no preconceptions

about how TRANSPORT and INERTIAL delays work. It will not run as
shown on a commercial software simulator where such an understanding
is built in. See Appendix.



162 7 Models and model design

have changed, it will do nothing. Selectors in the CASE statement are
evaluated in order, so the most likely should be placed first. However, in the
case of P_l, IN = '0' must take precedence over the option where s has
restarted the PROCESS with IN = T .

7.3.3 Model of a simple gate
The buffer model can be applied to AND and OR gates of any

number of inputs. All that is necessary is to evaluate the boolean function
prior to the buffer as indicated in Fig. 7.11. When one or more of the inputs
IN_A, IN_B or IN_C change, the VHDL VARIABLE, X, is calculated and
compared with the old value. If there is no change then the evaluation is
complete. If X does change then the evaluation continues with the buffer as
described in the previous section. In this case, the AND part of the
evaluation has zero delay on both edges, so it is valid to specify X as a
VARIABLE and to compare new and old values where that would not have
been the case for the element as a whole (i.e. for a VHDL SIGNAL). The
other simple functions evaluate in a corresponding manner.

More complex elements cannot usually be calculated as simply as this. In
particular a not equivalence gate may be constructed of simpler gates and
under particular sequences of input changes may produce an output 'spike.'
In other cases, special circuit techniques such as current steering may allow
the not equivalence to use the same approach as the simple gates here. The
model designer has to be aware of the underlying technology to make this
decision. The reader is warned that the logic diagrams shown in manufac-
turer's data books are not necessarily a good guide to the circuits. For
example the six-gate logic of the TTL 7474 may be logically correct but does
not represent the actual circuit which uses current steering.

Fig. 7.11. Three-input AND gate model.
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7.4 Inertial delay
(Readers for whom model details are not essential might skip this

section.)

7.4.1 Equal rise and fall delays
The model so far described uses transport delays but enables

predictions that would be overtaken by later events to be avoided. An
inertial delay model enables pulses to be removed when the pulse width is
less than some given time, usually the gate delay. It also applies when tr = t{.
Clearly the previous discussion has affinities with this. This section
considers the implementation of an inertial delay.

Consider, first, a buffer with tr = tf=td. It is required to remove any input
pulse whose width is less than td. Fig. 7.12 shows some typical waveforms.
The narrow pulses of width less than td(= 10) do not appear at the output.

Fig. 7.13 is a possible state diagram. Because it is desired to remove both
positive and negative going pulses, four states are used. These are
designated Inertial_Possible_0 (IP-0) and IP-1. A pseudo-variable, p, is
used in a manner similar to s in the previous discussion.

Consider Fig. 7.12. IN is at 0 and the state is DJ). IN becomes 1, the state

Fig. 7.12. Example of inertial delay.
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changes to IPJ, time, T, is recorded in the network memory and p is placed
in the event memory for time td — 1 (the reason for the ' — 1' will appear
below). The next relevant event is that p re-activates the model. A check of
time against T shows that IN has been stable for td — 1. By implication, IN
cannot change for one more time unit and hence will be stable for td. The
state changes to DJ and the output will change in the next time slot.

The reason for placing p at td — 1 ahead of the input change is related to
the use of an affected components list. There can be no guarantee as to the
order in which logical elements are processed. If a zero delay is permitted,
then an element may be evaluated more than once per time slot since the
load elements will have to be re-inserted in the ACL. This is highly
undesirable. The procedure described is perfectly valid and avoids the use
of zero delays.

An alternative to zero delays and the above is provided in VHDL. Where
such zero delays are used, the software automatically provides one or more
time steps which are shorter than the simulation time intervals. These are
invisible to the user, but ensure that things happen in the correct order.
They are known in VHDL as deltas. Deltas are used in a number of places,
especially where sequential instructions are used to imply an order in which
things must be done without changing simulation time.

Returning to the inertial delays, the change 1 to 0 on IN is treated in the
same way as the 0 to 1 change, but using the IPJ) state.

The next change of IN is to 1. Let this be at time 100. Suppose IN changes
as shown in Fig. 7.12. p events are placed in the event memory at times 109,
111 and 113. The state becomes IPJ at 100 and 104 and IPJ) at 102. When
the ps appear from the event memory at 109 and 111, comparison with T,
104, shows a lack of input stability so output changes are not predicted. At
time 113 the input is found to be stable and an output change at 114 is
scheduled. The reader can check the effect at time 200 and 209. Notice that,
if IN goes to 1 while the buffer is in the IPJ) state, the state changes to IPJ.
This is contrasted with Fig. 7.7.

7.4.2 Unequal rise and fall delays
Returning, now, to the case of unequal rising and falling delays, the

state machine appears as shown in Fig. 7.14. In this diagram s is the
pseudo-variable used earlier. In practice only one pseudo-variable is
needed. They are distinguished here for ease of explanation, s occurs in the
event memory tr — tf after a 0 to 1 change of input, and p occurs one unit of
time before the expected output change, namely tT — (tT — tf) — l after s
returns or tf — 1 after a 1 to 0 input change. The delay is the same in both
cases.
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Consider the input waveform shown in Fig. 7.15 t r = 10 and tf = l as
before but the inertial delay is equal to the gate delay, i.e. different on the
two edges. The first 1 is greater than 10 units long and so will lead to an
output change. The following 0 is 6 units long, less than t{, and so will be
ignored. The next 0 pulse is 12 units long, so the output would be expected
to go to 0 at 21 + 7 = 28. The following high pulse is 5 units long and is
ignored. The diagram indicates the times at which s and p are found in the
event memory and the state machine states.

Time 0: IN goes to 1 and s is placed in the event memory at time 3.
The state becomes P_l.

Time 3: the input is stable, so an output can be expected. The state
becomes I PA and p is placed in the event memory at time 9.

Time 9: the input is still stable so the state becomes D_l and the
output changes at time 10.

Fig. 7.14. State diagram for buffer with inertial delay and unequal tr and t{.
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Fig. 7.15. Inertial delays, t r#t f .
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Time 13: IN changes to 0 and the state becomes IPJ). The event
memory has p at time 19.

Time 19: IN becomes 1. The value of IN is considered before p so the
input is not stable and the state changes to IP_1. p is ignored.
s is placed in the event memory at time 22.

Time 21: IN goes to 0 and the state returns to IP JO. A p event is placed
in the event memory at time 27.

Time 22: s returns and is ignored since the state is IP JO.

Time 27: the p event with the state IP JO finds the input stable (for
6 +1) so the output changes at time 28. State changes to DJO.

The reader can develop the rest of the waveform, and should try other
examples. Output waveforms can be developed heuristically as above to
confirm the correct evaluation of the state diagram.

The example shows up a weakness in the model. Considering the physical
processes in the gate, it is clear that the output must be close to changing to
0 at time 19. The narrow positive pulse will not remove all the energy
supplied in the previous six time units, so a full 7 time units delay from time
21 to 28 is pessimistic. Such complexity could be modelled, but there are
two reasons why it should not be.

• Narrow pulses in well designed systems should be rare. Multiple
rapid changes such as those shown should be rarer, especially
where inertial delays have already removed some narrow pulses.

• There is a trade off between simulation accuracy and speed. In
view of the previous statement, is such cost justifiable?

Using inertial delays removes narrow pulses. Using transport delays
shows up many pulses which will not occur in practice. There are two
dangers.

• Removing spikes may be optimistic and remove some which occur
in real hardware with disastrous consequences.

• Leaving many spikes to be reported may result in such a mass of
data that the user will not read it. Clearly there is a case for some
intelligent system for knowing which spikes are important when
using transport delays. With inertial delays, this writer would
prefer an inertia less than the gate delays to avoid over optimism.

In the remainder of this book, transport delays will be assumed as that
makes descriptions simpler. The above account indicates that inertial
delays can be implemented, but at a cost.
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7.5 A three-value model
The values of tr and tf can be selected to be typical values for the

element or could be maximum values. However, if there is feedback in a
circuit, it may be important to know the minimum time through the
network, or to compare the maximum time through one path and the
minimum through another to detect possible short pulses which could
cause misoperation, especially with synchronous circuits. Determining
which paths should use which delays is very difficult. An alternative is to
mark a signal as of uncertain value at some times and to ensure that the
signal value is not uncertain at critical points in time.

The uncertain value is commonly designated as X (or sometimes U). A
circuit element of a given type will have a minimum value of rise delay of
trmin and a maximum value of rrmax. Consider a buffer with the input signal
changing from 0 to 1 at time 0. At time frmin, the output changes to X and
remains there until trmax when it changes to 1. The value, X, implies that the
signal has the value 0 or 1 but it is not certain which. The statement that the
signal changes from 0 to 1 instantaneously remains true. Thus, when the
signal has value X it is not in the process of changing, and the time
*rmax~~*rmin should not be confused with the analogue rise time.

Fig. 7.16 shows an interpretation of the X regions. The values used in the
example are

r̂min = 3, rrmax=10

*fmin = ^» *fmax = '

The output pulse is somewhere between 32 and 44 time units wide (42 - 1 0 ;
47 — 3). The problem with the use of X values is that the X period expands
as the signal passes through several stages. For example, Fig. 7.17 shows a
signal passing through two buffers (or gates) in series. Suppose that the
input changes from 0 to 1. The output of the first stage could change
anywhere between 3 and 10 time units. If it changed at 3 units, then the

Fig. 7.16. Interpretation of the X regions.
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output of the second stage could change as early as 6 units. On the other
hand, if both gates were slow, the output of the first would not change until
10 and the second until 20 units.

Even worse, if the output of the first stage drives more than one place
then the driven places appear to have a large possible difference between
them, whilst in fact they do not because the first stage is the same for both.
This is known as common ambiguity, and will be discussed further in
Chapter 8 (see Fig. 8.2). The important point here is that the resulting
waveform is not optimistic.

Consider, now, the diagrams in Fig. 7.18 for a single buffer. The buffer has

r̂max ^ f̂max > ^rmin > ^fmin

which is one of the usual situations. The other main one is where tr and tf are
interchanged. Values are as for the previous example.

Fig. 7.17. X region spreading.

IN . I 1 0 U T 1 OUT2

OUT_1

OUT__2
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In Fig. 7.18(a) the input goes to 1 so the output might go to 1 at time 3.
The input returns to 0 at time 1 so the output could be 0 from time 3. Thus
the output would never go to 1. However, the response to the input going to
0 might not occur until time 1 + 7 = 8, giving a 5 unit pulse. The 0 -• 1 change
at the input could lead to an output going to 1 as late as 9 or 10. However,
*fmax ensures that the output is 0 at these times.

Fig. 7.18(b) gives the corresponding situation for a short 0 pulse. The
output may go to 0 as early as 2 but might not do so until 7. The output
change to 1 could occur as early as 4. Thus, if the output 'went to 0' at 6 and
'went to V at 5, there would be no output pulse. On the other hand, if the
output went to 0 at 2 and to 1 at 11, there would be a 9 time unit pulse. The
reader can easily confirm that the conclusions do not alter if tr = tf.
Sequences of waveforms of the form 1 X 1 or 0 X 0 imply a possible short
spike. Hence the designer must be careful to ensure that signals such as the
asynchronous preset and clear of a flip-flop do not contain such sequences
and that signals such as clocks contain them only at non-critical times.

It will be appreciated that any logical change will now require two
evaluations; 1 -> X -> 0 or 0-+X-+1. Furthermore, if tr^t{, then various
rather nasty situations can arise as a result of rapid input changes. The
extension to simple gates is as shown in Fig. 7.11.

7.6 A five-value model
Gate models using three values give some information regarding

times where signals are uncertain. With short pulses on an input, the
spreading of the unknown regions can lead to overlap between possibilities
of output changes. There may or may not be possible glitches - short pulses
- on the output. Fig. 7.18 is a case where the effects of two edges overlap.

Whether or not a glitch is possible can be determined by defining two
extra 'flavours' of unknown. These are designated rising and falling. Rising
means that the output was 0 and has become unknown since time is
between trmin and trmax after the input change. Falling has a similar
definition. They are illustrated in Fig. 7.19. Yet again it is stressed that
rising must not be confused with analogue rise time.

Fig. 7.19. Definition of rising and falling.
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If the input pulse becomes so short that the falling value overlaps the
rising (Fig. 7.18(a)) then the output is specified as 'unknown,' X, and
represents a real possibility of a glitch. All the problems associated with
writing the model are again associated with problems of overlapping
unknown periods of various flavours. Fig. 7.19 shows a 'clean' input. What
happens if the input is rising and goes to falling or unknown! In this case,
there are ten possible states in the state machine diagram, namely

DefiniteJ) (D_0) possible_0 (P_0)
Definite_l (Z>_2) {possible_l (P_l)}
Definite_falling (D_F) {possibleJfalling (P-F)}
Definite_rising (D_R) possible_rising (P-R)
Definite_unknown (D_X) possible_unknown (P-X)

If tr is greater than t{, as postulated in previous examples, then the state PA
is subsumed within PJR and D_R. This can be seen from the simple case
where an input change from 0 to 1 will lead to the output going to rising and
then to 1. In a sense, these are the same as P_l. Similarly, because tf is less
than rr, an input change from 1 to 0 can be guaranteed to lead to the falling
value. Hence the state PJF is unnecessary. These two unnecessary states are
shown in braces above. Corresponding omissions would occur if t{ were
greater than tr.

7.7 Logical combinations and non-logical values
Two problems arise with many valued simulations. Firstly, what is

the correct output of a logical function with any given set of inputs, in the
knowledge that in the simulations some very odd combinations will
certainly occur? The answer is usually set out in a truth table, and refers to
an expected output assuming the inputs are not changing too rapidly. Table
7.2 shows the five-value table for AND and OR. For the two-input AND
gate, a 0 on one input forces a 0 on the output regardless of the other inputs.
If one of the inputs is X and the other is not 0 then X could be a 0 and the
output must be X. When one input is 1, the other input 'dominates,' so 1
AND R gives R and 1 AND F gives F. If one input is rising and the other is
falling, then there is no way of telling which will dominate. The result must
be X, even though that may be a bit pessimistic. It can be argued that falling
is tending towards 0 and so will dominate; but, if R had been present a 'long
time' and F and just begun, this would be optimistic. X is safer. The OR
gate is determined by similar arguments.

The second problem is what happens if a five-valued signal (say) appears
on the input of an element whose model can only handle three values. In
this case, the three-valued model requires a preprocessor to convert the F
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Table 7.2. Truth table for five-value AND and OR gates

0
1
X
R
F

0

0
0
0
0
0

1

0
1
X
R
F

AND

X

0
X
X
X
X

R

0
R
X
R
X

F

0
F
X
X
F

0
1
X
R
F

0

0
1
X
R
F

1

1
1
1
1
1

OR

X

X
1
X
X
X

R

R
1
X
R
X

F

F
1
X
X
F

and R values to Xs. This is rather trivial. It is more difficult when converting
a 46-valued signal for use by a three-valued model (Section 7.8). Even more
difficult is converting a multiple-valued signal to a two-valued signal. For
example, does an X become a 0 or a 1?

The opposite case where there is a three-valued signal on the input of a
gate whose model handles 46 values is usually easier since the smaller set is
usually a sub-set of the larger.

Languages such as VHDL allow other user selected logic 'types' such as
integers, bit_vectors, etc. In Prog. 7.1 a TYPE state_l was used. This was
defined to have the possible values D_0, D_l and P_l. These may also
require 'buffers' to deal with differential timing and inertial delays.
However, most uses of non-bit style signals are for high level design when
timing is relatively crude. The necessary functions must still be present in
the environment. If a type is truly user selected it may be necessary for the
user to write the buffer model.

7.8 Signal strengths
The number of values that a signal may take can be further

increased. In particular a value 'Z' is required to record when an output is
high impedance. This is used either with devices designed for bus driving or
for wire-OR/AND gates. For example, TTL open collector gates have no
active pull-up mechanism.

Consider Fig. 7.20(a), which shows a TTL open collector gate. With both
inputs at HIGH (H) the output is at LOW (L). When one input goes L the
output is intended to go H, but there is nothing to supply charge to the stray
capacitances to pull the wire H. In this instance the output remains L. The
situation can be expressed by providing a signal value of high impedance, Z.
Correct circuit operation requires the addition of a resistor as shown in Fig.
7.20(b). Now the output can become H.

The value Z is not strictly a logical value. It is more properly described as
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a strength. Consider the open collector gate with a resistive pull-up as
shown in Fig. 7.20(fc). The time that the output signal reaches the switching
threshold of the load devices depends on the time constant, RC, of the
circuit as indicated in Fig. 7.21. This is a parameter which cannot be

Fig. 7.20. Open collector gates.
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Fig. 7.21. Real waveform at open collector output.
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included in the basic gate model, since the value of C is design dependent
and the value of R is user selectable. To handle this situation, the basic
model of the gate can be specified with an external parameter. There can be
several drive strengths chosen by the designer. These could be (for example)
weak, strong, high impedance. The larger the number of strengths, the more
complex is the simulation. In the case of the open collector gate, however, it
is a question of selecting which of several delays to include in the run time
model. That is a compile time action and need be done only once, but each
instance of the open collector gate may then have a different model. The
added delay must be held in the network memory and not in the evaluation
routine.

VHDL does not specify any particular set of states and strengths.
However, most implementations provide a variety of options within their
standard PACKAGES (a PACKAGE is a means to specify types, functions
etc. to be used within a design). In one common PACKAGE, three
strengths are specified for use with a nine-value system. These are forcing,/,
resistive, r and high impedance, Z. The nine values are

/0 , fl, fX rO, rl, rX ZO, Zl, ZX

The term 'forcing' implies a low impedance driver or a power supply, fl
implies a strong 1 signal as opposed to a resistive 1 signal which will have a
slower analogue rise time and hence a slower rise delay. Very recently
(1992) a standard nine-value system has been approved by the IEEE.

Another VHDL PACKAGE uses a 12-value system which has an
'unknown' strength added to the nine-value system. Yet another PACK-
AGE has a 46-value system. The latter makes use of intervals. A new
strength, weak (W) is introduced between r and Z, and a value D which
represents a node which cannot store charge or a disconnected network.
Table 7.3 shows the 46 intervals. There are nine values across the top of the
table representing all possibilities from/0 to/1. The 46 values are shown on
the left hand side with the range indicated in the table. Thus, for example,
fZO means any state between forcing_0 and high impedance_O. That is, the
state is known to be 0, but the strength is not known. It is one of the
available strengths. Notice that/ZO does not mean 'forcing high impedance
0,' which is a contradiction in terms.

Use of signal strengths is of primary importance in the simulation of
MOS circuits. For simple MOS circuits, the speed of the gate depends on
the sizing of the transistors. A short, fat transistor can conduct more current
than a long, thin one, and so will charge capacitances more rapidly.
Further, in an NMOS inverter, for example, the pull-up transistor is 'on' all
the time. What determines which transistor 'wins' when the pull-down
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Table 7.3. 46 strengths of VHDL

U
D
zo
Zl
ZDX
DZX
ZX
WO
Wl
wzo
WZ1
WDX
DWX
WZX
ZWX
wx
rO
rl
rWO
rWl
rZO
rZl
rDX
DrX
rZX
ZrX
rWX
WrX
rX
fO
fl
fro
frl
fWO
fWl
fZO
fzi
fDX
DfX

fzx
ZfX
fWX
WfX
fix
rfX
fX

fO rO WO ZO D Zl Wl rl fl
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transistor comes on is which transistor can conduct more current. By
designing the pull-down to be short and fat, relatively speaking, it will 'win'
as required. Put another way, the pull-down transistor has a greater
strength.

In switch level simulation the system is simulated at the transistor level,
but the transistors are modelled as switches which are conducting or not.
The solution of partial differential equations is not necessary. One
proposal, due to Bryant (1984), is to use 16 strengths ranging from infinitely
strong (a power supply or primary input) to high impedance (Z).

Other devices have both active pull-up and pull-down drivers but can have
both switched off. These are usually used for multiple sourced buses where
exactly one driver should be 'on' at any one time. Again, if all drivers go 'off,'
then the output value is undefined and is recorded by the simulator as Z.

7.9 Towards a model for a flip-flop

7.9.1 More complex models
Complex elements, particularly ones invented by the designer, will

have to be modelled by him/her as well. These could be higher level models
of an ASIC for use in system design, or models for macros for use in chip
design. Whilst problems of unequal rising and falling delays and inertial
delays can be left to the environment, there are several other features which
cannot. For example, in a flip-flop the preset and clear inputs override the
clock. Some means for switching between two different evaluations is
needed. The flip-flop will be used as an example of a more complex logical
element. It cannot, in general, be modelled as a set of (usually six) gates,
since that does not properly reflect the timing as opposed to the logical
function. It will be seen that the state machine technique proves very useful.

No claims are made for the completeness of this model. In particular,
some users might prefer to separate the error states into more different types
than those suggested here. Readers not wishing to cover the full detail may
omit all but a paragraph or two of Section 7.9.3. The rest should be scanned
at least.

7.9.2 The 74xx74 style flip-flop
The models considered so far are either single input, or multiple

input where all inputs are equivalent so that the buffer can be preceded by a
simple gate. The flip-flop has several inputs which act to some extent
independently and with differing effects. There are also two outputs. The
relative timing of the various inputs can lead to several error conditions.
The VHDL of a 'simple' D-flip-flop with preset and clear written to test the
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Table 7.4. Timing summary for 74xx74 type of flip-flop

Preset active, clear inactive
Clear active, preset inactive
Preset and clear active
Preset and clear inactive AND

D = 1, active clock edge
D = 0, active clock edge

Q = l: (Preset time<tpmin)
Q = 0: Preset time < f pmin

Q = 0 : (Clear time<tcmin)
Q = l : Clear time <rcmin

Clock post-active time < tHmin

clock pre-active time < rLmin

(clock period <rclpmin)
Set-up time violation0

Hold time violation*
Preset or clear recovery time violation0

Q

/
0
X

1
0
1
X
0
X
X
X
X
X
X
X

NQ

0
;
X

0
1
0
X
1
X
X
X
X
X
X
X

(could be 1 1)

error flag

error flag
error flag
error flag
error flag
error flag
error flag
error flag

flD must be constant >t8U before active clock edge.
bD must be constant > th after active clock edge.
cPreset and clear must be inactive >tT before an active clock edge.

model below extended to over 300 lines of code and is anything but simple.
Even then, certain simplifications were included in relation to outputs
becoming unknown. Fortunately no input change requires execution of
more than a fraction of the code. However, it is clear that the model should
be written in such a way as to minimise the amount of code executed. It
must also be borne in mind that procedure and function calls can be very
costly in execution time. It may be sensible to increase the size of code to
minimise such calls. Knowledge of how the software is run is clearly of
value. The following represents only one of several possible approaches to a
three-value model of a D-flip-flop.

In this description a flip-flop similar to the 74xx74 is assumed (Section 1.5).
Preset and clear are asynchronous inputs and override the effect of clock
changes. Table 7.4 shows the effects and possible errors. The preset and clear
recovery times are usually significant but rarely specified in the data books.
All three of the clock times are also necessary, though the following model
omits the 'period' one. In Table 7.4 the case of the preset and clear both being
active is shown as leading to both outputs being X. In some cases this might
be / 1, or might lead to oscillation. It depends on the precise circuit used.
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The state diagram consists of two parts. One of these, the P-C mode, is
operative when preset or clear or both are active, Fig. 7.22. The state moves
from this section to what might be termed the clock controlled section when
both preset and clear are inactive, Fig. 7.24. However, checks on the time
between preset or clear becoming inactive and the active clock edge are
required. Fig. 7.25 shows checks on the clock timing in the clock controlled
mode.

7.9.3 The preset/clear (P_C) mode
Fig. 7.22 shows the P_C mode section. There are five states. The

reset state, D^LH, implies Q = LOW (0) and Q = HIGH (1). In a similar

Fig. 7.22. D-flip-flop P_C mode state diagram. Note: P = A means preset
is active; P means preset inactive.

P.(C-A)
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manner the other states are designated the set state (D-HL\ possible_reset
and possible_set states (P-LH, P_HL) an error state, preset/clear error
(PC_£). If more detailed error reporting is required, the PC_E state could
be split into several different states.

A flip-flop is normally in the clock controlled mode and will move to the
P_C mode whenever preset or clear becomes active. Consider a flip-flop in
the D_LH state (reset). The state will not change so long as preset is inactive
(P) (clock action is not being considered in this section). Suppose, now, that
preset becomes active, Fig. 7.23. The mode changes to the P_C mode and
the state to the P_HL state. The pseudo-variable s is planted in the event
memory at time tpmin ahead. This is the minimum width of preset pulse to
guarantee an output change. T is recorded in the event memory associated
with the preset data.

When s returns to re-activate the model, the state and time are checked. If
the state is P_HL and T is rpmin ago then the state becomes DJtiL and
output predictions of H and L for Q and Q are made, Fig. 7.23(a). If preset
becomes inactive before this time (Fig. 7.23(fc)) then the state becomes
PC-E, the mode returns to clock controlled mode and predictions of
outputs becoming X are made. When s returns the mode is not clock
controlled so no action is taken. In the case shown in Fig. 7.23(a), when s

Fig. 7.23. Operation in P_C mode - Preset: (a) long and (b) short preset
pulse.
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returns it is necessary to check that clear has been inactive long enough, as
well as preset active. This covers the circumstance where preset and clear
were both active and clear becoming inactive has changed the state from
PCJE to PJHL.

The description in the previous paragraph presumes that the minimum
width preset pulse is less than the output delay, which is usually the case. If
it is not then the output will change to HH and possibly then HL (tr<tf),
but the state will remain P_HL. If the pulse width error then occurs, the
state changes to PC_E (preset or clear error) and the outputs are both
changed to X after a further tfmin.

If the flip-flop is in the DJLH state and preset becomes X then the state
becomes PC_£, since it is not known whether preset is 0 or oscillating. The
state will also become PC-E if preset is active and clear is either active or at
X, since, in the pessimistic case, X can be 0. However, clear being active or
X while preset is inactive will have no effect on the D_LH state.

In running simulations, it might be required to stop when any error state
is reached. However, it may be that there are several tests in one run and
that a control reset is done between tests. In the case of data path flip-flops,
'unknown' data at some times may not matter. Hence the user will often
want the simulation to continue after such 'errors.' It is for this reason that
the errors are states in the state diagram rather than simply reports.

Fig. 7.22 shows how. If the flip-flop gets into the error state then preset
and clear both inactive will still return the flip-flop to the clock controlled
mode (see also Fig. 7.23). An active clock with a D input which is 0 or 1
places a 'good' value on the outputs. A second possibility is where PC (or
PC) returns the outputs to a known state.

If the flip-flop is in the P_C mode and DJtiL state then a corresponding
description applies, with clear replacing preset and the PJLH state
replacing PJRL.

7.9.4 The clock controlled mode
Figs. 7.24 and 7.25 show a possible state diagram for the clock

controlled mode. Fig. 7.24 is the main diagram and Fig. 7.25 adds some
states for handling clock errors and an X on the D input. They presume that
preset and clear remain inactive. From the previous description, it should
be possible to follow the diagrams. It is presumed that both set-up and hold
times are positive (see below). A second pseudo-variable is needed, since a
pseudo-variable initiated in the P_C mode can return while in the C_C
mode and must be distinguished from a pseudo-variable initiated while in
the C_C mode. The clock error state, EJCK, is only relevant if there was a
significant event elsewhere. For example, if the flip-flop was in the D_LH
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state, D = 0 and there is an active clock edge, an attempt is being made to
reset a flip-flop which is already reset. A clock width error does not matter
in this circumstance. Once again it is possible to move from an error state to
a normal state with appropriate input patterns. The CK_X state was found
to be necessary to distinguish when a clock had gone to the X value and
then to a non-X value. On the latter change, the state becomes E_CK and
will revert to a non-error state with appropriate inputs.

Fig. 7.24. D-flip-flop clock controlled mode state diagram. tpr/tcr are
preset/clear recovery times. E_AR is error-asynchronous recovery.

CK.SU.D = 0

from D_XX,
E_CK
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E_CK

CK.SU.D = 1
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7.9.5 Timing errors
Checking of timing errors requires each input signal in the network

memory to have an associated time value. For example, the D input
changing has no effect on the operation of the flip-flop, but the time is
recorded. Further, the time must be checked against the time of the last
active change of the clock to ensure that hold times are obeyed. This will
happen when in the PJHL or P_LH states, it being assumed here that hold
time is less than the delay from active clock edge to output change. When
the clock changes an V style prediction, v, is made for a time th ahead.
When the model is re-activated and the time difference is at least the hold
time then a change of state is confirmed. If the time difference is less than the
hold time then a hold time error (E_H) state is entered and predictions of
outputs changing to X are made (see Table 7.4). Similarly, when an active
clock change takes place, the current time is first compared with the time of
the last change of D as well as its value. If the time difference is less than the
set-up time then the set-up time error state, E_SU, is entered and, again,
outputs are predicted to change to X. Set-up time errors are regardless of
the state of the flip-flop or value of D since the value of D has changed and
the output cannot be guaranteed.

A number of error conditions are not considered here. These include

• an active clock edge while in the P^HL or P^LH state. That would
require a very fast clock relative to the speed of the flip-flop, so is
unlikely,

• multiple errors.

Fig. 7.25. D-flip-flop clock controlled error states.

CK.SU, D = 0; to P_LH

CK.SU, D = 1 ; to P_HL
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It is also assumed that if D = X and an active clock edge occurs then the
state changes to D_XX without checking for set-up or hold errors.

When an active clock edge occurs (preset and clear inactive) the current
time must be compared with the time held in the network memory for the
last change of preset and clear. If either of these differences is less than the
P/C recovery time then the system enters the asynchronous reset error
state, E_AR. The times of clock changes must also be compared with the
time of the Wo previous clock changes to ensure that the HIGH and LOW
times and the period are longer than the minima specified.

All errors must be reported to the user. These may be placed in the
normal output stream together with the waveform information. This is
dangerous, as the errors are then easily missed in a mass of data. It is better
to have a separate output stream. In either case, an indication of the type of
error is required. Thus the user needs to know not just the time the error
occurred, but the route by which the model reached the error state and the
last time at which each of the offending waveforms changed. For example, a
short preset pulse should report the time of both edges of the pulse, and a
set-up time error should report the time of both the D change and active
clock edge. This information is not easily available unless the designer of
the simulator has been careful to ensure that the relevant time from the past
can be read from the network memory as well as the value.

Fig. 7.25 presumes set-up and hold times are both positive. This will be
true of a 'simple' flip-flop. However, in more complex synchronous devices,
it may not be so. Consider the device illustrated in Fig. 7.26(a), which might
be an arithmetic unit with a registered ouptut. Presume for the present that
the hold time of the register itself is zero. The minimum time through the
combinational logic may be (say) 20 ns, so the data inputs can be removed
20 ns before the clock edge and the logic still works correctly. In this case
the hold time is specified as — 20 ns. Clearly the set-up time is the maximum
time through the combinational logic plus the set-up time of the register.

Fig. 7.26(b) shows another situation in which the set-up time of the
flip-flops is assumed zero. By a similar argument, it will be seen that the
set-up time of the arrangement is negative and the hold time is the delay of
the clock buffer plus the hold time of the flip-flops. Thus set-up time or hold
time can be negative, but not both. To simulate the case of negative hold
time, the model is written as if there were two set-up times and similarly for
negative set-up times.

More complex devices obviously require more complex models. The
examples given here provide an introduction to the problems involved in
writing them. They illustrate problems for combinational and sequential
circuits. The latter illustrate the sort of errors which may be found.
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These sections have also introduced the idea of an 'unknown' value,
possibly in several 'flavours.' Different CAD suppliers use different
numbers of values and for different purposes. It is up to the user to take
advantage of what is provided.

7.10 High level modelling

7.10.1 Behavioural models
So far the discussion has covered models of simple gates and

flip-flops. 'Simple' gates may or may not include the not equivalence gate,
depending on the underlying circuitry. The question now arises as to
whether the whole system should be described in terms of AND, OR,
NAND, NOR and buffers in order to get full accuracy. Such a process is
known as flattening to gate level, since in the simulation only models of
these simple gates are used. The network model is structural.

The second question to be raised is how to create models of complex
devices. Even a 4-bit ALU, shift register or counter requires up to 100 or
more simple gates. In practice, the underlying construction may be current
steering logic, which makes 'gate equivalent' logic diagrams inaccurate
from a timing point of view. It should be understood that this does not
apply only to ECL logic. Some complex TTL logic uses current steering
techniques internally (e.g. 7474 flip-flop!), and use of MOS pass transistors
has a corresponding effect.

Many early simulators (pre-1990) could not handle anything other than
simple gates and flip-flops, though most claim to handle not equivalent

Fig. 7.26. Negative set-up (a) and hold (b) times.
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gates. Models used for complex devices flattened them to simple devices.
This fills up the memory space available for storing the network and
increases the number of events that can occur, thus slowing down the
simulation. For example, a 4-but ALU has around 60 gates in its logic
diagram. These will require network memory storage for 60+ elements
with an average of three or four inputs and one output. A single input
change may lead to between five and 10 events, each requiring a call of a
model and, say, 10 instructions to execute, excluding those needed to
manipulate the data structures.

Suppose, instead, that a behavioural model of the ALU is written. It
requires network memory storage for only one element, though with seven
outputs and 15 inputs. One might reasonably expect a reduction in storage
space of between 10 and 20 times. Furthermore the change of any input or
any number of inputs results in only one call of the model. It may require 50
instructions to evaluate the model, and rather more data structure
manipulation than for one simple gate. Allowing for the cost of procedure
calls, the high level model should run much faster than the gate level one.
This advantage increases when several inputs change together, as may
frequently happen in the simulation.

This leads to two things. Firstly, high level models run faster and require
less storage. Hence larger systems can be simulated with given limited
resources. Furthermore, there is no point in simulating at gate level when it
is required to check the interactions of major blocks (Harding 1989).
Harding also points out that many ASIC designers never check their
devices in a system, and frequently they do not work in the system.

Secondly, it may well be necessary to simulate any logical element at gate
level or even lower levels. If the logical element can have two or more
models it is possible to simulate parts of a design at a detailed level and parts
at a less detailed level. This again makes it possible to simulate larger
systems with given resources. It also makes it possible to simulate parts of a
system at different stages of design yet still within the system. For example,
if a detailed design of a shift register has been completed but only the
specification of the ALU, then the system can still be simulated. This is the
intention of the VHDL facility, to write several architectures for the same
piece of logic and to select the relevant one for a particular simulation using
a configuration.

7.10.2 Hierarchical models - structural
The question now arises as to how to design a gate level model of a

complex device. It is clearly very wasteful of people's time and energy to
design every model from scratch. Take, for example, a shift register. This is
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made up of gates and flip-flops. If the gate and flip-flop models have been
written in such a way as to enable input numbers and types, delays etc. to be
passed to the model at compile time as parameters from the network, then it
is only necessary to have these basic models. Similarly, if a single shift
register stage is available, it can be used to build up longer shift registers.
The problem now is how to specify the 'internal' connections of the longer
shift register, and how to call the lower level models.

Consider Fig. 7.27, which might be a 32-bit ALU. On the left hand side is
a list of inputs and outputs of the top level model as received from the
network memory. This list will contain other information such as
pseudo-variables, times associated with signals etc. These can be included
without altering what follows in principle. They are ignored only to simplify
the description.

The model of the 32-bit ALU will call a 4-bit ALU eight times. The 32-bit
model 'knows' which of its inputs and outputs belong to a particular call of
the 4-bit model and passes the appropriate data. The 4-bit ALU may then
wish to call an AND gate model. Again, which inputs to pass are 'known' to
the 4-bit ALU model. The AND gate will generate an output prediction.
This must be a signal recognised by the 32-bit model if it is to be sent to the
event memory, since anything outside the model evaluator has to be related
to that. Thus, if this gate is 'internal' to the 32-bit ALU, it must be
represented in the data on the left hand side and possibly the centre column
as a pseudo-variable.

The difference between a behavioural model and a hierarchical structural

Fig. 7.27. Hierarchical model.
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model must be emphasised. The behavioural model has the operation
described in abstract terms as the manipulation of the inputs and possibly
pseudo-variables to produce the outputs. The structural model uses low
level elements and is used as a means to simplify the detailed description of a
complex element. It is comparable to the use of library procedures in
programming.

7.11 Wire gates
Open collector TTL gates, ECL gates (open emitter) and tristate

devices are all intended for use with 'wired logic'. By this is implied a logic
function constructed by wiring two or more output signals together. Fig.
7.28 is an example. If the logic family is TTL, then the logic function of the
wire is an AND, since in this technology any real gate output pulling to 0
will force the wire to 0. The AND pseudo-gate is shown dotted.

In theory, a wire gate has zero delay and so cannot be used in the usual
way with the affected components list. Furthermore, multiple input
changes at the same time are likely. The situation may be helped somewhat
when the connections are metal, since the rising and falling delays will be
the same and problems of cancelling predictions are not present.

The wire gate has a logic function. Thus the network compiler must do
several things.

• Recognise that several gate outputs are connected together.
• Check that these outputs are compatible and the connections are

legal: for example, conventional totem pole outputs cannot be
wired together.

• Insert into the network description a pseudo-gate with appropri-
ate function and values.

Fig. 7.28. Wired AND gate.
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• Insert appropriate entries into the fan-out table which represents
the interconnection of the gates.

(a) The fan-out memory indicates just one load for each of A, B and C in
Fig. 7.29.

(b) The fan-out memory indicates one output and a set of driven inputs
forD.

Suppose that there is a change on an input to gate A in Fig. 7.29. The
output prediction for A eventually appears from the event memory. The
fan-out memory passes this to the pseudo-gate, D, in the affected
components list and it is eventually evaluated.

Evaluation of gate D must take into account the values on B and C. If A is
1 and B is 0, there is an incompatibility and an output X and an error must
result. The only legal situation is for one and only one of the inputs to be at a
logical value. The others must be Z or resistive. This implies that the signals
A, B and C as shown in Fig. 7.29 cannot be the same which, of course, they
are. However, when the system reports values for them, the value D should
be reported as well.

Prediction of D is made. Although the gate has zero delay in theory, in
practice connecting several outputs together adds capacitive load, and to
give this gate a unit delay is not unreasonable. In VHDL it should make use
of deltas if the delay is genuinely small.

The use of wire gates must be done very carefully.

• The wired outputs must be physically close together - the longest
distance apart should be less than the distance travelled by a signal
in half the signal rise time. This must be checked by a rule checking
program after layout. If the rule is not observed, reflections will
occur, resulting in loss of noise immunity or even oscillation.

• If the gate is actually made using MOS pass transistors then the
situation is more complex. Multiple state switch level simulation
will be necessary. Further discussion is beyond the scope of this
book.

VHDL has provision for the writing of resolution functions for wired
gates. The above represents an approach to their implementation in the
simulator (environment).

7.12 Hard models

7.12.1 Non-memory devices
Many systems to be simulated will contain very complex devices

such as microprocessors, large memories etc. It has been suggested that to
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write a model of such a device would take as long as to design the device
itself. This is likely, as the two processes are similar. Furthermore, the
specification of a complex device does not record all the behaviour under
unusual or exceptional conditions which can occur in simulation.

To alleviate such problems, a number of companies have produced
hardware modellers. These are special pieces of hardware which can be
connected to a conventional computer. The cards contain sockets which
can hold one or more physical devices which perform as the 'model' in the
simulation. The simulator is written in such a way that, when designated
devices are affected in the affected components list, the relevant signals on
the computer interface are driven. The hardware modeller samples the
device output signals at regular intervals and sends the result back to the
computer where the interface software will place the appropriate predic-
tions in the event memory.

Hardware models are functional models. They cannot contain the
necessary timing parameters or checks since the actual device used can
never be 'typical' or 'worst case' or anything else 'special.' Any timing
checks must still be performed in a software model. This may be run on the
modeller or in the normal simulator. Nevertheless, with sufficiently fine
sampling of the outputs, reactions to stimuli other than the static values can
be obtained.

A major problem with a hardware modeller, as with any hardware, is its
lack of flexibility. Building hardware to be compatible with many host
computers and with different simulators is not easy. Two approaches have
been used.

Logic Modelling have built a machine, the LM1000, which communicates
via a standard, high speed link, Ethernet, with the host computer. Software
has been produced to enable the modeller to work with several operating
systems including flavours of UNIX and DOS. The software in the interface
makes as little use of operating system facilities as possible in order to ensure
maximum portability. Only a sub-set of the usual Ethernet TCP/IP calls are
needed. This has the added bonus of extra speed in processing.

The second approach is exemplified by the Dazix Physical Modelling
Extension, PMX. This runs only with the Dazix (Daisy) hardware and
software which makes it more difficult to use with simulators from other
manufacturers. Again, the PMX uses Ethernet connections.

The two systems are similar in construction, the LM1000 (Kelly et al.
1989) being a little more flexible. It can handle up to 32 devices, each with
up to 80 pins in an 8 by 4 matrix. Groups of two, three or four devices in a
'column' of sockets can be coupled together to allow devices with up to 320
pins to be simulated (Fig. 7.29). Patterns can be presented at up to 25 MHz
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with +1 ns or + 1 % accuracy. Normally output samples are taken based
on the clock and delays specified in the 'core' model code. In one mode, the
timing measurement strobe can be swept to look for input and output
changes with resolution down to 0.5 ns.

Software within the modeller itself performs a number of functions. These
include configuring the hardware to know which socket pins are inputs,
outputs or bidirectional pins on the device. The modeller also performs
timing checks on the devices, but, as indicated above, this is software within
the modeller CPU.

A device of only combinational logic is easily simulated on a hardware
modeller by applying a pattern to the inputs and observing the outputs an
appropriate time later. For a device containing registers, it will be necessary
to apply several clocks to reach a particular place in the simulation. In the
worst case, with certain devices based on dynamic logic, it will be necessary
to apply all the input vectors that have gone previously every time the
device model is called. If this is not done, then there is a chance that the
device will not be in the required state prior to application of the 'new'
vector. Fortunately only a very few devices come into this category.

• Memories should not use such a modeller (see below).
• Most CPUs require the clock to run continuously. If the modeller

presents a NO-OP when a new pattern is needed, the long set of
old patterns is not required.

Fig. 7.29. LM1000 architecture; 4 by 4 devices.
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However, there is another potential problem. Suppose a system includes
two (or more) identical devices to be modelled on the hardware modeller - a
CPU, for example. Suppose that for some reason - size of the modeller,
number of other devices using the modeller - it is not possible to have two
CPUs on the modeller. Then, when it is required to simulate CPU_2 having
presented a pattern to CPU_1, the whole history of CPU_2 inputs must be
presented to ensure the correct initial state. The same procedure must
happen every time it is required to change from one instance of the CPU to
the other. With long simulations this can be slow. To avoid having to send
all the data from the host every time, the modeller contains a pattern
memory for each pin. The LM1000 supports sufficient memory for 256K
patterns.

7.12.2 Memory
Memory could be simulated on a hardware modeller. However, to

simulate a sensible system, a rather large number of chips are needed. It is
best to arrange to do the functional simulation of memory with a bank of
memory in the main store of the host computer. This memory holds the
data. A network memory entry will hold other information, such as times of
last change of each signal and a pointer to the start of the data memory. The
model evaluation routines will perform the necessary timing checks. As the
data is held in real memory, it is possible for simulated static memory to
have its data held in dynamic real memory or vice versa. In the former case
the refresh cycles for the real memory are performed by the normal memory
controller, not by the simulator. If the dynamic memory is being simulated
then the simulator must check that the simulated system is performing
refreshes. This will not cause refresh of the real data memory, which may be
static memory anyway.

The question arises as to which type of model is most appropriate in
given circumstances. The QuickSim manual of Mentor Graphics suggests
that basic built in models are most appropriate for devices of less than 10
gates. For devices using more than 10 gates, either a library model or a
behavioural model is recommended, with the library models stopping at
about 200 gates. For more than 1000 gates a hard model is to be preferred if
the necessary hardware is available. Abramovici et al. (1983) suggest that
lOmin computation at functional level is equivalent to 2 h at gate level, a
factor of 24.

This chapter has outlined some of the problems of modelling devices for a
simulator and indicated some solutions. It should be clear that what has
been said is little more than an introduction. It should be realised that there
may be many alternative techniques to solve the problems. The simulator
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designer has to assess the value of each technique to find the 'best' for the
particular implementation circumstances. The problems are so great that
there are now whole companies devoted solely to writing models for
simulators.



8
Timing verification

8.1 Introduction
Although the event driven simulator allows timing to be included

in a simulation, it is extremely difficult to devise a set of tests that would
show up all possible timing problems. Such a set of tests would have to
analyse the network structure to find where two paths from the same
signal converge later in the network. One of these would have to be
assigned maximum delay and the other minimum. Such a situation was
shown in Fig. 1.1 given that the two inputs were related and is known as
reconvergent fan-out. The four-gate not equivalence example has five
cases of reconvergent fan-out. A procedure is needed to find unwanted
short pulses. It requires that all associated signals have the relevant states,
which is why it can be difficult to drive. Having found a potential short
pulse, it must be decided whether it matters. At the input of another gate,
it does not. At the asynchronous input to a flip-flop, it most certainly
does.

The second problem with timing is to be sure that the longest path, often
known as the critical path, through a combinational network has been
activated in order to ensure that the logic can operate within the design time
specified. In particular, with synchronous logic, it is necessary to check that
the logic works within the specified clock periods. The naive analysis of the
four-gate not equivalence circuit designed earlier indicated the dangers of
pattern sensitivity. That analysis was by no means complete (Section 6.4,
last paragraph).

To ensure that adequate test patterns are generated is not impossible, but
running the set of tests is very time consuming. Generating the set of tests
can be done by examination of the structure or topology of the network.
Having done this, it is possible to analyse the timing problems without
having to generate tests for an event driven simulator or running such
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simulations. Such an analysis is known as timing verification. Timing
verification is an attempt to simulate a network with all possible input
patterns in one pass. It begins with the assumption that the logical design is
correct. It must have been thoroughly simulated for functionality, there-
fore. There is no need to have included timing in that simulation, so a
compiled code simulator could be used for speed. The timing verifier is used
to check timing relationships only. It is faster than normal simulation
because it is independent of the input patterns (but see later).

8.2 Computing the critical path
One way to tackle the problem of finding the longest path is to start

from a primary output of the network and work backwards, assigning a
maximum time to each signal as the analysis proceeds. Consider Fig. 8.1,
another form of not equivalence logic. G is the primary output.

Suppose for simplicity that each gate has a delay of 10 ns. Signals E and F
are both assigned a time of 10 ns delay. Signals C, D, A and B are then
assigned a time of 10 +10 = 20 ns. Finally, tracing back from C and D, one
gets to A and B again with a time of 30 ns. As 30 is greater than 20, the time
associated with A and B is re-assigned to be 30 ns. The primary inputs have
now been reached and there are no new paths to trace, so the longest path
has been found.

This example is over simple for several reasons.

• In general the network will have several outputs and the number of
possible paths back to the inputs will be very large. Furthermore,
the cones of influence back from different outputs may overlap so
that a signal on the longest path for one output is not on the
longest path for another. The analysis can become very large, but
not as difficult as solving the problem with an event driven
simulator. Means to simplify the timing verifier problems have
been researched.

Fig. 8.1. Circuit to illustrate timing analysis.
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• Some paths are not possible and if included will lead to pessimistic
results. These are called false paths, and are discussed in Section
8.5.

• There may be a need to distinguish between rising and falling
delays (note that all waveforms still have infinitely fast rise and fall
times). For example, if the rising and falling delays are 8 and 15 ns
respectively and a signal passes through two inverters in series then
the total delay is 23 ns for both directions of change, and not 16 ns
or 30 ns.

• Fig. 8.2 illustrates another problem (HITIME). The flip-flops
represent part of a shift register. Qx is 1 and all other signals are 0.
The clock now becomes active - goes to 1. After buffering, the
clock to the flip-flops could appear anywhere in the shaded area
which represents the production spread of the buffer delay. The
earliest time that Qx or Q2 could change is W-min +*fLmmand the
latest tbuff̂ ax + r^ax. It appears from the diagram that Qx could
change before the clock to Q2 changed. However, the user realises
that whilst there is some uncertainty about when the buffer output
changes, it changes at the same time for both flip-flops and the
operation must be correct. This is an example of common
ambiguity. A good timing verifier should not raise objections to
this circuit.

From the above it will be realised that timing verification is not a panacea
for all ills, and can be pessimistic. At this time (1992) it is likely that, even

Fig. 8.2. Illustration of common ambiguity.
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with means to eliminate most false paths and common ambiguity, it will
still be pessimistic. It will be seen later that, without due care, it could be
optimistic. It is important that this should not happen since that would lead
to unwarranted confidence in the design and problems with commissioning
and production testing that could only be solved properly by redesign.

In view of all these problems, it may be asked if timing verification is
worthwhile. Some estimate of timing must be made. In particular, the
longest path must be determined. It has been said that manual selection of
the critical path is based on 'designer hunches,' the excellence of which will
be highly dependent on experience or even luck, especially as most people
involved with detailed design are relatively inexperienced. It is reported
that on the RISC-1 project at Berkeley and on the MIPS project (Jouppi
1987) these estimates were out by a factor of four. The problem of false paths
is the cost of neglecting real values propagating through the networks
which would be observed in conventional simulation.

8.3 Methods of timing verification

8.3.1 Path enumeration
The procedure for calculating delays illustrated in association with

Fig. 8.1 is known as path enumeration. The 'start point' is either a primary
output, or, in the case of synchronous logic, the output of a combinational
logic block feeding a register. The terminal point will be either the primary
inputs or the clock signal to a register feeding the relevant combinational
logic block. The clock is the appropriate point since the delay of the
flip-flops making up the register must be included. In the example, the
circuit was effectively levelised and all delays at a particular level found
before moving back. With blocks of logic with very different delays, this will
be difficult to do precisely, but does not matter, since at each stage, if a delay
figure larger than that already found for a node is calculated, the larger
figure replaces the smaller as happened with A and B in the example.

An alternative approach would be to follow one path right back to the
input. Considering again Fig. 8.1, this might be G-E-B. It is necessary at G
and E to note that they have two inputs. On reaching a primary input the
program returns to E and traces that input back to A. It then has to return
to G to trace the paths F-D-B and then F-A. This is known as a depth first
approach. By contrast, the previous approach is referred to as breadth first.

The path enumeration procedure suffers from the large number of paths
which, in turn, leads to long run times. It has the advantage that the time for
every node is known. It is also possible to tell the software to ignore certain
paths, thus avoiding the problem of an obvious false path. However, that
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relies on the user recognising the false paths first, which is non-trivial, not to
say error prone for a large network.

8.3.2 Block orientated path trace
In this method of finding paths, one begins at the start of a block -

the primary inputs or a register clock. The delay to each output is then
calculated in either breadth first or depth first mode. Longest and shortest
paths can be calculated by taking the higher or lower value respectively on
second or subsequent calculation at a particular node. In this case, all the
outputs of the block are calculated at least once.

It is claimed that this approach is faster than path enumeration.
However, although it can calculate the longest and shortest paths, the
earlier versions, at least, lost the details of how the critical path was built up
(Ousterhout 1985). As this is moving forward through the network to all
outputs, telling the system to cut out a false path to one output may cut out
paths to other outputs which are not false. Hence the length of the critical
path tends to be very pessimistic.

8.4 Description of the network
The network is usually reduced to a directed graph (Perremans et

al. 1989) in which the nodes are the signals in the network and the edges are
delays. Fig. 8.3(a) shows a circuit and (b) an appropriate graph. The
number in the gate is used to identify the gate, and also its delay, for the

Fig. 8.3. Timing verification example: (a) circuit and (b) directed graph.

A .

D

—UV^J
Y£>-'

(a)

(b)



8.4 Description of the network

Table 8.1. Data structure for Fig. 8.3
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Address Signal Comment Values

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

D

max delay
back ptr
forward ptr
max delay
back ptr
forward ptr
forward ptr
max delay
back ptr
forward ptr
max delay
back ptr
forward ptr
max delay
back ptr
forward ptr
max delay
back ptr
forward ptr
max delay
back ptr
forward ptr
forward ptr

0
primary input A

X 4

primary output
Y 8

7 io
X 4

primary output
0
primary input B

D 14
1

B 11
E 17

3
D 14
X 4

0
primary input C

E 17
Y 8

17

purposes of the following example. Data associated with each node should
include the maximum delay from an input to that node. It may contain the
minimum as well. It should also contain details of the path to that node for
the maximum delay, or at least sufficient information for that to be
computed. A suitable back pointer might be sufficient.

Table 8.1 represents a possible data structure for Fig. 8.3. Starting with
A, the maximum delay is zero as this is a primary input, and there is no back
pointer. There is just one fan-out, so the forward pointer is to the next store
location, 4. Moving forward in depth first mode, location 4 represents
signal X. The delay is 0 from location 1 (A) plus 3 from the OR gate, namely,
3. For the moment ignore the fact that this is crossed out in the table. The
delay came from the path from A, so the back pointer is to line 1. X is a
primary output and is marked as such. It is also an input to Y so there is a
second forward pointer which can be set to the next free location, namely, 8.

Proceeding to Y, the delay is 3 + 4 = 7, the back pointer is to X (4) and the
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forward pointer is a primary output marker. There are no further fan-outs
to follow so the procedure returns to the next primary input, B. The table
continues to be built in a similar manner. However, the forward pointer
from E in line 19 is to X, which is in line 4. The delay at E is 3 and this must
be added to the delay of the OR gate forming X, giving a total of 6. Line 4
currently records a delay of 3. As 6 is geater than 3, the 3 is replaced. This, in
turn, means that the back pointer from X for the longest path, which was
previously to A, must be replaced by a pointer to E, 17 as shown in Table
8.1. The path forward to Y must also be recalculated so far as delay is
concerned.

In constructing the structure for C to E it is found that the delay to E is
0-1-2 = 2, which is less than the 3 recorded in line 17 for E. That path can
stop, therefore. A similar argument applies to the path C to Y.

Clearly other structures than this are possible. Equally this structure can
be expanded to include other information. Instead of forward and back
pointers, it would be possible to contemplate a pointer into another piece of
memory holding the complete longest (and shortest) path for each node.
This might be built after a structure like this one, since maintaining it as it
was being built might be quite difficult if a whole path has to be replaced
rather than a single pointer as in the example.

8.5 False paths
Consider Fig. 8.4. A signal may pass through two paths of delay 10

and 20 units to a multiplexer. The output of the multiplexer then passes
through two more paths to a second multiplexer. A simple analysis of this
arrangement which ignores the functionality will find four possible paths
with delays of 20,30,30 and 40 units. However, it will be observed from the
connection of the control to the multiplexer that, provided that the control
signal is fixed and a signal passes from the 10 unit delay to the first
multiplexer, it cannot pass through the second 10 unit delay to the output of

Fig. 8.4. Illustration of false paths.
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the second. Similarly, the 20 plus 20 unit path is not possible. The 20 and 40
unit delay paths are known as false paths since they cannot occur in
practice.

A second example is a two-phase latched system as found in many MOS
systems. Fig. 8.5 shows two sets of combinational logic separated by
latches. Data cannot pass through many stages, since if (j)1 allows latch Lx

to be open then latch L2 is closed and vice versa. The longest path is from
the start of (j)1 through Lx and logic_l to the end of (j>2 less the L2 set-up
time.

There are two primary sources of false paths. Fig. 8.4 is an example of a
logic dependency false path. These can usually be handled by 'case analysis.'
Observing Fig. 8.4, the control is forced to 1 for one run and to 0 for a
second. If the control signal is not easily 'controllable' and/or affects other
paths, this could present serious problems. With many such controls, many
timing verification runs could be necessary, and obtaining independence of
one control from another may also be difficult. The mere fact of there being
a difficulty could indicate a need for a redesign.

The other source of false paths is where there is uncertainty over the
direction of signal flow, for example through a pass transistor network in a
switch level simulation. This problem is usually solved by marking a
direction of flow on each transistor record. This will be difficult to do
automatically, and easy to get wrong by manual means.

It has been suggested that either false paths do not occur in a particular
network or that they are numerous (McGeer and Brayton 1989). Arrange-

Fig. 8.5. A two phase latched system.
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ments such as Fig. 8.4 will be common in some designs. In other cases,
conditions where false paths could occur, mainly with reconvergent
fan-out, should be avoided since there is a danger of producing brief pulses.
A case in point is illustrated below.

False paths can be detected by making use of forward and backward
traces in a manner similar to the D-algorithm. Consider Fig. 8.3(a) and the
path B-D-E-X-Y. For the signal X to reach Y, signal C must be 0. For
signal E to reach X, A must be 0. For D to reach E, C must be 1. C has
already been specified to be 0, so the path B-D-E-X-Y is not sensitisable
and could be labelled as a logical dependency false path. The longest delay
will be assessed as 7 units (A-X-Y).

Consider, now, the waveforms shown in Fig. 8.6. B goes to 1 at time 0 and
hence D goes to 0 at time 1. C is 1, so this change can propagate to E at time
3. If C remained at J, the change would not reach Y since gate 4 is an OR
and a 1 input will dominate. However, before the change starting at B can
reach gate 4, C changes to 0. That is not propagated to Y since X is still at 1.
Thus it is found that there is a delay of 10 units from B to Y, and the earlier
analysis of this section was optimistic. Note that Table 8.1 gave the correct
result.

This illustrates the difference between the static analysis represented by
the basic D-algorithm and a dynamic analysis. It can be deduced that, if a
'control' signal such as C at gate 4 for path B-D-E-X-Y appears earlier
than the signal on the path of interest then it should not be regarded as a

Fig. 8.6. Some waveforms for Fig. 8.3.
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control signal. The reason is seen in Fig. 8.6, where control signal C at the
input of E changed later than signal D coming from B, also at the input of E,
but earlier than the signal at X which also originates at B. The longer path is
opened.

The reader should analyse the path C-E-X-Y. The maximum delay is
9 ns.

A similar result is obtained by considering the network of Fig. 8.4 with
the control changing. Suppose that the data input, I in Fig. 8.4, changes at
time 0 and the control at time 25. Suppose that the device delays are all zero.
Fig. 8.7 shows the waveforms. As the control is 1, C follows B, at time 20. D
goes to 1 at time 30 and E to 1 at time 40. F follows D until the control
changes, after which it follows E. Hence F does not change until time 40.
The data appears to take 40 ns to pass through the network. The false path
is only false if the control input is steady. Thus this is a case of a static false
path. Notice that the rule that if a control signal changes before a data path
signal it should not be regarded as a control signal applies here, specifically
the signal at the input to the second multiplexer in Fig. 8.4. The reader
might like to examine what happens if real device delays are used, and the
changes are not at 'convenient' times. In particular, the delay from a change
on the control input of a multiplexer is usually different to the delay
following a data input change. The output can become difficult to
determine, and may well become unknown for some period.

The example of Fig. 8.3 and others that have appeared in the literature to
illustrate this point are somewhat contrived. They so obviously have a

Fig. 8.7. Control change in Fig. 8.4.
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danger of spikes that no good designer would use them. In real circuits,
such problems would occur accidentally over much larger sections of logic
and would not be so easily spotted as problems. The example of Fig. 8.4 is
quite likely to occur.

8.6 Use of timing verification
Look again at the purpose of the timing verifier in the light of the

previous sections and see what data can be obtained from it.

• Is the longest path through the network less than that specified?
This could be a clock period less set-up time for an edge triggered
synchronous system, or O^ + ^ - h o l d time) for a two-phase
latched system.

• Is the shortest path through the logic block long enough to satisfy
any (flip-flop) hold time criteria?

• Is it possible to generate short pulses in critical places such as the
asynchronous inputs to flip-flops?

• Are two or more waveforms correctly positioned in time relative to
one another to enable correct circuit operation. For example, are
the RAS, CAS, read/write and various enable signals of a dynamic
RAM in the right relative places? This includes latest time of one or
several relative to the earliest times of the others.

If one determines that the critical (longest) path through the network is too
longfor the specification, it will be necessary to do some redesign. In this case,
it is necessary to be able to extract the details of the path. However, this may
not be sufficient. Suppose that one had a clock period of 50 ns (20 MHz) and
that the critical path was found to be 60 ns. Fig. 8.8 shows two particular
cases. Figures in the blocks represent delays and in each case two dashed lines
show the two paths through the network with their delay. Only the critical
path information is immediately available. The designer decides to work on
the longest block and, after much blood, sweat and tears, gets the delay down
to 18 ns, reducing the 60 ns path to 48 ns as shown by the dotted lines. Only
then does (s)he find that there was another path with a delay of 55 ns.

To overcome this problem, one needs to know not just the critical path
but all paths that exceed a specific length, and also if there are any common
parts to these long' paths. The 10 ns and 20 ns blocks in Fig. 8.8 are
common to both long paths. Consider the network shown in Fig. 8.9
(Hitchcock 1982). Each of the blocks is labelled with a name (A-H) and a
delay time. Assume that the inputs are steady at time 0. The outputs of A, E
and F are steady at times of 2, 3 and 4 units respectively and are shown
above the output connection in the diagram. The inputs to B arrive at times
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2 and 3, so the output will be steady at the later of (2 + 4) and (3 + 4), namely
7 units. The outputs of C and D are then at (7 +1) and (8 + 3). The output of
G is determined in a manner similar to B, namely max ((7 +1 ),(4 +1)) = 8.
The output of H is at time 13. Notice that all signals are now associated with
a time but not with a path. It would be possible to create a linked list for
each output, showing the longest path to that point. Thus B would have the

Fig. 8.8. Problem with shortening one path.

Fig. 8.9. Use of 'slack'.
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list (E, 12) and H would have the list (C, B, E, 12) or (G, B, E, 12) or
preferably both. Thus the path can be retained at a cost (see above).

Suppose, now, that the specification required both outputs to be present
at time 10. Define a quantity called slack. If a signal arrived at the output of
D at time 8 then it is 2 units earlier than necessary and there is 2 units of
slack. Alternatively, the time of the signal at the output of D could be
allowed to slip by 2 units and still be within specification. In fact, in the
example, the output of D appears at 11 units, so the slack is 10-11 = - 1
unit. This is shown below the connection line. Similarly the slack at the
output of H is — 3. A negative value for slack implies that the logic is slower
than the specification.

Working backwards, the required arrival time at the output of C is either
10-3 via D or 10-5 via H. The lower of these is 5. The actual time at the
output of C was 8, so the slack is - 3 . The same is true of the output of G.

Taking another step back, the required time at the output of B and F is 4.
Hence the slack at the output o f B i s 4 - 7 = - 3 , and at the output of F is
4 - 4 = 0. At the input to B, the required arrival time is 4 - 4 = 0. This gives a
slack of - 2 at the output of A. At the output of E, the arrival time is either 0
for the route via B or 3 for the route via F. The lower is 0 and the slack is — 3.
The slack at the inputs is —2 and —3 respectively.

Observing the figures for slack, it is seen that the negative values funnel
through block B. Suppose that block B could be replaced by a faster version
having a delay of 1 unit (LSTTL replaced by AS, say). Fig. 8.10 shows the
revised diagram. The output of D has a time of 8 and a slack of 2, and the
output of H has a delay of 10 and slack of 0. Redesign of one block only has
corrected both problems.

The difficulty with this approach is that the block to be redesigned was
selected by pattern matching by the designer. This is much more difficult for
the computer to do. Further, in much bigger networks the logic diagram

Fig. 8.10. Circuit of Fig. 8.9 after modification.
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can rarely fit on a single sheet, and visual observation of the paths is
virtually impossible. Nevertheless, the approach is interesting. The figures
for slack do give valuable clues to what needs to be done. A suitable linked
list print-out of several related paths may make the relevant paths visible.

There is another possible use for these techniques. Suppose that a design
is produced. It could be by automatic synthesis from a higher level
description. It is found by timing analysis that all the slacks are large. The
designer (or the automatic software) can now ask if some or all the blocks of
the design could be built from a slower technology, on the grounds that this
type of circuit will use less power or be cheaper or both. This is particularly
apposite in the design of large scale integrated circuits. Given a suitable
map of the longest paths, appropriate blocks can be selected for modifica-
tion, even if all blocks cannot be modified.

8.7 More complex models
It will be obvious that a trivial adaptation of the procedure just

described will allow shortest paths to be found. Equally, if a minimum time
through the network is found, then the slack will be defined to be
(maximum arrival time calculated working forward) —(time specified for
the output and traced back). With this definition, unacceptable slack is
again negative.

It has already been indicated that, for logic units with different rise and
fall delays, it is easy to get pessimistic results. It has also been suggested that
some paths are not valid. To overcome these objections the SCALD
(McWilliams 1980) verifier uses seven values. The values 0 and 1 could be
used to force certain paths open or closed. That might mean running more
than one pass of the verifier to obtain results under different conditions but
the results would be less pessimistic. More seriously, with many such
signals it will be as difficult to get a comprehensive set of tests as with the
event driven simulator, since the timing verifier is now dependent on input
values. Other values used by SCALD were stable, changing, rising, falling
and unknown. Consider Fig. 8.11. The first number of a pair is the time of

Fig. 8.11. Use of rising and falling times.
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the rising transition and the second that of the falling transition (as for the
models, all transitions are actually instantaneous). There are two inputs to
the block which has an inverting output. Thus a falling input leads to a
rising output and vice versa. The latest rising output occurs at max (falling
input time + rising time), i.e. max((4 + 3),(5 + 3)) = 8. The latest falling
output is at time max ((7 + 5),(2 + 5) = 12. Apart from the extra complexity
here implied and the need to have some tables for evaluation of different
gate types comparable to those of Chapter 7, the extension of the techniques
is reasonably obvious.



Fault simulation

9.1 Introduction
Simulation has two purposes:

• to verify the design,
• to confirm that a test program will find faulty devices and systems.

In order to achieve the second of these aims, the failure modes of the system
must be known. The effect of these failures must then be transferred to
equivalent effects in the circuit models and tests generated to find these faults.
It has already been said that a model based on wires stuck at 0 or s-a-1 has
been found to be very useful and that an extension to include stuck-open
faults of MOS circuits covers most other faults. This latter requires pairs of
test vectors rather than single vectors. Finally, tests to find wires shorted
together are needed. In practice, few test programs attempt to find these.

The number of possible faults is very large. For k nodes there are 2fc single
s-a faults and 3* — 1 faults including multiple faults. The number of bridging
faults will be dependent on layout. Chapter 3 discussed design techniques
that enable the number of tests needed to be reduced by partitioning large
designs and test time to be reduced by permitting parallel testing of
partitions. Even so, most test programs only aim to test for single s-a faults
and many systems have test programs which cover only 80-90% of these.

Is this justifiable? Williams and Brown (1981) derived an empirical rule
which said that, for a process yield of Y and fault coverage of T9 the number
of faulty chips accepted as good (defect level) is

defect l e v e ^ l - y 1 " 7

For a fault coverage of 99% and a manufacturing process with a 50% yield,
1% of faulty chips are accepted as good. If the yield is 10% then over 2% of
faulty chips are missed, and if the yield is 50% and the fault coverage is 90%
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then 7% of faulty chips are accepted as good. If testing is for single faults
only then these figures will be worse - 3 to 4% has been suggested for the
first case1 (Hodge 1990). In the specific case of IC testing, whole areas of a
wafer are bad (or good) and hence within a 'bad' area, multiple faults on a
chip are likely. At a system level, it is possible that many on-chip multiple
faults will appear as single faults at the terminals. The conclusion from this
is that the lower the yield of the manufacturing process, the higher is the
required fault coverage. Usually a test program that finds 80% of single s-a
faults is simply unacceptable and some attempt to find multiple faults is
highly desirable.

In spite of this the majority of authors limit themselves to single faults.
Single fault cover may well relate to multiple fault cover. For example,
Agarwal and Fung (1981) state that for fan-out free circuits (see below)
98% of multiple faults up to six at a time will be detected if single fault cover
is 100%. However, there are very few real networks that are fan-out free.
The single s-a fault cover gives an indication of multiple fault cover but no
more. In the absence of reliable evidence of good cover, the reader should
maintain a healthy scepticism.

It will be realised from reading Chapter 4 that a good test program
generator will find tests for all faults for which a test exists. However, the
following points were noted.

• Finding such tests is a very long and expensive process.
• Hand generated tests produced for design verification have been

found to give quite high fault cover and the intelligence of the
designer can produce more tests relatively easily and quickly. This
leaves only the less obvious tests to be generated automatically.
Reduction in the number of tests is important since the cost of
testing is high - 60-70% of the total cost of a chip has been
claimed.

The problem then is to find which faults are covered by the test set
produced so far. Thus one can find the faults for which the automatic test
program generator must try to find tests. Once a new test vector to find one
of these faults is produced, it is necessary to see which other previously
untested faults are also covered by that vector.

To determine which faults a test program can find, each fault is
introduced into the network one at a time. A simulation is run against the
test program and the results compared with the result of simulating a fault

1 B. Prior, Plessey Research (Caswell). Verbal statement at 'Systems on
Silicon,' 1987.
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free system. Thus, for this purpose, the design must have been accepted as
satisfying the specification by the use of designer-generated tests on the
simulator. The purpose here is to determine if a fault introduced in the
manufacturing process (as distinct from a design fault) can be detected.

The cost of running a simulation with every individual fault is also very
high. It is done only once and not every time a real system is tested.
Nevertheless, it is very necessary to reduce the cost. For a 1M node
circuit and considering only single s-a faults, 2M simulations are needed.
The purpose of this chapter is to describe methods of doing this. Whilst
considerable progress has been made, the continually increasing size of
chips and systems is such that better methods are always needed. Cur-
rent development would seem to be some way behind the desirable
objective.

9.2 Reducing the problem size
Nishida (1987) describes the size of the fault simulation problem as

a three-dimensional structure as shown in Fig. 9.1. The axes are the number
of gates, G, the number of faults, F and the number of tests, T. Since both
the number of faults and number of tests are in some way related to the
number of gates, the size of the problem is, in fact, proportional
toG3 .

Nishida suggests that the problem can be reduced by considering each of
the three factors in both static and dynamic forms. By 'static' is meant
things which can be done prior to simulation and hence independent of the
progress of the simulation. By 'dynamic' is meant things that may be done
as a result of observing the progress of the fault simulation.

Fig. 9.1. Diagrammatic representation of the size of the fault testing
problem (Nishida).
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9.2.1 Static reduction of tests
The size of the 'gate' dimension can be reduced in two ways.

• Use of higher level elements. For example, if it is possible to work
with an 8-bit ALU rather than with individual AND and OR gates,
then the number of single s-a faults can be reduced from around
1200 to about 70 for this ALU.

• Removal of 'meaningless' gates. By this is meant inverters and
buffers which have no logical function. For a buffer, for example,
the function is 'copy.' It is impossible to distinguish between a s-a-0
on the input and a s-a-0 on the output. Thus, whilst some delay is
still necessary, it is possible to remove two faults (s-a-0 and s-a-2 on
one of the nodes) from the list that must be detected.

The above procedures inevitably reduce the number of faults to be
simulated and hence the F dimension of Nishida's cube. A further obvious
reduction can be made by fault collapsing. In a sense the removal of
'meaningless' gates could be included in this class. Other examples have
been quoted in Chapter 4. For example, one or more s-a-Os on the input of a
NAND gate is equivalent to a s-a-1 on the output. Hence it is only necessary
to test for one of these faults. For a four-input NAND gate, this is a
reduction from five single faults to one. Furthermore, 10 double, 10 triple,
five quadruple and one quintuple s-a-0 faults are also covered, together
with multiple faults involving s-a-1 s at the input when at least one other
input is s-a-0. The reduction in the number of faults involving s-a-1 faults at
the input and the s-a-0 at the output is smaller, but is still significant.

A second method of reducing the number of faults for which tests must be
made makes use of the properties of so-called fan-out free networks. Fig. 9.2
shows a fragment of a network. The term fan-out free implies that the

Fig. 9.2. Fan-out free region of a network.
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signals have one and only one load. The elements I and G in the figure have
two loads each, but elements A and B have only one. The section of the
circuit in the box is said to be a fan-out free region. It has been found that if a
fault on the signal Z is undetectable then faults within the preceding fan-out
free region are also undetectable. The converse may or may not be true.
Further, many faults of the fan-out free region, including those on its
inputs, can be replaced by a 'surrogate' fault at Z. No test can distinguish
faults internal to the fan-out free network from each other or from the
surrogate fault(s). Thus attempting to detect these faults is a waste of
resources. This is an extension of fault collapsing.

It is also useful to note that, within the fan-out free region, critical path
tracing (Section 9.7.1) often gives considerable speed-up over other
methods of assessment.

A further method of reducing the F dimension of Nishida's cube is by use
of parallel algorithms. This is the major subject of this chapter and further
discussion is postponed.

On the test dimension, the number of actual tests can be reduced by fault
merging. This was discussed in Section 4.5.

9.2.2 Dynamic reduction of the Nishida cube
The reader will by now be aware that the event driven simulation

algorithm gives a reduction in the number of gates to be processed relative
to the compiled code algorithm. It is mentioned here for completeness in
relation to Nishida's cube. However, it is also noticed that for most faults,
and always for single faults, the number of elements affected by a fault is
small. If some method can be devised by which only this small number of
'gates' is simulated then the amount of work to be done in the fault
simulator is reduced. This is the basis of the concurrent algorithm in
particular (Section 9.4).

Considering the T dimension, suppose that the test program is 1000
vectors long. Suppose that a particular fault is found by the fifth vector.
There is no point in running the other 995 tests on this fault. This fault is
dropped from the list of faults for which checks are being made.

This procedure can be further improved by ordering the test vectors
statically in such a way that those finding the most faults occur first. Sarfert
et al. (1992) suggest that inserting faults near the primary inputs will find
more faults than those inserted later in the network, which seems very
reasonable. These should be simulated first. This means that many faults
can be dropped early, leaving fewer to be sought. In a multipass program -
which will be essential for large systems - this will significantly reduce the
amount of work to be done. Both these techniques also have an effect on
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Nishida's F dimension.
There is one proviso here. Hughes (1988) suggests that, if a single fault, P,

is detected only once, there is a significantly greater chance that multiple
faults including P will not be detected. On this basis, it may be worth not
dropping the fault until it has been detected k times where k is some small
integer. Indeed, this facility is available in a number of proposed systems.

Goel et al. (1980) suggest another method of reducing the number of
faults to be considered with a given test vector. If a single fault is found not
to propagate and hence is not tested, the fault is replaced by an X value and
the X is propagated. Any signal which is changed to an X is not observable
with this test vector and can be removed from the list of those for which
checks are made.

Apart from the initial hand-generated tests for logic verification, tests will
be produced automatically. This is done by selecting a fault and generating
a test to detect it. However,

• this test may also find other faults, especially in a multi-output
network,

• some 'don't care' inputs could be set to 'do care' values in order to
find more faults with each single test (fault merging).

Hence, after each test or small group of tests is generated, that (set of) test(s)
should be fault simulated. This then reduces the T dimension of Nishida's
cube.

A further suggestion was made by Demba et al. (1990). In some cases it
may be worth performing some sort of initialisation after a few tests. This
brings the system state back to a 'standard' point. From here it may be
easier to progress to detecting more faults than by simply trying to move
forward from the current set of inputs.

The following sections describe several proposed methods of fault
simulation which run faster than running one fault at a time on a
conventional logic simulator. These will be compared, and a number of
variations and enhancements discussed. Unless otherwise stated, single
faults are assumed. The reader should consult the literature for discussion
of multiple faults, notably Hughes (1988) and also Agarwal and Fung
(1981). Much of the work in that area assumes fan-out free networks, which
is rather far from real networks.

9.3 Parallel methods of fault simulation
There are two parallel approaches to fault simulation. In the

'older' method, a number of faults are simulated in parallel with a single test
pattern. More recently, an approach based on simulating many patterns in
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parallel for one fault has been shown to be advantageous. The older method
is often referred to in the literature simply as 'parallel fault simulation.' To
keep things clear this text will use the terms 'parallel fault' and 'parallel
pattern' respectively.

9.3.1 Single fault propagation
This method of fault simulation appears at first sight to be rather

slow. However, combined with parallel operations, it is thought by many
workers to be one of the best methods. In particular, it has low memory
requirements. The explanation is done in conjunction with the not
equivalence circuit reproduced as Fig. 9.3. To further simplify the
explanation, the faults assumed will be limited to those due to faults in the
circuit elements - that is, those on the element outputs. The discussion will
be extended to faults in the wiring once the principles have been explained.
The results for the input pattern A = B = 0 are shown in Table 9.1. In order
to simplify the description, a serial single fault progapation procedure is
explained first.

Firstly, simulate the good circuit. The results are shown in the first line of
Table 9.1. Now introduce a fault and simulate until

• the fault is detected or
• the faulty circuit is the same as the good circuit.

In Table 9.1, the first fault introduced is A s-a-0, written for brevity as A0. A
being 0 is the same as the good circuit, so the faulty circuit will be the same
as the good one and this fault is undetectable with the A = B = 0 test pattern.
The second criterion is met.

Next introduce the A s-a-1 (Ax) fault. A is different to the good circuit so
Gl and G2 are simulated. C remains the same as the good circuit, but D
changes to 0 and hence Z to 1. As the circuit output is different to that of the

Fig. 9.3. Not equivalence gate example.
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Table 9.1. Single fault propagation on Fig. 9.3

Good
Ao

At

Bo

Bi
Co

Cx

E>i
Ex

A

0
0
1
0
0
0
0
0
0

B

0

0
0
1
0
0
0
0

c

1

1

1
0
1
1
1

D

1

0

1
1

1
1

E

1

1

0
1

1

z

0

1

1

Faults found

A l f Do , Z,

B1? Eo, Z1

good circuit, the fault Ax is detectable - first criterion.
Comparing the third line of Table 9.1 with the first line (the good circuit),

there are differences at D and Z as well as at A. Hence the faults D o and Zx

can also be detected by this test. It will not be necessary to insert these two
faults and fault simulate. The reader may like to check by inserting one of
these faults.

Proceed in a similar manner with other faults. Bo is not simulated (same
as the good circuit). B1 leads to a difference in Z so the fault is detected.
Comparison of lines 5 and 1 of Table 9.1 shows that Eo and Zx are also
detected. Insertion of faults Co, Cl9 Du Ex and Zo shows that these faults
cannot be detected with this test. Note that Do , Eo and Zx were not inserted
as they had already been detected.

The same procedure can be followed with the other three input patterns
to the circuit. The reader can try this and will find the results below (Table
9.3). However, it is not necessary to simulate the faults already detected
unless it is required to have a test program in which there is more than one
way of detecting a particular fault.

9.3.2 Extension to include faults in the wiring
As indicated earlier, the above description has assumed that all

faults occur within the circuit elements. Thus if C is stuck at 0 then both the
bottom input of G2 and the top input of G3 are also stuck at 0. Suppose,
however, that the fault is in the wiring. In this case it is possible (for
example) that the output of Gl and the top input of G3 could be the good
values while the bottom input of G2 is s-a-0. This is a consequence of signals
being fanned out to more than one place.

Denote the bottom signal on G2 as CD (i.e. C on its way to D) and that



9.3 Parallel methods of fault simulation

Table 9.2. Extension to Table 9.1 for wiring faults

215

Good
AC0

AD0

A Q
ADX

BC0

BE0

BCX

BE,
CD0

CE0

CDX

CEX

AC

0
0
0
1
0

0
0
0
0

AD

0
0
0
0
1

0
0
0
0

BC

0

0
0
0

1
0
0
0
0
0

BE

0

0
0

0
0
1
0
0
0
0

CD

1

1
1

1
1
0
1
1
1

CE

1

1
1

1
1
1
0
1
1

D

1

1
0

1
1
1

E

1

1
1

0
1
1

z

0

1

1

Faults found

AD1? Do, Z,

BEi> Eo, Zx

on the top input of G3 as CE, with corresponding names for other signals.
There is no need to split signals D or E, which have only one load each.
Single fault propagation can now be applied to the circuit with all 24 faults.
Table 9.2 is an extension of Table 9.1 to handle the extra faults. The number
of columns is extended to include the extra distinct signals. The faults ADX

and BE! are detected with the 0 0 test vector. Application of all four
possible input vectors shows that all 24 faults can be detected, but all four
patterns really are needed. Remember, both Tables 9.1 and 9.2 are required
for the full test.

9.3.3 Assessment
It is interesting to note the total number of runs required. Consider

the A = B = 0 test vector, and assume that it is only required to detect each
fault once. There is one good circuit and 24 faulty circuits. However,
inserting the fault Ax finds the faults D o and Zx, and inserting the fault Bx

also finds the fault Eo. There is no point in searching for faults in which the
faulty signal is identical to that in the good circuit. Thus the faults Ao, AC0,
AD0, Bo, BC0, BE0, Cl9 CD^ CE^ Dl9 Ex and Zo need not be inserted.
Hence the total number of simulations with this pattern is only 10. Seven
faults are found.

Let the next test vector be A = 1, B = 0. There are 17 faults to be inserted,
but it is possible for three of these, Dl9 Zo and Co, to be found along with
other faults. There are seven new faults in which the faulty value is identical
to that of the good circuit, three of which are in the previous category. A
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total of six runs, including the 'good' circuit, will find seven new faults. For
the 0 1 pattern, six runs will find five more faults and for the last vector, five
runs will find the last five faults. A total of 27 runs is required, including
those for the good circuit. The faults found by each pattern are summarised
below. Those in brackets are also found in an earlier test.

A = 0, B = 0: Al9ADl9Bl9VEl9DO9EO9Z1

A = 2, B = 0: Ao, AD0, (BJ, B Q , Co, CD0, Dl9 Zo

A = 0, B = l: (A,), ACX, Bo, BE0, (Co), CE0, El9 (Zo)
A = 1,B = 1: (A0 ,B0),AC0 ,BC0 ,C1 ,CD1 ,CE1 ,(D0),(E0),(Z1)

Note that, if a run is done for each fault identical to a good output, the figure
of 27 rises to 49.

For simplicity in what follows, the detailed description will usually be
limited to the restricted set of faults. As an exercise, the reader should
attempt to perform the fuller test. Results of such tests will be presented
against which the exercise can be checked.

9.3.4 Parallel pattern single fault propagation (PPSFP)
The procedure just described is fairly fast and very economical on

storage - only two values for each element input need to be stored at any
one time. The process can be made faster by using parallel simulation.

Parallel simulation makes use of the facility, available in most computer
instruction sets, of being able to perform logical operations between
corresponding bits of a word. Thus, for a two-input NAND gate (e.g. Gl in
Fig. 9.3), a four-bit word can be used to simulate all possible input patterns
in parallel, thus

A 0 10 1
B 0 0 1 1
C 1 1 1 0

Consider, now Table 9.3. This shows the result of simulation of all four
input patterns throughout the circuit of Fig. 9.3. Within each word, each bit
is the value at that point in the circuit as a result of the setting of the
equivalent bit of preceding signals. For example, take the second bit in the
word. A = 1, and B = 0. This results, after simulation, in C = 1, D = 0, E = j
and Z = 2, which can be seen at the second bit of the appropriate word.

Following the notion of single fault propagation the good circuit is first
simulated. A fault is introduced. In Table 9.3 the first one is Ao. With this
fault all four inputs for A must be 0. Simulation is repeated. Examining Z, it
is seen that the second and fourth bits are different from the result of
simulating the good circuit. Hence A s-a-0 is detected twice by this set of
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Table 9.3. Parallel pattern fault simulation (PPSFP)

A B C D E Z Faults detected

Good 0101 0011 1110 1011 1101 0110

A0 oooo oon mi mi noo oon A0, cl9 D1? E0, Z0, ZX
Ai mi oon noo oon mi noo A15 C0, D0, EX, Z0, ZX

B0 owi oooo mi low mi 0101 B0, cl9 D0, EX, Z0, z t
Bi 0101 1112 1010 1111 0101 1010 B ^ C O , D 1 ? E O , Z O , Z X

A B Ao Ai B(
o

0 0 A ^ D Q , Z, B1? E o ^ i
1 0 Ao, Dl9 Z o B1? C o , D 1 ? Z o

0 1 A l f C o , El9 Z o Bo , E l f Z o

1 1 Ao, Ci , E o , Z, Bo , C1 ? D o , Z,

input patterns. Further comparisons of the first two lines of Table 9.3 show
that other faults can also be detected. For example, the second bit of Z is 0
for the faulty circuit and 1 for the good circuit. Thus Zo can be detected. Bit
4 shows that Zx can be detected. Consider, further, C. The fourth bit is 1 in
the faulty circuit and 0 in the good circuit. As the fourth bit of Z is different
from the fourth bit of the good circuit the fault Cx is also detectable. This
could be confirmed by inserting the fault Cx (C is all is) and simulating
(with A = 0101).

Table 9.3 indicates all the faults detected. The second half of Table 9.3
extracts from the top half the faults detected by each input pattern with each
of the single faults on A and B for comparison with Table 9.1 and equivalent
tables for other patterns and with Table 9.6. Take the left hand bit of each
word in Table 9.3 (A = B = 0). Note that Z is different to the fault free value
in rows Ax and B^ Consider only these two rows to construct the first row
of the second half of the table. It is seen that Ax is different from 0 in this bit
in row Ax. So is Bx in column B of the B1 row. In column D, the first bit is
different to the good circuit in the A1 test, and hence D o is detectable. Thus
is this row built up. The remaining rows of the second half of the table are
built up by considering the other bit positions of the words.

To find test patterns to detect all s-a faults on the two primary inputs,
obviously all four faults must be inserted. Observing the list of faults found,
it will be seen that all other single s-a output faults within this circuit are
also found. This is hardly surprising for such a small circuit. Indeed, in this
example it will be seen that all faults on C, D and E are detected twice, and
faults on Z are detected four times.
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9.3.5 Extension to wiring faults
In considering an extension to the wiring faults, a little thought will

show that each of the faults ADV, BEV etc. (where v is 0 or 1) will have to be
separately inserted. The A, B and C columns of Table 9.3 will each be split
into two, AC, AD; BC, BE; and CD, CE. It is not necessary to have an A, B
or C column as well. To find all 24 faults, 17 runs are required, including
that for the good circuit. As logical operations are the same speed, this
represents a real speed-up. Table 9.4 gives the faults found for each of the
introduced faults. It is not necessary to introduce separate faults on C, D, E
or Z as these are already detected during simulation of other faults.

9.3.6 Evaluation
In a larger circuit there would be more test patterns. If there are W

bits in a machine word then W patterns can be simulated in a single pass
with one word per signal. This gives a speed-up of Win terms of the number
of patterns simulated, but it will be appreciated that some work may be
'wasted' in detecting some faults more times than is really required. The
reduction in the number of runs seen in the figures here is likely to be
distorted by the very small size of the circuit. There were 27 runs for the
single pattern simulation. Since all four patterns are run in parallel in the
PPSFP method, the figure of 49 may be relevant. The figure of 27 shows
how one may take advantage of a particular circumstance. The reduction
from 49 to 27 may not be so dramatic in large circuits, but the drop to 17
with the parallel algorithm is likely to be much bigger in larger circuits.

As evaluation uses the parallel logical functions of the computer,
multiple input gates must be simulated by a recursive process taking a new
input with the result of the previous logical operation(s).

This method of fault simulation is primarily of use for simple gates, in
order to use the word-wide logical operations of the computer. It could be
used with more complex models, but there are two problems.

• Complex models do not use simple logical functions as a general
rule. Thus they cannot make use of the word-wide logical
functions. Consequently the individual bits for each test pattern
must be extracted.

• Because the word-wide functions cannot be used, the model must
be run W times in series. The advantage of parallel operation is lost
- indeed, more than lost, since individual bits must be extracted
from words. Thus the main usefulness of the technique is in IC
design where gate level operations are likely to be used.

As described, the deductions made at various places depend on static
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Table 9.4. Faults found for each introduced fault

Fault Faults found Test pattern(s)

1 1

0 1

1 1

1 0

Ao

AC0

AD0

A,
AC,
AD,
Bo
BC0

BE0

B t

BC,
BE,
CD0

CE0

CD,
CE,

A "T\ 7 i 1 P 7
^0> ^ l ' ^O» ^1» E O ' ^ 1
AC0, C l f Do , Eo, Z1

AD0, D l 9 Zo

Au Do , Zl9 Co, E l 5 Zo

AC1 C F 7
AD 1 ? D o , Zx

B o , E1 ? Z o , Cl9 D o , Zx

BC 0 , C1 ? D o , E o , ZY

BE 0 , E1 ? Z o

*>i> tLo» ^-i» ^o» ^ i » A )
SC 1 ? C o , D 1 ? Z o

BE l 5 E o , Zx

C D 0 , D 1 ? Z o

L/ilo, ^ i , <̂o
CD,, Do, Z,

1 0
1 1
1 0
00
01
00
0 1
11
0 1
00
1 0
00
1 0
0 1
11
11

values. Thus, if the method is used with accurate timing, the check against
the good circuit should be performed only after transient effects have died
away, since differences in 1 to 0 and 0 to 1 delays may lead to spurious
differences. Hence the event driven algorithm is not needed and there may
be real advantage in using a compiled code technique. Finding faults due to
timing problems is a task of a different nature - see Section 9.8.

9.3.7 Multiple values
It is possible to introduce multiple values into this type of

simulation. For example, a three-value system would use two words per test
pattern instead of one. By careful coding of the signal values, the number of
logical operations between words can be minimised. Thus, if

0 = 009 1 = 1 1 , X = 01

the A AND B for all patterns is represented as in Table 9.5. In this table,
corresponding bits of the two words are ANDed. It is seen that 0 AND
0 = 090 AND X = 0, 1 AND X = X etc. Finding similar codes for more
values may be more difficult, but the principle remains valid. It will be
appreciated that this approach is preferable to using W/2 patterns per
word.

With multiple values, a problem arises if the good simulation gives a
primary output of / or 0 and the fault simulation gives an X or vice versa.
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Table 9.5. Parallel evaluation of A AND B with three-value coding

A

B

C

0
0

0
0

0
0

1
1

0
0

0
0

0
0

1
1

0
0

1
1

1
1

1
1

0(X)
1

0
0

0
0

0(X)
1

1
1

0(X)
1

0
0

0(X)
1

0
0

1
1

0(X)
1

0(X)
1

0(X)
1

0(X)
1

0(X)
1

This is generally termed a potential detection, since whether the fault is
detected or not depends on what the X value really is. Some additional
inputs must be set, or some extra initialising done in order to get an actual
detection (or not).

9.3.8 Parallel fault simulation
An alternative to the arrangement of the previous section is to

regard the system with a fault as a separate network. There are then as
many networks as there are faults. Given a two-value system, each word
can hold the value for the good network and W— 1 faulty networks. Table
9.6 shows the example with all 24 possible faults being simulated in one
pass. The faults are labelled along the top of the table. G is the good circuit.
Only one test pattern is simulated, namely A = B = 0. The rows of Table 9.6
show the simulated values. It is not necessary to have a separate row for A,
B and C (compare columns for an extended Table 9.3). In the first column,
the good circuit, the values are as expected from Fig. 9.3. When a fault is
introduced, differences occur. Consider the fault Do . The fault does not
affect A, B, C or E. D is forced to 0 regardless of the real value, which
happens to be 1 (G column). As a consequence of this, the simulation finds
that Z is 1. As the logic is the same for all networks, the word-wide logic of
the computer can again be used for evaluation.

Now compare the values of Z in the faulty circuits with the value for the
good circuit. It is seen that the values for the faults Al9 AD1? Bl9 BEX, Do , Eo

and Zx are all different, and hence these faults are detected by this pattern.
None of the other faults causes a difference, so these faults are not detected.
It can be seen that the results shown in Table 9.2 and in the second half of
Table 9.3 are the same as those shown in Table 9.6.

For this simple circuit, all 24 faults of the full set can be simulated in one
32-bit word. In general this will not be true. If some but not all faults were
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detected with the first test, as is the case above, then in future tests it is
necessary to perform the comparison for those faults so far undetected. A
suitable mask will enable this to be implemented. In the simple case
illustrated, this does not matter since there are less than W— 1 faults. When
the number of faults is much greater than W, the number of words to be
simulated may well be reduced considerably.

To attempt to compare this method with the PPSFP method, suppose
the word length was 4 bits - all that was needed for the PPSFP algorithm.
All four input patterns are needed. One good and three faulty circuits are
simulated in each run. For each pattern, all 24 faults are simulated, giving
eight runs times four patterns, or 32 runs. This is twice as many as for
PPSFP (17). Waicukauski et al. (1985) have shown that the number of
CPU operations for parallel fault simulation is proportional to G2 where G
is the number of gates, whereas the number for PPSFP is proportional to G.
The former value is probably pessimistic due to the use of fault dropping.
Nevertheless, for large networks it is very significant. It is possible to
combine parallel fault simulation with the concurrent algorithm to be
described next, to give useful improvements, Section 9.5.

9.3.9 Fault dropping
As an example of how fault dropping can reduce the number of

runs, note that seven detectable faults were found in the first test. The next
test, A = l, B = 0 say, need not look for these seven. The second pattern
searches for 17 faults. With 4-bit words, this requires six runs. Seven new
faults are found. For the third pattern four runs find five more faults. The
final pattern has two runs. The total is 20 runs. It is likely that this is
pessimistic due to the small number of faults found per run - see Section
9.3.1. The 20 runs compares with 17 for PPSFP.

If one also does not insert faults in which the value is the same as that for
the good circuit, a further reduction is possible. Suppose the good circuit
and the first three faults are simulated with the 0 0 pattern. Considering the
results from the good circuit, some nine further faults can be eliminated
from consideration. Three faults have been simulated (unnecessarily as it
turns out) leaving a further 21 —10 to be checked. Thus only five runs are
needed with this pattern. Proceeding in this way, it can be shown that a
total of only 13 runs is required.

These comparisons should not be treated too seriously as this network is
very small. It must also be appreciated that elimination of faults from the set
is not done without some work. In a large system, it is likely that several
patterns would be simulated before attempting fault dropping.



Table 9.6. Parallel fault simulation of Fig. 9.3

AC
AD
BC
BE
CD
CE
D
E
Z

G

0
0
0
0
1
1
1
1
0

Ao

0
0

0

• AC 0

0
0

0

AD0

0
0

0

A,

1
1
0
0
1
1
0
1
1

AC,

1
0
0
0
1
1
1
1
0

AD

0
;
0
0
1
1
0
1
1

i B o

0
0
0
0

0

BC0

0
0
0
0

0

BE0

0
0
0
0

0

B,

0
0
1
1
1
1
1
0
1

BC,

0
0
1
0
1
1
1
1
0

BE,

0
0
0
1
1
1
1
0
1

Co

0
0
0
0
0
0
1
1
0

CD0

0
0
0
0
0
1
1
1
0

CE0

0
0
0
0
1
0
1
1
0

c,

0
0
0
0
1
1

0

CD,

1
1
0
0
1
1

0

CE,

1
0
0
0
1
1

0

Do

0
0
0
0
1
1
0
1
1

D,

0
0
0
0
1
1
1

0

Eo

0
0
0
0
1
1
1
0
1

Et

0
0
0
1
1
1
1
1
0

Zo

0
0
0
0
1
1
1
1
0

z,

0
0
0
0
1
1
1
1
1
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9.4 Concurrent fault simulation

9.4.1 General description
In parallel fault simulation, a word holds the value of a particular

node in the fault free and several faulty circuits. In the majority of cases, the
value for the faulty circuit will be the same as the fault free circuit as the fault
is not near this node. To avoid this waste, it is possible to keep a list of faulty
circuits which have a value at this node which is different to that of the fault
free circuit. This fault list can be propagated through the network. The
concurrent and deductive fault simulators (Section 9.6.3) both do this.

The concurrent fault simulator processes a good circuit and a set of faulty
circuits at the same time. There are two types of events:

• an event in the good circuit,
• an event due to a faulty circuit. This may be an event of a type not

met previously.

An event in the good circuit has an associated list of faulty circuits. Each
of these faulty circuits has a signal which has a different value from that of
the good circuit with fault free inputs.

The great advantage of the concurrent simulation is that it processes
faulty circuits using the same element models as for the fault free one. This is
equivalent to generating a whole series of pseudo-elements for each real
element, one for each fault, and storing the data with each. Hence the
amount of storage is very large, and will vary as the simulation progresses.
As the progress of a simulation is not easily predictable, neither are the
storage requirements. However, logical operations are generally fast. The
crucial point is that, because the simulator uses the same models as the
good circuit, high level models can be used. None of the alternative
methods of fault simulation have this property. It implies that there is no
need for gate level models for higher level elements and hence a great deal of
storage and processing can be saved.

Consider the two-input gate of Fig. 9.4 with fault free inputs 0 and 1 and
hence an output of 0. This appears as the fault free gate at the top left-hand
side of the figure. Two faults are possible at the inputs (single faults only are
considered):

A s-a-1 leading to Z = 1
B s-a-0 leading to Z = 0

The former has an output different to that of the good circuit and so the
fault is propagated. The latter has the same output as the good circuit so
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there is no point in passing the fault on to the rest of the network. In
addition to the two input faults in Fig. 9.4, the gate itself may be faulty. This
can be expressed by one or more faults. What follows will be limited to
faults at the output of an element. In this case, the only fault of interest is Z
s-a-1 since Z s-a-0 is indistinguishable from the good circuit. Elimination of
such obviously undetectable faults reduces the amount of work to be done
very considerably and is essential with this procedure.

Concurrent fault simulation is often explained in terms of a set of faulty
gates. These are those shown in Fig. 9.4. The gate for B s-a-0 (bottom left) is
shown merging with the good gate and will disappear from the fault lists for
this and subsequent logic elements. The gate for A s-a-1 is top right and the
fault injection gate for Z s-a-/ is bottom right. Each fault is stored as a flag
and three boolean values as shown in Table 9.7. In this table, the flag is
written as the fault name for ease of reading but will usually appear as a
number, the fault number. It many also happen that the A s-a-1 fault will be
fault collapsed with Z s-a-1 since they cannot be distinguished. The B s-a-0
fault will be removed. In the simple view, the set of faults of Table 9.7 will be
stored as a linked list, one list for each gate, and each entry containing all
the data for the gate.

A saving in storage can be effected by holding only the information for
each input. There is a separate list for each input and hence only one value
per entry is required. The saving does not appear to be great in this simple
example, but will be more so in a large system.

It will be noticed that, as the simulation progresses, new gates are added
to the network (A, Z s-a-1, Fig. 9.4) and others removed from it (B s-a-0 in
Fig. 9.4). This can be handled by an event driven simulator but not by a
compiled code simulator in which the network is fixed at compile time.

Fig. 9.4. A fault free gate and several faulty ones.

A,

B ,

A

0
0

z

Good circuit

0
0

B 0
Z

B s-a-0
I

A ,

B .

A

0

0

z

A s-a-1

i
Z

Zs-a-7
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Table 9.7. Storage of good circuit and fault list values

225

Flag

Good
A s-a-i
B s-a-0
Z s-a-1

A

0
1
0
0

B

1
1
0
1

z

0
1
0
1

9.4.2 Detailed example
To explain the processing, return to the not equivalent circuit

redrawn as Fig. 9.5. The initial inputs are A = 0, B = 0. Results are shown in
Table 9.8. Faults are labelled as 'Xy' for X s-a-t? rather than using a fault
number, which makes the explanation easier to follow. 'Ev' (event) is used
to indicate when an event memory entry is to be made.

Gl is simulated first. The fault free output is C = 1. The possible faults are
Ax and Bx at the inputs and Co due to a fault in the gate itself. Cx is the same
as the fault free circuit and is not a possible fault with this test. It is not
considered. Three extra gates are 'invented' but only two events are
produced. These are the normal event for the fault free circuit and the fault
event for Co. The other two faults give the same output as the good circuit
and so are undetectable with this test pattern. The associated gates cannot
be deleted yet - see below.

Continuing the simulation resulting from the setting of A and B, fault free
values of 1 appear at both D and E. In both cases the second input is not yet
known since the value of C is a predicted value and time has not yet
advanced to allow it to be set. There are four possible faults for both G2 and
G3. For G2 these are Al9 Co, Ct and Do. Notice again that Dx gives the

Fig. 9.5. Not equivalence example.
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Table 9.8. Simulation of Fig. 9.4; A = B =

TimeO
Good
A i

B,
Co

c,
D o

Eo

Time 1
Good

A

0
1
0
0

c
B

0
0
1
0

c

1 Ev
;
1
OEv

A

0
1

0
0
0

0

D

C

X
X

0
1
X

1

D

; Ev
X

1
1
OEv

1

C

X

X
0
1

X

1

E

B

0

1
0
0

0

0

E

1 Ev

X
1
1

OEv

1

Z

D E Z

1 1 0
1 1 OEv

0 0

Time 2

1
0

1
0

1
0

OEv
1

0
0
1
1

0
1

1
0
1

1
0

1
1
1

1
1

same value as the good circuit and is not considered. Ai has an X as output
since input C is unknown. Both C stuck faults lead to a 1 output which is
indistinguishable from the good circuit (remember, only one fault is
allowed). As the real value of C is not yet available, both faulty gates are
retained at this time although no event is predicted. D o is a real fault and an
event is produced.

G3 is treated similarly. There are not events on the inputs to Z at this time
so it is not simulated. Ex is a further fault which is not considered.

For simplicity, assume that all gate delays are the same and for
convenience let them be unit time. Time now advances to 1. The first event
found is the good event at C which causes no change to the good values of D
and E. G4 is simulated with the good values of D and E as found at time 0
and leading to a prediction of the fault free value 0. Fault gates for Do , Eo

and Zx must be generated. Zo is not considered.
Next consider the fault events. These are the following.

• Co. This causes both D and E to be 1 which is the fault free value.
No new events are produced.
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• D o and Eo. The values are different to the good values so G4 is
simulated, giving Z = 1. This is different to the good value of Z, so
an event is generated.

• Av At this time the gate of interest is G2, not Gl. As C is now
known to be 1, this fault leads to D being 0 which is different to the
fault free value. An event is generated.

• B1 has a similar effect on E, an event being generated.

Note also that the Cx fault now gives the same inputs as the fault free circuit.
This fault can now be removed from the fault lists of both G2 and G3.

Time now advances to 2. There are no fault free events, but there are two
fault events. Ax caused D to be 0 at time 1 and that fault propagates to Z as a
1. Bx has a similar effect.

The simulation is now complete. The detectable faults are those in the list
for G4 (Z) whose output value is different from the good value, namely, Al9

Bl9 Do, Eo and Zx. This will be seen to agree with what was determined
earlier. Fig. 9.6 indicates diagrammatically the gates which have been
generated in this simulation. In the simulator, Gl has three items in its fault
list, Al5 Bx and Co. G2 and G3 also have three items. C1 has been omitted as
it occurred only due to the unknown initial value of C. G4 has five items as
indicated above. It will be appreciated that the size of lists can become very
large and hence the storage control is difficult.

Fig. 9.6. Circuit with fault list gates for Fig. 9.4 A = B = 0.

Ao
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9.4.3 Change of input
Now simulate for an input change of A to 1. For convenience let

this happen at time 10. Gl and G2 are scheduled for the good circuit.
Consider first Gl. The good output does not change and no event is
scheduled. However, it is necessary to simulate each of the faulty circuits of
Table 9.8 and Fig. 9.6 which make up the fault list for Gl. Table 9.9 and Fig.
9.7 illustrate what is happening.

• Ax. As A is now 1, this is the same as the good circuit and this fault
must be dropped. The gate in Fig. 9.6 disappears. However,
observing Fig. 9.6 it is seen that gates labelled Ax appear alongside
G2 and G4. These must also be removed. To do so an event must
be scheduled. This is a new type of event.

• Bx. C becomes 0, which is different to the good circuit, in contrast
to the state in Table 9.8. A fault event is scheduled.

• Co. This is the same as for the previous set of inputs. A new event is
not required.

G2 must also be simulated at this time. C was 1 from the previous step
(time 1), so D becomes 0. This is a change, so an event must be scheduled.
The faulty gates of G2 are then simulated.

Fig. 9.7. Change of circuit due to input change. Compare Fig. 9.6.

A-| and Do deleted events A1 and Do deleted events
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Table 9.9. Change of input following Table 9.8
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delete gate
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Ev
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Ev
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Ev
Ev
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• Ax gives the same result as the good circuit and the fault gate must
be deleted. An event is scheduled to enable the fault gate attached
to G4 to be deleted.

• Co causes D to be /. A fault event is scheduled. Note that E does
not change.

• D o is the same as the good circuit. The fault gate is removed and an
event scheduled to remove the gate attached to G4.

As A is now 1, a new fault, Ao, needs to be introduced. This gives C as 1,
the same as the good circuit, but D becomes 1 which is different to the fault
free value. As the good value of D has also changed, the Dx fault must be
introduced. It is noted in the previous paragraph that D o is in the process of
being deleted.

At time 11 the good event on D is read. This causes G4 to evaluate and Z
changes to 1. As a direct consequence of this, fault gate Zx must be deleted
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and fault gate Zo must be created. Both actions cause an event to be
scheduled.

At time 10, events were generated deleting gates concerned with the Ax

and D o faults. These fault gates are also deleted with appropriate events for
following logic. The other events are the following.

• B1. As A is now 1, the Bx fault caused C to become 0 at time 10, and
that event results now in a fault gate on G2 with D = 1. An event is
scheduled.

• Co, Ao and Dx all cause D to be 1 which is different to the fault free
value, and that in turn results in Z becoming 0. Events are
scheduled in each case.

Note that the fault gate for Eo is still present but has not been activated in
this simulation cycle.

Finally, at time 12, the B1 fault propagating via G2 reaches G4. Z is 0 and
a fault event is generated.

Again the detectable faults are those giving values of Z different to the
good value. These are Ao, B l5 Co, Dx and Zo. As an exercise, the reader may
like to repeat the process for the other two input patterns. The detectable
faults are

A = 0, B = i: Al9 Bo, Co, El9 Zo

A = B = 1: Ao, Bo, Cl9 Do , Eo, Zx

This algorithm can be applied with the additional faults due to individual
wires stuck. Doing so will give results looking even more complex than
those above and will add little to understanding. The reader may like to
attempt this extension as an exercise. The results should be the same as
those found in previous sections.

The data structures needed to implement the ideas described can be
worked out fairly easily. d'Abreau and Thompson (1980) offer one possible
set.

9.5 Parallel value list (PVL)
The problem with the concurrent method of fault simulation, as

with the simple simulation, is the enormous store requirements. It has been
seen that one method of alleviating this is to store the data for several fault
machines in a single computer word, Section 9.3.8. This can also be used
with the concurrent algorithm (Moorby 1983, Son 1985). A group of faults
is carried around as a single unit. In the normal case two words - 64 bits -
are needed for a single fault, assuming the linked list per signal variant (see
last paragraph of Section 9.4.1). That is, 32 bits for a pointer and 32 bits for
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a fault number and a value. Only 2 bits out of 64 are used for real data
(three-value).

Suppose instead that there are five words to hold 32 faults. Two words
hold pointer and group number. A particular fault is identified by group
number and position in the word. A third word holds a mask and the other
two hold 32 values in the manner described in Section 9.3.8. Thus 64 bits
out of 160, or about 13 bits out of 32, hold real data. The mask word is
needed so that faults which have been detected can be prevented from
affecting the progress of the simulation.

9.5.1 Detailed example
Consider the circuit of Fig. 9.8. Let the inputs both be 0, so that

C = D = E = i and Z = 0. There are 24 possible faults - s-a-0 and s-a-l on
each node and fan-out node. Suppose that the computer has a 4-bit word
and that the faults are divided into groups as follows.

Group
Group

Group

Group

Group

Group

1
2

3

4

5

6

Ao
AC

AD

AC

E>o

r>0 ^ x

0 BC 0

BEX

CDt

•o D i B E o I
i C D 0

E0Z0

B.C0

CE0

Zi

AD.

The position in the lists is significant. Table 9.10 shows the initial state. As
A = 0 and D has not yet been reached, the only active faults at AC are A1

and ACX. Ax affects AD as well, of course, but that is not relevant in relation
to AC. The two faults are in the first position of group 6 and the first
position of group 4 respectively. Clearly these are both 1. Groups 4 and 6
are attached to AC. The remaining positions in these two groups are set to

Fig. 9.8. Example circuit.
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Table 9.10. Parallel value lists - A = B = 0

Good
Signal value

AC

AD

BC

BE

CD

CE

D

E

Z

0

0

0

0

1

1

1

1

0

-• group 4
1 000

-* group 6
1 00 1

-• group 4
000 1

-> group 1
000 1

-* group 4
10 11

-* group 4
110 1

-• group 5
0 111

-• group 1
1110

-» group 1
o o o i

-> group 6
1 0 0 0

-• group 6
01 0 0

-* group 6
01 0 0

-+ group 6
110 1

-• group 6
110 1

-+ group 6
0 1 1 0

-• group 5
10 11

-> group 5
1 1 0 1

-> group 6
10 11

-> group 6
110 1

the good value of the signal, namely AC, 0. Node AD has Ax and ADX

active in group 6 by a similar argument. Nodes BC and BE are assigned
fault groups in a similar manner. It is not necessary to consider nodes A and
B separately.

Consider now node C. As the function of Gl is NAND, the bits of the
groups associated with AC and BC are considered. Both inputs have
groups 4 and 6 attached. Consider group 4 first. The corresponding bits are
NANDed. All four bits are 1 which is the same as the good value of C.
Group 4 disappears. However, the active faults CD0 and CE0 also happen
to be in group 4, so on CD this group reappears with the second bit at 0 and
on CE with the third bit at 0. Group 6 is treated similarly. Again, all bits are
1 and the group should disappear. However, it is reintroduced with the Co

fault in the third bit. This applies to both CD and CE.
Next consider G2. The inputs are AD and CD which have fault groups 6

and (4 and 6) respectively. As group 4 is on CD only, the bits of group 4 are
NANDed with the good value of AD (0) giving all values equal to the good
value of D. Group 4 disappears. With group 6, NANDing the correspond-
ing bits gives the pattern 0 1 1 0. As the good value of D is 1, the group
containing the fault D o must be attached as well. This is group 5 with the
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first bit set to 0 and the remainder to 1. The interpretation of this line of the
table is that faults Ax and ADX will both cause faulty values of D.

G3 has inputs BE and CE. These have fault groups (1 and 6) and (4 and 6)
respectively. Group 1 is on BE only, and so NANDs with the good value of
CE (1) to give an inversion. Group 4 NANDs with the good value of BE (0)
to become the same as the good value of E and hence inactive. The two
group 6s NAND together giving a 0 in the second bit and 2 s in the
remainder. Group 5 is added with the fault Eo set to 0 and the remaining
bits to 1, the good value of E.

Finally, for G4, the fault groups 5 and 6 are on both D and E and group 1
is on E. As the good values of both D and E are 1, group 1 copies to Z with
the bits inverted. Group 6 transfers as shown. Group 5s NAND to give
110 0. However, the fault Zx has to be added as a 1 in the last bit.

Comparing the good values of Z (0) with the values in the fault groups for
Z, it is seen that seven places are different. Comparing these with the group
definitions, it is seen that the faults BEl5 (group 1) Do, Eo and Zx (group 5 in
order) and Al9 Bx and ADt (group 6 in order) are detected. Comparison
with previous results will show that this is the same as was obtained by
other methods.

9.5.2 Change of input
Suppose now that A becomes 1. Ax and ACX are no longer active

faults but Ao, AC0 and AD0 are. Hence the fault groups for AC and AD
change and events are created. B has not changed, so the fault groups for
BC and BE are unchanged and no events are generated. Table 9.11 shows
the new lists.

As the fault group for A changed, the faults for C and D must be
re-evaluated. For Gl, there are no fault groups on AC which also appear on
BC and vice versa. The good value of B is 0, which, when NANDed with the
values in the AC fault groups (1 and 2), leaves the groups with all values
equal to the good value on CD and CE and hence inactive. However,
groups 4 and 6 on BC NANDed with the good value of A (1) puts groups 4
and 6 on CD and CE. The Co, CD0 and CE0 faults must be added in the
appropriate positions as before.

For G2, a fault on either input can now cause an output fault. Thus
groups 1,3,4 and 6 all pass to the fault list of D with an inversion of values.
Dx is added to group 3 and Do removed as inactive, which removes group 5
completely (compare with Table 9.10).

With G3, BE and CE both have fault group 6. NANDing the bits
together gives all /s, and the group becomes inactive and disappears.
Group 1 from BE with the good value of CE (1) produces an inversion of the
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Table 9.11. Parallel value lists: A = l, B = 0

Signal

AC

AD

BC

BE

CD

CE

D

E

Z

Good
value

1

1

0

0

1

1

0

1

1

-> group 1
0 111

-• group 1
0 111

-> group 4
000 1

-> group 1
000 1

-> group 4
1010

-• group 4
1 1 00

-> group 1
i o o o

-+ group 1
1110

-> group 1
0 111

-+ group 2
0i 11

-• group 3
0 111

-* group 6
01 00

-> group 6
01 00

-• group 6
1 0 0 1

-> group 6
1 0 0 1

-> group 3 -+
1 1 00
-* group 6

0 110
-* group 5

10 11
-• group 3 ->

0 0 1 1
-• group 5 -+

110 1

group 4
0 1 0 1

group 4
1 0 1 0
group 6
1001

bits. Group 4 from CE with the good value of BE (0) becomes inactive and
disappears. Group 5 is added with Eo set at 0 and the remaining bits at the
good value of E, namely 1.

Finally, for G4, groups 3, 4 and 6 from D are NANDed with the good
value of E (1) and group 5 with the good value of D (0). This removes group
5 but it is then replaced with the fault Zo included as 0 at the third bit and
the rest of the bits as the good value of Z, 1. Group 1 is common to D and E
so the bits are NANDed.

By comparison of the group values with the good value of Z, it is seen that
the faults detected are Ao, AD0, Dx, CD0, BCX, Zo, Bx and Co in the order in
Table 9.11. Again, comparison with previous results will show that the
same conclusions have been reached.

9.5.3 Comment
The problem with this sort of representation is that either it must

be restricted to simple gates or the data has to be extracted separately for
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each fault circuit. This means that the high level capability of the concur-
rent algorithm is lost. On the other hand, the algorithm is still of use in
chip design where a low level of representation is essential at some
stage.

A second problem is that the efficiency of operation is very dependent on
the way the faults are grouped. Table 9.10 has a total of 19 groups attached
to various signals. A 'less intelligent' attempt at choosing groups tried in the
course of preparing this text gave 22. Efforts should be made to group faults
which are likely to occur together in order to keep the fault activity high and
the number of active groups low. How that should be done is not easy to
determine.

9.6 Assessment of simulation methods

9.6.1 Parallel methods of fault simulation
The parallel methods of fault simulation are fundamentally tuned

to the word size of the machine on which the simulation is run. This is
probably 32 bits, but may be already 64, and certainly will be within a few
years. For simple gates - AND, OR, NOT and possibly not equivalence -
the speed-up is W— 1, where W'v& the word length, since, in reality, single bit
logical operations usually take place on full words. Thus a word length
operation is the same speed as a bit operation. A considerable saving in
storage is certain. Current evidence suggests that parallel pattern methods
are faster than parallel fault methods.

Multivalue signals can be handled. Some authors have suggested that
more than three are useful, but fault simulators are not the best places to
look for timing errors (see Section 9.8). Multiple word manipulations need
be no more difficult than multiple bit ones for reasons just given, so,
comparing like with like, it should be possible. Timing simulations are quite
difficult, but again the event driven technique with full words per value
should be possible.

Storage requirements are modest and predictable. Indeed, storage for
W— 1 faults may be the same as for one fault. It is possible to simulate all
faults in one pass. There would seem to be little advantage in doing so, and a
positive disadvantage in having to store all faulty machines. Multiple pass
at W— 1 faults per pass is no slower and is more economical in storage.
Furthermore, by using fault dropping, the number of passes to be used can
be significantly reduced dynamically.

The major disadvantage of parallel methods of fault simulation is that
they cannot usefully be extended to models of a higher level than that of
simple gates. This applies equally to the parallel value list algorithm with
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the concurrent one. Consider simulating a 4-bit ALU, Fig. 9.9. There are
two operands of four bits each, a carry_in and five controls, a total of 14
inputs. A 14-input AND gate can be modelled by taking words for two
inputs, and then successively ANDing the result with a new word. With the
ALU, the result requires all inputs to be considered together and in a (very)
complex function. The function can be evaluated sensibly only by using one
set of data at a time. Thus one of 32 bits of data must be extracted from 14
different places and 32 evaluations performed one after the other. The speed
advantage of parallel operation has been more than lost, though the
parallel storage is still useful.

9.6.2 Concurrent fault simulation
In essence concurrent fault simulation simulates all faults together.

In practice it is sensible to simulate only a limited number. There are two
reasons for this.

• Store requirements vary unpredictably and widely due to expan-
sion and contraction of the number of fault elements being
simulated. Restricting the number of faults being simulated puts an
upper bound on the maximum storage required.

• Combined with dynamic fault dropping, the total number of faults
that must be simulated can be reduced, since some tests will detect
several faults.

It is the unpredictability of the storage requirement that is the greatest

Fig. 9.9.
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problem. On the other hand, 'store is cheap.' One doubts if this is ever really
true, and as technology advances, so does the demand, the one never
catching up with the other.

The major advantage of concurrent fault simulation is that it Uses the
logic models of the logic simulator. Thus is has the following properties.

• It is transparent to the logic values being used.
• It uses the same basic simulator. In particular, it uses the event

driven approach so that only logical or fault events are processed.
• Because the event driven algorithm is used, accurate timing models

can be used if really required (but see Section 9.8).
• High level models can be used, reducing the number of elements,

the number of faults to be simulated and the maximum store
requirement. Furthermore, hardware models can be used. When it
is required to simulate an input s-a fault, the appropriate value is
supplied to the hardware model. For an output s-a fault, the value
read from the hardware model is ignored and replaced by the stuck
value.

Rogers et al. (1987) take this further by including a program to combine
several 'moderate level' modules into a higher level module. An example is
described in which hierarchical simulation gives a speed-up of 30, with a
further factor of six on combining modules by program.

It can be argued that the most important application of fault simulation
is in ehip design where much of the design is at gate level. Hence techniques
limited to gate level are not at a disadvantage. In testing PCB systems, it is
possible to monitor internal points. This argument ignores the trend to
design chips with higher level modules as well.

Concurrent fault simulation handles only changes from the good circuit.
The area of influence of a given fault will usually be limited. On a qualitative
basis, such a fault simulation ought to be fast. Of course, certain signals,
such as resets or bus enables, which have high fan-out will be exceptions,
but such signals are relatively few in number. It will be fairly obvious that
concurrent simulation will be at its best when the fault activity is low, in
contrast with parallel simulation.

Gai et al. (1987) have pointed out that the concurrent algorithm can be
used with several similar input patterns on a good machine to accelerate
normal simulation. It is conceivable that this should apply to parallel
algorithms as well.

9.6.3 Deductive fault simulation
Like the concurrent fault simulator, the deductive simulator
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(Armstrong 1972) holds lists of faults for each node, and these lists are
propagated through the network. However, the method of propagating the
lists is by means of set operations. These do not have the advantage of the
operations of the parallel simulator. Nor can they make use of 'normal'
models. Hence extension to multiple values or to general higher level
models is difficult. Slightly higher level models have been proposed by using
tables, but for more than a few inputs the tables become impractically large.
Time dependent faults cannot be modelled.

For these reasons, deductive fault simulation has fallen out of favour but
continues to be included in descriptions of available techniques. Thus it is
mentioned here for completeness. Whether fresh developments could make
the idea more viable is impossible to predict.

9.7 Some alternatives to fault simulation
Previous sections of this chapter have described basic approaches

to fault simulation. The literature on the subject is very extensive. Space
and time do not permit a full discussion of all the possibilities. This section
reviews some of the ideas which appear to this author to be most promising.

9.7.1 Critical path tracing (Abramovici et al. 1984, 1990)
Critical path tracing is basically a test generation method which

also gives a list of detectable faults. It is based on the notion of critical inputs
to a gate. Consider a two-input AND gate as shown in Fig. 9.10. If one
input is /, the output is a copy of the other input. This other input is the
critical input. Hence in Fig. 9.10(a) A is critical. In Fig. 9.10(b) both inputs
are critical.

With a given network, begin at the output. If the gate is an AND (or
NAND) and the output is 1 (0) then both inputs are set to 1 and both are on
the critical path (Fig. 9.10(6)). If the output is postulated as 0 (1) then one
input is set to 1 and the other to 0 according to the values found by the good
simulation, which has been done previously. The 0 is on the critical path. A
comparable set of arguments can be applied to OR gates. The paths are
traced back to the primary inputs using a D-algorithm style trace back.

Fig. 9.10. Critical inputs of an AND gate.

: :

(a) (b)
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Where there are parallel critical paths, all are traced. Detectable faults are
signals on the critical path(s) which are opposite to those of the good
circuit. Thus a test vector has been generated together with a list of the
faults it will detect.

The critical path trace algorithm only works well in fan-out free regions.
Since few (no?) real networks are fan-out free, it is unlikely to be used alone.
On the other hand, within the fan-out free region, it is very fast. Hence it
may be used to advantage in combination with, for example, the PPSFP
method. There is also a possibility that a parallel version of the critical path
trace algorithm could be produced.

9.7.2 Statistical methods
A number of authors have suggested statistical methods of

estimating the fault coverage of a set of test vectors. This might be based on
information gathered during a simulation of a good circuit. For a given set
of test vectors, the number of times a node is set to 1 and set to 0 will be an
indication of the likelihood of detecting a s-a-0 and s-a-2 respectively.

Given the importance of high fault coverage indicated at the beginning of
the chapter, statistical methods would seem highly suspect. Some example
circuits tested by Jain and Agrawal (1984) suggested that it is possible to get
within 5% of the real result. However, it is reasonable to expect there to be
some pathological cases where the difference is much larger. Even 95%
fault coverage is not good enough.

On the other hand, normal fault simulators only attempt to assess a
limited set of fault models, usually single stuck at faults. Rogers et al. (1987)
state

Fault models on which fault coverage comparisons are based are only
abstractions of the effects that possible physical failures could produce.
Therefore computer fault coverages are predictions and exact measures
are impossible.

A comment by Ulrich and Suetsugo (1986) is also apposite.
The average simulation run is not successful. It produces incorrect results,
too much useless information, too little useful information and wastes
storage and CPU time.

Both comments suggest that statistical methods may, in practice, be no
worse than supposedly more exact methods.

Following the above comment, Ulrich and Suetsugo propose a 're-
hearsal' run with just a few faults to observe a limited number of points in
the simulation. From the results of this run it is noted how much activity
there is. If the activity is small then that particular part of the (fault)
simulation is abandoned. Ulrich and Suetsugo claim that rehearsal runs:
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• reduce CPU and memory requirements,
• rapidly determine if a test vector is inappropriate,
• provide a good estimate of resources needed for a full run,
• give an information gain per run as the end of the test set

approaches.

9.7.3 Block orientated fault simulation
In Chapter 4 (Fig.4.18), a method of partitioning a system into

blocks for test generation was suggested. Each block had a test program
capable of finding 100% of faults in a given class. In a complete system,
inputs to surrounding blocks were set in such a way as to transmit primary
inputs to the block under test and to make the outputs of that block
observable at the primary outputs. Freeman (1988) proposes a similar
arrangement for fault simulation, largely for data path logic. He defines
several types of block, but, in particular, an F-path block. This block is
capable of having some set of inputs transferred to the outputs unchanged.
To do so, it may be necessary to set the 'other inputs' to appropriate values.
Consider the ALU shown in Fig. 9.9. If the carry_in is set to 0 and S is set to
'copy A' then F becomes A and the block is an F-path. It may also be an
F-path if B = 0 and S is 'add' or 'subtract' o r . . . . Because a system consists
of rather few blocks the relevant F-path blocks can be found manually more
easily than by program - people are more intelligent and better at pattern
matching. The 'other input' values can also be specified manually at the
same time. Freeman finds that he is able to get very compact tests for 100%
single stuck at fault coverage, as well as for many other faults. As the
method involves high level models, it is likely to be very fast. Whether it can
handle non-data path logic is not yet clear.

9.8 Timing in fault simulation

9.8.1 Delay faults
The emphasis in this chapter so far has been on detecting stuck at

faults. A class of fault which is critical, however, is timing faults. The
question may be raised as to whether a fault simulator should look for
these.

The problem is that, although the design may be acceptable after timing
verification, a particular instance of a network may have a section which
runs slowly due to manufacturing problems. If this results in the clock
period being too short then the fault should be easily detectable.

There are two problems.
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• To detect a slow signal path it is necessary to time a signal. To do
this, two test vectors are needed. The first sets up a particular
condition in the path or gate of interest. The second causes the
transition of interest to pass along that path in such a way that the
primary output on that path changes state. The delay of the path
can then be measured.

• The fault may produce a short pulse. If this triggers some
sequential circuit then the fault will be detectable, but what if the
pulse is so short it will not trigger the sequential circuit reliably?
What if spike removal in the simulation removes the spike when it
should not? In some cases one may spend a lot of time looking for a
logic fault when the problem is really in the timing. There are a
great many difficulties in ensuring that all timing faults are found
and this will depend on sequences of test vectors as much as on
individual vectors.

Some writers have looked for individual gates that are slow. Rather more
have been concerned about finding complete paths which are slow. In either
case, full paths have to be traced out and controlling signals have to be set.
To form a good test, all the controlling signals must reach their final value
before the signal on the path reaches that point so that the longest path
through the logic is on-path rather than some other path. Discussion of this
topic uses the terms robust and non-robust tests. In any case, each test
nominally requires a pair of vectors.

Notice that this discussion is concerned with testing the manufactured
device for paths which are slower than worst case specification because of
manufacturing problems. There is no doubt these faults must be found. If
they reach the system they not only cause trouble. They are difficult to find.
However, it seems to this writer that a different type of simulator is needed
to find and verify tests for this purpose. Such simulators, known as delay
fault simulators, are not yet well developed and the reader must look
elsewhere for further details. A selection of references is included. They may
or may not make use of fault simulator principles.

Although this uprates the parallel (and deductive) simulators relative to
the concurrent one, the other advantages of the concurrent simulator are
dominant, especially the high level model capability.

9.8.2 Oscillations and hyperactivity
A further problem may arise. Under fault conditions, feedback

loops may be created, causing unscheduled oscillations to occur. This can
cause an explosion of data in the fault simulator. It has been suggested that
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hyperactivity in an uninitiatable faulty machine can use up 90% of the time
of a fault simulator. (Gai et al. 1988). It is useful if there is a mechanism
which looks for 'hyperactivity.' When this is found, one approach is to
assume that the hyperactivity will be such that the fault will be detectable.
The simulation is purged and restarted without the offending fault.

Another circumstance which is sometimes used to abort a simulation is if
too large a proportion of signals are in an X state after initialisation (Gai et
al. 1988).
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Simulator features and
extensions

The earlier chapters of this book discussed the design and use of a simulator
for use in the development of digital electronic systems. The discussion has
been widened to include some aspects of testing and design for testability,
since application of good practice in these areas leads to better use of costly
resources in what is probably the largest part of the design procedure. It is
now of value to review the extent to which the aims of simulation can be
achieved; to discuss several topics related to the use of simulator; to
introduce some enhancements to simulators; and to attempt to look into
the future.

10.1 Desirable features of a simulator
Some years ago the author wrote down a list of the features he

would like to find in a simulator.

1. A simulator is required to give an accurate prediction of the
behaviour of a good network.

2. A simulator is required to recognise and give warning of a faulty
network.

3. The basic simulator should be independent of technology but
recognise the distinctive features of known technologies. Thus
devices of any technology might be simulated.

4. The simulator should be capable of handling models at several
levels of abstraction and in the same run (Harding 1989).

5. There is no point in simulating a design in 1 s if it takes a day to
diagnose a fault, modify and recompile the network. Hence,
associated with the simulator, there must be means to assist the
user to find the source of 'wrong' results, correct them and
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recompile quickly. That is, the simulation cycle must be given
serious attention (the detail is not within the scope of this book).

The author also added the following comments.

6. When a simulator finds a timing error, there is no way it can know
what the real logic would do. Should the simulator

• set an unknown state?
• estimate the designer's intention and carry on?
• mirror as faithfully as possible what the real logic would do?

7. There is no point in designing a 10M gate chip which works
perfectly to specification if the specification is wrong (Harding
1989, Hodge 1990).

8. It takes as long to design a good model for an element as to design
the element itself (other than very simple elements, perhaps).
Hence hardware modelling for larger elements is essential.

9. 'Spike removal' by use of inertial delays will remove a spike that
will cause an error in real hardware.

Reports of all spikes will create such a mass of output data that
the designer will either ignore it or go mad in the attempt to read it.

Therefore some intelligent compromise is essential.

Abramovici et al. (1990) also set down some desirable features of a
simulator. These are complementary to those above.

(a) The simulator should verify correctly, independent of the power on
state.

(b) The simulator should be independent of component delays.
(c) The simulator should not be subject to critical races, oscillations,

hang-up states etc.
(d) It should be possible to play 'what if?' games rapidly.
(e) It should be possible to evaluate design changes rapidly.
(f) It should be possible to produce timing diagrams for documenta-

tion.

In comparison with hardware, prototype or production, a simulator has
the following abilities.

(g) It can check error conditions,
(h) It can check worst case timing.
(i) It can start in any desired state (thus meeting feature (a) above),
(j) It can give precise control of timing so that details can be checked.
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(k) It enables debugging of software and ROM code before hardware
is constructed.

(1) It is possible to 'probe' inside a piece of logic, such as an ASIC,
which a test system cannot do.

Point 1 is basic and apparently obvious. Points (a) and (b) are particular
details of this statement and (d), (e), (f), (h), (i), (j) and (k) are consequences
of it. Point 2 is not quite so obvious. It draws attention to the fact that the
simulator designer and implementor cannot anticipate all the mistakes that
the user might make. Point 2 is thus a minimum statement. For many faults
one would hope for a lot more. Points (c) and (g) are parts of 2.

Point 3 is a generalisation of (b). Points 5 to 9 are concerned with the user
of the simulator. They draw attention to the dangers inherent in using a
simulation. These dangers are basically three in number.

• The danger of checking against an incorrect or incomplete
specification. It is essential to get the specification correct, and to
check against that specification, only that specification and all of
that specification.

• Implicit belief in the absolute correctness of the simulator. Every
engineer should cultivate a suspicious mind.

• The temptation to adjust the simulator input data (design and/or
test data) to obtain the required results with no 'complaints,'
rather than making proper modifications to the design to eliminate
real problems from the real hardware. The author has bitter
experience of the latter approach.

Implementors of simulators also need to be aware of'peripheral' matters
as indicated by point 5. The fact is that input and output facilities and
minimisation of the simulation cycle are not peripheral at all - they are
critical to the sensible and efficient use of the simulator.

With a good modern design suite, points 1 and 3 can be assumed. No
design system can give guarantees on point 2. It may well be that several
different approaches are needed to get the greatest confidence. Thus a
timing verification and a delay fault simulation may be needed as tools
additional to the basic simulation. Problems also arise over the treatment
of spikes - point 9, and again there is no 100% guarantee in any system.

Many design suites can now handle models at several levels of
abstraction - point 4. VHDL demands it, and other languages give similar
features. These languages enable models to be written at any level. Most
design suites have model libraries for standard components. However, with
increasing use of ASICs, some ability to write more complex models is



246 10 Simulator features and extensions

required. Top down design is mandatory. A high level behavioural model
and a lower level structural one can be written as separate VHDL
ARCHITECTURES for the same ENTITY and their operation compared.

In the case of point 6, in relation to timing faults, the compromise
preferred by this writer is for the system to press on with a 'best guess' of
some sort. That will allow at least the possibility of the run giving more
useful information. This presumes the inter-run period to be longer than the
run time. If X values are available, the fault becomes very obvious, but they
can propagate explosively. Where registers are involved, it is possible to do
some resetting. Pressing on in the hope of a reset may be useful. There is a
compromise to reach between trusting the user to be sensible and playing
for safety - i.e. assuming the worst about the user.

10.2 Getting value from the simulator

10.2.1 Computer aided design
Systems provided to help in the design of engineering artefacts are

known as computer aided design suites. There is a very great danger that the
designer will become so immersed in getting the desired results from the
simulator that the design achieved will be regarded as 'perfect.' The fact is
that no design is perfect and that every manufacturing system yet devised
will conspire to produce hardware which fails to perform properly, whether
from deficiencies in design or in manufacturing.

The key to understanding the problem is the word aided. Computers will
never be more than aids to the innate intelligence of the designer. It is when
the designer begins to treat the tools as if they had intelligence that
problems can arise. It is well from time to time to stand back and remind
oneself of that fact, especially when under pressure to meet deadlines. These
comments apply equally to so-called intelligent systems, since they also rely
totally on fallible persons who designed them.

As with any tool, knowing its strengths and weaknesses means that the
user can get a great deal more useful work from it. Steps can be taken to
exploit the strengths and possibly work around the weaknesses. At least
one can avoid being misled. Tools for electronic design can only realise their
full potential if the user also understands the underlying electronics. In
recent years much has been made of the potential of non-technical people
being able to design chips. They can, but the best chips will be designed by
people with the most thorough knowledge. This may seem obvious. It
needs stating to counter over enthusiastic claims, sometimes from those
who should know better.

Several of the procedures which enable good use to be made of a
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simulator are needed primarily for other purposes. These include the
following.

• Structured design. This makes the design understandable, so that
when mistakes occur they are more easily found. Because the
design is understandable, it is easier to devise tests to check the
functionality and testability. Because it is structured, it is possible
to simulate each module separately. The advantage of this is that it
is easier to identify problems in a relatively small module than in a
relatively large system. Given some confidence in the correctness
of the sub-units, simulating the system can concentrate on the
module interaction alone.

• Testable design. The cost of testing is said to be 70% of the cost of
chip design. Anything which will limit the cost of testing must be
worthwhile, therefore. It will reduce both simulation time and the
actual production testing costs. A testable design also means that it
is relatively easy to fault simulate.

10.2.2 Models
The majority of simulators have a component model library

covering many of the most popular integrated circuit families. In addition,
most semiconductor vendors will provide models for their gates and
macros. As a general rule, the details of how these work will not be available
easily. A number of factors need to be considered.

Many simulators, quite properly, use an inertial delay model by default.
This implies that any input signal shorter than the delay of the element
(usually) will be removed. A great many irrelevant events are removed from
the simulation and, more importantly, from the output which the user has
to consider.

There are good theoretical reasons why the inertial delay model should
be used, as was explained in Section 7.2. Whether the notion of pulse equal
to the circuit delay is proper is much more questionable. To determine what
should be used would require a circuit simulation of the basic circuit
module. This is very unlikely to be available. As a result, this writer would
expect simulations to be optimistic so far as spike removal is concerned,
and, in the event of unexplained problems in hardware, this might provide
an area to investigate. A simulation with all delays forced to transport
delays will undoubtedly be pessimistic, but would give some clues to
possible difficulties.

Writing one's own models for basic elements is not usually a viable
option. Chapter 7 has demonstrated the difficulty of getting good models.
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No claim is made for the completeness of the models described. Indeed,
Chapter 7 was intended to point to the difficulties of writing and the
limitations of the models rather than to encourage users to write them.
Writing models is now an industry in itself. Apart from very specialist
purposes or for high level, usually low accuracy models, the average user
cannot hope to compete economically with the specialist companies. It is all
the more important for the simulator user to be aware of possible model
limitations.

Having said all that, there may be occasions when a model must be
written. The modules of a system will be unique, and to model them before
details are known will be the job of the designer. Accurate timing may or
may not be required at various stages in the design. Where ASICs are
designed, the user may well wish to write a more accurate model when
detailed timing is known, possibly derived from a gate level simulation. If
the models are well written and the software system is good, the detailed
timing will be fed back automatically by back annotation. This will be
especially necessary if a hardware modeller is not available. Even when it is,
the timing checks will have to be written.

10.2.3 Testing functionality
Test generation is a matter of real concern. For device test,

automatic generation is a possibility. However, the tests generated are not
produced in a logical order suitable for determining the correctness of the
design. Here is one area where a little thought can pay larger dividends.

Most systems will consist of a data path section or sections and means to
control those section(s) to perform an appropriate one of several possible
functions. The following is a minimum check.

• For each function of the system or sub-system, use several data
sets. These should include the following.

o Any initialisation.
o Ensuring that every signal on each data path can change

state.
o Ensuring that adjacent or nearly adjacent bits are not stuck

together. This refers to adjacency in relation to design
errors, not manufacturing error. An example is a one
character difference in a signal name.

o Test on any special input data sets or a data set which gives
exceptional results. Examples in floating point arithmetic
might be a 'Not-a-Number' as an operand in the first case
and an arithmetic overflow in the second.
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• The user should be aware of the default initial values provided in
the simulator. In a two-value system these could be all zeros (ones
for flip-flop inverses). In this case, an initial reset to flip-flops will
be a useless test. To test the master reset, the system must be put
into an un-reset state by one or more prior input vectors chosen for
the purpose. The signals can then be observed initialising. Such a
situation is easily overlooked. A three-value system may not
require this. The logic comes on with X values that are then
initialised.

• The system should be checked with 'illegal' data input to ensure
that it is not set into a dangerous state or one from which it cannot
recover. Suppose that the system has an 'unused' function code.
What happens if a user inadvertently supplies this? Will a memory
be overwritten? Will an output be produced causing a railway
signal to be set to green when it should be red?

• Skew. A variation of this can happen when input data changes.
Unexpected or unusual conditions can arise. A good example is
changing the address of a memory when the write signal is asserted.
The address wires will all change at slightly different times in real
life, but they may well change at the same time in the simulator. Under
these circumstances, good data may be destroyed in the real
hardware but probably not in the simulator. Some form of test to
check for this and similar problems must be generated. The same
effect happens with data on a register as a result of clock skew.

Suitable selection of data can lead to much better tests of the manufac-
tured system. Few automatic test program generators attempt to find
anything other than single s-a faults. A few may look for vector pairs to
find stuck opens in MOS logic. Bridging faults are frequently ignored. Yet
a lot can be done in this last case by selecting test data such that adjacent
wires in the final layout have different values. These clearly are the most
likely sources of bridging faults. Conversely, it is unlikely that wires at a
distance will be shorted together if there is no local short. Finding such
adjacencies is not a difficult problem for a program and should not take
long to run. There are several references to the problems associated with
bridging faults.

A severe problem with bridging faults is that they may introduce
feedback where none existed before. This may lead to hyperactivity, which
is often detected as such. If it does not, then the likelihood is that a new latch
is produced and the normal tests will not find the fault. Herein lies the real
difficulty with this type of fault.
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10.3 Wires in high speed logic
Section 6.5.3 discussed the need for simulation of wires and how

that might be achieved. There are two further complications where high
speed logic is concerned.

Suppose the time for a signal to travel along a wire is greater than half the
rise time (not rising delay here) of the signal. Suppose, further that the
signal source resistance is a few ohms and the sink resistance is a few
kilohms. Fig. 10.1 shows the waveforms at various points on the wire
(Gosling 1985). If there is a gate attached to the wire at point B, the
half-level signal may result in oscillation or other undesirable effects.
Special rules are usually applied in the wiring program, or they must be
checked afterwards. If the source and sink impedances are different from
those suggested, and, in particular, if the load impedance is capacitive, the
waveforms can become very complex and include spikes of significant
length.

A further problem arises when two or more wires run close together for
some distance. In this case both the electric (capacitive) and magnetic
(inductive) coupling between the wires can result in there being a signal in
one wire (the victim) as a result of a fast change in the other. This is known
as crosstalk. The details are beyond the scope of this book except to note
that they can be large enough to cause faulty operation.

Another difficulty occurs if the power line impedances are not sufficiently
low, namely that the power/ground point at a gate can move to such an
extent that there is an equivalent change of input state.

Again, a suitable layout program should be able to avoid pairs of wires

Fig. 10.1. Signals on a transmission line.

,
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running close together for too long a distance. Detecting too high power
line impedances is more difficult and may need a layout post processor.

10.4 Simulation accelerators

10.4.1 Point acceleration
A simulation accelerator is hardware specially designed to make a

simulation run faster than it would run on a general purpose computer of
equivalent technology. The accelerator will contain logic designed to do
very rapidly operations which may take many instructions on the general
purpose machine. As a rule, such hardware is of no use for any other
purpose. Thus it is often called a point accelerator since it accelerates only
one point in the total design process. In this sense, a hardware modeller is an
accelerator. However, the term 'accelerator' is usually reserved for a more
complete simulation system. A hardware modeller may well be incorpor-
ated into the accelerator.

Some writers have questioned the value of point accelerators. Consider
Fig. 10.2. The height of the column represents the total design time from
concept to finished product. The hatched portion represents the portion of
the design time to be accelerated, in this case the simulation time. In Fig.
10.2(a) a 10-fold acceleration will reduce design time by 9%. Given the high
price of special hardware, this is not cost-effective.

Consider, now, Fig. 10.2(fc). A 10-fold speed up of the hatched portion
will reduce design time by a factor of five. This may well be worth while.

Conventional wisdom suggests that simulation is more like Fig. 10.2(fe)

Fig. 10.2. Value of a point accelerator.
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10%

90%

Simulation

Other design activities

(a) (b)



252 10 Simulator features and extensions

than (a). On the other hand, routing of PCBs is the other way about. Thus
acceleration of simulation is worthwhile, whereas that of routing is not.
Furthermore, the time to simulate can be reduced to such a degree that
playing 'what if?' games becomes economically feasible. Faster simulation
also allows more thorough testing of the functionality. As an example, a few
years ago a company wished to simulate a new processor doing its
bootstrap routine - several seconds worth of computing at several MIPS in
real life. It took 20 days, 24 hours per day single user on a very powerful
processor. Using a simulation accelerator with a speed-up of 1000 (which is
possible), the same simulation takes half an hour.

10.4.2 Zycad engines
Several companies have developed accelerators, including Valid

Logic (Realfast), Aida and Ikos. One of the best early (1980ish) machines
was the Zycad Logic Evaluator (LE). It was capable of simulating 64K
'modelling elements' at a rate of 1M events per second per module, and
could be equipped with 16 modules. Well-behaved designs are reported to
have run even faster.

The machine operates in a manner similar to the event driven system of
Fig. 6.7. There is no affected components list. Logic elements are limited to
three-input one-output 'modelling elements.' Each input and the output
has an associated delay. If two or three inputs change at the same time, the
element has to be computed once for each input change. 31 different
elements can be defined, many of them by the user. Higher level elements
are simulated by means of hand crafted models using the modelling
elements. A figure of about five to one saving over the 'real gates' can be
achieved. The machine can simulate memory, but requires three real bits
per simulated bit. Furthermore, this is taken from the memory available for
input vectors and output reporting. Modelling uses three levels and four
strengths, a 12-value arrangement.

This machine was excellent for the sort of long simulation mentioned
above, especially as there were few input or output reports. It appeared that
insertion of a primary input or recording of a signal caused a hiccup in the
operation, as did a move from one time step to the next. Thus the engine
worked best when there was a lot of activity at each time step and little input
and output.

A further problem was the down load and compile times for networks.
Figures published showed that these were generally less than alternative
simulators, but were still in terms of minutes for a simulation of a few
seconds. They were anything from about three to over 100 times as long as
the simulation times.
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In spite of these problems, it was undoubtedly a major step forward in
simulation procedures. The machine was further developed to become the
System Development Engine (SDE) in the mid-1980s. This was claimed to
run at over 109 events per second. However, the number of modelling
elements was still restricted to just over 1M. This was fine for chip design -
its primary purpose - but not for system design. By 1991 * a single board
accelerator handling 256K elements at 2M events per second was available
as a desk top machine, with larger models available for network resources.
A desk top version has become available.

The LE was able to perform fault simulation by single fault insertion, if
only because of its speed. However, it was soon realised that this was
inadequate in relation to the size of the design checking problem. A
development allowed the same machine to be used as a fault evaluator (FE)
using the concurrent algorithm. One version of the fault evaluator was able
to work with functional models, while another was able to perform at
switch level.

10.4.3 Dazix Gigalogician
A primary problem with the Zycad style of accelerator is the

limited modelling element (three inputs, one output) and the inability to
handle storage in an efficient manner. Daisy Corp. - later Dazix -
developed a machine which contained several processors (Kaul et al,
1988). There is a hard wired processor capable of handling elements with up
to five inputs including flip-flops and latches. There is a software processor
to handle behavioural elements including memory, PLAs and devices
specified in a modelling language - in this case Daisy's own, but it could
now be VHDL. Finally, there is a physical modelling extension PMX, a
hardware modeller. A module can hold up to 11 processors, of which up to
five can be PMXs. A full machine may have 64 modules. A system such as
this can change or upgrade processors since the simulation procedure and
communication is independent of the processors.

It appears that each simulation processor holds data for specific elements
and each module contains logic for a system capable of a full simulation.
Thus there are two communications requirements.

• Data between elements.
• Data between modules.

This leads to a problem of allocation of elements to modules and

1 Electronic Product Design October 1991.
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processors. Allocation strategies are always difficult and will almost always
get some systems wrong.

The Dazix simulation system recognises the need to assist rapid
resimulation during the design debug phase. All waveforms are monitored,
therefore. Any desired waveform can be recalled during the debug phase of
the work. The massive amounts of data of a large design are reduced partly
by the use of high level models (fewer signals) and also by providing a means
to send some of the results to disc. If the file allocation becomes full then the
earliest results are deleted and replaced by more recent ones. Thus, if a fault
is detected, the simulator can be arranged to stop itself and the events
leading up to the fault are still recorded for the immediately preceding time
periods. If the event buffer is large enough, the source of the fault will be
detectable. In other words, the system operates in a manner similar to a
logic analyser.

Full recompilation of a design is not necessary very often. When a fault is
discovered, only the relevant module needs to be recompiled. Should the
design modification require additional inputs or outputs to this module
then the next higher level module must also be recompiled. If the module is
used in several higher level sections of the design, they will each need to be
recompiled. It will be necessary to recompile everything only very
rarely.

The speed of simulating simple gates on the Gigalogician is probably less
than that of the Zycad machines. However, it has better facilities for
simulating higher level modules and hence systems, as opposed to single
chips. It also has the very positive advantage of the event buffer giving faster
fault finding. Recompilation should also be faster. These facilities necessar-
ily lock the machine into the Dazix software and hardware suite. This is
clearly a disadvantage for users who wish to use a range of tools or who
have an investment in aids from other CAD vendors.

10.4.4 IBM machines
Earlier than the other machines, IBM built a simulator for their

internal use. This used the compiled code algorithm rather than the event
driven one. The description of Section 6.2 drew considerably on the detail
of the Yorktown Simulation Engine (YSE). This was so powerful that it was
said to be able to run programs in the simulation of the then latest 8-bit
microprocessor faster than the hardware processor itself could run them.
Of course, it was much larger and more expensive! IBM have since
developed several other engines from this (Beece et al. 1988).
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10.4.5 Assessment
The primary advantages of hardware simulators are the following.

• There is no operating system as there would be in a general
purpose computer.

• The hardware is tuned to the algorithm and hence must be faster.
• The machine will use pipelines to overlap operations and parallel

processors to effect higher processing speed.
• There is a large real memory and no virtual memory. As data is

required in an unordered fashion at all times, virtual memory
techniques will lead to thrashing and loss of speed.

The primary problem with hardware simulators is that they have a fixed
size and hence there is always some network that will not fit into it. With
machines based on relatively simple logical elements, there is no way round
that, though some sort of 'high level' model is possible. To get round the
problem, it is necessary for the simulator to be able to handle behavioural
and hardware models. Under these circumstances, if the network becomes
too large then part of it can be modelled at a higher level, thus enabling a
larger network to be simulated.

Hardware simulators are only of real use for large designs and long
simulations, preferably with little primary input or output. Blank (1984)
points out that, on small designs, the down loading and other overheads of
a hardware engine may lead to it being up to 10 times slower than a software
simulator. He quotes a 500K gate network with a 100 instruction sequence
taking 49 min on an accelerator but only 4.5 min on a software simulator.
When the number of instructions was raised to 106, however, the
simulation took 66 min on an accelerator and 250 h on the software
simulator.

10.5 Whither now?
It is clear that, with ever expanding design sizes, some means of

checking a design against specification is essential. Furthermore, it is clear
that a mixed level simulation is also vital to enable system designs to be
checked while some modules are only partly specified, as well as to reduce
the problem size when checking some modules at the most detailed levels. A
run time of 20 days for a processor chip has already been mentioned. In
1985 Zycad quoted the run time of a conventional simulator on a small
design (1700 gates, 8600 test vectors) as half an hour. The requirements of
the simulator increase according to the gate count to some power greater
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than one - often two or even three. This is faster than the rate of increase of
conventional computing power. Fault simulation for test grading is even
worse.

Clearly simulation accelerators are necessary for the largest designs. On
the 1700 gate design above Zycad quoted the Logic Evaluator with a
compile time of 42 s and a run time of 7 s. A design of 8000 elements had a
compile time of nearly 4 min and a run time of under two seconds. The speed
improvements due to acceleration are impressive. However, it will be
appreciated that the Dazix emphasis on help with debugging and on
incremental compilation is very necessary.

Other hierarchical methods of reducing the complexity of both simula-
tion and fault simulation have been mentioned. These must be developed
further.

Perhaps the main problem for which there is as yet no real solution is that
of how to prepare a comprehensive specification for a system to be designed
and then to ensure that the design meets that specification. Automatic test
program generation, as it is known in 1992, is aimed at testing manufac-
tured samples of a known good design. It is no use for determining whether
the design meets the specification. This is still very much up to the designer's
ingenuity and honesty.

One suggested approach to the problem is in the area of formal
specification and theorem proving. Formal specification has been used
successfully on a number of occasions. Some examples of design proving
with these ideas appear to be little more than alternative simulation
methods. They do little to check timing and can handle relatively small
parts of the logic. It is hoped that there might be something better on the
way.

Another approach is the use of automatic design from specification. The
specification is verified formally. The behaviour should then be correct by
construction. However, the designs will almost certainly be less compact
than if expert human intelligence were used. If the difference is only 10 or
20% and other constraints are met, the improved reliability of the design is
well worth the cost. Behavioural simulation of such designs is unnecessary.
Whether timing verification is necessary would be dependent on the design
system. If timing were tight, some manual intervention might be necessary,
but that would negate the advantages of the automatic design, and
simulation would be essential.

Even with automatic design, test program generation and fault simula-
tion are still required. Both these tasks are quite large and, in their present
form, limited in what they can do (single stuck at faults, for example). The
only solution would be to use some form of parallelism. It might be possible
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to partition the possible faults among several processors and then to
generate tests and fault simulate on each processor independently. Some
faults might get tested several times but every fault would be checked once.
Even if all possible faults could be detected by a test set, it is likely that the
set would be so large that testing, which cannot use parallelism, would be
uneconomic. Thus there is a compromise to be struck between cost and
fault cover. Full fault cover can be reserved for devices intended for safety
critical applications and would carry a premium on the price.

Finally, which simulator? This author cannot answer that. It depends a
great deal on the user's philosophy and approach. The important thing is to
be conscious of the problems. Greer (1987) gives a list of matters to be
considered when choosing a simulator. These include the following.

• Operating capabilities; levels and strengths; interactive break on
condition and forced values; incremental compilation; save and
restart.

• Timing: unit, zero, variable delays; random delay assignment;
rising and falling delays; inertial delays and spike filtering;
ambiguity models; load dependent delays; set-up and hold checks.

• Hardware constructs: transmission gates; tristate; pull-up/down
resistors; wired logic; ECL with true/complement delay; switch
level charge storage.

• Logic evaluation: real and potential spike and hazard reports; unit
delay oscillation; hazard with reconvergent fan-out; tristate bus
connections.

• Fault simulation: s-a-1/0; bridging faults; wire open faults; fault
reporting; probabilistic analysis; delay faults.

Not every user wants all these facilities. Each person must select that set of
facilities that are important in his/her own circumstances.
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The algorithm of Prog. 7.1 was written for a hardware simulator which
makes no assumptions. If it is run as shown on a commercial software
simulator, it may not work without modification. There are two reasons.

The first is that Prog. 7.1 assumes that all input changes at a given
simulation time are evaluated together - that is, an affected components list
is used. If that is not the case and the s change is evaluated before an input
change at the same time then incorrect results are obtained.

To avoid this advantage can be taken of the VHDL concept of deltas.
The fragment of Prog. 7.1 is encased in a further CASE statement of the
form

CASE s IS
W H E N T = >

s<=TRANSPORT'0';
~ happens after one delta as s is a SIGNAL

WHEN'0 '=>
Prog. 7.1

END CASE;

If the input change comes from the event memory before the s change, then s
is '0' and the effect of the change is evaluated. A following s change will then
fail on the time delay test. On the other hand, if the s event appears first, all
that happens is that s is predicted to change to '0' after a delta. The input
change then occurs, but there is no evaluation as s is '1.' A second s < = '0'
prediction is made, but this deletes the previous one (see below).

Next a delta time step is made and s< ='0' is found. The logic is
evaluated with the input now at the required value.

The second problem arises because most simulators have a built in
'buffer' which understands the concept of TRANSPORT and INERTIAL
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delays. In particular, the prediction of s< = TRANSPORT '0' will remove
any other predictions for s made before the current time but due to be
realised after current time as shown in Fig. Al. Hence the later s has to be
replaced. A statement can be added to the "WHEN T = > " part of the new
case clause above as shown below.

IF ( (NOW-T)<(t r - t f ) ) THEN
s< = TRANSPORT T AFTER ( t r - t f - (NOW-T) );

END IF;

If there are several s predictions ahead, then all will be removed. Only the
last will be replaced. It can be shown that, for this 'simple' buffer, that is
adequate, but in some more complex logic block it may not be.

These mechanisms have been used to test the state diagrams of Figs. 7.7,
7.13 and 7.14 on a commercial simulator and have been found to work.

Fig. Al. Illustration of effects of transport delay.
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hierarchical model 184ff
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logic dependency false path 199
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Logic Modelling LM1000 188
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meet in the middle design 7
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mixed level simulation 13, 255
mixed mode simulation 12
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247S
model, gate 162ff
model, high level 223
modelling elements (Zycad) 252
modelling language 98
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multilevel simulation 9
multiple faults 17, 41, 66, 208, 210ff
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network compiler 116, 131, 144, 147f,

186, 252, 254
network memory 124, 154f, 160, 164
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noise 25f
not equivalence 84, 192
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NOW (VHDL current time) 105
NULL (VHDL) 109
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pattern sensitivity 192
Physical Modelling extension (PMX)

188, 253
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PODEM 86ff
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power 25f, 31, 153, 205
primary input (output) 55
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random access scan 46
random test patterns 5 If, 72f, 89
rank ordering of gate 113
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register model (group) 147
rehearsal run (of simulation) 239
REPORT (VHDL) 99
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rise time 151, 154, 250
rising delay 139, 158, 164f, 194
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sequential logic testing 42, 44
sequential observability 60f
set-up time 5, 14, 42, 176, 181
set-up time, negative 182
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signal groups 144
SIGNAL (VHDL) 99, 104, 161f
signature analysis 5IS
silicon compilation 35S
simulation cycle 244f, 254
simulation, dangers in 29, 166, 245
simulation environment 99ff, 158, 171
simulator, desirable features 243
skew 249
slack 204ff
specification 2, 20, 245, 256
spike (on clock line) 26, 250
spike removal 166, 241, 244, 247
split (group) see group
state machine models 158S
state table 130
strength 172
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structural model 152, 184ff
stuck at fault model 17, 41
stuck closed 41, 92
stuck open 41, 66, 90S, 249
surrogate fault 211
switch level US, 24, 149, 175, 187,

199
synchronous system 113, 120
System Development Engine (SDE,

Zycad) 253

table as (model) 151
table based simulation 112

see also event driven simulation
technology 243
test bench 98, 116, 123, 132
test data 96
test reduction 210f
test, scan register 45f
Test Access Port (TAP) 47f
testability 61S, 247
time wheel 126ff, 144
time wheel overflow 142S
timing verification 139f, 192C, 245
top down design 7, 246
topology (of network) 192
transmission line 34, 250
transport delay 152, 166, 247, 258
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171, 183, 186
TYPE (VHDL) 98ff, 171

unknown strength 173
unknown/uncertain value 169f
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VARIABLE (VHDL) 104, 161f
vertex (of D-cube) 74ff

WAIT (VHDL) 98f, 100, 104, 107
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what-if 2, 244, 252
wire gates 34f, 186S
wiring delay 4, 34S, 143S
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yield 207f
YSE (Yorktown Simulation Engine)
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Zycad 252ff, 256
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