

SPARK: A Parallelizing Approach to the
High-Level Synthesis of Digital Circuits

SPARK: A PARALLELIZING APPROACH
TO THE HIGH-LEVEL SYNTHESIS OF
DIGITAL CIRCUITS

SUMIT GUPTA
Center for Embedded Computer Systems
University of California
San Diego and Irvine, USA

RAJESH K. GUPTA
Department of Computer Science and Engineering
University of California
San Diego, USA

NIKIL D. DUTT
Center for Embedded Computer Systems
University of California
Irvine, USA

ALEXANDRU NICOLAU
Center for Embedded Computer Systems
University of California
Irvine, USA

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 1-4020-7838-2
Print ISBN: 1-4020-7837-4

Print ©2004 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

CD-ROM available only in print edition

©2004 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://www.ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

This book is dedicated to our
families.

Contents

Preface

Acknowledgments

xix

xxiii

I Introduction to High-Level Synthesis 1

1 Introduction
1.1
1.2
1.3
1.4
1.5
1.6
1.7

System-Level Design of Hardware Systems
Why High-Level Synthesis and Why Now
Overview of High-Level Synthesis
Role of Parallelizing Compiler Transformations in HLS
Our Parallelizing High-Level Synthesis Methodology
Contributions of this Work
Book Organization

2 Survey of Previous Work
Early Work in High-Level Synthesis
HLS for Behaviors with Complex Control Flow
Intermediate Representations in High-Level Synthesis
Related Work in Compilers
Use of Loop Transformations in Compilers and High-Level Synthesis
What is Hindering Adoption of HLS Tools
Summary

Models and Representations
Modeling the Problem
Design Description Modeling

Modeling Data Dependencies
Better Design Visualization by Maintaining Variable Names
Modeling Control Flow
Mapping between Data Flow and Control Flow Graphs
HTGs: A Model for Designs with Complex Control Flow
Capturing the Complete Design Description

3
3
5
6
7
8

10
11

15
15
17
18
19
20
21
22

23
23
23
24
25
26
28
29
33

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3
3.1
3.2

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6

viii CONTENTS

3.3 Modeling Hardware Resources, Timing and Data Types
Modeling the Data Type Information
Modeling the Hardware Resources
Modeling Clock Cycle Timing
Modeling Operation Chaining

Formulation of the Scheduling Problem
Constraints due to Hardware Resource Allocation
Constraints due to Data Dependencies
Resource-Constrained Scheduling
Incorporating Operation Chaining in Scheduling Formulation

Modeling Parallelizing Code Motions
Modeling Speculative Code Motions
Modeling Hierarchical Code Motions

Scheduling Designs with Control Flow
Notion of Scheduling Steps within Basic Blocks
Formulation of Scheduling Problem with Conditional Constructs
Modeling Resource Utilization
Modeling Operation Chaining across Conditional Boundaries

Summary

II Parallelizing High-Level Synthesis (PHLS)

4 Our Parallelizing High-Level Synthesis Methodology
Design Flow through a PHLS Framework
Passes and Techniques in the PHLS Framework

Data Dependency Analysis Pass
Eliminating data dependencies by Dynamic Renaming
The Trailblazing Code Motion Technique

Summary

Pre-Synthesis Compiler Optimizations
Common Sub-Expression Elimination
Loop-Invariant Code Motion
Loop Unroll ing
Loop Index Variable Elimination
Summary

Compiler and Synthesis Transformations Employed During Scheduling
Limits of Parallelism within Basic Blocks
Speculation and Predicated Execution in Compilers
Role of Speculative Code Motions in High-Level Synthesis

Speculation in High-Level Synthesis
Reverse Speculation
Early Condition Execution
Conditional Speculation

3.3.1
3.3.2
3.3.3
3.3.4

3.4
3.4.1
3.4.2
3.4.3
3.4.4

3.5
3.5.1
3.5.2

3.6
3.6.1
3.6.2
3.6.3
3.6.4

3.7

4.1
4.2

4.2.1
4.2.2
4.2.3

4.3

5
5.1
5.2
5.3
5.4
5.5

6
6.1
6.2
6.3

6.3.1
6.3.2
6.3.3
6.3.4

34
34
35
36
37
37
37
38
38
39
39
39
40
41
41
42
44
46
47

49

51
51
54
54
54
55
56

59
59
61
62
63
65

67
68
68
69
70
71
73
74

CONTENTS ix

Enabling New Code Motions by Dynamic Branch Balancing
Dynamic Common Sub-Expression Elimination

Conditional Speculation and Dynamic CSE
Dynamic Copy Propagation

Chaining Operations Across Conditional Boundaries
Chaining with Operations in the Branches of a Conditional Block
Creating Wire-Variables to enable Chaining on each Chaining
Trail

Loop Shifting
Ensuring the Correctness of Code
Shifting Loops with Conditional Branches

Summary

Code Transformations and Scheduling
Software Architecture of the Scheduler
Priority-based Global List Scheduling Heuristic

Scheduling Loops
Calculating Priority

Collecting the List of Available Operations
Collecting the Unscheduled Operations from the Design Graph
Algorithm for the AreDataDepsSatisfied function

TrailSynth: A Trailblazing-Based code motion algorithm
Algorithm for the I sTrailblazeOpPossible Function
Algorithm for the TrailblazeOp Function
Finding an Idle Resource in a Basic Block

Dynamic CSE Algorithm
Design Traversal Algorithms

Algorithm to Get the Next Scheduling Step
Algorithm to Get the Next Basic Block to Schedule

Dynamic Branch Balancing during Scheduling
An Illustrative Example of the Scheduler
Incorporating Chaining into the Scheduler

Incorporating Chaining into the Scheduling Heuristic
Incorporating Chaining into the TrailSynth Code Motion Tech-
nique

Loop Shifting Algorithm
Summary

Resource Binding and Control Synthesis
Introduction
Resource Binding

Interconnect Minimization by Resource Binding
Modeling Interconnect Minimizing Resource Binding
Resource Binding: An Illustrative Example
Operation to Functional Unit Binding
Variable to Register Binding

6.4
6.5

6.5.1
6.5.2

6.6
6.6.1
6.6.2

6.7
6.7.1
6.7.2

6.8

7
7.1
7.2

7.2.1
7.2.2

7.3
7.3.1
7.3.2

7.4
7.4.1
7.4.2
7.4.3

7.5
7.6

7.6.1
7.6.2

7.7
7.8
7.9

7.9.1
7.9.2

7.10
7.11

8
8.1
8.2

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5

75
76
77
79
80
81

82
84
86
87
88

89
89
90
92
93
94
95
96
97
99

100
101
103
103
103
104
105
107
108
108

111
112
113

115
115
115
116
116
117
119
121

x CONTENTS

Control Synthesis in the PHLS Framework
State Assignment
Modeling the Finite State Machine Controller
Finite State Machine Construction
Synthesizable VHDL Generation
Related Work

Summary

SPARK: Implementation, Scripts and Design Examples

SPARK: Implementation, Usage, and Synthesis Scripts
Implementation of the SPARK PHLS Framework
Using the Command-line Options and Scripts in SPARK
Interdependencies between the Code Motions

Disabling One Code Motion at a Time
Enabling One Code Motion at a Time
Enabling Multiple Code Motions at a Time

Study of the Impact of Dynamic Branch Balancing
Different Ways of Calculating Priority
Recommended Synthesis Scripts
Summary

Design Examples
Introduction

Designs used for the Four Case Studies
Larger Set of Designs used for Validating Our Synthesis Ap-
proach

Results for Pre-Synthesis Optimizations
Function Inlining
Loop-Invariant Code Motion and CSE: Scheduling Results
Loop-Invariant Code Motion and CSE: Logic Synthesis Results

Results for Speculative Code Motions
Scheduling Results for the Speculative Code Motions
Logic Synthesis Results for the Speculative Code Motions

Results for Dynamic CSE
Scheduling Results for Dynamic CSE
Logic Synthesis Results for Dynamic CSE

Results for Chaining Across Conditionals
Putting it all together

Overall Synthesis Results for the Four Case Studies
Effect of Parallelizing Synthesis Transformations on Circuit
Quality of a Large Set of Designs

Study of Loop Unrolling and Loop Shifting
Scheduling and Logic Synthesis Results for Loop Unrolling

8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5

8.4

III

9
9.1
9.2
9.3

9.3.1
9.3.2
9.3.3

9.4
9.5
9.6
9.7

10
10.1

10.1.1
10.1.2

10.1.3
10.2

10.2.1
10.2.2
10.2.3

10.3
10.3.1
10.3.2

10.4
10.4.1
10.4.2

10.5
10.6

10.6.1
10.6.2

10.7
10.7.1

122
122
124
125
128
130
131

133

135
135
137
137
138
139
140
141
143
143
144

145
145
145

146
147
147
148
150
151
152
152
154
155
155
157
158
160
160

162
164
165

Metrics for Scheduling and Logic Synthesis Results

CONTENTS xi

Scheduling and Logic Synthesis Results for Loop Shifting
Loop Unrolling and Shifting Results with Higher Resource Al-
location

Discussion and Conclusions
Summary

Case Study: Synthesis of an Instruction Length Decoder
Introduction
Synthesis Transformations for Microprocessor Blocks
A Case Study: Instruction Length Decoder
Transformations applied by Spark to Synthesize the ILD
Future Work
Summary

Future Directions

Conclusions and Future Work
Conclusions
Future Work
Summary

Appendix

SPARK: Usage, Synthesis Scripts, and Hardware Library Files
Command Line Interface
Viewing Output Graphs
Hardware Description File Format

Timing Information
Data Type Information
Hardware Resource Information
Loop Unrolling and Pipelining Parameters
Other Sections in .spark files

Scripting Options for Controlling Transformations
Scheduler Functions
List of Allowed Code Motion
Cost of Code Motions

Sample default.spark Hardware Description file
Recommended Priority.rules Synthesis Script file
Recommended Command-line Options for Spark
Options for Synthesizing Microprocessor Blocks

10.7.2
10.7.3

10.8
10.9

11
11.1
11.2
11.3
11.4
11.5
11.6

IV

12
12.1
12.2
12.3

V

A
A.1
A.2
A.3

A.3.1
A.3.2
A.3.3
A.3.4
A.3.5

A.4
A.4.1
A.4.2
A.4.3

A.5
A.6
A.7
A.8

167

168
170
171

173
173
175
176
178
182
183

185

187
187
189
190

191

193
193
194
194
195
195
195
196
197
197
197
197
198
198
200
201
201

xii CONTENTS

Sample Runs
A Sample Input C Program
Unbound VHDL output for the sample program
Bound VHDL output for the sample program

Bibliography

B
B.1
B.2
B.3

203
203
203
206

217

List of Figures

Role of high-level synthesis in a system-level design methodology
An overview of high-level synthesis
Overview of parallelizing high-level synthesis methodology
An overview of the organization of this book

Data flow graph example
Example demonstrating the utility of maintaining anti and output de-
pendencies
Control flow graph example
Mapping between data flow and control flow graphs
Hierarchical Task Graph representation (HTG) of a sample C description
HTG representation of the “waka” benchmark and a for-loop
3-layered design graph with mappings between HTG, CFG and DFG
graphs
Modeling clock cycle timing
Example for dominator trees
Modeling Resource Utilization
Resource utilization with chaining across conditionals

An Overview of a Parallelizing High-Level Synthesis Framework
Dynamic variable renaming to eliminate data dependencies
Example to demonstrate Trailblazing

CSE: example and explanation with basic block dominator tree
Example to demonstrate loop-invariant code motion
Example to demonstrate loop unrolling
Example to demonstrate loop index variable elimination

Example demonstrating the use of speculation in high-level synthesis
Reverse speculation
Difference between reverse speculation and downward code motion
Early condition execution
Example demonstrating conditional speculation
Enabling new code motions by dynamic branch balancing

1.1
1.2
1.3
1.4

3.1
3.2

3.3
3.4
3.5
3.6
3.7

3.8
3.9
3.10
3.11

4.1
4.2
4.3

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6

4
6
9

12

25

26
27
29
30
32

34
36
42
45
46

52
55
56

60
61
62
64

70
71
72
73
74
75

xiv LIST OF FIGURES

Example demonstrating Dynamic CSE
An example of applying dynamic CSE after conditional speculation
Example of dynamic CSE using notion of dominance by groups of
basic blocks
Example of operation chaining across conditional boundaries
Example demonstrating the notion of chaining trails
Example demonstrating the use of wire-variables during chaining
Example demonstrating the insertion of copy operations to enable chain-
ing
Example demonstrating loop shifting
Ensuring correctness of code during loop shifting
Shifting loops with conditional branches

Architecture of the scheduler in our PHLS framework
Priority assignment for the operations in the “waka” benchmark
Finding the Trailblazing trails in an example HTG
Example demonstrating the use of code motions during scheduling

Typical Critical Paths
Example of Bad Binding
Minimizing Interconnect by Improved Resource Binding
Example to demonstrate Binding
Formulation of Operation Binding
Formulation of Variable Binding
State assignment by (a) Local slicing (b) Global slicing
Modeling the FSM Controller
Finite State Machine Construction
Synthesizable Register Tranfer Level VHDL

Overview of the SPARK Parallelizing High-Level Synthesis Framework

Function inlining: logic synthesis results
Pre-synthesis transformations: logic synthesis results
Speculative code motions: logic synthesis results
Pre-synthesis transformations: logic synthesis results
Chaining across conditionals: logic synthesis results
Logic synthesis results for various transformations on the four designs
Synthesis results for various transformations on GIMP designs
Synthesis results for various transformations on XVID and MPEG-2
designs
Logic synthesis results after loop unrolling for pred1, pred2 and tiler
Logic synthesis results after loop shifting for pred1, pred2 and tiler
Logic synthesis results after loop unrolling using a higher resource

allocation
Logic synthesis results after loop shifting using a higher resource al-

location

6.7
6.8
6.9

6.10
6.11
6.12
6.13

6.14
6.15
6.16

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

9.1

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

10.9
10.10
10.11

10.12

77
78

78
80
81
83

84
85
86
87

90
94
98

108

116
118
118
119
120
121
123
124
125
128

136

149
151
154
157
159
161
163

164
166
168

170

170

LIST OF FIGURES xv

Generic architectures for ASIC designs and microprocessor blocks
Calculating length of the first instruction in the Instruction Length De-
coder (ILD)
ILD: Calculating the length of the second instruction
Behavioral “C” code for the ILD
ILD: Speculative execution
ILD: Function inlining
ILD: Loop unrolling
ILD: Index variable elimination
ILD: Multiple speculative calculations and the final ILD architecture
ILD: A succinct and natural behavioral description

The scheduler functions section in a sample Priority.rules file

11.1
11.2

11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10

A.1

174

177
177
178
179
179
180
180
181
182

202

List of Tables

Data types in hardware description file

Disabling code motions one at a time: scheduling results for pred1 and
pred2
Disabling code motions one at a time: scheduling results for dp frame
and tiler
Enabling code motions one at a time: scheduling results for pred1 and
pred2
Enabling code motions one at a time: scheduling results for dp frame
and tiler
Enabling code motions one at a time: scheduling results for pred1 and
pred2
Enabling code motions one at a time: scheduling results for dp frame
and tiler
Dynamic branch balancing: scheduling results for pred1 and pred2
Dynamic branch balancing: scheduling results for dp frame and tiler
Different priority calculations: scheduling results for pred1 and pred2
Different priority calculations: scheduling results for dp frame and tiler

Characteristics of four designs used as case studies
Characteristics of twelve more designs
Scheduling results for inlining in MPEG-1 and GIMP design
Pre-synthesis transformations: scheduling results for pred1 and pred2
Pre-synthesis transformations: scheduling results for dp frame and tiler
Speculative code motions: scheduling results for pred1 and pred2
Speculative code motions: scheduling results for dp frame and tiler
Dynamic CSE: scheduling results for MPEG-1 pred1
Dynamic CSE: scheduling results for MPEG-1 pred2
Dynamic CSE: scheduling results for MPEG-2 dp frame
Dynamic CSE: scheduling results for GIMP tiler
Chaining across conditionals: scheduling results for MPEG-1 designs
Chaining across conditionals: scheduling results for MPEG-2 and

GIMP designs
Overview of scheduling results for MPEG-1 designs

3.1

9.1

9.2

9.3

9.4

9.5

9.6

9.7
9.8
9.9
9.10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13

10.14

35

138

138

139

139

140

140
142
142
143
143

146
146
148
150
150
153
153
156
156
156
156
159

159
160

xviii LIST OF TABLES

Overview of scheduling results for dp frame and tiler
Scheduling results after unrolling the inner loops in pred1 and pred2
Scheduling Results after unrolling the inner loop in tiler
Scheduling results after loop shifting for pred1 and pred2
Scheduling results after loop shifting for the tiler design
Loop unrolling with higher resource allocation: results tor pred1 and

pred2
Loop shifing with higher resource allocation: results for pred1 and

pred2

160
165
165
167
167

169

169

10.15
10.16
10.17
10.18
10.19
10.20

10.21

Preface

Perhaps nothing better states the capability, reach and potential of microelectronic
chips than Moore’s Law. Driven by the integration advantages, semiconductor chips
have become the driver for continued advance in systems capabilities for a broad range
of domains from computing, communications to automotive and consumer electron-
ics. However, as manufacturing costs of these parts drops, our ability to build the
future system-chips has not kept pace. Today, our ability to manufacture complex
system-chips strictly exceeds the ability to correctly design and verify these. As a con-
sequence, a significant part of the inherent capabilities of the silicon is left on the table:
ASIC parts barely run at 500 MHz speeds on processes that can easily support 2-3 GHz
operation. In addition to this, the barrier to chip design is becoming higher: it takes
$20M to design a reasonably complex ASIC part. Consequently, designers must find
efficient ways to exploit semiconductor manufacturing advantages in building systems.
The movement to structured ASICs and FPGA is a part of that process. But that is
not enough: the increasing complexity of design demands moving to higher levels of
abstraction and an automated approach to the synthesis of circuits from these abstrac-
tions.

An important step in this move to higher levels of abstraction is high-level synthe-
sis. High-level synthesis (HLS) is the process of building microelectronic circuits from
their behavioral descriptions. These descriptions are often written in a programming
language. Despite its great need, HLS has not found wide acceptance in the engineer-
ing practice. The primary barriers to its adoption have been reluctance by the circuit
designers to let go of the cycle boundary (in other words, describe circuit behavior
without reference to specific cycle-by-cycle operations) and loss in quality and con-
trollability of the circuits when using automated synthesis tools compared to manually
crafted designs. Both of these barriers are coming down – driven by the ever expanding
scope of what is put on a single chip coupled with shrinking design times and resources.

This book describes a novel approach to HLS – that of parallelizing high-level syn-
thesis (PHLS). This approach employs aggressive code parallelizing and code motion
techniques to discover circuit optimization opportunities beyond what is possible with
traditional high-level synthesis. In this way, our PHLS approach creates a path to syn-
thesis that competes with the quality and controllability of manually designed circuits.

The code parallelization techniques in our PHLS approach consist of a range of
coarse-grain and fine-grain transformations. We devise ways to first apply these tech-
niques prior to actual synthesis (in a “pre-synthesis” phase) with the goal of exposing
opportunities for code parallelization that can be used in later scheduling and synthe-

xx

sis tasks. During scheduling, we employ code transformations that consist of dynamic
(compiler) transformations that re-order, speculate and sometimes even replicate code
to improve design performance. Selecting the right subset of these and employing them
in conjunction with other synthesis related transformations such as operation chaining,
resource sharing, et cetera is a difficult problem. Our approach is to build a toolbox of
transformations that are guided by a set of heuristics specific to design styles that guide
application of these transformations so that cycle time and circuit delay is optimized
while keeping circuit area, interconnect costs, and critical path lengths in check.

Parallelizing compilers, i.e., compilers that produce code for execution on parallel
machines, have been a fertile ground for design of automatic parallelization techniques,
often with a strong focus on the completeness of the depth and scope of paralleliza-
tion achieved. However, a straightforward application of known parallelizing compiler
techniques to hardware synthesis does not work. For hardware synthesis, control costs
– circuits that control the flow of data and control in the design and hence, enable paral-
lelization of operations and tasks – are not fixed and can vary significantly by changes
in the behavioral description. Rather than brute force parallelization, one needs to find
a judicious balance between parallelization and sequencing that would ultimately result
in a faster, better circuit. Doing so in a systematic manner for all possible approaches
to code parallelization is a tall order. This book focuses on parallelization across con-
trol boundaries – for these often define the bottleneck in achieving the highest speeds
and in exploitation of the hardware available. That means, examining and transform-
ing control structures – such as complicated nested loops and conditionals – to achieve
competitive synthesis results.

This book presents a systematic approach to the use of parallelizing transformations
in HLS through speculation and dynamic code transformation techniques. We begin
by giving some background and an overview of HLS and describe how parallelizing
transformations fit in with HLS. In Chapter 2, we review relevant previous work in the
domains of HLS and parallelizing compilers. We then first introduce the models and
representations we use in the rest of the book. We describe the intermediate represen-
tation we use to capture the design, models for hardware resources and the speculative
code motions. We also formulate the scheduling problem for high-level synthesis of
designs with control flow. This sets up the stage for describing our solution for this
problem.

In Chapter 4, we present our parallelizing high-level synthesis methodology; we
give an overview of the design flow through our methodology and list the passes and
code transformations that we found to be useful for high-level synthesis. We then de-
scribe these code transformations in detail over the next two chapters: the pre-synthesis
compiler transformations in Chapters 5 and the parallelizing compiler, synthesis, and
dynamic transformations we employ during scheduling in Chapter 6. Throughout the
book, and particularly in these two chapters, we use examples to illustrate how the
compiler transformations optimize code for hardware synthesis. However, as men-
tioned earlier, straightforward application of compiler transformations does not always
lead to optimized circuits. So, in Chapter 7, we present algorithms that we developed
to guide the compiler transformations employed during the scheduling phase. We also
illustrate how we employ these compiler transformations in conjunction with more tra-
ditional HLS transformations such as operation chaining and resource sharing.

xxi

The aggressive code parallelization transformations that we apply on the design sig-
nificantly increases resource sharing and hence, the size and complexity of the steering
(multiplexers) and control logic. In order to manage this complexity, we developed a
resource binding methodology that reduces the size of the interconnect or multiplexers.
We present this methodology and the network flow solution we developed in Chapter
8. In this chapter, we also discuss our control synthesis technique that generates a
finite-state machine (FSM) controller for the synthesized design.

We implemented our PHLS methodology and compiler techniques in a software
framework called SPARK. We present implementation and usage details of the SPARK
software package in Chapter 9. Detailed instructions on the command-line options and
how to use the synthesis scripts in the SPARK software are listed later in the Appendix
(along with the results of some sample runs). In Chapter 9, we also demonstrate how
a designer can control and guide the synthesis process in SPARK using the synthesis
scripts and command-line directives. In the next chapter, we look at a few design
examples derived from multimedia and image processing applications to illustrate the
efficacy and results of the parallelizing optimizations. We then (in Chapter 11) use
a case study of an instruction length decoder derived from the Intel Pentium-class of
microprocessors to walk the reader through the steps involved in the synthesis of a
typical microprocessor functional block with complex control flow. We conclude the
book with a discussion of future directions in Chapter 12.

We included a CD with this book that contains the SPARK prototype software
(please see CD for disclaimer and copyright notice). This software release consists of
the SPARK executable (for Linux, Solaris, and Windows), a User Manual, and a tu-
torial that walks the user through the synthesis of a design example extracted from a
MPEG-1 player using SPARK. This software release and updates are also available on
the Internet at:

http://www.cecs.uci.edu/~spark

We look forward to your comments and suggestions about this book and the ac-
companying software. Please send them at spark@cecs.uci.edu

S. GUPTA, N. D. DUTT, R. K. GUPTA, A. NICOLAU

Acknowledgments

We thank the many people, past and present, at the Center for Embedded Computer
Systems (CECS) who have contributed to the formulation and refinement of the ideas
presented in this book and in reviewing early manuscripts and providing valuable feed-
back. We specially acknowledge the contribution of Nick Savoiu to the underlying
SPARK framework. Others who contributed to the SPARK code-base include Mehrdad
Reshadi and Sunwoo Kim. We are grateful to Melanie Sanders for going out of her way
to help everyone at CECS over the years. We thank the following people for reviewing
early drafts of this book (in the form of Sumit Gupta’s Ph.D. thesis): Nikhil Bansal,
Radu Cornea, Frederic Doucet, Andreas Gerstlauer, Ravindra Jejurikar, Arun Kejari-
wal, Manev Luthra, Prabhat Mishra, Dan Nicolaescu, Cristiano Pereira, Mehrdad Re-
shadi, and Srikanth Srinivasan. We would also like to thank Arun Kejariwal for helping
with the aesthetics and layout of the book.

We thank the Semiconductor Research Corporation (SRC) and Intel Incorporated
for funding the SPARK project. We particularly acknowledge the mentorship of Justin
Harlow from SRC and the advice and collaboration of Shai Rotem, Timothy Kam, and
Michael Kishinevsky from the Intel Strategic CAD Labs.

Part I

Introduction to High-Level
Synthesis

1
INTRODUCTION

1.1 System-Level Design of Hardware Systems

Microelectronic systems have become the medium of choice for the state of the arts
in end capabilities in human endeavors from science (computing) to space exploration.
These systems can be found embedded in all aspects of our daily lives ranging from
equipment, places and even the human body. Advances in microelectronic technolo-
gies enable integration of ever increasing computation and communication capabilities
on a single chip. However, the rate of increase of technology advances has far outpaced
the ability of designers to use the real-estate and speed available on chips. Furthermore,
rapid changes in the protocols, applications and consumer demands of embedded sys-
tems have created a need to design, synthesize and deploy these systems within a short
turnaround time. As a result, it is now possible to build microelectronic chips that ex-
ecute large and complex applications, but it is not possible to do so without spending
a small fortune and while meeting the short times-to-market that are the hallmark of
modern consumer products.

To manage the growing size and complexity of these microelectronic systems and
increase designer productivity, we need to perform design modeling, synthesis and
validation at higher levels of abstraction. As designers we continually seek the ability
to partially or completely synthesize the hardware and software of an embedded system
from a system level description. This book focuses on one aspect of this goal, namely,
high-level synthesis. High-level synthesis is the automated generation of the hardware
circuit of a digital system from a behavioral description.

High-level synthesis is an important component of a system level design method-
ology. Figure 1.1 shows an overview of the design flow through a typical system level
design methodology. The input to this system level design methodology is the specifi-
cation of an application in a high-level language and the output is an implementation
of the application on a system-on-a-chip (SOC) platform. Several system level design
languages that are variants of C or C++ have been proposed to enable this methodology.
These languages attempt to provide a unified means of specifying hardware and soft-
ware. SystemC [GL97, SyC] and SystemVerilog currently find attention, but are a part
of a long line of research in languages for system design [GL97, VSB99,

4 CHAPTER 1. INTRODUCTION

Ideally, we would like to be able to perform an analysis of the system specification
to determine a hardware-software partitioning that meets the timing, hardware, perfor-
mance, and power constraints placed on the application. Then, as shown in Figure 1.1,
the software portion can be compiled using a software compiler for the processor core
and the hardware portion is synthesized with a high-level synthesis tool, followed by
logic synthesis and place and route tools.

However, in practice, existing high-level synthesis techniques do not produce cir-
cuits whose quality can compete with manual designs. As a result, there is a gap
between the models represented in the system level languages and the implementation
of the hardware component. The focus of this book is in bridging this gap by proposing
a novel approach to high-level synthesis – that of parallelizing high-level synthesis –
that generates results that are competitive with manual designs and thus, finally fulfills
the promise of high-level synthesis.

1.2. WHY HIGH-LEVEL SYNTHESIS AND WHY NOW 5

1.2 Why High-Level Synthesis and Why Now

High-level synthesis was first proposed two decades ago. Several commercial tools
have been released over the past decade [BC, InaCs, Cel, DS], but there has been lim-
ited adoption of these tools.

However, recently several factors have led to a renewed interest in high level syn-
thesis from behavioral descriptions, both in the industry and in academia. Firstly, re-
cent years have seen the widespread acceptance and use of language-level modeling of
digital designs. Increasingly, the typical design process starts with design entry in a
hardware description language at the register-transfer level, followed by logic synthe-
sis. Secondly, the increasing size and complexity of digital systems and developments
such as the advent of systems-on-a-chip, have fueled the use of system level behavioral
modeling in high level languages for initial system specification and analysis. Also,
whereas traditionally system architects could leverage experience to examine design
alternatives, the large size and complexity of present day systems requires automated
architectural-level design space exploration and synthesis tools.

Although high-level synthesis has been the subject of research for two decades,
there are two chief factors that have limited the utility and wider acceptance of high-
level synthesis: (a) The quality of synthesis results is compromised because of the
significant control flow in typical descriptions. This control flow limits the application
of most data flow driven behavioral optimizations. (b) And designers are usually given
minimal controllability of the synthesis process and its result. In this work, we address
these two limitations.

Poor synthesis results can be attributed to several factors. Most of the optimizing
transformations that have been proposed over the years are operation level transforma-
tions. In contrast, language level optimizations refer to transformations that change
the circuit description at the source level, for example, loop unrolling, loop-invariant
code motion, et cetera. Few language level optimizations have been explored in the
context of high-level synthesis and their effects on final circuit area and speed are not
well understood. Most approaches demonstrate the effectiveness of an optimization in
isolation from other transformations and on small, synthetic designs and with little or
no analysis of control and hardware costs. It is thus difficult to judge if an optimization
has a positive impact beyond scheduling results.

Our work in high-level synthesis (HLS) has been motivated by the advances in
parallelizing compiler technology that enable exploitation of extreme amounts of par-
allelization through a range of code motion and code transformation techniques. While
we found no single code transformation technique (including the ones we developed
specifically for HLS) to be universally useful, we found that a judicious balance of a
number of these techniques driven by well considered heuristics is likely to yield HLS
results that compare in quality to the manually designed functional blocks. The chal-
lenge then, for us, has been to identify and isolate a useful set of transformations and
couple these with the rest of a high-level synthesis framework. This, in essence, is the
contribution of the Spark parallelizing high-level synthesis methodology to the domain
of high-level synthesis.

6 CHAPTER 1. INTRODUCTION

1.3 Overview of High-Level Synthesis

An overview of high-level synthesis is shown in Figure 1.2. High-level synthesis is the
process of converting a behavioral description into a digital circuit that consists of a
data path, a controller and memory elements. The first task in high-level synthesis is to
capture the behavioral description in an intermediate representation that captures both
control flow and data flow. Thereafter, the high-level synthesis problem has usually
been solved by dividing the problem into several sub-tasks. Typically the subtasks are:

Allocation: This tasks consists of determining the number of resources that have
been allocated or alloted to synthesize the hardware circuit. Typically, designers
can specify an allocation in terms of the number of resources of each resource
type. Resources consist not only of functional units (like adders and multipliers),
but may also include registers and interconnection components (such as multi-
plexers and buses).

Scheduling: The scheduling problem is to determine the time step or clock cy-
cle in which each operation in the design executes. The ordering between the
“scheduled” operations is constrained by the data (and possibly control) depen-
dencies between the operations. Scheduling is often done under constraints on
the number of resources (as specified in the resource allocation).

Module Selection: Module selection is the task of determining the resource type
from the resource library that an operation executes on. The need for this task
arises because of the presence of several resources of different types (and differ-
ent area and timing) that an operation may execute on. For example, an addition
may execute on an adder, an ALU, or a multiply-accumulate unit. There are
area, performance, and power trade-offs in choosing between these components.
Module selection must make a judicious choice between different resources such
that a metric like area or timing is minimized.

Binding: Binding determines the mapping between the operations, variables
and data (and control) transfers in the design and the specific resources in the

1.4. ROLE OF PARALLELIZING COMPILER TRANSFORMATIONS IN HLS 7

resource allocation. Hence, operations are mapped to specific functional units,
variables to registers, and data/control transfers to interconnection components.

Control Generation and Optimization: Control synthesis generates a control
unit that implements the schedule. This control unit generates control signals that
control the flow of data through the data path (i.e., through the multiplexers).
Control optimization tries to minimize the size of the control unit and hence,
improve metrics such as area and power.

Each of these tasks are interlinked and often dependent on each other. To delve
deeper into each of these tasks, we refer the reader to [DM94, GDWL92, CW91,
Kna96, JDKR97].

1.4 Role of Parallelizing Compiler Transformations in
High-Level Synthesis

We focus on synthesizing the computationally expensive portions of multimedia and
image processing applications and of low latency functional blocks from microproces-
sors. These applications typically consist of arithmetic operations embedded in deeply
nested loops with a complex mix of conditional (if-then-else) constructs. The choice
of these control constructs (if-then-else, loops) has a dramatic effect on the quality of
hardware synthesis results. Language level modeling of digital designs (especially in
system-level design methodologies) allows additional freedom in the way a behavior
is described compared to register-transfer level (RTL) descriptions. The ordering and
placement of operations in high-level behavioral descriptions is usually governed by
programming ease and varies from designer to designer. Very often this ordering is not
conducive to or optimal for downstream high-level synthesis and optimization tasks
[CGR93a].

A range of parallelizing transformations has been explored in the compiler commu-
nity to alleviate the problems associated with code with complex control flow. Previous
work has found that the average number of operations within a basic block is typically
4 to 5 [TF70] and thus, to increase resource utilization and performance, code transfor-
mations have to look beyond basic block boundaries to exploit parallelism. We found
that these parallelizing transformations are equally essential for the high-level synthesis
of behavioral descriptions with nested conditionals and loops.

Thus, we developed a methodology that applies a coordinated set of coarse-grain
and fine-grain parallelizing compiler, compiler, and synthesis transformations so
as to improve the synthesis results of the behavioral codes by exposing and increasing
the parallelism available in the algorithmic description. Our methodology aims to im-
prove the quality of the high-level synthesis results by many-fold and at the same time,
give the designer control over the transformations applied. We employ transformations
and techniques that exploit instruction-level parallelism, such as speculative code mo-
tions, percolation scheduling and Trailblazing, and coarse grain transformations such
as loop transformations. Loop transformations either attempt to exploit inter-iteration
parallelism (loop unrolling and loop pipelining) or inter-loop parallelism (loop fusion,

8 CHAPTER 1. INTRODUCTION

loop interchange). Another class of loop transformations attempts to either reduce the
number of operations executed (loop invariant code motion) or the strength of oper-
ations executed; i.e., replace computationally expensive operations such as multiplies
by additions using strength reduction techniques and induction variable analysis.

Most of these parallelizing transformations coupled with basic compiler transfor-
mations, such as common sub-expression elimination, copy propagation, dead code
elimination, et cetera, are essential to improve the quality of high-level synthesis re-
sults – particularly, when synthesizing from high-level languages such as behavioral
VHDL, C and C++ (and variants) due to freedom in programming style afforded by
these languages.

An important aspect of our approach to high-level synthesis is the application of
speculative code motions that move operations across conditionals and loops based on
the time criticality of an operation and in the process expose the parallelism available in
the algorithm. These transformations are guided by heuristics that optimize the circuit
quality in terms of latency, cycle time, circuit size, and interconnect costs.

However, straightforward application of compiler transformations does not work
for high-level synthesis. This is because the increases in control, interconnect (multi-
plexing) and area costs are unacceptably large – particularly for designs with complex
nested control flow – and are often accompanied by a corresponding increase in the
critical path lengths in the synthesized circuits. Indeed, we have shown that expos-
ing maximum parallelism does not necessarily yield the best results, and parallelizing
transformations must be applied judiciously – sometimes even moving operations a
non-parallelizing way (e.g., reverse and conditional speculation) in order to gain im-
provement in overall synthesis results. Also, the cost functions and optimization crite-
ria for compilers are different from those of high-level synthesis. Whereas, compilers
often pursue maximum parallelization, we found that in high-level synthesis, paral-
lelizing transformations have to be tempered by their effects on the control and area (in
terms of interconnect) costs. Indeed, the very nature of transformations that are useful
for high-level synthesis is different from those that are useful for compilers. Trans-
formations such as predication and loop unrolling that are very useful for compilers
are not as effective and at times not even useful for high-level synthesis. Conversely,
transformations that we proposed for high-level synthesis such as dynamic common-
subexpression elimination and conditional branch balancing are not particularly useful
in compilers.

1.5 Our Parallelizing High-Level Synthesis Methodol-
ogy

We present a high-level synthesis methodology that incorporates parallelizing com-
piler and compiler transformations into the traditional high-level synthesis framework,
both during a “pre-synthesis” phase and the scheduling phase. An overview of this
methodology is shown in Figure 1.3. This methodology takes an input of the design
description in a high-level language such as C and captures it using an intermediate

1.5. OUR PARALLELIZING HIGH-LEVEL SYNTHESIS METHODOLOGY 9

representation that maintains the code structure and other code information such as
loop index variables, et cetera.

We first apply a set of source level transformations to the input design description in
a pre-synthesis phase. These transformations, such as common sub-expression elimi-
nation (CSE), copy propagation, dead code elimination and loop-invariant code motion
[ASU86] aim to reduce the number of operations executed and remove redundant and
unnecessary operations. Also, we use coarse-level loop transformation techniques such
as loop unrolling to restructure the code. This increases the scope for applying paral-
lelizing optimizations in the scheduling phase that follows.

The scheduling phase employs an innovative set of speculative, beyond-basic-block
code motions that reduce the impact of syntactic variance or programming style on
the quality of synthesis results. These code motions enable movement of operations
through, beyond, and into conditionals with the objective of maximizing performance
by extracting the inherent parallelism in designs and increasing resource utilization.
Since these speculative code motions often re-order, speculate and duplicate opera-
tions, they create new opportunities to apply additional transformations “dynamically”
during scheduling such as dynamic common sub-expression elimination. Dynamic
branch balancing is another transformation we apply during scheduling to enable code
motions, particularly those involving code duplication. These compiler transforma-
tions are integrated with the standard high-level synthesis techniques such as resource
sharing, scheduling on multi-cycle operations and operation chaining. Also, since

10 CHAPTER 1. INTRODUCTION

our methodology targets mixed control-data flow designs, often operations have to be
chained across conditional boundaries. After scheduling the design once, we employ a
loop pipelining technique called loop shifting that incrementally exposes and exploits
parallelism across loop-iterations.

The pre-synthesis and scheduling transformations result in significantly shorter
schedule lengths and higher resource utilization. However, these techniques also lead
to an increase in the complexity of the steering logic, i.e., the multiplexers and as-
sociate control logic, in the design. Note that, we also refer to this steering logic as
interconnect.

We minimize the complexity of the interconnect by means of a resource binding
methodology that first does operation binding and then variable binding. Operations
are bound to functional units such that operations with the same inputs or outputs are
bound to the same functional units. Similarly, variables are bound to registers such that
variables that are inputs or outputs to the same functional units are mapped to the same
registers [GDWL92].

A control synthesis and optimization pass then generates a finite state machine
(FSM) controller for the scheduled and bound design. This controller executes the op-
erations as per the timing specified by the schedule and generates control signals to
guide the data through the interconnect as specified by the resource binding. To com-
plete the path from behavioral specification down to the design net-list, our methodol-
ogy employs a back-end code generator that can interface with standard logic synthesis
tools. This enables the evaluation of the effects of several coarse and fine-grain opti-
mizations on logic synthesis results.

1.6 Contributions of this Work

Given the maturity of high-level synthesis techniques and equally well-researched com-
piler techniques, it is natural for the reader to be skeptical about the novelty of the con-
tributions in this work. The primary contribution of this work is the careful analysis,
experimentation and integration of diverse high-level synthesis, compiler and paral-
lelizing compiler techniques for hardware synthesis. We have introduced novel spec-
ulative code motions, dynamic transformations, and a technique to chain operations
across conditional boundaries. Also, we have identified a set of useful transformations
from the myriad transformations that have been proposed over the years in high-level
synthesis. We have devised a novel synthesis methodology that applies source-level
compiler transformations in pre-synthesis phase, before scheduling the design. We
apply the speculative code motions during scheduling and these are aided by a set of
dynamic transformations that increase the scope of the code motions and exploit new
opportunities for eliminating operations that the code motions create.

We implemented our parallelizing high-level synthesis methodology in a C-to-
VHDL high-level synthesis framework called Spark. Spark has a toolbox of trans-
formations and a set of algorithms that employ these transformations. Such a toolbox
approach enables the designer to employ heuristics to drive selection and control of
individual transformations under realistic cost models for high-level synthesis. The
Spark synthesis framework is a complete high-level synthesis system that provides a

1.7. BOOK ORGANIZATION 11

path from an unrestricted input behavioral description down to register-transfer level
(RTL) code. This RTL code can then be synthesized using commercial logic synthesis
tools.

Spark enables experimentation with large “real-life” designs and more importantly
it enables an analysis of the impact of the transformations on control and area costs of
the gate level circuit. We give the designer the ability to control the transformations
applied on the design description using scripts. Graphical outputs aid in visualizing the
intermediate results. Results for experiments performed on complex industrial appli-
cations from the multimedia and image processing domain validate the utility of our
approach. Furthermore, we present a case study for a design from the microproces-
sor domain, namely, the instruction length decoder from the Intel Pentium class of
processors. This case study demonstrates how a designer can develop scripts to em-
ploy the code transformations in the Spark toolbox to synthesize designs from different
domains.

1.7 Book Organization

The organization of this book is shown in Figure 1.4. We begin by presenting a sur-
vey of previous work in Chapter 2. Chapter 3 presents the models and representations
used in this book. We present a 3-layered intermediate representation that captures
the design description with a combination of control flow, data flow and hierarchical
control graphs. We then present models for the additional input information required
for scheduling such as the resource library, the clock information, data types et cetera.
Based on these definitions, we formulate the resource-constrained scheduling problem
in high-level synthesis. We then introduce the notion of control flow in design de-
scriptions and present a model of speculative code motions that can be used to move
operations past the control flow. Finally, we formulate the minimum resource schedul-
ing problem in the presence of control flow.

In Chapter 4, we present our parallelizing high-level synthesis (PHLS) method-
ology and the design flow through a high-level synthesis framework in which this
methodology is implemented. We also present some of the passes required in the trans-
formations toolbox of a PHLS framework.

Chapter 5 presents the pre-synthesis optimizations in our PHLS framework. These
include common sub-expression elimination (CSE), loop-invariant code motion, loop
unrolling and loop index variable elimination.

In Chapter 6, we present the compiler and synthesis transformations employed dur-
ing scheduling. We present the speculative code motions, dynamic CSE, chaining
of operations across conditional boundaries, and loop shifting. We also demonstrate
through examples how these transformations can be employed to improve scheduling
results.

In Chapter 7, we present algorithms that integrate the various compiler and syn-
thesis transformations into a high-level synthesis list scheduler. We first describe the
software architecture of the scheduler and then present each algorithm implemented
in this architecture. This includes the main list scheduling algorithm, the algorithm to
gather operations to schedule, the algorithm to traverse the design graph and the algo-

12 CHAPTER 1. INTRODUCTION

rithm to move operations in the design graph. We also present algorithms for dynamic
CSE, dynamic branch balancing and operation chaining.

Our approach to resource binding and control synthesis is described in Chapter
8. We first describe the interconnection minimizing resource binding technique that
we have developed. We then describe our finite state machine based control synthesis
methodology. We then describe how synthesizable VHDL code can be generated after
synthesis.

In Chapter 9, we present the implementation and usage of the Spark high-level
synthesis framework. We describe how synthesis scripts can be used to control the ap-
plication of transformations and heuristics in Spark by comparing the quality of results
when individual transformations and heuristics are employed.

In Chapter 10, we compare the quality of results for a set of design examples de-
rived from the multimedia and image processing domains. We first list the characteris-
tics of the designs used in the experiments and follow this up with detailed scheduling
and logic synthesis results on each optimization described in Chapters 5 and 6.

1.7. BOOK ORGANIZATION 13

In Chapter 11, we present a methodology to synthesize low latency microprocessor
functional blocks using the Spark PHLS framework. We first present the transforma-
tions that are particularly useful to this methodology and then present a case study for
the synthesis of the instruction length decoder from the Intel Pentium processor. We
describe the transformations applied by Spark to synthesize this functional block.

Chapter 12 wraps-up the book with conclusions of our work and a discussion of
future work.

2
SURVEY OF PREVIOUS WORK

In this chapter, we survey some of the related work done in the high-level synthesis and
compiler communities and discuss how this relates to our work. This survey represents
a small sampling of the work done in these communities over the past three decades.
At the end of the chapter, we give an overview of the reasons that we believe have
hindered the widespread acceptance of high-level synthesis in the design community.

2.1 Early Work in High-Level Synthesis

High-level synthesis techniques have been investigated for two decades now. Over the
years, high-level synthesis techniques have been chronicled in several books [GDWL92,
CW91, KM92, DM94, Kna96, JDKR97].

A lot of the early work focused on scheduling heuristics for data-flow designs.
The simplest scheduling approach is to schedule all the operations as soon as possi-
ble (ASAP) [KT85, TS86, Mar86, Tri87]. The converse approach is to schedule the
operations as late as possible (ALAP). Scheduling heuristics such as urgency schedul-
ing [Gir84] and force-directed scheduling (FDS) [PK89a] schedule operations based
on their urgency and mobility respectively. Urgency of an operation is the minimum
number of control steps from the last step in the schedule that the operation can be
scheduled in before a timing constraint is violated. Mobility of an operation is the
difference between the ASAP and ALAP start times of the operation.

Another category of heuristics uses a list scheduling approach whereby opera-
tions are scheduled after they are ordered based on control and data dependencies
[HT83, MRSC86, PG86]. There are several other types of scheduling approaches
that either iteratively reschedule the design [PK91] or first schedule operations along
the critical path through the behavioral description [PPM86]. In the MAHA system
[PPM86], operations on the critical path are scheduled first and then the critical path
is divided into several pipeline stages. Finally, the operations on the off-critical paths
are scheduled based on a notion of freedom. This notion of freedom of an operation is
similar to the mobility of an operation as defined above.

16 CHAPTER 2. SURVEY OF PREVIOUS WORK

Resource allocation and binding techniques ranging from clique partitioning [TS86]
to knowledge-based systems [KT85] have been explored in the past. The optimization
goals for resource binding vary from reducing registers and functional units to reduc-
ing wire delays and interconnect costs [GDWL92, CW91, DM94]. Tseng et al. [TS86]
use clique partitioning heuristics to find a clique cover for a module allocation graph.
Paulin et al. [PK89b] perform exhaustive weight-directed clique partitioning of a reg-
ister compatibility graph to find the solution with the lowest combined register and
interconnect costs. Stok et al. [SP91] use a network flow formulation for minimum
module allocation while minimizing interconnect. Mujumdar et al. [MJS96] consider
operations and registers in each time-step one at a time and use a network flow formu-
lation to bind them.

Since the sub-tasks of high-level synthesis are highly interrelated, there have been
several works that attempted to perform these tasks simultaneously. Approaches using
ILP formulations frequently fall into this category [HLH91, GE92, LMD94, WMGB95].
Gebotys et al. [GE92] present an integer-programming model for simultaneous schedul-
ing and allocation that minimizes interconnect. A 0/1 integer programming model is
proposed for simultaneous scheduling, allocation and binding in the OSCAR system
[LMD94]. Wilson et al. [WMGB95] presented a generalized ILP approach that gives
an integrated solution to the various high-level synthesis sub-tasks. The authors in
[SZ90] and [KAH97] use simulated annealing to search the design space while per-
forming simultaneous scheduling, allocation and binding.

Pipelining has been the primary technique to improve performance for data-flow
design [PK89a, PG86, PP88, Gir87, CLS93]. The Sehwa system [PP88] automatically
pipelines designs into a fixed number of stages to achieve the maximum performance.
In the HAL system [PK89a], designs are pipelined with the help of user-specified
pipeline boundaries, so that the resources are distributed uniformly across concurrent
control steps. In the Maha system [PPM86], the critical path is repeatedly divided into
pipeline stages till the user-specified timing bound is satisfied.

Several optimization techniques such as algebraic transformations, re-timing and
code motions across multiplexers for improved synthesis results have been proposed
[PR94, WT89, IPDP93]. Walker and Thomas [WT89] proposed a set of transforma-
tions that were implemented within the System Architect’s Workbench In
this system, the input description is captured in a variant of data flow graphs known as
a value trace [McF78]. The system first applied coarse-level transformations such as
function inlining, inverse function inlining and removal of uncalled functions (or dead
code elimination of whole functions). Then the system applied transformations that
moved operations into and out of select operations (or multiplexers). These code mo-
tion transformations are similar to the speculative code motions used in designs with
control flow.

Another commonly used flow graph transformation is tree height reduction (THR)
[HC89]. In this technique, the height of an expression tree or number of operations that
execute in a chain is reduced by employing the commutative and distributive properties
of the operators. Nicolau and Potasman [NP91] proposed an incremental THR tech-
nique that opportunistically applies tree height reduction during scheduling if leads to
better scheduling results.

2.2. HLS FOR BEHAVIORS WITH COMPLEX CONTROL FLOW 17

2.2 High-Level Synthesis for Behaviors with Complex
Control Flow

The high-level synthesis of designs with control flow (conditional branches and loops)
has been studied by several groups over the last decade. Path-based Scheduling [Cam91]
is an exact approach that creates a As-Fast-As-Possible (AFAP) schedule by schedul-
ing each control path independently. However, the order of operations on each control
path is fixed and scheduling is formulated as a clique covering problem on an inter-
val graph; this means that speculative code motions are not supported. An extension
of this technique was presented in [BRT97] that allowed operation reordering within
basic blocks. On the other hand, tree-based scheduling [Hea93a] supports the spec-
ulation code motion and removes all the join nodes from the design, thus leaving the
control-data flow graph looking like a tree. Both these approaches deal with loops
by removing the loop’s feedback path and scheduling just one iteration of the loop.
The PUBSS approach captures scheduling information in the behavioral
finite state machine (BFSM) model. The input description (in behavioral VHDL) is
captured as a network of communicating BFSMs and the schedule is generated using
constraint-solving algorithms.

In the CVLS approach, [WY89, WT92, Wak99] a condition vector is generated for
each operation based on the conditions under which the operation executes. Opera-
tions whose condition vectors are complementary are considered mutually-exclusive
and are free to be scheduled on the same resource. Speculation and operation duplica-
tion across a merge node are supported.

Radivojevic et al. [RB96] present an exact symbolic formulation that schedules
each control path (or trace) independently and then creates an ensemble schedule of
valid, scheduled traces. The traces are validated by using a backtracking procedure that
can be computationally expensive. Haynal [Hay00] uses an automata-based approach
for symbolic scheduling of cyclic behaviors under sequential timing and protocol con-
straints. This is an exact approach, but can grow exponentially in terms of internal
representation size. The “Waveschedule” approach [LRJ98] incorporates speculative
execution into high level synthesis to achieve its objective of minimizing the expected
number of cycles. Kim et al. [KYLL94] transform a control-data flow graph into a data
flow graph by exploring various conditional resource sharing possibilities. The data
flow graph is scheduled and then transformed back into a control-data flow graph.

Santos et al. [dSJ99, dS97, dS98] and Rim et al. [RFJ95] support generalized code
motions during scheduling in synthesis systems, whereby operations can be moved
globally irrespective of their position in the input. Santos creates and evaluates the cost
of a set of solutions for the given design and then picks the solution with the lowest cost.
This approach supports all types of code motions and employs code motion pruning
techniques to reduce the search space and hence, the run time of the approach.

Paulin et al. present a hardware-software co-design methodology that
uses the Amical tool [KDJ94] for synthesizing the control-intensive parts of the de-
sign and the Cathedral-2/3 tool [MRSC86] for DSP-oriented synthesis. The Amical
tool enables the use of large function components in the hardware resource library.

18 CHAPTER 2. SURVEY OF PREVIOUS WORK

The Cathedral-2/3 tool is specifically targeted toward the synthesis of high-throughput
application specific units.

The Olympus system [MKMT90] is a complete set of high-level synthesis, logic-
level synthesis and simulation tools. The high-level synthesis tool, Hercules, accepts an
input description in a variant of C called HardwareC [KM88], that introduces the no-
tion of concurrency and timing into C. Relative scheduling [KM90] is used to schedule
a design with operations that have unbounded delay.

Prior work on pre-synthesis transformations has focused on altering the control
flow or extracting the maximal set of mutually exclusive operations [LG96, PMH02].
Li and Gupta [LG97] restructure the control flow and attempt to extract common sets
of operations within conditionals to improve synthesis results. Kountouris and Wolin-
ski [KW99] perform operation movement and duplication before scheduling and also
attempt to detect and eliminate false control paths in the design. Function inlining,
where a function call is replaced by the contents of the function, was presented in the
context of high-level synthesis by Walker and Thomas [WT89].

2.3 Intermediate Representations in High-Level Syn-
thesis

Traditionally, control-data flow graphs (CDFGs) have been the most popular interme-
diate representation for high-level synthesis [OG86]. However, in our work, in addition
to maintaining control flow graphs and data flow graphs, we also adopted a hierarchi-
cal intermediate representation (IR) that maintains the hierarchical structuring of the
design such as if-then-else blocks and for and while loops. This representation con-
sists of basic blocks encapsulated in Hierarchical Task Graphs (HTGs) [GP92]. HTGs
enable the efficient application of coarse-grain code restructuring transformations, be-
sides supporting operation level transformations [NN93].

Of course, several other representation models have been proposed earlier for high-
level synthesis [GDWL92]: such as Value Trace (VT) [McF78], Yorktown Intermediate
format (YIF) Assignment Decision Diagrams (ADDs) [CGR92], Behav-
ioral Finite State Machines (BFSMs) Sequencing Graphs [KM90], Hier-
archical Conditional Dependency Graphs (HCDGs) [KW00], et cetera . Also, Rim et
al. [RFJ95] and Bergamaschi [Ber99] have proposed new design representation models
that attempt to bridge the gap between high-level and logic-level synthesis and aid in
estimating the effects of one on the other. Chaiyakul et al. [CGR92, CGR93b] pro-
posed using assignment decision diagrams (ADDs) as the intermediate representation
to minimize syntactic variance in the input description caused by complex control flow.

However, we found HTGs to be the most natural choice for our parallelizing trans-
formations. This is because, HTGs retain important code structure information such
as control flow, hierarchy of control and loop constructs, loop characteristics, et cetera.
This information makes it possible to make design optimizations at multiple levels from
pre-synthesis transformations (such as loop unrolling and loop fusion) to very low level
compiler transformations (such as dead code elimination). Our choice of HTGs also
helped in implementation and analysis of parallelizing transformations such as Trail-

2.4. RELATED WORK IN COMPILERS 19

blazing [NN93] and Resource-Directed Loop Pipelining [NN96] that were originally
developed using HTGs as the underlying intermediate representation.

2.4 Related Work in Compiler and Parallelizing Com-
piler Approaches

Compiler transformations such as CSE and copy propagation predate high-level syn-
thesis and are standard in most software compilers [ASU86, Muc97]. These transfor-
mations are applied as passes on the input program code and as cleanup at the end
of scheduling before code generation. Compiler transformations were developed for
improving code efficiency. Their use in digital circuit synthesis has been limited. For
instance, CSE has been used for throughput improvement [IPDP93], for optimizing
multiple constant multiplications [PSC96, and as an algebraic transforma-
tion for operation cost minimization [JCM94, MCJM98].

A converse of CSE, namely, common sub-expression replication has been proposed
to aid scheduling by adding redundant operations [LP91, PR92]. Partial redundancy
elimination (PRE) inserts copies of operations present in only one con-
ditional branch into the other conditional branch, so as to eliminate common sub-
expressions in subsequent operations. The authors in [JCM94, GMCG00] propose
doing CSE at the source-level to reduce the effects of the factorization of expressions
and control flow on the results of CSE.

In the context of parallelizing compilers, Mutation Scheduling [NN94] also per-
forms local optimizations such as CSE during scheduling in an opportunistic, context-
sensitive manner. A range of parallelizing code transformation techniques has also
been previously developed for high-level language software compilers (especially par-
allelizing compilers) [Kuc78, Pol88, GPN90, KA01, Wol96, Fis81, EN89,
AN88a, NN93].

Although the basic compiler transformations (e.g. dead code elimination, copy
propagation) can be used in synthesis as well, other transformations need to be re-
instrumented for synthesis by incorporating ideas of mutual exclusivity of operations,
resource sharing and hardware cost models. Cost models of operations and resources
in compilers and synthesis tools are particularly very different. For example, in compil-
ers there is generally a uniform push towards executing operations as soon as possible
by speculative code motions. Indeed, the optimality claims in percolation and trace
scheduling are based entirely upon maximum movement of operations out of condi-
tional branches. In the context of high-level synthesis, such notions of optimality have
little relevance. In circuit synthesis, code transformations that lead to increased re-
source utilization, also lead to higher hardware costs in terms of steering logic and
associated control circuits. Some of these costs can be mitigated by interconnect mini-
mizing resource binding techniques

The use of code motions as a transformation technique has been explored at length
in the context of parallelizing compilers [Fis81, Nic85a, Hea93b, GS90, NN93, Wal91,
LW92]. Trace scheduling [Fis81] uses profiling information to aggregate sequences
of basic blocks (or control paths) that execute frequently into traces. These traces in

20 CHAPTER 2. SURVEY OF PREVIOUS WORK

the design are scheduled one at a time starting with the most time critical one. Hence,
code motions are allowed only within traces and not across traces; in effect, code mo-
tions that duplicate or eliminate operations across multiple traces are not supported.
Compensation code must be added in a bookkeeping pass applied after scheduling.

Percolation scheduling [AN88a, Nic85a, Nic85b] applies a set of atomic semantic-
preserving transformations to move or “percolate” operations in the design and create
a resource constrained schedule. Given an infinite number of resources, percolation
scheduling has been shown to produce optimal schedules. Percolation scheduling suf-
fers from two main limitations: (a) operations are moved linearly by visiting each node
on the control path being traversed, and (b) there is a lot of unnecessary duplication of
operations into multiple control paths.

Trailblazing [NN93] overcomes the limitations of percolation scheduling by mov-
ing operations across large pieces of code with the help of a hierarchically structured
intermediate representation. The intermediate representation, called Hierarchical Task
Graphs (HTGs) [GP92], captures the code structure along with the control flow be-
tween basic blocks.

2.5 Use of Loop Transformations in Compilers and High-
Level Synthesis

Loop transformations that unroll and pipeline loops have long been recognized in the
software community as key to exploiting much larger amounts of parallelism in pro-
gram codes than is possible by looking at just a single iteration of the loop body
([RG81, AN88b, Lam88, NN96, ANN95, JA90] to name a few). Modulo schedul-
ing and its variants [RG81, Lam88] create a schedule for one iteration of the loop
body that can be repeated at a regular initiation interval without violating any con-
straints. The resource-constrained software pipelining [ANN95] and perfect pipelining
[AN88b] techniques iteratively unroll and schedule the loop body until a repeating pat-
tern of operations emerges. Loop shifting was originally proposed as a loop pipelining
technique by Ebcioglu [Ebc87] and used later as a part of the resource-directed loop
pipelining (RDLP) technique [ANN95, NN96]. RDLP first unrolls the loop several
times and then attempts loop shifting and compaction.

Early work on loop pipelining in high-level synthesis focused on the innermost
loops of DSP applications with no conditional constructs. These works include loop
winding [Gir87], rotation scheduling [CLS93], percolation based synthesis (uses per-
fect pipelining) [PLNG90], and loop folding (in Cathedral-II) [GVM89].

Holtmann and Ernst [HE95] apply loop pipelining to designs with conditional
branches by scheduling operations on the most probable path through the loop body
and deferring operations on other paths. Yu et al. [YSPJ97] extend rotation scheduling
for control-data flow graphs (CDFGs) by creating a branch anticipation controller to
store and propagate branch control signals across loop iterations. Lakshminarayana et
al. [LRJ98] speculatively execute operations from future loop iterations. Radivojevic
and Brewer [RB95] extend the loop folding technique for CDFGs.

2.6. WHAT IS HINDERING ADOPTION OF HIGH-LEVEL SYNTHESIS TOOLS 21

We found that for designs with a large amount of conditionals embedded inside
loops, loop unrolling can lead to worse circuit delays and area due to a large control and
multiplexer overhead. Instead, we proposed using an incremental loop transformation
technique called loop shifting that incrementally exploits parallelism when the number
of resources is not enough to justify loop unrolling or initiating another iteration of the
loop body (see Chapter 6).

2.6 What is Hindering Adoption of High-Level Synthe-
sis Tools

Despite this rich body of research work and several commercial efforts, high-level
synthesis still enjoys limited adoption among designers. The two chief reasons for this
are:

The quality of synthesis results is poor in behavioral descriptions with complex
and nested conditionals and loops.

Designers are often given minimal controllability over the transformations that
affect these results.

Recent work in academia has looked at speculative code motions for improving
synthesis results in designs with complex control flow. However, most of these works
present code transformations in isolation and on small, synthetic designs. There is no
clear analysis and understanding of how the range of coarse-grain and fine-grain code
transformations interact. In particular, there is no clear understanding of the affect of
language-level coarse-grain transformations on the quality of synthesis results.

Furthermore, previous works compare the effectiveness of their transformations
and scheduling algorithms primarily in terms of schedule lengths. They give little
insight into the control and area costs of the transformations. Thus, it is not clear if
a transformation has a positive impact beyond scheduling. Industry experience shows
that, often critical paths in control-intensive designs pass through the control unit and
steering logic. To this end, Rim et al. [RFJ95] use an analytical model to estimate
the cost of additional interconnect and control caused by code duplication during code
motions. Bergamaschi [Ber99] proposes the behavioral network graph to bridge the
gap between high-level and logic-level synthesis and aid in estimating the effects of
one on the other.

Several approaches use intermediate representations such as control-data flow graphs
for design entry. The lack of robust language front-ends restricts these tools to the
synthesis of small, synthetic designs. For the few approaches that do use high-level
languages as input, synthesizability is guaranteed on a small, constrained sub-set of the
input language. As a result, language level optimizations are few and their effects on
final circuit area and speed are not well understood.

All these factors continues to limit the acceptance of high-level synthesis tools
among designers. High-level synthesis tools do not produce competitive results as com-
pared to manual implementations. We address these factors and demonstrate through

22 CHAPTER 2. SURVEY OF PREVIOUS WORK

our design examples that a parallelizing high-level synthesis approach can produce de-
signs that are competitive with manual design. This can make high-level synthesis part
of the microelectronic design flow, thus, bringing about the much needed productivity
gain required to meet competitive market forces.

2.7 Summary

In this chapter, we presented a survey of related previous work. We first examined
early work in high-level synthesis (HLS) followed by work on synthesizing designs
with control flow in Section 2.2. In Section 2.3, we briefly discussed intermediate
representations that have been used in the past for HLS. We then examined related work
in the compiler community with particular focus on parallelizing compiler techniques.
In Section 2.5, discussed loop transformations that have been proposed for compilers
and HLS. Finally, in Section 2.6, we presented the chief reasons that have limited
the adoption of high-level synthesis tools among designers. The contributions of this
chapter are a detailed survey of techniques that have been proposed both in the high-
level synthesis and the compiler communities. This survey forms the basis of exploring
techniques that are relevant to the synthesis of designs with complex control flow.

3
MODELS AND REPRESENTATIONS

3.1 Modeling the Problem

This chapter describes the models we use to represent the various pieces of informa-
tion required and generated during the application of the code transformations and in
particular during the scheduling task of high-level synthesis. We first present the in-
termediate representation used to represent designs in our work and how we model
the hardware resources and timing information. We then present the traditional for-
mulation of the minimum-latency resource-constrained scheduling problem. Next, we
introduce the notion of control flow and re-formulate the scheduling problem in the
presence of control flow. We also model speculative and hierarchical code motions and
show how these integrate into the scheduling problem.

Scheduling uses and generates several pieces of information. The most important
among these are:

Intermediate Representation (IR): required to capture the design description.

Hardware Description: The specification and representation of functional units
and resources such as registers, buses et cetera allocated to schedule the design,

Timing Information: Clock period, execution times of the various functional
units, and information generated by the scheduling task such as start times of
the operations.

Resource Mapping: The mapping of each operation in the design to a resource
that it will execute on. Resource binding determines the mapping of the operation
to a particular instance of the resource type that the operation has been scheduled
on.

3.2 Design Description Modeling

We have chosen the high-level programming language “C” as the input language for our
synthesis methodology. There are several reasons for our choice; the most important of

24 CHAPTER 3. MODELS AND REPRESENTATIONS

these is that system architects often verify the functionality of a proposed architecture
by modeling it in the “C” programming language. Furthermore, nearly all the system
level design approaches that have been proposed in recent years use a high level pro-
gramming language that is a variant of “C” or “C++” [GL97, SyC, VSB99].
Designer’s prefer high level languages such as “C” over behavioral hardware descrip-
tion languages (HDLs) such as behavioral VHDL since they give the designer more
freedom for describing a behavior and also, enable specifying a behavior that is free of
hardware and software implementation details. This is an important prerequisite of sys-
tem level specifications since the tasks in the specification have not yet been partitioned
into hardware and software components.

The input “C” description to our methodology is a sequential list of statements.
Statements may be operation expressions, conditional constructs (if-then-else, switch-
case) and loop constructs (for, while, do-while loops). Besides the operations supported
by “C”, we also support Boolean conditional checks. These Boolean checks are pro-
duced by comparison or relational tests such as <, ==, et cetera. We decompose
complex expressions into three-address expressions (of type a=b+c) [ASU86]. Each
three-address expression is then called an operation and represented by an abstract
syntax tree.

We capture the control and data flow in the input description using a control flow
graph (CFG) and a data flow graph (DFG) respectively. Additionally, we also capture
the program structure in the input description using a hierarchical intermediate repre-
sentation called a hierarchical task graph (HTG). The nodes of these three graphs form
a 3-layered graph such that there is a relation between the nodes of each successive
layer. Layered graphs are defined as follows:

Definition 3.1. A k-layered graph is a connected graph in which the vertices are parti-
tioned into k sets and edges run between the vertices of successive layers,

and

In our case, the top-level layer consists of the nodes from the HTG, next layer has
nodes from the CFG and lowest level layer has nodes from the DFG. We first define
these three types of graphs and then will return to the layered graph representation in
Section 3.2.6.

3.2.1 Modeling Data Dependencies

There are four types of data dependencies that can exist between operations and
Muc97]:

(i)

(ii)

(iii)

(iv)

flow or read-after-write dependency: reads the result written by

anti or write-after-read dependency: writes to a variable after it is read by

output or write-after-write dependency: writes to the same variable that is
written by

input or read-after-read dependency: reads a variable after it is read by

3.2. DESIGN DESCRIPTION MODELING 25

Of these, input dependencies do not affect scheduling of the design.
To formulate the scheduling problem, we use only flow data dependencies (in prac-

tice, we maintain all the data dependencies; see next section). A flow data dependency
determines when an operation can start execution – if has a flow dependency with

then can start execution only after has finished execution. We can define
a data flow graph that captures flow dependencies as follows:

Definition 3.2. The data flow graph is a directed acyclic graph
where the vertex set is the set of operations in the
design and the edge set represents the flow
data dependencies. A directed edge exists in if data produced
by operation is read by operation

An example of a data flow graph is given in Figure 3.1(b) for the sample “C”
description in Figure 3.1 (a). Operations in the data flow graph (DFG) are denoted
by circular nodes with the operator sign within. The operation numbers in the DFG
correspond to the line numbers in the “C” code in Figure 3.1 (a). The expression in
each operation node is stored as an abstract syntax tree (AST) [ASU86].

3.2.2 Better Design Visualization by Maintaining Variable Names

Maintaining only flow data dependencies means that the information about the variable
names from the original description is discarded. This impairs the ability to correlate
the input description with the intermediate representation and the final output code gen-
erated after synthesis. This, in turn, hinders the visualization of the results of applying
transformations to the design vis-a-vis the original input description.

To understand this, consider the “C” description of an example in Figure 3.2(a) and
its corresponding data flow graph (DFG) in Figure 3.2(b). One possible schedule is

26 CHAPTER 3. MODELS AND REPRESENTATIONS

shown in Figure 3.2(c), where operations 1 and 3 and operations 2 and 4 are scheduled
concurrently. The output code corresponding to this scheduled design, when only flow
data dependencies are maintained, is given in Figure 3.2(d). In this output code, we
have to create new variables that store the result of each operation in the scheduled
design (Figure 3.2(c)). Clearly, it is difficult to correlate the operation statements in
this output code with the operation statements in the input code.

If we maintain the non-flow data dependencies, we can generate the output code
given in Figure 3.2(e). In this code, the variables that each operation writes to are
maintained as per the original code. By inspecting this code, we see that concurrent
execution of operations 1 and 3 requires renaming the result variable of operation 3 to

A copy operation, operation 5, from the new variable to the variable from
the original code is inserted in the code as shown in Figure 3.2(e). Thus, operation 4
can be executed concurrently with operations 2 and 5 using the new variable after
employing dynamic variable renaming (see Chapter 4).

We, therefore, employ a data dependency analysis pass to capture the full set of data
dependencies given in the input description and employ techniques such as dynamic
variable renaming to aid in reducing the restrictions imposed by these dependencies.

3.2.3 Modeling Control Flow

The presence of conditional and loop constructs lead to the notion of control flow
through a design. During program execution, when a condition operation is encoun-
tered, the control flow branches into two control flows, based on whether the condition
evaluates to true or false. At the end of the conditional or loop construct, the two
control flows converge or merge back into a single thread of control flow.

Conditional constructs, hence, add two types of control nodes to the design graph;
a fork node and a join node. Fork nodes signify the point at which a condition causes

3.2. DESIGN DESCRIPTION MODELING 27

the control flow to branch into multiple control paths. Conversely, join nodes are the
merging points of multiple control flow paths. The presence of control flow introduces
the notion of basic blocks. A basic block is a sequence of statements from the input
description with no conditionals or loops between them.

In a general program description in C, the presence of jumps can lead to an arbitrary
control flow between basic blocks. However, in our synthesis methodology, we ensure
synthesizability only for code that leads to reducible graphs [ASU86]. This means
that jumps are allowed in the code as long as the control flow graph is a reducible
graph. In our control flow model, each basic block can have two input control paths
corresponding to a join node and two output control paths corresponding to a fork
node. A segment of code with more than two paths originating from a fork node can
be converted into this model by recursively partitioning the multiple fork nodes into
two output fork nodes. For example, a switch-case statement can be converted into
multiple if-then-else statements. Join nodes can similarly be converted into two input
join nodes. A loop with multiple exit points can be converted into a single exit loop by
inserting an empty basic block that acts as the exit point for all the loop exits [GP92].

The output control paths of a basic block have a condition of “true” or “false”
associated with them; consequently, these control paths are known as the true path and
the false path. Basic blocks that do not have a conditional check in them (no control
flow fork), have only a default output true path. Basic blocks that are the last basic
block in the design do not have any output control paths. Similarly, the first basic block
in the design (defined below) corresponding to the top-level entry point into the design
does not have input control paths.

We define a control flow graph that captures the control flow information between
basic blocks as follows:

28 CHAPTER 3. MODELS AND REPRESENTATIONS

Definition 3.3. A control flow graph is a directed graph where
the vertex set is the set of basic blocks in the
design and the edge set corresponds to the
control flow between the basic blocks. Also, there exists an unique initial basic block

from which all paths in the flow graph originate; can be obtained by
Each edge has a labeling that signifies if

the edge is a true path or a false path. A directed edge exists in
if basic block is a predecessor of basic block Basic block is denoted as a
successor of

We also define some additional functions that are called by the algorithms presented
later in Chapter 7 as follows:

Definition 3.4. The set of successors of a basic block can be obtained by the func-
tion and the predecessors by Of the successor basic
blocks of the basic block on the “true” path is obtained by i.e.,

for such that Similarly,
the basic block on the “false” path is obtained by the function Also,
the function returns true if multiple (two) control flow edges merge at ba-
sic block Similarly, the function returns true if multiple (two) control
flow edges branch at basic block

The earlier example “C” description from Figure 3.1(a) is reproduced in Figure
3.3(a). Each sequence of operations in the source code with no control flow between
them is aggregated into a basic block (shown by shaded boxes in Figure 3.3(a)). The
control flow between these basic blocks is shown in the corresponding control flow
graph in Figure 3.3(b). The basic blocks are labeled from to A triangle denotes
a Boolean conditional check or a fork in control flow with a true path and a false path.
All other control edges are true by default and their labeling is omitted.

3.2.4 Mapping between Data Flow and Control Flow Graphs

Definition 3.5. Given a data flow graph and a control flow graph
as per Definitions 3.2 and 3.3, there exists a many-to-one map-

ping of the operations to the basic blocks The basic block that
an operation belongs to can be obtained by such
that

The combined control and data flow graphs for the running example is shown in
Figure 3.4(d) along with the original description and the control and data flow graphs.
Although these control and data flow graphs capture all the operation level information
in a design description, information about the code structure from the input description
is lost. In the next section, we describe a hierarchical intermediate representation that
extends control flow graphs to retain this structural information.

3.2. DESIGN DESCRIPTION MODELING 29

3.2.5 HTGs: A Model for Designs with Complex Control Flow

Traditionally, control-data flow graphs (CDFGs) have been the most popular interme-
diate representation for high-level synthesis. CDFGs consist of operation and control
nodes with edges for both data flow and control flow. CDFGs work very well for the
traditional high-level synthesis tasks of scheduling and binding. However, we found
the abstraction level offered by CDFGs is too thin for the range of coarse-grain and
fine-grain parallelizing compiler transformations that we proposed.

In order to enable the range of optimizations explored by our work, we use an inter-
mediate representation that maintains the hierarchical structuring of the design such as

30 CHAPTER 3. MODELS AND REPRESENTATIONS

if-then-else blocks and for- and while-loops. This intermediate representation consists
of basic blocks encapsulated in Hierarchical Task Graphs (HTGs) [GP92, NN93].

Definition 3.6. A hierarchical task graph (HTG) is a directed acyclic graph HTG =
(HV, HE) with unique Start and Stop nodes belonging to HV such that there exists
a path from the Start node to every node in HV and a path from every node in HV to
the Stop node. Edges, HE, in a HTG represent control flow between HTG nodes. Each
node can be one of three types corresponding
to single nodes, compound nodes and loop nodes:

1) Single nodes represent nodes that have no sub-nodes and are used to encap-
sulate basic blocks.

2) Compound nodes are hierarchical in nature, i.e., they contain other HTG
nodes. They are used to represent structures like if-then-else blocks, switch-case
blocks or a series of HTGs.

3) Loop nodes are used to represent the various types of loops (for, while-do, do-
while). Loop nodes consist of a loop head and a loop tail that are single nodes
and a loop body that is a compound node.

The Start and Stop nodes of a HTG can be obtained by Start(HTG) and Stop(HTG).
Also, the Start and Stop nodes for all compound and loop HTG nodes are always sin-

3.2. DESIGN DESCRIPTION MODELING 31

gle nodes. Note that the Start and Stop nodes of a single node are the node itself. The
type of a node can be obtained by

Since HTGs maintain a hierarchy of nodes, they are able to retain coarse, high level
information about program structure in addition to operation level and basic block level
information. This aids in coarse-grain code restructuring (such as that done by loop
transformations) and also, in operation movement by reducing the amount of compen-
sation code required. Furthermore, non-incremental moves of operations across large
blocks of code are possible without visiting each intermediate node [NN93].

The HTG representation of the earlier example (reproduced in Figure 3.5(a)) is
given in Figure 3.5(b). In this figure, we show the HTG nodes, to with
the control flow between them. The HTG node is a If-HTG (compound) node,
whereas all other nodes are single nodes. In Figure 3.5(c), we show how the control and
data flow graphs can be overlaid onto the HTG graph. Each basic block is encapsulated
in a single node. Also, during the construction of HTGs, we add empty basic blocks
as “Join” basic blocks at points where multiple control flow path merge into a basic
block.

In Figure 3.5(c), basic block corresponds to a join basic block. The control
flow merge is denoted as an inverted triangle. Join basic blocks serve as the Stop nodes
of compound HTG nodes and enable an easier and more structured approach to the
hierarchical composition of nodes. Empty basic blocks are also added during HTG
construction to ensure that every HTG node has a unique Start node and a unique Stop
node (both of which are single nodes with a basic block in them). Hence, unstructured
designs with jumps within loops are converted into structured designs using these extra
basic blocks. These issues, along with detailed notes on HTG construction are covered
in detail in [GP92].

In the HTG representation in Figure 3.5(b), each basic block from the original
control flow graph is encapsulated by a single node. Control flow edges between the
HTG nodes are shown by dashed arrows. The if-then-else control construct from the
source code is encapsulated in a if-HTG node. As shown in the figure, an if-then-else
HTG node consists of a single node for the conditional check, a compound node for the
true/then branch, a compound node for the false/else branch and a single node with an
empty basic block for the join node. Note that, the basic blocks that comprise the true
and false branches in this figure are shown to be encapsulated only in a single node for
clarity. In practice, the single node is then encapsulated in the compound HTG node
that forms the true or false branch. The Start node for an If-HTG is the single node
with the conditional check and the Stop node is the join node. We also show the data
flow graph super-imposed on the HTG representation in Figure 3.5(c); in practice, data
flow graphs are maintained separate to HTGs.

Figure 3.6(a) illustrates the HTG for the synthetic benchmark “waka” [WT92]
along with the data flow dependencies. In this figure, the dashed arrows indicate con-
trol flow between HTG nodes and the solid lines indicate data flow between operations.
This design contains an If-HTG node, whose false/else branch contains another If-HTG
node. to denote basic blocks. Again, each basic block is encapsulated in a sin-
gle HTG node.

32 CHAPTER 3. MODELS AND REPRESENTATIONS

A For-loop HTG, as shown in Figure 3.6(b), consists of 3 sub-nodes: (a) Loop head
and Start node: consists of a single node with an optional initialization basic block; (b)
Loop iteration body: a compound HTG node contains a single node for the conditional
check basic block and a compound HTG node for the main body of the loop and an
optional single node for the loop index increment basic block; and (c) Loop tail/exit and
Stop node: a single node with an empty basic block. There is a backward control flow
edge from the end of the loop body to the conditional check single node. Maintaining
the loop hierarchy allows us to treat the back edges as implicit self-loops on composite
nodes [GP92]. Therefore, at any hierarchy level, the HTG is a directed acyclic graph.

HTGs are constructed from the input description by first creating a compound HTG
node for the design level HTG. Each sequential piece of code in the input description
forms a sub-node of this HTG. The Start and Stop nodes of the design level HTG
correspond to the Start node of the first sub-node HTG and Stop node of the last sub-
node in the design respectively. Hence, for the waka design shown in Figure 3.6(a), the

3.2. DESIGN DESCRIPTION MODELING 33

design level HTG node has three sub-nodes. The first sub-node is a single node with
basic block the second sub-node is the If-HTG node, and the third sub-node
is the single node with basic block The Start and Stop nodes for this design are
the single nodes that encapsulate basic blocks and

The hierarchical structuring in HTGs is useful in implementing global code motion
techniques such as Trailblazing [NN93]. For example, when the Stop node of a HTG
node is encountered while moving an operation, Trailblazing can move the operation
directly to the Start node of the HTG node without visiting each node in the HTG –
provided the operation does not have any data dependencies with the operations in the
HTG node [NN93, GDGN03d].

For clarity, we make several simplifications in the figures used for the examples in
the rest of this book. We omit the single HTG node that encapsulates basic blocks.
Control flow edges in HTG representations are shown to originate from basic blocks
and terminate at basic blocks. Control edges emanating from a fork node are shown
to originate from the triangle in the figures that denotes the control flow fork. These
simplifications aid the understanding of the flow of control between the basic blocks in
the designs.

Using the definitions of HTGs and the control flow graph, we can now define a
design HTG as:
Definition 3.7. A design HTG is a directed acyclic graph
with unique Start and Stop nodes belonging to Each hierarchical or compound
node in corresponds to a control construct in the design. There is a one-to-one
mapping of the single nodes in the design HTG and the basic blocks in the
control flow graph defined in Definition 3.3 given by:

such that New join basic blocks
may be inserted into the control flow graph to aid in the construction of HTGs.

Since, the Start and Stop nodes of compound and loop HTG nodes are always
single nodes, the first and last basic blocks of a HTG node can be
obtained by and respectively. For short, in
the rest of this book, we will use and to denote the first and
last basic block in a HTG node

3.2.6 Capturing the Complete Design Description

We capture the input description using a design graph that is defined as follows:

Definition 3.8. A design graph, is a layered graph with three layers of nodes
corresponding to the nodes of the graphs and The edges of

are the mapping between the operations in and the basic blocks
in and the mapping between the single nodes in and the basic
blocks in

The design graph for the running example is shown in Figure 3.7. Note that, HTGs
capture information about the control flow between hierarchical nodes and CFGs cap-
ture information about the control flow between basic blocks. Hence, we maintain both
graphs since HTGs are an efficient way to traverse the hierarchy of the design, whereas
CFGs are efficient for traversing the basic blocks in the design.

34 CHAPTER 3. MODELS AND REPRESENTATIONS

3.3 Modeling Hardware Resources, Timing and Data
Types

In addition to the design description, high-level synthesis tools require information
about the hardware resources allocated to schedule the design and the timing of these
resources. We also require information about the data types in order to generate output
code in a hardware description language (HDL), as explained in the next section.

3.3.1 Modeling the Data Type Information

The programming language “C” supports several data types including integer, float,
character and variants of these such as short, long, double et cetera. Furthermore, each
of these data types can be signed or unsigned. We enable a designer to specify the
range of the various data types as a table in a hardware description file. This table has
three columns: the data type, lower data range and upper data range.

An example of a data type table is shown in Table 3.1. In this table, we have
specified that variables of type “integer” range from -32767 to 32768; this corresponds
to a 16 bit Boolean in hardware. Also, this same table can be used to make entries
for specific variables from the input description. This enables the designer to use his

3.3. MODELING HARDWARE RESOURCES, TIMING AND DATA TYPES 35

or her knowledge of the design to provide constraints on the range of the variables.
For example, in Table 3.1, we have specified that variable “my Variable” in the design
description has a range of only 0 to 15. The synthesis tool can use this information
to generate a 4 bit Boolean in hardware for this variable instead of the 16 bit Boolean
generated for all the other integers.

The data type information is essential for generating synthesizable HDL code, since
logic synthesis tools require the exact range of data types in the HDL code. Hence, the
back-end code generator for a high-level synthesis tool needs this table of data types
for correct VHDL generation.

3.3.2 Modeling the Hardware Resources

We model functional resources or functional units by means of a hardware resource
library. The hardware resource library contains the following information:

Operations that can be mapped to the resource. For example, we can specify that
both adds and subtracts can be mapped to an ALU unit. In a technology library,
there may be several functional units on which an operation can be executed. The
task of choosing a particular functional unit from a library of components for
each operation in the design is known as module selection. Module selection has
been the subject of much research in the past [LT81, MPC90, RCHP91, IM91];
however, for the purpose of the work presented in this book, we assume that the
designer does the resource allocation and module selection a priori.

Number of inputs and outputs of the resource. Currently, the resource model in
our system is limited to a 2-input (or 1-input) and 1-output configuration. The ex-
ception is function calls that we also model as hardware resources. The number
of inputs and outputs of a function call is determined from the function decla-
ration in the input description. Hence, one way to model multi-input, complex
resources in our high-level synthesis framework is to declare them as function
calls.

Cycles and execution time (in nanoseconds) of the resource. This information is
used for determining if the resource may be chained or is a multi-cycle resource.
The information in these two parameters is redundant; only execution time would
suffice.

Number of units of each resource type. This corresponds to the resource alloca-
tion for the design.

36 CHAPTER 3. MODELS AND REPRESENTATIONS

Area cost of the resource. This can be incorporated into cost functions used
by module selection heuristics when choosing between several resources that an
operation can be mapped to.

The hardware resource model presented above can be extended to include informa-
tion about structural pipelining and register, communication, interconnect and bus al-
locations. Memory resources such as registers and read-only and random-access mem-
ories (ROMs and RAMs) can also be explicitly modeled in the same way.

3.3.3 Modeling Clock Cycle Timing

The hardware description file also contains information about the clock period of the
design, denoted by The clock period signifies the time available in each control
step or cycle for operations to execute. The scheduler uses this time and the resource
execution time (defined in the hardware resource library, as explained in the previous
section) to schedule operations into each clock cycle.

Consider the example in Figure 3.8(a). The clock cycle period assigned to this
design is The design has been scheduled with a 2-cycle multiplier and one each of
a single cycle adder, subtracter and comparator. So, lets say is 10 nanoseconds (ns),
then the multiplier executes in and the other resources in The dashed lines
denote the cycle boundaries. Hence, as shown in this figure, the multi-cycle multiply
operation (b) is scheduled to execute over two cycles. Note that, all the time spans
are of equal value even though they appear unequal in Figure 3.8(a).

3.4. FORMULATION OF THE SCHEDULING PROBLEM 37

3.3.4 Modeling Operation Chaining

Operation chaining is an important high-level synthesis technique. Two operations
that are chained together execute back-to-back in the same cycle without any memory
element in between to store the intermediate result. That is, two operations are chained
within a basic block by scheduling them into the same control step (or clock cycle) and
tying the outputs of one operation to the inputs of the other operation.

If we double the clock period in the example in Figure 3.8(a) to then
one possible scheduled design is as shown in Figure 3.8(b). The multiply operation
now takes one cycle of the new clock period to execute (both are). In this
example, operations and and the operations and are chained together; that
is, they execute back-to-back in the same cycle with no memory elements in between.
This is because the total execution time of the chained operations is
In this example and in the rest of our work, we assume that multiplexing and control
overheads are included in the execution times given for each resource in the hardware
resource library. Also, with the chained operations, basic blocks and have only
one control step each versus the example in Figure 3.8(a), where they had two control
steps each.

3.4 Formulation of the Scheduling Problem without Con-
trol Flow

Scheduling of operations during high-level synthesis is constrained by data dependen-
cies and hardware resource allocations, as discussed in the next two sections.

3.4.1 Constraints due to Hardware Resource Allocation

The scheduling task in high-level synthesis is typically area constrained. This con-
straint on area is translated into a constraint on the number of functional units that are
allocated to schedule the design, as given by the following definition:

Definition 3.9. The set of resource types is defined as
of resource types. The number of resources of each resource type

is given by the resource allocation that is a mapping
from the set of resource types to positive integers. denotes

the number of resources allocated for resource type We define the ex-
ecution time (in nanoseconds) of the resource types in

We also define a resource list that
is a list of all resources of all resource types allocated to schedule the design.

Using this definition of resource allocation, we can define a function that maps
operations to resources as follows:

Definition 3.10. We can denote the unique resource type that implements an operation
by the function

38 CHAPTER 3. MODELS AND REPRESENTATIONS

This function assumes that there is only one resource type that can implement the
given operation. If there is more than one resource type that an operation can execute
on, then we also have to solve the module selection problem [LT81] and the function

becomes a one-to-many mapping. For the purposes of this work, we have assumed
a one-to-one mapping of operations to resources.

3.4.2 Constraints due to Data Dependencies

Given a data dependency graph as defined in Definition 3.2, we
can define a set of operation execution delays as These
operation execution delays are equivalent to the execution time of the resource (given
by) that the operation is scheduled on, as explained in the previous section. Let

be the execution start times of the operations. Then,
as per the flow data dependency graph, if an operation reads the result of another
operation then can start execution only after has finished execution. This
can be expressed as:

3.4.3 Resource-Constrained Scheduling

In a resource-constrained scheduling approach, the number of resources of each re-
source type are upper bound by as defined above. Hence, the number of opera-
tions mapped to a resource type in any clock cycle cannot exceed the upper bound of
that resource type. De Micheli [DM94] has defined the minimum-latency resource-
constrained scheduling problem as follows:

Definition 3.11. Given a set of operations Ops with integer delays Dops, a partial
order on the operations due to data dependencies resource types whose
numbers are upper bound by the resource-constraint
scheduling problem is to find an integer labeling of the operations such
that
and for each resource type
and control step The minimum-latency resource-constraint scheduling
problem is an integer labeling such that is minimum.

The above definition essentially says that we have to find the start time of all the
operations, while making sure that each operation starts only after all the operations
it depends on have finished execution Also, the number of operations
mapped to each resource type in any control step has to be less than or equal
to available resources of that type De Micheli goes on to point out that if all the
resources are of a given type (e.g., ALUs), then the problem reduces to the classical
multiprocessor scheduling problem. The minimum-latency multiprocessor scheduling
problem is intractable [GJ79]. The minimum-latency resource constrained scheduling
problem is NP-complete [GDWL92, DM94, NR00].

3.5. MODELING PARALLELIZING CODE MOTIONS 39

3.4.4 Incorporating Operation Chaining in Scheduling Formula-
tion

Operation chaining can be incorporated into the scheduling formulation given above
without any modification, as long as the chained operations obey the following con-
straint:

Definition 3.12. Two operations, and that have a flow data dependency be-
tween them can be chained together if their execution times and are such
that, where is the clock cycle period allocated to sched-
ule the design. Also, operation can start execution only after has finished
execution. This definition assumes the time taken by multiplexing and control is incor-
porated in the execution times of the operations.

3.5 Modeling Parallelizing Code Motions

The presence of control flow means that operations cannot be arbitrarily scheduled in
any basic block. A condition, based on the conditional construct the operation is in, is
associated with each operation. The condition for operations that are not in conditional
constructs is “true”. Operations can be moved along their control path by employing
speculative and non-speculative code motions as explained in the next section.

3.5.1 Modeling Speculative Code Motions

Operations can be moved freely along the control flow path they lie on as long as a fork
or join node is not encountered. Operations may be moved across these control nodes
as per the rules given below.

Moving past a predecessor join node: If an operation is in basic block
where the predecessor basic block of is a join node, i.e., multiple
basic blocks merge at then is moved past by
placing identical duplicates of in all the basic blocks

Moving past a predecessor fork node: If an operation is in basic block
where the predecessor basic block of is a fork node, i.e., multiple
basic blocks branch out at
then is moved past by duplicating into two non-identical operations

and Two common approaches to create these operations are:

A new operation is created with the computation from the original
operation that stores the result in a new variable newResultV ar.
is placed in the basic block with the fork node, i.e. (before the fork).
Another new operation is created that is a copy operation that copies the
new variable newResultV ar to the result variable of the original operation

Operation is placed in basic block in place of

40 CHAPTER 3. MODELS AND REPRESENTATIONS

Alternatively, the original operation is placed in and compensa-
tion code is inserted in the basic blocks that are in the
control paths that branch out of the fork basic block. This compensation
code undoes any effects that executing the original operation in
will have on the system state.

In our approach, we have chosen the former approach.

Moving past a successor fork node: If an operation is in basic block
where the successor basic block of is a fork node, i.e., multiple basic
blocks branch out of then is moved past by
placing identical duplicates of into all the basic blocks

Moving past a successor join node: If an operation is in basic block
where the successor basic block of is a join node, i.e., multiple basic
blocks merge at then in
our approach, cannot be moved past This code motion can, however,
be enabled by finding and merging identical operations in all the basic blocks

in the control paths that merge at the

3.5.2 Modeling Hierarchical Code Motions

In addition to the speculative code motions described above, the hierarchical repre-
sentation employed by our methodology – hierarchical task graphs (HTGs) – enables
operations to be moved hierarchically across large pieces of code. When an opera-
tion encounters a fork (or join) node during code motion, the operation can be directly
moved to the corresponding join (or fork) node if the operation does not have any
data dependencies with the operations in the hierarchical HTG node that the fork-join
nodes belong to. These code motions are enabled by a code motion technique called
Trailblazing [NN93] and are governed by the following rules:

If an operation is in basic block where the predecessor basic block
of is a join node, i.e., multiple basic blocks merge at

then can be moved to the basic block in the Start node of HTG node
provided: (a) is in the Stop node of a HTG node in the design

HTG, (i.e. and (b) there are no data dependencies
between and the operations in

If an operation is in basic block where the successor basic block
of is a fork node, i.e., multiple basic blocks branch out of

then can be moved to the basic block in the Stop node of HTG node
provided: (a) is the Start node of the HTG node in the design

HTG, (i.e. and (b) there are no data dependencies
between and the operations in

The hierarchical code motions described above can be achieved by the basic specu-
lative code transformations described in Section 3.5.1 by duplicating the operations at

3.6. SCHEDULING DESIGNS WITH CONTROL FLOW 41

the fork/join node and then merging the identical copies at the corresponding join/fork
node. However, the hierarchical structuring of HTGs provides an efficient and elegant
way to enable these hierarchical code motions.

3.6 Scheduling Designs with Control Flow

The presence of control flow introduces another dimension to the high-level synthesis
scheduling problem. Besides data dependencies and hardware resource constraints, the
scheduler is also constrained by the control flow semantics of the design description,
as explained in the next two sections.

3.6.1 Notion of Scheduling Steps within Basic Blocks

Scheduling assigns time steps in which operations execute. Frequently, several opera-
tions are scheduled to execute concurrently. Furthermore, operations on mutually ex-
clusive control paths may execute concurrently as long as the number of resources used
in each control path does not exceed the resource allocation. To capture the control or
time steps that belong to different control paths, we introduce the notion of scheduling
steps. We define a scheduling step as an aggregation of operations that execute
concurrently within a basic block. A basic block is, hence, a sequence of scheduling
steps with no control flow between them. A more precise definition of scheduling steps
can be given as follows:

Definition 3.13. There exists a set of scheduling steps
in a design graph such that each step belongs to a basic

block
There is a partial ordering on Steps since within each basic block the scheduling

steps are ordered as per the sequence in which they execute. Hence, there exists an or-
dered set of scheduling steps
within a basic block such that The first scheduling step in

is given by returns
the next step in basic block after The last step in does not have a next
step.

The mapping of steps to basic blocks is given by Hence,
is the basic block that is in. There also exists a many-to-

one mapping of operations to scheduling steps within a basic block given by
such that if the scheduling step of an operation is

then

When the input description is captured by the control and data flow graphs, one
scheduling step is created corresponding to each operation in the design. That is, ini-
tially there is no operations executing concurrently. This is because the input language
to our methodology is “C”, which is a sequential language with no notion of con-
currency between operations. So, initially the mapping is a one-to-one mapping.
After scheduling, operations may be scheduled to execute concurrently and hence,

42 CHAPTER 3. MODELS AND REPRESENTATIONS

becomes a many-to-one mapping. Thus, the scheduling function also leads to a new
mapping of the operations to scheduling steps in basic blocks.

3.6.2 Formulation of Scheduling Problem with Conditional Con-
structs

The basic scheduling problem formulation remains the same as given in Definition
3.11. When there is no control flow in a design, the only constraint to select the oper-
ations that may be scheduled on the scheduling step under consideration is that opera-
tions have to obey their data dependencies. However, the presence of control flow in a
design means that operations can only be scheduled in basic blocks that have a control
path from the basic block the operation is currently in.

The relationship between basic blocks in a control flow graph can be captured using
dominator trees [ASU86]. These trees can be constructed using the following defini-
tion:

Definition 3.14. A node in a control flow graph (CFG) is said to dominate another
node if every path from the Initial node of the flow graph to goes through Note
that, every basic block dominates itself.

Let us understand dominator trees using the example in Figure 3.9(a) and the cor-
responding dominator tree in Figure 3.9(b). In this example, basic block dominates
basic blocks and and is itself dominated by in turn dominates

We can now define the set of operations that is eligible for scheduling into the
scheduling step under consideration as:

3.6. SCHEDULING DESIGNS WITH CONTROL FLOW 43

Definition 3.15. An operation in basic block is eligible for scheduling into a
scheduling step in basic block if either dominates or
dominates The operation is still subject to data dependency constraints.

This definition means that there has to be a control path from to or vice
versa for the operation to be eligible for scheduling in step. However, the constraint
given by this definition is too restrictive. Consider the example in Figure 3.9(a) again.
By Definition 3.15, operation in basic block cannot be scheduled into basic block

since does not dominate (see dominator tree in Figure 3.9(b)). However,
operation can be scheduled into as long as we duplicate it into basic block

as well; this was explained earlier in Section 3.5.1. This introduces the notion of
dominance by a set of basic blocks.

Definition 3.16. A set of nodes in a control flow graph (CFG) is said to dominate
another node if every path from the initial node of the flow graph to goes through
at least one node in

Now, we can update Definition 3.15 as:

Definition 3.17. An operation in basic block is eligible for scheduling into
a scheduling step in basic block if there exists a set of basic blocks

such that either dominates or dominates Operation has
to be duplicated into each basic block in

As per this definition, operations can be duplicated at fork and join nodes and
scheduled in the basic blocks of conditional branches.

Using these definitions of scheduling steps and restrictions on operation scheduling,
we can now define resource-constrained scheduling of designs with control-flow as:

Definition 3.18. We are given:

A data flow graph, with a vertex set of operations
and a directed edge set

that corresponds to a partial order due to data dependencies.

A control flow graph, with a vertex set of basic blocks
and a directed edge set

that corresponds to the control flow between the basic blocks.

A many-to-one mapping of the operations to the basic blocks
The operations have integer delays D and have to be mapped onto

resource types whose numbers are upper bound by

The resource-constrained scheduling problem is a function
that finds a new mapping of the operations to basic blocks,
such that:

if and then either
dominates or dominates or a set of basic blocks

such that either dominates or dominates and operation has
been duplicated in each basic block in

44 CHAPTER 3. MODELS AND REPRESENTATIONS

Start times of the operations, are such that:

Each operation is mapped to a resource type such
that:

and for each resource type
and control steps within each basic block

This can also be stated as for each
scheduling step in each
basic block

The minimum-latency resource-constrained scheduling optimization problem is then
to minimize i.e., to minimize the schedule length of the design. The schedul-
ing function also finds a new many-to-one mapping of operations to scheduling steps
within a basic block given by such that if the new schedul-
ing step of an operation is then

3.6.3 Modeling Resource Utilization

In order to generate a schedule as per the definition given above, a scheduler has to
maintain information about the resource utilization in each scheduling step. A resource
is said to be utilized in a clock cycle on a control path if an operation is scheduled on
the resource in that clock cycle on that control path. This can be defined more formally
as:

Definition 3.19. When an operation is scheduled on aresource in a scheduling
step we denote this by Resource is then said to be
utilized in Conversely, if there is no operation scheduled on resource in

then Resource is then said to be an idle resource in

To understand the information required and generated by the scheduler, consider
the HTG representation of an example shown in Figure 3.10(a). The flow data depen-
dencies among the operations are also shown in this HTG representation. The com-
parison operation for the if-HTG in basic block has been split into the comparison
operation itself that produces result “c” and the check of this Boolean condition (de-
noted by a triangle).

Now consider that an allocation of one adder, one subtracter, one comparator and
one multiplier is available to schedule this design. The multiplier executes in two cy-
cles whereas all other units execute in one cycle. A schedule where all the operations
are scheduled as soon as possible (ASAP) is shown in Figure 3.10(b). In this schedule,
operations and are scheduled concurrently in basic block Also, since opera-
tion is scheduled on the multiplier, its dependent operation can only start execution
two cycles after The resource utilization in each scheduling step in the (non-empty)
basic blocks of this scheduled HTG is shown in Figure 3.10(c). The shaded boxes indi-
cate that an operation is scheduled on the resource and the faded white boxes indicate

3.6. SCHEDULING DESIGNS WITH CONTROL FLOW 45

idle resources. A resource is considered to be idle in a scheduling step if there is no
operation scheduled to execute on that resource in that step.

Hence, the scheduler maintains and generates the following information:

Operations that are scheduled.

Scheduling step in which each operation is scheduled.

Resource type of the resource that the operations are scheduled on.

46 CHAPTER 3. MODELS AND REPRESENTATIONS

Resource utilization of each scheduling step.

Note that, the particular instance of a resource type that an operation is scheduled on is
determined by the resource binding task.

Operations in the mutually exclusive branches of a conditional block such as an
if-HTG node can share the same resources in the same cycle. Hence, the operations in
basic blocks and in Figure 3.10(b) can share the resources in the same cycle.

Within this resource utilization model, operations can be chained to execute to-
gether within a scheduling step by tying the resources that they are scheduled on, to-
gether. Two consecutive scheduling steps may also be chained to execute in the same
cycle, albeit only if they are chained across a conditional boundary. This is explained
in the next section.

3.6.4 Modeling Operation Chaining across Conditional Boundaries

In this book, we introduce a novel technique of chaining operations across conditional
boundaries. This technique chains operations that execute under different conditions
(hence, are in different scheduling steps) to execute back-to-back in the same cycle.
This chaining of operations across conditional boundaries requires the scheduler to
look at the resource utilization of multiple basic blocks during scheduling.

Consider the example in Figure 3.11(a). Also, consider that in this example the
multiplier executes in one cycle and all the other resources execute in half a cycle. We
observe that it is possible to chain operation in basic block with operation in
basic block as shown in Figure 3.11(a). The clock boundaries are demarcated by
dashed lines. In this figure, we placed a little higher than basic block to indicate

3.7. SUMMARY 47

that the scheduling step in basic block is chained across the conditional boundary
with the scheduling step in basic block

Figure 3.11(b) illustrates the resource utilization for this scheduled HTG. To indi-
cate the chaining across conditional boundaries, we have shown a connection between
the scheduling steps in and in Figure 3.11 (b). Similarly, in this example, we
also chain operation with operation since they both execute in half a cycle. Note
that, in Figure 3.11(b), the clock period is the same in all three clock cycles although
it appears different in the figure.

3.7 Summary

In this chapter, we presented the models and representations used in this book. We
first presented the layered graph intermediate representation used to capture the input
description in Section 3.2. In Section 3.3, we discussed the additional information that
is given as input with a design, such as the hardware resource library and the clock cy-
cle period. We then presented the resource-constrained scheduling problem – without
considering control flow – in Section 3.4. In Section 3.5, we introduced the model-
ing of the speculative and hierarchical code motions employed for scheduling control
flow designs. We then extended the model for the scheduling problem to include con-
trol flow in Section 3.6. In this section, we also presented the modeling of resource
utilization across mutually exclusive control paths in a design. The contributions of
this chapter are the layered intermediate representation, the modeling for code motions
across control flow and the formulation of the scheduling problem for designs with
control flow.

Part II

Parallelizing High-Level
Synthesis (PHLS)

4
OUR PARALLELIZING HIGH-LEVEL
SYNTHESIS METHODOLOGY

In this chapter, we present a methodology for parallelizing high-level synthesis (PHLS)
and discuss the design flow through a framework that implements this methodology.
We present an overview of a range of synthesis and compiler transformations and code
refinement passes that form part of this methodology. We propose a modular, tool-box
construction of the PHLS framework to enable research into heuristics that guide the
code transformations. We begin this chapter by presenting the design flow through our
proposed PHLS framework, followed by a detailed look at some of the passes in the
methodology.

4.1 Design Flow through a PHLS Framework

An overview of our proposed PHLS framework is shown in Figure 4.1. The design flow
through this framework is as follows: the framework accepts a behavioral description of
a design in high-level language such as C, C++ (or their variants) et cetera, captures the
description using a multi-layer hierarchical intermediate representation (see Chapter
3), runs a data dependency analysis pass, schedules the design, binds the resources,
performs control synthesis, and finally generates an output in a register-transfer level
(RTL) hardware description language such as VHDL or Verilog. As shown in Figure
4.1, the framework also requires additional input consisting of the hardware resource
library, resource and timing constraints and user directives for the various heuristics
and transformations.

In this framework, we first apply a set of coarse-grain and fine-grain code trans-
formations to the input description during a pre-synthesis phase before performing the
traditional high-level synthesis tasks of scheduling, allocation and binding. The trans-
formations in the pre-synthesis phase include (a) coarse-level code restructuring by
function inlining and loop transformations (loop unrolling, loop fusion et cetera), (b)
transformations that remove unnecessary and redundant operations such as common
sub-expression elimination (CSE), copy propagation, and dead code elimination, (c)

52 CHAPTER 4. PARALLELIZING HIGH-LEVEL SYNTHESIS METHODOLOGY

transformations such as loop-invariant code motion, induction variable analysis (IVA)
and operation strength reduction that reduce the number of operations within loops and
replace expensive operations (multiplications and divisions) with simpler operations
(shifts, additions and subtractions).

The pre-synthesis phase is followed by the scheduling and allocation phase (see
Figure 4.1). We will only discuss the scheduling framework here. There has been a
body of work in resource allocation and module selection that is applicable and com-
plementary to our work (see Chapter 2). The scheduler is organized into two parts:
the heuristics that perform scheduling and a transformations toolbox. The transfor-
mations toolbox contains speculative code motion transformations, code motion tech-
niques (such as Percolation and Trailblazing [NN93, Nic85a]), dynamic renaming of
variables et cetera. The synthesis transformations include chaining operations across
conditional blocks, scheduling on multi-cycle operations, resource sharing et cetera
[DM94].

4.1. DESIGN FLOW THROUGH A PHLS FRAMEWORK 53

Besides the traditional high-level synthesis transformations, the scheduling phase
also employs several compiler transformations applied “dynamically” during schedul-
ing. These dynamic transformations, such as dynamic CSE and dynamic copy propaga-
tion, exploit the new opportunities created by code motions. A dynamic branch balanc-
ing technique also adds scheduling steps in conditional branches dynamically during
scheduling to enable code motions; this is particularly useful for enabling code motions
such as conditional speculation that duplicate operations in conditional branches.

Passes from the toolbox are called by a set of heuristics that guide how the code
refinement takes place. The heuristics and the underlying transformations that they
use are kept completely independent. This allows the heuristics to employ the various
transformations as and when required, thus enabling a modular approach that allows
the easy development of new heuristics. Also, the use of the passes and transformations
can be controlled by the designer using synthesis scripts.

In addition to the transformations applied during scheduling, we apply an incre-
mental loop pipelining technique called loop shifting after scheduling the design once
[GDGN04]. As described later in Chapter 6, loop shifting operates on loops after
scheduling and moves a set of operations from the beginning of the loop body to the
end of the loop body and inserts a copy in the loop header. The SPARK scheduler then
reschedules the loop and applies parallelizing compiler transformations to once again
compact the loop body. We found that loop shifting is extremely useful for extracting
inter-loop iteration parallelism in designs with complex control flow. Whereas tradi-
tional aggressive loop pipelining techniques such as modulo scheduling can result in
large increases in the control and interconnect logic, incremental loop pipelining tech-
niques like loop shifting expose just as much parallelism as can be utilized by code
compaction techniques without adversely affecting circuit area and delay.

The scheduling phase is followed by a resource binding and control synthesis phase.
This phase binds operations to functional units, ties the functional units together (inter-
connect binding), allocates and binds storage (registers), generates the steering logic,
and generates the control circuits to implement the schedule. As we will discuss in
Chapter 8, the focus of our resource binding approach is to minimize the intercon-
nect between functional units and registers. After binding, we generate a finite state
machine controller for the scheduled and bound design.

Finally, a back-end code generation pass generates register-transfer level (RTL)
code in a hardware description language (HDL) such as VHDL or Verilog. This RTL
HDL code belongs to the subset of the HDL that is synthesizable by commercial logic
synthesis tools [DC, Xil]. This enables our synthesis framework to complete the design
flow path from architectural design to final design netlist. Note that, the output RTL
HDL code is structural with all operations bound to resources (i.e., components are
instantiated in the HDL code) and variables bound to registers.

We believe that such a parallelizing high-level synthesis framework should also
have a back-end code generation pass that generates ANSI-C (or C++). This behavioral
output code represents the scheduled and optimized design. The output “C” can be
used in conjunction with the input “C” to perform functional verification and also, to
improve visualization for the designer on the affects of the transformations applied by
the PHLS framework on the design.

54 CHAPTER 4. PARALLELIZING HIGH-LEVEL SYNTHESIS METHODOLOGY

We implemented our parallelizing high-level synthesis methodology in the Spark
PHLS framework. Implementation details about this framework are discussed in Chap-
ter 9.

4.2 Passes and Techniques in the PHLS Framework

We present the various transformations in this PHLS framework over the next four
chapters. In the rest of this chapter, we discuss three techniques that aid the transfor-
mations in the PHLS framework, namely, the data dependency analysis pass, dynamic
variable renaming, and the Trailblazing code motion technique.

4.2.1 Data Dependency Analysis Pass

A data dependency analysis (DDA) pass is required to create the data flow graph from
the design description. This DDA pass traverses the control flow in the design and
determines the dependencies between operations based on this control flow. A list of
live variables is maintained as the control flow in the design is traversed. The live
variable list is duplicated whenever a fork is encountered in the control flow and the
variable list of branches merging at a join are also merged to form a new live variable
list.

Recall from the earlier discussion in Section 3.2.1 (Chapter 3), there are four types
of data dependencies that can exist between two operations [Muc97]: a flow
dependency is said to exist when an operation that writes to a variable is followed by
an operation that reads the same variable, an anti dependency is when one operation
that reads a variable is followed by an operation that writes to the same variable, an
output dependency exists when two operations write to the same variable one after the
other and an input dependency when two operations read from the same variable. Of
these, input dependencies do not affect scheduling.

In our PHLS methodology, we believe it is important to construct data dependency
graphs from the input description that maintain all the types of data dependencies be-
tween the variables in the source code. This is important since it enables the PHLS
framework to maintain the variable names used in the input description. Hence, users
can correlate the variables and operations from the input description to the intermediate
representation used by the synthesis tool (see Chapter 3 for an example). This improves
the ability to visualize the intermediate and final results of the transformations applied
by the PHLS framework.

4.2.2 Eliminating data dependencies by Dynamic Renaming

Non-flow data dependencies, however, place constraints on operation movement. For
example, if an operation that reads variable is followed by an operation
that writes to then it would seem that cannot be executed until has finished
reading variable

However, these constraints can often be resolved by dynamic renaming and com-
bining [CF87, ME92]. Figures 4.2(a) to (c) demonstrate how one operation can be

4.2. PASSES AND TECHNIQUES IN THE PHLS FRAMEWORK 55

moved past another one while dynamically eliminating data dependencies. In Figure
4.2(a), the two operations that write to variables and have a anti-dependency be-
tween them (since the first operation reads and the second one writes to The
operation that writes to variable can, however, be scheduled at an earlier time step by
moving only the right hand side of the operation. The result is written to a new desti-
nation variable and the original operation is replaced by a copy operation of the new
destination variable to the original variable Similarly, in Figure 4.2(b), an output
dependency between two operations that write to the same variable can be resolved
by creating a new destination variable while moving the operation and replacing the
original operation with a copy operation.

Copy operations introduced by dynamic renaming can also be circumvented by a
technique known as combining [ME92]. Combining replaces the copy in the operation
being moved by the variable being copied; this is nothing but copy propagation that is
performed while an operation is being moved. This is demonstrated in Figure 4.2(c),
where the operation is moved past the copy operation The variable

is replaced with the variable on the right hand side of the moving operation.
In this way, dynamic renaming and combining, when performed in conjunction

with code motion techniques such as Trailblazing and Percolation, can lead to consid-
erable easing of the constraints imposed by data dependencies.

4.2.3 The TrailblazingCode Motion Technique

As mentioned earlier, the speculative code motions employed in our PHLS framework
are enabled by the Trailblazing code motion technique [NN93]. Trailblazing is a hierar-
chical code motion technique that builds on earlier work done on Percolation schedul-
ing [Nic85b, Nic85a]. Whereas Percolation suffers from the problems of incremental
operation moves and code explosion [NN93], Trailblazing can efficiently move opera-
tions across large pieces of code.

Trailblazing exploits the information about the hierarchical structure of the design
maintained by hierarchical task graphs (HTGs) [GP92] (see Section 3.2.5). The global

56 CHAPTER 4. PARALLELIZING HIGH-LEVEL SYNTHESIS METHODOLOGY

structural information maintained by HTGs about the input description means that non-
incremental moves can be made without visiting every basic block that is bypassed. At
the lowest level, Trailblazing is able to perform the same fine-grained transformations
as Percolation. However, at a higher level, Trailblazing is able to move operations
across hierarchical blocks of code.

To understand the hierarchical moves performed by Trailblazing, consider the ex-
ample in Figure 4.3. In this example, we want to move the operation
from basic block to basic block While moving this operation, Trailblazing
encounters the join node of an if-HTG node. It determines if the moving operation has
any dependencies with the if-HTG node. Since, in this example, there are no depen-
dencies, then the operation is moved across the if-HTG node to without visiting
each sub-node of the if-HTG, as shown in Figure 4.3(b) (in practice is moved to
the fork or Start node of the if-HTG). To perform the same code motion, Percolation
would have duplicated into both the branches of the if-HTG, then moved it up each
branch, and finally unified the copies back into at the conditional check, hence, in
the process visiting each node in the if-then-else block.

We use the Trailblazing technique in our code motion algorithm albeit with modi-
fications for high-level synthesis. Our modified algorithm, the TrailSynth algorithm,
is presented in Chapter 7. TrailSynth also supports a dynamic branch balancing tech-
nique and high-level synthesis techniques such as operation chaining.

4.3 Summary

In this chapter, we presented a methodology for parallelizing high-level synthesis and
described the design flow through a PHLS framework. We discussed the various passes
and transformations that form part of this methodology. In Section 4.2, we presented

4.3. SUMMARY 57

three passes/techniques that aid the transformations applied in the PHLS framework.
We first discussed a data dependency analysis pass that captures all types of data de-
pendencies to enable better design visualization. In Section 4.2.2, we presented the
dynamic variable renaming technique that is employed by the scheduler to eliminate
non-flow data dependencies between operations. Next, we discussed the Trailblazing
code motion technique that efficiently moves operations across large pieces of code.
The contributions of this chapter are the presentation of our PHLS methodology and
the design flow and transformations through a PHLS framework.

5
PRE-SYNTHESIS COMPILER
OPTIMIZATIONS

In this chapter, we discuss the compiler transformations applied in the pre-synthesis
phase of our parallelizing high-level synthesis methodology. Specifically, we dis-
cuss common sub-expression elimination (CSE), loop-invariant code motion, loop un-
rolling, and loop index variable elimination. The goal of applying these transformations
before scheduling is three-fold: (i) to remove redundant and unnecessary operations,
(ii) to reduce the number of operations that execute in the design (particularly in loops),
and (ii) to increase the scope of the code motions and other transformations applied
during scheduling.

Note that, besides the transformations discussed in this chapter, the PHLS frame-
work also applies several standard compiler passes such as copy and constant propaga-
tion and dead code elimination. These passes are applied both to the input description
and after scheduling to remove any unnecessary or redundant code.

5.1 Common Sub-Expression Elimination

Common sub-expression elimination (CSE) is a well-known transformation that at-
tempts to detect repeating sub-expressions in a piece of code, stores them in a variable
and reuses the variable wherever the sub-expression occurs subsequently [ASU86].
This is demonstrated by the example in Figure 5.1(a). The common sub-expression

in operations 2 and 3 can be replaced with the result of operation 1, resulting in
the code in Figure 5.1(b).

Whether a common sub-expression between two operations can be eliminated de-
pends on the control flow between the locations or basic blocks of the two operations.
One common approach to capture the relationship between basic blocks in a control
flow graph is using dominator trees [ASU86]. A definition for dominator trees has
been given earlier in Definition 3.14. We repeat this definition here:

Definition 5.1. A node in a control flow graph (CFG) is said to dominate another
node if every path from the initial node of the flow graph to goes through The

60 CHAPTER 5. PRE-SYNTHESIS COMPILER OPTIMIZATIONS

dominator set of node is formed by all the nodes that dominate By
definition, every node in a CFG dominates itself, i.e.,

The dominator tree for the example in Figure 5.1 (a) is given in Figure 5.1(c). In
this example, basic block dominates basic blocks and and is itself
dominated by in turn dominates We can now define CSE in terms of
dominator trees as follows:

Definition 5.2. In order to preserve the control-flow semantics of a CFG, the common
sub-expression in an operation can only be replaced with the result of another
operation if resides in a basic block that dominates the basic block in
which resides; i.e.,

So, in the example in Figure 5.1(a), operations 2 and 3 can be eliminated using the
result of operation 1 as per the dominator tree shown in Figure 5.l(c). Conversely,
does not dominate and hence, the common sub-expression in operation 5 cannot be
replaced with the result of operation 4.

5.2. LOOP-INVARIANT CODE MOTION 61

In this way, we use dominator trees while applying CSE to the design description.
Note that, dominator trees have been extensively used previously for data flow analysis
and transformations such as loop-invariant code motion and CSE [ASU86, SGL97].

Although transformations such as CSE were originally proposed as operation level
or fine-grain transformations, recent work has shown that these optimizations are more
effective when applied at the source level with a global view of the code structure
[GMCG00].

5.2 Loop-Invariant Code Motion

Frequently, there exist computations within a loop body that produce the same results
each time the loop is executed. These computations are known as loop-invariant code
and can be moved outside the loop body, without changing the results of the code. In
this way, these computations will execute only once before the loop, instead of for each
iteration of the loop body. Consequently, this leads to better design performance, albeit
only if the loop is executed at least once. Loop-invariant code motion is defined as
follows.

Definition 5.3. An operation is said to be loop-invariant if: (a) its operands are
constant, or (b) all operations that write to the operands of operation are outside
the loop, or (c) all the operations that write to the operands of the operation are
themselves loop invariant [ASU86, Muc97].

We demonstrate loop-invariant code motion with the example in Figure 5.2. In the
following discussion we refer to the operations by the line number shown next to them
in the figure. In this example, operands and of operation are not written to by
any operation within the loop. Hence, is loop-invariant. Similarly, the operand

62 CHAPTER 5. PRE-SYNTHESIS COMPILER OPTIMIZATIONS

of operation is written only by the loop-invariant operation and its other
operand, is not written within the loop. Hence, is also loop-invariant. Thus,
these operations can be moved out of the loop body into basic block as shown in
Figure 5.2(b). Operations and are not loop-invariant since one of their operands
is written to, from within the loop.

When describing behaviors in high-level languages, designers frequently place sev-
eral loop-invariant operations within loops for ease of understanding and readability of
the code. Furthermore, loops themselves are used as a programming convenience and
often do not expose all the available parallelism in the design. Thus, it is imperative to
explore loop transformations such as loop unrolling that significantly alter the structure
of the code and potentially expose parallelism across loop boundaries.

5.3 Loop Unrolling

Loop unrolling is the process of placing a duplicate of one or more iterations of the
loop body at the end of the current loop body. The loop index variable increment (or
decrement) is updated as necessary. Loop unrolling was developed to enable software
compilers to perform optimizations across loop iterations and facilitate global code op-
timizations. However, loop unrolling can lead to code explosion. So loops are unrolled
one iteration at a time, followed by code compaction by parallelizing transformations
until no further improvements can be obtained. Loops are seldom unrolled fully.

On the other hand, in the context of hardware design descriptions, loops are only
a programming convenience and latency constraints generally dictate the amount of
unrolling a loop has to undergo. For instance, if a design is targeted to, say, three clock
cycles, it implies that all the operations within all the iterations of the loop have to be
executed in these three cycles. Hence, when this design is mapped to hardware, it will

5.4. LOOP INDEX VARIABLE ELIMINATION 63

generate a design in which the loop is, in essence, unrolled within these three cycles.
Some hardware architectures such as microprocessor functional blocks are low latency
designs that must often be executed in just one cycle. Loops in these type of single
cycle designs must be unrolled completely (see Chapter 11).

Loop unrolling is demonstrated in Figure 5.3. Figure 5.3(a) shows the HTG of a
synthetic example, which has a loop and some operations within this loop. Operation

uses the loop index variable to read the array and another operand, to gen-
erate the result This result is used by operation to generate the result
When this loop is unrolled once, the resulting HTG is as shown in Figure 5.3(b). This
unrolled loop exposes the inherent parallelism among the operations in the loop body
– the operations and can be executed concurrently, followed by the concurrent
execution of operations and Without loop unrolling, the two iterations of the
loop body would have been executed sequentially.

In the Spark framework, the amount of loop unrolling for each loop is currently
user-directed. The designer can experiment with different unrolls of the loop and de-
termine the trade-offs. In our experiments with loop unrolling, we found that – as is
the case with software – the code explosion caused by loop unrolling can be concern in
hardware design as well. This is because the larger number of operations in the design
after loop unrolling have to be mapped to the same number of resources as before. This
leads to more complex interconnect (multiplexers) and associated control logic. The
size of the FSM controller also increases since more states are required to execute the
loop body (even though the number of iterations are fewer) [GDGN03c].

5.4 Loop Index Variable Elimination

We use the term loop index variable elimination to refer to copy propagation of the loop
index variable after a loop is unrolled completely. We demonstrate this transformation
using the previous example from Figure 5.3(a). Consider that the loop bound is equal
to 9 and that we unroll this loop completely; the resulting design is shown in Figure
5.4(a)1. The value of the loop index variable is now known statically in all the loop
iterations. Hence, the initial value assigned to the loop index variable, can now
be propagated as a constant throughout all the iterations. The resultant design is shown
in Figure 5.4(b).

In this way, the loop index variable is completely eliminated from the loop body.
This removes the data dependencies that exist between the operations in the loop body
and loop index variable, thus allowing the application of further code parallelizing
transformations. In this example, the code motion transformations applied during the
later scheduling phase can concurrently calculate all the values of the array followed
by the concurrent calculation of all array values (assuming that the resources to do
so are available), as shown in Figure 5.4(c).

This transformation is not new; indeed it is simply a combination of loop un-
rolling, constant propagation, and dead code elimination. However, we have shown
in that this combination is an essential transformation for the synthesis of

1Note that, although not shown in this figure, the loop construct along with the loop check and the
expression that updates the loop index variable can be removed after loop unrolling.

64 CHAPTER 5. PRE-SYNTHESIS COMPILER OPTIMIZATIONS

microprocessor functional blocks. In contrast, for designs from the multimedia and
image processing domains, we found that even partial loop unrolling can lead to an
explosion in the number of operations in the design. This in turn puts too much pres-
sure on the control and steering logic in synthesized circuit (see experimental results
presented in Chapter 9).

5.5. SUMMARY 65

5.5 Summary

In this chapter, we presented several pre-synthesis transformations that are important to
our parallelizing high-level synthesis methodology. We presented common subexpres-
sion elimination, loop invariant code motion, loop unrolling, and loop index variable
elimination in Sections 5.1, 5.2, 5.3, and 5.4 respectively. We demonstrated these
transformations using examples. The contribution of this chapter is a presentation of
the pre-synthesis transformations that increase the scope for applying code transforma-
tions during the scheduling phase of high-level synthesis.

6
COMPILER AND SYNTHESIS
TRANSFORMATIONS EMPLOYED
DURING SCHEDULING

The ordering and placement of operations in high-level behavioral descriptions is usu-
ally governed by programming ease and varies from designer to designer. Very often
this ordering is not conducive to or optimal for downstream high-level synthesis and
optimization tasks [CGR93a]. This is particularly true of control-intensive designs due
to the presence of nested conditionals and loops. An important aspect of our approach
to high-level synthesis is the application of parallelizing transformations that move op-
erations across conditionals and loops based on the time criticality of an operation and
in the process expose the parallelism available in the algorithm.

To this end, we developed a set of speculative code motions to alleviate the effects
of programming styles and constructs on the quality of synthesis results. These code
motions enable the movement of operations through, across, and into conditionals with
the objective of maximizing performance. However, this means that the heuristics
that guide these code motions have to carefully manage the resource utilization across
several basic blocks. This is especially true for hardware-expensive code motions such
as conditional speculation that duplicate operations into the branches of a conditional
block (see Section 6.3.4). Conditional speculation should only be employed when the
resource utilization techniques are able to find idle or unused resources in multiple
basic blocks in the conditional branches.

In this chapter, we discuss several of the parallelizing compiler transformations em-
ployed by our parallelizing high-level synthesis methodology during scheduling. We
start off with a description of a set of speculative code motions and demonstrate how
these code motions can enable new opportunities for applying compiler transforma-
tions such as CSE and copy propagation, dynamically, during scheduling. We then dis-
cuss a classical high-level synthesis transformation, namely, operation chaining, albeit
modified to handle the control-intensive designs that our approach targets. Finally, we
discuss an incremental loop pipelining technique called loop shifting. The algorithms
that guide these transformations are presented in the next chapter.

68 CHAPTER 6. TRANSFORMATIONS EMPLOYED DURING SCHEDULING

Note that, in our work we distinguish between speculative code motions and tech-
niques such as Trailblazing, Percolation scheduling, and Trace scheduling that employ
these code motions during scheduling. Whereas we have already described the Trail-
blazing code motion technique in Chapter 4, in this chapter we focus on the speculative
code motion transformations themselves.

6.1 Limits of Parallelism within Basic Blocks

Several classes of applications and particularly, multimedia and image processing ap-
plications are characterized by the presence of a considerable number of unpredictable
branches. These control constructs limit the amount of instruction-level parallelism
that can be exploited from the input description [Wal91, LW92]. Since the average
number of operations within a basic block is typically 4 to 5 [TF70], there are usually
not enough operations available for execution to utilize all the resources in each cycle
(or control step). Hence, there are a number of “idle” resources in a basic block.

A resource is said to be idle in a control step if there is no operation scheduled to
execute on that resource in that control step (the converse of an idle resource is a busy
resource). These idle resources can be utilized by moving and scheduling operations
from subsequent or preceding basic blocks. The candidate operations for these “code
motions” are operations whose data dependencies are satisfied but the conditions under
which they execute may not have been evaluated. There are two primary techniques
that have been developed for compilers to circumvent such control dependencies: spec-
ulative execution and predicated execution.

6.2 Speculation and Predicated Execution in Compil-
ers

Speculative execution, popularly known as speculation, refers to the execution of an
operation before the branch condition that controls it has been evaluated. If the con-
dition under which the operation was to execute evaluates to false, then compensation
code may have to be executed. This is often referred to as control speculation. In
contrast, in data speculation, an operation is executed before an operation that it is
dependent on has been executed; thus, the speculated operation may potentially use
incorrect operand values. For example, a load may be executed before a preceding
store that may write to the same location. This type of speculation typically targets
long latency operations (or instructions) whose execution can be overlapped with the
execution of other instructions. In general, speculation is useful either when there are
insufficient operations in a basic block to keep the functional units busy or to execute
operations on the critical path on a priority basis.

In this work we focus on control speculation as employed by a compiler. There are
also hardware-assisted approaches that speculatively execute operations dynamically at
runtime using architectural support such as branch predictors in superscalar processors
[SLH90, MBVS97].

6.3. ROLE OF SPECULATIVE CODE MOTIONS IN HIGH-LEVEL SYNTHESIS 69

Predicated execution [AKPW83, HD86, RYYT89, DT93, Man00] is a technique
that eliminates branch instructions and converts control dependencies into data depen-
dencies. Predicated execution refers to the conditional execution of an instruction based
on a Boolean operand called a guarding predicate. The instruction either executes nor-
mally or is nullified based on whether the predicate evaluates to true or false. This
technique requires architectural support in the form of an additional Boolean operand
guarding each operation, comparator units to compute the predicates and the ability to
nullify the result of an instruction if its predicate evaluates to false.

Predicated execution is often employed to eliminate several branches completely by
merging them into one large block of straight line code with predicates. This is known
as if-conversion [AKPW83, DHB89, PS91,] and is employed by compilers
to boost the opportunities for instruction-level parallelism. Whereas speculation is gen-
erally employed to execute operations on control paths that have a higher probability
of being taken, predicated execution of entire conditional blocks is usually done when
the branch probabilities are unknown or are equal for both branches.

6.3 Role of Speculative Code Motions in High-Level Syn-
thesis

Speculation is generally more useful than predicated execution for high-level synthesis.
This is because an important notion in hardware synthesis is that of mutual exclusivity
of operations. Two operations are said to be mutually exclusive if they execute under
complementary conditions. High-level synthesis schedulers can take advantage of this
property and schedule two mutually exclusive operations in the same cycle on the same
resource. The operation that actually executes is based on the evaluation of the condi-
tions. This is known as resource sharing. We demonstrate this with an example in the
next section.

Thus, in the context of high-level synthesis, if we if-convert the branches of a con-
ditional block and execute them with predicates, we are discarding the mutual exclu-
sivity information about the operations. In effect, this leads to a longer schedule length,
since both the branches of the conditional execute. Furthermore, predicated execution
is employed by compilers for processors that have an abundance of resources (func-
tional units) to execute the predicated instructions. On the other hand, the architectures
targeted by high-level synthesis are usually tightly resource-constrained. Thus, there
are generally only a few resources idle in each cycle. The high-level synthesis sched-
uler thus attempts to find and speculatively execute an operation from a successor (or
predecessor) basic block.

Over the next four sections, we explore a set of speculative code motions that are
useful for high-level synthesis. These code motion transformations re-order, speculate
and sometimes even duplicate operations in the design to achieve maximum paral-
lelism and shorter schedule lengths. This code restructuring also reduces the impact of
programming style on the quality of synthesis results. Hence, after applying the code
motion transformations, the operation placement in the code is optimized for improved
synthesis results. In contrast, designers place operations based on programming ease.

70 CHAPTER 6. TRANSFORMATIONS EMPLOYED DURING SCHEDULING

We begin by studying speculation. Although the trade-offs of speculation have been
explored at length in the compiler domain, its utility and impact on the overall high-
level synthesis results – particularly, the hardware overheads – is not well-understood.
We explore these issues in the next section.

6.3.1 Speculation in High-Level Synthesis

The notion of speculation that we adopt for high-level synthesis is similar to that of a
compiler’s. In high-level synthesis, when an operation is executed speculatively, we
store its result in a new memory location. In place of the original operation, we leave a
copy operation so that if the condition that the operation was to execute under evaluates
to true, then the stored result is committed to the variable from the original operation;
else the stored result is discarded. Hence, no compensation code has to be added or
executed if the condition evaluates to false.

We demonstrate speculation by an example in Figure 6.1. In Figure 6.1 (a), variables
and are calculated based on the result of the calculation of the conditional Since

the operations that produce and are executed on different branches of a conditional
block, these two operations are mutually exclusive. Hence, they can be scheduled on
the same hardware resource with appropriate multiplexing of the inputs and outputs as
shown in the circuit in Figure 6.1(a).

Now, consider that an additional adder is available. Then the operations within
the conditional branches can be executed speculatively and concurrently with the cal-
culation of the conditional as shown in Figure 6.1(b). The corresponding hardware
circuit is also shown in this figure. Based on the evaluation of the conditional, one of

6.3. ROLE OF SPECULATIVE CODE MOTIONS IN HIGH-LEVEL SYNTHESIS 71

the results will be discarded and the other committed. As shown by the correspond-
ing hardware circuits in Figures 6.1 (a) and (b) that as a result of this speculation, the
longest path gets shortened from being a sequential chain of a comparison followed by
an addition to being a parallel computation of the comparison and the additions.

This example also demonstrates the additional costs of speculation. Speculation
requires more functional units and potentially more storage for the intermediate results.
So, uncontrolled aggressive speculation can lead to worse results due to the extra
multiplexing and control overheads. On the other hand, idle resources can be better
utilized by executing operations speculatively on them.

Besides moving operations out of conditionals and executing them speculatively,
we find that in high-level synthesis it is sometimes useful to move operations into
conditionals as explained next.

6.3.2 Reverse Speculation

Reverse speculation refers to downward motion and duplication of an operation at a
conditional fork node into the subsequent conditional branches. This code motion is
useful in instances where an operation inside the conditional branch is on the longest
(critical) path through the design, whereas an operation before the conditional is not.
The operation before the conditional branch can then be duplicated down or reverse
speculated into both the conditional branches, so that the resource made idle by this
move can be better utilized by the operation on the longest path. Reverse speculation
has been variously referred to as lazy code motion or execution and duplicating down
in past literature [RFJ95, Muc97].

Reverse speculation is demonstrated by an example in Figure 6.2(a). In this de-
sign, the two longest data dependency paths are: and (solid

72 CHAPTER 6. TRANSFORMATIONS EMPLOYED DURING SCHEDULING

lines in this HTG representation denote data dependencies). Of these, the first one
is the longest path through the design. However, the operation place-

ment in this design is such that operation that is on the shorter dependency path is
placed outside the conditional whereas operation that is on the longer dependency
path is placed in the true branch of the conditional. Hence, operation can be reverse
speculated or moved into the conditional branches as shown in Figure 6.2(b). This
means that the adder in basic block is now idle. We can thus speculatively execute
operation in basic block as shown in Figure 6.2(c).

The dashed lines in Figure 6.2(a), (b) and (c) demarcate the state assignments (50
through S4) for the three designs. Clearly, the final design in Figure 6.2(c) after reverse
speculation of operation and speculation of operation requires one state or cycle less
than the original design in Figure 6.2(a).

Note that, as shown in Figure 6.2(b), the reverse speculation algorithm detects that
the result of operation is used only in the false branch of the conditional and hence,
moves it only into that branch. In this case, reverse speculation behaves in the exact
opposite manner of speculation. However, in the general case, reverse speculation
duplicates the operation into both the true and false conditional branches.

There is an important distinction between the reverse speculation code motion that
duplicates an operation into the branches of a conditional versus just scheduling the
operation in parallel to the branches of the conditional block. Duplicating operations at
a fork node means that these operations can be scheduled in different control steps or
states within the basic blocks in the conditional branches, independent of each other.
Hence, the scheduler has greater flexibility in scheduling the duplicated operations in
mutually exclusive basic blocks.

This distinction can be understood by the example in Figure 6.3(a). In this example,
when operation is reverse speculated, it is duplicated as operations and in
basic blocks and respectively, as shown in Figure 6.3(b); operations and
are scheduled in different states in the their respective basic blocks. This is unlike a
downward code motion in which operation is not duplicated, but instead is scheduled

6.3. ROLE OF SPECULATIVE CODE MOTIONS IN HIGH-LEVEL SYNTHESIS 73

to execute in, say, state S2, as shown in Figure 6.3(c). This type of downward code
motion past a fork node without duplication is not allowed in our PHLS methodology.

6.3.3 Early Condition Execution

Early condition execution is a novel transformation that restructures the original code,
so as to evaluate conditional checks as soon as possible. This in effect means that the
conditional check is “moved up” in the design, and hence, all unscheduled operations
before the conditional are reverse speculated into the conditional. This transformation
is motivated by the fact that evaluating a conditional check early resolves the con-
trol dependency for operations within conditional branches. These operations are thus
available for scheduling sooner.

Early condition execution is demonstrated by the example in Figure 6.4(a). In this
example, comparison operation computes a conditional that is checked in basic block

(the Boolean conditional check is denoted by a triangle). We can schedule this
comparison operation concurrently with operation in state S0 in basic block as
shown in Figure 6.4(b). Now the conditional check in basic block can be executed
“early” and the unscheduled operations before this check can be reverse speculated.
For this example, operation is reverse speculated into basic block (and not into

since its result is used only in). These code motions lead to an overall shorter
schedule length, as shown by the state assignments in Figures 6.4 (a) and (b).

74 CHAPTER 6. TRANSFORMATIONS EMPLOYED DURING SCHEDULING

6.3.4 Conditional Speculation

We have shown how speculation can be used to schedule operations on idle resources
in basic blocks before conditionals. However, design descriptions often have instances
where the control steps in the basic blocks of a conditional have idle resources. Spec-
ulation also leaves resources idle in the conditional branches. We utilize these idle re-
sources by duplicating operations that lie in basic blocks after the conditional branches
into both the branches of the conditional. We call this code motion conditional spec-
ulation. This is similar to the duplication-up code motion used in compilers and the
node duplication transformation discussed by Wakabayashi et al. [WT92].

Let us understand conditional speculation with the example in Figure 6.5(a). In this
example, operations and both write to the variable in the conditional branches

and Consider that we allocate one adder, one subtracter and one comparator
to schedule this design. Then, operations and can be speculatively executed in
basic block as shown in Figure 6.5(b). The results of the speculated operations
are written into two new destination variables: and These variables are commit-
ted (or written back) to the variable only within the conditional branches, after the
conditional check has been evaluated.

Figure 6.5 (b) demonstrates that the speculation of these operations leaves all the
resources (adder, subtracter and comparator) idle in basic blocks and This
allows us to conditionally speculate operation – that lies in the basic block after the
conditional branches – and schedule its duplicates and on the idle subtracter in
both the branches of the conditional, as illustrated in Figure 6.5(c). Also, operation
is dependent on either the result of operation or operation depending on how the
condition evaluates (i.e., operation is dependent on the variable). Hence, the dupli-
cated operations, and directly read the results of operations and respectively.
We also show the state assignments (S0, S1 and S2) for the three designs in Figures
6.5 (a), (b) and (c) by dashed lines. Clearly, for this example, this set of code motions
leads to a design that requires one less state (or cycle) to execute.

6.4. ENABLING NEW CODE MOTIONS BY DYNAMIC BRANCH BALANCING 75

Note that, condition speculation does not necessarily need speculation to be per-
formed first to activate it as shown in the example above. As stated earlier, there are
often idle resources within conditional branches that go unused unless operations are
conditionally speculated from after the conditional branches.

6.4 Enabling New Code Motions by Dynamic Branch
Balancing

Often design descriptions are written so that one conditional branch in an if-then-else
HTG node has fewer scheduling steps than the other. We call this an If-HTG with un-
balanced conditional branches. Consider the input description shown in Figure 6.6(a).
One possible scheduled design (with a resource allocation of an adder and a subtracter)
is as shown in Figure 6.6(b): operation and execute concurrently in state S0 in
basic block The state assignments (S0, S1, and so on) are demarcated by dashed
lines in these figures. We can see from Figure 6.6(b) that after scheduling this exam-
ple, the false branch of the If-HTG node has fewer scheduling steps than the true
branch Thus, “IfNode” in Figure 6.6(b) is an If-HTG with unbalanced condi-
tional branches.

In such unbalanced If-HTGs, it is possible to insert a new scheduling step in the
branch with fewer scheduling steps, without increasing the length of the longest path
through the If-HTG. We call this dynamic branch balancing (dynamic because it is
employed as and when needed during scheduling). Hence, in the scheduled design in
Figure 6.6(b), we can insert a new scheduling step in basic block since has
more scheduling steps than This new step and the presence of a scheduling step
in with an idle subtracter enables the conditional speculation of operation as
operations and in basic blocks and respectively. The resulting design
is shown in Figure 6.6(c).

The design in Figure 6.6(c) requires one state less to execute than the scheduled
design in Figure 6.6(b). Thus, branch balancing can introduce new opportunities for
applying conditional speculation and thus, further compaction of the design schedule.

76 CHAPTER 6. TRANSFORMATIONS EMPLOYED DURING SCHEDULING

Also, since the longest path through the If-HTG is unaltered, this technique does not
lead to an increase in the longest path length through the design. Note that, if profiling
information is available, we can instead insert scheduling steps into basic blocks in
branches that are less likely to be taken.

Our PHLS methodology employs branch balancing during two stages of the sched-
uler [GDGN03b]:

1.

2.

Branch Balancing during Design Traversal (BBDDT): In this technique, schedul-
ing steps are inserted to balance the branches of unbalanced conditional blocks
as they are encountered while traversing the design during scheduling. This is
detailed later in Section 7.6.1 in Chapter 7.

Branch Balancing during Code Motions (BBDCM): This technique inserts new
scheduling steps in unbalanced conditional blocks if this enables a code motion
(specifically conditional speculation) required to move the candidate operation
during scheduling (see Section 7.4.2). Note that, this means that during the can-
didate validater task, we validate operations that can be moved if branch balanc-
ing is employed (see Section 7.4.1).

6.5 Dynamic Common Sub-Expression Elimination

The code restructuring and operation duplication done by the speculative code motions
can create new opportunities for applying transformations such as common subexpres-
sion elimination (CSE) and copy propagation. We demonstrate this with the help of the
example in Figure 6.7(a). In this example, classical CSE cannot eliminate the common
sub-expression in operation 4 with operation 2, since operation 4’s basic block is
not dominated by operation 2’s basic block (see Section 5.1 for a definition of dom-
inator trees). Consider now that the scheduling heuristic decides to schedule operation
2 in and execute it speculatively as operation 5, as shown in Figure 6.7(b). Now,
basic block containing this speculated operation 5, dominates operation 4’s basic
block Hence, operation 4 in Figure 6.7(b) can be eliminated and replaced by the
result of operation 5, as shown in Figure 6.7(c).

Since CSE is traditionally applied as a pass, usually before scheduling, it can miss
these new opportunities created during scheduling. This motivated us to develop a
technique by which CSE can be applied dynamically while the design is being sched-
uled. Dynamic CSE is a technique that operates after an operation has been moved
and scheduled on a new basic block It examines the list of remaining
ready-to-be-scheduled operations and determines which of these have a common sub-
expression with the currently scheduled operation. This common sub-expression can
now be eliminated if the new basic block containing the newly scheduled operation
dominates the basic block of the operation with the common sub-expression. We use
the term “dynamic” to indicate that CSE is applied during scheduling versus the phase
ordered application of CSE before scheduling.

We can also see from the example in Figure 6.7 that applying CSE as a pass after
scheduling is ineffective compared to dynamic CSE. This is because the resource freed

6.5. DYNAMIC COMMON SUB-EXPRESSION ELIMINATION 77

up by eliminating operation 4, can potentially be used by the scheduler to schedule
another operation in basic block Performing CSE after scheduling is too late to
effect any decisions by the scheduler.

6.5.1 Conditional Speculation and Dynamic CSE

We find that conditional speculation frequently enables new opportunities to apply dy-
namic CSE. Consider the example in Figure 6.8(a). In this example, operation 2 in
has a common sub-expression, with operation 1 in But since is not
dominated by this common sub-expression cannot be eliminated by classical CSE.
Consider that the scheduling heuristic decides to conditionally speculate operation 1
into the branches of the if-then-else conditional block, In the resulting de-
sign, shown in Figure 6.8(b), the operation is duplicated up as operations 3 and 4 in
basic blocks and respectively. Thus after conditional speculation, operations
with the common sub-expression exist in all control paths leading up to

78 CHAPTER 6. TRANSFORMATIONS EMPLOYED DURING SCHEDULING

Hence, we can now apply dynamic CSE and operation 2 can use the result of opera-
tions 3 and 4, as shown in Figure 6.8(b).

This leads to the notion of dominance by sets or groups of basic blocks [SGL96],
as defined below (also given earlier in Definition 3.16):

Definition 6.1. A set of basic blocks in a control flow graph is said to
dominate another basic block if every path from the initial node of the control
flow graph to goes through at least one of the basic blocks in the set

6.5. DYNAMIC COMMON SUB-EXPRESSION ELIMINATION 79

By this definition, in Figure 6.8(b), basic blocks and together dominate
basic block hence enabling dynamic CSE of operation 2. In this manner, we use
this property of domination by sets of basic blocks while performing dynamic CSE
along with code motions such as reverse and conditional speculation that duplicate
operations in the design graph.

Another case in which dynamic CSE is applied in conjunction with conditional
speculation, arises when an operation is duplicated into a basic block in which another
operation with the same expression already exists. In this case, the operation being du-
plicated is instead replaced with a copy operation using the result of the already present
operation with the same expression. This is illustrated by the example in Figure 6.9(a).
Consider that, in this example operation 2 is conditionally speculated as operations 3
and 4 in basic blocks and Then, the sub-expression that is common be-
tween operations 1 and the duplicated operation 3 can be eliminated in operation 3, as
shown in Figure 6.9(b).

6.5.2 Dynamic Copy Propagation

The concept of dynamic CSE can also be applied to copy propagation. After applying
code motions such as speculation and transformations such as CSE, there are usually
several copy operations left behind. Copy operations are operations that read the result
of one variable and write them to another variable. For example in Figure 6.9(b), the
copy operation 2 in basic block copies variable to variable

Copy propagation is a compiler pass that replaces the variable written by a copy
operation by the variable read by in all the operations that have flow
dependencies with So, in the example in Figure 6.9(b), copy propagation would
propagate the copy operation forward by replacing with the variable in the
operations that have flow dependencies with this copy operation.

Again, traditionally copy propagation is done as a compiler pass before and after
scheduling to eliminate unnecessary copies and use of variables. However, we found
that it is essential to propagate the copies created by speculative code motions and dy-
namic CSE during scheduling itself, since this enables opportunities to apply dynamic
CSE on subsequent operations that read these variable copies. After copy propagation,
these dependent operations can directly use the result of the operation that creates the
variable in the first place, rather than the result of the copy operation. A dead code
elimination pass after scheduling can then remove unused copies.

In this way, the scheduling heuristic can dynamically employ compiler transforma-
tions such as speculative code motions, dynamic CSE and dynamic copy propagation
to increase resource utilization and improve the quality of synthesis results. These
transformations form an integral part of the scheduling strategy employed by the Spark
framework. Besides these compiler transformations, high-level synthesis schedulers
also employ several high-level synthesis transformations. Of these, one commonly
used transformation is operation chaining. This is discussed in the next section.

80 CHAPTER 6. TRANSFORMATIONS EMPLOYED DURING SCHEDULING

6.6 Chaining Operations Across Conditional Boundaries

Operation chaining is an important technique that is supported by most high-level syn-
thesis tools [GDWL92]. Chaining of operations means that the result of one operation
is used immediately by another operation without storing it in an intermediary latch or
register. In the corresponding hardware, the functional units, on to which the opera-
tions are mapped, have to be connected to each other without any memory elements in
between.

We have extended this classical high-level synthesis technique to chain operations
across conditional boundaries. Chaining operations across conditional boundaries (or
basic blocks) is required for the type of designs targeted by our approach, i.e., designs
that contain a mix of control and data operations. In hardware, this type of operation
chaining leads to functional units that are connected via often complex, steering logic
such as multiplexers.

Let us understand this with the aid of an example. Consider the sample fragment
of “C” code in Figure 6.10(a) and the corresponding HTG representation in Figure
6.10(b). Consider also that this design description has to be scheduled in one cycle. To
achieve this, all the operations in the description have to be chained together, across

6.6. CHAINING OPERATIONS ACROSS CONDITIONAL BOUNDARIES 81

the if-then-else conditional block. One possible hardware implementation for this is
shown in Figure 6.10(c). The operations to correspond to the line numbers
in Figure 6.10(a). In the circuit in Figure 6.10(c), the inputs to the operation are
obtained by multiplexing the outputs of the and based on the condition
cond. Variables and are the temporary results of operations and that
are immediately multiplexed to produce the result Since all the operations in this
fragment of code are chained together, none of the variables, and have to
be stored in registers. We refer to variables that are not stored in registers as wire-
variables: this is discussed in detail in Section 6.6.2.

Hence, chaining operations across conditional boundaries has two effects on the
scheduling strategy: firstly, the scheduling heuristic has to keep track of the resource
utilization of multiple scheduling steps in several basic blocks that are chained into the
same clock cycle. Thus, the scheduler has to use a modified resource utilization and
operation scheduling model that looks across the conditional boundaries. This modi-
fied resource utilization model has already been presented in Section 3.6.4 in Chapter
3. Secondly, chaining an operation with operations that are in the branches of a condi-
tional check requires a detailed analysis of the control flow paths in which the chained
operations are, as discussed in the next section.

6.6.1 Chaining with Operations in the Branches of a Conditional
Block

To be eligible for chaining across a conditional boundary, an operation has to satisfy
two main criteria: (a) a resource on which the operation can execute should be idle
in all the scheduling steps chained together, including the current scheduling step, and
(b) if there are operations in the steps being chained together that the current operation
being scheduled has dependencies with, then the total execution time of these chain of

82 CHAPTER 6. TRANSFORMATIONS EMPLOYED DURING SCHEDULING

operations should be less than the clock period of the design. Recall that a scheduling
step represents an aggregation of operations that execute concurrently in the same cycle
within a basic block (see Section 3.2.5).

We explain these two criteria using the example in Figure 6.11. W want to schedule
operation 4 in the same cycle as operation 1. First, the chaining heuristic determines all
the basic blocks that have scheduling steps scheduled in the same cycle as the current
step under consideration. The heuristic does this by traversing all the paths or chaining
trails back wards from the basic block that operation 4 is in looking for schedul-
ing steps scheduled in the same cycle. In this example, there are three trails comprising
the basic blocks:
Trail 1:
Trail 2:
Trail 3:

Note that, for the rest of the discussion of this example, since each basic block has
just one scheduling step, we will use the basic block name to refer to the corresponding
scheduling step in it.

The first criteria is satisfied in this case since none of the operations in the steps
being chained together uses an adder (we assume that at least one adder has been allo-
cated to schedule this design). For the second criteria, we determine the dependency
chain of operation 4 in each trail. The operations that will be chained with operation 4
in the trails are operations 1, 2 and 3 respectively, each of which writes to the variable

We determine that operation 4 can be executed in the same cycle as these opera-
tions by using the appropriate value of depending on the evaluation of the condition.
However, to actually chain these operations together, the chaining algorithm along with
the code motion algorithm has to ensure that the correct hardware corresponding to the
chained operations is generated to implement the schedule. This is discussed in the
next section.

6.6.2 Creating Wire-Variables to enable Chaining on each Chain-
ing Trail

To enable chaining, results from one operation must be read by another operation in
the same cycle. In hardware, this corresponds to a connection between the two func-
tional units on which the operations execute. In the intermediate graph representation,
we represent operation chaining using wire-variables. These are variables that can be
written to and read in the same cycle. Thus, wire-variables are explicitly marked as
being wires and are not mapped to registers. Note that, we initially assume that each
variable in the input behavioral description may potentially be mapped to a register.
Thus, the variables that are not marked as wire-variables can only be read one cycle
after they are written to.

Consider an operation that writes a result, and another operation that
reads this result:

6.6. CHAINING OPERATIONS ACROSS CONDITIONAL BOUNDARIES 83

To chain operations and the code has to be modified to:

where variable is marked as being a wire and is (potentially) mapped to a
register. In the RTL VHDL generated after synthesis, is mapped to a VHDL signal
and is mapped to a VHDL variable.

Often, as was the case in the example in Figure 6.11, several operations in different
basic blocks may write to a variable. When operations are chained across conditional
checks, we have to insert operations that write to “wire-variables” in all the trails that
lead back from the chained operation, i.e., in all the branches of the preceding condi-
tional blocks. We explain this using the example in Figure 6.12(a). In this example,
operations 1 and 2 write to variable in basic blocks and respectively. Opera-
tion 3 in basic block reads the value of and writes to variable Consider that
the scheduling algorithm schedules the entire fragment of code in this figure within one
clock cycle. Then, to enable operation chaining, a wire-variable is introduced and
the copy operations 4 and 5 are inserted, as shown in Figure 6.12(b). In the resulting
hardware, shown in Figure 6.12(c), variable becomes a wire and the variables
and are bound to registers. Operation 3 uses the multiplexed result of both the oper-
ations that write to wire-variable Note that, the copy operation 4 could also have
been inserted into basic block leading to the same hardware.

Similarly consider the fragment of code in the Figure 6.13(a). In this example,
variable is written to only in the true branch of a conditional block and is read by
operation 2 in basic block This code implies that if the condition evaluates to
“false”, then a value of from a previous write (not shown here) will be used by
operation 2. In order to chain the operations in this code, a variable copy to wirea-
variable has to be inserted in both branches of the conditional block, as shown
in Figure 6.13(b). So, the operation 2 now reads the variable instead. Again, in
hardware, variable will be mapped to a wire and variable to a register.

84 CHAPTER 6. TRANSFORMATIONS EMPLOYED DURING SCHEDULING

In this way, wire-variables are introduced in all paths in the chaining trails for
variables that are written and read in the same cycle. A dead code elimination pass later
removes any unnecessary variables and variable copies. Hence, the chaining heuristic
has to traverse all the chaining trails leading up to the current scheduling step and insert
copy operations to wire-variables for all the variables/operands read by the operation
being scheduled.

Chaining operations across conditional blocks is particularly useful for the design
of low latency blocks such as microprocessor functional blocks (see Chap-
ter 11). These blocks are usually targeted to an implementation within a single or a
few cycles and hence, all the operations in the design description have to be chained
together. In general, there are often situations in control-intensive designs similar to
those shown in Figures 6.12 and 6.13, wherein there exist copy operations within con-
ditional branches that assign a value, computed before the conditional, to a variable
that is subsequently read by an operation after the conditional block.

6.7 Loop Shifting

The computationally expensive portions of multimedia and image processing appli-
cations typically contain arithmetic operations embedded in deeply nested loops with
a complex mix of conditional (if-then-else) constructs. The presence of these nested
loops limits the scope of parallelizing code motion transformations to within one loop
iteration.

To achieve the next level of performance improvement, we use an incremental loop
pipelining transformation, called loop shifting, that moves operations from one itera-
tion of the loop body to its previous iteration [GDGN04]. It does this by shifting a set
of operations from the beginning of the loop body to the end of the loop body; a copy
of these operations is also placed in the loop head or prologue. Parallelizing transfor-
mations can then operate on the shifted operations to further compact the loop body.
Thus, loop shifting shifts a set of operations one at a time, thereby, exposing just as
much parallelism as can be exploited by the available resources.

6.7. LOOP SHIFTING 85

In contrast, loop pipelining techniques such as modulo scheduling conceptually
overlap several iterations of the loop body at constant time (initiation) intervals [RG81].
We found that the overlapped iterations can lead to a sharp increase in the number of
operations executed in one iteration. This leads to an increase in the number of oper-
ations mapped to each resource in the design, which in turn leads to a large increase
in the size and complexity of the control and steering (multiplexing) logic associated
with the resources. These increases in the control and multiplexing logic have a delete-
rious affect on the total input to output circuit delay and thus, the control costs of these
pipelining techniques outweigh the gains achieved in schedule lengths (we demonstrate
this for loop unrolling through experiments in Chapter 9).

Hence, although loop unrolling and traditional loop pipelining have been shown to
be useful for the high-level synthesis of straight-line DSP algorithms, we found that
for designs with complex control flow, they can lead to worse synthesis results. This
is particularly true when the resource utilization is already high because of either high
instruction level parallelism in the design or as a result of prior loop unrolling. In such
a situation, we propose applying loop shifting to incrementally move code across itera-
tions in a controlled way so that operations can be compacted further without excessive
increase in control costs.

Loop shifting is a technique whereby an operation is moved from the beginning
of the loop body to the end of the loop body, along the back-edge of the loop. To
preserve the correctness of the program, a copy of operation is placed in the
loop head/prologue. Thus, is executed before the first iteration of the loop body and
the original operation is then executed at the end of the loop body. This execution
corresponds to the execution of from the next loop iteration as per the original code.

We demonstrate loop shifting with an example in Figure 6.14. In this example,
basic blocks and form the body of a loop and is the loop head and is
the loop exit or tail. Solid arrows indicate data flow and dashed arrows indicate control

86 CHAPTER 6. TRANSFORMATIONS EMPLOYED DURING SCHEDULING

flow. Consider that we shift operations and from the loop body in the original
design in Figure 6.14(a) to the end of the loop body and copies of and are
inserted in the loop head The resultant design is shown in Figure 6.14(b).

We can now compact the code inside the shifted loop body using parallelizing trans-
formations. In the shifted design, it is possible to schedule operation concurrently
with operation and concurrently with operation The resultant, compacted design
is shown in Figure 6.14(c). The state assignments (S0 to S4) for these three designs
are demarcated by dashed lines. Clearly, the design in Figure 6.14(c), after shifting and
compaction, has a shorter schedule length than the original design in Figure 6.14(a).

Thus, as a result of loop shifting and compaction, the loop body executes in fewer
cycles. These fewer cycles multiplied by the loop iteration count give us the reduction
in execution cycles of the design. However, loop shifting is useful only when the gains
in performance of the loop body is larger than the overhead of the copies of the shifted
operations that are placed in the loop head.

6.7.1 Ensuring the Correctness of Code

Shifting an operation leads to one extra execution of the operation over the number of
times it is executed in the original code. This can be understood by the shifted design
shown earlier in Figure 6.14(c). In this design, if the loop executes for 8 iterations,
then the shifted operation executes 8 times inside the loop body plus once in the loop
head (basic block). In contrast, in the original design in Figure 6.14(a), operation

executes only 8 times inside the loop body.
To ensure that executing the shifted operation one extra time does not change the

behavior of the program, we write the result of the shifted operation, to a new
variable, newV ar and in place of we leave a copy operation from newV ar to the
result variable of the original operation

6.7. LOOP SHIFTING 87

We demonstrate this through an example in Figure 6.15(a). Here, the result of
operation 1 in the loop body (in basic block) is read by operation 4 after the loop.
Consider that we shift operation 1 to the end of the loop body and place a copy as
operation 6 in the loop head. Both these operations write to a new variable and
a copy operation is left in place of the original operation 1. This ensures that
operation 4 gets the correct value of after loop shifting. The resultant design is shown
in Figure 6.15(b).

We also have to maintain the inter and intra-iteration data dependencies while ap-
plying loop shifting since a shifted operation may have data dependencies across loop
iterations. In the example in Figure 6.15(a), operation 1 reads the variable that is writ-
ten by operation 2. Hence, after shifting operation 1, we have to add a data dependency
arc from operation 2 to shifted operation 1.

6.7.2 Shifting Loops with Conditional Branches

In loops with conditional constructs, we shift operations from within a conditional
branch. Since the goal of our approach is to minimize the length of the longest path
through the design, we shift operations from the branch of the conditional with the
longer schedule length.

Consider the example in Figure 6.16(a). This example has an if-then-else condi-
tional block within the body of a loop. Since the true branch (basic block) of this
if-block has a longer schedule length (of 3) than the false branch we choose to
shift operations from basic block

88 CHAPTER 6. TRANSFORMATIONS EMPLOYED DURING SCHEDULING

Hence, consider that we shift operations and from as shown in Figure
6.16(b). The parallelizing code transformations can now compact the shifted code by
conditionally speculating or duplicating operations and into both branches of the
if-block, as operations and and and The resultant design is shown in Figure
6.16(c).

It is interesting to note here that the shifted and duplicated operations may be sched-
uled in different states or control steps in the two conditional branches, as is the case
for this example. Also, it is clear from this example that loop shifting can lead to a
significant increase in the number of operations in the design. Thus, loop shifting does
have a control and multiplexing cost associated with it, as we will see when we present
results in Chapter 9.

Also note that, when shifting operations out of conditional branches, we have to
store the result of the shifted operation in a new variable. The result is committed to
the original result variable of the operation only within the conditional branch. Hence,
we insert a copy operation in the same manner as discussed earlier in Section 6.7.1.

We perform loop shifting after scheduling the loop body once. This means that the
scheduler may schedule some operations to execute concurrently in the same cycle, i.e.,
in the same scheduling step. Thus, in our approach instead of shifting one operation at a
time, we shift an entire scheduling step across loop iterations. This is because shifting
only one of several concurrent operations will not eliminate the scheduling step and
hence, the schedule length of the basic block (and loop body) will not decrease. In the
design in Figure 6.16(a), we chose to shift the first scheduling step in i.e., both
operations and (instead of just one of them).

6.8 Summary

In this chapter, we first discussed speculation and predication and how these techniques
apply to high-level synthesis. We then presented a set of speculative code motion trans-
formations that form an important part of our parllelizing high-level synthesis method-
ology. In Section 6.5, we presented the dynamic common subexpression elimination
(CSE) and the dynamic copy propagation techniques. We showed how speculation and
conditional speculation enable several opportunities for dynamic CSE. In Section 6.6,
we presented a technique that chains operations across conditional boundaries. We pre-
sented the issues that come up when operations on multiple control paths that have to
be chained together and discussed the notion of wire-variables that are required by this
technique. In Section 6.7, we presented loop shifting – an incremental loop pipelin-
ing technique – that operates at the end of scheduling phase. The contributions of this
chapter are the presentation of various compiler, parallelizing compiler, and synthesis
techniques that are an essential part of our parallelizing high-level synthesis methodol-
ogy and how these techniques interact with each other.

CODE TRANSFORMATIONS AND
SCHEDULING

Resource-constrained scheduling for high-level synthesis is the task of assigning op-
erations to control steps or time intervals so that the allocated resources can compute
the operations assigned to each step [GDWL92]. The minimum-latency resource con-
strained scheduling problem has been shown to be NP-complete [GDWL92‚ DM94‚
GJ79‚ NR00]. Several scheduling heuristics have been proposed in the literature that
attempt to trade-off schedule computation time against the quality of the solution as
measured for schedule length‚ controller size‚ energy/power et cetera. The use of par-
allelizing code transformations explored in this book provides another level of flexibil-
ity in scheduling tasks by providing either additional slots or additional operations for
scheduling in a given control step.

To evaluate the effectiveness of the code transformations‚ we design a scheduler
where the code transformations can be run fairly independently of the choice of the
scheduling algorithm. For the purpose of demonstration‚ we choose a priority-based list
scheduling heuristic since it is a popular heuristic that forms the basis of a large num-
ber of scheduling algorithms including force-directed scheduling‚ path-based schedul-
ing etc. In this chapter‚ we describe the various algorithms that form a part of the
scheduling framework.

7.1 Software Architecture of the Scheduler

Figure 7.1 shows the overall architecture of the scheduler in our PHLS framework. The
components of this scheduler framework are:

An IR Walker (IR stands for intermediate representation) that traverses the design
and returns the next step (and basic block) to schedule.

A Candidate Fetcher that itself consists of two components:

(a)

(b)

7

90 CHAPTER 7. CODE TRANSFORMATIONS AND SCHEDULING

A Candidate Walker that traverses the design and finds the unscheduled op-
erations that are candidates for scheduling on the current step being sched-
uled. These candidate operations are called Available Operations.

A Candidate Validater that removes those unscheduled available operations
whose data dependencies are not satisfied or that cannot be moved to the
current step being scheduled.

(i)

(ii)

A Cost Function that calculates the cost of scheduling each candidate in the
available operations list. The scheduler then picks the operation with the lowest
cost.

A Candidate Mover that moves the chosen operation from its current basic block
to the current step being scheduled.

A Dynamic Transformations pass that applies low level compiler optimizations
such as CSE and copy propagation dynamically during scheduling based on the
new position and possible duplication of the scheduled operation.

(c)

(d)

(e)

7.2 Priority-based Global List Scheduling Heuristic

The priority-based global list scheduling heuristic that is the basis of our scheduler is
listed in Algorithm 1. The inputs to this heuristic are the unscheduled design graph

and the list of resources In each clock cycle and for each resource in the re-
source list‚ the scheduling heuristic collects a list of unscheduled operations and orders
them according to a cost or priority. The operation with the lowest cost is picked and
scheduled in the current clock cycle. Dynamic transformations are applied either in
this process (e.g.‚ dynamic branch balancing) or after scheduling the operation (e.g.‚
dynamic CSE). The algorithm is global in the sense that all unscheduled operations in
the design graph are considered for scheduling in each clock cycle – this is in contrast
to a local algorithm that would only consider unscheduled operations within the current

7.2. PRIORITY-BASED GLOBAL LIST SCHEDULING HEURISTIC 91

Algorithm 1 : PriorityListScheduling
/* Schedules the Design Graph */

1:

2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

/* First step of first basic block in */
while do

for all resources res do

if then
CalculateCostOfAvailOps
Pick Operation with lowest cost

Mark as scheduled
ApplyDynamicCSE

end if
end for

end while

basic block. The various function calls made by the scheduling heuristic are presented
in detail over the next few sections.

We can also specify a list of allowed code motions‚ CMs‚ (i.e.‚ speculation‚ reverse
speculation‚ conditional speculation et cetera) to the scheduling heuristic. This gives
us control over the code motions employed while scheduling the design by selecting
and de-selecting code motions from CMs. In this way‚ we can study the effectiveness
and performance-area trade-offs of individual code motions.

The heuristic starts by assigning a priority to each operation in the input descrip-
tion by calling the function CalculatePriority. Priority of an operation is calculated
as the length of the data dependency chain from the operation to an output of the de-
sign (see Section 7.2.2 for a detailed definition of priority). The CalculatePriority
function returns the function that gives the priority of an operation as

Scheduling is then done one scheduling step at a time while traversing the ba-
sic blocks in the design graph This design traversal is done by the function
GetNextSchedulingStep. Scheduling starts with the first scheduling step of the first
basic block of the design CFG For each scheduling step in the design‚ we iterate
over each resource res in the resource list and collect a list of available operations
that may be scheduled on res by calling the function GetAvailableOperations (lines
3 to 5 in the algorithm in Algorithm 1).

Available operations is a list of operations whose data dependencies are satisfied
and that can be moved in the design graph and scheduled on the given resource at
the current scheduling step. If the available operations list is not empty‚ the scheduler
calculates a cost for each operation in Currently‚ this cost is the negative of the
operation’s priority‚ that is:

92 CHAPTER 7. CODE TRANSFORMATIONS AND SCHEDULING

The scheduler then picks the operation with the lowest cost from the available
operations list (line 8 of Algorithm 1). Effectively, this chooses the operation with the
highest priority in the available list and hence, favors operations that are on the longest
path through the design. Thus, this cost function attempts to minimize the longest delay
through the design. It is important to note that minimizing a different cost function,
such as average delay, can be done by incorporating control flow information into the
cost function. Also, if we have profiling information about which control paths are
more likely to be taken, then we can give operations on those paths a higher priority
than operations on less taken paths. Future work entails enhancing the cost function to
include hardware (control and area) cost models of the code transformations.

The scheduler calls the TrailSynth algorithm (see Section 7.4) to move the chosen
operation from its current scheduling step and basic block in the design and schedule
it on the resource res at the scheduling step step. This is done by a function call to
TrailblazeOp. The TrailblazeOp may duplicate into multiple basic blocks. The
scheduler then marks as scheduled in step on the resource res.

A dynamic transformations pass then operates using the scheduled operation. As
shown in Algorithm 1, the scheduler calls the dynamic CSE (common sub-expression
elimination) algorithm to eliminate any operations in that have common sub-expressions
with and that may now be eliminated due to the code motion (and possible duplica-
tion) of to step. Dynamic copy propagation and dynamic dead code elimination are
also applied after dynamic CSE.

This scheduling procedure is repeated for all the resources in each scheduling step
as the basic blocks in the design are traversed from the initial basic block to the last.
Since operations with higher priority may be speculated into a scheduling step step
in a basic block the (lower priority) operations already in step in can
be left unscheduled. Either new scheduling steps are added to the basic block
to schedule these operations or if reverse speculation has been enabled, then these
unscheduled operations are reverse speculated into the subsequent conditional branches
(if possible). If the successor basic block of is a join basic block, then the only
option is to add new scheduling steps in since we do not support code motion
of operations past a successor join node. Note that, we do allow code motions of an
operation past a predecessor join node using the conditional speculation code motion.

7.2.1 Scheduling Loops

Scheduling of loops is done by the same procedure outlined above. However‚ user-
specified loop transformations such as loop unrolling et cetera are applied first. Also‚
the scheduler cannot move operations into or out of the loop body. This can only be
done by transformations such as loop-invariant code motion or loop pipelining. Hence‚
the available operations algorithm does not collect unscheduled operations from inside
a loop body to schedule them outside the loop body. Also‚ while scheduling the loop
body of a loop node‚ available operations are collected only from within the loop body.

The Spark framework can schedule all types of loops‚ including those with un-
known loop iteration bounds. Thus‚ at the end of a loop body‚ the next state in the finite
state machine (FSM) generated by the framework is either the first state in the loop
body or the state after the loop body‚ depending on whether the loop condition is satis-

7.2. PRIORITY-BASED GLOBAL LIST SCHEDULING HEURISTIC 93

Algorithm 2 : CalculatePriority
Returns: Priority function for each in
/* Calculates priority of each operation in design */

1:
2:
3:
4:

Initialize
for all do /* is the set of operations in */

end for

Algorithm 3 : GetOpPriority
Returns: Priority of
/* Recursive function that returns priority of an operation in the design */

1:

2:

3:

4:
5:
6:

if then
for all do /* All outgoing data flow edges from */

end for
end if
return

fied or not. Hence‚ loop bounds are not required for generating correct‚ synthesizable
VHDL. However‚ when the loop bounds are unknown‚ several loop transformations
cannot be applied to the design and we cannot establish the number of cycles that the
loop takes to execute.

We now present the various algorithms that the scheduler employs‚ starting with
the algorithm that calculates the priority of the operations in the design graph.

7.2.2 Calculating Priority

Our primary objective is to minimize the longest delay through the design; hence‚
priorities are assigned to each operation based on their distance‚ in terms of the data
dependency chain‚ from the primary outputs of the design. The priority of an operation
is calculated as one more than the maximum of the priorities of all the operations that
use its result. Hence‚ an operation that produces an output is not read by any operation
and thus‚ these output operations have a priority of zero. Thereafter‚ operations whose
results are read by output operations have a priority of one and so on.

An algorithm that calculates the priorities of all the operations‚ in a data flow
graph‚ is given in Algorithms 2 and 3. The algorithm iterates over all the
operations in and starts by assigning each operation a priority of zero. It
then calls the function GetOpPriority that iterates over all the operations that read
the result of and assigns a priority that is one more than the maximum of the
priorities of all these dependent operations. The function GetOpPriority recursively
calls itself to find the priority of the dependent operations‚ hence‚ performing a depth
first calculation of the operation priorities.

The priority assignment of operations for the waka benchmark is indicated next
to the operations in Figure 7.2. In this design‚ the priority assignment of the output
operations‚ and is 0‚ and the operations that they depend on have priority 1 and

94 CHAPTER 7. CODE TRANSFORMATIONS AND SCHEDULING

so on. The priority of an operation that creates a conditional check (operations and
in the figure)‚ is assigned the maximum of the priorities of all the operations in the

conditional branches of the If-HTG. Note that‚ this has not been shown in Algorithms
2 and 3.

7.3 Collecting the List of Available Operations

Available operations is a list of operations that can be scheduled on the given re-
source res at the current scheduling step step. Pseudo-code for collecting the list of
available operations is given in Algorithm 4. Initially‚ all unscheduled operations in
the design that can be executed on the resource type of res and whose data dependen-
cies have been satisfied are added to the available operations list. These unscheduled
operations are collected by the candidate walker function CollectUnscheduledOps
presented in the next section.

7.3. COLLECTING THE LIST OF AVAILABLE OPERATIONS 95

Algorithm 4 : GetAvailableOperations
Returns: Available Operations List
/* Gets operations available to be scheduled on res in step */

1:

2:
3:
4:
5:
6:
7:

/* Find all unscheduled operations in that can be scheduled on res */

/* Remove all operations that cannot be moved to step using C Ms */
for all do

if then

end if
end for
return

Once these unscheduled operations have been collected‚ the available operations
algorithm calls the I sTrailblazeOpPossible function to determine which operations
cannot be moved in design to the current scheduling step using the allowed code mo-
tions‚ CMs. These operations are removed from the available list (line 4 of the algo-
rithm in Algorithm 4).

The I sTrailblazeOpPossible function corresponds to the candidate validater func-
tion shown earlier the scheduler architecture in Figure 7.1. The operations remaining
in after validation are possible candidates for scheduling on step. This available list

is returned to the scheduling algorithm.

7.3.1 Collecting the Unscheduled Operations from the Design Graph

The algorithm for the function CollectUnscheduledOps is presented in Algorithm 5.
This algorithm takes as input the resource res we are scheduling on and the current
scheduling step startStep. The algorithm starts by examining each scheduling step
in the current basic block and looks for unscheduled operations that can be ex-
ecuted on res. These unscheduled operations are added to the available list if their
data dependencies have been satisfied. This check is done by calling the function
AreDataDepsSatisfied (described in the next section). This corresponds to lines
1 to 6 in Algorithm 5.

When the unscheduled operations from all the scheduling steps in the current basic
block have been collected‚ the CollectUnscheduledOps function traverses the
basic blocks on the control flow paths leading out of the basic block Thus‚ the
CollectUnscheduledOps function recursively calls itself to collect the unscheduled
operations from each successor basic block of the current basic block (lines 12
to 14 of the algorithm).

Note that‚ in practice‚ there are several ways to improve the efficiency of this algo-
rithm. Firstly‚ we can set a limit to the depth/number of basic blocks that the function
should look at for unscheduled operations. Secondly‚ we can maintain a list of un-
scheduled operations ordered by the resource they execute on.

Although not shown in Algorithm 5‚ this basic block traversal algorithm skips over
the loop body of any loop HTG nodes it encounters. This is because operations from

96 CHAPTER 7. CODE TRANSFORMATIONS AND SCHEDULING

Algorithm 5 :
/* Adds all unscheduled ops in basic blocks after to */

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

while do
for all do /* Add each unscheduled op in whose data
dependencies are satisfied and can be executed on the resource type of res */

if is not scheduled) and then
if then

end if

end if
end for

end while
/* Recursively traverse all outgoing control edges from */
for all do

end for

within loop nodes can only be moved outside the loop body by transformations such
as loop-invariant code motion and loop pipelining. Similarly‚ when the scheduler is
scheduling the loop body of a loop node‚ available operations are only collected from
within the loop body.

7.3.2 Algorithm for the AreDataDepsSatisfied function

The algorithm for the function AreDataDepsSatisfied is listed in Algorithm 6. This
function iterates over all the incoming data flow edges of operation For each
operation whose result reads‚ the function checks if is scheduled and if it
has finished execution by the time step starts executing (lines 2 and 3). Else if is
scheduled in step‚ then the algorithm checks if and can be chained in step.
This is possible if the sum of their execution times does not exceed the clock period
(line 3 in algorithm). Recall that gives the execution time of the resource
res as per Definition 3.9.

If any of these conditions is not satisfied‚ i.e.‚ if is not scheduled or does not
finish execution in time for to execute‚ then the function returns a false result (line
7 in Algorithm 6). If all the operations that depends on have finished execution‚
then the function returns a true result. Note that‚ the efficiency of this function can be
improved by marking operations whose data dependencies have been satisfied. Then‚
the next time the AreDataDepsSatisfied function is called‚ it can first check if the
operation has been previously marked as satisfied.

While validating the candidate operations‚ the available operations algorithm calls
the function IsTrailblazeOpPossible to determine if these operations can be moved
to the scheduling step under consideration. This function in turn uses the Trailblazing
code motion technique as explained in the next section.

7.4. TRAILSYNTH: A TRAILBLAZING-BASED CODE MOTION ALGORITHM 97

Algorithm 6 :
Returns: True if data dependencies are satisfied, else false
/* Checks if the data dependencies of are satisfied */

1:
2:

3:

4:
5:
6:

7:
8:
9:

for all do /* All incoming data flow edges to */
if is scheduled) then

/* Check if either has finished execution by step */
/* OR and can be chained in step */
if < start time of operations in step) or

is scheduled in step and then
Continue for all loop to next edge

end if
end if
/* Either is not scheduled or has not finished execution */
/* or cannot be chained with */
return false

end for
return true /* All data dependencies are satisfied */

7.4 TrailSynth: A code motion algorithm based on Trail-
blazing

Our code motion algorithm employs Trailblazing to find the trails required to move op-
erations in the design. But besides this our algorithm also analyzes resource utilization
and employs a novel dynamic branch balancing technique. We refer to our code motion
algorithm as TrailSynth since it is based on Trailblazing.

Trailblazing is a hierarchal code motion technique that finds all the control paths
that an operation will have to move along in order to be scheduled in a given basic
block. These control paths are represented by trails as per the following definition:

Definition 7.1. A trail is an ordered list of basic blocks with unique source and
sink basic blocks‚ Source(tr) and Sink(tr). The list of basic blocks in denotes the
basic blocks that will be visited in moving an operation op from its current basic block

to the basic block target BB Vbb. Hence‚
and Sink(tr) = targetBB.

The Trailblazing algorithm returns a list of trails given by TrailList. There is a
trail for each control path that leads from the current basic block that operation is
in‚ to the scheduling step‚ step‚ that the operation is being scheduled on or to one
of the basic blocks into which will be duplicated. Consider the example in Figure
7.3. To move operation from basic block to basic block the Trailblazing
algorithm will return two trails:
Trail 1:
Trail 2:

Trail 1 is a trail for operation to basic block However‚ the second trail stops
in basic block since operation has a data flow dependency with the operation in

98 CHAPTER 7. CODE TRANSFORMATIONS AND SCHEDULING

Hence‚ to move operation to we would have to leave a duplicated copy in
basic block We do not present the Trailblazing algorithm here; our implementation
is similar to the algorithm presented in [NN93].

The example in Figure 7.3 also demonstrates the hierarchical nature of Trailblazing.
The trails returned for moving operation jump over the If-HTG nodes If Node3 and
If Node2 in this example. This is because operation does not have a data dependency
with any operations in these HTG nodes. It is this hierarchical code motion capability
of Trailblazing that makes it efficient for moving operations across large pieces of code
without duplicating the operation at every join node encountered and then unifying the
copies at fork nodes.

In our implementation of Trailblazing‚ we also supply the Trailblazing algorithm
with the list of allowed code motions‚ CMs‚ that is specified by the user. While gen-
erating the list of trails‚ the Trailblazing algorithm also determines the code motions
that will be required to move the operation on these trails. If a required code motion is
not in the list of allowed code motions (CMs)‚ then the Trailblazing algorithm returns
an empty list of trails‚ i.e.‚ it fails to move the operation to the requested target basic
block.

Hence‚ for the example in Figure 7.3‚ if we disable conditional speculation‚ then
Trailblazing will return an empty list of trails when we query it for the trails to move
operation to basic block This is because to move operation to it has to be
conditionally speculated at the join basic block and a duplicate copy has to be left in
basic block Similarly‚ the returned trails will be empty‚ if we disallow speculation
in CMs and ask Trailblazing for trails to move operation to

7.4. TRAILSYNTH: A TRAILBLAZING-BASED CODE MOTION ALGORITHM 99

Algorithm 7 :
Returns: Returns true if Operation can be moved to step‚ else returns false
/* Determines if can be moved from its current basic block to target basic block */

1:

2:

3:
4:
5:
6:
7:
8:
9:

10:

11:
12:

13:
14:
15:
16:
17:
18:
19:

/* Call Trailblazing to find trails */

if then
return false

end if
for all trail TrailList do

lastBBInTrail Sink(trail)
if ((lastBBInTrail targetBB) and (lastBBInTrail is not scheduled))
then

return false
end if

if then
if = false) then

return false
end if

end if
end for
return true /* Found idle resources in all trails */

This means that there is no fixed order for the application of code motions. The
code motions required to move an operation to the current scheduling step depends on
the basic block that the operation is in relative to the current scheduling step. Also‚
since CMs are user-specified in a script file read by Spark at initialization‚ it enables
us to experiment with the affects of the various code motions on synthesis results.

We employ two variants of the TrailSynth algorithm: (a) the available operations
algorithm calls the IsTrailblazeOpPossible algorithm to determine if is possible to
move each operation in the available list to the scheduling step currently being sched-
uled‚ and (b) the TrailblazeOp function called later by the scheduler to actually move
and duplicate the operation chosen from the available list for scheduling. We present
these two algorithms next.

7.4.1 Algorithm for the IsTrailblazeOpPossible Function
The algorithm for IsTrailblazeOpPossible function is listed in Algorithm 7. This

algorithm determines if operation can be moved in the design to the scheduling step
step using the code motions CMs. The algorithm starts by determining the current
basic block currBB of and the target basic block targetBB in which step is
(lines 1 and 2). It then calls the Trailblazing algorithm (FindTrails) to find the trails
from the currBB to targetBB using the code motions CMs. The returned list of

100 CHAPTER 7. CODE TRANSFORMATIONS AND SCHEDULING

trails is null if cannot be moved to targetBB (see previous section); in this case,
the IsTrailblazeOpPossible function returns a false result. Note that, TrailList
contains only one trail if will not have to be duplicated in order to schedule it on
targetBB.

If the list of trails is not null, the IsTrailblazeOpPossible function iterates over
each trail in the list and returns a false result if the sink basic block (lastBBInTrail)
of any trail is not scheduled. This is because the resource utilization in an unscheduled
basic block is unknown and thus, we want to prevent the duplication of an operation
into unscheduled basic blocks.

For each scheduled lastBBInTrail, the IsTrailblazeOpPossible function calls
the FindIdleResInBB function to get a scheduling step in lastBBInTrail that has
an idle resource on which can be scheduled. This function is presented later in
Section 7.4.3. This function is not called for trails that end in targetBB, since will
be scheduled in scheduling step step in targetBB.

If the FindIdleResInBB function is unable to find a scheduling step to accom-
modate a duplicated copy of in any of the sink basic blocks of the trails, then the
IsTrailblazeOpPossible function returns a false result (lines 12 to 15 in Algorithm
7). However, before returning a false result, the IsTrailblazeOpPossible function
calls the function IsBranchBalancingPossible to check if the dynamic branch bal-
ancing technique can create a new scheduling step in the basic block(s) that do not have
an idle resource. This function and dynamic branch balancing are explained in detail
in Section 7.7.

The IsTrailblazeOpPossible function returns a true result either if it finds an idle
resource for in each basic block that will be duplicated into or if it is possible
to create a new scheduling step (and thus, an idle resource) using the branch balancing
technique.

7.4.2 Algorithm for the TrailblazeOp Function

To actually move the operation chosen for scheduling, the scheduling heuristic calls the
TrailblazeOp algorithm. The algorithm for this function is presented in Algorithm
8. The TrailblazeOp algorithm takes as input the operation being scheduled the
scheduling step to schedule it on step and the resource res in step to schedule on.

The TrailblazeOp is similar to the IsTrailblazeOpPossible function described
above. This function also calls the Trailblazing algorithm to find the trails that lead
from the current basic block currBB of operation to the target basic block targetBB
of the scheduling step step. The TrailblazeOp function then finds a step in which to
schedule in the sink basic block of each trail by calling the FindIdleResInBB
function. For the targetBB, is inserted in step and for all other sink basic blocks,
i.e., lastBBInTrail, is duplicated and inserted in the step, stepInBB, found by
FindIdleResInBB. If FindIdleResInBB does not find a step in a basic block,
then the branch balancing algorithm is called (call to BalanceBranches in line 12 of
Algorithm 8) to insert a new scheduling step in lastBBInTrail.

Since the IsTrailblazeOpPossible function has already been executed earlier, we
can be sure that either the FindIdleResInBB function or the BalanceBranches
function will find or create a scheduling step in lastBBInTrail. The resource res

7.4. TRAILSYNTH: A TRAILBLAZING-BASED CODE MOTION ALGORITHM 101

Algorithm 8 :
/* Moves (and possibly duplicates) from its current basic block to step */

1:
2:

3:
4:
5:
6:
7:
8:

9:
10:
11:
12:
13:
14:
15:
16:
17:

/* Call Trailblazing to find trails */

for all trail TrailList do
lastBBInTrail Sink(trail)
if (lastBBInTrail = targetBB) then

stepInBB step
stepInBB(res)

else /* lastBBInTrail targetBB */

if then

end if

Update data dependencies in effected by duplication
end if

end for

in step and stepInBB is marked as having scheduled on it. The TrailblazeOp
function also updates any changes in data dependencies due to the duplication of
(line 15 in Algorithm 8).

7.4.3 Finding an Idle Resource in a Basic Block

The algorithm to find an idle resource for an operation in a basic block is out-
lined in Algorithm 9. This algorithm starts by calling the function FindMatchingResForOp
(not given here) to determine the list of resources‚ matchingResList‚ on which the
operation can be executed. There may be multiple resources in matchingResList
since‚ although there is only one resource type on which may execute‚ there may be
several instances of this resource type in the resource list The FindldleResInBB
function then finds the first scheduling step in that does not have an operation with
a data dependency with by calling the function GetStepInBBAfterDataDeps.
This function (not given here) looks for operations whose result reads and that are in
basic block It then finds the last scheduling step in with any of these operations
that depends on and returns the next scheduling step. This returned step‚ currStep‚
signifies the first scheduling step in that can be potentially scheduled on. Recall
that the scheduling steps in a basic block are ordered as per their execution sequence.

Using this scheduling step (currStep) as a starting point‚ the algorithm determines
if there is an idle resource in currStep or any of its successor steps in basic block
(shown by the while loop in Algorithm 9). Each resource res in matchingResList
in currStep is checked to see if it is idle‚ i.e.‚ there is no operation scheduled on

102 CODE TRANSFORMATIONS AND SCHEDULINGCHAPTER 7.

Algorithm 9:
Returns: A scheduling step in with idle resource for
/* Finds an idle resource in basic block for scheduling operation

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

/* Iterate over all remaining steps in */
while currStep do

for all res matchingResList do
if then

/* If an operation is scheduled in any step in prevStepList or */
/* succStepList‚ then continue to next matching resource in step */
for all other Step prevStepList succStepList do

if then
Continue for all (res) loop /* Goes to line 4 */

end if
end for
return currStep /* Found currStep with idle resource */

end if
end for
currStep NextStep currStep) /* Get next step in */

end while
return /* No step found. Return null step */

it and hence, it is potentially available for scheduling the operation (line 5 in the
algorithm).

However, the current resource (res) being checked may be a multi-cycle resource.
Hence, the scheduling steps before and after the current step have to be checked to
make sure that the resource is idle in them for the duration of its execution time start-
ing in currStep. First, the number of steps that need to be checked is calculated
(numSteps); this is one less than the execution cycles of the resource. The execution
cycles of a resource are determined by dividing its execution time with the clock
period allocated to the design.

The algorithm then calls the GetPrevSteps and GetSuccSteps functions to get
numSteps predecessor steps and numSteps successor steps (lines 7 and 8 in Algo-
rithm 9). Since the predecessor and successor steps can, and frequently are, in the
predecessor and successor basic blocks of these two functions (not described here)
look for steps not only in the current basic block but may also traverse to the prede-
cessor and successor basic blocks of Hence, the resource utilization of the resource
res has to be checked beyond the current basic block.

If the resource res is not used in any of these predecessor and successor steps,
then an idle resource has been found in the current step currStep and the algorithm

7.5. DYNAMIC CSE ALGORITHM 103

Algorithm 10 : ApplyDynamicCSE
/* Eliminates operations from by employing dynamic CSE */

1:

2:

3:

4:

5:

6:

cseOpsList GetOperationsWithCSE
for all operations do

if dominates then
ApplyCSE

end if
end for

terminates by returning currStep. However‚ if res is used in any of these steps‚ then
the procedure is repeated for the next resource in the matching Res List and so on.
This is done for all the steps following currStep in the given basic block until
either a step with an idle resource is found or all the steps in have been visited.

The TrailSynth algorithm uses the returned step with an idle resource to schedule
a duplicated copy of the operation being scheduled. Next‚ the scheduling algorithm
calls the dynamic CSE algorithm as explained next.

7.5 Dynamic CSE Algorithm

Once operation chosen by the scheduler has been moved and scheduled‚ the dynamic
CSE algorithm comes into play. The dynamic CSE algorithm‚ listed in Algorithm 10‚
calls the function GetOperationsWithCSE to determine the the list of operations
cseOpsList that have a common sub-expression with the scheduled operation The
GetOperationsWithCSE function (not shown here) examines only the remaining
operations in the available list to get cseOpsList since these are the only operations
whose data dependencies are satisfied.

For each operation cseOp in cseOpsList‚ if the basic block of cseOp is domi-
nated by the basic block of after scheduling‚ then the common sub-expression in
cseOp is replaced with the result from by calling the ApplyCSE function (lines
2 to 4 in Algorithm 10). The ApplyCSE function (not described here) also updates
the data dependencies in due to the elimination of the computation in cseOp.
The functions GetOperationsWithCSE and ApplyCSE are part of the basic CSE
algorithm.

7.6 Design Traversal Algorithms

The design traversal algorithms perform two tasks: get the next basic block to schedule
and get the next scheduling step within this basic block. We present the algorithms for
these two tasks in the following sections.

7.6.1 Algorithm to Get the Next Scheduling Step

The scheduler calls the function GetNextSchedulingStep to get the steps to
schedule in the design. The algorithm for this function is listed in Algorithm 11. This

104 CHAPTER 7. CODE TRANSFORMATIONS AND SCHEDULING

Algorithm 11 : GetNextSchedulingStep
Returns: Next Step to schedule nextStep after

1:
2:
3:
4:
5:
6:

7:

8:

9:

10:

11:

12:

nextStep NextStep(currBB, currStep)
if then /* Last step in currBB reached */

end if
if then /* nextStep is NULL after branch balancing */

/* Traverse to next basic block */

if then
nextStep FirstStep(nextBB) /* First step in nextBB */

end if
end if
return nextStep

algorithm takes as input the current scheduling step step and returns the next step
(nextStep) in the design to schedule. The algorithm starts by determining the cur-
rent basic block‚ currBB‚ that the scheduling step‚ step‚ is in. nextStep is then the
scheduling step after the current step in currBB (lines 1 and 2 in the algorithm). The
algorithm then checks if nextStep is null; this happens when the current schedul-
ing step‚ step‚ is the last scheduling step in currBB. In this case‚ the algorithm
should traverse the design graph and get the next basic block in the design to sched-
ule. However‚ it is at this point that we employ a novel technique that balances the
branches of conditionals by inserting new scheduling steps in conditional branches
that have fewer scheduling steps [GDGN03a]. This is done by a call to the function
BalanceBranches (line 4); this function is discussed in the Section 7.7.

If the branch balancing function does not return a newly created scheduling step‚
i.e.‚ nextStep is still null (line 6)‚ then the algorithm proceeds to get the next ba-
sic block‚ nextBB‚ in the design by calling the GetNextBasicBlock function. If
nextBB is not null‚ then nextStep is the first scheduling step in nextBB
(lines 7 to 9 in Algorithm 11). Finally‚ the GetNextSchedulingStep algorithm re-
turns the next scheduling step nextStep. If nextStep is still null‚ then this indicates to
the scheduler that all the basic blocks in the design (and the scheduling steps in them)
have been scheduled and thus‚ the scheduler terminates as well.

7.6.2 Algorithm to Get the Next Basic Block to Schedule

The algorithm to get the next basic block to schedule in the design is given in Algo-
rithm 12. This algorithm traverses the basic blocks in the design CFG in a topological
manner starting at the initial node of the This algorithm takes the current basic
block currBB as input and maintains a queue of basic blocks (bbQueue) that it uses
to determine the next basic block to schedule.

7.7. DYNAMIC BRANCH BALANCING DURING SCHEDULING 105

The algorithm starts by inspecting each successor basic block of currBB by
calling the function SUCCs(currBB). It removes currBB from the predecessor
basic block list of (PREDs If has no more predecessors‚ i.e.‚ all pre-
decessors of have been visited and scheduled‚ is added to the tail of bbQueue
by calling the EnqueueAtTail function. Note that this algorithm is the same as the
topological ordering algorithm. Also‚ note that in practice the functions SUCCs and
PREDs also take as input.

Finally‚ the GetNextBasicBlock returns the basic block in the front or head of
bbQueue (lines 7 and 8 in Algorithm 12). When the last basic block in the design has
been reached‚ bbQueue is empty and thus‚ the algorithm returns a null result. Sub-
sequently‚ the algorithm to get the next scheduling step terminates by returning a null
result and this indicates to the scheduling heuristic that it has finished scheduling the
design. Note that‚ although not shown in Algorithm 12)‚ the GetNextBasicBlock
algorithm does not traverse the backward control flow edge of a loop‚ i.e.‚ the edge that
iterates over the loop body. For loops‚ the loop head is scheduled first‚ followed by the
loop body and then the loop tail.

7.7 Dynamic Branch Balancing during Scheduling

Dynamic branch balancing is a technique employed during scheduling to insert schedul-
ing steps in unbalanced conditional branches of an If-HTG. To enable new opportuni-
ties for conditional speculation‚ branch balancing has to be performed dynamically
during scheduling. There are two opportunities for doing branch balancing during
scheduling: (i) in the IR Walker function‚ i.e.‚ while getting the next scheduling step
to schedule; this is known as branch balancing during design traversal (BBDDT)‚ and
(ii) in the code motion function(s); this is known as branch balancing during code mo-
tions (BDDCM). These correspond to the calls to the function BalanceBranches in
Algorithms 12 and 8 respectively.

The algorithm for the BalanceBranches function is listed in Algorithm 13. This
algorithm takes as input the current basic block under consideration currBB and if
possible inserts a new scheduling step in currBB and returns this new scheduling

Algorithm 12 :
Returns: Next Basic Block to schedule nextBB
Static: Basic Block Queue bbQueue
/* Traverses basic blocks in in topological order */

1:
2:

3:
4:
5:
6:
7:
8:

for all SUCCs(currBB) do

if then
EnqueueAtTail(bbQueue,

end if
end for
nextBB DequeueHead(bbQueue)

return nextBB

106 CHAPTER 7 . CODE TRANSFORMATIONS AND SCHEDULING

Algorithm 13 :
Returns: New scheduling step newStep
Balance branches by inserting scheduling steps in the shorter conditional branch

1:

2:
3:
4:
5:
6:

7:

8:

9:
10:
11:
12:
13:
14:

if (| SUCCS(currBB)| = 1) then /* If currBB has only one successor */
succBB NextTrue(currBB)
if (IsJoin(succBB) = true) then /* if succBB is a join */

currBranchHTG GetCurrentBranch
compBranchHTG GetComplementBranch

if (compBranchHTG is scheduled) then
if (NumOfStepsInBBs(currBranchHTG) <

NumOfStepsInBBs(compBranchHTG))then
newStep CreateNewStepInBB(currBB)

end if
end if

end if
end if
return newStep

step. The algorithm starts by determining if currBB has only one successor and if that
successor is a join basic block (lines 2 to 4). This means that currBB is part of a condi-
tional block (If-HTG). The algorithm then gets the compound HTG node that currBB
is in‚ namely‚ currBranchHTG‚ and the compound HTG node in the complemen-
tary or mutually exclusive branch of the If-HTG‚ namely‚ compBranchHTG. This
is done by calling the functions‚ GetCurrentBranch and GetComplementBranch
respectively (not given here). If compBranchHTG is already scheduled and if the
number of scheduling steps in the longest path through compBranchHTG is larger
than the corresponding scheduling steps through currBranchHTG‚ then the algo-
rithm creates and inserts a new scheduling step in currBB by calling the function
CreateNewStepInBB (lines 7 to 10 of Algorithm 13). The functions to get the
number of steps in a branch of a If-HTG and to create a new scheduling step are not
given here.

Note that‚ we consider only a scheduled compBranchHTG‚ in order to have an
accurate picture of the resource utilization in the basic blocks in the mutually exclu-
sive branch of the If-HTG before adding any more scheduling steps to the design. The
number of steps in a basic block may change after scheduling because of code com-
paction‚ i.e.‚ several operations in the basic block may be compacted into a few steps
and executed concurrently.

Hence‚ the BalanceBranches function presented above can be called by the IR
walker when it has finished scheduling the last basic block in the last branch of an
If-HTG to be scheduled. Similarly‚ during code motion‚ when an operation is be-
ing duplicated into multiple basic blocks and the TrailSynth algorithm cannot find
an idle resource in the last basic block (lastBBInTrail) of a trail‚ then too the

7.8. AN ILLUSTRATIVE EXAMPLE OF THE SCHEDULER 107

BalanceBranches function is called to insert a new scheduling step in lastBBInTrail
(see Algorithm 8).

The IsTrailblazeOpPossible function calls a variant of the BalanceBranches
function (see Algorithm 7). This variant‚ IsBranchBalancingPossible‚ is similar to
the BalanceBranches function in that it checks if a basic block is part of an unbal-
anced If-HTG and therefore‚ if a new scheduling step can be inserted into this basic
block. But the IsBranchBalancingPossible function does not actually insert the
scheduling step‚ since its calling function IsTrailblazeOpPossible is only evaluating
whether an operation can be duplicated and accommodated into a basic block.

Branch balancing is a powerful technique that enables code motions such as con-
ditional speculation without increasing the length of the longest path through a con-
ditional block. This can lead to shorter schedule lengths for the design and improve
resource utilization in the conditional block. Also‚ if profiling information is available‚
this technique can be modified so that it adds new scheduling steps only in basic blocks
on control paths that are less likely to be taken.

7.8 An Illustrative Example of the Scheduler

In this section, we will walk through an example to understand how the scheduling
heuristic works and particularly to show how code motions are employed by the heuris-
tic. Consider the example in Figure 7.4(a) and consider that the resources allocated to
schedule this design are one adder and one subtracter. The first node in the design of
this example is basic block The scheduler starts by scheduling on the adder in
basic block The available operations list will contain the operations 1 and 2. Lets
say that among these available operations, operation 1 from basic block is chosen
for scheduling. The code motion technique, TrailSynth, determines that it has to
speculate this operation in order to schedule it in The resultant design is shown in
Figure 7.4(b). In this figure, operation 1 is speculatively executed as operation 4 in
and the result of operation 4, variable A, is still written back to variable in operation
1 in basic block This is to ensure that variable gets updated with the result A
only if the condition cond1 evaluates to “true”.

Next, the scheduler receives basic block to schedule from the design traversal
algorithms in Algorithm 12 (since does not have any operations in it). The only
operation available for scheduling in is operation 3. However, this operation re-
quires conditional speculation to be scheduled in basic block and we only allow
operation duplication when the basic block in which the operation is being duplicated
has already been scheduled (see the function IsTrailblazeOpPossible in Algorithm
7). Since basic block has not yet been scheduled, operation 3 is not included in the
available operations list. Thus, only the copy operation, operation 1, is scheduled into
basic block

The scheduler receives basic block to schedule next, as per Algorithm 12. First,
operation 2 is scheduled on to the adder. This time for the subtracter, the available list
contains operation 3, since now the basic block that it will be duplicated into, namely

has already been scheduled. Hence, operation 3 is conditionally speculated as
operations 5 and 6 in basic blocks and The resultant design is as shown in

108 CHAPTER 7. CODE TRANSFORMATIONS AND SCHEDULING

Figure 7.4(c). In basic block operation 5 directly uses the speculatively calculated
value A of operation 1 by employing dynamic renaming (see Section 4.2.2). Finally‚
since basic blocks and are empty and there are no more unscheduled operations‚
the scheduling heuristic terminates.

This illustrative example demonstrates the working of the scheduling heuristics
presented so far. In the next section‚ we show how synthesis transformations such as
chaining can be incorporated into the various algorithms of the scheduling heuristic.

7.9 Incorporating Chaining into the Scheduler

To incorporate chaining into the scheduler framework‚ we have to modify the main
scheduling heuristic‚ the available operations algorithm‚ and the code motion algorithm
(TrailSynth). These modifications are discussed in the next two sections.

7.9.1 Incorporating Chaining into the Scheduling Heuristic

Chaining can be incorporated into the scheduling heuristic as shown in Algorithm
14. This modified priority-based list scheduling heuristic keeps track of not only the

7.9. INCORPORATING CHAINING INTO THE SCHEDULER 109

Algorithm 14 :
/* Incorporating Chaining into the Priority-based List Scheduling Heuristic */
/* If scheduling on a step with chaining enabled fails, then the same step is scheduled
again without chaining enabled */

1:
2:
3:
4:

5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

prevStep step FirstStep
while do

doChaining false
/* Determine whether to do chaining */
if then

doChaining true
chainingSteps GetChainSteps

end if
for all resources res do

/* Can chaining be done on res, i.e., is res idle in chainingSteps */
if ((doChaining = true) and (IsResUsed(res, chainingSteps) = true)) then

Continue to next resource in foreach loop
end if

if then
CalculateCostOfAvailOps
Pick Operation with lowest cost

Mark as scheduled
ApplyDynamicCSE

end if
end for
prevStep step
step GetNextSchedulingStep

end while

current scheduling step‚ but also the previous scheduling step‚ prevStep. Chaining
across conditional boundaries is attempted if the current scheduling step is in a differ-
ent basic block than that of prevStep (lines 5 and 6 in Algorithm 14). This is because
chaining of operations within a basic block‚ i.e.‚ with no control flow between them‚ is
done within the same scheduling step.

When chaining across conditional boundaries is enabled‚ i.e.‚ doChaining =
true‚ the scheduler calls the function GetChainSteps to get all the steps in previ-
ous basic blocks that the current step has to be chained with (chainingSteps). The
getChainSteps function (not shown here) traverses back up all the control paths in

leading up to the current basic block‚ looking for steps scheduled in the same
cycle as the current scheduling step. If chaining is not enabled‚ then chainingSteps is
empty.

With chaining enabled‚ the scheduler skips over any resource res in the resource
list that is used in any of the steps in chainingSteps (lines 11 to 13 in Algorithm 14). It

110 CHAPTER 7. CODE TRANSFORMATIONS AND SCHEDULING

Algorithm 15 : GetAvailableOperations step‚ res‚ CMs‚ chainingSteps)
Returns: Available Operations List
/* Incorporating Chaining into the available operations algorithm: lines 6 to 11 are the
chaining-specific additions */

/* Find all unscheduled operations in that can be scheduled on res */
l:

/* Remove all operations that cannot be moved to step using CMs */
2: for all do
3: if then
4:
5: end if
6: if then

/* Can be chained with operations in chainingSteps */
7: TotalRunTime + Execution time of ops in longest

dependency chain of in chainingSteps
8: if then
9:

10: end if
11: end if
12: end for
13: return

employs the function I sResU sed to determine if a resource is used in a set of steps. If
a resource is available for scheduling‚ then the scheduling heuristic proceeds as before
and schedules the operation with the lowest cost from the list of available operations
(if any). However‚ although not shown in this algorithm‚ if the scheduling heuristic
fails to schedule anything on step with chaining enabled‚ then it tries to schedule on
step again‚ albeit without chaining; that is‚ the foreach resource loop is repeated with
doChaining = false.

The Available Operations algorithm also requires a modification to enable chaining
across conditional boundaries as shown by the updated algorithm in Algorithm 15.
If chainingSteps is not empty‚ then this algorithm determines the operations in the
chainingSteps (if any) that each operation in is dependent on. The execution
time of the longest chain of these dependency operations is determined and summed
with the execution time of the resource being scheduled‚ res. If this TotalRunTime
is larger than the clock period allocated to the design‚ then cannot be scheduled
in step since there exists a chain of operations in chainingSteps that will not finish
executing in time for to execute as well. This is given in lines 6 to 11 of the
algorithm in Algorithm 15.

The final modification required in the scheduling framework to enable chaining op-
erations across conditional boundaries is in the code motion algorithm (TrailSynth)
as explained in the next section.

7.9. INCORPORATING CHAINING INTO THE SCHEDULER 111

Algorithm 16 : ChainOpWithPrevSteps stepInBB)
/* Chains operation with the operations in the scheduling steps that are scheduled in
the same cycle as stepInBB. Also inserts wire-variables into all the chaining trails */

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:

14:
15:

chainingSteps GetChainSteps(stepInBB,
chainingTrailList GetChainingTrails(stepInBB,
LeftW v and RightWv New wire-variables for left and right operands of
for all chainTrail in chainingTrailList do

depOpList FindDependentOps(chainTrail)
for all depOp in depOpList do

if (depOp writes to left operand of then
Wv LeftWv

else /* depOp writes to right operand of */
Wv RightWv

end if
Make depOp write to wire-variable
Insert copy operation from to original result variable of depOp in its
scheduling step

end for
end for

7.9.2 Incorporating Chaining into the TrailSynth Code Motion
Technique

Chaining is incorporated in the TrailSynth algorithm presented earlier in Algo-
rithm 8 by checking if the scheduling step (stepInBB), in which the operation is in-
serted, is chained across conditionals. This is done for the scheduling steps both in the
target basic block and in basic blocks where the operation is duplicated. If stepInBB
is chained across conditionals, then the function, ChainOpWithPrevSteps, outlined
in Algorithm 16 is called. This function inserts wire-variables into all the chaining
trails (chainingTrailList) that lead up to the stepInBB. As explained in Section
6.6.1, chaining trails consist of the basic blocks that have a control-flow path to the
basic block of the current scheduling step and have a scheduling step scheduled in the
same cycle as the current scheduling step. The list of chaining trails are obtained by
calling the function GetChainingTrails; this function is not presented here.

The chaining heuristic in Algorithm 16 first creates the new wire-variables, LeftWv
and RightWv, for the left and right operands respectively, of the operation being
scheduled (line 3). Then, for each chaining trail, chainTrail, in the list of chaining
trails, chainingTrailList, the heuristic calls the function FindDependentOps (lines
4 and 5). This function finds the list the operations (depOpList) in chainTrail that
the current operation has a dependency with. Each dependent operation, depOp,
in this list is checked and if depOp writes to the left operand of then the result of
depOp is written to LeftWv instead. Conversely, if depOp writes to the right operand
of its result is written to RightWv instead. Also, a copy operation from LeftWv
or RightWv to the original variable that depOp wrote to, is inserted after depOp in

112 CHAPTER 7. CODE TRANSFORMATIONS AND SCHEDULING

Algorithm 17 : ShiftLoopBody(LoopNode)
/* Loop Shifting Algorithm: shifts one scheduling step in a loop body */

1:

2:
3:
4:
5:
6:
7:
8:

firstBB FirsiBB(LoopNode loopBody)
stepToShift FindStepToShift(firstBB)
BB(stepToShift) BB(stepToShift) - stepToShift
lastBB LastBB(LoopNode loopBody)
lastBB lastBB stepToShift
loopHeadBB LastBB(LoopNode loopHead)
loopHeadBB loopHeadBB Copy(stepToShift)
Reschedule(LoopNode)

the same scheduling step as depOp. This procedure is outlined within the foreach
loop in lines 6 to 14 in Algorithm 16.

In this way, this chaining heuristic operates on the scheduling step, stepInBB,
of each trail that the scheduled operation is duplicated into or moved into and inserts
write operations to wire-variables as needed. Note that, if the depOpList is empty for
any chaining trail in chainingTrailList, the chaining heuristic will insert two simple
copy operations. One operation copies the original left operand of to its left operand
wire-variable (Lef tWv) and the second operation copies the original right operand
of to RightWv (as explained earlier in the example in Figure 6.13). Hence, all the
chaining trails will now have writes to these wire-variables and the scheduled operation

reads the wire-variables instead of its original operands. A dead code elimination
pass performed after scheduling can determine if any of these copy operations can be
eliminated.

7.10 Loop Shifting Algorithm

As explained in Chapter 6‚ loop shifting is an incremental loop pipelining technique
that operates at the end of the scheduling phase. Loop shifting moves a set of concurrent
operations from the end of the loop body to the beginning of the loop body and makes a
copy in the loop header. It then reschedules the loop body. Our loop shifting algorithm
is listed in Algorithm 17. This algorithm takes the loop HTG node to be shifted as
input (LoopNode) and shifts one scheduling step from the beginning of the loop body
to its end.

Note that the sub-parts (loop head‚ body‚ and tail) of a loop can be accessed eas-
ily in the HTG representation by referring to the members loopHead‚ loopBody and
loopTail of LoopNode. Recall that the loop head and loop tail each contain one ba-
sic block‚ whereas the loop body is a compound HTG node that may contain other
compound nodes including if-then-else blocks and other loops.

The loop shifting algorithm starts by looking for a scheduling step to shift. To
do this‚ it calls the function FindStepToShift with the first basic block in the loop
body as argument. This function‚ listed in Algorithm 18‚ is a recursive traverses the
loop body starting at currBB. It first calls the function FirstNonCondStep for
currBB. This function returns a NULL step if currBB is empty (due to past shift

7.11. SUMMARY 113

Algorithm 18 : FindStepToShift(currBB)
Returns: The scheduling step to shift
/* Recursive function that returns a step to shift from the longer conditional branch */

1:
2:
3:
4:
5:
6:

stepToShift FirstNonCondStep(currBB)
if then

Find nextBB SUCCS(currBB) with the maximum NumSteps(nextBB)
stepToShift FindStepToShift(nextBB)

end if
return stepToShift

operations) or if currBB only has scheduling steps with conditional Boolean checks.
If FirstNonCondStep does not find a scheduling step‚ the FindStepToShift func-
tion recursively traverses the basic blocks in the loop body till it finds a scheduling
step in one of them. If a basic block has several successor basic blocks (branches)‚ the
algorithm traverses to the branch with the larger number of scheduling steps.

Once the FindStepToShift function returns a scheduling step stepToShift‚ the
ShiftLoopBody algorithm removes this step from its basic block and adds it to the last
basic block in the loop body (lines 3 to 5 in Algorithm 17). A copy of stepToShift is
also added to the loop head (lines 6 and 7). We then reschedule the loop by calling the
function Reschedule. Note that‚ by adding or removing a scheduling step‚ we mean
that the operations in that step are added or removed from a basic block.

In the worst case‚ this algorithm may end up traversing all the basic blocks in a
loop. In practice‚ it usually traverses not more than 2 to 3 basic blocks. Rescheduling
the loop‚ on the other hand‚ can be computationally expensive. However‚ in practice‚
only the shifted operations have to be repacked in the schedule. In our experiments‚
we find that the run times of our synthesis tool‚ on a 1.6 Ghz PC running Linux‚ range
from 1-3 usecs (user seconds) with no loop shifting‚ 2 to 6 usecs with loop shifting and
5 to 10 usecs with loop unrolling. In contrast‚ the logic synthesis tool takes between 2
to 8 hours for synthesizing these designs.

7.11 Summary

In this chapter‚ we presented the various scheduling algorithms that direct the applica-
tion of the transformations in our parallelizing high-level synthesis methodology and
have been implemented in the Spark framework. We first presented the software ar-
chitecture of the scheduler in Section 7.1. We then presented the various algorithms
that form part of this architecture. In Section 7.2‚ we presented the main list scheduling
heuristic that calls all the other algorithms in the scheduler. The algorithm to collect the
list of available operations was presented in Section 7.3‚ followed by the TrailSynth al-
gorithm in Section 7.4. TrailSynth is the Trailblazing algorithm modified for high-level
synthesis. We then presented the dynamic CSE algorithm in Section 7.5. The design
traversal algorithms were presented in Section 7.6. This was followed by an algorithm
for dynamically balancing conditional branches during scheduling in Section 7.7. We
then walked through an example to demonstrate how the various scheduling algorithms

114 CHAPTER 7. CODE TRANSFORMATIONS AND SCHEDULING

work. In Section 7.9‚ we presented the enhancements required in the scheduling algo-
rithms to incorporate chaining of operations across conditional boundaries. Finally‚ in
Section 7.10‚ we presented an algorithm for loop shifting that incrementally exposes
parallelism across loop iterations and reschedules the loop body after pipelining. The
contributions of this chapter are a set of algorithms and heuristics that judiciously guide
the various parallelizing compiler and synthesis transformations‚ so as to improve the
quality of synthesis results.

8
RESOURCE BINDING AND
CONTROL SYNTHESIS

8.1 Introduction

After a design has been scheduled‚ a resource binding pass maps the operations and
variables in the design to functional units and registers respectively. This is followed
by a control synthesis pass that generates the controller implementing the schedule as
well as the select signals for the multiplexers connected to the functional units. In this
chapter‚ we describe our resource binding methodology that minimizes the complexity
of the interconnect‚ and a control synthesis pass that generates a controller based on a
finite state machine style.

8.2 Resource Binding

Based on the number of functional units allocated to the design‚ resource-constrained
scheduling determines the control step during which each operation in the design graph
executes. A resource binding pass maps the operations in each control step to specific
functional units and the variables in the design to registers.

The resource binding problem can be defined as [KM92]:

Definition 8.1. Given a resource allocation of the resource list as defined by
Definition 3.9‚ a resource binding of a design graph is a mapping : V ops

where if operation ops is being executed by
the j-th instance of resource type Otherwise‚ is
undefined.

However‚ the choice of operation to functional unit and variable to register binding
has a profound effect on the interconnect of the design [GDWL92]. It is possible to
reduce interconnect by careful resource binding‚ as explained in the next section.

116 CHAPTER 8. RESOURCE BINDING AND CONTROL SYNTHESIS

8.2.1 Interconnect Minimization by Resource Binding

The speculative nature of the code motions – particularly conditional speculation that
duplicates and executes operations conditionally that would have otherwise executed
unconditionally – increases the complexity of the multiplexers and associated control
logic by many-fold. The control logic selects the inputs to the functional units based
on the current state of the finite state machine (FSM) and the evaluation of the condi-
tions. We collectively refer to the multiplexers‚ de-multiplexers and the control logic
as steering logic or interconnect.

The increase in the complexity of the interconnect leads to an increase in the total
design area. Also‚ the longest combinational paths in the design or the critical paths
often pass through the steering logic. An example of a typical critical path in a design is
shown in Figure 8.1. The critical path originates in the control logic that generates the
select signals for the multiplexers and passes through the multiplexers‚ the functional
unit‚ the de-multiplexers and terminates in a register.

In a bid to control the increase in interconnect complexity‚ we developed an in-
terconnect minimization strategy based on resource binding. This resource binding
methodology first binds operations with the same inputs or outputs to the same func-
tional unit. The variable to register binding then takes advantage of this by mapping
variables that are inputs or outputs to the same functional units to the same register.
This reduces the number of registers connected to the inputs and outputs of functional
units‚ thereby‚ reducing the size of the multiplexers and de-multiplexers connected to
them. We describe this methodology in the next two sections.

8.2.2 Modeling Interconnect Minimizing Resource Binding

To present the interconnect minimizing resource binding problem‚ we first define vari-
able lifetimes as follows:

Definition 8.2. We are given a list of variables, that
are read and written by each operation in For each variable,

we create a list of 2-tuples of the birth time and death time,

8.2. RESOURCE BINDING 117

of the variable. A new 2-tuple is created every time the variable is written:
is time step when it is written and is the last time step in which

its value is read (before being written again). The lifetimes of a variable are then
intervals defined by the difference between all the death and birth times of the variable.
Thus‚ for each 2-tuple‚ the lifetime of the variable is

Similarly‚ for variables that are read across iterations of a loop‚ we create
two lifetimes that span from the time step of creation of the variable in the loop till the
end of the loop and then from the beginning of the loop till the time step of the last read
of the variable.

The interconnect minimizing resource binding problem can be defined as:

Definition 8.3. We are given a data flow graph‚ and correspond-
ing control flow graph‚ such that the operations in the data flow
graph have been scheduled as per Definition 3.18. We are also given a set of resources
Res of resource types whose numbers are upper bound by
The scheduled design can be used to determine the lifetime of the variables as defined
in Definition 8.2. The resource binding problem can then be defined as:

Find a mapping for the set of concurrent operations in each time step in each
basic block in to the resources in
such that the number of inputs to the multiplexers connected to the resources are
minimized.

Similarly‚ find a mapping for each variable that is written in the data flow
graph to a register‚ such that variables that have overlapping lifetimes
are not mapped to the same register and the number of inputs to the multiplexers
connected to the resources are minimized.

Note that‚ operations and variables that are mutually exclusive can be bound to the
same functional unit and register respectively. Also‚ the scheduled design used as the
starting point in the above definition already ensures that the number of operations of
any resource type‚ does not exceed the number of resources of that
type‚

8.2.3 Resource Binding: An Illustrative Example

The interconnect required to connect functional units to each other and to registers can
be reduced by combining operations that have the same inputs and/or same outputs.
This leads to fewer registers connected to the ports of the functional units and hence,
fewer inputs to the multiplexers. To understand this, consider the classical example
of a design and one possible hardware implementation, shown in Figures 8.2(a) and
(b) [GDWL92]. The hardware shown in this figure is obtained by randomly binding
operations 1 through 4 to functional units A0 and A1. However, we can do better. If
we exchange the functional units that operations 3 and 4 are bound to, we can eliminate
a multiplexer from one of the inputs of each functional unit, as shown in Figure 8.3(a).
The intuition behind this exchange is that operations 1 and 4 have the input variable
in common and hence, binding them to the same functional unit means that just one

118 CHAPTER 8. RESOURCE BINDING AND CONTROL SYNTHESIS

register can be used to store the input. The same is true for operations 2 and 3 that have
variable in common. Recall that two operations can be mapped to the same functional
unit if they are mutually exclusive or execute in different control steps.

Variables that are input or output to the same port of a functional unit can be bound
to the same register‚ provided their lifetimes do not overlap or they are mutually exclu-
sive. This further reduces the number of registers connected to the ports of a functional
unit‚ hence‚ leading to smaller interconnect at the port. Thus‚ for the example in Figure
8.3(a)‚ variables and are inputs to the same port of functional unit A0 and simi-
larly‚ variables and are inputs to same port of A1. Hence‚ and can be bound
to the same register as can and Similarly‚ we can switch the binding of the output
variables and The resulting hardware is shown in Figure 8.3(b).

In the next two sections‚ we formulate solutions for the interconnect minimizing
operation to functional unit and variable to register binding problems.

8.2. RESOURCE BINDING 119

8.2.4 Operation to Functional Unit Binding

The operation binding problem defined in Definition 8.3 can be summarized as: given
a scheduled design‚ HTG‚ and a set of resources‚ Res‚ map each operation to a func-
tional unit in Res‚ such that the interconnect is minimized.

We formulate this problem by creating an operation compatibility graph for each
type of resource in the resource list. A node is created in the graph corresponding to
each operation in the design that can be mapped to the resource type under considera-
tion. Compatibility edges are created between nodes corresponding to operations that
are scheduled in either different control steps or execute under a different set of con-
ditions. Note that‚ mutually exclusive operations (and their variables) scheduled in the
same time step are compatible with each other.

Consider the example in Figure 8.4. This design has been scheduled with two
single cycle adders and a single cycle comparator. The operation binding graph for
the “adder” resource in this example is shown in Figure 8.5(a). Each node in this
graph corresponds to an operation from the example. Solid edges denote compatibility
edges and dashed edges denote incompatibility between operations. Two nodes are
considered incompatible if they cannot be mapped to the same functional unit because
they execute concurrently. In this example‚ operations 5 and 6 are incompatible because
they both execute concurrently in basic block Similarly‚ operations 3 and 4 are
incompatible as well. All the other operations in this example are compatible with each
other‚ since they execute either in different control steps or under different conditions.

Any set of cliques that forms a cover of this graph constitutes a valid binding of
operations to functional units. However‚ since the number of resources are constrained‚
the number of cliques in the clique cover cannot exceed the number of functional units
allocated to the design. Furthermore‚ to bias the operation to functional unit binding
for reducing interconnect‚ we introduce weights on the edges. Initially‚ all the edges
are assigned a weight of zero. We then add additional edge weights between operations
for each instance of common inputs or outputs between them‚ so as to make them more

120 CHAPTER 8. RESOURCE BINDING AND CONTROL SYNTHESIS

likely to be bound to the same functional unit. The graph problem then becomes one
of finding a maximally weighted clique cover of this weighted compatibility graph.
To solve this problem‚ we formulate it as a multi-commodity network flow problem
[TTC90]. A max-cost flow through this network represents a valid maximally weighted
clique cover [CP96‚ Sto92].

To convert the operation compatibility graph into a multi-commodity network graph‚
we first create one source node and one sink node for each instance of the resource type
under consideration. Hence‚ for the compatibility graph in Figure 8.5(a)‚ we create two
source and two sink nodes for each of the two adders allocated to this design. We then
pick a control step in the schedule that uses all the resources of the type under consid-
eration. If there is no such control step‚ it implies that the resource allocation for the
design is too high. In such a situation‚ the control step with the highest utilization of
the current resource type is selected. From each source node‚ we add a directed edge to
one operation in this control step‚ such that each operation in the control step has only
one incoming edge from a source node. Also we add edges from each operation node
in the graph to both the sink nodes. All the edges in the graph are made directed in
such a manner that there are no cycles in the graph (this is possible since the execution
times of the operations form intervals). The resulting graph is shown in Figure 8.5(b).
In this graph‚ for the sake of clarity‚ we did not show the edge weights and the edges
from all the nodes to the sink nodes and

8.2. RESOURCE BINDING 121

A max-cost flow through this multi-commodity network then represents a valid
maximally weighted clique cover for the operation compatibility graph [TTC90]. We
determine this flow by negating all the weights in the graph and then finding a min-cost
flow of value equal to the number of resources/source nodes. Nodes left uncovered are
put into the compatible clique that leads to the maximum increase in total weight of
the cover. This solution represents a valid operation to functional unit binding which
minimizes interconnect. The resulting clique cover for the example from Figure 8.4 is
shown in Figure 8.5(c): operations 1‚3‚6 and 7 are mapped to one adder and operations
2‚4 and 5 to the other.

We note that Chang et al. [CP96] have used the same formulation for module allo-
cation but their objective is to minimize power consumption. Stok [Sto92] has used a
similar formulation for register allocation in order to eliminate superfluous data trans-
fers between registers.

8.2.5 Variable to Register Binding

We perform variable binding after operation binding and thus‚ take advantage of the
decisions made by operation binding phase to minimize the number of inputs to each
port of the functional units. The variable to register binding problem is also formulated
as a network flow problem‚ except that we do not place a constraint on the number of
registers. This is because we are willing to allocate more registers in the interest of
reducing interconnect.

We start by creating a variable compatibility graph. There is a node for each in-
stance of a write to a variable in the design. If a variable is written twice‚ each write gets
a new node in the graph. Compatibility edges are added between nodes corresponding
to variables that (a) do not have overlapping lifetimes‚ and (b) whose lifetimes extend
over mutually exclusive control paths. The lifetime of a variable is denoted by a birth
time and a death time corresponding to when the variable is written and read respec-
tively as explained in Definition 8.3. Variables in loops have multiple split lifetime

122 CHAPTER 8. RESOURCE BINDING AND CONTROL SYNTHESIS

intervals [Sto92]. The variable compatibility graph for the example in Figure 8.4 is
shown in Figure 8.6(a).

We assign an initial weight of zero to each edge. Then edge weights are added
between compatible variables for each instance of them being inputs or outputs to the
same port of the same functional unit. A maximally weighted clique cover of this
compatibility graph represents a valid variable to register binding that minimizes inter-
connect.

To find this clique cover‚ we formulate the problem as a min-cost max-flow network
problem [TTC90]. A source and a sink node are added to this weighted compatibility
graph. Directed edges are added from the source node to each variable node in the
graph and from each variable node to the sink node. All the edges between the variable
nodes are made directional in such a way so as to not create cycles. The resulting
network flow graph for the example in Figure 8.6(a) is shown in Figure 8.6(b). The
weights have been omitted from this figure for clarity.

On solving the network flow for the example in Figure 8.6(b)‚ we get a resultant
flow of 2. Variables and are bound to one register and and to
another register. Chang et at. have used a similar approach to variable binding‚ albeit
with the objective of reducing power [CP95]. Stok [SP91] used the same formulation
for operation binding with an objective to minimize interconnect.

8.3 Control Synthesis in the PHLS Framework

To complete the high-level synthesis process‚ a control unit has to be synthesized that
implements the schedule. This control unit generates the signals that drive the func-
tional units‚ interconnect (multiplexers‚ de-multiplexers) and registers in the data path
– the sequence of execution is as per the generated schedule.

Although there are several styles of controller architectures to choose from [DM94‚
KGM95]‚ by far finite state machines (FSMs) are the most popular for digital design.
This is also the controller architecture we have chosen in our methodology. We now
describe the construction of the finite state machines from the scheduled HTG followed
by the subsequent generation of register transfer level (RTL) VHDL. The output VHDL
code can be synthesized using commercial logic synthesis tools such as Synopsys De-
sign Compiler [DC].

8.3.1 State Assignment

Finite state machine generation from scheduled designs starts with state assignment of
the operations. This is the process of assigning states to each scheduling step in which
concurrent operations are scheduled. State assignment in purely data-flow designs is
trivial. Each scheduling step is assigned a state of its own. However, in designs with
control, first a state transition graph is generated based on the control flow in the
scheduled HTG. Operations that execute during the same time, but in scheduling steps
that are on mutually exclusive control paths, can either be assigned the same state or
can be assigned a state based on the control path that they are in. The former method
is known as global slicing and the latter as local slicing

8.3. CONTROL SYNTHESIS IN THE PHLS FRAMEWORK 123

State assignment by these two techniques is demonstrated by an example in Figures
8.7(a) and (b). In these figures‚ the states are demarcated by dashed lines and marked as
S0‚ S1‚ S2 and so on. The local slicing method of state assignment has been used for
the example in Figure 8.7(a). Here‚ each set of concurrent operations in a scheduling
step is viewed as a single slice and assigned a unique state. Hence‚ operations and
in basic block are assigned state and operation in basic block is assigned
state However‚ in global slicing‚ concurrent operations in scheduling steps that are
on mutually exclusive conditional branches but which execute in the same time step
in the scheduled design‚ are assigned the same global slice and hence‚ the same state.
Figure 8.7(b) presents the state assignment for the same example using global slicing.
With global slicing‚ operations and in basic block and operation in are all
assigned the same state

Since global slicing assigns states across mutually exclusive control paths‚ it results
in fewer states in the control unit. However‚ status registers are required to store the
information about which set of mutually exclusive operations to execute in the state.
On the other hand‚ local slicing requires as many states as the sum of the time steps
in each basic block‚ leading to larger state machines. However‚ no status registers are
required.

Weng and Parker [WP92] have done a comprehensive study on these two types of
controllers and found that using global slicing with status registers always produces
designs with lower area. Our own experiments support these results. We find that the
larger number of states required for local slicing leads to poorer finite state machine
optimization. Furthermore‚ since local slicing executes all sets of concurrent operations
in different states‚ the mutual exclusivity information that can be potentially used for
further interconnect optimization is lost to the logic synthesis tool.

124 CHAPTER 8. RESOURCE BINDING AND CONTROL SYNTHESIS

8.3.2 Modeling the Finite State Machine Controller

A finite state machine can be represented by a quintuple [GDWL92‚ DM94‚ HP81]:

where is a set of states‚ is a set of input values and is a set
of output values. and are next-state and output functions that map a cross product
of and I into and O‚ respectively. This means that given a current state from
and an input value from I‚ the function produces the next state in Similarly‚ the
function produces an output in O using the same inputs. We also use the notion of
an initial state that the FSM can be initialized to by a synchronous reset.

Our FSM generation algorithm produces a state assignment for each set of con-
current operations‚ i.e.‚ for each scheduling step. The start and end times of each step
have already been determined by the scheduler. The algorithm also determines the state
transitions between the states based on the current state of the controller and the active
Boolean conditions. Hence‚ in the FSM quintuple above‚ the function uses the cur-
rent state (from and the set of active conditions (Boolean checks) as the input I‚ and
produces the next state. Similarly‚ the output function reduces to the set of operations
(scheduling steps) to be executed based on the current state and current set of active
conditions. We describe a back-end code generator that generates VHDL conforming
to this model in Section 8.3.4.

To understand the impact of scheduling and chaining on state assignment‚ consider
the scheduled HTG in Figure 8.8(a). In this example‚ the adder and the subtracter take

8.3. CONTROL SYNTHESIS IN THE PHLS FRAMEWORK 125

one cycle to execute while the multiplier takes 2 cycles to execute. Hence‚ no operation
is executed in state in basic block because of the multi-cycle multiply operation

Now‚ if we double the clock period allocated to this design and reschedule‚ we
obtain the scheduled HTG shown in Figure 8.8(b). In this HTG‚ operation e is chained
with operation since the add and subtract now execute in half a cycle (we ignore
multiplexing time). Hence‚ their scheduling steps are chained across the conditional
check and execute in the same state‚ Also‚ the multiplier now executes in one cycle
in state in basic block

8.3.3 Finite State Machine Construction

The finite state machine construction algorithm traverses the design in a top-down man-
ner starting from the Start node of the top-level design HTG. It assigns a 3-tuple to
each scheduling step (i.e. set of concurrent operations) in each basic block. This 3-
tuple comprises of a pointer to the scheduling step‚ the set of conditions under which
the step executes and a pointer to the next scheduling step. A state table stores the
list of all the scheduling steps that execute in each state in the form of these 3-tuples.
States are assigned to the scheduling steps by using the global slicing method. The
state assigned to the first scheduling step in a basic block is one more than the larger
of the states assigned to the last scheduling steps in all its preceding non-empty basic
blocks.

126 CHAPTER 8. RESOURCE BINDING AND CONTROL SYNTHESIS

The next scheduling step in a basic block is the step after the current scheduling step
in the basic block. For the last scheduling step of a basic block‚ the next scheduling step
is the first non-empty scheduling step in a subsequent basic block. If the last scheduling
step in a basic block is a conditional check‚ then no entry is made in the state table and
no 3-tuple is created for it. Conditional checks always appear in a scheduling step of
their own. The next scheduling step of the last scheduling step of a basic block is empty

if the basic block has no successor basic blocks‚ i.e.‚ if it is last basic block in the
design HTG.

We demonstrate the 3-tuple assignment by using the example in Figure 8.9(a). This
example is a scheduled HTG with scheduling steps SS0 to SS8 in basic blocks
to The FSM construction algorithm traverses the design starting at the first basic
block of the design level HTG and assigns a 3-tuple corresponding to each schedul-
ing step. The states S0 to S6 are assigned using the global slicing method described in
the previous section. So‚ in scheduling step SS0 executes in state S0. Hence‚ the
state table in Figure 8.9(b) has an entry in state S0: < SS0‚1‚SS1 >‚ where SS0 is
the scheduling step‚ 1 implies no condition‚ and SS1 is the next scheduling step.

The last scheduling step in basic block is a conditional branch. The actual
branch condition has been calculated in an earlier time step and this is only a Boolean
check. Hence‚ it is scheduled in state S2 along with the operations that will be executed
based on this Boolean check‚ i.e.‚ scheduling steps SS3 and SS6. For this reason‚ we
also do not assign a 3-tuple to this conditional check. At the fork or conditional check
of a conditional block‚ the state assignment algorithm first traverses the basic blocks
on the “true” control path and then those on the “false” control path (the ordering of
control path traversal does not matter). The scheduling steps in basic block have
a condition list consisting of !c. Note that‚ the next non-empty scheduling step for the
last scheduling steps in basic blocks and is SS7 in basic block

The algorithm then traverses to basic block The first scheduling step in this
basic block‚ SS7‚ is assigned the state S5. This is one state more than the larger of the
states of the last scheduling steps in basic blocks and The last scheduling step
in has an empty next scheduling step.

The state table in Figure 8.9(b) now contains the list of all the scheduling steps that
execute in each state‚ the conditions under which they execute and the next scheduling
step (and therefore‚ state) to transition to. Note that‚ in our FSM construction‚ there
are no idle states in the shorter of the two branches of conditional blocks. So in the
example in Figure 8.9‚ after the execution of the last scheduling step SS6 in basic
block in state S3‚ the state machine skips over state S4 and directly goes to state
S5. This ensures that if the shorter control path through a conditional is taken‚ then the
design finishes execution faster.

An algorithm that constructs the finite state machine as described above is outlined
in Algorithm 19. This algorithm iterates over the scheduling steps in a basic block and
makes an entry in the state table for the 3-tuple of each scheduling step‚ the conditions
under which the step executes and the next scheduling step to execute. The input to this
algorithm on its first call is the first/start basic block of the design graph. After assiging
states to the basic block‚ the algorithm recursively assigns states to all successor basic
blocks of the current basic block.

8.3. CONTROL SYNTHESIS IN THE PHLS FRAMEWORK 127

Algorithm 19 : AssignState curr State, condList)
/* The finite state machine construction algorithm: assigns states to scheduling steps in
basic block currBB. condList is the current list of conditions */

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

if (IsJoin = true) then
currState max(states of all preceding basic blocks)
condList remove(lastCondition)

end if
for all step in do

if (step does not have a conditional check) then
nextStep GetNextSchedulingStep(step)
new3Tuple < step, condList, nextStep >
StateTable[state] add3Tuple(new3Tuple)
step nextStep
state state + 1

else /* step contains a condition */
newCond condition in step

end if
end for
newTrueCondList newFalseCondList condList
if (newCond then

newTrueCondList add(newCond)
newFalseCondList add(NOT(newCond))

end if
AssignState state, newTrueCondList)
AssignState state, newFalseCondList)

A 3-tuple is inserted in the state table for each non-conditional check step (lines 6
to 9). If a step with a conditional check is found‚ this condition is used later to create
the new list of conditions newTrueCondList and newFalseCondList (lines 16 to
20). These new conditions are used when the function recursively assigns states to the
basic blocks on the “true” and “false” control paths of the current basic block (lines 21
and 22 in Algorithm 19).

As shown in lines 1 to 4‚ the algorithm first checks if a basic block is a join basic
block‚ i.e.‚ the merge point of the branches of a conditional block. If it is‚ then the state
is updated to the maximum of the states in the preceding non-empty basic blocks. Also‚
the last condition added to the condition list is removed (line 3) since the control has
now moved out of the conditional block. Additionally‚ although not shown here‚ the
algorithm assigns state to a join basic block only after checking that both the branches
of the conditional have been scheduled (breath first traversal). This is similar to the
GetNextBasicBlock algorithm presented earlier in Chapter 7.

This algorithm also handles loops since the loop body is executed if the conditional
check of the loop evaluates to true. Hence‚ the loop conditional check is added to the
list of conditions for the loop body. However‚ no condition is added for the basic blocks
on the loop exit‚ i.e.‚ the “false” path that branches out from the loop condition check.
These details have been omitted from the algorithm shown in Algorithm 19 for brevity.

128 CHAPTER 8. RESOURCE BINDING AND CONTROL SYNTHESIS

The FSM generated for the loop is such that if the conditional check is true‚ the next
state is the first scheduling step in the loop body. If the conditional check is false (i.e.‚
the loop exits)‚ the next state is the first scheduling step in the basic block after the
loop.

Once the state table has been constructed by the algorithm presented above‚ the
back-end code generator can then generate the VHDL code‚ as explained in the next
section.

8.3.4 Synthesizable VHDL Generation

Designers usually prefer to partition the finite state machine into several components.
In the context of Progammable Logic Array (PLA) based FSM designs‚ typically a
sequencing PLA for next state generation and a command PLA for primary output
generation are used [Pau89]. In FSM design using VHDL‚ three functional blocks
are used‚ namely‚ the next-state conditioning logic‚ the state-register (or state-variable)
creation and the output conditioning logic [Raj95].

We have found this approach to be best suited for synthesizable VHDL generation‚
since it cleanly partitions the controller from the data path. After construction of the
finite state machine from the scheduled hierarchical task graph‚ the Spark framework
outputs VHDL in the form of three processes (as shown in Figure 8.10):

8.3. CONTROL SYNTHESIS IN THE PHLS FRAMEWORK 129

Synchronous Process: This process assigns the next state to the current state
register of the FSM. It also has an asynchronous reset which resets the state
machine to a known state (the initial idle state). We have chosen a synchronous
process model that is triggered at the rising edge of the clock. This process is
standard for all the VHDL code generated by the Spark framework.

FSM Process: Based on the current state and the prevailing conditions in the
data path, this combinational process determines the next state of the FSM and
stores it in a Next State register. This process is generated using the state table
constructed by the algorithm in the previous section.

Data Path Process: This process executes the operations in the data path based
on the current state. Since we are using a global slicing methodology, the oper-
ations executed also depend on which branch of the mutually exclusive condi-
tional block is active. This process is also generated using the state table (as per
the scheduled HTG).

The data path process is also triggered at the rising edge of the clock. An alternate
style would have been to trigger it by a change in the current state. However, this leads
to all the data path activation signals being latched on the current state. This can cause
glitches and discrepancies between simulation and synthesis results.

There are several advantages of partitioning the FSM and data path in this manner.
Data paths are generally regular and either use components picked from a library (either
standard cell or custom) or synthesized by module compilers [GG00, So
designers often avoid trying to flatten the structural hierarchy inherent in the data path.
On the other hand, designers prefer to flatten the control FSM and try to optimize it
as much as possible, since critical paths typically end up lying on forwarding paths.
Furthermore, frequently, there are data path components that are custom designed. So
during the early design phase, a functional equivalent is used in the RTL synthesis
process. The custom designed component can then be plugged into the netlist at a later
stage. This process partitioning thus facilitates easy application of different constraints
and synthesis commands for the control FSM and the data path.

Besides these four processes, the VHDL code for the multiplexing logic that feeds
into the functional units is placed after all the processes in the architecture description
of a component. We have experimented with several styles for this multiplexing logic
and have settled on a style that has a process for each input port of a functional unit.
The select signals for the multiplexer are determined based on the control state and the
conditions under which a data value feeds into the input port of the functional unit. The
select signals are thus used to choose between the various data inputs.

An example of the VHDL output for one input port of a comparator is given below:

res_CMP_4_in0_MUXES:PROCESS(CURRENT_STATE‚ regNum1‚ hT0‚
regNum0‚ hT1‚ hT39‚ regNum6)

variable mux_select : std_logic_vector(7 downto 0);
BEGIN
mux_select := "00000000";
if (CURRENT_STATE(1) = ’1’) then

130 CHAPTER 8. RESOURCE BINDING AND CONTROL SYNTHESIS

mux_select := "00000001";
end if;
if (CURRENT_STATE(3) = ’1’ and hT0) then
mux_select := "00000010";

end if;
if (CURRENT_STATE(4) = ’1’ and hT0 and hT1 and NOT(hT39)) then
mux_select := "00000100";

end if;
if (CURRENT_STATE(5) = ’1’ and hT0 and hT1 and NOT(hT39)) then
mux_select := "00001000";

end if;
case mux_select is
when "00000001" =>
res_CMP_4_in0 <= regNum1;

when "00000010" =>
res_CMP_4_in0 <= regNum0;

when "00000100" =>
res_CMP_4_in0 <= regNum1;

when "00001000" =>
res_CMP_4_in0 <= regNum6;

when others =>
res_CMP_4_in0 <= 0;

END CASE;
END PROCESS; -- res_CMP_4_in0_MUXES END PROCESS;

8.3.5 Related Work

The conditional resource sharing methods employed in high level synthesis tools lead
to the critical paths being in the controller [HW94]. Rao et al. [RK94] have studied
how the choice of centralized versus distributed controllers impact the control logic
generated. Distributed controllers are attractive in asynchronous systems due to the ab-
sence of a global clock and because global control signals introduce delays that reduce
the inherent parallelism of an asychronous system [ELL00].

Roy et al. [RV96] describe the generation of synthesizable controller models from
communicating VHDL processes. Kim et al. [KKP91] group operations scheduled in
various time steps into states based on their mutual exclusivity information and there-
after, generate a centralized controller.

Finite state machine controllers are the most popular type of controllers for digi-
tal design. However, several other types controllers have also been explored in high-
level synthesis tools [DM94, KGM95]. Cathedral-II [ZSRM90] uses a hardwired mi-
crocoded controller, in which a microprogram ROM (read only memory) stores the
micro-instructions and a sequencer block controls the execution sequence of the pro-
gram. The sequencer block is synthesized and non-sequential (branch) addresses are
generated by a dedicated logic block. Programmable Microcoded controllers are pop-
ular in the DSP community when building ASIPs (Application Specific Instruction set
Processors). In this architecture, the sequencer has several modes which control the
type of conditional branch that can be executed. Using these modes, the microinstruc-
tions in the ROM can perform conditional jumps [KGM95, BR98]. In a Programmable

8.4. SUMMARY 131

Macrocoded controller‚ the ROM contains macro-instructions that can take more than
one cycle to execute and which control the execution of several operations [Lee88].

8.4 Summary

In this chapter‚ we presented the resource binding and control synthesis methodology
employed by our high-level synthesis approach. We first presented the motivation for
a resource binding methodology that minimizes interconnect in designs with complex
control flow. We then presented a formulation for this problem. In Sections 8.2.4 and
8.2.5‚ we presented network flow solutions for the operation and variable binding prob-
lems respectively. In Section 8.3‚ we presented the finite-state machine (FSM) based
control synthesis methodology used in our PHLS framework. We presented a model
for the FSM controller and an algorithm for constructing the FSM in Sections 8.3.2
and 8.3.3. In Section 8.3.4‚ we described the back-end code generator in Spark and
how it generates synthesizable VHDL from the scheduled and resource-bound design.
The contributions of this chapter are (a) the formulation and solution of an intercon-
nect minimizing resource binding methodology that specifically targets designs with
complex control flow‚ and (b) an FSM based control synthesis methodology and an
algorithm for the construction of the FSM controller.

Part III

SPARK: Implementation‚
Scripts and Design Examples

9
SPARK: IMPLEMENTATION‚ USAGE‚
AND SYNTHESIS SCRIPTS

In this chapter‚ we present the Spark software tool in which we have implemented
our parallelizing high-level synthesis methodology. We first discuss implementation
details and briefly describe how the tool can be used. We then describe how synthesis
scripts can be used to guide the transformations and heuristics applied by Spark during
synthesis. In particular‚ we use the synthesis scripts to study the effects on synthesis
results of the various speculative code motions‚ the branch balancing techniques‚ and
different ways of calculating operation priorities.

9.1 Implementation of the SPARK PHLS Framework

We implemented the parallelizing high-level synthesis methodology presented in this
book consisting of the scheduling heuristics‚ the pre-synthesis transformations and the
synthesis and parallelizing compiler transformations in a prototype framework called
Spark. The Spark software tool is over 100‚000 lines of C++ code and uses the EDG
(Edison Design Group) C/C++ front-end parser [EDG].

Spark takes a behavioral description in ANSI-C as input – currently with the re-
strictions of no pointers‚ no function recursion‚ and no irregular control-flow jumps. In
addition to this‚ the designer has to specify the list of resources allocated to synthesize
the design in a hardware resource library along with their timing information and the
bit-widths of the data types used in the C input. Thus‚ resource allocation and module
selection are done by the designer and are given as input to the synthesis tool through
the hardware resource library. Spark provides the ability to control and thus‚ experi-
ment with the various code transformations and heuristics employed during synthesis
using synthesis scripts and command-line options.

Figure 9.1 presents an overview of the Spark framework. After parsing the de-
sign description‚ we capture it using the 3-layered intermediate representation (IR)
described in Chapter 3. Recall that the three layers in this representation are hierar-
chical task graphs (HTGs)‚ control flow graphs (CFGs)‚ and data flow graphs (DFGs).

136 CHAPTER 9.. SPARK: IMPLEMENTATION AND SYNTHESIS SCRIPTS

Since the HTGs store structural information about the control structures (if-then-else‚
loops‚ et cetera) in the code‚ they are useful for efficiently applying coarse-grain and
global code transformations such as loop unrolling‚ loop pipelining‚ speculative code
motions‚ Trailblazing‚ chaining across conditional boundaries‚ et cetera. CFGs are use-
ful for design traversal during scheduling and DFGs capture data dependencies among
operations that is useful during scheduling‚ code motions‚ and chaining.

The Spark tool first applies a range of pre-synthesis transformations as shown in
Figure 9.1 and then proceeds to the scheduling phase. We built this phase in a modu-
lar style using a transformations toolbox that contains a range of transformations and
techniques such as speculative code motions and Trailblazing that were discussed ear-
lier in this book. We implemented the scheduling heuristics presented in Chapter 7 in
this scheduler framework. These heuristics can be guided using the synthesis scripts as
explained in the next section.

After the scheduling phase‚ Spark executes the interconnect minimizing resource
binding and control synthesis passes discussed in Chapter 8. This is followed by a

9.2. USING THE COMMAND-LINE OPTIONS AND SCRIPTS IN SPARK 137

back-end code generation pass that generates register-transfer level (RTL) VHDL and
behavioral C. The RTL VHDL is synthesizable using standard commercial logic syn-
thesis tools such as Synopsys Design Compiler [DC] and Xilinx ISE [Xil]. The behav-
ioral C represents the scheduled and optimized design description and can be used for
functional verification with the input C code.

9.2 Using command-line options and scripts to direct
synthesis and optimizations in SPARK

The algorithms and code transformations implemented in the Spark framework can be
guided using command-line options and scripts that are read at the start of execution.
Details of these options and scripts can be found in Appendix A or the user manual on
the Spark download page [SPA].

Most of the pre-synthesis passes can be controlled by command-line options. For
example‚ the command-line option for loop-invariant code motion is “-hli”‚ for CSE is
“-hcs”‚ for dead-code elimination is “-hdc”. The command-line options also dictate if
resource binding is done (“-hb”)‚ VHDL is generated (“-hvf’) and whether C code is
generated (“-hcc”).

The synthesis scripts are used for turning certain transformations on or off and for
guiding which heuristics are employed during synthesis. For example‚ specific code
motions can be disallowed using the synthesis scripts by setting the variable controlling
the code motions to false. Similarly‚ we can choose to apply or not apply dynamic
branch balancing during scheduling using flags in the script file.

Whereas details about how to use these synthesis scripts are given in Appendix A‚
in the rest of this chapter we present an insight into how we used this scripting ability
to experiment with new transformations and develop heuristics to guide these trans-
formations. We study the interdependencies between the speculative code motions‚
heuristics that guide conditional speculation‚ different ways of specifying the priority
of operations‚ and compare loop unrolling with loop shifting.

Note that‚ the characteristics of the design examples used for presenting results in
the rest of the chapter are presented later in Chapter 10.

9.3 Study of the Interdependencies between the Code
Motions

We developed several speculative code motions in this work that reorder operations
in the design description to maximize performance. However‚ a designer may choose
to disable particular code motions to reduce their impact on the hardware costs of the
circuit. To aid the designer in making these decisions‚ we study the impact of enabling
and disabling individual code motions on the quality of synthesis results. We also study
the interactions between code motions.

We present three sets of experiments. In the first set‚ we enable all the speculative
and non-speculative code motions and then disable one code motion at a time and

138 CHAPTER 9. SPARK: IMPLEMENTATION AND SYNTHESIS SCRIPTS

evaluate the impact on synthesis results. In the second set of experiments‚ we disable
all the speculative code motions and thereafter‚ enable only one code motion at a time
and again evaluate the impact on synthesis results. In the third set of experiments‚ we
disable all the code motions and then enable two code motions at a time. Each of these
code motions can be enabled or disabled by setting flags in the synthesis script file
(see Section A.4.2 in Appendix A). For our experiments‚ we use four designs as case
studies‚ namely‚ MPEG-1 pred1‚MPEG-1 pred2‚ MPEG-2 dp frame and the GIMP
tiler transform. The characteristics of these designs are presented in Chapter 10. In all
the experiments presented in this section‚ loop-invariant code motion‚ CSE‚ dynamic
CSE‚ and branch balancing are enabled.

9.3.1 Disabling One Code Motion at a Time

In Tables 9.1 and 9.2‚ we present the results for the first set of experiments. In the first
row of these tables‚ we list the scheduling results when all the code motions are enabled.
The second row lists results when only early condition execution is disabled. In the
third row‚ only speculation is disabled and in the last row only conditional speculation is
disabled. Note that early condition execution employs reverse speculation for moving
operations. The columns in these tables list the number of states and cycles on the
longest path through the design. The percentage reduction of each row over the first
row (the case when all code motions are enabled) is given in parentheses.

The results in these two tables (Tables 9.1 and 9.2) demonstrate that disabling early
condition execution has no impact on the scheduling results for the pred1 and tiler

9.3. INTERDEPENDENCIES BETWEEN THE CODE MOTIONS 139

designs. On the other hand‚ the cycles on the longest path increase by 3 % for pred2
and 1.4 % for dp frame when early condition execution is disabled. Clearly‚ this code
motion has little impact on scheduling results.

However‚ it is disabling speculation and conditional speculation that has the most
profound impact on the results. Disabling speculation leads to an increase in the cy-
cles on the longest path ranging from 8.1 % for pred1 to 45.7 % pred2. Disabling
conditional speculation leads to the largest increases for the pred1‚ pred2 and tiler
designs: from 78 to 107 %. These results clearly demonstrate that by far speculation
and conditional speculation are the most useful code motions.

9.3.2 Enabling One Code Motion at a Time
The results for the second set of experiments are listed in Tables 9.3 and 9.4. For these
experiments‚ we started by first enabling only the non-speculative code motions‚ i.e.‚
code motions only within basic blocks and across hierarchical blocks (first row of the
two tables). We then enabled only one code motion at a time. First we enabled only
early condition execution (second row)‚ then only speculation (third row) and finally‚
only conditional speculation (fourth row). Once again the percentage reduction of each
row over the results in the first row is given in parentheses.

From the results in Tables 9.3 and 9.4‚ we again see that speculation and condi-
tional speculation have the largest impact on scheduling results. The improvements in
cycles on the longest path with speculation enabled range from 13 to 35 % and with
conditional speculation enabled range from 6 to 46 %. Early condition execution leads

140 CHAPTER 9. SPARK: IMPLEMENTATION AND SYNTHESIS SCRIPTS

to modest improvement in results for two of the four designs: dpframe and tiler.
Hence‚ there is a discrepancy in the effectiveness and impact of early condition execu-
tion on the scheduling results as compared to the previous section‚ We found that this
discrepancy is because the improvements due to early condition execution get masked
by other transformations such as conditional speculation and speculation.

9.3.3 Enabling Multiple Code Motions at a Time

Now we enable two code motions at a time and study their impact on scheduling results.
Tables 9.5 and 9.6 list the results when we first disable all the speculative code motions
(first row)‚ then enable only early condition execution and speculation (second row)‚
then enable only early condition execution and conditional speculation (third row)‚ then
enable only speculation and conditional speculation (fourth row)‚ and finally enable all
the code motions (fifth row).

The results in these two tables coupled with the results from Tables 9.3 and 9.4
from the previous section tell us what combinations of code motions have an interde-
pendency. Hence‚ when early condition execution is enabled with speculation (second
row in Tables 9.5 and 9.6)‚ we get worse results than if speculation is enabled alone
(third row in Tables 9.3 and 9.4). However‚ when early condition execution is enabled
with conditional speculation (third row in Tables 9.5 and 9.6)‚ we get better results than

9.4. STUDY OF THE IMPACT OF DYNAMIC BRANCH BALANCING 141

if conditional speculation is enabled alone (fourth row in Tables 9.3 and 9.4). For the
dp frame design we get the same results for speculation and conditional speculation
with or without early condition execution.

These results show that early condition execution interacts positively with condi-
tional speculation and negatively with speculation. Also‚ the results in the last rows
of Tables 9.5 and 9.6 demonstrate that when all the code motions are enabled‚ we get
the best synthesis results. Thus‚ the net interaction with all the code motions enabled
is positive. Similarly‚ when speculation and conditional speculation are enabled to-
gether‚ we get better synthesis results for all four designs than when only one of them
is enabled.

9.4 Study of the Impact of Dynamic Branch Balancing

As we saw in the previous section‚ the speculative code motions can significantly im-
prove the quality of synthesis results. However‚ whenever an operation is moved in
the design using a speculative code motion‚ it has an impact on the hardware circuit.
Often the control and multiplexing costs (and therefore the area) increase. We found
that of all the code motions‚ conditional speculation by far is the most expensive code
transformation from the point of view of hardware costs. This is because conditional
speculation duplicates operations and hence‚ leads to more complex multiplexer and
control logic.

This led us to develop several techniques to guide and aid conditional speculation.
Of these‚ the most important are a set of dynamic branch balancing techniques that
create new opportunities for employing conditional speculation [GDGN03a]. Branch
balancing was discussed in detail in Chapter 6. There are two branch balancing tech-
niques: (a) Branch balancing during design traversal (BBDDT): this technique inserts
scheduling steps while traversing the design during scheduling‚ and (b) Branch bal-
ancing during code motions (BBDCM): this technique inserts steps if it enables code
motions (specifically conditional speculation).

In Tables 9.7 and 9.8‚ we list the results for our experiments with the two branch
balancing techniques. The first row lists the results for when all the speculative code
motions are enabled except conditional speculation. We call this the baseline case.
The second row has conditional speculation (CS) enabled along with the rest of the
code motions. In the third row‚ all the code motions including CS are enabled along
with the branch balancing during design traversal (BBDDT). The fourth row lists the
results for when all the code motions are enabled along with the branch balancing
during code motion (BBDCM). The fifth row has both the branch balancing algorithms
enabled along with all the code motions. The percentage reductions of each row over
the baseline case (first row) are given in parentheses. These techniques can be enabled
and disabled in the synthesis scripts as explained in Section A.4.1 in Appendix A.

The results in Tables 9.7 and 9.8 demonstrate that the branch balancing techniques
create many more opportunities to employ conditional speculation. When conditional
speculation is enabled alone (second row in both tables)‚ the improvements in number
of states and cycles on the longest path are in the range of 8 to 12 % and 3 to 10 % for
the pred1‚ pred2 and dpframe designs. However‚ for the tiler design‚ conditional

142 CHAPTER 9. SPARK: IMPLEMENTATION AND SYNTHESIS SCRIPTS

speculation leads to reductions of 36 and 39 % in the number of states and cycles on
the longest path. For the other three designs‚ the results improve significantly when the
two branch balancing techniques are applied to aid conditional speculation. The total
improvements with both the branch balancing techniques enabled range from 16 to 40
% in the number of states and 6 to 51 % in the cycles on the longest path for the four
designs (last row in both tables).

The results in Tables 9.7 and 9.8 also demonstrate that the two branch balancing al-
gorithms are complementary to some extent. Whereas the BBDDT technique is more
effective for the pred1‚ pred2 and tiler designs‚ the BBDCM technique is more ef-
fective for the dpframe design. Also‚ we can see from the results in the two tables
that the best result for all the designs is obtained when both the BBDDT and BBDCM
algorithms are employed. These results demonstrate that each of the branch balancing
algorithms create different and unique opportunities for employing conditional specu-
lation.

9.5. DIFFERENT WAYS OF CALCULATING PRIORITY 143

9.5 Different Ways of Calculating Priority

The Spark scheduler uses a priority-based list scheduling algorithm to schedule the
design. Available operations are ordered on the basis of their priority and the operation
with highest priority is chosen for scheduling (see Section 7.2).

We experimented with two different ways of calculating priority using our synthesis
scripts (see Section A.4.1 in Appendix A):

Priority of an operation is the sum of the priorities of all the operations that
use the result of This is called the Sum method.

Priority of an operation is one more than the maximum of the priorities of
all the operations that use the result of This is called the Max method.

1.

2.

The results for experiments with these two different ways of calculating priority are
listed in Tables 9.9 and 9.10. The first and second rows in these tables list the results
when priority is calculated using the Sum and the Max method respectively. These
results demonstrate the Max method leads to marginally better results than the Sum
method. The Max method reduces the number of states and the cycles on the longest
path by up to 2.9 % and 0.9 % respectively.

9.6 Recommended Synthesis Scripts

Based on the experiments presented in this book‚ we recommend invoking the Spark
tool with the synthesis script and the command-line options given in Sections A.6 and

144 CHAPTER 9. SPARK: IMPLEMENTATION AND SYNTHESIS SCRIPTS

A.7 of Appendix A. These options produce the best synthesis results for the multimedia
and image processing designs we have used.

In this synthesis script‚ we have enabled all the code motions‚ enabled both the
branch balancing algorithms‚ enabled dynamic CSE‚ and enabled the Max method of
calculating priority. The command-line options that are enabled are: loop-invariant
code motion‚ common sub-expression elimination‚ copy and constant propagation‚
dead code elimination‚ scheduling‚ generation of synthesizable RTL VHDL‚ interconnect-
minimizing resource binding and generation of statistics about cycle count (-hec).

The only things that change for the synthesis of microprocessor functional blocks
is that we have to enable chaining of operations across conditional boundaries‚ give a
large enough clock period so that all the operations can be chained into one or a few
cycles and give the appropriate (usually full) loop unrolling options. The modifications
to the synthesis script and command-line options for the synthesis of microprocessor
blocks are given in Section A.8 of Appendix A. Note that‚ since we use Spark as a de-
sign exploration tool for the synthesis of microprocessor blocks‚ the large clock period
is used only to enable packing of all operations into one or more cycles. The designer
can then use the schedule and VHDL generated by Spark and replace the functional
units with custom units that execute within the clock period of the microprocessor.

9.7 Summary

In this chapter‚ we presented the Spark framework in which we implemented our paral-
lelizing high-level synthesis methodology. We described the implementation of Spark
and briefly explained the usage of the software tool. We then demonstrated the utility
of the scripting ability available in Spark to experiment with the different optimizations
and heuristics. In Section 9.3‚ we presented experiments when the various speculative
code motions are enabled and disabled individually and in pairs. In Section 9.4‚ we
then presented results for two branch balancing techniques that increase the number
of opportunities to employ conditional speculation. In Section 9.5‚ we compared two
different ways of calculating the priority of operations. We found that playing with the
synthesis scripts enables us to find the combination of techniques that leads to the best
synthesis results. The contributions of this chapter are a presentation of the implemen-
tation of the Spark framework and a demonstration of the utility of the synthesis scripts
for guiding the synthesis process.

10
DESIGN EXAMPLES

10.1 Introduction

In this chapter, we present the quality of results achieved by the Spark high-level syn-
thesis framework on a set of design examples from the multimedia and image process-
ing domains. We first detail the effects of each transformation presented in this book
using a set of four designs that are representative of the multimedia and image pro-
cessing domains. These four designs serve as case studies to understand the effect of
individual transformations on the quality of synthesis results.

To quantify the effectiveness of the transformations presented in this book beyond
the four case studies, we apply the transformations on a set of twelve designs derived
from various multimedia and image processing applications. For these twelve designs,
we perform a comparative analysis of the pre-synthesis transformations, the speculative
code motions and the dynamic CSE technique.

10.1.1 Designs used for the Four Case Studies

The four designs we used as case studies are derived from three moderately complex
real-life applications representative of the multimedia and image processing domains,
namely, the MPEG-1 algorithm [SPA], the MPEG-2 algorithm [LPMS97, Med] and
the GIMP image processing tool [Gim]. The designs we have chosen from these appli-
cations consist of two functions from the Prediction block of the MPEG-1 algorithm,
one function from the Motion Estimation block of the MPEG-2 encoder algorithm and
one function from the GIMP image processing tool. The MPEG-1 functions used are
the pred1 and pred2 functions, the MPEG-2 function is the dpframe function and
the GIMP function is the tile function (with the scale function inlined) from the “tiler”
transform1.

Table 10.1 lists the characteristics of the four designs used as case studies in terms
of the number of if-then-else conditional blocks (If HTGs), loops (Loop HTGs), non-

1Note that this floating point function has been arbitrarily converted to an integer function for the purpose
of our experiments. This does not affect the nature of the data and control flow, but only the data that is
processed.

146 CHAPTER 10. DESIGN EXAMPLES

empty basic blocks and the total number of operations in the input description. The
number of If HTGs, Loop HTGs, and basic blocks is indicative of the control complex-
ity of the design. All these designs have doubly nested loops.

Table 10.1 also lists the type and quantity of each resource allocated to schedule
these designs for all the experiments presented in the following sections. The resources
indicated in this table are; + – does add and subtract, == is a comparator, * a multi-
plier, / a divider, [] an array address decoder and << is a shifter. The multiplier (*)
executes in 2 cycles and the divider (/) in 5 cycles. All other resources are single cycle.

10.1.2 Larger Set of Designs used for Validating Our Synthesis Ap-
proach

We use twelve more designs to validate the utility of our synthesis approach on a larger
set of designs. These designs are listed in Table 10.2. These designs consist of 8 de-
signs derived from the GIMP image processing tool [Gim], 2 designs from the MPEG-

10.2. RESULTS FOR PRE-SYNTHESIS OPTIMIZATIONS 147

2 algorithm [LPMS97, Med], 1 design from the G721 voice compression algorithm
[LPMS97, Med] and 1 design from the XVID MPEG-4 video decoding tool [Xvi].

Table 10.2 lists the characteristics of the twelve designs in terms of the number of
if-then-else conditional blocks (If HTGs), loops (Loop HTGs), non-empty basic blocks
and the total number of operations in the input description. This table also lists the type
and quantity of each resource allocated to schedule these designs for the experiments
presented in Section 10.6.2.

10.1.3 Metrics for Scheduling and Logic Synthesis Results

We present two sets of results for the experiments in this chapter: the scheduling re-
sults as reported by the Spark high-level synthesis tool and the logic synthesis results
obtained by synthesizing the RTL VHDL generated by Spark using the Synopsys De-
sign Compiler logic synthesis tool.

The scheduling results are in terms of the number of states in the finite state ma-
chine controller and the cycles on the longest path (i.e. execution cycles). The longest
path through an if-then-else conditional block is the cycles on the longer branch and
for loops, the longest path length of the loop body is multiplied by the number of loop
iterations. For all the designs used in our experiments, the loop bounds are known.

We use the LSI-10K synthesis library for logic synthesis of the RTL VHDL and
the components are allocated from the Synopsys DesignWare Foundation library. The
logic synthesis results are presented in terms of three metrics: the critical path length (in
nanoseconds), the unit area (in terms of synthesis library used) and the maximum delay
through the design. The critical path length is the length of the longest combinational
path in the netlist as reported by static timing analysis tool. This length dictates the
clock period of the design. The maximum delay is the product of the longest path
length (in cycles) and the critical path length (in ns) and signifies the maximum input
to output latency of the design. The area is the sum of the combinational and non-
combinational area as reported by the logic synthesis tool.

Recall that, the Spark framework treats each function call as a resource and cre-
ates a functional unit corresponding to it in hardware. For example, the function
calc_ forward_motion is called from the two functions pred1 and pred2 and hence,
is a component or functional unit that is embedded in these hardware blocks. These
“called” functions contribute towards the schedule length and the number of states in
the controller of the calling function.

10.2 Results for Pre-Synthesis Optimizations

For the results presented in this section, we start with a “baseline” case that has all the
speculative code motions enabled, along with the compiler passes of copy propaga-
tion, constant propagation and dead code elimination that are applied both before and
after scheduling. This baseline case, thus, represents a design that has already been
optimized to a great extent by the speculative code motions (see Section 10.3). Using
this baseline case, we demonstrate how the pre-synthesis transformations can further
improve the synthesis results.

148 CHAPTER 10. DESIGN EXAMPLES

10.2.1 Function Inlining

In our discussion of source level transformations, we left out one important coarse
grain source-to-source transformation, namely, function inlining. Function inlining is
a transformation that replaces a call to a function by an instance of the function itself.
This transformation is usually applied to increase the scope of application of other
compiler transformations. Although this transformation has not been implemented in
the Spark framework, we applied it manually to the MPEG-1 designs and to the tiler
transform from the GIMP. To demonstrate the effectiveness of function inlining, we
present scheduling results for these designs.

Both the functions, pred1 and pred2, of the MPEG-1 design call the function “cal-
cid” at the start of doubly nested loops. For this reason and because calcid is a small
function that consists of only straight-line code (no control), it is ideal for inlining.
Similarly, we inline the function “scale” that is called by the tiler transform in the
GIMP tool at the start of a doubly nested loop.

Table 10.3 lists the scheduling results before and after inlining the calcid function
into the pred1 and pred2 functions and the scale function into the tiler function. From
the results in this table, we observe that inlining leads to improvements of between 12 to
32 % in the number of states in the FSM controller and between 7 to 14 % in the cycles
on the longest path through the designs. These improvements are because inlining the
function calls for these designs increases the opportunities available to the parallelizing
transformations to compact the code.

The logic synthesis results for these experiments are given by the bar charts in
Figure 10.1 for the three designs. The metrics mapped here are the cycles on the longest
path, the critical path length, the total delay (cycles x critical path length) and the unit
area. All the values are normalized by the values for the non-inlined case.

10.2. RESULTS FOR PRE-SYNTHESIS OPTIMIZATIONS 149

We see from these logic synthesis results that inlining leads to a higher (about 10
to 15 %) critical path length for the pred1 and pred2 designs. This is because after
inlining, the number of operations in the design increases due to the addition of the
operations from the inlined function. Hence, a larger number of operations are now
mapped to the same number of resources as before. This leads to more complex multi-
plexers and associated control logic. However, the total delay through the synthesized
circuits for the three designs decreases from between 2 to 20 % with area remaining
almost constant. Indeed, we found that when even more optimizations are enabled, the
results are far better for the inlined designs over the non-inlined designs.

Based on these results, for the rest of the experiments presented in this chapter,
we use the inlined versions of the pred1, pred2 and tiler functions as the “baseline”
case. These inlining decisions have been made by inspecting the design and based
on experimentation when it became clear that inlining would significantly enhance the
opportunities to apply the transformations in the Spark toolkit.

150 CHAPTER 10. DESIGN EXAMPLES

10.2.2 Loop-Invariant Code Motion and CSE: Scheduling Results

Tables 10.4 and 10.5 list the scheduling results obtained after the application of the
pre-synthesis transformations to the four designs. The results in the first row are for
the baseline case (all code motions enabled along with copy propagation and dead
code elimination); the second row for when only loop-invariant code motion (LICM)
is applied to this baseline design, the third row for when only common sub-expression
elimination (CSE) is applied and the fourth row for when both LICM and CSE are
applied. The percentage reductions of each row over the baseline case are given in
parentheses.

The results in the second row of these two tables show that when loop-invariant
code motion alone is applied, the number of states in the controller increases by 11 to
27 %, while the cycles on the longest path through the design decrease between 2 to 23
%. The reduction in cycles is because loop-invariant operations are moved out of the
loop, which in turn leads to the execution of fewer operations per iteration of the loop
body. However, the operations that are moved outside the loop body require more states
to execute and often this increase in the number of states outside the loop is greater than
the decrease in the number of states required to execute operations within the loop.
We will explore the trade-off this creates between area increase versus performance
increase in the next section.

We see from the third row in Tables 10.4 and 10.5 that when CSE is applied in addi-
tion to the transformations in the baseline case, the number of states decrease between
5 to 26 % and cycles on the longest path decrease between 10 to 28 %. Clearly, there

10.2. RESULTS FOR PRE-SYNTHESIS OPTIMIZATIONS 151

exist numerous opportunities to apply CSE in off-the-shelf code for these industrial
applications.

The results in the last row of these tables show that when both loop-invariant code
motion and CSE are applied, the improvements in the cycles on the longest path are
additive to some extent. Also, CSE is able to counter the increase in the number of
states caused by LICM. Hence, compared to the baseline case, after applying both the
transformations we obtain reductions between 0 to 26 % in the number of states and
between 15 to 40 % in the cycles on the longest path.

10.2.3 Loop-Invariant Code Motion and CSE: Logic Synthesis Re-
sults

The results after logic synthesis of the VHDL generated by Spark corresponding to the
pre-synthesis experiments are presented in the graphs in Figure 10.2. The bars in these
graphs represent the baseline case (1st bar), when only LICM is applied (2nd bar),

152 CHAPTER 10. DESIGN EXAMPLES

when CSE is applied (3rd bar) and finally, when both LICM and CSE are applied (4th
bar). All the metrics mapped are normalized with respect to the baseline case.

These results show that the critical path length remains fairly constant or reduces
marginally when these transformations are applied. This is important because it sig-
nifies that the clock period in the design does not increase. The constant critical path
length coupled with a decrease in the cycles on the longest path leads to significant
reductions in the total delay through the circuits for the four designs. Clearly, LICM
leads to larger improvements in delay than CSE (i.e. there are more opportunities for
applying LICM in these codes).

The larger controller size (as given by the number of states) after applying LICM
can lead to a larger circuit area by between 5 to 10 % over the baseline case. Applying
CSE with LICM, however, brings this area increase under control. With both trans-
formations, we achieve between a 20 to 50 % reduction in the total delay through the
design, with a 5 to 15 % reduction in area.

Loop-invariant code motion has two opposing effects on the synthesized designs.
On one hand, it reduces the cycles on the longest path through the design by executing
fewer operations within the loop body. On the other hand, LICM also leads to a bigger
FSM controller. Also, because transformations such as LICM and the speculative code
motions increase resource utilization, the complexity of the steering logic (multiplexers
and de-multiplexers) increases, thereby, leading to an increase in area. In contrast, CSE
leads to a reduction in the size of the controller. Also, since CSE eliminates redundant
operations, the number of operations mapped to the functional units reduces, hence
reducing area.

10.3 Results for Speculative Code Motions

For the experiments presented so far, we have used a baseline design that has been op-
timized using the speculative code motions. In this section, we study the effectiveness
of the individual speculative code motions on scheduling and logic synthesis results.

10.3.1 Scheduling Results for the Speculative Code Motions

Tables 10.6 and 10.7 list the number of states in the FSM and cycles on the longest path
for the four designs under consideration. The rows in these tables present results with
each code motion enabled incrementally, i.e., these signify the “allowed code motions”
while determining the available operations (see Section 7.2) and do not represent an
ordering of code motions.

We first allow code motions only within basic blocks (first row) and then, in the
second row, we also allow code motions across hierarchical blocks, i.e., across entire
if-then-else conditionals and loops. Thus, the second row lists the results after ap-
plying only non-speculative code motions. Speculation is enabled in addition to the
non-speculative code motions for the experiments presented in the third row, and in
the fourth row, early condition execution is enabled as well. Finally, in the last row,
conditional speculation is also enabled; this row represents the case where all the code

10.3. RESULTS FOR SPECULATIVE CODE MOTIONS 153

motions are enabled. The percentage reductions of each row over the previous row are
given in parentheses.

As each code motion is enabled, we see significant reductions in both the number
of FSM states and the cycles on the longest path. Enabling code motions across hierar-
chical blocks lead to improvements of between 4 to 14 % in the number of states and
between 3 to 5 % in the number of cycles. The largest improvements in performance
(cycles) are obtained by employing speculation and conditional speculation. Specula-
tion and conditional speculation lead to improvements between 3 to 29 % and between
5 to 46 % in the number of cycles respectively (over the results from the previous rows).
The number of states also decrease by 8 to 18 % and 15 to 42 % for these code mo-
tions. In contrast, early condition execution, which uses reverse speculation to move
operations down into conditional branches, leads to only marginal or no improvements
for the four designs.

The results in Tables 10.6 and 10.7 demonstrate that speculative code motions
lead to substantial improvements in the latency of the design and complexity of the
controller. The total reduction in cycles on the longest path and number of states
achieved with all the code motions enabled over code motions only within basic blocks

154 CHAPTER 10. DESIGN EXAMPLES

ranges between 36 % to 58 % (last row in the tables). Note that, when code motions
within basic blocks and across hierarchal blocks are enabled, the priority-list schedul-
ing heuristic we have presented reduces to the classical non-speculative list scheduling
approaches presented in previous works [DM94, GDWL92].

10.3.2 Logic Synthesis Results for the Speculative Code Motions

The logic synthesis results for these experiments are presented in Figure 10.3. The
bar charts in this figure plot the same logic synthesis metrics as the previous section.
The bars in these charts present results for code motions within basic blocks only (first
bar), for code motions across hierarchical blocks enabled as well (second bar), early
condition execution enabled also (third bar), speculation enabled as well (fourth bar),
and finally with conditional speculation enabled as well (fifth bar). Thus, the fifth bar
represents the results with all the speculative and non-speculative code motions enabled
and the second bar represents the results when only the non-speculative code motions
are enabled.

10.4. RESULTS FOR DYNAMIC CSE 155

These results show that the critical path length remains fairly constant as these code
motions are enabled. This means that the clock period does not increase by applying
these code motions. The constant critical path length, coupled with large decreases in
cycles on the longest path, leads to large decreases in the total delay through the circuit.

However, code motions such as speculation and conditional speculation can lead
to a large increase in area, as we can see from the area results in the bar charts in
Figure 10.3. This area increase is due to the increasing complexity of control and
multiplexing logic caused by the code motions. This increasing complexity, in turn, is
because the speculative code motions schedule the design in fewer cycles than the non-
speculative code motions. Thus, resource utilization and resource sharing increases and
this leads to increase in the complexity of the multiplexers and associated control logic.
This complexity increase is particularly large due to conditional speculation because it
duplicates operations and thus, more operations are mapped to the same number of
resources as before.

10.4 Results for Dynamic CSE

In this section, we compare the effectiveness of the dynamic CSE transformation ap-
plied during scheduling with a traditional CSE pass applied before scheduling. Once
again, scheduling and logic synthesis results are presented.

10.4.1 Scheduling Results for Dynamic CSE

The scheduling results for these experiments are presented in Tables 10.8, 10.9, 10.10,
and 10.11 for the four designs. The first row in these tables lists results for the baseline
case with all code motions enabled, along with copy propagation and dead code elim-
ination. The second row is for when only CSE is applied as a pass before scheduling,
the third row for when only dynamic CSE is applied during scheduling and finally, the
fourth row presents results for when both CSE and dynamic CSE are applied. In all
these experiments, dynamic copy propagation is done whenever possible (even when
dynamic CSE is not applied). The percentage reductions of each row over the base-
line case are also given in parentheses. These tables also give the number of registers
required to bind the variables in the designs.

The results in these tables demonstrate that applying CSE alone can lead to im-
provements between 5 to 23 % in the number of states and between 10 to 28 % in the
cycles on the longest path. In themselves, these improvements are significant. When
dynamic CSE is applied, the improvements are even more dramatic for all the designs,
as is evident by the results in the third row of Tables 10.8, 10.9, 10.10, and 10.11. Dy-
namic CSE is able to eliminate many more operations with common sub-expressions
than traditional CSE can. Employing dynamic CSE during scheduling reduces sched-
ule length (cycles) by 10 to 35 % and the number of states by 5 to 31 % over the
baseline case. The last rows in these tables show that applying both CSE and dynamic
CSE together leads to further improvements of a few cycles for the MPEG-2 dp frame
design.

156 CHAPTER 10. DESIGN EXAMPLES

10.4. RESULTS FOR DYNAMIC CSE 157

Our experiments show another important result. Contrary to common belief, the
results show that applying CSE and dynamic CSE leads to a reduction in the number
of registers required (see last column in the four tables). This decrease can be attributed
to three inter-related factors: (a) the reduced schedule lengths imply shorter variable
lifetimes, especially for variables whose results are required for future loop iterations;
(b) elimination of an operation by CSE means that instead of requiring two registers
to store the two variables/operands that are read by the operation, only one register is
required to store the result of the operation; and (c) when operations with the same sub-
expression are eliminated, then they can reuse the result of only one of the operations.
This saves on storing the results of several operations.

10.4.2 Logic Synthesis Results for Dynamic CSE

The logic synthesis results for the experiments using CSE and dynamic CSE are pre-
sented in the graphs in Figure 10.4. The values of each metric are mapped as before:

158 CHAPTER 10. DESIGN EXAMPLES

for when all the code motions are enabled but no CSE or dynamic CSE is applied (first
bar), for when only CSE is applied (second bar), when only dynamic CSE is applied
(third bar) and the last bar is for when both CSE and dynamic CSE are applied.

From the results in these graphs, we find that dynamic CSE leads to a shorter critical
path length and smaller circuit area than applying only CSE. The decreases in critical
path length, coupled with the reductions in cycles on the longest path we saw earlier,
lead to dramatic reductions in the total delay when dynamic CSE is applied: from
about 20 % (for dpframe) to 40 % (for pred1, pred2 and tiler). Also, when dynamic
CSE and CSE are applied together, it consistently leads to lower area; sometimes up
to 30 % less (for pred2 and dpframe). This decrease in area can be attributed to
two factors. Firstly, the elimination of some operations due to CSE and dynamic CSE
means that fewer operations are mapped to the functional units and this leads to reduced
interconnect (multiplexers and de-multiplexers). Secondly, reductions in the controller
size and the number of registers lead to further reductions in area.

The overall results in the graphs in Figure 10.4 demonstrate that enabling dynamic
CSE reduces the total delay through the circuit by up to 40 % while at the same time re-
ducing the design area. These improvements are better than applying only CSE before
scheduling. Also, these results validate our belief that transformations applied dynam-
ically during scheduling can exploit several new opportunities created by scheduling
decisions and the movement of operations due to the speculative code motions.

10.5 Results for Chaining Across Conditionals

We developed the chaining across conditionals transformation primarily for the syn-
thesis of microprocessor functional blocks However, even in the domain
of the multimedia and image processing applications discussed in this chapter, we find
that there exist several opportunities to chain simple assign (copy) operations that oc-
cur in conditional blocks with operations that produce their values. This sometimes can
generate a result one cycle earlier than it would otherwise would have been available
(see Section 6.6).

In Tables 10.12 and 10.13, we compare the scheduling results of the baseline case
for the four designs (first row) with the results for when chaining across conditionals
is enabled (second row). We obtain marginal improvements: between 2 to 7 % in the
number of states and only between 0.3 to 7 % in the cycles on the longest path.

The logic synthesis results for the four designs corresponding to these experiments
are presented in the bar charts in Figure 10.5. The first bar is the baseline case, while
the second bar is with chaining across conditionals enabled. These results demonstrate
that chaining operations across conditionals leads to only marginally better results (and
sometimes worse results).

Chaining operations across conditionals (even just variable copy operations) packs
more operations into a cycle and thus leads to more complex multiplexers and associ-
ated control logic. The corresponding decrease in the controller size is modest. Clearly,
chaining across conditionals is not a useful transformation for the class of multimedia
and image processing applications considered by our work. However, this does not

10.5. RESULTS FOR CHAINING ACROSS CONDITIONALS 159

160 CHAPTER 10. DESIGN EXAMPLES

diminish the value of this technique; it is indispensable for the synthesis of micropro-
cessor functional blocks (see Chapter 11).

10.6 Putting it all together

So far we analyzed the scheduling and logic synthesis results of the various transforma-
tions presented in this book. In this section, we present a comparative analysis of the
pre-synthesis transformations, the speculative code motions and dynamics CSE. We
first present this analysis for the four case studies used for the detailed experiments.
We then demonstrate the utility of our transformations and transformation scripts over
a large set of designs.

10.6.1 Overall Synthesis Results for the Four Case Studies

Tables 10.14 and 10.15 list the results after applying the speculative code motions, the
pre-synthesis transformations, and dynamic CSE. In the experiments listed in the first
row, we allowed code motions only within basic blocks and across hierarchical blocks,
i.e., only the non-speculative code motions. In the second row, we enabled all the code

10.6. PUTTING IT ALL TOGETHER 161

motions, including the speculative code motions. In the third row, we applied the pre-
synthesis transformations, namely, loop-invariant code motion (LICM) and common
sub-expression elimination (CSE). In the fourth row, we also applied dynamic CSE
during scheduling. The improvement of each row over the previous row is presented in
parentheses. The last row lists the total improvements of all the transformations (fourth
row) over the non-speculative code motions case (first row).

The results in these tables demonstrate that the speculative code motions and the
pre-synthesis transformations result in performance improvements of up to 51 % and
40 % respectively. After applying the speculative code motions, the number of states
reduce by 29 to 50 % and the number of cycles by 29 to 51 % and 40 to 51 %. The
pre-synthesis transformations lead to another 0 to 26 % reduction in the number of
states and 15 to 40 % reduction in the cycles on the longest path. Dynamic CSE is
able to further improve the results by up to 9 % in the number of states and up to 17
% in cycles. Recall that CSE has already been applied as part of the pre-synthesis
transformations. Hence, dynamic CSE is able to find several more opportunities for
CSE during scheduling.

162 CHAPTER 10. DESIGN EXAMPLES

The logic synthesis results corresponding to these experiments are presented in
Figure 10.6. The first bar corresponds to the case when the speculative code motions are
not applied, the second bar has speculative code motions enabled, LICM and CSE are
also applied for the results represented by the third bar, and finally, we apply dynamic
CSE as well (fourth bar).

Once again, we can see from these graphs that the speculative code motions lead to
improvements ranging from 25 to 50 % in the total delay through the circuit. Critical
path increases marginally due to more complex multiplexing and control logic required
to pack the operations in fewer cycles. This in turn leads to an increase in area by 10
to 25 %. However, when the pre-synthesis transformations are applied as well, both
the area and the critical path length reduce. With pre-synthesis transformations and
speculative code motions, the total delay through the circuit is 40 to 80 % less than
over applying just the non-speculative code motions. The last bar shows that dynamic
CSE leads to another improvement of 5 to 10 % in the total delay and area of the
synthesized circuit. Keep in mind that the last 10 % improvements are usually the
hardest to obtain.

10.6.2 Effect of Parallelizing Synthesis Transformations on Circuit
Quality of a Large Set of Designs

So far we presented a detailed comparison of the synthesis results for individual com-
piler and synthesis transformations on four case studies: pred1, pred2, dpframe and
tiler. In this section, we evaluate the effectiveness of the transformation scripts devel-
oped for the four case studies on a larger set of designs. We present logic synthesis
results for twelve more designs for experiments that apply the speculative code mo-
tions, the pre-synthesis transformations and dynamic CSE. The characteristics of these
twelve designs have been presented earlier in Section 10.1.2, along with the resources
allocated to schedule them.

The overall synthesis results for these designs are presented in Figures 10.7 and
10.8. The first bar in the graphs in these figures plot the synthesis results corresponds
to the case when the speculative code motions are not applied, the second bar has
speculative code motions enabled, the pre-synthesis transformations are also applied
for the results represented by the third bar, and finally, we apply dynamic CSE as well
(fourth bar). The metrics mapped in these graphs are the cycles on the longest path, the
critical path length, the total delay and the unit area.

The synthesis results for all these designs follow a similar pattern as the results
presented in the previous section for the pred1, pred2, dpframe and tiler designs. By
far, the speculative code motions and pre-synthesis optimizations have the maximum
impact on the synthesis results. The overall improvements are in the range of 25 to 70
% for the total delay through the various designs. Also, once again for these 12 designs
we see that the critical path length and area remain constant (or reduce marginally)
when all the optimizations are applied.

The results in this section demonstrate the transformation scripts that we developed
and tuned for the four case studies actually have utility to a larger set of designs.

10.6. PUTTING IT ALL TOGETHER 163

164 CHAPTER 10. DESIGN EXAMPLES

10.7 Study of Loop Unrolling and Loop Shifting

So far we presented synthesis results for the design examples based on transformations
that look beyond conditional boundaries. In this section, we explore the next level of
improvement that can be achieved using loop transformations that exploit parallelism
across loop iterations. Specifically, we compare the impact of loop unrolling and loop
shifting on the quality of synthesis results.

In the Spark synthesis framework, the number of unrolls and shifts for each loop
is user-directed. Spark first unrolls the loop as specified by the designer and then
schedules the design. After scheduling the design, the loop bodies are shifted, again as
directed by the designer, and then rescheduled. In this section, we study the effects of
different unrolling and shifting factors on hardware costs and circuit performance.

For the experiments presented below, we apply loop unrolling and loop shifting
to inner loops of the three designs: MPEG-1 pred1 and pred2 and Gimp tiler. We
start with a baseline that has already been optimized by all our previous transforma-
tions including the pre-synthesis transformations, the speculative code motions and the
dynamic transformations.

10.7. STUDY OF LOOP UNROLLING AND LOOP SHIFTING 165

10.7.1 Scheduling and Logic Synthesis Results for Loop Unrolling

We first present the scheduling results for loop unrolling in Tables 10.16 and 10.17.
The unroll factors are determined as follows: for a loop with an iteration count of N,
we allow unrolling the loop by M times such that N/ (1 + M) is an integer and less
than or equal to 1. The loops that are unrolled in pred1, pred2 and tiler have N equal
to 8, 8 and 10 respectively. Hence, for N=8, possible values of M are 1, 3 and 7, and
for N=10, M can be 1, 4 or 9.

The scheduling results are in terms of the number of states in the FSM controller
and the cycles on the longest path. Longest path for loops is the cycles on the longest
path through the loop body multiplied by the number of loop iterations. The first row
in the two tables lists the results for the case when no loop unrolling is done, the
second row for one loop unroll, and the third row for 3 loop unrolls for the pred1 and
pred2 designs and 4 unrolls for tiler. The percentage reductions of each row over the
previous row are given in parentheses. The last row gives the total reduction of the
third row over the first row.

The results in the second row of Tables 10.16 and 10.17 show that with one unroll,
we can achieve improvements ranging from 4 % to 10 % in the cycles on the longest
path for the three designs. Unrolling the loop further (three times for the pred1 and
pred2 designs and four times for tiler) leads to a further improvement of 10, 4 and
19.7 % respectively.

However, the results in Tables 10.16 and 10.17 also show that loop unrolling leads
to a large increase in the size of the FSM controller (number of states). This is because

166 CHAPTER 10. DESIGN EXAMPLES

when the loop body is duplicated, the number of control steps in the schedule increases,
even though the number of executions of the loop body may reduce.

To study the impact on circuit area and delay, we performed logic synthesis on
the RTL VHDL generated after scheduling, binding, and controller generation by the
SPARK high-level synthesis tool. We used Synopsys Design Compiler with the TSMC
0.13 micron technology library. The logic synthesis results are presented in the graphs
in Figure 10.9.

The results in these graphs show that when the loops are unrolled, the critical path
lengths increase by 10 to 25 %. This increase works against the gains achieved in
cycles through the longest path. As a result, the longest input to output delay or latency
through the three designs remains almost constant as the loops are unrolled. However,
there is a substantial increase in area – from 22 % to up to 150 %.

The increases in critical path length and area are due to the larger controller size
and more complex steering logic (multiplexers, de-multiplexers and associated control
logic). As the loops are unrolled, the number of operations in the design increases.
Hence, a larger number of operations are mapped to the same number of resources.
This increases resource utilization, which in turn leads to an increase in the size and
complexity of the steering logic.

10.7. STUDY OF LOOP UNROLLING AND LOOP SHIFTING 167

10.7.2 Scheduling and Logic Synthesis Results for Loop Shifting

Tables 10.18 and 10.19 list the scheduling results for the three designs as the inner
loops are shifted, starting from no loop shifting (first row) to three shifts (fourth row).
The percentage reductions of each row over the previous row are given in parentheses.
The last row gives the total reduction of the fourth row (3 loop shifts) over the first row
(no loop shifts).

The results in this table show that as the loops are shifted, the schedule length
(cycles on the longest path) can sometimes increase. This happens when a set of con-
current operations is shifted from one branch of an already balanced conditional block.
This means that, potentially, after shifting the scheduler is unable to compact the loop
body to its size before shifting. However, in such a case, we can usually get back to the
original schedule length by shifting once more; this time the scheduling step from the
other branch of the conditional gets shifted.

If two consecutive shifts produce worse results, this indicates that we should stop
shifting. The worse results mean that it is not possible to compact the loop body with
any more shifted operations. Future work entails developing algorithmic techniques to
determine the number of loop shifts. For now, we can experiment with different loop
shifts due to low run times of our synthesis tool for fairly large designs.

168 CHAPTER 10. DESIGN EXAMPLES

From the results in Tables 10.18 and 10.19, we can see that the best scheduling re-
sults are achieved for all the designs after shifting the loop 3 times. The total reductions
(last row) range from 8 to 20 % in the cycles on the longest path and 2 to 9 % in the
states in the FSM controller.

These scheduling results translate over to the critical path length and area results
obtained after logic synthesis. These are presented in Figure 10.10. The bars in these
graphs correspond to no shifts, 1 shift, 2 shift and 3 shifts. These logic synthesis results
show that we can achieve 5-20 % improvements in the delay through the circuit by
employing loop shifting, while incurring smaller increases in circuit area compared to
loop unrolling. Recall that the base case (no shifts) represents a design that is already
optimized by all the parallelizing compiler transformations presented earlier in this
chapter.

10.7.3 Loop Unrolling and Shifting Results with Higher Resource
Allocation

We ran our experiments again with a higher resource allocation for the MPEG designs
(results are similar for the tiler design). We used 4 adders and 3 array decoders instead
of 2 each, with other resources being the same as before (increasing the other resources
did not affect scheduling results). The scheduling results for loop unrolling and shifting
are listed in Tables 10.20 and 10.21 respectively. With a higher resource allocation, the

10.7. STUDY OF LOOP UNROLLING AND LOOP SHIFTING 169

improvements are larger for both loop unrolling and loop shifting. Also, loop unrolling
leads to a smaller increase in controller size because the unrolled operations get com-
pacted more easily due to the higher resource allocation. Also, we are able to do more
loop shifting: 7 shifts versus the earlier 3.

The logic synthesis results for these experiments with a higher resource allocation
are presented in Figures 10.11 and 10.12. There results again demonstrate that loop
unrolling leads to a large increase circuit area with only modest improvements in circuit
delay. In contrast, loop shifting again leads to 5 to 25 % improvement in circuit delay
with fairly constant circuit area. We also tried loop unrolling followed by loop shifting
and found that the increase in circuit area and delay due to unrolling could not be
compensated by loop shifting.

In conclusion, our experimental results show that loop shifting reduces delays by up
to 20 % while area increases between 0-20 %. Also, these represent improvements over
designs already optimized by the Spark synthesis framework using the entire range of
parallelizing code motions and code transformations. In contrast, the control and mul-
tiplexing overheads of loop unrolling undo the gains achieved in schedule lengths. The
length of the critical path (longest combinational path) and thus, circuit delay increases.
Circuit area also increases by up to 150 %. Loop shifting, thus, represents a technique

170 CHAPTER 10. DESIGN EXAMPLES

to incrementally exploit parallelism across loop iterations in designs with complex con-
trol flow without incurring the heavy penalties associated with loop unrolling.

10.8 Discussion and Conclusions

The overall improvements we obtain when we apply all the transformations in the
Spark toolkit compared to when we apply only non-speculative code motions are up to
80 % in the total delay through the circuit with either no increase or a modest increase
of 5 % in circuit area. Clearly, the optimizations we have developed, along with heuris-
tics to guide them, are able to achieve high performance improvements with little or no
degradation in circuit quality (area).

We have also done some preliminary analysis of the power requirements of the syn-
thesized circuits using the Synopsys Power Compiler tool. We found that the switching
power of the circuit follows the circuit area. Thus, as the various transformations are

10.9. SUMMARY 171

applied, the power profile looks similar to the area profile in the graphs in Figure 10.6.
This, coupled with the speed up obtained after applying the transformations (delay re-
duces by 50 to 75 %), means that the total energy consumed by the circuit (= delay *
power) reduces by the same amount as the delay when the optimizations in the Spark
toolkit are applied.

We find that when an optimizing transformation is applied, there are two conflict-
ing factors that come into play. As the resource utilization increases, the steering logic
(multiplexers and de-multiplexers) connected to the functional units and the associated
control logic increases. On the other hand, as the number of states in the controller
decreases, the size and complexity of the controller decreases. We find that critical
paths often originate in the controller, go through multiplexers, functional units and
de-multiplexers, and finally, terminate in the registers that hold the results. Hence, op-
timizing transformations often lead to higher area and longer paths through the steering
logic, but lower area and shorter paths through the FSM controller. Depending on the
effectiveness of the transformation on the particular design being synthesized, one of
these factors may overshadow the other. Also, the fact that the critical path length re-
mains fairly constant as these optimizing transformations are applied is an important
result because the critical path length dictates the minimum clock period for the design.

10.9 Summary

In this chapter, we presented scheduling and logic synthesis results for the various com-
piler, parallelizing compiler and synthesis transformations that have been implemented
in the pre-synthesis and scheduling phases of the Spark framework. We first presented
detailed experiments for each individual transformation for four case studies. The char-
acteristics of these four case studies are described in Section 10.1.1. These designs are
functions from control-intensive portions of the MPEG-1 and MPEG-2 multimedia ap-
plications and some image transforms from the GIMP image processing tool.

For these case studies, we first presented the scheduling and logic results for the
pre-synthesis optimizations in Section 10.2. We then presented results for the specula-
tive code motions in Section 10.3 and in Section 10.4, for the dynamic CSE technique.
We presented results for operation chaining across conditional boundaries in Section
10.5. In Section 10.6, we presented a comparative study of the effectiveness of the
pre-synthesis, speculative code motion and dynamic transformations first for the four
case studies and then for a large set of designs derived from various multimedia and
image processing applications. Finally, we studied the impact of loop unrolling and
loop shifting on the MPEG-1 and GIMP designs.

The contribution of this chapter is a comparative study of the effectiveness of each
individual transformation on both scheduling results and logic synthesis results. Also,
we demonstrated the utility of our optimizations and algorithms for a larger set of
designs.

11
CASE STUDY: SYNTHESIS OF AN
INSTRUCTION LENGTH DECODER

11.1 Introduction

High-level synthesis has traditionally focused on the automated synthesis of ASIC (ap-
plication specific integrated circuits) designs. Typical target architectures are multi-
cycle designs with latencies in the 10s and 100s of cycles. These designs are usually
area constrained and pipelining is generally the preferred means to improve system
performance. Consequently, the classical high-level synthesis problem is one of trans-
forming a behavioral description of an application through the scheduling and binding
tasks, under constraints on the number of resources, into a multi-cycle schedule of
operations.

In this chapter, we discuss a new target for high-level synthesis, namely, low la-
tency functional blocks in microprocessors. High performance microprocessor designs
are partially characterized by functional blocks consisting of a large number of op-
erations that are packed into very few cycles (often a single-cycle) with little or no
resource constraints but with tight bounds on the cycle time. Extreme parallelization
and conditional and speculative execution of operations are essential to meet the pro-
cessor performance goals. However, this is a tedious task for which classical high-level
synthesis (HLS) formulations are inadequate and thus rarely used.

High performance microprocessor designs are typically considered to lie on the
other end of the spectrum where much of the HLS optimizations in scheduling, re-
source binding and allocation do not find extensive use. There exist a good number
of functional blocks within microprocessors, which are most naturally and succinctly
described by a behavioral description. However, the lack of responsiveness to design
constraints in HLS formulations leads to little or no use of traditional HLS tools in such
high-performance functional blocks. The chief problem is that one major microproces-
sor design challenge – especially in the high end – is of identifying maximum par-
allelism and creating additional parallelization opportunities above and beyond those
afforded by the algorithmic specification, and then packing all the resulting operations
in a safe manner in the smallest number of cycles and in the shortest cycle time. Pure

174 CHAPTER 11. CASE STUDY: INSTRUCTION LENGTH DECODER

pipelining is of limited value since functional block latencies are critical in the presence
of significant control in the behavior.

To understand the differences between the microprocessor synthesis domain and
the ASIC synthesis domain, consider the generic architectures of microprocessor blocks
and ASICs shown in Figure 11.1. ASICs, as shown in Figure 11.1 (a), are typically
multi-cycle and pipelined, consisting of several functional units, steering logic (mul-
tiplexers), a controller (often a finite state machine) and a register file. Intermediate
results are usually stored in latches and inter-stage forwarding paths may exist in the
data path. On the other hand, as shown in Figure 11.1(b), microprocessor blocks are
often single cycle and have several small computation blocks that operate in tandem
and whose results are steered by control logic and in turn used by the control logic to
generate control signals for other computation blocks. Inputs and outputs to these type
of blocks are stored in memory elements such as buffers and queues.

Keeping these differences in mind, we used the Spark framework to provide a work-
ing environment for the microprocessor block designer to explore alternative designs
and speed up the overall design process. Our work in this area has been motivated by
the parallels between the nature of microprocessor functional blocks and the type of
multimedia designs we have been looking at. Designs from both these domains have
a complex mix of control and data and the quality of synthesis results depend on the
amount of parallelism that can be extracted from the behavioral description. The chal-
lenge for us has been to identify and isolate a set of compiler and high-level transfor-

mations that are useful for the synthesis of microprocessor blocks. These are carefully
guided by heuristics that maximize parallelism specifically by targeting loop constructs
and efficiently chains operations to pack them into a few cycles. This, in essence, is
the contribution of the Spark synthesis framework to the domain of microprocessor
functional block design.

As a case study in understanding the complexity and challenges in the use of high-
level synthesis for this domain, we walk the reader through the detailed design of an
instruction length decoder block derived from the Pentium®-family of processors.
The choice of this block is made for a few reasons: (a) it is moderately complex and
yet small enough that a detailed walk through the design – in an attempt to under-
stand the challenges in application of HLS to high-performance microprocessor block
designs – is possible; (b) the synthesis of this design employs several parallelizing
transformations that validate the underlying motivation for building Spark; (c) designs
of this nature are most naturally described by a behavioral description rather than a
structural model, making them ideal for HLS.

Previous work in high-level synthesis for microprocessor designs is limited. Bray-
ton et al. synthesized the 801 processor – a small processor with a simple
data path. Gupta et al. [GKWB00] presented a synthesis strategy for long latency func-
tional units that are then embedded into VLIW processors. In as far as we know, there
has been no prior work on synthesizing the type of low latency functional blocks we
explore in this chapter.

The rest of this chapter is organized as follows: the next section outlines synthesis
transformations that are useful for microprocessor blocks and how they are employed
by the Spark framework. Sections 11.3 and 11.4 describe the instruction length decoder
and the steps employed in synthesizing this design. We conclude with a discussion and
an outline of future work.

Due to the presence of complex control in the behavioral descriptions of microproces-
sor blocks, we employ parallelizing transformations that move and reorder operations
beyond conditionals and loops. The most useful parallelizing transformations of this
type are a number of loop transformations and speculative code motions such as spec-
ulation and conditional speculation. In ASIC synthesis, the effectiveness of these code
motions is often limited by the number of resources allocated to the design – a con-
straint that is more lax for microprocessor blocks.

The scope for application of code motions can be further increased by loop trans-
formations such as loop unrolling. Loop unrolling was developed to enable software
compilers to perform optimizations across loop iterations and facilitate global code op-
timizations [BGS94, Muc97]. However, loop unrolling can lead to code explosion; so,
loops are unrolled one iteration at a time, followed by code compaction by paralleliz-
ing transformations, until no further improvements can be obtained. Loops are seldom
unrolled fully.

11.2. SYNTHESIS TRANSFORMATIONS FOR MICROPROCESSOR BLOCKS 175

11.2 Synthesis Transformations for Microprocessor
Blocks

176 CHAPTER 11. CASE STUDY: INSTRUCTION LENGTH DECODER

On the other hand, for microprocessor functional blocks, loops are only a program-
ming convenience and latency constraints generally dictate the amount of unrolling a
loop has to undergo. For instance, if a design is targeted to, say, three clock cycles,
it implies that all the operations within all the iterations of the loop have to be exe-
cuted within these three cycles. Hence, when this design is mapped to hardware, it will
generate a design in which the loop is, in essence, unrolled within these three cycles.
Loops in single cycle designs must, of course, be unrolled completely.

We have already shown in Sections 5.3 and 5.4 in Chapter 5 that when loops are
unrolled completely, we can apply another important technique, namely, loop index
variable elimination. The combination of these two transformations can significantly
increase the amount of parallelism exposed to the synthesis transformations and also,
eliminate the data dependencies between the loop index variable and the operations
within the loop body.

Another transformation that is important to the synthesis domain of microprocessor
functional block is chaining of operations, especially across conditional boundaries.
This transformation enables operations to be packed back-to-back within one or a few
cycles with steering logic such as multiplexers between them. Chaining operations
across conditional boundaries has also been discussed earlier in Chapter 6.

We implemented the various compiler and synthesis transformations required for
the synthesis of microprocessor functional blocks have in the Spark framework. The
rich set of tunable transformations in Spark enable the framework to aid in exploration
of several alternative designs. Although Spark can apply the various transformations
automatically, it also allows the designer to control the various passes and the degree of
parallelization through script files. For example, the designer may specify which loops
to unroll and by how much. This enables Spark to provide design alternatives that may
not be obvious to a designer from the design’s behavioral description. In the next few
sections, we show how we used Spark to explore the architecture of a functional block
from a modern microprocessor.

11.3 A Case Study: Instruction Length Decoder

An important component of the Pentium® microprocessor architecture is the instruc-
tion length decoder [Pen]. This component determines the starting byte and the length
of each instruction from a stream of bytes it receives from the instruction cache. We
consider an implementation of this microprocessor architecture in which the instruc-
tions are of a variable length ranging from 1 to 11 bytes and the decoder has to examine
from 1 to 4 bytes to determine an instruction’s length. Instead of processing a stream
of bytes, the decoder examines a set of bytes in an instruction buffer at every cycle.

The instruction length decode works as shown in Figure 11.2. The decoder deter-
mines the length contribution of the first byte and checks to
see whether it needs to examines the next byte as well (Need_2nd_Byte). If it does,
then it determines of the second byte, and checks to see if it
needs the third byte, and so on. In this way, say, the ILD calculates that the first in-
struction is two bytes long, then it must determine the length of the next instruction that
starts at the third byte in the instruction buffer, by (potentially) looking at the next four

11.3. A CASE STUDY: INSTRUCTION LENGTH DECODER 177

bytes, as shown in Figure 11.3. This continues until the length of all the instructions in
the buffer are determined.

A representation of this behavior in “C” is shown in Figure 11.4. In this code, a
loop (indexed by iterates over the entire instruction buffer (of size If the start
of the current instruction NextStartByte is the current byte then, it marks this as
the starting point of an instruction and calculates the length of the
instruction at that byte by calling the function This function is
the same as the behavior described above1. The final output of this description is a bit
vector that contains a 1 at only those bit positions where an instruction
starts.

There are several simplifications in this model of the ILD [Pen]. Since the ILD
is decoding a stream of instructions arriving from memory, the behavioral description
should have an infinite outer loop, which synthesis should break into chunks of it-
erations each. Also, consider that an instruction starts at the byte. Then

We assume a zero length contribution from the to bytesl

178 CHAPTER 11. CASE STUDY: INSTRUCTION LENGTH DECODER

the length calculation may need to check bytes from the next set of bytes that fill the
buffer. So, the intermediate length calculation information must be saved across buffer
decodes and passed to the next cycle. These simplifications are made to keep the dis-
cussion focused on the important code transformations used and do not alter the nature
and applicability of the transformations presented here.

The processor architectural requirements imply that the whole buffer must be de-
coded in one cycle. Hence, a designer may choose to compute as much as possible
in parallel and then, do the instruction marking after all the information has been cal-
culated. The following section describes how Spark’s synthesis methodology achieves
this kind of a single cycle architecture for the decoder starting from a natural behavioral
description.

In order to achieve a single cycle architecture for the ILD design, the sequence of trans-
formations applied by Spark follows the methodology outlined in Chapter 4. However,
it is the scope of application of the transformations that changes. This means that we

11.4 Transformations applied by Spark to Synthesize
the Decoder

11.4. TRANSFORMATIONS APPLIED BY SPARK TO SYNTHESIZE THE ILD 179

inline functions whenever possible, unroll loops fully, and apply the speculative code
motions with an unlimited resource allocation.

Function inlining refers to replacing a call to a function or a subroutine with the
body of the function or subroutine [ASU86]. This transformation allows the optimiza-
tion of the inlined function with the rest of the code. Function inlining has not been
implemented in Spark. Hence, we apply it manually to the source code. For the ILD
design, this means that the function Calculate Length is inlined into the main ILD
function.

180 CHAPTER 11. CASE STUDY: INSTRUCTION LENGTH DECODER

However, before we show the inlined version of this design, we will first demon-
strate how the speculative code motions can speculatively compute all the data and
control calculations in the function CalculateLength. This is shown in Figure 11.5;
the length contributions due to the bytes, through are calculated speculatively

11.4. TRANSFORMATIONS APPLIED BY SPARK TO SYNTHESIZE THE ILD 181

and so are the control variables need2 to need4 that determine which bytes contribute
to the length of the current instruction. The lengths of the instruction for each case of
these control variables (TempLength1 to TempLength3) are also speculatively com-
puted. This results in a behavior where all the data calculation is performed up-front
and speculatively, followed by a control logic structure that uses this data and assigns
the correct result to the output. This control logic maps to multiplexers in hardware.
Hereafter, for brevity of presentation, we will refer to these data and control com-
ponents in the CalculateLength function as DataCalculation and ControlLogic
respectively.

The CalculateLength function can be inlined into the main calling function as
shown in Figure 11.6. As mentioned earlier, in practice, Spark performs inlining first,
but speculation within the CalculateLength has been shown earlier to simplify expla-
nation.

After inlining, the for-loop can be fully unrolled as shown by the code in Figure
11.7. To remove the dependency that still exists between the operations and the loop
index variable we can propagate the constant assignment of throughout the
code and the loop index variable can be eliminated. The resulting code is shown in

182 CHAPTER 11. CASE STUDY: INSTRUCTION LENGTH DECODER

Figure 11.8. This exposes further opportunities for early and speculative calculation of
the lengths of instructions, as shown in Figure 11.9(a).

In the description in Figure 11.9(a), the lengths of the instructions are calculated by
speculating that a new instruction starts at each byte. This leads to a design, where all
the data for all the bytes is calculated concurrently, followed by a control logic unit that
determines the length of the instructions if they were to start at each byte. Finally, a rip-
ple control logic unit determines the actual start bytes of each instruction in the buffer.
The hardware architecture corresponding to this code is shown in Figure 11.9(b). This
is a maximally parallel architecture that can then be targeted for implementation in a
single cycle.

Its important to note here that the sequence of application of the transformations
is not as described above. This sequence has been chosen to aid in explanation of
the case study. In practice, the pre-synthesis transformations, comprising of function
inlining, loop unrolling, and loop index variable elimination, are applied first. The
increased scope for parallelization that these transformations create is then exploited by
the speculative code motions in the scheduling phase to achieve a single cycle schedule.

In this way, Spark starts with the “C” behavioral description of the ILD shown
in Figure 11.4, and produces the register-transfer level VHDL code corresponding to
the single cycle architecture shown in Figure 11.9. Although not demonstrated in this
section, Spark chains the operations in the ILD together as described in Section 6.6 in
Chapter 6 to achieve the single cycle architecture.

While the case study of the instruction length decoder is instructive in understanding
the code transformations needed for high performance microprocessor blocks, there
are several areas of this high-level synthesis methodology that require further investi-
gation. For instance, the behavioral description we used as a starting point for our work
(Figure 11.4) may not be the simplest way to describe the design. A more natural and
succinct way to describe the ILD’s behavior could be as shown in Figure 11.10. In this
behavioral description, a stream of instructions are arriving in an infinite while loop.
This means that we have to first split this infinite while loop into an outer infinite while
loop and an inner for loop that operates on a fixed size buffer of bytes. Furthermore,
if this fixed size buffer holds N bytes, then it is possible that an instruction at the end

11.5 Future Work

In this chapter, we demonstrated the way in which the Spark synthesis methodology
can be used for the synthesis of low latency microprocessor functional blocks. In Sec-
tion 11.1, we introduced the unique characteristics of microprocessor functional blocks
and the demands that these characteristics place on the synthesis strategy, along with
freedoms they give in terms of lax area constraints. In Section 11.2, we discussed the
synthesis transformations that are required for synthesizing these function blocks and
how the synthesis script employs these transformations. We then demonstrated the ef-
fectiveness of our methodology by presenting a case study of the instruction length
decoder in the Intel Pentium, in Section 11.3. We then demonstrated (in Section 11.4)
the step-by-step transformations applied by Spark to synthesize this design. In Section
11.5, we discussed future work to extend the methodology presented here. The con-
tribution of this chapter is a synthesis methodology and the associated transformations
for the synthesis of complex, low latency microprocessor functional blocks.

11.6. SUMMARY 183

of a buffer requires a few more bytes from the next set of bytes that will load into the
buffer to calculate the length of the instruction.

Similar, short behavioral descriptions can be used to describe several such low la-
tency functional blocks in microprocessors. This leads us to future work of developing
a new set of source-level transformations that can transform these type of descriptions
into more easily synthesizable behavioral descriptions.

11.6 Summary

Future Directions

Part IV

12
CONCLUSIONS AND FUTURE
WORK

12.1 Conclusions

In this book, we presented a synthesis methodology that optimizes the quality of syn-
thesis results in the presence of complex control flow. Our synthesis methodology is
based on employing aggressive coarse-grain and fine-grain parallelizing transforma-
tions to extract parallelism beyond conditionals and loops. This alleviates the effects
of control constructs on the quality of synthesis results.

To improve controllability over the synthesis process and over the transformations
applied to the design, we organized our optimizations into four groups: pre-synthesis
transformations, scheduling transformations, dynamic transformations and basic com-
piler transformations. Furthermore, the synthesis framework is organized as a toolbox
of transformations guided by heuristics that are fairly independent of the transforma-
tions. We also instrumented our synthesis framework with a scripting ability that pro-
vides knobs to experiment and tune the heuristics with and to identify the transforma-
tions that are useful in optimizing the overall circuit quality (delay and area).

Our synthesis methodology applies coarse-grain and fine-grain transformations dur-
ing a pre-synthesis phase and a scheduling phase. These transformations consist of a
range of compiler and parallelizing compiler optimizations, besides the traditional syn-
thesis transformations. The parallelizing compiler transformations comprise of aggres-
sive speculative code motions aided by transformations applied dynamically that take
advantage of the movement of operations by the speculative code motions.

The speculative code motions extend the notion of speculation beyond just moving
operations out of a conditional to moving and duplicating operations into conditional
branches. Thus, these code motions re-order, speculate, and sometimes even increase
the number of operations in a behavioral description so as to achieve higher quality of
synthesis results and minimize the affects of control constructs on these results.

We implemented our parallelizing high-level synthesis methodology and the vari-
ous transformations, along with the heuristics that guide them, in the Spark synthesis
framework. Spark takes a behavioral description in ANSI-C as input and produces

synthesizable RTL VHDL. This enables us to analyze the impact of the various trans-
formations on the scheduling and logic synthesis results. Besides the speculative code
motions and pre-synthesis transformations, we implemented a broad range of basic
compiler and synthesis transformations in Spark. These include copy propagation, dead
code elimination, operation chaining, ability to schedule on multi-cycle operations and
so on. We also presented scheduling heuristics that guide the various transformations
in our framework and an interconnect minimizing resource binding methodology.

We validated the utility of our synthesis methodology and the transformations and
heuristics implemented in it by presenting results for experiments on several media
designs. We first presented scheduling and synthesis results for experiments in which
we applied each transformation individually on four designs. These four designs are
derived from applications that are representative of the multimedia and image process-
ing domains, namely, the MPEG-1, MPEG-2 and the GIMP applications. We then
presented synthesis results for another set of twelve designs derived from various mul-
timedia and image processing applications.

We found that the speculative code motions can improve performance and reduce
controller size by up to 50 % when compared to list scheduling techniques that do not
allow speculative code motions. Logic synthesis results show similar reductions in the
total delays through the circuits, while maintaining critical path lengths fairly constant.
Area of the synthesized netlist increases by up to 10-25 %, with most of the increases
coming from operation duplication.

When pre-synthesis transformations (loop-invariant code motion and CSE) are ap-
plied before the scheduling phase improvements of up to 60 % can be obtained in the
delay through the design with reductions of up to 20 % in the design area. Further-
more, these improvements are over a design that has already been optimized by the
speculative code motions. Dynamic CSE leads to a further improvement of up to 10
% in performance. On average, with all the Spark optimizations enabled, we obtain
performance and controller size improvements that are about 60 % with no increase in
the critical path length and the area of the synthesized netlist.

Besides the multimedia and image processing domain, we also used the Spark
synthesis framework to synthesize a functional block derived from a microprocessor.
Functional blocks from the microprocessor domain are similar to multimedia designs
in that they both have a complex mix of control and data operations. However, one
important difference is that microprocessor blocks have to execute in one or a few cy-
cles. Thus, microprocessor blocks are constrained by a low latency requirement and
are allocated with virtually unlimited resources to achieve this latency.

We used the scripting facility in Spark to synthesize one such microprocessor func-
tional block, namely, an instruction length decoder drawn from the Pentium®-family
of processors. The synthesis methodology for low latency microprocessor functional
blocks consists of a coordinated set of source-level and fine-grain compiler transforma-
tions that attempt to extract maximum parallelism in behavioral descriptions, specifi-
cally by targeting loop constructs in them. Also, this methodology employs techniques
for efficient chaining of operations in order to pack all the operations into one cycle.
The chief contribution of this work is the formulation of a domain-specific methodol-
ogy for application of high-level synthesis techniques to a domain that rarely, if ever,
finds use for it.

188 CHAPTER 12. CONCLUSIONS AND FUTURE WORK

12.2. FUTURE WORK 189

Lastly, we also demonstrated the utility of the scripting facility in Spark to ex-
periment with different heuristics and transformations. Based on our experience, we
suggest a recommended script for multimedia and image processing applications and
another script for low latency designs from the microprocessor domain.

12.2 Future Work

The work presented in this book can be extended in the following directions:

There is a need for more comprehensive cost models that incorporate the control
and interconnect costs of the various code transformations. Scheduling heuristics
can use these cost models to make area- or power-aware decisions while applying
the code transformations.

There are several other transformations that can be applied at the source-level
[BGS94, Muc97] in the context of high-level synthesis such as function inlin-
ing, operation strength reduction [GMCG00], tree height reduction [NP91], and
memory access and storage optimizations [Pan98, Sem01]. Although
several of these transformations have been explored for high-level synthesis,
their is limited understanding of the impact of these transformations on control
and area costs for large designs with complex control flow.

The impact of loop transformations on the quality of synthesis results needs fur-
ther study. So far we studied loop shifting and partial loop unrolling to exploit
inter-iteration parallelism [GDGN04]. We believe that coarse-grain loop op-
timizations such as loop fusion, loop interchange, and memory oriented loop
transformations (i.e. transformations that reduce data transfers from memory)
hold potential to lead to further improvements.

The effects of the various code transformations on power are not well under-
stood. Our preliminary experiments with RTL code power estimators indicate
that the power profile follows the area of the final design. Since, after applying
all the code optimizations, the area of the design is almost the same as that of the
original code, we find that the power dissipation is also the same. Furthermore,
since the code optimizations reduce the input-to-output delay through the design
by more than 60 % on an average, this implies that the total energy consumed
by the optimized design is also about 60 % less than the energy consumed by
the initial design. In addition to this, it is possible to develop scheduling and
post-scheduling transformations that specifically target reducing the energy and
particularly, the peak power of the synthesized design.

Several system-on-chip (SoC) platforms have emerged recently with programmable
logic (such as FPGAs) on board. This programmable logic can be used as a pro-
grammable co-processor for reducing the computation load on the main proces-
sor core. In preliminary work, we demonstrated the utility of the Spark frame-
work as part of a hardware-software co-design methodology to synthesize the

ric on such a FPGA-based platform We compiled the
remaining application code on to the processor core using the compiler suite
available for the core. To generalize this methodology, an interface synthesis ap-
proach has to be developed that generates the interface through which hardware
and software can communicate with each other.

We demonstrated the utility of the Spark framework for the synthesis of mi-
croprocessor functional blocks. This work needs to be developed further and a
comprehensive synthesis methodology is required for the synthesis of a class of
designs from the microprocessor domain. This may require the development of
a new set of transformations that target designs from this domain.

12.3 Summary

In summary, we proposed a solution that improves the state of the art by bringing a new
range of code transformations to high-level synthesis. The Spark framework is a proto-
type that demonstrates that this technology can be successfully used to produce a high
quality of results. We believe that our parallelizing high-level synthesis methodology
can bring about an order of magnitude improvement in designer productivity by rais-
ing the level of abstraction in the microelectronic design process. Thus, our approach
represents an important and big step in tackling the growing size and complexity of
microelectronic systems.

190 CHAPTER 12. CONCLUSIONS AND FUTURE WORK

computationally expensive kernels from an application to a programmable fab-

Part V

Appendix

A
SPARK: USAGE, SYNTHESIS
SCRIPTS, AND HARDWARE
LIBRARY FILES

A.1 Command Line Interface

Spark can be invoked on the command-line by the command:
spark [command-line flags] filename.c

Some of the important command-line flags are:

Flag

-h
-hs
-hvf
-hb
-hec
-hcc
-hch
-hcp
-hdc
-hcs
-hli
-hg

-hcg
-hq

Task Performed by Command-Line Flag

Prints help
Schedule Design
Generate RTL VHDL (output file is ./output/ filename_ spark_rtl.vhdl)
Do Resource Binding (operation to functional unit and variable to registers)
Statistics about states, path lengths are printed into RTL VHDL file
Generate output C file of scheduled design in ./output/ filename_sparkout.c
Chain operations across Conditional Boundaries
Do Copy and Constant Propagation
Do Dead Code Elimination
Do Common Sub-Expression Elimination
Do Loop Invariant Code Motion
Generate graphs (output files are in directory ./output). Graphs are
generated by default if scheduling is done, as: filename_sched.dotty
Generate function call graph (./output/CG_filename.dotty)
Run quietly; no debug messages

Spark writes out several files such as the output graphs (see next section) and the
backend VHDL and C files. All these files are written out to the subdirectory “output”

194 APPENDIX A. SPARK: USAGE AND SYNTHESIS SCRIPTS

of the directory from which Spark is invoked. This directory has to be created before
executing Spark.

A.2 Viewing Output Graphs

The format that Spark uses for the output graphs is that of AT&TŠs Graphviz tool
[Lab]. Output graphs are created for each function in the “C” input file. The output
graphs generated are listed in the table below.

Graphs representing the original input file

CFG_filename_c_funcName.dotty
HTG_filename_c_funcName.dotty
DFG_filename_c_funcName.dotty
CDFG_filename_c_funcName.dotty

Graphs representing the scheduled design

CFG_filename_c_funcName_sched.dotty
HTG_filename_c_funcName_sched.dotty
DFG_filename_c_funcName_sched.dotty
CDFG_filename_c_funcName_sched.dotty

The key to the nomenclature used in tables above is:

Abbreviation

CFG
HTG
DFG
CDFG
filename
funcName

Description

Control Flow Graph: Basic blocks with control flow between them
Hierarchical Task Graph: Hierarchical structure of basic blocks
Data Flow Graph: Data flow between operations
Control-Data Flow Graph: View of resource utilization in the CFG
The name of “C” input file
The name of the function in input file

To view these output graphs, we use the Graphviz command line tool dotty, as follows:
dotty output /graph filename.dotty

A.3 Hardware Description File Format

Spark requires as input a hardware description file that has information on timing, range
of the various data types, and the list of resources allocated to schedule the design
(resource library). This file has to be named “filename.spark”, where filename.c is

A.3. HARDWARE DESCRIPTION FILE FORMAT 195

name of the “C” input file. If a filename.spark does not exist, then the Spark executable
looks for “default.spark”. One of these files has to exist for Spark to execute.

The various have sections in the .spark files are described in the next few sections.
Note that, comments can be included in the .spark files by preceding them with “//”.

A.3.1 Timing Information

The timing section of the .spark file has the following format:

// ClockPeriod
[GeneralInfo]
10

NumOfCycles

0

TimeConstrained

0

Pipelined

0

Of these parameters, only the clock period is used by the scheduler to schedule the
design. The rest of the parameters have been included for future development and are
not used currently. They correspond to the number of cycles to schedule the design
in (timing constraint), whether the design should be scheduled by a time constrained
scheduling heuristic, and whether the design should be pipelined.

A.3.2 Data Type Information

Each data type used in the “C” input file has to have an entry in the “[TypeInfo]” section
of the .spark file, as shown below:

// typeName
// or variableName
[TypeInfo]
int
myVar

lowerRange
lowerRange

-32767
0

upperRange
upperRange

32768
16

This section specifies the range of the various data types that can be specified in a
C description (such as int, char, float, unsigned int, signed int, long, double et cetera).
The format is data type, lower bound range, and upper bound range. Also, the data
value range of specific variables from the input C description can be specified in this
section, as variable name, lower range, upper range. This is shown in the table above
my the example of a variable “myVar” whose range is from 0 to 16.

A.3.3 Hardware Resource Information

The [Resources] section parameterizes each resource allocated to schedule the design
as shown by the example below:
The example given above is:

A resource called CMP (comparator).

196 APPENDIX A. SPARK: USAGE AND SYNTHESIS SCRIPTS

//name
[Resources]
CMP

type

==,<,!=

inpsType

i

inputs

2

number

1

cost

10

cycles

1

ns

10

The operations ==, <, ! = can be mapped to this resource.

It handles inputs of type integer (i).

It has 2 inputs.

There is one CMP allocated to schedule the design.

Its cost is 10. The cost, although not used currently, can be integrated into mod-
ule selection heuristics while selecting a resource for scheduling from among
multiple resources.

The CMP resource executes in 1 cycle.

It takes 10 nanoseconds to execute.

This resource description section allows for multi-cycle resources but does not cur-
rently support structurally pipelined resources.

A.3.4 Loop Unrolling and Pipelining Parameters

// variable maxNumUnrolls maxNumShifts percentThreshold ThruputCycles
[RDLPParams]
*
i

0
0

0
2

70
70

0
0

The [RDLPParams] section presents the parameters for loop unrolling and loop pipelin-
ing.

Variable is the loop index variable to operate on (“*” means all loops)

The second parameter specifies the number of times to unroll the loop.

Number of times the loop should be shifted by the loop pipelining heuristic.

Percentage threshold and throughput cycles are parameters used by the resource-
directed loop pipelining (RDLP) heuristic implemented in our system.

The example in the second line of the “[RDLPParams]” section shown above says
that the loop with loop index variable “i” should be shifted twice.

A.4. SCRIPTING OPTIONS FOR CONTROLLING TRANSFORMATIONS 197

A.3.5 Other Sections in .spark files

The other sections in the .spark files are:

[RDLPMetrics]: Controls the various parameters of the resource-directed loop
pipelining (RDLP) heuristic.

[SchedulerRules]: The file that Spark should read to get the scheduling scripts
(rules and parameters). Default is: Priority.rules.

[SchedulerScript]: The scheduling script to use: different scheduling heuristics
can be employed by changing this entry. Default is “genericSchedulerScript”.

[Verification]: Specifies the number of test vectors that should be generated for
functional verification of output C with input C.

A.4 Scripting Options for Controlling Transformations

Spark allows the designer to control the transformations applied to the design descrip-
tion by way of synthesis scripts. In this section, we discuss the scripting options avail-
able to the designer.

The scripting options can be specified in the file given by the “[SchedulerRules]”
section of the .spark file (see previous section). The default script file Spark looks for
is “Priority.Rules”. This file has three main sections: the scheduler functions, the list
of allowed code motions (code motion rules) and the cost of code motions. We discuss
each of these in the next three sections. Note that in this file, “//” denotes that the rest
of the line is a comment.

A.4.1 Scheduler Functions

An example of the scheduler functions section from a sample Priority.rules file is
given in Figure A. 1. An entry in this section is of type “FunctionType=FunctionName”.
A brief explanation for each function is given in the second part of the figure.

Of these we use the following flags for the experiments presented in this book:
DynamicCSE, PriorityType, BranchBalancingDuringCMs and BranchBalancingDur-
ingTraversal.

A.4.2 List of Allowed Code Motion

The [CodeMotionRules] section of the “Priority.rules” file has the list of code motions
that can be employed by the scheduler. Each code motion can be enabled or disabled
by setting the flag corresponding to it to “true” or “false”. An example of the list of
allowed code motions sections is as given below.

198 APPENDIX A. SPARK: USAGE AND SYNTHESIS SCRIPTS

// all the following can take values true or false
[CodeMotionRules]
RenamingAllowed=true
AcrossHTGCodeMotionAllowed=true
SpeculationAllowed=true
ReverseSpeculationAllowed=true
EarlyCondExecAllowed=true
ConditionalSpeculationAllowed=true

// Variable Renaming allowed or not
// Across HTG code motion allowed or not
// Speculation allowed allowed or not
// Reverse Speculation allowed or not
// Early Condition Execution allowed or not
// Condition Speculation allowed or not

A.4.3 Cost of Code Motions

This section was developed to experiment with incorporating costs of code motions
into the cost function based on which the operation to schedule is chosen. An example
of this section is given below. Here all the code motions are assigned a cost of 1.

[CodeMotionCosts]
WithinBB
AcrossHTGCodeMotion
Speculation
DuplicationUp

1
1
1
1

The total cost of scheduling an operation is determined as:
Total Cost = - Basic Cost of operation * Cost Of Each Code Motion required to sched-
ule the operation

where basic cost of the operation is the priority of the operation (see Chapter 7) and cost
of each code motion is as given in the “[CodeMotionCosts]” section of the Priority.rules
file. Since this function generates a negative total cost, the operation with the lowest
cost is chosen as the operation to be scheduled.

A.5 Sample default.spark Hardware Description file

//NOTE: do no put any comments within a section
// ClockPeriod NumOfCycles TimeConstrained Pipelined
[GeneralInfo]
10 1 1 0

//typeName
//or variableName
[TypeInfo]
char
signed_char
unsigned_char

lowerRange
lowerRange

0
0
0

upperRange
upperRange

8
8
8

A.5. SAMPLE DEFAULT.SPARK HARDWARE DESCRIPTION FILE 199

short
int
unsigned_short
unsigned_int
long
unsigned_long
long_long
unsigned_long_long
float
double
long_double
myVariableFromInput

0
0
0
0
0
0
0
0
0
0
0
0

16
32
16
32
64
64
128
128
32
64
128
4

// all cycles in resources have to be ns/ClockPeriod = cycles
//name type inpsType inputs number cost cycles ns
[Resources]
ALU
MUL
CMP
SHFT
ARR

+,–

*
==,<
<<
[]

i
i
i
i
i

2
2
2
2
1

1
1
1
2
5

10
20
10
10
10

1
2
1
1
1

10
20
10
10
10

// variable
[RDLPParams]
* 0 0 70 0

numUnrolls numShifts percentThreshold cycleThruput

//unroll, shift, resetUnroll, and resetShift metrics
[RDLPMetrics]
UnrollMetric=RDLPGenericUnrollMetric
ShiftMetric=RDLPGenericShiftMetric
ResetUnrollMetric=RDLPGenericResetUnrollMetric
ResetShiftMetric=RDLPGenericResetShiftMetric

//lists file that has scheduler rules/functions
[SchedulerRules]
Priority.rules

//function that drives scheduler
[SchedulerScript]
genericSchedulerScript

// numOfTestVectors
[Verification]
20

[OutputVHDLRules]

200 APPENDIX A. SPARK: USAGE AND SYNTHESIS SCRIPTS

PrintSynopsysVHDL=true

A.6 Recommended Priority.rules Synthesis Script file

We found the following choice of options in the synthesis script produces the best
synthesis results for data-intensive designs with complex control flow.

//line format: <functiontype>=<functionvalue>
[SchedulerFunctions]
ScheduleRegionWalkerFunction=topDownBasicBlockNoEmpty
CandidateValidatorFunction=candidateValidatorPriority
CandidateMoverFunction=TbzMover
LoopSchedulingFunction=RDLP
CandidateRegionWalkerFunction=topDownGlobal
PreSchedulingStepFunction=preSchedulingPriority
PostSchedulingStepFunction=postSchedulingPriority
PreLoopSchedulingFunction=prepareForRDLP
PostLoopSchedulingFunction=constantPropagation
PreSchedulingFunction=initPriorities
ReDoHTGsForDupUp=false // true or false – false is better
ReassignPriorityForCS=true // true or false – true is better
PriorityType=max // max, sum, maxNoCond – max is best
RestrictDupUpType=targetBBUnsched // or none or afterSchedOnce
BranchBalancingDuringCMs=true // true or false – true is better
BranchBalancingDuringTraversal=true // true is better
DynamicCSE=true

[CodeMotionRules]
RenamingAllowed=true
AcrossHTGCodeMotionAllowed=true
SpeculationAllowed=true
ReverseSpeculationAllowed=true
EarlyCondExecAllowed=true
ConditionalSpeculationAllowed=true

// the higher the cost, the more profitable a code motion is
// total cost = basicCost * CostOfEachCodeMotion
[CodeMotionCosts]
WithinBB
AcrossHTGCodeMotion
Speculation
DuplicationUp

1
1
1
1

A.7. RECOMMENDED COMMAND-LINE OPTIONS FOR SPARK 201

A.7 Recommended Command-line Options for Invok-
ing Spark

We recommend the following command-line options for invoking Spark:
spark -hli -hcs -hcp -hdc -hs -hvf -hb -hec filename.c

The command-line options that are enabled are: loop-invariant code motion (-hli),
common sub-expression elimination (-hcs), copy and constant propagation (-hcp), dead
code elimination (-hdc), scheduling (-hs), generation of synthesizable RTL VHDL (-
hvf), interconnect-minimizing resource binding (-hb) and generation of statistics about
cycle count (-hec).

A.8 Options for Synthesizing Microprocessor Blocks
To synthesize microprocessor blocks, we have to enable operation chaining across con-
ditional boundaries by using the command-line option –hch and we have to increase
the clock period to a large number so that all the operations can be packed into one
clock cycle. We arbitrarily increase clock period to 10000ns: this enables up to 1000
additions to be chained together (if each addition takes 10ns). The clock period can
be set in the “[GeneralInfo]” section of the default.spark file (see Section A.3.1) and
the timing of each operation in the design can be set in the “[Resources]” section (see
Section A.3.3).

Also, we have to enable full loop unrolling. This can be done by setting the number
of unrolls in the “[RDLPParams]” section of the default.spark file to the number of
iterations of the loop to be unrolled (see Section A.3.4).

202 APPENDIX A. SPARK: USAGE AND SYNTHESIS SCRIPTS

B
SAMPLE RUNS

B.1 A Sample Input C Program
int dest_cur[128];
void synthetic (int bytes, int x, int y)
{
int val, data, a, col;

for (col = 0; col < 10; col++)
{
data = dest_cur[col+bytes] ;
val = data-y+2;
if (col<x+2)
a = x+2-col;

else
{
a = col-x+2;
}

dest_cur[col+bytes+a] += val;
} /* for (col = 0; col < 10; col++) */

}

B.2 Unbound VHDL output for the sample program
Automatically generated by the SPARK High-Level Synthesis System
Sat Jan 24 10:52:48 2004, source file : synthetic.c

’SPARK’ should be defined as the user package
PACKAGE spark_pkg is
TYPE integer_vector IS ARRAY (NATURAL RANGE <>) OF integer;
TYPE boolean_vector IS ARRAY (NATURAL RANGE <>) OF boolean;
FUNCTION integer_wired_or (arr_int : integer_vector) RETURN integer;
FUNCTION boolean_wired_or (arr_bool : boolean_vector) RETURN boolean;
SUBTYPE wiredOrInt IS integer_wired_or Integer;
SUBTYPE wiredOrBoolean IS boolean_wired_or boolean;
TYPE ARRAY_127_0_32768_32767 is ARRAY(127 DOWNTO 0) of wiredOrInt range -32767 to 32768;

END spark_pkg;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;

PACKAGE BODY spark_pkg IS
FUNCTION integer_wired_or (arr_int : integer_vector) RETURN integer is

204 APPENDIX B. SAMPLE RUNS

pragma resolution_method wired_or
variable i : integer;
variable returnVal : std_logic_vector(15 downto 0);
variable arr_int_std_logic_vec : std_logic_vector(15 downto 0);

BEGIN
returnVal := (others => ’0’);
for i in arr_int’range loop
arr_int_std_logic_vec := conv_std_logic_vector(arr_int(i) , 16);
returnVal := returnVal or arr_int_std_logic_vec;

end loop;
RETURN conv_integer(returnVal);

END integer_wired_or;

FUNCTION boolean_wired_or (arr_bool : boolean_vector) RETURN boolean is
pragma resolution_method wired_or

variable i : integer;
variable returnVal : boolean;

BEGIN
returnVal := FALSE;
for i in arr_bool’range loop
returnVal := raturnVal or arr_bool(i);

end loop;
RETURN returnVal;

END boolean_wired_or;
end spark_pkg;

library IEEE;
use IEEE.std_logic_1164. all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;
library work;
use work.spark_pkg.all;

ENTITY synthetic IS
port(
bytes IN wiredOrInt range -32767 to 32768 ;
x IN wiredOrInt range -32767 to 32768 ;
y IN wiredOrInt range -32767 to 32768 ;

global variables are
dest_cur : INOUT ARRAY_127_0_32768_32767;
CLOCK IN std_logic ;
RESET IN std_logic ;
done OUT std_logic) ;

END synthetic;

ARCHITECTURE rtl OF synthetic IS

signal val wiredOrInt range -32767 to 32768 ;
signal data wiredOrInt range -32767 to 32768 ;
signal a wiredOrInt range -32767 to 32768 ;
signal col wiredOrInt range -32767 to 32768 ;
signal sT0_6 wiredOrBoolean ;
signal sT1_8 wiredOrInt range -32767 to 32768 ;
signal sT2_8 wiredOrInt range -32767 to 32768 ;
signal sT3_10 wiredOrInt range -32767 to 32768 ;
signal sT4_10 wiredOrBoolean ;
signal sT5_11 wiredOrInt range -32767 to 32768 ;
signal sT6_14 wiredOrInt range -32767 to 32768 ;
signal sT7_16 wiredOrInt range -32767 to 32768 ;
signal sT8_16 wiredOrInt range -32767 to 32768 ;
signal sT9_16 wiredOrInt range -32767 to 32768 ;
signal sT10_11 wiredOrInt range -32767 to 32768 ;
signal sTll_8 wiredOrInt range -32767 to 32768 ;
signal sT12_14 wiredOrInt range -32767 to 32768 ;
signal sT13_11 wiredOrInt range -32767 to 32768 ;
signal sT14_14 wiredOrInt range -32767 to 32768 ;

RESET IN std_logic ;

B.2. UNBOUND VHDL OUTPUT FOR THE SAMPLE PROGRAM 205

Statistics collected about this Schedule
minCycles = 51, maxCycles = 51, avgCycles = 51.0 in synthetic
Num of Ifs = 1, Nun of Loops = 1
Num of Non-Empty BBs = 9, Num of Ops = 20
Scheduled with the following resources
2 ALU, 1 CMP, 1 ARR
Declarations of the 6 states in routine synthetic

subtype StateType is std_logic_vector(5 downto 0);
CONSTANT S_0
CONSTANT S_1
CONSTANT S_2
CONSTANT S_3
CONSTANT S_4
CONSTANT S_5

std_logic_vector (5 downto 0) :=
std_logic_vector (5 downto 0) :=
std_logic_vector (5 downto 0) :=
std_logic_vector (5 downto 0) :=
std_logic_vector (5 downto 0) :=
std_logic_vector (5 downto 0) :=

"000001";
"000010";
"000100";
"001000";
"010000";
"100000";

signal CURRENT_STATE : StateType;
signal NEXT_STATE : StateType;
BEGIN
SYNC: PROCESS
BEGIN
wait until CLOCK’event and CLOCK = ’1’;
if reset = ’1’ then
CURRENT_STATE <= S_0;
done <= ’0’;

else
CURRENT_STATE <= NEXT_STATE;
if CURRENT_STATE /= S_0 and NEXT_STATE = S_0 then
done <= ’1’;

end if;
end if; -- if reset check

END PROCESS; -- SYNC Process

FSM: PROCESS (CURRENT_STATE, sT4_10, sT0_6)
BEGIN
NEXT_STATE <= CURRENT_STATE;
if CURRENT_STATE(0) = ’1’ then
NEXT_STATE <= S_l;

elsif CURRENT_STATE(1) = ’1’ then
NEXT_STATE <= S_2;

elsif CURRENT_STATE(2) = ’1’ then
if sT0_6 then
NEXT_STATE <= S_3;

else -- sT0_6
NEXT_STATE <= S_0;

end if; -- conditions
elsif CURRENT_STATE(3) = ’1’ then
if sT0_6 then
if ST4_10 then
NEXT_STATE <= S_4;

else -- sT4_10
NEXT_STATE <= S_4;

end if; -- conditions
end if; -- conditions

elsif CURRENT_STATE(4) = ’1’ then
if sT0_6 then
if sT4_10 then
NEXT_STATE <= S_5;

else -- sT4_10
NEXT_STATE <= S_5;

end if; -- conditions
end if; -- conditions

elsif CURRENT_STATE(5) = ’1’ then
NEXT_STATE <= S_1;

END if; -- if (CURRENT_STATE)
END PROCESS; -- FSM Process

DP: PROCESS

BEGIN

206 APPENDIX B. SAMPLE RUNS

wait until CLOCK ’event and CLOCK = ’1’;
if reset = ’1’ then
sT0_6 <= FALSE;
sT4_10 <= FALSE;

else -- else of if reset
if CURRENT_STATE(0) = ’1’ then
sT3_10 <= (x + 2);
col <= 0;

elsif CURRENT_STATE(1) = ’1’ then
sTll_8 <= (col + bytes);
sT12_14 <= (col - x);
sT0_6 <= (col < 10);

elsif CURRENT_STATE(2) = ’1’ then
if sT0_6 then
sT13_ll <= (sT3_10 - col);
sT14_14 <= (sT12_14 + 2);
sT4-10 <= (col < sT3_10);
data <= dest_cur(sTll_8);

end if; -- conditions
elsif CURRENT_STATE(3) = ’1’ then
if sT0_6 then
if sT4_10 then
sT2_8 <= (data - y) ;
sT8_16 <= (sTll_8 + sT13_ll);

else -- sT4_10
sT2_8 <= (data - y) ;
sT8_16 <= (sT11_8 + sT14_14);

end if; -- conditions
end if; -- conditions

elsif CURRENT_STATE(4) = ’1’ then
if sT0_6 then
if sT4_10 then
val <= (sT2_8 + 2);
col <= (col + 1);
sT9_16 <= dest_cur(sT8_16);

else -- sT4_10
val <= (sT2_8 + 2);
col <= (col +1);
sT9_16 <= dest_cur(sT8_16);

end if ; -- conditions
end if; -- conditions

elsif CURRENT_STATE(5) = ’1’ then
if sT0_6 then
dest_cur(sT8_16) <= (sT9_16 +val);

end if; -- conditions
END if; -- if (CURRENT_STATE)

end if; -- end of if reset
END PROCESS; -- DP Process

END rtl;

B.3 Bound VHDL output for the sample program
 Automatically generated by the SPARK High-Level Synthesis System
 Sat Jan 24 10:51:54 2004, source file : synthetic.c

 ’SPARK’ should be defined as the user package
PACKAGE spark_pkg is
TYPE integer_vector IS ARRAY (NATURAL RANGE <>) OF integer;
TYPE boolean_vector IS ARRAY (NATURAL RANGE <>) OF boolean;
FUNCTION integer_wired_or (arr_int : integer_vector) RETURN integer;
FUNCTION boolean_wired_or (arr_bool : boolean_vector) RETURN boolean;
SUBTYPE wiredOrInt IS integer_wired_or integer;
SUBTYPE wiredOrBoolean IS boolean_wired_or boolean;
TYPE ARRAY_127_0_32768_32767 is ARRAY(127 DOWNTO 0) of wiredOrInt range -32767 to 32768;

END spark_pkg;

B.3. BOUND VHDL OUTPUT FOR THE SAMPLE PROGRAM 207

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;

PACKAGE BODY spark_pkg IS
FUNCTION integer_wired_or (arr_int : integer_vector) RETURN integer is
-- pragma resolution_method wired_or
variable i : integer;
variable returnVal : std_logic_vector(15 downto 0);
variable arr_int_std_logic_vec : std_logic_vector(15 dovnto 0);

BEGIN
returnVal := (others => ’0’);

arr_int_std_logic_vec := conv_std_logic_vector(arr_int(i), 16);
returnVal := returnVal or arr_int_std_logic_vec;

end loop;
RETURN conv_integer(returnVal);

END integer_wired_or;

FUNCTION boolean_wired_or (arr_bool : boolean_vector) RETURN boolean is
-- pragma resolution_method wired_or
variable i : integer;
variable returnVal : boolean;

BEGIN
returnVal := FALSE;
for i in arr_bool’range loop
returnVal := returnVal or arr_bool(i);

end loop;
RETURN returnVal;

END boolean_wired_or;
end spark_pkg;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;

ENTITY res_ALU IS
port(
res_ALU_in0 : IN integer range -32767 to 32768;
res_ALU_in1 : IN integer range -32767 to 32768;
res_ALU_execOp : IN integer range 0 to 1;
res_ALU_out : OUT integer range -32767 to 32768

);
END res_ALU;

ARCHITECTURE rtl of res_ALU IS
BEGIN
res_ALU_out <= res_ALU_in0 + res_ALU_in1 when (res_ALU_execOp = 0)

else res_ALU_in0 - res_ALU_in1;
END rtl; -- architecture of res_ALU

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;

ENTITY res_CMP IS
port(

res_CMP_in0 : IN integer range -32767 to 32768;
res_CMP_in1 : IN integer range -32767 to 32768;
res_CMP_out : OUT boolean

);
END res_CMP;

ARCHITECTURE rtl of res_CMP IS
BEGIN

for i in arr-int’range loop

208 APPENDIX B. SAMPLE RUNS

res_CMP_out <= res_CMP_in0 < res_CMP_in1;
END rtl; -- architecture of res_CMP

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;

ENTITY res_ARR IS
port(
res_ARR_in0 : IN integer range -32767 to 32768;
res_ARR_out : OUT integer range -32767 to 32768

);
END res_ARR;

ARCHITECTURE rtl of res_ARR IS
BEGIN
res_ARR_out <= res_ARR_in0;

END rtl; -- architecture of res_ARR

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;
library work;
use work.spark_pkg.all;

ENTITY synthetic IS
port(
bytes : IN wiredOrInt range -32767 to 32768;
x : IN wiredOrInt range -32767 to 32768;
y : IN wiredOrInt range -32767 to 32768;

-- global variables are
dest_cur : INOUT ARRAY_127_0_32768_32767;
CLOCK : IN std_logic ;
RESET : IN std_logic ;
done : OUT std_logic) ;

END synthetic;

ARCHITECTURE rtl OF synthetic IS

COMPONENT res_ALU
port(
res_ALU_in0 : IN integer range -32767 to 32768;
res_ALU_in1 : IN integer range -32767 to 32768;
res_ALU_execOp : IN integer range 0 to 1;
res_ALU_out : OUT integer range -32767 to 32768

);
END COMPONENT; -- end of component res_ALU

COMPONENT res_CMP
port(
res_CMP_in0 : IN integer range -32767 to 32768;
res_CMP_in1 : IN integer range -32767 to 32768;
res_CMP_out : OUT boolean

);
END COMPONENT; -- end of component res_CMP

COMPONENT res_ARR
port(
res_ARR_in0 : IN integer range -32767 to 32768;
res_ARR_out : OUT integer range -32767 to 32768

);
END COMPONENT; -- end of component res_ARR

signal sT0_6 : wiredOrBoolean ;
signal sT4_10 : wiredOrBoolean ;

B.3. BOUND VHDL OUTPUT FOR THE SAMPLE PROGRAM 209

signal res_ALU_0_in0 : integer range -32767 to 32768 := 0;
signal res_ALU_0_in1 : integer range -32767 to 32768 := 0;
signal res_ALU_0_execOp : integer range 0 to 1 := 0;
signal res_ALU_0_out : integer range -32767 to 32768 := 0;
signal res_ALU_1_in0 : integer range -32767 to 32768 := 0;
signal res_ALU_1_in1 : integer range -32767 to 32768 := 0;
signal res_ALU_1_execOp : integer range 0 to 1 := 0;
signal res_ALU_1_out : integer range -32767 to 32768 := 0;
signal res_CMP_2_in0 : integer range -32767 to 32768 := 0;
signal res_CMP_2_in1 : integer range -32767 to 32768 := 0;
signal res_CMP_2_out : boolean;
signal res_ARR_3_in0 : integer range -32767 to 32768 := 0;
signal res_ARR_3_out : integer range -32767 to 32768 := 0;
 Statistics collected about this Schedule
 minCycles = 51, maxCycles = 51, avgCycles = 51.0 in synthetic
 Num of Ifs = 1, Num of Loops = 1
 Num of Non-Empty BBs = 9, Num of 0ps = 20
 Scheduled with the following resources
 2 ALU, 1 CMP, 1 ARR, 1 dest_cur,
 Declarations of the 6 states in routine synthetic

subtype StateType is std_logic_vector(5 downto 0);
CONSTANT S_0 : std_logic_vector (5 downto 0) := "000001";
CONSTANT S_1 : std_logic_vector (5 downto 0) := "000010";
CONSTANT S_2 : std_logic_vector (5 downto 0) := "000100";
CONSTANT S_3 : std_logic_vector (5 downto 0) := "001000";
CONSTANT S_4 : std_logic_vector (5 downto 0) := "010000";
CONSTANT S_5 : std_logic_vector (5 downto 0) := "100000";
signal CURRENT_STATE : StateType;
signal NEXT_STATE : StateType;
-- Declarations of the 11 registers in synthetic
signal regNum0 : integer range -32767 to 32768 := 0;
signal regNum1 : integer range -32767 to 32768 := 0;
signal regNum2 : integer range -32767 to 32768 := 0;
signal regNum3 : integer range -32767 to 32768 := 0;
signal regNum4 : integer range -32767 to 32768 := 0;
signal regNum5 : integer range -32767 to 32768 := 0;
signal regNum6 : Integer range -32767 to 32768 := 0;
signal regNum7 : integer range -32767 to 32768 := 0;
signal regNum8 : integer range -32767 to 32768 := 0;
signal regNum9 : integer range -32767 to 32768 := 0;
signal regNum10 : integer range -32767 to 32768 := 0;
BEGIN
res_ALU_instance_0 : res_ALU
port map (
res_ALU_in0 => res_ALU_0_in0,
res_ALU_in1 => res_ALU_0_in1,
res_ALU_execOp => res_ALU_0_execOp,
res_ALU_out => res_ALU_0_out

);
-- end of port map of component res_ALU_instance_0

res_ALU_instance_1 : res_ALU
port map (
res_ALU_in0 => res_ALU_1_in0,
res_ALU_in1 => res_ALU_1_in1,
res_ALU_execOp => res_ALU_1_execOp,
res_ALU_out => res_ALU_1_out

);
-- end of port map of component res_ALU_instance_1

res_CMP_instance_2 : res_CMP
port map (
res_CMP_in0 => res_CMP_2_in0,
res_CMP_in1 => res_CMP_2_in1,
res_CMP_out => res_CMP_2_out

);
-- end of port map of component res_CMP_instance_2

210 APPENDIX B. SAMPLE RUNS

res_ARR_instance_3 : res_ARR
port map (
res_ARR_in0 => res_ARR_3_in0,
res_ARR_out => res_ARR_3_out

);
-- end of port map of component res_ARR_instance_3

SYNC: PROCESS
BEGIN
wait until CLOCK’event and CLOCK = ’1’;
if reset = ’1’ then
CURRENT_STATE <= S_0;
done <= ’0’;

else
CURRENT_STATE <= NEXT_STATE;
if CURRENT_STATE /= S_0 and NEXT_STATE = S_0 then
done <= ’1’ ;

end if;
end if; -- if reset check

END PROCESS; -- SYNC Process

FSM: PROCESS(CURRENT_STATE, sT4_10, sT0_6)
BEGIN
NEXT_STATE <= CURRENT_STATE;
if CURRENT_STATE(0) = ’1’ then
NEXT_STATE <= S_1;

elsif CURRENT_STATE(1) = ’1’ then
NEXT_STATE <= S_2;

elsif CURRENT_STATE(2) = ’1’ then
if sT0_6 then
NEXT_STATE <= S_3;

else -- sT0_6
NEXT_STATE <= S_0;

end if; -- conditions
elsif CURRENT_STATE(3) = ’1’ then
if sT0_6 then
if sT4_10 then
NEXT_STATE <= S_4;

else -- ST4_10
NEXT_STATE <= S_4;

end if; -- conditions
end if; -- conditions

elsif CURRENT_STATE(4) - ’1’ then
if sT0_6 then
if ST4_10 then
NEXT_STATE <= S_5;

else -- ST4_10
NEXT_STATE <= S_5;

end if; -- conditions
end if; -- conditions

elsif CURRENT_STATE(5) = ’1’ then
NEXT_STATE <= S_1;

END if; -- if (CURRENT_STATE)
END PROCESS; -- FSM Process

DP: PROCESS

BEGIN
wait until CLOCK ’event and CLOCK = ’1’;
if reset = ’1’ then
sT0_6 <= FALSE;
sT4_10 <= FALSE;

else -- else of if reset
if CURRENT_STATE(0) = ’1’ then
regNum0 <= res_ALU_1_out;
regNum1 <= 0;

elsif CURRENT_STATE(1) = ’1’ then

B.3. BOUND VHDL OUTPUT FOR THE SAMPLE PROGRAM 211

regNum2 <= res_ALU_0_out;
regNum3 <= res_ALU_1_out;
sT0_6 <=res_CMP_2_out;

elsif CURRENT_STATE(2) = ’1’ then
if sT0_6 then
regNum4 <= res_ALU_0_out;
regNum5 <= res_ALU_1_out;
sT4_10 <= res_CMP_2_out;
regNum6 <= res_ARR_3_out;

end if; -- conditions
elsif CURRENT_STATE(3) = ’1’ then

if sT0_6 then
if sT4_10 then
regNum7 <= res_ALU_1_out;
regNum8 <= res_ALU_0_out;

else -- sT4_10
regNum7 <= res_ALU_1_out;
regNum8 <= res_ALU_0_out;

end if; -- conditions
end if; -- conditions

elsif CURRENT_STATE(4) = ’1’ then
if sT0_6 then
if sT4_10 then
regNum9 <= res_ALU_1_out;
regNum1 <= res_ALU_0_out;
regNum10 <= res_ARR_3_out;

else -- sT4_10
regNum9 <= res_ALU_1_out;
regNum1 <= res_ALU_0_out;
regNum10 <= res_ARR_3_out;

end if; -- conditions
end if; -- conditions

elsif CURRENT_STATE(5) = ’1’then
END if; -- if (CURRENT_STATE)

end if; -- end of if reset
END PR0CESS; -- DP Process

res_ALU_0_in0_MUXES:PROCESS(CURRENT_STATE, regNuml, sT0_6,
regNum0, sT4_10, regNum2, regNum10)

variable mux_select : std_logic_vector(13 downto 0);
BEGIN
mux_select := "00000000000000";
if (CURRENT_STATE(l) = ’1’)then
mux_select := "00000000000001";

end if;
if (CURRENT_STATE(2) = ’1’ and sT0_6) then
mux_select := "00000000000010";

end if;
if (CURRENT_STATE(3) = ’1’ and sTO_6 and sT4_10) then
mux_select := "00000000000100";

end if;
if (CURRENT_STATE(4) = ’1’ and sT0_6 and sT4_10) then
mux_select := "00000000001000";

end if;
if (CURRENT_STATE(3) = ’1’ and sT0_6 and NOT(sT4_10)) then
mux_select := "00000000010000";

end if;
if (CURRENT_STATE(4) = ’1’ and sT0_6 and NOT(sT4_10)) then
mux_select := "00000000100000";

end if;
if (CURRENT_STATE(5) = ’1’ and sT0_6) then
mux_select := "00000001000000";

end if;
case mux_select is
when "00000000000001" =>
res_ALU_0_in0 <= regNum1;

when "00000000000010" =>
res_ALU_0_in0 <= regNum0;

212 APPENDIX B. SAMPLE RUNS

when "00000000000100" =>
res_ALU_0_in0 <= regNum2;

when "00000000001000" =>
res_ALU_0_in0 <= regNum1;

when "00000000010000" =>
res_ALU_0_in0 <= regNum2;

when "00000000100000" =>
res_ALU_0_in0 <= regNum1;

when "00000001000000" =>
res_ALU_0_in0 <= regNum10;

when others =>
res_ALU_0_in0 <= 0;

END CASE;
END PROCESS; -- res_ALU_0_in0_MUXES END PROCESS;

res_ALU_0_in1_MUXES: PROCESS(CURRENT_STATE, bytes, sT0_6, regNum1,
sT0_6, ST4_10, regNum4, regNum5, regNum9)

variable mux_select : std_logic_vector(13 downto 0);
BEGIN
mux_select := "00000000000000";
if (CURRENT_STATE(1) = ’1’) then
mux_select := "00000000000001";

end if;
if (CURRENT_STATE(2) = ’1’ and sT0_6) then
mux_select := "00000000000010";

end if;
if (CURRENT_STATE(3) = ’1’ and sT0_6 and sT4_10) then
mux_select := "00000000000100";

end if;
if (CURRENT_STATE(4) = ’1’ and sT0_6 and sT4_10) then
mux_select := "00000000001000";

end if;
if (CURRENT_STATE(3) = ’1’ and sT0_6 and NOT(sT4_10)) then
mux_select := "00000000010000";

end if;
if (CURRENT_STATE(4) = ’1’ and sT0_6 and NOT<sT4_10)) then
mux_select := "00000000100000";

end if;
if (CURRENT_STATE(5) = ’1’ and sT0_6) then
mux_select := "00000001000000";

end if;
case mux_select is
when "00000000000001" =>
res_ALU_0_in1 <= bytes;

when "00000000000010" =>
res_ALU_0_in1 <= regNum1;

when "00000000000100" =>
res_ALU_0_in1 <= regNum4;

when "00000000001000" =>
res_ALU_0_in1 <= 1;

when "00000000010000" =>
res_ALU_0_in1 <= regNum5;

when "00000000100000" =>

w
res_ALU_0_in1 <= 1;
hen "00000001000000" =>
res_ALU_0_in1 <= regNum9;

when others =>
res_ALU_0_in1 <= 0;

END CASE;
END PROCESS; -- res_ALU_0_in1_MUXES END PROCESS;

res_ALU_0_execOpMUXES: PROCESS (CURRENT_STATE, sT0_6, sT4_10)
variable mux_select : std_logic_vector(13 downto 0);

BEGIN
mux_select := "00000000000000";
if (CURRENT_STATE(1) = ’1’) then
mux_select := "00000000000001";

end if;

B.3. BOUND VHDL OUTPUT FOR THE SAMPLE PROGRAM 213

if (CURRENT_STATE(2) = ’1’ and sT0_6) then
mux_select := "00000000000010";

end if;
if (CURRENT_STATE(3) = ’1’ and sT0_6 and sT4_10) then
mux_select := "00000000000100";

end if;
if (CURRENT_STATE(4) = ’1’ and sT0_6 and sT4_10) then
mux_select := "00000000001000";

end if;
if (CURRENT_STATE(3) = ’1’ and sT0_6 and NOT(sT4_10)) then
mux_select := "00000000010000";

end if;
if (CURRENT_STATE(4) = ’1’ and sT0_6 and NOT(sT4_10)) then
mux_select := "00000000100000";

end if;
if (CURRENT_STATE(5) = ’1’ and sT0_6) then
mux_select := "00000001000000";

end if;
case mux_select is
when "00000000000001" =>
res_ALU_0_execOp <= 0 ;

when "00000000000010" =>
res_ALU_0_execOp <= 1 ;

when "00000000000100" =>
res_ALU_0_execOp <= 0 ;

when "00000000001000" =>
res_ALU_0_execOp <= 0 ;

when "00000000010000" =>
res_ALU_0_execOp <= 0 ;

when "00000000100000" =>
res_ALU_0_execOp <= 0 ;

when "00000001000000" =>
res_ALU_0_execOp <= 0 ;

when others =>
res_ALU_0_execOp <= 0;

END CASE;
END PROCESS; -- res_ALU_0_execOp_MUXES END PROCESS;

res_ALU_1_in0_MUXES: PROCESS (CURRENT_ STATE, x, regNum1, sT0_6,
regNum3, sT4_10, regNum6, regNum7)

variable mux_select : std_logic_vector(13 downto 0);
BEGIN
mux_select := "00000000000000";
if (CURRENT_STATE(0) = ’1’) then
mux_select := "00000000000001";

end if;
if (CURRENT_STATE(1) = ’1’) then
mux_select := "00000000000010";

end if;
if (CURRENT_STATE(2) = ’1’ and sT0_6) then
mux_select := "00000000000100";

end if;
if (CURRENT_STATE(3) = ’1’ and sT0_6 and sT4_10) then
mux_select := "00000000001000";

end if;
if (CURRENT_STATE(4) = ’1’ and sT0_6 and sT4_10) then
mux_select := "00000000010000";

end if;
if (CURRENT_STATE(3) = ’1’ and sT0_6 and NOT(sT4_10)) then

mux_select := "00000000100000";
end if;
if (CURRENT_STATE(4) = ’1’ and sT0_6 and NOT(sT4_10)) then
mux_select := "00000001000000";

end if;
case mux_select is
when "00000000000001" =>
res_ALU_1_in0 <= x;

when "00000000000010" =>

214 APPENDIX B. SAMPLE RUNS

res_ALU_1_in0 <= regNum1;
when "00000000000100" =>
res_ALU_1_in0 <= regNum3;

when "00000000001000" =>
res_ALU_1_in0 <= regNum6;

when "00000000010000" =>
res_ALU_1_in0 <= regNum7;

when "00000000100000" =>
res_ALU_1_in0 <= regNum6;

when "00000001000000" =>
res_ALU_1_in0 <= regNum7;

when others =>
res_ALU_1_in0 <= 0;

END CASE;
END PROCESS; -- res_ALU_1_in0_MUXES END PROCESS;

res_ALU_1_in1_MUXES: PROCESS (CURRENT_STATE, x, sT0_6, sT4_10, y)
variable mux_select : std_logic_vector(13 downto 0);

BEGIN
mux_select := "00000000000000";
if (CURRENT_STATE(0) = ’1’) then
mux_select := "00000000000001";

end if;
if (CURRENT_STATE(1) = ’1’) then
mux_select := "00000000000010";

end if;
if (CURRENT_STATE(2) = ’1’ and sT0_6) then
mux_select := "00000000000100";

end if;
if (CURRENT_STATE(3) = ’1’ and sT0_6 and sT4_10) then
mux_select := "00000000001000";

end if;
if (CURRENT_STATE(4) = ’1’ and sT0_6 and sT4_10) then
mux_select := "00000000010000";

end if;
if (CURRENT_STATE(3) = ’1’ and sT0_6 and NOT(sT4_10)) then
mux_select := "00000000100000";

end if;
if (CURRENT_STATE(4) = ’1’ and sT0_6 and NOT(sT4_10)) then
mux_select := "00000001000000";

end if;
case mux_select is
when "00000000000001" =>
res_ALU_1_in1 <= 2;

when "00000000000010" =>
res_ALU_1_in1 <= x;

when "00000000000100" =>
res_ALU_1_in1 <= 2;

when "00000000001000" =>
res_ALU_1_in1 <= y;

when "00000000010000" =>
res_ALU_1_in1 <= 2;

when "00000000100000" =>
res_ALU_1_in1 <= y;

when "00000001000000" =>
res_ALU_1_in1 <= 2;

when others =>
res_ALU_1_in1 <= 0;

END CASE;
END PROCESS; -- res_ALU_1_in1_MUXES END PROCESS;

res_ALU_1_execOpMUXES: PROCESS(CURRENT_STATE, sT0_6, sT4_10)
variable mux_select : std_logic_vector(13 downto 0);

BEGIN
mux_select := "00000000000000";
if (CURRENT_STATE(0) = ’1’) then
mux_select := "00000000000001";

end if;

B.3. BOUND VHDL OUTPUT FOR THE SAMPLE PROGRAM 215

if (CURRENT_STATE(1) = ’1’) then
mux_select := "00000000000010";

end if;
if (CURRENT_STATE(2) = ’1’ and sT0_6) then
mux_select := "00000000000100";

end if;
if (CURRENT_STATE (3) = ’1’ and sT0_6 and sT4_10) then
mux_select := "00000000001000";

end if;
if (CURRENT_STATE(4) = ’1’ and sT0_6 and sT4_10) then
mux_select := "00000000010000";

end if;
if (CURRENT_STATE (3) = ’1’ and sT0_6 and NOT(sT4_10)) then
mux_select := "00000000100000";

end if;
if (CURRENT_STATE(4) = ’1’ and sT0_6 and NOT(sT4_10)) then
mux_select := "00000001000000";

end if;
case mux_select is
when "00000000000001" =>
res_ALU_1_execOp <= 0 ;

when "00000000000010" =>
res_ALU_1_execOp <= 1 ;

when "00000000000100" =>
res_ALU_1_execOp <= 0 ;

when "00000000001000" =>
res_ALU_1_execOp <= 1 ;

when "00000000010000" =>
res_ALU_1_execOp <= 0 ;

when "00000000100000" =>
res_ALU_1_execOp <= 1 ;

when "00000001000000" =>
res_ALU_1_execOp <= 0 ;

when others =>
res_ALU_1_execOp <= 0;

END CASE;
END PROCESS; -- res_ALU_1_execOp_MUXES END PROCESS;

res_CMP_2_in0_MUXES: PROCESS (CURRENT_STATE, regNum1, sT0_6)
variable mux_select : std_logic_vector(1 downto 0) ;

BEGIN
mux_select := "00";
if (CURRENT_STATE(1) = ’1’) then
mux_select := "01";

end if;
if (CURRENT_STATE(2) = ’1’ and sT0_6) then
mux_select := "10";

end if;
case mux_select is
when "01" =>
res_CMP_2_in0 <= regNum1;

when "10" =>
res_CMP_2_in0 <= regNum1;

when others =>
res_CMP_2_in0 <= 0;

END CASE;
END PROCESS; -- res_CMP_2_in0_MUXES END PROCESS;

res_CMP_2_in1_MUXES: PROCESS (CURRENT_STATE, sT0_6, regNum0)
variable mux_select : std_logic_vector(1 downto 0);

BEGIN
mux_select := "00";
if (CURRENT_STATE(1) = ’1’) then
mux_select := "01";

end if;
if (CURRENT_STATE(2) = ’1’ and sT0_6) then
mux_select := "10";

end if;

216 APPENDIX B. SAMPLE RUNS

case mux_select is
when "01" =>
res_CMP_2_in1 <= 10;

when "10" =>
res_CMP_2_in1 <= regNum0;

when others =>
res_CMP_2_in1 <= 0;

END CASE;
END PROCESS; -- res_CMP_2_in1_MUXES END PROCESS;

res_ARR_3_in0_MUXES: PROCESS (CURRENT_STATE , sT0_6, dest_cur,
regNum2, sT4_10, regNum8)

variable mux_select : std_logic_vector(2 downto 0);
BEGIN
mux_select := "000";
if (CURRENT_STATE(2) = ’1’ and sT0_6) than
mux_select := "001";

end if;
if (CURRENT_STATE(4) = ’1’ and sT0_6 and sT4_10) then
mux_select := "010";

end if;
if (CURRENT_STATE(4) = ’1’ and sT0_6 and NOT(sT4_10)) then
mux_select := "100";

end if;
case mux_select is
when "001" =>
res_ARR_3_in0 <= dest_cur(regNum2);

when "010" =>
res_ARR_3_in0 <= dest_cur(regNum8);

when "100" =>
res_ARR_3_in0 <= dest_cur(regNum8);

when others =>
res_ARR_3_in0 <= 0;

END CASE;
END PROCESS; -- res_ARR_3_in0_MUXES END PROCESS;

END rtl;

Bibliography

R. Allen, K. Kennedy, C. Portfield, and J. Warren. Conversion of control
dependence to data dependence. In ACM Symposium on Principles of
Programming Languages, 1983.

A. Aiken, , and A. Nicolau. A development environment for horizontal
microcode. IEEE Transactions on Software Engineering, May 1988.

A. Aiken and A. Nicolau. Perfect Pipelining: A new loop parallelization
technique. In European Symposium on Programming, 1988.

A. Aiken, A. Nicolau, and S. Novack. Resource-constrained software
pipelining. IEEE Transactions on Parallel and Distributed Systems,
6(12), December 1995.

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles and Techniques
and Tools. Addison-Wesley, 1986.

Behavioral compiler. Synopsys.

R.K. Brayton, R. Camposano, G. De Micheli, R.H.J.M. Otten, and J. van
Eijndhoven. The Yorktown Silicon Compiler System, chapter in Silicon
Compilation. Addison-Wesley, 1988.

R.A. Bergamaschi. Behavioral network graph unifying the domains of
high-level and logic synthesis. In Design Automation Conference, 1999.

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler trans-
formations for high-performance computing. ACM Computing Surveys,
26(4):345–420, 1994.

M. Benmohammed and A. Rahmoune. Automatic generation of repro-
grammable microcoded controllers within a high-level synthesis environ-
ment. In IEE Proceedings-Computers and Digital Techniques, 1998.

R. A. Bergamaschi, S. Raje, and L. Trevillyan. Control-flow versus
data-flow-based scheduling: combining both approaches in an adaptive
scheduling system. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, March 1997.

[AKPW83]

[AN88a]

[AN88b]

[ANN95]

[ASU86]

[BC]

[Ber99]

[BGS94]

[BR98]

[BRT97]

218 BIBLIOGRAPHY

R. Camposano. Path–based scheduling for synthesis. IEEE Transactions
on Computer–Aided Design, Jan. 1991.

Celoxica. DK design suite. http://www.celoxica.com.

R. Cytron and J. Ferrante. What’s in a name? or the value of renaming for
parallelism detection and storage allocation. In International Conference
on Parallel Processing, 1987.

V. Chaiyakul, D.D. Gajski, and L. Ramachandran. Minimizing syntactic
variance with assignment decision diagrams. Technical Report ICS-TR-
92-34, UC Irvine, 1992.

V. Chaiyakul, D. D. Gajski, and L. Ramachandran. High-level trans-
formations for minimizing syntactic variances. In Design Automation
Conference, 1993.

V. Chaiyakul, D.D. Gajski, and L. Ramachandran. High level transfor-
mations for minimizing syntactic variances. In Design Automation Con-
ference, 1993.

A. Chowdhary, S. Kale, P. Saripella, N. K. Sehgal, and R. K. Gupta. A
general approach for regularity extraction in datapath circuits. In Inter-
national Conference on Computer-Aided Design, 1998.

L.-F. Chao, A. S. LaPaugh, and E. H.-M. Sha. Rotation scheduling: A
loop pipelining algorithm. In Design Automation Conference, 1993.

J.-M. Chang and M. Pedram. Register allocation and binding low power.
In Design Automation Conf., 1995.

J.-M. Chang and M. Pedram. Module assignment for low power. In
European Design Automation Conference, 1996.

R. Camposano and W. Wolf. High Level VLSI Synthesis. Kluwer Aca-
demic, 1991.

F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and
A. Vandecappelle. Custom Memory Management Methodology: Explo-
ration of Memory Organisation for Embedded Multimedia System De-
sign. Kluwer Academic Publishers, 1998.

Design compiler. Synopsys Incorporated.

J. C. Dehnert, P. Y.-T Hsu, and J.P. Bratt. Overlapped loop support in
the cydra 5. In International Conference on Architectural Support for
Programming Languages and Operating Systems, 1989.

G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[Cam91]

[Cel]

[CF87]

[CGR92]

[CGR93a]

[CGR93b]

[CLS93]

[CP95]

[CP96]

[CW91]

[DC]

[DHB89]

[DM94]

BIBLIOGRAPHY 219

[DS]

[dS97]

[dS98]

[dSJ99]

[DT93]

[Ebc87]

[EDG]

[ELL00]

[EN89]

[Fis81]

[GDGN03a]

[GDGN03b]

[GDGN03c]

[GDGN03d]

Forte Design Systems. Behavioral design suite. http://www.forteds.
com.

L.C.V. dos Santos. A method to control compensation code during global
scheduling. In Workshop on Circuits, Systems and Signal Processing,
1997.

L.C.V. dos Santos. Exploiting instruction-level parallelism: a construc-
tive approach. PhD thesis, Eindhoven University of Technology, 1998.

L.C.V. dos Santos and J.A.G. Jess. A reordering technique for efficient
code motion. In Design Automation Conference, 1999.

J. C. Dehnert and R. A. Towle. Compiling for the cydra 5. IEEE Com-
puter, 7(1/2), 1993.

K. Ebcioglu. A compilation technique for software pipelining of loops
with conditional jumps. In MICRO, 1987.

Edison Design Group (edg) compiler frontends. http://www.edg.com.

E. Eim, J.-G. Lee, and D.-I. Lee. Automatic process-oriented control cir-
cuit generation for asynchronous high-level synthesis. In International
Symposium on Advanced Research in Asynchronous Circuits and Sys-
tems, 2000.

K. Ebcioglu and A. Nicolau. A global resource-constrained paralleliza-
tion technique. In 3rd International Conference on Supercomputing,
1989.

J. Fisher. Trace scheduling: A technique for global microcode com-
paction. IEEE Transactions on Computers, July 1981.

S. Gupta, N.D. Dutt, R.K. Gupta, and A. Nicolau. Dynamic conditional
branch balancing during the high-level synthesis of control-intensive de-
signs. In Design, Automation and Test Conference, 2003.

S. Gupta, N.D. Dutt, R.K. Gupta, and A. Nicolau. Dynamically increas-
ing the scope of code motions during the high-level synthesis of digital
circuits. Invited Paper in Special Issue of IEE Proceedings: Computers
and Digital Technique: Best of DATE 2003, 150(5), September 2003.

S. Gupta, N.D. Dutt, R.K. Gupta, and A. Nicolau. Loop shifting and
compaction for the high-level synthesis of designs with complex control
flow. Technical Report CECS-TR-03-14, UC Irvine, April 2003.

S. Gupta, N.D. Dutt, R.K. Gupta, and A. Nicolau. SPARK: A high-level
synthesis framework for applying parallelizing compiler transformations.
In International Conference on VLSI Design, 2003.

220 BIBLIOGRAPHY

S. Gupta, N.D. Dutt, R.K. Gupta, and A. Nicolau. Loop shifting and
compaction for the high-level synthesis of designs with complex control
flow. In Design, Automation and Test Conference, 2004.

D. D. Gajski, N. D. Dutt, A. C-H. Wu, and S. Y-L. Lin. High-Level
Synthesis: Introduction to Chip and System Design. Kluwer Academic,
1992.

C.H. Gebotys and M.I. Elmasry. Optimal synthesis of high-performance
architectures. IEEE Journal of Solid-State Circuits, March 1992.

S. Gupta and R. K. Gupta. The VLSI Handbook, chapter ASIC Design.
CRC Press and IEEE Press, 2000. Chapter 64.

GNU Image Manipulation Program. http://www.gimp.org.

E. Girczyc. Automatic Generation of Micro-sequenced Data Paths to Re-
alize ADA Circuit Descriptions. PhD thesis, Carleton University, 1984.

E. Girczyc. Loop winding - a data flow approach to functional pipelining.
In International Symposium of Circuits and Systems, 1987.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

S. Gupta, T. Kam, M. Kishinevsky, S. Rotem, N. Savoiu, N.D. Dutt, R.K.
Gupta, and A. Nicolau. Coordinated transformations for high-level syn-
thesis of high performance microprocessor blocks. In Design Automation
Conference, 2002.

R. L. Gupta, A. Kumar, A. Van Der Werf, and G. N. Busa. Synthesizing a
long latency unit within VLIW processor. In Intl. Conf. on VLSI Design,
2000.

R. K. Gupta and S. Y. Liao. Using a programming language for digital
system design. IEEE Design and Test of Computers, April 1997.

S. Gupta, M. Luthra, N.D. Dutt, R.K. Gupta, and A. Nicolau. Hardware
and interface synthesis of fpga blocks using parallelizing code transfor-
mations. In To appear at the International Conference on Parallel and
Distributed Computing and Systems, November 2003.

S. Gupta, M. Miranda, F. Catthoor, and R. Gupta. Analysis of high-level
address code transformations for programmable processors. In Design,
Automation and Test in Europe, 2000.

M. Girkar and C.D. Polychronopoulos. Automatic extraction of func-
tional parallelism from ordinary programs. IEEE Trans. on Parallel &
Distributed Systems, Mar. 1992.

[GDGN04]

[GDWL92]

[GE92]

[GG00]

[Gim]

[Gir84]

[Gir87]

[GJ79]

[GKWB00]

[GL97]

[GMCG00]

[GP92]

BIBLIOGRAPHY 221

[GPN90]

[GS90]

[GVM89]

[Hay00]

[HC89]

[HD86]

[HE95]

[Hea93a]

[Hea93b]

[HLH91]

[HP81]

D.H. Gelernter, D. A. Padua, and A. Nicolau. Languages and Compilers
for Parallel Computing. Morgan Kaufmann, 1990.

S. Gupta, M. Reshadi, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nicolau.
Dynamic common sub-expression elimination during scheduling in high-
level synthesis. In International Symposium on System Synthesis, 2002.

R. Gupta and M. L. Soffa. Region scheduling: An approach for detecting
and redistributing parallelism. IEEE Transactions on Software Engineer-
ing, April 1990.

S. Gupta, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nicolau. Condi-
tional speculation and its effects on performance and area for high-level
synthesis. In International Symposium on System Synthesis, 2001.

G. Goossens, J. Vandewlle, and H. De Man. Loop optimization in
register-transfer scheduling for DSP-systems. In Design automation con-
ference, 1989.

D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao. SpecC:
Specification Language and Methodology. Kluwer Academic Publishers,
January 2000.

S. Haynal. Automata-Based Symbolic Scheduling. PhD thesis, University
of California, Santa Barbara, 2000.

R. Hartley and A. E. Casavant. Tree-height minimization in pipelined
architectures. In International Conference on Computer-Aided Design,
1989.

P. Y. T. Hsu and E. S. Davidson. Highly concurrent scalar processing. In
International Symposium on Computer Architecture, 1986.

U. Holtmann and R. Ernst. Combining MBP-speculative computation
and loop pipelining in high-level synthesis. In European Design and Test
Conference, 1995.

S. Huang and et al. A tree-based scheduling algorithm for control domi-
nated circuits. In Design Automation Conference, 1993.

W.W. Hwu and et al. The superblock: An effective technique for vliw
and superscalar compilation. Journal of Supercomputing, March 1993.

C.T. Hwang, T.H. Lee, and Y. C. Hsu. A formal approach to the schedul-
ing problem in high level synthesis. IEEE Transactions on CAD, April
1991.

F.J. Hill and G.R. Peterson. Switching Theory and Logical Design. Wiley,
New York, 1981.

222 BIBLIOGRAPHY

C.Y. Hitchcock and D.E. Thomas. A method of automatic data path
synthesis. In Design Automation Conference, 1983.

S.C.-Y. Huang and W.H. Wolf. How datapath allocation affects controller
delay. In International Symposium on High-Level Synthesis, 1994.

M. Ishikawa and G. D. Micheli. A module selection algorithm for high-
level synthesis. In International Symposium on Circuits and Systems,
1991.

Get2Chip Incorporated (now a Cadence subsidiary). G2C architectural
compiler. http://www.get2chip.com.

Z. Iqbal, M. Potkonjak, S. Dey, and A. Parker. Critical path optimization
using retiming and algebraic speed-up. In Design Automation Confer-
ence, 1993.

R. Jones and V. Allan. Software pipelining: A comparison and improve-
ment. In Proceedings of the Micro-23,1990.

M. Janssen, F. Catthoor, and H. De Man. A specification invariant tech-
nique for operation cost minimisation in flow-graphs. In International
Symposium on High-level Synthesis, 1994.

A. A. Jerraya, H. Ding, P. Kission, and M. Rahmouni. Behavioral Syn-
thesis and Component Reuse with VHDL. Kluwer Academic Publishers,
1997.

K. Kennedy and R. Allen. Optimizing Compilers for Modern Architec-
tures. Morgan Kaufmann, 2001.

P. Kollig and B. M. Al-Hashimi. Simultaneous scheduling, allocation
and binding in high level synthesis. Electronics Letters, August 1997.

R. Kennedy, S. Chan, S.-M. Liu, R. Io, P. Tu, and F. Chow. Partial redun-
dancy elimination in SSA form. ACM Trans. Progrm. Languages and
Systems, May 1999.

P. Kission, H. Ding, and A.A. Jerraya. Structured design methodology
for high-level design. In Design Automation Conference, 1994.

A. Kifli, G. Goossens, and H. De Man. A unified scheduling model for
high-level synthesis and code generation. In Proceedings of the European
Design and Test Conference, 1995.

D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. De-
pendence graphs and compiler optimizations. In ACM Symposium on
Principles of Programming Languages, 1981.

[HT83]

[HW94]

[IM91]

[InaCs]

[IPDP93]

[JA90]

[JCM94]

[JDKR97]

[KA01]

[KAH97]

[KDJ94]

[KGM95]

BIBLIOGRAPHY 223

J.J. Kim, F.J. Kurdahi, and N. Park. Automatic synthesis of time-
stationary controllers for pipelined data paths. In Proceedings of the
International Conference on Computer-Aided Design, 1991.

D. Ku and G. De Micheli. HardwareC - A language for hardware design.
Technical Report CSL-TR-90-419, Stanford University, 1988.

D. Ku and G. De Micheli. Relative scheduling under timing constraints.
In Design Automation Conference, 1990.

D. C. Ku and G. De Micheli. High Level Synthesis of ASICs Under
Timing and Synchronization Constraints. Kluwer Academic, 1992.

D. W. Knapp. Behavioral Synthesis: Digital System Design using the
Synopsys Behavioral Compiler. Prentice-Hall, 1996.

T. J. Kowalski and D. E. Thomas. The VLSI design automation assistant:
What’s in a knowledge base. In Design Automation Conference, 1985.

D.J. Kuck. The Structure of Computers and Computations, John Wiley
and Sons, 1978.

A. Kountouris and C. Wolinski. High level pre-synthesis optimization
steps using hierarchical conditional dependency graphs. In Euromicro
Confernce, 1999.

A.A. Kountouris and C. Wolinski. Hierarchical conditional dependency
graphs as a unifying design representation in the CODESIS high-level
synthesis system. In Intl. Symposium on System Synthesis, 2000.

T. Kim, N. Yonezawa, J.W.S. Liu, and C.L. Liu. A scheduling al-
gorithm for conditional resource sharing - a hierarchical reduction ap-
proach. IEEE Transactions on CAD, April 1994.

AT&T Research Labs. Graphviz - Open source graph drawing software.
http://www.research.att.com/sw/tools/graphviz/.

M. Lam. Software pipelining: An effective scheduling technique for
VLIW machines. In ACM SIGPLAN Conference Programming Lan-
guages Design Implementation, 1988.

E.A. Lee. Programmable DSP architectures, Parts I, II. IEEE ASSP
Magazine, October 1988.

J. Li and R.K. Gupta. HDL optimizations using Timed Decision Tables.
In Design Automation Conference, 1996.

J. Li and R.K. Gupta. Decomposition of Timed Decision Tables and
its use in presynthesis optimizations. In International Conference on
Computer Aided Design, 1997.

[KKP91]

[KM88]

[KM90]

[KM92]

[Kna96]

[KT85]

[Kuc78]

[KW99]

[KW00]

[KYLL94]

[Lab]

[Lam88]

[Lee88]

[LG96]

[LG97]

224 BIBLIOGRAPHY

M. Luthra, S. Gupta, N.D. Dutt, R.K. Gupta, and A. Nicolau. Interface
synthesis using memory mapping for an FPGA platform. In International
Conference on Computer Design, October 2003.

B. Landwehr, P. Marwedel, and R. Doemer. Oscar: Optimum simulta-
neous scheduling, allocation and resource binding based on integer pro-
gramming. In European Design Automation Conference, 1994.

D.A. Lobo and B.M. Pangrle. Redundant operator creation: A scheduling
optimization technique. In Design Automation Conference, 1991.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: A tool
for evaluating and synthesizing multimedia and communicatons systems.
In International Symposium on Microarchitecture, 1997.

G. Lakshminarayana, A. Raghunathan, and N.K. Jha. Incorporating spec-
ulative execution into scheduling of control-flow intensive behavioral de-
scriptions. In Design Automation Conference, 1998.

G.W. Leive and D.E. Thomas. A technology relative logic synthesis and
module selection system. In Design Automation Conference, 1981.

M. S. Lam and R. P. Wilson. Limits of control flow on parallelism. In
International Symposium on Computer Architecture, 1992.

S. Mantripragada. Branch Optimizations and Instruction Level Paral-
lelism Exploitation for Dynamic Superscalar and VLIW Processors. PhD
thesis, University of California, Irvine, 2000.

P. Marwedel. A new synthesis for the mimola software system. In Design
Automation Conference, 1986.

A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. Dynamic
speculation and synchronization of data dependences. In International
Symposium on Computer Architecture, 1997.

M. C. McFarland. The Value Trace: A database for automated digi-
tal design. Technical Report DRC-01-4-80, Carnegie-Mellon University,
Design Research Center, 1978.

M. Miranda, F. Catthoor, M. Janssen, and H. De Man. High-level address
optimisation and synthesis techniques for data-transfer intensive applica-
tions. IEEE Transactions on VLSI Systems, December 1998.

S.-M. Moon and K. Ebcioglu. An efficient resource-constrained global
scheduling technique for superscalar and VLIW processors. In Interna-
tional Symposium on Microarchitecture, 1992.

UCLA Mediabench benchmark suite. http://cares.icsl.ucla.
edu/MediaBench/.

[LMD94]

[LP91]

[LPMS97]

[LRJ98]

[LT81]

[LW92]

[Man00]

[Mar86]

[MBVS97]

[McF78]

[MCJM98]

[ME92]

[Med]

BIBLIOGRAPHY 225

A. Mujumdar, R. Jain, and K. Saluja. Incorporating performance and
testability constraints during binding in high-level synthesis. IEEE Trans.
on CAD, 1996.

G. De Micheli, D. C. Ku, F. Mailhot, and T. Truong. The Olympus
synthesis system for digital design. IEEE Design and Test of Computers,
pages 37–53, October 1990.

S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-
mann. Effective compiler support for predicated execution using the hy-
perblock. In International Symposium on Microarchitecture, 1992.

M.C. McFarland, A.C. Parker, and R. Camposano. The high-level syn-
thesis of digital systems. Proceedings of the IEEE, February 1990.

H. De Man, J. Rabaey, P. Six, and L. Claesen. Cathedral-II: A silicon
compiler for digital signal processing. IEEE Design & Test Magazine,
December 1986.

S. S. Muchnick. Advanced Compiler Design and Implementation. Mor-
gan Kaufmann, 1997.

A. Nicolau. A development environment for scientific parallel programs.
Technical Report TR 86-722, Department of Computer Science, Cornell
University, 1985.

A. Nicolau. Uniform parallelism exploitation in ordinary programs. In
International Conf. on Parallel Processing, 1985.

A. Nicolau and S. Novack. Trailblazing: A hierarchical approach to Per-
colation Scheduling. In International Conference on Parallel Processing,
1993.

S. Novack and A. Nicolau. Mutation scheduling: A unified approach to
compiling for fine-grain parallelism. In Languages and Compilers for
Parallel Computing, 1994.

S. Novack and A. Nicolau. An efficient, global resource-directed ap-
proach to exploiting instruction-level parallelism. In Conference on Par-
allel Architectures and Compilation Techniques, 1996.

A. Nicolau and R. Potasman. Incremental tree height reduction for high
level synthesis. In Design Automation Conference, 1991.

M. Narasimhan and J. Ramanujam. On lower bounds for scheduling
problems in high-level synthesis. In Design Automation Conference,
2000.

A. Orailoglu and D.D. Gajski. Flow graph representation. In Design
Automation Conference, 1986.

[MJS96]

[MKMT90]

[MPC90]

[MRSC86]

[Muc97]

[Nic85a]

[Nic85b]

[NN93]

[NN94]

[NN96]

[NP91]

[NR00]

[OG86]

226 BIBLIOGRAPHY

P.R. Panda. Memory Optimizations and Exploration for Embedded Sys-
tems. PhD thesis, University of California, Irvine, 1998.

P.G. Paulin. Horizontal partitioning of PLA-based finite state machines.
In Design Automation Conference, 1989.

Intel Inc., http://developer.intel.com/design/pro/manuals/
242691.htm. PentiumPro® Programmer’s Reference Manual. Chap-
ter 11.

P. Paulin, J. Frehel, M. Harrand, E. Berrebi, C. Liem, F Nacabal, and J.-
C. Herluison. High-level synthesis and codesign methods: an application
to a videophone codec. In European design automation conference with
EURO-VHDL, 1995.

B.M. Pangrle and D.D. Gajski. Slicer: A state synthesizer for intelligent
silicon compilation. In Proceedings of the International Conference on
Computer-Aided Design, 1986.

P. G. Paulin and J. P. Knight. Force-Directed Scheduling for the Behav-
ioral Synthesis of ASIC’s. IEEE Transactions on CAD, 8(6):661–678,
June 1989.

P. G. Paulin and J. P. Knight. Scheduling and Binding Algorithms for
High-Level Synthesis. In Design Automation Conference, 1989.

I.-C. Park and C.-M. Kyung. Fast and near optimal scheduling in auto-
matic data path synthesis. In Design Automation Conference, 1991.

R. Potasman, J. Lis, A. Nicolau, and D. Gajski. Percolation based syn-
thesis. In Design Automation Conference, 1990.

O. Penalba, J.M. Mendias, and R. Hermida. Maximizing conditional
reuse by pre-synthesis transformations. In Design, Automation and Test
in Europe, 2002.

C. D. Polychronopoulos. Parallel Programming and Compilers. Kluwer
Academic Publishers, 1988.

N. Park and A. Parker. Sehwa: A software package for synthesis
of pipelines from behavioral specifications. IEEE Transactions on
Computer-Aided Design, March 1988.

A.C. Parker, J. Pizarro, and M. Mlinar. MAHA: A program for datapath
synthesis. In Design Automation Conference, 1986.

M. Potkonjak and J. Rabaey. Maximally fast and arbitrarily fast imple-
mentation of linear computations. In International Conference on CAD,
1992.

[Pan98]

[Pau89]

[Pen]

[PG86]

[PK89a]

[PK89b]

[PK91]

[PLNG90]

[PMH02]

[Pol88]

[PP88]

[PPM86]

[PR92]

BIBLIOGRAPHY 227

M. Potkonjak and J. Rabaey. Optimizing resource utlization using tran-
formations. IEEE Transactions on CAD, March 1994.

J. C. H. Park and M. Schlansker. On predicated execution. Technical
Report HPL-91-58, Hewlett-Packard Software and Systems Laboratory,
1991.

M. Potkonjak, M.B. Srivastava, and A. Chandrakasan. Multiple constant
multiplications: Efficient and versatile framework and algorithms for ex-
ploring common subexpression elimination. IEEE Trans. on CAD, Mar
1996.

R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova. A
new algorithm for elimination of common subexpressions. IEEE Trans-
actions on CAD, Jan 1999.

S. Rajan. Practical state machine design using VHDL.
Integrated System Design Magazine, Febuary 1995.
http://www.isdmag.com/editorial/1995/fpgafeature9502.html.

I. Radivojevic and F. Brewer. Analysis of conditional resource sharing
using a guard-based control representation. In International Conference
on Computer Design, 1995.

I. Radivojevic and F. Brewer. A new symbolic technique for control-
dependent scheduling. IEEE Transactions on CAD, January 1996.

J. M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak. Fast prototyping
of datapath-intensive architectures. IEEE Design & Test of Computers,
June 1991.

M. Rim, Y. Fann, and R. Jain. Global scheduling with code-motions for
high-level synthesis applications. IEEE Transactions on VLSI Systems,
September 1995.

B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily
schedulable horizontal architecture for high performance scientific com-
puting. In Annual Workshop on Microprogramming, 1981.

D.S. Rao and F.J. Kurdahi. Controller and datapath trade-offs in hier-
archical RT-level synthesis. In International Symposium on High-Level
Synthesis, 1994.

N.N.J. Roy and R. Vemuri. Synchronous controller models for synthesis
from communicating VHDL processes. In International Conference on
VLSI Design, 1996.

B. Rau, D. Yen, W. Yen, and R. Towle. The cydra 5 departmental super-
computer: Design philosophies, decisions, and trade-offs. IEEE Com-
puter, 22(1), 1989.

[PR94]

[PS91]

[PSC96]

[Raj95]

[RB95]

[RB96]

[RCHP91]

[RFJ95]

[RG81]

[RK94]

[RV96]

[RYYT89]

228 BIBLIOGRAPHY

L. Semeria. Applying Pointer Analysis to the Synthesis of Hardware from
C. PhD thesis, Stanford University, 2001.

V.C. Sreedhar, G. R. Gao, and Y.-F. Lee. A new framework for exhaustive
and incremental data flow analysis using DJ graphs. ACM SIGPLAN
Conf. on PLDI, 1996.

V.C. Sreedhar, G. R. Gao, and Y.-F. Lee. Incremental computation of
dominator trees. ACM Trans. Progrm. Languages and Systems, March
1997.

M. D. Smith, M. S. Lam, and M. A. Horowitz. Boosting beyond static
scheduling in a superscalar processor. In International Symposium on
Computer Architecture, 1990.

L. Stok and W.J.M. Philipsen. Module allocation and comparability
graphs. In IEEE International Sympoisum on Circuits and Systems, 1991.

SPARK parallelizing high-level synthesis framework website, http://
www.cecs.uci.edu/~spark.

L. Stok. Transfer free register allocation in cyclic data flow graphs. In
European Conf. on Design Automation, 1992.

Synopsys Inc., http://www.systemc.org. SystemC Reference Man-
ual.

A. Safir and B. Zavidovique. Towards a global solution to high level
synthesis problems. In European Design Automation Conference, 1990.

D.E. Thomas, E.M. Dirkes, R.A. Walker, J.V. Rajan, J.A. Nestor, and
R.L. Blackburn. The system architect’s workbench. In Design Automa-
tion Conference, 1988.

G. S. Tjaden and M. J. Flynn. Detection and parallel execution of inde-
pendent instructions. IEEE Transactions on Computers, 19(10), October
1970.

H. Trickey. Flamel: A high-level hardware compiler. IEEE Transactions
on Computer–Aided Design, March 1987.

C.J. Tseng and D.P. Siewiorek. Automated synthesis of data paths in
digital systems. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, July 1986.

R. L. Rivest T. T. Cormen, C. E. Leiserson. Introduction to algorithms.
MIT Press, Cambridge, MA, 1990.

C.-J. Tseng, R.-S. Wei, S. G. Rothweiler, M. M. Tong, and A. K. Bose.
Bridge: A versatile behavioral synthesis system. In Design Automation
Conference, 1988.

[Sem01]

[SGL96]

[SGL97]

[SLH90]

[SP91]

[SPA]

[Sto92]

[SyC]

[SZ90]

[TF70]

[Tri87]

[TS86]

[TTC90]

BIBLIOGRAPHY 229

S. Vernalde, P. Schaumont, and I. Bolsens. An object oriented program-
ming approach for hardware design. In IEEE Computer Society Work-
shop on VLSI, April 1999.

K. Wakabayashi. C-based synthesis experiences with a behavior synthe-
sizer, “Cyber”. In Design, Automation and Test in Europe, 1999.

D.W. Wall. Limits of instruction-level parallelism. In International Con-
ference on Architectural Support for Programming Languages and Op-
erating System (ASPLOS), 1991.

T.C. Wilson, N. Mukherjee, M.K. Garg, and D. K. Banerji. An ILP solu-
tion for optimum scheduling, module and register allocation, and opera-
tion binding in datapath synthesis. VLSI Design, 1995.

M.J. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

J.-P. Weng and A. C. Parker. CSG: Control path synthesis in the ADAM
system. In International Workshop on High Level Synthesis, 1992.

R. Walker and D. Thomas. Behavioral transformation for algorithmic
level IC design. IEEE Transactions on CAD, October 1989.

K. Wakabayashi and H. Tanaka. Global scheduling independent of con-
trol dependencies based on condition vectors. In Design Automation
Conference, 1992.

W. Wolf, A. Takach, C.-Y. Huang, R. Manno, and E. Wu. The Princeton
University behavioral synthesis system. In Design automation confer-
ence, 1992.

K. Wakabayashi and T. Yoshimura. A resource sharing and control syn-
thesis method for conditional branches. In Proceedings of the Interna-
tional Conference on Computer-Aided Design, 1989.

Xilinx. ISE logic synthesis tools.

XviD MPEG-4 video de-/encoding solution. http://www.xvid.org.

T. Z. Yu, E. H.-M. Sha, N. Passos, and R. D.-C. Ju. Algorithms and
hardware support for branch anticipation,. In Great Lakes Symposium on
VLSI, 1997.

J. Zegers, P. Six, J. Rabaey, and H. De Man. CGE: Automatic genera-
tion of controllers in the CATHEDRAL-II silcion compiler. In Design
Automation Conference, 1990.

[VSB99]

[Wak99]

[Wal91]

[WMGB95]

[Wol96]

[WP92]

[WT89]

[WT92]

[WY89]

[Xil]

[Xvi]

[YSPJ97]

[ZSRM90]

Index

3-layered, 135

abstract syntax tree, 24
allocation, 6

previous work, 15
as late as possible, 15
as soon as possible, 15
available operations, 90, 91

heuristic, 94
heuristic with chaining, 109

back-end code generation, 53
basic block, 27
benchmarks, 145, 146
binding, see resource binding, see re-

source binding
branch balancing, see dynamic branch

balancing

candidate fetcher, 89
available operations, 94
collecting unscheduled operations,

95
data dependencies, 96
Trailblazing, 97
TrailSynth, 97

candidate mover, 90
move operations, 99, 100
Trailblazing, 97
TrailSynth, 97

candidate validater, 90
candidate walker, 90
case studies, 145
coarse-grain, 7, 51, 136
combining, 55
command-line options, 135
common sub-expression elimination, see

CSE

compatibility edges, 119
conditional constructs, 7, 26
conditional speculation, 74, 77

heuristics, 141
results, 141

control constructs, 7
control flow, 26
control flow graph, 28
control paths, 27
control speculation, 68
control synthesis, 7, 10, 53, 122
control-data flow graphs, 29
cost function, 90, 91
CSE, 59–61

results, 150–152

data dependency, 24, 54, 96
anti, 24, 54
flow, 24, 54
input, 24, 54
output, 24, 54

data dependency analysis, 26
data dependency graphs, 54
data flow graph, 25
data speculation, 68
data types, 34
design graph, 33
design HTG, 33
dominate, 42, 59
dominator trees, 42, 59
duplicating down, see reverse specula-

tion
duplicating up, see conditional specu-

lation
dynamic branch balancing, 53, 75–76

during code motions, 76, 141
during design traversal, 76, 141

INDEX 231

heuristic, 105
results, 141

dynamic copy propagation, 53, 79
dynamic CSE, 53, 76–79

algorithm, 103
results, 155–158

dynamic renaming, 52, 54–55
dynamic transformations, 9, 53, 90, 92

dynamic branch balancing, 75, 105
dynamic copy propagation, 79
dynamic CSE, 76

dynamic variable renaming, 26, see dy-
namic renaming

early condition execution, 73
embedded systems, 3
experiments, 145

fine-grain, 7, 51
finite state machine, 53, 124

algorithm, 125, 126
construction, 125

force-directed scheduling, 15
fork node, 26
function call, 35
function inlining, 179

results, 148
functional blocks, 173
functional units, 115

global slicing, 122
group dominance, 43, 78

hardware resource library, 35, 51, 135
heuristic

move operations, 100
hierarchical task graph, 29–33

compound node, 30
construction, 31
for-loop, 31
if-then-else, 31
loop node, 30
single node, 30
start node, 30
stop node, 30

high-level synthesis, 3

HTG, see hierarchical task graph

idle resource
heuristic, 101

index variable elimination, 182
inlining, 179

results, 148
instruction length decoder, 175, 176
instruction-level parallelism, 7
interconnect, 10
interconnect minimization, see resource

binding
interconnect minimizing resource bind-

ing, 10
interdependencies between code motions,

137
inverted triangle, 31
IR walker, 89, 103

get next basic block, 104
get next scheduling step, 103

join node, 26

language level modeling, 7
layered graph, 24

3-layered graph, 24
k-layered graph, 24

lazy code motion, 71
list scheduling heuristic, 90
local slicing, 122
loop index variable elimination, 63–64
loop pipelining, 53, 84

incremental, 53
loop shifting, 53, 84

algorithm, 112
results, 164–170

loop unrolling, 62–63, 175
results, 164–170

loop-invariant code motion, 61–62
results, 150–152

low latency, 173

max-cost flow, 121
metrics

logic synthesis results, 147
scheduling results, 147

232 INDEX

microprocessor blocks, 174
microprocessor functional blocks, 64
min-cost max-flow, 122
mobility, 15
modeling

code motions, 39–41
control flow, 26
data dependency, 24
data type information, 34
finite state machine, 124
hardware resources, 35
hierarchical code motions, 40–41
intermediate representation, 23–33
operation chaining, 37
operation chaining across condi-

tionals, 46
resource binding, 116
speculative code motions, 39–40
timing, 36

modular, 136
module selection, 6
multi-commodity network, 120, 121
multi-cycle operations, 52
mutually exclusive, 69, 70

non-flow data dependencies, 26

operation binding, 119
clique, 119
example, 119

operation chaining, 37
across conditionals, 46, 80–84, 176
heuristic, 108
results, 158–160
wire variables, 82
wire variables heuristic, 111

operation compatibility graph, 119

parallelizing high-level synthesis, 8
parallelizing transformations, 7
Percolation, 52
PHLS framework, 51–57
pipelining

previous work, 16
pre-synthesis, 8, 51, 59–65

results, 147

predicated execution, 68
priority

calculation, 93
results, 143
scheduling heuristic, 90

register-transfer level, 11
resource

busy, 68
idle, 68

resource allocation, 6, 37
resource binding, 6, 53, 115

example, 117
interconnect minimization, 116
modeling, 116
operation binding, 119
previous work, 15
problem definition, 115, 117
variable binding, 121

resource list, 37
resource sharing, 52, 69, 70
resource types, 37
resource utilization, 44–46
resource-constrained scheduling, 43
results

dynamic CSE, 155
experimental setup, 145
loop shifting, 164
loop unrolling, 164
metrics, 147
operation chaining, 158
speculative code motions, 152

reverse speculation, 71

scheduling, 6, 9, 41–47
available operations, 94, 109
example, 107
heuristic with chaining, 108
heuristics, 89–114
loops, 92
software architecture, 89

scheduling heuristics
previous work, 15

scheduling loops, 92
scheduling phase, 53, 136
scheduling problem, 37–39

INDEX 233

scheduling step, 41
scheduling transformations, 67–88
script-based synthesis, 137
SPARK framework, 51–57
speculation, 68, 70–71
speculative code motions, 9, 52, 68–

75, 175, 181
modeling, 39
ordering, 137–141
results, 152–155

speculative execution, see speculation
split lifetime intervals, 121
state assignment, 122

slicing, 122
steering logic, 10
synthesis scripts, 135, 137

recommended, 143
synthesizable VHDL generation, 128
system level design methodology, 3
system-on-a-chip, 3

three-address expression, 24
timing constraints, 51
Trailblazing, 52, 55–56

heuristic, 97
heuristic with chaining, 111

TrailSynth, see Trailblazing, 100
transformations toolbox, 136

urgency, 15

variable binding, 121
variable compatibility graph, 121
variable lifetimes, 116
variable names, 25
VHDL generation, 128
VHDL processes, 128
visualization, 25

wire variables, see operation chaining
wire-variables, 81

