

RECONFIGURABLE
COMPUTING

The Morgan Kaufmann Series in Systems on Silicon
Series Editor: Wayne Wolf, Georgia Institute of Technology

The Designer’s Guide to VHDL, Second Edition
Peter J. Ashenden

The System Designer’s Guide to VHDL-AMS
Peter J. Ashenden, Gregory D. Peterson, and Darrell A. Teegarden

Modeling Embedded Systems and SoCs
Axel Jantsch

ASIC and FPGA Verification: A Guide to Component Modeling
Richard Munden

Multiprocessor Systems-on-Chips
Edited by Ahmed Amine Jerraya and Wayne Wolf

Functional Verification
Bruce Wile, John Goss, and Wolfgang Roesner

Customizable and Configurable Embedded Processors
Edited by Paolo Ienne and Rainer Leupers

Networks-on-Chips: Technology and Tools
Edited by Giovanni De Micheli and Luca Benini

VLSI Test Principles & Architectures
Edited by Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen

Designing SoCs with Configured Processors
Steve Leibson

ESL Design and Verification
Grant Martin, Andrew Piziali, and Brian Bailey

Aspect-Oriented Programming with e
David Robinson

Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation
Edited by Scott Hauck and André DeHon

Coming Soon . . .

System-on-Chip Test Architectures
Edited by Laung-Terng Wang, Charles Stroud, and Nur Touba

Verification Techniques for System-Level Design
Masahiro Fujita, Indradeep Ghosh, and Mukul Prasad

RECONFIGURABLE
COMPUTING
THE THEORY AND PRACTICE
OFFPGA-BASEDCOMPUTATION

Edited by
Scott Hauck and André DeHon

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Publisher: Denise E. M. Penrose
Senior Acquisitions Editor: Charles B. Glaser
Publishing Services Manager: George Morrison
Project Manager: Marilyn E. Rash
Assistant Editors: Michele Cronin, Matthew Cater
Copyeditor: Dianne Wood
Proofreader: Jodie Allen
Indexer: Steve Rath
Cover Image: © istockphoto
Typesetting: diacriTech
Illustration Formatting: diacriTech
Interior Printer: Maple-Vail Book Manufacturing Group
Cover Printer: Phoenix Color Corp.

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803-4255

This book is printed on acid-free paper.

Copyright © 2008 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks
or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a
claim, the product names appear in initial capital or all capital letters. Readers, however, should
contact the appropriate companies for more complete information regarding trademarks and
registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—
without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Depart-
ment in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com. You may also complete your request on-line via the Elsevier
homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and
Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Reconfigurable computing: the theory and practice of FPGA-based computation/edited by

Scott Hauck, André DeHon.
p. cm. — (Systems on silicon)
Includes bibliographical references and index.
ISBN 978-0-12-370522-8 (alk. paper)
1. Adaptive computing systems. 2. Field-programmable gate arrays. I. Hauck, Scott.
II. DeHon, André.

QA76.9.A3R43 2008 2007029773

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com.

Printed in the United States
08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

CONTENTS

List of Contributors xx
Preface xxiii
Introduction xxv

Part I: Reconfigurable Computing Hardware 1
1 Device Architecture 3

1.1 Logic—The Computational Fabric . 3
1.1.1 Logic Elements . 4
1.1.2 Programmability . 6

1.2 The Array and Interconnect . 6
1.2.1 Interconnect Structures . 7
1.2.2 Programmability . 12
1.2.3 Summary . 12

1.3 Extending Logic . 12
1.3.1 Extended Logic Elements . 12
1.3.2 Summary . 16

1.4 Configuration . 16
1.4.1 SRAM . 16
1.4.2 Flash Memory . 17
1.4.3 Antifuse . 17
1.4.4 Summary . 18

1.5 Case Studies . 18
1.5.1 Altera Stratix . 19
1.5.2 Xilinx Virtex-II Pro . 23

1.6 Summary . 26
References . 27

2 Reconfigurable Computing Architectures 29
2.1 Reconfigurable Processing Fabric Architectures 30

2.1.1 Fine-grained . 30
2.1.2 Coarse-grained . 32

2.2 RPF Integration into Traditional Computing Systems 35
2.2.1 Independent Reconfigurable Coprocessor Architectures . . . 36
2.2.2 Processor + RPF Architectures 40

2.3 Summary and Future Work . 44
References . 45

3 Reconfigurable Computing Systems 47
3.1 Early Systems . 47
3.2 PAM, VCC, and Splash . 49

3.2.1 PAM . 49
3.2.2 Virtual Computer . 50
3.2.3 Splash . 51

vi Contents

3.3 Small-scale Reconfigurable Systems . 52
3.3.1 PRISM . 53
3.3.2 CAL and XC6200 . 53
3.3.3 Cloning . 54

3.4 Circuit Emulation . 54
3.4.1 AMD/Intel . 55
3.4.2 Virtual Wires . 56

3.5 Accelerating Technology . 56
3.5.1 Teramac . 57

3.6 Reconfigurable Supercomputing . 59
3.6.1 Cray, SRC, and Silicon Graphics 60
3.6.2 The CMX-2X . 60

3.7 Non-FPGA Research . 61
3.8 Other System Issues . 61
3.9 The Future of Reconfigurable Systems 62

References . 63

4 Reconfiguration Management 65
4.1 Reconfiguration . 66
4.2 Configuration Architectures . 66

4.2.1 Single-context . 67
4.2.2 Multi-context . 68
4.2.3 Partially Reconfigurable . 70
4.2.4 Relocation and Defragmentation 71
4.2.5 Pipeline Reconfigurable . 73
4.2.6 Block Reconfigurable . 74
4.2.7 Summary . 75

4.3 Managing the Reconfiguration Process 76
4.3.1 Configuration Grouping . 76
4.3.2 Configuration Caching . 77
4.3.3 Configuration Scheduling . 77
4.3.4 Software-based Relocation and Defragmentation 79
4.3.5 Context Switching . 80

4.4 Reducing Configuration Transfer Time 80
4.4.1 Architectural Approaches . 81
4.4.2 Configuration Compression . 81
4.4.3 Configuration Data Reuse . 82

4.5 Configuration Security . 82
4.6 Summary . 83

References . 84

Part II: Programming Reconfigurable Systems 87
5 Compute Models and System Architectures 91

5.1 Compute Models . 93
5.1.1 Challenges . 93
5.1.2 Common Primitives . 97
5.1.3 Dataflow . 98
5.1.4 Sequential Control . 103

Contents vii

5.1.5 Data Parallel . 105
5.1.6 Data-centric . 105
5.1.7 Multi-threaded . 106
5.1.8 Other Compute Models . 106

5.2 System Architectures . 107
5.2.1 Streaming Dataflow . 107
5.2.2 Sequential Control . 110
5.2.3 Bulk Synchronous Parallelism 118
5.2.4 Data Parallel . 119
5.2.5 Cellular Automata . 122
5.2.6 Multi-threaded . 123
5.2.7 Hierarchical Composition . 125
References . 125

6 Programming FPGA Applications in VHDL 129

6.1 VHDL Programming . 130
6.1.1 Structural Description . 130
6.1.2 RTL Description . 133
6.1.3 Parametric Hardware Generation 136
6.1.4 Finite-state Machine Datapath Example 138
6.1.5 Advanced Topics . 150

6.2 Hardware Compilation Flow . 150
6.2.1 Constraints . 152

6.3 Limitations of VHDL . 153
References . 153

7 Compiling C for Spatial Computing 155

7.1 Overview of How C Code Runs on Spatial Hardware 156
7.1.1 Data Connections between Operations 157
7.1.2 Memory . 157
7.1.3 If-then-else Using Multiplexers 158
7.1.4 Actual Control Flow . 159
7.1.5 Optimizing the Common Path 161
7.1.6 Summary and Challenges . 162

7.2 Automatic Compilation . 162
7.2.1 Hyperblocks . 164
7.2.2 Building a Dataflow Graph for a Hyperblock 164
7.2.3 DFG Optimization . 169
7.2.4 From DFG to Reconfigurable Fabric 173

7.3 Uses and Variations of C Compilation to Hardware 175
7.3.1 Automatic HW/SW Partitioning 175
7.3.2 Programmer Assistance . 176

7.4 Summary . 180
References . 180

viii Contents

8 Programming Streaming FPGA Applications
Using Block Diagrams in Simulink 183
8.1 Designing High-performance Datapaths Using Stream-based

Operators . 184
8.2 An Image-processing Design Driver . 185

8.2.1 Converting RGB Video to Grayscale 185
8.2.2 Two-dimensional Video Filtering 187
8.2.3 Mapping the Video Filter to the BEE2 FPGA Platform . . . 191

8.3 Specifying Control in Simulink . 194
8.3.1 Explicit Controller Design with Simulink Blocks 194
8.3.2 Controller Design Using the Matlab M Language 195
8.3.3 Controller Design Using VHDL or Verilog 197
8.3.4 Controller Design Using Embedded Microprocessors 197

8.4 Component Reuse: Libraries of Simple and Complex Subsystems . 198
8.4.1 Signal-processing Primitives . 198
8.4.2 Tiled Subsystems . 198

8.5 Summary . 201
References . 202

9 Stream Computations Organized for
Reconfigurable Execution 203
9.1 Programming . 205

9.1.1 Task Description Format . 205
9.1.2 C++ Integration and Composition 206

9.2 System Architecture and Execution Patterns 208
9.2.1 Stream Support . 209
9.2.2 Phased Reconfiguration . 210
9.2.3 Sequential versus Parallel . 211
9.2.4 Fixed-size and Standard I/O Page 211

9.3 Compilation . 212
9.4 Runtime . 213

9.4.1 Scheduling . 213
9.4.2 Placement . 215
9.4.3 Routing . 215

9.5 Highlights . 217
References . 217

10 Programming Data Parallel FPGA Applications
Using the SIMD / Vector Model 219
10.1 SIMD Computing on FPGAs: An Example 219
10.2 SIMD Processing Architectures . 221
10.3 Data Parallel Languages . 222
10.4 Reconfigurable Computers for SIMD/ Vector Processing 223
10.5 Variations of SIMD/ Vector Computing 226

10.5.1 Multiple SIMD Engines . 226
10.5.2 A Multi-SIMD Coarse-grained Array 228
10.5.3 SPMD Model . 228

Contents ix

10.6 Pipelined SIMD/ Vector Processing . 228
10.7 Summary . 229

References . 230

11 Operating System Support for Reconfigurable
Computing 231
11.1 History . 232
11.2 Abstracted Hardware Resources . 234

11.2.1 Programming Model . 234
11.3 Flexible Binding . 236

11.3.1 Install Time Binding . 236
11.3.2 Runtime Binding . 237
11.3.3 Fast CAD for Flexible Binding 238

11.4 Scheduling . 239
11.4.1 On-demand Scheduling . 239
11.4.2 Static Scheduling . 239
11.4.3 Dynamic Scheduling . 240
11.4.4 Quasi-static Scheduling . 241
11.4.5 Real-time Scheduling . 241
11.4.6 Preemption . 242

11.5 Communication . 243
11.5.1 Communication Styles . 243
11.5.2 Virtual Memory . 246
11.5.3 I/O . 247
11.5.4 Uncertain Communication Latency 247

11.6 Synchronization . 248
11.6.1 Explicit Synchronization . 248
11.6.2 Implicit Synchronization . 248
11.6.3 Deadlock Prevention . 249

11.7 Protection . 249
11.7.1 Hardware Protection . 250
11.7.2 Intertask Communication . 251
11.7.3 Task Configuration Protection 251

11.8 Summary . 252
References . 252

12 The JHDL Design and Debug System 255
12.1 JHDL Background and Motivation . 255
12.2 The JHDL Design Language . 257

12.2.1 Level-1 Design: Primitive Instantiation 257
12.2.2 Level-2 Design: Using the Logic Class and Its

Provided Methods . 259
12.2.3 Level-3 Design: Programmatic Circuit Generation

(Module Generators) . 261
12.2.4 JHDL Is a Structural Design Language 263
12.2.5 JHDL Is a Programmatic Circuit Design Language 264

12.3 The JHDL CAD System . 265
12.3.1 Testbenches in JHDL . 265
12.3.2 The cvt Class . 266

x Contents

12.4 JHDL’s Hardware Mode . 268
12.5 Advanced JHDL Capabilities . 269

12.5.1 Dynamic Testbenches . 269
12.5.2 Behavioral Synthesis . 270
12.5.3 Advanced Debugging Capabilities 270

12.6 Summary . 272
References . 273

Part III: Mapping Designs to Reconfigurable Platforms 275
13 Technology Mapping 277

13.1 Structural Mapping Algorithms . 278
13.1.1 Cut Generation . 279
13.1.2 Area-oriented Mapping . 280
13.1.3 Performance-driven Mapping 282
13.1.4 Power-aware Mapping . 283

13.2 Integrated Mapping Algorithms . 284
13.2.1 Simultaneous Logic Synthesis, Mapping 284
13.2.2 Integrated Retiming, Mapping 286
13.2.3 Placement-driven Mapping . 287

13.3 Mapping Algorithms for Heterogeneous Resources 289
13.3.1 Mapping to LUTs of Different Input Sizes 289
13.3.2 Mapping to Complex Logic Blocks 290
13.3.3 Mapping Logic to Embedded Memory Blocks 291
13.3.4 Mapping to Macrocells . 292

13.4 Summary . 293
References . 293

FPGA Placement 297
14 Placement for General-purpose FPGAs 299

14.1 The FPGA Placement Problem . 299
14.1.1 Device Legality Constraints . 300
14.1.2 Optimization Goals . 301
14.1.3 Designer Placement Directives 302

14.2 Clustering . 304
14.3 Simulated Annealing for Placement . 306

14.3.1 VPR and Related Annealing Algorithms 307
14.3.2 Simultaneous Placement and Routing

with Annealing . 311
14.4 Partition-based Placement . 312
14.5 Analytic Placement . 315
14.6 Further Reading and Open Challenges 316

References . 316

Contents xi

15 Datapath Composition 319
15.1 Fundamentals . 319

15.1.1 Regularity . 320
15.1.2 Datapath Layout . 322

15.2 Tool Flow Overview . 323
15.3 The Impact of Device Architecture . 324

15.3.1 Architecture Irregularities . 325
15.4 The Interface to Module Generators . 326

15.4.1 The Flow Interface . 327
15.4.2 The Data Model . 327
15.4.3 The Library Specification . 328
15.4.4 The Intra-module Layout . 328

15.5 The Mapping . 329
15.5.1 1:1 Mapping . 329
15.5.2 N:1 Mapping . 330
15.5.3 The Combined Approach . 332

15.6 Placement . 333
15.6.1 Linear Placement . 333
15.6.2 Constrained Two-dimensional Placement 335
15.6.3 Two-dimensional Placement . 336

15.7 Compaction . 337
15.7.1 Selecting HWOPs for Compaction 338
15.7.2 Regularity Analysis . 338
15.7.3 Optimization Techniques . 338
15.7.4 Building the Super-HWOP . 342
15.7.5 Discussion . 343

15.8 Summary and Future Work . 344
References . 344

16 Specifying Circuit Layout on FPGAs 347
16.1 The Problem . 347
16.2 Explicit Cartesian Layout Specification 351
16.3 Algebraic Layout Specification . 352

16.3.1 Case Study: Batcher’s Bitonic Sorter 357
16.4 Layout Verification for Parameterized Designs 360
16.5 Summary . 362

References . 363

17 PathFinder: A Negotiation-based, Performance-driven
Router for FPGAs 365
17.1 The History of PathFinder . 366
17.2 The PathFinder Algorithm . 367

17.2.1 The Circuit Graph Model . 367
17.2.2 A Negotiated Congestion Router 367
17.2.3 The Negotiated Congestion/Delay Router 372
17.2.4 Applying A* to PathFinder . 373

17.3 Enhancements and Extensions to PathFinder 374
17.3.1 Incremental Rerouting . 374

xii Contents

17.3.2 The Cost Function . 375
17.3.3 Resource Cost . 375
17.3.4 The Relationship of PathFinder to Lagrangian

Relaxation . 376
17.3.5 Circuit Graph Extensions . 376

17.4 Parallel PathFinder . 377
17.5 Other Applications of the PathFinder Algorithm 379
17.6 Summary . 379

References . 380

18 Retiming, Repipelining, and C-slow Retiming 383
18.1 Retiming: Concepts, Algorithm, and Restrictions 384
18.2 Repipelining and C-slow Retiming . 388

18.2.1 Repipelining . 389
18.2.2 C-slow Retiming . 390

18.3 Implementations of Retiming . 393
18.4 Retiming on Fixed-frequency FPGAs 394
18.5 C-slowing as Multi-threading . 395
18.6 Why Isn’t Retiming Ubiquitous? . 398

References . 398

19 Configuration Bitstream Generation 401
19.1 The Bitstream . 403
19.2 Downloading Mechanisms . 406
19.3 Software to Generate Configuration Data 407
19.4 Summary . 409

References . 409

20 Fast Compilation Techniques 411
20.1 Accelerating Classical Techniques . 414

20.1.1 Accelerating Simulated Annealing 415
20.1.2 Accelerating PathFinder . 418

20.2 Alternative Algorithms . 422
20.2.1 Multiphase Solutions . 422
20.2.2 Incremental Place and Route 425

20.3 Effect of Architecture . 427
20.4 Summary . 431

References . 432

Part IV: Application Development 435
21 Implementing Applications with FPGAs 439

21.1 Strengths and Weaknesses of FPGAs 439
21.1.1 Time to Market . 439
21.1.2 Cost . 440
21.1.3 Development Time . 440
21.1.4 Power Consumption . 440
21.1.5 Debug and Verification . 440
21.1.6 FPGAs and Microprocessors . 441

Contents xiii

21.2 Application Characteristics and Performance 441
21.2.1 Computational Characteristics and Performance 441
21.2.2 I/O and Performance . 443

21.3 General Implementation Strategies for FPGA-based Systems 445
21.3.1 Configure-once . 445
21.3.2 Runtime Reconfiguration . 446
21.3.3 Summary of Implementation Issues 447

21.4 Implementing Arithmetic in FPGAs . 448
21.4.1 Fixed-point Number Representation and Arithmetic 448
21.4.2 Floating-point Arithmetic . 449
21.4.3 Block Floating Point . 450
21.4.4 Constant Folding and Data-oriented Specialization 450

21.5 Summary . 452
References . 452

22 Instance-specific Design 455
22.1 Instance-specific Design . 455

22.1.1 Taxonomy . 456
22.1.2 Approaches . 457
22.1.3 Examples of Instance-specific Designs 459

22.2 Partial Evaluation . 462
22.2.1 Motivation . 463
22.2.2 Process of Specialization . 464
22.2.3 Partial Evaluation in Practice 464
22.2.4 Partial Evaluation of a Multiplier 466
22.2.5 Partial Evaluation at Runtime 470
22.2.6 FPGA-specific Concerns . 471

22.3 Summary . 473
References . 473

23 Precision Analysis for Fixed-point Computation 475
23.1 Fixed-point Number System . 475

23.1.1 Multiple-wordlength Paradigm 476
23.1.2 Optimization for Multiple Wordlength 478

23.2 Peak Value Estimation . 478
23.2.1 Analytic Peak Estimation . 479
23.2.2 Simulation-based Peak Estimation 484
23.2.3 Summary of Peak Estimation 485

23.3 Wordlength Optimization . 485
23.3.1 Error Estimation and Area Models 485
23.3.2 Search Techniques . 496

23.4 Summary . 498
References . 499

24 Distributed Arithmetic 503
24.1 Theory . 503
24.2 DA Implementation . 504
24.3 Mapping DA onto FPGAs . 507
24.4 Improving DA Performance . 508

xiv Contents

24.5 An Application of DA on an FPGA . 511
References . 511

25 CORDIC Architectures for FPGA Computing 513
25.1 CORDIC Algorithm . 514

25.1.1 Rotation Mode . 514
25.1.2 Scaling Considerations . 517
25.1.3 Vectoring Mode . 519
25.1.4 Multiple Coordinate Systems and a Unified

Description . 520
25.1.5 Computational Accuracy . 522

25.2 Architectural Design . 526
25.3 FPGA Implementation of CORDIC Processors 527

25.3.1 Convergence . 527
25.3.2 Folded CORDIC . 528
25.3.3 Parallel Linear Array . 530
25.3.4 Scaling Compensation . 534

25.4 Summary . 534
References . 535

26 Hardware/Software Partitioning 539
26.1 The Trend Toward Automatic Partitioning 540
26.2 Partitioning of Sequential Programs . 542

26.2.1 Granularity . 545
26.2.2 Partition Evaluation . 547
26.2.3 Alternative Region Implementations 549
26.2.4 Implementation Models . 550
26.2.5 Exploration . 552

26.3 Partitioning of Parallel Programs . 557
26.3.1 Differences among Parallel Programming Models 557

26.4 Summary and Directions . 558
References . 559

Part V: Case Studies of FPGA Applications 561
27 SPIHT Image Compression 565

27.1 Background . 565
27.2 SPIHT Algorithm . 566

27.2.1 Wavelets and the Discrete Wavelet Transform 567
27.2.2 SPIHT Coding Engine . 568

27.3 Design Considerations and Modifications 571
27.3.1 Discrete Wavelet Transform Architectures 571
27.3.2 Fixed-point Precision Analysis 575
27.3.3 Fixed Order SPIHT . 578

27.4 Hardware Implementation . 580
27.4.1 Target Hardware Platform . 581
27.4.2 Design Overview . 581
27.4.3 Discrete Wavelet Transform Phase 582
27.4.4 Maximum Magnitude Phase . 583
27.4.5 The SPIHT Coding Phase . 585

Contents xv

27.5 Design Results . 587
27.6 Summary and Future Work . 588

References . 589

28 Automatic Target Recognition Systems
on Reconfigurable Devices 591
28.1 Automatic Target Recognition Algorithms 592

28.1.1 Focus of Attention . 592
28.1.2 Second-level Detection . 592

28.2 Dynamically Reconfigurable Designs 594
28.2.1 Algorithm Modifications . 594
28.2.2 Image Correlation Circuit . 594
28.2.3 Performance Analysis . 596
28.2.4 Template Partitioning . 598
28.2.5 Implementation Method . 599

28.3 Reconfigurable Static Design . 600
28.3.1 Design-specific Parameters . 601
28.3.2 Order of Correlation Tasks . 601
28.3.3 Reconfigurable Image Correlator 602
28.3.4 Application-specific Computation Unit 603

28.4 ATR Implementations . 604
28.4.1 A Dynamically Reconfigurable System 604
28.4.2 A Statically Reconfigurable System 606
28.4.3 Reconfigurable Computing Models 607

28.5 Summary . 609
References . 610

29 Boolean Satisfiability: Creating Solvers Optimized
for Specific Problem Instances 613
29.1 Boolean Satisfiability Basics . 613

29.1.1 Problem Formulation . 613
29.1.2 SAT Applications . 614

29.2 SAT-solving Algorithms . 615
29.2.1 Basic Backtrack Algorithm . 615
29.2.2 Improving the Backtrack Algorithm 617

29.3 A Reconfigurable SAT Solver Generated According to an
SAT Instance . 618
29.3.1 Problem Analysis . 618
29.3.2 Implementing a Basic Backtrack Algorithm with

Reconfigurable Hardware . 619
29.3.3 Implementing an Improved Backtrack Algorithm

with Reconfigurable Hardware 624
29.4 A Different Approach to Reduce Compilation Time and

Improve Algorithm Efficiency . 627
29.4.1 System Architecture . 627
29.4.2 Performance . 630
29.4.3 Implementation Issues . 631

29.5 Discussion . 633
References . 635

xvi Contents

30 Multi-FPGA Systems: Logic Emulation 637
30.1 Background . 637
30.2 Uses of Logic Emulation Systems . 639
30.3 Types of Logic Emulation Systems . 640

30.3.1 Single-FPGA Emulation . 640
30.3.2 Multi-FPGA Emulation . 641
30.3.3 Design-mapping Overview . 644
30.3.4 Multi-FPGA Partitioning and Placement Approaches 645
30.3.5 Multi-FPGA Routing Approaches 646

30.4 Issues Related to Contemporary Logic Emulation 650
30.4.1 In-circuit Emulation . 650
30.4.2 Coverification . 650
30.4.3 Logic Analysis . 651

30.5 The Need for Fast FPGA Mapping . 652
30.6 Case Study: The VirtuaLogic VLE Emulation System 653

30.6.1 The VirtuaLogic VLE Emulation System Structure 653
30.6.2 The VirtuaLogic Emulation Software Flow 654
30.6.3 Multiported Memory Mapping 657
30.6.4 Design Mapping with Multiple Asynchronous Clocks 657
30.6.5 Incremental Compilation of Designs 661
30.6.6 VLE Interfaces for Coverification 664
30.6.7 Parallel FPGA Compilation for the VLE System 665

30.7 Future Trends . 666
30.8 Summary . 667

References . 668

31 The Implications of Floating Point for FPGAs 671
31.1 Why Is Floating Point Difficult? . 671

31.1.1 General Implementation Considerations 673
31.1.2 Adder Implementation . 675
31.1.3 Multiplier Implementation . 677

31.2 Floating-point Application Case Studies 679
31.2.1 Matrix Multiply . 679
31.2.2 Dot Product . 683
31.2.3 Fast Fourier Transform . 686

31.3 Summary . 692
References . 694

32 Finite Difference Time Domain: A Case Study
Using FPGAs 697
32.1 The FDTD Method . 697

32.1.1 Background . 697
32.1.2 The FDTD Algorithm . 701
32.1.3 FDTD Applications . 703
32.1.4 The Advantages of FDTD on an FPGA 705

32.2 FDTD Hardware Design Case Study . 707
32.2.1 The WildStar-II Pro FPGA Computing Board 708
32.2.2 Data Analysis and Fixed-point Quantization 709

Contents xvii

32.2.3 Hardware Implementation . 712
32.2.4 Performance Results . 722

32.3 Summary . 723
References . 723

33 Evolvable FPGAs 725
33.1 The POE Model of Bioinspired Design Methodologies 725
33.2 Artificial Evolution . 727

33.2.1 Genetic Algorithms . 727
33.3 Evolvable Hardware . 729

33.3.1 Genome Encoding . 731
33.4 Evolvable Hardware: A Taxonomy . 733

33.4.1 Extrinsic Evolution . 733
33.4.2 Intrinsic Evolution . 734
33.4.3 Complete Evolution . 736
33.4.4 Open-ended Evolution . 738

33.5 Evolvable Hardware Digital Platforms 739
33.5.1 Xilinx XC6200 Family . 740
33.5.2 Evolution on Commercial FPGAs 741
33.5.3 Custom Evolvable FPGAs . 743

33.6 Conclusions and Future Directions . 745
References . 747

34 Network Packet Processing in Reconfigurable
Hardware 753
34.1 Networking with Reconfigurable Hardware 753

34.1.1 The Motivation for Building Networks with
Reconfigurable Hardware . 753

34.1.2 Hardware and Software for Packet Processing 754
34.1.3 Network Data Processing with FPGAs 755
34.1.4 Network Processing System Modularity 756

34.2 Network Protocol Processing . 757
34.2.1 Internet Protocol Wrappers . 758
34.2.2 TCP Wrappers . 758
34.2.3 Payload-processing Modules . 760
34.2.4 Payload Processing with Regular Expression Scanning . . . 761
34.2.5 Payload Scanning with Bloom Filters 762

34.3 Intrusion Detection and Prevention . 762
34.3.1 Worm and Virus Protection . 763
34.3.2 An Integrated Header, Payload, and Queuing System 764
34.3.3 Automated Worm Detection . 766

34.4 Semantic Processing . 767
34.4.1 Language Identification . 767
34.4.2 Semantic Processing of TCP Data 768

34.5 Complete Networking System Issues 770
34.5.1 The Rack-mount Chassis Form Factor 770
34.5.2 Network Control and Configuration 771
34.5.3 A Reconfiguration Mechanism 772
34.5.4 Dynamic Hardware Plug-ins . 773

xviii Contents

34.5.5 Partial Bitfile Generation . 773
34.5.6 Control Channel Security . 774

34.6 Summary . 775
References . 776

35 Active Pages: Memory-centric Computation 779
35.1 Active Pages . 779

35.1.1 DRAM Hardware Design . 780
35.1.2 Hardware Interface . 780
35.1.3 Programming Model . 781

35.2 Performance Results . 781
35.2.1 Speedup over Conventional Systems 782
35.2.2 Processor–Memory Nonoverlap 784
35.2.3 Summary . 786

35.3 Algorithmic Complexity . 786
35.3.1 Algorithms . 787
35.3.2 Array-Insert . 788
35.3.3 LCS (Two-dimensional Dynamic Programming) 791
35.3.4 Summary . 794

35.4 Exploring Parallelism . 794
35.4.1 Speedup over Conventional . 795
35.4.2 Multiplexing Performance . 796
35.4.3 Processor Width Performance 796
35.4.4 Processor Width versus Multiplexing 797
35.4.5 Summary . 799

35.5 Defect Tolerance . 799
35.6 Related Work . 801
35.7 Summary . 802

References . 802

Part VI: Theoretical Underpinnings and Future Directions 805
36 Theoretical Underpinnings 807

36.1 General Computational Array Model 807
36.2 Implications of the General Model . 809

36.2.1 Instruction Distribution . 810
36.2.2 Instruction Storage . 813

36.3 Induced Architectural Models . 814
36.3.1 Fixed Instructions (FPGA) . 815
36.3.2 Shared Instructions (SIMD Processors) 815

36.4 Modeling Architectural Space . 816
36.4.1 Raw Density from Architecture 816
36.4.2 Efficiency . 817
36.4.3 Caveats . 825

36.5 Implications . 826
36.5.1 Density of Computation versus Description 826
36.5.2 Historical Appropriateness . 826
36.5.3 Reconfigurable Applications . 827
References . 828

Contents xix

37 Defect and Fault Tolerance 829
37.1 Defects and Faults . 830
37.2 Defect Tolerance . 830

37.2.1 Basic Idea . 830
37.2.2 Substitutable Resources . 832
37.2.3 Yield . 832
37.2.4 Defect Tolerance through Sparing 835
37.2.5 Defect Tolerance with Matching 840

37.3 Transient Fault Tolerance . 843
37.3.1 Feedforward Correction . 844
37.3.2 Rollback Error Recovery . 845

37.4 Lifetime Defects . 848
37.4.1 Detection . 848
37.4.2 Repair . 849

37.5 Configuration Upsets . 849
37.6 Outlook . 850

References . 850

38 Reconfigurable Computing and Nanoscale
Architecture 853
38.1 Trends in Lithographic Scaling . 854
38.2 Bottom-up Technology . 855

38.2.1 Nanowires . 856
38.2.2 Nanowire Assembly . 857
38.2.3 Crosspoints . 857

38.3 Challenges . 858
38.4 Nanowire Circuits . 859

38.4.1 Wired-OR Diode Logic Array 859
38.4.2 Restoration . 860

38.5 Statistical Assembly . 862
38.6 nanoPLA Architecture . 864

38.6.1 Basic Logic Block . 864
38.6.2 Interconnect Architecture . 867
38.6.3 Memories . 869
38.6.4 Defect Tolerance . 869
38.6.5 Design Mapping . 869
38.6.6 Density Benefits . 870

38.7 Nanoscale Design Alternatives . 870
38.7.1 Imprint Lithography . 870
38.7.2 Interfacing . 871
38.7.3 Restoration . 872

38.8 Summary . 872
References . 873

Index 877

LIST OF CONTRIBUTORS

Rajeevan Amirtharajah, Department of Electrical and Computer Engineering,
University of California–Davis, Davis, California (Chapter 24)

Vaughn Betz, Altera Corporation, San Jose, California (Chapter 14)
Robert W. Brodersen, Department of Electrical Engineering and Computer

Science, University of California–Berkeley, Berkeley, California (Chapter 8)
Timothy J. Callahan, School of Computer Science, Carnegie Mellon

University, Pittsburgh, Pennsylvania (Chapter 7)
Eylon Caspi, Tabula, Inc., Santa Clara, California (Chapter 9)
Chen Chang, Department of Mathematics and Department of Electrical

Engineering and Computer Sciences, University of California–Berkeley,
Berkeley, California (Chapter 8)

Mark L. Chang, Electrical and Computer Engineering, Franklin W. Olin
College of Engineering, Needham, Massachusetts (Chapter 1)

Wang Chen, Department of Electrical and Computer Engineering,
Northeastern University, Boston, Massachusetts (Chapter 32)

Young H. Cho, Open Acceleration Systems Research, Chatsworth, California
(Chapter 28)

Michael Chu, DRC Computer, Sunnyvale, California (Chapter 9)
Katherine Compton, Department of Electrical and Computer Engineering,

University of Wisconsin–Madison, Madison, Wisconsin (Chapters 4 and 11)
Jason Cong, Department of Computer Science, California NanoSystems

Institute, University of California–Los Angeles, Los Angeles, California
(Chapter 13)

George A. Constantinides, Department of Electrical and Electronic
Engineering, Imperial College, London, United Kingdom (Chapter 23)

André DeHon, Department of Electrical and Systems Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania (Chapters 5, 6, 7, 9, 11, 36, 37,
and 38)

Chris Dick, Advanced Systems Technology Group, DSP Division of Xilinx,
Inc., San Jose, California (Chapter 25)

Carl Ebeling, Department of Computer Science and Engineering, University of
Washington, Seattle, Washington (Chapter 17)

Ken Eguro, Department of Electrical Engineering, University of Washington,
Seattle, Washington (Chapter 20)

Diana Franklin, Computer Science Department, California Polytechnic State
University, San Luis Obispo, California (Chapter 35)

List of Contributors xxi

Thomas W. Fry, Samsung, Global Strategy Group, Seoul, South Korea
(Chapter 27)

Maya B. Gokhale, Lawrence Livermore National Laboratory, Livermore,
California (Chapter 10)

Steven A. Guccione, Cmpware, Inc., Austin, Texas (Chapters 3 and 19)
Scott Hauck, Department of Electrical Engineering, University of Washington,

Seattle, Washington (Chapters 20 and 27)
K. Scott Hemmert, Computation, Computers, Information and Mathematics

Center, Sandia National Laboratories, Albuquerque, New Mexico
(Chapter 31)

Randy Huang, Tabula, Inc., Santa Clara, California (Chapter 9)
Brad L. Hutchings, Department of Electrical and Computer Engineering,

Brigham Young University, Provo, Utah (Chapters 12 and 21)
Nachiket Kapre, Department of Computer Science, California Institute of

Technology, Pasadena, California (Chapter 6)
Andreas Koch, Department of Computer Science, Embedded Systems and

Applications Group, Technische Universität of Darmstadt, Darmstadt,
Germany (Chapter 15)

Miriam Leeser, Department of Electrical and Computer Engineering,
Northeastern University, Boston, Massachusetts (Chapter 32)

John W. Lockwood, Department of Computer Science and Engineering,
Washington University in St. Louis, St. Louis, Missouri; and Department
of Electrical Engineering, Stanford University, Stanford, California
(Chapter 34)

Wayne Luk, Department of Computing, Imperial College, London,
United Kingdom (Chapter 22)

Sharad Malik, Department of Electrical Engineering, Princeton University,
Princeton, New Jersey (Chapter 29)

Yury Markovskiy, Department of Electrical Engineering and Computer
Sciences, University of California–Berkeley, Berkeley, California (Chapter 9)

Margaret Martonosi, Department of Electrical Engineering, Princeton
University, Princeton, New Jersey (Chapter 29)

Larry McMurchie, Synplicity Corporation, Sunnyvale, California (Chapter 17)
Brent E. Nelson, Department of Electrical and Computer Engineering,

Brigham Young University, Provo, Utah (Chapters 12 and 21)
Peichen Pan, Magma Design Automation, Inc., San Jose, California

(Chapter 13)
Oliver Pell, Department of Computing, Imperial College, London, United

Kingdom (Chapter 22)
Stylianos Perissakis, Department of Electrical Engineering and Computer

Sciences, University of California–Berkeley, Berkeley, California (Chapter 9)

xxii List of Contributors

Laura Pozzi, Faculty of Informatics, University of Lugano, Lugano,
Switzerland (Chapter 9)

Brian C. Richards, Department of Electrical Engineering and Computer
Sciences, University of California–Berkeley, Berkeley, California (Chapter 8)

Eduardo Sanchez, School of Computer and Communication Sciences, Ecole
Polytechnique Fédérale de Lausanne; and Reconfigurable and Embedded
Digital Systems Institute, Haute Ecole d’Ingénierie et de Gestion du Canton
de Vaud, Lausanne, Switzerland (Chapter 33)

Lesley Shannon, School of Engineering Science, Simon Fraser University,
Burnaby, BC, Canada (Chapter 2)

Satnam Singh, Programming Principles and Tools Group, Microsoft Research,
Cambridge, United Kingdom (Chapter 16)

Greg Stitt, Department of Computer Science and Engineering, University of
California–Riverside, Riverside, California (Chapter 26)

Russell Tessier, Department of Computer and Electrical Engineering,
University of Massachusetts, Amherst, Massachusetts (Chapter 30)

Keith D. Underwood, Computation, Computers, Information and
Mathematics Center, Sandia National Laboratories, Albuquerque, New
Mexico (Chapter 31)

Andres Upegui, Logic Systems Laboratory, School of Computer and
Communication Sciences, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland (Chapter 33)

Frank Vahid, Department of Computer Science and Engineering, University of
California–Riverside, Riverside, California (Chapter 26)

John Wawrzynek, Department of Electrical Engineering and Computer
Sciences, University of California–Berkeley, Berkeley, California (Chapters 8
and 9)

Nicholas Weaver, International Computer Science Institute, Berkeley,
California (Chapter 18)

Joseph Yeh, Lincoln Laboratory, Massachusetts Institute of Technology,
Lexington, Massachusetts (Chapter 9)

Peixin Zhong, Department of Electrical and Computer Engineering, Michigan
State University, East Lansing, Michigan (Chapter 29)

PREFACE

In the two decades since field-programmable gate arrays (FPGAs) were
introduced, they have radically changed the way digital logic is designed and
deployed. By marrying the high performance of application-specific integrated
circuits (ASICs) and the flexibility of microprocessors, FPGAs have made pos-
sible entirely new types of applications. This has helped FPGAs supplant both
ASICs and digital signal processors (DSPs) in some traditional roles.

To make the most of this unique combination of performance and flexibility,
designers need to be aware of both hardware and software issues. Thus, an
FPGA user must think not only about the gates needed to perform a computation
but also about the software flow that supports the design process. The goal of
this book is to help designers become comfortable with these issues, and thus
be able to exploit the vast opportunities possible with reconfigurable logic.

We have written Reconfigurable Computing as a tutorial and as a reference
on the wide range of concepts that designers must understand to make the best
use of FPGAs and related reconfigurable chips—including FPGA architectures,
FPGA logic applications, and FPGA CAD tools—and the skills they must have
for optimizing a computation. It is targeted particularly toward those who view
FPGAs not just as cheap, slow ASIC gates or as a means of prototyping before
the “real” hardware is created, but are interested in evaluating or embracing the
substantial advantages reprogrammable devices offer over other technologies.
However, readers who focus primarily on ASIC- or CPU-based implementations
will learn how FPGAs can be a useful addition to their normal skill set. For
some traditional designers this book may even serve as an entry point into a
completely new way of handling their design problems.

Because we focus on both hardware and software systems, we expect readers
to have a certain level of familiarity with each technology. On the hardware side,
we assume that readers have a basic knowledge of digital logic design, includ-
ing understanding concepts such as gates (including multiplexers, flip-flops,
and RAM), binary number systems, and simple logic optimization. Knowledge
of hardware description languages, such as Verilog or VHDL, is also helpful.
We also assume that readers have basic knowledge of computer programming,
including simple data structures and algorithms. In sum, this book is appro-
priate for most readers with a background in electrical engineering, computer
science, or computer engineering. It can also be used as a text in an upper-level
undergraduate or introductory graduate course within any of these disciplines.

No one book can hope to cover every possible aspect of FPGAs exhaustively.
Entire books could be (and have been) written about each of the concepts that
are discussed in the individual chapters here. Our goal is to provide a good
working knowledge of these concepts, as well as abundant references for those
who wish to dig deeper.

xxiv Preface

Reconfigurable Computing: The Theory and Practice of FPGA-Based Compu-
tation is divided into six major parts—hardware, programming, compilation/
mapping, application development, case studies, and future trends. Once the
introduction has been read, the parts can be covered in any order. Alternatively,
readers can pick and choose which parts they wish to cover. For example, a
reader who wants to focus on CAD for FPGAs might skip hardware and appli-
cation development, while a reader who is interested mostly in the use of FPGAs
might focus primarily on application development.

Part V is made up of self-contained overviews of specific, important appli-
cations, which can be covered in any order or can be sprinkled throughout a
course syllabus. The part introduction lists the chapters and concepts relevant
to each case study and so can be used as a guide for the reader or instructor in
selecting relevant examples.

One final consideration is an explanation of how this book was written.
Some books are created by a single author or a set of coauthors who must
stretch to cover all aspects of a given topic. Alternatively, an edited text can
bring together contributors from each of the topic areas, typically by bundling
together standalone research papers. Our book is a bit of a hybrid. It was con-
structed from an overall outline developed by the primary authors, Scott Hauck
and André DeHon. The chapters on the chosen topics were then written by noted
experts in these areas, and were carefully edited to ensure their integration into
a cohesive whole. Our hope is that this brings the benefits of both styles of tra-
ditional texts, with the reader learning from the main experts on each topic, yet
still delivering a well-integrated text.

Acknowledgments
While Scott and André handled the technical editing, this book also benefited
from the careful help from the team at Elsevier/Morgan Kaufmann. Wayne Wolf
first proposed the concept of this book to us. Chuck Glaser, ably assisted by
Michele Cronin and Matthew Cater, was instrumental in resurrecting the project
after it had languished in the concept stage for several years and in pushing it
through to completion. Just as important were the efforts of the production
group at Elsevier/Morgan Kaufmann who did an excellent job of copyediting,
proofreading, integrating text and graphics, laying out, and all the hundreds
of little details crucial to bringing a book together into a polished whole. This
was especially true for a book like this, with such a large list of contributors.
Specifically, Marilyn E. Rash helped drive the whole production process and
was supported by Dianne Wood, Jodie Allen, and Steve Rath. Without their help
there is no way this monumental task ever would have been finished. A big thank
you to all.

Scott Hauck
André DeHon

INTRODUCTION

In the computer and electronics world, we are used to two different ways of
performing computation: hardware and software. Computer hardware, such
as application-specific integrated circuits (ASICs), provides highly optimized
resources for quickly performing critical tasks, but it is permanently configured
to only one application via a multimillion-dollar design and fabrication effort.
Computer software provides the flexibility to change applications and perform
a huge number of different tasks, but is orders of magnitude worse than ASIC
implementations in terms of performance, silicon area efficiency, and power
usage.

Field-programmable gate arrays (FPGAs) are truly revolutionary devices that
blend the benefits of both hardware and software. They implement circuits
just like hardware, providing huge power, area, and performance benefits over
software, yet can be reprogrammed cheaply and easily to implement a wide
range of tasks. Just like computer hardware, FPGAs implement computations
spatially, simultaneously computing millions of operations in resources dis-
tributed across a silicon chip. Such systems can be hundreds of times faster
than microprocessor-based designs. However, unlike in ASICs, these computa-
tions are programmed into the chip, not permanently frozen by the manufac-
turing process. This means that an FPGA-based system can be programmed and
reprogrammed many times.

Sometimes reprogramming is merely a bug fix to correct faulty behavior, or
it is used to add a new feature. Other times, it may be carried out to reconfigure
a generic computation engine for a new task, or even to reconfigure a device
during operation to allow a single piece of silicon to simultaneously do the work
of numerous special-purpose chips.

However, merging the benefits of both hardware and software does come at a
price. FPGAs provide nearly all of the benefits of software flexibility and devel-
opment models, and nearly all of the benefits of hardware efficiency—but not
quite. Compared to a microprocessor, these devices are typically several orders
of magnitude faster and more power efficient, but creating efficient programs for
them is more complex. Typically, FPGAs are useful only for operations that pro-
cess large streams of data, such as signal processing, networking, and the like.
Compared to ASICs, they may be 5 to 25 times worse in terms of area, delay,
and performance. However, while an ASIC design may take months to years to
develop and have a multimillion-dollar price tag, an FPGA design might only
take days to create and cost tens to hundreds of dollars. For systems that do
not require the absolute highest achievable performance or power efficiency, an
FPGA’s development simplicity and the ability to easily fix bugs and upgrade
functionality make them a compelling design alternative. For many tasks, and
particularly for beginning electronics designers, FPGAs are the ideal choice.

xxvi Introduction

FIGURE I.1 � An abstract view of an FPGA; logic cells are embedded in a general routing
structure.

Figure I.1 illustrates the internal workings of a field-programmable gate array,
which is made up of logic blocks embedded in a general routing structure. This
array of logic gates is the G and A in FPGA. The logic blocks contain process-
ing elements for performing simple combinational logic, as well as flip-flops
for implementing sequential logic. Because the logic units are often just sim-
ple memories, any Boolean combinational function of perhaps five or six inputs
can be implemented in each logic block. The general routing structure allows
arbitrary wiring, so the logical elements can be connected in the desired manner.

Because of this generality and flexibility, an FPGA can implement very com-
plex circuits. Current devices can compute functions on the order of millions
of basic gates, running at speeds in the hundreds of Megahertz. To boost speed
and capacity, additional, special elements can be embedded into the array, such
as large memories, multipliers, fast-carry logic for arithmetic and logic func-
tions, and even complete microprocessors. With these predefined, fixed-logic
units, which are fabricated into the silicon, FPGAs are capable of implementing
complete systems in a single programmable device.

The logic and routing elements in an FPGA are controlled by programming
points, which may be based on antifuse, Flash, or SRAM technology. For recon-
figurable computing, SRAM-based FPGAs are the preferred option, and in fact
are the primary style of FPGA devices in the electronics industry as a whole.
In these devices, every routing choice and every logic function is controlled by
a simple memory bit. With all of its memory bits programmed, by way of a
configuration file or bitstream, an FPGA can be configured to implement the
user’s desired function. Thus, the configuration can be carried out quickly and

Introduction xxvii

without permanent fabrication steps, allowing customization at the user’s elec-
tronics bench, or even in the final end product. This is why FPGAs are field
programmable, and why they differ from mask-programmable devices, which
have their functionality fixed by masks during fabrication.

Because customizing an FPGA merely involves storing values to memory loca-
tions, similarly to compiling and then loading a program onto a computer, the
creation of an FPGA-based circuit is a simple process of creating a bitstream to
load into the device (see Figure I.2). Although there are tools to do this from soft-
ware languages, schematics, and other formats, FPGA designers typically start
with an application written in a hardware description language (HDL) such as
Verilog or VHDL. This abstract design is optimized to fit into the FPGA’s avail-
able logic through a series of steps: Logic synthesis converts high-level logic con-
structs and behavioral code into logic gates, followed by technology mapping to
separate the gates into groupings that best match the FPGA’s logic resources.
Next, placement assigns the logic groupings to specific logic blocks and routing
determines the interconnect resources that will carry the user’s signals. Finally,
bitstream generation creates a binary file that sets all of the FPGA’s program-
ming points to configure the logic blocks and routing resources appropriately.

After a design has been compiled, we can program the FPGA to perform a
specified computation simply by loading the bitstream into it. Typically either a
host microprocessor/microcontroller downloads the bitstream to the device, or
an EPROM programmed with the bitstream is connected to the FPGA’s configu-
ration port. Either way, the appropriate bitstream must be loaded every time the
FPGA is powered up, as well as any time the user wants to change the circuitry
when it is running. Once the FPGA is configured, it operates as a custom piece
of digital logic.

Because of the FPGA’s dual nature—combining the flexibility of software with
the performance of hardware—an FPGA designer must think differently from
designers who use other devices. Software developers typically write sequen-
tial programs that exploit a microprocessor’s ability to rapidly step through a
series of instructions. In contrast, a high-quality FPGA design requires think-
ing about spatial parallelism—that is, simultaneously using multiple resources
spread across a chip to yield a huge amount of computation.

Hardware designers have an advantage because they already think in terms
of hardware implementations; even so, the flexibility of FPGAs gives them new
opportunities generally not available in ASICs and other fixed devices. Field-
programmable gate array designs can be rapidly developed and deployed, and
even reprogrammed in the field with new functionality. Thus, they do not
demand the huge design teams and validation efforts required for ASICs. Also,
the ability to change the configuration, even when the device is running, yields
new opportunities, such as computations that optimize themselves to specific
demands on a second-by-second basis, or even time multiplexing a very large
design onto a much smaller FPGA. However, because FPGAs are noticeably
slower and have lower capacity than ASICs, designers must carefully optimize
their design to the target device.

xxviii Introduction

00101011001010
01001011101010
11011100100110
00010001111001
01001110001010
00110110010101
11001010000000
11001010001010
00110100100110
11000101010101

00101011001011
01001011101010
11011100100110
00010001111001
01001110001011
00110110010101
11001010000001
11001010001010
00110100100110
11000101010100

00101011001010
01001011101011
11011100100110
00010001111000
01001110001010
00110110010100
11001010000001
11001010001011
00110100100110
11000101010101

00101011001011
01001011101010
11011100100111
00010001111000
01001110001011
00110110010101
11001010000000
11001010001011
00110100100111
11000101010101

00101011001010
01001011101010
11011100100110
00010001111001
01001110001010
00110110010101
11001010000000
11001010001010
00110100100110
11000101010101

Source Code

Technology Mapping

Placement

Logic Synthesis

Routing

Bitstream Generation

00101011001010
01001011101010
11011100100110
00010001111001
01001110001010
00110110010101
11001010000000
11001010001010
00110100100110
11000101010101

00101011001011
01001011101010
11011100100110
00010001111001
01001110001011
00110110010101
11001010000001
11001010001010
00110100100110
11000101010100

00101011001010
01001011101011
11011100100110
00010001111000
01001110001010
00110110010100
11001010000001
11001010001011
00110100100110
11000101010101

00101011001011
01001011101010
11011100100111
00010001111000
01001110001011
00110110010101
11001010000000
11001010001011
00110100100111
11000101010101

00101011001010
01001011101010
11011100100110
00010001111001
01001110001010
00110110010101
11001010000000
11001010001010
00110100100110
11000101010101

Bitstream

00101011001010
01001011101010
11011100100110
00010001111001
01001110001010
00110110010101
11001010000000
11001010001010
00110100100110
11000101010101

00101011001011
01001011101010
11011100100110
00010001111001
01001110001011
00110110010101
11001010000001
11001010001010
00110100100110
11000101010100

00101011001010
01001011101011
11011100100110
00010001111000
01001110001010
00110110010100
11001010000001
11001010001011
00110100100110
11000101010101

00101011001011
01001011101010
11011100100111
00010001111000
01001110001011
00110110010101
11001010000000
11001010001011
00110100100111
11000101010101

00101011001010
01001011101010
11011100100110
00010001111001
01001110001010
00110110010101
11001010000000
11001010001010
00110100100110
11000101010101

FIGURE I.2 � A typical FPGA mapping flow.

Introduction xxix

FPGAs are a very flexible medium, with unique opportunities and challenges.
The goal of Reconfigurable Computing: The Theory and Practice of FPGA-Based
Computation is to introduce all facets of FPGA-based systems—both positive
and problematic. It is organized into six major parts:

� Part I introduces the hardware devices, covering both generic FPGAs
and those specifically optimized for reconfigurable computing (Chapters 1
through 4).

� Part II focuses on programming reconfigurable computing systems,
considering both their programming languages and programming models
(Chapters 5 through 12).

� Part III focuses on the software mapping flow for FPGAs, including each
of the basic CAD steps of Figure I.2 (Chapters 13 through 20).

� Part IV is devoted to application design, covering ways to make the most
efficient use of FPGA logic (Chapters 21 through 26). This part can be
viewed as a finishing school for FPGA designers because it highlights
ways in which application development on an FPGA is different from
both software programming and ASIC design.

� Part V is a set of case studies that show complete applications of
reconfigurable logic (Chapters 27 through 35).

� Part VI contains more advanced topics, such as theoretical models and
metric for reconfigurable computing, as well as defect and fault tolerance
and the possible synergies between reconfigurable computing and
nanotechnology (Chapters 36 through 38).

As the 38 chapters that follow will show, the challenges that FPGAs present
are significant. However, the effort entailed in surmounting them is far out-
weighed by the unique opportunities these devices offer to the field of computing
technology.

This page intentionally left blank

P A R T I

RECONFIGURABLE COMPUTING

HARDWARE

At a fundamental level, reconfigurable computing is the process of best
exploiting the potential of reconfigurable hardware. Although a complete
system must include compilation software and high-performance appli-
cations, the best place to begin to understand reconfigurable computing
is at the chip level, as it is the abilities and limitations of chips that cru-
cially influence all of a system’s steps. However, the reverse is true as
well—reconfigurable devices are designed primarily as a target for the
applications that will be developed, and a chip that does not efficiently
support important applications, or that cannot be effectively targeted by
automatic design mapping flows, will not be successful.

Reconfigurable computing has been driven largely by the development
of commodity field-programmable gate arrays (FPGAs). Standard FPGAs
are somewhat of a mixed blessing for this field. On the one hand, they rep-
resent a source of commodity parts, offering cheap and fast programmable
silicon on some of the most advanced fabrication processes available
anywhere. On the other hand, they are not optimized for reconfigurable
computing for the simple reason that the vast majority of FPGA cus-
tomers use them as cheap, low-quality application-specific integrated cir-
cuits (ASICs) with rapid time to market. Thus, these devices are never
quite what the reconfigurable computing user might want, but they are
close enough. Chapter 1 covers commercial FPGA architectures in depth,
providing an overview of the underlying technology for virtually all gen-
erally available reconfigurable computing systems.

Because FPGAs are not optimized toward reconfigurable computing,
there have been many attempts to build better silicon devices for this
community. Chapter 2 details many of them. The focus of the new archi-
tectures might be the inclusion of larger functional blocks to speed up
important computations, tight connectivity to a host processor to set up
a coprocessing model, fast reconfiguration features to reduce the time to
change configurations, or other concepts. However, as of now, no such
system is commercially viable, largely because

2 Part I � Reconfigurable Computing Hardware

� The demand for reconfigurable computing chips is much
smaller than that for the FPGA community as a whole, reducing
economies of scale.

� FPGA manufacturers have access to cutting-edge fabrication
processes, while reconfigurable computing chips typically are
one to two process generations behind.

For these reasons, a reconfigurable computing chip is at a significant
cost, performance, and electrical power-consumption disadvantage com-
pared to a commodity FPGA. Thus, the architectural advantages of a
reconfigurable computing-specific device must be huge to make up for
the problems of less economies of scale and fabrication process lag. It
seems likely that eventually a company with a reconfigurable computing-
specific chip will be successful; however, so far there appears to have been
only failures.

Although programmable chips are important, most reconfigurable com-
puting users need more. A real system generally requires large memories,
input/output (I/O) ports to hook to various data streams, microprocessors
or microprocessor interfaces to coordinate operation, and mechanisms for
configuring and reconfiguring the device. Chapter 3 considers such com-
plete systems, chronicling the development of reconfigurable computing
boards.

Chapters 1 through 3 present a good overview of most reconfigurable
systems hardware, but one topic requires special consideration: the
reconfiguration subsystems within devices. In the first FPGAs, configura-
tion data was loaded slowly and sequentially, configuring the entire chip
for a given computation. For glue logic and ASIC replacement, this was
sufficient because FPGAs needed to be configured only once, at power-up;
however, in many situations the device may need to be reconfigured more
often. In the extreme, a single computation might be broken into multi-
ple configurations, with the FPGA loading new configurations during the
normal execution of that circuit. In this case, the speed of reconfiguration
is important. Chapter 4 focuses on the configuration memory subsystems
within an FPGA, considering the challenges of fast reconfiguration and
showing some ways to greatly improve reconfiguration speed.

C H A P T E R 1

DEVICE ARCHITECTURE

Mark L. Chang
Electrical and Computer Engineering
Franklin W. Olin College of Engineering

The best race car drivers understand how their cars work. The best architects
know how carpenters, bricklayers, and electricians do their jobs. And the best
programmers know how the hardware they are programming does computation.
Knowing how your device works, “down to the metal,” is essential for efficient
utilization of available resources.

In this chapter, we take a look inside the package to discover the basic hard-
ware elements that make up a typical field-programmable gate array (FPGA).
We’ll talk about how computation happens in an FPGA—from the blocks that do
the computation to the interconnect that shuttles data from one place to another.
We’ll talk about how these building blocks fit together in terms of FPGA archi-
tecture. And, of course, because programmability (as well as reprogrammability)
is part of what makes an FPGA so useful, we’ll spend some time on that, too.
Finally, we’ll take an in-depth look at the architectures of some commercially
available FPGAs in Section 1.5, Case Studies.

We won’t be covering many of the research architectures from universities
and industry—we’ll save that for later. We also won’t be talking much about
how you successfully program these things to make them useful parts of a com-
putational platform. That, too, is later in the book.

What you will learn is what’s “under the hood” of a typical commercial FPGA
so that you will become more comfortable using it as a platform for solving
problems and performing computations. The first step in our journey starts with
how computation in an FPGA is done.

1.1 LOGIC—THE COMPUTATIONAL FABRIC

Think of your typical desktop computer. Inside the case, among other things, are
storage and communication devices (hard drives and network cards), memory,
and, of course, the central processing unit, or CPU, where most of the compu-
tation happens. The FPGA plays a similar role in a reconfigurable computing
platform, but we’re going to break it down.

In very general terms, there are only two types of resources in an FPGA: logic
and interconnect. Logic is where we do things like arithmetic, 1+1=2, and logical
functions, if (ready) x=1 else x=0. Interconnect is how we get data (like the

4 Chapter 1 � Device Architecture

results of the previous computations) from one node of computation to another.
Let’s focus on logic first.

1.1.1 Logic Elements
From your digital logic and computer architecture background, you know that
any computation can be represented as a Boolean equation (and in some cases
as a Boolean equation where inputs are dependent on past results—don’t worry,
FPGAs can hold state, too). In turn, any Boolean equation can be expressed as a
truth table. From these humble beginnings, we can build complex structures that
can do arithmetic, such as adders and multipliers, as well as decision-making
structures that can evaluate conditional statements, such as the classic if-then-
else. Combining these, we can describe elaborate algorithms simply by using
truth tables.

From this basic observation of digital logic, we see the truth table as the
computational heart of the FPGA. More specifically, one hardware element that
can easily implement a truth table is the lookup table, or LUT. From a circuit
implementation perspective, a LUT can be formed simply from an N:1 (N-to-
one) multiplexer and an N-bit memory. From the perspective of our previous
discussion, a LUT simply enumerates a truth table. Therefore, using LUTs gives
an FPGA the generality to implement arbitrary digital logic. Figure 1.1 shows
a typical N-input lookup table that we might find in today’s FPGAs. In fact,
almost all commercial FPGAs have settled on the LUT as their basic building
block.

The LUT can compute any function of N inputs by simply programming the
lookup table with the truth table of the function we want to implement. As
shown in the figure, if we wanted to implement a 3-input exclusive-or (XOR)
function with our 3-input LUT (often referred to as a 3-LUT), we would assign
values to the lookup table memory such that the pattern of select bits chooses
the correct row’s “answer.” Thus, every “row” would yield a result of 0 except in
the four cases where the XOR of the three select lines yields 1.

3

0

0

0

0

1

1

1

1

3

FIGURE 1.1 � A 3-LUT schematic (a) and the corresponding 3-LUT symbol and truth table
(b) for a logical XOR.

1.1 Logic—The Computational Fabric 5

Of course, more complicated functions, and functions of a larger number of
inputs, can be implemented by aggregating several lookup tables together. For
example, one can organize a single 3-LUT into an 8×1 ROM, and if the values
of the lookup table are reprogrammable, an 8×1 RAM. But the basic building
block, the lookup table, remains the same.

Although the LUT has more or less been chosen as the smallest computational
unit in commercially available FPGAs, the size of the lookup table in each logic
block has been widely investigated [1]. On the one hand, larger lookup tables
would allow for more complex logic to be performed per logic block, thus reduc-
ing the wiring delay between blocks as fewer blocks would be needed. However,
the penalty paid would be slower LUTs, because of the requirement of larger
multiplexers, and an increased chance of waste if not all of the functionality of
the larger LUTs were to be used. On the other hand, smaller lookup tables may
require a design to consume a larger number of logic blocks, thus increasing
wiring delay between blocks while reducing per–logic block delay.

Current empirical studies have shown that the 4-LUT structure makes the
best trade-off between area and delay for a wide range of benchmark circuits.
Of course, as FPGA computing evolves into wider arenas, this result may need
to be revisited. In fact, as of this writing, Xilinx has released the Virtex-5 SRAM-
based FPGA with a 6-LUT architecture.

The question of the number of LUTs per logic block has also been inves-
tigated [2], with empirical evidence suggesting that grouping more than one
4-LUT into a single logic block may improve area and delay. Many current
commercial FPGAs incorporate a number of 4-LUTs into each logic block to
take advantage of this observation.

Investigations into both LUT size and number of LUTs per block begin
to address the larger question of computational granularity in an FPGA. On
one end of the spectrum, the rather simple structure of a small lookup table
(e.g., 2-LUT) represents fine-grained computational capability. Toward the other
end, coarse-grained, one can envision larger computational blocks, such as full
8-bit arithmetic logic units (ALUs), more typical of CPUs. As in the case of lookup
table sizing, finer-grained blocks may be more adept at bit-level manipulations
and arithmetic, but require combining several to implement larger pieces of
logic. Contrast that with coarser-grained blocks, which may be more optimal
for datapath-oriented computations that work with standard “word” sizes (8/16/
32 bits) but are wasteful when implementing very simple logical operations. Cur-
rent industry practice has been to strike a balance in granularity by using rather
fine-grained 4-LUT architectures and augmenting them with coarser-grained
heterogeneous elements, such as multipliers, as described in the Extended Logic
Elements section later in this chapter.

Now that we have chosen the logic block, we must ask ourselves if this is
sufficient to implement all of the functionality we want in our FPGA. Indeed, it is
not. With just LUTs, there is no way for an FPGA to maintain any sense of state,
and therefore we are prohibited from implementing any form of sequential, or
state-holding, logic. To remedy this situation, we will add a simple single-bit
storage element in our base logic block in the form of a D flip-flop.

6 Chapter 1 � Device Architecture

4 LUT

D Q

CLK

FIGURE 1.2 � A simple lookup table logic block.

Now our logic block looks something like Figure 1.2. The output multiplexer
selects a result either from the function generated by the lookup table or from
the stored bit in the D flip-flop. In reality, this logic block bears a very close
resemblance to those in some commercial FPGAs.

1.1.2 Programmability
Looking at our logic block in Figure 1.2, it is a simple task to identify all the
programmable points. These include the contents of the 4-LUT, the select signal
for the output multiplexer, and the initial state of the D flip-flop. Most current
commercial FPGAs use volatile static-RAM (SRAM) bits connected to configu-
ration points to configure the FPGA. Thus, simply writing a value to each con-
figuration bit sets the configuration of the entire FPGA.

In our logic block, the 4-LUT would be made up of 16 SRAM bits, one per out-
put; the multiplexer would use a single SRAM bit; and the D flip-flop initialization
value could also be held in a single SRAM bit. How these SRAM bits are initialized
in the context of the rest of the FPGA will be the subject of later sections.

1.2 THE ARRAY AND INTERCONNECT

With the LUT and D flip-flop, we begin to define what is commonly known as the
logic block, or function block, of an FPGA. Now that we have an understanding
of how computation is performed in an FPGA at the single logic block level,
we turn our focus to how these computation blocks can be tiled and connected
together to form the fabric that is our FPGA.

Current popular FPGAs implement what is often called island-style archi-
tecture. As shown in Figure 1.3, this design has logic blocks tiled in a two-
dimensional array and interconnected in some fashion. The logic blocks form
the islands and “float” in a sea of interconnect.

With this array architecture, computations are performed spatially in the
fabric of the FPGA. Large computations are broken into 4-LUT-sized pieces and
mapped into physical logic blocks in the array. The interconnect is configured
to route signals between logic blocks appropriately. With enough logic blocks,
we can make our FPGAs perform any kind of computation we desire.

1.2 The Array and Interconnect 7

Logic block

Interconnect

FIGURE 1.3 � The island-style FPGA architecture. The interconnect shown here is not
representative of structures actually used.

1.2.1 Interconnect Structures
Figure 1.3 does not tell the whole story. The interconnect structure shown is not
representative of any structures used in actual FPGAs, but is more of a cartoon
placeholder. This section introduces the interconnect structures present in many
of today’s FPGAs, first by considering a small area of interconnection and then
expanding out to understand the need for different styles of interconnect. We
start with the simplest case of nearest-neighbor communication.

Nearest neighbor
Nearest-neighbor communication is as simple as it sounds. Looking at a 2×2
array of logic blocks in Figure 1.4, one can see that the only needs in this neigh-
borhood are input and output connections in each direction: north, south, east,
and west. This allows each logic block to communicate directly with each of its
immediate neighbors.

Figure 1.4 is an example of one of the simplest routing architectures possible.
While it may seem nearly degenerate, it has been used in some (now obsolete)
commercial FPGAs. Of course, although this is a simple solution, this structure
suffers from severe delay and connectivity issues. Imagine, instead of a 2× 2
array, a 1024× 1024 array. With only nearest-neighbor connectivity, the delay
scales linearly with distance because the signal must go through many cells
(and many switches) to reach its final destination.

From a connectivity standpoint, without the ability to bypass logic blocks in
the routing structure, all routes that are more than a single hop away require

8 Chapter 1 � Device Architecture

FIGURE 1.4 � Nearest-neighbor connectivity.

traversing a logic block. With only one bidirectional pair in each direction, this
limits the number of logic block signals that may cross. Signals that are passing
through must not overlap signals that are being actively consumed and produced.

Because of these limitations, the nearest-neighbor structure is rarely used
exclusively, but it is almost always available in current FPGAs, often augmented
with some of the techniques that follow.

Segmented
As we add complexity, we begin to move away from the pure logic block archi-
tecture that we’ve developed thus far. Most current FPGA architectures look less
like Figure 1.3 and more like Figure 1.5.

In Figure 1.5 we introduce the connection block and the switch box. Here the
routing structure is more generic and meshlike. The logic block accesses nearby
communication resources through the connection block, which connects logic
block input and output terminals to routing resources through programmable
switches, or multiplexers. The connection block (detailed in Figure 1.6) allows
logic block inputs and outputs to be assigned to arbitrary horizontal and vertical
tracks, increasing routing flexibility.

The switch block appears where horizontal and vertical routing tracks con-
verge as shown in Figure 1.7. In the most general sense, it is simply a matrix
of programmable switches that allow a signal on a track to connect to another
track. Depending on the design of the switch block, this connection could be,
for example, to turn the corner in either direction or to continue straight. The
design of switch blocks is an entire area of research by itself and has produced
many varied designs that exhibit varying degrees of connectivity and efficiency
[3–5]. A detailed discussion of this research is beyond the scope of this book.

With this slightly modified architecture, the concept of a segmented intercon-
nect becomes more clear. Nearest-neighbor routing can still be accomplished,
albeit through a pair of connect blocks and a switch block. However, for

1.2 The Array and Interconnect 9

CB CB CB CB

CB

CB

CB

CB

CB

CBCB

CB

CB

CB

CB

CB CB CB

CB CB

CB

CB CB

CB

CB

CB

CB

CB

CB

CBCB

CB

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

FIGURE 1.5 � An island-style architecture with connect blocks and switch boxes to support
more complex routing structures. (The difference in relative sizes of the blocks is for visual
differentiation.)

signals that need to travel longer distances, individual segments can be switched
together in a switch block to connect distant logic blocks together. Think of it as
a way to emulate long signal paths that can span arbitrary distances. The result
is a long wire that actually comprises shorter “segments.”

This interconnect architecture alone does not radically improve on the delay
characteristics of the nearest-neighbor interconnect structure. However, the
introduction of connection blocks and switch boxes separates the intercon-
nect from the logic, allowing long-distance routing to be accomplished without
consuming logic block resources.

To improve on our structure, we introduce longer-length wires. For instance,
consider a wire that spans one logic block as being of length-1 (L1). In
some segmented routing architectures, longer wires may be present to allow
signals to travel greater distances more efficiently. These segments may be

10 Chapter 1 � Device Architecture

Logic
block

Programmable
connection

Connection
block

FIGURE 1.6 � Detail of a connection block.

FIGURE 1.7 � An example of a common switch block architecture.

length-4 (L4), length-8 (L8), and so on. The switch blocks (and erhaps more
embedded switches) become points where signals can switch from shorter to
longer segments. This feature allows signal delay to be less than O(N) when cover-
ing a distance of N logic blocks by reducing the number of intermediate switches
in the signal path.

Figure 1.8 illustrates augmenting the single-segment interconnect with two
additional lengths: direct-connect between logic blocks and length-2 (L2) lines.
The direct-connect lines leave general routing resources free for other uses, and
L2 lines allow signals to travel longer distances for roughly the same amount of
switch delay. This interconnect architecture closely matches that of the Xilinx
XC4000 series of commercial FPGAs.

Hierarchical
A slightly different approach to reducing the delay of long wires uses a hier-
archical approach. Consider the structure in Figure 1.9. At the lowest level of
hierarchy, 2×2 arrays of logic blocks are grouped together as a single cluster.

1.2 The Array and Interconnect 11

Switch
box

Switch
box

Switch
box

Logic
block

Logic
block

Logic connect
lines

Logic
block

Logic
block

Switch
box

CBCB

Length-2
lines

CB CB

CB CB CB CB

FIGURE 1.8 � Local (direct) connections and L2 connections augmenting a switched
interconnect.

131 (4)

434 (32)

232 (16)

FIGURE 1.9 � Hierarchical routing used by long wires to connect clusters of logic blocks.

Within this block, local, nearest-neighbor routing is all that is available. In turn,
a 2×2 cluster of these clusters is formed that encompasses 16 logic blocks. At
this level of hierarchy, longer wires at the boundary of the smaller, 2×2 clusters,
connect each cluster of four logic blocks to the other clusters in the higher-level
grouping. This is repeated in higher levels of hierarchy, with larger clusters and
longer wires.

The pattern of interconnect just described exploits the assumption that a well-
designed (and well-placed) circuit has mostly local connections and only a lim-
ited number of connections that need to travel long distances. By providing
fewer resources at the higher levels of hierarchy, this interconnect architecture
remains area-efficient while preserving some long-length wires to minimize the
delay of signals that need to cross large distances.

As in the segmented architecture, the connection points that connect one level of
routing hierarchy to another can be anywhere in the interconnect structure. New
points in the existing switch blocks may be created, or completely independent

12 Chapter 1 � Device Architecture

switching sites elsewhere in the interconnect can be created specifically for the
purpose of moving between hierarchy levels.

1.2.2 Programmability
As with the logic blocks in a typical commercial FPGA, each switch point in
the interconnect structure is programmable. Within the connection block, pro-
grammable multiplexers select which routing track each logic block’s input and
output terminals map to; in the switch block, the junction between vertical
and horizontal routing tracks is switched through a programmable switch; and,
finally, switching between routing tracks of different segment lengths or hierar-
chy levels is accomplished, again through programmable switches.

For all of these programmable points, as in the logic block, modern FPGAs
use SRAM bits to hold the user-defined configuration values. More discussion
of these configuration bits comes later in this chapter.

1.2.3 Summary
Programmable routing resources are the natural counterpart to the logic resour-
ces in an FPGA. Where the logic performs the arithmetic and logical computations,
the interconnection fabric takes the results output from logic blocks and routes
them as inputs to other logic blocks. By tiling logic blocks together and connec-
ting them through a series of programmable interconnects as described here, an
FPGA can implement complex digital circuits. The true nature of spatial comput-
ing is realized by spreading the computation across the physical area of an FPGA.

Today’s commercial FPGAs typically use bits of each of these interconnect
architectures to provide a smooth and flexible set of routing resources. In actual
implementation, segmentation and hierarchy may not always exhibit the log-
arithmic scaling seen in our examples. In modern FPGAs, the silicon area con-
sumed by interconnect greatly dominates the area dedicated to logic. Anecdotally,
90 percent of the available silicon is interconnect whereas only 10 percent is
logic. With this imbalance, it is clear that interconnect architecture is increas-
ingly important, especially from a delay perspective.

1.3 EXTENDING LOGIC

With a logic block like the one shown in Figure 1.2, tiled in a two-dimensional
array with a supporting interconnect structure, we can implement any combina-
tional and sequential logic. Our only constraint is area in terms of the number
of available logic blocks. While this is comprehensive, it is far from optimal. In
this section, we investigate how FPGA architects have augmented this simple
design to increase performance.

1.3.1 Extended Logic Elements
Modern FPGA interconnect architectures have matured to include much more
than simple nearest-neighbor connectivity to give increased performance for

1.3 Extending Logic 13

common applications. Likewise, the basic logic elements have been augmented
to increase performance for common operations such as arithmetic functions
and data storage.

Fast carry chain
One fundamental operation that the FPGA is likely to perform is an addition.
From the basic logic block, it is apparent that we can implement a full-adder
structure with two logic blocks given at least a 3-LUT. One logic block is config-
ured to compute the sum, and one is configured to compute the carry. Cascading
N pairs of logic blocks together will yield a simple N-bit full adder.

As you may already know from digital arithmetic, the critical path of this
type of addition comes not from the computation of the sum bits but rather
from the rippling of the carry signal from lower-order bits to higher-order bits
(see Figure 1.10). This path starts with the low-order primary inputs, goes
through the logic block, out into the interconnect, into the adjacent logic block,
and so on. Delay is accumulated at every switch point along the way.

One clever way to increase speed is to shortcut the carry chain between adja-
cent logic blocks. We can accomplish this by providing a dedicated, minimally
switched path from the output of the logic block computing the carry signal to
the adjacent higher-order logic block pair. This carry chain will not need to be
routed on the general interconnect network. By adding a minimal amount of
overhead (wires), we dramatically speed up the addition operation.

This feature does force some constraints on the spatial layout of a multibit
addition. If, for instance, the dedicated fast carry chain only goes vertically, along
columns of logic blocks, all additions must be oriented along the carry chain to
take advantage of this dedicated resource. Additionally, to save switching area,
the dedicated carry chain may not be a bidirectional path, which further restricts
the physical layout to be oriented vertically and dictates the order of the bits
relative to one another. The fast carry-chain of the Xilinx XC4000E is shown in
Figure 1.11. Note that the bidirectional fast carry-chain wires are arranged along
the columns while the horizontal lines are unidirectional. This allows large adder
structures to be placed in a zig-zag pattern in the array and still make use of the
dedicated carry-chain interconnect.

A3

cout

B3

S3 S2

Carry chain

S1 S0

cin

A1 B1 A0 B0B2A2

1 1 1 1

FIGURE 1.10 � A simple 4-bit full adder.

14 Chapter 1 � Device Architecture

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

FIGURE 1.11 � The Xilinx XC4000E fast carry chain. (Source: Adapted from [6], Figure 11,
p. 6-18.)

The fast carry-chain logic is now commonplace in commercial FPGAs, with
the physical design constraints at this point completely abstracted away by the
tools provided by manufacturers. The success of this optimization relies on the
toolset’s ability to identify additions in the designer’s circuit description and then
use the dedicated logic. With today’s tools, this kind of optimization is nearly
transparent to the end user.

Multipliers
If addition is commonplace in algorithms, multiplication is certainly not rare.
Several implementations are available if we wish to use general logic block reso-
urces to build our multipliers. From the area-efficient iterative shift-accumulate
method to the area-consumptive array multiplier, we can use logic blocks to either
compute additions or store intermediate values. While we can certainly implement
a multiplication, we can do so only with a large delay penalty, or a large logic block
footprint, depending on our implementation. In essence, our logic blocks aren’t
very efficient at performing a multiplication.

Instead of doing it with logic blocks, why not build real multipliers outside, but
still connected to, the general FPGA fabric? Then, instead of inefficiently using
simple LUTs to implement a multiply, we can route the values that need to be
multiplied to actual multipliers implemented in silicon. How does this save space
and time? Recall that FPGAs trade speed and power for configurability when
compared to their ASIC (application-specific integrated circuit) counterparts. If
you asked a VLSI designer to implement a fast multiplier out of transistors

1.3 Extending Logic 15

any way she wanted, it would take up far less silicon area, be much faster, and
consume less power than we could ever manage using LUTs.

The result is that, for a small price in silicon area, we can offload the other-
wise area-prohibitive multiplication onto dedicated hardware that does it much
better. Of course, just like fast carry chains, multipliers impose important design
considerations and physical constraints, but we add one more option for com-
putation to our palette of operations. It is now just a matter of good design and
good tools to make an efficient design. Like fast carry chains, multipliers are
commonplace in modern FPGAs.

RAM
Another area that has seen some customization beyond the general FPGA fab-
ric is in the area of on-chip data storage. While logic blocks can individually
provide a few bits of storage via the lookup table structure—and, in aggregate,
many bits—they are far from an efficient use of FPGA resources. Like the fast
carry chain and the “hard” multiplier, FPGA architectures have given their users
generous amounts of on-chip RAM that can be accessed from the general FPGA
fabric.

Static RAM cells are extremely small and, when physically distributed through-
out the FPGA, can be very useful for many algorithms. By grouping many static
RAM cells into banks of memory, designers can implement large ROMs for
extremely fast lookup table computations and constant-coefficient operations,
and large RAMs for buffering, queuing, and basic scratch use—all with the con-
venience of a simple clocking strategy and the speed gained by avoiding off-chip
communication to an external memory. Today’s FPGAs provide anywhere from
kilobits to megabits of dedicated RAM.

Processor blocks
Tying all these blocks together, most commercial FPGAs now offer entire dedi-
cated processors in the FPGA, sometimes even more than one. In a general sense,
FPGAs are extremely efficient at implementing raw computational pipelines,
exploiting nonstandard bit widths, and providing data and functional parallelism.
The inclusion of dedicated CPUs recognizes the fact that algorithm flows that are
very procedural and contain a high degree of branching do not lend themselves
readily to acceleration using FPGAs.

Entire CPU blocks can now be found in high-end FPGA devices. At the time of
this writing, these CPUs are on the scale of 300 MHz PowerPC devices, complete,
without floating-point units. They are capable of running an entire embedded
operating system, and some are even able to reprogram the FPGA fabric around
them.

The CPU cores are not nearly as easily exploited as the carry chains, mul-
tipliers, and on-chip RAMs, but they represent a distinct shift toward making
FPGAs more “platform”-oriented. With a traditional CPU on board (and perhaps
up to four), a single FPGA can serve nearly as an entire “system-on-a-chip”—the
holy grail of system integrators and embedded device manufacturers. With stan-
dard programming languages and toolchains available to developers, an entire
project might indeed be implemented with a single-chip solution, dramatically
reducing cost and time to market.

16 Chapter 1 � Device Architecture

1.3.2 Summary
In the end, modern commercially available FPGAs provide a rich variety of basic,
and not so basic, computational building blocks. With much more than simple
lookup tables, the task for the FPGA architect is to decide in what proportion to
provide these resources and how they should be connected. The task of the hard-
ware designer is then to fully understand the capabilities of the target FPGAs to
create designs that exploit their potential.

The common thread among these extended logical elements is that they pro-
vide critical functionality that cannot be implemented very efficiently in the
general FPGA fabric. As much as the technology drives FPGA architectures,
applications provide a much needed push. If multiplies were rare, it wouldn’t
make sense to waste silicon space on a “hard” multiplier. As FPGAs become
more heterogeneous in nature, and become useful computational platforms in
new application domains, we can expect to see even more varied blocks in the
next generation of devices.

1.4 CONFIGURATION

One of the defining features of an FPGA is its ability to act as “blank hardware”
for the end user. Providing more performance than pure software implementa-
tions on general-purpose processors, and more flexibility than a fixed-function
ASIC solution, relies on the FPGA being a reconfigurable device. In this sec-
tion, we will discuss the different approaches and technologies used to provide
programmability in an FPGA.

Each configurable element in an FPGA requires 1 bit of storage to maintain a
user-defined configuration. For a simple LUT-based FPGA, these programmable
locations generally include the contents of the logic block and the connectivity
of the routing fabric. Configuration of the FPGA is accomplished through pro-
gramming the storage bits connected to these programmable locations accord-
ing to user definitions. For the lookup tables, this translates into filling it with
1s and 0s. For the routing fabric, programming enables and disables switches
along wiring paths.

The configuration can be thought of as a flat binary file whose contents map, bit
for bit, to the programmable bits in the FPGA. This bitstream is generated by the
vendor-specific tools after a hardware design is finalized. While its exact format
is generally not publicly known, the larger the FPGA, the larger the bitstream
becomes.

Of course, there are many known methods for storing a single bit of binary
information. We discuss the most popular methods used for FPGAs next.

1.4.1 SRAM
As discussed in previous sections, the most widely used method for storing con-
figuration information in commercially available FPGAs is volatile static RAM,
or SRAM. This method has been made popular because it provides fast and
infinite reconfiguration in a well-known technology.

1.4 Configuration 17

Drawbacks to SRAM come in the form of power consumption and data
volatility. Compared to the other technologies described in this section, the
SRAM cell is large (6–12 transistors) and dissipates significant static power
because of leakage current. Another significant drawback is that SRAM does
not maintain its contents without power, which means that at power-up the
FPGA is not configured and must be programmed using off-chip logic and
storage. This can be accomplished with a nonvolatile memory store to hold the
configuration and a micro-controller to perform the programming procedure.
While this may seem to be a trivial task, it adds to the component count and
complexity of a design and prevents the SRAM-based FPGA from being a truly
single-chip solution.

1.4.2 Flash Memory
Although less popular than SRAM, several families of devices use Flash memory
to hold configuration information. Flash memory is different from SRAM in that
it is nonvolatile and can only be written a finite number of times.

The nonvolatility of Flash memory means that the data written to it remains
when power is removed. In contrast with SRAM-based FPGAs, the FPGA remains
configured with user-defined logic even through power cycles and does not require
extra storage or hardware to program at boot-up. In essence, a Flash-based FPGA
can be ready immediately.

A Flash memory cell can also be made with fewer transistors compared to an
SRAM cell. This design can yield lower static power consumption as there are
fewer transistors to contribute to leakage current.

Drawbacks to using Flash memory to store FPGA configuration information
stem from the techniques necessary to write to it. As mentioned, Flash memory
has a limited write cycle lifetime and often has slower write speeds than SRAM.
The number of write cycles varies by technology, but is typically hundreds of
thousands to millions. Additionally, most Flash write techniques require higher
voltages compared to normal circuits; they require additional off-chip circuitry
or structures such as charge pumps on-chip to be able to perform a Flash write.

1.4.3 Antifuse
A third approach to achieving programmability is antifuse technology. Antifuse,
as its name suggests, is a metal-based link that behaves the opposite of a fuse.
The antifuse link is normally open (i.e., unconnected). A programming proce-
dure that involves either a high-current programmer or a laser melts the link to
form an electrical connection across it—in essence, creating a wire or a short-
circuit between the antifuse endpoints.

Antifuse has several advantages and one clear disadvantage, which is that it is
not reprogrammable. Once a link is fused, it has undergone a physical transfor-
mation that cannot be reversed. FPGAs based on this technology are generally
considered one-time programmable (OTP). This severely limits their flexibility
in terms of reconfigurable computing and nearly eliminates this technology for
use in prototyping environments.

18 Chapter 1 � Device Architecture

However, there are some distinct advantages to using antifuse in an FPGA
platform. First, the antifuse link can be made very small, compared to the large
multi-transistor SRAM cell, and does not require any transistors. This results
in very low propagation delays across links and zero static power consump-
tion, as there is no longer any transistor leakage current. Antifuse links are also
not susceptible to high-energy radiation particles that induce errors known as
single-event upsets, making them more likely candidates for space and military
applications.

1.4.4 Summary
There are several well-known methods for storing user-defined configuration
data in an FPGA. We have reviewed the three most common in this section.
Each has its strengths and weaknesses, and all can be found in current com-
mercial FPGA products.

Regardless of the technology used to store or convey configuration data,
the idea remains the same. From vendor-specific tools, a device-specific pro-
gramming bitstream is created and used either to program an SRAM or Flash
memory, or to describe the pattern of antifuse links to be used. In the end, the
user-defined configuration is reflected in the FPGA, bringing to reality part of
the vision of reconfigurable computing.

1.5 CASE STUDIES

If you’ve read everything thus far, the FPGA should no longer seem like a magical
computational black box. In fact, you should have a good grasp of the compo-
nents that make up modern commercial FPGAs and how they are put together.
In this section, we’ll take it one step further and solidify the abstractions by
taking a look at two real commercial architectures—the Altera Stratix and the
Xilinx Virtex-II Pro—and linking the ideas introduced earlier in this chapter with
concrete industry implementations.

Although these devices represent near-current technologies, having been
introduced in 2002, they are not the latest generation of devices from their
respective manufacturers. The reason for choosing them over more cutting-edge
examples is in part due to the level of documentation available at the time of
this writing. As is often the case, detailed architecture information is not avail-
able as soon as a product is released and may never be available depending on
the manufacturer.

Finally, the devices discussed here are much more complex than we have
space to describe. The myriad ways modern devices can be used to perform
computation and the countless hardware and software features that allow you
to create powerful and efficient designs are all part of a larger, more advanced
dialog. So if something seems particularly interesting, we encourage you to grab
a copy of the device handbook(s) and dig a little deeper.

1.5 Case Studies 19

M512 RAM
blocks

DSP
blocks

M4K RAM
blocks

M-RAM block

FIGURE 1.12 � Altera Stratix block diagram. (Source: Adapted from [7], Chapter 2, p. 2-2.)

1.5.1 Altera Stratix
We begin by taking a look at the Altera Stratix FPGA. Much of the information
presented here is adapted from the July 2005 edition of the Altera Stratix Device
Handbook (available online at http://www.altera.com).

The Stratix is an SRAM-based island-style FPGA containing many heteroge-
neous computational elements. The basic logical tile is the logic array block
(LAB), which consists of 10 logic elements (LEs). The LABs are tiled across the
device in rows and columns with a multilevel interconnect bringing together
logic, memory, and other resources. Memory is provided through TriMatrix
memory structures, which consist of three memory block sizes—M512, M4K,
and M-RAM—each with its own unique properties. Additional computational
resources are provided in DSP blocks, which can efficiently perform multiplica-
tion and accumulation. These resources are shown in a high-level block diagram
in Figure 1.12.

Logic architecture
The smallest logical block in the array is the LE, shown in Figure 1.13. The
general architecture of the LE is very similar to the structure that we introduced
earlier—a single 4-LUT function generator and a programmable register as a
state-holding element. In the Altera LE, you can see additional components to
facilitate driving the interconnect (right side of Figure 1.12), setting and clearing
the programmable register, choosing from several programmable clocks, and
propagating the carry chain.

20 Chapter 1 � Device Architecture

cin

Lookup
table
(LUT)

Clock
enable
logic

Carry
logic

Load and
clear
logic

D Q

EN

To routing
fabric

To routing
fabric

cout

Data
inputs

Clock
inputs

FIGURE 1.13 � Simplified Altera Stratix logic element. (Source: Adapted from [7], Chapter 2,
p. 2-5.)

Because the LEs are simple structures that may appear tens of thousands
of times in a single device, Altera groups them into LABs. The LAB is then the
basic structure that is tiled into an array and connected via the routing structure.
Each LAB consists of 10 LEs, all LE carry chains, LAB-wide control signals,
and several local interconnection lines. In the largest device, the EP1S80, there
are 101 LAB rows and 91 LAB columns, yielding a total of 79,040 LEs. This is
fewer than would be expected given the number of rows and columns because of
the presence of the TriMatrix memory structures and DSP blocks embedded in
the array.

As shown in Figure 1.14, the LAB structure is dominated, at least conceptually,
by interconnect. The local interconnect allows LEs in the same LAB to send
signals to one another without using the general interconnect. Neighboring LABs,
RAM blocks, and DSP blocks can also drive the local interconnect through direct
links. Finally, the general interconnect (both horizontal and vertical channels)
can drive the local interconnect. This high degree of connectivity is the lowest
level of a rich, multilevel routing fabric.

The Stratix has three types of memory blocks—M512, M4K, and M-RAM—
collectively dubbed TriMatrix memory. The largest distinction between these
blocks is their size and number in a given device. Generally speaking, they can
be configured in a number of ways, including single-port RAM, dual-port RAM,
shift-register, FIFO, and ROM table. These memories can optionally include
parity bits and have registered inputs and outputs.

The M512 RAM block is nominally organized as a 32× 18-bit memory; the
M4K RAM as a 128×36-bit memory; and the M-RAM as a 4K×144-bit memory.
Additionally, each block can be configured for a variety of widths depending on
the needs of the user. The different-sized memories throughout the array provide

1.5 Case Studies 21

Local interconnect LAB

To row
interconnects

To column
interconnects

From
adjacent LAB

To row
interconnects

To column
interconnects

To adjacent local
interconnect

FIGURE 1.14 � Simplified Altera Stratix LAB structure. (Source: Adapted from [8], Chapter 2,
p. 2-4.)

an efficient mapping of variable-sized memory designs to the device. In total, on
the EP1S80 there are over 7 million memory bits available for use, divided into
767 M512 blocks, 364 M4K blocks, and 9 M-RAM blocks.

The final element of logic present in the Altera Stratix is the DSP block. Each
device has two columns of DSP blocks that are designed to help implement
DSP-type functions, such as finite-impulse response (FIR) and infinite-impulse
response (IIR) filters and fast Fourier transforms (FFT), without using the
general logic resources of the LEs. The common computational function
required in these operations is often a multiplication and an accumulation. Each
DSP block can be configured by the user to support a single 36×36-bit multi-
plication, four 18×18-bit multiplications, or eight 9×9-bit multiplications, in
addition to an optional accumulation phase. In the EP1S80, there are 22 total
DSP blocks.

Routing architecture
The Altera Stratix provides an interconnect system dubbed MultiTrack that
connects all the elements just discussed using routing lines of varying fixed
lengths. Along the row (horizontal) dimension, the routing resources include
direct connections left and right between blocks (LABs, RAMs, and DSP) and
interconnects of lengths 4, 8, and 24 that traverse either 4, 8, or 24 blocks left
and right, respectively. A detailed depiction of an R4 interconnect at a single

22 Chapter 1 � Device Architecture

C4, C8, and C16
column interconnects

R4 interconnect
driving right

R4 interconnect
driving left

Neighbor
LAB

Primary
LAB

Neighbor
LAB

FIGURE 1.15 � Simplified Altera Stratix MultiTrack interconnect. (Source: Adapted from [7],
Chapter 2, p. 2-14.)

LAB is shown in Figure 1.15. The R4 interconnect shown spans 4 blocks, left
to right. The relative sizing of blocks in the Stratix allows the R4 interconnect
to span four LABs; three LABs and one M512 RAM; two LABs and one M4K
RAM; or two LABs and one DSP block, in either direction.

This structure is repeated for every LAB in the row (i.e., every LAB has its
own set of dedicated R4 interconnects driving left and right). R4 interconnects
can drive C4 and C16 interconnects to propagate signals vertically to different
rows. They can also drive R24 interconnects to efficiently travel long distances.

The R8 interconnects are identical to the R4 interconnects except that they
span 8 blocks instead of 4 and only connect to R8 and C8 interconnects. By
design, the R8 interconnect is faster than two R4 interconnects joined together.
The R24 interconnect provides the fastest long-distance interconnection. It is
similar to the R4 and R8 interconnects, but does not connect directly to the LAB
local interconnects. Instead, it is connected to row and column interconnects at
every fourth LAB and only communicates to LAB local interconnects through
R4 and C4 routes. R24 interconnections connect with all interconnection routes
except L8s.

1.5 Case Studies 23

In the column (vertical) dimension, the resources are very similar. They
include LUT chain and register chain direct connections and interconnects of
lengths 4, 8, and 16 that traverse 4, 8, or 16 blocks up and down, respec-
tively. The LAB local interconnects found in row routing resources are mirrored
through LUT chain and register chain interconnects. The LUT chain connects
the combinatorial output of one LE to the fast input of the LE directly below it
without consuming general routing resources. The register chain connects the
register output of one LE to the register input of another LE to implement fast
shift registers.

Finally, although this discussion was LAB-centric, all blocks connect to the
MultiTrack row and column interconnect using a direct connection similar to
the LAB local connection interfaces. These direct connection blocks also support
fast direct communication to neighboring LABs.

1.5.2 Xilinx Virtex-II Pro
Launched and shipped right behind the Altera Stratix, the Xilinx Virtex-II
Pro FPGA was the flagship product of Xilinx, Inc. for much of 2002 and
2003. A good deal of the information that is presented here is adapted from
“Module 2 (Functional Description)” of the October 2005 edition of Xilinx Virtex-
II Pro™ and Virtex-II Pro X™ Platform FPGA Handbook (available at http://
www.xilinx.com).

The Virtex-II Pro is an SRAM-based island-style FPGA with several hetero-
geneous computational elements interconnected through a complex routing
matrix. The basic logic tile is the configurable logic block (CLB), consisting
of four slices and two 3-state buffers. These CLBs are tiled across the device
in rows and columns with a segmented, hierarchical interconnect tying all the
resources together. Dedicated memory blocks, SelectRAM+, are spread through-
out the device. Additional computational resources are provided in dedicated
18×18-bit multiplier blocks.

Logic architecture
The smallest piece of logic from the perspective of the interconnect structure is
the CLB. Shown in Figure 1.16, it consists of four equivalent slices organized
into two columns of two slices each with independent carry chains and a com-
mon shift chain. Each slice connects to the general routing fabric through a
configurable switch matrix and to each other in the CLB through a fast local
interconnect.

Each slice comprises primarily two 4-LUT function generators, two pro-
grammable registers for state holding, and fast carry logic. The slice also contains
extra multiplexers (MUXFx and MUXF5) to allow a single slice to be configured
for wide logic functions of up to eight inputs. A handful of other gates provide
extra functionality in the slice, including an XOR gate to complete a 2-bit full
adder in a single slice, an AND gate to improve multiplier implementations in
the logic fabric, and an OR gate to facilitate implementation of sum-of-products
chains.

24 Chapter 1 � Device Architecture

Switch
matrix

Slice
X0Y0

Slice
X1Y0

Slice
X1Y1

cin

Shift

cin

cout

cout

Slice
X0Y1

Fast
connects
to neighbors

FIGURE 1.16 � Xilinx Virtex-II Pro configurable CLB. (Source: Adapted from [8], Figure 32,
p. 35.)

In the largest Virtex-II Pro device, the XC2VP100, there are 120 rows and
94 columns of CLBs. This translates into 44,096 individual slices and 88,192
4-LUTs—comparable to the largest Stratix device. In addition to these general
configurable logic resources, the Virtex-II Pro provides dedicated RAM in the
form of block SelectRAM+. Organized into multiple columns throughout the
device, each block SelectRAM+ provides 18 Kb of independently clocked, true
dual-port synchronous RAM. It supports a variety of configurations, including
single- and dual-port access in various aspect ratios. In the largest device there
are 444 blocks of block SelectRAM+ organized into 16 columns, yielding a total
of 8,183,808 bits of memory.

Complementing the general logic resources are a number of 18× 18-bit 2’s
complement signed multiplier blocks. Like the DSP blocks in the Altera Stratix,
these multiplier structures are designed for DSP-type operations, including FIR,
IIR, FFT, and others, which often require multiply-accumulate structures. As
shown in Figure 1.17, each 18×18 multiplier block is closely associated with an
18Kb block SelectRAM+. The use of the multiplier/block SelectRAM+ memory,
with an accumulator implemented in LUTs, allows the implementation of effi-
cient multiply-accumulate structures. Again, in the largest device, just as with
block SelectRAM+, there are 16 columns yielding a total of 444 18×18-bit mul-
tiplier blocks.

Finally, the Virtex-II Pro has one unique feature that has been carried into
newer products and can also be found in competing Altera products. Embedded

1.5 Case Studies 25

Switch
matrix

Switch
matrix

18 Kbit block
selectRAM1

18318
multiplier

Switch
matrix

Switch
matrix

FIGURE 1.17 � Virtex-II Pro multiplier/block SelectRAM+ organization. (Source: Adapted
from [8], Figure 53, p. 48.)

in the silicon of the FPGA, much like the multiplier and block SelectRAM+
structures, are up to four IBM PowerPC 405-D5 CPU cores. These cores can
operate up to 300+ MHz and communicate with surrounding CLB fabric, block
SelectRAM+, and general interconnect through dedicated interface logic. On-
chip memory (OCM) controllers allow the PowerPC core to use block Select-
RAM+ as small instruction and data memories if no off-chip memories are
available.

The presence of a complete, standard microprocessor that has the ability
to interface at a very low level with general FPGA resources allows unique,
system-on-a-chip designs to be implemented with only a single FPGA device.
For example, the CPU core can execute housekeeping tasks that are neither
time-critical nor well suited to implementation in LUTs.

Routing architecture
The Xilinx Virtex-II Pro provides a segmented, hierarchical routing structure
that connects to the heterogeneous fabric of elements through a switch matrix
block. The routing resources (dubbed Active Interconnect) are physically located
in horizontal and vertical routing channels between each switch matrix and look
quite different from the Altera Stratix interconnect structures.

The routing resources available between any two adjacent switch matrix rows
or columns are shown in Figure 1.18, with the switch matrix block shown in
black. These resources include, from top to bottom, the following:

� 24 long lines that span the full height and width of the device.
� 120 hex lines that route to every third or sixth block away in

all four directions.

26 Chapter 1 � Device Architecture

FIGURE 1.18 � Xilinx Virtex-II Pro routing resources. (Source: Adapted from [7], Figure 54,
p. 45.)

� 40 double lines that route to every first or second block away in
all four directions.

� 16 direct connect routes that route to all immediate neighbors.
� 8 fast-connect lines in each CLB that connect LUT inputs and outputs.

1.6 SUMMARY

This chapter presented the basic inner workings of FPGAs. We introduced the
basic idea of lookup table computation, explained the need for dedicated compu-
tational blocks, and described common interconnection strategies. We learned
how these devices maintain generality and programmability while providing per-
formance through dedicated hardware blocks. We investigated a number of ways
to program and maintain user-defined configuration information. Finally, we
tied it all together with brief overviews of two popular commercial architec-
tures, the Altera Stratix and the Xilinx Virtex-II Pro.

Now that we have introduced the basic technology that serves as the founda-
tion of reconfigurable computing, we will begin to build on the FPGA to create

1.6 Summary 27

reconfigurable devices and systems. The following chapters will discuss how to
efficiently conceptualize computations spatially rather than procedurally, and
the algorithms necessary to go from a user-specified design to configuration
data. Finally, we’ll look into some application domains that have successfully
exploited the power of reconfigurable computing.

References
[1] J. Rose, A. E. Gamal, A Sangiovanni-Vincentelli. Architecture of field-programmable

gate arrays. Proceedings of the IEEE 81(7), July 1993.
[2] P. Chow, et al. The design of an SRAM-based field-programmable gate array—Part 1:

Architecture. IEEE Transactions on VLSI Systems 7(2), June 1999.
[3] H. Fan, J. Liu, Y. L. Wu, C. C. Cheung. On optimum switch box designs for 2-D

FPGAs. Proceedings of the 38th ACM/SIGDA Design Automation Conference (DAC),
June 2001.

[4] ———-. On optimal hyperuniversal and rearrangeable switch box designs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(12),
December 2003.

[5] H. Schmidt, V. Chandra. FPGA switch block layout and evaluation. IEEE Interna-
tional Symposium on Field-Programmable Gate Arrays, February 2002.

[6] Xilinx, Inc. Xilinx XC4000E and XC4000X Series Field-Programmable Gate Arrays,
Product Specification (Version 1.6), May 1999.

[7] Altera Corp. Altera Stratix™ Device Handbook, July 2005.
[8] Xilinx, Inc. Xilinx Virtex-II Pro™ and Virtex-II Pro™ Platform FPGA Handbook, October

2005.

This page intentionally left blank

C H A P T E R 2

RECONFIGURABLE COMPUTING
ARCHITECTURES

Lesley Shannon
School of Engineering Science
Simon Fraser University

There has been considerable research into possible reconfigurable computing
architectures. Alternatives range from systems constructed using standard
off-the-shelf field-programmable gate arrays (FPGAs) to systems constructed
using custom-designed chips. Standard FPGAs benefit from the economies of
scale; however, custom chips promise a higher speed and density for custom-
computing tasks. This chapter explores different design choices made for recon-
figurable computing architectures and how these choices affect both operation
and performance. Questions we will discuss include:

� Should the reconfigurable fabric be instantiated as a separate
coprocessor or integrated as a functional unit (see Instruction
augmentation subsection of Section 5.2.2)

� What is the appropriate granularity (Chapter 36) for the
reconfigurable fabric?

Computing applications generally consist of both control flow and dataflow.
General-purpose processors have been designed with a control plane and a data
plane to support these two requirements. All reconfigurable computers have a
reconfigurable fabric component that is used to implement at least a portion of
the dataflow component of an application.

In this discussion, the reconfigurable fabric in its entirety will be referred
to as the reconfigurable processing fabric, or RPF. The RPF may be statically
or dynamically reconfigurable, where a static RPF is only configured between
application runs and a dynamic RPF may be updated during an application’s
execution.

In general, the reconfigurable fabric is relatively symmetrical and can be
broken down into similar tiles or cells that have the same functionality. These
blocks will be referred to as processing elements, or PEs. Ideally, the RPF is
used to implement computationally intensive kernels in an application that will
achieve significant performance improvement from the pipelining and paral-
lelism available in the RPF. The kernels are called virtual instruction configura-
tions, or VICs, and we will discuss possible RPF architectures for implementing
them in the following section.

30 Chapter 2 � Reconfigurable Computing Architectures

2.1 RECONFIGURABLE PROCESSING FABRIC ARCHITECTURES

One of the defining characteristics of a reconfigurable computing architecture is
the type of reconfigurable fabric used in the RPF. Different systems have quite
different granularities. They range from fine-grained fabrics that manipulate
data at the bit level similarly to commercial FPGA fabrics, to coarse-grained
fabrics that manipulate groups of bits via complex functional units such as
ALUs (arithmetic logic units) and multipliers. The remainder of this section
will provide examples of these architectures, highlighting their advantages and
disadvantages.

2.1.1 Fine-grained
Fine-grained architectures offer the benefit of allowing designers to implement
bit manipulation tasks without wasting reconfigurable resources. However, for
large and complex calculations, numerous fine-grained PEs are required to
implement a basic computation. This results in much slower clock rates than
are possible if the calculations could be mapped to fewer, coarse-grained PEs.
Fine-grained architectures may also limit the number of VICs that can be con-
currently stored in the RPF because of capacity limits.

Garp’s nonsymmetrical RPF
The BRASS Research Group designed the Garp reconfigurable processor as an
MIPS processor and on-chip cache combined with an RPF [14]. The RPF is com-
posed of an array of PEs, as shown in Figure 2.1. Unlike most RPF architectures,
not all of the PEs (drawn as rounded squares in the array) are the same. There
is one control PE in each row (illustrated as the dark gray square in the leftmost
column) that provides communication between the RPF and external resources.
For example, the control block can be used to generate an interrupt for the main
processor or to initiate memory transactions. The remaining PEs (illustrated as
light gray squares) in the array are used for data processing and modeled after
the configurable logic blocks (CLBs) in the Xilinx 4000 series [13]. The number
of columns of PEs is fixed at 24, with the middle 16 PEs dedicated to providing
memory access for the RPF. The 3 extra PEs on the left and the 4 extra PEs on
the right in Figure 2.1 are used for operations such as overflow, error checking,
status checking, and wider data sizes.

The number of rows in the RPF is not fixed by the architecture, but is typically
at least 32 [13]. A wire network is provided between rows and columns, but the
only way to switch wires is through logic blocks, as there are no connections
from one wire to another. Each PE operates at the bit level on two bits of data,
performing the same operation on both bits based on the assumption that a
large fraction of most configurations will be used for multibit operations. By
creating identical configurations for both bits, the configuration size and time
can be reduced but only at the expense of flexibility [13].

The loading of configurations into an RPF with a fine-grained fabric is
extremely costly relative to coarse-grained architectures. For example, each PE

2.1 Reconfigurable Processing Fabric Architectures 31

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 control PE
per row

3 extra logic PEs
16 logic PEs (32 bits)

aligned with processor data word 4 extra logic PEs

23 logic PEs per row

msb lsb

32-bit word alignment
on memory bus

.

.

.

FIGURE 2.1 � Garp’s RPF architecture. (Source: Adapted from [13].)

in Garp’s RPF requires 64 configuration bits (8 bytes) to specify the sources of
inputs, the PE’s function, and any wires to be driven by the PE [13]. So, if there
are only 32 rows in the RPF, 6144 bytes are required to load the configuration.
While this may not seem significant given that the configuration bitstream of a
commercial FPGA is on the order of megabytes (MB), it is considerable relative
to a traditional CPU’s context switch. For example, if the bit path to external
memory from the Garp is assumed to be 128 bits, loading the full configuration
takes 384 sequential memory accesses.

Garp’s RPF architecture supports partial array configuration and is dynami-
cally reconfigurable during application execution (i.e., a dynamic RPF). Garp’s
RPF architecture allows only one VIC to be stored on the RPF at a time. How-
ever, up to four different full RPF VIC configurations can be stored in the on-chip
cache [13]. The VICs can then be swapped in and out of the RPF as they are
needed for the application.

The loading and execution of configurations on the reconfigurable array is
always under the control of a program running on the main (MIPS) processor.
When the main processor initiates a computation on the RPF, an iteration
counter in the RPF is set to a predetermined value. The configuration executes
until the iteration counter reaches zero, at which point the RPF stalls. The
MIPS-II instruction set has been extended to provide the necessary support to
the RPF [13].

32 Chapter 2 � Reconfigurable Computing Architectures

Originally, the user was required to write configurations in a textual language
that is similar to an assembler. The user had to explicitly assign data and opera-
tions to rows and columns. This source code was fed through a program called
the configurator to generate a representation for the configuration as a collec-
tion of bits in a text file. The rest of the user’s source code could then be written
in C, where the configuration was referenced using a character array initializer.
This required some further assembly language programming to invoke the Garp
instructions that interfaced with the reconfigurable array. Since then, consid-
erable compiler work has been done on this architecture, and the user is now
able to program the entire application in a high-level language (HLL) [14] (see
Chapter 7).

2.1.2 Coarse-grained
For the purpose of this discussion, we describe coarse-grained architectures as
those that use a bus interconnect and PEs that perform more than just bit-
wise operations, such as ALUs and multipliers. Examples include PipeRench
and RaPiD (which is discussed later in this chapter).

PipeRench
The PipeRench RPF architecture [6], as shown in Figure 2.2, is an ALU-based
system with a specialized reconfiguration strategy (Chapter 4). It is used as a
coprocessor to a host microprocessor for most applications, although applica-
tions such as PGP and JPEG can be run on PipeRench in their entirety [8]. The
architecture was designed in response to concerns that standard FPGAs do not
provide reasonable forward compatibility, compilation time, or sufficient hard-
ware to implement large kernels in a scalable and portable manner [6].

The PipeRench RPF uses pipelined configuration, first described by Goldstein
et al. [6], where the reconfigurable fabric is divided into physical pipeline stages
that can be reconfigured individually. Thus, the resulting RPF architecture is
both partially and dynamically reconfigurable. PipeRench’s compiler is able to
compile the static design into a set of “virtual” stages such that each virtual stage
can be mapped to any physical pipeline stage in the RPF. The complete set of
virtual stages can then be mapped onto the actual number of physical stages
available in the pipeline. Figure 2.3 illustrates how the virtual pipeline stages of
an application can be mapped onto a PipeRench architecture with three physical
pipeline stages.

A pipeline stage can be loaded during each cycle, but all cyclic dependencies
must fit within a single stage. This limits the types of computations the array can
support, because many computations contain cycles with multiple operations.
Furthermore, since configuration of a pipeline stage can occur concurrent to
execution of another pipeline stage, there is no performance degradation due to
reconfiguration.

A row of PEs is used to create a physical stage of the pipeline, also called a
physical stripe, as shown in Figure 2.2. The configuration word, or VIC, used to
configure a physical stripe is also known as a virtual stripe. Before a physical

2.1 Reconfigurable Processing Fabric Architectures 33

Stripe n
Stripe
n 11

Stripe
n 11
Stripe
n 12

PE 0

G
l
o
b
a
l

b
u
s
s
e
s

G
l
o
b
a
l

b
u
s
s
e
s

PE 1 PE N 21

PE N 21PE 0 PE 1

PE N 21PE 0 PE 1

Register file Register file Register file

Register file Register file Register file

Register file Register file Register file

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

· · ·

· · ·

· · ·

Interconnect network

Interconnect network

FIGURE 2.2 � PipeRench architecture: PEs and interconnect. (Source: Adapted from [6].)

stripe is configured with a new virtual stripe, the state of the present virtual stripe,
if any, must be stored outside the fabric so it can be restored when the virtual
stripe is returned to the fabric. The physical stripes are all identical so that any
virtual stripe can be placed onto any physical stripe in the pipeline. The intercon-
nect between adjacent stripes is a full crossbar, which enables the output of any
PE in one stage to be used as the input of any PE in the adjacent stage [6].

The PEs for PipeRench are composed of an ALU and a pass register file. The
pass register file is required as there can be no unregistered data transmitted
over the interconnect network between stripes, creating pipelined interstripe
connections. One register in the pass register file is specifically dedicated to
intrastripe feedback. An 8-bit PE granularity was chosen to optimize the perfor-
mance of a suite of kernels [6].

It has been suggested that reconfigurable fabric is well suited to stream-based
functions (see Chapter 5, Section 5.1.2) and custom instructions [6]. Although

34 Chapter 2 � Reconfigurable Computing Architectures

Stage 0

Stage 1

Stage 2

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Cycle: 1 2 3 4 5 6

(a)

0 0

1

0 3

1

0 0 0

1

1

2

1

2

2

3 3

4 4

0

2

1

2

3 3 3

4 4

2

0

Cycle: 1 2 3 4 5 6

(b)

FIGURE 2.3 � The virtual pipeline stages of an application (a). The light gray blocks represent the
configuration of a pipeline stage; the dark gray blocks represent its execution. The mapping of
virtual pipeline stages to three physical pipeline stages (b). The physical pipeline stages are
labeled each cycle with the virtual pipeline stage being executed. (Source: Adapted from [6].)

the first version of PipeRench was implemented as an attached processor, the
next was designed as a coprocessor so that it would be more tightly coupled
with the host processor [6]. However, the developers of PipeRench argue against
making the RPF a functional unit on the host processor. They state that this
could “restrict the applicability of the reconfigurable unit by disallowing state to
be stored in the fabric and in some cases by disallowing direct access to memory,
essentially eliminating their usefulness for stream-based processing” [6].

PipeRench uses a set of CAD tools to synthesize a stripe based on the para-
meters N, B, and P, where N is the number of PEs in the stripe, B is the width in
bits of each PE, and P is the number of registers in a PE’s pass register file. By
adjusting these parameters, PipeRench’s creators were able to choose a set of
values that provides the best performance according to a set of benchmarks [6].
Their CAD tools are able to achieve an acceptable placement of the stripes on
the architecture, but fail to achieve a reasonable interconnect routing, which
has to be optimized by hand.

The user also has to describe the kernels to be executed on the PipeRench archi-
tecture using the Dataflow Intermediate Language (DIL), a single-assignment
C-like language created for the architecture. DIL is intended for use by pro-
grammers and as an intermediate language for any high-level language compiler

2.2 RPF Integration into Traditional Computing Systems 35

that targets PipeRench architectures [6]. Obviously, applications have to be
recompiled, and probably even redesigned, to run on PipeRench.

2.2 RPF INTEGRATION INTO TRADITIONAL COMPUTING SYSTEMS

Whereas the RPF in a reconfigurable computing device dictates the program-
mable logic resources, a full reconfigurable computing system typically also has
a microprocessor, memory, and possibly other structures. One defining character-
istic of reconfigurable computing chips is the integration, or lack of integration,
of the RPF with a host CPU.

As shown in Figure 2.4, there are multiple ways to integrate an RPF into
a computing system’s memory hierarchy. The different memory components
of the system are drawn as shaded rectangles, where the darker shading indi-
cates a tighter coupling of the memory component to the processor. The types
of RPF integration for these computing systems are illustrated as rounded

CPU

L1 cache

L2 cache

Tightly
coupled RFU

Loosely
coupled RPF

Main memory RPF
coprocessor

Reconfigurable
processing

fabric

Memory
bus

I/O
bus

FIGURE 2.4 � Possible locations for the RPF in the memory hierarchy. (Source: Adapted
from [6].)

36 Chapter 2 � Reconfigurable Computing Architectures

rectangles, where the darker shading indicates a tighter coupling of the RPF
to the processor. Some systems have the RPF as a separate processor [2–7];
however, most applications require a microprocessor somewhere to handle com-
plex control. In fact, some separate reconfigurable computing platforms are
actually defined to include a host processor that interfaces with the RPF [1].
Unfortunately, when the RPF is integrated into the computing system as an inde-
pendent coprocessor, the limited bandwidth between CPU and reconfigurable
logic can be a significant performance bottleneck.

Other systems include an RPF as an extra functional unit coupled with a more
traditional processor core on one chip [8–24]. How tightly the RPF is coupled
with the processor’s control plane varies.

2.2.1 Independent Reconfigurable Coprocessor Architectures
Figure 2.5 illustrates a reconfigurable computing architecture with an indepen-
dent RPF [1–7]. In these systems, the RPF has no direct data transfer links to the
processor. Instead, all data communication takes place through main memory.
The host processor, or a separate configuration controller, loads a configuration
into the RPF and places operands for the VIC into the main memory. The RPF
can then perform the computation and return the results back to main memory.

Since independent coprocessor RPFs are separate from the traditional pro-
cessor, the integration of the RPF into existing computer systems is simplified.
Unfortunately, this also limits the bandwidth and increases the latency of trans-
missions between the RPF and traditional processing systems. For this reason,
independent coprocessor RPFs are well suited only to applications where the
RPF can act independently from the processor. Examples include data-streaming
applications with significant digital signal processing, such as multimedia appli-
cations like image compression and decompression, and encryption.

RaPiD
One example of an RPF coprocessor is the Reconfigurable Pipelined Datapaths [4],
or RaPiD, class of architectures. RaPiD’s RPF can be used as an independent

Host
PC

Reconfigurable
coprocessor

Memory
interface Memory

Configuration
controller
(VICs)

FIGURE 2.5 � A reconfigurable computing system with an independent reconfigurable
coprocessor.

2.2 RPF Integration into Traditional Computing Systems 37

coprocessor or integrated with a traditional computing system as shown in
Figure 2.5. RaPiD is designed for applications that have very repetitive pipelined
computations that are typically represented as nested loops [5]. The underlying
architecture is comparable to a super-scalar processor with numerous PEs and
instruction generation decoupled from external memory but with no cache, no
centralized register file, and no crossbar interconnect, as shown in Figure 2.6.

Memory access is controlled by the stream generator, which uses first-in-first-
out (FIFOs), or streams (Chapter 5, Sections 5.1.2 and 5.2.1), to obtain and trans-
fer data from external memory via the memory interface, as shown in Figure 2.7.
Each stream has an associated address generator, and the individual address pat-
terns are generated statically at compile time [5]. The actual reads and writes

Configurable control plane

Datapath

Instruction
generator

(VICs)

External memory

Memory interface

Stream generator• • • • • •

• • •• • •

FIGURE 2.6 � A block diagram of the RaPiD architecture (Source: Adapted from [5].)

Memory Interface

Repeater
Input

stream
FIFO

Input
stream

FIFO

Output
stream

FIFO

Output
stream

FIFO

Repeater Repeater Repeater

To
datapath

To
datapath

From
datapath

From
datapath

Address
generator

Address
generator

Address
generator

Address
generator· · · · · ·

FIGURE 2.7 � RaPiD’s stream generator. (Source: Adapted from [5].)

38 Chapter 2 � Reconfigurable Computing Architectures

from the FIFOs are triggered by instruction bits at runtime. If the datapath’s
required input data is not available (i.e., the input FIFO is empty) or if the output
data cannot be stored (i.e., the output FIFO is full), then the datapath will stall.
Fast access to memory is therefore important to limit the number of stalls that
occur. Using a fast static RAM (SRAM), combined with techniques, such as inter-
leaving and out-of-order memory accesses, reduces the probability of having to
stall the datapath [5].

The actual architecture of RaPiD’s datapath is determined at fabrication time
and is dictated by the class of applications that will be using the RaPiD RPF.
This is done by varying the PE structure and the data width, and by choosing
between fixed-point or floating-point data for numerical operations. The ability
to change the PE’s structure is fundamental to RaPiD architectures, with the
complexity of the PE ranging from a simple general-purpose register to a multi-
output booth-encoded multiplier with a configurable shifter [5].

The RaPiD datapath consists of numerous PEs, as shown in Figure 2.8. The
creators of RaPiD chose to benchmark an architecture with a rather complex
PE consisting of ALUs, RAMs, general-purpose registers, and a multiplier to
provide reasonable performance [5]. The coarse-grained architecture was chosen
because it theoretically allows simpler programming and better density [5].
Furthermore, the datapath can be dynamically reconfigured (i.e., a dynamic
RPF) during the application’s execution.

Instead of using a crossbar interconnect, the PEs are connected by a more
area-efficient linear-segmented bus structure and bus connectors, as shown in
Figure 2.8. The linear bus structure significantly reduces the control overhead—
from the 95 to 98 percent required by FPGAs to 67 percent [5]. Since

PE PE PE PE PE PE PE PE PE

P
ro

gr
am

m
ab

le
in

te
rc

on
ne

ct

Bus segments

BC BC

BC BC BC BC

Bus connectors

BC BC

· · · · · ·

FIGURE 2.8 � An overview of RaPiD’s datapath. (Source: Adapted from [5].)

2.2 RPF Integration into Traditional Computing Systems 39

the processor performance was benchmarked for a rather complex PE, the
datapath was composed of only 16 PEs [5].

Each operation performed in the datapath is determined by a set of con-
trol bits, and the outputs are a data word plus status bits. These status bits
enable data-dependent control. There are both hard control bits and soft con-
trol bits. As the hard control bits are for static configuration and are field pro-
grammable via SRAM bits, they are time consuming to set. They are normally
initialized at the beginning of an application and include the tristate drivers and
the programmable routing bus connectors, which can also be programmed to
include pipelined delays for the datapath. The soft control bits can be dynam-
ically configured because they are generated efficiently and affect multiplexers
and ALU operations. Approximately 25 percent of the control bits are soft [5].

The instruction generator generates soft control bits in the form of VICs for
the configurable control plane, as shown in Figure 2.9. The RaPiD system is built
around the assumption that there is regularity in the computations. In other
words, most of its processing time is spent within nested loops, as opposed to
initialization, boundary processing, or completion [5], so the soft control bits
are generated by a small programmable controller as a short instruction word
(i.e., a VIC).

The programmable controller is optimized to execute nested loop structures.
For each nested loop, the user’s original code is statically compiled to remove
all conditionals on loop variables and expanded to generate static instructions
for loops [5]. The innermost loop can then often be packed into a single VIC
with a count indicating how many times the VIC should be issued. One VIC
can also be used to control more than one operation in more than one pipeline
stage [5]. Figure 2.10(a) shows a snippet of code that includes conditional state-
ments (if and for). This same functionality is shown in terms of static instruc-
tions in Figure 2.10(b).

As there are often parallel loop nests in applications, the instruction generator
has multiple programmable controllers running in parallel (see Figure 2.9)
[5]. Although this causes synchronization concerns, the appropriate status bits
exist to provide the necessary handshaking. The VICs from each controller are

Configurable control plane

R
e
p
e
a
t

M
e
r
g
e

S
y
n
c

Programmable
controller

Programmable
controller

Programmable
controller

DatapathInstruction generator

Status bit Soft control bit VIC

FIGURE 2.9 � RaPiD’s instruction generator. (Source: Adapted from [5].)

40 Chapter 2 � Reconfigurable Computing Architectures

for (i=0; i<10; i++) Execute 10 times
{ {

for(j=0; j<16; j++)
{

if(j==0) Execute once: // j==0 case
load data; load data;

else if(j < 8) Execute six times: // 0<j<8 case
x = x + y; x = x + y;

else Execute eight times: // 7<j<16 case
z = y * z; z = y * z;

}
} }

(a) (b)

FIGURE 2.10 � Original code (a) and pseudo-code (b) for static instruction implementation of
the original code.

synchronized to ensure proper coordination between the parallel loops and then
merged to generate the configurable control plane for the entire datapath [5].

There are obvious benefits to RaPiD, but it is not easily programmed: The
programmer must use a specialized language and compiler designed specifically
for RaPiD. This allows the designer to specify the application in such a way as to
obtain better hardware utilization [5]. However, this class of architecture is not
well suited to highly irregular computations with complex addressing patterns,
little reuse of data, or an absence of fine-grained parallelism, which do not map
well to RaPiD’s datapath [5].

It is interesting to note that while RaPiD was implemented as a stand-alone
processor, its creators suggest that it would be better to combine RaPiD with
an RISC engine on the same chip so that it would have a larger application
space [5]. The RISC processor could control the overall computation flow, and
RaPiD could speed up the compute-intensive kernels found in the application.
The developers also suggest that better performance could be achieved if RaPiD
were a special functional unit as opposed to a coprocessor, because it would be
more closely bound to the general-purpose processor [5]. These are the types of
architecture we will be discussing in the following section.

2.2.2 Processor + RPF Architectures
As opposed to the independent coprocessor model, other systems more tightly
couple the RPF with the host processor on the same chip; in some cases, the
RPF is loosely coupled with the processor as an independent functional unit.
Such architectures typically allow direct access to the RPF from the processor
as well as independent access to memory, as do the Garp architecture [13] and
the Chameleon system [20] (to be discussed in the following section). Alterna-
tively, we can couple the RPF more tightly with the processor. For example, in
architectures, such as Chimaera [18] (to be discussed later in this chapter), the

2.2 RPF Integration into Traditional Computing Systems 41

Datastream

Embedded
processor
system

PCI
controller

ARC
processor

Memory
controller

Configuration
subsystem

DMA
subsystem

DatastreamReconfigurable processing fabric

Programmable I/O

128-bit RoadRunner bus

PCI bus Memory bus

·
·
·

·
·
·

FIGURE 2.11 � Chameleon’s RCP architecture. (Source: Adapted from a figure obtained off of
Chameleon System’s home page, which is no longer available.)

RPF is incorporated as a reconfigurable functional unit (RFU) (see Instruction
augmentation subsection in Section 5.2.2) within the processor itself.

Loosely coupled RPF and processor architecture
The commercial Reconfigurable Communications Processor (RCP) was created
by Chameleon Systems Inc. [20]. It combined an embedded processor sub-
system with an RPF via a proprietary shared bus architecture, known as the
RoadRunner bus (Figure 2.11). The RPF had direct access to the processor as
well as direct memory access (DMA). The reconfigurable fabric also had a pro-
grammable I/O interface so that users could process off-chip I/O independent of
the rest of the embedded on-chip processing system. This provided more flexi-
bility for the RPF than in typical reconfigurable computing architectures, where
the RPF generally had access only to the processor and memory.

The Chameleon architecture was able to provide improved price/performance
relative to the highest-performing DSPs of its time, but its RCP consumed more
power because of the RPF. After 2002, there was little mention of Chameleon or
its RCP. Conceptually, the product was an interesting idea, but it failed to corner
a product niche during the electronics market downturn.

Tightly coupled RPF and processor
Figure 2.12 illustrates a traditional processor’s datapath architecture with the
RPF integrated as an RFU. Such systems tightly couple the RFU to the central
processing unit’s (CPU) datapath similarly to the technology of traditional CPU
functional units (FUs), such as the ALU, the multiplier, and the FPU. In some
cases, these architectures only provide RFU access to input data from the
register file in the same way as the traditional CPU FUs (Chimaera [18], PRISC

42 Chapter 2 � Reconfigurable Computing Architectures

Register
file

Memory
interface

CPU
FU

CPU
FU

RFU

FIGURE 2.12 � The datapath of the processor + RFU architecture.

RFU

Instruction
fetch

Instruction
decode

Execute
Memory
access

Writeback

FIGURE 2.13 � An example of a pipeline of a processor with an RFU. (Source: Adapted
from [16].)

[11], etc.). Other architectures allow the RFU to access data stored in the local
cache/memory directly (e.g., OneChip [16]). Many of them can have multiple
VICs instantiated in the RFU at once, enabling designers to accelerate multiple
software instructions at the same time.

For reconfigurable computing architectures in which the RFU is tightly cou-
pled with the processing core, the processor pipeline must be updated as shown
in Figure 2.13. VICs in the RFU typically run during the execute stage (and
possibly the memory stage) of the pipeline. Some of these processors are capable
of running VICs in parallel with instructions that use more traditional proces-
sor resources, such as the ALU or FPU, and even support out-of-order execution
(OneChip [16], Chimaera [18]).

Chimaera
The Chimaera architecture [18], shown in Figure 2.14, was developed at North-
western University. Its developers created a C compiler that could create

2.2 RPF Integration into Traditional Computing Systems 43

Instruction
register

Shadow register file

Instruction
decode CAM

and output
muxes

Host
processor Caching/

prefetch control
(partial runtime
reconfiguration)

Result bus

Memory bus

Reconfigurable array

FIGURE 2.14 � Overview of the Chimaera architecture. (Source: Adapted from [18].)

specialized instructions for their RFU, known as RFUOPs (VICs for the purpose
of our discussion) [19]. These custom instructions are created on a per appli-
cation basis and have direct access to the processor’s register file. Furthermore,
commonly used VICs can be cached for easy reloading so that the processor
does not have to stall while the RFU is configured [19].

The RFU is structured as a reconfigurable array (RA) of PEs, where any VIC
occupies an integer number of rows. Influenced by the Triptych FPGA [18],
the Altera Flex 8000 series, and the PRISC architecture [11], the array struc-
ture is FPGA-like to support computationally intensive kernels. Each PE in a
row operates on 1 bit, with each row containing the same number of PEs
as the size of the processor’s memory word. The RFU can be partially con-
figured so that multiple VICs can be cached in it at any given time. When
an instruction is to be written to the RFU and there are no empty rows, the
VIC that is overwritten is chosen such that configurations of the RFU will be
minimized [19].

Another benefit of the Chimaera architecture is that it allows for speculative
execution of VICs. Any VIC that is loaded in the RFU speculatively executes each
cycle. If one of them is actually executed, the resulting value is stored at the
writeback stage; otherwise, it is ignored and discarded. The RFU also supports
multi-input operations, so that any VIC occupying one row will execute in a
single clock cycle and with the appropriate data dependencies. Assuming that

44 Chapter 2 � Reconfigurable Computing Architectures

data dependencies are not an issue, multi-cycle operations can execute without
pipelining stalls [19].

When a VIC is detected at the decode stage of the pipeline, a check is made of
the RFU to determine if it is already loaded. If it is not loaded, a check is made
of the VIC cache. If the VIC instruction is not in either of these locations, it
must be loaded from memory to reconfigure the necessary rows of the RFU.
In that case the microprocessor will stall. This is time consuming because,
although the precise configuration timing requirements are not specified, the
objective is to minimize the number of configurations of the RFU performed from
memory [19].

Chimaera has the benefit of a high-level design language for the user. It also
has the same style interface as that of a normal stand-alone processor, which
means that the architecture is able to provide extra functionality to improve
performance, without complicating the design process. The idea is to treat the
RFU as a cache for instructions as opposed to logic and then to assume that
the majority of the functionality required for the algorithm will be supplied by
the microprocessor [18]. In this way, the RFU can be used to accelerate the
program’s computationally intensive kernels. Integrating the RPF as an RFU
within the processor has increased the bandwidth for communication between
the two [18]. However, because the RFU cannot access memory directly, it is
overly dependent on the host processor to fetch and store operands.

2.3 SUMMARY AND FUTURE WORK

In this chapter, we discussed key characteristics of reconfigurable computing
architectures and their tradeoffs; specifically: (1) how the RPF should be coupled
into the system, and (2) what the nature of the RPF should be. Fine-grained
fabrics allow users to perform bitwise operations without wasting reconfigurable
resources, whereas basic multibit computations can be mapped to fewer coarse-
grained modules and run at a faster clock rate.

The coupling of the RPF with a traditional processor affects both its ability
to do independent computation and the rate at which data can be transferred
from the processor itself. Independent reconfigurable coprocessors are easily
added to a traditional processing system and can operate independently from
the processor. However, this loose coupling increases the latency and decreases
the communication bandwidth between the processor and the RPF. In contrast,
tightly coupling the RPF to the processor facilitates communication and data
transfers, but limits the RFP’s independence. In tightly coupled architectures,
the RPF is often part of the processor’s pipeline, potentially stalling execution
until the VIC is completed. Loosely coupled RPFs try to offer the best of both
worlds: sufficient independence from the main processor to prevent pipeline stalls
combined with reasonable bandwidth for inter-processor/RPF communications.

One important challenge in developing reconfigurable computing architec-
tures is to create CAD tools and programming environments that enable design-
ers to use HLLS. This would allow designers to abstract the low-level hardware

2.3 Summary and Future Work 45

of the RPF and to simplify programming the architecture, while still achieving
speedup over a traditional processor. Another significant challenge is how to eval-
uate reconfigurable computing architectures. There is no equivalent to the Spec
Benchmark [25] set for such evaluation. Furthermore, as these architectures may
have different programming models or limited compiler support, designers are
not easily able to run the same benchmark on multiple architectures for a stan-
dard comparison.

That Chameleon, and many other reconfigurable computing startup compa-
nies in similar market niches, was forced to close its doors during the electronic
market downturn in the early 2000s illustrates an interesting aspect of recon-
figurable computing as a whole. Even though, theoretically, special-purpose
reconfigurable computing chips are a compelling technology, to date they have
failed to achieve commercial success and there have been numerous failures.
Many popular arguments have been used to justify this failure—they are too
power-hungry; an effective high-level programming environment has not been
developed; no one has identified a “killer” application to justify the design cost of
using them—but no definitive answer exists. As it becomes increasingly difficult
to improve the performance of traditional processor architectures, the possibi-
lity that reconfigurable computing architectures may yet find their place in the
world of commercial success increases.

Despite the lack of significant market success to date, reconfigurable com-
puting is still an area of significant ongoing research and commercial interest.
For example, Rapport Inc.’s Kilocore design is a commercial derivative of the
PipeRench architecture. As of 2007, Rapport was offering 256 PE components
organized as 16 stripes, each composed of 16 8-bit PEs, and it has plans to
expand its offerings to components containing thousands of PEs.

References
[1] J. M. Arnold. The Splash 2 software environment. Proceedings of the IEEE Sympo-

sium on Field-Programmable Custom Computing Machines, April 1993.
[2] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, H. Silverman,

S. Ghosh. PRISM-II compiler and architecture. Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines, April 1993.

[3] M. J. Wirthlin, B. L. Hutchings. A dynamic instruction set computer. Proceedings
of the IEEE Symposium on Field-Programmable Custom Computing Machines,
April 1995.

[4] C. Ebeling, D. C. Cronquist, P. Franklin. RaPiD: Reconfigurable Pipelined Datapath.
Proceedings of the Sixth International Workshop on Field-Programmable Logic and
Applications, Springer-Verlag, September 1996.

[5] D. Cronquist, P. Franklin, C. Fisher, M. Figueroa, C. Ebeling. Architecture design of
reconfigurable pipelined datapaths. Proceedings of the 20th Anniversary Conference
on Advanced Research in VLSI, March 1999.

[6] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor, R. Laufer.
PipeRench: A coprocessor for streaming multimedia acceleration. Proceedings of
the 26th International Symposium on Computer Architecture, May 1999.

46 Chapter 2 � Reconfigurable Computing Architectures

[7] H. Schmit. Incremental reconfiguration for pipelined applications. Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines, April 1997.

[8] Y. Chou, P. Pillai, H. Schmit, J. Shen. PipeRench implementation of the instruction
path coprocessor. Proceedings of the 33rd International Symposium on Microarchi-
tecture, December 2000.

[9] M. J. Wirthlin, B. L. Hutchings, K. L. Gilson. The nano processor: A low
resource reconfigurable processor. Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, April 1994.

[10] M. Budiu. Application-specific hardware: Computing without CPUs. Fourth CMU
Symposium on Computer Systems, October 2001.

[11] R. Razdan, M. Smith. A high-performance microarchitecture with hardware-
programmable functional units. Proceedings of the 27th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, November 1994.

[12] B. Kastrup, A. Bink, J. Hoogerbrugge. ConCISe: A compiler-driven CPLD-based
instruction set accelerator. Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, April 1999.

[13] J. Hauser, J. Wawrzynek. Garp: A MIPS processor with a reconfigurable
coprocessor. Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines, April 1997.

[14] T. J. Callahan, J. R. Hauser, J. Wawrzynek. The Garp architecture and C compiler.
Computer, April 2000.

[15] R. D. Wittig, P. Chow. OneChip: An FPGA processor with reconfigurable logic.
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, March 1996.

[16] J. E. Carrillo, E. P. Chow. The effect of reconfigurable units in superscalar proces-
sors. Proceedings of the Ninth ACM International Symposium on Field-Programmable
Gate Arrays, February 2001.

[17] C. R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. A. Arnold,
M. Gokhale. The NAPA adaptive processing architecture. Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing Machines, April 1998.

[18] S. Hauck, T. W. Fry, M. Hosier, J. P. Kao. The Chimaera reconfigurable functional
unit. Proceedings of the IEEE Symposium on Field-Programmable Custom Comput-
ing Machines, April 1997.

[19] Z. A. Ye, A. Moshovos, S. Hauck, P. Banerjee. CHIMAERA: A high-performance
architecture with a tightly coupled reconfigurable functional unit. Proceedings of
the 27th International Symposium on Computer Architecture, June 2000.

[20] D. Wilson. Chameleon takes on FPGAs, ASICs. Electronic Business Asia, EDN
Online Magazine (http://www.edn.com/article/CA50551.html?partner=enews), Octo-
ber 2000.

[21] P. Graham, B. Nelson. Reconfigurable processors for high-performance, embedded
digital signal processing. Proceedings of the Ninth International Workshop on Field-
Programmable Logic and Applications, August 1999.

[22] B. Salefski, L. Caglar. Reconfigurable computing in wireless. Proceedings of the
Design Automation Conference, June 2001.

[23] T. Bijlsma, P. T. Wolkotte, G. J. M. Smit. An optimal architecture for a DDC. Proceed-
ings of the 20th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’06)—12th Reconfigurable Architecture Workshop (RAW 2006), April 2006.

[24] A. A. Chien, J. H. Byun. Safe and protected execution for the Morph/AMRM recon-
figurable processor. Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, April 1999.

[25] Standard Performance Evaluation Corp. Spec Benchmarks (http://www.spec.org).

C H A P T E R 3

RECONFIGURABLE COMPUTING
SYSTEMS

Steven A. Guccione
Cmpware, Inc.

Like most technologies, reconfigurable computing systems are built on a variety
of existing technologies and techniques. It is always difficult to pinpoint the
exact moment a new area of technology comes into existence or even to pin-
point which is the first system in a new class of machines. Popular scientific
history often gives simple accounts of individuals and projects that represent a
turning point for a particular technology, but in reality the story is usually more
complicated. A number of individuals may arrive at similar conclusions, at very
nearly the same time, and the details of their research are nearly always differ-
ent. It is in the investigation of these details that a better understanding of the
technology, and its development, can be reached.

While it is satisfying to say that Thomas Edison invented the lightbulb in
1879, the real story is much more complex and much more interesting. Such
is the case with reconfigurable computing hardware systems, as it is with most
technologies. In the short time that these systems have been in existence, a rel-
atively large number of them, developed by many highly trained and talented
individuals from diverse fields, have evolved very quickly. In approximately a
decade the number of implemented reconfigurable systems went from a small
handful to hundreds.

The large number of exotic high-performance systems designed and built over a
very short time makes this area particularly difficult to document, but there is also
a problem specific to them. Much of the work was done inside various government
agencies, particularly in the United States, and was never published. In these
cases, all that can be relied on is currently available records and publications.

3.1 EARLY SYSTEMS

The generally agreed on criterion for a reconfigurable computing system is
that it be built from reconfigurable computing devices such as field-program-
mable gate arrays (FPGAs) or FPGA-like devices. In general, these devices
must be reprogrammable and permit hardwarelike levels of performance, if
not hardwarelike structures. Moreover, they should permit orders of magnitude
speedup over traditional microprocessors for similar clock speeds, silicon

48 Chapter 3 � Reconfigurable Computing Systems

M

FPGA FPGA FPGA FPGA

FPGA FPGA FPGA FPGA

M

M

M

M

M

M

M

Host
CPU

FIGURE 3.1 � The traditional processor/coprocessor arrangement for reconfigurable computing
hardware.

area, and technology. Most significantly, however, the system must be repro-
grammable and able to perform with a variety of applications. Systems that use
a fixed hardware design, even if they use reconfigurable computing elements,
are viewed more as using this design in place of traditional hardware for cost
savings or convenience. It is in the ability to use reconfigurable devices for more
general-purpose computing that makes them “reconfigurable.”

Reconfigurable systems are likewise distinguished from other cellular multi-
processor systems. Array processors, in particular Single Instruction Multiple
Data Processors (SIMDs), are considered architecturally distinct from reconfig-
urable machines, in spite of many similarities. This distinction arises primar-
ily from the programming techniques. Array processors tend to have either a
shared or dedicated instruction sequencer and take standard instruction-style
programming code. Reconfigurable machines tend to be programmed spatially,
with different physical regions of the device being configured at different times.
This necessarily means that they will be slower to reprogram than cellular mul-
tiprocessor systems but should be more flexible and achieve higher performance
for a given silicon area.

One of the earliest acknowledged reconfigurable computing machines,
although it is frequently referenced under “distributed computing,” is the
Fixed-Plus-Variable (F+V) computer developed by Estrin and his colleagues
at the University of California at Los Angeles in the mid-1960s [17–20]. The
F+V consisted of a standard processor unit that controlled many other “vari-
able” units. It had several limitations, including the need to manually change
wiring as part of the reconfiguration process, but it did offer relatively mature
software tools for its time. Generally because of its use of reconfigurable
computing concepts, the F+V system is acknowledged to be the forerunner of
modern reconfigurable computing architectures.

After the F+V, there was a gap of nearly two decades before more modern
reconfigurable computing systems began to be explored. The rise of the mod-
ern era began in the mid-1980s, when commercially available FPGA devices
from companies such as Xilinx and Altera as well as several smaller companies
became widely available.

3.2 PAM, VCC, and Splash 49

These devices were generally based around small lookup tables (LUTs) and
a programmable interconnection network. The LUTs were typically 8- or 16-bit
memories configured to implement arbitrary logic functions, taking their inputs
from and sending their outputs to a programmable interconnection network.
While this network could not provide arbitrary interconnections, software tools
were usually able to produce operational digital circuits for a wide range of
popular designs.

Even by 1990, however, the largest FPGA devices supported designs on the
order of 10K logic gates. This is a very small number and barely suitable for
a parallel multiplier circuit. Even worse, the FPGAs were in competition with
modern microprocessors, which were doubling in performance every 18 months
and providing a simpler programming model, more mature tools, and a larger
base of experienced users. For these reasons, the early work in reconfigurable
systems necessarily concentrated on two areas, often simultaneously:

� The systems would have to use relatively large numbers of FPGAs,
sometimes hundreds, to achieve sufficient computing power to be of
use when compared to microprocessor-based systems.

� They would attack problems that were naturally ill suited to modern
microprocessors, including bit-oriented algorithms that did not map
efficiently to word-oriented microprocessors and highly structured and
repetitive algorithms such as graphics that mapped well to the
hardwarelike structures of reconfigurable systems.

The 1990s also marked the beginning of an explosive growth in circuit density
following Moore’s Law, with a doubling in FPGA density approximately every
18 months. As the density increased, the typical application went from simple
interface or “glue” logic circuits to more complex designs, eventually support-
ing large custom coprocessors, typically for digital signal processing (DSP) or
other data-intensive applications. With large, high-quality, commercially avail-
able FPGA devices now in use, and with the ongoing rapid increase in den-
sity, FPGA-based reconfigurable computing machines quickly became widely
available.

3.2 PAM, VCC, AND SPLASH

In the late 1980s, PAM, VCC, and Splash—three significant general-purpose sys-
tems using multiple FPGAs—were designed and built. They were similar in that
they used multiple FPGAs, communicated to a host computer across a standard
system bus, and were aimed squarely at reconfigurable computing.

3.2.1 PAM
The Programmable Active Memories (PAM) project at Digital Equipment Cor-
poration (DEC) initially used four Xilinx XC3000-series FPGAs as shown in
Figure 3.2 [8]. The original Perle-0 board contained 25 Xilinx XC3090 devices

50 Chapter 3 � Reconfigurable Computing Systems

64 K
3
64

RAM

64 K
3
64

RAM

3C3090

3C3090

64 K
3
64

RAM

3C3090

64 K
3
64

RAM

3C3090 3C3090 3C3090 3C3090 3C3090

3C3090

3C3090

3C3090 3C3090 3C3090 3C3090

3C3090 3C3090 3C3090 3C3090

3C30903C3090 3C3090 3C3090

3C3090 3C3090 3C3090 3C3090 3C3090

FIGURE 3.2 � Digital Equipment Corporation’s PAM Perle-0.

in a 5×5 array, attached to which were four independent banks of fast static
RAM (SRAM), arranged as 64K × 64 bits, which were controlled by an addi-
tional two XC3090 FPGA devices. This wide and fast memory provided the FPGA
array with high bandwidth. The Perle-0 was quickly upgraded to the more recent
XC4000 series. As the size of the available XC4000-series devices grew, the PAM
family used a smaller array of FPGA devices, eventually settling on 2×2.

Based at the DEC research lab, the PAM project ran for over a decade and
continued in spite of the acquisition of DEC by Compaq and then the later
acquisition of Compaq by Hewlett-Packard. PAM, in its various versions, plugged
into the standard PCI bus in a PC or workstation and was marked by a relatively
large number of interesting applications as well as some groundbreaking work
in software tools. It was made available commercially and became a popular
research platform.

3.2.2 Virtual Computer
The Virtual Computer from the Virtual Computer Corporation (VCC) was perhaps
the first commercially available reconfigurable computing platform. Its original
version was an array of Xilinx XC4010 devices and I-Cube programmable inter-
connect devices in a checkerboard pattern, with the I-Cube devices essentially
serving as a crossbar switch as shown in Figure 3.3 [11]. The topology of the
interconnection for these large FPGA arrays was an important issue at this time:
With a logic density of approximately 10K gates and input/output (I/O) pins on
the order of 200, a major concern was communication across FPGAs. The I-Cube

3.2 PAM, VCC, and Splash 51

SRAM

SRAM

I

F F F F F F

F

F F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F F F F F

I

I

I

I

I

I

I

I I F

F F

F

F

F

F

F F

F F

F F

F F

F F

F F

I

I

I

I

I

I

I

I

I

I

I

I

I

I

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

FIGURE 3.3 � VCC’s Virtual Computer.

devices were perceived as providing more flexibility, although each switch had
to be programmed, which increased the design complexity.

The first Virtual Computer used an 8×8 array of alternating FPGA and I-Cube
devices. The exception was on the left and right sides of the array, which exclu-
sively used FPGAs, which consumed 40 Xilinx XC4010 FPGAs and 24 I-Cubes.
Along the left and right sides were 16 banks of independent 16×8K dual-ported
SRAM, and attached to the top row were 4 more banks of standard single-ported
256K × 32 bits SRAM controlled by an additional 12 Xilinx XC4010 FPGAs.
While this system was large and relatively expensive, and had limited software
support, VCC went on to offer several families of reconfigurable systems over
the next decade and a half.

3.2.3 Splash
The Splash system, from the Supercomputer Research Center (SRC) at the Insti-
tute for Defense Analysis, was perhaps the largest and most heavily used of these
early systems [22,23,27]. Splash was a linear array consisting of XC3000-series
Xilinx devices interfacing to a host system via a PCI bus. Multiple boards could
be hosted in a single system, and multiple systems could be connected together.
Although the Splash system was primarily built and used by the Department of

52 Chapter 3 � Reconfigurable Computing Systems

F

F

F F F F F F F

M M M M M M M M

M

M

M M M M M M M

F F F F F F F F

Crossbar

FIGURE 3.4 � SRC’s Splash 2.

Defense, a large amount of information on it was made available. A Splash 2
system quickly followed and was made commercially available from Annapolis
Microsystems [30].

The Splash 2 board consisted of two rows of eight Xilinx XC4010 devices,
each with a small local memory attached as shown in Figure 3.4. These 16
FPGA/memory pairs were connected to a crossbar switch, with another dedi-
cated FPGA/memory pair used as a controller for the rest of the system. Much
of the work using Splash concentrated on defense applications such as cryptog-
raphy and pattern matching, but the associated tools effort was also notable,
particularly some of the earliest high-level language (HLL) to hardware descrip-
tion language (HDL) translation software targeting reconfigurable machines [4].
Specifically, the data parallel C compiler and its debug tools and libraries pro-
vided reconfigurable systems with a new level of software support.

PAM, VCC, and Splash represent the early large-scale reconfigurable computing
systems that emerged in the late 1980s. They each had a relatively long lifetime
and were upgraded with new FPGAs as denser versions became available. Also of
interest is the origin of each system. One was primarily a military effort (Splash),
another emerged from a corporate research lab (PAM), and the third was from
a small commercial company (Virtual Computer). It was this sort of widespread
appeal that was to characterize the rapid expansion of reconfigurable computing
systems during the 1990s.

3.3 SMALL-SCALE RECONFIGURABLE SYSTEMS

PAM, VCC, and Splash were large and relatively expensive machines. Because a
single high-density FPGA device could cost several thousand dollars, their circuit
boards were perhaps some of the most expensive built at that time. Around
1990, a cost of approximately $1 per reconfigurable logic gate in a reconfigurable

3.3 Small-scale Reconfigurable Systems 53

system was not unusual. Of course, this cost dropped rapidly as FPGAs of higher
densities and lower prices became available.

Because of their cost, the use of FPGAs was somewhat limited, and none of
these systems achieved widespread success as consumer products. While work
on them was ongoing, smaller-scale FPGAs were beginning to appear that would
have a major impact on the direction of the field, especially because their rapidly
increasing density meant that the large multichip systems of yesterday would
very soon fit within a single device.

3.3.1 PRISM
One of the smaller-scale experiments with reconfigurable computing was PRISM,
developed at Brown University [5]. This was an unusual project in that it used
a single small FPGA as a coprocessor in a larger distributed system. This dis-
tributed processor/coprocessor arrangement was unique for its time and would
reappear many years later in more mainstream reconfigurable supercomputers.
It permitted small but often complex calculations to be offloaded from the central
processing unit (CPU) to the reconfigurable coprocessor. The circuits imple-
mented in the coprocessor may not have been large, but the tighter coupling to
the processor gave this architecture an advantage in places where larger and more
expensive arrays would not have been appropriate.

Also of note are PRISM’s software development tools. Its compiler technol-
ogy used was advanced for its era and was one of the earlier experiments in
high-level language programming of reconfigurable systems. In particular, it
addressed a more fine-grained form of coprocessing where the host CPU and
the reconfigurable coprocessor shared the workload. Larger systems tended to
have vastly more powerful reconfigurable units and often used the host only for
simple control, input/output, and display. The workload was seldom shared with
the host CPU in any meaningful way in these larger systems.

3.3.2 CAL and XC6200
Perhaps the most interesting project of this era came from Algotronix, a small
Scottish company with connections to the University of Edinburgh [28], which
created its own FPGA exclusively targeted at reconfigurable computing [1]. The
Configurable Array Logic (CAL) featured very simple logic cells compared to other
commercial FPGAs. What was unique about CAL was that each cell could be
individually addressed and reconfigured dynamically—something that no other
FPGA device at the time could manage. CAL also featured a fairly standard bus
interface that permitted it to be easily used with a microprocessor in a coproces-
sor arrangement. Algotronix also offered some fairly traditional graphical tools
to program CAL, as well as a small board containing multiple CAL devices.

While CAL was unique and influential, it was not until the acquisition of
Algotronix by Xilinx in the early 1990s that its ideas would become more wide-
spread. Xilinx began development of a second-generation CAL device it called
the XC6200 [12]. Many of its features were the same as those of the earlier CAL

54 Chapter 3 � Reconfigurable Computing Systems

devices, but the backing of Xilinx gave the XC6200 a high level of acceptance, at
least in the research community.

Perhaps the most groundbreaking aspect of CAL, and later the XC6200
family, was largely nontechnical. Because these devices supported fine-grained
and dynamic reconfiguration, they required that the configuration bitstream be
openly documented. Thus, all of the internal details of the logic circuitry and
the configuration process were fully documented and made publicly available.
Unlike other programmable hardware, the internal programming codes for most
FPGAs have never been published, largely for historical and practical reasons.

3.3.3 Cloning
Early in the history of FPGAs, there was some concern that lower-cost “cloned”
FPGA devices could be made by third parties. For instance, a company could
produce a device that was functionally identical to a Xilinx XC4000 and sell
it to Xilinx customers. This was common practice for older and smaller sili-
con devices and was sometimes encouraged by manufacturers. However, the
large investment FPGA vendors had in software tools and silicon intellectual
property made them resistant to releasing any more information than necessary
about their silicon architectures. Also, as long as the high-level design tools were
available for a reasonable price and worked well, most users did not have any
particular need to examine an FPGA device’s internal workings.

Today it is unlikely that a device as complex as an FPGA could be “cloned.”
Even if the technical challenges could be overcome, legal barriers to using such
intellectual property probably could not be successfully challenged.

Another concern of some customers was that knowledge of the internal work-
ings of FPGA devices could permit their designs to be compromised. While
most people familiar with the issues tended to dismiss the idea of reverse-
engineering, especially as FPGAs have increased in size, it was still a concern to
some customers.

For these reasons, FPGA bitstreams have traditionally been, and still remain,
a tightly held trade secret. The XC6200 broke ranks by publicizing its con-
figuration data and permitting a new level of experimentation with tools and
applications that could make use of these powerful new modes of operation.
Commercial success for the XC6200 would be elusive in the fiercely competitive
and rapidly changing FPGA market of the 1990s, but it remained a favorite of
researchers even long after its cancellation by Xilinx.

3.4 CIRCUIT EMULATION

One of the early large-scale uses of reconfigurable logic was for circuit emula-
tion. Because FPGAs can, in theory, implement any arbitrary digital logic circuit,
some people realized that they could be used as a form of simulation accelera-
tor. At the time, digital circuit simulation had become a bottleneck in the design
process. As integrated circuit designs became larger and more complex, the

3.4 Circuit Emulation 55

time necessary to simulate them also grew. Without accurate simulation, design
errors inevitably crept into the final design, often requiring another expensive
and time-consuming redesign cycle. In spite of the high cost of FPGA devices,
the ability to quickly and accurately evaluate the function of large and complex
digital circuits became very valuable. Also, for chip designs that included pro-
grammable processors (or that were the processors themselves), an FPGA-based
prototype provided a development platform for testing the software that would
eventually run on the production device.

Interestingly, the larger and more complex the circuit, the more difficult and
time consuming simulation became and the more valuable FPGA-based emu-
lation would be to designers. For this reason, some of the largest and most
expensive FPGA-based machines have traditionally been digital circuit emu-
lators. Some purists may point out that such machines were highly applica-
tion specific and did not necessarily constitute reconfigurable computing. While
these machines did often simulate only a single design in their lifetimes, they
were usually reconfigured as much as several times per day to perform different
functions. Also, in some cases users would go on to realize that the emulation
platforms could be employed for more general-purpose computing.

Emulation using reconfigurable logic quickly became popular, with very large-
scale systems becoming commercially available in rapid succession. PiE and
QuickTurn in the United States announced their machines, as did the smaller
InCA in Europe. The machines were very similar, all attempting to put as many
high-density FPGAs as possible into a single system. Because they were highly
scalable, and their densities and prices were changing rapidly, it is difficult to
gauge what a typical large FPGA emulation system would be. However, a system
on the order of 1 million programmable logic gates built from devices with
approximately a 10K-gate capacity would be representative of a large, but early
FPGA emulation. While large and expensive, these systems were very valuable
to integrated circuit designers, who knew the high cost of designs with bugs.
One place in particular where they had a large impact was in the design of
microprocessors.

3.4.1 AMD/Intel
Because microprocessors were very complex and had strict deadlines to meet,
emulation became very important at places such as Advanced Micro Devices
(AMD) and Intel. And because the new microprocessor parts often had to be
compatible with older models, emulation was a very good way to guarantee
that systems would be compatible across generations. One event in the 1990s
would help further drive emulator popularity. AMD and Intel began a decades-
long competition to produce the latest high-performance device compatible with
a x86 instruction set for the desktop PC market.

Initially, AMD was in the “follower” position and was attempting to create
functionally identical versions of Intel devices. This was no small challenge, and
with new products being released almost yearly, the value to AMD of getting a
functionally correct Intel work-alike device as soon as possible was very high.

56 Chapter 3 � Reconfigurable Computing Systems

Emulators played a very large role in verifying the functional correctness of the
AMD designs against the Intel device. While the emulated designs would run at
perhaps a few hundred kilohertz as compared to the tens of megahertz of the
final silicon devices, being able to run test vectors at this rate, and even eventu-
ally booting entire operating systems, was crucial in proving the compatibility
of these microprocessor designs.

Emulation is still widely used in digital design, but the increasing size and
decreasing cost of FPGA devices has led to a smaller market for very large emu-
lation machines such as the ones offered by QuickTurn and PiE. In fact, Quick-
Turn and PiE merged in 1993 after a short legal battle. The merged company
was acquired in 1998 by Cadence, a CAD software vendor.

3.4.2 Virtual Wires
Although emulation was largely a commercial endeavor, one research project in
this area warrants special mention—the Virtual Wires Project (see Chapter 30,
Logic Emulation on Multi-FPGA Systems) at M.I.T., which produced an emu-
lator that helped overcome one of the most serious limitations of emulators
of the time [6]. Whereas the logic density of FPGAs grew rapidly, chip-to-chip
interconnect soon became the limiting factor in large, multi-FPGA designs such
as emulation. In fact, many emulated designs used only a fraction of the logic
in the FPGAs while consuming all of the input/output resources. Then along
came Virtual Wires with a pin multiplexing scheme to share I/O pins on FPGA
devices transparently, permitting their higher utilization. This technology would
be licensed to another logic emulation company, Ikos, which would eventually
be bought by another of the large CAD software vendors, Mentor Graphics.

Emulation had perhaps two major impacts on reconfigurable computing. First,
it was an early large-scale user of reconfigurable logic that was commercially
successful. This helped drive similar work in the field. Perhaps just as important,
many of the researchers involved in the emulation work saw the value of more
general-purpose computing using reconfigurable logic and would go on to lead
advancements in other areas of reconfigurable systems.

3.5 ACCELERATING TECHNOLOGY

After the success of digital circuit emulators and the research results of the early
systems, reconfigurable computing was poised to expand. Three factors helped
drive this expansion. First, the ever-increasing density of FPGA devices was mak-
ing larger and larger amounts of reconfigurable logic available at an increasingly
lower price. In just a few short years, the million-gate systems that took several
large boards could be built with a single device. This in itself led to widespread
experimentation with reconfigurable computing as dozens of research projects
at universities and research labs across the globe sprang up.

The second factor is one that has become more obvious in retrospect. By the
mid-1990s the decades-long increase in microprocessor computing power was

3.5 Accelerating Technology 57

beginning to ebb. Late in the decade, it was clear that manufacturing technology
constraints, power consumption issues, and architectural limitations such as
memory performance were bringing an end to the long era of microprocessor
dominance. In the past, new solutions to high-performance computing had had
to contend with the yearly appearance of a new microprocessor with double
the performance of the previous generation and a consumer-friendly price. This
made it difficult for custom high-performance systems to be competitive. With
the end of the steep growth in microprocessor performance in sight, however,
other solutions to high performance were beginning to look more attractive.
Reconfigurable computing technology happened to be emerging just at this crit-
ical juncture and would be considered by many as a top contender for the future
of high-performance computing.

The third factor was the Department of Defense’s new funding program,
named Adaptive Computing Systems (ACS), which invested more than
$100 million in reconfigurable computing research during the mid- to late 1990s.
It is always difficult to judge the effect of such a program, but it is clear
that ACS not only led to an increased level of research in this field but also
provided a useful forum for researchers, both academically and commercially.
While the program funded exclusively U.S. researchers, it also appears to have
spurred reconfigurable computing research in other places, particularly the
United Kingdom and Japan [31,32].

The era of expansion in reconfigurable computing technology was marked
by a rapid growth in the number of systems being constructed. An accurate
count of projects in this area is difficult, but certainly dozens and perhaps hun-
dreds of reconfigurable systems were constructed at this time [25]. However,
the increased density of FPGA devices led to a shift away from large, expensive
systems like those of the first generation and toward smaller systems, often con-
taining a single FPGA device on a standard board to be plugged into a personal
computer or workstation.

The new systems tended to be primarily for research and were more often
than not hobbled by two problems. First, the tools to program a reconfigurable
computing platform were not standardized and often amounted to two com-
pletely decoupled design flows. Hardware design tools provided by the FPGA
vendor were used to construct a circuit in the FPGA coprocessor, while stan-
dard software development tools were used to program the host PC or worksta-
tion. This hardware/software codesign style was inefficient and inflexible, and
required highly skilled engineers. For those reasons, although there were a few
notable software and tools projects at this time, they were more the exception
than the rule. None achieved widespread popularity.

3.5.1 Teramac
Among the projects to come out of this era, Teramac [3, 14], a product of the
Hewlett-Packard research laboratories, bears special mention, for three reasons.
First, it went against the trend by creating a large multi-FPGA machine. Second,
it straddled different markets by being aimed at both circuit emulation and

58 Chapter 3 � Reconfigurable Computing Systems

reconfigurable computing. Lastly, it was constructed of custom-integrated circuits
instead of commercially available FPGA devices.

Teramac was originally designed to perform emulation for a large micropro-
cessor design that was being developed jointly by Hewlett-Packard and Intel.
It was to be the first 64-bit Intel processor and at the time went by the name
“Merced.” The joint Intel/HP project was announced in 1994 and was expected
to produce its first silicon device by 1999.

All of this was taking place just as large circuit emulators from vendors such
as QuickTurn were emerging as the new tools for large microprocessor devel-
opment. The HP/Intel venture decided to also produce its own emulator, which
would not use commercial FPGAs but rather an HP custom-designed reconfig-
urable logic device [2]. This was not as unusual an idea as it may seem. Intel
and HP certainly had the resources to produce such a machine, and the current
FPGA-based offerings were far from perfect.

The three biggest problems associated with emulators at this time were cost,
low circuit density, and tools. In fact, the tools problem was perhaps the most
severe of the three. Large designs needed massive computing resources on their
own to be converted into configuration bitstreams for the many FPGA devices. If
we assume that the emulator hardware consisted of hundreds of FPGA devices,
each taking several hours of time on a standard personal computer or worksta-
tion to produce a configuration bitstream, it is clear that a large computational
resource was required just to produce the data used by the emulator.

This part of design and test was often the bottleneck, and there appeared to
be little that could be done to accelerate the process. Additionally, commercial
FPGA devices were aimed at a more general-purpose logic design market and
were not explicitly aimed at emulation. A special-purpose device more tailored to
the needs of circuit emulation could provide the higher density and performance
required by emulation users.

Teramac was announced in 1995 and had some unique features. First, it suc-
cessfully overcame many of the limitations of the commercial FPGA devices of
that era. Its custom FPGA (called Plasma) focused on fast compilation times via
very flexible crossbar-based interconnects. This was in contrast to commercial
FPGA’s focus on logic density and performance, and it meant that the placement
and routing of a design for a single Plasma device took seconds, not minutes
to hours. Perhaps more interesting, Plasma made good use of defect tolerance.
Boards and devices that would otherwise have been thrown away could be used
in the Teramac; an analysis phase would test the system to log defects and permit
the faulty portions of the system to be bypassed. While regular array archi-
tectures such as FPGAs lend themselves naturally to such defect and fault tol-
erance, it had not traditionally been used in commercial reconfigurable logic
devices.

In addition to its emulation duties, Teramac was used for applications such as
image processing, bioinformatics, search, and CAD, making it a true reconfig-
urable computing platform. However, while Teramac was successful, the chip
it was built to emulate, the IA-64 family, was somewhat less so. The IA-64
devices were late to market, but they did eventually ship and found their way

3.6 Reconfigurable Supercomputing 59

FIGURE 3.5 � A Hewlett-Packard Laboratories Teramac board.

into commercial products—just not enough to justify the massive investment
by HP and Intel, which would not jointly produce other architectures. Thus,
Teramac became an early casualty of the HP/Intel microprocessor design part-
nership. Figure 3.5 shows a picture of one of the boards from a Teramac
system.

3.6 RECONFIGURABLE SUPERCOMPUTING

While the number of small reconfigurable coprocessing boards would continue
to proliferate as commercial FPGA devices became denser and cheaper, other
new hardware architectures were produced to address the needs of large-scale
supercomputer users. Unlike the earlier generation of boards and systems that
sought to put as much reconfigurable logic as possible into a single unified sys-
tem, these machines took a different approach. In general, they were traditional
multiprocessor systems, but each processing node in them consisted of a very
powerful commercial desktop microprocessor combined with a large commer-
cial FPGA device. Another factor that made these systems unique is that they
were all offered by mainstream commercial vendors. By 2005 the three largest

60 Chapter 3 � Reconfigurable Computing Systems

makers of traditional supercomputer systems—Cray Research, SRC, and Silicon
Graphics—were all producing systems of this type.

3.6.1 Cray, SRC, and Silicon Graphics
The first reconfigurable supercomputing machine from Cray, the XD1, is based
on a chassis of 12 processing nodes, with each node consisting of an AMD
Opteron processor. Up to 6 reconfigurable computing processing nodes, based
on the Xilinx Virtex-4 devices, can also be configured in each chassis, and up to
12 chassis can be combined in a single cabinet, with multiple cabinets making
larger systems. Hundreds of processing nodes can be easily configured with this
approach.

SRC, a company with historic connections to Cray, takes a more aggressive
approach to reconfigurable computing [34]. Both of their multiprocessor sys-
tems feature traditional processor and reconfigurable processing units that share
a common buslike structure and may be mixed in various configurations [21].
Like the Cray system, the SRC machines also use large Xilinx Virtex-series
FPGAs and x86-family desktop processors. SRC also offers smaller personal
workstation systems for development.

Finally, Silicon Graphics offers its Reconfigurable Application-Specific Pro-
cessor (RASP) family of systems [36], which also use high-density Xilinx Virtex
FPGAs as its reconfigurable computing elements, but in dual-device configu-
rations on a “blade”-style module. These are very small boards that can be
plugged into large racks, often with the system still operating. They interface
to the more traditional Silicon Graphics workstation and multiprocessor sys-
tems, which also use high-performance desktop microprocessors but are based
on the MIPS architecture.

The Cray, SRC, and Silicon Graphics machines point to a clear direction for
large-scale reconfigurable computing systems. They combine a more distributed
array of FPGA elements with an emphasis on floating-point arithmetic. As FPGA
densities continue to increase, the ability to perform large floating-point cal-
culations, even multiple floating-point calculations, in a single device becomes
significant. Also, as the performance of commodity microprocessors remains
plateaued, it is likely that acceleration techniques such as those used in these
reconfigurable machines will continue to be used.

3.6.2 The CMX-2X
A discussion of distributed, floating-point FPGA-based supercomputing would
not be complete without a mention of the CM-2X [13]. This machine predates
the current crop of reconfigurable supercomputers by over a decade and consists
of a Connection Machine 2 from Thinking Machines supplemented with FPGA
coprocessors instead of the standard floating-point devices typically used. The
CM-2X was a defense-related project, and little information is available on it.
However, along with the PRISM system, it is clearly the forerunner of this family
of distributed multiprocessor reconfigurable supercomputers.

3.8 Other System Issues 61

3.7 NON-FPGA RESEARCH

Although the vast majority of reconfigurable computing systems were based
on commercially available FPGA devices, there are some notable exceptions.
A small number of projects designed and built custom-reconfigurable silicon
devices as the basis of their designs [7, 15, 16, 24, 26, 33, 35]. The general trend
was to replace the smaller-grained LUTs in the FPGA architecture with coarser-
grained structures more amenable to computing. Typically this meant arith-
metic logic units (ALUs) that mapped more closely to traditional programming
languages.

Such a coarser-grained approach raises the issue of categorizing non-FPGA
devices. Large numbers of ALU-like structures quickly begin to resemble multi-
processors or very long instruction word (VLIW) machines more than they do
FPGAs. The way routing is performed may further differentiate non-FPGA from
FPGA devices. In general, non-FPGAs are computation, not circuit, oriented.
They can easily produce the larger and more complex circuits used by typical
arithmetic-based computations, but may not be able to efficiently implement
arbitrary digital logic functions.

These systems may have broken new and interesting ground, but the prob-
lem with them may ultimately be a practical one. Because commercial FPGAs
are very popular, they tend to use the latest silicon processes and are very effi-
ciently designed. The software support for such devices is also decidedly non-
trivial. To produce a custom reconfigurable computing device that can compete
with both the dense, efficient circuitry and the large body of available soft-
ware tools of modern FPGAs is a daunting prospect. Given these barriers, no
serious contenders to commercial FPGAs as the basis for reconfigurable com-
puting machines have arisen. While the ideas behind these novel architectures
are sound and the advantages tangible, it has proved difficult to offer them as a
viable alternative to FPGA-based reconfigurable systems.

3.8 OTHER SYSTEM ISSUES

In spite of nearly two decades of intensive research and commercial activity, and
the potential to provide orders of magnitude performance, reconfigurable logic-
based computing systems have not yet begun to displace conventional systems
in any significant way. There are perhaps many factors in this lack of acceptance,
but technical details at the hardware level certainly appear to be one of the most
serious.

One unavoidable architectural problem involves the necessary use of reconfig-
urable logic in a processor/coprocessor arrangement, which ties an inherently
serial host system to the high-performance and highly parallel reconfigurable
processing unit. This connection is necessarily made across a system bus of
some sort, which is guaranteed to serialize access to the coprocessor. Thus, the
reconfigurable coprocessor can only be “fed” data at a relatively low and fixed

62 Chapter 3 � Reconfigurable Computing Systems

rate. Such a drawback resembles the “von Neumann bottleneck” in conventional
uniprocessor systems, where access to memory over a similar bus restricts
performance. In the case of reconfigurable systems, the bus interface is the
same but the processor is connected to the reconfigurable unit instead of to
a memory unit.

By a similar analogy, Amdahl’s Law states that an algorithm’s parallel perfor-
mance is eventually dominated by its serial portions. If, for instance, an algo-
rithm is 90 percent parallelizable, the limit on speedup is 10. This implies that
even if the parallel portion of the algorithm can be executed in zero time, the
serial portion will still take the same fixed amount of time to execute. Similarly,
no matter how much work can be offloaded to the reconfigurable coprocessors,
the portions that cannot will tend to dominate the computation time.

In this sense, the same problems that limit the ability to parallelize
algorithms also limit the ability to use reconfigurable computing. While there are
other issues that limit acceptance of reconfigurable systems, including the lack
of mature software development tools and competition from other, more con-
ventional architectures, the basic inability to exploit the parallelism in general-
purpose reconfigurable computing will always be a serious concern.

The conventional desktop or server approaches to reconfigurable systems
have their difficulties, but reconfigurable computing may still find an agreeable
environment in embedded systems, which tend to have streaming data inputs
and outputs and may not be at the mercy of the bandwidth of existing system
buses. In addition, there may be other attractive features of reconfigurable logic
in such embedded systems, including lower overall power consumption and the
ability to dynamically adapt to external conditions.

3.9 THE FUTURE OF RECONFIGURABLE SYSTEMS

There appear to be some clear trends in the relatively brief, but active,
history of reconfigurable computing. Commercial FPGA devices have contin-
ued to be dominant in such systems, but FPGA architectures are also evolving,
beginning to incorporate coarser-grained resources. Block memory units and
multiplier units have become standard, and even multiple microprocessor cores
have found their way onto FPGA devices. Morover, this trend has been mir-
rored in the coarser-grained research efforts in more recent reconfigurable logic
devices. Clearly there is a trend toward coarser-grained elements, as well as a
heterogeneous variety of elements.

Perhaps in a related way, large-scale high-performance computing, or super-
computing, has clearly embraced reconfigurable logic. Reconfigurable comput-
ing appears to be the path to the higher levels of performance desired by
these architectures, particularly as traditional microprocessor architectures have
reached a performance plateau. Still, while the manufacturers of supercomput-
ing equipment have clearly embraced reconfigurable computing, it remains to
be seen if end users will do so as well.

3.9 The Future of Reconfigurable Systems 63

References
[1] Algotronix, Ltd. CAL1024 Datasheet, 1990.
[2] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider. Plasma: An FPGA for

million gate systems. Proceedings of the ACM/SIGDA Fourth International Sympo-
sium on Field-Programmable Gate Arrays, February 1996.

[3] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider. Teramac-configurable
custom computing. IEEE Symposium on FPGAs for Custom Computing Machines,
April 1995.

[4] J. M. Arnold. The Splash 2 software environment. Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines, April 1993.

[5] P. M. Athanas, H. F. Silverman. Processor reconfiguration through instruction-set
metamorphosis. IEEE Computer 26(3), March 1993.

[6] J. A. Babb, R. Tessier, A. Agarwal. Virtual wires: Overcoming pin limitations in
FPGA-based logic emulators. Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines, April 1993.

[7] V. Baumgarten, F. May, A. Nuckel, M. Vorbach, M. Weinhardt. PACT XPP—A self-
reconfigurable data processing architecture. First International Conference on Engi-
neering of Reconfigurable Systems and Algorithms (ERSA), Las Vegas, June 25–28, 2001.

[8] P. Bertin, D. Roncin, J. Vuillemin. Introduction to programmable active memories.
Technical Report 3, DEC Paris Research Laboratory, 1989.

[9] D. H. Brown Assoc. Cray XD1 brings high-bandwidth supercomputing to
the mid-market (http://www.cray.com/downloads/dhbrown crayxd1 oct2004.pdf),
October 2004.

[10] D. A. Buell, K. L. Pocek, eds. Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines, IEEE Computer Society Press, 1993.

[11] S. Casselman. Virtual computing and the virtual computer. IEEE Workshop on
FPGAs for Custom Computing Machines, April 1993.

[12] S. Churcher, T. Kean, B. Wilkie. XC6200 FASTMAPTM processor interface. Proceed-
ings of the Fifth International Workshop on Field-Programmable Logic and Applica-
tions, FPL 1995, August/September 1995.

[13] S. A. Cuccaro, C. F. Reese. The CM-2X: A hybrid CM-2/Xilinx prototype. IEEE
Workshop of FPGAs for Custom Computing, April 1993.

[14] W. B. Culbertson, R. Amerson, R. J. Carter, P. J. Kuekes, G. Snider. Teramac con-
figurable custom computer. Field-Programmable Gate Arrays (FPGAs) for Fast Board
Development and Reconfigurable Computing, Proceedings of International Society of
Optical Engineering, October 1995.

[15] C. Ebeling, D. C. Cronquist, P. Franklin. RaPiD—Reconfigurable pipelined
datapath. Field-Programmable Logic: Smart Applications, New Paradigms and Com-
pilers, R. W. Hartenstein, M. Glesner, eds., Springer-Verlag, September 1996.

[16] C. Ebeling, D. C. Cronquist, P. Franklin, J. Secosky, S. G. Berg. Mapping applica-
tions to the rapid configurable architecture. IEEE Symposium on FPGAs for Custom
Computing Machines, April 1997.

[17] G. Estrin. Organization of computer systems—The fixed plus variable structure
computer. Proceedings of the Western Joint Computer Conference, May 1960.

[18] G. Estrin, B. Bussell, R. Turn, J. Bibb. Parallel processing in a restructurable com-
puter system. IEEE Transactions on Electronic Computers 12(5), December 1963.

[19] G. Estrin, R. Turn. Automatic assignment of computations in a variable struc-
ture computer system. IEEE Transactions on Electronic Computers 12(5), December
1963.

64 Chapter 3 � Reconfigurable Computing Systems

[20] G. Estrin, C. R. Viswanathan. Organization of a “fixed-plus-variable” structure
computer for eigenvalues and eigenvectors of real symmetric matrices. Journal
of the ACM 9(1), January 1962.

[21] O. D. Fidanci, D. Poznanovic, K. Gaj, T. El-Ghazawi, N. Alexandritis. Performance
overhead in a hybrid reconfigurable computer. Reconfigurable Architecture Work-
shop, April 2003.

[22] M. Gokhale, W. Holmes, A. Kosper, D. Kunze, D. Lopresti, S. Lucas, R. Minnich,
P. Olsen. SPLASH: A reconfigurable linear logic array. International Conference on
Parallel Processing, 1990.

[23] M. Gokhale, A. Kosper, S. Lucas, R. Minnich. The logic description generator.
Proceedings of the International Conference on Application Specific Array Processing,
1990.

[24] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. Taylor. PipeRench:
A reconfigurable architecture and compiler. IEEE Computer 33(4), April 2000.

[25] S. A. Guccione. List of FPGA-based computing machines (http://www.io.com/∼guc-
cione/HW_ list.html), 1994.

[26] R. W. Hartenstein, M. Herz, T. Hoffmann, U. Nageldinger. Using the KressArray for
configurable computing. Proceedings of the International Society of Optical Engineer-
ing Conference on Configurable Computing: Technology and Applications, November
1998.

[27] M. W. Holmes, A. Kosper, S. Lucas, R. Minnich, D. Sweely. Building and using a
highly parallel programmable logic array. IEEE Computer 24(1), January 1991.

[28] T. A. Kean. Configurable Logic: A Dynamically Programmable Cellular Architecture
and Its VLSI Implementation, Ph.D. thesis, University of Edinburgh, January 1989.

[29] T. A. Kean. Déjà vu, all over again. IEEE Design and Test of Computers 22(2),
March/April 2005.

[30] J. T. McHenry, R. L. Donaldson. WILDFIRE custom configurable computer. Field
Programmable Gate Arrays (FPGAs) for Fast Board Development and Reconfigurable
Computing, Proceedings of the International Society of Optical Engineering, October
1995.

[31] T. Miyazaki, T. Murooka, M. Katayama, A. Takahara. Transmutable telecom system
and its application. IEEE Symposium on FPGAs for Custom Computing Machines,
April 1999.

[32] T. Miyazaki, K. Shirakawa, M. Katayama, T. Murooka, A. Takahara. A transmutable
telecom system. Field-Programmable Logic: From FPGAs to Computing Paradigms,
Springer-Verlag, August/September 1998.

[33] M. Moe, H. Schmit, S. Copen Goldstein. Characterization and parameterization of
a pipeline reconfigurable FPGA. IEEE Symposium on FPGAs for Custom Computing
Machines, April 1998.

[34] D. S. Poznanovic. Application development on the SRC Computers, Inc. systems.
Proceedings of the 19th IEEE International Parallel and Distributed Processing Sym-
posium, 2005.

[35] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, R. Reed Taylor. PipeRench: A
virtualized programmable datapath in 0.18 micron technology. Proceedings of the
IEEE Custom Integrated Circuits Conference, 2002.

[36] Silicon Graphics, Inc. Extraordinary acceleration of workflows with reconfigurable
application-specific computing from SGI (http://www.sgi.com/pdfs/3721.pdf), 2004.

C H A P T E R 4

RECONFIGURATION MANAGEMENT

Katherine Compton
Department of Electrical and Computer Engineering
University of Wisconsin–Madison

The flexibility of reconfigurable devices allows them to be customized to a wide
variety of applications. Even individual applications can benefit from reconfig-
urability by using the hardware to perform different tasks at different times.
If not all of an application’s configurations fit on the hardware simultaneously,
they can be swapped in and out as needed. In some cases, the circuitry imple-
mented on reconfigurable hardware can also be optimized based on specific
runtime conditions, further improving system efficiency. The process of recon-
figuring the hardware at runtime, whether to accelerate different applications
or different parts of an individual application, is (unsurprisingly) called runtime
reconfiguration (RTR).

Unfortunately, although RTR can increase hardware utilization, it can also
introduce significant reconfiguration overhead. Reconfiguring the hardware,
depending on its capacity and design, can be very time consuming. Modern
high-end FPGAs can have tens of millions of configuration points, and writ-
ing this information can require on the order of hundreds of milliseconds
[3, 54]. In a reconfigurable computing system, where the compute-intensive
portions of applications are implemented on reconfigurable hardware, compu-
tation and reconfiguration are mutually exclusive operations. Thus, time spent
reconfiguring is time lost in terms of application acceleration. Studies estimate
that, in some cases, reconfiguration time alone occupies approximately 25 to
98 percent of the total execution time of a reconfigurable computing application
[36, 42, 50, 51]. Therefore, management and minimization of reconfiguration
overhead to maximize the performance of reconfigurable computing systems is
essential.

We first discuss the process of reconfiguration in Section 4.1 and then present
different configuration architectures, including those designed specifically to
help reduce reconfiguration overhead, in Section 4.2. Section 4.3 discusses the
different issues in and approaches to managing the reconfiguration process
to minimize reconfiguration overhead and maximize the benefit of hardware
acceleration. Section 4.4 focuses on techniques that specifically reduce the con-
figuration transfer time when a reconfiguration is required. Finally, Section 4.5
discusses configuration encryption to maintain intellectual property security in
reconfigurable computing systems.

66 Chapter 4 � Reconfiguration Management

4.1 RECONFIGURATION

In reconfigurable devices, such as field-programmable gate arrays (FPGAs), logic
and routing resources are controlled by reprogrammable memory locations,
such as SRAM or Flash RAM. Boolean values held in these memory bits control
whether certain wires are connected and what functionality is implemented by
a particular piece of logic. The process of loading the Boolean values into these
memory locations is called reconfiguration. A specific sequence of 1s and 0s for
particular memory locations in hardware defines a specific circuit and is called
a configuration for a given hardware task. Runtime reconfiguration therefore
involves reconfiguring the device (loading a new set of 1s and 0s) with a dif-
ferent configuration (a specific sequence of 1s and 0s) from the one previously
loaded in the reconfigurable hardware (RH). The configurations themselves are
created by CAD software based on both the circuit design to be implemented
and the architecture of the implementing RH. The architectural information is
required for the design tools to know which configuration bits control which
resources and what effect a 1 has versus a 0 in each of the configuration bit
locations.

Once generated by the CAD tools, configurations are generally stored in a
memory structure external to the RH. In some cases, configurations are stored
in main memory and a CPU acts as the go-between, transferring them from
memory to the RH as needed. In other cases, configurations are stored in a pro-
grammable ROM and a configuration controller loads the data directly from the
ROM in the RH, potentially at the request of a central processing unit (CPU).
The configuration controller and the ROM may be incorporated into the same
device, such as the specialized configuration controllers marketed by various
FPGA companies [3, 55], or they may be part of a user-designed custom device.
Figure 4.1 shows a block diagram of a system using a configuration controller
triggered by a CPU to reconfigure the RH (in this case, an FPGA). The configura-
tion controller essentially implements a finite-state machine (FSM) that, based
on the configuration requested by the CPU, generates the sequence of addresses
needed to read the appropriate data sequence for that configuration out of
the ROM.

4.2 CONFIGURATION ARCHITECTURES

A configuration architecture is the underlying physical circuitry that loads con-
figuration data during reconfiguration, and holds it at the correct locations.
Configuration architectures can range from simple serial shift chains, as dis-
cussed in the next section, to addressable structures that can manipulate config-
uration information after it is loaded. Some researchers have developed methods
to emulate more complex configuration architectures on existing commercial
designs, using a combination of hardware and software to provide advanced con-
figuration functionalities. These approaches are discussed in Section 4.3.4.

4.2 Configuration Architectures 67

Configuration
controller

FPGA
FSM

Configuration
request

Configuration
data

Configuration
control

CPU

ROM

A
dd

re
ss

D
at

a
FIGURE 4.1 � Configuration data can be transferred to an FPGA by a specialized configuration
controller containing nonvolatile ROM memory; the reconfiguration process can be triggered
by a CPU.

4.2.1 Single-context
The single-context FPGA has been the most common choice in commercial
designs, though there are exceptions. In this type of FPGA, configuration infor-
mation is loaded into the programmable array through a serial shift chain, as
shown in Figure 4.2.

Internally, the configuration architecture may actually be addressable, simi-
lar to a standard RAM device or the partially reconfigurable designs discussed
in Section 4.2.3, but this would be an implementation detail hidden from the
FPGA user. Addressable configuration architectures generally require fewer tran-
sistors per SRAM cell than serially programmed architectures, reducing the area
required for configuration memory. In this case, an internal-state machine would
control writing serially received data to locations in the array.

The Xilinx Virtex family of FPGAs have addressable configuration locations,
but have a single-context configuration mode [54]. In these FPGAs, configura-
tion data is divided up into addressable blocks called “frames,” each of which
corresponds to part of a column of reconfigurable resources. During recon-
figuration, the configuration data is shifted into the frame data input register
(FDRI) and from there written to a configuration memory location specified by
the frame address register (FAR). For single-context configuration mode, this
address starts at 0 and is automatically incremented each time a new frame is
loaded. This allows the device to appear externally as a single-context device
despite the addressability of the configuration information.

68 Chapter 4 � Reconfiguration Management

Configuration
clock

Configuration
data

Configuration
enable

CLK

OUT

EN

IN

CLK

OUT

EN

IN

CLK

OUT

EN

IN

CLK

OUT

EN

IN

To configurable logic and routing

FIGURE 4.2 � Serially programmed FPGAs shift in configuration data. Each cell shown contains one SRAM bit
of programming data. The clock controls shifting during configuration.

The benefit of serially programmed devices is that they require few pins for
configuration, potentially simplifying board-level design. However, the entire
chip must be reprogrammed for any change to the configuration data because
the data cannot be selectively “reused” on the chip. For example, a large part of
the structure of an encryption application may be independent of the chosen key,
with only a relatively small portion optimized on a per-key basis. Ideally, only
the key-dependent parts are reconfigured and the key-independent parts remain
untouched when the key changes. However, a single-context design requires all
configuration data to be rewritten during configuration, even if it is with the
same values. A relatively minor change to the configuration data becomes a full
reconfiguration process, replete with the associated delays.

The number of configuration cycles can be somewhat reduced in single-
context devices by widening the configuration path. The Altera Stratix-II [3]
and the Xilinx Virtex-II [54] receive either a single bit or a byte of configuration
information per configuration clock cycle. The designer then chooses between
the two modes by weighing the board-level design impact against the perfor-
mance impact. As the larger Stratix II devices currently require more than 4MB
of configuration data, with a maximum configuration clock speed of 100 MHz,
the ability to configure in eight times fewer cycles can be significant. Newer
Xilinx devices, such as the Virtex-5, allow a configuration data bus up to 32 bits
wide [55].

4.2.2 Multi-context
For RTR systems, the overhead of serial programming may be prohibitive. An
attractive alternative may be to provide storage in the device for multiple config-
urations simultaneously, facilitating configuration prefetching and fast reconfig-
uration. A multi-context device (sometimes called “time-multiplexed”) contains
multiple planes (contexts) of configuration data. Each configuration point of
the device is controlled by a multiplexer that chooses between the context
planes. Two configuration points for a 4-context device are shown in Figure 4.3.
Several time-multiplexed FPGA architectures have been proposed, including
Time-Multiplexed [47], DPGA [17], Dharma [11], and Morphosys [45].

4.2 Configuration Architectures 69

Configuration
clock

Configuration
enable

Configuration
data

Context
switch

Context 0
enable

Context 1
enable

Context 2
enable

Context 3
enable

CLK CLK

Q

EN EN

D

To configurable logic and routing

0

1

2

3

Configuration
enable

Configuration
data

QD

0

1

2

3

FIGURE 4.3 � Two multi-contexted configuration bits of a 4-context device.

Multi-context devices have two main benefits over single-context devices.
First, they permit background loading of configuration data during circuit
operation, overlapping computation with reconfiguration. Second, they can
switch between stored configurations quickly—some in a single clock cycle—
dramatically reducing reconfiguration overhead if the next configuration is
present in one of the alternate contexts. However, if the next needed configu-
ration is not present, there is still a significant penalty while the data is loaded.
For that reason, either all needed contexts must fit in the available hardware
or some control must determine when contexts should be loaded in order to
minimize the number of wasted cycles stalling while reconfiguration completes.
This type of control is discussed in Section 4.3.2.

One of the drawbacks of multi-contexted architectures is that the additional
configuration data and required multiplexing occupies valuable area that could
otherwise be used for logic or routing. Therefore, although multi-contexting can
facilitate the use of an FPGA as virtual hardware, the physical capacity of a
multi-contexted FPGA device is less than that of a single-context device of the
same area. For example, a 4-context device has only 80 percent of the “active
area” (simultaneously usable logic/routing resources) that a single-context device
occupying the same fixed silicon area has [17]. A multi-context device limited
to one active and one inactive context (a single SRAM plus a flip-flop) would
have the advantages of background loading and fast context switching coupled
with a lower area overhead, but it may not be appropriate if several different
contexts are frequently reused.

70 Chapter 4 � Reconfiguration Management

Another drawback of multi-contexted devices is a direct consequence of its
ability to perform a reconfiguration of the full device in a single cycle: spikes in
dynamic power consumption. All configuration points are loaded from context
memory simultaneously, and potentially the majority of configuration locations
may be changed from 0 to 1 or vice versa. Switching many locations in a single
cycle results in a significant momentary increase in dynamic power, which may
violate system power constraints.

Finally, if any state-storing component of the FPGA is not connected to
the configuration information, as may be true for flip-flops, its state will not
be restored when switching back to the previous context. However, this issue
can also be seen as a feature because it facilitates communication between
configurations in other contexts by leaving partial results in place across
configurations [27].

4.2.3 Partially Reconfigurable
Because not all configurations require the entire chip area, we might reduce
reconfiguration time if we reloaded data only to those areas that actually must
change. In partially reconfigurable devices, the configuration memory is address-
able, similar to traditional RAM structures. If configurations are smaller than the
full device, partial reconfiguration can decrease reconfiguration time by limiting
reconfiguration to the resources used by a given configuration and, therefore,
the amount of configuration data to transfer. Partial reconfiguration can also
allow multiple independent configurations to be swapped in and out of hard-
ware independently, as one configuration can be selectively replaced on the chip
while another is left intact. Furthermore, we can leverage the addressability to
modify only part of a configuration already located on the chip if some of its
structure matches a new configuration that we wish to load. For example, in an
encryption circuit the bulk of the configuration may remain the same when the
key is changed, and only a few resources may need to change based on the new
key value. Partial reconfiguration can allow the system to reconfigure only those
changed resources instead of the full circuit.

The Xilinx 6200 FPGA [53] was an early partially reconfigurable device where
each logic block could be programmed individually. It therefore became a plat-
form for a great deal of study of configuration architectures and RTR. Current
partially reconfigurable commercial FPGAs include the Atmel AT40K [5] and the
Xilinx Virtex FPGA family [54, 55]. The Virtex series is more coarsely reconfig-
urable than the 6200. Instead of addressing each logic block independently, it
reconfigures logic blocks in groups called frames. In the Virtex-II, a frame corre-
sponds to part of a full column of resources and the size of the frame increases
with the number of logic block rows in the device. In the Virtex 5, frames are a
fixed size of 41 32-bit words (regardless of device size) that represent a partial
column of resources.

Although partially reconfigurable designs provide a great deal more flexibility
for RTR systems, they can still stuffer from potential problems. First, if configura-
tions occupy large areas of the device, the time saved transmitting configuration
data may be outweighed by the time spent transmitting configuration addresses.

4.2 Configuration Architectures 71

In this case, a serially programmed FPGA may be more appropriate. Second,
and more critical to RTR systems, partial configurations are generally fixed to
specific locations on the device. If two independent configurations are imple-
mented in overlapping hardware locations, they cannot operate simultaneously.
One method of mitigating this issue is to view configuration placement as a
three-dimensional floorplanning problem, with the third dimension representing
time [6]. Configurations then occupy some three-dimensional volume of space
based on physical location and time of use, allowing the floorplanner to determine
the best two-dimensional placement to avoid time-related (three-dimensional)
conflicts. Unfortunately, this technique cannot guarantee nonoverlapping con-
figurations if the full configuration sequence is not known at compile time—a
major problem in multitasking systems. The next section discusses advanced
configuration architectures that eliminate configuration placement conflicts.

4.2.4 Relocation and Defragmentation
As previously discussed, conflicts between configuration locations can limit the
effectiveness of partially reconfigurable architectures. To remove these conflicts,
configurations should not be associated with fixed device locations. Relocation
is a technique permitting configurations to be moved to different compatible
device locations within the array, based where free area is available. Figure 4.4(a)
shows a device loaded with configurations A, B, and C in sequence, each assig-
ned to a free area. Figure 4.4(b) shows configurations A and B removed, and
configuration D relocated and programmed onto the array.

The composition of the reconfigurable hardware can complicate this process
in three critical ways. First, if the device’s logic or routing is heterogeneous, relo-
cation becomes less flexible, or even impossible, as a configuration may require
resources located in only one or a few array locations. For example, in devices
with hierarchical routing, different routing connections are available at different
locations in the array. However, if heterogeneity is restricted to a repeating pat-
tern, configurations can be relocated distances corresponding to some multiple
of the distance of the repeat. To the relocated configuration, resources will be
located in the same relative position as in the original placement.

D

C

A

D

C

A

B

C

(a) (b) (c)

FIGURE 4.4 � Three configurations have been programmed on the hardware (a). In (b), A
and B have been removed, and D has been relocated/configured to an available area, causing
fragmentation. Defragmentation relocates configuration C to make room for configuration A
when it is again needed, this time to a new location in the array (c).

72 Chapter 4 � Reconfiguration Management

Second, the external pin connections to the reconfigurable hardware fabric
are fixed either at fabrication (reconfigurable hardware cores in a system-on-a-
chip) or at board-level design (discrete FPGA components). If a configuration is
relocated, its connections to the required I/O pins must be rerouted to maintain
the proper connections. One solution to this problem is to use a communication
network that itself has fixed pin connections but provides internal interfaces
at multiple array locations to allow configurations to have the same commu-
nication connections regardless of position [14, 50]. This type of structure is
known as virtualized I/O and can in some cases be emulated by using reconfig-
urable resources to implement a static communication structure and including
the communication interfaces in individual dynamic configurations [7]. How-
ever, configurations must still be relocated such that they can still connect to
the communication bus.

Third, a two-dimensional architecture can exacerbate the previous two prob-
lems, but particularly complicating virtualized I/O. If a configuration can be
relocated both horizontally and vertically, the virtualized I/O must potentially
distribute signals to all locations in the array. Furthermore, a two-dimensional
architecture increases the possibilities for relocation, as we can consider not only
configuration shifting but also rotation, which requires manipulating configura-
tion information related to routing [14]. More relocation possibilities leads to a
more complex relocation process and possibly increased configuration overhead.

A partially reconfigurable architecture designed specifically with relocation
support should therefore require a homogeneous logic architecture, a bus-based
communication structure, and a one-dimensional organization to simplify the
relocation process [31, 50]. The one-dimensional architecture means that a con-
figuration must use complete rows, even if it only needs a portion of a row. As
device sizes increase, using rows as atomic reconfiguration units may become
inefficient. Instead, the fabric can be split into multiple one-dimensional fabrics
to retain the relocation benefits while preserving a reasonably sized atomic unit.
The Virtex-5 device uses this approach [55].

One of the architectures designed for relocation [14] uses a “staging area”
equivalent in size to one row of configuration data, which is similar in approach
to the column-wise frame-based configuration method of the Xilinx Virtex fam-
ily introduced in Section 4.2.1 and discussed in Section 4.2.3 [54]. The staging
area is filled one configuration word at a time; then the entire row of data is
simultaneously written to the architecture at a location computed with a base
address of the top row of the configuration combined with an offset indicating
the position of the current row relative to the top configuration row. The choice
of the base location can be made by a special circuit that monitors empty loca-
tions on the hardware, or by software. When combined with the proper software
as described in Section 4.3.2, this configuration architecture has been shown to
reduce reconfiguration overhead by 85 percent over a single-context device [31].

Even if an architecture allows relocation, fragmentation of the usable
resources can decrease its effectiveness. Like memory fragmentation, swapping
configurations in and out of different places in the hardware can result in a sit-
uation where various locations in the array may be unused, but there may not

4.2 Configuration Architectures 73

be enough contiguous space available to load a configuration. In this case, if
the configurations can be defragmented, the new configuration can be loaded
into the array without having to remove any of the configurations already on
the device. Figure 4.4(b) shows an example of an array that has become frag-
mented, and Figure 4.4(c) shows how defragmentation can allow a configuration
to be configured without having to remove an existing one. A simple approach
to this problem is to remove all configurations, then reconfigure the array with
the removed ones, this time relocating them to contiguous locations to eliminate
fragmentation. However, this process involves significant communication over-
head between fabric and configuration memory. Alternately, the reconfigurable
hardware can move configurations internally, avoiding the need to communicate
with configuration memory. The R/D FPGA [14, 31] provides both relocation and
defragmentation ability, which together provide a 90 percent reduction in recon-
figuration overhead compared to a single-context FPGA.

A configuration controller for one-dimensional hardware, such as the R/D
FPGA, that specifically supports relocation and defragmentation may simply
need to keep track of occupied and unoccupied locations, or request this infor-
mation as needed from the hardware itself. The controller can determine loca-
tions for incoming configurations using a first-fit or best-fit method, similar to
general memory allocation [7, 14]. Defragmentation, which is easy for the one-
dimensional case, can be triggered when sufficient free area is available but is
broken up into fragments too small to fit an incoming configuration. If there
is insufficient free area, one or more configurations can be removed to make
room, as described in Section 4.3.2.

4.2.5 Pipeline Reconfigurable
Pipeline reconfigurable arrays use a series of physical pipeline stages to imple-
ment the virtual pipeline stages of configurations. A virtual pipeline stage can
be relocated to any physical pipeline stage, and the number of virtual stages
is generally not constrained by the number of physical stages. The most well-
known pipeline reconfigurable architecture is PipeRench [19], which is designed
to implement deeply pipelined configurations, subdivided into a set of virtual
pipeline stages. At runtime, the virtual pipeline stages are assigned to physical
pipeline stage computation units. These units are arranged in a unidirectional
ring, as shown in Figure 4.5(a). Although pipeline stages may be implemented
in different physical locations over time, the virtual pipeline appears fixed to its
own pipeline stages, with each stage receiving input from its predecessor and
generating output to its successor. PipeRench permits pipeline stages to be con-
figured in a single cycle to speed execution.

Pipeline reconfiguration eliminates many of the difficulties of using recon-
figurable hardware as virtual hardware, but places restrictions on the circuits
that can be implemented as information can only propagate forward through
the pipeline stages, and any feedback connections must be completely contained
within a single stage. Figure 4.5(b) shows a 4-stage virtual pipeline implemented
on a 3-stage physical architecture.

74 Chapter 4 � Reconfiguration Management

1

1

1

1 1

2 3 4

4 4

5 6
Cycle

2 2 2

3 3 3

Pipeline stagePipeline stage

Pipeline stagePipeline stage

Pipeline stagePipeline stage

(a) (b)

Physical
stage

FIGURE 4.5 � A pipeline reconfigurable architecture with three physical stages (a). A 3-stage
physical pipeline implementing a 4-stage virtual pipeline (b). Numbers within physical pipeline
stages indicate the implemented virtual pipeline stage. Shaded stages are reconfiguring for the
given cycle.

4.2.6 Block Reconfigurable
Block reconfigurable arrays can share characteristics with any of the previously
described configuration architectures. However, rather than providing one large
reconfigurable fabric, they are made up of multiple discrete blocks that can
be used independently. For these purposes, “block” should not be confused with
“logic block” in an FPGA. In this case each independent block can contain many
logic resources. An individual configuration may occupy one or more blocks,
but blocks may not be subdivided between configurations. Blocks are connected
either through a crossbar structure [39] or a bus/network [10], as shown in
Figure 4.6. Although this would seem to describe any architecture formed from
multiple connected FPGAs or FPGA cores, block reconfigurable devices have the
ability to relocate configurations to different blocks at runtime. For this reason,
the blocks of reconfigurable logic in this style of architecture have also been
referred to as “swappable logic units” (SLU) [55]. In the SLU architecture, a
block reconfigurable design is implemented as an abstraction layer on top of a
partially reconfigurable architecture to facilitate runtime relocation.

The SCORE reconfigurable architecture model [10] is a block reconfigurable
design where the reconfigurable blocks are referred to as “pages” to evoke a vir-
tual memory view of the reconfigurable hardware. Any virtual page can be imple-
mented on any physical page, and computation pages are loaded as needed.
Once configured, pages communicate with one another using datastreams over
a scalable hierarchical network.

A heterogeneous multiprocessor may fit the block reconfigurable model,
provided multiple blocks of reconfigurable hardware are present and configu-
rations can be relocated between the blocks for computational flexibility. These
architectures may contain a single communication network used by the config-
urable blocks and other resources such as microprocessors and custom circuitry.
Although the Pleiades reconfigurable architecture [1] has some of these feat-
ures (a heterogeneous multiprocessor with multiple reconfigurable blocks),

4.2 Configuration Architectures 75

Reconfiguration
logic

Reconfiguration
logic

Reconfiguration
logic

Reconfiguration
logic

Reconfiguration
logic

Reconfiguration
logic

Reconfiguration
logic

Reconfiguration
logic

In
te

rf
ac

e

To/from

CPU and
memory

FIGURE 4.6 � In a block reconfigurable device, configurations can be relocated to any of the
interconnected and equivalent blocks of reconfigurable logic.

computations are preassigned to specific resources, violating one of the require-
ments of the block reconfigurable category.

4.2.7 Summary
This section presented a variety of configuration architectures, each optimized
for a different type of reconfiguration. The single-context device is the simplest
in terms of configuration process and interface, and it is the most popular for
current commercial devices. Partial reconfiguration, which allows reconfigura-
tion of parts of the device (leaving the rest untouched), can reduce the amount
of configuration data that must be transferred but is hampered by configuration
placement conflicts. Partially reconfigurable designs augmented with relocation
and defragmentation, as well as block reconfigurable designs, avoid this issue by
allowing configurations to be placed at different locations from the ones origi-
nally assigned. Likewise, pipeline reconfigurable devices allow pipeline stages
to be relocated but prohibit interstage feedback connections. Finally, multi-
contexted devices provide a method for single-cycle device reconfiguration but
at the cost of decreased computation resources for a given area and a dramatic
increase in power consumption during context changes.

The more advanced reconfiguration architectures, such as relocation, defrag-
mentation, and multi-contexting, have been popular for some time in the
research community as tools essential for effective reconfigurable computing
systems. However, such devices have not yet gained a significant market foothold
because of the limited demand for fast reconfiguration capabilities. Instead,
most FPGAs are currently used as drop-in ASIC replacements or as infre-
quently reconfigured hardware modified only for firmware updates. To provide
devices at a competitive cost, most FPGA vendors forgo the more innovated
configuration architectures in favor of a simpler single-context design. Although
Xilinx, one of the most prominent FPGA vendors, offers partial reconfigura-
tion in its Virtex families, design support is still somewhat limited, relocation

76 Chapter 4 � Reconfiguration Management

and defragmentation are not supported, and a single-context interface is still
provided to cater to users who do not require partial reconfiguration. Even so,
as reconfigurable computing becomes a more common practice, spurred per-
haps by the difficulty of continued clock speed increases for general-purpose
processors, demand for innovative configuration architectures will increase in
order to maximize the benefits of reconfigurable computing.

4.3 MANAGING THE RECONFIGURATION PROCESS

Reconfigurable computing systems swap configurations in and out of hardware
at runtime, a process controlled by software, hardware, or a combination of
both. Although a system can simply load a configuration whenever it is needed,
and unload it when hardware execution is complete, this can cause a signifi-
cant reconfiguration overhead: while the configuration is loading, the control-
ling application or thread cannot compute. Also, if the hardware is currently
in use by another thread or process, the requesting application or thread must
wait until the hardware is idle or until enough area is free to even begin the
reconfiguration process, leading to further stalling. Ideally, configurations are
loaded in advance of when they are needed and those likely to be reused in the
near future should be cached on the hardware.

The following sections discuss several aspects of reconfiguration control,
including choosing the configurations to load, and when and where on the hard-
ware to load them.

4.3.1 Configuration Grouping
Single-context and multi-context FPGAs may have more resources available at
once than are usable by a single configuration. Reconfiguration overhead can be
reduced by grouping configurations that are likely to be used one after another
into a single larger configuration. Algorithms proposed to perform this grouping
include simulated annealing and a clustering approach [31]. They examine the
overall application control flow to predict configurations that should be grouped
together. The loading of a grouped configuration involves not only the currently
needed configuration but also those most likely to be used after. Therefore, if
the next configuration requested is already present on the device, no recon-
figuration is necessary, reducing reconfiguration overhead. With configuration
grouping, a configuration will appear in at least one group, and possibly several,
depending on application behavior and the configuration’s relationship to other
configurations.

This approach is primarily appropriate for single-application systems, as con-
figuration grouping is a compile-time operation. However, it could also be used
in a multitasking system with a multi-context device. In this case, the con-
figuration grouping would still be performed at compile time for individual
applications, and the choice of which configuration groups to load and when
would be a runtime operation, as described in the next section.

4.3 Managing the Reconfiguration Process 77

4.3.2 Configuration Caching
In a single-context device, the loading of one configuration overwrites all
configuration data in the FPGA. Thus, context grouping implicitly decides what
operations will coexist within the device at any point. In a multi-context or par-
tially reconfigurable architecture, reconfiguration only overwrites a portion of
the configuration data, allowing other configurations to be retained elsewhere.
With configuration caching, the goal is to keep configurations on the hard-
ware if they are likely to be reused in the near future. If there is enough free
area on the device to fit a requested configuration, it is simply loaded, but if
there is insufficient space, the configuration controller must select one or more
“victim” configurations to remove from the hardware to free the required area.
This process is simplified from the point of view of the controller if the device
does not support relocation, as the victim configurations are simply any that
overlap with the incoming one. However, this will generally result in a high
reconfiguration overhead, as the removed configurations could be needed again
in the near future, requiring another reconfiguration.

If the device supports relocation and defragmentation, or multiple contexts,
the controller may have a variety of potential victims to choose from that will
free the needed area. In some cases, general caching approaches may be used.
These approaches assume a fixed-sized data block. However, in a partially recon-
figurable device the size of the block to load can vary because configurations can
each use differing amounts of resources. The caching algorithm must therefore
consider the impact of variable-sized blocks.

One algorithm uses a penalty-based approach that considers both the config-
uration’s size and how recently it was used [31]. When a configuration is first
loaded, its “credit” is set to its size. When one or more configurations must be
removed to make room for an incoming one, the configuration with the low-
est credit is chosen, and the credit values of the remaining configurations are
lowered by the credit value of the removed one. For the R/D FPGA design [14],
penalty-based caching consistently results in a lower reconfiguration overhead
than a simple least recently used (LRU) approach and 90 percent less overhead
than a single-context configuration architecture. A configuration controller for a
multi-context device must select which context to overwrite when a new context
not already in the device is requested [14]. Because each context is the same
size, general caching techniques, such as LRU, have been used.

4.3.3 Configuration Scheduling
Configurations can be loaded simply as they are requested, but this may result
in significant overhead if the software stalls while waiting for reconfiguration
to complete [50]. If instead the system can request configurations in advance of
when they are needed, a process called prefetching, reconfiguration may proceed
concurrent with software execution until the hardware is actually required. The
challenge, however, is to ensure that prefetched configurations will not be ejected
from the hardware by other prefetching operations before they can be used.
For example, Figure 4.7 shows a flow graph for an application containing both

78 Chapter 4 � Reconfiguration Management

SW 1

SW 2

SW 3

SW 4

SW 5

HW A

HW B HW C

FIGURE 4.7 � An example reconfigurable computing application flow graph, containing both
hardware and software components.

hardware and software components. Configuration A can safely begin loading
at the beginning of the flow graph, provided that the application represented by
the flow graph is the only one using the reconfigurable hardware. On the other
hand, after the first branch rejoins at software block 4, it is unclear whether
configuration B or configuration C will be needed next. If both potential branches
have equal probability, the next configuration should not be loaded until after
program flow determines the correct branch.

For static scheduling, prefetching commands may be inserted by the compiler
based on static analysis of the application flow graph [23], and have been shown
to reduce reconfiguration overhead up to a factor of 2. A more dynamic approach
uses a Markov model to predict the next configuration that will be needed for a
partially reconfigurable architecture with relocation and defragmentation [33].
Combining this approach with configuration caching results in a reconfiguration
overhead reduction of a factor of 2 over configuration caching alone. Adding
compiler “hints” to dynamic prediction achieves still better results.

Some dynamic approaches use the dataflow graph to determine when a given
configuration is valid for execution [37, 39]. In these cases, nodes of the flow
graph may be scheduled only if their ancestors have completed execution. This

4.3 Managing the Reconfiguration Process 79

approach works even if multiple applications are executing concurrently in the
system and also works in systems implementing hardware tasks as independent
“hardware threads” [4, 43].

Other approaches do not consider the actual flow graphs of applications, but
instead use system status and current resource demand to allocate reconfig-
urable hardware to different configurations over time. Window-based schedul-
ing periodically chooses the configurations to be implemented in hardware for
the next “window” of time. This approach treats scheduling as a series of static
problems yet still accommodates dynamic system behavior. One window-based
scheduler uses a multi-constraint knapsack approach to choose configurations
providing the best benefit (speedup) to the system as a whole based on configu-
ration requests in the past window period. This technique was shown to increase
overall system throughput by at least 20 percent relative to a processor without
reconfigurable hardware [57].

In true multitasking systems load may not be consistent, with demand for
the reconfigurable resources varying over time. This has led to more complex
scheduling techniques that also consider modifying configurations based on
available resources to take advantage of numerous resources when possible or
to fit in limited resources when necessary [37, 40, 41, 57]. Another possibility is
to permit a software alternative for configurations to avoid stalls if the hardware
resources are in high demand [16, 34, 41, 57]. This approach allows dynamic
binding of computations to hardware or software, where only the most bene-
ficial configurations are actually implemented in hardware. Real-time systems
similarly must choose tasks at runtime for hardware implementation based on
real-time requirements (task priority, arrival and execution time, and deadlines),
rejecting remaining tasks to software or possibly dropping them entirely [46].

4.3.4 Software-based Relocation and Defragmentation
Systems that do not support relocation and defragmentation at the configuration
architecture level may support it at the software level to gain some of the associ-
ated benefits. However, this can be computationally intense for two-dimensional
architectures. Finding a possible location for an arbitrarily shaped configuration
can require an exhaustive search, which may incur a greater overhead penalty
than the configuration penalty it seeks to avoid. Restricting configurations to
rectangular shapes simplifies the process somewhat, though it is still a two-
dimensional bin-packing problem. One approach to solving this problem is to
maintain a list of empty spaces in the device and search it whenever a new
configuration is to be loaded [6, 21, 48]. In either case, when the controller
removes a configuration from the hardware, it can update the list based on the
freed area. The “best” empty location to implement the incoming configuration
can be chosen based on algorithms similar to one-dimensional packing, such as
first-fit or best-fit.

When there are no empty locations that can fit the incoming configuration,
the configuration controller can defragment the hardware to consolidate empty

80 Chapter 4 � Reconfiguration Management

space, or remove an existing configuration. Like two-dimensional relocation,
two-dimensional defragmentation is very complex. It can be implemented by
removing all configurations from the hardware and then successively reloading
each one using one of the two-dimensional relocation techniques described pre-
viously. Alternately, a reconfiguration controller can use a technique specifically
designed for two-dimensional defragmentation that rearranges only a subset of
configurations, and dynamically schedules their movements in an effort to min-
imize disruption of those in execution [18].

A critical problem in supporting relocation, whether for the one-dimensional
or the two-dimensional case, is rerouting the connections between a relocated
configuration and the (nonrelocated) I/O pins. As discussed in Section 4.2.4, a
virtualized I/O structure simplifies this problem, though virtualized I/O for two-
dimensional architectures may be infeasibly large. However, if the architecture
does not have virtualized I/O, either these signals must be rerouted at runtime
[49] or the configurations must be modified to emulate virtualized I/O by having
a specific movable interface to a nonrelocatable communications structure [7].

4.3.5 Context Switching
Unfortunately, some of the same terminology in the reconfigurable computing
area is used to refer to different concepts. In this section, “context switch”
does not refer to switching between planes of configuration data in a multi-
context device. Instead, it refers to the suspend/resume behavior of processors
(and potentially their associated reconfigurable logic) when multitasking. A few
studies have discussed supporting suspend/resume of hardware operations as a
way to support hardware multitasking [24, 44]. In these systems, long-running
configurations may be interrupted to allow other configurations to proceed, and
later be resumed to complete computation. Although the configuration state can
be resumed by reloading the required configuration, the flip-flop values and the
values stored in embedded RAM blocks are not necessarily part of the configu-
ration, and therefore may require additional steps to save their state.

Reconfigurable hardware context switches may mirror processor context
switches to facilitate hardware control by ensuring that the “owning” process
is active and ready to receive results. The host processor may stall or wait while
the reconfigurable hardware is active [43], or it may continue with parallel oper-
ations that are not dependent on the hardware’s results [1, 24, 43].

4.4 REDUCING CONFIGURATION TRANSFER TIME

The various techniques described previously can reduce the number of times
we have to reconfigure the hardware, or attempt to hide the configuration
latency, but the actual time required to transfer a given configuration can also be
reduced. One hardware-based technique already discussed in Section 4.2.3, par-
tial reconfiguration, permits configuring only those parts of the hardware that are
needed. The remainder of the chip does not need to be configured, and therefore

4.4 Reducing Configuration Transfer Time 81

configuration data for these other areas does not need to be transferred. The next
few sections present a number of other methods used to reduce the configuration
transfer time, in most cases by reducing the amount of data transferred.

4.4.1 Architectural Approaches
The design of the reconfigurable architecture itself can affect the time required
to configure it. For example, a coarse-grained architecture containing primar-
ily fixed functional units will generally require fewer configuration bits for the
same functionality than does a fine-grained LUT-based architecture [25]. Another
architectural design feature that can impact reconfiguration times is the width of
the configuration path. Section 4.2.1 discussed how a serially programmed FPGA
can be programmed 8× faster if configuration data is loaded a byte per cycle
instead of a bit per cycle. In cases where the reconfigurable hardware is located
on the same chip as the configuration memory, a very wide path between them
may be possible, drastically reducing reconfiguration time. For example, the R/D
architecture [14] can have a wide enough path to an on-chip configuration cache
to allow the entire staging area to be loaded in a single cycle.

4.4.2 Configuration Compression
Compression is a widely used method in general-purpose computing and
networking to reduce data transfer times by reducing the number of bits
transferred. Compression can also reduce the amount of configuration data
transmitted to reconfigurable hardware, leading to a corresponding decrease
in reconfiguration time. The first proposed configuration compression tech-
nique [22] targeted the Xilinx 6200-series FPGA [53], which, as discussed in
Section 4.2.3, is partially reconfigurable at a very fine-grained level, addressing
individual logic cells by their row and column. The 6200 includes two “wild-
card registers,” equal in bit width to the row and column addresses, which act
as masks on the configuration addresses. This allows one piece of configuration
data to be written to more than one location. Essentially, 0s in the wildcard
register retain the configuration address bits for those locations, whereas 1s
indicate that all possible combinations of values in those specific locations
should be addressed. By treating wildcard register value generation as a logic
minimization problem, configuration data is compressed by an average factor
of four for the Xilinx 6200 [22].

An expansion of these efforts exploits the fact that not all configuration bits
in a logic cell are used by all configurations [30]. In many cases, a number
of bits in a logic cell configuration can be considered “don’t-care” values and
can be programmed either with a 1 or a 0 without affecting the configuration’s
functionality. This allows configuration data to be manipulated to increase the
achievable compression rates by about a factor of 2. Although the wildcarding
and don’t-care approaches are effective, they are specific to a discontinued archi-
tecture. More recent studies [15, 32] examine the use of a variety of standard
compression techniques that achieve up to a compression factor of 4 on more
modern architectures.

82 Chapter 4 � Reconfiguration Management

Configuration compression is not merely an academic pursuit. Both Altera’s
and Xilinx’s design tools can generate compressed configurations [3, 55]. The
compressed configurations are stored in a separate configuration controller that
decompresses them as they are sent to the FPGA. However, this form of com-
pression only reduces configuration storage requirements and does not decrease
the size of configuration data sent to the FPGA. Compressed configurations can,
however, be loaded directly onto Stratix-II devices in some configuration modes,
and decompressed on the FPGA itself.

4.4.3 Configuration Data Reuse
At times, only a portion of a configuration must be updated, such as the
key-specific hardware in an encryption configuration. Rather than resend the
full configuration information, a partially reconfigurable device allows just
the changed portions to be sent. Circuits can be designed specifically to use
partial reconfiguration to customize them based on constant values not known
until runtime [58]. However, even less directly related configurations may also
have configuration data in common. Certain computation or communication
patterns may be common to several configurations, such as the use of adder
structures, emphasis on near-neighbor routing instead of long-distance routing,
and the like [20]. Similarly, there may be “default” values for configuration bits
for unused resources, and two configurations may have used as well as unused
resources in common. These commonalities can decrease the amount of “new”
configuration data required to implement the next configuration, particularly
if configuration data reuse is a factor in the design of the configurations. The
degree of similarity is increased with a decrease in the granularity of reconfig-
uration (there are fewer ways for small sets of bits to differ than for large sets
to differ) and can result in a decrease in configuration data by approximately
35 to 40 percent [35].

4.5 CONFIGURATION SECURITY

In most of this book, we view the programmability of an FPGA as an inherent
advantage that provides a circuit implementation platform or a multi-purpose
acceleration engine. However, this flexibility also increases the potential for
intellectual property theft compared to custom ASIC hardware. SRAM-based
FPGAs (the focus of this chapter), have volatile configuration memory; to retain
configuration data, a battery must provide a constant power supply to the con-
figuration bits. This configuration data is stored in memory (RAM or a PROM)
external to the FPGA, and is loaded into the FPGA at power-up. Someone mon-
itoring the wires between these structures could capture the configuration data
flowing from memory to the reconfigurable device. They could then duplicate
the circuit simply by loading that data onto a new chip. Design firms that create
FPGA-based hardware want to protect their work (which may have required
significant design time) and prevent reverse-engineering of their designs.

4.6 Summary 83

To discourage their unauthorized copying, FPGA configurations can be water-
marked with a special signature based on the circuit designer and the purchasing
customer [28]. Of course, the design can still be copied and reverse-engineered,
but the watermark can help identify the source of the unauthorized copies.

Design security can also be provided by encrypting configuration data to
obscure the employed design techniques and/or functionality [26]. Many FPGA
vendors now support configuration encryption with special on-chip decryp-
tion hardware. The Xilinx Virtex-II, for example, uses triple-key DES [54], and
Altera’s Stratix-II [3], Actel’s ProASIC3 [2], and Lattice’s ECP2 [29] all support
128-bit AES configuration encryption. In all cases, the keys are stored in the
FPGA, and encrypted configurations may only be loaded if they were encrypted
with the same key as that stored in the device. For a Virtex-II device, a battery
must be attached to the proper pins to retain the key when the device is not
powered. In contrast, the Stratix-II, ECP2, and ProASIC3 devices use nonvolatile
memory for key storage, eliminating the need for a separate battery.

For systems that do not require runtime reconfiguration, the opportunity to
copy a design can be reduced in end-products by not transmitting the configu-
ration data on probeable wires. Antifuse and Flash FPGAs, based on nonvolatile
configuration memory structures, inherently retain configuration data on-chip
once configured, avoiding the need to transfer the information for systems not
using runtime reconfiguration.

4.6 SUMMARY

The difficulty of clock speed increases and power consumption concerns moti-
vate reconfigurable computing as an important technique to advance digital
design, implementing compute-intensive application tasks in reconfigurable
hardware. However, the performance and power penalty of reconfiguration has
the real potential to overwhelm its benefits. This chapter discussed a variety of
methods proposed and used to reduce and in some cases remove reconfigura-
tion overhead, including various configuration architecture designs, scheduling
and caching techniques, and ways to reduce the configuration data size.

In many cases, several approaches can be combined to further reduce
the overhead. For example, relocation and defragmentation architectural
features facilitate advanced configuration scheduling mechanisms that load
configurations in advance of their use to minimize processor stall time during
reconfiguration. Likewise, a configuration cache can be combined with a
relocation- and defragmentation-enabled design that uses a staging area, provid-
ing a wide path to configuration memory to decrease transfer time. This in turn
can be combined with wildcarding to allow multiple identical rows or columns
to be configured simultaneously. Such combined methods allow reconfigurable
computing system designers to effectively minimize reconfiguration overhead
and to provide the full benefit of reconfigurable computing in future computing
systems.

84 Chapter 4 � Reconfiguration Management

References
[1] A. Abnous, H. Zhang, M. Wan, G. Varghese, V. Prabhu, J. Rabaey. The Pleiades

architecture. Application of Programmable DSPs in Mobile Communications,
A. Gatherer, A. Auslander, eds., Wiley, 2002.

[2] Actel Corp. ProASIC3 Flash Family FPGAs. Actel Corp., Mountain View, CA, 2006.
[3] Altera, Inc. Stratix-IITM Device Handbook, Volumes 1 and 2, Altera, Inc., San Jose,

2005.
[4] D. Andrews, D. Niehaus, R. Jidin. Implementing the thread programming model on

hybrid FPGA/CPU computational components. Workshop on Embedded Processor
Architectures of the International Symposium on Computer Architecture, 2004.

[5] Atmel Corp. AT40K Series FPGA Interactive Architecture Guide. Atmel Corp.,
San Jose, 1999.

[6] K. Bazargan, R. Kastner, M. Sarrafzadeh. Fast template placement for reconfig-
urable computing systems. IEEE Design and Test, Special Issue on Reconfigurable
Computing 17(1), 2000.

[7] G. Brebner, O. Diessel. Chip-based reconfigurable task management. International
Conference on Field Programmable Logic and Applications, 2001.

[8] J. Burns, A. Donlin, J. Hogg, S. Singh, M. de Wit. A dynamic reconfiguration run-
time system. IEEE Symposium on FPGAs for Custom Computing Machines, 1997.

[9] J. M. P. Cardoso, M. Weinhardt. From C programs to the Configure-Execute model.
Design, Automation, and Test in Europe, 2003.

[10] E. Caspi, A. DeHon, J. Wawrzynek. A streaming multithreaded model. Third Work-
shop on Media and Stream Processors, 2001.

[11] D. Chang, M. Marek-Sadowska. Partitioning sequential circuits on dynamically
reconfigurable FPGAs. IEEE Transactions on Computers 48(6), 1999.

[12] M. C.-T. Chao, G.-M. Wu, I.-H.-R. Jiang, Y.-W. Chang. A clustering- and probability-
based approach for time-multiplexed FPGA partitioning. IEEE/ACM International
Conference on Computer-Aided Design, 1999.

[13] M. M. Chu. Dynamic Runtime Scheduler Support for SCORE, Master’s thesis,
University of California, Berkeley, 2000.

[14] K. Compton, Z. Li, J. Cooley, S. Knol, S. Hauck. Configuration relocation and
defragmentation for runtime reconfigurable systems. IEEE Transactions on VLSI
10(3), June 2002.

[15] A. Dandalis, V. K. Prasanna. Configuration compression for FPGA-based embedded
systems. Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2001.

[16] M. Dales. Managing a reconfigurable processor in a general purpose workstation
environment. Conference on Design, Automation, and Test in Europe, 2003.

[17] A. DeHon. DPGA utilization and application. Proceedings of the ACM/SIGDA Inter-
national Symposium on Field Programmable Gate Arrays, 1996.

[18] O. Diessel, H. E. Gindy, M. Middendorf, H. Schmeck, B. Schmidt. Dynamic
scheduling of tasks on partially reconfigurable FPGAs. IEE Proceedings—Computers
and Digital Techniques, Special Issue on Reconfigurable Systems 147(3), 2000.

[19] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. R. Taylor.
PipeRench: A reconfigurable architecture and compiler. IEEE Computer 33(4), April
2000.

[20] J. D. Hadley, B. L. Hutchings. Design methodologies for partially reconfigured
systems. IEEE Symposium on FPGAs for Custom Computing Machines, 1995.

4.6 Summary 85

[21] M. Handa, R. Vemuri. An efficient algorithm for finding empty space for online
FPGA placement. Design Automation Conference, 2004.

[22] S. Hauck, Z. Li, E. J. Schwabe. Configuration compression for the Xilinx XC6200
FPGA. IEEE Symposium on FPGAs for Custom Computing Machines, 1998.

[23] S. Hauck. Configuration prefetch for single context reconfigurable coprocessors.
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 1998.

[24] J. R. Hauser. Augmenting a Microprocessor with Reconfigurable Hardware, Ph.D.
thesis, University of California, Berkeley, 2000.

[25] Z. Huang, S. Malik. Managing dynamic reconfiguration overhead in systems-
on-a-chip design using reconfigurable datapaths and optimized interconnection
networks. Design, Automation, and Test in Europe, 2001.

[26] T. Kean. Cryptographic rights management of FPGA intellectual property cores.
International Symposium on Field-Programmable Gate Arrays, 2002.

[27] A. Khan, N. Miyamoto, T. Ohkawa, A. Jamak, S. Kita, K. Kotani, T. Ohmi. An
approach to realize time-sharing of flip-flops in time-multiplexed FPGAs. IEEE
International Conference on Field-Programmable Technology, 2004.

[28] J. Lach, W. H. Mangione-Smith, M. Potkonjak. Fingerprinting techniques for field-
programmable gate array intellectual property protection. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 20(10), 2001.

[29] Lattice Semiconductor Corp. LatticeECP2 Family Data Sheet, Lattice Semiconduc-
tor Corp., Hillsboro, OR, 2006.

[30] Z. Li, S. Hauck. Don’t care discovery for FPGA configuration compression.
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 1999.

[31] Z. Li, K. Compton, S. Hauck. Configuration caching for FPGAs. IEEE Symposium
on FPGAs for Custom Computing Machines, 2000.

[32] Z. Li, S. Hauck. Configuration compression for Virtex FPGAs. IEEE Symposium
on FPGAs for Custom Computing Machines, 2001.

[33] Z. Li, S. Hauck. Configuration prefetching techniques for partial reconfigurable
coprocessor with relocation and defragmentation. ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, 2002.

[34] R. Lysecky, F. Valid. A configurable logic architecture for dynamic hardware/
software partitioning. Design, Automation, and Test in Europe, 2004.

[35] U. Malik, O. Diessel. On the placement and granularity of FPGA configurations.
IEEE International Conference on Field-Programmable Technology, 2004.

[36] W. H. Mangione-Smith. ATR from UCLA. Personal communication, 1999.
[37] Y. Markovskiy, E. Caspi, R. Huang, J. Yeh, M. Chu, J. Wawrzynek, A. DeHon. Anal-

ysis of quasi-static scheduling techniques in a virtualized reconfigurable machine.
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2002.

[38] J. Noguera, R. M. Badia. HW/SW codesign techniques for dynamically reconfigurable
architectures. IEEE Transactions on VLSI Systems 10(4), 2002.

[39] J. Noguera, R. M. Badia. Multitasking on reconfigurable architectures: Microarchi-
tecture support and dynamic scheduling. ACM Transactions on Embedded Comput-
ing Systems 3(2), May 2004.

[40] V. Nollet, P. Coene, D. Verkest, S. Vernalde, R. Lauwereins. Designing an operating
system for a heterogeneous reconfigurable SoC. Reconfigurable Architecture Work-
shop, 2003.

[41] H. Quinn, L. S. King, M. Leeser, W. Meleis. Runtime assignment of reconfigurable
hardware components for image processing pipelines. IEEE Symposium on Field-
Programmable Custom Computing Machines, 2003.

86 Chapter 4 � Reconfiguration Management

[42] J. Resano, D. Mozos, F. Catthoor. A hybrid prefetch scheduling heuristic to
minimize at runtime the reconfiguration overhead of dynamically reconfigurable
hardware. Design, Automation, and Test in Europe, 2005.

[43] C. R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. M. Arnold,
M. Gokhale. The NAPA adaptive processing architecture. IEEE Symposium on
FPGAs for Custom Computing Machines, 1998.

[44] H. Simmler, L. Levinson, R. Männer. Multitasking on FPGA coprocessors. Interna-
tional Conference on Field-Programmable Logic and Applications, 2000.

[45] H. Singh, G. Lu, M.-H. Lee, F. Kurdahi, N. Bagherzadeh, E. Filho, R. Mastre.
MorphoSys: Case study of a reconfigurable computing system targeting multimedia
applications. Design Automation Conference, 2000.

[46] C. Steiger, H. Walder, M. Platzner. Operating systems for reconfigurable embedded
platforms: Online scheduling of real-time tasks. IEEE Transactions on Computers
53(11), 2004.

[47] S. Trimberger, D. Carberry, A. Johnson, J. Wong. A time-multiplexed FPGA. IEEE
Symposium on FPGAs for Custom Computing Machines, 1997.

[48] H. Walder, M. Platzner. Non-preemptive multitasking on FPGAs: Task placement
and footprint transform. International Conference on Engineering of Reconfigurable
Systems and Architectures, 2002.

[49] G. Wigley, D. Kearney. The first real operating system for reconfigurable computing.
Australasian Computer Systems Architecture Conference, 2001.

[50] M. J. Wirthlin, B. L. Hutchings. A dynamic instruction set computer. IEEE Sym-
posium on FPGAs for Custom Computing Machines, 1995.

[51] M. J. Wirthlin, B. L. Hutchings. Sequencing run-time reconfigured hardware with
software. ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
1996.

[52] G.-M. Wu, J.-M. Lin, Y.-W. Chang. Generic ILP-based approaches for time-
multiplexed FPGA partitioning. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 20(10), 2001.

[53] Xilinx, Inc. XC6200 Field Programmable Gate Arrays Product Description, Xilinx,
Inc., San Jose, 1997.

[54] Xilinx, Inc. Virtex-II Platform FPGAs: Complete Data Sheet, Xilinx, Inc., San Jose,
2004.

[55] Xilinx, Inc. Virtex-5 FPGA Configuration User Guide, Xilinx, Inc., San Jose, 2006.
[56] G. Brebner. The swappable logic unit: A paradigm for virtual hardware, IEEE

Symposium on FPGAs for Custom Computing Machines, 1997.
[57] W. Fu, K. Compton. An execution environment for reconfigurable computing. IEEE

Symposium on Field-Programmable Custom Computing Machines, 2005.
[58] M. Wirthlin, B. Hutchings. Improving functional density through run-time con-

stant propagation. ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 86–92, 1997.

P A R T II

PROGRAMMING RECONFIGURABLE

SYSTEMS

As suggested in the Introduction, field-programmable gate arrays (FPGAs)
and reconfigurable architectures have both the postfabrication pro-
grammability of software and the spatial parallelism of hardware. To fully
exploit them, we need models and programming approaches that support
the software’s programmability, including infrastructure and runtime sup-
port to allow the configuration to change over time. In addition to temporal
reprogrammability, the reconfigurable programming systems must simul-
taneously deal with spatial issues normally associated only with hardware
(e.g., physical placement of computations and timing of functional units).

To illustrate how we can program reconfigurable systems, the chapters
in this part of the book describe the current state of the art in appro-
aching and capturing designs for FPGAs and reconfigurable architec-
tures. Chapter 5 reviews compute models and organizations suitable
for reconfigurable applications, Chapters 6 through 10 and Chapter 12
explore different design entry points for reconfigurable applications, and
Chapters 11 and 12 examine infrastructural support issues, including
operating and runtime systems and debuggers.

The flexibility of FPGAs and reconfigurable architectures, as well as
their dual hardware/software nature, means that the old computational
models we are familiar with for hardware or software may not be the
most effective for reasoning about reconfigurable designs. Furthermore,
the design space for reconfigurable solutions is much larger than those
most of us are used to navigating. Chapter 5 explores some useful mod-
els for capturing and conceptualizing reconfigurable applications and a
variety of system architectures for providing efficient implementations.
A clear conceptual model of the parallelism in the application, how to
expose it, and how to exploit it make up an invaluable starting point for
describing the application in a concrete programming language.

Chapter 6 provides an introduction to VHDL as an example of a
Register transfer level (RTL) hardware description language. A software
designer might think of VHDL as a semi-portable assembly language
for reconfigurable designs; it provides fine control of hardware and

88 Part II � Programming Reconfigurable Systems

parallelism, but it demands that the designer manage quite a number of
low-level details. Many of the higher-level programming approaches still
use VHDL as an intermediate mapping stage on the way to a reconfig-
urable configuration.

Chapter 7 turns to more software-friendly approaches and shows how
programs written in C can automatically be translated into reconfigurable
hardware designs. Today, we cannot expect to obtain good performance
from arbitrary C code with no concern for the capabilities of the reconfig-
urable architecture and compiler. However, with an appreciation for what
reconfigurable architectures can do, an appropriate system architecture,
and an understanding of the capabilities of the C compiler, it is possible
to effectively develop and optimize reconfigurable applications in C.

Chapters 8 and 9 discuss two examples of programming systems that
support streaming dataflow compute models (Section 5.1.3). These mod-
els, too, provide a higher-level approach to reconfigurable design than
VHDL, offering greater opportunities for automated design scalability.
Chapter 8 describes how we can apply the SDF (Synchronous Dataflow)
model (Section 5.1.3) using Simulink, illustrating how methodology and
suitable libraries can raise the abstraction for design construction. These
techniques can readily be adopted by today’s system designers. At the
same time, the Simulink integration example shows how reconfigurable
design can leverage popular system analysis tools such as MATLAB.

Chapter 9 describes a more custom and automated experimental design
flow that supports application scalability for dynamic streaming dataflow
applications (Section 5.1.3). It illustrates how many system architectures
(Section 5.2) come together to support efficient and automated mapping
of designs to reconfigurable computing platforms, and it offers a vision of
how integrated programming systems for reconfigurable platforms might
evolve.

Many efficient reconfigurable applications are naturally data parallel
(Section 5.1.5) and are efficiently implemented with a Single Instruction
Multiple Data (SIMD) or vector organization. Chapter 10 describes data
parallel programming approaches customized for reconfigurable compi-
lation.

In Chapter 12 we see an example of a rich generator language, JHDL,
which provides even lower-level control of structure than VHDL, but does
so with the full programming power of a conventional software language,
Java. Thus, it provides a high-level platform from which to develop highly
tuned designs. It also provides rich support for the construction of custom
tools for reconfigurable design optimization.

Programming Reconfigurable Systems 89

As reconfigurable computers emerge as platforms for creating and
delivering software, we must develop software support normally associ-
ated only with general-purpose processors, including operating systems,
runtime support, and interactive debuggers. Chapter 11 describes the
growing demands for reconfigurable operating systems, highlighting some
of the early work along this path and pointing out important directions
for the future. JHDL (Chapter 12) is notable for its support for interac-
tive debugging and the extensible programming environment it provides,
including hooks for software modules that interact with reconfigurable
designs.

This page intentionally left blank

C H A P T E R 5

COMPUTE MODELS AND SYSTEM
ARCHITECTURES

André DeHon
Department of Electrical and Systems Engineering
University of Pennsylvania

Field-programmable gate array (FPGA) and reconfigurable architectures provide
enormous raw computing power and tremendous flexibility. How do we best
exploit this opportunity and bring it to bear on particular computing tasks?
When we do take advantage of the flexibility, and how do we ensure correct-
ness? How do we preserve and reuse our designs as technology continues to
advance? The raw size and flexibility of today’s devices and systems make these
questions daunting to consider and intractable to approach in an undisciplined
manner. In this chapter, we review models and organizational styles for large-
scale, highly parallel computing resources and emphasize how they can be used
in the organization of reconfigurable computers.

A modern FPGA has hundreds of thousands of independently configured bit-
processing units and hundreds of memories. Today’s multi-FPGA systems and
future single-chip FPGAs raise these numbers to millions of bit-processing units
and thousands or tens of thousands of memories. Furthermore, configurable
interconnect allows us to arrange these resources in almost any manner. This
gives us the power to adapt the computation to a particular task. Now that we
have that power, what do we do with it?

Developing large software applications is a known hard problem, and manag-
ing resources and computations in highly parallel systems is, notoriously, even
harder. Without care, our parallel computations may behave differently on each
execution, producing nondeterministic results, some of which may be erroneous,
and some executions may lead to deadlock. Unconstrained, the additional flexi-
bility that comes with parallelism increases the complexity of application devel-
opment and verification.

Considering both the limits of the human mind and the desire to achieve
reasonably low time-to-solution periods, we cannot afford to custom-tailor each
4-LUT and each memory. With industry producing new devices according to
Moore’s Law, we cannot afford to design for 100,000 4-LUTs one year, discard
the design, and then redesign for 200,000 4-LUTs three years later when the
next part becomes available. Nor can we afford to reason about the interaction
of every individual 4-LUT with every other—a number of interactions that grows
quadratically with resource count.

Copyright © 2008 by André DeHon. Published by Elsevier Inc.

92 Chapter 5 � Compute Models and System Architectures

The good news is that, while there is almost unbounded freedom in how we
might solve problems, there are a small number of high-level organizational
strategies that suffice to describe and efficiently implement most computing
tasks. To bridge the semantic gap between applications and FPGA resources,
we should think about two abstractions:

� Compute models—high-level models of the flow of computation in an
application, useful for capturing parallelism and reasoning about
correctness of implementations.

� System architectures—high-level strategies for organizing resources,
managing the parallelism in the implementation, and facilitating
optimization and design scaling.

Within each system architecture, there remains considerable flexibility to
tailor the computing resources to the particular task, exploiting the flexibility
of the architecture’s reconfigurability. The compute model provides high-level
constraints and guidance for conceptualizing the problem, reasoning about its
correctness, and supporting manual and automated optimization. Chosen prop-
erly, the compute model naturally captures the parallelism of the application,
making it easier to reason about its description and mapping.

A diversity of compute models and system architectures is needed to capture
the diversity of natural organizations and implementations of tasks. Nonethe-
less, evidence to date suggests that there are only a modest number, perhaps
tens of each, necessary to do this. Mismatches between the compute model and
the task increase the complexity and awkwardness of the design and limit scala-
bility. However, a good designers will be aware of the variety of compute models
and system architectures and judiciously select the ones that naturally match her
problem.

For decades, software engineers have faced the problem of managing com-
plexity in large, highly concurrent software systems. Software architectures [1]
were developed as one of the organizational tools to manage the complexity
and to guide the design of these systems. The system architectures identi-
fied here are a deliberate expansion and adaptation of software architec-
ture for reconfigurable computing, and many of the challenges are identical.
However, the additional flexibility of reconfigurable architectures opens up
design options and tradeoffs not typically present in the conventional mul-
tiprocessor systems for which software architectures have been traditionally
targeted.

The two main sections in this chapter introduce, respectively, compute models
and system architectures relevant to reconfigurable computing. For the reader
approaching these topics for the first time, it may make sense to read the
introductory sections, giving the detailed sections only a cursory review, for
a high-level understanding of why we need a variety of models and architec-
tures. As one delves further into reconfigurable designs or has a particular
application in mind to solve, the in-depth sections can serve as a reference
guide and provide deeper consideration of the merits and suitability of each
approach.

5.1 Compute Models 93

5.1 COMPUTE MODELS

Figure 5.1 provides a taxonomy of the major compute models discussed and
refined in this chapter. The leftmost branch is a set of models organized around
the flow of data between operators; in these we think about the computation as
a graph of computational operators and we reason about the correctness and
assembly of operation in terms of data arrival at the operators, the function per-
formed on the data, and the result produced and forwarded to other operators.
The rightmost branch is a set of models organized around synchronous steps
for the entire machine; here we think about the computation as a sequence of,
perhaps parallel, operations performing transformation to global state.

At the top of the figure is a generic multi-threaded model or, formally, a model
such as Hoare’s Communicating Sequential Processes (CSP) [2]. All of the models
below can be seen as refinements and stylizations on it. The multi-threaded model
gives little guidance to the programmer on how to organize and design programs.
Consequently, each of the refinements takes a stronger stand on how computation
and parallelism are organized and how we manage synchronization. In many
cases the refined models come with greater opportunities for optimization and
stronger verification guarantees.

As we will see, system architectures are typically built on some of the same
distinctions identified here in compute models (e.g., sequential control versus
dataflow). However, there is not necessarily a one-to-one matching between the
compute model used for capturing and reasoning about the application and
the system architecture used for implementation. For example, modern super-
scalar microprocessors efficiently execute sequential instructions streams using
dataflow techniques (e.g., Tomasulo [3]), and digital signal processors (DSPs)
execute synchronous dataflow graphs as a sequence of instructions.

5.1.1 Challenges
When approaching a problem, we want to know how to implement the desired
computation correctly, with the least effort, while exploiting the available

Dataflow

Multi-thread/CSP

Data parallel

Data-centric

Sequential control

Single-rate SDF

Dynamic DF with peek

Dynamic streaming DF

Synchronous dataflow

Sequential
control with
allocation

Finite
automata

FIGURE 5.1 � Overview of compute models.

94 Chapter 5 � Compute Models and System Architectures

hardware capabilities on current and future machines. We can decompose
this into specific challenges in selecting a compute model and developing the
implementation:

� How do we think about composing the application?
� How does the compute model naturally lead to efficient, spatial solutions?
� How does the compute model support design (de)composition?
� How do we conceptualize parallelism?
� How do we trade area for time in the compute model?
� How do we reason about correctness?
� How do we deal with technology effects and adapt to technology

changes?
� How does the compute model provide or guarantee determinacy?
� How do we avoid deadlock?
� What can we compute?
� How complex is it to optimize or validate properties of the

application?

The first thing the compute model gives us is a way to think about the appli-
cation. For example: Should we think of the application as a sequence of oper-
ations that need to be performed (sequential control)? As applying an operation
to a set of independent data items (data parallel)? As a set of transformations
on a data sequence (streaming dataflow)? To the extent these questions provide
a natural way to describe the application, they make it easier to compose the
application, identify the natural parallelism, and reason about correctness and
transformations. Ideally, the compute model acts as part of the bridge between
the application and the reconfigurable platform, providing a modest semantic
gap between the application and the system architecture. The system architec-
ture then brings to bear a large set of knowledge, accumulated across many
applications, about how to efficiently bridge the gap between the compute model
and the reconfigurable platform.

Reconfigurable platforms are most efficient when we can arrange for each
resource to do the same thing over and over, and keep most of the resources
active doing exactly the work needed for the computation. The compute model
should allow us to capture computations that can exploit this; further, it should
encourage the developer to express applications in a manner amenable to this
kind of computation. The restrictions and stylizations in some compute models
may limit the freedom in expressing an algorithm. However, limiting expressive
freedom that would lead to poor reconfigurable solutions is one of the ways
that a good compute model provides assistance and guidance. If the limitations
make a solution hard to express, that can be good guidance that the solution
approach is not well suited to a reconfigurable platform or that the compute
model is not the natural choice for the task.

A good compute model helps us decompose a problem into components that
can be designed and validated independently. This helps avoid the quadratic
explosion in complexity arising from potentially interacting resources, and

5.1 Compute Models 95

even avoid the linear cost necessary if we had to program each resource
independently. Sequential control models may focus on sequences of subrou-
tines; dataflow models, on composition of functions; and streaming dataflow
models, on hierarchical operator graphs.

Important to identify early is where the parallelism exists in an applica-
tion. Is it between data items (data parallelism), between coarse-grained tasks
(task parallelism), between operators in a task (instruction-level parallelism), or
within low-level arithmetic and binary operations (bit-level parallelism)? Iden-
tifying and exposing these opportunities assists area-time tradeoffs: On small,
economical platforms, we can tune a task for the modest area at the expense
of longer runtime, while on larger platforms we might exploit the additional
area to reduce compute time. Parallelism shows up implicitly or explicitly in
each compute model, and a good match in parallelism will facilitate successful
application scaling.

One of the most important tools provided by each compute model is a way to
reason about correctness, which ultimately facilitates scaling, implementation
adaptation, and optimization because it defines what transformations are pos-
sible without impacting correctness. In a sequential control model we identify
the visible state on each step and reason about the changes in it; in a stream-
ing dataflow model we reason about the output sequence of a computational
graph.

With rapidly advancing technology, the size, speed, and energy of computing
primitives (e.g., gates, wires, memories) are changing continually as they move
from platform to platform. Sometimes they move together, with compute, inter-
connect, and memory speeds all growing uniformly smaller. Often, however, they
change at different rates. As vendors have optimized memory for density and
logic for speed, relative speeds have diverged, and, as we reach into the deep
submicron regime, interconnect scales more slowly than compute. As a result,
simply moving an old design to a new platform is unlikely to optimally exploit
it. With increasing interconnect delays, perhaps the design needs more pipelin-
ing to distant locations; with slower memories, perhaps it needs more parallel
memory blocks servicing a compute block. The compute model helps us under-
stand the transformations permissible for the design, which may point to tech-
niques the system architecture can employ for tolerating changes in constituent
delays. Stall signals, for example, allow sequential control to slow down only
when uncommon operations run at slower speeds than the scaled speed of the
rest of the logic; data presence (see Data presence subsection of Section 5.2.1)
allows streaming dataflow computations to tolerate variable delays within and
between operators.

Given the same set of inputs, we might want our computation to produce
the same outputs. That is, we often want our computation to be deterministic.
Certainly, if the result of the computation differs each time it is performed, it
becomes harder to debug our application or demonstrate its correctness. This can
be a mild problem with sequential applications, where dependence on dynamic
effects (e.g., dynamically allocated addresses) may change the program behavior;
it becomes acute in concurrent systems. If there is variability in the relative

96 Chapter 5 � Compute Models and System Architectures

timing of operations, the order of events can change, and without care this may
result in different visible application behavior.

Further, as we scale to different hardware capacities, we may exploit different
amounts of concurrency and deliberately change the order of primitive events.
Nonetheless, we might want to guarantee that the application remains deter-
ministic, providing the same results for any legal parallelism. Some compute
models with limited constraints may not be able to guarantee such determinacy
but place this burden on the individual programmer. Most, however, come with
disciplines that the developer can use to provide determinism, and some come
with a sufficient set of model restrictions to automatically guarantee it.

Still, sometimes we want or need nondeterminism to deal with variations in
the outside world (e.g., waiting for human input) or with deliberate variations
to avoid bad behavior (e.g., randomized algorithms). Sometimes, too, there are
multiple “correct” results and it is efficient to allow the system to select any
of them, perhaps in a way that looks nondeterministic to the application as a
whole. The point here is that nondeterminism always adds complexity to con-
struction and validation, so it should be used sparingly and with care [4]

When dealing with shared or limited resources or variable operations in con-
current systems, we must also watch out for deadlock; in other words, we must
watch for cases where the system may enter a state that prevents it from making
forward progress. Often deadlock occurs when we attempt to give exclusive
access to resources in an application. If a set of tasks end up waiting for each
other—that is, the task set has a dependent cycle waiting for resources—the
tasks can become deadlocked and the application will never complete. This can
happen in purely deterministic computations, but should be at least identified
by reasonably testing if the paths through the code are largely data indepen-
dent. However, if the paths are largely data dependent, and deadlock only occurs
for certain data values, identifying it with ad hoc testing can be difficult. When
resource allocation and sequencing are nondeterministic, avoiding deadlock can
be even more tricky. For these reasons, it is necessary to carefully guarantee that
none of the legal, nondeterministic choices leads to a deadlock situation.

Computational theory gives us a well-developed set of models for computa-
tion. The Church–Turing Thesis [5–7] suggests that there is a very robust class of
computing models that are all equivalent to the Turing Machine or the Lambda
Calculus model. In fact, most of the models discussed here are Turing Complete.
However, some refinements, such as synchronous dataflow (see Synchronous
dataflow subsection of Section 5.1.3) or finite-state sequential control (see Finite
state subsection of Section 5.1.4) models, are specifically less powerful. As will
be noted, these restricted models give up expressive power in order to gain more
powerful optimization and analysis.

We want to be able to say that an application always has certain properties.
Ideally, we can verify that our expression of the application is correct, or, more
specifically, that our captured algorithm is deterministic or that it can never
deadlock. Further, to facilitate automated optimization and area–time scaling,
we must guarantee that any changes made to the implementation preserve deter-
minism and freedom from deadlock. Thus, we are ultimately concerned with the

5.1 Compute Models 97

computational tractability of verification and optimization. In Turing–Complete
compute models, where anything is allowed, verification and general optimiza-
tion can be undecidable; that is, without solving the halting problem it is not
possible to analyze the design and say whether or not it is correct, determinate,
or deadlock free. In more restricted models, verification or optimization may be
decidable but NP-hard, meaning that we know of no polynomial time solutions
to perform the optimization. And in even more restricted models, verification
and optimization may be polynomial time. Consequently, we have a trade-off
between the expressiveness and the strength of automation we can bring to bear
on the problem, which suggests that the designer carefully select compute mod-
els that are expressive enough for her problem but not unnecessarily so.

5.1.2 Common Primitives
Two common primitives useful for defining and reasoning about compute mod-
els are functions and objects.

Function
A function is simply a deterministic, mathematical function that maps each finite
input to a finite output:

Y = [y0, y1, . . ., yn] = f(X = [x0, x1, . . ., xm])

A function depends on no hidden state but only the input arguments to it, and it
modifies no state values. Examples include addition, square root, and discrete-
cosine transform (DCT). Functions can be composed, and the result is another
function. For example:

y = (f ◦ g)(x) = f(g(x))

Functions are interesting as a building block for several reasons:

� Functions are a useful formal primitive for defining computational
models.

� Functional operations can be a tool or clue to parallelism—since
functions do not modify state, they may be evaluated in parallel;
evaluation of functions on different data can often be heavily pipelined.

� Functions can be a tool or guide to recurrent computations—those that
show up regularly in the description of a computation are candidates for
computational blocks that can be profitably implemented in spatial
reconfigurable logic.

Transform or object
We can associate state with a function in order to create a common building
block we can think of as a transform, or a primitive version of an object. In
signal processing, we might think of a general transform as taking a sequence

98 Chapter 5 � Compute Models and System Architectures

of inputs and computing outputs based on them as well as on some finite state
from the previous output:

Yi = f(Xi,Yi−1)

In an object-oriented model, we might think of the object, O, being the
combination of state, O.s, and a function, O. f, with each invocation evaluat-
ing the function on the input and the state and returning an output and a new
state value:

Y,O.si = O. f(X,O.si−1)

Examples of transforms include accumulators, finite-impulse response filters
(FIRs), infinite impulse response filters (IIRs), and linear-feedback shift regis-
ters (LFSRs).

This primitive object or transform is more powerful than a pure function, but
the inclusion of state may restrict its freedom of usage and implementation. As
described, the state is finite, and each object can be viewed as a finite automata.
The model says that the sequential invocations of an object see the state from
the previous invocation; this demands that we complete the function’s evaluation
before starting the next invocation—or, at least, that we provide an implemen-
tation that produces the same net output sequence and state updates as though
we had done so. For simple functions (e.g., LFSRs) or those where the state can
be maintained without computation (e.g., FIRs), we can still pipeline the opera-
tion heavily. However, for complex functions (e.g., IIRs) the state feedback may
limit our ability to heavily pipeline the object.

Nonetheless, object state is owned by the object, so evaluation of an object
affects no others. Consequently, distinct objects with a complete set of inputs
can evaluate in parallel; they impact each other only by communicating values
between them. Further, objects with the same function may be able to share the
same hardware to create commonality. This is useful both for enabling area–time
trade-offs and for keeping a spatial datapath active in repeatedly performing the
same operations. If sequential dependencies within an operator limit pipelining
and we have many objects of the same type, it may be possible to C-slow the
function evaluation (Chapter 18) to use the same hardware to service multiple
objects.

In rich object-oriented models, we may associate additional capabilities with
objects. We will introduce some of these as we explore more powerful compute
models in the following sections.

5.1.3 Dataflow
We begin our detailed discussion of compute models with the left branch in
Figure 5.1. In these models, we reason about the computation based on the flow
of data. Computations are performed by operators, which can be either functions
or objects as defined previously. We connect the operators into a graph, linking
the output data from one to the input data of another. When its inputs arrive,

5.1 Compute Models 99

33 33

1

(a)

1

33 33

(b)

1 1

33 33 33 33

(c)

FIGURE 5.2 � Computation on a dataflow graph: (a) graph without inputs, (b) graph with partial
inputs, and (c) arrival of matched input on left ×-operator allows it to evaluate and compute
its output.

an operator can evaluate, produce its outputs, and send them to any operators
connected to it (see Figure 5.2).

The dataflow graph exposes considerable parallelism and freedom in evalua-
tion permitted to an implementation. The links capture the communication and
dependence structure of the computation explicitly.

There is a large hierarchy of dataflow models with different flexibilities and
challenges. For example, the simple models can be easily mapped to spatial,
reconfigurable computation. The more flexible and powerful models are more
complicated to implement efficiently, and make it difficult to guarantee correct-
ness. However, for some applications, these more powerful models may be essen-
tial to efficiently describing and executing an application.

Single-rate synchronous dataflow
One of the most primitive dataflow models is that of a static graph of operators.
The graph is created once, before the application executes, and persists unchanged
throughout execution. In contrast, in the Streaming dataflow with allocation
subsection (see page 102), we will consider models that allow the dataflow graph to
change as part of the computation. We call the persistent edges between operators
streams or pipes, as they deliver a sequence of values from a single producer to a
single consumer, and we identify each value carried over these streams as a token.
Such a graph of operators can itself be viewed as an operator, so this provides a
model for composition of more powerful operators from more primitive functions
and objects (see Figure 5.3). Computationally, this still provides the power of a
finite automata, but the dataflow view is often a more natural way to describe,
compose, and reason about the computation.

Synchronous dataflow
In single-rate synchronous dataflow, we assume that each transform operator
takes in a single set of input tokens and produces a single set of output tokens.
It is a simple generalization to allow the model to take in multiple tokens on a
single stream link or to produce multiple tokens on an output stream link for one
logical evaluation of the function. For example, a down-sample operator might
read two inputs and only output one value, discarding every other input token.
The number of inputs received from each input stream, or outputs produced on
each output stream, can be different; for example, an operator might read two
A tokens for every B token. However, as long as there are a constant number of

100 Chapter 5 � Compute Models and System Architectures

FIGURE 5.3 � A single-rate static dataflow graph.

10 10

1

101

1
1

1

1

1
copy

update

F

FIGURE 5.4 � A multirate dataflow graph.

tokens consumed from each input stream and tokens produced on each output
stream on each such evaluation, the model retains the same power as before, but it
now allows us to efficiently express multirate streaming applications; that is, some
loops in the dataflow graph can operate at much lower frequency than others.

An inner loop might execute on every input to the graph, while an outer loop
might perform updates only once every 10 inputs as shown in Figure 5.4. The
numbers on the operator I/Os in Figure 5.4 indicate the rate of I/O consumption
or production. The update module produces a single output every 10 tokens;
the F function consumes a single input from update every tenth data input and
output token; and the copy and subtract units each produce a single set of output
tokens for each set of input tokens.

This is the Synchronous Dataflow (SDF) model [8], and it retains the same
computational power of a finite automata. However, it allows multirate designs to
be expressed more efficiently, explicitly identifying the relative operating rates of
each of the computational functions in the graph. An implementation can use this
information when provisioning operators and scheduling the sharing of physical
resources. The computation is completely deterministic, and it is possible to
automatically identify when operator rates are mismatched, leading to deadlock,
and to automatically identify any buffering necessary during execution [9].

Dynamic streaming dataflow
Synchronous dataflow retains analysis simplicity because there is no data depen-
dence in the consumption or production of tokens. Every evaluation of an object
consumes and produces the same number of tokens regardless of the data.

5.1 Compute Models 101

in

out0 out1

Switchs

in0 in1

out

Select s

(a) (b)

FIGURE 5.5 � The dynamic dataflow primitives—switch (a) and select (b).

in

out

fun0 fun1select_fun

Select

Switch
s

s

FIGURE 5.6 � Data-driven function selection in the dataflow model.

A more general model allows the production of input and output tokens to
depend on the object state or the values of the inputs. We can fully capture this
additional power by adding the switch and select operators, shown in Figure 5.5,
to a persistent object graph.

In the figure, these two operators are data dependent, producing data on only
one output, or consuming the inputs selectively, based on an input value. Equiv-
alently, this can be captured by generalizing the notion of an object to allow its
state to determine the token consumption and production actually performed
on each evaluation. This allows us to efficiently deal with data-dependent cases,
such as the following:

� Performing different operations based on the data (Figure 5.6).
� Varying the rate of the output relative to the input, such as in a

compressor or decompresser (e.g., Huffman encoder).
� Iterating a computation a variable number of times to yield convergence

(e.g., Newton–Raphson method for finding roots of equations).

In some cases these operations can be data independent, but only at the expense
of more work (e.g., evaluating both functions in Figure 5.6 and then discarding

102 Chapter 5 � Compute Models and System Architectures

one result). However, if no constant bound can be placed on the iterations
(e.g., the number of cycles required for convergence), data dependence is a
necessity, not just an efficiency optimization.

The addition of data-dependent operators changes the power of the streaming
dataflow, making it more difficult to analyze statically. The computation remains
deterministic, but data-dependent production and consumption rates on oper-
ators necessitate reasoning about the streams as first-in-first-out (FIFO) token
buffers. The addition of unbounded buffers between operators is sufficient to
make the model Turing Complete, and it is no longer always possible to deter-
mine the FIFO buffers’ required capacity. If the implementation buffer capacity
is too small, the application may artificially deadlock. This demands either that
the developer identify the necessary buffer size to avoid deadlock for each appli-
cation or that the implementation provide dynamic support to allow arbitrary
buffer expansion at runtime [10].

Dynamic Streaming Dataflow with Peeks
So far, we have demanded that the object evaluate based on a valid set of input
tokens. In the data-dependent case, we allowed the value of the present tokens to
determine which other tokens were consumed. We can further allow the opera-
tor to perform an action or modify state based on the absence of a token; that
is, we can allow it to peek to see if an input is present. For example, a merge
unit might have two inputs and forward either token to its output whenever
there is some input present. As the merge unit example suggests, this creates
new freedom for efficient evaluation but also introduces nondeterminism. The
operator can now behave differently based on the arrival timing of its inputs.
The data-dependent streaming dataflow model discussed earlier only introduced
concern about deadlock but remained deterministic. The Dynamic Streaming
Dataflow with Peeks model forces the developer to manage determinacy.

Streaming dataflow with allocation
The parallelism in the application is, in general, data dependent. Consequently, it
can be useful for the operator dataflow graph to evolve on the basis of the data in
a computation. In a telecommunications application, the number and type (e.g.,
voice, data) of connections change over time. Each channel has its own noise
characteristics, perhaps requiring filter complexity (e.g., number of taps, length
of echo cancellation) different from the others’. To accommodate these changes
in the computational demand of an application over time, we must change the
dataflow operator graph. We could force the graph construction to a different
compute model and stay with graph evaluation as one of the models reviewed
earlier. Alternately, we must expand the compute model with the ability to create
new operators and link them into the graph.

The key addition now is for our operators to be able to perform instanti-
ation (e.g., new) of operators and streams and to be able to connect them.
Even if operators remain finite state, instantiation provides the ability to
create unbounded state by growing the object graph to unbounded size, with
arbitrary data structures implemented as subgraphs. This provides a more

5.1 Compute Models 103

efficient path to achieving Turing Completeness than the unbounded buffers in
dynamic streaming dataflow.

While powerful, dynamic allocation means that the logical graph is changing
during execution, and with dynamically changing computational graphs, it is no
longer possible to optimize, schedule, place, and route them before execution.
As a result, dynamic allocation gives us a model for the application to change
during execution that can exploit the capabilities of a reconfigurable computing
platform. However, it can also force a need for reconfiguration during execu-
tion, so allocation should be used with care. If it is infrequent, and allocated
objects are long-lived, the cost of runtime management and reconfiguration can
be amortized out over long usage periods.

General dataflow
Once we add allocation of operators, the model becomes powerful enough to
be used as general dataflow computation. Some dataflow models do not treat
operators or links as persistent (e.g., Arvind and Nikhil [11] and Culler et al.
[12]). Rather, the dataflow is instantiated during a function or object call, used
once, and then it is disposed. This does not change the model, but it does change
the relative rate of allocation versus dataflow usage in a significant way. On
typical reconfigurable platforms, dataflow construction is expensive, making it
more difficult to efficiently map models that dispose of and reconstruct dataflow.
For efficient execution on a reconfigurable platform, the compiler must discover
opportunities to create dataflow operator graphs and reuse them across many
invocations.

5.1.4 Sequential Control
The most widely used models for capturing and reasoning about algorithms are
based on some form of sequential operation, including popular programming
languages (e.g., C, Java, Fortran), control structures for hardware (finite-state
machines), and formal models of computation (Deterministic Finite Automata,
Sequential Turing Machines). The basic idea behind these models is that com-
putations are defined as a sequence of primitive operations performed on some
data state. The primitive operations define how state is transformed, including
the state that determines which primitive operation(s) to execute next. Simple,
concrete embodiments of this include sequential Instruction Set Architecture
(ISA) processor models [13], but the state transforms can be much larger,
may be coarse grained, and may include substantial parallelism on each
sequential step.

Sequential control allows us to decompose a problem into simple, primitive
operations. One thing happens at a time, making it relatively easy to reason
about what each operation can do to the state.

Execution where only one primitive operation occurs at a time does not
take full advantage of spatial reconfigurable architectures, leaving almost all
the hardware idle as operations are sequentialized. Coarse-grained sequential
operations that perform complex functions on large amounts of data may

104 Chapter 5 � Compute Models and System Architectures

provide sufficient parallelism to match the reconfigurable hardware. While strict
sequentialization of operations defines the intended results in the model, careful
analysis can often reconstruct a data dependence graph (Chapter 7), essentially
the dataflow graph (see Section 5.1.3), to allow several operations to proceed
in parallel and at the same time maintaining the sequential model semantics.
Still, care must be taken in the sequential expression to avoid introducing false
dependencies that inhibit parallelism. In general, the sequential expression can
be a poor match for the parallel capabilities, and sequential models tend to lead
the designer away from good reconfigurable implementations. There are, how-
ever, characteristics of our computations that sequential control may capture
well at a high level.

� Data-dependent calculations are naturally captured with branching.
Sequential control here allows us to express the selection of the
computation we need to perform on the data.

� Phased computations where the algorithm does widely different things at
different times may also be captured well with sequential control. If each
phase requires widely different computation, spatially supporting them
all at once may leave much of the reconfigurable hardware idle during
the calculation. Transitions between phases gives us a way of expressing
and identifying points in the program where it may be useful to
reconfigure the hardware for the different portions of the task,
instantiating only the relevant hardware for each phase.

Finite state
The simplest models of sequential control operate with a finite amount of state
and are computationally equivalent to finite automata. Given this, verification
of optimized computations can be performed in polynomial time with state
reachability [14].

Sequential control with allocation
In more powerful models of sequential computation, we allow operations that
allocate additional memory (e.g.,malloc,new). Coupled with data-dependent
branching, this allows the computation to allocate an unbounded amount of
state, making the model Turing Complete, which in turn means that we cannot
generally prove a bound on the amount of memory the application may require
to run to completion.

Single memory pool
As noted earlier (see Section 5.1.2), because of an object’s internal state we must
carefully sequence the operations on it. We can think of each logical memory
pool in a sequential model as an object with state so every operation on a sin-
gle memory can be dependent on every other. If static analysis cannot prove
that two users of the memory operator modify disjoint state in the memory, the
operations must be sequentialized to preserve sequential correctness. In single-
memory compute models, such as the C programming language or a traditional
ISA execution environment, all memory operations must be sequentialized. This

5.1 Compute Models 105

sequentialization significantly limits the parallelism a compiler can extract from
a single-thread, single-memory compute model. Consequently, large C programs
that have not been carefully written to avoid these dependencies can be difficult
or impossible to parallelize. Nonetheless, aggressive compilers can sometimes
succeed in decomposing the monolithic memory into disjoint memory pools
(e.g., Babb et al. [15]).

5.1.5 Data Parallel
Some applications are naturally captured as performing identical transforma-
tions on a set of independent data items. For example, we may need to perform
the same color–space conversion to every pixel in an image, or perform the same
match test to every data item in a database. Even though we could express such
a task as a sequential loop over all the data items, it is often difficult for a com-
piler to prove the independence of each data item transform, and it can be tricky
for the developer to identify which loop operations allow independent compu-
tation. Therefore, it is often useful to have an explicitly data parallel model that
allows us to reason about and express algorithms as a sequence of transforma-
tions on aggregate datasets.

Once the desired computation is captured as a sequence of independent,
identical, potentially parallelizable operations, we have considerable freedom
in implementation for area–time tradeoffs. The computation can be rendered
spatially and kept active as a heavily pipelined vector unit (see Vector coproces-
sors subsection of Section 5.2.4). Additional, parallel units can be allocated as
the dataset demands and the platform permits.

The model typically remains sequential at the core and can suffer from arti-
ficial parallelism limits based on the provided sequential model. In particular, it
may be hard to determine cases where multiple, independent data parallel oper-
ations can occur simultaneously. Although the parallelism on a single operation
is limited by the size of the aggregate data item, the data parallel model does
give general high-level guidance to the developer that often trends in the right
direction for efficient spatial realizations.

5.1.6 Data-centric
In the streaming dataflow model, the designer thinks of the application as a
transformation graph with data generally flowing through operators with fixed
state. For some applications, such as physical simulations, it makes sense to
turn that around and think about the operators and their state as the primary
data structure, and reason about the computation as transformations on the
operator state. For a network flow problem, we might construct the graph for the
network; each operator maintains state to represent the flow through its links
and the accumulating overflow at the node, and each operator sends tokens
over the edges between operators to reroute flow. At each sequential step we
may allow each operator to process a set of inputs and send a set of outputs.
At a high level the operation is data parallel, with each operator performing its
node update operation; however, locally the computation may be data and state

106 Chapter 5 � Compute Models and System Architectures

dependent. High-level data parallel instructions to the operators can sequence
phases of the computation (e.g., preflow and push phases in network flow).

Applications that regularly visit many nodes on large graphs of data are a
natural source of parallelism. Even if the nodes are not identical, there are
usually only a small number of different node types, providing an opportunity
for sharing of spatial operators. Without strict dataflow communication order-
ing, additional disciplines may be necessary to maintain determinacy. Efficient
execution may require load balancing and sharing if graph nodes have low or
widely varying activity factors.

5.1.7 Multi-threaded
A widely used model for parallelism is multi-threading or some form of CSP [2].
Basically the model is a collection of sequential control processes with commu-
nication links between them, either as direct communication edges or as shared
memory. Multi-threading is a very general model and, in fact, any of the models
presented so far could be seen as subsets of it.

The problem with multi-threading is that it is too general and powerful to
provide guidance for application development and correct implementation. It
permits the expression of solutions that are difficult to reason about, and it pro-
vides little guidance on good solutions and guaranteeing determinism [4]. How
should the application be divided into threads? How do the threads synchronize
with each other? How do we guarantee determinism and avoid deadlock? In our
streaming dataflow model, we think of each thread, the operators, as transforms
on the data flowing through them, and we synchronize based on token flow; in
our data parallel model, we think of each thread as a separate data item and
update each in lockstep; in our data-centric model, we think of each thread
as an active object in the graph, performing updates on barrier-synchronized
steps.

When faced with applications that demand more power than is available in
a more restricted model, we should think about the power actually necessary
for our application and the extent to which we can define a restricted discipline
for using the multi-threaded model that answers the questions the model does
not answer for us. What do our threads and operators represent? What is the
synchronization discipline? What is our basis for reasoning about determinacy,
deadlock, and correctness?

5.1.8 Other Compute Models
The compute models reviewed here are by no means exhaustive. From the start,
we want to emphasize the need to consider multiple models and choose the one
most natural for the application. The set just described are useful in reason-
ing about the architectures and applications developed in this book and may
be most helpful for reasoning about reconfigurable applications. Nonetheless,
as we master these models and encounter applications that match poorly with
them, we should look for others that further ease the conceptualization of an

5.2 System Architectures 107

application. (For other summaries of compute models see Lee and Sangiovanni-
Vincentelli [16] and Lee and Neuendorffer [17].)

5.2 SYSTEM ARCHITECTURES

Whereas the compute model helped us understand the natural composition and
parallelism in the application, the system architecture deals primarily with how
we organize the implementation. As noted (introduction to Section 5.1), applica-
tions in a compute model may be mapped to any of several system architectures.
The choice of architecture will depend on technology costs and resource avail-
ability compared to the application resource and performance requirements. For
example, a platform that is very small compared to the size of the task drives
serialization in the implementation, which may favor sequential control. Even
here, though, we have important decisions to make about the level at which the
sequential control is exercised (e.g., coarse-grained phasing) (see Phased recon-
figuration manager subsection of Section 5.2.2) versus cycle-by-cycle sequencing
(see FSMD, VLIW datapath control, and Processor subsections of Section 5.2.2).

Figure 5.7 is an overview of the system architectures, and their variants, cov-
ered in this section. To help the designer easily identify those that may be rel-
evant to his or her specific problem, we open the description of each one by
identifying the major problem or challenge it addresses.

5.2.1 Streaming Dataflow
We best exploit a reconfigurable platform when we can spatially arrange spe-
cialized computational pipelines and keep them each actively working on useful
computation at a high cycle rate. How do we organize computations that can
exploit this efficient use and arrange for data to feed the pipelines?

In the simplest case, we can use one of the streaming dataflow compute
models (Section 5.1.3) directly as a guide for system implementation; that is,

Multi-threaded

CFSMD Message
passing

Shared
memory

Processors
with channels

Streaming
dataflow

Sequential
control

BSP

CA
Streaming

coprocessor

FSMD VLIW Processor Instruction
augmentation

Phased
reconfiguration

manager

Worker
farm

SPMD SIMD Vector

Vector
coprocessor

RFU

Data
parallel

Coprocessor

FIGURE 5.7 � Overview of system architectures.

108 Chapter 5 � Compute Models and System Architectures

we can map each operator to its own physical datapath and interconnect them
all via configured interconnect. The efficiency of spatial pipelines on FPGAs and
reconfigurable architectures makes this attractive. Further, the streaming model
shows where in the detailed, cycle-by-cycle behavior of operations we have the
implementation freedom to adapt to target platform delays. This architecture is
known as Pipe and Filter in the literature [1]. Chapters 8 and 9 describe appli-
cations and programming that use it.

In the remainder of this section, we highlight four detailed techniques that
are often useful in implementing streaming dataflow architectures.

Data presence
Direct connections of pipelined datapaths may pose challenges to guaranteeing
the proper streaming dataflow semantics, offering efficient implementations, or
allowing composition. These challenges include:

� Configured interconnect paths between operator datapaths may be long
and can vary on the basis of platform, implementation technology, and
operator placement. Long interconnect paths may limit the speed of
operation.

� Different implementations of an operator may operate at different rates,
and we want to be able to interchange these implementations without
redesigning the implementations for all of the operators that interact
with this operator.

� In dynamic dataflow models, an operator may not be able to consume an
input, or produce an output, on every cycle of operation.

To promote easy and efficient operator composition, we can associate a “data
present” signal with each data item. We design the physical functional units
so that they can stall while waiting for the required inputs to be present. This
decouples the clock cycle for interconnect and compute from the logical align-
ment of data, allowing us to pipeline the datapaths and the interconnect paths
between them without changing the meaning of our computation. In many
cases, we need to treat the interconnect paths as FIFO queues between oper-
ators; further, we can use back-pressure to indicate when a stream link between
operators is full and so the upstream operator must wait before producing addi-
tional results.

The discipline makes the implementation of an operator independent of the
implementation of others with which it communicates, allowing each to run at
its desired clock rate even as all of them are composed together to build a larger
system. This permits a variety of composite implementations:

� Operators and interconnect can all be designed to a single target clock
frequency.

� Operators may run on separate clocks that are based on a common base
frequency.

� Operators and interconnect may run fully asynchronously, handshaking
locally.

5.2 System Architectures 109

� Operators may use a Globally Asynchronous, Locally Synchronous
(GALS) model, with local operator clocks and asynchronous handshaking
between operators.

It is still necessary to pay attention to the length of logical cycles in the orig-
inal streaming dataflow graph; a loop in the graph may force sequential evalu-
ation of all the graph’s operators. Even though we can physically pipeline the
operators and the links, the logical alignment of data may force the operators to
effectively operate at lower rates, leaving the datapaths and interconnect inactive
on most cycles. Such dependencies may motivate sequential sharing of opera-
tors or the resources inside them.

Datapath sharing
Ultimately, we must fit our entire dataflow graph onto our physical platform.
For efficiency, we hope all of the hardware allocated to the dataflow graph is
put to productive use on each cycle. Following are specific scenarios we may
need to address:

� The substrate may not be large enough to hold the entire dataflow graph
spatially.

� Multirate dataflow graphs may leave some operators idle while others are
busy.

� Cyclic dependencies in the dataflow graph may make it impossible to
keep all the operators active simultaneously.

To use the datapath hardware efficiently in cases such as these, it is often
useful to share a physical datapath among multiple operators. In the simplest
case, we share identical operators so that the datapath remains the same, only
adding the unique state associated with each of the operators. In more compli-
cated cases, we might generalize the datapath so that it can implement two or
more types of operators.

When we share operators, we need to identify which data inputs are associ-
ated with which logical operator. This can be simply orchestrated by scheduling
and pipelining for static-rate operators, but for dynamic operators and variable
implementation delays, it may be necessary to further tag the data with infor-
mation that identifies the logical operator for which it is destined.

Streaming coprocessors
With extreme variation in operator frequencies, large numbers of operators, and
very small platforms, operator sharing may not be sufficient to provide an effi-
cient solution. Here, even allocating a single datapath for a particular hardware
type may leave the datapath highly underutilized or it may still demand more
area than the platform provides.

In these more extreme cases, it is often useful to schedule the low-rate
operators onto an embedded or attached processor (see Processor subsection
of Section 5.2.2). By augmenting the processor with streaming instruc-
tions, processor-mapped operators can communicate efficiently with streaming

110 Chapter 5 � Compute Models and System Architectures

dataflow. Data destined for active operators can be forwarded spatially, while
data intended for inactive operators can be queued in memory. Data presence
allows the processor tasks to operate without knowing the size of the reconfig-
urable platform or the residency of operators. Data presence on stream reads by
the processor can be used like a memory stall, tolerating varying implementa-
tion delay on the reconfigurable platform or triggering an operator swap, similar
to a thread swap on an I/O or virtual memory page miss.

Interconnect sharing
In spatial computations, interconnect often consumes a substantial portion of
the hardware area and can often be a performance bottleneck. Consequently, we
should always be concerned about using the interconnect efficiently. A direct,
configured connection between a source and a sink can be inefficient when

� The link between operators is used infrequently because of a slow
datapath or a low-rate operator relative to the rest of the computation.

� Because of dynamic data dependence, the communication rate on many
links is highly variable.

To optimize interconnect in these cases it may be possible to reduce the inter-
connect requirements on these interconnect links by sharing them. Links can be
shared in a variety of ways, including shared bus, pipelined ring, and network-
on-a-chip. These can be statically scheduled in data-independent cases and
in data-dependent cases with low communication variability, or dynamically
managed when the data-dependence produces high variability.

5.2.2 Sequential Control
While sequential control is familiar and heavily used for highly sequential
machines and algorithms, it is most interesting to us as a way to organize syn-
chronization and control of a large set of spatially parallel operators, particularly
when

� The compute task is too large to fit spatially onto the available computing
resources, so we must share the resources in time.

� Data dependencies result in low utilization of the datapath, so we can
share resources to produce a smaller design with little or no impact on
compute time.

Even when we start with a dataflow or data-centric computation, it may be
useful to control the implementation, or parts of it, in sequential manner; this
is especially true when we share spatial operators in time to economize on space.

A common idiom is to

1. Start with the computation data dependence graph (e.g., Figure 5.8 (a) or
Figure 5.2) based on the description in the compute model.

2. Identify a base set of datapath elements that can implement all the
operators in the computation graph.

5.2 System Architectures 111

A XBC

A X B C

(a) (b)

FIGURE 5.8 � A dataflow graph for y = A x2+ B x + C with three multiplies and two adds (a); a
shared datapath (b) with a single multiplier and adder with state registers and multiplexors.

3. Schedule the operators in the compute graph onto the datapath elements.
4. Add data storage and interconnect to hold intermediate operator state and

forward data between the locations where producing and consuming oper-
ations are performed.

In the simplest case, we might allocate a single datapath element for every oper-
ator in the compute graph. While there is no sharing in this case, it may still
be necessary to control when the elements should sample their inputs and pro-
duce outputs. This can be done in a purely dataflow manner as suggested in
the Data presence subsection of Section 5.2.1; however, for modest blocks in
a single clocking domain with predictable datapath timing, it can be more effi-
cient to centrally control the operators, sending control signals to each datapath
element from a central control unit.

In the more general case, we have fewer datapath elements than operators and
must orchestrate the sharing of those elements and interconnect. Intermediate
values in the original computational graph that are not consumed in the cycle
immediately following production, or immediately after being routed from the
source to the destination, are stored temporarily in memories (see Figure 5.8).
Object state that persists through the computation must be stored in memory or
registers and routed to the associated datapath when the operator has its turn
to use the datapath.

Within this paradigm, the key piece of freedom is the selection of the
base datapath elements and the assignment of operators to them. This selec-
tion is where we can exploit area–time tradeoffs, allocating more spatial
datapath elements as we have more area available and want to reduce the

112 Chapter 5 � Compute Models and System Architectures

time for computation; it is also where we have opportunities to instantiate
highly specialized operators that are matched to the needs of a particular task
(e.g., Chapter 22).

The design community has identified a number of stylized forms for sequential
control over the years. In the remainder of this section, we highlight a number
of organizations and note when they may be useful for managing reconfig-
urable resources.

FSMD
Once we have selected the operators, assigned them to datapath elements, and
scheduled the operations, we still need some way to implement the central con-
trol that manages resource sharing and orchestrates the routing of intermediate
data among datapath elements.

One common way to support this control is to build a finite-state machine
(FSM) that controls the operation of the datapath; this is called a Finite-State
Machine with Datapath (FSMD) [18]. The FSM controller can assert the various
controls (e.g., multiplexer selections, load or read/write enables, datapath opera-
tion selection) on each cycle and provide cycle-by-cycle sequencing of them (see
Figure 5.9). Further, the FSM can take inputs from the datapath and, based on
their data, branch to different control sequences.

A data-dependent operator might be internally implemented as an FSMD,
with the state transitions in the FSM controlling the input consumption and
output production (see Dynamic streaming dataflow subsection of Section 5.1.3,
or Section 5.1.6).

A XBCStart

F
S

M
 c

on
tr

ol
le

r

3

1

FIGURE 5.9 � FSMD for a single multiply and add datapath for quadratic equation evaluation.

5.2 System Architectures 113

VLIW datapath control
While we can build a custom FSMD for each application, the FSMD form does
not, itself, provide disciplined organizations for state storage and data routing,
nor does it suggest any organizing principles for managing the control of each
datapath. As a result:

� With heavy sharing there is a proliferation of intermediate state that
needs to be managed.

� With many datapath operators, state memories, and switched
interconnect, there is a proliferation of control signals that must be
distributed to these compute, memory, and interconnect elements.

� For generality, robustness to change, and the opportunity to deploy the
datapath for multiple tasks, it may be useful to be able to change the
control sequencing without rebuilding the entire controller.

One stylization for sequential control is the Very Long Instruction Word
(VLIW) model, which in its most primitive form is closely related to Horizontal
Microcode [19]. In VLIW we start with the collection of datapath elements as
before. These can be homogeneous or heterogeneous and provisioned accord-
ing to the needs of the task. We then add one or more memory banks to hold
inputs to each datapath element, and we add switched interconnect between
the datapath elements and the memories. The controls to the memories, dat-
apath elements, and interconnect become the long instruction word, to which
we allocate a wide memory, perhaps distributing it with the memory cells and
memory outputs local to the compute, interconnect, and memory elements they
control (see Figure 5.10). To issue an “instruction” (see Chapter 36), the con-
troller sends a single instruction address to the wide memory, and the memory
output tells every datapath element, memory, and interconnect switch how it

Register
files

Long instruction
word memory

Program
counter

� �

FIGURE 5.10 � VLIW-style control of a single multiply and add datapath.

114 Chapter 5 � Compute Models and System Architectures

should be configured on that cycle of operation. Typically, the datapath is con-
figured to send one or a few bits back to the controller that can be used to select
the next instruction address to allow data-dependent branching.

When VLIW was first introduced for general-purpose processing (e.g., Ellis
[20]), the datapath elements used were generic (e.g., ALUs, FPUs, load/store
units), of modest size, and fairly homogeneous. With FPGAs and reconfigurable
architectures, we have the opportunity to select the datapath elements based on
the task, make them highly specialized, and potentially even make them fairly
coarse grained (e.g., a DCT step, motion estimation step, or AES encryption
step).

Processor
The FSMD and, to some extent, VLIW control both assume that there are com-
mon datapaths that can be shared, and both allow multiple, concurrent opera-
tions to exploit the spatial parallelism available on an FPGA or reconfigurable
device. However, for some computations our premium may be space saving
rather than operation performance. That is, overall system performance may
depend on this operator fitting onto the platform and being performed infre-
quently, but the time the operator takes may have little impact on it.

A conventional, sequential processor or microcontroller with a single arith-
metic logic unit (ALU) is the extreme end of sharing, where we

1. Allocate a single, universal datapath element.
2. Decompose all operators into sequences of operations on this primitive

datapath element.
3. Provide state storage for all intermediates between the cycle of production

and the cycle of consumption, including storage for all object state.
4. Define a narrow instruction to control the datapath element and state

storage.
5. Provide a sequencer and branch unit to sequence the instructions on the

datapath in a potentially data-dependent manner.

Because this allocates minimal area to computation and interconnect, the total
area for the computation can be very compact; however, compactness comes
at the expense of most of the resources going to control, instruction, and state
management. As a result, only a tiny fraction of the consumed computational
resources go directly to implementing the application (see Chapter 36).

If heavy serialization to economize area is what we need for an entire task,
a dedicated processor is certainly more efficient than a processor configured on
top of an FPGA. Nonetheless, there are a few scenarios where a processor con-
figured on top of an FPGA might be reasonable. Such scenarios would typically
exploit the flexibility of either building a particularly specialized and lightweight
processor for a specific task and/or embedding one in a flexible and highly inte-
grated manner alongside a much larger computation implemented using a more
spatial implementation architecture.

5.2 System Architectures 115

When we have multirate computations (e.g., Synchronous Dataflow model
subsection of Section 5.1.3), some operators may execute at much lower rates
than others. To balance the system and achieve maximum application perfor-
mance in a limited area, we typically allocate space to operators in proportion
to the fraction of the total computation they perform. As a result, we may end
up with some very infrequent operators that are needed to complete the task
but can afford to operate very slowly. If there is a dedicated, attached proces-
sor, perhaps these operators can be run there; if not, or if the flexibility to
place the processor datapath for this operator local to other computations is
important, it may be worthwhile to implement the operator as a configured
processor.

Instruction augmentation
For resource sharing, a sequential controller is often necessary to direct the use
of specialized datapaths. Sometimes this takes the form of a mix of irregular,
low-throughput tasks that do not need to be executed quickly along with some
very regular computations that are critical to performance. Manifestations of
this need include:

� We need to sequence a modest amount of FPGA or reconfigurable logic.
� The computation contains a few operations that account for most of the

time, embedded in a large amount of irregular tasks necessary to
define the complete computation.

A processor is an efficient, programmable, and well-understood sequential
controller. Consequently, it is often useful as the base design for a sequential
controller. This is common enough that many platforms provide a dedicated
processor attached to an FPGA or reconfigurable array (Chapter 2). It is also
useful enough that this may be one of the motivations to employ a custom,
configured processor.

One way to provide the coupling between the processor and the FPGA array
is to treat the functions provided by the FPGA as additional instructions that
augment the processor’s base instructions. The processor’s execution model of
issuing instructions and expecting them to be performed in sequence remains
intact, but the set of instructions it can issue are enlarged by the configured
array. The FPGA instructions can potentially be very powerful, performing the
equivalent of hundreds of base processor instructions in a single invocation.
This can be particularly effective when a few such powerful instructions can
cover the bulk of the execution time in the task. The processor serves as the
application glue, sequencing these dominant operations and orchestrating the
movement of data to connect them.

Functional Unit model One way to implement instruction augmentation is to
provide a reconfigurable functional unit (RFU) (e.g., Razdan and Smith [21], Hauck
et al. [22], and the Tightly coupled RPF and processor subsection of Section 2.2.2);
that is, we treat the reconfigurable array just like any other functional unit

116 Chapter 5 � Compute Models and System Architectures

PC Register
file

 Issue
queue

L1 D-cache

L1 I-cache

ALU ALULD/ST RFU

FIGURE 5.11 � A super-scalar processor with an RFU.

in the processor (see Figures 2.12 and 5.11). The processor issues instructions
to it, feeding it data from the register file, and the array returns the result to a
register. Normal processor issue and scoreboarding mechanisms can be used to
accommodate variable delay in the array operation. The Functional Unit model
may be particularly useful in specializing a configured processor to a particu-
lar application, where the custom functional units each perform a single func-
tion. It can also be used for coupling a custom processor to a reconfigurable
array. One variant is to allocate a set of opcodes in the instruction for the
reconfigurable function unit so that the processor instruction can call out
different array operations.

The Functional Unit model is easily integrated into a conventional processor
pipeline. However, it provides limited I/O between the processor and the array
and demands that the reconfigurable operation be a function, preserving no
internal state. This potentially limits the use of the array, by preventing the allo-
cation of large, coarse-grained operations on it.

Coprocessor model Another way to implement instruction augmentation is to
treat the reconfigurable array as a coprocessor (e.g., Callahan et al. [23]—see
Figure 5.12), with the processor performing explicit data moves to and from it
and directing it to perform specific operations. The coprocessor model allows
the array to hold its state and places data close to it. This makes it possible
to push larger portions of the computation onto the array, only communicating
data back to the processor at large operation boundaries. The I/O to a single
operation can be sequenced over several cycles, which allows greater flexibility
in operator granularity.

5.2 System Architectures 117

PC

Register
file

L1 I-cache

C
op

ro
ce

ss
or

in
te

rf
ac

e

Instruction

Result

Inputs

ALULD/ST

Reconfigurable
coprocessor

L1 D-cache

FIGURE 5.12 � A scalar processor with a reconfigurable coprocessor.

Phased reconfiguration manager
In the preceding sections, we shared the FPGA or the reconfigurable array
resources in time in a fine-grained manner by scheduling operators on a cycle-
by-cycle basis onto the datapath elements. This works when we have common
operator types that permit sharing, or when we can generalize the datapath ele-
ment to support many operators. In order to realize this we added additional
circuitry to the design to flexibly route data between the datapath elements and
to sequence the sharing. These additional resources did not contribute compu-
tation to the original task and so were pure overhead. However, since our hard-
ware is reconfigurable, in some cases it is possible to reconfigure it and perform
this sharing at a coarser granularity with less overhead. Since reconfiguration is
often slow, this is viable only when we can arrange for the array to be used for
a long period of time in a single configuration, such as when tasks operate in
phases, performing distinct computations for long times. For this to be useful
the “long time” in a configuration should be long compared to the time required
to perform the reconfiguration (see Section 4.2 and Chapter 9).

In these cases, sequentialization is very coarse grained. We can nonethe-
less still think of the sequencing as a sequential control application, with
each state potentially representing a different configuration of the array. The
sequential controller monitors the execution to detect the end of the phase,
implements configuration, and may even perform state-dependent branching.
Sequential control can be realized with many of the architectures previously
discussed (e.g., FSM, processor, instruction augmentation).

Worker farm
Sometimes we may have a set of dependent operations where each one runs for
a large and variable amount of time. For example, Unix/Linux make rules specify

118 Chapter 5 � Compute Models and System Architectures

Master
controller

Configurable
worker

unit

Configurable
worker

unit

Configurable
worker

unit

Shared
task

memory

Shared
task

memory

Master
task

queue

Configurable
worker

unit

Configurable
worker

unit

Configurable
worker

unit

FIGURE 5.13 � A worker farm.

a coarse-grained, dependent task set, and clustered multiprocessors exploit this
parallelism with parallel make utilities such as pmake [24]. The variable runtime
means that predetermined assignments of operations to hardware resources can
be very inefficient.

We can exploit the reconfigurable hardware in these cases by organizing
resources as a set of workers, which actually process jobs, and a central manager,
which is responsible for assigning operations to them, potentially coordinating
data movement and reconfiguration (see Figure 5.13). Here, the manager might

1. Maintain a queue of ready tasks.
2. Issue the first ready task to execute on a free worker.
3. Continue issuing tasks to workers until there are no free workers.
4. Wait for one or more workers to signal completion.
5. As tasks complete, put any tasks they enable on the ready queue.
6. Loop back to step 2.

Operations are enabled in dataflow form as they are completed. If the tasks
are largely homogeneous or taken from a small set of types, the workers may be
identical or taken from a small set of datapath configurations. If they are long
running and highly heterogeneous, it may make sense to reconfigure them to
each task; when the reconfigurable array supports it, this might include partial
reconfiguration (see Section 4.2.3) of the array to customize each worker for its
next task.

5.2.3 Bulk Synchronous Parallelism
In our sequential control architectures, we had a central controller telling every
datapath element what to do. This guaranteed that the datapath elements moved
forward in a synchronized manner. However, if the work required by each datapath
is highly data dependent, a centralized locus of control may become inefficient.
Consequently, we often allow the local datapathsto have independent control but

5.2 System Architectures 119

still want to guarantee that they remain synchronized at some coarser granularity.
In particular, we might want to ensure that one set of tasks completes before
another begins.

Bulk Synchronous Parallelism (BSP) [25] can be seen as a variant that keeps
the synchronization centralized but distributes the datapath sequencing. In
BSP, independent units of computation progress independently, with the local
computations punctuated by periodic barrier synchronization events. Each local
computation announces when it reaches the barrier and waits for a global
acknowledgment that all local tasks have reached it before proceeding.

The barrier is an efficient technique for supporting data-dependent, time-
variable operations in each task while still providing strong synchronization
guarantees. An alternate would be to statically determine the length of each
epoch and have local tasks that complete their epoch early wait until the static
epoch duration completes. If the runtime of each task varies widely based on
data or potential resource contention, the static bound necessary to guarantee
correctness may be excessively long compared to the common case local task
completion time.

Further, if the local tasks are Turing Complete, it may not be possible to
even identify such a static upper bound on the timing between barriers. The
expense of the barrier is that it requires Ω(log(N)) time to perform the syn-
chronization in the ideal case, where wire delays are negligible, and O(

√
N)

or O(3
√

N) time in realistic 2-space or 3-space physical implementations for the
barrier to complete. This suggests efficient operation only when the computa-
tional work between barriers is at least as large as this barrier synchronization
time.

A BSP architecture can be appropriate for implementing data-centric com-
putations (Section 5.1.6). Often objects communicate over their connected
graph links. For many applications it is useful to guarantee that each
object processes one round of method invocations before starting the next
round. Barriers between rounds allow the operator to know when it has
received all the invocations associated with a single round and can safely
advance [26].

5.2.4 Data Parallel
As the Data Parallel Compute model suggests, sometimes computation can be
organized as a set of computations applied, mostly independently, to a large
set of data (see Section 5.1.5). This gives us both parallelism and regularity
that a reconfigurable implementation can exploit. We want to be able to use
this parallelism in a scalable manner, allocating more or less hardware as the
platform permits.

A number of stylized architectures support data parallel computations and
can be tuned for varying amounts of parallelism. The remainder of this section
highlights three architectures and one technique for interfacing and controlling
data parallel computation with more general computation.

120 Chapter 5 � Compute Models and System Architectures

Single program, multiple data
Although it is sometimes useful to apply the same basic operations to each
component piece of data, these operations can be highly data dependent and can
benefit from independent, local control. However, even though they are locally
independent, it may be useful to guarantee that a set of operations on the data
completes before continuing with the next operation set.

SPMD (single program, multiple data) is an organizational structure that fol-
lows the high-level Data Parallel model with minimum stylization within each
data parallel task. Essentially, we have a collection of independent threads or
control units that happen to be performing the same operation on different
datasets. Individual independent threads can, themselves, be implemented as
one of the system architectures described here. They are typically synchronized
periodically in BSP fashion (Section 5.2.3).

Single-instruction multiple data
Control and instructions for a datapath can become expensive. Thus, if the data
dependence for data parallel operations can be kept low, it is beneficial to share
instructions and control across a large set of datapaths.

SIMD (single-instruction multiple data) architectures control the hardware
operations on a cycle-by-cycle basis similarly to our sequential control archi-
tectures (Section 5.2.2). However, instead of a heterogeneous set of datapath
elements, each potentially receiving unique operations, a single, common instruc-
tion is delivered to all of them. Each element has its own data and performs
the sequence of instructions on it. Communication between datapath elements
is also supported with common instructions to orchestrate data movement.

SIMD architectures can be more compact per processing element than VLIW
architectures, because they do not need to store separate instructions for each
compute, memory, or interconnect block. However, since SIMD architectures
force all datapath elements to perform the same operation simultaneously, the
SIMD datapath elements are efficiently utilized only on much more stylized and
limited computations (see Chapter 36).

Chapter 10 describes a particular SIMD system in more detail, including an
approach to SIMD compilation for FPGAs.

Vector
The motivation for vector architectures is similar to that for SIMD: When
operations are sufficiently regular and data independent, they admit implemen-
tations that economize on resources by sharing instructions and associated
control. Vector architectures particularly exploit the fact that datapath opera-
tions often have long latencies and can be pipelined so that calculations on
many, independent data items can reuse the datapath at high throughput.

In a vector organization, a sequential controller issues data parallel instruc-
tions across a logical dataset. Here, we think of supplying vectors of component
data, rather than individual words, as our inputs and outputs of instructions.
The instructions perform operations similarly to a sequential processor on the
pairwise components of vector inputs. Rather than the data living with the

5.2 System Architectures 121

datapath elements, as is typical in SIMD, the vector data is normally kept in
central memory banks and vector register files and is routed to the datapath
elements. The vector instructions then specify where to find vector inputs and
where to return vector results. The data parallel operation on these vectors
can be performed in sequence on a highly pipelined vector functional unit, in
parallel on a set of parallel functional units, or as a sequentialized set of parallel
batches based on the area allocated.

On reconfigurable platforms, we can construct highly specialized vector
functional units for each task. Thus, a vector control unit can be augmented
with specialized vector pipelines just as a processor can be augmented with
configurable instructions in an Instruction Augmentation architecture (see
Instruction augmentation subsection of Section 5.2.2). Here we are operating
on vectors of data rather than on individual scalar data elements. As with other
models, we can identify the coarse-grained, data parallel operations required
in the task and allocate a suitable set of functional units for them. The vector
control unit then issues instructions to perform the data routing and sequen-
cing to connect the operations running on the vector functional units (see
Figure 5.14).

Vector coprocessors
As noted earlier, we often have a mix of irregular computations and more regular
stylized computations (see Instruction augmentation subsection of Section 5.2.2).
This is certainly true when exploiting highly stylized, data parallel computations
using vector or SIMD architectures.

The Coprocessor model (see Coprocessor model subsection of Section 5.2.2)
provides one stylized way to add configurable vector units to a base processor
architecture (e.g., Wawrzynek et al. [27] and Jacob and Chow [28]). Here, the
vector operations become coprocessor instructions. The processor can remain
scalar, with normal instructions and register files, with the configurable vector
unit maintaining all the vector states local to the configurable array. The vector

PC Register
file

Issue
queue

L1 D-cache

L1 I-cache

ALU ALULD/ST Vector
RFU

Vector
RFU

Vector
RFU

Vector
RFU

Vector register file

FIGURE 5.14 � A super-scalar processor with vector functional units.

122 Chapter 5 � Compute Models and System Architectures

coprocessor can keep multiple vector operations in flight, using scoreboarding on
memory or vector registers to enforce sequential semantics on the sequentially
issued vector operations.

5.2.5 Cellular Automata
Although spatial computation organizations offer great parallelism, they also
demand that the spatially distributed datapaths communicate with each other.
For large computations, the physical latency between distant operations can
be large; further, the worst-case, cross-chip latencies actually grow relative to
cycle rates as technology scales. Considerable, nonlocal traffic can slow the
computation both because of round-trip latencies and because of limited available
cross-chip bandwidth.

Cellular automata (CA) suggest a pattern for organizing computations as a
line (one dimension), mesh (two dimensions), or cube (three dimensions) of
regular operators with nearest-neighbor communication (see Figure 5.15). The
operators run logically in lockstep, sampling the state of adjacent operators and
updating their own. The regularity of identical operators makes it easy to scale to
larger spatial designs. Moreover, nearest-neighbor communication eases layout
and guarantees that communication does not limit overall design performance.
A CA can be seen as a very stylized data-centric (see Section 5.1.6) computation
in which the parallel operators have a restricted, regular communication pattern.

The restriction for nearest-neighbor communication may seem extreme, but it
naturally shows up in many physical world simulations. Because physical inter-
actions are also primarily nearest neighbor, the topology of the physical problem
often maps directly to that of a regular CA. Examples of physical simulations
include discrete-time solutions to wave, diffusion, Navier–Stokes, or Maxwell’s
equations (see Chapter 32). Perhaps the simplest and most well-known CA is
Conway’s game of “Life” [29]. It is even possible to implement CAD optimizations,

CA
cell

CA
cell

CA
cell

CA
cell

CA
cell

CA
cell

CA
cell

CA
cell

CA
cell

CA
cell

CA
cell

CA
cell

CA
cell

CA
cell

CA
cell

FIGURE 5.15 � Two-dimensional cellular automata.

5.2 System Architectures 123

such as placement, using CAs (e.g., Wrighton and DeHon [30]; also mentioned
briefly in Chapters 9 and 20).

Folded CA
CAs can be highly efficient, but the size of the fully spatial design depends on
the size of the problem. Thus, for large problem sizes the fully spatial CA can
be too large for an affordable reconfigurable platform.

Since the CA is based on an array of identical operators and regular
communication, it can be efficiently folded onto smaller physical platforms (e.g.,
Margolus [31] and Kobori et al. [32]). At one virtualization extreme we can
build a single, physical CA cell processor and stream through the state of the
virtual cells in series, using the single physical cell to implement all cells. The
access pattern for the data is regular and predetermined, allowing efficient use of
memory bandwidth. Plus, all the data communications are local, which means
that we can readily program data buffering so that all data is available at the
cell as needed on a single pass through the memory. We can also implement
a single row (or column) of the CA and scan through one row (or column)
at a time. In fact, we can choose just about any number of physical cells to
implement—up to half the number in the logical array—and achieve a linear
speedup of the computation. Chapter 32 describes a particular, folded mapping
for a finite-difference, time-domain solution of Maxwell’s equations.

5.2.6 Multi-threaded
The architectures discussed previously all place restrictions and stylizations
on the computation to allow efficient implementation. Nonetheless, particular
restrictions may not match with the needs of some applications and, consequently,
may not provide the most efficient implementation support.

As suggested with compute models, multi-threading can be seen as the most
general organization (Section 5.1.7). It provides great expressiveness, but at the
cost of little guidance to the designer in how to exploit that expressiveness and
guarantee correctness of implementation. This expressiveness can also make it
expensive to support the full generality of the model on reconfigurable hardware.

In the remainder of this section, we review some common multi-threaded
organizations and the benefits and caveats they entail.

Communicating FSMs with datapaths
Earlier we noted that an FSMD is a stylized way to control the operation of
a datapath (see FSMD subsection of Section 5.2.2). For very large designs,
a central controller may become a performance bottleneck for the following
reasons:

� Central control may lead to unnecessary state explosion in a central
controller.

� Sending control signals across a large system to a central controller and
distributing control back from it may result in long latencies and slow
operating rates.

124 Chapter 5 � Compute Models and System Architectures

One alternative to a single controller is decomposing the system into a
number of independent FSMDs that communicate with each other. In this way,
in addition to its own datapath controls, the FSM controller for each FSMD now
contains inputs and outputs to one or more of the other FSMDs through which
it coordinates synchronization. Thus, each FSM controller can be simpler and
faster than the single, monolithic controller, and each can branch independently.
However, the designer must be careful to manage the coordination of the FSMs
so that they do not deadlock or otherwise transition into inconsistent states.

Technically, a composition of finite automata is still a finite automata, and
it is possible to compute the composite automata in order to prove properties
of the composite system. The state space of the composed automata can be as
large as the product set of the state space of the individual automata. In some
cases this state explosion can become intractably large for practical verification.

Processors with channels
In the Processor subsection of Section 5.2.2, we saw the motivation for an
operator or several operators to run on a processor or, more likely, a processor
controller with a specialized datapath. For similar reasons that motivate the
communicating finite-state machines with datapaths (CFSMD) described in the
previous section, it may not make sense to centrally control this collection of
processors.

Here, too, we decompose the computation into a collection of augmented
processor datapaths that coordinate with each other through direct links. Special
instructions allow the processor to poll information from input channels and
place information on output channels.

Message passing
When we connect processors or FSMs with communication channels, we often
find it inefficient to commit dedicated, point-to-point links.

� The data rate on point-to-point channels between processors, operators,
or FSMDs can often be too low to merit a dedicated channel.

� Dedicating point-to-point channels between processors, operators, or
FSMDs can be too expensive for an implementation.

� Individual units of control may only need to communicate infrequently.

Rather than keep a channel open at all times, operators can share a common
communication infrastructure (e.g., bus, pipelined ring, network-on-a-chip) and
send their coordination information tagged with the identity or location of the
recipient—in other words, send messages.

Shared memory
Multiple operators cooperating on a task may need infrequent access to a large
set of shared state. When we exploit parallelism, these operators may be running
on different parts of a physical platform yet need to access shared data pools.

When possible, it is best to give ownership of state to a single operator and let it
provide coordinated access to it. This approach avoids a host of synchronization

5.2 System Architectures 125

problems that can make parallel execution particularly troublesome. If the state
is small and infrequently changed, and when several operators need regular
access to it, it can make sense to allow each to have its own copy and allow
coordination operations to change the data across them. However, when the
state is large and infrequently accessed, such as with a large database, it is
sometimes efficient to allow multiple physical processing elements to access
a single, shared memory pool to avoid replicating the data and to allow data
communication to be deferred until it is needed. This can allow each processing
element to extract just the information it needs without burdening the others
with knowing which information will be needed by which processing element.

In the general case, we may share memory pools between small sets of
physical processing elements. Unlike with homogeneous multiprocessors, there
is generally little reason to have a single, large, shared memory pool across
all the processing elements in a reconfigurable computer. The configurability
of our reconfigurable designs allows us to limit sharing based on the shape of
communications in the application.

5.2.7 Hierarchical Composition
In this chapter we described most system architectures as homogeneous entities.
However, in general we can consider them each as levels in a hierarchy. For
example, it may make sense to use FSMD (see FSMD subsection of Section 5.2.2)
or vector coprocessor (see Vector coprocessors subsection of Section 5.2.4) nodes
to implement the dataflow operators in a streaming dataflow system architecture
(Section 5.2.1). Further, to model and coordinate changes in the composition
of the dataflow network over time, it may make sense to model each of the
dataflow configurations as a state in a very coarse-grained FSM (see Phased
reconfiguration manager subsection of Section 5.2.2). With a variety of system
architectures, rich implementation options within each, and their hierarchical
compositions, we have a broad and powerful set of techniques to exploit the
flexibility in reconfigurable computing platforms.

References
[1] M. Shaw, D. Garlan. Software Architecture: Perspectives on an Emerging Discipline,

Prentice-Hall, 1996.
[2] C. A. R. Hoare. Communicating Sequential Processes, International Series in

Computer Science, Prentice-Hall, 1985.
[3] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units.

IBM Journal of Research and Development, 1967.
[4] E. A. Lee. The problem with threads. IEEE Computer 36(5), May 2006.
[5] S. Kleene. Recursive predicates and quantifiers. Transactions of the American

Mathematical Society 53(1), 1943.
[6] A. M. Turing. On computable numbers, with an application to the entscheidungs

problem. Proceedings of the London Mathematical Society 42(2), 1937.
[7] A. Church. An unsolvable problem of elementary number theory. American Journal

of Mathematics 58, 1936.

126 Chapter 5 � Compute Models and System Architectures

[8] E. A. Lee, D. G. Messerschmitt. Synchronous dataflow. Proceedings of the IEEE
75(9), September 1987.

[9] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee. Software Synthesis from Dataflow
Graphs (Synchronous Dataflow chapter), Kluwer Academic, 1996.

[10] T. M. Parks. Bounded Scheduling of Process Networks, UCB/ERLl95-105, University
of California at Berkeley, 1995.

[11] Arvind, R. S. Nikhil. Executing a program on the MIT tagged-token dataflow
architecture. IEEE Transactions on Computers 39(3), March 1990.

[12] D. E. Culler, S. C. Goldstein, K. E. Schauser, T. von Eicken. TAM—a compiler-
controlled threaded abstract machine. Journal of Parallel and Distributed Computing,
June 1993.

[13] J. Hennessy, D. Patterson. Computer Architecture: A Quantitative Approach, 3rd ed.,
Morgan Kaufmann, 2002.

[14] S. Devadas, Hi-K. T. Ma, R. Newton. On the verification of sequential machines
at differing levels of abstraction. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 7(6), June 1988.

[15] J. Babb, M. Rinard, C. A. Moriz, W. Lee, M. Frank, R. Barua, S. Amarasinghe.
Parallelizing applications into silicon. Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines, 1999.

[16] E. Lee, A. Sangiovanni-Vincentelli. A framework for comparing models of com-
putation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 17(12), December 1998.

[17] E. Lee, S. Neuendorffer. Concurrent models of computation for embedded software.
IEEE Proceedings—Computers and Digital Techniques 152(2), March 2005.

[18] D. Gajski, L. Ramachandran. Introduction to high-level synthesis. IEEE Design
and Test of Computers 11(4), 1994.

[19] J. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE
Transactions on Computers 30(7), 1981.

[20] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures, MIT Press, 1986.
[21] R. Razdan, M. D. Smith. A high-performance microarchitecture with hardware-

programmable functional units. Proceedings of the 27th Annual International
Symposium on Microarchitecture, November 1994.

[22] S. Hauck, T. Fry, M. Hosler, J. Kao. The chimaera reconfigurable functional unit.
Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines,
April 1997.

[23] T. Callahan, J. Hauser, J. Wawrzynek. The Garp architecture and C compiler. IEEE
Computer 33(4), April 2000.

[24] E. H. Baalbergen. Design and implementation of parallel make. Computing Systems
1(2), 1988.

[25] L. G. Valliant. A bridging model for parallel computation. Communications of the
ACM 33(8), August 1990.

[26] M. deLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin, T. E. Uribe,
T. F. Knight, Jr., A. DeHon. GraphStep: A system architecture for sparse-graph
algorithms. Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines, 2006.

[27] J. Wawrzynek, K. Asanovic, B. Kingsbury, J. Beck, D. Johnson, N. Morgan. Spert-II:
A vector microprocessor system. IEEE Computer, March 1996.

[28] J. A. Jacob, P. Chow. Memory interfacing and instruction specification for recon-
figurable processors. Proceedings of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, February 1999.

5.2 System Architectures 127

[29] M. Gardner. The fantastic combinations of John Conway’s new solitaire game
“Life.” Scientific American 223, October 1970.

[30] M. Wrighton, A. DeHon. Hardware-assisted simulated annealing with application
for fast FPGA placement. Proceedings of the ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, February 2003.

[31] N. Margolus. An FPGA architecture for DRAM-based systolic computations.
Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines,
1997.

[32] T. Kobori, T. Maruyama, T. Hoshino. A cellular automata system with FPGA.
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, 2001.

This page intentionally left blank

C H A P T E R 6

PROGRAMMING FPGA APPLICATIONS
IN VHDL
Nachiket Kapre
Department of Computer Science
California Institute of Technology
André DeHon
Department of Electrical and Systems Engineering
University of Pennsylvania

Modern field-programmable gate arrays (FPGAs) contain hundreds of thousands
of lookup tables (LUTs), hundreds of embedded memories, and hundreds of mul-
tipliers connected through a programmable interconnect fabric. Obviously it is
intractable to program the FPGA at the granularity of these individual elements.
However, with modern synthesis and layout tools, it is possible to describe a
design simply by writing logical expressions, a level higher than gates, and let-
ting the tools do the rest. Register transfer level (RTL) design is a popular disci-
pline for describing these logical expressions. It allows the designer to express
the design by describing the logic between each pair of register stages. This
allows her to carefully control register-to-register logic depth while freeing her
from selecting the actual gates and their mapping to the FPGA. Very High-Speed
Integrated Circuit Hardware Description Language (VHDL) is one popular pro-
gramming language that supports RTL hardware descriptions.

VHDL enjoys widespread popularity among designers in the industry, along
with its close cousin, Verilog. Indeed, almost all modern CAD tools that per-
form simulation, synthesis, and layout support both. Verilog differs from VHDL
primarily in the syntax it uses (VHDL is derived from Ada; Verilog, from C),
but both languages are IEEE standards and are periodically reviewed to reflect
changing industry realities and expectations.

VHDL is a strongly typed, Ada-based programming language that includes
special constructs and semantics for describing concurrency at the hardware
level. These concurrency constructs are new for most programmers and can
be a source of confusion for beginners. In the following sections, we provide
a tutorial overview of how to express and compose synchronous designs
in VHDL. Through examples, we highlight the control one can exercise in
VHDL to direct proper synthesis of hardware. We first look at how VHDL
can be used to describe a design structurally as a composition of sub-
circuits. We then show how to express hardware in RTL form. Next we
illustrate how hardware can be generated parametrically in a programmable

130 Chapter 6 � Programming FPGA Applications in VHDL

manner. Finally we outline the basic tool and workflow for developing VHDL
designs.

This chapter is by no means a complete discussion of all VHDL language
features. For a more comprehensive treatment of language syntax and coding
style the reader is referred to the work of Ashenden [1, 2] and the appropriate
vendor manuals (e.g., Xilinx, Inc. [3]).

6.1 VHDL PROGRAMMING

Programming in VHDL is quite different from programming in C because of
its concurrent semantics. However, it does have several similarities with object-
oriented languages like C++ and Java (e.g., encapsulation and interfaces). These
common principles should help beginners understand the basic structure of
the language and help them relate to hardware-specific VHDL constructs. In
this section, we describe a few simple design elements in VHDL to outline key
language features and illustrate important programming concepts.

We first show how to program a 2-input multiplexer using a structural
abstraction. We then program a 4-input multiplexer using RTL semantics. Next
we illustrate the use of parametric hardware generation by creating a 16-bit
wide, 4-input multiplexer using a 1-bit, 4-input multiplexer from the previous
example. Then we combine structural and RTL styles in a finite-state machine
(FSM) datapath example to show how to use them in the same design. This final
example introduces the programming of FSMs in VHDL.

6.1.1 Structural Description
To describe a multiplexer structurally, we first decompose it into primitive gates
derived from its Boolean equations. Each gate is instantiated individually and
then connected to others. We can think of a structural decomposition as a textual
representation of a schematic or as subroutines in a conventional program-
ming language such as C. As with schematic capture, a structural decomposi-
tion permits code for a recurring design element to be shared. This means that
we can design an element once and instantiate it as many times as required.
Unlike schematic capture, a textual structural description can be modified and
updated easily with a text editor. Moreover, a hierarchical decomposition allows
the designer to manage the complexity of a large hardware design by breaking
it up into individual, manageable pieces. Listing 6.1 and Figure 6.1 illustrate the
following important concepts.

Listing 6.1 � A structural 2-input multiplexer.

1 library ieee;
2 use ieee.std_logic_1164. all;
3
4 — this is the entity declaration for the 2-input mux
5 — it is a list of ports into the module.

6.1 VHDL Programming 131

a

b

mux_sel

c

a

b

mux_sel

c

FIGURE 6.1 � A structural 2-input multiplexer.

6 entity mux2 is
7 port (
8 a : in std_logic;
9 b : in std_logic;

10 mux_sel : in std_logic;
11 c : out std_logic
12);
13 end;
14
15 — this is where the structure of the multiplexer is defined
16 architecture struct of mux2 is
17
18 — all components that will be used in the structure
19 — need to be declared before use.
20 component notgate is
21 port (
22 a : in std_logic;
23 b : out std_logic
24);
25 end component;
26
27 component andgate is
28 port (
29 a : in std_logic;
30 b : in std_logic;
31 c : out std_logic
32);
33 end component;
34
35 component orgate is
36 port (
37 a : in std_logic;
38 b : in std_logic;
39 c : out std_logic
40);
41 end component;
42
43 — internal signals/wires used to connect the components
44 — also need to be declared here.

132 Chapter 6 � Programming FPGA Applications in VHDL

45 signal muxsel_inverted_sig : std_logic;
46
47 signal sela_sig : std_logic;
48 signal selb_sig : std_logic;
49
50 — this signifies the start of the structural code
51 begin
52
53 — instantiation of the inverter
54 inverter_inst_0 : notgate
55 port map (
56 a => mux_sel,
57 b => muxsel_inverted_sig
58);
59
60 — instantiation of the and gate
61 and_inst_a : andgate
62 port map (
63 a => a,
64 b => muxsel_inverted_sig,
65 c => sela_sig
66);
67
68 — another instantiation of the and gate
69 and_inst_b : andgate
70 port map (
71 a => b,
72 b => mux_sel,
73 c => selb_sig
74);
75
76 or_inst : orgate
77 port map (
78 a => sela_sig,
79 b => selb_sig,
80 c => c
81);
82
83 end;

1. VHDL files typically start by including the IEEE library and certain impor-
tant packages like std_logic_1164 (Listing 6.1, lines 1–2) that permit the
use of type std_logic and Boolean operations on it. Additional packages
such as std_logic_arith and std_logic_unsigned are often included for
supporting arithmetic operations.

2. The VHDL description of a hardware module requires an entity
declaration (Listing 6.1, lines 6–13) that specifies the interface of the module
with the outside world. It is an enumeration of the interface ports. The
declaration also provides additional information about the ports such as their
direction (in/out), data type, bit width, and endianness. An entity declaration

6.1 VHDL Programming 133

in VHDL is analogous to an interface definition in Java or a function header
declaration in C.

3. Almost all VHDL signals and ports use the data type std_logic and
std_logic_vector. These data types define how VHDL models electrical
behavior of signals, which we discuss in the Multivalued logic subsection of
Section 6.1.5. The vector std_logic_vector allows declaration of buses that
are bundled together. We will see its use in a subsequent example.

4. While an entity specifies the interface of a hardware module, its inter-
nal structure and function are enclosed within the architecture definition
(Listing 6.1, lines 16–83).

5. In a structural description of a module, the constituent submodules are
declared, instantiated, and connected to each other. Each submodule needs to
be first declared in the component declaration (Listing 6.1, lines 20–25). This is
merely a copy of the entity declaration where only the submodule’s interface is
specified. Once the components are declared, they can then be instantiated (List-
ing 6.1, lines 54–58). Each instance of the component is unique, and a component
can have multiple instances (Listing 6.1, lines 61 and 69). The instantiated com-
ponents are connected to each other via internal signals by a process called port
mapping (Listing 6.1, lines 55–58). Port mapping is performed on a signal-by-
signal basis using the => symbol. It is analogous to assembling a set of integrated
circuits (ICs) on a breadboard and wiring up the connections between the IC pins
using jumper wires. Observe the similarity between the schematic representation
of the multiplexer and the structural VHDL in the example.

6. Notice in the example that the component for the AND gate is reused for
each AND gate in the design (Listing 6.1, lines 61–66 and 69–74). This is one of
the benefits of a structural representation—it permits reuse of existing code for
recurring design elements and helps reduce total code size.

7. The submodules used in Listing 6.1 are primitives supported in the vendor
library. In a larger design that is a collection of several multiplexers, the differ-
ent multiplexers can be declared, instantiated, and connected to each other as
required. A design can have several such levels of structural hierarchy. Hierarchy
is a fairly common technique for design composition.

6.1.2 RTL Description
The multiplexer’s RTL description can be specified much more succinctly
than its corresponding structural representation. In RTL, logic is organized as
transformations on data bits between register stages. By selecting the num-
ber of pipeline stages wisely, the designer can create a high-performance,
high-speed hardware implementation, and by carefully deciding the degree of
resource sharing, the size of the mapped design can be controlled as well. RTL
provides the designer with sufficient low-level control to allow her to create an
implementation that meets her specifications.

For the VHDL description, we still need the logical equations that define
the multiplexer, but these can now be represented directly as equations, from

134 Chapter 6 � Programming FPGA Applications in VHDL

which a synthesis tool infers the actual gates. The tool tries to choose the
gates on the basis of user-specified design criteria such as high speed or small
area.

Listing 6.2 shows how to write a 4-input multiplexer with registered outputs
(Listing 6.1 simply showed a 2-input multiplexer without a register).

1. As before, we start with the package and entity declarations (Listing 6.2,
lines 6–18).

2. The RTL description of the VHDL entity is enclosed in the architecture
block (Listing 6.2, lines 20–52). The logic equations and registers that are part of
the RTL description are written here. Earlier, we used the architecture block
to write the structural port-mapping statements.

Listing 6.2 � RTL for a 4-input multiplexer.

1 — library and package includes
2 library ieee;
3 use ieee.std_logic_1164.all;
4
5 — entity declaration for the 4-input multiplexer
6 entity mux4 is
7 port (
8 clk : in std_logic;
9 reset : in std_logic;

10 a : in std_logic;
11 b : in std_logic;
12 c : in std_logic;
13 d : in std_logic;
14 — notice the use of the type vector.
15 mux_sel : in std_logic_vector (1 downto 0);
16 e : out std_logic
17);
18 end;
19
20 — RTL description of the multiplexer is defined here
21 architecture rtl of mux4 is
22
23 — internal signals used in the multiplexer are
24 — declared here before use
25 signal e_c : std_logic;
26
27 — indicates start of the actual RTL code
28 begin
29
30 — concurrent signal assignment
31 — the multiplexer functionality is described
32 — at a level above gates
33 e_c <= a when mux_sel="00" else
34 b when mux_sel="01" else
35 c when mux_sel="10" else
36 d;
37
38 — sequential signal assignment

6.1 VHDL Programming 135

39 process (clk, reset)
40 begin
41
42 — action under reset
43 if (reset = '1') then
44 e <= '0';
45 — action under rising clock edge
46 elsif (clk' EVENT and clk='1') then
47 e <= e_c;
48 end if;
49
50 end process;
51
52 end;

3. In the structural example, we saw how signals were used as wires for con-
necting component ports. In VHDL, signals are also used for representing logic.
A signal can be defined as a function of one or more signals. The assignment
operation is represented by the symbol <=, which is analogous to the = oper-
ation in C; however, the manner in which signals are assigned values is quite
different from C.

4. As before, a signal needs to be declared before the begin statement (Listing
6.2, line 25). Each signal is defined using a signal assignment statement that
describes the logic that drives it. A signal assignment statement can be either
concurrent or sequential.

5. A concurrent signal assignment is used to describe the logic equation for
the multiplexer (Listing 6.2, lines 33–36). Concurrent statements are written
inside the begin-end statements of the architecture block but outside any
process blocks (Listing 6.2, lines 39–50). For simulation purposes, a concurrent
statement can be thought of as being evaluated in parallel with other concurrent
statements.

6. In the listing, a sequential assignment describes a register (Listing 6.2, lines
39–50). The behavior of the register under reset and a rising edge of the clock
is defined between the begin-end statements of the process block, which is
itself enclosed within the begin-end statements of the architecture block
(Listing 6.2, lines 21–52). A process block is executed only when any signal on
its sensitivity list (e.g., clk and reset signals in Listing 6.2, line 39) changes
value.

As their name suggests, sequential assignment statements enclosed within a
process block are executed sequentially. A process is suspended when it fin-
ishes evaluating all of the statements it can inside the block, and signals are
assigned values only at that time. Additionally, during evaluation of a process
block, a signal retains the same logical value it had when the process began
execution. This can be a potential source of confusion for new programmers.
In Listing 6.6, we show how to write combinational logic using sequential
statements.

136 Chapter 6 � Programming FPGA Applications in VHDL

7. Notice the compactness with which the multiplexer was described in
Listing 6.2 (52 lines of RTL code versus 83 for structural). This is one of the
key benefits of RTL over purely structural descriptions.

6.1.3 Parametric Hardware Generation
VHDL allows the designer to generate hardware as a function of some change-
able parameter. This is a useful technique for code reuse when we need several
variants of an element in the same design (e.g., an 8-bit and 16-bit adder in
the same design). Certain design parameters are often not known until late in
the design cycle, and some can change as the design specification evolves to
meet customer requirements. It might also be necessary to perform a paramet-
ric design space exploration based on certain variables before deciding on the
final architecture. These issues can be resolved with VHDL generics.

The generics are specified at the start of the entity declaration. In the simplest
form, VHDL allows the designer to write signals as vectors of parametric width.
More advanced uses of parametric hardware generation employ generate state-
ments, and generate loops can be used to create multiple copies of a repeating
logic block.

In Listing 6.3 and Figure 6.2, we illustrate the use of parametric hardware
generation using a multibit 4-input multiplexer. The width of the multiplexer
is defined by a generic DATA_WIDTH (Listing 6.3, lines 8–13), which sets the
range of the vectors in the interface and is later used as the termination value
in the generate loop (Listing 6.3, lines 47–61). DATA_WIDTH copies of the
4-input multiplexer described in Listing 6.2 are instantiated and connected to
the interface ports appropriately (Listing 6.3, lines 54–59).

Listing 6.3 � Parametric generation of a multibit 4-input multiplexer.

1 — library and package includes
2 library ieee;
3 use ieee.std_logic_1164.all;
4
5 — entity declaration of the multiplexer array
6 entity mux4_array is
7 — definition of the generic for this entity
8 generic (
9 — here 16 is the default value

10 — it can be redefined during
11 — instantiation, or during synthesis
12 DATA_WIDTH : integer := 16
13);
14 port (
15 clk : in std_logic;
16 reset : in std_logic;
17 — notice the use of generic for constraining the vector length
18 a : in std_logic_vector(DATA_WIDTH-1 downto 0);
19 b : in std_logic_vector(DATA_WIDTH-1 downto 0);
20 c : in std_logic_vector(DATA_WIDTH-1 downto 0);
21 d : in std_logic_vector(DATA_WIDTH-1 downto 0);

6.1 VHDL Programming 137

a

b

c

d

mux_sel

e

DATA_WIDTH

FIGURE 6.2 � Parametric generation of a multibit 4-input multiplexer.

22 mux_sel : in std_logic_vector(1 downto 0);
23 e : out std_logic_vector(DATA_WIDTH-1 downto 0)
24);
25 end;
26
27 — the parametric code is enclosed within the architecture block
28 architecture parametric of mux4_array is
29
30 — like structural VHDL, the component being used needs to be declared here
31 component mux4 is
32 port (
33 clk : in std_logic;
34 reset : in std_logic;
35 a : in std_logic;
36 b : in std_logic;
37 c : in std_logic;
38 d : in std_logic;
39 mux_sel : in std_logic_vector(1 downto 0);
40 e : out std_logic
41);
42 end component;
43
44 begin
45
46 — loop for generating a programmable number of mux4 instances
47 bitslices_gen : for i in 0 to DATA_WIDTH-1 generate
48 inst_mux : mux4
49 port map (
50 clk => clk,
51 reset => reset,
52 — notice the use of loop variable i for indexing
53 — into the array
54 a => a(i),
55 b => b(i),
56 c => c(i),
57 d => d(i),
58 mux_sel => mux_sel,

138 Chapter 6 � Programming FPGA Applications in VHDL

59 e => e(i)
60);
61 end generate bitslices_gen;
62
63 end;

6.1.4 Finite-state Machine Datapath Example
In Listing 6.4, we design a time-shared datapath that computes Ax2 +Bx+C using
only one multiplier and one adder. The design is naturally separated into state
machine controller and datapath components. The controller and the datapath
are designed using RTL and composed together structurally. The multiplier, the
adder, and the associated multiplexers and registers are part of the datapath,
whereas the control signals for the datapath multiplexers (Listing 6.4, lines
80–82) and registers (Listing 6.4, lines 84–86) are generated by the controller.
Figure 6.3 shows the structural decomposition and the associated VHDL code.
We can see that the control signals are connected from the controller to the
datapath in the structural VHDL representation.

Listing 6.4 � A structural representation of the FSM datapath design.

1 — library and package includes
2 library ieee;
3 use ieee.std_logic_1164.all;
4 use ieee.std_logic_unsigned.all;
5
6 — entity declaration of the state-machine controller
7 entity fsm_datapath is
8 port (
9 — system signals

10 clk : in std_logic;
11 reset : in std_logic;
12
13 — input interface
14 start : in std_logic;
15 A : in std_logic_vector(3 downto 0);
16 B : in std_logic_vector(3 downto 0);
17 C : in std_logic_vector(3 downto 0);
18 x : in std_logic_vector(3 downto 0);
19
20 — output interface
21 output_valid : out std_logic;
22 result : out std_logic_vector(12 downto 0)
23);
24 end;
25
26 architecture struct of fsm_datapath is
27
28 component fsm is
29 port (
30 — system signals

6.1 VHDL Programming 139

FSM Datapath

A C

result

start

output_valid

mult_input1_muxsel_sig

xsquared_reg_enable_sig

mult_input2_muxsel_sig

add_input1_muxsel_sig

bxplusc_reg_enable_sig

output_reg_enable_sig

resetclk resetclk
B x

FIGURE 6.3 � A structural representation of the FSM datapath design.

31 clk : in std_logic;
32 reset : in std_logic;
33
34 — start the computation
35 start : in std_logic;
36
37 — datapath multiplexer select
38 mult_input1_muxsel : out std_logic_vector(1 downto 0);
39 mult_input2_muxsel : out std_logic;
40 add_input1_muxsel : out std_logic;
41
42 — register enables
43 xsquared_reg_enable : out std_logic;
44 bxplusc_reg_enable : out std_logic;
45 output_reg_enable : out std_logic;
46
47 — indicate output is valid
48 output_valid : out std_logic
49);
50 end component;
51
52 component datapath is
53 port (
54 — system signals
55 clk : in std_logic;
56 reset : in std_logic;
57
58 — input operands
59 A : in std_logic_vector(3 downto 0);
60 B : in std_logic_vector(3 downto 0);
61 C : in std_logic_vector(3 downto 0);
62 x : in std_logic_vector(3 downto 0);
63

140 Chapter 6 � Programming FPGA Applications in VHDL

64 — datapath multiplexer select
65 mult_input1_muxsel : in std_logic_vector(1 downto 0);
66 mult_input2_muxsel : in std_logic;
67 add_input1_muxsel : in std_logic;
68
69 — register enables
70 xsquared_reg_enable : in std_logic;
71 bxplusc_reg_enable : in std_logic;
72 output_reg_enable : in std_logic;
73
74 — output data
75 result : out std_logic_vector(12 downto 0)
76);
77 end component;
78
79 — internal wires for connecting the components
80 signal mult_input1_muxsel_sig : std_logic_vector(1 downto 0);
81 signal mult_input2_muxsel_sig : std_logic;
82 signal add_input1_muxsel_sig : std_logic;
83
84 signal xsquared_reg_enable_sig : std_logic;
85 signal bxplusc_reg_enable_sig : std_logic;
86 signal output_reg_enable_sig : std_logic;
87
88 — start component instantion and wiring
89 begin
90
91 datapath_inst : datapath
92 port map (
93
94 — system signals
95 clk => clk,
96 reset => reset,
97
98 — input operands
99 A => A,

100 B => B,
101 C => C,
102 x => x,
103
104 — datapath multiplexer select
105 mult_input1_muxsel => mult_input1_muxsel_sig,
106 mult_input2_muxsel => mult_input2_muxsel_sig,
107 add_input1_muxsel => add_input1_muxsel_sig,
108
109 — register enables
110 xsquared_reg_enable => xsquared_reg_enable_sig,
111 bxplusc_reg_enable => bxplusc_reg_enable_sig,
112 output_reg_enable => output_reg_enable_sig,
113
114 — output data
115 result => result
116);
117

6.1 VHDL Programming 141

118 fsm_inst : fsm
119 port map (
120 — system signals
121 clk => clk,
122 reset => reset,
123
124 — start the computation
125 start => start,
126
127 — datapath multiplexer select
128 mult_input1_muxsel => mult_input1_muxsel_sig,
129 mult_input2_muxsel => mult_input2_muxsel_sig,
130 add_input1_muxsel => add_input1_muxsel_sig,
131
132 — register enables
133 xsquared_reg_enable => xsquared_reg_enable_sig,
134 bxplusc_reg_enable => bxplusc_reg_enable_sig,
135 output_reg_enable => output_reg_enable_sig,
136
137 — indicate output is valid
138 output_valid => output_valid
139);
140
141 end;

We use the RTL form to describe the datapath, and we use a combination
of concurrent and sequential statements for this purpose. The structure of the
datapath is shown in Listing 6.5 and Figure 6.4.

Listing 6.5 � A time-shared datapath for computing Ax2 + Bx+ C.

1 — include the unsigned package to support arithmetic operations.
2 library ieee;
3 use ieee.std_logic_1164.all;
4 use ieee.std_logic_unsigned.all;
5
6 — describes the interface to the datapath,
7 — with its operands and control signals listed.
8 entity datapath is
9 port (

10 — system signals
11 clk : in std_logic;
12 reset : in std_logic;
13
14 — input operands
15 A : in std_logic_vector(3 downto 0);
16 B : in std_logic_vector(3 downto 0);
17 C : in std_logic_vector(3 downto 0);
18 x : in std_logic_vector(3 downto 0);
19

142 Chapter 6 � Programming FPGA Applications in VHDL

∗

1

C B

xsquared_r

bxplusc_r

xsquared_reg_enable
bxplusc_reg_enable

add_input1_muxsel

mult_input1_muxsel

mult_input2_muxsel

output_reg_enable

output_r

mult_r

xA

FIGURE 6.4 � A time-shared datapath for computing Ax2 + Bx+ C.

20 — datapath multiplexer select
21 mult_input1_muxsel : in std_logic_vector(1 downto 0);
22 mult_input2_muxsel : in std_logic;
23 add_input1_muxsel : in std_logic;
24
25 — register enables
26 xsquared_reg_enable : in std_logic;
27 bxplusc_reg_enable : in std_logic;
28 output_reg_enable : in std_logic;
29
30 — output data
31 result : out std_logic_vector(12 downto 0)
32);
33 end;
34
35 architecture rtl of datapath is
36
37 — notice the different bitwidths on each signal
38 — these precisions have been carefully selected
39 — based on the multiply/add operations and input
40 — bitwidths
41 signal mux_0_c : std_logic_vector(3 downto 0);
42 signal mux_1_c : std_logic_vector(7 downto 0);
43 — mux_1_c needs 8 bits of precision due to
44 — x–squared at the input
45 signal mux_2_c : std_logic_vector(8 downto 0);
46 — mux_2_c needs 9 bits of precision due to
47 — precision of Bx+C
48
49 signal mult_c : std_logic_vector(11 downto 0);
50 — product of 8-bit and 4-bit inputs is 12-bit
51

6.1 VHDL Programming 143

52 signal add_c : std_logic_vector(12 downto 0);
53 — sum of 12-bit and 9-bit inputs is 13-bits with overflow
54
55 signal mult_r : std_logic_vector(11 downto 0);
56 signal output_r : std_logic_vector(12 downto 0);
57 signal bxplusc_r : std_logic_vector(8 downto 0);
58 signal xsquared_r : std_logic_vector(7 downto 0);
59
60
61 begin
62
63 — concurrent statements to describe the multiplexers
64 mux_0_c <= A when mult_input1_muxsel = "00" else
65 B when mult_input1_muxsel = "01" else
66 x;
67
68 mux_1_c <= "0000"&x when mult_input2_muxsel = '0' else
69 xsquared_r;
70
71 mux_2_c <= "00000"&C when add_input1_muxsel = '0' else
72 bxplusc_r;
73
74 — multiplier
75 mult_c <= mux_0_c * mux_1_c;
76
77 — adder
78 — the extra 0s at the MSB of the inputs are
79 — to capture overflow bit in the result
80 add_c <= ("0000"&mux_2_c) + ('0'&mult_r);
81
82 — define all registers
83 all_registers : process(clk, reset)
84 begin
85
86 if (reset= '1') then
87
88 mult_r <= (others=>'0');
89 xsquared_r <= (others=>'0');
90 bxplusc_r <= (others=>'0');
91 output_r <= (others=>'0');
92
93 elsif (clk' EVENT and clk='1') then
94
95 — infer simple register
96 mult_r <= mult_c;
97
98 — notice that we are not specifying
99 — the else condition. the synthesis tool will

100 — infer a latch for this case. if enable is
101 — low, previous value will be retained.
102 if (xsquared_reg_enable='1') then
103 xsquared_r <= mult_c(7 downto 0);
104 end if;
105

144 Chapter 6 � Programming FPGA Applications in VHDL

106 if (bxplusc_reg_enable='1') then
107 bxplusc_r <= add_c(8 downto 0);
108 end if;
109
110 if (output_reg_enable='1') then
111 output_r <= add_c;
112 end if;
113
114 end if;
115 end process;
116
117 — drive the output with a simple wire from the register
118 result <= output_r;
119
120 end;

Included in this datapath design is the special package std_logic_unsigned
(Listing 6.5, line 4), which allows us to express arithmetic operations using high-
level symbols (+ and *) on signals of type std_logic_vector. These functions
are defined in the package. The package also helps us infer the right kind of
arithmetic units (e.g., signed or unsigned). VHDL supports the signed data type
for arithmetic operations.

Notice that we must carefully specify the precision required for all internal
signals (Listing 6.5, lines 37–58). We must also pad extra 0s when the input
signal precision is smaller than that of the operator (Listing 6.5, lines 68–69).
The concatenation operator & in VHDL further allows us to combine the right
mix of signals to enter the datapath as required by the design. This low-level
control makes VHDL suitable for designers seeking to customize their designs
to the problem.

We represent the multiplexers, multipliers, and adders using concurrent state-
ments (Listing 6.5, lines 63–80), which are evaluated in parallel and inferred
as combinational logic blocks. Note that all three multiplexers evaluate their
inputs simultaneously. Concurrent statements allow the designer to capture
this hardware-level concurrency in VHDL. Also note, however, that there is
a dataflow dependency between the multiplexers and the multiplier (as well
as the multiplexer and the adder). These dependencies are converted into
wires that connect the appropriate logic blocks together, but each logic block
continues to evaluate its inputs in parallel. The dataflow dependency only means
that signal changes are propagated to the downstream multiplier input after
a suitable delay for the multiplexer evaluation (see Delta delay subsection of
Section 6.1.5 for more information on this delay).

We express the registers in the design using sequential statements inside
the process block (Listing 6.5, lines 83–115). Most registers have a condi-
tional signal assignment (Listing 6.5, lines 102–104). Notice the absence of
an else statement or a default value on the rising clock edge. This implies
that the signal retains its previous value if the condition for assignment is not

6.1 VHDL Programming 145

satisfied. VHDL automatically infers feedback from the output to the multiplexer
at the register input. If the else is present or if a default value is specified,
no feedback will be inferred. This can be seen in Listing 6.6 (signals in the
next-state decoder process have default values, avoiding inference of feedback
paths).

To design the state machine controller, we first create a time sequence of
operations that must be performed to obtain the final result. This gives us a
cycle-by-cycle schedule for how the datapath elements are shared between the
different operations. Each of these cycles is represented by a state, which is then
decoded into multiplexer select and register enable signals for the datapath. The
VHDL for this state machine is written in an RTL form specialized for state
machines. It is shown in Listing 6.6 and illustrated in Figure 6.5.

Listing 6.6 � A state machine for generating control signals for the time-shared datapath.

1 — library and package includes
2 library ieee;
3 use ieee.std_logic_1164.all;
4
5 — entity declaration of the state-machine controller
6 entity fsm is
7 port (
8 — system signals
9 clk : in std_logic;

10 reset : in std_logic;
11
12 — start the computation
13 start : in std_logic;
14
15 — datapath multiplexer select
16 mult_input1_muxsel : out std_logic_vector(1 downto 0);
17 mult_input2_muxsel : out std_logic;
18 add_input1_muxsel : out std_logic;
19
20 — register enables
21 xsquared_reg_enable : out std_logic;
22 bxplusc_reg_enable : out std_logic;
23 output_reg_enable : out std_logic;
24
25 — indicate output is valid
26 output_valid : out std_logic
27);
28 end;
29
30 — state-machine code is enclosed is defined inside this architecture block
31 architecture behav of fsm is
32
33 — define an enumerated type for state
34 type state_type is (IDLE, COMPUTE_BX, COMPUTE_BXPLUSC_AND_XSQR,
35 COMPUTE_AXSQR, COMPUTE_ASQRPLUSBXPLUSC, ASSERT_OUTPUT);

146 Chapter 6 � Programming FPGA Applications in VHDL

IDLE

COMPUTE_Bx

COMPUTE_BxplusC_AND_xsqr

COMPUTE_Axsqr

COMPUTE_AsqrplusBxplusC

ASSERT_OUTPUT

(a)

*

1

C AB x

Bx

x2

*

1

C AB x

Bx

*

1

C AB x

Ax2

COMPUTE_
BxplusC_AND_xsqrCOMPUTE_Bx

(c)(b)

COMPUTE_Axsqr
COMPUTE_

AsqrplusBxplusc

(d) (e)

Ax2

*

1

C AB x

Bx1C

Bx2C

FIGURE 6.5 � A state machine for generating control signals for the time-shared datapath. Labels on wires
show dataflow steps in calculation.

36 signal state_c : state_type;
37 signal state_r : state_type;
38
39 — internal signals
40 signal mult_input1_muxsel_c : std_logic_vector(1 downto 0);
41 signal mult_input2_muxsel_c : std_logic;
42 signal add_input1_muxsel_c : std_logic;
43 signal xsquared_reg_enable_c : std_logic;
44 signal bxplusc_reg_enable_c : std_logic;
45 signal output_reg_enable_c : std_logic;
46 signal output_valid_c : std_logic;
47
48 — start the signal assignments
49 begin
50
51 — logic to compute the next state of the state machine
52 — also generate the control signals [only combinational, right now]
53 next_state_decoder : process(state_r, start)
54 begin
55
56 — given initial values for all signals
57 mult_input1_muxsel_c <= "00";
58 mult_input2_muxsel_c <= '0';

6.1 VHDL Programming 147

59 add_input1_muxsel_c <= '0';
60 xsquared_reg_enable_c <= '0';
61 bxplusc_reg_enable_c <= '0';
62 output_reg_enable_c <= '0';
63 output_valid_c <= '0';
64 state_c <= IDLE;
65
66 — specify state transistions
67 — update state variable
68 — update the control signals
69 case state_r is
70 when IDLE =>
71
72 — conditional state transition
73 if (start='1') then
74
75 state_c <= COMPUTE_BX;
76
77 mult_input1_muxsel_c <= "01"; — select B
78 mult_input2_muxsel_c <= '0'; — select x
79
80 end if;
81
82 when COMPUTE_BX =>
83
84 — unconditional state transition
85 state_c <= COMPUTE_BXPLUSC_AND_XSQR;
86
87 mult_input1_muxsel_c <= "10"; — select x
88 mult_input2_muxsel_c <= '0'; — select x
89 xsquared_reg_enable_c <= '1'; — save x*x
90 bxplusc_reg_enable_c <= '1'; — save Bx+C
91 add_input1_muxsel_c <= '1'; — select C
92
93 when COMPUTE_BXPLUSC_AND_XSQR =>
94
95 state_c <= COMPUTE_AXSQR;
96
97 mult_input1_muxsel_c <= "00"; — select A
98 mult_input2_muxsel_c <= '1'; — select xsqr
99

100 when COMPUTE_AXSQR =>
101
102 state_c <= COMPUTE_ASQRPLUSBXPLUSC;
103
104 add_input1_muxsel_c <= '1'; — select Bx+C
105 output_reg_enable_c <= '1';
106
107 when COMPUTE_ASQRPLUSBXPLUSC =>
108
109 state_c <= ASSERT_OUTPUT;
110 output_valid_c <= '1';
111
112 when ASSERT_OUTPUT =>
113

148 Chapter 6 � Programming FPGA Applications in VHDL

114 state_c <= IDLE;
115
116 end case;
117
118 end process;
119
120 — describe the registers that hold the state bits
121 — the actual bits will be inferred by the
122 — synthesis tool from the symbolic states
123 state_register : process(clk, reset)
124 begin
125
126 if (reset = '1') then
127 state_r <= IDLE;
128 elsif (clk' EVENT and clk='1') then
129 state_r <= state_c;
130 end if;
131
132 end process;
133
134 — register the control signals generated during state transitions
135 output_logic : process(clk, reset)
136 begin
137
138 if (reset = '1') then
139
140 mult_input1_muxsel <= "00";
141 mult_input2_muxsel <= '0';
142 add_input1_muxsel <= '0';
143 xsquared_reg_enable <= '0';
144 bxplusc_reg_enable <= '0';
145 output_reg_enable <= '0';
146 output_valid <= '0';
147
148 elsif (clk EVENT and clk='1') then
149
150 mult_input1_muxsel <= mult_input1_muxsel_c;
151 mult_input2_muxsel <= mult_input2_muxsel_c;
152 add_input1_muxsel <= add_input1_muxsel_c;
153 xsquared_reg_enable <= xsquared_reg_enable_c;
154 bxplusc_reg_enable <= bxplusc_reg_enable_c;
155 output_reg_enable <= output_reg_enable_c;
156 output_valid <= output_valid_c;
157
158 end if;
159
160 end process;
161
162 end;

By encoding the state of the controller with an enumerated data type
(Listing 6.6, lines 34–36), we can defer the actual encoding of the state bits
until the synthesis stage. The synthesis tool then assigns a bit encoding to
optimize logic. It is easier to verify the operation of the state machine using

6.1 VHDL Programming 149

symbolic states. It is also easier to update and modify symbolic state machine
code.

In the next-state decoder (Listing 6.6, lines 53–118), we enumerate all pos-
sible states of the state machine and define state transitions from each of
them. These transitions are expressed as conditions under which the state
changes.

We use the process block for describing purely combinational logic in the
next-state decoder of the state machine (Listing 6.6, lines 53–118). Previously,
we used process for describing only registers (Listing 6.2, lines 39–50). This
shows how we can write combinational logic here as well. In this listing, notice
that the same signal is assigned values multiple times in the process block
(signal mult_input1_muxsel_c in Listing 6.6, lines 57, 77, 87, and 97). As the
statements are evaluated sequentially, the last signal assignment statement to
be evaluated is considered valid, superseding all previous assignments. During
execution of sequential statements in a process, for purposes of determining
new signal values all signals are considered to have the same value they had at
the start of the process. Signals that are assigned values inside the process will
acquire those values only when process execution is complete—that is, process
suspends. It is in this aspect that the VHDL sequential semantics are different
from those of a conventional programming language (e.g., C). Figure 6.6 shows
similar code written in C and VHDL to illustrate how the different execution
semantics lead to different answers.

In Listing 6.6, all signals are assigned a value at the beginning of the process.
By design, only one when subblock of the case statement will be evaluated,
which means that only those signals that have assignments inside the valid when
subblock will get new values (Listing 6.6, line 77, 87, or 97 will execute; line 57
will execute in all cases). According to the VHDL sequential signal assignment
rule, these new assignments will hold when the process suspends. Other signals
will simply carry the default values they were assigned at the start. This avoids
the inference of feedback that we saw earlier (refer to Listing 6.2).

1 process(clk)
2 begin
3 1 int updatecounter(int counter){
4 if(clk 'EVENT'and clk='1') then 2 counter++;
5 counter <= counter + 1; 3
6 if(counter=10) 4 if(counter==10)
7 counter <= 0; 5 counter = 0;
8 end if; 6
9 end if; 7 return counter;

10 8 }
11 end process; 9
12 10 // updatecounter(9) returns 0
13 — if counter=9 at start of process,
14 — when process suspends, counter=10.

(a) (b)

FIGURE 6.6 � Comparison of sequential VHDL (a) and C (b) assignment semantics.

150 Chapter 6 � Programming FPGA Applications in VHDL

6.1.5 Advanced Topics
Delta delay
VHDL uses an event-driven simulation model. A signal is evaluated only when
an event—that is, a signal transition associated with the input signals—has
occurred. Once a statement is evaluated, its associated signal needs to be
assigned the newly generated value. However, this is not done right away so
as to keep the evaluations of other statements from using this new value imme-
diately, potentially leading to inconsistent results.

Remember that in VHDL all concurrent statements are evaluated in parallel.
Hence, to keep the simulation consistent VHDL uses delta delay, in which the
newly generated value is scheduled as an event at the following delta. (A delta
is simply a logical delay used in the simulator and not a physical delay of the
circuit.) The simulator will generate as many deltas as required depending on
the logical depth of the circuit and its input transitions. Once all events for a
given delta are exhausted, the simulator proceeds to the earliest delta at which
the next event exists. Physical time in the simulator is advanced only when no
more events are left to be processed at the last delta at the current physical
time. Sometimes the simulator is unable to advance its physical time because
of asynchronous, combinational feedback loops that continue generating new
events at incremental deltas. Such loops should be avoided when programming
VHDL, and modern synchronous simulation and synthesis tools usually warn
the designer if such a loop is detected.

Multivalued logic
Another electrical behavior is modeled in VHDL using the multivalued logic
type std_logic. It allows a signal to have different kinds of electrical states,
apart from a Boolean 0 or 1, which are required for modeling tristate drivers,
multiple simultaneous drivers (usually a design error), uninitialized signals, and
weak drivers.

6.2 HARDWARE COMPILATION FLOW

To fully understand how VHDL fits into the design process, we expand the FPGA
compilation process shown in Figure I.2. Our flow is shown in Figure 6.7.

1. The hardware designer begins the design-engineering process with a prob-
lem specification—that is, a functional description of the problem along with
additional performance and area constraints that the implementation must
meet.

2. Based on this specification and the inherent problem structure, the
designer identifies an appropriate system architecture to use for the implemen-
tation. We saw different kinds of system architectures in Chapter 5.

3. The designer writes VHDL code to describe this design using structural
and RTL styles that we saw earlier in this chapter.

6.2 Hardware Compilation Flow 151

Design specification

System architecture selection

Hierarchical VHDL and RTL VHDL

Functional simulation

Logic synthesis

Placement and routing

Timing analysis

Timing simulation

Bitstream generation

FIGURE 6.7 � FPGA compilation flow.

4. Once the VHDL is written, the designer needs to first check if her VHDL
meets functional specifications, using a suitable testbench that can be written
in VHDL itself. The testbench and the design are run in a logic-level simulator.
The testbench generates appropriate test vectors for the design and verifies the
result. This is typically an iterative process, and the designer continues to refine
the VHDL design until the functional specification is met.

5. After verifying correctness, the designer then proceeds to the FPGA
back-end phase, a multistage (and iterative) process. It starts with synthesis,
where the synthesis tool converts the VHDL description of the design (exclud-
ing the testbench) into a logic-level FPGA netlist. This netlist is generated
by first inferring hardware from VHDL code and then optimizing it through
several state-of-the-art algorithms—for example, logic minimization, retiming
(Chapter 18), covering (Chapter 13), and sharing to meet timing and area con-
straints. Constraints can be specified as a separate input to the tool by the
user.

6. The designer uses backend tools to perform placement (Chapter 14) and
routing (Chapter 17) on the synthesized logic elements to map them to an
actual physical device (logic elements are assigned physical LUTs while the

152 Chapter 6 � Programming FPGA Applications in VHDL

wires between them are mapped to the interconnect fabric). This is typically the
most time-consuming step of the backend process. The designer can help direct
these tools using additional constraints (see Section 6.2.1) either to improve the
quality of the final mapped design or to reduce the compilation time needed.

7. Once the design is placed and routed, the designer can perform static tim-
ing analysis to ensure that the timing constraints are met. FPGA tools can also
write out a post place and route timing annotated VHDL netlist for a timing
simulation that models logic and interconnect delays accurately. Specific tim-
ing requirements not covered in the simple static timing analysis can then be
simulated and checked.

8. If the designer is satisfied with the performance of her implemented hard-
ware, the tools generate a programming file for the FPGA device (Chapter 19).

6.2.1 Constraints
Constraints are an indispensable tool directive that a designer can use to help
her designs meet required specifications. They can be used to direct the synthesis
tools in optimizing the design for either high-speed operation or low-area
implementation (these are usually conflicting goals). For example, the designer
can specify a frequency target that Synplify Pro (a synthesis tool) must meet
using the following timing constraint.

set option -frequency 300.000

This sets the target frequency for the compilation to be 300 MHz. Similarly,
designers can provide timing constraints for the placement and routing phases
as well.

TIMESPEC "clock signal name"=3.3ns;

More important, a designer can give physical floorplanning constraints to
direct the placement and routing algorithms to use a specified region on the
chip.

INST "*" AREA GROUP = "dummy name";
AREA GROUP "dummy_name" RANGE = SLICE X0Y0:SLICE X100Y100;

Here we create a group dummy_name containing all hardware elements in
the design using wildcards (*). Then we specify a rectangular box from 0,0 to
100,100 on the FPGA. The units are measured in SLICEs; a SLICE is a cluster of
a few, usually four, Xilinx FPGA LUTs. The proper selection of these constraint
values is typically based on intuition and can be refined with designer experi-
ence. Placement constraints, such as the one in the previous code snippet, are
vendor and device specific, but each vendor typically has analogous constraints
for each device.

6.3 Limitations of VHDL 153

6.3 LIMITATIONS OF VHDL

Although VHDL currently enjoys a healthy market share, there are several
limitations and drawbacks in the language:

� VHDL syntax is verbose, extremely cumbersome, and requires several
lines of code to describe even simple logic elements (e.g., a register
typically requires four to ten lines of code).

� Hardware needs to be described at a very low level of abstraction (i.e.,
RTL). The programmer is responsible for specifying the logic that goes
between each register stage, which can become a significant
programming challenge for large irregular designs with thousands of
registers and unique logic between register stages.

� As technology and FPGA architectures evolve, the optimal amount of
pipelining required to meet the desired cycle time changes. Because RTL
is written for a specific number of registers in the logic path, it needs to
be rewritten when the number of register stages changes. In other words,
the amount of logic between register stages must be modified accordingly.

� Low-level descriptions also make it hard for synthesis tools to optimize
and schedule logic. Programmer bias disallows optimizations that might
have otherwise been possible in a more flexible description.

� Hardware described in VHDL suffers from the additional drawback of
significantly long verification times. It is known that equivalent
simulation-specific, cycle-accurate models written in C, C++, Java, or
other higher-level language can be simulated 10 to 100 times faster than
in VHDL. Verification is a significant portion of the design cycle, and
there is demand to contain the time spent on it.

In subsequent chapters, we will see other high-level languages that address
many of these limitations (e.g., Chapters 7, 9, and 10). In many cases, however,
these languages use VHDL as an intermediate target in their mapping flow.

References
[1] P. Ashenden. The Designer’s Guide to VHDL, 2nd ed., Morgan Kaufmann, 2002.
[2] P. Ashenden. The Student’s Guide to VHDL, Morgan Kaufmann, 1998.
[3] Development System Reference Guide, Xilinx, Inc.

This page intentionally left blank

C H A P T E R 7

COMPILING C FOR SPATIAL COMPUTING

Timothy J. Callahan
School of Computer Science
Carnegie Mellon University

André DeHon
Department of Electrical and Systems Engineering
University of Pennsylvania

This chapter describes techniques for compiling from C or similar languages
to reconfigurable architectures. We will first briefly describe the benefits of this
approach and the contexts where it is most useful. Then we will describe in
detail the algorithms and their technical limitations and challenges.

For the discussion in this chapter, we assume the presence of a micropro-
cessor coupled with the reconfigurable fabric (RF). This eases adaptation in
several ways and is particularly useful when supporting a mix of irregular
control tasks (best suited to the microprocessor) and compute-intensive, high-
throughput tasks (best suited to the RF), as described in the Processor subsec-
tion of Section 5.2.2.

The original C code can be partitioned between the central processing unit
(CPU) and the RF at several granularities, including procedures, compound
loops, inner loops, and blocks. The algorithms described in this chapter apply
to any of these cases. The appropriate granularity for a particular system will
depend on the hardware available and the particular costs involved in commu-
nication between the CPU and the RF and will not be treated in this chapter.

For most of this section we will assume that the source code, both before and
after the designer’s target-specific efforts to improve performance via hints in
comments or pragmas, will be legal C code as defined by the ISO standard [9].
However, at the end we will overview some methods for integrating blocks designed
via HDL or schematic capture into a C program.

The benefits to having a full, pushbutton path that starts from C and that can
put at least some of the application on the reconfigurable hardware follow.

� There are many more C programmers than hardware designers, and
writing an algorithm in C is typically faster than in an HDL.

� There is a large existing code base even for embedded applications, with
at least the reference version written in C.

� Working with a single description of the entire program makes it easy for
the designer or compiler to quickly explore the tradeoffs of different
hardware/software partitionings. Also, it allows both hardware (HW) and

156 Chapter 7 � Compiling C for Spatial Computing

software (SW) versions to be created so that the operating system can
choose at runtime which is better (see Chapter 11).

� Designers can start with automatic compilation, and then focus their
efforts on improving a few loops while benefiting from the compiler’s
speedup on the remainder. Furthermore, with the compiler’s support the
designer’s required effort is reduced in many cases to simply restruc-
turing the code or embedding simple compiler directives in the form of
comments or #pragma syntax.

� The code can be easily tested on a conventional microprocessor for
correctness.

This chapter will be of direct value to those interested in compilation for
spatial computing from a sequential language. More generally, it will give an
application writer an understanding of the power and limitations of the state
of the art of such compilers—and thereby how to write high-performance code
quickly.

7.1 OVERVIEW OF HOW C CODE RUNS ON SPATIAL HARDWARE

This section provides a quick overview of how C code can be implemented on a
reconfigurable fabric. It assumes basic familiarity with C. The approaches used
are simple and far from optimal, but easy to understand. The detailed algorithms
of how a compiler does this construction will follow.

In the figures that follow (e.g., Figure 7.1), the gray rectangles represent reg-
isters. For simplicity, the global clock is not shown. An arrow from the side
toward the register indicates a load enable signal. The hardware appears at the
operator level, not at the gate/CLB level.

* 2

start

input x input y

x y

b c

+

1

*

/

/

9

(etc.)

a 5 x * y;

a 5 x 2 y;

b 5 a 1 1;

c 5 a / 9;

(etc.)

FIGURE 7.1 � Straight-line code.

7.1 Overview of How C Code Runs on Spatial Hardware 157

7.1.1 Data Connections between Operations
The simplest components of C code to start with are sequences of straight-line
arithmetic and logical statements. A sequence effectively tells us the set of prim-
itive operations that make up the computation and how those operations are
linked together—that is, they tell us how the outputs of one operation become
inputs to other operations.

In a C program, the statements execute in order. A statement can define a
variable, and subsequent statements using that variable get its last defined value.
This is how value definitions are connected to their use(s)—the most recent
assignment to a variable is the one that is used by a subsequent statement.

With spatial computation, each operation is implemented as a function unit
(or module) and a producer is connected to its consumer(s) by a direct physi-
cal connection. Even if two different C statements assign to the same program
variable, they are treated as different variables internally. In the example in
Figure 7.1, the two definitions of variable a, while sequential in the C program,
are actually independent and can be performed in parallel spatially. This is one
step in the direction of exploiting the unlimited parallelism of spatial hardware,
where we wish to reduce unnecessary ordering of operations as much as possi-
ble and keep only the necessary ordering.

Because we are implementing the computation spatially and in parallel, the
actual compute datapaths are always instantiated, ready to perform their oper-
ations. It is sometimes necessary to inform the modules when their inputs are
available and when they should actually perform their actions. The chain of reg-
isters on the left of Figure 7.1 acts as a very simple sequencer. In this particular
example, the registers simply count off how many cycles are required to com-
pute all of the results. A ‘1’ bit is fed from the start signal, kicking off the
sequencer and latching values into the input modules. The input modules hold
the input values constant during execution of this unit of computation. When a
1 bit appears at finish, the final values are ready to pass on.

Mixed operations of different complexity (e.g., adders and multipliers) may
take different amounts of time to complete. For efficient operation, rather than
slowing all operators down to the latency of the slowest one, it is often worth-
while to decompose slower operators into multiple cycles, potentially pipelining
them internally. In this example, multiply and divide are split into two stages
requiring two cycles, while add and subtract require just one cycle each.

Throughout this section, we employ a timing discipline where values are held
constant until the end of their block schedule. If a module’s output register is
shown at level P in the schedule, and the overall schedule length is SL, then
the output of that module is guaranteed to be correct and stable from cycles P
through SL of that specific block execution (where cycle 0 is when the start
signal is raised).

7.1.2 Memory
Memory loads and stores pose additional complications beyond simple arith-
metic and logical operations, in that their effects are not just local. In particular,

158 Chapter 7 � Compiling C for Spatial Computing

input p

*q 5 *p 1 1;
(etc.)

1

store

a
d
d
r
e
s
s

b
u
s

d
a
t
a

b
u
s

r
e
q
R

r
e
q
W

start

load_d

load_a

input q

1

To/from memory
system

(etc.)

FIGURE 7.2 � Implementation of memory accesses.

memory can be used to perform dynamic interconnect between operations, and
we must be careful to preserve the original communication semantics of the
C program. A “memory” function unit has local input and output connections
to other function units as normal, but also has connections to global shared
address, data, and control buses. These connect each memory node to the same
shared memory system.

Memory access operations must be scheduled on a particular cycle both to
allow sharing among memory operations and to preserve sequential C seman-
tics. Without scheduled coordination, two modules can attempt to drive the
address or data bus simultaneously. The simple controller triggers each memory
access at the correct time so that no clashes arise on either the address or the
data buses. Memory access must be scheduled after its input values are ready.
The compiler is also responsible for scheduling memory accesses in a way that
ensures that each pair that might access the same memory location is performed
in the correct relative program order.

The example in Figure 7.2 shows how a load node is split into a load_a,
which sends the address and load request, and a load_d (or load continuation),
which grabs the data when it comes back. The example assumes a load latency
of just one cycle. If the memory system takes extra time to return the load data,
as in the case of a cache miss, there must also be a stall signal factored into
the sequencer to freeze execution of the subcircuit; this is not shown in the
figure.

7.1.3 If-then-else Using Multiplexers
Simple if-then-else statements can be merged into a single subcircuit by per-
forming the operations along both branches and then using multiplexers to

7.1 Overview of How C Code Runs on Spatial Hardware 159

if (a.10) {
 a11;
} else {
 a22;
 *q 5 a;
}
x 5 a * a;

.

a
d
d
r
e
s
s

b
u
s

d
a
t
a

b
u
s

start

10

input a

1

1

1

2

r
e
q
R

r
e
q
W

store
mux

p

*

To/from memory
system(etc.) xa

FIGURE 7.3 � If-conversion: Combining if-then-else using predicates and multiplexers.

select the correct version of each variable for use in subsequent computation.
This removes the branch; instead, the comparison result is used as a predicate
to choose the correct variable for later use, as with variable a in the example in
Figure 7.3. In the figure the predicates are the result of the comparison a > 10
and its inverse, which say whether the then or the else branch is taken. In
general, a predicate is always a Boolean value—the result of a comparison, or
a Boolean function of multiple comparisons, as occurs when nested if-then-else
statements are reduced. switch statements and even forward goto statements
can be implemented using similar techniques.

If the then or else contains a side-effect-causing operation, such as the
store in Figure 7.3, that operation’s cycle trigger must be ANDed with the pred-
icate under which it should execute.

7.1.4 Actual Control Flow
To map C code containing more than just simple if-then-else control flow to the
reconfigurable fabric, some real control flow is needed. Control flow means that
there may be multiple subcircuits on the RF; only one is active at a time; and
the transition from one to another subcircuit is guided by the values that are
computed by the ongoing computation. This is spatial computation’s implemen-
tation of a conditional branch.

The control flow is implemented with the control bit: When it reaches the end
of a subcircuit, it is directed to the start of the next subcircuit to execute. When
a subcircuit has multiple successors, a predicate controls which one receives
the control bit. In Figure 7.4, we see the explicit branch either to a subcircuit
performing the then computation or to the one performing the else computa-
tion. Subcircuit SC1 computes the condition a > 10, and the result determines

160 Chapter 7 � Compiling C for Spatial Computing

}

 a11;
if (a.10) {

} else {

 a22;

x 5 a ^ 7;

(etc.)

1 2

>

1

input a

10

start

SC1

SC2 SC3

SC4

input a

a

7

x

xor

(etc.) a

c0 d0 c1d1

1

FIGURE 7.4 � Actual control flow.

whether the control bit goes to SC2 or SC3; then one or the other gets the
control bit and executes. Control flow paths then merge at SC4, where a con-
trol bit from either SC2 or SC3 starts SC4’s execution. Note that the source
of the control bit entering SC4 also controls whether SC2’s or SC3’s final ver-
sion of a is latched at the start of SC4 (note in Figure 7.4 the expansion of
input a).

Subcircuits as small as those shown in Figure 7.4 would not typically be cre-
ated by the compiler; instead, they would likely be merged as shown earlier.
However, if SC2 and SC3 had very different execution lengths, it would be worth-
while to keep them separate like this. If, for example, one had 1-cycle latency
and the other 13-cycle, we would only experience the 13-cycle latency when that
path was taken. In contrast, when uneven paths are combined into one subcir-
cuit, we pay the worst-case latency every execution.

A subcircuit that has a single predecessor actually does not require input
modules, assuming in our implementation that the predecessor subcircuit holds
its outputs constant until it is activated again. This simplification is shown in
SC2 and SC3 of Figure 7.4.

A loop is implemented simply by control branching back to the top of itself
or to some other, earlier subcircuit.

7.1 Overview of How C Code Runs on Spatial Hardware 161

7.1.5 Optimizing the Common Path
We have seen two extremes: (1) combining all the computation in an if-then-else
nest and (2) doing no combining and keeping all branches. But the key to get-
ting the best performance from limited spatial hardware is selectively merging
the computation on the common path(s) (to remove the subcircuit-to-subcircuit
latency and to expose operation parallelism) while excluding computation on
the rarely taken paths (so that it doesn’t get in the way of the common case).

In Figure 7.5 we see the same code as in Figure 7.4, but we have merged
the computation along the path with the increment. However, we have excluded
the path with the decrement. The compiler chose to merge the computation
along the path with the increment (SC1 → SC2 → SC4 from Figure 7.4) into
one subcircuit because a test run (or the programmer) told it that that path was
more commonly executed. Because reentering the merged increment path is not
allowed, we needed to copy the XOR computation for the decrement path.

Merging the common path allowed the compiler to schedule the comparison
and the addition in parallel, reducing computation time to three cycles. The
schedule for the common case is also better than that for the case where all
blocks were merged, as in that case we needed a multiplexer to merge the results
from the decrement path, and that would add an extra step between the addition
and the XOR. In the general case, the benefit of excluding a rare path could be
even greater: Consider if the decrement were instead a multiplication, or even a

.

astart

10

1

7

xor

7

xor

(etc.)

x

x

a

a

(etc.)

1

input a

1

2

}

 a11;
if (a.10) {

} else {
 a22;

x 5 a ^ 7;
(etc.)

FIGURE 7.5 � Optimizing the common path.

162 Chapter 7 � Compiling C for Spatial Computing

long chain of operations. In that case, if that rare path were included, it would
force a much longer schedule.

In this case, when the execution flow exits the common path and continues
to the excluded path, the total time will be five cycles, longer than the four
cycles that would have resulted if decrement had been included. Many 3-cycle
executions with a few 5-cycle executions are better than all 4-cycle executions—
again, optimizing the common path.

A system might also choose to implement rarely taken paths as normal soft-
ware on the CPU. This would ease the demand for resources on the reconfig-
urable fabric and allow implementation of a loop or procedure that otherwise
would not fit. This approach is also beneficial when the excluded path includes
an operation, such as a library call, that cannot be implemented directly on
the RF. However, the cost of transferring control to the CPU for a rare path,
when it does happen, must be considered.

7.1.6 Summary and Challenges
In this section we sketched how C can be implemented spatially and began to
illustrate optimizations for parallelism that are the key to extracting high perfor-
mance from spatial hardware, even when the spatial hardware runs at a slower
clock rate than the CPU. We also illustrated context-specific optimization, which
allows us to highly specialize the computation to the common case execution
of the application, further increasing parallelism and reducing the computation
required. Nonetheless, these simple techniques leave us with spatial designs that
can be inefficient and that underutilize our reconfigurable fabric. These ineffi-
ciencies include:

� Not pipelining: Sequential paths prevent us from reusing our spatial
hardware at its full capacity; spatial operators sit idle for most of the
cycles in a block. To fully use the capabilities of the reconfigurable
hardware, datapaths should be pipelined for rapid reuse.

� Memory: Sequential dependencies among memory access operations limit
available parallelism.

� Operator size and specialization: The reconfigurable fabric can provide
hardware tailored to the compute needs (e.g., just the right datapath
width, specialized around compile time constants), but specific
information about operator size is often not immediately apparent in the
original C program.

The following sections show how we can address many of the simple trans-
lation scheme’s limitations.

7.2 AUTOMATIC COMPILATION

A particular compiler flow is largely determined by the system architec-
ture. Here we will assume that fairly large pieces of code will be migrated

7.2 Automatic Compilation 163

to the reconfigurable fabric—a loop or perhaps even a complete procedure.
There is little difference in the algorithms between granularities at this
level.

We assume a standard C compiler frontend that parses the source files (see
Figure 7.6(a)) and performs further processing until the intermediate repre-
sentation consists of a control flow graph (CFG) for each procedure. A CFG
consists of basic blocks, each containing an ordered list of simple instructions
and connected by control edges indicating a possible branch from the end of
one basic block to the start of another, as shown in Figure 7.6(b). By defini-
tion, entry to a basic block occurs only at the beginning, exits occur only at
the end, and all instructions inside the basic block execute once the block is
entered.

Within each basic block, complex expressions are broken up by introduc-
ing compiler temporary variables so that each simple instruction contains just
one operation. This list of simple instructions in each basic block resembles
assembly code to some degree, but is of a higher level: variables (including com-
piler temporaries) are used instead of explicit registers, and all type information
is still available. Many optimizations are performed on this representation to
reduce the number of instructions by, for example, constant propagation, con-
stant folding, and common subexpression elimination. (See Aho et al. [1] or
Muchnick [13] for related background.)

The frontend also provides some standard analyses. Of particular interest here
is live variable analysis, which indicates whether or not the current contents of
a variable need to be preserved for a possible future use.

(a) (b) (d) (e)(c)

FIGURE 7.6 � Overall compiler flow: (a) original C source code, (b) CFG basic blocks,
(c) clustering of basic blocks into hyperblocks, (d) construction of the DFG, and (e) circuit generation from
the DFG.

164 Chapter 7 � Compiling C for Spatial Computing

After frontend processing produces an optimized CFG for each procedure,
we start compilation steps specific to reconfigurable computing:

� HW/SW partitioning: This is very system dependent, and its discussion is
deferred until section 7.3.1.

� HW/HW clustering of the CFG basic blocks into hyperblocks: illustrated in
Figure 7.6(c) and discussed in section 7.2.1.

� Building the dataflow graph (DFG) for each hyperblock: illustrated in
Figure 7.6(d) and discussed in section 7.2.2.

� DFG optimization: discussed in section 7.2.3.
� Generating the circuit from the DFGs: This involves module mapping

(packing one or more DFG nodes into a single-cycle macro function
unit), scheduling, connecting hyperblock subcircuits, and other related
tasks; illustrated in Figure 7.6(e), which leaves out data connections, and
discussed in section 7.2.4.

After we go over these steps, we will describe some uses and variations in
Section 7.3.

7.2.1 Hyperblocks
Because basic blocks are limited to straight-line control flow between branches,
they are often quite small and limit our opportunities for parallelism. As we saw
in the previous section, we can often convert if-then-else constructs into dataflow
using multiplexers. These composite blocks, or hyperblocks, have a single entry
point at the top and one or more exits. All branches within the hyperblock are
eliminated by using predicates and multiplexers. Each hyperblock becomes a
subcircuit, as shown earlier.

To form hyperblocks, the compiler starts with the basic block CFG. It then
combines blocks along commonly taken paths—for example, the right group
in Figure 7.6(c), excluding rarely taken paths. A single basic block can always
be a hyperblock. To respect the single top-entry requirement, tail duplication is
required to eliminate an edge that otherwise would reenter the hyperblock; that
edge is redirected to a copy of its original target. For example, the bottom basic
block in Figure 7.6(b) is duplicated in Figure 7.6(c).

The hyperblock was originally constructed by Mahlke and colleagues [12] for
compiling to VLIW (very long instruction word) processors (see VLIW data-
path control subsection of Section 5.2.2), although the clustering heuristics they
developed are not necessarily effective here. In particular, VLIW processors have
a fixed instruction issue width; once this is saturated, adding additional parallel
paths may extend the schedule and hurt the performance of the common case.
With spatial computing, we have no limit on per-cycle operation parallelism,
so it is often beneficial to make “fatter” hyperblocks by including more parallel
paths from the CFG.

7.2.2 Building a Dataflow Graph for a Hyperblock
Here we focus on constructing a DFG (dataflow graph) from the set of basic
blocks in a hyperblock. The DFG is a “stepping stone” between the original

7.2 Automatic Compilation 165

software specification and the final spatial hardware implementation. The
compiler performs many important tasks in building it:

� Control dependence within the hyperblock is converted to data
dependence: Internal conditional branches are eliminated through the
introduction of predicates (Boolean values indicating the “taken” path
through the computation). The only remaining conditional branches are
exits out of the hyperblock.

� Data producer–consumer relationships are made explicit via data edges in
the graph; also, because a new DFG node is created for each definition,
variable renaming is effectively performed, which eliminates false
dependencies.

� Any remaining ordering constraints between individual operations,
particularly memory operations, are also made explicit through ordering
edges.

These actions convert the sequential ordering of instructions to a partial order
of DFG nodes, exposing parallelism. In addition, maximal control speculation is
employed so that all safe operations execute every iteration, removing dependen-
cies between predicate calculations and those operations, breaking critical paths,
and further increasing operation parallelism. Finally, the DFG is an ideal repre-
sentation with which to perform many additional optimizations, described next.

The DFG is composed of nodes and edges:

� Nodes: These include constants, inputs to the hyperblock, simple
computational operations having no side effects (such as addition),
memory accesses, and exit nodes. Exit nodes are associated with an
outgoing control edge from one hyperblock to another; when an exit
node’s predicate input is true, it causes a control transfer to the target
hyperblock recorded on the node. The exit node also defines which live
data values should be transferred to the successor hyperblock, as
indicated by liveness edges.

� Edges: These are directed edges between the nodes and are of three types:
data edges, indicating producer–consumer relationships; ordering edges,
indicating an ordering constraint between two nodes such as memory
operations; and liveness edges. Liveness edges go only to exit nodes. They
indicate the set of values that are live-out at that hyperblock exit and thus
must be copied out—that is, transferred to the successor hyperblock or
back to the CPU. Each liveness edge is annotated with the name of the
variable because, in general, the variable cannot be deduced from the
source DFG node (a single node may be the source for different variables
at different exits). These edges are necessary because the set of live
variables to be transferred typically differs at each exit. Also, the source
DFG node for a given variable can be different at different exits.

Top-level build algorithms
We build the DFG from the basic block CFG for each hyperblock. The algo-
rithm for building the DFG performs a single forward pass, visiting each basic

166 Chapter 7 � Compiling C for Spatial Computing

block in the hyperblock in an order such that each basic block is visited only
after all its predecessors have been visited. Then, when visiting each basic block,
the simple instructions are visited in sequence. This forward pass builds all of
the DFG nodes, including nodes directly translated from instructions as well
as predicate calculation nodes and mux (multiplexer) nodes inserted to imple-
ment predicated execution. The forward pass also builds all data and ordering
edges.

Building data edges
When a node is constructed, the compiler creates data edges to its inputs using
the lastDefs data structure. Throughout the forward pass, this table is kept up
to date regarding which node produced the last definition of each variable; there
is at most one such definition at any point. We show an example in Figure 7.7.

At the start of processing a hyperblock’s entry basic block, the lastDefs list
is initialized with an input node associated with each live variable, as with y:n1
in the example.

Whenever an instruction assigns to a variable, lastDefs is updated. In our
example, y++ in BB1 uses the current value of y, n1 as the source for the incom-
ing edge to the new add node, n4; then the lastDefs list is updated so that the
new value of y is available from n4.

A copy—an assignment from one variable to another—requires no action
other than updating the lastDefs list (see for example x=y in BB1 in
Figure 7.7). A new entry for x is made in the lastDefs list, x:n1, just using
the current entry for y. Similar for z=y, although at that point the entry for y is
different so a different source node is given to z. This has the effect of performing

(b)
(a)

y:n8, x:n1, z:n4

y:n8, x:n9, z:n4

y:n4, x:n1, z:n4

y:n7, x:n1, z:n4

y:n4, x:n1, z:n4

x and z are live

x 5 x * y;

x 5 y;
y11;
z 5 y;
if (z.20)

y:n1

y:n1, x:n1

y:n4, x:n1

y 5 4;

BB1

BB2

BB3

predicate: n5

predicate: n5

predicate: n6

predicate: TRUE

predicate: TRUE

4

1
Input y

!

20

1 exit

x

n1
n2

n3 n4

n5

n6

n7

n8

n9

n10
n11

z
∗

>

FIGURE 7.7 � Basic blocks selection for the hyperblock: (a) the state of the lastDefs list at
various points in the process; (b) the resulting DFG.

7.2 Automatic Compilation 167

copy propagation and constant propagation for free while building the DFG. At
the end of processing each basic block, the final lastDefs list is recorded.

For a nonentry basic block B with a single predecessor in the hyperblock,
the predecessor’s final lastDefs list is used as the starting lastDefs list for
processing B. This occurs from the end of BB1 to the start of BB2.

Building muxes
At a basic block with N > 1 incoming CFG edges, a given variable may have
differing definitions arriving via the edges as indicated by the predecessors’
respective final lastDefs lists. In such cases, an unencoded mux is constructed
in the DFG to route the appropriate definition to subsequent consumers. An
unencoded mux has N data inputs and N Boolean select inputs—only one of
the select inputs can be true—and the corresponding data input is routed to the
output. The N data inputs to the mux are from the data source nodes from the
arriving lastDefs lists; the select input corresponding to each of the N data
inputs is the predicate for that arriving edge. The data output of the mux struc-
ture becomes the definition of the variable entered in the lastDefs list for the
start of processing that basic block. This occurs for y entering BB3, where the
compiler inserts mux n8 to select between sources n4 and n7, and then makes
n8 the new entry for y. Because the entries for x and z are the same, however,
no mux is built for either of them.

Predicates
At the beginning of processing each basic block, a node calculating that block’s
predicate is built if necessary and the predicate source is recorded to be used as
input for nodes that cannot be executed speculatively (e.g., stores). The predicate
for the hyperblock entry block is TRUE. For each other basic block, the predicate
is built as the OR of the predicate sources of all incoming edges. When there
is just one incoming edge, the calculation degenerates to just using that edge’s
predicate.

At the end of processing a basic block, a predicate is built if necessary and
recorded for each outgoing edge. For a basic block ending in a conditional
branch, an edge’s predicate is built as its source block’s predicate, ANDed with
the branch condition under which that edge is taken. For a basic block end-
ing in an unconditional branch, the edge predicate on the single outgoing edge
is just the same as the block’s predicate. After forming predicates for a nested
if-then-else, it may be possible to simplify them; for example, a block may be
(p1 AND p2) OR (p1 AND not p2), which can be reduced to just (p1) by rules
of Boolean logic.

Ordering edges
To help build ordering edges, the compiler maintains lists of all loads and stores
seen along any path from the entry of the hyperblock to the current point.
At the start of processing the hyperblock, the lists are initialized as empty.
At the end of processing each basic block, the state of the lists at that point
is recorded. At the start of any nonentry basic block, the starting lists are

168 Chapter 7 � Compiling C for Spatial Computing

simply calculated: For a basic block with a single predecessor, the predecessor’s
lists are copied; when there are multiple predecessors, the respective lists are
unioned.

When building a new load, construct an ordering edge from each upstream
store to the new load, and then the load is added to the seen_loads list. When
a new store is built, an ordering edge is constructed from each node on both
the seen_loads and seen_stores lists to the new store and the store is added
to the seen_stores list. This step is very conservative; for example, it adds an
ordering edge from a store to each subsequent load even if the load is from
a different array. Later phases use dependency information to remove ordering
edges that are not necessary—that is, when it is guaranteed that the two accesses
cannot refer to the same memory location.

Live variables at exits
This phase determines, for each exit, which values must be copied out to the next
hyperblock or CPU when that exit is taken. For each such variable, a liveness
edge is constructed from the node responsible for the last definition, as found
in the lastDefs list, to the DFG exit node.

If the variable is live at that exit, there will be an entry for it in lastDefs at
the point of exit. The indicated DFG node is the one providing the value for the
variable, so the edge is constructed from that node to the exit DFG node.

Figure 7.8 shows an example of a swap. There are two exits from the first
hyperblock, at one of which a and b are swapped—this results purely from

ExitExit

<

!

Exit

Input a Input b

ab b

Input a Input b

1

n1 n2

a:n2, b:n1, tmp:n1

if (a<b) {
 tmp 5 a;
 a 5 b;
 b 5 tmp;
}
diff 5 a 2 b;

if (a<b)

tmp 5 a;
a 5 b;
b 5 tmp;

diff 5 a2b;

a:n1, b:n2 a

2

FIGURE 7.8 � Code, hyperblock formation, and resulting DFGs.

7.2 Automatic Compilation 169

lastDefs list processing. The figure shows the differing contents of the
lastDefs lists at the different exits. In one case, a’s source is n1 (input a); in the
other, its source is n2 (input b). Later, when the compiler translates the DFGs to
subcircuit implementations, it will also form connections from the appropriate
liveness edge sources in the first hyperbock to the input nodes in the second
hyperblock.

Scalar variables in memory
If the address of a scalar variable is taken at some point by the C language &
operator, it may be written or read through a pointer access. In this case,
in general the variable must reside in memory. When direct accesses to the
variable are interspersed with pointer accesses, we can’t be sure when the
pointer access might be accessing that variable without further analysis. Thus,
we must keep the memory version of the variable up to date. When this sit-
uation occurs, each use of the variable requires an explicit load from mem-
ory, and each definition requires a store. Going to memory for each variable
access is obviously detrimental to performance, especially on a reconfigurable
fabric, so later optimizations attempt to eliminate or reduce the number of such
accesses.

7.2.3 DFG Optimization
Optimizations have been performed by the compiler frontend before DFG con-
struction even starts. More optimizations are performed during construction,
some of them coming automatically in the construction process, such as con-
stant and copy propagation. Finally, after the DFG is completed, the com-
piler performs many optimizations, often performing the same ones multiple
times, and sometimes iterating a set of different optimizations until no further
improvement occurs. We will review a few of these optimizations in the follow-
ing subsections. (More detail can be found in other references; see the work of
Budiu [4] and Callahan [5].) These optimizations consider the scope of the DFG
(i.e., each hyperblock), which is larger than each basic block but smaller than
the entire procedure.

Constant folding
Constant folding is simply the reduction of expressions of compile time con-
stants to the equivalent constants. Its most obvious benefit is that it removes
operations from the DFG and ultimately reduces area and latency in the subcir-
cuit. A second benefit is that constant folding can enable operator specialization
for other operations. (See Chapter 22.)

Figure 7.9 shows a simple example of constant folding. The important part
of this example is observing how this opportunity for optimization occurs only
after hyperblock formation, because the definition of x in B3 no longer interferes
with constant propagation and constant folding in B1-B2-B4. This effect is not
limited to constant folding, but has the potential to improve all optimizations
described here.

170 Chapter 7 � Compiling C for Spatial Computing

x = 4;

y = x * x;

x = 3;

B1

B2 B3

B4

x = 4; x = 3;

y = 9;
B4

B4’

B2 B3

B1

(a) (b)

y = 16;

FIGURE 7.9 � The commonly taken path in the loop is B1-B2-B4 (a). Hyperblock formation
(b)—tail duplication occurs with basic block B4. This enables constant propagation and then
constant folding for the expressions x*x, although this is actually done after conversion to
the DFG.

Identity simplification
This can be considered a special case of constant folding, that is, finding cases
where the operator can be eliminated because one of the inputs is a specific
constant. Integer operations that add or subtract zero, shift by zero, or multiply
by one are eliminated. Similar optimizations exist for Boolean predicate opera-
tions: If either an OR or an AND has a constant input, it can be eliminated by
replacing it either with a constant or with a pass-through from the other input.

Strength reduction
This replaces one operator with another operator (or operators) having less
overall latency/area. For example, replace x*2 with x+x or x<<1. Again, this is
often based on having a specific constant input. Sometimes, equivalent imple-
mentations occur whether we do operator-level strength reduction or bit-level
specialization, but it does not hurt to have multiple attacks. Multiplication by
a constant is an important example because it occurs so often and because a
general multiplication function unit can be expensive on a reconfigurable fab-
ric. The expression x*7 can be expressed as (x<<2)+(x<<1)+x, but even better
as (x<<3)-x.

Dead node elimination
A cleanup pass eliminates nodes that are “dead”—that is, those that are not
“live.” A node is live when it is required for proper execution if (1) it has side
effects (i.e., it is a store or an exit), or (2) its data output is used by another
“live” node, including the case where the node supplies a live-out value to an
exit node. The algorithm starts by marking as live all nodes with side effects:
stores and exits. Then it marks as live any node whose data output is used by any
other “live” node, and so on. Only data and liveness edges need to be traversed.

7.2 Automatic Compilation 171

Once no more nodes can be marked as live, any remaining nodes not marked
as such are known to be dead and can be safely removed.

Common subexpression elimination
Common subexpression elimination (CSE) is a well-known optimization for
identifying and removing redundant computation—that is, the same operation
is performed on the same operands. When a node has the same operands as
another, it is immediately obvious from the structure of the graph. All simple
operator nodes are subject to elimination, as are all nodes introduced to sup-
port predicated execution (Boolean calculations and muxes). Store and exit node
types are not considered for elimination. Loads can be considered if additional
analysis is done (see Memory access optimization subsection later).

Boolean value identification
The C language defines signed and unsigned integer data types of various sizes,
but ISO C does not contain a Boolean data type [9]. Although the result of a
comparison is defined to be either 0 or 1, the type of the result is a signed
integer—typically 32 bits. However, no information is lost if only a single bit
is used to carry the result. This can be exploited to advantage in hardware.
Therefore, it is useful to identify as “Boolean” those operations guaranteed to
produce only 0 or 1. When necessary for non-Boolean uses, Boolean values can
be converted back to standard C type by zero-padding.

The algorithm identifies “base case” Boolean-producing nodes: comparisons,
constant 0, and constant 1. Then it forward-propagates the Boolean property to
nodes that have an opcode that preserves the Boolean property and that also
have all inputs already flagged as Boolean. Opcodes that preserve the Boolean
property include bitwise AND, OR, and XOR, as well as muxes. Opcodes that do
not preserve the Boolean property include bitwise NOT and addition. However,
all predicate calculations are marked as Boolean when they are constructed,
including NOT operators.

For a compilation flow that eventually goes through commercial logic synthe-
sis tools, many of the excess bits being trimmed would be trimmed eventually
anyway. However, if the compiler needs to make decisions based on hardware
area estimates—for example, for hardware/software partitioning—it is useful to
have more accurate information about required bus and function unit width
earlier in the compiler flow. This is also a motivation for the next two analyses.

Type-based operator size reduction
ISO C semantics [9] dictate that arithmetic and logical operations involving type
char and/or short operands must be performed at the precision of type int.
Figure 7.10 shows the implicit type conversions.

During initial DFG construction, all three casts are faithfully translated to
DFG nodes. But since the destination’s representation size of short (say 16 bits)
is less than that of int (say 32 bits), the upper bits of the addition are discarded.
Thus, a 16-bit adder will give the same result as a 32-bit adder in all cases,
so in the intermediate representation we can signify that just a 16-bit adder

172 Chapter 7 � Compiling C for Spatial Computing

short a, b, c;
a = b + c;

short a, b, c;
a = (short)((int)b + (int)c);

Implicit
conversions

FIGURE 7.10 � Implicit type conversions.

is required. This in turn means that the addition uses just the lower 16 bits
of each operand; thus, reducing the size of one operator may enable the size
reduction of others. There also may be type conversions on the operands that
can be eliminated, as shown in the figure. Besides the obvious savings in area
and operator size for the addition, there are additional savings in this example:
eliminating the two sign-extending type conversions on b and c.

Dataflow analysis-based operator size reduction
More detailed dataflow analyses can be performed to find the number of bits
actually required by variables and operators. They may be based on range—for
example, i within the loop for (i = 0; i < 100; i++). They may also be bit
level: propagating forward information about bits fixed at 0 or 1 and propagating
backward information about bits not used (e.g., Budiu et al. [3]).

Memory access optimization
The handling of memory access ordering occurs in three phases:

1. The compiler conservatively adds ordering edges between pairs of memory
accesses during DFG construction.

2. After DFG construction, the compiler tries to find and remove false order-
ing edges. Considering each pair of memory accesses connected by an
ordering edge, it applies a series of tests. If any test can prove that the
two operations can never access the same location during the same itera-
tion, that ordering edge is removed. These various tests are based on array
index analysis, pointer analysis, and simple testing of fixed locations (e.g.,
&a and &b).

3. Although removing false ordering edges is useful in itself because it exposes
more parallelism and typically results in a shorter schedule, there are also
many optimizations based on ordering edges that will see improved results.

Space does not allow the description of all memory optimizations that have
been developed (see Callahan [5] or Budiu and Goldstein [2] for more examples),
so just one will be presented here as an example.

Removing redundant loads
Consider this simple C code snippet:

a = *p;
*q = b;
c = *p;

Originally, there will be ordering edges from the first load to the store and from
the store to the second load. But if subsequent pointer analysis can guarantee

7.2 Automatic Compilation 173

that p and q can never point to the same location, those ordering edges will be
removed.

The existence or absence of ordering edges is then used in the following opti-
mization. Two loads can be reduced to one if (1) they definitely access the same
location, and (2) there is no intervening store that might modify that location.
Both of these requirements can be determined directly from the DFG.

To check (1), the compiler checks if the addresses of the two loads come from
the same node (this assumes that common subexpression elimination has been
run, which would ensure that equivalent addresses come from the same node).
To check (2), we need to check for an intervening store. If there is a path from
one of the loads to any store, and from that store to the other load, via ordering
edges, then that store is intervening and represents a possible modification of
that memory location. If both requirements hold—(1) same location and (2) no
intervening store—then one of the loads can be eliminated, and its consumers
can use the output of the other load. In this example, the store to *q was origi-
nally intervening, but is no longer after removal of the ordering edges.

7.2.4 From DFG to Reconfigurable Fabric
At this point we have an optimized DFG for each hyperblock. The final trans-
lation involves mapping DFG nodes to modules, scheduling each module to a
specific timestep, and creating the simple sequencer, resulting in an actual sub-
circuit (RTL HDL description) for each hyperblock. Then, finally, connections
are made among the sequencers and modules from different hyperblock subcir-
cuits to complete the overall circuit.

Packing operations into clock cycles
A CPU cannot exploit the fact that a simple logical AND requires much less
latency to complete than an integer addition; both take one cycle. But with
spatial computing, we can pack multiple low-latency operations into a clock
period (i.e., between registers) [6]. A typical example is predicate calculation,
which consists of 1-bit Boolean calculations—a large subgraph of these can be
performed in the time it takes to do one 32-bit addition. Another case is two
successive ripple-carry adders because the latencies of their carry chains largely
overlap. Additional opportunities arise from the context-specific optimization
of each operation allowed by spatial computing (Chapter 22), which can greatly
reduce the latency of a specific operation. On the other hand, long latency opera-
tions, such as multiplication, are typically split into stages across multiple cycles,
and these stages are not considered for combining as noted before.

For simplicity it is useful to assume a target clock period from the start to get
an even “packing,” even if the reconfigurable platform supports a variable clock
period. For systems with a fixed clock period, the upper bound is a hard limit.
If the final circuit has a combinational path with latency exceeding the clock
period, then some portion of the design flow must be rerun, either with more
conservative decisions (for example, with operation packing) or with higher pri-
ority given to the failing paths. With a variable clock period, mistakes can be
accommodated.

174 Chapter 7 � Compiling C for Spatial Computing

After this grouping, rather than a graph of operator nodes, we have a graph
of modules, each of which implements one or more original DFG nodes (or a
stage of a multi-cycle operation). Each module has a register at its output.

Scheduling
Scheduling a module-mapped DFG is straightforward using list scheduling. The
output of list scheduling is, for each module m, an assigned slot σ(m) when it
starts computing. A module m’s outputs are available to other modules starting
at σ(m)+ lat(m), where lat(m) is the latency (in clock cycles) of m (a multi-cycle
operation is scheduled as a unit). In most cases this latency is one clock.

List scheduling maintains three lists of modules, and each module is a mem-
ber of exactly one list. The three lists are:

� scheduled: modules that have already been assigned a slot. This is
initialized to the input modules, all scheduled at slot 0.

� ready: modules whose sources have all been scheduled.
� notready: modules that have one or more sources not yet scheduled.

Then the list-scheduling algorithm iterates as follows until all modules have been
scheduled:

1. Choose a module m from the ready list based on some priority heuristic.
2. Set S to the earliest cycle on which m can be scheduled, considering only

when m’s inputs are first all available.
3. If m has a resource conflict at slot S with any already scheduled module,

increment S and go to step 3.
4. Schedule m in slot S and put it on scheduled.
5. Check m’s successors and move them as appropriate from notready to

ready.
6. If any nodes remain on ready, go to step 1.

Only memory operations can encounter a resource conflict in step 3, aris-
ing from the use of shared address and/or memory data buses. In contrast, any
simple (nonmemory) module is scheduled as soon as all its inputs are avail-
able. Note that most such simple modules are not “actively” scheduled—they
don’t have an activation input from the sequencer. These passive modules sim-
ply compute a result each cycle whether or not their inputs are valid. After
scheduling, the total schedule length is known, so the sequencer can be built
to count off the cycles and trigger those modules that need it. The output of
the final sequencer stage is ANDed with the predicate values for each exit node
to create the appropriate outgoing control bit. Also, the source of each liveness
edge to each exit node is translated to the appropriate connection to the input
module in the destination subcircuit.

Pipelined scheduling
Here we will briefly give an idea of how pipelined scheduling works. Only
hyperblocks branching to themselves to form a self-loop are considered. In the

7.3 Uses and Variations of C Compilation to Hardware 175

final implementation, the key difference is that with pipelined scheduling the
calculation of the control bit that is fed back to the top of the sequencer is
produced not at the end of the schedule but somewhere in the middle. The
result is that there are multiple ‘1’ control bits shifting through the sequencer
simultaneously, corresponding to the fact that multiple iterations of the loop
are executing in an overlapped fashion. The compiler must now watch out for
resource conflicts between successive iterations when scheduling the loop. The
spacing between successive iterations is limited by either loop-carried data or
memory dependencies, or by resource requirements. Further details are avail-
able in works by Callahan [5,8].

Connecting memory nodes to the memory ports
Recall that each load node is split into a load_a, for sending the request and
address, and a load_d, for receiving the data. Our circuit diagrams have implied
that shared access to the memory port uses buses driven by tristate buffers,
which some FPGAs have. But this approach could run out of tristate buffers
or could restrict placement options. An alternative is to use an unencoded mux
to drive each input to the shared port. For example, a mux might replace the
address bus; when a memory module asserts a request to its control line of the
mux, its address is routed to the mux output and to the memory port. The load
data bus returning data from memory does not need any active routing; it is
driven only by the memory port and fans out to all of the load_d modules, one
of which will latch the result. However, additional buffering may be required to
avoid timing problems when fanout is large.

What next?
Although we have shown the implementations as schematics, what we actually
have at this point is a structural (RTL) description in an HDL such as Verilog or
VHDL (Chapter 6). In a system with a commercial FPGA as its reconfigurable
fabric, there is likely a fixed wrapper circuit that handles the details of connec-
tions between the compiler-generated circuit and the FPGA pins connected to
the CPU and external memory. The wrapper and compiled circuit together are
fed through commercial tools to perform the gate-level optimizing, mapping,
placing, and routing.

7.3 USES AND VARIATIONS OF C COMPILATION TO HARDWARE

Now that we have covered the technical aspects of compiling C to hardware, we
will return to higher-level programming and system-level design.

7.3.1 Automatic HW/SW Partitioning
Once we have a common source language, here C, and compilation tools that
can compile a program, or parts of it, to either the CPU or the reconfig-
urable fabric, the remaining problem is to partition the program between the

176 Chapter 7 � Compiling C for Spatial Computing

two resources. This partitioning can be performed manually, with the user
adding annotations about where to run blocks of code (e.g., loops, procedures),
automatically, with the compiler making all the decisions, or some combination
of the two.

Even when partitioning is manual, the use of a common source language
allows rapid exploration of the design space of different HW/SW mappings. The
program can be written and debugged entirely on the CPU and the programmer
need only modify the allocation directives to move code onto the hardware or
to change which code is allocated to it. Profiling can help the user converge on
a good split.

Nonetheless, in the purely manual case the program developed ends up tuned
to a specific machine, with a specific amount of hardware, specific relative speeds
for the RF and the CPU, and communication between the two. Ideally, we have a
single source program to run on multiple hardware platforms with varying hard-
ware and performance. An intermediate solution is for the directives to suggest
which software blocks might be most profitable on the RF, then to allow the com-
piler, perhaps with runtime feedback, to decide which of the suggested set to actu-
ally run on the hardware based on performance benefits and capacity.

Ultimately, the compiler and runtime system should take full responsibility
for determining the right code and granularity to move to the reconfigurable
fabric. This is an active area of research and development. Chapter 26 discusses
issues and techniques for hardware/software partitioning in more detail.

The Garp C compiler [5,7] provides an example of automatic partitioning. It
starts by marking all loops as candidates for the reconfigurable fabric. Then, for
each loop, it removes any paths from this candidate that include operations not
supported on the array (removed paths are executed in software on the CPU).
The compiler further trims the less taken paths in the loop until the remaining
loop paths fit on the fabric capacity. Finally, it trims paths to improve perfor-
mance. At this point, if any paths remain in the candidate loop, the compiler
evaluates HW versus SW performance for the loop, considering the overhead
costs for paths switching between HW and SW. If a loop is faster on the CPU,
it is given a completely SW implementation. The Garp hardware supports fast
configuration loads, and it caches configurations in the array, so there is a hard
bound to the size of each loop but no limit on the number of accelerated loops.

For conventional FPGAs that do not support fast configuration swaps, it may
be necessary to allocate all hardware logic at startup and keep them resident
throughout operation. In these cases, the bound is on the total capacity of all
hardware allocated to the RF, not just a single loop. The compiler may start with
all feasible candidates, as in the Garp C compiler case, but then must select a
subset that fits in the available capacity and maximizes performance.

7.3.2 Programmer Assistance
Useful code changes
As Section 7.2.4 shows, the compiler does many things to try to expose par-
allelism and optimize the implementation. However, discovering many of the

7.3 Uses and Variations of C Compilation to Hardware 177

optimization opportunities requires very sophisticated analysis by the compiler,
and sometimes it simply cannot prove that a particular optimization is always
safe. Consequently, there are many ways a programmer might restructure or
modify the application code to assist the compiler and achieve better perfor-
mance on the target system. Some of these transformations have been studied
to some degree in a research setting, but have not yet been fully automated in
production compilers.

Loop interchange, reversal, and other transforms A loop nest can be altered
in ways that still obey all required scalar and memory dependencies but that
improve performance. For example, a compiler may automatically exploit mem-
ory accesses that are unit stride (A[0], A[1], A[2], . . .) by streaming or prefetch-
ing. Even without explicit stream fetch support, unit stride accesses will improve
cache locality, so the programmer should strive for them within the innermost
loops. From one iteration to the next, loop interchange typically affects the
loop-carried dependencies of the innermost loop; this impacts how effectively
the block can be pipelined. If the programmer can structure the loop nest so
that the innermost loop has no loop-carried dependencies, pipelining will be
very effective. When the unit of HW implementation is an inner loop, another
consideration is the overhead of switching between SW and HW execution. To
reduce the relative cost of the overhead, it is best if possible to interchange the
loops so that the innermost loops have high loop counts—as long as this does
not adversely affect other aspects such as cache performance, unit stride, or
loop-carried dependencies.

Loop fusion and fission Loop fusion is the combining of successive loops with
identical bounds. This can remove memory accesses if the second loop loads
values written by the first loop; instead, the value can be passed directly within
the fused loop. The reverse, loop fission (splitting one loop into two), can also
be useful when the original loop cannot fit in its entirety on the reconfigurable
resources. Afterward, the two halves can each fit, but not at the same time, so
temporary arrays may need to be introduced to store data produced in the first
half and used in the second.

Local arrays When an array is local to a procedure and of fixed size, it is rel-
atively easy for the compiler to do the “smart thing” and implement it using a
memory block on the FPGA fabric. But if the program instead uses malloc’d
or global arrays as temporaries, it is very challenging to safely convert them
to local arrays. Thus, changing the code to use local arrays wherever possible
can be very useful because on-FPGA memory blocks have much lower latency
to/from the computation unit and can be accessed in parallel with each other.

Control structure Most compliers keep the loop, procedure, and block struc-
ture in the original code. As noted previously, common heuristics for hard-
ware/software partitioning select loop bodies or procedures as candidates for
hardware implementation. If the loop is too large, it may not be feasible on

178 Chapter 7 � Compiling C for Spatial Computing

the array. If the loop is too small, it might not make good use of the array’s
parallelism. The programmer can often assist the compiler by sizing and orga-
nizing loops, procedures, and blocks that make good candidates for hardware
allocation.

Address indirection As noted in Section 7.2.3, whenever the address of a vari-
able is taken, the compiler must make conservative assumptions about when the
value will be updated, forcing additional sequentialization and increasing mem-
ory traffic. Consequently, address indirection and pass-by-reference should be
used judiciously with the realization that it can inhibit compiler optimizations.
Note that this unfortunate effect can also occur when a global scalar variable
is visible beyond the file in which it is declared; with separate compilation, the
compiler must assume that code in some other file takes the address of the vari-
able and passes it back as a pointer. Therefore, declaring file-global variables as
static helps as well.

Declaration of data sizes On CPUs there is often little advantage to using a nar-
row data word. Except for low-cost embedded systems, all processors have at
least 32-bit words, with high-performance processors trending to 64 bit; even
DSPs and embedded processors can typically assume CPUs with at least 16-bit
words. Consequently, there is little incentive to software programmers to pay
much attention to the actual range of data used. However, in fine-grained recon-
figurable fabrics, such as field-programmable gate arrays (FPGAs), narrow data
words can be implemented with less area and, sometimes, with less delay. As
noted in Section 7.2.3, the compiler can make use of narrower type declarations
(e.g., short, char) to reduce operator size.

Useful annotations
A programmer annotation gives the compiler a guarantee about a certain
property of the program, which typically allows the compiler to make more
aggressive optimizations; however, if the programmer is in error and the guar-
antee does not hold in all cases, incorrect program behavior may result. Some
annotations can be expressed as assertions. If the assertion fails, the program
will terminate, signaling the user (hopefully, the programmer) that the asser-
tion was violated. The compiler knows that when execution continues past the
assertion, certain properties must hold.

Annotations and assertions can be used as ways to communicate information
to the compiler that it is not capable of inferring itself. In this way they may be
an alternative to very advanced compiler analysis, or a complement when the
analysis is simply intractable. Following are two examples of useful annotations:

� Pointer independence: declaring that a pair of pointers will never point
to the same location, so that an ordering edge between accesses using
those pointers can always be removed safely.

� Absence of loop-carried memory dependences: declaring that the memory
operations in different iterations of the loop are always independent (to

7.3 Uses and Variations of C Compilation to Hardware 179

different locations), which typically allows much greater overlap and
greater performance when using pipelined scheduling.

Integrating operator-level modules
Even when writing C code for CPUs, the compiler does not always generate opti-
mal machine code, and it is occasionally necessary to write assembly code for
key routines. Similarly, when the C compiler does not provide the tight imple-
mentations of which the RF is capable, it may be necessary to provide a direct
hardware implementation. Here, the “assembly” may be a VHDL (Chapter 6)
implementation of a function or a piece of dataflow. As in the assembly language
case, the developer can start with a pure C program profile, the code, and
then judiciously spend his customization effort on the code’s most performance-
critical regions.

It is fairly easy to integrate a custom operation into the flow we have
described. The designer simply needs to create the module via HDL or schematic
capture, and tell the compiler the latency, in cycles, of the design. The operation
can be accessed from C source code using function call syntax, instantiated,
and scheduled in parallel with other “native” C operations in the hyperblock.
For example, in this code snippet:

x = bitreverse(a);
y = a ∧ b;
z = x + y;

the bitreverse module would have one cycle latency and could be scheduled
in parallel with the XOR (∧) module.

The power of this approach is greatly increased with a module generator. In
this case, the HDL module is not just copied from a library; instead, it is dynam-
ically generated by the compiler. This allows constant arguments to the module
instantiation to specialize it, for example,

X = bit_reverse_range(a,8,15);

which will generate a module that will reverse the bits of a from bit 8 to bit 15
to produce x. A detailed interface between compiler and dynamic module gen-
erator is described in work by Koch [10] (see also Chapter 15).

It is useful to always have a functionally equivalent software implementation
of each custom operation in order to enable testing of the overall application
in a pure software environment. This is required, for example, when adding
hand-designed HDL modules in the SRC Computers compiler [14].

Integrating large blocks
Another method for integrating a hand-designed circuit with an otherwise
C-compiled program is to treat it as its own hyperblock subcircuit within the
compiler, allowing it to manage its own sequencing. The HDL implementation of
the custom block in this case receives a start control bit, like any other hyper-
block, and must send a finish control bit when done. This allows the designer to
incorporate custom blocks that have variable latency (e.g., an iterative divider or

180 Chapter 7 � Compiling C for Spatial Computing

a greatest-common-divisor computation). The programmer could use function
call syntax to instantiate this larger block as well, but, the compiler would pre-
vent the function from being merged with other blocks into a larger hyperblock.

7.4 SUMMARY

After a decade of research, C compilation for reconfigurable computers is now
commercially available in many forms (e.g., SRC Computers [14] and Lau and
colleagues [11]). While today’s commercial compilers cannot generally compile
arbitrary ISO C code or take arbitrary C code and expect to fully extract the
performance of the reconfigurable fabric, they have closed the gap so that non-
trivial code acceleration is possible with minor programmer effort. A developer
can use the C compiler to rapidly get applications running on a suitable recon-
figurable platform. C code developed or tuned with an understanding of the
reconfigurable platform and the capabilities of the compiler can achieve higher
performance. Although today’s C compilers do not free the reconfigurable devel-
oper from understanding good application and system architectures, they can
allow her to focus her efforts.

C compilation and optimization remain an active area of research, and we
expect to see continuing improvements over time. Many opportunities exist for
innovative research on aggressive optimization techniques and development of
more automated optimizing complier flows.

References
[1] A. V. Aho, R. Sethi, J. D. Ullman. Compilers, Principles, Techniques, and Tools,

Addison-Wesley, 1986.
[2] M. Budiu, S. Copen Goldstein. Optimizing memory accesses for spatial computa-

tion. International ACM/IEEE Symposium on Code Generation and Optimization,
March 2003.

[3] M. Budiu, M. Sakr, K. Walker, S. Copen Goldstein. Bit value inference: Detecting
and exploiting narrow bit-width computations. European Conference on Parallel
Processing, Springer-Verlag, 2000.

[4] M. Budiu. Spatial Computation, Ph.D. thesis, Carnegie-Mellon University, December
2003 (technical report CMU-CS-03-217).

[5] T. J. Callahan. Automatic Compilation of C for Hybrid Reconfigurable Architectures,
Ph.D. thesis, University of California, Berkeley, December 2002.

[6] T. J. Callahan, P. Chong, A. DeHon, J. Wawrzynek. Rapid module mapping and
placement for FPGAs. Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, 1998.

[7] T. Callahan, J. Hauser, J. Wawrzynek. The Garp architecture and C compiler. IEEE
Computer 33(4), April 2000.

[8] T. Callahan, J. Wawrzynek. Adapting software pipelining for reconfigurable com-
puting. Proceedings of the International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES), 2000.

[9] P. Harbison, G. L. Steele. C, A Reference Manual, 4th ed. Prentice-Hall, 1995.

7.4 Summary 181

[10] A. Koch. Compilation for adaptive computing systems using complex parameter-
ized hardware objects. Journal of Supercomputing 21(2), 2002.

[11] D. Lau, O Pritchard, P. Molson. Automated generation of hardware accelerators
with direct memory access from ANSI/ISO standard C functions. Proceedings of
the IEEE Symposium on Field-Programmable Custom Computing Machines, April
2006.

[12] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, R. A. Bringmann. Effective
compiler support for predicated execution using the hyperblock. Proceedings of the
25th Annual International Symposium on Microarchitecture, 1992.

[13] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

[14] SRC Computers. SRC Carte C Programming Environment v2.2 Guide, Colorado
Springs, 2007.

This page intentionally left blank

C H A P T E R 8

PROGRAMMING STREAMING FPGA
APPLICATIONS USING BLOCK
DIAGRAMS IN SIMULINK

Brian C. Richards, Chen Chang, John Wawrzynek,
Robert W. Brodersen
Department of Electrical Engineering and Computer Science
University of California–Berkeley

Although a system designer can use hardware description languages, such as
VHDL (Chapter 6) and Verilog to program field-programmable gate arrays
(FPGAs), the algorithm developer typically uses higher-level descriptions to
refine an algorithm. As a result, an algorithm described in a language such
as Matlab or C is frequently reentered by hand by the system designer, after
which the two descriptions must be verified and refined manually. This can be
time consuming.

To avoid reentering a design when translating from a high-level simulation
language to HDL, the algorithm developer can describe a system from the
beginning using block diagrams in Matlab Simulink [1]. Other block diagram
environments can be used in a similar way, but the tight integration of Simulink
with the widely used Matlab simulation environment allows developers to use
familiar data analysis tools to study the resulting designs. With Simulink, a sin-
gle design description can be prepared by the algorithm developer and refined
jointly with the system architect using a common design environment.

The single design entry is enabled by a library of Simulink operator primitives
that have a direct mapping to HDL, using matching Simulink and HDL models
that are cycle accurate and bit accurate between both domains. Examples and
compilation environments include System Generator from Xilinx [2], Synplify
DSP from Synplicity [3], and the HDL Coder from The Mathworks [1]. Using
such a library, nearly any synchronous multirate system can be described, with
high confidence that the result can be mapped to an FPGA given adequate
resources.

In this chapter, a high-performance image-processing system is described
using Simulink and mapped to an FPGA-based platform using a design flow built
around the Xilinx System Generator tools. The system implements edge detec-
tion in real time on a digitized video stream and produces a corresponding video
stream labeling the edges. The edges can then be viewed on a high-resolution
monitor. This design demonstrates how to describe a high-performance parallel

184 Chapter 8 � Programming Streaming FPGA Applications

datapath, implement control subsystems, and interface to external devices,
including embedded processors.

8.1 DESIGNING HIGH-PERFORMANCE DATAPATHS USING
STREAM-BASED OPERATORS
Within Simulink we employ a Synchronous Dataflow computational model
(SDF), described in the Synchronous dataflow subsection of Section 5.1.3. Each
operator is executed once per clock cycle, consuming input values and producing
new output values once per clock tick. This discipline is well suited for stream-
based design, encouraging both the algorithm designer and the system architect
to describe efficient datapaths with minimal idle operations.

Clock signals and corresponding clock enable signals do not appear in the
Simulink block diagrams using the System Generator libraries, but are automati-
cally generated when an FPGA design is compiled. To support multirate systems,
the System Generator library includes up-sample and down-sample blocks to
mark the boundaries of different clock domains. When compiled to an FPGA,
clock enable signals for each clock domain are automatically generated.

All System Generator components offer compile time parameters, allowing
the designer to control data types and refine the behavior of the block. Hier-
archical blocks, or subsystems in Simulink, can also have user-defined parame-
ters, called mask parameters. These can be included in block property expres-
sions within that subsystem to provide a means of generating a variety of
behaviors from a single Simulink description. Typical mask parameters include
data type and precision specification and block latency to control pipeline
stage insertion. For more advanced library development efforts, the mask
parameters can be used by a Matlab program to create a custom schematic at
compile time.

The System Generator library supports fixed-point or Boolean data types for
mapping to FPGAs. Fixed-point data types include signed and unsigned values,
with bit width and decimal point location as parameters. In most cases, the
output data types are inferred automatically at compile time, although many
blocks offer parameters to define them explicitly.

Pipeline operators are explicitly placed into a design either by inserting delay
blocks or by defining a delay parameter in selected functional blocks. Although
the designer is responsible for balancing pipeline operators, libraries of high-
level components have been developed and reused to hide pipeline-balancing
details from the algorithm developer.

The Simulink approach allows us to describe highly concurrent SDF systems
where many operators—perhaps the entire dataflow path—can operate simulta-
neously. With modern FPGAs, it is possible to implement these systems with
thousands of simultaneous operators running at the system clock rate with
little or no control logic, allowing complex, high-performance algorithms to be
implemented.

8.2 An Image-processing Design Driver 185

8.2 AN IMAGE-PROCESSING DESIGN DRIVER

The goal of the edge detection design driver is to generate a binary bit mask from
a video source operating at up to a 200 MHz pixel rate, identifying where likely
edges are in an image. The raw color video is read from a neighboring FPGA
over a parallel link, and the image intensity is then calculated, after which two
3×3 convolutional Sobel operator filters identify horizontal and vertical edges;
the sum of their absolute values indicates the relative strength of a feature edge
in an image. A runtime programmable gain (variable multiplier) followed by an
adjustable threshold maps the resulting pixel stream to binary levels to indicate
if a given pixel is labeled as an edge of a visible feature. The resulting video
mask is then optionally mixed with the original color image and displayed on
a monitor.

Before designing the datapaths in the edge detection system, the data and
control specification for the video stream sources and sinks must be defined.
By convention, stream-based architectures are implemented by pairing data
samples with corresponding control tags and maintaining this pairing through
the architecture. For this example, the video datastreams may have varying data
types as the signals are processed whereas the control tags are synchronization
signals that track the pipeline delays in the video stream. The input video stream
and output display stream represent color pixel data using 16 bits—5 bits for
red, 6 bits for green, and 5 bits for blue unsigned pixel intensity values. Inter-
mediate values might represent video data as 8-bit grayscale intensity values or
as 1-bit threshold detection mask values.

As the datastreams flow through the signal-processing datapath, the operators
execute at a constant 100 MHz sample rate, with varying pipeline delays through
the system. The data, however, may arrive at less than 100 MHz, requiring a
corresponding enable signal (see the discussion in Data presence subsection of
Section 5.2.1) to tag valid data. Additionally, hsync, vsync, and msync signals
are defined to be true for the first pixel of each row, frame, and movie sequence,
respectively, allowing a large variety of video stream formats to be supported by
the same design.

Once a streaming format has been specified, library components can be
developed that forward a video stream through a variety of operators to create
higher-level functions while maintaining valid, pipeline-delayed synchronization
signals. For blocks with a pipeline latency that is determined by mask param-
eters, the synchronization signals must also be delayed based on the mask
parameters so that the resulting synchronization signals match the processed
datastream.

8.2.1 Converting RGB Video to Grayscale
The first step in this example is to generate a grayscale video stream from the
RGB input data. The data is converted to intensity using the NTSC RGB-to-Y
matrix:

Y = 0.3× red+0.59×green+0.11×blue

186 Chapter 8 � Programming Streaming FPGA Applications

FIGURE 8.1 � An RGB-to-Y (intensity) Simulink diagram.

This formula is implemented explicitly as a block diagram, shown in Figure 8.1,
using constant gain blocks followed by adders. The constant multiplication
values are defined as floating-point values and are converted to fixed point
according to mask parameters in the gain model. This allows the precision of
the multiplication to be defined separately from the gain, leaving the synthesis
tools to choose an implementation. The scaled results are then summed with an
explicit adder tree.

Note that if the first adder introduces a latency of adder_delay clock cycles,
the b input to the second adder, add2, must also be delayed by adder_delay
cycles to maintain the cycle alignment of the RGB data. Both the Delay1 block
and the add1 block have a subsystem mask parameter defining the delay that
the block will introduce, provided by the mask parameter dialog as shown in
Figure 8.2. Similarly, the synchronization signals must be delayed by three cycles
corresponding to one cycle for the gain blocks, one cycle for the first adder,

8.2 An Image-processing Design Driver 187

FIGURE 8.2 � A dialog describing mask parameters for the rgb—to—y block.

and one cycle for the second adder. By designing subsystems with configurable
delays and data precision parameters, library components can be developed to
encourage reuse of design elements.

8.2.2 Two-dimensional Video Filtering
The next major block following the RGB-to-grayscale conversion is the edge
detection filter itself (Figure 8.3), consisting of two pixel row delay lines, two
3×3 kernels, and a simplified magnitude detector. The delay lines store the two
rows of pixels preceding the current row of video data, providing three streams
of vertically aligned pixels that are connected to the two 3×3 filters—the first
one detecting horizontal edges and the second detecting vertical edges. These
filters produce two signed fixed-point streams of pixel values, approximating
the edge gradients in the source video image.

On every clock cycle, two 3 × 3 convolution kernels must be calculated,
requiring several parallel operators. The operators implement the following
convolution kernels:

−1 0 +1 +1 +2 +1
Sobel X Gradient: −2 0 +2 Sobel Y Gradient: 0 0 0

−1 0 +1 −1 −2 −1

188 Chapter 8 � Programming Streaming FPGA Applications

FIGURE 8.3 � The Sobel edge detection filter, processing an 8-bit video datastream to produce a stream of
Boolean values indicating edges in the image.

To support arbitrary kernels, the designer can choose to implement the Sobel
operators using constant multiplier or gain blocks followed by a tree of adders.
For this example, the subcircuits for the x- and y-gradient operators are hand-
optimized so that the nonzero multipliers for both convolution kernels are
implemented with a single hardwired shift operation using a power-of-2 scale
block. The results are then summed explicitly, using a tree of add or subtract
operators, as shown in Figures 8.4 and 8.5.

Note that the interconnect in Figures 8.4 and 8.5 is shown with the data
types displayed. For the most part, these are assigned automatically, with the
input data types propagated and the output data types and bit widths inferred
to avoid overflow or underflow of signed and unsigned data types. The bit widths
can be coerced to different data types and widths using casting or reinter-
pret blocks, and by selecting saturation, truncation, and wraparound options
available to several of the operator blocks. The designer must exercise care
to verify that such adjustments to a design do not change the behavior of the
algorithm.

Through these Simulink features a high-level algorithm designer can directly
explore the impact of such data type manipulation on a particular algorithm.

Once the horizontal and vertical intensity gradients are calculated for the
neighborhood around a given pixel, the likelihood that the pixel is near the
boundary of a feature can be calculated. To label a pixel as a likely edge of
a feature in the image, the magnitude of the gradients is approximated and the

8.2 An Image-processing Design Driver 189

FIGURE 8.4 � The sobel—y block for estimating the horizontal gradient in the source image.

FIGURE 8.5 � The sobel—x block for estimating the vertical gradient in the source image.

resulting nonnegative value is scaled and compared to a given threshold. The
magnitude is approximated by summing the absolute values of the horizontal
and vertical edge gradients, which, although simpler than the exact magnitude
calculation, gives a result adequate for our applications.

190 Chapter 8 � Programming Streaming FPGA Applications

A multiplier and a comparator follow the magnitude function to adjust the
sensitivity to image noise and lighting changes, respectively, resulting in a 1-bit
mask that is nonzero if the input pixel is determined to be near the edge of a
feature. To allow the user to adjust the gain and threshold values interactively,
the values are connected to gain and threshold input ports on the filter (see
Figure 8.6).

To display the resulting edge mask, an overlay datapath follows the edge mask
stream, allowing the mask to be recombined with the input RGB (red, green,
blue) signal in a variety of ways to demonstrate the functionality of the system
in real time. The overlay input is read as a 2-bit value, where the LSB 0 bit
selects whether the background of the image is black or the original RGB, and
the LSB 1 bit selects whether or not the mask is displayed as a white over-
lay on the background. Three of these mixer subsystems are used in the main
video-filtering subsystem, one for each of the red, green, and blue video source
components.

The three stream-based filtering subsystems are combined into a single subsys-
tem, with color video in and color video out, as shown in Figure 8.7. Note that the
color data fed straight through to the red, green, and blue mixers is delayed. The
delay, 13 clock cycles in this case, corresponds to the pipeline delay through both

FIGURE 8.6 � One of three video mixers for choosing displays of the filtered results.

8.2 An Image-processing Design Driver 191

FIGURE 8.7 � The main filtering subsystem, with RGB-to-Y, Sobel, and mixer blocks.

the rgb_to_y block and the Sobel edge detection filter itself. This is to ensure
that the background original image data is aligned with the corresponding pixel
results from the filter. The sync signals are also delayed, but this is propagated
through the filtering blocks and does not require additional delays.

8.2.3 Mapping the Video Filter to the BEE2 FPGA Platform
Our design, up to this point, is platform independent—any Xilinx component
supported by the System Generator commercial design flow can be targeted.
The next step is to map the design to the BEE2 platform—a multiple-FPGA
design, developed at UC Berkeley [4], that contains memory to store a stream
of video data and an HDMI interface to output that data to a high-resolution
monitor.

For the Sobel edge detection design, some ports are for video datastreams
and others are for control over runtime parameters. The three user-controllable
inputs to the filtering subsystem, threshold, gain, and overlay are connected
to external input ports, for connection to the top-level testbench. The filter,

192 Chapter 8 � Programming Streaming FPGA Applications

included as a subsystem of this testbench design, is shown in Figures 8.8 and 8.9.
So far, the library primitives used in the filter are independent of both the type
of FPGA that will be used and the target testing platform containing the FPGA.

To support targeting the filter to the BEE2 FPGA platform for real-time test-
ing, a set of libraries and utilities from the BEE Platform Studio, also developed
at Berkeley, is used [5]. Several types of library blocks are available to assist with
platform mapping, including simple I/O, high-performance I/O, and micropro-
cessor register and memory interfaces.

The strategy for using the Simulink blocks to map a design to an FPGA
assumes that a clear boundary is defined to determine which operators
are mapped to the FPGA hardware and which are for simulation only. The
commercial tools and design flows for generating FPGA bit files assume that
there are input and output library blocks that appear to Simulink as, respec-
tively, double-precision to fixed-point conversion and fixed-point to double type
conversion blocks. For simulation purposes, these blocks allow the hardware

FIGURE 8.8 � The top-level video testbench, with input, microprocessor register, and configuration blocks.

8.2 An Image-processing Design Driver 193

FIGURE 8.9 � The output section of the top-level testbench, with a 10G XAUI interface block.

description to be simulated with a software testbench to verify basic function-
ality before mapping the design to hardware. They also allow the designer to
assign the FPGA pin locations for the final configuration files.

The BEE Platform Studio (BPS) [5] provides additional I/O blocks that allow
the designer to select pin locations symbolically, choosing pins that are hardwired
to other FPGAs, LEDs, and external connections on the platform. The designer
is only required to select a platform by setting BPS block parameters, and does
not need to keep track of I/O pin locations. This feature allows the designer to
experiment with architectural tradeoffs without becoming a hardware expert.

In addition to the basic I/O abstractions, the BPS allows high-performance
or analog I/O devices to be designed into a system using high-level abstractions.
For the video-testing example, a 10 Gbit XAUI I/O block is used to output the
color video stream to platform-specific external interfaces. The designer selects
the port to be used on the actual platform from a pulldown menu of available
names, hiding most implementation details.

194 Chapter 8 � Programming Streaming FPGA Applications

A third category of platform-specific I/O enables communication with embed-
ded microprocessors, such as the Xilinx MicroBlaze soft processor core or the
embedded PowerPC available on several FPGAs. Rather than describe the details
of the microprocessor subsystem, the designer simply selects which processor
on a given platform will be used and a preconfigured platform-specific micro-
processor subsystem is then generated and included in the FPGA configuration
files. For the video filter example, three microprocessor registers are assigned and
connected to the threshold, gain, and overlap inputs to the filter using general-
purpose I/O (GPIO) blocks. When the BPS design flow is run, these CPU register
blocks are mapped to GPIO registers on the selected platform, and C header files
are created to define the memory addresses for the registers.

8.3 SPECIFYING CONTROL IN SIMULINK

On the one hand, Simulink is well suited to describing highly pipelined stream-
based systems with minimal control overhead, such as the video with synchro-
nization signals described in the earlier video filter example. These designs
assume that each dataflow operator is essentially running in parallel, at the full
clock rate. On the other hand, control tasks, such as state machines, tend to
be inherently sequential and can be more challenging to describe efficiently in
Simulink. Approaches to describing control include:

� Counters, registers, and logic to describe controllers
� Matlab M-code descriptions of control blocks
� VHDL or Verilog hand-coded or compiled descriptions
� Embedded microprocessors

To explore the design of control along with a stream-based datapath, consider
the implementation of a synchronous delay line based on a single-port memory.
The approach described here is to alternate between writing two data samples
and reading two data samples on consecutive clock cycles. A simpler design could
be implemented using dual-port memory on an FPGA, but the one we are using
allows custom SOC designs to use higher-density single-port memory blocks.

8.3.1 Explicit Controller Design with Simulink Blocks
The complete synchronous delay line is shown in Figure 8.10. The control in
this case is designed around a counter block, where the least significant bit
selects between the two words read or written from the memory on a given
cycle and the upper counter bits determine the memory address. In addition to
the counter, control-related blocks include slice blocks to select bit fields and
Boolean logic blocks. For this design, the block diagram is effective for describ-
ing control, but minor changes to the controller can require substantial redesign.

8.3 Specifying Control in Simulink 195

FIGURE 8.10 � A simple datapath with associated explicit control.

8.3.2 Controller Design Using the Matlab M Language
For a more symbolic description of the synchronous delay line controller, the
designer can use the Matlab “M” language to define the behavior of a block, with
the same controller described previously written as a Matlab function. Consider
the code in Listing 8.1 that is saved in the file sram_delay_cntl.m.

Listing 8.1 � The delay line controller described with the Matlab functionsram—delay—cntl.m.

function [addr, we, sel] = sram—delay—cntl(rst, en, counter—bits, counter—max)
% sram—delay—cntl -- MCode implementation block.
% Author: Brian Richards, 11/16/2005, U. C. Berkeley
%
% The following Function Parameter Bindings should be declared in
% the MCode block Parameters (sample integer values are given):
% {'counter—bits', 9, 'counter—max', 5}

% Define all registers as persistent variables.
persistent count,

count = x1—state(0, {xlUnsigned, counter—bits, 0});
persistent addr—reg,

addr—reg = xl—state(0, {xlUnsigned, counter—bits-1, 0});
persistent we—reg, we—reg = xl—state(0, {xlBoolean});
persistent sel—reg—1, sel—reg—1 = xl—state(0, {xlBoolean});
persistent sel—reg—2, sel—reg—2 = xl—state(0, {xlBoolean});

% Delay the counter output, and split the lsb from
% the upper bits.

196 Chapter 8 � Programming Streaming FPGA Applications

addr = addr—reg;
addr—reg = xl—slice(count, counter—bits-1, 1);
count—lsb = xfix({xlBoolean}, xl—slice(count, 0, 0));

% Write-enable logic
we = we—reg;
we—reg = count—lsb & en;

% MSB-LSB select logic
sel = sel—reg—2;
sel—reg—2 = sel—reg—1;
sel—reg—1 = ˜count—lsb & en;

% Update the address counter:
if (rst | (en & (count == counter—max)))

count = 0;
elseif (en)

count = count + 1;
else

count = count;
end

To add the preceding controller to a design, the Xilinx M-code block can be
dragged from the Simulink library browser and added to the subsystem. A dia-
log box then asks the designer to select the file containing the M source code,
and the block sram_delay_cntl is automatically created and added to the
system (see Figure 8.11).

FIGURE 8.11 � A simple datapath using a controller described in Matlab code.

8.3 Specifying Control in Simulink 197

There are several advantages to using the M-code description compared to its
explicit block diagram equivalent. First, large, complex state machines can be
described and documented efficiently using the sequential M language. Second,
the resulting design will typically run faster in Simulink because many fine-
grained blocks are replaced by a single block. Third, the design is mapped to an
FPGA by generating an equivalent VHDL RTL description and synthesizing the
resulting controller; the synthesis tools can produce different results depending
on power, area, and speed constraints, and can optimize for different FPGA
families.

8.3.3 Controller Design Using VHDL or Verilog
As in the M language approach just described, a controller can also be described
with a black box containing VHDL or Verilog source code. This approach can be
used for both control and datapath subsystems and has the benefit of allowing
IP to be included in a Simulink design.

The VHDL or Verilog subsystems must be written according to design con-
ventions to ensure that the subsystem can be mapped to hardware. Clocks and
enables, for example, do not appear on the generated Simulink block, but must
be defined in pairs (e.g., clk_sg, ce_sg) for each implied data rate in the
system. Simulink designs that use these VHDL or Verilog subsystems can be
verified by cosimulation between Simulink and an external HDL simulator, such
as Modelsim [6]. Ultimately, the same description can be mapped to hardware,
assuming that the hardware description is synthesizable.

8.3.4 Controller Design Using Embedded Microprocessors
The most elaborate controller for an FPGA is the embedded microprocessor. In
this case, control can be defined by running compiled or interpreted programs
on the microprocessor. On the BEE2 platform, a tiny shell can be used interac-
tively to control datapath settings, or a custom C-based program can be built
using automatically generated header files to symbolically reference hardware
devices.

A controller implemented using an embedded microprocessor is often much
slower than the associated datapath hardware, perhaps taking several clock
cycles to change control parameters. This is useful for adjusting parameters that
do not change frequently, such as threshold, gain, and overlay in the Sobel filter.
The BEE Platform Studio design flow uses the Xilinx Embedded Development
Kit (EDK) to generate a controller running a command line shell, which allows
the user to read and modify configuration registers and memory blocks within
the FPGA design. Depending on the platform, this controller can be accessed
via a serial port, a network connection, or another interface port.

The same embedded controller can also serve as a source or sink for low-
bandwidth datastreams. An example of a user-friendly interface to such a source
or sink is a set of Linux 4.2 kernel extensions developed as part of the BEE
operating system, BORPH [7]. BORPH defines the notion of a hardware pro-
cess, where a bit file and associated interface information is encapsulated in an

198 Chapter 8 � Programming Streaming FPGA Applications

executable .bof file. When launched from the Linux command line, a software
process is started that programs and then communicates with the embedded
processor on a selected FPGA. To the end user, hardware sources and sinks in
Simulink are mapped to Linux files or pipes, including standard input and stan-
dard output. These file interfaces can then be accessed as software streams to
read from or write to a stream-based FPGA design for debugging purposes or
for applications with low-bandwidth continuous datastreams.

8.4 COMPONENT REUSE: LIBRARIES OF SIMPLE AND COMPLEX
SUBSYSTEMS
In the previous sections, low-level primitives were described for implementing
simple datapath and control subsystems and mapping them to FPGAs. To make
this methodology attractive to the algorithm developer and system architect, all
of these capabilities are combined to create reusable library components, which
can be parameterized for a variety of applications; many of them have been
tested in a variety of applications.

8.4.1 Signal-processing Primitives
One example of a rich library developed for the BPS is the Astronomy library,
which was codeveloped by UC Berkeley and the Space Sciences Laboratory [8,9]
for use in a variety of high-performance radio astronomy applications. In its sim-
plest form, this library comprises a variety of complex-valued operators based on
Xilinx System Generator real-valued primitives. These blocks are implemented
as Simulink subsystems with optional parameters defining latency or data type
constraints.

8.4.2 Tiled Subsystems
To enable the development of more sophisticated library components, Simulink
supports the use of Matlab M language programs to create or modify the
schematic within a subsystem based on parameters passed to the block. With
the Simulink Mask Editor, initialization code can be added to a subsystem to
place other Simulink blocks and to add interconnect to define a broad range of
implementations for a single library component.

Figure 8.12 illustrates an example of a tiled cell, the biplex_core FFT block,
which accepts several implementation parameters. The first parameters define
the size and precision of the FFT operator, followed by the quantization behavior
(truncation or rounding) and the overflow behavior of adders (saturation or
wrapping). The pipeline latencies of addition and multiplication operators are
also user selectable within the subsystem.

Automatically tiled library components can conditionally use different sub-
systems, and can have multiple tiling dimensions. An alternative to the stream-
based biplex_core block shown in Figure 8.13, a parallel FFT implementation,

8.4 Component Reuse: Libraries of Simple and Complex Subsystems 199

(a) (b)

FIGURE 8.12 � The biplex—core dual-channel FFT block (a), with the parameter dialog box (b).

FIGURE 8.13 � Two versions of the model schematic for the biplex—core library component, with the size
of the FFT set to 6 (26) and 4 (24). The schematic changes dynamically as the parameter is adjusted.

200 Chapter 8 � Programming Streaming FPGA Applications

is also available, where the number of I/O ports changes with the FFT size
parameter. An 8-input, 8-output version is illustrated in Figure 8.14. The paral-
lel FFT tiles butterfly subsystems in two dimensions and includes parameterized
pipeline registers so that the designer can explore speed versus pipeline latency
tradeoffs.

In addition to the FFT, other commonly used high-level components include
a poly-phase filter bank (PFB), data delay and reordering blocks, adder trees,
correlator functions, and FIR filter implementations. Combining these platform-
independent subsystems with the BPS I/O and processor interface library
described in Section 8.2.3, an algorithm designer can take an active roll in the
architectural development of high-performance stream-based signal-processing
applications.

FIGURE 8.14 � An automatically generated 8-channel parallel FFT from the fft—direct library component.

8.5 Summary 201

8.5 SUMMARY

This chapter described the use of Simulink as a common design framework
for both algorithm and architecture development, with an automated path to
program FPGA platforms. This capability, combined with a rich library of high-
performance parameterized stream-based DSP components, allows new appli-
cations to be developed and tested quickly.

The real-time Sobel video edge detection described in this chapter runs on
the BEE2 platform, shown in Figure 8.15, which has a dedicated LCD monitor

(a)

(b) (c)

FIGURE 8.15 � (a) The Sobel edge detection filter running on the BEE2, showing the BEE2 console and
video output on two LCD displays, with (b, c) two examples of edge detection results based on interactive
user configuration from the console.

202 Chapter 8 � Programming Streaming FPGA Applications

connected to it. Two filtered video samples are shown, with edges displayed with
and without the original source color video image.

For more information on the BPS and related software, visit http://bee2.
eecs.berkeley.edu, and for examples of high-performance stream-based library
components, see the Casper Project [9].

Acknowledgments This work was funded in part by C2S2, the MARCO Focus
Center for Circuit and System Solutions, under MARCO contract 2003-CT-
888, and by Berkeley Wireless Research Center (BWRC) member companies
(bwrc.eecs.berkeley.edu). The BEE Platform Studio development was done jointly
with the Casper group at the Space Sciences Laboratory (ssl.berkeley.edu/casper).

References
[1] http://www.mathworks.com.
[2] http://www.xilinx.com.
[3] http://www.synplicity.com.
[4] C. Chang, J. Wawrzynek, R. W. Brodersen. BEE2: A high-end reconfigurable com-

puting system. IEEE Design and Test of Computers 22(2), March/April 2005.
[5] C. Chang. Design and Applications of a Reconfigurable Computing System for High

Performance Digital Signal Processing, Ph.D. thesis, University of California, Berkeley,
2005.

[6] http://www.mentor.com.
[7] K. Camera, H. K.-H. So, R. W. Brodersen. An integrated debugging environment

for reprogrammble hardware systems. Sixth International Symposium on Automated
and Analysis-Driven Debugging, September, 2005.

[8] A. Parsons et al. PetaOp/Second FPGA signal processing for SETI and radio astron-
omy. Asilomar Conference on Signals, Systems, and Computers, November 2006.

[9] http://casper.berkeley.edu/papers/asilomar—2006.pdf.

C H A P T E R 9

STREAM COMPUTATIONS ORGANIZED
FOR RECONFIGURABLE EXECUTION

André DeHon
Department of Electrical and Systems Engineering
University of Pennsylvania

Yury Markovskiy, Eylon Caspi, Michael Chu,
Randy Huang, Stylianos Perissakis, Laura Pozzi,
Joseph Yeh, John Wawrzynek
Department of Electrical Engineering and Computer Sciences
University of California–Berkeley

SCORE is a programming model for reconfigurable computing designed for
application longevity and scalability, based on a streaming dataflow compute
model (Section 5.1.3) and employing several system architectures (Section 5.2)
to support scalability. The compute model allows us to abstract away hardware
details such as platform capacity (e.g., number of lookup tables [LUTs]) and the
detailed cycle-by-cycle timing of hardware implementation. This allows a single
application description to automatically run faster on larger hardware or to fit
onto smaller hardware. The abstraction of platform size and clock cycle timing
makes SCORE a higher-level programming model than RTL-level descriptions
such as VHDL (Chapter 6). The streaming dataflow model allows high concur-
rency and natural task descriptions for a large class of streaming applications,
including signal and image processing.

Figure 9.1 shows one of the key scaling forms enabled. We capture the
computation as a streaming dataflow graph of persistent operators (Section 5.1.2)
abstracted from a particular platform (Figure 9.1(a)). On small hardware
platforms, we use a phased reconfiguration manager (Phased reconfiguration
manager subsection of Section 5.2.2) to implement the task as a sequence of
configurations on the available hardware (Figure 9.1(b)). For larger platforms,
more operators can be placed spatially, exploiting greater concurrency to reduce
runtime (Figure 9.1(c)).

To achieve scalability, Stream Computations Organized for Reconfigurable
Execution (SCORE) allows and encourages the programmer to ignore the hard-
ware capacity of a particular platform and focus on capturing the fully spatial,
streaming dataflow graph. A combination of the compiler and the runtime system
must decompose and schedule the application onto a variety of hardware capaci-
ties. To support late-bound, runtime adaptation to various hardware platforms,
the SCORE runtime employs a paged reconfiguration discipline (Section 9.2.4).

204 Chapter 9 � Stream Computations Organized for Reconfigurable Execution

(a)

(b)

(c)

FIGURE 9.1 � Score application and sequential versus fully spatial execution: (a) a video
compression task, (b) a capacity-limited sequential implementation, and (c) a fully spatial
implementation on SCORE hardware.

In implementing this model, we must

� Provide concrete programming language instantiations for describing
SCORE applications (Section 9.1).

� Select and employ suitable system architectures to implement the
application and support area–time trade-offs for scalability (Section 9.2).

� Compile between the programming language description of the
application and the runtime system architectures (Section 9.3).

� Provide runtime support for the tasks that must be performed during
execution (Section 9.4).

9.1 Programming 205

The SCORE programming model demonstrates how compute model and
system architectures come together to efficiently support a class of streaming
applications.

9.1 PROGRAMMING

The specific compute model SCORE supports is Dynamic Streaming Dataflow
with Allocation but without peeks (Dynamic streaming dataflow and Streaming
dataflow with allocation subsections of Section 5.1.3), making it fully determin-
istic. Programs are composed by linking together operators (functions or objects,
Section 5.1.2) and memory segments with first-in-first-out (FIFO) stream links
(Section 5.1.3). Operators themselves can be described by their behavior or com-
posed structurally as a graph.

Any number of languages that obey streaming dataflow semantics can be
defined to program SCORE computations. The key requirements are to capture
operators with appropriate dataflow input/output (I/O) interfaces and to allow
operator compositions.

SCORE can be programmed with conventional programming languages
(e.g., C++, Java) by defining stylized language subsets and library support to
describe and compose SCORE operators. In Section 9.1.2, we show how to use
C++ for dynamic composition.

In a multi-threaded language, such as Java or C++, with an appropriate thread
package, a SCORE operator would be an independent thread that communi-
cates with the rest of the program only through single-reader, single-writer
I/O streams. Specifically, SCORE does not have a global, shared memory abstrac-
tion among operators (Single Memory Pool, Section 5.1.4). An operator may own
a chunk of the address space (a memory segment) during operation and return
it after it has completed, but no two operators may own a piece of memory
simultaneously.

Alternately, SCORE programming could use a modern system-level design lan-
guage, such as System C [1], as long as the communication library provides suit-
able dataflow communication semantics. To focus on the necessary semantics
during SCORE development, we define an intermediate register transfer
level (RTL) language to describe SCORE operators and their composition
(Section 9.1.1). We view this intermediate language, TDF, as a device-independent,
assembly language target on the way to platform-specific executable operators.

9.1.1 Task Description Format
Task Description Format (TDF) is basically an RTL-level operator description
with special syntax for handling input and output datastreams from the operator
[7, 22]. Common datapath operators can be described using a C-like syntax.
For example, Figure 9.2 shows how an FIR computation might be implemented
in TDF. Operators may have parameters whose values are bound at operator
instantiation time; parameters are identified with the keyword param. In the

206 Chapter 9 � Stream Computations Organized for Reconfigurable Execution

fir4(param signed[8] w0, param signed[8] w1,
param signed[8] w2, param signed[8] w3,
// param's bound at instantiation time
input unsigned[8] x,
output unsigned[20] y)

{
state only(x): // "fire" when x present
{

// assignment to output y denotes a stream write
y = w0*x + w1*x@1 + w2*x@2 + w3*x@3;
// x@n notation picks out nth previous value for
// x on input stream.
// (this notation is patterned after Silage [2])
goto only; // loop in this state

}
}

FIGURE 9.2 � A TDF specification of 4-TAP FIR (a static rate operator).

FIR example, the coefficient weights are parameters; these are specified when
the operator is created, and the values persist as long as the operator is used.
The FIR reads from a single input stream (x) and produces a single output
stream (y); the assignment to y denotes the stream write. The behavior of the
state is gated on the arrival of the next x input value, producing a new y output
for each such input.

To allow dynamic-rate dataflow (Dynamic streaming dataflow subsection of
Section 5.1.3), the basic form of a behavioral TDF operator is that of a finite-
state machine (FSM) (Finite State, Section 5.1.4), in which each state specifies
the inputs that must be present before it can fire. Once the inputs arrive, the
operator consumes them, and the FSM may choose to change states based on
the input data consumed. A simple merge operator is shown in Figure 9.3 to
demonstrate how the state machine can also be used to allow data-dependent
consumption of input values. (Note: This version has been simplified for illus-
tration; it does not properly handle the end-of-stream condition.) Output value
production can be conditioned as illustrated in the uniq example shown in
Figure 9.4. Together, data-dependent input consumption and output production
allow the user to specify arbitrary, deterministic, dynamic-rate operators.

Of course, the FSM gives the user the semantic power to describe heavily
sequential and complex, control-oriented operators. Nonetheless, the program-
mer should avoid sequentialization and complex control when possible, as
operators with many states are less likely to use spatial computing resources effi-
ciently. Larger operators can be composed structurally from smaller operators in
a straightforward manner, as shown in Figure 9.5.

9.1.2 C++ Integration and Composition
With a suitable stream implementation and interface code, SCORE operators can
be instantiated by and used with a conventional, multi-threaded programming

9.1 Programming 207

signed[w] merge(param unsigned[6] w,
// can use parameters to define data width
input signed[w] a,
input signed[w] b)

{

signed[w] tmpA; // define local state inside the operator
signed[w] tmpB;
// states used here to show dynamic data consumption
state start(a,b): // requires inputs on both a and b to be

// available in order to evaluate
{

// assignments to local variables have C-like semantics
tmpA=a; tmpB=b;
if (tmpA<tmpB) { merge=tmpA;

goto replaceA; }
else { merge=tmpB;

goto replaceB; }
// note: assignment to function name signifies a write to the
// output stream which is returned from operator instantiation

}
state replaceA(a): // requires availability of only input a
{

tmpA=a;
if (tmpA<tmpB) { merge=tmpA;

goto replaceA; }
else { merge=tmpB;goto replaceB; }

}
state replaceB(b): // requires availability of only input b
{

tmpB=b;
if (tmpA<tmpB) { merge=tmpA;

goto replaceA; }
else { merge=tmpB; goto replaceB; }

}
}

FIGURE 9.3 � A TDF specification of merge operator (a dynamic input rate operator).

language. Figure 9.6 shows an example C++ program that uses the merge and
uniq operators defined in Figures 9.3 and 9.4. Note that SCORE operator ins-
tantiation and composition can be performed in C++ code. Once created, the oper-
ators behave as independently running threads, operating in parallel with the
main C++ execution thread. In general, a SCORE operator will run until its input
streams are closed or its output streams are released (i.e., the stream is deallocated
with a free-like operation).

After primitive behavioral (or leaf) operators have been defined (e.g., in TDF
or some other suitable form) and compiled into their hardware-level implemen-
tation, large programs can be composed entirely in a conventional programming
language as just described and illustrated in Figure 9.6. If one thinks of TDF as a
portable assembly language for critical computational building blocks, then this
language binding allows a high-level language to compose these building blocks

208 Chapter 9 � Stream Computations Organized for Reconfigurable Execution

// uniq behaves like the unix command of the same name;
// it filters an input stream, removing any adjacent, duplicate
// entries before passing them on to the output stream.
signed[w] uniq(param unsigned[6] w,

input signed[w] x)
{

signed[w] lastx;
state start(x):

{ lastx=x; uniq=x; goto loop;}
state loop(x):

{
if (x=!lastx)
{ lastx=x; uniq=x; }

goto loop;
}

}

FIGURE 9.4 � A TDF specification of uniq operator (a dynamic output rate operator).

merge3uniq(param unsigned[6] n,
input signed[n] a,
input signed[n] b,
input signed[n] c,
output signed[n] o)

{
signed [n] t;
t=merge(n,merge(n,a,b),c);
o=uniq(n,t);

}

merge

merge uniq

a
b

c o
t

FIGURE 9.5 � The TDF compositional operator.

in much the same way that assembly language kernels are composed using high-
level languages in order to efficiently program early DSPs and supercomputers.
The instantiation parameters for TDF operators allow the definition of generic
operators that can be highly customized to the needs of the application.

9.2 SYSTEM ARCHITECTURE AND EXECUTION PATTERNS

To support the SCORE programming model efficiently, implementations are
based on several system architectures and execution design patterns (e.g.,
DeHon et al. [3]). In this section, we highlight how these architectures are used
and introduce additional execution patterns.

9.2 System Architecture and Execution Patterns 209

merge

merge uniq

i0
i1

i2
t2

t1

o

#include "Score.h"
#include "merge.h"
#include "uniq.h"
int main()
{

char data0[] = { 3, 5, 7, 7, 9 };
char data1[] = { 2, 2, 6, 8, 10 };
char data2[] = { 4, 7, 7, 10, 11 };
// declare streams
SIGNED_SCORE_STREAM i0,i1,i2,t1,t2,o;
// create 8-bit wide input streams
i0=NEW_SIGNED_SCORE_STREAM(8);
i1=NEW_SIGNED_SCORE_STREAM(8);
i2=NEW_SIGNED_SCORE_STREAM(8);
// instantiate operators
// note: instantiation passes parameters and streams to the operators
t1=merge(8,i0,i1);
t2=merge(8,t1,i2);
o=uniq(8,t2);
// alternately, we could use: new merge3uniq (8,i0,i1,i2,o);
// write data into streams
// (for demonstration purposes;
// real streams would be much longer and not come from main)
for (int i = 0; i < 5; i++) {

STREAM_WRITE(i0, data0[i]);
STREAM_WRITE(i1, data1[i]);
STREAM_WRITE(i2, data2[i]);

}
STREAM_CLOSE(i0); // close input streams
STREAM_CLOSE(i1);
STREAM_CLOSE(i2);
// output results (for demonstration purposes only)
for (int cnt=0; !STREAM_EOS(o); cnt++) {

cout << "result["<< cnt << "]=" <<
STREAM_READ(o) << endl;

}
STREAM_FREE(o);
return(0);

}

FIGURE 9.6 � An example of instantiation and usage in C++.

9.2.1 Stream Support
SCORE heavily leverages the stream abstraction (Chapter 5, Section 5.1.3) for
communication between operators. The streamed data can be assigned to a
buffer if the producer and consumer are not coresident (see Figure 9.1(b));

210 Chapter 9 � Stream Computations Organized for Reconfigurable Execution

if they are coresident, the data can be assigned to physical networking (see
Figure 9.1(c)). Further, any number of mechanisms (e.g., shared bus, packet-
switched network, time-multiplexed network, configured links) can implement
the stream based on data rate, predictability, and platform capabilities. Once
data communication is organized as a stream, the platform knows which data
to prefetch and how to package it to or from memory.

When a SCORE implementation physically implements streams as wires
between dynamic-rate operators, data presence (Data presence subsection of
Section 5.2.1) tags allow us to abstract out dynamic data rates or delays. While
data presence allows producers to signal consumers that data are not ready, it is
often useful to signal the opposite direction as well; consequently, we also imple-
ment a back-pressure signal, which allows the consumer to inform the producer
that it is not ready to consume additional inputs. We can further place queues
between the producer and the consumer to decouple their cycle-by-cycle firing.

When the consumer is not ready, produced values accumulate in the queue,
allowing the producer to continue operation; if there are stored values in the
queue, the consumer can continue to operate while the producer is stalled as
well. Queues are of finite size, so a full queue also uses back-pressure to stall
an attached producer. In dynamic data rate operations where queue size can-
not be bounded (Dynamic streaming dataflow subsection of Section 5.1.3), the
hardware signals the OS when queues fill, and the OS may need to allocate
additional queue capacity at runtime to prevent deadlock [4].

9.2.2 Phased Reconfiguration
When the operator graph is too large for the platform, it is necessary to share the
physical hardware in time (see Figures 9.1(b) and 9.7). For a reconfigurable plat-
form, this can be done by changing the configuration overtime, to implement the

DCT DCT
Zig
Zag

Quant ZLE

AC
Code

Mix Huffman AssembleTranspose
8 8 8

Partition 1

Partition 2

Partition 3

8 3 2

Table 2

Table 3

Table 1 Table 4

Table 5

DC
Code

FIGURE 9.7 � Partitioning of a JPEG image encoder to match platform capacity.

9.2 System Architecture and Execution Patterns 211

graph in pieces (Phased reconfiguration manager subsection of Section 5.2.2).
Reconfiguration, however, can be an expensive operation requiring many cycles.
To minimize its overhead cost, we want to run each operator for many cycles
between reconfigurations. In particular, if we can ensure that each operation
runs for a large number of cycles compared to the reconfiguration time, then
we can make the overhead for reconfiguration small (Trun-before-reconfig >>
Tconfig). Streaming data with large queues helps us achieve this. We can queue
up a large number of data items that will keep the operator busy. We then recon-
figure the operator, compute on the queued data, and, if the consumer is not
coresident, queue up the results (Figure 9.1(b)). When the input queue is empty
or the output queue is full, we reconfigure to the next set of operators.

9.2.3 Sequential versus Parallel
When the platform contains both processors and reconfigurable logic, it is pos-
sible to assign some operators to the processor(s) (Processor subsection of
Section 5.2.2) and some to the reconfigurable fabric. We can compile SCORE
operators either to processor instructions or to reconfigurable configurations,
and we can even save both implementations as part of the program executable.
At load time or runtime, low-throughput operators can be assigned to the
sequential processor(s), while high-throughput logic can be assigned to the
reconfigurable fabric. As the size of the reconfigurable fabric grows, more oper-
ators can be implemented spatially on it.

Phased reconfiguration can be ineffective when mutually dependent cycles
are large compared to the size of the platform. Processors are designed to time-
multiplex their hardware at a fine granularity; thus, one way to fit large operator
cycles onto the platform is to push lower throughput operators onto the proces-
sor until the cycle is contained.

We interface the processor to the reconfigurable array using a streaming copro-
cessor arrangement (Streaming Coprocessors, Section 5.2.1). The processor can
write data into stream FIFOs to go to the reconfigurable array coprocessor, and
it reads data back from them. This decouples the cycle-by-cycle operation of
the reconfigurable array from the processor, abstracting the relative timing of
the two units. In the case where the reconfigurable array can be occupied (e.g.,
allocated to another operator or task), this reduces coresidence requirements
between operators on the array and processor. As a result, the options for the
array size to vary among platform implementations increase.

9.2.4 Fixed-size and Standard I/O Page
To allow the platform size to vary with the implementation platform, it is nec-
essary to perform placement at load time or runtime based on the amount of
physical hardware and the time-multiplexed schedule. If we had to place every-
thing at the LUT level, we would have a very large placement problem. Further,
if we allowed partial reconfiguration in order to efficiently support the fact that
different operators may need to be resident for different amounts of time, we

212 Chapter 9 � Stream Computations Organized for Reconfigurable Execution

would have a fragmentation and bin-packing problem [5], as different operators
take up different space and have different footprints. We can simplify the run-
time problem by using a discipline of fixed-size pages that have a standard
I/O interface.

First, we decide on a particular page size (e.g., 512 4-LUTs) for the archi-
tecture. At compile time, we organize operators into standard page-size blocks
so that we can perform the intrapage placement and routing offline at compile
time. At runtime, we simply place pages and perform interpage routing. The run-
time placement problem is simplified because all pages are identically sized and
interchangeable. Furthermore, because pages are typically 100 to 1000 4-LUTs,
the runtime placement problem is two to three orders of magnitude smaller than
LUT-level placement. Unfortunately, fixed-size pages may incur internal frag-
mentation, leaving some resources in each page unused. Brebner’s SLU is an
early example of this pattern [6].

Note that this is the same basic approach used in virtual memory, where we
do not manage every bit or even every word independently, but instead gather a
fixed number of words into a page and manage (e.g., map and swap) them as a
group. In both cases, this reduces the overhead associated with page mapping
considerably.

9.3 COMPILATION

We have developed a complete compilation flow from TDF to conventional
FPGAs using Verilog (an HDL similar to VHDL—see Chapter 6) as an inter-
mediate form (Figure 9.8) [7]. The TDF compiler, tdfc, automatically generates
RTL Verilog to efficiently implement the streaming constructs of the TDF lan-
guage, including flow control checking, stream buffering in queues, and stream
pipelining. The TDF compiler also maps between abstract operators of arbitrary
size and the fixed-size pages supported at runtime by the system architecture.

TDFC

Synplify

Xilinx ISE

Application

Bits

Verilog

EDIF
(Unplaced LUTs)

Device
configuration

• Source-level optimizations
• Page partitioning
• Queue sizing
• Stream pipelining
• Generate flow control, streams, queues

• Behavioral synthesis
• Retiming

• Slice packing
• Place and route

TDF

FIGURE 9.8 � TDF compilation flow targeting an FPGA.

9.4 Runtime 213

The compiler then emits a netlist of pages for compilation by a commercial
backend FPGA synthesis, place, and route flow.

Because SCORE streams abstract the number of clock cycles between opera-
tors, we can pipeline both the interconnect between operators and the operator
datapaths. To pipeline operators, the compiler adds registers to the input and
output streams and employs retiming (Chapter 18) to redistribute the registers
into the operator logic.

To accommodate the wide range of operator sizes that the programmer may
produce, the compiler must perform operator packing and splitting in order to
target any particular, fixed-size page. Our previous experience suggests that most
user-written leaf operators require fewer than 512 4-LUTs, which means that
page packing will be adequate to reshape most applications. Many large oper-
ators are feedforward pipelines (e.g., DCT, IDCT), which can be easily decom-
posed using directional cuts in the dataflow. For the general case, it is necessary
to decompose large state machines to fit them onto small pages. This could be
done by starting with individual states and clustering state logic and datapaths,
obeying the page area and I/O bound. To minimize delay, the goal is to group
states that typically execute together so as to minimize the frequency of state
transitions that cross the page boundary. Clustering techniques such as those
described by Li et al. [8] can be employed for this general clustering case.

9.4 RUNTIME

To support the late-bound task and platform mapping integral to SCORE’s
power and scalability, we must perform scheduling, placement, and routing no
earlier than load time. In this section, we highlight how these tasks can all be
performed quickly at load time or runtime.

9.4.1 Scheduling
We support SCORE’s virtualization model in the presence of late-bound plat-
form mapping with a load-time and runtime scheduler. We do not know the
capacity of the platform until load time; consequently, we cannot partition the
graph into sets of pages that fit on the platform before then. Further, because
operators have dynamic execution times and dynamic consumption and produc-
tion rates, the relative execution time of each operator cannot be known with
certainty until execution. To support SCORE efficiently, we must be able to:

� Quickly partition the page graph into platform-feasible components
(within milliseconds).

� Produce a high-quality schedule—that is, one that minimizes the time to
run the task (minimizes the make span).

� Minimize the sequential handling required for managing reconfiguration
and advancing the schedule.

214 Chapter 9 � Stream Computations Organized for Reconfigurable Execution

In the simplest cases, we partition the graph once, at load time, when the
program starts and never again. In this way, we amortize the cost of partition-
ing across the entire application runtime (Figure 9.9). If the application will
run for seconds, we can afford tens of milliseconds for this scheduling opera-
tion while keeping the overhead small. If we can decrease the scheduling time,
then it will be possible to run even shorter jobs efficiently. In more advanced
cases, the graph may change during execution, or the execution rates of oper-
ators may change in a data-dependent way. In such cases, it might be useful
to repartition and reschedule the graph during execution. The shorter we can
make the partitioning time, the more frequently we can afford to invoke the
partitioner without paying a large overhead.

We have developed a series of schedulers to address these issues [9–12]. Our
highest-quality scheduler (shown in Figure 9.10) is quasi-static and load-time
based [10], and operates in two phases: (1) load-time partitioning and (2) run-
time schedule advancement. At application load-time, the scheduler partitions
the page-level dataflow graph into platform-feasible subgraphs. This partition
can use feedback information on operator and stream activity rates based on
previous program runs. The load-time partitioning heuristic requires only a few
hundred thousand processor cycles (e.g., submillisecond time on gigahertz pro-
cessors) for graphs with up to one hundred operators [12].

Time slice

Run A

Time

Page execution

Run B Run C

Runtime
scheduling

Reconfiguration

Generate
schedule

Application
load time

FIGURE 9.9 � An application execution timeline.

0

2

4

6

8

10

12

14

3 4 5 6 7 8 9 10 11 12 13 14 15
Array size (pages)

E
xe

cu
tio

n
tim

e
(M

cy
cl

es
)

Dynamic Static Qstatic

FIGURE 9.10 � JPEG decoder scaling: Total execution time is compared among fully dynamic, fully static,
and quasi-static schedulers.

9.4 Runtime 215

The result is a schedule for the phased reconfiguration. During execution, the
runtime system advances the computed schedule by reconfiguring the array at
regular intervals (Phased reconfiguration manager subsection of Section 5.2.2).
The schedule computed at load time specifies a nominal period for each sched-
ule timeslice. Additionally, the system monitors execution to determine when
the current configuration can no longer make forward progress (e.g., all input
buffers are empty or all output buffers are full) and dynamically triggers early
phase termination and schedule advancement.

9.4.2 Placement
Using the fixed-size and standard I/O pages discipline (Section 9.2.4) we
immediately reduce the size of the placement task by two to three orders of
magnitude. Nonetheless, the placement task may still take too long when run
using conventional single-processor-based placers at reconfiguration time or even
load time. Fortunately, once we have a spatially parallel reconfigurable comput-
ing platform, we can use the platform itself to perform placement substantially
faster. In Wrighton and DeHon [13] and Wrighton [14], we show how to perform
simulated annealing spatially with reconfigurable logic; we can place a graph
with 1000 movable elements in roughly 1 million cycles. Even if we only ran the
placement engine at 100 MHz, this would mean that we could perform place-
ment in 10 ms. If each page held 512 4-LUTs, this would correspond to platforms
with half a million 4-LUTs.

The key idea for spatial simulated annealing is to build a placement engine
on top of the reconfigurable platform. If we make each page large enough,
then it can act as a cellular placement cell. As a placement cell, it holds a
candidate, logical page and negotiates exchanges with its nearest neighbors (i.e.,
cellular automata system architecture Section 5.2.5). A pair of adjacent pages
will swap logical pages if they estimate that the swap will produce a superior
placement (e.g., shorter wire lengths) or if the randomness in the simulated
annealing process suggests attempting the swap anyway. All pages can be paired
up and can negotiate swaps in parallel, allowing many moves per swap epoch.

By pairing up only neighbors, we can guarantee minimizing the intercon-
nect for this placement engine and keep the cycle times short. Because there
is one cellular placement cell for every page site on the device, the hardware
and parallelism in the placement engine scales exactly to the size of the place-
ment problem that needs to be solved. Wrighton and DeHon [13] estimate that
400 4-LUTs are adequate to implement a 100 MHz cellular placement cell on
Xilinx Virtex-II–generation hardware [15]; this suggests that SCORE platforms
with 512 LUT pages will be able to perform their own placement.

9.4.3 Routing
Once the pages have been placed, we must perform interpage routing. Again,
we can exploit the fact that we have a spatially parallel computing platform
to route tasks in 100,000 to 1 million cycles [16]. Here, we augment the inter-
page network with additional logic to allow it to identify all free paths between

216 Chapter 9 � Stream Computations Organized for Reconfigurable Execution

a source node and a sink node in parallel. This permits a flooding search
(e.g., Figure 9.11) to find a free path in the time it takes to propagate a sig-
nal across the network rather than the time it takes to perform a sequential
search on a large graph structure in memory. Consequently, each new path can
be added in tens of cycles rather than the tens of thousands of cycles required
by the best software routers.

Using randomization, rip-up, and multiple restarts, this approach can even
perform congestion negotiation and achieve comparable quality to PathFinder
[17] (Chapter 17), the state-of-the-art software-routing algorithm for FPGAs
[18, 19]. With word-wide (e.g., 16-bit) datapaths for the interpage network, the
additional area overhead for this augmented network is less than 30 percent
when network routing channels are switch-area limited; the augmented network
adds only control wires, so it has almost no area overhead when network-routing
channels are wire dominated.

An alternate approach is to employ a packet-switched network for interpage
routing (see Marescaux et al. [20] and Kapre et al. [21]) to avoid the need to
compute and configure the network. Packet switches are generally much larger
and have higher latency than configured switches, but they may be able to han-
dle multirate and dynamic traffic more efficiently.

Figure 9.11 shows the result of a path search for a route from node 4 to
node 2. Light thick lines show preexisting routes; dark thick lines show the free
paths explored between source and sink. At the crossover switchbox (labeled
“XXX”), only a single switch is found by both source- and sink-initiated searches.

0
00X

1

0XX

2

01X

3

XXX

4
10X

5

1XX

6

11X

7

o
u

t in

FIGURE 9.11 � A spatially parallel path search.

9.5 Highlights 217

9.5 HIGHLIGHTS

SCORE compilation has automatically mapped image-processing applications
(e.g., wavelet, JPEG, MPEG) to streamed implementations that exceed 100 MHz
sample throughput on a Virtex-II Pro XC2VP70-7 [12]. In comparable technol-
ogy, a 4-page SCORE design outperforms a Pentium-3 (500 MHz) by 10 times on
JPEG compression. Mapped design performance scales to deliver larger speedup
with additional pages (see Figure 9.10).

For further details on SCORE, see DeHon et al. [12] and Caspi et al. [22].

References
[1] Open System C Initiative. System C 2.1 Language Reference Manual, May 2005

(http://www.systemc.org).
[2] D. Genin, J. Rabaey, P. Hilfinger, C. Scheers, H. DeMan. DSP specification using

the SILAGE language. Proceedings of the IEEE ICASSP Conference, April 1990.
[3] A. DeHon, J. Adams, M. deLorimier, N. Kapre, Y. Matsuda, H. Naeimi, M. Vanier,

M. Wrighton. Design patterns for reconfigurable computing. Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines, April 2004.

[4] T. M. Parks. Bounded Scheduling of Process Networks, UCB/ERL95–105, University
of California, Berkeley, 1995.

[5] K. Bazargan, R. Kastner, M. Sarrafzadeh. Fast template placement for reconfig-
urable computing systems. IEEE Design and Test of Computers 17(1), January–
March 2000.

[6] G. Brebner. The swapable logic unit: A paradigm for virtual hardware. Proceedings
of the IEEE Symposium on FPGAs for Custom Computing Machines, April 1997.

[7] E. Caspi. Design Automation for Streaming Systems, Ph.D. thesis, University of
California, Berkeley, 2005.

[8] Z. Li, K. Compton, S. Hauck. Configuration caching techniques for FPGAs. Proceed-
ings of the IEEE Symposium on Field-Programmable Custom Computing Machines,
2000.

[9] M. Chu. Dynamic Runtime Scheduler Support for SCORE, Master’s thesis, University
of California, Berkeley, December 2000.

[10] Y. Markovskiy, E. Caspi, R. Huang, J. Yeh, M. Chu, J. Wawrzynek, A. DeHon. Anal-
ysis of quasi-static scheduling techniques in a virtualized reconfigurable machine.
Proceedings of the International Symposium on Field-Programmable Gate Arrays,
February 2002.

[11] Y. Markovskiy. Quasi-Static Scheduling for SCORE, Master’s thesis, University of
California, Berkeley, December 2004.

[12] A. DeHon, Y. Markovskiy, E. Caspi, M. Chu, R. Huang, S. Perissakis, L. Pozzi,
J. Yeh, J. Wawrzynek. Stream computations organized for reconfigurable execution.
Journal of Microprocessors and Microsystems 30(6), September 2006.

[13] M. Wrighton, A. DeHon. Hardware-assisted simulated annealing with application
for fast FPGA placement. Proceedings of the International Symposium on Field-
Programmable Gate Arrays, February 2003.

[14] M. Wrighton. A Spatial Approach to FPGA Cell Placement by Simulated Annealing,
Master’s thesis, California Institute of Technology, June 2003.

[15] Xilinx, Inc. Xilinx Virtex-II 1.5V Platform FPGAs Data Sheet, San Jose, July 2002.

218 Chapter 9 � Stream Computations Organized for Reconfigurable Execution

[16] A. DeHon, R. Huang, J. Wawrzynek. Hardware-assisted fast routing. Proceedings of
the IEEE Symposium on Field-Programmable Custom Computing Machines, April
2002.

[17] L. McMurchie, C. Ebeling. PathFinder: A negotiation-based performance-driven
router for FPGAs. Proceedings of the International Symposium on Field-Programmable
Gate Arrays, February 1995.

[18] R. Huang, J. Wawrzynek, A. DeHon. Stochastic, spatial routing for hypergraphs,
trees, and meshes. Proceedings of the International Symposium on Field-Programmable
Gate Arrays, February 2003.

[19] A. DeHon, R. Huang, J. Wawrzynek. Stochastic spatial routing for reconfigurable
networks. Journal of Microprocessors and Microsystems 30(6), September 2006.

[20] T. Marescaux, V. Nollet, J.-Y. Mignolet, A. Bartic, W. Moffat, P. Avasare, P. Coene,
D. Verkest, S. Vernalde, R. Lauwereins. Run-time support for heterogeneous multi-
tasking on reconfigurable SOCs. INTEGRATION, The VLSI Journal 38(1), October
2004.

[21] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson,
M. Wrighton, A. DeHon. Packet-switched vs. time-multiplexed FPGA overlay net-
works. Proceedings of the IEEE Symposium on Field-Programmable Custom Com-
puting Machines, April 2006.

[22] E. Caspi, M. Chu, R. Huang, N. Weaver, J. Yeh, J. Wawrzynek, A. DeHon. Stream
Computations Organized for Reconfigurable Execution (SCORE): Introduction and
tutorial (http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html); a
short version appears in FPL ’2000 (Lecture Notes in Computer Science, 1896),
2000.

C H A P T E R 10

PROGRAMMING DATA PARALLEL
FPGA APPLICATIONS USING
THE SIMD/VECTOR MODEL

Maya B. Gokhale
Lawrence Livermore National Laboratory

In the Single Instruction Multiple Data (SIMD) model, aggregate operations on
arrays and vectors can be mapped to arrays of function units. A single instruction
stream is dispatched from a control unit to the function units, which operate in
lockstep on the data sequences. Reconfigurable hardware is well suited to perform
SIMD (also called vector or data parallel) computation (see Section 5.1.5). Groups
of lookup tables (LUTs) can be configured as function units, and the data local to
each unit can be stored in distributed memories. This chapter explores parallel
processing on reconfigurable computers using the SIMD/vector model.

Reconfigurable computers can exploit parallelism at many different levels of
granularity, from coarse-grained parallel tasks to fine-grained instruction-level
parallelism. The massive amount of parallelism available in the reconfigurable
computer more than compensates for its slow clock rate—one-tenth the clock
rate of modern microprocessors. Raw spatial parallelism is plentiful in reconfig-
urable processors, especially those based on FPGAs. The challenge is to partition
and map the application onto the inherently parallel fabric of lookup tables,
DSP blocks, and memories. Parallel activities can be explicitly described and
scheduled by the programmer or hardware designer, or can be inferred through
analysis of the source code. SIMD/vector parallelism is very well suited to the
spatial parallelism of FPGAs and other coarse-grained arithmetic logic units
(ALU) arrays. In this programming model, aggregate data such as vectors and
matrices are processed in parallel on arrays of function units.

10.1 SIMD COMPUTING ON FPGAS: AN EXAMPLE

As an introduction to SIMD computing on FPGAs, Figure 10.1 shows an SIMD
array customized to perform two vector operations. A vector A is scaled by
a constant factor, and then the dot product A · B = Σai × bi of vectors A and
B is performed. In this example, the number of SIMD processors is equal to
the size of the vectors. Each processor holds one element of A and one of B.
There is an additional storage location in each processor to hold the result of
the × operation.

220 Chapter 10 � Programming Data Parallel FPGA Applications

Processor Array

r c

res

Multiply

Instruction
decode

Instruction
decode

res

Multiply

Instructions

Instructions:
1. a = c*a
2. res = a*b
3. r = reduce_add(res)

Control unit

A = cA

r = A.B

Reduction Network

a

b

res

Multiply

a

b

a

b

Instruction
decode

a

b

res

Multiply

Instruction
decode

FIGURE 10.1 � An SIMD dot-product machine.

The control unit generates the instruction stream. An instruction can be
executed on the control unit itself, on each processor of the processor array,
or cooperatively on both. In this example, the control unit sends the constant c
as part of the first multiply instruction. The constant appears as an immediate
operand in the instruction to each processor. Next the control unit sends the
second multiply instruction to the processor array, and all processors perform
the operation res=a*b. The final instruction performs a reduction, a global com-
bining operation, in which each processor sends its instance of res into the
reduction network. Because the operation is a global sum, all the res instances
are summed and the result is stored in the control unit variable r. While the
example shows the control unit sending three separate instructions to the pro-
cessor array, on an FPGA it is very possible that the controller will send a single
instruction that results in a multi-cycle sequence of multiply operations followed
by the global sum.

In this idealized example, the number of processors exactly matches the size
of the vectors. In real applications, there are many different vectors of different
sizes. The vectors must be distributed to the processors in blocks, and each pro-
cessor must multiply subvectors of elements. If the number of processors doesn’t
evenly divide the vector size, some processors must remain inactive when the
tail ends of the vectors are multiplied. Each processor must keep a subaccu-
mulation, and, when the entire vector has been processed, the global sum is
performed over the partial sums. When the processor array is on an FPGA, the
compiler must synthesize state machines (FSMD subsection of Section 5.2.2) to

10.2 SIMD Processing Architectures 221

control the sequence of operations and iterate over the blocks of data. Designing
algorithms for reconfigurable computers in the SIMD model in the face of these
real-world complicating factors will be addressed in Section 10.4.

10.2 SIMD PROCESSING ARCHITECTURES

SIMD/vector machines were among the first parallel processors to be designed.
From the days of the Iliac IV, with 64 processing elements (PEs) receiving
instructions from a control processor, this parallel-processing architecture has
gone through myriad incarnations. Notable among SIMD arrays are the Con-
nection Machine, which had thousands of simple PEs operating in synchrony
[1], as well as DAP and MasPar (late 1980s [2]). The Terasys Integrated Circuit
[3] and the Clearspeed SIMD array [4] both included an SIMD processing array
on a single integrated circuit.

Historically, supercomputers with dedicated floating-point function units used
for processing arrays and vectors were called vector supercomputers, while mas-
sively parallel, highly interconnected arrays of function units were referred to
as SIMD, or data parallel. More recently, as small arrays of function units have
been incorporated into the architecture of scalar processors, the terms SIMD,
vector, and data parallel have become interchangeable. This is especially apropos
to reconfigurable computers, in which arbitrary numbers and types of function
units may be used with many different kinds of interconnect patterns.

An SIMD processing array, illustrated in Figure 10.2, consists of a collec-
tion of identical processing elements operating in lockstep. The PEs all execute
exactly the same instruction, which is broadcast to them from a control unit, or
“sequencer,” as indicated by the dotted lines in the figure. Each PE has a local
memory from which to fetch data operands and store results. On an SIMD array,
control flow instructions, such as branching, conditional branch, and subroutine
call, are executed on the control unit.

Data-dependent branching represents a particular challenge when different
instances of the data are resident in each PE’s memory. Depending on the data
value, some PEs might evaluate the branch predicate to true and others to false.
Because they all must execute the same instruction at the same time, each PE
has a predicate mask flag (the M in the corner of each ALU) indicating whether
the PE should execute or ignore the current instruction.

The PE sets the predicate mask to the result of evaluating the predicate on
its data items, and then either executes subsequent instructions or is inactive.
The control unit can reset PEs to the active mode by issuing “unconditional”
instructions to them, directing them to ignore the predicate mask. The notion
of predicated instructions, which is essential to SIMD processing, is also used
in some microprocessor instruction sets [5], particularly in wide-word explicitly
parallel architectures.

In SIMD processing, PEs exchange data synchronously. The PE interconnec-
tion network may be arranged as a linear array, as in Figure 10.2, or as a
two-dimensional (or even three-dimensional) mesh or torus. In addition to

222 Chapter 10 � Programming Data Parallel FPGA Applications

Control unit –
sequencer

ALU M

Decode

Interconnection Network

Instruction stream

Data items Data items

Decode Decode Decode

ALU M ALU M ALU M

FIGURE 10.2 � An SIMD processing array.

nearest-neighbor communication (illustrated with solid lines in the figure), data
parallel arrays usually include global combining networks for global reduction
(sum, product, min, max, and logical) operations. The control unit can retrieve
data from the memory of individual PEs and can also receive the result of the
global combining operations (dashed lines in the figure).

A global combining network is illustrated in Figure 10.3, which shows a net-
work organized as a binary tree with a combining operator at each interior tree
node. Global combining networks can be used for any associative operation.
With parallel tree operations, an O(n) operation is reduced to O(log(n)).

10.3 DATA PARALLEL LANGUAGES

High-level data parallel languages for SIMD machines were popularized in the
late 1980s with the emergence of the Connection Machines CM-1, CM-2, and
CM-5, and were adopted by other vendors. In the CM approach, a base language
such as Fortran or C was extended with new keywords, syntax, and seman-
tics. In the C* language, a data parallel extension to ANSI C, new data type
modifiers mono and poly were introduced. A mono variable resides in the con-
trol unit memory, while a poly variable occupies memory local to each PE,

10.4 Reconfigurable Computers for SIMD/ Vector Processing 223

FIGURE 10.3 � A global sum network.

implicitly defining a vector or higher-dimension array. Operation on a mono
variable is performed on the control unit, while a poly expression is evaluated
independently on each PE.

Also in the 1980s, new syntax and intrinsic functions were introduced to
express global combining operations, inter-PE communication, and uncondi-
tional execution.

Declaration of poly variables in most data parallel languages implicitly
defines an aggregate object whose length is the number of PEs in the physi-
cal array. Unfortunately, most datasets do not conform in size or shape to the
physical PE array, and therefore the programmer must arrange the data arrays
in blocks distributed among the PEs’ memories, and then loop over the blocks
on each PE. The Connection Machines, however, supported “virtual” processors
in microcode. The programmer could define an array of processing elements
larger than the size of the physical PE array that better matched the size of the
datasets, and microcode in each PE looped over the block of data in its memory.

10.4 RECONFIGURABLE COMPUTERS FOR SIMD/ VECTOR PROCESSING

In contrast to specific physical implementations of SIMD arrays in silicon,
a large variety of data parallel machines may be mapped onto FPGA-based
reconfigurable computers. The data parallel model maps naturally to the
physical structure of FPGAs, with dedicated hardware blocks of arithmetic
units and memories tiled regularly in a two-dimensional array, as well as a
flexible interconnect. In addition, there are many degrees of freedom in an FPGA
implementation. The data parallel engine can be customized to the datasets
being processed in terms of geometry (one versus multidimensional arrays),
interconnect (linear, mesh, torus), and even PE instruction set.

224 Chapter 10 � Programming Data Parallel FPGA Applications

An early experiment in data parallel computing on FPGAs was the dbC
project [6] in which a data parallel language was compiled onto the Splash 2
reconfigurable logic array [7]. dbC was modeled on the Connection Machines’
C* language. Like C*, dbC included the mono and poly data type modifiers to
denote data on the control unit and SIMD array, respectively.

The size of the SIMD array could be specified at the language level by setting
a predefined variable to the number of PEs. The linear array thus defined was
automatically partitioned among the 16 FPGAs of the Splash system.

Instructions were broadcast to the FPGAs from the Sun workstation host,
which served as the control unit. Unlike conventional SIMD arrays, the PE
instruction set was not fixed. Rather, the compiler created a unique instru-
ction set for each dbC program, generating a behavioral VHDL module (see
Chapter 6) that was synthesized through the normal CAD tool flow. An instruc-
tion, rather than being a simple arithmetic or load/store operation, was synthe-
sized as a predicated block. This could be a simple basic block—a straight-line
sequence of code with a single entry and a single exit. If the C code contained if
statements, the compiler transformed control dependence into data dependence
[8], creating sequential predicated blocks that contained first the true branch
and then the false branch of the if. Thus, a single instruction dispatched from
the control unit to the SIMD array could result in a multi-clock-cycle block of
logic executing a predicated hyperblock.

To exploit the flexibility of FPGAs to perform arithmetic on arbitrary bit-
length operands, dbC allowed poly variables to be of user-specified bit length.
dbC extended C integer data types by permitting C bit field syntax to be used
to define the bit length of signed and unsigned integer variables. This ability
was particularly valuable on early FPGAs with limited logic and interconnect.
The arithmetic units synthesized within the SIMD PE were customized to the
precision required, and the programmer specified that precision by the choice
of data types.

In keeping with the SIMD interprocessor communication model, a runtime
hardware library was built to implement global communications instructions
such as min/max and a small set of logic operations, which were performed
bit-serially by the Splash 2 control FPGA.

The dbC language and compiler thus combined a parallel language, tradi-
tional compiler transformations, and a simple form of hardware synthesis to
generate a control program and FPGA bitstream for the Splash system.

To illustrate the dbC data parallel language and its mapping onto FPGAs,
Figure 10.4 expands on the vector multiply example in Section 10.2. Line 3
illustrates the use of bit field syntax to define a new data type, a 24-bit integer,
my_int. DBC_net_shape (line 6) is a predefined variable used to set the number
of processors and their shape. (On Splash, the shape was limited to a linear
array.) The vector multiply is divided into two sections. First there is a loop over
the blocks of vectors resident on each PE (lines 31–34). The control unit handles
the loop control and iteratively issues instructions in the loop body to the SIMD
array. The += operation on line 33 is executed by each PE and accumulates the
partial product into the poly variable res.

10.4 Reconfigurable Computers for SIMD/ Vector Processing 225

1 #define ISIZE 24
2
3 typedef poly int my int:ISIZE;
4
5 /* specify 64 processors in a linear array */
6 unsigned in DBC net shape[1] = {64};
7
8 /* Each PE can hold up to 500 elements of the vector,
9 so maximum vector size is 500*64 */

10
11 #define VEC MAX 500
12 void main() {
13
14 /* vectors A, B, res are on each PE */
15 poly my int A[VEC MAX];
16 poly my int B[VEC MAX];
17 poly my int res[VEC MAX];
18
19 /* r, c, and vec size are on the control unit */
20 mono unsigned long long int r;
21 mono int c;
22 mono int vec size;
23 int i;
24
25 /* first initialize vec size, vectors A and B, constant c */
26
27 /* next, compute vector multiply on the vector elements up to
28 the index that evenly divide the total number of PEs. */
29
30 res = 0;
31 for (i=0; i<vec size/DBC nproc; i++) {
32 A[i] = A[i] * c;
33 res += A[i] * B[i];
34 }
35
36 /* now multiply the remaining elements of the vectors */
37
38 if (DBC iproc < vec size % DBC nproc) {
39 A[i] = A[i] * c;
40 res += A[i]*B[i];
41 }
42
43 r += res;
44
45 /* continue computation */
46
47 }

FIGURE 10.4 � A vector multiply program in dbC.

The second section of code finishes the multiplication of final residue, poten-
tially on a smaller number of PEs (lines 38–41). The if statement on line 38 sets
the predicate mask bit to true in each PE whose processor number is less than
the number of remaining elements of the vectors, and to false in all the other

226 Chapter 10 � Programming Data Parallel FPGA Applications

PEs. The comparison of vec_size to DBC_nproc involves only mono variables
and so is performed on the control unit and sent to the PE array as a constant
in the instruction. Line 43 is a global accumulation of intermediate results from
each PE into the control unit variable r.

There are some unique aspects to compiling SIMD algorithms to FPGA-based
reconfigurable computers. For one, the compiler can synthesize an instruction
set customized to the application. In our example, there need be only three
instructions:

� A[i] = A[i] * c; res += A[i] * b[i];
� mask bit ← DBC iproc < vec size % DBC nproc
� r += res;

For another, the ALU can be customized to the operations used in the code. In
this example, only a 24-bit multiplier, adder, and comparator are required. If dif-
ferent precision is needed, the PE can be resynthesized. In fact, if floating-point
data types are necessary, floating-point, rather than integer arithmetic units can
be instantiated. Finally, the PE array can be easily resynthesized to hold more
or fewer PEs.

10.5 VARIATIONS OF SIMD/ VECTOR COMPUTING

The SIMD programming model is attractive in its simplicity of parallel oper-
ation. There is a single instruction stream; inter-PE communication is global
and synchronous; and the global reduction operations allow operations across
the entire PE array. However, SIMD also has some deficiencies. Often there are
cases in which some PEs perform slightly different operations than others, par-
ticularly with boundary conditions. The SIMD model requires that all PEs par-
ticipate in all alternatives. This can result in poor performance in the presence
of deeply nested if statements, as the instruction stream follows all possible
control flows. For this reason, SIMD processing is often used in conjunction
with other programming models on reconfigurable computers.

10.5.1 Multiple SIMD Engines
It is possible to map multiple SIMD engines onto an FPGA, with a controller
for each engine synthesized in the reconfigurable logic. Such a system is illus-
trated in Figure 10.5. This capability was offered by the Fabric-based System [9],
and demonstrated on a system-on-a-chip using the Altera Excalibur FPGA. In
this framework, the on-chip microprocessor controls a flexible, runtime recon-
figurable computing fabric of mesh-connected processing cells. Each cell has a
separate local data memory and a small program memory that holds DSP-like
microcode instructions. In SIMD mode, a group of cells all contain the same
program and are sequenced through it by a customized control unit that is also
in the reconfigurable logic.

10.5 Variations of SIMD/ Vector Computing 227

C

M

C

C

C C

C

C

CM

acc

+

reg

a-b b-a

C
C

on

C

C

C

C

distances

C

C C
on

m
ux

m
ux

mux

mux Exp

C

M
R

eg
M

R
eg

C

C

Send_0

Res_0

Dist_0 Dist_i Dist_N-1

Index_N-1

index

Index_iIndex_0

M

.

.

…

…

…

…

FIGURE 10.5 � An extended SIMD architecture.

The fabric illustrated in Figure 10.5 shows a multi-SIMD implementation of a
compute-intensive kernel of the K-Means clustering algorithm. In this iterative
data-mining algorithm, the dataset is partitioned into a predetermined number
of classes. Initially, elements of the dataset are randomly assigned to classes, and
a center Ci (where i ranges over the number of classes) of each class is computed.
Then, for each element Ej (j ranges over the number of data elements) and each
class Ci, the distance between Ej and Ci is computed. Ej is moved to the class
closest to it in the distance metric, and the process repeats either for a fixed
number of iterations or until there is no change from the previous iteration. In
the example, the distance metric is

∣
∣Ej −Ci

∣
∣ (i.e., the absolute value [10] is used).

This design (Figure 10.5) implements the distance calculation, in which the
distance between Ej and Ci is computed, and finds the class closest to each
element Ej. There are five cell types—send, distance calculation, two for index
calculation, and receive—each with its own control unit (labeled “C” in the
figure). The “Dist” SIMD engine controls the distance calculation PEs; the
“Index” SIMD engine, the index calculation PEs. The last index calculation has
its own controller because its interconnect is slightly different from the oth-
ers. Similarly, the send and receive cells have unique datapaths, so each has a
dedicated controller.

In the figure, the computation is parallelized across classes, with one
distance/index pair per class. A microprocessor controls the outer K-Means loop
and updates class centers by loading new values into the Send_0 cell’s local
memory. Send_0 reads from one of two memories and sends the data element

228 Chapter 10 � Programming Data Parallel FPGA Applications

out its communication channel. This allows the microprocessor to load one
memory while the fabric is computing with the other. The distance calculation
cells compute the distance between the pixel and the class centers. Their data-
path is shown in the upper right box. The index calculation cells calculate the
index of the class having the minimum distance to the pixel (the middle and
right boxes at the bottom). The receive cell (Res_0) stores the class index cor-
responding to the minimum distance. It accepts data from two channels and
writes into two memories.

Thus, an efficient parallel architecture for the K-Means clustering algorithm
combines two SIMD arrays with three additional specialized processing units
and a control microprocessor.

10.5.2 A Multi-SIMD Coarse-grained Array
In addition to FPGA-based data parallel systems, the Morphosys system [11]
was designed as a coarse-grained SIMD array. Morphosys was an 8× 8 array
of reconfigurable logic cells controlled by a small RISC processor. Each row or
column of the array operated in SIMD mode, executing the same instruction
on different data instances. The RISC processor could dynamically load con-
figurations into the array on a row/column granularity. This versatility in data
parallelism and dynamic reconfiguration made it possible to map a combination
of data parallel and control parallel algorithms onto Morphosys.

10.5.3 SPMD Model
A popular generalization of SIMD is the Single Program Multiple Data (SPMD)
model (see Single program multiple data subsection of Section 5.2.4 and [12])
in which all processes independently execute the same program and can take
different paths through it. SPMD differs from SIMD in that, rather than execute
a global, synchronized communication step, programs use send/receive message
passing to communicate with each other, and may employ other synchronization
primitives such as barrier synchronization, in which each process waits at the
barrier until all processes have reached it in their control flow.

SPMD is most common in parallel processing clusters. However, elements of
it have also been adapted to FPGA computing. For example, in the Streams-C
language, a CSP-like [13] parallel programming language for FPGAs [14], the
programmer can define a parallel processor composed of an “array of processes,”
with each having the same hardware logic and control program, operating inde-
pendently from the others, and using unidirectional channels to communicate.

10.6 PIPELINED SIMD/ VECTOR PROCESSING

Pipeline processing can often be incorporated into SIMD/vector reconfigurable
computing. This technique in essence synthesizes customized vector units that
are replicated on the FPGA. Pipelined SIMD processing is especially beneficial on

10.7 Summary 229

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10 Level 11

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10 Level 11

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10 Level 11

FIGURE 10.6 � SIMD with pipelined vector units.

FPGAs when complex arithmetic operations such as floating-point calculations
must be performed.

Figure 10.6 shows an SIMD pipelined processing system in reconfigurable
logic [15] having three PEs. Three pipelines are instantiated, with each receiving
input parameters from a local memory and returning results to another memory.
Each pipeline has 11 stages of floating-point operations, and each floating-point
operation is, in turn, pipelined, resulting in a 43-stage pipeline. This pipeline
implements the inner loop of a Monte Carlo simulation of radiative heat transfer
in a two-dimensional chamber. In this case, three single-precision floating-point
pipelines could be accommodated on a Xilinx Virtex-II Pro 100.

10.7 SUMMARY

In the SIMD/vector model, a tightly coupled ensemble of processors execute a
single instruction stream issued by a control unit. The model can be synthesized
onto an FPGA fabric. Having programmable hardware makes it possible to syn-
thesize an instruction set tailored to the specific computations in the application.
Customized data widths are naturally accommodated, as there is no fixed-width

230 Chapter 10 � Programming Data Parallel FPGA Applications

ALU. Global combining operations utilizing parallel prefix networks can also be
synthesized.

On FPGAs, the SIMD/vector model can be flexibly extended. Collections of
SIMD subunits can be assembled and interconnected. This permits portions
of the application that map naturally to the SIMD programming model to use
it while still allowing other more irregular, control flow-dominated code to be
synthesized on the same device. Pipeline processing can also be incorporated
into the SIMD/vector processor, increasing the spatial parallelism available to
the application.

Acknowledgments The contributions of Christophe Wolinski to Section 10.5
and of Jan Frigo to Section 10.6 are gratefully acknowledged.

References
[1] W. D. Hillis. The Connection Machine, MIT Press, 1989.
[2] R. M. Hord. Parallel Supercomputing in SIMD Architectures, CRC Press, 1990.
[3] M. Gokhale, B. Holmes, K. Iobst. Processing in memory: The Terasys massively

parallel PIM array. IEEE Computer 23–31, 1995.
[4] Clearspeed. http://www.clearspeed.com/.
[5] D. I. August, et al. Integrated predicated and speculative execution in the IMPACT

EPIC architecture. International Symposium on Computer Architecture, 1998.
[6] M. Gokhale, B. Schott. Data parallel C on a reconfigurable logic array. Journal of

Supercomputing 9(3), 1995.
[7] D. A. Buell, J. M. Arnold, W. J. Kleinfelder (eds.). Splash 2: FPGAs in a Custom

Computing Machine, Wiley-IEEE Computer Society Press, 1996.
[8] J. R. Allen, K. Kennedy, C. Porterfield, J. Warren. Conversion of control dependence

to data dependence. Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, 1983.

[9] C. Wolinski, M. Gokhale, K. McCabe. Polymorphous Fabric-based Systems: Model,
Tools, Applications, Elsevier Science, 2003.

[10] M. Leeser, P. Belanovic, M. Estlick, M. Gokhale, J. Szymanski, J. Theiler. Applying
reconfigurable hardware to the analysis of multispectral and hyperspectral imagery.
Proceedings SPIE 4480, 2001.

[11] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, E. M. C. Filho. Morphosys:
An integrated reconfigurable system for data-parallel and computation-intensive
applications. IEEE Transactions on Computers 49(5), 2000.

[12] T. G. Mattson, B. A. Sanders, B. Massingill. Patterns for Parallel Programming,
Addison-Wesley, 2004.

[13] C. A. R. Hoare. Communicating Sequential Processes, Prentice-Hall, 1985.
[14] M. B. Gokhale, J. M. Stone, J. Arnold, M. Kalinowski. Stream-oriented FPGA com-

puting in the Streams-C high level language. IEEE International Symposium on
FPGAs for Custom Computing Machines, April 2000.

[15] M. Gokhale, J. Frigo, C. Ahrens, J. L. Tripp, R. Minnich. Monte Carlo radiative
heat transfer simulation on a reconfigurable computer: An evaluation. Proceedings
Field-Programmable Logic and Applications (FPL), 2004.

C H A P T E R 11

OPERATING SYSTEM SUPPORT
FOR RECONFIGURABLE
COMPUTING

Katherine Compton
Department of Electrical and Computer Engineering
University of Wisconsin–Madison

André DeHon
Department of Electrical and Systems Engineering
University of Pennsylvania

As part of the evolution of the field of reconfigurable computing, researchers are
increasingly focusing their attention on the issues of integrating reconfigurable
computing into multipurpose or general-purpose compute environments. Oper-
ating systems (OSs) fill two key roles in computing: simplifying the programming
interface through an abstracted programming model and managing shared
resources [40]. Both are critical to reconfigurable computing systems, which
have in the past suffered from the stigma of programming difficulty as well as
from a general focus on single-application systems and nonscalable, nonport-
able designs.

An operating system, coupled with the proper compilation environment, can
simplify the programming of reconfigurable computing systems by providing a
well-defined, well-documented compute model that abstracts the structure and
capacity of the underlying hardware. This model may explicitly provide con-
structs for defining hardware tasks (the parts of the application implemented
in reconfigurable logic). Alternately, it may be agnostic to the implementation
medium. Like the compute fabric, the communication structures between tasks
can be abstracted by the compute model to simplify the design process.

Reconfigurable hardware in a reconfigurable computing system is explicitly
intended to be a shared resource. Even in a single-application system, hard-
ware may be shared within the application to accelerate different tasks at dif-
ferent times. In a multitasking system, different threads of computation may vie
for the hardware resources. The operating system arbitrates hardware use both
within and across applications. Furthermore, the OS also provides protection
and security to prevent a maliciously or poorly programmed application from
compromising the system. Through isolation, the operating system also provides
a safe environment where applications can be debugged and inspected without
concern that buggy code will affect system stability.

232 Chapter 11 � Operating System Support for Reconfigurable Computing

The demands on an operating system for reconfigurable computing include

� Abstraction of the capacity and composition of reconfigurable hardware
resources.

� Scheduling use of shared resources across processes.
� Methods for communication and synchronization among hardware

tasks and software.
� Protection of the tasks of one process (hardware and software) from

those of another.

This chapter discusses the above concepts in terms of both key roles of an oper-
ating system: the programmer’s view and the management of shared resources.

11.1 HISTORY

Although the concept of operating system support for reconfigurable computing
has existed since at least 1996 [6], the idea languished for a time, not quite gaining
popular momentum. A significant barrier to operating system development for
reconfigurablecomputinghasbeenthelackofastandardreconfigurablecomputing
hardware platform as a focus for commercial and academic development.

With much of reconfigurable computing research focused on specialized
scientific computers or embedded systems, researchers were willing to forgo
the abstraction/virtualization benefits provided by an operating system. Instead,
application designers (who frequently were the hardware/system designers)
would include hardware management operations in their application, explicitly
deciding when and where to load particular operations. Manual management
leveraged the designer’s understanding of the application to provide poten-
tially better performance than an OS layer, discouraging many researchers from
dedicating valuable research time to finding a more generic (but possibly less
optimized) solution. Yet these systems too would benefit from operating system
support to attract a broader group of application designers uninterested in every
hardware detail or in micromanaging its use. Even those with suitable hardware
backgrounds could then focus their efforts on application (instead of hardware)
details.

The increase in demand for operating system support is mirrored, in part,
by the increase in complexity of embedded systems and applications. Many
single-function devices of the past have evolved into multifunction devices.
Cell phones, for example, not only provide basic voice communication, but
also capture pictures and video, replay video and audio, browse the Internet,
communicate with other electronic devices, and support gaming. A device may
execute several of these applications over time, giving it a “general-purpose”
flavor within an “embedded” body. Reconfigurable hardware is attractive for
devices such as this because of its flexibility to reconfigure to accelerate a variety
of applications. The compute-intensive computations of an application execute

11.1 History 233

in hardware to operate faster, using less power (battery) than even an embedded
instruction-based processor [34,41].

Even a single-function device may require many different compute-intensive
operations. For example, a digital audio player may need to perform error check-
ing, Huffman decoding, IDCT, and other tasks. The reconfigurable hardware
that accelerates these operations may, because of cost considerations, be too
small to fit all hardware tasks simultaneously. However, an operating system
can automatically reconfigure it to implement each task in sequence, as shown
in Figure 11.1 (and discussed in Chapters 4, 5, and 9), allowing applications to
execute all hardware tasks as if they were persistent in hardware. This provides
the application programmer with a virtualized hardware view not hampered by
low-level details.

Another contributor to the growing demand for OS support for reconfig-
urable computing is the increasing difficulty of providing clock speed increases
to general-purpose processors [1]. This problem is causing researchers to
more closely investigate the potential benefit of reconfigurable computing
in general-purpose computers in order to boost performance for compute-
intensive applications, including multimedia and communications applications.
Using reconfigurable computing in a general-purpose machine requires more

Error
checking

Huffman
decode

IDCT

(a)

Error
checking

Huffman
decode IDCT

Reconfigure Reconfigure

(b)

FIGURE 11.1 � The abstraction of a large virtual hardware capacity (a) can be implemented on
more limited hardware resources using runtime reconfiguration (b).

234 Chapter 11 � Operating System Support for Reconfigurable Computing

sophisticated resource management than can be expected from individual
applications, further driving the need for OS support.

11.2 ABSTRACTED HARDWARE RESOURCES

The official Commodore Programmer’s Reference Guide for the C64 computer,
originally published in 1982, provides programmers with a great deal of infor-
mation [10]. For example, it contains a table of the memory map of the C64,
including the memory location of the BASIC ROM, the memory-mapped
screen output, other memory-mapped I/O, and available program memory loca-
tions. It even provides the pinouts of the C64’s I/O ports and a schematic of
the motherboard—as information to a programmer. Much like the preceding
evolution of abstracted programming models for mainframe computers [28],
increased complexity in personal computing systems later both enabled and
required an increase in abstraction.

Today’s programming texts do not provide explicit hardware details; instead,
for example, they instruct on the use of system calls to provide I/O. One can
write an application in a high-level language such as Java or C without knowing
even what processor it will run on or how much memory the system will have.
For some time, the average software programmer has not needed an understand-
ing of underlying hardware.1

To ease programmer burden, the OS provides an abstracted view of hardware—a
simpler virtual machine as the target for the application. In this virtual machine,
the programmer may use library or system calls that provide standardized
interfaces to interact with a wide variety of I/O, such as the screen, storage
units, and other peripherals. The virtual machine also gives the programmer
the appearance of isolation, effectively providing the illusion of dedicated use of
the computer’s resources [47]. Furthermore, specific details of system resources,
such as their quantity and speed, are abstracted. In reality, the operating system
is managing these limited physical resources both to allow sharing and to avoid
conflicts between applications, each of which was designed as if it were the
only one in the system and as if resources were unbounded.

The section that follows discusses the abstraction provided to the programmer
by the reconfigurable computing operating system.

11.2.1 Programming Model
Reconfigurable computing provides a mechanism for parallel computation. In
some cases, compute-intensive tasks in a sequential application are converted to
hardware to capture instruction- or data-level parallelism within the sequential
framework. In others, the application is designed explicitly for parallel execution

1 Embedded systems, some graphics, and other specialized programmers may still require some
knowledge of hardware to target specific customized architectures or to meet stringent perfor-
mance requirements.

11.2 Abstracted Hardware Resources 235

throughout, with many concurrent hardware (and software) tasks. Chapter 5,
Section 5.1, discusses a variety of compute models for reconfigurable computing.

The application developer, the compiler, or the runtime environment can
create multiple interchangeable implementations for a task using a separable
interface and implementation. This separation is analogous to the delineation
between interface and architecture in VHDL (Chapter 6), or the interface and
implementation in Java or C++. The operating system can use the interchange-
able implementations to bind the computation to a specific resource at runtime,
as discussed in Section 11.3. Compiled applications may be a combination
of software components and either abstracted hardware components (which
undergo the final steps of compilation/synthesis at install time or runtime) or
configuration bitstreams that represent hardware tasks.

Depending on the development environment, designers may explicitly
partition their application between hardware and software components, or
the compiler may automatically partition a high-level application description
(Chapter 26). If explicitly partitioned, the hardware components may be speci-
fied in a hardware description language (HDL) or in a high-level language with
added constructs to specify parallelism, communication, variable bit width, or
other hardware-specific features (e.g., Chapter 7).

Implicit partitioning facilitates application portability, as added language
constructs for explicit partitioning may not be available for different systems,
and hardware descriptions, while more portable than postsynthesis designs, may
still depend on specific hardware features. Automatic partitioning and synthesis
at compilation time allows an application description to be easily recompiled
for different systems (provided that tool support is available).

Because software programmers are not usually hardware designers, and auto-
matic compilation from a high-level language to hardware does not always
provide acceptable results, reusable libraries can provide a balance between
ease of specification and result quality. Developers can use library calls to per-
form compute-intensive operations without concerning themselves with how
the operation is actually implemented (hardware versus software, hardware
and software details). Libraries can contain efficient hardware implementations,
potentially at multiple area/performance tradeoff points, and, possibly, soft-
ware alternatives for a set of related operations [29, 45]. Static linking to such
a library could significantly increase application distribution size if multiple
implementation options were included to support different execution platforms
or to provide runtime binding (as discussed in Section 11.3). A dynamic-
ally linked library (DLL) could ameliorate this problem if it were reused by
other applications.

A final approach is to use description languages designed to be agnostic to
the eventual implementation in hardware, software, or a mix of the two [13, 22].
Much of the automatic partitioning work focuses on high-level languages
normally used in software programming, which were created for inherently
sequential compute structures (instruction-based processors). Depending on the
hardware design, a reconfigurable computing platform has the potential to pro-
vide much more parallelism at a variety of levels difficult to describe using

236 Chapter 11 � Operating System Support for Reconfigurable Computing

a software-centric approach. (These concepts are discussed in more detail in
Chapter 5.)

Within an application, the programmer or compiler instantiates a hardware
task as a virtual resource and later applies it to the suitable input data. When the
operating system scheduler (Section 11.4) decides to allocate hardware to the task,
it loads that task onto hardware. For best performance, a single hardware task
can (and should) execute repeatedly on successive input data. Depending on the
extent of runtime support, the operating system could instantiate multiple copies
of the task to increase captured parallelism or time-multiplex multiple tasks if
hardware resources are limited, as discussed in Section 11.3. This detail should
be abstracted from the user, however, as the amount of resources available for the
task can be based on runtime system state, which is likely unknown at design time.
One approach (discussed in Chapter 9) is to design the application for maximum
possible parallelism, with the operating system automatically time-multiplexing
the different tasks if insufficient resources are available for the full application
simultaneously [13].

11.3 FLEXIBLE BINDING

Because reconfigurable computing systems are inherently flexible, they allow the
operating system greater freedom in managing shared resources. The operat-
ing system can perform flexible binding of tasks to different types of resources
(hardware/software) and, for those bound to hardware, can perform a run-
time tradeoff between resource use and performance. Flexible binding allows
a single application to be implemented using different resources on different
computing platforms, or even on the same platform at different times. Install-
time binding decisions are based on the physical characteristics of the system
(e.g., the number of programmable resources or memories). Runtime binding,
on the other hand, uses information about the physical characteristics along with
the current system state (e.g., number of running tasks) to make implementation
decisions.

11.3.1 Install Time Binding
Install time binding involves the compilation of applications to a generic
representation analogous to an intermediate representation in software com-
pilation. Final synthesis of the generic representation occurs at install time
based on the specific resource types available on the system. Install time bind-
ing is therefore important to the prevailing economic model of computer pur-
chasing: Spending more money does not (generally) allow one to run different
applications but rather the same applications better. Likewise, reconfigurable
computing machines should be available at multiple price points, with the
capacity/performance/power efficiency of their resources increasing in relation
to cost.

11.3 Flexible Binding 237

Applications running on a more expensive, more powerful machine should
perform better than those running on a base machine—but they should still run on
that base machine. In keeping with this economic discussion, if the reconfigurable
hardware in a computer is upgraded, the applications may require reinstallation
to leverage the new resources. Depending on the level of abstraction of the specifi-
cation, this may require CAD processing, which should be performed quickly (and
potentially in the background when the system is idle) to avoid system slowdown,
as discussed in Section 11.3.3 and Chapter 20. An alternate form of install time
binding is dynamic linking to precompiled libraries of hardware (and software)
task implementations [29]. Libraries can be compiled for different platforms and
distributed with the OS as part of the hardware drivers.

11.3.2 Runtime Binding
Runtime binding is based on both physical characteristics and current system
state, and may be performed as part of the scheduling process (Section 11.4).
It modifies a task’s implementation based on the resources allocated to it dur-
ing scheduling. The most simple form of runtime binding supports relocation
of hardware tasks to different regions of the hardware resources. Relocation
(discussed in more detail in Chapter 4) facilitates concurrent residency and/or
operation of multiple hardware tasks. It also affects task communication, discus-
sed in Section 11.5.

Another form of runtime binding allows a given task to execute in either
hardware or software depending on scheduling decisions [14, 29, 31], discussed in
Section 11.4.3. Systems that permit dynamic binding can avoid stalling for hard-
ware availability by proceeding with a software alternative for the task. Dynamic
hardware/software binding at runtime requires either a task executable capable
of running on hardware or software (e.g., [22]) or a pair of interchangeable hard-
ware and software implementations [13, 14, 29]. To facilitate application design
and debug, the two components should have identical functional behavior.

Runtime binding can allow hardware tasks to expand or contract to make use
of the resources allocated to them by the scheduler, as discussed in Section 11.4.
This ability allows tasks to be implemented on a variety of architectures, from
low capacity to high capacity, to promote portability. Hardware tasks can also
be modified based on system load, occupying fewer resources in a system under
heavy load and more in a system under light load, as shown in Figure 11.2.
In (a), task A is using fewer resources because of increased demand by other
tasks. In (b), task A rebounds to more resources after task B is no longer needed.
Task A’s data rate is improved in (b) by the increased parallelism.

A task can occupy fewer resources by time-multiplexing its functionality, or
more resources by unrolling or replicating [13]. Time-multiplexing a task requires
storage to hold intermediate results between the temporal partitions. Performing
time-multiplexing or expansion at runtime can be quite expensive, potentially
involving a modified CAD flow, as discussed next in Section 11.3.3. Alternately,
implementations at multiple area–performance (or power) tradeoffs can be created
at compilation time, eliminating transformation overhead at runtime [14, 29].

238 Chapter 11 � Operating System Support for Reconfigurable Computing

Task A Task C

Task A

Task B

Task C

(a) (b)

FIGURE 11.2 � Flexible binding allows tasks to use a different number of resources based on
hardware capacity and resource availability. In this example, Task A can either occupy less area
at the expense of performance (a), or achieve a higher data rate at the expense of area (b).

Although a specific palette of implementations reduces OS complexity, it also
limits the possibilities of customizing the hardware task to the exact hardware
resources available.

11.3.3 Fast CAD for Flexible Binding
Modifying a hardware task after application distribution may require that one
or more CAD operations, such as placement, be applied at install time or run-
time [13, 39, 43, 44] (e.g., Section 9.4). Unfortunately, CAD algorithms, depend-
ing on the problem size, can be quite slow. Chapter 20 discusses a number of fast
CAD approaches for hardware task implementation motivated in part by flexi-
ble binding. Some possible solutions to accelerating install time or runtime CAD
processes include

� Trading solution quality for speed in the CAD process (less optimized
solutions).

� Accelerating CAD algorithms in hardware (i.e., implementing CAD
hardware tasks on the target reconfigurable computing system).

� Abstracting some of the hardware detail to simplify the problem (applying
algorithms to larger blocks of structures, where intragroup CAD decisions
are fixed at compile time, and only intergroup CAD decisions are required
at install time or runtime, as discussed in Chapter 4 and Section 9.2.4).

� Using a compile time CAD process to generate static information about
the hardware task that can be used to accelerate later CAD operations
(marking areas of the circuit for replication or time-multiplexing).

11.4 Scheduling 239

11.4 SCHEDULING

Scheduling determines what tasks should use hardware when, and may also decide
how many resources (and what type) to allocate to each. These decisions may be
made at compile time based on static application information, at runtime based
on dynamic system status, or at a combination of the two. The scheduling goals
may include maximizing application or system performance, minimizing power
consumption, or meeting real-time deadlines. Achieving these goals also requires
minimizing the reconfiguration overhead, as discussed in Chapter 4.

Schedulers that include resource allocation also perform flexible binding
(Section 11.3), choosing specific resources to implement a given task and poten-
tially altering that task to fit the resources. Flexible binding complicates the sched-
uler’s decision process by expanding the search space. However, expanding the
search space with flexible binding also opens the door to scheduling solutions
that would otherwise not be possible.

11.4.1 On-demand Scheduling
One of the simplest forms of runtime scheduling is servicing hardware resource
requests in the order received, reconfiguring as needed, and queuing requests that
cannot yet be serviced [6]. When an application calls a hardware task, its request is
sent to the operating system. If the task is preconfigured on hardware, it executes;
otherwise, it must be loaded into hardware (configured) prior to execution. If
all hardware resources are allocated and in use, the system will queue waiting
requests until the resources are freed.

Hardware requests are generally blocking, forcing the requestor to busy-wait
until the hardware is available. Then the task is configured and finally executes.
Busy-waiting can contribute significantly to reconfigurable computing overhead,
as discussed in Chapter 4, but the system (with an appropriate compute model) can
use a sleep/wake approach instead of busy-waiting to allow nonblocking threads
or processes to use the compute resources in the meantime, hiding some of the
configuration latency. Furthermore, runtime binding, discussed in Section 11.3,
allows threads or processes that might otherwise be blocked waiting for hardware
availability to execute in software instead.

11.4.2 Static Scheduling
Static scheduling relies on analyzed, profiled, or annotated application behav-
ior to determine when an application should request that each hardware task
be configured [23, 26, 27]. Static schedulers operate “offline” and thus have
a more global view of the task requirements and are able to search a greater
expanse of the solution space than a dynamic (online) scheduler. Brute-force or
Monte Carlo approaches may therefore be feasible for static schedulers even if
prohibitively slow for dynamic scheduling. A static scheduler can also attempt to
load hardware tasks prior to their execution to minimize configuration overhead
(a technique known as prefetching [24]).

240 Chapter 11 � Operating System Support for Reconfigurable Computing

For static scheduling to be profitable, however, both the application task
set and resource availability must be highly predictable. An offline schedule
does not have access to runtime information and therefore cannot adapt to the
current system load. This can prevent the static schedule from computing a good
coschedule of multiple independent tasks. Further, if the static schedule is wrong
about which tasks must run next, prefetching can actually be detrimental to
performance, forcing needed configurations to be evicted and performing extra,
unnecessary reconfigurations.

11.4.3 Dynamic Scheduling
Dynamic schedulers use runtime information to aid scheduling. Data-dependent
application behavior, system load, and the characteristics of other executing appli-
cations can therefore all contribute to (and complicate) schedule computation.
Although single-application behavior may be statically predictable in some cases,
the interferences arising from multiple simultaneously executing applications lead
to an explicitly nondeterministic interleaving of hardware task calls from different
applications.

As a simplification, some schedulers use a window-based approach, dividing
time into windows and solving the scheduling problem for each [14, 27, 31].
Figure 11.3 illustrates the timing of window-based scheduling. Once the scheduler
determines which tasks should be implemented in hardware, the hardware must be
reconfigured to implement them. After reconfiguration, the hardware can execute
until the next reconfiguration phase in the following window. To minimize the
impact of scheduling overhead, the window should be “large” compared to the
time required to compute the schedule and perform reconfiguration. However, it
should also be small enough to capture current system behavior for use in the
scheduling decision. Statistics from the previous interval (or multiple previous
intervals) provide recent behavior information to the scheduler.

A “frontier” dynamic scheduler [27] uses application dataflow and task execu-
tion information from the previous interval (such as which tasks executed and
at what data rate) to compute the new schedule for the next interval. Input data
availability and allocatable output space information are requirements for task
scheduling and are used to compute the relative priority of tasks. The scheduler
can use resource availability and information on data rate (of the considered task

ecution HW ex

Time

HW execution

Reconfiguration

Scheduling

Reconfiguration

Scheduling

Window

HW execution

FIGURE 11.3 � A dynamic scheduler can divide time into a series of windows, each with
its own scheduling problem.

11.4 Scheduling 241

and ones it communicates with) to choose a flexible binding implementation. This
approach matches a streaming communication approach (Chapter 9), where good
scheduling is necessary to minimize the buffering requirements between tasks.
Flexible binding allows the frontier scheduler to time-multiplex or replicate tasks
to balance the data rate between one task and those adjacent [27].

Runtime information, such as the frequency of task use in the prior inter-
val and task performance information, also can be used without considering
the dataflow of the executing applications. In each window, hardware resources
can be treated as a knapsack, which the scheduler tries to pack with the great-
est overall value [14]. Each task is assigned a “value” based on performance or
power consumption and a “cost” based on hardware area requirements. Tasks
not scheduled to hardware execute with lower performance in software to avoid
starving less valued tasks. By including multiple implementations of a task with
different values/costs, the scheduler can also use dynamic binding to adapt task
implementations based on resource availability/demand [14, 27]. The knapsack
problem can be solved either heuristically or, if the problem size is small enough,
exactly.

11.4.4 Quasi-static Scheduling
A purely dynamic scheduler only considers information available at runtime and
loses the opportunity to optimize based on known application characteristics.
In contrast, quasi-static scheduling combines dynamic system and application
information with static application analysis. Using dynamic management with
static analysis enables the scheduler to more accurately predict near-future hard-
ware task needs (and, just as important, which tasks will not be needed) [24, 27].
Quasi-static scheduling also accelerates the scheduling process by reducing the
dynamic scheduler’s burden.

For example, static analysis can provide the ordering of tasks within an applica-
tion, timing estimates for when the tasks will be executed relative to one another,
data rate analysis of different possible time-multiplexing/replications of the tasks,
and intertask communication resource requirements. The runtime scheduler can
then use dynamic scheduling techniques, but prune the solution space based
on static analysis information to arrive at an improved solution more quickly.
Dynamic scheduling can also allow otherwise statically scheduled applications to
reuse hardware tasks configured for other applications to reduce configuration
costs [35].

11.4.5 Real-time Scheduling
Scheduling for real-time systems considers task deadlines rather than general
performance. Hard deadlines must be met within the specified time or the sys-
tem has failed. An example of a hard deadline would be triggering operation of
strictly timed automotive engine components. Soft deadlines must be generally
met for acceptable use, but missing one or even a few is not mission-critical. An
example of missing a soft deadline would be dropping a frame in real-time video.

242 Chapter 11 � Operating System Support for Reconfigurable Computing

Missing a soft deadline may not invalidate the computation, but it may degrade the
application in some way. This type of operation is common in embedded systems.
Indeed, real-time systems and their operating systems are the focus of much
research [20,23].

One approach to implementing reconfigurable real-time systems is to leverage
the vast real-time research effort by wrapping hardware tasks with a thread inter-
face [4]. Such a system includes a generic hardware-based scheduler for both hard-
ware and software threads using whatever scheduling algorithm is implemented
within it. Synchronization details of this approach are presented in Section 11.6.1.

Alternately, the scheduling algorithm can be tailored specifically to reconfig-
urable computing, using information about hardware capacity, task hardware
requirements, and task configuration time in addition to deadline information
[39, 43]. For example, tasks that can fit in a currently available area are more
likely to be guaranteed to meet a deadline than are those that require recon-
figuration due to reconfiguration overhead. If sufficient resources are free, but
are distributed throughout the hardware, defragmentation may be required (see
Chapter 4) to consolidate sufficient free space for the incoming task.

The time required for this process affects the ability of the system to
meet the task’s deadline. If free space is not available even with defragmentation,
the task may be rejected or its deadline not guaranteed. The task could meet
the deadline if one or more other tasks executing on hardware complete with
enough time left to permit configuration and execution of the new task before
its deadline expires. Alternately, a task implemented in hardware may be pre-
empted (see next section) in favor of an incoming task if the latter has higher
priority [43].

11.4.6 Preemption
A scheduler may use preemption to reallocate hardware to a “more desirable”
task, whether based on meeting specific deadlines in a real-time system, based
on the relative priority of different tasks in a performance-based system, or to
allow a more balanced use of hardware in the presence of long-executing tasks
[2, 18, 31, 43]. The configuration data for a given task holds some of the required
information, such as circuit structure, and possibly initial values for embedded
memories. However, any values in state-holding elements that change in response
to hardware operation are not included. Therefore, the complete “saved state” for
preempting a hardware task is a combination of its configuration data and the
current values of any state-holding elements modified during execution. Provided
a hardware interface to this information is available, the operating system can
read the current state to store in memory and later load it back into hardware
when needed.

Preemption is complicated by flexible binding if the implementation saved does
not match the implementation resumed. The sizes of configuration data and the
number of state-holding elements may not match between different implementa-
tions. Therefore, systems supporting flexible binding and preemption must save
an abstracted view of task state.

11.5 Communication 243

11.5 COMMUNICATION

A key feature of communication abstractions is that they are, in fact, abstractions.
Although certain abstractions may map well to specific hardware architectures
(and vice versa), the use of one in particular does not necessarily require a partic-
ular hardware structure (or vice versa). For example, a message-passing abstrac-
tion could be implemented on a shared memory architecture, or a shared memory
abstraction could be implemented on top of a message-passing architecture.
Library calls and the compilation environment map communication abstractions
to the actual implementation, and the operating system manages the implemen-
tation. The abstractions, however, allow the programmer to ignore implementa-
tion details and focus on efficient specification. The following subsections discuss
a number of abstractions and their operating system requirements, along with
other communication issues requiring operating system intervention.

11.5.1 Communication Styles
When our applications are composed from multiple, concurrent tasks (e.g.,
threads, hardware tasks, software tasks, operators), the tasks must often exchange
intermediate data in order to solve the entire problem. Specifying this com-
munication can be highly error prone and performance critical. The form in
which the communication is specified should match both the natural compute
model (see Section 5.1) for the application and the nature of the communication
required.

Shared memory
Shared memory is an implicit form of communication motivated by certain
implementations where tasks share a common memory pool (Single memory
pool subsection of Section 5.1.4) and address space, or share a mapped portion
of an address space (Section 11.5.2). Here, the semantics are that each task sees
the same image of memory. If one task writes to the image, another should be
able to see the values written to the memory. In this way, the memory addresses
serve as named locations through which values can be exchanged among tasks.

Uniprocessor operating system developers see shared memory as a particularly
efficient way of communicating between tasks. In multithreaded environments
where tasks are interleaved in time on the same processor, shared memory seg-
ments within the single memory hierarchy allow multiple tasks to share data with-
out an explicit need for data to be copied between the routines. This can minimize
the overhead for data communication between tasks. Without caches, shared bus
multiprocessing systems with a common main memory would exhibit a similar
efficiency. Local caches potentially complicate the picture. However, good archi-
tecture and engineering can maintain this abstraction efficiently in the common
case, at the cost of additional hardware to support cache coherence.

A reconfigurable computing architecture may nevertheless more closely mirror,
at the chip or board level, the organization of a large, distributed memory system.

244 Chapter 11 � Operating System Support for Reconfigurable Computing

Here, data may actually need to be copied between distant memories, complicat-
ing the shared memory abstraction. The result is both significant hardware over-
head to support the model and, often, significant communication time overhead
beyond what would be required to move the data between the producer and the
consumer. Furthermore, synchronization between shared memory threads/tasks
(Section 11.6.1) is a common source of application errors, leading some to question
the viability of this model for capturing larger-scale parallelism [21, 36].

Method calls
As the previous section suggested, word-level shared memory is a very low-level
form of implicit communication that is prone to synchronization issues. Imple-
menting the abstraction can increase hardware requirements in architectures
containing distributed memories. In modern object-oriented systems, particularly
when each object may itself be an independent thread, a higher-level communica-
tion technique is method calls between objects or operators (see Section 5.1.2).
The method call on the object explicitly states the intended destination for the
data; further, the object method provides additional semantic information to the
receiver about what the data means. As long as object methods are serialized on
each object, method invocation can be atomic, providing a natural mechanism
for consistent updates to object state. In some cases, method calls can eliminate
the need for a hardware task to communicate directly with memory, allowing
many lightweight, reconfigurable operators to avoid the expense of a memory
interface unit.

When the destination object is running on hardware that is physically distinct
from the sending object, the method invocation, and the communication in gen-
eral, requires data to be routed from the sending to the receiving hardware. This
is true even in a shared memory implementation—the method call style simply
makes this communication explicit. However, when the objects share the same
physical memory, method call communication can still occur through shared
memory.

Message passing (discussed in the Message passing subsection of Section 5.2.6)
is a form of method call communication, as is remote procedure call [30]. MPI [38]
is a well-developed standard for message passing, and reconfigurable computers
have been built to interface with standard MPI communications [32]. However,
MPI itself is fairly heavyweight, and its overhead may be too high for finer-
grained composition of tasks and operators. Lighter-weight message passing
designed for on-chip reconfigurable applications has been developed [31], as
have remote procedure call interfaces for symmetric use between processors and
reconfigurable logic [8].

Streams
While method invocation is an explicit communication mechanism, it is still
dynamic and does not provide the OS with advanced warning about which
tasks will communicate and when. Further, the actual graph of communica-
tion remains implicit in the object call structure. A more explicit form of

11.5 Communication 245

communication is to represent the graph structure for task communications
and share that information with the operating system. This is similar to the
use of pipes or streams in conventional software multi-threading to represent
persistent communication links between communicating threads. The reconfig-
urable computing dataflow models in Section 5.1.3, and the streaming dataflow
programming approaches in Chapters 8 and 9 provide some ways to capture
these communication graphs. Data-centric compute models (Section 5.1.6) do so
as well.

Streams (pipes, channels) are persistent, unidirectional links between tasks
(software or hardware) that pass data or control information. Tasks receive
available data from one or more input streams and write the results of their
computation to one or more output streams [9, 13]. A stream may buffer data
in a FIFO manner between the producer and consumer to allow them to run
independently of each other and minimize the effects of both reconfiguration
and communication latency. Figure 11.4 is an example that shows abstract use of
streams (a) and its implementation on a streaming architecture (b). Sections 5.1.3
and 5.2.1 and Chapter 9 present in-depth discussions of streaming models and
architectures.

Because the structure of communication (producer–consumer) is explicit, the
operating system is able to more easily make intelligent decisions about where
to place tasks to promote physical locality, and the scheduler is able to better
choose when to run them. For example, if a stream between a producer and
consumer is empty or near empty, the scheduler knows that it is more profitable
to run the producer than the consumer. A very full stream would imply the
opposite.

The persistence of abstract streams allows us to separate the part of com-
munication that specifies the location (source/destination) of data from the part

A

C

B

D

A B

C D
FIFO FIFO

FIFO

FIFO

Task
Task

Stream

FIFO

FIFO

FIFO

FIFO

FIFO

FIFOFIFO

FIFO

F
I
F
O

F
I
F
O

F
I
F
O

F
I
F
O

(a) (b)

Stream

FIGURE 11.4 � A stream abstraction defines application dataflow (a); a streaming architecture
can implement the streams between tasks using FIFOs (b).

246 Chapter 11 � Operating System Support for Reconfigurable Computing

that provides or uses it. For regular communications, this brings the destination
specification out of the inner loop of communication, reducing communication
overhead. For spatial, reconfigurable datapaths, it allows a stronger correla-
tion between the abstraction and implementation of communication between
currently-executing hardware tasks, reducing overhead. The stream can be imple-
mented with simple wires, or a FIFO, between the producer and consumer.
Nonetheless, although specifying, allocating, and setting up the stream can be
expensive, for heavily used, persistent communications, the long use over time
amortizes the cost of stream setup. Short communication sequences or commu-
nications to short-lived tasks may not be able to amortize this cost and may be
better served with a different communication scheme.

Stream abstraction can be implemented efficiently on a variety of physical
communication structures. It can be supported efficiently on a shared memory
system with the use of a well-designed and well-tested queue object library that
encapsulates the explicit synchronization necessary to implement the stream.
Encapsulation is a huge benefit in that it allows one highly trained system
programmer to work out a robust locking discipline that can then be used by
other programmers with less (or no) experience with synchronization primitives.
Stream data can be packed into efficient, longer messages on packet-switched,
message-passing systems, or it can be supported by concurrent direct memory
access (DMA) data transfers. A message-passing implementation of a stream
abstraction can also be extended across the Internet using TCP/IP connections.
As noted earlier in this section and elaborated in Chapter 9, when the source and
the sink are coresident, the stream can reduce to a direct, configured connec-
tion between tasks, requiring minimum hardware and latency overhead during
operation.

11.5.2 Virtual Memory
Software applications for general-purpose systems use a virtual memory abs-
traction, enabled by a combination of hardware and software, to simplify the
programming model and to provide isolation (protection) from other processes.
Reconfigurable computing systems require this abstraction for the same reasons.

To avoid the complexities of virtual address translation in reconfigurable hard-
ware, the reconfigurable computing system designer may place the burden of
memory communication on host processor resources, which already support vir-
tual memory. When the reconfigurable unit is tightly coupled with a processor, it
can explicitly share the processor’s memory management unit (MMU) [18]. Alter-
nately, the processor can perform memory accesses for a hardware task, feeding
data to the task through a dedicated buffer structure [15]. The drawback of using
the processor in this fashion is a lack of efficiency. The processor is consigned to
acting as an overqualified memory controller, which reduces its availability for
parallel computation.

To leverage the processor’s address translation capability (including translation
lookaside buffer [TLB] miss processing and page fault handling) and at the same
time remove the processor from the inner memory access loop, a DMA-style

11.5 Communication 247

approach can be used. The processor provides hardware with translated physical
addresses for the needed virtual addresses. User hardware should not, however,
be able to issue these accesses directly, as it could potentially issue memory
requests to other physical addresses outside the task’s virtual memory space. An
architectural solution to this problem is to add one or more hardware memory
address generators that are guaranteed to abide by the virtual memory abstraction.
The address generator may require the processor to translate all addresses, or it
potentially can combine offsets from the hardware task with a translated page or
segment base address to further reduce processor involvement.

Finally, a dedicated hardware MMU can directly translate virtual addresses to
physical ones [16, 42]. It maintains its own copy of the TLB for address lookups.
TLB misses can be handled either by the hardware MMU itself or by interrupting
a processor to walk the page table. In this arrangement, page faults are handled
by the operating system, which updates the hardware MMU’s TLB based on the
result.

11.5.3 I/O
Finally, in addition to communicating with other tasks, a hardware task may need
to communicate with system I/O. Libraries abstract the hardware interfaces for
the programmer [11] (as discussed in Chapter 8). However, I/O standards are con-
tinually evolving and can do so during the lifetime of a given application. The oper-
ating system, through I/O device drivers, can support changing I/O standards by
providing these libraries in dynamically linked form so that they can be updated
and expanded without requiring any changes to the applications in order to
use them.

11.5.4 Uncertain Communication Latency
Communication between tasks (and memory) is subject to uncertain latencies
for a number of reasons. One common example in many traditional computing
systems is the uncertain latency of memory access due to location in the memory
hierarchy and memory contention. Reconfigurable computing systems share this
problem. However, those that support flexible binding (Section 11.3) are subject
to additional sources of uncertainty, as different implementations of a given task
have different data rates. Even given the same implementation of a hardware task,
its location on hardware can affect the latency of communication between it and
other tasks. Depending on the physical implementation of the routing network
between physical task locations, some locations may be “closer” than others.

Although this could create variable clock rates depending on task loca-
tions, the problem is easily addressed using pipelined interconnect and data
presence (discussed in the Data presence subsection of Section 5.2.1 and
in Chapter 9). The same set of data presence techniques also support flexible
binding where a task implemented in hardware can have a much higher data rate
than one implemented in software.

248 Chapter 11 � Operating System Support for Reconfigurable Computing

11.6 SYNCHRONIZATION

Reconfigurable computing applications are generally concurrent, executing one or
more hardware tasks in parallel along with one or more software tasks. Therefore,
they require synchronization between tasks. A number of factors complicate syn-
chronization in reconfigurable computing. First, reconfigurable computing appli-
cations can leverage a variety of parallelism types (instruction-level, data-level,
task-level, pipeline-level) to a greater degree than software-only applications can,
as discussed in Chapter 5. More parallelism exacerbates the already difficult pro-
cess of concurrent programming [33]. Furthermore, runtime binding and place-
ment can affect communication source/destination locations and task data rate
even after program specification and compilation. Given this degree of parallelism
and uncertainty, effective synchronization techniques are critical to reconfigurable
computing application design and performance.

These effects are mitigated to some extent by the fact that reconfigurable com-
putations and data often use distinct resources with less potential sharing; this
can often clarify the synchronization required and permits more coarse-grained
resource locking. Depending on the abstraction employed, synchronization may
be controlled explicitly by the programmer or implicitly by the operating system
or underlying hardware.

11.6.1 Explicit Synchronization
Synchronization between tasks can be performed explicitly through abstractions
similar or identical to those used in software-only multi-threaded programming.
This approach is particularly appealing in embedded systems, where application
designers may have used a shared memory multi-threaded model more widely than
the average general-purpose computer programmer would have. As in software-
only shared memory applications, constructs such as locks and semaphores can
protect access to shared resources to avoid race conditions.

We can impose thread-style interfaces on hardware tasks [4, 7, 42]. The thread
interface requests/releases a semaphore and forces hardware to stall or sleep
while waiting to acquire one. Memory structures within the hardware must be
augmented with a table to hold semaphore information. This has the advantage
of hiding details of the hardware task implementation from the communicating
thread but at the cost of logic overhead to interface hardware with the shared
memory pool that holds the synchronization address.

11.6.2 Implicit Synchronization
Low-level, thread-style synchronization, already prone to design error and debug
difficulty, is likely to become even more difficult to implement correctly as
the degree of parallelism required to achieve demanded performance increases
[21, 36]. Instead, designers could turn to abstractions that provide more explicit
parallelism with implicit synchronization.

To efficiently use our reconfigurable resources, we typically provide them
with large blocks of data at a time contained in contiguous memory addresses

11.7 Protection 249

(e.g., an image frame). Thus, it is natural to give exclusive ownership of a memory
block to a hardware task during its execution. By combining this locking with
the instantiation semantics for the operation, we can automate locking to prevent
the programmer from having to manage it explicitly. This can even be supported
by hardware using a scoreboarding technique similar to the ones used to prevent
hazards in aggressive processor pipelines [19].

Synchronization is implicit in all forms of dataflow (Chapter 5, Section 5.1.3).
The semantics of its operation are based on data arrival, not sequential timing,
which makes proper synchronization the job of the compiler, the hardware, and
the runtime system rather than the programmer. In streaming dataflow, stream
data comes with data presence information (see Section 11.5.1 and Chapter 9). In
general dataflow, I-structures allow fine-grained synchronization and concurrent
cooperation on common data structures [5].

11.6.3 Deadlock Prevention
Whether synchronization is implicit or explicit, the need for it in a concurrent
application presents the unfortunate opportunity for deadlock. Essentially, one or
more tasks in the application may not be able to continue because they are waiting
on other tasks. When the waiting set forms a cycle, the system will never be able
to make forward progress. However, because deadlock can arise only when a task
needs exclusive access to multiple resources simultaneously, many hardware tasks
will work on a single, coarse-grained set of data at a time, avoiding this issue.
Nonetheless, it is common for a hardware task to need multiple resources (e.g.,
one or more input buffers and an output buffer).

A common method to prevent deadlock is to force tasks to acquire all of their
resources in a canonically ordered sequence. This way we avoid deadlock by never
creating a cyclic dependence that could lead to it. With implicit and higher-level
locking, runtime support mechanisms can provide the ordering guarantee. This
demands that we establish a canonical ordering for all resources that might be
locked, both in hardware and in memory locations, and use it uniformly through-
out the system.

11.7 PROTECTION

Modern computing systems all share a need for protection from processes
(intentionally or unintentionally) interfering with one another. This protec-
tion is critical for dealing with not only maliciously coded applications but
also poorly programmed ones. During the application development process,
isolation is critical because it allows designers to test and inspect their
implementations. Development is significantly more complicated if bugs can
bring down the development system, destroying state information critical to
the debugging process. The same need for protection holds for reconfig-
urable computing systems. The operating system must prevent processes from

250 Chapter 11 � Operating System Support for Reconfigurable Computing

using hardware inappropriately or from interfering with or intercepting
communication between tasks (hardware or software) of other processes. Some
of these responsibilities fall to the scheduler—preventing task resource starva-
tion is one example; others fall to the hardware allocator (which may be part of
the scheduler); still others fall to the system’s hardware interface.

11.7.1 Hardware Protection
Implementing user tasks as hardware circuits in the reconfigurable fabric
introduces a major security flaw unfathomable to the average software user or
developer. Depending on the underlying hardware design, a hardware task can
cause a short circuit, permanently damaging the computing system. Therefore,
either the hardware structure itself must prevent the possibility of short circuits
[3, 46] or the operating system must screen user hardware and prohibit any
implementations that cannot be proven to be free of short circuits.

Even if an individual task does not cause a short circuit, incorrectly allocating
hardware resources to more than one task can create one. That is why the allocation
process must physically separate tasks [44]. Figure 11.5 shows a generic FPGA
architecture with resources allocated to two different tasks (separated by the heavy
dashed line). Wires shown in bold cross the boundaries between tasks, causing
potential conflicts. Resources that cross task boundaries can be allocated to no
more than one task unless they are part of intertask communication (discussed in
the next section). This restriction also prevents maliciously designed tasks from
“snooping” communication paths to which they should not have access (also
discussed in the next section).

General FPGA structures complicate the task interference problem by having
large numbers of extremely flexible routing structures that may span large dis-
tances in the hardware. In contrast, some architectures designed specifically for

CLB CLB

CLB CLB

CLB

CLB

CLB

CLB

FIGURE 11.5 � A generic FPGA architecture may have resources (bold lines) that cross the
boundary (dashed line) between two hardware tasks.

11.7 Protection 251

reconfigurable computing, such as SCORE (Chapter 9 and [13]) and PipeRench
(Chapter 2, Section 2.1.2, and [17]), are composed of sets of reconfigurable logic
(pages/blocks/stages) that are more self-contained, and are the atomic hardware
unit for task allocation. Restricted, well-structured connections between these
blocks simplify the problem of preventing cross-task interference.

11.7.2 Intertask Communication
As discussed in Section 11.5.2, virtual memory provides each process with a
separate address space, preventing one process from accessing the memory space
of another. For the same reason, we must provide similar isolation for other forms
of communication.

Point-to-point communication, too, can provide isolation if we can guaran-
tee that tasks can only access communication paths owned by their process.
The programming model may support this view, but simply trusting it would be
equivalent to trusting that compilers will not allow hackers to create viruses. The
system (hardware and operating system) must ensure that the isolation model
is enforced.

To provide isolation, the system could allow only indirect intertask com-
munication through shared virtual memory [15, 16]. However, this approach
can introduce significant communication latencies if both tasks are present
in hardware close to one another, but communicate through a relatively dis-
tant memory hierarchy acting as intermediary. Safe direct on-hardware inter-
task communication can be implemented by treating intertask communication
routing as special resources that cannot be self-allocated by a hardware task
description. Instead, the operating system must allocate these resources when
configuring the related tasks onto hardware [13]. By removing user control over
allocation of these resources, the isolation the programming model provides is
implemented by the operating system. This is much like how only the OS is
allowed to manipulate the page tables and TLBs that support the virtual memory
abstraction.

11.7.3 Task Configuration Protection
The loading of tasks into hardware must be restricted to the operating system to
ensure that the OS has an accurate view of hardware for scheduling/allocation
decisions and to enforce hardware and communication protection as discussed
previously. Hardware communication paths must therefore be accessible only to
OS kernel-level processes. An operating system can isolate task addressability
by employing a model akin to virtual memory, where each process can address
its own tasks only. Any tables of task information used by the operating system
in this case include the process ID as part of the task ID. Any requests for task
access are within the user task ID space. Isolation not only prevents processes
from triggering the execution, reconfiguring, removing, or altering of tasks from
another process, but it also reinforces the abstraction that processes have the
hardware to themselves.

252 Chapter 11 � Operating System Support for Reconfigurable Computing

11.8 SUMMARY

The primary role of the operating system is to provide abstraction. Abstraction
benefits the application designer in the following ways:

� By simplifying the design process to remove the burden of low-level details.
� By allowing the application to run on various hardware platforms and

capacities.
� By implementing a virtual machine for each application to prevent

interference between them.

This chapter presented the needs, opportunities, benefits, and techniques sur-
rounding the abstraction of reconfigurable resources. It also showed how abstrac-
tion affects the application specification process, and discussed the issues involved
in implementing these abstractions in the operating system and architecture of
the reconfigurable computing system.

References
[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, D. Buger. Clock rate versus IPC: The

end of the road for conventional microarchitectures. International Conference on
Computer Architecture, 2000.

[2] A. Ahmadinia, C. Bobda, D. Koch, M. Majer, J. Teich. Task scheduling for hetero-
geneous reconfigurable computers. Symposium on Integrated Circuits and System
Design, 2004.

[3] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider, L. Albertson. Plasma: An
FPGA for million gate systems. ACM International Symposium on Field-Programmable
Gate Arrays, 1996.

[4] D. Andrews, D. Niehaus, R. Jidin. Implementing the thread programming model
on hybrid FPGA/CPU computational components. Workshop on Embedded Processor
Architectures, International Symposium on Computer Architecture, 2004.

[5] Arvind, R. S. Nikhil, K. Pingali. I-Structures: Data structures for parallel computing.
Proceedings of the Workshop on Graph Reduction, 1986.

[6] G. Brebner. A virtual hardware operating system for the Xilinx XC6200. International
Workshop on Field-Programmable Logic and Applications, 1996.

[7] G. Brebner. Multithreading for logic-centric systems. International Conference on
Field-Programmable Logic and Applications, 2002.

[8] M. Budiu, M. Mishra, A. Bharambe, S. C. Goldstein. Peer-to-peer hardware–software
interfaces for reconfigurable fabrics. IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, 2002.

[9] M. Butts, A. M. Jones, P. Wasson. A structural object programming model, archi-
tecture, chip and tools for reconfigurable computing. IEEE Symposium on Field-
Programmable Custom Computing Machines, 2007.

[10] Commodore Business Machines. Commodore 64: Programmer’s Reference Guide,
H. W. Sams, 1982.

[11] C. Chang, J. Wawrzynek, R. W. Brodersen. BEE2: A high-end reconfigurable com-
puting system. IEEE Design and Test of Computers 22(2), 2005.

11.8 Summary 253

[12] M. Dales. Managing a reconfigurable processor in a general purpose workstation
environment. Design, Automation and Test in Europe, 2003.

[13] A. DeHon, Y. Markovskiy, E. Caspi, M. Chu, R. Huang, S. Perissakis, L. Pozzi, J. Yeh,
J. Wawrzynek. Stream computations organized for reconfigurable execution. Micro-
processors and Microsystems 30, September 2006.

[14] W. Fu, K. Compton. An execution environment for reconfigurable computing. IEEE
Symposium on Field-Programmable Custom Computing Machines, 2005.

[15] W. Fu, K. Compton. A simulation platform for reconfigurable computing research.
International Conference on Field-Programmable Logic and Applications, August 2006.

[16] P. Garcia, K. Compton. A reconfigurable hardware interface for a modern
computing system. IEEE Symposium on Field-Programmable Custom Computing
Machines, 2007.

[17] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor, R. Laufer.
PipeRench: A coprocessor for streaming multimedia acceleration. International Sym-
posium on Computer Architecture, May 1999.

[18] J. R. Hauser. Augmenting a Microprocessor with Reconfigurable Hardware, Ph.D.
thesis, University of California, Berkeley, 2000.

[19] J. A. Jacob, P. Chow. Memory interfacing and instruction specification for recon-
figurable processors. ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 1999.

[20] H. Koptez. Real-Time Systems: Design Principles for Distributed Embedded Applica-
tions, Kluwer Academic Publishers, 1997.

[21] E. Lee. The problem with threads. Computer 39(5), May 2006.
[22] B. Levine, H. Schmit. Efficient application representation for HASTE: Hybrid

architectures with a single, transformable executable. IEEE Symposium on Field-
Programmable Custom Computing Machines, 2003.

[23] Z. Li, K. Compton, S. Hauck. Configuration caching management techniques
for reconfigurable computing. IEEE Symposium on FPGAs for Custom Computing
Machines, 2000.

[24] Z. Li, S. Hauck. Configuration prefetching techniques for partial reconfigurable
coprocessor with relocation and defragmentation. ACM/SIGDA Symposium on Field-
Programmable Gate Arrays, 2002.

[25] J. W. S. Liu. Real Time Systems, Prentice-Hall, 2000.
[26] R. Maestre, F. J. Kurdahi, M. Fernández, R. Hermida, N. Bagherzadeh, H. Singh.

A framework for reconfigurable computing: Task scheduling and context manage-
ment. IEEE Transactions on VLSI 9(6), December 2001.

[27] Y. Markovskiy, E. Caspi, R. Huang, J. Yeh, M. Chu, J. Wawrzynek, A. DeHon. Analysis
of quasi-static scheduling techniques in a virtualized reconfigurable machine.
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2002.

[28] G. H. Mealy. The functional structure of OS/360, Part I: Introductory survey. IBM
Systems Journal 6(1), 1966.

[29] N. Moore, A. Conti, M. Leeser, L. S. King. Writing portable applications that
dynamically bind at run time to reconfigurable hardware. IEEE Symposium on
Field-Programmable Custom Computing Machines, 2007.

[30] B. J. Nelson. Remote Procedure Call, Xerox Palo Alto Research Center technical report,
1981.

[31] V. Nollet, P. Coene, D. Verkest, S. Vernalde, R. Lauwereins. Designing an operating
system for a heterogeneous reconfigurable SoC. Proceedings of the Reconfigurable
Architectures Workshop, 2003.

254 Chapter 11 � Operating System Support for Reconfigurable Computing

[32] A. Patel, C. A. Madill, M. Saldana, C. Comis, R. Pomes, P. Chow. A scalable
FPGA-based multiprocessor. IEEE Symposium on Field-Programmable Custom Com-
puting Machines, 2006.

[33] S. Qadeer, D. Wu. KISS: Keep It Simple and Sequential. ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2004.

[34] J. Rabaey. Reconfigurable processing: The solution to low-power programmable DSP.
Proceedings of ICASSP, April 1997.

[35] J. Resano, D. Mozos, F. Catthoor. A hybrid prefetch scheduling heuristic to minimize
at runtime the reconfiguration overhead of dynamically reconfigurable hardware.
Design, Automation, and Test in Europe, 2005.

[36] S. Singh. Integrating FPGAs in high-performance computing: Programming
models for parallel systems—the programmer’s perspective. ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, 2007.

[37] G. Snider, B. Shackleford, R. J. Carter. Attacking the semantic gap between application
programming languages and configurable hardware. International Symposium on
Field-Programmable Gate Arrays, 2001.

[38] M. Snir, W. Gropp. MPI: The Complete Reference, 2nd ed., MIT Press, 1998.
[39] C. Steiger, H. Walder, M. Platzner. Operating systems for reconfigurable embedded

platforms: Online scheduling of real-time tasks. IEEE Transactions on Computers
53(11), 2004.

[40] A. S. Tanenbaum. Modern Operating Systems, Prentice-Hall, 1992.
[41] R. Tessier, W. Burleson. Reconfigurable computing and digital signal processing:

A survey. Journal of VLSI Signal Processing 28(1–2), 2001.
[42] M. Vuletic, L. Pozzi, P. Hauck. Seamless hardware-software integration in reconfig-

urable computing systems. IEEE Design and Test of Computers 22(2 N), 2005.
[43] H. Walder, M. Platzner. Online scheduling for block-partitioned reconfigurable

devices. Design, Automation and Test in Europe, 2003.
[44] G. Wigley, D. Kearney. The development of an operating system for reconfig-

urable computing. IEEE Symposium on Field-Programmable Custom Computing
Machines, 2001.

[45] M. J. Wirthlin, B. L. Hutchings. A dynamic instruction set computer. IEEE Symposium
on FPGAs for Custom Computing Machines, 1995.

[46] Xilinx. XC6200 FPGA Advanced Product Specification, June 1996.
[47] B. Ylvisaker, B. Van Essen, C. Ebeling. A type architecture for hybrid micro-

parallel computers. IEEE Symposium on Field-Programmable Custom Computing
Machines, 2006.

C H A P T E R 12

THE JHDL DESIGN AND DEBUG SYSTEM

Brent Nelson, Brad Hutchings
Department of Electrical and Computer Engineering
Brigham Young University

JHDL [1, 8] is a CAD environment developed at Brigham Young University for
the design, debug, and runtime control of configurable computing applications
based on field-programmable gate array (FPGA) technology. Developed roughly
between 1997 and 2003 it was made available under an open-source license
(http://www.jhdl.org) in approximately 2000. The term JHDL can refer to one of
two things: (1) the JHDL circuit design language itself, or (2) the JHDL CAD
system. The JHDL language is a text-based design language for algorithmic
construction of structured circuits that is embedded within the Java program-
ming language. JHDL designs are created as Java programs that access JHDL
libraries to generate circuits. Within the JHDL CAD environment, circuits can
be simulated, netlisted, and downloaded to the reconfigurable computing plat-
form for execution and testing. Additional CAD tools can be built on top of the
JHDL infrastructure to support higher-level circuit construction, optimization,
and debugging tasks. One of the most unique features of JHDL is its runtime
environment, which provides a unified simulator/hardware debugger that can be
used to debug and validate a circuit through either simulation or hardware exe-
cution, and which contains many features normally found only in source-level
software debuggers.

12.1 JHDL BACKGROUND AND MOTIVATION

Historically, FPGA designers have used CAD tools from three sources to develop
their designs. The early tools were derived from application-specific integrated
circuit (ASIC) tool flows such as schematic capture, HDL synthesis, and so on.
Some were invented as new languages or language dialects specifically for FPGA
design [4]. Finally, some designers have used general-purpose programming lan-
guages (GPLs) to describe FPGA circuitry [3, 9]. Although there are good rea-
sons behind all three tool approaches, the case for using GPLs for FPGA design
is quite compelling. Compared to the other two alternatives (schematic capture
and HDL synthesis), GPLs are much more accessible to a larger set of users and
can be applied to a much broader set of problems. In addition, GPL program-
ming environments are less expensive, more widely available, and more mature
(less buggy) than the other two alternatives.

256 Chapter 12 � The JHDL Design and Debug System

Within the realm of GPL-based design tools, a range of approaches as well as
design abstraction levels can be (and have been) supported. Sea Cucumber [11]
is representative of high-level tools that compile standard programming lan-
guage descriptions into hardware. In this case, the tie to GPLs is simply that
the input specification syntax used is based on a GPL. A different approach
is represented by structural design languages that leverage GPL language con-
structs to assist the user in creating a circuit from a set of building blocks (gates,
wires, etc.).

JHDL is an embedded design language based on the Java GPL and is a struc-
tural design tool. Embedded languages like JHDL are specialized application
programming interfaces (APIs) where user-defined classes and function over-
loading are carefully used to create the illusion of a customized circuit design
language within the GPL environment. APIs allow designers to build circuits
by declaring interfaces and interconnecting gates and modules, all in a struc-
tural way. Embedding does this without making any modifications to existing
language syntax, which is an important point because modifying the GPL syntax
negates most of the advantages of the embedding approach. Examples of past
embedded languages include PAMDC [2] and Spyder [9].

As a structural design tool, JHDL constructs circuits from library primitives
with the help of provided Java methods (subroutines) and module generators
whose execution produces a circuit graph. This graph is then available for manip-
ulation, including simulation and netlisting. In this era of behavioral synthesis,
why are we still interested in structural design? There are three answers to this
question. First, when working with FPGAs, structural design techniques often still
result in circuits that are substantially smaller and faster than those developed
using only behavioral synthesis tools. Second, for many applications found in the
reconfigurable computing arena (especially where control over circuit placement
is required), structural capture is simply a faster, easier to learn, and more effec-
tive way to design an application. Thus, it has a place in any high-performance
FPGA design tool kit. Third, the circuit graph produced by the execution of a
JHDL description is amenable to a variety of modifications prior to netlisting. For
example, it can be programmatically modified to insert debug support features,
it can be instrumented to support runtime profiling and monitoring of the final
hardware, and it can be modified to support checkpointing (extraction of the
hardware computation’s state for later restoration) and therefore support con-
text switching of designs on and off a configurable computing platform. None
of these features are as readily performed using other approaches, especially
behavioral synthesis approaches.

An overview of the design process for JHDL-based design is presented in
Figure 12.1. As shown, a collection of JHDL class libraries provides the founda-
tion for all JHDL designs. These libraries contain, at a minimum, Java classes
representing primitive circuit elements. Layered on top of the device primi-
tives library are additional libraries that contain subroutines to programmat-
ically generate higher-level circuits from the primitives (known variously as
module generators). A user creates a JHDL design by writing a Java program
that instances these library primitives or calls the module generator subroutines
that, in turn, instance primitives.

12.2 The JHDL Design Language 257

User’s
JHDL circuit
description
(.java files)

Compile (javac...)

.class files

Execute (java...)

The JHDL
circuit data
structure

Simulate

netlist

EDIF

Vendor
place/route

Bitstream

Other tools

JHDL Libraries

Circuit
visualization

Device
primitives

The Logic
class

Module
generators

FIGURE 12.1 � An overview of the design process and the JHDL system.

Once a JHDL Java program has been written and compiled to a set of class
files, it may be executed. The result is an in-memory data structure representing
the constructed circuit in the form of a graph, in which nodes represent circuit
elements and wires, and arcs represent connections between them. As shown in
Figure 12.1, once this data structure has been built, various CAD tools can be
applied to it to accomplish simulation, netlisting, or other desired activities. Of
interest is that tools can be used to modify the JHDL circuit data structure prior
to netlisting or simulation. This is shown in the figure by the arrow leading from
“Other tools” up to “The JHDL circuit data structure.” These modifications can
be for purposes of adding debug or in-circuit monitoring features, and so on.

12.2 THE JHDL DESIGN LANGUAGE

As noted, because JHDL is embedded, two mechanisms are used to create the illu-
sion of it as a customized circuit design language: classes and function overload-
ing. The predefined classes provided by JHDL represent primitives, such as gates
and wires, so one design method is to simply create instances of these primitives
using the Java new construct. Beyond this, function overloading provides a higher
level of design abstraction by allowing the designer to call parameterized func-
tions that build the desired circuit out of primitive objects. This section describes
these levels of JHDL design from a circuit designer’s perspective.

12.2.1 Level-1 Design: Primitive Instantiation
The JHDL primitives library shown in Figure 12.1 is simply a package of Java
classes where each class corresponds to a circuit primitive (e.g., AND, OR).
Given such a library, the lowest level of JHDL design is to instance primitives
from it using new.

258 Chapter 12 � The JHDL Design and Debug System

Listing 12.1 shows a simple design built by instantiating primitives. The first
two lines import general JHDL libraries needed by all designs. The third import
makes the primitives from JHDL’s Xilinx Virtex library available for use in the
construction of this design.

The mux class is next declared by subclassing (extending) the JHDL Logic
class. The interface ports (the named inputs and outputs for the cell) are declared
using the CellInterface mechanism where, for example, in ("sel", 1)
declares an input port named sel that is of width 1 and out ("q", 1) declares
an output port named q that is also of width 1.

Listing 12.1 � Multiplexer example using primitive instantiation.

import byucc.jhdl.base.*;
import byucc.jhdl.Logic.*;
import byucc.jhdl.Xilinx.Virtex.*;

// This cell is a Java class called 'mux'
public class mux extends Logic {

// Declare the cell's ports
public static CellInterface[] cell–interface = {
in("a", 1),
in("b", 1),
in("sel", 1),
out("q", 1),

};

// This is the mux’s constructor
public mux(Node parent, Wire aw, Wire bw, Wire selw, Wire qw) {
super(parent);
connect("a", aw); connect("b", bw);
connect("sel", selw); connect("q", qw);

// The code below this point is the 'body' of the cell and builds
// it from primitive wire and gate objects.

// Declare and construct local wires
Wire a1 = new Xwire(this, 1, "a1");
Wire a2 = new Xwire(this, 1, "a2");
Wire selbar = new Xwire(this, 1, "selbar");

// Invert signal "sel"
new inv(this, selw, selbar);
// Form AND gates
new and2(this, aw, selbar, a1);
new and2(this, bw, sel, a2);

// Form OR gate for final output
new or2(this, a1, a2, qw);

}
}

12.2 The JHDL Design Language 259

The declaration of the constructor for the mux class comes next. This is a
standard Java constructor method that can be called to construct a new instance
of mux. The connect() calls associate a given wire with a specific port; for
example, the wire parameter aw is associated with (connected to) port a.

The last section of the constructor instantiates the wires and gates needed
to implement the multiplexer logic using Java new... calls. The objects
being created to build the circuit are implemented by Java classes from the
byucc.jhdl.Xilinx.Virtex package and represent wires and logic gates.

The problem with using primitive instantiation, as just described, is that the
resulting design is specific to a particular primitive library (the example above
relies on the byucc.jhdl.Xilinx.Virtex package). Designing this way limits
the portability of the design between technologies, even when it is based on
building blocks as simple as individual Boolean gates. Another problem with
this design style is that it was specifically written for a multiplexer that has
single-bit inputs and outputs—in essence, it is a fixed netlist. The Logic class
overcomes these limitations.

12.2.2 Level-2 Design: Using the Logic Class
and Its Provided Methods

The Logic class consists of a large collection of subroutines that can be called
to create user logic. Listing 12.2 shows the design of the same multiplexer
(Listing 12.1) written using methods of the Logic class. The difference between
this and the previous design is that at the bottom of the constructor, rather than
primitive instantiation, this version uses method calls to build the MUX circuit.
These methods are available for our use because the mux class extends the prede-
fined Logic class. In Listing 12.2, the changes from the previous MUX example
are underlined, to show how the portion of the code that actually builds the
logic has been changed.

Listing 12.2 � MUX example written using Logic class.

import byucc.jhdl.base.*;
import byucc.jhdl.Logic.*;
import byucc.jhdl.Xilinx.Virtex.*;

// This cell is a Java class called 'mux'
public class mux extends Logic {

// Declare the cell's ports
public static CellInterface[] cell–interface = {
in("a", 1),
in("b", 1),
in("sel", 1),
out("q", 1),

};

// This is the mux's constructor
public mux(Node parent, Wire aw, Wire bw, Wire selw, Wire qw) {
super(parent);

260 Chapter 12 � The JHDL Design and Debug System

connect("a", aw); connect("b", bw);
connect("sel", selw); connect("q", qw);

// The code below this point is the 'body' of the cell and builds
// it from Logic class subroutine calls.

or–o(this, and(aw, not(selw)), and(bw, sel), qw);
}

}

Invoking and (a,b) calls byucc.jhdl.Logic.and(a,b), which is a subrou-
tine that builds the desired logic (an AND gate) and returns a reference (pointer)
to the output wire it created for the gate. This wire can then be used as an input
to the or_o() call, which creates a 2-input OR gate.1

In addition to less verbosity, tremendous power derives from using methods
(subroutines) to build circuitry in this manner. OR methods with as many
inputs as desired can be created to accommodate any size OR gate and
can be written to accommodate input/output wires of any width. Thus, the
overloaded or() subroutine can handle requests for 2-input OR gates with
single-bit inputs/outputs as well as requests for 8-input OR gates with 32-bit
inputs/outputs.

The Logic class methods accomplish this using JHDL Techmapper classes.
Figure 12.2 shows that when user code calls a Logic method, that method
ultimately calls a Techmapper class object to do a technology-specific imple-
mentation of the logic it has determined should be built, and the Techmapper
object ultimately maps the resulting logic to technology-specific primitives. This
means that designs created using Logic class methods are completely tech-
nology independent—retargeting a design created using Logic to a different
technology is as simple as instructing the Logic class object to call on a
different technology’s Techmapper. To date, Techmappers have been written
at Brigham Young University for the Xilinx: 4K, Virtex, Virtex-II, and Virtex-II
Pro technologies.

The Logic class contains methods to build gates, wires, registers, mem-
ories, multiplexers, adders, subtracters, and shifters, as well as methods for
manipulating wires: concatenation, slicing, and so forth. Users are encour-
aged to use the Logic style of Listing 12.2 instead of the primitive style of
Listing 12.1 whenever possible, as primitive instantiation is typically used only
for taking advantage of device-specific features such as clock managers and
memories.

1 Note that some of the function calls have an an-o suffix. Functions with this suffix instantiate
the gate using the provided input and output wires. Functions without this suffix instantiate both
the gate and an output wire that is connected to it. In either case, the output wire is returned
by the function. This approach reduces verbosity by eliminating the need to declare and construct
intermediate wires.

12.2 The JHDL Design Language 261

Logicor()

and2
or3
xor2

Library:
byucc.jhdl.Xilinx.Virtex

Virtex
Techmapper

new or3(...)

or3

or3

User Code

and2
or3
xor2

4K
Techmapper

new or3(...)

Library:
byucc.jhdl.Xilinx.4K

FIGURE 12.2 � The relationship of user code, Logic class methods, and Techmapper objects.

12.2.3 Level-3 Design: Programmatic Circuit Generation
(Module Generators)

The creation of programmatic circuit generators (module generators) is a
natural extension of the techniques employed by the Logic class. That is, Java-
based subroutines that intelligently create complex hardware modules based
on build time–supplied parameters can be created by any JHDL user. A very
simple example that illustrates parameterized design is shown in Listing 12.3.

Listing 12.3 � n-bit full adder example.

// This design assumes the existence of a FullAdder JHDL design
// which it instances repeatedly to build an n-bit adder.
import byucc.jhdl.base.*;
import byucc.jhdl.Logic.*;
public class NBitAdder extends Logic {
public static CellInterface[] cell–interface = {
param("n", INTEGER),
in("a", "n"),
in("b", "n"),
out("sum", "n+1")

};

public NBitAdder(Node parent, Wire a, Wire b, Wire sum) {
super(parent); // Always call super-constructor
int width = a.getWidth(); // Get the width of the 'a' wire
bind("n", width);
connect("a", a); connect("b", b); connect("sum", sum);

// Create intermediate carry wires as a multi-bit wire
Wire carries = wire(width);

// Build and connect together needed full adders
// The gw() method calls pull individual bits
// out of multi-bit wires. The gnd() method returns
// a single constant '0' wire.

262 Chapter 12 � The JHDL Design and Debug System

for (int i=0; i < width; i++) {
if (i==0)
new FullAdder(this, a.gw(i), b.gw(i), gnd(),

sum.gw(i), carries.gw(0));
else
new FullAdder(this, a.gw(i), b.gw(i), carries.gw(i-1),

sum.gw(i), carries.gw(i));
}
buf–o(carries.gw(width-1), sum.gw(width));

}
}

This is an NBitAdder design2 that programmatically constructs a multibit adder
using previously designed full adder cells (not shown). In its CellInterface
declaration, the first line, param("n",INTEGER), declares a parameter n that
is of type integer (similar to a generic in VHDL—see Section 6.1.3). More
precisely, n is declared to be an instance of the Java class INTEGER. All port
declarations in the CellInterface then use n or n+1 as their width. When
NBitAdder is constructed, the bind() call binds the value of n to the width of
the a wire. Based on this information, connect() calls will verify that the wires
passed in to the constructor are the correct width for the ports they are being
connected to. Finally, the ripple-carry adder body is constructed using a Java
for loop that creates and interconnects FullAdder cells. The final buf_o()
call connects the top carry-out bit to the most significant bit of the sum.

NBitAdder is a trivial example of a module generator, that is, a circuit that
can be parameterized according to some set of criteria. Listing 12.4 is a slightly
more complex version of the NBitAdder design that has been parameterized for
pipelining (additions to the original design have been underlined in the source
code). Here a single Boolean parameter "pipe" is passed into the cell construc-
tor method to control whether a pipeline register is to be placed on the adder
output. The main difference between this and the previous design is that the last
few lines of the constructor body connect the adder outputs to the cell’s outputs
through either a register or a buffer, based on the value of the "pipe" parameter.

Listing 12.4 � n-bit full adder with optional pipelining.

... // Same imports as previous NBitAdder design
public class NBitAdder extends Logic {
public static CellInterface[] cell–interface = {
... // Same ports as previous NBitAdder design

};

public NBitAdder(Node parent, Wire a, Wire b, Wire sum, Boolean pipe) {

2 The Logic class contains a family of multibit adder constructor methods that would normally
be called instead of this example design. Nevertheless, this design is presented here to illustrate
module generator-like concepts in JHDL.

12.2 The JHDL Design Language 263

... // Main constructor body same as previous NBitAdder design
Wire tmpsum;

// New code is below
// If desired, insert pipeline latch
if (pipe)
(reg–o(tmpsum, sum);

else
buf–o(tmpsum, sum);

}
}

On the surface this is similar to what can be accomplished through the use
of VHDL generics: the for-generate and if-generate statements. However,
parameterized circuit generation is limited in VHDL, consisting of very simple
conditional circuit instantiations that are controlled by a small subset of the
language dedicated solely to this purpose. In JHDL, the entire Java language can
be brought to bear on this problem and sophisticated algorithms can be used
to generate circuits. JHDL module generators exist for counters, comparators,
accumulators, arithmetic units (multipliers, dividers, floating-point units, digit
serial units), decoders, shift registers, and memories. These have employed, as
a part of the module generators’ calculations, simple timing and area estima-
tion techniques, recursive tree search computations, file I/O, and the like. Such
module generators have been parameterized for features such as number format,
rounding/saturation/truncation modes, pipelining granularity, constant encoding
methods, and resource usage (serial versus parallel implementation).

12.2.4 JHDL Is a Structural Design Language
Structural design often improves the performance of configurable comput-
ing applications because many applications that are FPGA based can benefit
from manual placement of at least some parts of the design. Effective manual
placement can be achieved only if the overall organization of the circuit is well
understood—it is very difficult to manually place circuitry generated by behav-
ioral synthesis.

Placement attributes can be attached to JHDL primitive circuit objects as
string properties, to be interpreted by backend tools. To simplify the attaching
of these attributes when Logic methods are used in circuit building, the Logic
class also contains a placement API to help in the tasks of (1) mapping gates to
lookup tables (LUTs), ALUs, or other atomic FPGA cells, and (2) specifying the
relative placement of those cells. For example, to force a collection of gates that
implement a 3-input, 1-output logic function into a single LUT, the map() call
can be used as in:

map(a, b, ci, s);

This will force the cone of logic with a, b, and ci as inputs and with s as
output into a single primitive (a LUT for most FPGA technologies). Then that

264 Chapter 12 � The JHDL Design and Debug System

primitive can be placed by specifying the location of its output wire in a place()
call:

place(s, "R0C0.F");

Note that these methods do not create logic themselves, but rather pack already
created logic into LUTs, which they then physically place. The use of these
method calls is technology specific, so a technology-specific Techmapper is
used to determine their interpretation for the target technology at build time.
This placement API acts as a window of opportunity for the user to obtain
design assistance from the Techmapper. For example, when map() is called, the
Techmapper checks the network of gates for validity (i.e., intermediate fanin or
fanout to the network), and, when the circuit is fully constructed, it resolves
all placement hints and reports any placement conflicts. In this way placement
errors can be detected at the front of the tool chain rather than during place
and route, which helps minimize design cycles.3

12.2.5 JHDL Is a Programmatic Circuit Design Language
That JHDL is also a programmatic circuit design language is perhaps the most
powerful and unique feature of GPL-based circuit generation techniques. The
key point is that a JHDL description, once compiled, is an executable Java pro-
gram; it is the execution of that Java program that constructs the circuit. This
gives JHDL significant advantages over HDL descriptions, which must be parsed
by a synthesizer and a corresponding circuit then constructed.

With JHDL there is no separation between the code that represents the
circuit itself and any code that might be executed to help determine how best
to generate it—all of the code in a JHDL description is executable Java. In a
language like JHDL there is a very clear separation between circuit genera-
tion and computation: Module instantiation is circuit generation and everything
else is computation. In contrast, all code written in a VHDL or Verilog design
(excepting simulation testbenches) is the circuit description—there is no provi-
sion for code that can be executed apart from it. This presents difficulties when
computations are required, prior to circuit construction, to determine how best
to generate the circuit.

At one time, designers often resorted to macro preprocessors with Verilog
code to provide for-generate- and if-generate-like functionality for their
designs. Similarly, some designers (including our own students) have often writ-
ten C or C++ circuit generators that generate VHDL or Verilog code as output in
order to work around the lack of an effective compile time computational capa-
bility in conventional HDLs. In contrast, JHDL and other GPL-based embedded
languages avoid such workarounds because they provide a clean mechanism

3 In contrast, VHDL annotation approaches for placement are nonstandard and differ from tool
to tool (see Section 6.2.1). Also, VHDL placement directives are passed through to the backend
tools without performing any error checking such as described previously.

12.3 The JHDL CAD System 265

for freely intermixing computational code with circuit descriptions—all based
on the general-purpose computational power of the underlying GPL. One could
say that languages like JHDL don’t need a formal elaboration step as VHDL and
Verilog do. Or one could say that the entire circuit construction process in JHDL
is an elaboration step, albeit a much more powerful one than that provided by
HDLs.

Finally, there is no synthesizable subset of JHDL, and thus there is no possi-
bility for a mismatch between simulation and synthesis results due to differing
CAD tools’ interpretation of the description. The same circuit is constructed
each time the JHDL code is executed regardless of whether it is intended for
simulation or for netlisting.

12.3 THE JHDL CAD SYSTEM

As Figure 12.1 showed, the execution of a compiled JHDL design creates an
in-memory structural representation of the JHDL circuit. This is a classical cir-
cuit graph where Java objects represent the cells and wires in the circuit and
pointers between these objects represent connections and hierarchical parent–
child relationships. The figure also showed that this circuit data structure is the
entry point for the JHDL CAD system, meaning that all CAD functions and tasks,
such as simulation and netlisting, use the circuit data structure via an API pro-
vided for this purpose. The result is that it is straightforward to write Java-based
CAD tools for interacting with and manipulating the circuit data structure (and
therefore the circuit).

12.3.1 Testbenches in JHDL
Because a JHDL design is a Java program, it needs a main() routine. It is the
program’s main() routine that usually acts as a testbench for JHDL designs.
Listing 12.5 shows such a main() testbench that, like most JHDL testbenches,
does three things:

� First, it creates an HWSystem object that is the top-level container object
for the circuit and contains the simulator and netlister objects. The entire
user design (testbench and device under test) exists as a child node of
HWSystem in the resulting JHDL object hierarchy.

Listing 12.5 � A sample JHDL testbench.

import ...; // Import needed packages

// Declare testbench class
public class tb_myCell extends Logic implements TestBench {

static HWSystem hw; // Declare a HWSystem
private int aVal, bVal, cinVal; // Declare some private variables

266 Chapter 12 � The JHDL Design and Debug System

// The main() routine for this Java program
public static void main(String argv[]) {
// Step 1: build a HWSystem
hw = new HWSystem(); // Build a HWSystem
// Step 2: Build an instance of this testbench
tb_myCell tb = new tb_myCell(hw, ...); // Pass in some params
// Step 3: Do something with the circuit now that the testbench
// and DUT are built. We can do any one of:
// 1. Start a simulation
// 2. Netlist the circuit
// 3. Traverse or modify the circuit data structure
// 4. Start a GUI-based CAD system
// We will do the last - create a GUI-based CAD system
// Create a new instance of cvt (the Circuit Visualization Tool)
new cvt(tb);

}

// The constructor for this testbench
public tb_myCell (Node parent, ...); // Not all params shown
super(parent);

// Step 1: Specify (create) a TechMapper for Virtex
setDefaultTechMapper(new VirtexTechMapper(true));

// Step 2: Build wires to connect to DUT
an = wire(1,"an"); bn = wire(1,"bn"); cinn = wire(1, "cinn");
sn = wire(1,"sn"); coutn = wire(1,"coutn");

// Step 3: Build mycell (the DUT)
myCell dut = new myCell(this, an, bn, cinn, sn, coutn, "myCell");

}
}

� Second, as shown in Listing 12.5, it creates a testbench object (which in
turn creates the device under test).

� Third, once the JHDL circuit data structure has been created, the main()
routine can do one of a number of things: (1) start a batch simulation,
(2) call on the netlister to netlist the design, or (3) create a GUI-based
interface to enable the user to interactively work with the circuit. In
Listing 12.5, the main() routine starts up cvt, a graphical environment
for viewing the circuit, simulation, and netlisting.

12.3.2 The cvt Class
Class cvt is a GUI-based system with widgets for navigating the design hierarchy,
starting a simulation of the circuit, generating a netlist of the circuit, and so forth.
The actual simulation and netlisting classes are accessed via the HWSystem class,
and cvt makes calls into it to satisfy user requests. The cvt class implements
a standard event-driven GUI system based on Swing, distributed as a part of
the JHDL language. Swing was chosen for its portability and availability on all

12.3 The JHDL CAD System 267

FIGURE 12.3 � The JHDL cvt GUI.

platforms. Class cvt uses the built-in Swing event mechanism for its own internal
communication.

Figure 12.3 shows a screenshot of the cvt GUI. In the upper left is a text con-
sole window where commands may be typed. Menus and buttons above largely
duplicate what can be entered in the window. Below the console is a hierarchy
navigation tool. On the left is a hierarchy browser; on the right is a list of ports
for the currently selected cell along with their current values (if a simulation is
in progress). Beneath the browser is a waveform viewer; and on the lower right
half of the figure are two different schematic viewers. This screenshot shows
that the various parts of the GUI are all contained in a single pane but each can
be broken out into an individually sized window if desired.

Unlike with most CAD tools, there is no standard JHDL CAD system. Rather, the
circuit data structure API provides a mechanism for any program a user might
write to interact with the circuit. The cvt class is simply one such example.
Examples of other programs include stand-alone simulators and netlisters.

268 Chapter 12 � The JHDL Design and Debug System

Many of the debugging experiments described later in this chapter were carried
out by writing custom CAD tools to interact with the circuit data structure API.
For example, a number of tools have been written that modify the circuit prior
to netlisting by, for example, inserting clock managers or other special-purpose
circuitry into the user’s design. These tools have also instrumented designs for
debug by adding scan chains to them. Finally, complete software applications
that interact with the circuit during simulation and execution have been created.
This last point is a unique feature of JHDL—once the circuit has been built,
application software can be written that communicates with the design via the
HWSystem API. This allows the complete application (software and hardware) to
be deployed as a single Java program.

12.4 JHDL’S HARDWARE MODE

JHDL supports hardware-in-the-loop debugging with what is called hardware
mode. Hardware mode is based on the observation that much of the data created
when a JHDL circuit is built and simulated is also useful in the actual hardware
debug process.

Figure 12.4 shows JHDL’s dual simulation/hardware execution environment.
When initially simulating a design (left side of figure), the simulation/runtime
API provides cvt and simulator access to the JHDL circuit graph.

After the design’s configuration bitstream is created, hardware debugging can
take place using hardware mode (on the right of Figure 12.4). Loading a JHDL
design in cvt now performs two steps: (1) the JHDL design is constructed as
usual to create the internal circuit representation, and (2) the bitstream is con-
figured onto the specified FPGA platform. Using the same cvt GUI as before, the
user can advance execution of the design via the simulator control buttons or via
commands on the command line. However, instead of cycling the simulator, these
actions cause cvt to send clocking commands to the FPGA platform through the
board’s driver. After a clock command is executed, the state of the FPGA platform is
retrieved using readback and back-annotated into the JHDL circuit data structure.

The JHDL
circuit data

structure

Simulation/runtime API

Simulator
Configure
Execute
Readback

cvt and
HWSystem Hardware

manager
Simulate

FPGA
platform

FIGURE 12.4 � The JHDL unified simulation/hardware execution environment.

12.5 Advanced JHDL Capabilities 269

The simulator is then used to compute the steady state of all combinational nodes
in the circuit as a function of these state values, and a complete picture of the
hardware execution state is now present in the JHDL circuit data structure. As
a result, cvt can query and display the state of the circuit as normal, just as it
would if the circuit were being simulated. In this case, however, it displays hard-
ware signal values rather than simulated signal values.

JHDL’s hardware mode is readily adapted to new hardware platforms given
programmatic methods that exist for communicating with the board. The
following capabilities are required for adaptation:

� Configuration: This is needed to configure the FPGA(s) on the hardware
platform with bitstreams.

� Clock control: One or more subroutines are required to single- or
multistep the clock on the board.

� Readback: This is necessary to read back the state from the FPGA(s) on
the board.4

Given these capabilities, JHDL can easily be extended to communicate with the
board for hardware mode operation.5 This is achieved by modifying a thin layer
of Java translation code so that standard JHDL methods can communicate with
the specific C-based device driver subroutines for the board.

12.5 ADVANCED JHDL CAPABILITIES

A variety of design and debug tools have been built on top of JHDL. A few of
these are described in the following sections.

12.5.1 Dynamic Testbenches
Some of the power of JHDL derives from its extensive use of the Java feature
called reflection. The Java reflection API provides a set of methods that a Java
program can use to examine the structure of a Java .class file. By reflecting
on a Java class, a program can determine the names and type signatures of all
methods in it and, if desired, dynamically load the class file and construct an
object of the class.

4 To date, JHDL supports hardware mode only on Xilinx platforms, because they contain a read-
back capability. Experiments have also been done to determine the cost of adding a scan chain
to user designs for this purpose when readback is not available [12].
5 An additional capability would also prove very useful—loading state into the FPGA. In the case
of Xilinx FPGAs (the focus of the JHDL hardware mode work), this can be done by modifying
the configuration bitstream appropriately and then reconfiguring the FPGA with that bitstream.
Thus, this capability is not listed as a strict requirement in the list. A number of the debug experi-
ments described in the next section performed bitstream modification to load state into an FPGA,
but would have benefited from a simpler mechanism that did not require a reconfiguration of
the FPGA.

270 Chapter 12 � The JHDL Design and Debug System

The JHDL dtb class is a general-purpose testbench tool that uses reflection to
automatically perform testbench functions, eliminating the need, in most cases,
for the user to write code for constructing the testbench. The user runs dtb
and specifies the name of the circuit to be constructed on the command line.
dtb examines the corresponding file (FullAdder.class, for example) using
reflection to determine the parameters required by its constructor. It then creates
the necessary wires and calls the constructor to build an instance of the specified
class, connecting it to the wires it created. When dtb is used, the dtb object itself
performs all of the services required of a testbench. For example, it examines
the constructed circuit, determines the clocking required, and sets up the clock
for simulation. In addition, when everything has been constructed, it brings up
cvt so that design simulation and netlisting can proceed as usual. All that is
required of the user is to provide the simulation stimulus either interactively or
via a script.

12.5.2 Behavioral Synthesis
Sea Cucumber [11] is a behavioral synthesis tool that was built on top of the JHDL
framework and accepts a behavioral description written in Java that is compiled
into bytecodes by any standard Java compiler. It parses these byte codes, dis-
covers instruction-level parallelism, performs other common optimizations, and
then synthesizes a circuit by invoking calls to the JHDL Logic library. Advan-
tages provided by the JHDL framework include access to JHDL visualization and
debugging tools to verify Sea Cucumber designs and access to JHDL netlisting
modules so that the synthesized JHDL circuitry can be converted into netlists for
place and route by vendor software. In fact, all of the previously mentioned JHDL
features are available to Sea Cucumber, including hardware mode, dynamic test
benches, and the like.

A behavioral debugger, also developed in conjunction with Sea Cucumber [7],
allows the user to debug fully optimized code in the context of the original
user description. It does this by traversing the JHDL circuit structure to retrieve
circuit values and presenting them to the user in the context of the JHDL CAD
framework.

12.5.3 Advanced Debugging Capabilities
Much of the power of JHDL comes by exploiting a single FPGA feature (read-
back) to access internal FPGA state and present the data to the user in some
form. Because of this enhanced visibility, the current JHDL debugging environ-
ment has proved to be effective for verifying and debugging large, complex appli-
cations. However, much more powerful debugging capabilities can be achieved
if a small part of the FPGA is reconfigured to implement supplemental circuitry
to aid debug and validation. This is similar in spirit to the "-g" flag used in
conventional software compilation where the compiler can enable debugging
by inserting additional code. Because FPGA hardware is reconfigurable, any
inserted debugging circuitry can be removed when the application is ready for
deployment.

12.5 Advanced JHDL Capabilities 271

Some of the advanced debugging features that are possible via embedded
debug circuitry include:

� Signals can be automatically routed to external I/O pins for viewing.
� Unused FPGA circuitry and memory can be used to implement “probe”

circuits that sample and store circuit activity during circuit execution.
� Unused FPGA hardware can be used to implement complex, real-time

hardware breakpoints.

As long as designers must manually modify their designs in order to embed
debug circuitry, these powerful techniques may go unused. The best way to
overcome this is to automate the process of synthesizing and embedding debug
circuitry into user circuitry—a task best performed directly by the CAD tool
environment. The ability to use a debugging tool as an integrated part of the
design environment, tied to the original design specification and accessed using
standard user interfaces, makes this a powerful and convenient way to develop
and verify a design.

As a part of DARPA-funded research at Brigham Young University, researchers
investigated a variety of advanced debug mechanisms using JHDL, all of them
were aimed at providing a debug system with capabilities similar to those found
in software development systems and that are significantly easier to use than
manual methods. A few of these mechanisms are described in the following
subsections.

Debug circuitry synthesis
In software debugging using the gdb symbolic debugger or similar tools, it is
not uncommon for the user to temporarily change variable values as a way of
determining how the program would behave if the variable had that different
value. The work described by Graham [6] demonstrated a similar capability for
hardware. First, JHDL was used to perform a readback of the FPGA’s state.
Changes were then made to the bitstream to reflect the user’s choice for the
new circuit state, and the bitstream was configured back into the FPGA. Upon
resumption, the system was seen to continue execution from the previous point
but with changed state values.

As another example, in the work described by Graham et al. [5], JHDL and
JBits were used together to modify FPGA design bitstreams on the fly in order to
rewire embedded logic analyzers to user logic in a placed-and-routed design—all
within a few seconds of a mouse click. The collected data could then be viewed
in the original design environment using the built-in JHDL GUI framework.

When these features first appeared in JHDL, there were no equivalent com-
mercial debugging tools available. However, with the passage of time, commer-
cial offerings have improved, incorporating some of the features of the original
JHDL system. Altera’s SignalTap and Xilinx’s ChipScope now provide conve-
nient ways to integrate customized logic analyzers into user designs (these are
implemented with unused programmable circuitry), and offer separate tools
that emulate a logic analyzer display on the PC’s monitor. However, JHDL still
differs from these products in the level of integration it provides (the debug

272 Chapter 12 � The JHDL Design and Debug System

environment is the design environment). Perhaps Synplicity’s Identify tool comes
closest to JHDL in this regard because it provides the ability to view some circuit
behavior in the original VHDL context. Still, none of the commercial offerings
allow the user to simultaneously integrate logic analyzers, display these results
in the original design environment, and modify the current state of the circuit
during debug.

Checkpointing, context switching, and remote access
Checkpointing is defined as saving the state of a computation in a way that
the computation can later be restarted from that same point. It is often used
in software to allow a long-running computation such as a simulation to be
restarted from a known point if, for example, the system it is running on goes
down. The concept of readback can easily be extended to extract the state of the
entire FPGA platform.

Once this is done, checkpointing of FPGA-based computations can be sup-
ported. To do this, the JHDL HWSystem was augmented not only to retrieve the
state of the FPGA but also to retrieve the state of all memory elements on the
hardware platform (FIFOs and memories) and save that information to disk.
Later, the state could be retrieved from disk and loaded back onto the FPGA
platform, whereupon execution would continue from the time of the check-
point. What is important is that a simulation checkpoint could be loaded onto
the FPGA platform and hardware execution could be continued from that point.
Likewise, a hardware execution checkpoint could be loaded into JHDL and a
simulation continued from that point. With the availability of checkpointing in
JHDL, it then became possible to time-share an FPGA platform using context
switching (swapping an application off the platform to make room for another).
Experiments conducted at Brigham Young University on checkpointing and con-
text switching are described by Landaker et al. [10], to which the interested
reader is referred for more information and results.

Finally, JHDL was also modified to permit remote access to an FPGA plat-
form. In this work, the cvt and HWSystem classes were extended to include a
client–server capability so that hardware mode communications with an FPGA
platform could be conducted over a network.

12.6 SUMMARY

JHDL is currently in use in a variety of research projects, from module gener-
ators systems to behavioral synthesis systems to microarchitectural simulation
systems. By providing a framework for the construction, simulation, netlisting,
and hardware debug of FPGA-based designs, JHDL allows researchers to focus
on tasks other than recreating the infrastructure that JHDL provides. Of particu-
lar importance in this regard, is that JHDL provides a target for use by synthesis
tools with its primitive libraries and its Logic and Techmapper classes.

JHDL has been in use since approximately 1998 and was released under
an open-source license (http://www.jhdl.org) in approximately 2000. Potential

12.6 Summary 273

users can download either compiled JAR files of the JHDL system, or they can
download and build JHDL from sources themselves. Documentation on the
JHDL system is provided as well.

References
[1] P. Bellows, B. L. Hutchings. JHDL—An HDL for reconfigurable systems. Proceed-

ings of IEEE Workshop on FPGAs for Custom Computing Machines, April 1998.
[2] P. Bertin, D. Roncin, J. Vuillemin. Programmable active memories: A performance

assessment. In G. Borriello, C. Ebeling (eds.). Research on Integrated Systems:
Proceedings of the 1993 Symposium, 1993.

[3] P. Bertin, H. Touati. PAM programming environments: Practice and experience. In
D. A. Buell, K. L. Pocek (eds.). Proceedings of IEEE Workshop on FPGAs for Custom
Computing Machines, April 1994.

[4] D. Galloway. The transmogrifier C hardware description language and compiler for
FPGAs. Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines,
April 1995.

[5] P. Graham, B. Nelson, B. Hutchings. Instrumenting bitstreams for debugging
FPGA circuits. Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines, April 2001.

[6] P. S. Graham. Logical Hardware Debuggers for FPGA-Based Systems, Ph.D. thesis,
Brigham Young University, 2001.

[7] K. S. Hemmert, J. L. Tripp, B. L. Hutchings, P. A. Jackson. Source level debugger
for the Sea Cucumber synthesizing compiler. Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines, April 2003.

[8] B. L. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson, M. Rytting. A
CAD suite for high-performance FPGA design. Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, April 1999.

[9] C. Iseli, E. Sanchez. A C++ compiler for FPGA custom execution units synthe-
sis. Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines,
April 1995.

[10] W. J. Landaker, M. J. Wirthlin, B. L. Hutchings. Multitasking hardware on the
SLAAC1-V reconfigurable computing system. Proceedings of the 12th Interna-
tional Workshop on Field-Programmable Logic and Applications, Springer-Verlag,
September 2002.

[11] J. L. Tripp, P. A. Jackson, B. L. Hutchings. Sea Cucumber: A synthesizing compiler
for FPGAs. Proceedings of the 12th International Workshop on Field-Programmable
Logic and Applications, Springer-Verlag, September 2002.

[12] T. Wheeler, P. Graham, B. Nelson, B. Hutchings. Using design-level scan to improve
FPGA design observability and controllability for functional verification. Proceed-
ings of the 11th International Workshop on Field-Programmable Logic and Applica-
tions, Springer-Verlag, August/September 2001.

This page intentionally left blank

P A R T III

MAPPING DESIGNS TO
RECONFIGURABLE PLATFORMS

The chapters that follow cover the key mapping steps unique to
field-programmable gate arrays (FPGAs) and reconfigurable targets.
These steps include technology mapping to the primitive FPGA pro-
grammable gates (Chapter 13), placement of these gates (Chapters 14
through 16), routing of the interconnect between gates (Chapter 17),
retiming of registers in the design (Chapter 18), and bitstream genera-
tion (Chapter 19). A final chapter summarizes a number of approaches to
accelerating various stages of the mapping process (Chapter 20).

Placement is a difficult mapping problem, but is critical to the
performance of the resulting reconfigurable design. As a result, it can be
very slow, limiting the rate of the edit–compile–debug loop for reconfig-
urable application development, and the designs it produces may have
longer cycle times than we would like. For these reasons, in addition
to the general-purpose algorithms for placement covered in Chapter 14,
algorithms that are highly optimized to exploit the regularity of data-
paths are discussed in Chapter 15, and constructive approaches to lay-
out are treated in Chapter 16. These more specialized approaches can
significantly reduce placement runtime and often deliver placements that
allow faster design operation.

As Chapters 13 through 20 demonstrate, there is a well-developed set
of approaches and tools for programming reconfigurable applications.
However, the tools are always slower than we might like them to be, espe-
cially as FPGA capacities continue to grow with Moore’s Law. Moreover,
the designs they produce are often too large or too slow, and the level at
which we must program them is often lower than optimal. These defi-
ciencies present ample opportunities for innovation and improvement in
software support for reconfigurable systems.

For the designer who works on reconfiguration issues, the follow-
ing chapters provide a look under the covers at the tools used to map
designs and at the problems they must solve. It is important to under-
stand which problems the tools are and are not solving and how well
they can be expected to work. An understanding of the mapping flow and
algorithms often helps the designer appreciate why tools may not produce

276 Part III � Mapping Designs to Reconfigurable Platforms

the quality of results expected and how the design could be optimized to
obtain better results. Similarly, understanding the problems that the tools
are solving helps the designer understand the trade-offs associated with
higher- or lower-level designs and how to mix and match design levels to
obtain the desired quality of results with minimal effort.

For the tool or software developer, this part covers the key steps
in a traditional tool flow and summarizes the key algorithms used to
map reconfigurable designs. With this knowledge the developer can
rapidly assimilate conventional approaches and options and thus pre-
pare to explore opportunities to improve quality of results, reduce tool
time, or increase automation and raise the configurable design’s level of
abstraction.

C H A P T E R 13

TECHNOLOGY MAPPING

Jason Cong
Department of Computer Science
California NanoSystems Institute
University of California–Los Angeles

Peichen Pan
Magma Design Automation, Inc.

Technology mapping is an essential step in an field-programmable gate array
(FPGA) design flow. It is the process of converting a network of technology-
independent logic gates into a network comprising logic cells on the target FPGA
device. Technology mapping has a significant impact on the quality of the final
FPGA implementation.

Technology-mapping algorithms have been proposed for optimizing area
[29, 36, 58, 65], timing [9, 12, 13, 19, 21, 37, 58], power [2, 8, 34, 45, 52, 71],
and routability [3, 67]. Mapping algorithms can be classified into those for gen-
eral networks [13, 16] and those for special ones such as treelike networks
[35, 36]. Algorithms for special networks may be applied to general ones through
partitioning, with a possible reduction in solution quality.

Technology-mapping algorithms can be structural or functional. A structural
mapping algorithm does not modify the input network other than to duplicate
logic [12, 13]. It reduces technology mapping to a covering problem in which
the technology-independent logic gates in the input network are covered with
logic cones such that each cone can be implemented using one logic cell—for
example, a K-input lookup table (K-LUT)—for LUT-based FPGAs. Figure 13.1
is an example of structural mapping. The logic gates in the original network
(a) are covered with three logic cones, each with at most three inputs, as indi-
cated (b). Note that node i is included in two cones and will be duplicated. The
corresponding mapping solution (c) comprises three 3-LUTs.

A functional mapping algorithm, on the other hand, treats technology map-
ping in its general form as a problem of Boolean transformation/decomposition
of the input network into a set of interconnected logic cells [15, 48, 58, 60].
It mixes Boolean optimization with covering. Functional mapping algorithms
tend to be time consuming, which limits their use to small designs or to small
portions of a design.

Note: This work is partially supported by the National Science Foundation under grant number
CCF 0530261.

278 Chapter 13 � Technology Mapping

Recent advances in technology mapping try to combine mapping with other
steps in the design flow. Such integrated mapping algorithms have the potential
to explore a larger solution space than is possible with just technology mapping
and thus have the potential to arrive at mapping solutions with better quality.
For example, algorithms have been proposed to combine logic synthesis with
covering to overcome the limitations of pure structural mapping [11, 22, 57].

13.1 STRUCTURAL MAPPING ALGORITHMS

Technology mapping is part of a logic synthesis flow, which typically consists of
three steps. First, the initial network is optimized using technology-independent
optimization techniques such as node extraction/substitution and don’t-care
optimization [33]. Second, the optimized network is decomposed into one con-
sisting of 2-input gates plus inverters (that is, the network is 2-bounded) to
increase flexibility in mapping [12, 36]. Third, the actual mapping takes place,
with the goal of covering the 2-bounded network with K-LUTs while optimizing
one or more objectives. In the remaining discussion, we assume that the input
network is 2-bounded.

A logic network can be represented as a graph where the nodes represent logic
gates, primary inputs (PIs), and primary outputs (POs). The edges represent the
interconnects or wires. A cut of a node v is a set of nodes in the input network
such that every path from the primary inputs or sequential element outputs to
v contains at least one node in the set. A K-cut is a cut with at most K nodes.
For example, {a, b, z} is a 3-cut for the node y in the network in Figure 13.1(a).
Given a K-cut for v, we can obtain a K-LUT for v by collapsing the gates in
the logic cone between the nodes in the cut, v, including v itself. For the 3-cut
{a, b, z} for y, the 3-LUT for y in Figure 13.1(c) is derived from the corresponding
cone indicated for y in Figure 13.1(b).

(a)

o

z

y

a b

i

x

(c)

o

LUT

LUT

LUT

ba

(b)

o

b

z

x

a

y

i

FIGURE 13.1 � Structural technology mapping: (a) original network, (b) covering, and (c) mapping
solution.

13.1 Structural Mapping Algorithms 279

Most structural mapping algorithms are based on the dynamic programming
technique. They typically consist of the following steps:

1. Cut generation/enumeration
2. Cut ranking
3. Cut selection
4. Final mapping solution generation

Cut generation obtains one or more cuts that will be used to generate LUTs;
it is discussed in the next section. Cut ranking evaluates the cuts obtained in
cut generation to see how good they are based on the mapping objectives. It
assigns a label or cost to each cut by visiting the nodes in a topological order
from PIs to POs. Cut selection picks a cut with the best label for each node and
is typically done in reverse topological order from POs to PIs. Cut ranking and
selection may be carried out multiple times to refine solution quality.

After the final cut selection, a mapping solution is generated using the selected
cuts. In this step, the nodes are visited in the reverse topological order, starting
from POs and going back to PIs. At each node, a cut with the best label is
selected and the corresponding LUT is added to the solution. Next, the nodes
that drive the LUT are visited. This process is repeated until only PIs are left.
At that point, a complete mapping solution is obtained.

13.1.1 Cut Generation
Early mapping algorithms combine cut generation and selection to determine
one or a few “good” cuts for each node. The most successful example is the
FlowMap algorithm, which finds a single cut with optimal mapping depth at
each node via max-flow computation [16]. It computes the optimal mapping
depth of each node in a topological order from PIs to POs, and at each node uses
a max-flow formulation to test whether that node can have the same optimal
mapping depth as the maximum depth of its input nodes. If not, the depth is
set to one greater than the input nodes’ maximum depth. It is shown that these
are the only two possible mapping depths. The FlowMap algorithm was the first
polynomial time algorithm to find a depth-optimal mapping solution for LUT-
based FPGAs.

In practice, K, the number of inputs of the LUTs, is a small constant typically
ranging between 3 and 6. It becomes practical to enumerate all K-cuts for each
node. With all cuts available, we have additional flexibility in selecting cuts to
optimize the mapping solution.

Cuts can be generated by a traversal of the nodes in a combinational network
(or the combinational portion of a sequential network) from PIs to POs in a
topological order [29, 67]. Let Φ(v) denote the set of all K-cuts for a node v.
For a PI, Φ(v) contains only the trivial cut consisting of the node itself, that is,
Φ (v) = {{v}}. For a non-PI node v with two fanin nodes, u1 and u2, Φ(v) can be
computed by merging the sets of cuts of u1 and u2 as follows:

Φ(v) = {{v}∪{c1 ∪c2|c1 ∈ Φ(u1), c2 ∈ Φ(u2), |c1 ∪c2|} <= K} (13.1)

280 Chapter 13 � Technology Mapping

In other words, the set of cuts of v is obtained by the pairwise union of the
cuts of its fanin nodes and then the elimination of those cuts with more than
K nodes. Note that the trivial cut is added to the set. This is necessary so the
nodes driven by v can include v in their cuts.

13.1.2 Area-oriented Mapping
For LUT mapping, the area of a mapping solution can be measured by the total
number of LUTs. It has been shown that finding an area-optimal mapping solu-
tion is NP-hard [35]. Therefore, it is unlikely that there is an accurate way to
rank cuts for area. The difficulty of precise area estimation is mainly due to the
existence of multiple fanout nodes. In fact, for treelike networks, area-optimal
mapping solutions can be determined in polynomial time [35].

Cong et al. [29] proposed the concept of effective area as a way to rank
and select cuts for area. A similar concept, area flow, was later proposed by
Manohararajah et al. [55]. Intuition regarding effective area is to distribute the
area for a multi-fanout node to its fanout nodes so that logic sharing and recon-
vergence can be considered during area cost propagation. Effective areas are
computed in a topological order from PIs to POs. The effective area a (v) of a PI
node v is set to zero. Equation 13.2 is used to compute the effective area of a cut:

a (c) =
(

Σu∈c
[

a (u) /|output(u)|])+Ac (13.2)

where Ac is the area of the LUT corresponding to the cut c. The area cost of a
non-PI node can then be set to the minimum effective area of its cuts: a(v) =
min{a(c)|∀u ∈ Φ(v)}.

It should be pointed out that effective area may not account for the situation
where the node may be duplicated in a mapping solution. In the example shown
in Figure 13.2, with K = 3, the LUT for w is introduced solely for the LUT for v.
However, in effective area computation, only one-half is counted for v, and as
a result the LUT for w is undercounted. In this example, the sum of effective
area of the POs is 2.5 whereas the mapping solution has three LUTs. In general,
effective area is a lower bound of the actual area.

v u

w

FIGURE 13.2 � Inaccuracy in effective area.

13.1 Structural Mapping Algorithms 281

The PRAETOR algorithm [29] is an area-oriented mapping algorithm that
ranks cuts using effective area. It further improves the basic mapping framework
with a number of area reduction techniques. One such technique is to encourage
the use of common subcuts. A cut for a fanout of a node v induces a cut for v
(perhaps the trivial cut consisting of v itself). If two fanouts of v induce different
cuts for v, the most likely result will be an area increase due to the need to
duplicate v and possibly some of its predecessor nodes. To alleviate this problem,
PRAETOR sorts and selects cuts with the same effective area in a predetermined
order to avoid arbitrary selection. It assigns an integer ID to each node and then
sorts all cuts with the same effective area according to the lexicographic order
based on the IDs of the nodes in the cuts. The first cut with minimum effective
area for each node is selected.

Another area reduction technique introduced in PRAETOR is to carry out
cut selection twice. The nodes with LUTs selected in the first pass are declared
nonduplicable and can only be covered by LUTs for themselves in the second
pass. This encourages selection of cuts with less duplication. As an example,
suppose that in the first pass of cut selection, the mapping solution shown in
Figure 13.3(a), with four LUTs, is selected. In the second pass, the LUT con-
taining v and u1 is excluded from consideration for u1. This exclusion will also
encourage the selection of the cut that results in the LUT containing a for u1.
As a result, the mapping algorithm generates, in the second pass, the mapping
solution in Figure 13.3(b), with only three LUTs. Experimental results show that
PRAETOR can significantly improve area over previous algorithms.

The IMap algorithm proposed by Manohararajah et al. [55] is another map-
ping algorithm targeting area optimization. It introduced two enhancements: (1)
iteration between cut ranking and cut selection multiple times, and (2) adjust-
ment of the area costs between successive iterations using history information.
In the effective area formula (equation 13.2), the fanout count of u in the initial
network, |output(u)|, is used to estimate the fanout count of the LUT rooted at u
in the mapping solution. In the IMap algorithm between iterations, the fanout

av

u2 u1

av

u2 u1

K 5 3

(a) (b)

FIGURE 13.3 � Effect of excluding cuts across nonduplicable nodes: (a) initial mapping solution,
and (b) improved solution with better area.

282 Chapter 13 � Technology Mapping

count estimation is updated by using a weighted combination of the estimated
and the real fanout counts in previous iterations. As a result, equation 13.2
becomes a (c) =

(

Σu∈c
[

a (u) /estimated_ fc (u)
])

+Ac, where estimated_ fc (u) denotes
the estimated fanout count for the current iteration.

Ling et al. [54] proposed a mixed structural and functional area-mapping
algorithm that starts with a mapping solution (e.g., generated by a structural
mapping algorithm). The key idea is a Boolean satisfiability (SAT) formulation
for the problem of mapping a small circuit with up to ten inputs into the smallest
possible number of LUTs. The algorithm iteratively selects a small logic cone to
remap to fewer LUTs using an SAT solver. It is shown that for some highly
structured (albeit small) designs, area can be improved significantly.

Most area optimization techniques are heuristic. A natural question is how
close the mapping solutions obtained using existing mapping algorithms are
from optimal. Cong and Minkovich [24] constructed a set of designs with known
optimal area-mapping solutions, called LEKO (logic synthesis examples with
known optimal bounds) examples, and tried existing academic algorithms and
commercial tools on them. The average gap from optimal varied from 5 to
23 percent. From LEKO examples, they further derived LEKU (logic synthe-
sis examples with known upper bounds) examples that require both logic opti-
mization and mapping. Existing algorithms perform poorly on LEKU examples,
with an average optimality gap of more than 70 times. This indicates that more
research is needed in area-oriented mapping and optimization.

13.1.3 Performance-driven Mapping
The FlowMap algorithm and its derivatives can find a mapping solution with
optimal depth. Recent advances in delay mapping focus on achieving the best
performance with minimal area.

Exact layout information is not available during technology mapping in a
typical FPGA design flow. Mapping algorithms usually ignore routing delays and
try to optimize the total cell delays on the longest combinational paths in the
mapping solution.

Most delay optimal mapping algorithms use the labeling scheme introduced
in the FlowMap algorithm to rank and select cuts. The label of a PI is set to
zero, assuming that the signal arrives at the beginning of the clock edge. After
the labels for all the nodes in the fanin cone of a node v are found, the label of
a cut c of v is determined using the formula in equation 13.3:

l (c) = max{l (u) + Dc|∀u ∈ c} (13.3)

where Dc is the delay of the LUT corresponding to c. Intuitively, l(c) is the best
arrival time at v if it is covered using the LUT generated from c. The label of v
is then the smallest label among all of its cuts: l(v) = min{l(c)|∀c ∈ Φ(v)}.

DAOmap [9] is a mapping algorithm that guarantees optimal delay while at
the same time minimizing the area. It introduces three key techniques to opti-
mize area without degrading timing. First, it enhances effective area computation
to make it better avoid node duplication. Second, it applies area optimization

13.1 Structural Mapping Algorithms 283

techniques on noncritical paths. Last, it uses an iterative cut selection procedure
to explore and perturb the solution space to improve solution quality.

DAOmap first picks cuts with the minimum label for each node. From those, it
then picks one with minimum effective area. Furthermore, when there is positive
slack, which is the difference between required time and arrival time at a node,
it picks a cut with as small an area cost as possible under the condition that the
timing increase does not exceed the slack.

Recognizing the heuristic nature of effective area computation, DAOmap also
employs the technique of multiple passes of cut selection. Moreover, it adjusts
area costs based on input sharing to encourage using nodes that have already
been contained in selected cuts. This reduces the chance that a newly picked
cut cuts into the interior of existing LUTs. Between successive iterations of cut
selection, DAOmap also adjusts area cost to encourage selecting cuts containing
nodes with a large number of fanouts in previous iterations. There are a few
other secondary techniques used in DAOmap. The interested reader is referred
to Chen and Cong [9] for details.

Based on the results reported, DAOmap can improve the area by about
13 percent on a large set of academic and industrial designs while maintaining
optimal depths. It is also many times faster than previous mapping algorithms
based on max-flow computation, mainly because of efficient implementation of
cut enumeration.

A recent delay optimal mapping algorithm introduced several techniques to
improve area while preserving performance [57]. Like DAOmap, this algorithm
goes through several passes of cut selection, with each pass selecting cuts with
better areas among the cuts that do not degrade timing. It is also based on
the concept of effective area (or area flow). However, it does cut selection from
PIs to POs instead of from POs to PIs, as in most other algorithms. With this
processing order, the algorithm tries to use timing slacks on nodes close to
PIs to reduce area cost. This is based on the observation that logic is typically
denser when close to PIs, so slack relaxation is more effective for nodes closer to
PIs. Experimental data shows 7 percent better area over DAOmap for the same
optimal depths.

13.1.4 Power-aware Mapping
Power has become a major concern for FPGAs [51, 68]. Dynamic power dissi-
pation in FPGAs results from charging and discharging capacitances. It is deter-
mined by the switching activities and the load capacitance of the LUT outputs
and can be captured by equation 13.4:

P =
1
2

ΣvCv · fv ·V2 (13.4)

where Cv is the output load capacitance of node v, fv is the switching activ-
ity of node v, and V is the supply voltage. Given a fixed supply voltage, power
consumption in a mapped netlist is determined by switching activities and load
capacitance of the LUT outputs.

284 Chapter 13 � Technology Mapping

Because technology mapping for power is NP-hard [34], a number of heuristic
algorithms have been proposed. Most power-aware mapping algorithms try to
reduce switching activities by hiding nodes with high switching activities inside
LUTs, hence leaving LUTs with small output-switching activities in the mapped
netlist.

Anderson and Najm [2] proposed a mapping algorithm to reduce switch-
ing activities and minimize logic duplication. Logic duplication is necessary
to optimize timing and area, but can potentially increase power consump-
tion. The algorithm uses the following power-aware cost function to rank cuts:
Cost (c) = l (c)+β ·P(c) + γ ·R (c), where l (c) is the depth label of the cut c as given
in equation 13.3 and P(c) and R (c) are the power and replication costs of the
cut, respectively. The weighting factors β and γ can be used to bias the three
cost terms. Anderson and Najm suggest a very small β to get a depth-optimal
mapping solution with minimal power.

Power cost P(c) is defined in such a way that it encourages absorbing high-
activity connections inside LUTs. The replication cost tries to discourage logic
duplication on timing noncritical paths. Power savings of over 14 percent were
reported over timing-oriented mapping algorithms when both targeted optimal
depths. When the mapping depth was relaxed by one level over optimal, addi-
tional power reduction of about 8 percent for 4-LUTs and 10 percent for 5-LUTs
was reported.

One serious limitation of the power-based ranking in Anderson and Najm
[2] is that it cannot account for multiple fanouts and reconvergence, which
are common in most practical designs. Chen et al. [8] proposed a low-power
technology-mapping algorithm based on an improved power-aware ranking in
equation 13.5:

P(c) = (Σu∈c [P(u) /|output (u) |]) + Uc (13.5)

where Uc is a cost function that tries to capture power contributed by the
cut c itself. Experimental results show that this algorithm outperforms previ-
ous power-aware mapping algorithms. It has also been extended to handle dual
supply voltage FPGA architectures.

13.2 INTEGRATED MAPPING ALGORITHMS

Technology mapping is a step in the middle of an FPGA design flow. Technology-
independent optimization is carried out before mapping; placement is carried
out after. Sequential optimization such as retiming can be carried out before or
after mapping. A separate approach can miss the best overall solutions even if we
can solve each individual step optimally. In the section that follows we discuss
mapping algorithms that combine mapping with other steps in the design flow.

13.2.1 Simultaneous Logic Synthesis, Mapping
Technology-independent Boolean optimizations carried out prior to technol-
ogy mapping can significantly impact the mapping solution. During technology-
independent optimization, we have the freedom to change the network structures,

13.2 Integrated Mapping Algorithms 285

but accurate estimation of their impact on mapping is not available. During
technology mapping, we can achieve optimal or close to optimal solutions using
the algorithms discussed in Section 13.1. However, we are stuck with a fixed net-
work. It is desirable to capture the interactions between logic optimization and
mapping to arrive at a solution with better quality.

Lossless synthesis has been proposed by Mishchenko et al. [57] as a way to con-
sider technology-independent optimization during mapping. It is based on the
concept of choice networks, which is similar to the concept of mapping graphs
[11, 49]. A choice network contains choice nodes that encode functionally equiva-
lent but structurally different alternatives. The algorithm operates on a simple yet
powerful data structure called AIG, which is a network of AND2 and INV gates.
A combination of SAT and simulation techniques is used to detect functionally
equivalent points in different networks and compress them to form one choice
network.

Figure 13.4 illustrates the construction of a network with choices from two
equivalent networks with different structures. The nodes x1 and x2 in the two
networks are functionally equivalent. They are combined in an equivalence class
in the choice network, and an arbitrary member (x1 in this case) is set as the
class representative. Note that p does not lead to a choice because its implemen-
tation is structurally the same in both networks. Similarly, o does not lead to a
choice node.

Rather than try to come up with one “good” optimized network before map-
ping, the algorithm proposed by Mishchenko et al. [57] accumulates choices
by combining intermediate networks seen during logic synthesis to generate
a network with many choices. In a sense, it does not make judgments on the
goodness of the intermediate networks but defers that decision to the mapping
phase, when the best combination of these choices is selected. In the final map-
ping solution, different sections may come from different intermediate networks.
For example, the timing-critical sections of the final mapping solution may come

a b c d e

p

s

x2

o

a b c d e

p

q r

x1

o

x1 x2

a b c d e

p

q r s

o

FIGURE 13.4 � Combining networks to create a choice network.

286 Chapter 13 � Technology Mapping

from networks optimized for timing, while the timing noncritical sections of the
final mapping solution may come from networks optimized for area.

For mapping on choice networks, cut generation and cut ranking are extended
to choice nodes. For example, the set of cuts of a choice node is simply the
union of the sets of cuts of all of that node’s fanin nodes. Similarly, the label of
a choice node is the smallest one among the labels of its fanin nodes. The rest of
the approach is similar to a conventional mapping algorithm. Results reported
by Mishchenko et al. [57] show that both timing and area can be improved by
over 7 percent on a set of benchmark designs compared to applying mapping
to just one “optimized” network.

13.2.2 Integrated Retiming, Mapping
Retiming (discussed in Chapter 18) is an optimization technique that relocates
flip-flops (FFs) in a network while preserving functionality of the network [50].
Retiming can shift FF boundaries and change the timing. If retiming is applied
after mapping, mapping may optimize the wrong paths because the critical
paths seen during mapping may not be critical after the FFs are repositioned.
On the other hand, if retiming is applied before mapping, it will be carried out
using less accurate timing information because it is applied to an unmapped
network. In either approach, the impact of retiming on cut generation cannot
be accounted for.

The network in Figure 13.5(a) is derived from the design in Figure 13.1(a) by
retiming the FFs at the outputs of y and i to their inputs. After the retiming,
all gates can be covered with one 3-LUT, as indicated in (a). The corresponding
mapping solution is shown in (b). This mapping solution is obviously better
than the one in Figure 13.1(c) in both area and timing.

Pan and Liu [63] proposed a polynomial time-mapping algorithm that can
find a solution with the best cycle time in the combined solution space of

(a) (b) (c)

o

a b

o

LUT LUT

a b

o

z

a b

x y

i

FIGURE 13.5 � Retiming, mapping: (a) retiming and covering, (b) mapping solution, and
(c) retimed solution.

13.2 Integrated Mapping Algorithms 287

retiming and mapping. In other words, the solution obtained is the best among
all possible ways of retiming and mapping a network. Improved algorithms were
later proposed that significantly reduce runtime while preserving the optimal-
ity of the final mapping solution [25, 27]. These algorithms, like the FlowMap
algorithm, are all based on max-flow computation.

A cut enumeration-based algorithm for integrated retiming and mapping was
proposed by Pan and Lin [61]. In it, cut generation is extended to go across FF
boundaries to generate sequential cuts. In a network with FFs, a gate may go
through zero or more FFs in addition to logic gates before reaching gate v. To
capture this information, an element in a cut for a node v is represented as a
pair consisting of the driving node u and the number of FFs d on the paths from
u to v, denoted by ud. Note that one node may reach another node through paths
with different FF counts. In that case, the node will appear in the cut multiple
times with different values of d. For example, for the cone in Figure 13.5(a),
the corresponding cut is {z1, a1, b1}. Pan and Lin [61] suggested an iterative
procedure to determine the sequential cuts for all nodes.

To consider retiming effect, the concept of labels is extended using sequential
arrival times [62, 63]. The label of a cut c is now defined as follows:

l (c) = max{l (u)−d ·φ +Dc|∀ud ∈ c} (13.6)

where φ is the target cycle time and Dc is the delay of the LUT corresponding to
c. The combinationl cut formula (equation 13.3) can be viewed as a special case
of equation 13.6 when d = 0. As in combinational mapping algorithms, the label
of a gate v is the minimum of the labels of its cuts: l(v) = min{l(c)|∀c ∈ Φ(v)}.
The label of each PI is zero, and the label for each PO is that of its driver.

Pan and Lin’s algorithm finds the labels for cuts and nodes through succes-
sive approximation by going through the nodes in the initial network in passes.
After the labels for all nodes are computed and the target cycle time is deter-
mined to be achievable, the next step is to generate a mapping solution. As in
the combinational case, a mapped network is constructed starting from POs
and going backward. At each node v, the algorithm selects one of the cuts that
realize the node’s label and then moves on to select a cut for u if ud is in the
cut selected for v. On the interconnection from u to v, d FFs are inserted. To
obtain the final mapping solution with a cycle time of φ, the algorithm retimes
the LUT for each non-PI/PO node v by �l(v)/φ�− 1. For the initial network in
Figure 13.1(a), the final mapping solution with optimal cycle time generated by
the algorithm is shown in Figure 13.5(c). Experimental results show that the
algorithm is very efficient and consistently produces mapping solutions with
better performance than combinational depth optimal mapping followed by
optimal retiming.

13.2.3 Placement-driven Mapping
One drawback of the conventional mapping flow is the lack of accurate tim-
ing information on interconnects. Most algorithms use logic depth to measure
timing. However, optimal-depth mapping solutions may not always be good

288 Chapter 13 � Technology Mapping

after placement. To overcome this problem, we need to combine mapping with
placement so that mapping can see more accurate interconnect information.

A number of algorithms try to carry out placement and mapping simultane-
ously [3, 6, 53, 59, 69]. For example, the MIS-pga algorithm of Murgai et al. [59]
performs iterative logic optimization and placement. Chen et al. [6] proposed an
algorithm that tightly couples technology mapping and placement by mapping
each cell and placing it at the same time. In practice, such integrated approaches
suffer a serious limitation: Because of the complexity of the combined problem,
simple mapping, placement techniques are employed. As a result, the benefit of
the combined approach is diminished.

Another approach is to iterate between mapping and placement (or place-
ment refinement). Here, the design is first mapped and placed. Then the netlist
is back-annotated and remapped under the given placement. This process can
be repeated until a satisfactory solution is found. Figure 13.6 outlines the major
steps in the iterative mapping and placement algorithm proposed by Lin et al.
[53]. The key step is placement-driven remapping. The remapping step may
make the placement illegal—for example, it may place more than one cell at the
same location. If this happens, the placement needs to be legalized and refined.

Lin et al.’s algorithm [53] uses table lookup to estimate interconnect delays
based on placement locations. Given two locations, it looks up the estimated
delay in a prestored table for the wiring between the two locations. This is more
accurate and realistic than the “fixed” interconnect delays used in earlier layout-
based mapping algorithms [56, 72].

Technology-independent
logic optimization

Initial technology mapping
and placement

Logic decomposition into
2-input gates

Placement-driven
technology (re)-mapping

Placement legalization
and refinement

FIGURE 13.6 � Iterative mapping, placement.

13.3 Mapping Algorithms for Heterogeneous Resources 289

One difficulty in placement-driven mapping is that the placement may not
become legal because of cell overlaps. Another is that timing predicted in the
labeling phase may be unrealizable because of congestion in the new mapping
solution. Congestion means that many LUTs are assigned to a small region,
which requires many cell relocations to legalize the placement, which in turn,
perturbs the placement and eventually the timing. To overcome this problem,
the algorithm employs an iterative process with multiple passes of cut selection.
Each pass uses the cell congestion information gathered during previous iter-
ations to guide the mapping decisions. Several techniques have been proposed
to relieve congestion. One is a hierarchical area control scheme to evaluate the
local congestion cost, in which the chip is divided into bins with different gran-
ularities. Area increase is tallied in bins, and penalty costs are given to bins with
area overflows.

Once a mapping solution is generated, the algorithm invokes timing-driven
legalization that moves overlapping cells to empty locations in their neigh-
borhood based on the timing slack available to the cells. Finally, a simulated
annealing-based placement refinement phase is carried out to improve perfor-
mance. Experimental results show that the algorithm can improve timing by
more than 12 percent, with minimal area penalty due to remapping.

13.3 MAPPING ALGORITHMS FOR HETEROGENEOUS RESOURCES

Up to this point, we have assumed that all logic cells are LUTs with a uniform
input size K. In reality, commercial FPGA architectures contain heterogeneous
resources (e.g., LUTs of different input sizes, embedded memory, and PLA-like
logic cells). We briefly summarize mapping algorithms that target or take advan-
tage of such architectural features.

13.3.1 Mapping to LUTs of Different Input Sizes
There are a number of commercial FPGA architectures that support LUTs with
multiple input sizes on the same device. Mapping algorithms have been pro-
posed to optimize area [29, 39, 40, 43] and timing [30, 32].

In the special case of tree networks, Korupolu et al. [43] presented a poly-
nomial area optimal algorithm. For general networks, the PRAETOR algorithm
discussed in Section 13.1.2 can be applied to these architectures by assigning
different area costs for LUTs with different input sizes.

For timing optimization, the algorithm proposed by Cong and Xu [30] is an
extension of FlowMap. Like FlowMap, it is also based on flow computation and
can be cast in the cut enumeration framework. Assume that there are two types
of LUTs with input sizes K1 and K2, and delays d1 and d2, where K1 < K2, d1 < d2.
We can enumerate all K2-cuts. When labeling a cut, we can set its delay to d1
or d2 depending on its size. With this simple modification, an algorithm for
homogeneous LUT architectures can be used for architectures with different
LUT sizes.

290 Chapter 13 � Technology Mapping

When there are resource bounds on available LUTs of different sizes, the
mapping problem becomes NP-hard. Assuming that there can be at most r
K2-LUTs, a heuristic algorithm was proposed that starts out by finding a map-
ping solution without considering resource bounds [31]. If the current mapping
solution meets the resource bound, it stops. If not, it increases d2, the delay
of K2-LUTs, and solves the unconstrained version again, which should lead to
another mapping solution with a decreased number of K2-LUTs. This process is
repeated until the resource bound is met.

13.3.2 Mapping to Complex Logic Blocks
FPGA devices typically contain additional logic that, together with LUTs, can
form complex programmable logic blocks (PLBs). PLBs can implement complex
logic functions. Figure 13.7 shows two PLBs that consist of LUTs and logic gates
and can implement functions of up to nine inputs.

A simple approach to PLB mapping is to map the initial network to the
constituent cells inside the PLBs. For example, for a device with the PLB in
Figure 13.7(a), we can first map the initial network to 3-LUTs and 4-LUTs. After-
wards, the LUTs are clustered to obtain a network of PLBs. Such a two-step
approach is obviously suboptimal.

Recent approaches try to map directly to PLBs [13, 23, 47, 65]. The cut enu-
meration framework can still be used after enhancements. Because a PLB can
have more inputs than a typical LUT, a node may have too many cuts. Intelli-
gent cut pruning, using techniques such as those proposed by Chatterjee et al.
[5] and Ling et al. [54], is necessary to avoid long runtime and memory explo-
sion. Unlike in the case of LUTs, a PLB has limited functional capability in that
it cannot implement all of the functions of its inputs. For example, the PLB in
Figure 13.7(b) can implement all functions of up to five inputs, but it can only
implement some of the functions with six inputs. An essential step in PLB map-
ping is Boolean matching, which, given a cut, decides if the corresponding logic
cone can be implemented by a PLB.

(a) (b)

4-LUT

3-LUT

4-LUT

4-LUT

4-LUT

1
MUX
0

FIGURE 13.7 � Two PLB examples.

13.3 Mapping Algorithms for Heterogeneous Resources 291

Algorithms for Boolean matching for PLBs can be classified into two
categories: decomposition based [13, 23] and satisfiability (SAT) based
[25, 54, 65]. Decomposition-based Boolean matching tries to decompose the
input function according to the structure of the target PLB using functional
decomposition. Cong and Hwang [23] proposed matching procedures for a wide
variety of common PLBs.

A drawback of decomposition-based Boolean matching is that each PLB
needs a specialized matching procedure. Decomposition-based Boolean match-
ing can also be slow and memory intensive because of extensive use of BDD
operations. On the other hand, SAT-based Boolean matching encodes the func-
tion, the target PLB, and their matching in a Boolean expression in conjunctive
normal form (CNF). Then it leverages an efficient SAT solver (e.g., the one pro-
posed by Moskewicz et al. [58]) to check whether the PLB can be configured
to implement the function. The size of the CNF expression can have signifi-
cant impact on the runtime of an SAT-based matching algorithm. An improved
SAT formulation with smaller expressions was proposed recently by Cong and
Minkovich [25].

13.3.3 Mapping Logic to Embedded Memory Blocks
On-chip memory has become a common feature of high-performance FPGAs.
Dedicated embedded memory blocks (EMBs) can be used to improve clock fre-
quencies and lower costs for large designs that require memory. If a design does
not need all the available EMBs, unused ones can be employed to implement
logic, which essentially turns them into large multi-input multi-output LUTs.

EMBs usually have configurable widths and depths, so they can be used to
implement functions with different numbers of inputs/outputs. For example, a
2K-bit memory with configurations 2048×1, 1024×2, and 512×4 can be used
to implement an 11-input/1-output, 10-input/2-output, or 9-input/4-output logic
function, respectively.

Mapping logic to EMBs is typically done as a postprocessing step after LUT
mapping. These algorithms start with an optimized LUT-mapping solution and
then pack groups of LUTs into unused EMBs [26, 70]. The SMAP algorithm
[70] maps one EMB at a time. It begins by selecting a seed node. A fanin cone
of the seed node is generated by finding a d-feasible cut that covers as many
nodes as possible, where d is the bit width of the address line of the target
EMB. Because d is considerably large, flow-based cut generation is used. After
the cone is generated, the output selection process selects signals to be the EMB
outputs. Output selection tries to select a set of signals so that the resulting EMB
can eliminate as many LUTs as possible. This is done by assigning each node a
score that reflects the number of eliminated nodes if the node is selected. The w
highest-scoring nodes are selected as the EMB outputs, where w is the number
of outputs of the target EMB.

The selection of the seed node is critical for this method. The algorithm tests
each candidate node and selects the one that leads to the maximum number of

292 Chapter 13 � Technology Mapping

eliminated LUTs. Heuristics were introduced to consider EMBs with different
configurations and to preserve timing.

Another algorithm, EMB Pack, proposed by Cong and Xu [26], takes a
slightly different approach. It finds the logic to map to EMBs altogether instead
of one at a time, as in SMAP, which can potentially find better mapping.

13.3.4 Mapping to Macrocells
Complex programmable logic devices (CPLDs) are a class of programmable logic
devices that are more coarse grained than typical FPGAs. Each CPLD logic cell
(called Pterm block) is essentially a programmable logic array (PLA) that con-
sists of a set of product terms (Pterms) with multiple outputs. A Pterm block
can be characterized by a 3-tuple (k,m,p) where k is the number of inputs, p is
the number of outputs, and m is the number of Pterms for the block. The input
size k is typically much larger than that of FPGA logic cells.

Relatively speaking, there is much less mapping work reported for CPLDs.
A fast heuristic partition method for PLA-based structures was presented by
Hasan et al. [38]. The DDMap algorithm [42] adapts a LUT mapper for CPLD
mapping. It uses wide cuts to form big LUTs and decomposes the big LUTs into
Pterms allowed in the target CPLD. Packing is used to form multi-output Pterm
cells. An area-oriented mapping algorithm was proposed for CPLDs by Anderson
and Brown [1]. Cong et al. [20] investigated an FPGA architecture consisting of
single-output Pterm blocks, and proposed a timing-oriented mapping algorithm.

PLAmap is a timing-oriented mapping algorithm for CPLDs [7]. Like the LUT
mapping algorithms discussed earlier, it has a labeling phase and a mapping
phase. In the labeling phase, it tries to find the minimal mapping depth for each
node using a logic cell (k, m, 1)—that is, a single-output Pterm block, assuming
that each logic cell has one unit delay. The labeling procedure is based on Lawler
et al.’s clustering algorithm [46]. Let l be the largest label of the nodes in the
fanin cone of a node. The algorithm forms a cluster for the node by grouping
it with all nodes in its fanin cone with the label l. If the cluster can be imple-
mented by a (k, m, 1) cell, the node is assigned the label l; otherwise, the node
gets the label l + 1 with a cluster consisting of the node itself. Note that this is
a heuristic in that the label may not be the best because of the so-called non-
monotone property [7]. The mapping phase is done in reverse topological order
from the POs. The algorithm tries to merge the clusters generated in the labeling
phase to form (k, m, p) cells whenever possible. Cluster merging is done in such
a way that duplication is minimized and the labels of the POs do not exceed
the performance target. Experimental results show that PLAmap outperforms
commercial tools and other algorithms with no (or a very small) area penalty.

Pterm blocks or macrocells are suitable for implementing wide-fanin, low-
density logic, such as finite-state machines. They can potentially complement
fine-grained LUTs to improve both performance and utilization. Device archi-
tectures with a mixture of LUTs and Pterm blocks or macrocells have been sug-
gested to take advantage of different types of logic cells. Technology mapping
algorithms have been proposed for such hybrid architectures [41, 42, 44].

13.4 Summary 293

13.4 SUMMARY

This chapter discussed technology mapping algorithms for FPGAs. Emphasis
was placed on state-of-the-art algorithms that have been, or most likely will be,
reduced to practice. We discussed mapping algorithms for different objectives,
such as area, timing, and power, as well as mapping algorithms that take advan-
tage of heterogeneous resources in modern FPGA devices.

FPGA technology mapping has been and continues to be a subject of active
research. A general trend is to integrate technology mapping with other steps
in the FPGA design flow to improve the quality of final implementations (e.g.,
combining mapping and clustering [10]).

As semiconductor technologies advance, new FPGA architecture features are
being introduced to improve area utilization, performance, and power consump-
tion. For example, architectures have been introduced or proposed that use large
LUTs (much larger than traditional 4-/5-LUTs) or multiple supply voltages. New
mapping techniques are being developed to take advantage of these architecture
features.

References
[1] J. H. Anderson, S. D. Brown. Technology mapping for large complex PLDs.

ACM/IEEE Design Automation Conference, 1998.
[2] J. H. Anderson, F. N. Najm. Power-aware technology mapping for LUT-based

FPGAs. IEEE International Conference on Field-Programmable Technology, 2002.
[3] N. Bhat, D. D. Hill. Routable technology mapping for LUT FPGAs. IEEE Interna-

tional Conference on Computer Design, 1992.
[4] S. C. Chang, M. Marek-Sodowska, T. Hwang. Technology mapping for LUT

FPGA based on decomposition of binary decision diagrams. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 15(10), October 1996.

[5] S. Chatterjee, A. Mishchenko, R. Brayton. Factor cuts. International Conference on
Computer-Aided Design, 2006

[6] C. Chen, Y. Tsay, Y. Hwang, T. Wu, Y. Lin. Combining technology mapping,
placement for delay-optimization in FPGA designs. International Conference on
Computer-Aided Design, 1993.

[7] D. Chen, J. Cong, M. Ercegovac, Z. Huang. Performance-driven mapping for CPLD
architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 22(10), October 2003.

[8] D. Chen, J. Cong, F. Li, L. He. Low-power technology mapping for FPGA architec-
tures with dual supply voltages. International Symposium on Field-Programmable
Gate Arrays, February 2004.

[9] D. Chen., J. Cong. DAOmap: A depth-optimal area optimization mapping algorithm
for FPGA designs. International Conference on Computer-Aided Design, 2004.

[10] D. Chen, J. Cong, J. Lin. Optimal simultaneous mapping, clustering for FPGA delay
optimization. ACM/IEEE Design Automation Conference, 2006.

[11] G. Chen, J. Cong. Simultaneous logic decomposition with technology mapping in
FPGA designs. International Symposium on Field-Programmable Gate Arrays, 2001.

294 Chapter 13 � Technology Mapping

[12] K. C. Chen, J. Cong, Y. Ding, A. B. Kahng, P. Trajmar. DAGmap: Graph-based FPGA
technology mapping for delay optimization. IEEE Design and Test of Computers
9(3), September 1992.

[13] M. Chikodikar, S. Laddha, A. Sirasao. A technology mapper for Xilinx FPGAs. Tenth
International Conference on VLSI Design, January 1997.

[14] J. Cong, Y. Ding. An optimal technology-mapping algorithm for delay optimization
in lookup table–based FPGA designs. International Conference on Computer-Aided
Design, November 1992.

[15] J. Cong, Y. Ding. Beyond the combinatorial limit in depth minimization for LUT-
based FPGA designs. International Conference on Computer-Aided Design, 1993.

[16] J. Cong, Y. Ding. FlowMap: An Optimal technology-mapping algorithm for delay
optimization in lookup table–based FPGA designs. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 13(1), January 1994.

[17] J. Cong, Y. Ding. On area/depth trade-off in LUT-based FPGA technology mapping.
IEEE Transactions on VLSI Systems 2(2), 1994.

[18] J. Cong, Y. Ding. Combinational logic synthesis for LUT-based field-programmable
gate arrays. ACM Transactions on Design Automation of Electronic Systems 1(2),
April 1996.

[19] J. Cong, Y. Ding. T. Gao, K. C. Chen. LUT-base, FPGA technology mapping under
arbitrary net-delay model. Computers and Graphics 18(4), 1994.

[20] J. Cong, H. Huang, X. Yuan. Technology mapping and architecture evaluation for
k/m-macrocell-based FPGAs. ACM Transactions on Design Automation of Electronic
Systems, January 2005.

[21] J. Cong, Y. Hwang. Simultaneous depth and area minimization in LUT-based
FPGA mapping. International Symposium on Field-Programmable Gate Arrays,
February 1995.

[22] J. Cong, Y. Hwang. Structural gate decomposition for depth-optimal technology
mapping in LUT-based FPGA design. Design Automation Conference, 1996.

[23] J. Cong, Y. Hwang. Boolean matching for LUT-based logic blocks with applica-
tions to architecture evaluation and technology mapping. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 20(9), 2001.

[24] J. Cong, K. Minkovich. Optimality study of logic synthesis for LUT-based FPGAs.
International Symposium on Field-Programmable Gate Arrays, February 2006.

[25] J. Cong, K. Minkovich. Improved SAT-based Boolean matching using implicants for
LUT-based FPGAs. International Symposium on Field-Programmable Gate Arrays,
February 2007.

[26] J. Cong, S. Xu. Technology mapping for FPGAs with embedded memory blocks.
International Symposium on Field-Programmable Gate Arrays, 1998.

[27] J. Cong, C Wu. FPGA Synthesis with retiming and pipelining for clock period
minimization of sequential circuits, Design Automation Conference, 1997.

[28] J. Cong, C Wu. Optimal FPGA mapping, retiming with efficient initial state com-
putation. Design Automation Conference, 1998.

[29] J. Cong, C. Wu, Y. Ding. Cut ranking and pruning: Enabling a general, efficient
FPGA mapping solution. International Symposium on Field-Programmable Gate
Arrays, February 1999.

[30] J. Cong, S. Xu. Delay-optimal technology mapping for FPGAs with heterogeneous
LUTs. Design Automation Conference, 1998.

[31] J. Cong, S. Xu. Delay-oriented technology mapping for heterogeneous FPGAs with
bounded resources. International Conference on Computer-Aided Design, 1998.

13.4 Summary 295

[32] J. Cong, S. Xu. Performance-driven technology mapping for heterogeneous FPGAs.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
19(11), November 2000.

[33] G. De Micheli. Synthesis: Optimization of Digital Circuits, McGraw-Hill, 1994.
[34] A. H. Farrahi, M. Sarrafzadeh. FPGA technology mapping for power minimization.

International Workshop on Field-Programmable Logic and Applications, 1994.
[35] A. Farrahi, M. Sarrafzadeh. Complexity of the lookup-table minimization problem

for FPGA technology mapping. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 13(11), November 1994.

[36] R. J. Francis et al. Chortle-CRF: Fast technology mapping for lookup table–based
FPGAs. Design Automation Conference, 1991.

[37] R. J. Francis, J. Rose, Z. Vranesic. Technology mapping for lookup table–based
FPGAs for performance. International Conference on Computer-Aided Design,
November 1991.

[38] Z. Hasan, D. Harrison, M. Ciesielski. A fast partition method for PLA-based FPGAs.
IEEE Design and Test of Computers, December 1992.

[39] J. He, J. Rose. Technology mapping for heterogeneous FPGAs. International
Symposium on Field-Programmable Gate Arrays, 1994.

[40] M. Inuani, J. Saul. Resynthesis in technology mapping for heterogeneous FPGAs.
International Conference on Computer-Aided Design, 1998.

[41] A. Kaviani, S. Brown. Technology-mapping issues for an FPGA with lookup tables,
PLA-like blocks. International Symposium on Field-Programmable Gate Arrays, 2000.

[42] J. L. Kouloheris. Empirical Study of the Effect of Cell Granularity on FPGA Density,
Performance, Ph.D. thesis, Stanford University, 1993.

[43] M. R. Korupolu, K. K. Lee, D. F. Wong. Exact tree-based FPGA technology mapping
for logic blocks with independent LUTs. Design Automation Conference, 1998.

[44] S. Krishnamoorthy, R. Tessier. Technology-mapping algorithms for Hybrid FPGAs
containing lookup tables, PLAs. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 22(5), May 2003.

[45] J. Lamoureux, S. J. E. Wilton. On the interaction between power-aware FPGA CAD
algorithms. IEEE International Conference on Computer-Aided Design, November
2003.

[46] E. L. Lawler, K. N. Levitt, J. Turner. Module clustering to minimize delay in digital
networks. Transactions on Computers 18(1), 1969.

[47] K. Lee, D. Wong. An exact tree-based, structural technology-mapping algorithm
for configurable logic blocks in FPGAs. International Conference on Computer-Aided
Design, 1999.

[48] C. Legl, B. Wurth, K. Eckl. A Boolean approach to performance-directed
technology mapping for LUT-based FPGA designs. Design Automation Conference,
June 1996.

[49] E. Lehman, Y. Watanabe, J. Grodstein, H. Harkness. Logic decomposition during
technology mapping. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 16(8), 1997.

[50] C. E. Leiserson, J. B. Saxe. Retiming synchronous circuitry. Algorithmica 6, 1991.
[51] F. Li, D. Chen, L. He, J. Cong. Architecture evaluation for power-efficient FPGAs.

International Symposium on Field-Programmable Gate Arrays, February 2003.
[52] H. Li, S. Katkoori, W. K. Mak. Power minimization algorithms for LUT-based FPGA

technology mapping. ACM Transactions on Design Automation of Electronic Systems
9(1), January 2004.

296 Chapter 13 � Technology Mapping

[53] J. Lin, A. Jagannathan, J. Cong. Placement-driven technology mapping for
LUT-based FPGAs. International Symposium on Field-Programmable Gate Arrays,
February 2003.

[54] A. Ling, D. Singh, S. Brown. FPGA technology mapping: A study of optimality.
Design Automation Conference, 2005.

[55] V. Manohararajah, S. D. Brown, Z. G. Vranesic. Heuristics for area minimization
in LUT-based FPGA technology mapping. International Workshop on Logic
Synthesis, 2004.

[56] A. Mathur, C. L. Liu. Performance-driven technology mapping for lookup table–
based FPGAs using the general delay model. International Workshop on Field-
Programmable Gate Arrays, February 1994.

[57] A. Mishchenko, S. Chatterjee, R. Brayton. Improvements to technology map-
ping for LUT-based FPGAs. International Symposium on Field-Programmable Gate
Arrays, 2006.

[58] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff: Engineering an
efficient SAT solver. Design Automation Conference, 2001.

[59] R. Murgai et al. Improved logic synthesis algorithms for table lookup architectures.
International Conference on Computer-Aided Design, November 1991.

[60] R. Murgai et al. Performance directed synthesis for table lookup programmable
gate arrays. International Conference on Computer-Aided Design, November 1991.

[61] P. Pan, C. C. Lin. A new retiming-based technology-mapping algorithm for LUT-
based FPGAs. International Symposium on Field-Programmable Gate Arrays, 1998.

[62] P. Pan, C. L. Liu. Technology mapping of sequential circuits for LUT-based FPGAs
for performance. International Symposium on Field-Programmable Gate Arrays,
1996.

[63] P. Pan, C. L. Liu. Optimal clock period FPGA technology mapping for sequential
circuits. Design Automation Conference, June 1996.

[64] P. Pan, C. L. Liu. Optimal clock period FPGA technology mapping for sequential
circuits. ACM Transactions on Design Automation of Electronic Systems 3(3), 1998.

[65] S. Safarpour, A. Veneris, G. Baeckler, R. Yuan. Efficient SAT-based Boolean match-
ing for FPGA technology mapping. Design Automation Conference, July 2006.

[66] P. Sawkar, D. Thomas. Technology mapping for table lookup–based field-
programmable gate arrays. ACM/SIGDA Workshop on Field-Programmable Gate
Arrays, February 1992.

[67] M. Schlag, J. Kong, P. K. Chan. Routability-driven technology mapping for lookup
table–based FPGAs. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 13(1), 1994.

[68] L. Shang, A. Kaviani, K. Bathala. Dynamic power consumption in Virtex-II FPGA
family. International Symposium on Field-Programmable Gate Arrays, February
2002.

[69] N. Togawa, M. Sato, T. Ohtsuki. Maple: A simultaneous technology mapping, place-
ment, and global routing algorithm for field-programmable gate arrays. Interna-
tional Conference on Computer-Aided Design, 1994.

[70] S. Wilton. SMAP: Heterogeneous technology mapping for area reduction in FPGAs
with embedded memory arrays. International Symposium on Field-Programmable
Gate Arrays, 1998.

[71] Z. H. Wang, E. C. Liu, J. Lai, T. C. Wang. Power minimization in LUT-based FPGA
technology mapping. Asia South Pacific Design Automation Conference, 2001.

[72] H. Yang, D. F. Wong. Edge-map: Optimal performance-driven technology mapping
for iterative LUT-based FPGA designs. International Conference on Computer-Aided
Design, November 1994.

FPGA PLACEMENT

One thing that stands out in this book’s contents: While most individual steps
in the compilation flow are covered in a single chapter, placement is covered in
three—Chapters 14 through 16. Placement is actually just the problem of assign-
ing specific logic computations to individual logic blocks in the architecture, so
why does it merit a longer treatment than, say, FPGA routing? There are at least
two reasons.

One reason is historical: Until relatively recently, the placement problem was
small enough that structured approaches were possible. These included hand
placement, which produced higher-quality results than automatic placement. In
contrast, for a problem such as routing, FPGA routers were very fast and effi-
cient, and thus hand-routing was almost never done.

A second reason is that fundamentally different approaches can be taken to
solve the placement problem. Do we view the design as an unstructured pile of
gates to be scattered across the FPGA’s surface, or is there an inherent structure
that can be leveraged? And, if we use the computation’s structure to drive the
placement process, how do we handle portions of the computation, such as
control, that likely do not have such an easily determined structure?

These considerations have given rise to several ways of performing FPGA
placement, which are represented by the three chapters that follow. In Chapter
14 we consider general-purpose FPGA placement. Such systems, using complex
optimization techniques, treat the designer’s circuit as essentially an unstruc-
tured collection of gates. These are packed together into logic blocks and placed
in the array, guided almost exclusively by the design’s local connectivity infor-
mation. Higher-level information, such as the design hierarchy or the regularity
in multibit operations, is largely ignored. Thus, these techniques can handle any
possible placement problem. Moreover, they serve as a good starting point, as
other approaches that rely on more structure in the netlist generally do not work
for unstructured designs, and so there must always be some way for unstruc-
tured netlists to be processed.

Chapter 15 considers datapath placement. Most designs for an FPGA con-
sist of a large, highly structured datapath and a small, unstructured control
system. The datapath is built from multibit function units, such as adders
and multipliers, where the computation is fairly similar for each bit of the
operands. Datapath-oriented placers can automatically leverage this informa-
tion to improve the resulting placement quality.

An alternative to fully automatic placement, whether for random logic or for
datapaths, is to provide ways for the user to guide the placement process. For
example, the user generally knows what portions of the design should be kept

298 FPGA Placement

together, where the critical paths are, and how these critical paths should be
laid out. Chapter 16 considers such systems, in which placement is more a user-
guided process than a fully automated algorithm. Whereas the size of modern
FPGA designs, and the increasing quality of placers, is making this approach
less attractive over time, constructive placement of critical subsystems is still a
valid alternative.

C H A P T E R 14

PLACEMENT FOR GENERAL-PURPOSE
FPGAS

Vaughn Betz
Altera Corporation

Placement follows technology mapping in the CAD flow and chooses a location
for each block in a circuit. This chapter describes “general-purpose” placement
approaches; these techniques can be used with any circuit targeting the com-
mercial field-programmable gate arrays (FPGAs) in widespread use today. After
defining the placement problem and optimization goals, the chapter describes
the clustering algorithms that are frequently used in conjunction with place-
ment tools. Three different classes of placement algorithms are then detailed:
simulated annealing, partition based, and analytic. The chapter concludes with
suggestions for further reading and open challenges in FPGA placement.

14.1 THE FPGA PLACEMENT PROBLEM

An FPGA placement algorithm takes two basic inputs: (1) a netlist specifying the
functional blocks to be implemented and the connections between them, and
(2) a device map indicating which functional unit can be placed at each loca-
tion. The algorithm selects a legal location for each block such that the circuit
wiring is optimized. Figure 14.1 illustrates the FPGA placement problem. Both
the legality constraints and the optimization metric (what constitutes a “good”
arrangement of functional blocks) depend on the FPGA architecture being
targeted.

A good placement is extremely important for FPGA designs—without a high-
quality placement, a circuit generally cannot be successfully routed. Even if the
circuit does route, a poor placement will still lead to a lower maximum operating
speed and increased power consumption. At the same time, finding a good place-
ment for a circuit is a challenging problem. A large commercial FPGA contains
approximately 500,000 functional blocks, leading to approximately 500,000! pos-
sible placements. Exhaustive evaluation of the placement solution space is there-
fore impossible. Furthermore, placement is a computationally hard problem, so
there are no known algorithms that produce optimal results in practical central
processing unit (CPU) time. Consequently, the development of fast and effective
heuristic placement algorithms is a very important research area.

300 Chapter 14 � Placement for General-purpose FPGAs

(a)

(b)

Technology-mapped
netlist

LUT
D

in A in C

G
clk

in B

RAM
E

out

F

I/O

I/O

I/O

I/O

I/O

I/O
I/OI/O

LUT

LUT

LUT

LUT

LUT

LUT
I/O

RAM

RAM

RAM

I/OI/O I/O I/O

DSP
block

I/O I/O

FPGA location map, legality constraints,
and routing architecture

. . .

. . .

Logic
block

A

B
out

G

D F
C

E

clk

. . .

. . .

FIGURE 14.1 � Placement overview: (a) inputs to the placement algorithm, and (b) placement
algorithm output—the location of each block.

14.1.1 Device Legality Constraints
The fact that all resources are prefabricated in an FPGA leads to a variety of
placement legality constraints:

� A legal placement must place a functional block only in a location on
the chip that can accommodate it. For example, a RAM block must be
placed in a RAM location, and a lookup table (LUT) must be placed in
a LUT location.

� Usually there are legality constraints on groups of functional blocks. In
Altera’s Stratix-II FPGAs, for example, a logic block contains 16 LUTs
and 16 registers [1]. However, there are limits on the number of clock
signals, clock enable signals, and routing inputs to the logic block.
Consequently, not every grouping of 16 LUTs and 16 registers constitutes

14.1 The FPGA Placement Problem 301

a legal logic block, and the placement algorithm must ensure that it does
not produce illegal logic blocks.

� Some groups of functional blocks must be placed in a specific relative
orientation so that they can make use of special, dedicated routing
resources. The simplest example of this constraint is arithmetic logic
cells—in order to use the dedicated carry-chain hardware available in
an FPGA, the logic cells forming a carry chain must be placed adjacent
to each other in the sequence required by the carry structure.

� There are other detailed legality constraints, such as a limit on the
number of global clocking resources in each area of the device, which
commercial FPGA placement algorithms must respect.1

14.1.2 Optimization Goals
The basic goal of an FPGA placement algorithm is to locate functional blocks
such that the interconnect required to route the signals between them is mini-
mized. As Figure 14.2 illustrates, the routing required to connect two blocks is
a function not only of the distance between them but also of the FPGA architec-
ture. Figure 14.2(a) shows the wiring required to connect two blocks in different
relative positions in a Stratix-II FPGA. Stratix-II is an island-style FPGA [3] that
contains routing segments that span 4, 16, and 24 logic blocks. Programmable
switches allow routing segments in the same direction (horizontal or vertical)
to be connected at their endpoints to create longer routes. Other programmable
switches allow some horizontal routing segments to connect to vertical routing
segments where they cross and vice versa. In an island-style FPGA, the amount
of wiring required to connect two functional blocks is roughly proportional to
the Manhattan distance between them.

Figure 14.2(b) shows that the wiring required by the same placements in an
FPGA with a hierarchical routing architecture (in this case the Altera APEX
family [4]) is quite different. For hierarchical FPGAs, the amount of wiring
required to connect two functional blocks is proportional to the number of levels
of the routing hierarchy that must be traversed to connect them. Note that even
the ranking of placement choices is different between APEX and Stratix-II—in
Stratix-II placements, A and C are best, while in APEX placements, A and B
are best. Clearly FPGA placement algorithms must have a model of the routing
architecture they target in order to achieve good results.

FPGA placement tools can broadly be divided into routability-driven and timing-
driven algorithms. Routability-driven algorithms try to create a placement that
minimizes the total interconnect required, as this increases the probability of
successfully routing the design. Since FPGA interconnect is prefabricated, the
amount of interconnect in each region of a device is fixed, and a placement
that requires more interconnect in a device region than that region contains
cannot be routed. Consequently, some routability-driven placement algorithms

1 Researchers wishing to target their CAD tools to industrial FPGAs can obtain a full list of the
legality constraints in Altera FPGAs from the Quartus University Interface Program [2].

302 Chapter 14 � Placement for General-purpose FPGAs

C A A

B B

C

1 wire; wirelength: 4 blocks

2 wires; wirelength: 8 blocks

1 w
ire; w

irelength: 4

. . .

. . .

. . .

C A A

B B

C

1 wire; wirelength: 12 blocks

1 wire; wirelength: 12 blocks

2 wires; wirelength: 22 blocks

Wire Programmable switch

Hierarchy
boundary

. . .

. . .

. . .

(a)

(b)

FIGURE 14.2 � Influence of the routing architecture on wirelength for a given placement: (a) sample
routings on a Stratix-II FPGA (island style), and (b) sample routings on an APEX FPGA (hierarchical).

minimize not only the total wiring required by the design but also the amount
of routing congestion. Routing congestion occurs when the interconnect demand
approaches or exceeds the fabricated wiring capacity in some part of the FPGA.

In addition to optimizing for routability, timing-driven algorithms use tim-
ing analysis [5] to identify critical paths and/or connections and to optimize the
delay of those connections. Since most delays in an FPGA are due to the pro-
grammable interconnect, timing-driven placement can achieve a large improve-
ment in circuit speed over routability-driven approaches.

Some recent FPGA placement algorithms attempt to minimize power con-
sumption as well.

14.1.3 Designer Placement Directives
Commercial FPGA placement tools allow designers to control the placement
of some or all of the design logic at various levels of abstraction. Obeying the
placement directives specified by a designer while still choosing good locations

14.1 The FPGA Placement Problem 303

for the unconstrained and partially constrained blocks is a challenging problem,
but one on which little has been published.

Figure 14.3 illustrates the common types of placement directives. The most
restrictive specifies the exact location of a block. Typical uses of this directive are
to lock down the design I/Os at the locations required by the circuit board or to
lock down the elements of a performance-critical intellectual property (IP) core.
A less restrictive directive forces blocks to go into a specific two-dimensional
area, or fixed region. This directive allows a designer to guide the placement tool
to a good high-level floorplan while still allowing automatic optimization of the
placement details. One can specify the relative location of several blocks, but let
the placement tool choose exactly where to locate the block group. This directive
is useful for library components where a designer knows a good placement of
the component blocks relative to each other. A floating region specifies that some
logic should be placed within a tight region but that the placement tool can
choose where that region should be on the device.

One must take care when specifying placement directives, as fixing portions
of the placement ineffectively will reduce result quality versus a fully automatic
placement. Modern placement tools produce high-quality results, and generally

. . .

LUT

LUT

LUT

LUT
RAM

I/O

I/O

LUT

LUT

LUT

LUT
RAM

I/O

I/O

LUT

LUT

LUT

LUT
RAM

I/O

I/O

. . .

I/O

I/O I/O

I/OI/O I/O I/OI/O I/O I/OA

B

C

(a)
Exact

location

A

B

C

(b)
Fixed
region

LUT

I/O

(c)
Relative
location 1 unit wide

x
3 units high

floating
region

A

B

C

(d)
Floating
regionB

A

C

FIGURE 14.3 � Placement directives, ordered from most to least restrictive: (a) exact location,
(b) fixed region, (c) relative location, and (d) floating region.

304 Chapter 14 � Placement for General-purpose FPGAs

it is very difficult for a designer to specify placement directives on irregular logic
that lead to a better solution than the placement tool would find without guid-
ance. Placement directives have more value for regular structures, since humans
are better than conventional CAD tools at recognizing regular logic patterns and
matching them to a highly optimized regular placement. For examples of the use
of placement directives, see Chapter 16.

14.2 CLUSTERING

A common companion to FPGA placement algorithms is a bottom-up cluster-
ing step that runs before the main placement algorithm to group-related circuit
elements together into clusters. Clustering reduces the number of blocks to
place, improving the runtime of the main placement algorithm. In addition, one
normally chooses a cluster size that corresponds to a natural boundary in the
FPGA architecture, such as a logic block. This allows the clustering algorithm to
deal with many of the device legality constraints by ensuring that each cluster
forms a legal logic (or RAM or DSP) block, and it simplifies legality checking
for the main placement algorithm.

The most common FPGA clustering formulation transforms a netlist of logic
elements into a netlist of logic blocks. In most FPGA architectures each logic
element consists of a LUT plus a register, and each logic block has the capacity
to implement up to N logic elements. As well, logic blocks have a limit on the
number of input signals that can be brought in from the programmable routing
and on the number of different control signals, such as register clocks, that can
be used.

The typical clustering goals are:

� To achieve high density by minimizing the number of clusters (i.e.,
logic blocks) required to implement a circuit.

� To improve circuit speed by localizing time-critical connections within
a cluster so they can be completed with fast local routing.

� To reduce wiring demand in the FPGA by grouping related logic in
each cluster.

The RASP system [6] includes one of the first logic block clustering algorithms. It
performs maximum weighted matching on a graph where edge weights between
logic elements reflect the desirability of clustering them. Logic elements that
cannot be legally clustered have no edge between them, while those connected
by timing-critical connections or with a large number of common signals have
edges with high weights.

RASP has the attractive feature of simultaneously choosing all clusters of
two logic elements to maximize the total weight of edges contained within the
clusters. By recursively repeating the algorithm, one can create larger clusters,
at least when the cluster capacity is a power of 2. The first matching produces a
netlist of size-2 clusters; a matching on the size-2 cluster netlist produces size-4

14.2 Clustering 305

clusters, and so on. The RASP clustering algorithm has a high computational
complexity of O(n3), where n is the number of logic elements in the circuit. This
prevents it from scaling to large problems.

The VPack algorithm [3] takes the opposite approach to that of RASP—it
creates one cluster of the desired size (e.g., seven logic elements) before mov-
ing on to create the next cluster. VPack first chooses a seed logic element for a
new cluster and then greedily packs the logic element with the highest attraction
to the current cluster until no more can be legally added. The attraction function
is the number of nets that connect to both the logic element in question and the
current cluster. VPack has a computational complexity of O (kmaxn) where kmax is
the maximum fanout of any net in the design, so it scales well to large problems.

Many algorithms that use the same basic procedure as VPack, but different
attraction functions, have been published. The T-VPack algorithm by Marquardt
et al. [3,7] is a timing-driven enhancement of VPack where the attraction func-
tion for a logic element, L, to cluster C becomes

Attraction (L) = 0.75 · ∑
j∈conn(L,C)

criticality(j)+0.25 · |Nets (L)∩Nets (C)|
MaxNets

(14.1)

The first term in equation 14.1 gives higher attraction to logic elements that
are connected to the current cluster by timing-critical connections, while the
second term is taken from VPack and favors grouping together logic elements
with many common signals. To find the criticality of each connection, a timing
analysis is performed with a simple delay model to determine each connection’s
timing slack. The slack of a connection [5] is defined as the amount of delay that
can be added to that connection before some path through it limits the circuit
speed. The criticality of a connection, j, is then given by

criticality(j) = 1− slack(j)
Dmax

(14.2)

where Dmax is the delay of the longest path in the circuit. Connections on the
critical path (i.e., with no timing slack) have a criticality of 1, while connections
with a large amount of slack have a criticality near 0.

Somewhat surprisingly, T-VPack improves not only circuit speed over VPack
but also reduces the amount of programmable routing required between clus-
ters. By absorbing more connections within clusters, T-VPack is able to capture
more nets entirely within a cluster, which reduces wiring demand between logic
blocks.

The iRAC [8] clustering algorithm uses an attraction function that favors the
absorption of small nets within a cluster:

Attraction (L, C) = ∑
i∈Nets(L)∩Nets(C)

k(i, L, C) · [1+ pins_ in_cluster(i, C)]
|pins(i)|

k(i, L, C) =

⎡

⎣

10, if adding L to C would absorb net i within C

1, otherwise

(14.3)

306 Chapter 14 � Placement for General-purpose FPGAs

The attraction function (equation 14.3) weights nets more heavily with a small
number of terminals outside the cluster, and also gives a ten-times attraction
bonus to any net that would be immediately absorbed by adding block L to the
cluster. By reducing the number of nets to be routed between logic blocks, iRAC
achieves an improvement in routability over T-VPack.

Lamoureaux and Wilton [9] have developed a power-aware enhancement of
T-VPack. They modify equation 14.1 by adding a power minimization term that
weights each connection from block L to cluster C by its switching activity. The
switching activity of a signal is the number of times it is expected to change
state per second. The power minimization term favors the absorption of nets
that frequently switch logic states, resulting in lower capacitance for these nets
and lower overall dynamic power.

14.3 SIMULATED ANNEALING FOR PLACEMENT

Simulated annealing is the most widely used placement algorithm for FPGAs.
It mimics the annealing procedure by which strong metal alloys are created—
initially blocks can move fairly freely, but as the temperature drops they gradually
freeze into a high-quality placement [10].

Figure 14.4 shows the basic flow of simulated annealing for placement. First
an initial placement is generated. This initial placement is generally of low qual-
ity, and is often created simply by assigning each block to the first legal location
found. The placement is then iteratively improved by proposing and evaluating
placement perturbations, or moves. A placement perturbation is proposed by a
move generator, generally by moving a small number of blocks to new locations.
A cost function is used to evaluate the impact of each proposed move.

Moves that reduce cost are always accepted, or committed to the placement,
while those that increase cost are accepted with probability

e−
ΔCost

T

where T is the current temperature. This function ensures that moves that
increase the cost by an amount that is small compared to the current tempera-
ture are likely to be accepted, while moves that increase the cost by an amount
much larger than the current temperature are not. Accepting some moves that
increase the cost helps escape local minima and produces a higher-quality final
placement. At the start of the anneal, temperature is high; it gradually decreases
according to the annealing schedule. This schedule also controls how many
moves are performed between temperature updates and when the placement
is considered sufficiently optimized that the anneal should end.

Two key strengths of simulated annealing that make it well suited to FPGA
placement are:

1. One can enforce all the legality constraints imposed by the FPGA
architecture fairly directly. The two basic techniques are to forbid the
creation of illegal placements in the move generator or to add a penalty
cost to illegal placements.

14.3 Simulated Annealing for Placement 307

P = InitialPlacement ();
T = InitialTemperature ();

while (ExitCriterion () == False) {

while (InnerLoopCriterion () == False) { /* One temperature */

Pnew = PerturbPlacementViaMove (P);

ΔCost = Cost (Pnew) - Cost (P);
r = random (0,1);
if (r < e-ΔCost/T) {

P = Pnew ; /* Accept move */
}

} /* End one temperature */
T = UpdateTemp (T);

}

FIGURE 14.4 � Pseudo-code of a generic simulated annealing placement algorithm.
(Source: Adapted from [13].)

2. By creating an appropriate cost function, one can directly model the
impact of the FPGA routing architecture on circuit delay and routing
congestion.

14.3.1 VPR and Related Annealing Algorithms
VPR [3,11,12] is a popular timing-driven simulated annealing placement tool. It
is usually used in conjunction with T-VPack, or a similar clustering algorithm,
that preclusters the logic elements into legal logic blocks. One of VPR’s main
features is that it can automatically adapt to different FPGA architectures so
long as they employ island-style routing.

VPR’s annealing schedule is based on parameters computed during place-
ment rather than on fixed starting and ending temperatures and a fixed cool-
ing rate. This adaptive annealing schedule generates high-quality results across
a wide range of design sizes, FPGA architectures, and cost functions, making
it preferable to more “hardcoded” schedules. VPR sets the InitialTemperature to
20 times the cost change of the average move, and the ExitCriterion is met when
the temperature is less than 0.5 percent of the cost divided by the number of
nets in the circuit. The fraction of moves that are accepted at each temperature,
α, is monitored throughout the anneal.

Lam and Delosme [14] showed that simulated annealing makes the largest
improvements to a placement when α is near 44 percent. Consequently, VPR
rapidly decreases the temperature when α is significantly above or below 44
percent and slowly decreases it when α is near 44 percent in order to spend the
majority of the annealing time in the most productive range. The move generator
used by VPR to find placement perturbations also varies as the anneal progresses
in order to keep α near 44 percent. When a block is picked for a move, its new
proposed location will always be within a window with a Manhattan radius of
range limit blocks. Initially, the range limit is the size of the entire chip, allowing
a block to move anywhere in the device in one move.

As the anneal progresses, the range limit shrinks so that the moves proposed
are smaller local improvements, since these are the most likely moves to be

308 Chapter 14 � Placement for General-purpose FPGAs

accepted as the placement converges to an increasingly high-quality solution.
More specifically, whenever the temperature is updated in Figure 14.4, VPR also
updates the range limit according to

range_ limit (new) = range_ limit (old) · (1−0.44−α) (14.4)

VPR’s cost function [12] also has some ability to adapt to different FPGA
architectures:

Cost =(1−λ) ∑
i∈ AllNets

q (i)
[

bbx (i)
Cav, x (i)

+
bby (i)

Cav, y (i)

]

+λ ∑
j∈ AllConnections

Criticality (j) ·Delay (j)
(14.5)

The first term in equation 14.5 causes the placement algorithm to optimize an
estimate of the routed wirelength, normalized to the average wiring capacity in
each region of the FPGA. The wirelength needed to route each net i is estimated
as the bounding box span (bbx and bby) in each direction, multiplied by a fanout-
based correction factor, q(i). As Figure 14.5(a) illustrates, the bounding box of
a net is simply the smallest rectangle that encloses all the net terminals. Figure
14.5(b) shows that for higher fanout nets, the bounding box span underpredicts
the wiring needed. For the eight-terminal net shown, the sum of bbx and bby
is 10 units, but even a best-case routing requires 11 units of wire. q(i) is 1 for
two- and three-terminal nets and slowly increases with net terminal count to
compensate for this underprediction [16].

The corrected bounding box span is a reasonable estimate of the routed
wirelength for an island-style FPGA that contains at least some short wiring
segments that span only a few logic blocks. Most recent commercial FPGAs,
including the Altera Stratix and Xilinx Virtex [15] families, meet this condition.
Equation 14.5 does not contain a good estimate of wirelength for other FPGA
types, such as hierarchical FPGAs, so this cost function would not perform well
with them.

Some FPGAs have differing amounts of routing available in the vertical direc-
tion compared to the horizontal direction, or in different regions of the chip. For
example, a Stratix-II FPGA has 1.6 times as much horizontal as vertical routing,
and some routing is not available over the large 576-kbit RAM blocks. Therefore,
the routing capacity is not uniform everywhere in the device. In such cases, it is
beneficial to move wiring demand to the more routing-rich direction or regions.
Accordingly, the cost function of equation 14.5 scales the estimated wiring in
each direction by the average routing capacity over the net bounding box in
that direction. Figure 14.5(a) shows an example computation.

The second term in equation 14.5 optimizes timing by favoring placements in
which timing-critical connections have the potential to be routed with low delay.
To evaluate the second term quickly, VPR needs to be able to rapidly estimate
the delay of a connection. It makes use of the fact that the delay between two
points in an island-style FPGA is primarily a function of the distance between
them. Before placement begins, VPR precomputes a table of best-case routing

14.3 Simulated Annealing for Placement 309

Horizontal
channel width:

160 wires

Vertical channel width: 100 wires

{

Net i

bbx(i) 5 6

bby(i) 5 4{

x = 1
y = 1

x = 7
y = 5

Net source

Routing wire Programmable switch

(a)

(b)

Cav,y(i) 5 100

Cav,x(i) 5 160

FIGURE 14.5 � An example wirelength cost computation: (a) net bounding box and average
channel capacity; (b) best-case routing, with a wirelength of 11.

delays for every possible distance between pairs of points. The delay table entries
are computed by invoking a router with each possible (Δx, Δx)—the router finds
the fastest path between the two endpoints.

Periodically (generally once per temperature) VPR computes the delay of
every connection given the current placement and then performs a timing
analysis to find each connection’s slack. Equation 14.2 computes the criticality

310 Chapter 14 � Placement for General-purpose FPGAs

of each connection given its slack. Consequently, VPR’s estimate of which
connections are critical changes as placement progresses, and timing optimiza-
tion can move from one part of the circuit to another.

One of the important features of VPR’s cost function is that, with appropriate
coding, the cost change caused by the motion of a constant number of blocks
can be computed in constant time. This enables many moves to be evaluated
during the placement of a large circuit, which is one of the keys to obtaining
a high-quality placement with simulated annealing. The overall computational
complexity of VPR is O(n1.33) [3], where n is the number of functional blocks
to be placed, allowing VPR to scale well to large circuits.

Many enhancements have been made to the original VPR algorithm. The
PATH algorithm by Kong [17] uses a new timing criticality formulation in which
the criticality of a connection is a function of the slacks of all the paths passing
through it, rather than just a function of the worst (smallest) slack. This tech-
nique increases the cost function weighting on connections with many critical
or near-critical paths, which is beneficial because a move that reduces the delay
of such a connection can improve many important timing paths simultaneously.
On average, PATH reduces critical path delay by 15 percent compared to VPR.

The SCPlace algorithm [18] enhances VPR so that a portion of the moves are
fragment moves in which a single logic element is moved instead of an entire
logic block. This allows the placement algorithm to modify the initial clustering
to shorten connections that are now seen to be poorly localized. Fragment moves
improve both circuit timing and wirelength.

Sankar and Rose [19] explored a trade-off between reduced result quality and
extremely low placement runtimes. Instead of simply clustering logic elements
into logic blocks, their hierarchical annealing algorithm clusters logic blocks
twice into larger units, as shown in Figure 14.6. The first-level clustering creates

(b)

Logic
block

I/O pad

Level-1
cluster

Level-2
cluster

(a)

Logic
blocks Level-1

clusters
Level-2
clusters

FIGURE 14.6 � An overview of hierarchical annealing: (a) multilevel clustering, and
(b) placement of large clusters followed by unclustering and placement refinement.

14.3 Simulated Annealing for Placement 311

clusters that each contain approximately 64 logic blocks, and the second-level
clustering groups four level-1 clusters into each level-2 cluster. Placement of
a netlist of level-2 clusters is very fast because there are relatively few blocks
to place. To make placement of the level-2 clusters even faster, Sankar and
Rose [19] use a greedy (temperature = 0 anneal) iterative improvement algo-
rithm, seeded with a fast constructive (instead of random) placement. Once
placement of the level-2 clusters is complete, a level-1 initial placement is cre-
ated by locating each level-1 cluster inside the boundary of the level-2 cluster
that contained it.

The placement of level-1 clusters is refined by a temperature-0 anneal. The
clusters are then replaced by their constituent logic blocks and the placement of
each logic block is fine-tuned with a low-temperature anneal. The initial temper-
ature for this anneal is selected so that only moves that reduce cost or increase
it a small amount are allowed; consequently, the initial placement solution has
a large impact on the final placement. For very fast CPU times this algorithm
significantly outperforms VPR in achieved wirelength, but it lags behind VPR
for longer permissible CPU times.

Lamoureaux and Wilton [9] modified VPR’s cost function by adding a third
term, PowerCost, to equation 14.5.

PowerCost = ∑
i∈ AllNets

q (i)
[

bbx (i) + bby (i)
] ·Activity (i) (14.6)

where Activity(i) is the average number of times net i transitions per second. This
additional cost term reduces circuit power by focusing more effort on localizing
rapidly transitioning nets.

14.3.2 Simultaneous Placement and Routing with Annealing
Instead of relying on fast heuristics to estimate placement routability and
timing, some algorithms use a router to obtain a partial or complete routing
for each placement proposed during the anneal. These algorithms can directly
extract wiring usage, congestion, and timing from the circuit routing, so their
cost functions can be very detailed. Another of their advantages is that one
can develop a placement algorithm that automatically adapts to a wider class
of FPGA architectures, since fewer (or ideally no) assumptions about the
device-routing architecture need to be incorporated into the cost function. The
disadvantage of using a router in the cost function is CPU time. Evaluating
the cost change after each move is very CPU intensive, making it difficult to
evaluate enough moves to obtain high-quality placements for large circuits in a
reasonable time.

PROXI [20] is a timing-driven FPGA placement algorithm that uses a router
to compute its cost function. The PROXI cost function is a weighted sum of
the number of unrouted nets and the delay of the circuit critical path. After
each placement perturbation, PROXI rips up all of the nets connected to blocks
that have moved and reroutes them via a fast, directed-search maze router [21].

312 Chapter 14 � Placement for General-purpose FPGAs

To improve CPU time, PROXI allows the maze router to explore only a small
portion of the routing fabric at high temperatures—if no unblocked routing path
is found quickly, the net is left unrouted. At lower temperatures, the placement
is of higher quality and the router is allowed to explore a larger portion of
the routing fabric. After each net is rerouted, the critical path is recomputed
incrementally. PROXI produces high-quality results, but requires high CPU time.

Independence [22] is an FPGA placement tool that can effectively target a
wide variety of FPGA routing architectures. It is purely routability-driven, and
its cost function monitors both the amount of wiring used by the placement and
the routing congestion:

Cost = ∑
i∈Nets

RoutingResources (i)+ λ

∑
k∈RoutingResources

max(Occupancy (k)−Capacity (k) , 0) (14.7)

The λ parameter in equation 14.7 is a heuristic weighting factor. Independence
uses the PathFinder routing algorithm [23] to find new routes for all affected
nets after each move. Instead of leaving nets unrouted when there is no
unblocked path, PathFinder allows wire congestion by routing two nets on the
same routing resource. Such a routing is not legal; however, by summing the
overuse of all the routing resources in the FPGA, Independence can directly
monitor the amount of routing congestion implicit in the current placement.
The Independence cost function monitors not only routing congestion but also
the total wirelength used by the router to create a smoother cost function that is
easier for the annealer to optimize. Independence produces high-quality results
on a wide variety of FPGA architectures, including both island style and hierar-
chical, but it requires very high CPU time.

14.4 PARTITION-BASED PLACEMENT

Another popular placement approach recursively partitions the circuit netlist
and assigns each partition to a different physical region in the FPGA. Usually
each partitioning step divides a previous (larger) partition into two pieces, or
bipartitions the component, although some algorithms perform multiway parti-
tioning to produce a larger number of circuit partitions in each step. Partitioning
algorithms attempt to minimize the number of nets that are cut, or that cross,
between partitions. Since each partition of the circuit will be assigned to a dif-
ferent region of the FPGA, partition-based placement minimizes the number of
nets leaving each region and hence indirectly optimizes the amount of wiring
required by the design. Partition-based placement can leverage the availability of
high-quality, CPU-efficient partitioning algorithms, making this approach scal-
able to large problems. However, for some FPGA architectures, partition-based
placement suffers from the disadvantage that it does not directly optimize the
circuit timing or the amount of routing required by the placement.

14.4 Partition-based Placement 313

Hierarchical FPGAs are good candidates for partition-based placement, since
their routing architectures create natural partitioning cut lines. Hutton et al.
[24] describe a commercial placement algorithm for the Altera Apex 20K fam-
ily that recursively partitions the circuit along the cut lines formed by the
routing hierarchy, as shown in Figure 14.7. This algorithm is made timing-
driven by heavily weighting connections with low slack during each partition-
ing phase and by partitioning to minimize weighted cut size. This encourages
partitioning solutions in which timing-critical connections can be routed using
the fast routing available within the lower levels of the routing hierarchy. To
improve the prediction of the critical path, the delay estimate for each con-
nection is a function of (1) the number of hierarchy boundaries the net must
traverse because of the known partition cuts at the higher levels of the routing
hierarchy, and (2) statistical estimates of how many hierarchy boundaries the
connection will cross at future partitioning steps.

Recursive partitioning has also been used for placement in island-style
FPGAs. ALTOR [25] was originally developed for standard cell circuits, but was
adapted to FPGAs and widely used in FPGA research. Figure 14.8 shows the
sequence of cut lines used by ALTOR to target an island-style FPGA—note that
the sequence is quite different from that used with a hierarchical FPGA. In an
island-style FPGA, blocks separated by a short Manhattan distance can be con-
nected with a small amount of routing. Consequently, the cut lines are designed
to divide the FPGA into ever-shrinking squares—the fewer signals that must
leave each square, the less interconnect required.

C
ut line 1: vertical halves

C
ut line 2: M

egaLA
B

 colum
n

C
ut line 3: M

egaLA
B

 colum
n

Cut line 4: Octants

Cut 5: MegaLABs

Cut 5: MegaLABs

Cut 5: MegaLABs

Cut 5: MegaLABs

FIGURE 14.7 � The partitioning sequence for the APEX 20K FPGA.

314 Chapter 14 � Placement for General-purpose FPGAs

C
ut line 1

Cut line 2 Cut line 3

C
ut line 4

Cut line 5 Cut line 6

C
ut line 7

Cut line 8 Cut line 9

FIGURE 14.8 � The partitioning sequence for an island-style FPGA.

ALTOR’s first cut line divides the chip into two halves vertically. The second
cut line divides the left half of the circuit into upper left and lower left quarters.
The third cut line divides the right half of the circuit in the same way. When
partitioning along the third cut line, ALTOR uses terminal propagation [26] from
the left half of the chip, which is already partitioned into an upper and lower
quarter, to bias the partitioning of the right half. For example, the net shown in
Figure 14.9 has one terminal in the right half of the chip and one terminal in
the upper left corner. During partitioning along cut line 3, this net is considered
to have a fixed terminal in the upper partition, which will bias the partitioner to
keep the free terminal of this net in the partition above cut line 3. Terminal
propagation reduces final wirelength by optimizing the placement of the
terminals of nets that have been cut in some partitioning step.

Maidee et al. [27] developed a timing-driven placement algorithm for island-
style FPGAs that employs both partitioning and annealing. Before partitioning
begins, the VPR router is used to generate a table of net delay versus distance
spanned by the net that takes into account the FPGA routing architecture. As
partitioning proceeds, the algorithm records the minimum length each net can
achieve given the current number of partitioning boundaries it crosses. The
delay corresponding to each net’s span is retrieved from the net delay versus
span table, and a timing analysis is performed to identify critical connections.

Timing-critical connections to terminals outside the region being partitioned
act as anchor points during each partitioning. This forces the other end of the
connection to be allocated to the partition that allows the critical connection to
be short. Once partitioning has proceeded to the point that each region contains
only a few cells, any overfilled regions are legalized with a greedy movement

14.5 Analytic Placement 315

C
ut line 1

Cut line 2 Current partitioning cut line

Net

Terminal A:
Placed in
upper left
partition

X

Consider terminal A
locked in upper right

partition to bias
current partitioning

Terminal B

FIGURE 14.9 � An example of terminal propagation.

heuristic. Finally, the VPR annealing algorithm is invoked with a low starting
temperature to “fine-tune” the placement. This fine-tuning step allows blocks to
move anywhere in the device, so early placement decisions made by the parti-
tioner, when little information about the critical paths or the final wirelength
of each net was available, can be reversed. This algorithm achieves wirelength
and speed results comparable to those of a full VPR anneal, with significantly
reduced CPU time.

14.5 ANALYTIC PLACEMENT

Analytic algorithms are based on creating a smooth function of a placement that
approximates routed wirelength. Efficient numerical techniques are used to find
the global minimum of this function; if the function approximates wirelength
well, this solution is a placement with good wirelength. However, this global
minimum is usually an illegal placement, so constraints and heuristics must be
applied to guide the algorithm to a legal solution.

While analytic placement approaches are popular for ASICs, few exist for
FPGAs, likely due to the more difficult FPGA placement legality constraints.
The Negotiated Analytic Placement (NAP) algorithm from Chan and Schlag [28]
targets FPGAs and has several novel features, including some that make it
suitable for implementation on multiple processors in parallel.

316 Chapter 14 � Placement for General-purpose FPGAs

14.6 FURTHER READING AND OPEN CHALLENGES

While this chapter has focused on placement algorithms specifically designed
for FPGAs, there is also a great deal of literature on placement for custom-
manufactured integrated circuits, much of which is relevant to FPGAs. For
a recent overview of general placement algorithms, see Cong et al. [29]. This
chapter also treated placement as separate from synthesis. Recent commercial
and academic tools incorporate physical synthesis, however, where portions of
the circuit are resynthesized as placement proceeds and more information about
critical paths becomes available. For an overview of FPGA physical synthesis and
its interaction with placement, see Hutton and Betz [13].

The greatest challenge facing FPGA placement is the need to produce high-
quality placements for ever-larger circuits. FPGA capacity doubles every two to
three years, doubling the size of the placement problem at the same rate. In
addition, uniprocessor speed is no longer increasing as quickly as it did in the
past, which means that single processor speed will increase by less than two
times in the same period. In order to maintain the fast time to market and ease
of use historically provided by FPGAs, placement algorithms cannot be allowed
to take ever more CPU time. There is thus a compelling need for algorithms that
are very scalable yet still produce high-quality results.

The roadmap for future microprocessors indicates that the number of inde-
pendent processors, or cores, on a single chip will increase rapidly in the coming
years. Consequently, most engineers will have parallel computers on their desk-
tops. Part of the solution to the problem of keeping FPGA placement times rea-
sonable may be to find techniques and algorithms to exploit parallel processing
without sacrificing result quality.

References
[1] D. Lewis, E. Ahmed, G. Baeckler. The Stratix-II routing and logic architecture.

Proceedings of the 13th ACM International Symposium on Field-Programmable Gate
Arrays, 2005.

[2] The Quartus University Interface Program (www.altera.com/education/univ/research/
unv-quip.html).

[3] V. Betz., J. Rose, A. Marquardt. Architecture and CAD for Deep-Submicron FPGAs,
Kluwer, February 1999.

[4] R. Cliff, et al. A next generation architecture optimized for high density system
level integration. Proceedings of the 21st IEEE Custom Integrated Circuits Conf-
erence, 1999.

[5] R. Hitchcock, G. Smith, D. Cheng. Timing analysis of computer hardware. IBM
Journal of Research and Development, January 1983.

[6] J. Cong, J. Peck, Y. Ding. RASP: A general logic synthesis system for SRAM-based
FPGAs. Proceedings of the Fifth International Symposium on Field-Programmable
Gate Arrays, 1996.

[7] A. Marquardt, V. Betz, J. Rose. Using cluster-based logic blocks and timing-driven
packing to improve FPGA speed and density. Proceedings of the Seventh Interna-
tional Symposium on Field-Programmable Gate Arrays, 1999.

14.6 Further Reading and Open Challenges 317

[8] A.Singh,M.Marek-Sadowska.Efficientcircuitclustering forareaandpowerreduction
in FPGAs. Proceedings of the International Symposium on Field-Programmable Gate
Arrays, 2002.

[9] J. Lamoureaux, S. Wilton. On the interaction between power-aware FPGA CAD
algorithms. Proceedings of the International Symposium on Computer-Aided
Design, 2003.

[10] S. Kirkpatrick, C. Gelatt, M. Vecchi. Optimization by simulated annealing. Science
2(20), May 1983.

[11] V. Betz, J. Rose. VPR: A new packing, placement and routing tool for FPGA
research. Proceedings of the Seventh International Conference on Field-Programmable
Logic and Applications, 1997.

[12] A. Marquardt, V. Betz, J. Rose. Timing-driven placement for FPGAs. Proceedings of
the International Symposium on Field-Programmable Gate Arrays, 2000.

[13] M. Hutton, V. Betz. Electronic Design Automation for Integrated Circuits Handbook,
Taylor and Francis, eds. (Chapter 13), CRC Press, 2006.

[14] J. Lam, J. Delosme. Performance of a new annealing schedule. Design Automation
Conference, 1988.

[15] Virtex Family Datasheet (www.xilinx.com).
[16] C. Cheng. RISA: Accurate and efficient placement routability modeling. Proceedings

of the International Conference on Computer-Aided Design, 1994.
[17] T. Kong. A novel net weighting algorithm for timing-driven placement. Proceedings

of the International Conference on Computer-Aided Design, 2002.
[18] G. Chen, J. Cong. Simultaneous timing driven clustering and placement for FPGAs.

Proceedings of the International Conference on Field-Programmable Logic and Appli-
cations, 2004.

[19] Y. Sankar, J. Rose. Trading quality for compile time: Ultra-fast placement for FPGAs.
Proceedings of the International Symposium on Field-Programmable Gate Arrays,
1999.

[20] S. K. Nag, R. A. Rutenbar. Performance-driven simultaneous placement and routing
for FPGAs. IEEE Transactions on Computer-Aided Design, June 1998.

[21] Y. C. Lee. An algorithm for path connections and applications. IRE Transactions
on Electronic Computing, September 1961.

[22] A. Sharma, C. Ebeling, S. Hauck. Architecture-adaptive routability-driven placement
for FPGAs. Proceedings of the International Symposium on Field-Programmable Logic
and Applications, 2005.

[23] L. McMurchie, C. Ebeling. PathFinder: A negotiation-based performance-driven
router for FPGAs. Proceedings of the Fifth International Symposium on Field-
Programmable Gate Arrays, 1995.

[24] M. Hutton, K. Adibsamii, A. Leaver. Adaptive delay estimation for partitioning-
driven PLD placement. IEEE Transactions on VLSI 11(1), February 2003.

[25] J. Rose, W. Snelgrove, Z. Vranesic. ALTOR: An automatic standard cell layout pro-
gram. Proceedings of the Canadian Conference on VLSI, January 1985.

[26] A. Dunlop, B. Kernighan. A procedure for placement of standard-cell VLSI circuits.
IEEE Transactions on Computer-Aided Design, January 1985.

[27] M. Maidee, C. Ababei, K. Bazargan. Fast timing-driven partitioning-based placement
for island style field-programmable gate arrays. Design Automation Conference, 2003.

[28] P. Chan, M. Schlag. Parallel placement for field-programmable gate arrays. Proceed-
ings of the 11th International Symposium on Field-Programmable Gate Arrays, 2003.

[29] J. Cong, J. Shinnerl, M. Xie, T. Kong, X. Yuan. Large-scale circuit placement. ACM
Transactions on Design Automation of Electronic Systems, April 2005.

This page intentionally left blank

C H A P T E R 15

DATAPATH COMPOSITION

Andreas Koch
Department of Computer Science
Embedded Systems and Applications Group
Technische Universität of Darmstadt, Germany

As shown in Chapter 14, a wide variety of algorithms can be employed for
placing arbitrary netlists on various reconfigurable fabrics. To achieve this gen-
erality, the input netlists are treated as random collections of primitive elements
(gates, lookup tables [LUTs], flip-flops) and interconnections. These approaches
do not attempt to exploit any kind of structure that might be present in their
input circuits. Many practically relevant circuits, however, do exhibit regulari-
ties in their composition (e.g., by following a classical bit-sliced design). Since
the days of manual full-custom ASIC design (“polygon pushing”), regularity in
circuit structure has been exploited with great success to derive a corresponding
regular circuit layout—for example, by abutment of replicated bit-slice layouts.

This chapter describes the application of this idea to efficient layout of regular
bit-sliced datapaths on reconfigurable fabrics. It will begin by considering how
to characterize, extract, and preserve regularities at different abstraction levels.
The next steps describe the datapath composition tool flow and address issues
such as mapping dataflow operators to hardware units and arranging these
in an abutting regular layout. We will also cover how quality can be improved
even further by judiciously dissolving regularity boundaries in parts of the data-
path performing cross-boundary optimization, and finally reregularizing the
optimized circuit.

15.1 FUNDAMENTALS

With the increasing use of reconfigurable devices as core processing units
in adaptive computer systems, the architecture and implementation of high-
performance compute units on reconfigurable fabrics becomes ever more impor-
tant. A datapath is one architectural style of realizing a given computation
(Figure 15.1(a)) in hardware. It is often described as the number of intercon-
nected operators in the form of a dataflow graph (DFG) or control dataflow graph
(CDFG), shown in Figure 15.1(b). The execution of the operators is orchestrated
by a supervising controller (Figure 15.1(c)). The controller is generally not con-
sidered part of the datapath, but together the datapath and controller form a
compute unit. For purposes of this discussion, we will assume that we are pro-
cessing a CDFG but will concentrate on its dataflow part.

320 Chapter 15 � Datapath Composition

(c)

sum.clear
i.clear
LIMIT.load

sum.load & !end
i.load & !end

!end

end

(d)

1

end

clr

clr

clr

ce

ce

ce
In

Out

FF32

FF32

FF32

ADD32

ADD32

GTEQ32

extern int LIMIT;
int sum, i;
for (sum50, i50; i , LIMIT; 11i)
 sum 15 i;

(a) (b)

Control

Data

Out

In

sum i LIMIT
i.clear

i.load
LIMIT.clear

LIMIT.load

sum.clear
sum.load

end

RegReg Reg

1 1 >5

32 32 32 32 32

1

FIGURE 15.1 � From computation to realization.

The datapath is created in hardware by mapping the CDFG operators to
hardware operators, or HWOPs (see Figure 15.1(d)). Generally, HWOPs have
multibit data inputs and outputs for the operand(s) and result(s) (e.g., ADD32
HWOPs). Some may also have control inputs (e.g., the load and clear signals of
the FF32 HWOPs) or outputs (e.g., for indicating certain conditions such as the
GTEQ32 output). These control signals are generally much narrower than bused
data signals, often only a single bit wide. In some cases, an HWOP is available
in several different implementations, all having the same function but differing,
for example, in their area/speed characteristics or layout shape.

15.1.1 Regularity
The multibit-wide HWOPs are often assembled by repeatedly instantiating and
interconnecting narrower template circuits in an adjacent fashion until the spe-
cific HWOP’s desired bit width is reached (Figure 15.2). These template circuits
will be called master slices here, while their instances are generally referred to as
bit slices. We will further extend this terminology to call areas where the same mas-
ter slice has been instantiated a number of times a zone, and a sequence of zones is
termed a stack. Together, these concepts describe an HWOP as a regular circuit.

Such a structure has a natural direction of dataflow (horizontally in the case
of Figure 15.2). When processing word-wide data, the individual bits of the

15.1 Fundamentals 321

a
y

a
y

a
y

Control
flow

Dataflow

Stack

a[0]

y[0]

a[1]
y[1]

a[2]
y[2]

a[3]
y[3]

a[4]

y[4]

ctl

ctl

ctl

ctl
PE

Height 2 PE
Width 1b
Pitch 0.5b/PE

HWOP length 7 PEs

H
W

O
P

 w
id

th
 5

 b
its

H
W

O
P

 h
ei

gh
t 6

 P
E

s

Height 1 PE
Width 1b
Pitch 1b/PE

Height 1 PE
Width 1b
Pitch 1b/PE

Bit Slice 0

Bit slice 1

Bit slice 2

Bit slice 3

Bit slice 4

Zone 0

Zone 1

Zone 2

Iteration

Iteration

Master slice A

Master slice B

Master slice C

Iteration

HWOP

FIGURE 15.2 � Regular HWOP structure.

words are arranged orthogonally to the direction of dataflow (in the figure,
vertically). With few exceptions (e.g., bus-wide logic gates), the position of indi-
vidual bits is not arbitrary but follows an ordering from least significant (LSB) to
most significant (MSB). For example, stacking ripple-carry full-adder bit slices
generally has the first slice process the LSB and the last slice process the MSB.
Ports on the master slice (e.g., a, y) do not have a bit significance of their own.
Only after instantiating the masters as bit slices can the significance be derived
from their iteration number (e.g., port a on the bottommost slice will have a
significance of 0; the one above that, 1, etc.).

For describing the characteristics of elements such as HWOPs, bit slices, and
master slices, four quantities are useful. Any of these elements may process mul-
tiple bits from a single word, with the logical width being the largest number
of such bits. Height and length refer to the bounding box of the element layout
on the target device. They are specified in device-dependent units, such as pro-
cessing elements (PEs), cells, configurable logic blocks (CLBs), and the like. The
pitch of a master slice is the width divided by the height—essentially, the num-
ber of output bits per unit height. To reduce interconnect lengths, all HWOPs in
the datapath should have the same pitch and the LSBs of all data nets should
be vertically aligned.

Regularity in datapaths does not appear just in the replicated logic elements
but also in commonly occurring interconnect patterns (Figure 15.3):

Data nets are generally multibit buses that carry operands and results between
HWOPs, where they are connected to data ports (e.g., op1, op2). Each
signal in the bus has an associated bit significance and generally connects
to the HWOP at a data port with the same significance. Shifts and permu-
tations occur only rarely [23].

322 Chapter 15 � Datapath Composition

op1[0]

op2[0]

op2[1]

op1[1]

op1[2]

op2[2]

Y

B

A

X

PE column with associated vertical channel

Bit slice 2

Bit slice 1

Bit slice 0

0 1 32 4

a cb d

PE a, b, c, d-Control signalsHWOP data port

ControlInterslice Intraslice Data

FIGURE 15.3 � Regular interconnection patterns.

Control nets are generally narrower, often only a single bit wide. In general,
they connect an HWOP to a controller but not to another HWOP in the
datapath. Control signals attach to the HWOP at control ports. In many
cases, a control signal connects to the same control port in all bit slices
of a zone. With our assumption of horizontal dataflow, in the following
discussion control signals are assumed to run vertically.

Interslice nets run between separate bit slices in the same HWOP, thus vertically
crossing slice boundaries (e.g., B–Y, A–X). Most commonly, they connect
neighboring bit slices, but these may have different master slices, particu-
larly near the top and bottom of a stack. An example of an interslice net
is the carry net running between full-adder bit slices.

Intraslice nets connect individual logic elements within a bit slice (e.g., A–B).
Since the internals of a bit slice are considered random logic, these nets
do not follow specific interconnection patterns.

An example of a unified representation for both block and interconnect regular-
ity, the Abstract Physical Model (APM), is proposed by Ye and De Micheli [22].

15.1.2 Datapath Layout
With these concepts in place, we can now consider the anatomy of our com-
pute unit in greater detail (Figure 15.4(a)). The datapath will have a regular
area, where pitch-matched HWOPs with a common direction of increasing
bit significance process horizontal, LSB-aligned dataflows. Outside this area,
HWOPs may contain irregular parts (e.g., carry initialization, overflow detec-
tion, or, for complex sequential HWOPs, even local controllers). The global con-
troller for the compute unit is also placed outside the regular area. Generally,
control nets are routed vertically across the regular area. This chapter does
not address the handling of the controller, but concentrates on the datapath

15.2 Tool Flow Overview 323

(a)

HWOPs

Control flow

Dataflow

Cap cell

Bit slices

Controller

(b)

Irregular/control area

HWOPs

Irregular/control area

I/O
 in

te
rf

ac
e

to
 r

es
t o

f s
ys

te
m

Irregular/control area

FIGURE 15.4 � Common datapath layouts: (a) classical linear and (b) multistripe.

instead. The controller can be placed via techniques such as those presented in
Chapter 14.

Given these constraints, the best arrangement for minimizing interconnect
lengths and delays for a small number of HWOPs will generally be linear.
This approach has been exploited by devices like Garp [4], which realize such
topologies directly in their chip architecture. However, once the number of
HWOPs grows, the datapath generally needs to be wrapped into multiple stripes
of HWOPs (Figure 15.4(b)).

15.2 TOOL FLOW OVERVIEW

Multiple steps are required to actually compose the datapath from individual
HWOPs. These steps can be broadly grouped into the following categories:

Module generation: The HWOPs are often realized by procedural descriptions
in the form of module generators (see Section 15.4). Thus, at some point
in the flow other tools will interact with the library of module gener-
ators either to retrieve data about appropriately parametrized module
instances or (later in the process) to generate the actual netlists. Often
these netlists are already annotated with module-local relative placement
information.

Mapping: The operators in the computation are mapped from the CDFG to the
HWOPs realizing them in hardware. Beyond a straight 1:1 mapping, this
can be performed in 1:M (if an operator requires multiple HWOPs) or N:1
fashion (if multiple operators can be combined into the same HWOP). The
mapping calculated here need not be final, but can be altered in later flow
steps. In some cases, the mapping step can also choose among multiple
different HWOP implementations for an operator. This is sometimes called
the module selection step.

324 Chapter 15 � Datapath Composition

Placement: HWOPs are assigned to actual PEs on the target device fabric.
Similarly to the mapping step, N:1 and 1:M assignments are possible here.
In the first case, a PE is so complex that it can implement multiple HWOPs
at the same time. In the second case, each HWOP needs to be realized
using multiple PEs. This is usually the case when targeting fine-grained
devices such as field-programmable gate arrays (FPGAs).

Compaction: This is the altering of the HWOPs’ structure after mapping (before
or after placement). It generally indicates optimizing across HWOP bound-
aries. For example, it might merge connected adjacent HWOPs into a more
compact/faster, but functionally identical, hardware block. This optimized
block is then treated as any other HWOP in the datapath.

Not all of the flows discussed next perform all of these steps, and their execution
order can vary. Additionally, some steps may be repeated.

Certain combinations are also possible. For example, in some flows place-
ment and the mapping of operators to HWOPs occur simultaneously. For coarse-
grained targets, operators can be mapped to HWOPs that are placeable in the
same PE. For fine-grained devices, HWOP implementations can be selected
whose layouts fit together with minimal area.

15.3 THE IMPACT OF DEVICE ARCHITECTURE

The tool flow required for creating a datapath on a reconfigurable fabric of PEs
is highly dependent on the target device architecture. For coarse-grained target
devices, the operators of the computation can often be mapped to PEs in a one-
to-one fashion. On a fine-grained device, the operators have to be assembled from
individual PEs.

Bit-sliced is not the only way to realize HWOPs. They may as well be com-
pletely irregular internally, or they may be monolithic (Figure 15.5). In both
cases, many of the optimizations described in Section 15.7 that affect the inter-
nal structure of HWOPs are not be applicable. However, the techniques for pro-
cessing multiple HWOPs at the datapath level (Section 15.6) remain relevant.

If the reconfigurable fabric has a linear or a two-dimensional matrix struc-
ture (Figure 15.6(a–c)), this can be exploited to efficiently map the regular

DataIn

AddrIn

R/W

DataOutDataIn

SBoxSelect

DataOut

(a) (b)

FIGURE 15.5 � Non-bit-sliced HWOPs: (a) irregular and (b) monolithic.

15.3 The Impact of Device Architecture 325

(a)

X Y

(b) (c) (d)

Crossbar

Interconnect
between blocks

Processing element

Interconnect
overlaid on blocks

(e)

FIGURE 15.6 � Reconfigurable fabric architectures: (a) symmetrical array, (b) row-based,
(c) sea-of-gates, (d) hierarchical PLD, and (e) hierarchical FPGA.

datapath structure to a corresponding regular geometric layout. For other kinds
of target devices—for example, those having fully hierarchical structures (d–e in
Figure 15.6)—algorithms optimizing for geometric arrangement are unsuitable,
because geometrically adjacent blocks on the device might not actually be neigh-
bors in the interconnect network (Figure 15.6(e), PEs X and Y). While other
techniques such as hierarchical partitioning and clustering [19] could be used
instead, they no longer attempt to take advantage of the datapath regularity.

15.3.1 Architecture Irregularities
Even in seemingly regular fabrics, irregularities often occur at the detail level.
Consider, for example, the logic block structure of the Xilinx XC4000 FPGA
(Figure 15.7). The base architecture of this device is a symmetrical array of
CLBs, each of which contains two 4-LUTs and registers. However, each CLB also
provides an additional 3-LUT. While very useful (e.g., for the efficient imple-
mentation of 4-input multiplexers or 5-input functions within a single CLB),
the 3-LUT impedes the regularity in that it is no longer possible to realize two
instances of a master slice that uses the 3-LUT within a single CLB. Also, when
using the 3-LUT it is no longer possible to employ the registers in the CLB inde-
pendently from the 4-LUTs: Only one of the registers can be directly connected
to a CLB external port (DIN); the other one is not reachable from the outside.

326 Chapter 15 � Datapath Composition

(a)

Y

YQ

XQ

X

FFY

FFX

Controlled by
configuration
bitstream

F1
F2
F3
F4

G1
G2
G3
G4

DIN

H1

G
-L

U
T

H
-L

U
T

F
-L

U
T

G1
G2
G3
G4

F1
F2
F3
F4

Cell

Y

YQFFY

X

XQFFX

Cell

(b)

H1

DIN

G
-L

U
T

F
-L

U
T

FIGURE 15.7 � Regularizing an existing device architecture: (a) the real structure of the Xilinx
XC4000 CLB and (b) the simplified regular structure.

These irregularities can be alleviated by disregarding the 3-LUT for regular logic,
using it solely to make the other register accessible via the H1 port. As a result,
each CLB can now be used to implement two fully regular bit slices, with the
registers accessible both from inside and outside the bit slice.

Interconnect features also have an effect on datapath placement style. The
physical direction of bit significances on the fabric is sometimes dictated by
the running order of fast carry wires, which, on most devices is fixed. Also,
high fanout control signals (e.g., the select signal of wide multiplexers) can be
distributed across an entire HWOP by special long-distance interconnects. For
example, on the Xilinx Virtex series of chips, so-called vertical long lines connect
to all PEs on both sides of a vertical routing channel and are thus ideally suited
for control routing. As will be shown in the following section, tool flows for
datapaths can take advantage of all these features for efficient layout.

15.4 THE INTERFACE TO MODULE GENERATORS

As in many hardware design flows, individual hardware cells (in our case, the
circuits used as HWOPs), are retrieved from a library. Instead of static cells,
however, a more flexible approach uses procedural module generators to tailor
these circuits to fit current requirements. For example, a multiplier might have
eight pipeline stages in one context and only four in another, matching it to the
latency/clock speed of the rest of the datapath. No longer a passive collection of
cell descriptions, the library now becomes active: It accepts a set of constraints
from another part of the flow and delivers a matching circuit.

The very flexibility of these parametrized generators complicates their inte-
gration with the rest of the tool flow: Other tools need not only the circuit
description in the form of a (possibly preplaced) netlist but also data about
this specific instance. Different tools are interested in different aspects of the

15.4 The Interface to Module Generators 327

circuit. This plethora of cell views, combined with the sheer volume of the design
space covered by each parametrized generator, precludes a simple enumeration
of all alternatives. Thus, the traditional static library data files, holding tables
of delays, bounding boxes, and the like, for a set of fixed parameter values,
become impractical.

The Flexible API for Module-based Environments (FLAME) [11] is one
approach to overcoming these difficulties. It consists of three major components:
(1) the communications interface between the generator library and the other
flow tools, (2) the design data model, and (3) the library specification.

A reference realization of a FLAME-based generator library exists in the form
of the Generic Library for Adaptive Computing Environments (GLACE) [14].
This package has successfully been used in the COMRADE compiler [7], which
compiles C into hybrid hardware/software applications for adaptive computer
systems. GLACE uses a Java-based FLAME implementation, but could be called
from other languages using the Java Native Interface (JNI).

15.4.1 The Flow Interface
The communications infrastructure and API provided by the FLAME Manager
(Figure 15.8) replace static library files with an active function call–based inter-
face. Clients in the main design flow can thus enter into a dialog with the module
libraries and retrieve data specific to the actual parameter values of the cur-
rent instance. In GLACE, the client queries accepted by the FLAME Manager
are forwarded to the circuit generation code [6], resulting in the retrieval of
circuit characteristics, or the creation of actual netlists.

15.4.2 The Data Model
The information exchanged in this manner just described is represented using
the FLAME design data model. This model is partitioned into a number of task-
specific views: A frontend compiler might request a “behavior” view to determine
which functions are available for a given target technology. Later on, it could

FLAME
Manager

FLAME
interface

FLAME
interface

Design data

Module generator library

Replies

Main design flow

add

mult

logic

abs

Queries

Placement

Compaction

Mapping

FIGURE 15.8 � FLAME system overview.

328 Chapter 15 � Datapath Composition

query for a “synthesis” view to retrieve area and timing characteristics for a
specific module instance. Additional views include “topology” for layout shapes
and port pitch, and “netlist,” “placed,” and “mapped” views describing the circuit
itself. For the latter, standard formats such as EDIF are encapsulated inside the
FLAME messages.

15.4.3 The Library Specification
The FLAME library specification describes a set of behaviors and interfaces.
One or more of these can be attached to a hardware cell to precisely define its
function for automatic use by another tool. For example, the cell of a runtime
controllable adder/subtractor might have both the addition and subtraction
behaviors attached. The interface carefully distinguishes between the logical (e.g.,
the operands of the adder) and the physical perspective (e.g., clock ports and clock
enable signals). Furthermore, a FLAME interface extends beyond port specifica-
tions such as width and data type to the control characteristics of the cell. This
can cover “start” and “done” signals as well as mode switches (e.g., alternating
between addition and subtraction). By considering all of these aspects, another
tool can choose the cell most applicable to a given task and automatically drive
it correctly from the central datapath controller.

15.4.4 The Intra-module Layout
For efficiency, most module generators create circuits whose internal PEs have
already been preplaced. In this case, the module generators and the datapath
placement tools must agree on a set of common layout conventions. Otherwise,
the regular target layout described in Section 15.1.1 will not be achievable.

Figure 15.9 shows such a regular layout, along with the FLAME description
of its topology, using an unsigned 8-bit multiplier from GLACE as an example.

R
eg

ul
ar

 d
at

ap
at

h
ar

ea

Overflow detection

Local controller

(TECHNOLOGY "Xilinx" "Virtex" "XCV50PQ240I" "24"
(STATUS QUERYOK "technology ok. area unit is ’CLB’s...")

(MATRIX

(SHAPE

)

(PORTLOC
(PORTS
(("a" 7 0) ("b" 7 0) ("start" 0 0) ("out" 7 0) ("done" 0 0))
(PITCH 2 1) g Port pitch for busses is 2 bits per CLB
(COORD 0 0)

(FOLDING LINEAR) g Layout is not folded
)
)
)

("CLB" (RECT 4 6 1))
Layout is a single 4x6 CLB rectangle
extending 1 unit below baseline

g

Datapath
baseline

4

Target device has matrix architecture

FIGURE 15.9 � Module topology and FLAME reply.

15.5 The Mapping 329

The layout has the LSBs of the operand and result data busses aligned at a
common baseline. This sequential HWOP has two irregular components, which
are placed below and above the regular datapath region. For that reason, in
order to preserve regularity within the stack, we had to leave extra space on the
top and/or bottom to accommodate any irregularities (such as overflow detec-
tion, sign handling, etc.). All buses are spaced with a pitch of 2 bits per CLB of
layout height.

15.5 THE MAPPING

Mapping techniques can be distinguished by whether they map in N:1 fashion
(i.e., multiple CDFG operators into a single HWOP) or map (at least initially) in
1:1 fashion.

15.5.1 1:1 Mapping
Here each CDFG operator is considered individually. However, trade-off deci-
sions can still occur with regard to the different HWOP alternatives for it:

Area/delay trade-offs can be performed to allow the selection of smaller but
slower HWOPs for operations that are not on the critical path of the
computation.

Topology matching can be performed to match the heights of the HWOPs across
the datapath (Figure 15.10(a)). This can be necessary when a few HWOPs
in the datapath are significantly wider than the rest (e.g., 64-bit modules in

(a)

or

Placement area

Matching by folding HWOPs

R
e
g
B
[
7
:
0
]

M
u
l
t
[
1
5
:
0
]

LSB

MSB

R
e
g
A
[
7
:
0
]

Topological mismatch

(b)

Mismatched slice pitch

Pitch Slice

Slice

Slice

Slice Slice

Slice

Slice

Slice

Matched slice pitch

Slice

Slice

Slice

Slice Slice

Slice

Slice

Slice

0

1

2

3

2

3

0

1

FIGURE 15.10 � Topology and pitch matching.

330 Chapter 15 � Datapath Composition

a mostly 32-bit datapath). Here regularity can be traded for area efficiency
by selecting implementations for these modules that have been folded,
doubling the length but halving the height.

Pitch matching occurs if modules in the library are available only with a limited
number of pitch values. The goal here is to compose the datapath with the
least number of pitch mismatches (Figure 15.10(b)).

Various techniques can be employed to solve these optimization problems.
Since in general no single best solution exists for complex cases, it is practical to
use an algorithm that can generate sets of good (Pareto-optimal) solutions. The
SDI system [10] used a genetic algorithm in the floorplanning step to perform
these calculations.

However, this approach is only applicable if a very flexible module library
exists that actually gives the optimization heuristics some leeway to operate.
This was the case with the PARAMOG library used in SDI, but the effort to
implement this degree of flexibility is significant. More current module libraries,
such as GLACE, often provide a smaller variety of implementations (generally
just one) for each operator, allowing the replacement of complex heuristics with
just a few simple rules for pitch and topology matching.

15.5.2 N :1 Mapping
In this approach, multiple operators can be mapped to a single HWOP, often
using a tree-covering approach. The initial CDFG is split into a forest of trees
(Figure 15.11) using techniques that splitt at multi-fanout nodes (between B and
D,F) and possibly partially duplicate the operator cones rooted at the multi-
fanout node (duplicating A into A,A’). While this limited approach no longer
optimally solves the graph-covering problem, it is necessary in order to avoid
the NP-completeness of computing the latter.

(a)

A B C

D

GF

IH

E

J

(b)

A A' B C

D

GF

IH

E

J

FIGURE 15.11 � Conversion of CDFG to a forest of trees: (a) input dataflow graph and (b) forest
of dataflow trees.

15.5 The Mapping 331

!

|

1 1 &

<

(a) (b)

v

t

u

Rooted at

!

|

(c)

logic

logic

FIGURE 15.12 � Covering operator trees using patterns: (a) the dataflow tree, (b) the HWOP
pattern P, and (c) HWOP equivalence class pattern C.

GAMA [3] employs a linear time algorithm using dynamic programming
to cover the operator trees with HWOPs (Figure 15.12). This algorithm, which
has its origin in the code generation steps of compilers, treats the operator(s)
realizable by each HWOP as a pattern. Patterns are described as productions
in a grammar, from which a code generator-generator creates the actual tree-
covering code.

For each operator tree, the covering proceeds from the leaf nodes toward the
root, applying all matching patterns that can be locally rooted at the currently
examined node (v in the example, roots pattern P). A cost function computing
delay and area characteristics determines the desirability of using the current
pattern at this point. It is based on the cost of the currently tried pattern plus
the previously computed costs (dynamic programming) of the fanin nodes to
the pattern (u,v in the example). The “best” pattern covering each node/subtree
is then selected using heuristics that either do a straight area minimization
or attempt to additionally minimize delays. This best solution is then stored
in the local root node, and the covering proceeds to the next node. Once the
tree’s root node has been matched with a best pattern, the final covering can be
retrieved by starting with the root pattern and then processing the current pat-
tern’s fanin nodes. At each of these fanin nodes, the best pattern selection stored
there is retrieved. This phase of the algorithm thus works recursively toward
the leaves.

The algorithm has some limitations that must be worked around:

� First, tree covering in this fashion relies on the principle of optimality,
where the combination of optimal solutions to subproblems leads to an
optimal solution of the entire problem. This is indeed achievable when
optimizing for minimal area. However, when attempting to minimize
delays the timing criticality of operators can vary depending on later
covering decisions. Thus, at the time of decision the criticality of the
current node is not known.

To mitigate this issue, GAMA attempts to estimate the criticality using
an initial purely delay-oriented covering pass. Then the final covering
proceeds in an area-minimizing fashion until the currently accumulated

332 Chapter 15 � Datapath Composition

Hard operator Soft operator

Covered by
module
generator

mul add

and

div

and

xor

or

add

mul

and

mul

FIGURE 15.13 � Subgraph covering with flexible generator.

delay at a node exceeds its estimate. At this stage, the cost function is
switched from area to delay minimization.

� Second, the runtime of the algorithm depends linearly on the number of
patterns in the grammar (which equal different modules in the library).
When the PEs of the target device are very flexible (e.g., LUT based), they
can implement a wide spectrum of CDFG primitive operators (e.g., AND,
OR, INV, ADD, SUB, combinations . . .). Without further refinement to the
approach, a straight description of this flexibility in the grammar will
lead to an explosion in the number of rules. However, in practice, many
operators are equivalent for mapping purposes. For example, all 2-input
logic operators map in exactly the same way in all patterns in which they
occur. This fact can be exploited by defining equivalence classes for all
operators (e.g., logic, additive) and then defining the grammar rules in
terms of these classes (C in Figure 15.13). Combined with the factoring
out of common subpatterns, this significantly reduces the complexity of
the grammar.

15.5.3 The Combined Approach
A completely different approach maps some operators in a 1:1 fashion and
others in an N:1 fashion. This combination employs powerful module generators
that can generate regular modules covering entire subgraphs of the CDFG. As
an example, the LogicGen tool [20] can handle arbitrary multibit logical expres-
sions, including shifts and permutations, with optional registering of the out-
puts. It extracts a regular structure from the input operators and synthesizes
logic-optimized bit slices using SIS [16], which are then preplaced in a regu-
lar layout. To apply LogicGen, the CDFG is searched for the largest subgraphs
of plain logic modules. Each of these clusters is then handed to the tool in
its entirety, allowing it to exploit reconvergent fanouts, factorization, and the

15.6 Placement 333

like. All operators in the cluster are thus covered by a single, LogicGen-created
HWOP. Operators that are not amenable to traditional logic optimizations, such
as arithmetic and memories that are usually implemented on device-specific
blocks, are then mapped into corresponding HWOPs in a 1:1 manner by
dedicated module generators.

15.6 PLACEMENT

The HWOPs resulting from mapping have to be placed on the device fabric. This
can happen either during mapping or in a separate step afterward. Placement
approaches can be classified into three groups according to the nature of
the generated placement (see Figure 15.14). Purely linear techniques create a
one-dimensional arrangement of HWOPs in a single stripe. Others compute
a placement consisting of multiple stripes, which is sometimes referred to as
1.5 dimensional or constrained two dimensional. A last group of algorithms gen-
erates arbitrary two dimensional arrangements, an approach closely related to
the classical floorplanning or macro-module scenarios in ASIC tool flows.

15.6.1 Linear Placement
An example of linear placement, GAMA [3], performs a one-dimensional place-
ment simultaneously with the mapping step (see Figure 15.15(a)). It assumes
that the external I/Os to the datapath are located on only one side of the stripe
(at the right in the figure). The roots of all subtrees are placed toward this
I/O side, with the root of the entire HWOP tree directly adjacent to the I/Os
(op3 in the figure). Furthermore, the HWOPs within a subtree are all placed
contiguously, which means that (at least initially) HWOPs from different sub-
trees (here op1 and op2) will not be intermingled in the placement. The place-
ment algorithm thus consists of recursively deciding in which linear order to
place the fanin HWOPs of a node.

Note that the placement order does affect the routing delay between differ-
ent HWOPs (Figures 15.15(b) and (c)). The timing estimates calculated in this
fashion are used in the cost function guiding the mapping (covering the trees

(a) (b) (c)

FIGURE 15.14 � Placements styles: (a) linear, (b) constrained two dimensional, and (c) full two
dimensional.

334 Chapter 15 � Datapath Composition

(a)

I/O

op1 op2

op3

D: Total delay d(op): Delay for operator op

Routing delay

I/O

op1 op3op2

(b)

D 5 d(op3) 1 max(d(op1) 1 1, d(op2) 1 6) 1 1

Routing delay

I/O

op1 op3op2

(c)

D 5 d(op3) 1 max(d(op1) 1 3, d(op2) 1 1) 1 1

FIGURE 15.15 � Simultaneous tree covering and placement.

with HWOP patterns). The different trees of the forest (into which the CDFG has
already been split) are placed in the stripe using a greedy algorithm that aims to
place critical path trees close to each other. After this purely constructive initial
placement, a greedy clustering algorithm can move HWOPs globally, across sub-
tree and tree boundaries, in a further attempt to reduce routing delays. In prac-
tice, however, the quality gains achievable using this simple cleanup pass are
negligible.

The techniques proposed by Ababei and Bazargan [1] are an example of a sep-
arate postmapping linear placement step, which employs two core algorithms
to quickly determine linear placements in polynomial time. The first, shown in
Figure 15.16(a), tries to heuristically compute a minimum bandwidth/minimum
wirelength placement by transforming a matrix representation of the input
circuit into band form and reflecting the transformation steps in HWOP swaps.
This algorithm is applicable to general CDFGs.

The second, faster algorithm (Figure 15.16(b)) gives even better results, but is
limited to operating on trees (similarly to GAMA). It proceeds topdown, recur-
sively placing the nodes in a linear arrangement. The root is placed in the
middle; the left subtree of the root, to the left; and the right subtree, to the
right. The order in which the nodes are visited depends on the summed lengths
of all HWOPs in the subtrees rooted at each node (this is called the volume of
a node): Nodes rooting smaller volume subtrees are visited first, placing them
closer to the root. In Figure 15.16, the length of all HWOPs is assumed to be 1.

In a refinement, Ababei and Bazargan [1] then extend the techniques for par-
tial reconfiguration: A sequence of CDFGs is arranged so that previously placed

15.6 Placement 335

(b)

Volume 5 4

Volume 5 2

1

4 5 6 7

9

2 3
12548 3 7 6 9

(a)

1

2 3

A B

A

B

1 1 0

1 2 3

1 0 1

Wirelength = 4
Max cut = 2

1 2 3

A

B

1 1 0

0 1 1

2 1 3

Wirelength = 2
Max cut = 1

12 3

8

FIGURE 15.16 � Postmapping linear placement.

HWOPs and their interconnect can be reused in succeeding configurations, thus
reducing the amount of configuration data. In the (albeit limited) experiments,
up to 74 percent of HWOPs and 36 percent of inter-HWOP connectivity could be
reused between configurations. However, with increased reuse, the delays and
wirelengths began to deteriorate over independent placements (without reuse).

Other techniques that have been applied to compose linear stripes of HWOPs
are spectral partitioning [13], genetic algorithms [10], and quadratic placement
[22]. In the last case, it was determined that the quadratic placement needed
to be postprocessed for by computing the optimal arrangement of HWOPs in
a small window (less than or equal to five HWOPs long) using exact methods
(e.g., exhaustive search, branch/bound). The process is then repeated, sliding the
window across the stripe, until no further improvement can be realized.

15.6.2 Constrained Two-dimensional Placement
With the focus on linear datapath structures, published work on constrained
two-dimensional or 1.5-dimensional datapath placement is sparse. Some limited
results are reported by Thorns [18]: The CLAP tool first performs a clustering
procedure similar to that in VPack [2] to determine the HWOPs to fit into each
stripe. Then the horizontal arrangement of HWOPs inside a stripe, as well as
the vertical and horizontal arrangements of entire stripes, is optimized using
different moves in an adaptive simulated annealing algorithm [2], resulting

336 Chapter 15 � Datapath Composition

in the constrained layout shown in Figure 15.14. Again, only a limited set of
benchmarks was evaluated for CLAP. However, even for a small 28-module data-
path, the constrained two-dimensional approach reduced the delay by more than
20 percent over a linear placement created using a GAMA-like technique.

15.6.3 Two-dimensional Placement
A full two-dimensional placement is generally not applicable to the datapath
structures discussed previously. However, if the target device architecture does
not impose a specific ordering of bit significances (for example, when no
hardwired carry logic is present), two-dimensional placement can be performed
by treating the HWOPs as conventional macro blocks. A family of such place-
ment algorithms has been described for the tools TS-FP [5] and Frontier [17]
(Figure 15.17). Both distinguish between hard macros, with fixed rectangular
shape, and soft macros, with a malleable shape. In both cases, the algorithms
partition the device fabric into a number of bins, whose size depends on the
area of the largest hard macro present in the input circuit. Smaller macros are
then clustered up to the bin size to avoid wasting intrabin area.

This clustering process takes into account a number of factors: the compati-
bility of the macro shapes inside a bin (shapes in bin must geometrically fit in
the bin bounding box), the relative size of the cluster compared to the entire
circuit, the relative size of the blocks in the cluster, and the connectivity of
the macros in the cluster. If, after clustering, the number of clusters exceeds
the number of available bins, the size of the bins is increased and the cluster-
ing process is repeated. The clusters are then assigned to individual bins using
standard placement techniques.

Intrabin placement is now performed constructively. TS-FP places hard
macros from right to left by abutment, leaving the left side of the bin free for

Hard macro Soft macro

FIGURE 15.17 � Bin-based two-dimensional HWOP floorplanning.

15.7 Compaction 337

soft macros. Frontier (shown in Figure 15.17) spreads the hard macros horizon-
tally across the entire length of a bin, leaving the unused space between them
for the soft macros. These are then placed in the free regions. TS-FP performs a
geometrical minimax matching, reshaping the logic of each soft macro to fit into
available space while attempting to keep the macros’ initial internal placement
intact. Frontier uses a simpler approach, laying a snakelike pattern across the
free space, filled by sequentially selecting from the soft macro an unassigned
PE that leads to the minimal overall wirelength. To improve routability,
Frontier additionally employs a final low-temperature annealing pass for the PEs
in the soft macros. These are allowed to move across macro and bin bound-
aries. The annealing start temperature is set sufficiently high to allow pertur-
bation of the layout but low enough to ensure that the basic bin structure is
kept intact.

15.7 COMPACTION

In a 1:1 mapping of simple CDFG operators (for example, trivial logic gates)
to HWOPs, the PEs inside an HWOP are often not used to their full capacity.
This inefficiency is worse when coarse-grained PEs are being targeted, and it
accumulates across all HWOPs implementing simple operators. Figure 15.18
shows an example of this in which the functionality of a 2-input multiplexer
described using simple logic HWOPs requires three PEs—even though it would
completely fit in a single PE.

Compaction dissolves the boundaries of selected HWOPs and optimizes their
contents as a whole, resulting in the creation of a new super-HWOP that real-
izes all of the original functions in a smaller/faster fashion. The procedure can
generally be split into four phases:

1. Select the HWOPs to merge and compact.
2. Analyze regularity across the selected HWOPs to derive new master slices.
3. Optimize the newly discovered master slices.

AND2 OR2 AND2B1 MUX21

FIGURE 15.18 � Wasted space in the layout of very simple HWOPs.

338 Chapter 15 � Datapath Composition

4. Construct the super-HWOP by instantiating and placing the optimized
master slices according to the regular inter-HWOP structure discovered
previously.

15.7.1 Selecting HWOPs for Compaction
Two approaches have been proposed for selecting candidate HWOPs for
compaction. Early work, such as the Structured Design Implementation (SDI)
approach [8–10], aimed to keep a precomputed one-dimensional placement intact
and so only considered connected neighboring HWOPs to compact. However,
more recent research [21, 23] shows that better area efficiency is achievable
by selecting candidates purely based on their connectivity, independent of any
placement.

Additionally, depending on the actual optimization procedures to be per-
formed on the selected candidates certain HWOPs, despite being connected and
adjacently placed, might later be unsuitable for compaction. For commonly used
optimization methods, this category generally includes HWOPs exploiting target
device–specific features such as hardwired carry chains or fixed-function blocks
(e.g., multipliers or memory blocks). Thus, their enclosing HWOPs are exempt
from compaction.

15.7.2 Regularity Analysis
Since compaction is a regularity-preserving transformation, regularity aspects
have to be considered both in its preparation and while it is taking place.
Although methods exist to determine regular patterns in arbitrary circuits
[12,15], it is much more efficient to keep track of this data from the moment of
HWOP circuit generation. The method developed by Ye and colleagues [21, 23]
requires knowledge of the netlists at the bit slice level. SDI, supported by the
powerful PARAMOG module generator library, goes beyond that by explicitly
describing both regularity (in the model described in Section 15.1.1) and hier-
archy (using master slice/bit slice relationships).

Based on the detailed data, SDI can consider more complicated structures
for regular compaction. Figure 15.19 shows how it can isolate two new master
slices and their instances from the HWOPs ALU and LSHR under compaction,
even though the number of bit slices between these HWOPS differs. The
inter-HWOP regularity consists of a 2-zone stack. The top zone holds a single
instance of a newly discovered master slice, which consists of the original mas-
ter slices ALU4, TOPDWN, and DWN. The second zone has two instances of a new
master slice, which consists of ALU4 and two instances DWN. Ye and colleagues’
technique [23] would not attempt to merge these two HWOPs, as it can only
compact HWOPs with the same number of bit slices.

15.7.3 Optimization Techniques
The core of compaction lies in the intermodule optimizations applied to
the super-HWOP constructed by merging the original HWOPs. Here, Ye and

15.7 Compaction 339

1
0

2
3

4

5
6
7

ALU4/0

ALU4/1

ALU4/2

8
9

11
10 TOPDWN/0

DWN/3

DWN/0

DWN/1

DWN/2

DWN/4

ALU[11:0]

S0S1S2S3 SHIFTControl signals

LSHR[11:0]

FIGURE 15.19 � Extracting inter-HWOP regularity.

colleagues’ approach [23] performs two additional steps compared to SDI:
word-wide transformations that affect entire HWOPs followed by exploiting
the context (external signals) of the HWOPs under compaction. The main pro-
cessing step of both SDI and the system of Ye et al. [23], however, consists
of applying traditional logic synthesis and optimization algorithms at the bit
slice level.

Word-level optimization
Word-level optimizations, which in Ye and colleagues’ approach [23] were
performed manually, alter the datapath from the structure described in the orig-
inal CDFG. Two of the transformations are shown in Figure 15.20. The first,
shown in Figure 15.20(a), tentatively collapses trees of multiplexers into a sin-
gle wide multiplexer, modifying the select logic appropriately. If this replacement
requires more area than the original version, the original version is retained.
This transformation cannot be performed by optimizing at the slice level,
because the multiplexer select logic is not part of the regular area holding the
bit slices.

The second transformation, shown in Figure 15.20(b), is called operation
reordering. It attempts to reduce area by restructuring individual multiplexers.
A subcircuit, in which a multiplexer selects a single result from multiple identi-
cal operator instances, is turned into a form where multiple multiplexers select
from a set of inputs feeding a single operator instance. Under the assumption
that a multiplexer is smaller than the operator, this reduces area. Note, however,
that this is not always the case: In many fine-grained architectures that com-
bine LUTs and arithmetic carry logic within a logic block, both multiplexers
and adders/subtractors may occupy the same number of logic blocks.

340 Chapter 15 � Datapath Composition

a

b

c

d

a

c

b

ds
op

s

op

op

(b)(a)

Decoding
logics0 s1

s0 s1

FIGURE 15.20 � Word-level optimizations performed by Ye et al. [23].

Furthermore, the second transformation is problematical in that it loses
parallelism between the original multiple operator instances. Consider the fol-
lowing scenario: The operator instances 1 and 2 have data-dependent execution
times t1 and t2, and the select input arrives at ts after the operands of the opera-
tors. In the original case, both computations would be speculatively performed
in parallel. The delay of the entire structure is then max(ts, t1) if the result of
the first operator is selected, and max(ts, t2) otherwise. In effect, the delay of the
select input hides part of the operator delay. In the reordered form, the operator
can begin computation only after the select input has become valid, leading to
total delays of ts + t1 and ts + t2, respectively.

The ramifications of such a transformation can be appraised to their full
extent only when building the CDFG in the first place—for example, when
considering instruction-level parallelism in a hardware compiler. At the same
time, the multiplexer tree collapsing could also be performed, dispensing with
a special optimization pass later in the design flow. Instead, the CDFG would
contain generic multiplexer operator nodes with a varying number of inputs. Dur-
ing the mapping step, the module library would determine the best realization
for each operator, also considering global issues such as the criticality of their
signal paths.

Context-sensitive optimization
The tool flow designed by Ye and colleagues [23] then performs an additional
suite of optimizations that also considers the super-HWOP in the context of the
surrounding datapath (Figure 15.21). To this end, it partitions the super-HWOP
into m-bit-wide superslices, each of which may thus consist of multiple bit slices.
Next, the external ports of each superslice are examined for certain connectivity
patterns and the presence of constant values. The actual optimizations are then
performed in this superslice-specific context.

Constant inputs are absorbed for each of the superslices (Figure 15.21(a)).
Similarly, nets that connect slice inputs directly to outputs are also pulled into
the slice (Figure 15.21(b)). Multiple slice inputs all sourced by the same external
signal are replaced by a single input that fans out to the original internal sinks
(Figure 15.21(c)).

15.7 Compaction 341

......

(a)

(b)

HWOP

......

HWOP

Subcomponent PEBit slice port
...

...

...
...

HWOP HWOP

(c)

HWOP

"1"

"0"

...
...

HWOP

...
...

"1"

"0"

FIGURE 15.21 � Context-sensitive optimizations performed by Ye et al. [23].

These transformations occur only if all bit slices within a superslice have
identical context (e.g., all bit slice input ports a within a superslice have the
constant value 0 applied from the outside). Otherwise, the superslice is left
unchanged.

The quantity m is thus a control for the internal regularity of the super-
HWOP. With m = 1, the super-HWOP is partitioned into width superslices, each
consisting only of a single 1-bit-wide bit slice. Each of these narrow super-
slices is thus affected by only very limited context: A superslice’s single bit slice
can be perfectly matched to its context (e.g., allowing the absorption of even
irregular constant input patterns into each slice) in the super-HWOP. However,
while allowing a large degree of optimization, this setting of m = 1 potentially
introduces significant irregularity into the optimized super-HWOP (it may end
up consisting of completely different bit slices). At the other extreme, with m =
width, the super-HWOP is covered by a single superslice containing m 1-bit-wide

342 Chapter 15 � Datapath Composition

bit slices. Here optimization will occur only if the context affects all bit slices
within the single superslice identically. Thus, even the optimized super-HWOP
will be completely regular (composed only of identical bit slices). With the context
required to be identical for more bit slices, however, fewer optimization opportu-
nities arise. In Ye and colleagues’ approach [23], a value of m = 4 is suggested as a
good trade-off between widespread optimization and the preservation of a regular
structure.

In effect, the idea of superslices is similar to the zone concept introduced
in Section 15.5.1, although zones, with their variable granularity, remain more
flexible than superslices, with their fixed granularity.

Logic optimization
In logic optimization, the netlists of the HWOPs under compaction are merged
into HWOP-spanning bit slices (possibly newly discovered, as discussed in
Section 15.7.2). The resulting larger merged netlists are then passed to conven-
tional logic synthesis tools that can exploit the additional optimization oppor-
tunities resulting from them.

In addition to this slice-internal optimization, the system of Ye and colleagues
[23] can specialize the bit slices by considering the constant external inputs and
connections that were discovered in the context-sensitive analysis pass.

15.7.4 Building the Super-HWOP
The optimization phase of compaction changes the circuit structure. Thus, any
regular placement created by a generator is invalidated. Ye and colleagues’ tool
flow [23], which concentrates on measuring regularity and area overheads, does
not perform the further processing steps itself. Instead, the resulting optimized
bit-slice netlists are passed to standard place-and-route tools for further han-
dling. In contrast, Structured Design Implementation (SDI), additionally aiming
at delay minimization, attempts to restore a regular placement for the optimized
super-HWOP. This micro-placement step, shown in Figure 15.22, exploits regu-
larity by operating at the master slice level. The results are then automatically
replicated across the entire super-HWOP according to its zone structure.

Microplacement operates on cells (LUT and FF blocks), and proceeds in two
phases:

1. The placement of cells horizontally, grouped into columns (Figure 15.22(a)).
This is performed across all master slices, ensuring that cells sharing a control
net are located adjacently to a vertical routing channel. Such an arrange-
ment allows the efficient routing of high-fanout control nets on vertical long
lines. Analogously, cells on interslice nets are horizontally aligned to allow
short-distance routing. The remaining cells are placed in a timing-driven fash-
ion, using estimates for the as yet unknown vertical position. This placement
phase optimizes the super-HWOP in the geometric context of the datapath
by constraining the master slice I/O ports to the appropriate sides of the
layout.

15.7 Compaction 343

ctl

Align all interslice
nets horizontally

A
cr

os
s

al
l m

as
te

r
sl

ic
es

A

X

B

C

Y

Z

(a)

X

A

For each master slice

Vertical timing-driven
placement

(b)

FIGURE 15.22 � Horizontal and vertical microplacement to restore regularity to compacted
super-HWOP.

2. The placement of cells within the columns vertically (Figure 15.22(b)). This
step looks across master slice boundaries only initially when performing a tim-
ing analysis on the entire super-HWOP. After annotating the timing criticalities
calculated in this manner on the master slice ports, each master slice is placed
independently in a purely timing-driven fashion. The timing model used here
models the intricacies of the target device routing network and leads to measur-
ably better results than simple Manhattan distances.

Since the microplacement results are replicated according to the regular struc-
ture previously determined for the super-HWOP, it is advantageous to employ
high-quality algorithms. To this end, SDI uses a combination of well-converging
heuristics and exact integer linear programming (ILP)-based methods. The latter
are feasible because of the separation of the placement problem into horizon-
tal and vertical phases, and the relatively small circuit size of the master slices
(compared to the entire super-HWOP).

15.7.5 Discussion
Implementing a circuit in a regular bit-sliced fashion is generally associated
with some area overhead compared to synthesizing/optimizing the circuit in
an irregular flat manner. The reason is that the bit-slice boundaries prevent
the exploitation of cross-slice optimization opportunities. The system devised
by Ye and colleagues [23], with its additional interslice optimizations, observed
area overheads of between 0 percent and 7.4 percent for superslice granularity

344 Chapter 15 � Datapath Composition

values of m = 1 (fully irregular) and m = 32 (fully regular with a width of 32 bits),
respectively. For SDI, which lacks these optimizations, area increases of up to
17 percent were observed over the flat solution. However, by scrupulously main-
taining a regular structure, SDI was able to reduce the total delay in the circuit
by up to 33 percent over the flat implementation. A combination of the inter-
slice optimizations of Ye and colleagues [23] with the microplacement of SDI
appears to be promising to achieve further gains.

15.8 SUMMARY AND FUTURE WORK

This chapter presented an overview of some of the many issues to consider when
realizing datapaths on reconfigurable logic devices. The aspect of regularity is a
crucial one and must be considered both at the level of the target device archi-
tecture and during the operation of the EDA tools. Module generators are an
efficient means to actually create the circuits making up the datapath. However,
in addition they must offer sufficient metadata to the rest of the tool flow as a
base for effective transformation and optimization steps.

With increasing requirements on datapath performance, tool flows and
algorithms must keep up with improvements in device architectures. All of the
techniques described here have the potential for further refinement. Refinement
opportunities include module generators that better support specialization,
floorplanning with constrained two-dimensional placement, and a compaction
technique in which the best of these refinements is combined.

References
[1] C. Ababei, K. Bazargan. Non-contiguous linear placement for reconfigurable

fabrics. Proceedings of the of the Reconfigurable Architectures Workshop, 2004.
[2] V. Betz, J. Rose, A. Marquardt. Architecture and CAD for Deep-Submicron FPGAs,

Kluwer, 1999.
[3] T. J. Callahan, P. Chong, A. DeHon, J. Wawrzynek. Fast module mapping and place-

ment for datapaths in FPGAs. Proceedings of the of the International Symposium
on Field-Programmable Gate Arrays, 1998.

[4] T. Callahan, R. Hauser, J. Wawrzynek. The GARP architecture and C compiler.
IEEE Computer 33(4), 2000.

[5] J. M. Emmert, D. Bhati. A methodology for fast FPGA floorplanning. Proceedings
of the International Symposium on Field-Programmable Gate Arrays, 1999.

[6] B. Hutchings, P. Bellows. J. Hawkins, S. Hemmert. A CAD suite for high-
performance FPGA design. Proceedings of the of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 1999.

[7] N. Kasprzyk, A. Koch. High-level-language compilation for reconfigurable comput-
ers. Proceedings of the International Conference on Reconfigurable Communication-
centric SoCs, 2005.

[8] A. Koch. Module compaction in FPGA-based regular datapaths. Proceedings of the
Design Automation Conference, 1996.

15.8 Summary and Future Work 345

[9] A. Koch. Structured design implementation—A strategy for implementing regular
datapaths on FPGAs. Proceedings of the International Symposium on Field-
Programmable Gate Arrays, 1996.

[10] A. Koch. Regular Datapaths on Field-Programmable Gate Arrays. CS doctoral thesis,
technical, University of Braunschweig, 1997.

[11] A. Koch. On tool integration in high-performance FPGA design flows. Proceedings
of the International Conference on Field-Programmable Logic and Applications, 1999.

[12] T. Kutzschebauch, L. Stok. Regularity-driven logic synthesis. Proceedings of the
International Conference on Computer-Aided Design, 2000

[13] J. Li, J. Lillis, L. T. Liu, C. K. Cheng. New spectral linear placement and clustering
approach. Proceedings of the Design Automation Conference, 1996.

[14] T. Neumann, A. Koch. A generic library for adaptive computing environments.
Proceedings of the International Conference on Field-Programmable Logic and Appli-
cations, 2001.

[15] R. Nijssen, J. Jess. Two-dimensional datapath regularity extraction. Proceedings of
the ACM SIGDA Physical Design Workshop, 1996.

[16] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, et al. SIS: A system for
sequential circuit synthesis. EECS Memorandum No. UCB/ERL M92/41, University
of California, Berkeley, 1992.

[17] R. Tessier. Frontier: A fast placement system for FPGAs. Proceedings of the Inter-
national Conference on VLSI, 1999.

[18] F. Thorns. CLAP—Clustering and placement. Diploma thesis, Technical University
of Braunschweig, 2003.

[19] C. C. Vi, D. Lewis. Area-speed trade-offs for hierarchical field-programmable gate
arrays. Proceedings of the International Symposium on Field-Programmable Gate
Arrays, 1996.

[20] C. Wewetzer. A Universal Generator for Logic Circuits on FPGAs. Diploma thesis,
Technical University of Braunschweig, 2005.

[21] A. G. Ye. Field-Programmable Gate Array Architectures and Algorithms Optimized for
Implementing Datapath Circuits. Doctoral thesis, University of Toronto, 2004.

[22] T. T. Ye, G. De Micheli. Data path placement with regularity. Proceedings of the
International Conference on Computer-Aided Design, 2000.

[23] A. G. Ye, J. Rose, D. Lewis. Synthesizing datapath circuits for FPGAs with empha-
sis on area minimization. Proceedings of the International Conference on Field-
Programmable Technology, 2002.

[24] A. G. Ye, J. Rose. Measuring and utilizing the correlation between signal connectiv-
ity and signal positioning for FPGAs containing multibit building blocks. Proceed-
ings of the International Conference on Field-Programmable Logic and Applications,
2005.

This page intentionally left blank

C H A P T E R 16

SPECIFYING CIRCUIT LAYOUT
ON FPGAS

Satnam Singh
Programming Principles and Tools Group
Microsoft Research Cambridge

Typically, the layout of a circuit implemented on a field-programmable gate array
(FPGA) is computed automatically by vendor design tools. This computation
often results in an acceptable mapping of logical wires in the design onto actual
physical routing resources on the FPGA that meets the designer’s performance
requirements. Instead of relying on automated tools, however, a designer could
try to use an FPGA by explicitly stating the configuration of individual logic
blocks and explicitly specifying the routing between them. One almost never
needs to program an FPGA at this basic and raw level, and often the proprietary
nature of programming information makes it difficult or impossible to take this
approach. Still, the FPGA design flow provides a powerful set of abstractions
that allow a designer to think in terms of structural circuit netlists, which can be
automatically converted into programming information for FPGAs. Structural
netlists are abstracted further by the synthesis flow, which allows designers to
think of circuit functions in an algorithmic or sequential manner.

16.1 THE PROBLEM

Although it is just about tractable for humans to explicitly specify the layout of
some mapped circuits on an FPGA, explicitly specifying the routing is extremely
difficult because of the complex nature of the wiring resources. A screen snap-
shot of some of these resources on a Xilinx FPGA is shown in Figure 16.1. As
one can see there are simply too many wires and interconnection options for
a human to economically make routing decisions. However, providing layout
hints or even explicit layout for only the logic blocks is a reasonable approach,
because designers often have good intuition about a desirable layout but little
intuition about how to use the underlying routing resources. By specifying some
aspects of the layout, the tools can produce a faster circuit than is possible with
purely automatic approaches [4]. The ability to specify layout helps with other
operations like dynamic reconfiguration [3].

A design that contains a mixture of manually and automatically placed blocks
is shown in Figure 16.2. The rectangular block is the core of the Xilinx Micro-
Blaze soft processor, which is designed with explicit layout specification for each
gate. The other blocks are components, such as the system bus and peripherals,

348 Chapter 16 � Specifying Circuit Layout on FPGAs

FIGURE 16.1 � FPGA routing resources.

that are designed without explicit layout specification—the placer automatically
decides where to put these gates. Many of Xilinx’s Core Generator IP core blocks
are designed with explicit layout information. By giving a good layout for a
circuit, one can indirectly control performance by influencing wiring that con-
tributes to the critical path. Also, by providing user-specified placement infor-
mation for small blocks that will be reused for many designs, the upfront design
effort can be worthwhile.

An automatic placement algorithm can often find an acceptable placement
that meets the design requirements for speed, area, power, and so forth. How-
ever, when such an algorithm cannot find a good placement—or any placement
at all—there is often little the designer can do. In these situations it would be
desirable either to allow the designer to influence the placement by adding extra
information or to allow her to partly or completely specify the layout of her
circuit. For circuits that need very high performance or that need to be very
compact, often only a user-specified layout can achieve the required results. For
example, the design shown in Figure 16.3 has been automatically placed and
routed without any user-specified layout information. The same design can be
augmented with user-specified layout information to produce the layout shown
in Figure 16.4, which performs approximately 30 percent faster.

16.1 The Problem 349

FIGURE 16.2 � An example of manually and automatically placed blocks.

Providing explicit layout information can also reduce the runtime of FPGA
implementation tools, mainly because of the reduction in work for the automatic
router. This is particularly important for uses of reconfigurable computing that
create custom circuit designs for each problem instance, when placement and
routing tool runtimes are part of the system’s execution time (see Chapter 5).

350 Chapter 16 � Specifying Circuit Layout on FPGAs

FIGURE 16.3 � A design with no explicit layout (automatic place and route).

FIGURE 16.4 � A design with totally explicit layout.

16.2 Explicit Cartesian Layout Specification 351

An important reason for explicitly specifying absolute or relative layout is to
support runtime reconfiguration, which is much easier to perform if the system
knows the shape and location of circuits to be swapped in and out or updated
in place.

This chapter reviews various techniques for specifying the layout of circuits
for FPGAs. We illustrate our examples using Xilinx’s FPGA technology, which
provides an accessible mechanism for specifying circuit layout.

16.2 EXPLICIT CARTESIAN LAYOUT SPECIFICATION

Explicit Cartesian layout specification involves specifying the location of some
or all logic elements using a two-dimensional coordinate system. One form of
explicit layout involves giving an absolute location for each gate in the mapped
netlist. This approach is not common because it does not permit the specifi-
cation of reusable layouts, which can be replicated throughout the FPGA, and
such descriptions may be unnecessarily specific to a particular FPGA chip or
family. A more common approach is the relative layout specification.

Xilinx’s placement tools can take user-specified layout information either as
absolute or as relative locations. Relative locations identify the bottom left cor-
ner of a block of logic. Blocks may be placed relative to each other in a hierar-
chical fashion.

The layout of a gate or block is achieved by attaching a special attribute
called LOC for absolute layouts and RLOC for relative layouts. The VHDL code
in Figure 16.5 illustrates the design of a 1-bit adder in which two of the gates
have their relative layout explicitly specified.

In the figure, the attribute mechanism of VHDL is used to attach a relative
layout attribute to two instances: one for an xor gate and the other for an or
gate. The RLOC attribute specifies the relative location of the CLB that will be
used to realize a given gate. One may further specify the specific lookup table
(LUT) within the CLB or omit this specification to allow the placer to make
the choice.

architecture structural of adder is
signal xor1_out, and1_out, and2_out, or1_out : std_logic;
attribute RLOC of xor1 is "X2Y5" ;
attribute RLOC of or1 is "X3Y4" ;

begin
xor1: xorg port map (in1 =>a, in2 => b, out1 => xor1_out);
xor2: xorg port map (in1 => xor1_out, in2 => cin, out1 => sum);
and1: andg port map (in1 => a, in2 => b, out1 => and1_out);
or1: org port map (in1 => a, in2 => b, out1 => or1_out);
and2: andg port map (in1 => cin, in2 => or1_out, out1 => and2_out);
or2: org port map (in1 => and1_out, in2 => and2_out, out1 => cout);

end structural;

FIGURE 16.5 � An example of explicit layout in VHDL.

352 Chapter 16 � Specifying Circuit Layout on FPGAs

Explicit layout works well for small circuits that are not parameterized and
for VHDL and Verilog descriptions that do not make use of statements like
for . . . generate. In parameterized circuits, layout specifications become
quite complex, with location specifications becoming difficult to comprehend
layout calculation expressions. Because layout specifications are string attributes,
one has the extra complexity of performing integer index calculations and then
converting them into their string representation. This is often too tedious to be
practical. The difficulty of working with explicit Cartesian layout specifications
has led to the development of various systems to specify layout at a higher level
of abstraction.

16.3 ALGEBRAIC LAYOUT SPECIFICATION

Algebraic layout specification typically does not involve Cartesian coordinates.
Instead, one specifies the geometric relationship between one circuit and ano-
ther. These specifications (or constraints) are gathered together, and a determin-
istic layout can then be calculated. Techniques such as this have been shown to
work for parameterized circuits, circuits with irregular layouts, and recursively
defined circuit layouts. Such descriptions are also slightly less tightly coupled
to a specific FPGA architecture or family. In this section we describe how alge-
braic layout specifications work in the Lava system [1]. Several other systems
are based on similar principles.

Lava is based on the concept of circuit combinators, which are calculations
that take circuits as inputs and deliver a circuit as a result; essentially, they are
procedures that compute on circuit descriptions. One important design decision
in Lava is the coupling of the description of circuit behavior and that of circuit
layout by using circuit combinators that compose both behavior and layout.
This works well when the circuit layout description can use the same patterns
as those of the circuit behavior. When this is not the case, one can directly use
Cartesian coordinates.

One important combinator is the serial composition combinator. This combi-
nator, written as an infix operator >->, takes two circuits R and S as arguments
and delivers a circuit comprising R with its output connected to the input of S.
Furthermore, R is laid out to the left of S, which matches a left-to-right dataflow.

Figure 16.6 shows the composition of an AND2 and an INV gate. Each gate
or circuit starts life in its own coordinate system. The basic gates each have a
height and width of one unit. The serial composition combinator sees that the
circuit on the left has a width of one and then translates the circuit on the right
by one unit. These algebraic descriptions can be arbitrarily nested. When the
system needs to produce a VHDL or EDIF netlist, the algebraic specifications
are computed and a netlist that contains RLOCs is automatically generated.

Notice, now that layout has been combined with behavior, that there is a
need for several kinds of serial composition combinators. Those for right-to-left
(<-<), bottom-to-top (∧), and top-to-bottom (V) layout are all supported by Lava.

16.3 Algebraic Layout Specification 353

3

2

1

0

3

2

1

0

0 1 2 3

0 1 2 3

0 1 2 3

3

2

1

0

AND2

AND2 >-> INV

INV

FIGURE 16.6 � Layout calculation.

Figure 16.7 shows the layout produced by the Lava circuit expression AND2 >->
FD clk, which serially composes an AND2 gate with an FD component (a flip-flop).

In the Xilinx device, a LUT–flip-flop pair is called a slice. AND2 and a flip-flop
(FD) each have a width and height of one unit, or slice, causing the FD flip-
flop to be mapped to a slice to the right of the slice containing the function gen-
erator for the AND2 gate. Such a process is very inefficient. To allow circuits
to be composed but mapped to the same location we can use the serial overlay
operator, written as >|>. This is illustrated on the right side of Figure 16.7 and
shows both the AND2 gate and the FD flip-flop mapped to the same location.

The circuit tiles presented so far have only one-dimensional dataflow. Four-
sided tiles allow us to specify dataflow horizontally and vertically. Rather than
introduce a new basic tile, a 4-sided tile can be represented in terms of a 2-sided
tile. This is done by considering the 4-sided tile as a function that maps a pair of
input values to a pair of output values. Each element of each pair corresponds to
a face of the tile, as shown in Figure 16.8. We can now define a below combinator,
which places one tile below another (r below s is shown in the middle of the

354 Chapter 16 � Specifying Circuit Layout on FPGAs

(a)

G Y

(b)

G Y

FIGURE 16.7 � The overlay combinator: (a) AND2 >-> FD clk; (b) AND2 >|> FD clk.

d

c

(a, b) -. (c, d)
a

b

e

b

g

s

r

f

c

e

r

r

r

r

col 4r

FIGURE 16.8 � Four-sided tiles.

figure). The col combinator replicates a tile vertically (col 4 r is shown on the
right of the figure).

A concrete example of the col combinator is shown in Figure 16.9. The col
combinator acts on a 1-bit adder circuit that takes a pair as input (the carry-in
[cin] and another pair of values to be added) and delivers a pair as its output

16.3 Algebraic Layout Specification 355

a0

b0

cin

sum3

cout

XORCY

XORCY

XORCY

XORCY

LUT

0 1
MUXCY

0 1
MUXCY

0 1
MUXCY

0 1
MUXCY

LUT

LUT

LUT

a1

a2

a3

b1

b2

b3

sum2

sum1

sum0

FIGURE 16.9 � A col 4 1-bit adder.

356 Chapter 16 � Specifying Circuit Layout on FPGAs

(the sum and the carry-out [cout]). It will connect the carry-out of each stage to
the carry-in of the next stage. Furthermore, it will vertically stack the 1-bit adders.

The actual FPGA layout produced for col 8 oneBitAdder is shown in
Figure 16.10. In this case the automatic placement tools would have produced
the same layout because the carry chain would have constrained a vertical align-
ment for the circuit. Through combinations of these regular abutment tech-
niques, very complex but regular circuits can be efficiently created.

FIGURE 16.10 � FPGA layout of col 8 oneBitAdder.

16.3 Algebraic Layout Specification 357

16.3.1 Case Study: Batcher’s Bitonic Sorter
This section presents the layout specification of a high-speed parallel sorter that
would have been difficult to lay out using explicit Cartesian coordinates. We
show how to build complex structures incrementally by composing the layout of
subcomponents using simple operators. The use of hierarchy achieves complex
layout structures that would have been difficult or tedious to produce otherwise
and impossible to produce in a compositional manner.

The objective is to build a parallel sorter from a parallel merger, as shown in
Figure 16.11. A parallel merger takes two sublists of numbers where each sublist
is sorted and produces a completely sorted list of numbers as its output. All
inputs and outputs are shifted in, in parallel rather than serially. Furthermore,
for performance reasons the sorter should have the same floorplan as shown in
the figure.

This parallel sorter uses a two-sorter as its building block, which is shown
fully placed in Figure 16.12. This circuit has left-to-right dataflow. Although the
>=> combinator is also a serial composition combinator, it does not have any
layout semantics because it is used to compose wiring circuits (which are not
subject to layout directives).

The two-sorter in Figure 16.12 has been carefully designed to have a rectangu-
lar footprint because we will want to tile many of these circuits together vertically
and horizontally to produce a compact and high-performance sorter network.

Another important combinator we will use in our sorter design is the two-
combinator, which makes two copies of a circuit r, one of which works on the
bottom half of the input and the other on the top half of the input, as illustrated
in Figure 16.13. Furthermore, the second copy of r should be placed vertically
on top of the first copy. The two combinator can be defined as

two r = halve >-> par [r,r] >-> unhalve

which says halve the input, use two copies of r in parallel (stacked vertically)
on the halved input, and then take the result and unhalve it.

Sorter

Sorter

Merger

FIGURE 16.11 � The recursive structure of a sorter.

358 Chapter 16 � Specifying Circuit Layout on FPGAs

a . b

v
r
e
g

v
r
e
g

m
u
x

b

a

twoSorter clk 5 fork2 >-> fsT comparator >-> condSwap clk
clk

m
u
xx

y

FIGURE 16.12 � Two-sorter layout and behavior specification.

r

r

two r

FIGURE 16.13 � The two-combinator.

Interleave (ilv) is another combining form that uses two copies of the same
circuit. This combinator has the property that the bottom circuit processes the
inputs at even positions and the top circuit processes the inputs at odd positions.
It can be defined as

ilv r = unriffle >-> two r >-> riffle

An instance of ilv r for an 8-input bus is shown in Figure 16.14. The related
evens combinator chops the input list into pairs and then applies copies of the
same circuit to each input.

Given these ingredients, we can give a recursive description of a parallel
merger butterfly circuit:

bfly r 1 = r
bfly r n = ilv (bfly r (n-1)) >-> evens r

A bitonic merger of degree 3 is shown in Figure 16.15, which not only describes
how to compose the behavior of elements to form a merger circuit, but also

16.3 Algebraic Layout Specification 359

r

r

unriffle two r riffle

FIGURE 16.14 � The ilv combinator.

5

6

7

8

4

3

2

1

4

3

2

1

8

7

6

5

8

6

3

1

7

5

4

2

6

3

8

1

5

4

7

2

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

FIGURE 16.15 � A bitonic merger.

specifies the layout of the merger circuit using algebraic layout specifications.
This circuit is a bitonic merger that can merge its inputs as long as one half
of the input is increasing in the opposite order from the other half, as shown
in the figure.

360 Chapter 16 � Specifying Circuit Layout on FPGAs

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

2S

FIGURE 16.16 � Sorter recursion and layout for 8 inputs.

Now that we have our merger, we can recursively unfold the pictorial
specification in of the sorter layout to produce the design and layout in
Figure 16.16 (for 8 inputs). This layout can be specified using the following
combinators:

sortB cmp 1 = cmp
sorB cmp n
= two (sortB cmp (n-1)) >->

pair >-> snD reverse >-> unpair >->
butterfly cmp n

In the figure the description uses two subsorters to produce a bitonic input for
a merger (shown on the right).

The 8-input description can be evaluated to produce an EDIF or VHDL netlist
containing RLOC specifications for every gate. The FPGA layout of a degree-5
sorter (32 inputs) with 16-bit numbers is shown in Figure 16.17 on a Xilinx
Virtex-II device. The resulting netlist is the same but with the layout informa-
tion removed. It is shown in Figure 16.18. The netlist with the layout informa-
tion leads to an implementation that is approximately 50 percent faster, and a
64-input sorter leads to a 75 percent speed improvement.

The case study just outlined shows how a complicated and recursive layout
can be described in a feasible manner using algebraic layout combinators rather
than explicit Cartesian coordinates.

16.4 LAYOUT VERIFICATION FOR PARAMETERIZED DESIGNS

A common problem with parameterized layout descriptions (especially those
based on Cartesian coordinates) is that designer errors can produce bad layouts
that cannot be realized on the target FPGAs—for example, the layout specifica-
tion may try to map too many logic gates into the same location. Such errors

16.4 Layout Verification for Parameterized Designs 361

FIGURE 16.17 � The sorter FPGA layout (32 16-bit inputs).

make the production of IP cores that rely on layout very difficult and time
consuming.

For a nonparameterized design, this is not much of an issue: The developer
can check if the design maps, places, and routes. However, for a parameter-
ized design it is usually impractical to check every possible combination of
parameters to ensure that each one leads to a valid layout. A recent, interesting
approach for layout verification involves theorem provers to statically analyze
and formally verify that a design is free of layout errors. This is the approach
taken by Pell [2] in his Quartz declarative block composition system, which
uses a special hardware description notation that can be formally analyzed
with the Isabelle theorem prover. The Quartz system works on algebraic layout
combinators similar to those presented in the previous section.

The Quartz system verifies layout correctness by checking for validity, con-
tainment, and intersection. Validity ensures that the size function of a block
always evaluates to a positive result. Containment ensures that for all parameter
values all subblocks stay within the bounding box of the overall circuit. The
intersection property checks for badly overlapping blocks.

362 Chapter 16 � Specifying Circuit Layout on FPGAs

FIGURE 16.18 � The sorter with layout information removed.

16.5 SUMMARY

User specification of the layout of circuits for FPGAs is sometimes necessary to
meet performance requirements, to reduce area, or to facilitate dynamic recon-
figuration. While a user-defined layout is impractical for many complete designs
because of complexity or time-to-market constraints, optimizing the most crit-
ical blocks of a circuit can have significant benefits, especially for reusable IP
blocks and vendor libraries.

Some vendor tools provide the ability to specify the layout of gates or
composite blocks through either absolute or relative Cartesian coordinates.
However, these tools are tedious to use and error prone, particularly for param-
eterized circuits. Various systems have adopted algebraic layout specifications
that use geometric relationships between blocks instead of coordinate values.
Such descriptions work well for irregular and recursive layouts, as demonstrated
by the recursive parallel sorter in this chapter. However, one may still specify
illegal layouts for parameterized circuits, and no satisfactory technique exists for

16.5 Summary 363

finding them. A promising approach is the use of theorem provers to statically
analyze algebraic layout descriptions to ensure that they have no layout errors
for any given permutation of parameters.

References
[1] P. Bjesse, K. Claessen, M. Sheeran, S. Singh. Lava: Hardware design in Haskell.

International Conference on Functional Programming (ICFP), Springer-Verlag, 1998.
[2] O. Pell. Verification of FPGA layout generators in higher order logic. Journal of

Automated Reasoning 37(1–2), August 2006.
[3] P. J. Roxby, S. Singh. Rapid construction of partial configuration datastreams from

high level constructs using JBits. Field Programmable Logic (FPL), Springer-Verlag,
2001.

[4] S. Singh. Death of the RLOC. Field-Programmable Custom Computing Machines
(FCCM), April 2000.

This page intentionally left blank

C H A P T E R 17

PATHFINDER: A NEGOTIATION-BASED,
PERFORMANCE-DRIVEN ROUTER
FOR FPGAS

Larry McMurchie
Synplicity Corporation

Carl Ebeling
Department of Computer Science and Engineering
University of Washington

Routing is a crucial step in the mapping of circuits to field-programmable gate
arrays (FPGAs). For large circuits that utilize many FPGA resources, it can
be very difficult and time consuming to successfully route all of the signals.
Additionally, the performance of the mapped circuit depends on routing critical
and near-critical paths with minimum interconnect delays. One disadvantage of
FPGAs is that they are slower than their ASIC counterparts, so it is important
to squeeze out every possible nanosecond of delay in the routing.

The first goal, a complete routing of all signals, is difficult to achieve in FPGAs
because of the hard constraints on routing resources. Unlike ASICs and printed
circuit boards (PCBs), FPGAs have a fixed amount of interconnect. The usual
approach in placement is to minimize the wiring resources anticipated for rout-
ing signals. Although this reduces the overall demand for resources, signals
inevitably compete for the same resources during routing. The challenge is to
find a way to allocate resources so that all signals can be routed. The second
goal, minimizing delay, requires the use of minimum-delay routes for signals,
which can be expensive in terms of routing resources, especially for high-fanout
signals. Thus, the solution to the entire routing problem requires the simulta-
neous solution of two interacting and often competing subproblems.

Early solutions to the FPGA routing problem were based on the considerable
literature on routing in the context of ASICs and gate arrays. The problem of
routing FPGAs bears a considerable resemblance to the problem of global rout-
ing for custom integrated circuit design, where signals are assigned to channels.
However, the two problems differ in several fundamental respects. First, routing
resources in FPGAs are discrete and scarce while they are relatively continuous
in custom integrated circuits (ICs). For this reason FPGAs require an integrated
approach using both global and detailed routing. A second difference is that
global routing for custom ICs is based on an undirected graph embedded in
Cartesian space (i.e., a two-dimensional grid). In FPGAs the switches are often
directional, and the routing resources connect arbitrary (but fixed) locations,

366 Chapter 17 � PathFinder: A Negotiation-based, Performance-driven Router

requiring a directed graph that may not be embedded in Cartesian space. Both
of these distinctions are important, as they prevent direct application of much
of the previous work in routing.

By far, the most common approach to global routing of custom ICs is a shortest-
path algorithm with obstacle avoidance. By itself, this technique usually yields
many unroutable nets that must be rerouted by hand. A plethora of rip-up and
retry approaches have been proposed to remedy this deficiency [1–3]. The basic
problem with rip-up and retry is that the success of a route is dependent not just
on the choice of nets to reroute but also on the order in which rerouting is done.
Delay is usually factored into the standard rip-up and retry approach by ordering
the nets to be routed such that critical nets are routed most directly [4–6].

To make the FPGA routing problem tractable, nearly all of the routing
schemes in the literature incorporate features of the underlying architecture.
Palczewski [7] describes a maze router with rip-up and reroute targeting the
Xilinx 4000 series. In this work the structure of the plane-parallel switchbox
in the 4000 series is exploited in conjunction with an A∗ search. Brown et al.
[4] employ an architecture model consisting of channels, switchboxes, connec-
tion matrices, and logic blocks. A global router balances channel densities and
a detailed router generates families of explicit paths within channels to resolve
congestion. These approaches, as well as others, obtain some of their success
by exploiting the features of a particular architecture model. The problem is
that new architectures become constrained by the restrictions of such existing
routing algorithms.

17.1 THE HISTORY OF PATHFINDER

PathFinder was used initially in the development of the Triptych FPGA architec-
ture [8–10]. In fact, Triptych, with its heavy reliance on effective placement and
routing tools, was a catalyst for the development of the PathFinder algorithm—
a perfect example of “necessity being the mother of invention.” As part of an
FPGA architecture exploration tool called Emerald [11], PathFinder was also
employed in the development of an FPGA under development by IBM in the
mid-1990s. This was particularly appropriate because PathFinder is inherently
architecture independent. That experience showed that PathFinder was indeed
an improvement over other FPGA routers available at the time.

The PathFinder algorithm was adopted and carefully implemented by Betz and
Rose in the very popular versatile place and route (VPR) FPGA tool suite [12, 13],
which has been widely used for academic and industry research. The Toronto
place-and-route challenge [14] was established as a way to compare different
FPGA placement and routing algorithms. Since the contest was established in
1997, the champion has been either VPR’s implementation of PathFinder or SC-
PathFinder, implemented at the University of California–Santa Cruz. Although
companies are reluctant to divulge the details of their design tools, it is clear
that some version of the PathFinder algorithm is currently used by virtually all
commercial FPGA routers.

17.2 The PathFinder Algorithm 367

17.2 THE PATHFINDER ALGORITHM

17.2.1 The Circuit Graph Model
One of the key features of PathFinder is its architecture independence, which
derives from the use of a simple underlying graph representation of FPGA archi-
tectures. This model allows PathFinder to be adapted to virtually any architec-
ture and thus used to explore new architectures with very little startup cost.
Once an architecture has been decided on, PathFinder can be specialized to it
for improved results and performance.

The routing resources in an FPGA and their connections are represented by
the directed graph G = (V, E). The set of vertices V corresponds to the electrical
nodes or wires in the FPGA architecture, and the edges E correspond to the
switches that connect these nodes. An example of this graph model is shown in
Figure 17.1 for a version of the Triptych FPGA cell. Note that devices are repre-
sented only implicitly by the wires connected to their terminals. That is, routing
from one device terminal to another is routing between the wires connected to
those terminals.

Associated with each node n in the architecture is a base cost bn that repre-
sents the relative cost of using that node. This cost is typically proportional to
the length of the wire, although other measures like capacitance or number of
fanins and fanouts are also possible. Each node also has a delay dn, which may
or may not be the same as bn.

Given a signal i in a circuit mapped onto the FPGA, the signal net Ni is the
set of terminals, including the source terminal si and sinks tij. Ni forms a subset
of V. A solution to the routing problem for signal i is the directed routing tree
RTi embedded in G and connecting the source si to all of its sinks tij.

17.2.2 A Negotiated Congestion Router
We assume that the reader is familiar with Djikstra’s shortest-path graph algo-
rithm [15–17], which is at the core of many routing algorithms. Note that in our
formulation costs are associated with nodes, not edges. This changes the basic

3-LUT
3-LUT

D
D

FIGURE 17.1 � The circuit for a Triptych FPGA cell is represented in PathFinder by the graph
at the right.

368 Chapter 17 � PathFinder: A Negotiation-based, Performance-driven Router

shortest-path algorithm only slightly by redefining the cost of a path from node
ni to node nj as the sum of the node costs along the path, including the starting
and ending nodes.

Routing algorithms differ primarily in the cost function applied to the routing
resources and in how individual applications of the shortest-path algorithm are
used to successfully route all the signals of a netlist onto the graph representing
the architecture. We ignore the issue of fanout in our initial presentation and
assume that each signal is a simple route from source to a single sink.

A naive routing algorithm proceeds by applying the shortest-path algorithm
to each signal in order, with the cost of a node defined as

cn = bn (17.1)

Resources already used by previous routes are not available to later routes. It
is clear that the order in which signals are routed is crucial, as later routes
have many fewer available routing resources. Some algorithms perform rip-up
and retry when later routes cannot find a path. Selected early routes that are
blocking are ripped up and rerouted later—in essence, adaptively changing the
order in which signals are routed.

The very simple example in Figure 17.2 shows how this naive algorithm can
fail. There are three signals, 1, 2, and 3, to be routed from the sources S1, S2,
and S3 to their respective sinks D1, D2, and D3. The ovals represent partial paths
through one or more nodes, annotated with the associated costs. Ignoring con-
gestion, the minimum-cost path for each signal would use node B. If the naive
obstacle avoidance routing scheme is used, the order in which the signals are
routed becomes crucial: Routing in the order 1, 2, 3 fails, and the minimum-cost
routing solution will be found only when starting with signal 2.

S1

B C

3

4 1
1

1 3
2

3
4 1

1
1

3 2

A

S2 S3

D1 D2 D3

FIGURE 17.2 � First-order congestion.

17.2 The PathFinder Algorithm 369

This problem can be solved by introducing negotiated congestion avoidance,
first suggested by Nair [18] by extending the cost of using a given node n in a
route to

cn = bn ·pn (17.2)

where bn is the base cost of using n, and pn is a function of the number of
other signals presently using n (pn is often called the “present-sharing” term).
Note that in the naive router, pn = 1 if no other signals are using n, and infinity
otherwise. In the negotiated congestion algorithm, pn is set initially to 1 and all
signals are routed. This allows each signal to be routed as if no other signals
were present. The cost of sharing is then increased, and all nets are ripped up
and rerouted in turn. This iterative process continues, with the cost of sharing
increasing at each iteration until all signals have been successfully routed. The
idea is that the cost of a congested node will increase and that signals that have
other alternatives will eventually find other paths, leaving the node to the signal
that needs it most. pn is a function of the iteration i and the number of signals
sharing a node k. The definition of pn is a key tuning parameter of PathFinder.

The negotiated congestion avoidance algorithm solves the problem of
Figure 17.2. During the first iteration, pn is initialized to 1, and consequently
no penalty is imposed for the use of n regardless of how many signals occupy
it. Thus, in the first iteration all three signals share B. When the sharing func-
tion pn increases sufficiently, signal 1 will find that a route through node A gives
a lower cost than a route through the congested node B. During an even later
iteration signal 3 will find that a route through node C gives a lower cost than
that through B. This scheme of negotiation for routing resources depends on
a relatively gradual increase in the cost of sharing nodes. If the increase is too
abrupt, signals may be forced to take high-cost routes that lead to other con-
gestion. Just as in the standard rip-up and retry scheme, the ordering becomes
important.

While iterative negotiated congestion routing with the cost function of
equation 17.2 can optimally route simple “first-order” routing problems like that
in Figure 17.2, it fails on more complex “second-order” routing problems like
that shown in Figure 17.3. Again we need to route three signals, one from each
source to the corresponding sink. Let us first consider this example from the
standpoint of obstacle avoidance with rip-up and retry. Assume that we start
with the routing order (1, 2, 3). Signal 1 routes through node B, and signals 2
and 3 share node C. For rip-up and retry to succeed, both signals 1 and 2 would
have to be rerouted, with signal 2 rerouted first. Because signal 1 does not use a
congested node, determining that it needs to be rerouted is in general difficult.

This second-order congestion problem cannot be solved using pn alone. Signal
2 will never choose node B because the present sharing costs for nodes B and
C are the same, with B used by signal 1 and C used by signal 3. Since the path
through C is cheaper, it is always chosen. PathFinder solves this by extending
the cost function with a “history” term, hn:

cn = (bn +hn) ·pn (17.3)

370 Chapter 17 � PathFinder: A Negotiation-based, Performance-driven Router

2

2

1

1 1 1

112

2

S1 S2 S3

D1 D2 D3

A B C

FIGURE 17.3 � Second-order congestion.

Unlike pn, hn “remembers” the congestion that has occurred on node n during
previous routing iterations. That is, the history term is updated after each rout-
ing iteration; any node shared by multiple signals has its history term increased
by some amount. The effect of hn is to permanently increase the cost of using
congested nodes so that routes through other nodes are attempted. Without this
term, as soon as signals stop sharing a node, its cost drops to the base cost and
it again becomes attractive. This leads to oscillations where signals switch back
and forth between nodes but never resolve the congestion problem. The addition
of the history term is a key difference between PathFinder and Nair’s routing
algorithm [18].

The term hn allows the problem in Figure 17.3 to be routed successfully. On
each iteration that node C is shared, hn is increased slightly. When signal 2
switches to using node B, the cost of node C remains elevated. Now the history
cost of node B rises because it is shared by signals 1 and 2. Eventually signal 1
will route through node A. Note that, depending on the base costs and how pn
and hn are defined, signal 2 may switch back and forth between nodes B and C
several times before the history costs of both are sufficiently high to force signal
1 onto node A.

The history term hn is updated whenever a node n has shared signals. The
size of δh, the amount by which hn is increased, and how this depends on k,
the number of sharing signals, are tunable parameters. If δh is too small, many
iterations may be required to resolve the congestion; if it is too large, some
solutions may not be found. Additionally, the relationship between pn and hn
is very important. For example, it can be important to give the history term a
chance to solve congestion before forcing the issue with pn.

The details of the Negotiated Congestion algorithm are given in Figure 17.4.
The while loop at line 2 executes the routing iterations until a solution has been

17.2 The PathFinder Algorithm 371

iteration 0
While shared resources exist

Iteration iteration + 1
Loop over all signals i (signal router)

Rip up routing tree RTi
RTi si
Loop until all sinks tij have been found

Initialize priority queue PQ to RTi at cost 0
Loop until new tij is found

Remove lowest cost node m from PQ
Loop over fanouts n of node m

Add n to PQ at cost Pim + cn

end loop
end loop
Loop over nodes n in path tij to si (backtrace)

Update cn
Add n to RTi

end loop
end loop

end loop
Loop over all nodes ni shared by multiple signals

hi hi + δ(k)
end loop

end while

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

FIGURE 17.4 � Negotiated Congestion algorithm.

found. The signal router loop at line 4 iterates over all signals in the netlist,
ripping up and rerouting the nets one at a time. The routing tree RTi is the set
of nodes used to route signal i. To reroute a signal, the routing tree is reset to
be just the signal’s source.

The priority queue is used to implement the breadth-first search of Djikstra’s
algorithm. At each iteration of the loop of line 9, the lowest-cost node is taken
from the priority queue. It is generally best to order the nodes with the same
cost according to when they were inserted into the queue, with the newest nodes
being extracted first. The cost used when inserting a new node in the priority
queue at line 12 is

Pim + cn (17.4)

where Pim is the cost of the current partial path from the source, and cn is the
cost of using node n.

A signal is routed one sink at a time using Djikstra’s breadth-first algorithm.
When the search finds a sink, the nodes on the path from the source to it are
added to RTi. This is done by back-tracing the search path to the source. The
search is then restarted with the priority queue being initialized with all the
nodes already in RTi. In this way, all the nodes on routes to previously found
sinks are used as potential sources for routes to subsequent sinks. This algorithm
for constructing the routing tree is similar to Prim’s algorithm for determining
a minimum spanning tree over an undirected graph, and it is identical to one

372 Chapter 17 � PathFinder: A Negotiation-based, Performance-driven Router

suggested by Takahashi and Matsuyama [19] for constructing a tree embedded
in an undirected graph. The quality of the points chosen by the algorithm is
an open question for directed graphs; however, finding optimum (or even near-
optimum) points is not essential for the router to be successful in adjusting costs
to eliminate congestion.

The VPR router [12] reduces the cost of reinitializing the priority queue for
each fanout by observing that for large-fanout nets, most of the paths found in
searching for the previous fanout remain valid, especially if the segment added
to the routing tree is relatively small. Thus, the search continues from the previ-
ous state after the new segment has been added to the routing tree. Because of
the way Djikstra’s algorithm ignores nodes after they have been visited once, this
optimization must be implemented carefully to avoid expensive routing trees for
high-fanout nets. Other algorithms for forming the fanout tree are possible. For
example, there are times when routing to the most distant sink first results in a
better routing tree.

At the end of each iteration, the history cost of each node shared by multiple
signals is updated. The δ added to the history cost is generally a function of k,
the number of signals sharing the node.

17.2.3 The Negotiated Congestion/Delay Router
To introduce delay into the Negotiated Congestion algorithm, we redefine the
cost of using node n when routing a signal from si to tij as

Cn = Aij dn +(1−Aij)cn (17.5)

where cn is defined in equation 17.3 and Aij is the slack ratio:

Aij = Dij ⁄Dmax (17.6)

where Dij is the delay of the longest delay (register–register) path containing the
signal segment (si, tij), and Dmax is the maximum delay over all paths (i.e., the
critical-path delay). Thus, 0 < Aij ≤ 1. (This standard definition of slack ratio is
easily extended to include circuit inputs and outputs with timing constraints as
well as circuits with multiple clocks.)

Because path delay is made up of both device and wire delay, and the router
can only control the wire delay, a more accurate formulation for Aij is

Aij = (Dij −Ddevij) ⁄ (Dmax −Ddevij) (17.7)

where Ddevij is the path delay from node i to node j attributable to devices,
and Dij −Ddevij is thus the wire delay on the path from node i to node j. With
equation 17.7, paths with the same path delay but greater wire delay pay more
attention to delay and less to congestion.

The first term of equation 17.5 is the delay-sensitive term; the second term
is congestion sensitive. Equations 17.5, 17.6, and 17.7 are the keys to providing
the appropriate mix of minimum-cost and minimum-delay trees. If a particular
source/sink pair lies on the critical-path, then Aij = 1 and the cost of node n

17.2 The PathFinder Algorithm 373

is just the delay term; hence a minimum-delay route is used and congestion
is ignored. In practice, Aij is limited to a maximum value such as 0.9 or 0.95
so that congestion is not completely ignored. If a source/sink pair belongs to a
path whose delay is much smaller than the critical-path, then Aij is small and
the congestion term dominates, resulting in a route that avoids congestion at
the expense of extra delay.

To accommodate delay, the basic Negotiated Congestion algorithm of
Figure 17.4 is changed as follows. For the first iteration, all Aij are initialized to
1 and minimum-delay routes are found for every signal. This yields the smallest
possible critical-path delay. All Aij are recomputed after every routing iteration
using the critical-path delay and the delays incurred by signals on that iteration.

The sinks of each signal are now routed in decreasing Aij order. This allows the
most timing-constrained sinks to determine the coarse structure of the routing
tree with no interference from less constrained paths.

The priority queue (line 8 in Figure 17.4) is initialized by inserting each node
of RTi with the cost Aij ∑k dk, where the nk are nodes on the path from the source
ni to node nj. This initializes the nodes already in the partial routing tree with
the weighted path delay from the source.

The router completes when no more shared resources exist. Note that by
recalculating all Aij, we have kept a tight rein on the critical-path. Over the
course of the routing iterations, the critical-path increases only to the extent
required to resolve congestion. This approach is fundamentally different from
other schemes [4, 5] that attempt to resolve congestion first and then reduce
delay by rerouting critical nets.

The PathFinder algorithm is particularly powerful for asymmetric architec-
tures that have a range of slow and fast wires. By making the slower wires lower
cost, the negotiation algorithm automatically assigns critical signals to the fast
wires as needed and noncritical signals to the slow wires.

17.2.4 Applying A* to PathFinder
Djikstra’s shortest-path algorithm performs an expensive breadth-first search of
the graph. This search has an O(n2) running time for two-dimensional circuit
structures, where n is the length of the path. The A∗ heuristic [20] is a technique
that uses additional information about the cost of paths in the graph to bound
the size of the search. The cost of a partial path becomes the cost of the partial
path plus the estimated cost from the end of the partial path to the destination.
If this estimated cost is a lower bound on the actual cost, then the search will
provide an optimal solution. If the estimated cost is accurate, then the search
becomes a depth-first search with O(n) running time.

In applying A∗ to PathFinder, both the cost and the delay of paths in the graph
must be estimated. We modify equation 17.4 as follows:

Cn = Pim +Aij (dn +Destnj)+ (1−Aij)(cn +Cestnj) (17.8)

where Destnj and Cestnj are the estimated delay and cost, respectively, of the
minimum-delay route from n to sink j.

374 Chapter 17 � PathFinder: A Negotiation-based, Performance-driven Router

To use the A∗ heuristic, the router must know the destination in order to
determine the estimated cost. Instead of letting the breadth-first router find the
closest destination when there are multiple fanouts, the path length estimates
are used to sort the fanouts from closest to furthest and the routing is performed
in this order.

In many FPGAs, such as those that are standard island style, the cost and
delay of routes can be estimated based on the locations of the source and des-
tination using the geometry of the layout. A more general and accurate method
is to use the shortest-path algorithm to create a complete “distance table” that
contains the cost estimate of the minimum-delay route from every node to all
potential sinks. This is only feasible, however, for relatively small architectures
or for coarse-grained architectures that have many fewer nodes than fine-grained
FPGAs. To reduce the table size, clustering can be used and estimates stored for
the cost/delay between clusters [21]. If the cost/delay between two clusters is taken
as the minimum cost/delay between any two nodes in the two clusters, it repre-
sents a true lower bound. Clustering has been reported to reduce the size of the
distance table by a factor of 100 while slowing the search only by a factor of 2 [21].

In the early iterations of PathFinder, when sharing is ignored, the full advan-
tage of A∗ is obtained. That is, if the cost/delay estimates are accurate, a depth-
first search is achieved. As the cost of sharing rises, however, the cost estimates,
which do not include the sharing costs, become less and less accurate and the
search becomes less efficient.

In experiments with PathFinder and A∗, Swartz et al. [22] used a multiplica-
tive direction factor α to inflate the path estimate. In effect, α determines how
aggressively the router drives toward the target sink. An α of 1.0 corresponds
to true A∗ and is guaranteed to find the shortest source/sink connection. Swartz
et al. determined that an α of 1.5 gave the best results for large circuits, with no
measurable degradation in the quality of the resulting routing. However, note
that the cost function had only a congestion term and no delay term. Tessier
also experimented with accelerating routing with even more aggressive use of
the A∗ search [23, 24].

17.3 ENHANCEMENTS AND EXTENSIONS TO PATHFINDER

Many research papers have discussed extensions and optimizations of the
PathFinder algorithm. First and foremost is the work by Betz and Rose on VPR
[12], which for the past eight years has been a widely used vehicle for academic
and industrial research into FPGA architectures and CAD. We discuss here some
of the more salient ideas that have been applied to PathFinder.

17.3.1 Incremental Rerouting
A common optimization suggested in the original PathFinder paper [8] is to
limit the rip-up and rerouting of signals in an iteration only to those that use
shared resources. Intuitively, this reduces the amount of “wasted” effort that

17.3 Enhancements and Extensions to PathFinder 375

goes into rerouting signals that always take the same path. The argument is
that if a signal does not use a shared resource, it will take the same path as
it did before, because history costs can only rise and thus no other path can
become cheaper. This argument fails where pn becomes smaller as sharing sig-
nals reroute around a congested node. Experience shows that this optimization
increases the number of routing iterations, but reduces the total running time
substantially, with negligible impact on the quality of the solution found.

17.3.2 The Cost Function
There are many ways to tune PathFinder for specific architectures or to achieve
specific goals. Many variations of the cost function have been described that
change how the three cost terms bn, pn, and hn are computed and combined.
The essential feature of the cost function is that hn is a function of the history
of the congestion of the node and that pn is a function of the current congestion.
The rates at which hn and pn increase can be tuned; increasing them quickly,
for example, decreases the number of iterations required but also decreases the
quality of the solution. The history term may include a decay function on the
assumption that the more recent history is more valid than the distant past. This
is particularly important when PathFinder is used in an integrated place-and-
route tool [21, 25].

The PathFinder cost function can also be modified to include both short-path
and long-path delay terms [26]. For long paths, delay is minimized by using the
PathFinder cost function. For short paths, however, the cost function is changed
to find a path with a target delay, not the minimum delay. This changes the
underlying shortest-path problem considerably and requires an accurate “look-
ahead” function that predicts the remaining delay to the destination so that the
router can opportunistically add the appropriate extra delay.

17.3.3 Resource Cost
Determining the base cost of routing resources is harder than it appears. The
shortest-path algorithm attempts to minimize the total cost of a solution, so
minimizing the cost should also minimize congestion. The typical cost function
used by routers is the length of the wire, which is a good heuristic for typical
architectures where the number of available wires is inversely proportional to
their individual lengths. A better heuristic is to base the cost of a wire on the
expected routing demand for it. This can be approximated by routing a set of
placed benchmarks onto an architecture and measuring wire by wire the rout-
ing demand. Another method is to perform a large number of random routes
using a typical Rent’s wirelength distribution through the architecture and again
measuring the overall use of each wire. In this formulation, wire costs are ini-
tialized to 1, raised à la PathFinder according to wire usage, and converge to
some constant value.

Delay is an approximation that is often used for cost as it is typically closely
related to wirelength and relative demand. It also simplifies the cost function
for the integrated congestion and delay router.

376 Chapter 17 � PathFinder: A Negotiation-based, Performance-driven Router

17.3.4 The Relationship of PathFinder to Lagrangian Relaxation
The PathFinder algorithm is very similar to Lagrangian relaxation for find-
ing an optimal routing subject to congestion and delay constraints [27–29].
In Lagrangian relaxation, the constraints are relaxed by multiplying them by
a vector of Lagrangian multipliers and adding them to the objective function
to be minimized. The solution to a Lagrangian formulation with a specific set
of Lagrangian multipliers provides an approximate solution to the original
minimization problem. An iterative procedure that modifies the Lagrangian
multipliers is used to find increasingly better solutions. A subgradient method is
used to update the multipliers. Intuitively, the multipliers are increased or decre-
ased depending on the extent to which the corresponding constraint is satisfied.

A Lagrangian relaxation method proceeds somewhat differently from the
PathFinder algorithm. The multipliers operate much like PathFinder’s history
term, but there is no corresponding present-sharing term pn. While the history
term is monotonically nondecreasing, the Lagrangian multipliers can both
increase and decrease depending on how well the corresponding constraint
is satisfied. The amount by which the multipliers are adjusted in Lagrangian
relaxation is also decreased with each iteration.

17.3.5 Circuit Graph Extensions
The simple circuit graph model is very general, but there are some specific
circuit structures that require extensions. This section describes some solutions
for these.

Symmetric device inputs
Lookup tables (LUTs) are the prime example of FPGA devices whose pins are
“permutable.” That is, the inputs to a LUT can be swapped arbitrarily by permut-
ing the table’s contents. Other devices like adders also have symmetric inputs.
In the simple graph model, a signal is routed to a specific input terminal and
there is no way to specify a route to one of a set of terminals.

Symmetric inputs are easily accommodated in the graph model by adding
“pseudo-multiplexers” on the inputs of the LUT. These are shown as dashed
nodes at the top of Figure 17.5. Signal sinks can be arbitrarily assigned to the
LUT inputs and routed in the usual way. After the routing solution has been
found, the pseudo-multiplexers are removed and implemented “virtually” by per-
muting the LUT table contents appropriately. In the example of Figure 17.5, the
signals a, b, and c are routed to the LUT inputs A, B, and C, respectively, using
the pseudo-multiplexers as shown with bold lines. This routing is then used to
permute the LUT inputs as shown on the right by modifying the LUT contents.

De-multiplexers
A de-multiplexer is a device that can connect its input to at most one of several
outputs. Each output connection is represented as an edge in the circuit graph
shown in Figure 17.6. Wire fanout, of course, is not constrained, and there is
no way in the graph model to specify a constraint on the number of fanouts
that can be used. This case is handled by a special counter that counts the
number of the edges that are used. If more than one edge is being used, the

17.4 Parallel PathFinder 377

Ab

c

a

b

c

a

b

c

a

C

A

C

A

C

B

A

b

c

a

B 3-LUT

B 3-LUT

B 3-LUT

C 3-LUT

FIGURE 17.5 � Symmetric device inputs are handled by inserting pseudo-multiplexers.

1

FIGURE 17.6 � De-multiplexers are handled by negotiating for the fanouts of the de-multiplexer.

de-multiplexer is being shared in much the same way that wires can be shared
by signals. A PathFinder cost function can be applied with both a sharing and
a history component so that the single fanout used is determined by means
of negotiation.

Bidirectional switches
Edges in the graph model, which represent connections, are directional. This
models multiplexer-based architectures directly. Transistors that are often used
to construct configurable interconnects are bidirectional. These bidirectional
switches simply translate to two directional edges in the graph. The router uses
at most one of the edges, which induces a logical direction on the switch. That
is, when a switch is turned on in a configuration, it is being driven by an output
from one side to the other.

17.4 PARALLEL PATHFINDER

A typical large FPGA design has many thousands of signals. If separate signals
could be routed in parallel, the degree of parallelism would be limited only by

378 Chapter 17 � PathFinder: A Negotiation-based, Performance-driven Router

the number of signals to be routed and the number of processors available. The
difficulty, of course, is that the route taken by each signal depends on the know-
ledge of other signal routes, as routing resources cannot be shared. Although para-
llel implementations of global standard cell routers exist, the problem for FPGAs
becomes much harder because the routing resources are discrete and fixed.

Because the routing of separate signals in an FPGA is tightly coupled, it might
appear that a parallel approach to routing FPGAs would not be possible given
that knowledge of other signal locations is necessary to find a feasible route.
This is the case in a typical maze router, which uses rip-up and reroute to resolve
conflicts. In PathFinder, however, there is no restriction on the number of signals
that can occupy a resource simultaneously during routing. Instead, the cost of
using congested resources is the mechanism used to resolve resource conflicts.
If the congestion costs are decentralized in a parallel environment, the concerns
are how and when they will be updated and whether the update method will
be acceptable in terms of the number of processors effectively utilized and the
quality of the resulting routing.

In Chan et al. [30] a distributed memory multiprocessor implementation of
the PathFinder algorithm is described. Each processor has a private local mem-
ory and is connected in a network. Processors communicate with each other
by sending and receiving messages via Unix socket communication. A complete
copy of the routing resource graph, including first- and second-order congestion
costs, is kept and maintained by each processor. The signals in a netlist to be
routed are statically assigned to processors such that each processor has about
the same number of sinks to be routed. No attempt is made to assign signals to
processors based on locality.

Processors route signals asynchronously and thus communicate updated con-
gestion costs asynchronously. There is no guarantee of the order or the timing
of the arrival of such congestion cost updates, resulting in a source of inde-
terminism. Processors are allowed to proceed to successive iterations without
waiting for others, although a limit of a few iterations of separation is generally
employed.

It is conceded that, because of latency, this parallel routing algorithm may not
converge. Imagine a scenario in which two signals being routed by two different
processors vie for the same resource. Message latency or merely concurrency
may cause the two signals to oscillate between routing iterations, because each
processor knows where the other processor’s signal was in the last iteration but
not in the current one. Such cases generally occur during the last iterations
of a route. At that point, Chan and colleagues [30] reduce the multiprocessor
implementation to a single-processor implementation in order to resolve the
congestion.

This parallel implementation was tested on a set of benchmarks ranging from
118 to 1542 signal nets on the Xilinx 4000 architecture. Speedups ranged from
1.6 to 2.2 times for two processors and 2.3 to 3.8 times for four processors. For
nearly all benchmarks, no additional speedups are obtained for more than four
processors. The performance of the benchmarks (in terms of delay or clock rate)
was shown to vary minimally with increasing numbers of processors.

17.6 Summary 379

This initial implementation of a parallel form of PathFinder is significant in
that it demonstrates appreciable speedups while employing a rather simple com-
putational framework. Because of the inherent approximations of congestion
cost and its gradual increase, PathFinder exhibits good qualities for parallelism
in a framework where congestion costs are communicated asynchronously, as
they become available. It may result (as shown by Chan et al. [30]) in an
increased number of iterations to converge, but is able to employ more mul-
tiple loosely connected processors to good advantage.

17.5 OTHER APPLICATIONS OF THE PATHFINDER ALGORITHM

PathFinder has been used to incrementally reroute signals around faults in
cluster-based FPGAs [31]. This rerouting uses the accumulated history costs
acquired by the initial routing to quickly find a new routing solution when nodes
and edges in the circuit graph have been removed because of faults.

QuickRoute [32] extends PathFinder to handle pipelined routing structures.
The key idea in QuickRoute is to change Djikstra’s shortest-path algorithm to
allow nodes to be visited more than once, by paths with different latencies.
This causes many more overlapping paths to be explored, but the negotiated
congestion avoidance of PathFinder still performs well.

Several groups have applied PathFinder to the problem of scheduling the
communication in computing graphs to coarse-grained architectures or multi-
processors [33–35]. In this application of PathFinder, the routing becomes a
space–time problem.

17.6 SUMMARY

The widespread use of PathFinder by commercial FPGA routers and university
research efforts alike is a testimonial to its robustness.

Several key facets of the algorithm make it attractive. However, its primary
advantage is the iterative nature of resolving congestion, using both current as
well as historical resource use in the formulation of the cost function. By very
gradually increasing cost due to both usages, the routing search space is thor-
oughly explored. Routing with other objective functions, delay in particular, is
easily integrated into the cost function. A primary feature implicit in PathFinder
(that distinguishes it from previous efforts) is the allowance of nonphysically
feasible intermediate states—for example, shared resources—while converging
to a physically feasible final state. Finally, by being grounded in a directed graph
representation, PathFinder is very adaptable to changing FPGA architectures as
well as other problems that can be abstracted to a directed graph.

In the future we see the routing problem as being an increasingly dominant
hurdle in the use of FPGAs with millions of resources. To reduce the runtime,
more investigation will be required to effectively parallelize PathFinder, making

380 Chapter 17 � PathFinder: A Negotiation-based, Performance-driven Router

use of additional computational resources. Given the growing focus on other
objectives such as power consumption, it is likely that we will see experimenta-
tion with other cost function formulations as well.

Acknowledgments We wish to thank Gaetano Borriello for initial discussions
about routing when PathFinder was being applied to the Triptych architec-
ture, and Steven Yee for his help in constructing detailed descriptions of the
Xilinx architectures. We also thank Pak Chan and Martine Schlag for sharing
the results on parallel PathFinder.

References
[1] W. A. Dees, R. J. Smith. Performance of interconnection rip-up and reroute strate-

gies. Design Automation Conference, 1981.
[2] R. Linsker. An iterative-improvement penalty-function-driven wire routing system.

IBM J. Res. Development 28(5), 1984.
[3] J. Cohn, D. Garrod, R. Rutenbar, L. Carley. Koan/anagram II: New tools for

device-level analog placement and routing. IEEE Journal of Solid-State Circuits
26(3), 1991.

[4] S. Brown, J. Rose, Z. Vranesic. A detailed router for field-programmable gate
arrays. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 11(5), 1992.

[5] J. Frankle. Iterative and adaptive slack allocation for performance-driven layout
and FPGA routing. Design Automation Conference, 1992.

[6] M. J. Alexander, J. P. Cohoon, J. L. Ganley, G. Robins. An architecture-independent
approach to FPGA routing based on multi-weighted graphs. Proceedings of the Con-
ference on European Design Automation, 1994.

[7] M. Palczewski. Plane parallel a maze router and its application to FPGAs. Design
Automation Conference, 1992.

[8] L. McMurchie, C. Ebeling. A negotiation-based performance-driven router for
FPGAs. Proceedings of the 1995 ACM Third International Symposium on Field-
Programmable Gate Arrays Aided Design, 1995.

[9] G. Borriello, C. Ebeling, S. Hauck, S. Burns. The triptych FPGA architecture. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 3(4), 1995.

[10] C. Ebeling, L. McMurchie, S. Hauck, S. Burns. Placement and routing tools for the
triptych FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
3(4), 1995.

[11] D. C. Cronquist, L. McMurchie. Emerald: An architecture-driven tool compiler
for FPGAs. Proceedings of the Fourth ACM International Symposium on Field-
Programmable Gate Arrays, 1996.

[12] V. Betz, J. Rose. VPR: A new packing, placement and routing tool for FPGA
research. Proceedings of the Seventh International Workshop on Field-Programmable
Logic and Applications. Springer-Verlag, 1997.

[13] V. Betz, J. Rose, A. Marquardt. Architecture and CAD for deep-submicron FPGAs.
Kluwer Academic, 1999.

[14] V. Betz. The FPGA place-and-route challenge (www.eecg.toronto.edu/vaughn/
challenge/challenge.html).

[15] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), December 1959.

17.6 Summary 381

[16] E. Moore. The shortest path through a maze. International Symposium on the
Theory of Switching, April 1959.

[17] C. Y. Lee. An algorithm for path connections and its applications. IRE Transactions
on Electronic Computers 10, September 1961.

[18] R. Nair. A simple yet effective technique for global wiring. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 6(2), 1987.

[19] H. Takahashi, A. Matsuyama. An approximate solution for the Steiner problem in
graphs. Math. Japonica 24(6), 1980.

[20] P. Hart, N. Nilsson, B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 1968.

[21] A. Sharma. Place and Route Techniques for FPGA Architecture Advancement, Ph.D.
thesis, University of Washington, 2005.

[22] J. S. Swartz, V. Betz, J. Rose. A fast routability-driven router for FPGAs. Proceedings
of the ACM/SIGDA Ssixth International Symposium on Field-Programmable Gate
Arrays, 1998.

[23] R. G. Tessier. Negotiated A∗ routing for FPGAs. Fifth Canadian Workshop on Field-
Programmable Logic, 1998.

[24] R. G. Tessier. Fast Place and Route Approaches for FPGAs, Ph.D. thesis, MIT, 1999.
[25] A. Sharma, S. Hauck, C. Ebeling. Architecture-adaptive routability-driven place-

ment for FPGAs. International Conference on Field-Programmable Logic and Appli-
cations, 2005.

[26] R. Fung, V. Betz, W. Chow. Simultaneous short-path and long-path timing optimi-
zation for FPGAs. IEEE/ACM International Conference on Computer Aided Design,
2004.

[27] S. Lee, Y. Cheon, M. D. F. Wong. A min-cost flow based detailed router for FPGAs.
International Conference on Computer-Aided Design, 2003.

[28] S. Lee, M. Wong. Timing-driven routing for FPGAs based on Lagrangian relaxation.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
22(4), 2003.

[29] M. M. Ozdal, M. D. F. Wong. Simultaneous escape routing and layer assignment
for dense PCBs. Proceedings of the 2004 IEEE/ACM International Conference on
Computer-Aided Design, 2004.

[30] P. K. Chan, M. D. F. Schlag, C. Ebeling, L. McMurchie. Distributed-memory parallel
routing for field-programmable gate arrays. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 19(8), August 2000.

[31] V. Lakamraju, R. Tessier. Tolerating operational faults in cluster-based FPGAs.
Proceedings of the 2000 ACM/SIGDA Eighth International Symposium on Field-
Programmable Gate Arrays, 2000.

[32] S. Li, C. Ebeling. QuickRoute: A fast routing algorithm for pipelined architectures.
IEEE International Conference on Field-Programmable Technology, 2004.

[33] B. Mei, S. Vernalde, D. Verkest, H. De Man, R. Lauwereins. Exploiting loop-level
parallelism on coarse-grained reconfigurable architectures using modulo schedul-
ing. Design, Automation and Test in Europe, 2003.

[34] J. Cook, L. Baugh, D. Gottlieb, N. Carter. Mapping computation kernels to clustered
programmable reconfigurable processors. IEEE International Conference on Field-
Programmable Technology, 2003.

[35] L.-Y. Lin, C.-Y. Wang, P.-J. Huang, C.-C. Chou, J.-Y. Jou. Communication-driven
task binding for multiprocessor with latency insensitive network-on-chip. Proceed-
ings of the 2005 Conference on Asia South Pacific Design Automation, 2005.

This page intentionally left blank

C H A P T E R 18

RETIMING, REPIPELINING,
AND C-SLOW RETIMING

Nicholas Weaver
International Computer Science Institute

Although pipelining is a huge benefit in field-programmable gate array (FPGA)
designs, and may be required on some FPGA fabrics [5, 10, 12], it is often difficult
for a designer to manage and balance pipeline stages and to insert the necessary
delays to meet design requirements.

Leiserson et al. [4] were the first to propose retiming, an automatic process
to relocate pipeline stages to balance a design. Their algorithm, in O(n2lg(n))
time, can rebalance a design so that the critical path is optimally pipelined. In
addition, two modifications, repipelining and C-slow retiming, can add additional
pipeline stages to a design to further improve the critical path.

The key idea is simple: If the number of registers around every cycle in the
design does not change, the end-to-end symantics do not change. Thus, retiming
attempts to solve two primary constraints: All paths longer than the desired
critical path are registered, and the number of registers around every cycle is
unchanged.

This optimization is useful for conventional FPGAs but absolutely essential
for fixed-frequency FPGA architectures, which are devices that contain large
numbers of registers and are designed to operate at a fixed, but very high,
frequency, often by pipelining the interconnect as well as the computation.

To meet the array’s fixed frequency, a design must ensure that every path
is properly registered. Repipelining or C-slow retiming enables a design to be
transformed to meet this constraint. Without automated repipelining or C-slow
retiming, the designer must manually ensure that all pipeline constraints are
met by the design.

Retiming operates by determining an optimal placement for existing regis-
ters, while repipelining and C-slowing add registers before the retiming pro-
cess begins. After retiming, the design should be optimally (or near-optimally)
balanced, with no pipeline stage requiring significantly more time than any other
stage.

Section 18.1 describes the basic retiming operation and the retiming algo-
rithm and its semantics. Then Section 18.2 discusses repipelining and C-slowing:
two different techniques for adding registers. Repipelining improves feedfor-
ward designs by adding additional pipelining stages, while C-slowing creates

384 Chapter 18 � Retiming, Repipelining, and C-slow Retiming

an interleaved design by replacing every register with a sequence of C registers.
Both of these transformations increase throughput but also increase latency.

Section 18.3 surveys the various implementations, beginning with Leiserson’s
original algorithm and concluding with both academic and commercial tools.
Section 18.4 discusses implementing retiming for fixed-frequency arrays. Unlike
general FPGAs, fixed-frequency FPGAs require retiming in order to match user
designs with architectural constraints. Finally, Section 18.5 discusses an interest-
ing side effect of C-slowing: the creation of interleaved, multi-threaded architec-
tures. We conclude in Section 18.6 with a discussion of the reasons that retiming
is not a ubiquitous optimization in FPGA tool flows.

18.1 RETIMING: CONCEPTS, ALGORITHM, AND RESTRICTIONS

The goal of retiming is to move the pipeline registers in a design into the optimal
position. Figure 18.1 shows a trivial example. In this design, the nodes represent
logic delays (a), with the inputs and outputs passing through mandatory, fixed
registers. The critical path is 5, and the input and output registers cannot be
moved. Figure 18.1(b) shows the same graph after retiming. The critical path is
reduced from 5 to 4, but the I/O semantics have not changed, as three cycles
are still required for a datum to proceed from input to output.

As can be seen, the initial design has a critical path of 5 between the internal
register and the output. If the internal register could be moved forward, the
critical path would be shortened to 4. However, the feedback loop would then
be incorrect. Thus, in addition to moving the register forward, another register
would need to be added to the feedback loop, resulting in the final design.

Additionally, even if the last node is removed, it could never have a critical
path lower than 4 because of the feedback loop. There is no mechanism that
can reduce the critical path of a single-cycle feedback loop by moving registers:
Only additional registers can speed such a design.

Retiming’s objective is to automate this process: For a graph representing a
circuit, with combinational delays as nodes and integer weights on the edges,
find a new assignment of edge weights that meets a targeted critical path or fail
if the critical path cannot be met. Leiserson’s retiming algorithm is guaranteed
to find such an assignment, if it exists, that both minimizes the critical path
and ensures that around every loop in the design the number of registers always
remains the same. It is this second constraint, ensuring that all feedback loops

(a)

in 1 1

1 1

2 2 out

(b)

in 1 1

1 1

2 2 out

FIGURE 18.1 � A small graph before retiming (a) and the same graph after retiming (b).

18.1 Retiming: Concepts, Algorithm, and Restrictions 385

TABLE 18.1 � The constraint system used by the retiming procsess

Condition normal edge from u → v Constraint r (u) − r (v) ≤ w (e)

Edge from u → v must be registered r (u)− r (v) ≤ w (e)−1

Edge from u → v can never be registered r (u)− r (v) ≤ 0 and r (v)− r (u) ≤ 0

Critical paths must be registered r (u)− r (v) ≤ W (u,v)−1 for all u,v
such that D (u,v) > P

are unchanged, which ensures that retiming doesn’t change the semantics of the
circuit. In Table 18.1, r(u) is the lag computed for each node (which is used to
determine the final number of registers on each edge), w(e) is the initial number
of registers on an edge, W(u, v) is the minimum number of registers between
u and v, and D(u, v) is the critical path between u and v.

Leiserson’s algorithm takes the graph as input and then adds an additional
node representing the external world, with appropriate edges added to account
for all I/Os. This additional node is necessary to ensure that the circuit’s global
I/O semantics are unchanged by retiming.

Two matrices are then calculated, W and D, that represent the number of
registers and critical path between every pair of nodes in the graph. These matri-
ces are necessary because retiming operates by ensuring that at least one register
exists on every path that is longer than the critical path in the design.

Each node also has a lag value r that is calculated by the algorithm and used
to change the number of registers that will be placed on any given edge. Con-
ventional retiming does not change the design semantics: All input and output
timings remain unchanged while minor design constraints are imposed on the
use of FPGA features. More details and formal proofs of correctness can be
found in Leiserson’s original paper [4].

The algorithm works as follows:

1. Start with the circuit as a directed graph. Every node represents a com-
putational element, with each element having a computational delay. Each edge
can have zero or more registers as a weight w. Add an additional dummy node
with 0 delay, with an edge from every output and to every input. This additional
node is to ensure that from every input to every output the number of registers
is unchanged and therefore the data input to output timing is unaffected.

2. Calculate W and D. D is the critical path for every node to every other
node, and W is the initial number of registers along this path. This requires
solving the all-pairs shortest-path problem, of which the optimal algorithm, by
Dijkstra, requires O(n2lg(n)) time. This dominates the asymptotic running time
of the algorithm.

3. Choose a target critical path and create the constraints, as summarized in
Table 18.1. Each node has a lag value r, which will eventially specify the change
in the number of registers between each node. Initialize all nodes to have a
lag of 0.

386 Chapter 18 � Retiming, Repipelining, and C-slow Retiming

4. Since all constraints are pairwise integer inequalities, the Bellman–Ford
constraint solver is guaranteed to find a solution if one exists or to terminate if
not. The Bellman–Ford algorithm performs N iterations (N = the number of con-
straints to solve). In each iteration, every constraint is examined. If a constraint
is already satisified, nothing happens. Otherwise, r(u) or r(v) is decremented to
meet the particular constraint. Once an iteration occurs where no values change,
the algorithm has found a solution. If there is no solution, after N iterations the
algorithm terminates with a failure.

5. If the constraint solver fails to find a solution, or a tighter critical path is
desired, choose a new critical path and return to step 3.

6. With the final set of constraints, a new set of registers is constructed for
each edge, w′·w′(e) = w(e)− r(u) + r(v).

A graphical example of the algorithm’s results is shown in Figure 18.1. The
initial graph has a critical path of 5, which is clearly nonoptimal. After retiming,
the graph has a critical path of 4, but the I/O semantics have not changed, as any
input will still require three cycles to affect the output. To determine whether
a critical path P can be achieved, the retiming algorithm creates a series of
constraints to calculate the lag on each node (Table 18.1).

The primary constraints ensure correctness: No edge will have a negative
number of registers, while every cycle will always contain the original num-
ber of registers. All I/O passes through the intermediate node, ensuring that
input and output timings do not change. These constraints can be modified so
that a particular line will contain no registers, or a mandatory minimum num-
ber of registers, to meet architectural constraints without changing the com-
plexity of the equations. But it is the final constraint, that all critical paths
above a predetermined delay P are registered, that gives this optimization its
effectiveness.

If the constraint system has a solution, the new lag assignments for all nodes
will allocate registers properly to meet the critical path P. But if there is no
solution, there cannot be an assignment of registers that meets P. Thus, the
common usage is to find the minimum P where the constraints are all met.

In general, multiple constraint-solving attempts are made to search for the
minimum critical path P. The constraints for P are the final retimed design.
There are two ways to speed up this process. First, if the Bellman–Ford algo-
rithm can find a solution, it usually converges very quickly. Thus, if there is
no solution that satisfies P, it is usually effective to abandon the Bellman–Ford
algorithm early after 0.1N iterations rather than N iterations. This seems to have
no impact on the quality of results, yet it can greatly speed up searching for the
minimum P that can be satisfied in the design.

A second optimization is to use the last computed set of constraints as a start-
ing point. In conventional retiming, the Bellman–Ford process is invoked multi-
ple times to find the lowest satisfiable critical path. In contrast, fixed-frequency
repipelining or C-slow retiming uses Bellman–Ford to discover the minimum
number of additional registers needed to satisfy the constraints. In both cases,

18.1 Retiming: Concepts, Algorithm, and Restrictions 387

keeping the last failed or successful solution in the data structure provides a
starting point that can significantly speed up the process if a solution exists.

Retiming in this way imposes only minimal design limitations: Because it
applies only to synchronous circuits, there can be no asynchronous resets or
similar elements. A synchronous global reset imposes too many constraints to
allow effective retiming. Local synchronous resets and enables only produce
small, self loops that have no effect on the correct operation of the algorithm.

Most other design features can be accommodated simply by adding appropri-
ate constraints. For example, an FPGA with a tristate bus cannot have registers
placed on this bus. A constraint that says that all edges crossing the bus can
never be registered (r(u)− r(v) ≤ 0 and r(v)− r(u) ≤ 0) ensures this. Likewise,
an embedded memory with a mandatory output flip-flop can have a constraint
(r(u)− r(v) ≤ w(e)− 1) that ensures that at least one register is placed on this
output.

Memories themselves can be retimed similarly to any other element in the
design, with dual-ported memories treated as a single node for retiming pur-
poses. Memories that are synthesized with a negative clock edge (to create the
design illusion of asynchronicity) can be either unchanged or switched to oper-
ate on the positive edge with constraints to mandate the placement of registers.

Some FPGA designs have registers with predefined initial values. If retiming
is allowed to move these registers, the proper initial values must be calculated
such that the circuit still produces the same behavior.

In an ASIC model, all flip-flops start in an undefined state, and the designer
must create a small state machine in order to reset the design. FPGAs, however,
have all flip-flops start in a known, user-defined state, and when a dedicated
global reset is applied the flip-flops are reset to it. This has serious implications
in retiming.

If the decision is made to utilize the ASIC model, retiming is free to safely
ignore initial conditions because explicit reset logic in state machines will still
operate correctly—this is reflected in the I/O semantics. However, without the
ability to violate the initial conditions with an ASIC-style model, retiming quality
often suffers as additional logic is required or limits are placed on where flip-
flops may be moved in a design.

In practice, performing retiming with initial conditions is NP-hard. Cong and
Wu [3] have developed an algorithm that computes initial states by restricting
the design to forward retiming only so that it propagates the information and
registers forward throughout the computation. This is because solving initial
states for all registers moved forward is straightforward, but backward move-
ment is NP hard as it reduces to satisfiability.

Additionally, global set/reset imposes a huge constraint on retiming. An asyn-
chronous set/reset can never be retimed (retiming cannot modify an asyn-
chronous circut) while a synchronous set/reset just imposes too high a fanout.

An important question is how to deal with multiple clocks. If the interfaces
between the clock domains are registered by clocks from both domains, it is
a simple process to retime the domains separately, with mandatory registers

388 Chapter 18 � Retiming, Repipelining, and C-slow Retiming

TABLE 18.2 � The results of retiming four benchmarks

Benchmark Unretimed Automatically retimed

AES core 48 MHz 47 MHz
Smith/Waterman 43 MHz 40 MHz
Synthetic datapath 51 MHz 54 MHz
LEON processor 23 MHz 25 MHz

on the domain crossings—the constraints placed on the I/Os ensure correct
and consistent timing through the interface. Yet without this design constraint,
retiming across multiple clock domains is very hard, and there does not appear
to be any clean automatic solution.

Table 18.2 shows the results for a particular retiming tool [13]—the
Xilinx Virtex family of FPGAs—on four benchmark circuits: an AES core, a
Smith/Waterman systolic cell, a synthetic microprocessor datapath, and the
LEON-I synthesized SPARC core. This tool does not use a perfectly accurate
delay model and has to place registers after retiming, so it sometimes creates
slightly suboptimal results.

The biggest problem with retiming is that it is of limited benefit to a well-
balanced design. As mentioned earlier, if the clock cycle is defined by a single-
cycle feedback loop, retiming can never improve the design, as moving the
register around the feedback loop produces no effect.

Thus, for example, the Smith–Waterman example in Table 18.2 does not bene-
fit from retiming. The Smith–Waterman benchmark design consists of a series of
repeated identical systolic cells that implement the Smith–Waterman sequence
alignment algorithm. The cells each contain a single-cycle feedback loop, which
cannot be optimized. The AES encryption algorithm also consists of a single-
cycle feedback loop. In this case, the initial design used a negative-edge Block-
RAM to implement the S-boxes, which the retiming tool converted to a positive
edge memory with a “must register” constraint.

Nevertheless, retiming can still be a benefit if the design consists of multiple
feedback loops (such as the synthetic microprocessor datapath or the LEON
SPARC–compatible microprocessor core) or an initially unbalanced pipeline.
Still, for well-designed circuits, even complex ones, retiming is often only a
slight benefit, as engineers have considerable experience designing reasonably
optimized feedback loops.

The key benefit to retiming occurs when more registers can be added to
the design along the critical path. We will discuss two techniques, repipelining
and C-slow retiming, which first add a large number of registers that general
retiming can then move into the optimal location.

18.2 REPIPELINING AND C-SLOW RETIMING

The biggest limitation of retiming is that it simply cannot improve a design
beyond the design-dependent limit produced by an optimal placement of

18.2 Repipelining and C-slow Retiming 389

registers along the critical path. As mentioned earlier, if the critical path is
defined by a single-cycle feedback loop, retiming will completely fail as an
optimization. Likewise, if a design is already well balanced, changing the reg-
ister placement produces no improvement. As was seen in the four reasonably
optimized benchmarks (refer to Table 18.2), this is often the case.

Repipelining and C-slow retiming are tranformations designed to add reg-
isters in a predictible matter that a designer can account for, which retiming
can then move to optimize the design. Repipelining adds registers to the begin-
ning or end of the design, changing the pipeline latency but no other semantics.
C-slow retiming creates an interleaved design by replacing every register with a
sequence of C registers.

18.2.1 Repipelining
Repipelining is a minor extension to retiming that can increase the clock
frequency for feedforward computations at the cost of additional latency
through more pipeline registers. Unlike C-slow retiming, repipelining is only
beneficial when a computation’s critical path contains no feedback loops.

Feedforward computations, those that contain no feedback loops, are com-
monly seen in DSP kernels and other tasks. For example, the discrete cosine
transform (DCT), the fast Fourier transform (FFT), and finite impulse response
filters (FIRs) can all be constructed as feedforward pipelines.

Repipelining is derived from retiming in one of two ways, both of which cre-
ate semantically equivalent results. The first involves adding additional pipeline
stages to the start of the computation and allowing retiming to rebalance the
delays and create an absolute number of additional stages. The second involves
decoupling the inputs and outputs to allow the retimer to add additional pipelin-
ing. Although these techniques operate in slightly different ways, they both provide
extra registers for the retimer to then move and they produce roughly equivalent
results.

If the designer wishes to add P pipeline stages to a design, all inputs simply
have P delays added before retiming proceeds. Because retiming will develop an
optimum placement for the resulting design, the new design contains P addi-
tional pipeline stages that are scattered throughout the computation. If a CAD
tool supports retiming but not repipelining, the designer can simply add the reg-
isters to the input of the design manually and let the tool determine the optimum
placement.

Another option is to simply remove the cycle between all outputs and inputs,
with additional constraints to ensure that all outputs share an output lag, with
all inputs sharing a different input lag. This way, the inputs and outputs are all
synchronized but retiming can add an arbitrary number of additional pipeline
registers between them. To place a limit on these registers, an additional con-
straint must be added to ensure that for a single I/O pair no more than P pipeline
registers are added. Depending on the other constraints in the retiming process,
this may add fewer than P additional pipeline stages, but will never add more
than P.

390 Chapter 18 � Retiming, Repipelining, and C-slow Retiming

Repipelining adds additional cycles of latency to the design, but otherwise
retains the rest of the circuit’s behavoir. Thus, it produces the same results and
the same relative timing on the outputs (e.g., if input B is supposed to be pre-
sented three cycles after input A, or output C is produced two cycles after output
D, these relative timings remain unchanged). It is only the data-in to data-out
timing that is affected.

Unfortunately, repipelining can only improve feedforward designs or designs
where the feedback loop is not on the critical path. If performance is limited by
a feedback loop, repipelining offers no benefit over normal retiming.

Repipelining is designed to improve throughput, but will almost always make
overall latency worse. Although the increased pipelining will boost the clock rate
(and thus reduce some of the delay from unbalanced clocked paths), the delay
from additional flip-flops on the input-to-output paths typically overwhelms this
improvement and the resulting design will take longer to produce a result for
an individual input.

This is a fundamental trade-off in repipelining and C-slow retiming. While
ordinary retiming improves both latency and throughput, repipelining and
C-slow retiming generally improve throughput at the cost of additional latency
due to the additional pipeline stages required.

18.2.2 C-slow Retiming
Unlike repipelining, C-slow retiming can enhance designs that contain feedback
loops. C-slowing enhances retiming simply by replacing every register with a
sequence of C separate registers before retiming occurs; the resulting design
operates on C distinct execution tasks. Because all registers are duplicated, the
computation proceeds in a round-robin fashion, as illustrated in Figure 18.2.

In this example, which is 2-slow, the design interleaves between two compu-
tations. On the first clock cycle, it accepts the first input for the first stream
of execution. On the second clock cycle, it accepts the first input for the second
stream, and on the third it accepts the second input for the first stream. Because
of the interleaved nature of the design, the two streams of execution will never
interfere. On odd clock cycles, the first stream of execution accepts input; on
even clock cycles, the second stream accepts input.

(a)

in 1 1

1 1

2 2 out

(b)

in 1 1

1 1

2 2 out

FIGURE 18.2 � The example from Figure 18.1, converted to 2-slow operation (a). The critical
path remains unchanged, but the design now operates on two independent streams in a
round-robin fashion. The design retimed (b). By taking advantage of the extra flip-flops, the
critical path has been reduced from 5 to 2.

18.2 Repipelining and C-slow Retiming 391

The easiest way to utilize a C-slowed block is to simply multiplex and
de-multiplex C separate datastreams. However, a more sophisticated interface
may be desired depending on the application (as described in Section 18.5).

One possible interface is to register all inputs and outputs of a C-slowed block.
Because of the additional edges retiming creates to track I/Os and to ensure a
consistent interface, every stream of execution presents all outputs at the same
time, with all inputs registered on the next cycle. If part of the design is C-slowed,
but all parts operate on the same clock, the result can be retimed as a complete
whole and still preserve all other semantics.

One way to think of C-slowing is as a threaded design, with an overall sys-
tem clock and with each stream having a “stream clock” of 1/C—each stream
is completely independent. However, C-slowing imposes some more significant
FPGA design constraints, as summarized in Table 18.3. Register clock enables
and resets must be expressed as logic features, since each independent thread
must have an independent reset or enable. Thus, they can remain features in
the design but cannot be implemented by current FPGAs using native enables
and resets. Other specialized features, such as Xilinx SRL16s (a mode where a
LUT is used as a 16-bit shift register), cannot be utilized in a C-slow design for
the same reason.

One important challenge is how to properly C-slow memory blocks. In cases
where the C-slowed design is used to support N independent computations, one
needs the illusion that each stream of execution is completely independent and
unchanged. To create this illusion, the memory capacity must be increased by a
factor of C, with additional address lines driven by a thread counter. This ensures
that each stream of execution enjoys a completely separate memory space.

For dual-ported memories, this potentially enables a greater freedom in retim-
ing: The two ports can have different lags as long as the difference in lag is less
than C. After retiming, the difference is added to the appropriate port’s thread
counter, which ensures that each stream of execution will read and write to both
ports in order while enabling slightly more freedom for retiming to proceed.

C-slowing normally guarantees that all streams view independent memories.
However, a designer may desire shared memory common to all streams. Such

TABLE 18.3 � The effects of various FPGA features on retiming, repipelining, and C-slowing

FPGA feature Effect on retiming Effect on repipelining Effect on C-slowing

Asynchronous global set/reset Forbidden Forbidden Forbidden
Synchronous global set/reset Effectively forbidden Effectively forbidden Forbidden
Asynchronous local set/reset Forbidden Forbidden Forbidden
Synchronous local set/reset Allowed Allowed Express as logic
Clock enables Allowed Allowed Express as logic
Tristate buffers Allowed Allowed Allowed
Memories Allowed Allowed Increase size
SRL16 Allowed Allowed Express as logic
Multiple clock domains Design restrictions Design restrictions Design restrictions

392 Chapter 18 � Retiming, Repipelining, and C-slow Retiming

memories could be embedded in a design, but the designer would need to
consider how multiple streams would affect the semantics and would need to
notify any automatic tool to treat the memory in a special manner. Beyond this,
there are no other semantic effects imposed by C-slow retiming.

C-slowing significantly improves throughput, but it can only apply to tasks
where there are at least C independent threads of execution and where through-
put is the primary goal. The reason is that C-slowing makes the latency substan-
tially worse. This trade-off brings up a fundimental observation: Latency is a
property of the design and computational fabric whereas throughput is a prop-
erty derived from cost. Both repipelining and C-slow retiming can be applied
only when there is sufficient task-level parallelism, in the form of either a feed-
forward pipeline (repipelining) or independent tasks (C-slowing).

Table 18.4 shows the difference that C-slowing can make in four designs.
While the retiming tool alone was unable to improve the AES or Smith
Waterman designs, C-slowing substantially increased throughput, improving the
clock rate by 80–95 percent! However, latency for individual tasks was made
worse, resulting in significantly slower clock rates for individual tasks.

Latency can be improved only up to a given point for a design through con-
ventional retiming. Once the latency limit is met, no amount of optimization,
save a major redesign or an improvement in the FPGA fabric, has any effect. This
often appears in cryptographic contexts, where feedback mode–based encryption
(such as CFB) requires the complete processing of each block before the next
can be processed.

In contrast, throughput is actually a part of a throughput/cost metric:
throughput/area, throughput/dollar, or throughput/joule. This is because inde-
pendent task throughput can be added via replication, creating independent
modules that perform the same function, as well as C-slowing. When sufficient
parallelism exists, and costs are not constrained, simply throwing more resources
at the problem is sufficient to improve the design to meet desired goals.

One open question on C-slowing is its effect in a low-power environment.
Higher throughput, achieved through high-speed clocking, naturally increases
the power consumption of a design, just as replicating units for higher through-
put increases power consumption. In both cases, if lower power is desired, the
higher-throughput design can be modified to save power by reducing the clock
rate and operating voltage.

Unlike the replicated case, the question of whether a C-slowed design would
offer power savings if both frequency and voltage were reduced is highly design

TABLE 18.4 � The effect of C-slowing on four benchmarks

Benchmark Initial clock C-factor C-slow clock Stream clock

AES encryption 48 MHz 4-slow 87 MHz 21 MHz
Smith/Waterman 43 MHz 3-slow 84 MHz 28 MHz
Synthetic datapath 51 MHz 3-slow 91 MHz 30 MHz
LEON processor core 23 MHz 2-slow 46 MHz 23 MHz

18.3 Implementations of Retiming 393

and usage dependent. Although the finer pipelining allows the frequency and the
voltage to be scaled back to a significant degree while maintaining throughput,
the activity factor of each signal may now be considerably higher. Because each
of the C streams of execution is completely independent, it is safe to assume that
every wire will probably have a significantly higher activity factor that increases
power consumption.

Whether the initial design before C-slowing has a comparable activity fac-
tor is highly input and design dependent. If the initial design’s activity factor is
low, C-slowing will significantly increase power consumption. But if that factor
is high, C-slowing will not increase it. Thus, although the C-slowing transfor-
mation may have a minor affect on worst-case power (and can even result in
significant savings through voltage scaling), the impact on average-case power
may be substantial.

18.3 IMPLEMENTATIONS OF RETIMING

Three significant academic retiming tools have been developed for FPGAs. The
first, by Cong and Wu [3], combines retiming with technology mapping. This
approach enables retiming to occur before placement without adding undue
constraints on the placer, because the retimed registers are packed with their
associated logic. The disadvantage is a lack of precision, as delays can only
be crudely estimated before placement. This tool is unsuitable for significant
C-slowing, which creates significantly more registers that can pose problems
with logic packing and placement.

The second tool, developed by Singh and Brown [6], combines retiming with
placement, operating by modifying the placement algorithm to be aware that
retiming is occurring and then modifying the retiming portion to enable per-
mutation of the placement as retiming proceeds. Singh and Brown demonstrate
how the combination of placement and retiming performs significantly better
than retiming either before or after placement.

The simplified FPGA model used by Singh and Brown has a logic block where
the flip-flop cannot be used independently of the LUT, constraining the ability
of postplacement retiming to allocate new registers. Thus, the need to permute
the placement to allocate registers is significantly exacerbated in their target
architecture.

The third tool, developed by Weaver et al. [13], performs retiming after place-
ment but before routing, taking advantage of the (mostly) independent register
operation available on Xilinx FPGAs. (It would not apply to most Altera FPGAs.)
It too also supports C-slowing.

Some commercial HDL synthesis tools, notably the Synopsys FPGA compiler
[9] and Synplify [8], also support retiming. Because this retiming occurs fairly
early in the mapping and optimization processes, it suffers from a lack of precision
regarding placement and routing delays. The Amplify tool [10] can produce a
higher-quality retiming because it contains placement information. Since these

394 Chapter 18 � Retiming, Repipelining, and C-slow Retiming

tools attempt to maintain the FPGA model of initial conditions, both on startup
and in the face of a global reset signal, considerable logic is added to the design.

18.4 RETIMING ON FIXED-FREQUENCY FPGAs

Fixed-frequency FPGAs differ from conventional FPGAs in that they have an
intrinsic clock rate and commonly include pipelined interconnect and other
design features to enable very high-speed operations. However, this fixed fre-
quency demands a design modification to support the pipeline stages it requires.

Retiming for fixed-frequency FPGAs, unlike that for their conventional coun-
terparts, does not require the creation of a global critical path constraint, as sim-
ply ensuring that all local requirements are met guarantees that the final design
meets the architecture’s required delay constraints. Instead, retiming attempts
to solve these local constraints by ensuring that every path through the inter-
connect meets the delay requirements inherent in the FPGA. Once these local
constraints are met, the final design will operate at the FPGA’s intrinsic clock
frequency.

Because there are no longer any global constraints, the W and D matrices
are not created. A fixed-frequency FPGA does not require the global constraints,
so having only to solve a set of local constraints requires linear, not quadratic,
memory and O(n2), rather than O(n2lg(n)), execution time. This speeds the pro-
cess considerably.

Additionally, only a single invocation of the constraint solver is necessary
to determine whether the current level of pipelining can meet the constraints
imposed by the target architecture. Unfortunately, most designs do not possess
sufficient pipelining to meet these constraints, instead requiring a significant
level of repipelining or C-slow retiming to do so. The level necessary can be
discovered in two ways.

The first approach is simply to allow the user to specify a desired level of
repipelining or C-slowing. The retiming system then adds the specified number
of delays and attempts to solve the system. If a solution is discovered, it is used.
Otherwise, the user is notified that the design must be repipelined or retimed to
a greater degree to meet the array’s clock cycle. The second approach requires
searching to find the minimal level of repipelining or C-slowing necessary to
meet the constraints. Although this necessitates multiple iterations of the con-
straint solver, fixed-frequency retiming only requires local constraints. Without
having to check the global constraints, this process proceeds quickly. The result-
ing level of repipelining or C-slowing is then reported to the user.

Fixed-frequency FPGAs require retiming considerably later in the tool flow.
It is impossible to create a valid retiming until routing delays are known. Since
the constraints required invariably depend on placement, the final retiming
process must occur afterwards. Some arrays, such as HSRA [10], have deter-
ministic routing structures that enable retiming to be performed either before or
after routing. Other interconnect structures, such as SFRA [12], lack determin-
istic routing and require that retiming be performed only after routing.

18.5 C-slowing as Multi-threading 395

Finally, the fact that fixed-frequency arrays may use considerably more
pipelining than conventional arrays makes retiming registers a significant archi-
tectural feature. Because these delay chains [10], either on inputs or on outputs,
are programmable, the array can implement longer ones. A common occurrence
after aggressive C-slow retiming is a design with several signals requiring con-
siderable delay. Therefore, dedicated resources to implement these features are
effectively required to create a viable fixed-frequency FPGA.

18.5 C-SLOWING AS MULTI-THREADING

There have been numerous multi-threaded architecture designs, but all share a
common theme: increasing system throughput by enabling multiple streams of
execution, or threads, to operate simultaneously. These architectures generally
fall into four classes: context switching always without bypassing (HEP [7] and
Tera [2]), context switching on event (Intel IXP) [14], interleaved multi-threaded,
and symmetric multi-threaded (SMT) [11]. The ideal goal of all of them is to
increase system throughput by operating on multiple streams of execution.

The general concept of C-slow retiming can be applied to highly complex
designs, including microprocessors. Unlike a simple FIR filter bank or an
encryption algorithm, it is not a simple matter of inserting registers and balanc-
ing delays. Nevertheless, the changes necessary are comparatively small and the
benefits substantial: producing a simple, statically scheduled, higher clock rate,
multi-threaded architecture that is semantically equivalent to an interleaved-
multi-threaded architecture, alternating between a fixed number of threads in a
round-robin fashion to create the illusion of a multiprocessor system.

C-slowing requires three minor architectural changes: enlarging and modify-
ing the register file and TLB, replacing the cache and memory interface, and
slightly modifying the interrupt semantics. Beyond that, it is simply a matter of
replacing every pipeline register in both the control logic and the datapath with
C registers and then moving the registers to balance the delays, as is traditional
in the C-slow retiming transformation and can be performed by an automatic
tool. The resulting design, as expected, has full multi-threaded semantics and
improved throughput because of a significantly higher clock rate. Figure 18.3
shows how this transformation can operate.

The biggest complications in C-slowing a microprocessor are selecting the
implementation semantics for the various memories through the design. The
first type keeps the traditional C-slow semantics of complete independence,
where each thread sees a completely independent view, usually by duplication.
This applies to the register file and most of the state registers in the system. This
occurs automatically if C-slowing is performed by a tool, because it represents
the normal semantics for C-slowed memory.

The second is completely shared memory, where every thread sees the same
memory, such as the caches and main memory of the system. Most such
memories exist in the non-C-slowed portion and so are unaffected by an auto-
matic tool.

396 Chapter 18 � Retiming, Repipelining, and C-slow Retiming

RA
RB

IMM
RD

WB

4

P
C

TC

Enlarged
register

 file

?=0

A
L
U

Data
cache

I
cache

1

(a)

Register
file

RA
RB

IMM
RD

A
L
U

?=0

Data
cacheWB

+

4

P
C

I
cache

(b)

FIGURE 18.3 � A traditional five-stage microprocessor pipeline, and its conversion to 3-slow
operation.

The third is dynamically shared, where a hardware thread ID or a software
thread context ID is tagged to each entry, with only the valid tags used. This
breaks the automatic C-slow semantics and is best employed for branch pre-
dictors and similar caches. Such memories need to be constructed manually,
but offer potential efficiency advantages as they do not need to increase in size.
Because they cannot be constructed automatically they may be subject to inter-
ference or synergistic effects between threads.

The biggest architectural changes are to the register file: It needs to be
increased by a factor of C, with a hardware thread counter to select which group
of registers is being accessed. Now each thread will see an independent set of
registers, with all reads and writes for the different threads going to separate
memory locations. Apart from the thread selection and natural enlargement,
the only piece remaining is to pipeline the register access. If necessary, the

18.5 C-slowing as Multi-threading 397

C independently accessed sections can be banked so that the register file can
operate at a higher clock frequency.

Naturally, this linearly increases the size of the register file, but pipelining
the new larger file is not difficult since each thread accesses a disjoint register
set, allowing staggered access to the banks if desired. This matches the auto-
matic memory transformations that C-slowing creates: increasing the size and
ensuring that each task has an independent view of memory.

To maintain the illusion that the different threads are running on completely
different processors, it is important that each thread have an independent trans-
lation of memory. The easiest solution is to apply the same transformations to
the TLB that were applied to the register file: increasing the size by C, with
each thread accessing its own set, and pipelining access. Again, this is the nat-
ural result of applying the C-slow semantics from an automatic tool.

The other option is to tag each TLB entry. The interference effect may be
significant if the associativity or size of the TLB is low. In such a case, and
considering the generally small size of most TLBs, increasing the size (although
perhaps by less than a factor of C) is advisable. Software thread ID tags are
preferable to hardware ID tags because they reduce the cost of context switch-
ing if a shared TLB is used and may also provide some synergistic effects. In
either case, a shared TLB requires interlocking between TLB writes to prevent
synchronization bugs.

If the caches are physically addressed, it is simply a matter of pipelining
access to improve throughput without splitting memory. Because of the inter-
locked execution of the threads and the pipelined nature of the modified caches,
no additional coherency mechanisms are required except to interlock any exist-
ing test-and-set or atomic read/write instructions between the threads to ensure
that each instruction has time to be completed.

Such cache modifications occur outside the C-slow semantics, suggesting that
the cache needs to be changed manually. This means that the cache and mem-
ory controller must be manually updated to support pipelined access from the
distinct threads, and must exist outside of the C-slowed core itself.

Unfortunately, virtually addressed caches are significantly more complicated:
They require that each tag include thread ownership (to prevent one thread from
viewing another’s version of memory) and that a record of virtual-to-physical
mappings be maintained to ensure coherency between threads. These compli-
cations suggest that a physically addressed cache would be superior when C-
slowing a microprocessor to produce a simple multi-threaded design. A virtually
addressed cache is one of the few structures that do not have a natural C-slow
representation or that can easily exist outside a C-slowed core.

The rest of the machine state registers, being both loaded and read, are auto-
matically separated by the C-slow transformation. This ensures that each thread
will have a completely independent set of machine registers. Combined with
the distinct registers and TLB tagging, each thread will see an independent
processor.

The only other portion that needs to be changed is the interrupt semantics.
Just as the rest of the control logic is pipelined, with control registers duplicated,

398 Chapter 18 � Retiming, Repipelining, and C-slow Retiming

the same transformations need to be applied to the interrupt logic. Thus, every
external interrupt is interpreted by the rules corresponding to every virtual pro-
cessor running in the pipeline. Yet, since the control registers are duplicated, the
OS can enforce policies where different interrupts are handled by different exe-
cution streams. Similarly, internally driven interrupts (such as traps or watchdog
timers), when C-slowed, are independent between threads, as C-slowing ensures
that each thread sees only its own interrupts.

In this way, the OS can ensure that one virtual thread receives one set of
externally sourced interrupts while another receives a different set. This also
suggests that interrupts be presented to all threads of execution, enabling each
thread (or even multiple threads) to service the appropriate interrupt.

The resulting design has full multi-threaded semantics, with each of C threads
being independent. Because C-slowing can improve the clock rate (by two times
in the case of the LEON benchmark), this can easily and substantially improve
the throughput of a very complex design.

18.6 WHY ISN’T RETIMING UBIQUITOUS?

An interesting question is why retiming is not heavily used in FPGA tool flows.
Although some FPGA vendors [1] and CAD vendors [8] support retiming, it is
not universally available, and even when it is, it is usually optional.

There are three major factors that limit the general adoption of retiming: It
interacts poorly with many critical FPGA features; it can only optimize poor
implementations yet is not a substitute for good implementation; and it is com-
putationally intensive.

As mentioned earlier, retiming does not work well with initial conditions or
global resets—features that FPGA designers have traditionally relied on. Like-
wise, BlockRAMs, hardware clock eEnables, and other features can pin regis-
ters, limiting the ability of a retiming tool to move them. For these reasons,
many FPGA designs cannot be effectively retimed.

A related observation is that retiming helps only poor designs and, moreover,
only fixes one common deficiency of a poor design, not all of them. Additionally,
if the designer has enough savvy to work around the limitations of retiming, he
will probably produce a naturally well-balanced design.

Finally, although retiming is a polynomial time algorithm, its still superlinear.
As designs continue to grow in size, O(n2lg(n)) can still be too long for many
uses. This is especially problematic as the Moore’s Law scaling for FPGAs is
currently greater than that for single-threaded microprocessors.

References
[1] Altera Quartus II eda (http://www.altera.com/).
[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, B. Smith. The

Tera computer system. Proceedings of the 1990 International Conference on Super-
computing, 1990.

18.6 Why Isn’t Retiming Ubiquitous? 399

[3] J. Cong, C. Wu. Optimal FPGA mapping and retiming with efficient initial state
computation. Design Automation Conference, 1998.

[4] C. Leiserson, F. Rose, J. Saxe. Optimizing synchronous circuitry by retiming. Third
Caltech Conference On VLSI, March 1993.

[5] H. Schmit. Incremental reconfiguration for pipelined applications. Proceedings of
the IEEE Symposium on Field-Programmable Gate Arrays for Custom Computing
Machines, April 1997.

[6] D. P. Singh, S. D. Brown. Integrated retiming and placement for field-programmable
gate arrays. Tenth ACM International Symposium on Field-Programmable Gate
Arrays, 2002.

[7] B. J. Smith. Architecture and applications of the HEP multiprocessor computer
system. Advances in laser scanning technology. SPIE Proceedings 298, Society for
Photo-Optical Instrumentation Engineers, 1981.

[8] Synplify pro (http://www.synplicity.com//products//synplifypro//index.html).
[9] Synopsys, Inc. Synopsis FPGA Compiler II (http://www.synopsys.com).

[10] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani, V. George,
J. Wawrzynek, A. DeHon. HSRA: High-speed, hierarchical synchronous reconfig-
urable array. Proceedings of the International Symposium on Field-Programmable
Gate Arrays, February 1999.

[11] D. M. Tullsen, S. J. Eggers, H. M. Levy. Simultaneous multi-threading: Maxi-
mizing on-chip parallelism. Proceedings 22nd Annual International Symposium on
Computer Architecture, June 1995.

[12] N. Weaver, J. Hauser, J. Wawrzynek. The SFRA: A corner-turn FPGA architecture.
Twelfth International Symposium on Field-Programmable Gate Arrays, 2004.

[13] N. Weaver, Y. Markovskiy, Y. Patel, J. Wawrzynek. Postplacement C-slow retim-
ing for the Xilinx-Virtex FPGA. Eleventh ACM International Symposium on Field-
Programmable Gate Arrays, 2003.

[14] Intel Corporation. The Intel IXP network processor. Intel Technology Journal 6(3),
August 2002.

This page intentionally left blank

C H A P T E R 19

CONFIGURATION BITSTREAM
GENERATION

Steven A. Guccione
Cmpware, Inc.

While a reconfigurable logic device shares some of the characteristics of a fixed
hardware device and some of a programmable instruction set processor, the
details of the underlying architecture and how it is programmed are what dis-
tinguish these machines. Both a reconfigurable logic device and an instruction
set processor are programmable by “software,” but the internal organization
and use of this software are quite different. In an instruction set processor, the
programming is a set of binary codes that are incrementally fed into the device
during operation. These codes actually carry out a form of reconfiguration inside
the processor. The arithmetic and logic unit(s) (ALU) is configured to perform
a requested function and various control multiplexers (MUXes) that control the
internal flow of data are set. In the instruction set machine, these hardware
components are relatively small and fixed and the system is reconfigured on a
cycle-by-cycle basis. The processor itself changes its internal logic and routing
on every cycle based on the input of these binary codes.

In a processor, the binary codes—the processor’s machine language—are
fairly rigid and correspond to sequential “instructions.” The sequence of these
instructions to implement a program is often generated by some higher-level
automatic tool such as a high-level language (HLL) compiler from a language
such as Java, C, or C++. But they may, in reality, come from any source. What
is important is that the collection of binary data fits this rigid format. The col-
lection of binary data goes by many names, most typically an “executable” file
or even more generally a “binary program.”

A reconfigurable logic device, or field-programmable gate array (FPGA), is
based on a very different structure than that of an instruction set machine. It
is composed of a two-dimensional array of programmable logic elements joined
together by some programmable interconnection network. The most significant
difference between FPGA and the instruction set architecture is that the FPGA is
typically intended to be programmed as a complete unit, with the various inter-
nal components acting together in parallel. While the structure of its binary pro-
gramming (or configuration) data is every bit as rigid as that of an instruction
set processor, the data are used spatially rather than sequentially.

In other words, the binary data used to program the reconfigurable logic
device are loaded into the device’s internal units before the device is placed

402 Chapter 19 � Configuration Bitstream Generation

in its operating mode, and typically, no changes are made to the data while
the device is operating. There are some significant exceptions to this rule: The
configuration data may in fact be changed while a device is operational, but this
is somewhat akin to “self-modifying code” in instruction set architectures. This
is a very powerful technique, but carries with it significant challenges.

The collection of binary data used to program the reconfigurable logic device
is most commonly referred to as a “bitstream,” although this is somewhat mis-
leading because the data are no more bit oriented than that of an instruction set
processor and there is generally no “streaming.” While in an instruction set pro-
cessor the configuration data are in fact continuously streamed into the internal
units, they are typically loaded into the reconfigurable logic device only once
during an initial setup phase. For historical reasons, the somewhat undescrip-
tive “bitstream” has become the standard term.

As much as the binary instruction set interface describes and defines the
architecture and functionality of the instruction set machine, the structure of
the reconfigurable logic configuration data bitstream defines the architecture
and functionality of the FPGA. Its format, however, currently suffers from a
somewhat interesting handicap. While the format of the programming data of
instruction set architectures is freely published, this is almost never the case
with reconfigurable logic devices. Almost all of them that are sold by major
manufacturers are based on a “closed” bitstream architecture.

The underlying structure of the data in the configuration bitstream is regar-
ded by these companies as a trade secret for reasons that are historical and
not entirely clear. In the early days of reconfigurable logic devices, the under-
lying architecture was also a trade secret, so publishing the configuration bit-
stream format would have given too many clues about it. It is presumed
that this was to keep competitors from taking ideas about an architecture,
or perhaps even “cloning” it and providing a hardware-compatible device.
It also may have reassured nervous FPGA users that, if the bitstream for-
mat was a secret, then presumably their logic designs would be difficult to
reverse-engineer.

While theft and cloning of device hardware do not appear to be a potential
problem today, bitstream formats are still, perhaps out of habit alone, treated as
trade secrets by the major manufacturers. This is a shame because it prohibits
interesting experimentation with new tools and techniques by third parties. But
this is perhaps only of interest to a very small number of people. The vast
majority of users of commercial reconfigurable logic devices are happy to use
the vendor-supplied tools and have little or no interest in the device’s internal
structure as long as the logic design functions as specified. However, for those
interested in the architecture of reconfigurable logic devices, trade secrecy is an
important subject.

While exact examples from popular industry devices are not possible because
of this secrecy, much is publicly known about the underlying architectures, the
general way a bitstream is generated, and how it operates when loaded into a
device.

19.1 The Bitstream 403

19.1 THE BITSTREAM

The bitstream spatially represents the configuration data of a large collection
of small, relatively simple hardware components. Thus, we can identify these
components and discuss the ways in which the bitstream is used to produce a
working digital circuit in a reconfigurable logic device. Although there is really
no limit to the types of units possible in a reconfigurable logic device, two basic
structures make up the microarchitecture of most modern FPGAs. These are the
lookup table (LUT) and the switch box.

The LUT is essentially a very small memory element, typically with 16 bits
of bit-oriented storage. Some early FPGAs used smaller 8-bit LUTs, and other
more exotic architectures used non-LUT structures. In general, however, the vast
majority of commercial FPGA devices sold over the last decade use the 16-bit
LUT as a primary logic building block.

The functionality of LUTs is very simple. Binary data are loaded into them
to produce some Boolean function. In the case of the 16-bit LUT, there are
four inputs, which can produce any arbitrary 4-input Boolean logic function.
For instance, to provide the AND function of all four inputs, each bit in the
memory except the bit at address A(1,1,1,1) is loaded with a binary 0 and
the A(1,1,1,1) bit is loaded with a 1. The address inputs of the LUT are used
as the inputs to the logic function, with the output of the LUT providing the
output of the logic function. Figure 19.1 illustrates this mapping of a 2-input
LUT to a 2-input AND gate.

While the LUTs provide the logic for the circuit, the switch boxes provide
the interconnection. These switch boxes are typically made up of multiplex-
ers in various regular configurations. These multiplexers are controlled by bits
of memory that select the inputs and send them to the multiplexer’s outputs.
Figure 19.2 shows a typical configurable interconnect element constructed using
a multiplexer.

The multiplexer inputs in Figure 19.2 are controlled by two memory elements
that are set during configuration. They select which input value is sent to the out-
put. By connectiong large numbers of elements of this type, an interconnection

a

b

out

AND gate

=>
a

b

out

2-input LUT

0
0
0
1

FIGURE 19.1 � A 2-input LUT configured as an AND gate.

404 Chapter 19 � Configuration Bitstream Generation

in3

in2

in1

in0

cfgin1

cfgin0

cfg1

M
U
X

out

cfg0

DFF

DFF

FIGURE 19.2 � A configurable 4-input multiplexer used in routing.

network of the kind typically used to construct modern reconfigurable logic
devices can be made.

In various topologies, the ouputs of the multiplexers in the switch boxes feed
the address inputs of the LUTs; the outptus of the LUTs, in turn, feed the inputs
of the switch box multiplexers. This provides a basic reprogrammable archi-
tecture capable of producing arbitrary logic functions, as well as the ability to
interconnect these functions in a variety of ways. How complex a circuit a given
reconfigurable logic device can implement is based on both the number of LUTs
and the size and complexity of the interconnection fabric.

In fact, the topology of the interconnect fabric and the implementation of the
switch boxes is perhaps the defining characteristic of an FPGA architecture. Older
FPGAs had a limited silicon area and few metal layers to supply wires. For this
reason, the LUTs were typically “islands” of logic, with the interconnect wires
running in the “channels” between them. Where these channels intersected were
the switch boxes. How many wires to use and how to configure the switch boxes
were the main work of the FPGA architect. Balancing the cost of more wires
with the needs of typical digital circuit was important to making a cost-effective
device that would be commercially successful. Covering as many potential circuit
designs as possible at as high a speed as possible, but with the smallest silicon
area, is still the challenge FPGA device architects must confront.

In later silicon process generations, however, more metal layers were avail-
able, which resulted in a much higher ratio of wires to logic in FPGAs. Where
older generations of FPGAs often had a scarcity of interconnection resources,
more modern FPGA devices seldom encounter circuits they are unable to imple-
ment because of a lack of routing resources. And these wires now tend to run
on top of the logic rather than in channels, which has led to higher circuit
densities, a tighter integration between the switch boxes and the logic, and
faster interconnect.

The configuration bitstream data for the routing are essentially the multi-
plexer inputs in these switch boxes. The memory for these MUX inputs tends

19.1 The Bitstream 405

to be individual memory elements such as flip-flops scattered around the device
as needed, establishing the basic bitstream for the FPGA: the LUT data plus the
bits to control the routing multiplexers.

While the multiplexer and switch boxes are the basic elements of modern
FPGA devices, many other components are possible. One of the more popular
is a configurable input/output block, or IOB. An IOB is typically connected to
the end of one of the wires in the routing system on one side and to a physical
device pin on the other. It is then configured to define the type of pin used by this
device: either input or output. More complex IOBs can configure pin voltages
and even parameters such as capacitance, and some even provide higher-level
support for various serial communication protocols. Much like switch boxes,
the configuration bitstream data for the IOBs are some collection of bits used
to set flip-flops within them to select these features.

In addition to IOBs, other, more special-purpose units have turned up in later
generations of FPGA devices. Two prominent examples are block memory and
multiplier units. Block memory (BlockRAM) is simply relatively large RAM units
that are usually on the order of 1K bits but can be implemented in any number
of ways. The actual data bits may be part of the bitstream, which initializes
the BlockRAM upon power-up. To reduce the size of the bitstream, however,
this data may be absent and internal circuitry may be required to reset and
initialize the BlockRAM.

In addition to the internal data, the BlockRAM is typically interfaced to the
switch boxes in various ways. Its location and interfacing to the interconnection
network is a major architectural decision in modern reconfigurable logic device
design.

Because the multiplication function has become more popular in FPGA
designs and because FPGAs are so inefficient at implementing such circuits,
the addition of hardwired multiplier units into modern FPGA devices has been
increasing. These units typically have no internal state or configuration, but are
interfaced to the interconnection network in a manner similar to the BlockRAM
interface. As with the BlockRAM, where to locate these resources and how many
to include are major architectural decisions that can have a large impact on the
size and efficiency of modern FPGAs.

Many other features also find control bits in the FPGA bitstream. Some of
these are global control related to configuration and reconfiguration; others are
ID codes and error-checking information such as cyclic redundancy check codes.
How these features are implented is very architecture dependent and can vary
widely from device family to device family. One common feature is basic control
for bit-level storage elements, often in the form of flip-flops on the LUT out-
put. Various control bits often set circuit parameters such as the flip-flop type
(D, JK, T) or the clock edge trigger type (rising or falling edge). The ability to
chage the flip-flop into a transparent D-type latch is also a popular option. Each
of these bits also contributes to the configuration data, with one set of flip-flop
configuration settings per LUT being typical.

Finally, while the items just discussed are the major standard units used to
construct modern FPGA devices and define the configuration bitstream, there

406 Chapter 19 � Configuration Bitstream Generation

TABLE 19.1 � Configuration bitstream sizes

Year Device Bits

1986 XC2018 18 Kbits
1988 XC3090 64 Kbits
1990 XC4013 248 Kbits
1994 XC4025 422 Kbits
1996 XC4028 668 Kbits
1998 XCV1000 6.1 Mbits
2000 XCV3200 16 Mbits
2003 XC2V8000 29 Mbits

is no limit to the types of circuits and configurations possible. For example, an
interest in analog FPGAs has resulted in unique architectures to perform analog
signal processing. Also, some coarser-grained reconfigurable logic devices have
moved up in granularity from LUTs to ALUs, and these devices have somewhat
different bitstream structures. Other architectures have gone in the other direc-
tion toward extremely fine-grained architectures. One notable device, the Xilinx
XC6200, has a logic cell that is essentially a 2-input multiplexer. The balance of
routing and logic in these devices has made them less attractive than coarser-
grained devices, but they have not been reevaluated in the context of the denser
routing available with newer multilayer metal processes and so may yet have
some promise.

As FPGA devices themselves have grown, so has the size of the configuration
bitstreams. In fact, bitstream size can be a reasonable gauge of the size and
complexity of the underlying device, which can be useful because it is a single
number that is readily available. Table 19.1 gives some representative sizes of
various bitstreams from members of the Xilinx family of FPGAs and the approx-
imate dates they were introduced.

19.2 DOWNLOADING MECHANISMS

The FPGA configuration bitstream is typically saved externally in a nonvolatile
memory such as an EPROM. The data are usually loaded into the device shortly
after the initial power-up sequence, most often bit-serially. (This loading mech-
anism may be the reason that many engineers perceive the configuration data
as a “stream of bits.”) The reason for serial loading is primarily one of cost and
convenience. Since there is usually no particular hurry in loading the FPGA con-
figuration data on power-up, using a single physical device pin for this data is
the simplest, cheapest approach. Once the data are fully loaded, this pin may
even be put into service as a standard I/O pin, thus preventing the configuration
downloading mechanism from consuming valuable I/O resources on the device.

A serial configuration download is the norm, but some FPGA devices have
a parallel download mode that typically permits the use of eight I/O pins to

19.3 Software to Generate Configuration Data 407

download configuration data in parallel. This may be helpful for designs that use
an 8-bit memory device and for applications where reprogramming is common
and speed is important—often the case when an FPGA is controlled by a host
processor in a coprocessor arrangement. As with the serial approach, the pins
may be returned to regular I/O duty once downloading is complete.

One place where such high-bandwidth configuration is useful is in the device
test in the factory. Testing FPGA devices after manufacture can be a very expen-
sive task, mostly because of time spent attached to the test equipment. Thus,
decreasing the configuration download time by a factor of eight may result in
the FPGA manufacturer requiring substantially fewer pieces of test equipment,
which can result in a significant cost savings during manufacture. Anecdotal evi-
dence suggests that high-speed download is driven mostly by increased test effi-
ciency and not by any customer requirements related to runtime reconfiguration.

One type of device that is based on nonvolatile memory bears mention here.
Rather than using RAM and flip-flops as the internal logic and control, commer-
cially available devices from companies such as Actel use nonvolatile Flash-style
internal configuration memory. These devices are programmed once and do not
require reloading of configuration data on power-up, which can be important in
systems that must be powered-up quickly. Such devices also tend to be more resis-
tant to soft errors that can occur in volatile RAM devices. This makes them espe-
cially popular in harsh environments such as space and military applications.

19.3 SOFTWARE TO GENERATE CONFIGURATION DATA

The software used to generate configuration bitstream data for FPGA devices is
perhaps some of the most complex available. It usually consists of many layers
of functionality and can run on the largest workstations for hours or even days
to produce the output for a single design. While the details of this software are
beyond the scope of this chapter, some of the way the software generates this
bitstream will be briefly discussed in this section.

The top-level input to the FPGA design software is most often a hardware
description language (HDL) or a graphical circuit design created with a sche-
matic capture package. This representation is usually then translated into a
low-level description more closely related to the implementation technology.
A common choice for this intermediate format is EDIF (Electronic Design Inter-
change Format). This translation is fairly generic and such tools are widely
available from a variety of software vendors.

The EDIF description is still not suitable for directly programming the recon-
figurable logic device. In the typical FPGA, the underlying circuit must be
“mapped” onto the array of LUTs and switch boxes. While the actual implemen-
tation may vary, the two basic processes for getting such abstract circuit descrip-
tions into a physical representation of FPGA configuration data are placement/
routing and mapping. Figure 19.3 shows the basic flow of this process.

Mapping refers to taking general logic descriptions and converting them into
the bits used to fill in a LUT. This is sometimes referred to as “packing,” because

408 Chapter 19 � Configuration Bitstream Generation

HDL EDIF

Place

Route

Binary
config-
uration

data

Verilog/
VHDL

compiler
Map

FIGURE 19.3 � The tool flow for producing the configuration bitstream.

several small logic gates are often “packed” into a single LUT. There is also a
notion of placement that decides which LUT should receive the data, but this
may also be considered a part of the mapping process.

Once the values for the LUTs have been decided, software can begin to decide
how to interconnect the LUTs in a process called “routing.” There are many
algorithms of varying sophistication to perform routing, and factors such as
circuit timing may be taken into account in the process. The result of the routing
procedure is eventually used to supply the configuration data for the switch
boxes.

Of course, this description is highly simplified, and mapping and routing can
take place in various interleaved phases and can be optimized in a wide variety
of ways. Still, this is the essential process used to produce the configuration
bitstream. Finally, data for configuring the IOBs are typically input in some
form that is aware of the particular package being used for the FPGA device.
Once all of this data have been defined and collected, they can be written out
to a single file containing the configuration bitstream.

As mentioned, FPGA configuration bitstream formats have almost always
been proprietary. For this reason, the only tools available to perform bitstream
generation tasks have been those supplied by the device manufacturer. The one
notable exception is the Xilinx XC6200, which had an “open” bitstream. One
of the XC6200’s software tools was an application program interface (API) that
permitted users to create configuration data or to even directly alter the config-
uration of an XC6200 in operation mode. Some of this technology was trans-
ferred to more mainstream Xilinx FPGAs and is available from Xilinx as a toolkit
called JBits.

JBits is a Java API into the configuration bitstream for the XC4000 and Virtex
device families. With JBits, the actual values on LUTs and switch box settings, as
well as all other microarchitectural components, could be directly programmed.
While the control data could be used to produce a traditional bitstream file,
they could also be accessed directly and changed dynamically. The JBits API
not only permitted dynamic reconfiguration of the FPGA but also permitted
third-party tools to be built for these devices for the first time. JBits was very
popular with researchers and users with exotic design requirements, but it never
achieved popular use as a mainstream tool, although many of its related toolkit
components, including the debug tool and partial reconfiguration support, have
found their way into more mainstream software.

19.4 Summary 409

19.4 SUMMARY

While the generation of bitstream data to configure an FPGA device is a very
common activity, there has been very little information available on the details
of either the configuration bitstream or the underlying FPGA architecture. Thus,
the FPGA can best be viewed as a collection of microarchitecture components,
chiefly LUTs and switch boxes. These components are configured by writing data
to the LUT values and to control memories associated with the switch boxes.
Setting these bits to various values results in custom digital circuits.

A variety of tools and techniques are used to program reconfigurable logic
devices, but all must eventually produce the relatively small configuration
“bitstream” data the devices require. This data is in as rigid a format as any
binary execution data for a microprocessor, but this format is typically proprie-
tary and unpublished. While direct examination of actual commercial bitstream
data is largely impossible, the general structure and the microarchitecture com-
ponents configured by this data can be examined, at least in the abstract.

References
[1] Xilinx, Inc. Virtex Data Sheet, Xilinx, Inc., 1998.
[2] S. A. Guccione, D. Levi, P. Sundararajan. JBits: A Java-based interface for recon-

figurable computing. Second Annual Military and Aerospace Applications of Pro-
grammable Devices and Technologies Conference (MAPLD), Laurel, MD, September
1999.

[3] E. Lechner, S. A. Guccione. The Java environment for reconfigurable computing.
Proceedings of the Seventh International Workshop on Field-Programmable Logic and
Applications, September 1997.

[4] Xilinx, Inc. XAPP151: Virtex Series Configuration Architecture User Guide (version 1.7),
(http://direct.xilinx.com/bvdocs/appnotes/xapp151.pdf), October 20, 2004.

[5] P. Alfke. FPGA Configuration Guidelines (version 1.1) (http://direct.xilinx.com/bvdocs/
appnotes/xapp090.pdf), November 24, 1997.

[6] Xilinx, Inc. XC6200 Field-Programmable Gate Arrays, Xilinx, Inc., 1997.
[7] V. Betz, J. Rose. VPR: A new packing, placement, and routing tool for FPGA

research. Proceedings of the Seventh International Workshop on Field-Programmable
Logic and Applications, September 1997.

[8] Xilinx, Inc. JBits 2.8 SDK for Virtex, Xilinx Inc., 1999.

This page intentionally left blank

C H A P T E R 20

FAST COMPILATION TECHNIQUES

Ken Eguro, Scott Hauck
Department of Electrical Engineering
University of Washington

Most users rely on sophisticated CAD tools to implement their circuits on
field-programmable gate arrays (FPGAs). Unfortunately, since each of these tools
must perform reasonably complex optimization, the entire process can take a
long time. Although fairly slow compilation is fine for the majority of current
FPGA users, there are many situations that demand more efficient techniques.
Looking into the future, we see that faster CAD tools will become necessary for
many different reasons.

FPGA scaling. Modern reconfigurable devices have a much larger capacity com-
pared to those from even a few years ago, and this trend is expected
to continue. To handle the dramatic increase in problem size, while main-
taining current usability and compilation times, smarter and more efficient
techniques are required.

Hardware prototyping and logic emulation systems. These are very large
multi-FPGA systems used for design verification during the development
of other complex hardware devices such as next-generation processors.
They present a challenging CAD problem both because of the sheer number
of FPGAs in the system and because the compilation time for the design
is part of the user’s debug cycle. That is, the CAD tool time directly affects
the usability of the system as a whole.

Instance-specific design. Instance-specific designs are applications where a given
circuit can only solve one particular occurrence of a problem. Because
of this, every individual hardware implementation must be created and
mapped as the problems are presented. Thus, the true solution time for
any specific example includes the netlist compilation time.

Runtime netlist compilation. Reconfigurable computing systems are often con-
structed with an FPGA or an array of FPGAs alongside a conventional pro-
cessor. Multiple programs could be running in the system simultaneously,
each potentially sharing the reconfigurable fabric. In some of the most
aggressive systems, portions of a program are individually mapped to the
FPGA while the instructions are in flight. This creates a need for almost
real-time compilation techniques.

For each of these systems, the runtime of the CAD tools is a clear concern. In
this chapter, we consider each scenario and cover techniques to accelerate the

412 Chapter 20 � Fast Compilation Techniques

various steps in the mapping flow. These techniques range from fairly cost-neutral
optimizations that speed the CAD flow without greatly impacting circuit quality
to more aggressive optimizations that can significantly accelerate compilation
time but also appreciably degrade mapping quality.

FPGA scaling
The mere scaling of VLSI technology itself has created part of the burden
for conventional FPGA CAD tools. Fulfilling Moore’s Law, improvements in
lithography and manufacturing techniques have radically increased the capa-
bilities of integrated circuits over the last four decades. Of course, just as these
advancements have increased the performance of desktop computers, they have
increased the logic capacity of FPGAs. Correspondingly, the size of desired appli-
cations has also increased. Because of this simultaneous scaling across the
industry, reconfigurable devices and their applications become physically larger
at approximately the same rate that general-purpose processors become faster.

Unfortunately, this does not mean that the time required to compile a modern
FPGA design on a modern processor stays the same. Over a particular period
of time, desktop computers and compute servers will become twice as fast and,
concurrently, FPGA architectures and user circuits will double in size. Since the
complexity of many classical design compilation techniques scale super-linearly
with problem size, however, the relative runtime for mapping contemporary
applications using contemporary machines will naturally rise.

To continue to provide reasonable design compilation time across multiple
FPGA generations, changes must be made to prevent a gap between available
computational power and netlist compilation complexity. However, although
application engineers depend on compilation times of at most a few hours to
meet fast production timelines, they also have expectations about the usable
logic block density and achievable clock frequency for their applications. Thus,
any algorithmic improvements or architectural changes made to speed up the
mapping process cannot come at the cost of dramatically increased critical-path
timing or reduced mapping density.

Hardware prototyping and logic emulation systems
The issue of nonscalable compilation is even more obvious in large prototyping
or logic emulation systems. These devices integrate multiple FPGAs into a single
system, harnessing tens to thousands. As Chapter 30 discusses in more detail, the
fundamental size of typical circuits on these architectures suggests fast mapping
techniques. However, even more critical, the compilation time of the netlists them-
selves may become a limiting factor in the basic usefulness of the entire system.

Hardware prototyping is often employed for many reasons. One of the greatest
advantages of hardware emulation over software simulation is its extremely fast
validation time. During the design and debug cycle of hardware development,
hundreds of thousands of test vectors may be applied to ensure that a given
implementation complies with design specifications. Although an FPGA-based
prototyping system cannot be expected to achieve anywhere near the clock rate
of the dedicated final product, the sheer volume of tests that need to be performed

Chapter 20 � Fast Compilation Techniques 413

every time a change is made to the system makes software simulation too slow
to have inside the engineering design loop. That said, software simulation code
can easily accommodate design updates and, more important, the changes have
a predictable compilation time of minutes to hours, not hours to days. Still, since
reconfigurable logic emulation systems maintain such a runtime advantage over
software simulation, prototyping designers are willing to exchange some of the
classical FPGA metrics of implementation quality, critical-path timing, and logical
density for faster and more predictable compilation time.

Instance-specific design
Similar to logic emulation systems, the netlist compilation time of instance-
specific circuits can greatly affect the overall value of an FPGA-based implemen-
tation. For example, although Boolean satisfiability is NP-complete, the massive
parallelism offered by reconfigurable fabrics can often solve these problems
extremely quickly—potentially on the order of milliseconds (see Chapter 29).
Unfortunately, these FPGA implementations are equation-specific, so the time
required to solve any given SAT problem is not determined by the vanishingly
short runtime of the actual mapped circuit running on a reconfigurable device,
but instead is dominated by the compilation time required to obtain the pro-
gramming bitstream in the first place—potentially on the order of hours.

Because of this reliance on netlist compilation, the Boolean satisfiability prob-
lem differs strongly from more traditional reconfigurable computing applications
for two reasons.

First, if we disregard compilation time, FPGA-based SAT solvers can obtain
two to three orders of magnitude better performance than software-based solu-
tions. Thus, the critical path and, by extension, the overall quality of the mapping
in the classical sense are virtually irrelevant. As long as compilation results in any
valid mapping, the vast majority of the performance benefit will be maintained.
While some effort is required to reliably produce routable circuits, we can make
huge concessions in terms of circuit quality in the name of speeding compila-
tion. Mappings that are quickly produced, but possibly slow, will still drastically
improve the overall solution runtime.

Second, features of the SAT problem itself suggest that application-specific
approaches might be worthwhile. For example, because SAT solvers typically have
very structured forms, fast SAT-specific CAD tools can be created. One possibility
is the use of preplaced and prerouted SAT-specialized macros that simply need
to be assembled together to create the overall system. To extend the concept of
application-specialized tuning to its logical end, architectural changes can even be
made to the reconfigurable fabric itself to make the device particularly amenable
to simple, fast mapping techniques. That said, the large engineering effort this
would involve must be weighed against the possible benefits.

Runtime netlist compilation
All reconfigurable computing systems have a certain amount of overhead that eats
away at their performance benefit. Although kernel execution might be blindingly
fast once started on the reconfigurable logic, its overall benefit is limited by the

414 Chapter 20 � Fast Compilation Techniques

need to profile operations, transfer data, and configure or reconfigure the FPGA.
Reconfigurable computing systems that use dynamically compiled applications
have the additional burden of runtime netlist compilation. These systems only
map application kernels to the hardware during actual system execution, in the
hope that runtime data, such as system loads, resource availability, and execu-
tion profiles, can improve the resultant speedups provided by the hardware. Their
almost real-time requirements demand the absolutely fastest compilation tech-
niques. Thus, even more so than instance-specific designs, these systems are only
concerned with compilation speed.

Mapping stages
When evaluating mapping techniques for high-speed circuit compilation, we have
to remember that the individual tools are part of a larger system. Therefore, any
quality degradation in an early stage may not only limit the performance of the
final mapping, but also make subsequent compilation problems more difficult. If
these later mapping phases are more difficult, they may require a longer runtime,
overwhelming the speedups achieved in earlier steps. For example, a poor-quality
placement obtained very quickly will likely make the routing problem harder.
Since we are interested in reducing the runtime of the compilation phase as a
whole, we must ensure that we do not simply trade placement runtime for routing
runtime. We may even run the risk of increasing total compilation time, since
a very poor placement might be impossible to route, necessitating an additional
placement and routing attempt.

Although logic synthesis, technology mapping, and logic block packing are
considered absolutely necessary parts of a modern, general-use FPGA compiler
flow, the majority of research into fast compilation has been focused on efficient
placement and routing techniques. Not only do the placement and routing phases
make up a large portion of the overall mapping runtime, in some cases the other
steps can be considered either unsuitable or unnecessary to accelerate. Some-
times high-level synthesis and technology mapping may be unnecessary because
designs are assumed to be implemented in low-level languages, or it is assumed
that they can be performed offline and thus outside the task’s critical path. Fur-
thermore, although logic synthesis and technology mapping can be very difficult
problems by themselves, they are also common to all hardware CAD tools—not
just FPGA-based technologies. On the other hand, placement and routing tools
for reconfigurable devices have to deal with architectural restrictions not present
in conventional standard cell tools, and thus generally must be accelerated with
unique approaches.

20.1 ACCELERATING CLASSICAL TECHNIQUES

An obvious starting point to improve the runtime of netlist compilation is to
make minor algorithmic changes to accelerate the classical techniques already in
use. For example, simulated annealing placement has some obvious parameters
that can be changed to reduce overall runtime. The initial annealing temperature

20.1 Accelerating Classical Techniques 415

can be lowered, the freezing point can be increased, the cooling schedule can
be accelerated, or the number of moves per iteration can be reduced. These
approaches all tend to speed up the annealing, but at some cost to placement
quality.

20.1.1 Accelerating Simulated Annealing
Because of the adaptive nature of modern simulated annealing temperature
schemes, any changes made to the structure of the cooling schedule itself can
have unreliable runtime behavior. Not only have the settings of initial and final
temperatures been carefully selected to thoroughly explore the solution space,
changing these values may dramatically affect final placement quality while still
not guaranteeing satisfactorily shorter runtime.

As described in Chapter 14, VPR updates the current temperature based on
the fraction of moves accepted out of those attempted during a given iter-
ation. Thus, decreasing the initial temperature cuts off the phase in which
sweeping changes can easily occur early in the annealing. Simply starting the
system at a lower initial temperature may cause the annealing to compensate
by lingering longer at moderately high temperatures. Similarly, modifying the
cooling schedule to migrate toward freezing faster fundamentally goes against
the basic premise of simulated annealing itself. This will have an unpredictable,
and likely undesirable, effect on solution quality.

It is generally accepted that the most predictable way to scale simulated
annealing effort is by manipulating the number of moves attempted per temper-
ature iteration. For example, in VPR the number of moves in a given iteration
is always based on the size of the input netlist: O(n1.33). The annealing effort
is simply adjusted by scaling up or down the multiplicative constant portion of
this value. In VPR, the “fast” placement option simply divides the default value
by 10, which in testing indeed reduces the overall placement time by a factor of
10 while affecting final circuit quality by less than 10 percent [3]. Furthermore,
as shown by Mulpuri and Hauck [12], simply changing the number of moves per
iteration allows a continuous and relatively predictable spectrum of placement
effort versus placement quality results.

Haldar and colleagues [11] exploited a very similar phenomenon to reduce
mapping time by distributing the simulated annealing effort across multiple
processors. In the strictest sense, simulated annealing is very difficult to par-
allelize because it attempts sequential changes to a given placement in order to
slowly improve the overall wirelength. To be most faithful to this process while
attempting multiple changes simultaneously, different processors must try non-
overlapping changes to the system; otherwise, multiple processors may try to
move the same block to two different locations or two different blocks to the
same location. Not only is this type of coordination typically very difficult to
enforce, it also generally requires a large amount of communication between
processors. Since all processors begin each move operating on the same place-
ment, they all must communicate any changes that are made after each step.
However, a slightly less faithful but far simpler approach can take advantage of

416 Chapter 20 � Fast Compilation Techniques

the idea that reducing the number of moves attempted per temperature iteration
can gracefully reduce runtime.

In this case, all of the processors agree upon a single placement to begin a
temperature iteration. At this point, though, each processor performs simulated
annealing independently of the others. To reduce the overall runtime, given N
processors, each only attempts 1/N of the originally intended moves per iteration.
At the end of the iteration, the placements discovered by all of the processors are
compared and the best one is broadcasted to the rest for use during the next
iteration. This greatly reduces the communication overhead and produces nearly
linear speedup for two to four processors while reducing placement quality by
only 10 to 25 percent [11].

Wrighton and DeHon [19] also parallelized the simulated annealing process,
but approached the problem in a completely different manner. In this case,
instead of attempting to develop parallel software, they actually configure an
FPGA to find its own placement for a netlist. They divide a large array into
distinct processing elements that will each keep track of one node in a small
netlist. In their testing, the logic required to trace the inputs and outputs of a
single LUT required approximately 400 LUTs. Because every processing element
represents the logic held at a single location in the array, a large emulation sys-
tem consisting of approximately 400 FPGAs can place a netlist for one device at
a time, or one large FPGA can place a netlist requiring approximately 1/400 of
the array.

Each processing element is responsible for keeping track of both the block
in the netlist currently mapped to that location and the position of the sinks of
the net sourced by this block. During a given timestep, each processing element
determines the wirelength of its output net by evaluating the location of all of its
sinks; the entire system is then perturbed in parallel by allowing each location to
negotiate a possible swap with its neighbors. Just as in conventional simulated
annealing, good moves are always accepted and bad moves are accepted with a
probability dependent on the annealing temperature and how much worse the
move makes the system as a whole. Similarly, although swaps can only be made
one nearest neighbor to another, any block can eventually migrate to any other
location in the array through multiple swaps. The system avoids having two blocks
attempt to occupy the same location by always negotiating swaps pairwise.

As shown in Figure 20.1, a block negotiates a swap with each of its neighbors
in turn. Phases 1 and 2 may swap blocks to the left or right, while phases 3 and
4 may swap with a neighbor above or below.

We should note that although very similar to the classical simulated annealing
model, this arrangement does not necessarily calculate placement cost in the
same way. The net bounding box calculated at each timestep cannot take into
account the potential simultaneous movement of all the other blocks to which
it is connected. That said, whatever inaccuracies might be introduced by this
computation difference are relatively small.

Of much greater importance is the problem caused by communication band-
width. It is possible that in a given timestep every processing element decides to
swap with its neighbor. If this is the case, the location of all sinks will change.

20.1 Accelerating Classical Techniques 417

1 2

3

4

3 33

1

1

1

2

2

2

4 44

1

1

1

1

44 44

FIGURE 20.1 � Swap negotiation in hardware-assisted placement. (Source: Based on an illustration in
Wrighton and DeHon [19]).

FIGURE 20.2 � Location update chain. (Source: Based on an illustration in Wrighton and DeHon [19]).

To keep completely consistent recordkeeping with conventional simulated
annealing, this requires each processing element to notify its nets’ sources of the
block’s new location. Of course, this creates a huge communication overhead.
However, this can be avoided if the processing elements are allowed to calculate
wirelength based on stale location information.

As shown in Figure 20.2, instead of a huge broadcast each time a block is
relocated, position information marches through the system in a linear fashion.
As blocks are moved during the annealing process, new positions for each one
are communicated to other blocks via a dedicated location update chain. Thus,
if the system has N processing elements, it might take N clock cycles before
all relevant processing elements see the new placement of that block. Since the

418 Chapter 20 � Fast Compilation Techniques

processing elements are still calculating further moves, this means up to N cycles
of stale data. Because of these inaccuracies, compared with a fast VPR run, this
hardware-based simulated annealing system generally requires 36 percent more
routing tracks to implement the same circuits. However, it also is three to four
orders of magnitude faster.

As mentioned earlier, classical simulated annealing techniques have been very
carefully tuned to produce high-quality placements. Most of the methodologies
we have covered to accelerate simulated annealing rely on reducing the number
of moves attempted. Thus, while they can produce reasonable placements quickly
for current circuits, they do not necessarily perform well for all applications.

Mulpuri and Hauck [12] demonstrated that, while we may be able to reduce
the number of moves per temperature iteration by a factor of 10 with little effect
on routability, if we continue to reduce the placement effort, the quality of the
placement drops off severely. The conclusion to be drawn is that, acceleration
approaches, although reasonable for dealing with FPGA scaling in the short term,
are not a permanent solution. Applying them on increasing netlist and device
sizes will eventually lead to worse and worse placements, and, furthermore, they
simply do not have the capability to produce useable placements quickly enough
for either runtime netlist compilation or most instance-specific circuits.

On the other hand, hardware-assisted simulated annealing seems far more
promising. Although this technique introduces some inaccuracy in cost calcula-
tion because of both simultaneously negotiated moves and stale location infor-
mation, the effect of these factors is relatively predictable. The error introduced
by simultaneous moves will always be relatively small because all swaps are per-
formed between nearest neighbors. Also, the error introduced by stale location
information scales linearly with netlist size. This means not only that such infor-
mation will likely cause the placement quality to degrade gracefully but also
that we can reduce this inaccuracy relatively easily by adding additional update
paths, perhaps even a bidirectional communication network that quickly informs
both forward and backward neighbors of a moved element. Since we hope that
the majority of nets will cover a relatively small area, this should considerably
reduce inaccurate cost calculation due to stale location information.

These trade-offs make hardware-assisted annealing an interesting possibil-
ity. Although it may impose a significant quality cost, that cost may not grow
with increased system capacity, and it may be one of the only approaches that
provide the drastic speedups necessary for both runtime netlist compilation
and instance-specific circuits. This may make it of particular interest for future
nanotechnology systems (see Chapter 38).

20.1.2 Accelerating PathFinder
Just as in placement, minor alterations can be made to classical routing algo-
rithms to improve their runtime. Some extremely simple modifications may
speed routing without affecting overall quality, or they may reduce routability in
a graceful and predictable manner. Swartz et al. [15] suggest sorting the nets to
be routed in order of decreasing fanout instead of simply arbitrarily. Although

20.1 Accelerating Classical Techniques 419

high fanout nets generally make up a small fraction of a circuit, they typically
monopolize a large portion of the routing runtime. By routing these compar-
atively difficult nets first in a given iteration, they may be presented with the
lowest congestion cost and thus take the most direct and easily found paths.
Lower fanout nets tend to be more localized, so they can deal with congestion
more easily and their search time is comparatively smaller. This tends to speed
overall routing, but since no changes are made to the actual search algorithm,
it is not expected to affect routability.

Conversely, Swartz et al. [15] also suggest scaling present sharing and his-
tory costs more quickly between routing iterations. As discussed in Chapter 17,
PathFinder gradually increases the cost of using congested nodes to discourage
sharing over multiple iterations. Increasing present sharing and history costs
more aggressively emphasizes removing congestion over route exploration. This
may potentially decrease achievable routability, but the system may converge on
a legal routing more quickly.

One of the most effective changes that can be made to conventional Dijkstra-
based routing approaches is limiting the expansion of the search. Ignoring con-
gestion, in most island-style FPGAs it is unnecessary for a given net to use routing
resources outside the bounding box formed by its terminals. Of course, conges-
tion must be resolved to obtain a feasible mapping, but given the routing-rich
nature of modern reconfigurable devices, and assuming that routing is performed
on a reasonable placement, the area formed by a net’s bounding box is most likely
to be used.

However, traditional Dijkstra’s searches expand from the source of a net evenly
in all directions. Given that the source of a 2-terminal net must lie on the edge
of the bounding box, this is obviously wasteful since, again ignoring congestion
costs, the search essentially progresses as concentric rings—most of which lie in
the incorrect direction for finding the sink. As shown in Figure 20.3, it is unlikely
that a useful route will require such a meandering path. If we would like to find

K

S

FIGURE 20.3 � A conventional routing search wave.

420 Chapter 20 � Fast Compilation Techniques

a route between blocks S and K, it is most likely that we will be able to find
a direct route between them. Thus, we should direct the majority of our efforts
upward and to the right before exploring downward or to the left. As described in
Chapter 17, this is the motivation for adding A∗ enhancements to the PathFinder
algorithm. However, this concept can be taken even further by formally preventing
searches from extending very far beyond the net’s bounding box.

According to Betz et al. [3], a reasonable fixed limitation can prevent an explo-
ration from visiting routing channels more than three steps outside of a net’s
bounding box. Although this technique may degrade routability under condi-
tions of very high congestion, such situations may not be encountered. An archi-
tecture might have sufficient resources so that high-stress routing situations are
never created, particularly in scenarios where the user is willing to reduce the
amount of logic mapped to an FPGA to improve compilation runtimes.

Slightly more difficult to manage is the case of multi-terminal nets. Although the
scope of a multisink search as a whole may be limited by the net’s bounding box,
this only alleviates one source of typically unnecessary exploration. PathFinder
generally sorts the sinks of a multi-terminal net by Manhattan distance. However,
each time a sink is discovered, the search for the next sink is restarted based
on the entire routing tree found up to that point. As shown in Figure 20.4, this
creates a wide search ring that is explored and reexplored each time a new sink
is discovered, which is particularly problematic for high-fanout nets.

If we consider the new sink and the closest portion of the existing routing
tree to be almost a 2-terminal net by itself, we can further reduce the amount
of extraneous exploration. Swartz et al. [15] suggest splitting the bounding box
of multi-terminal nets into gridlike bins. As shown in Figure 20.5, after a sink is
found, a new search is launched for the next furthest sink, but explorations are
only started from the portion of the routing tree contained in the bin closest to
the new target. In our example, after a route to K1 is found, only the portion

K1 K2

S

K3

K1 K2

S

K3

FIGURE 20.4 � PathFinder exploration and multi-terminal nets.

20.1 Accelerating Classical Techniques 421

K1 K2

S

K3

K1

S

K3

K2

FIGURE 20.5 � Multi-terminal nets and region segmentation.

of the existing path in the topmost bin is used to launch a search for K2. The
process of restricting the initialization of the search is repeated to find a route
to K3. This may result in slightly longer branches, but, again, it is not an issue
in low-stress routing situations.

Although potentially very effective, all of these techniques only attempt to
improve the time required to route a single net. As described in Chapter 17,
however, the PathFinder algorithm is relatively amenable to parallel process-
ing. Chan et al. [7] showed that we can simply split the nets of a given circuit
among multiple processors and allow each to route its nets mostly independently
of the others. Similarly to what happens in parallel simulated annealing, com-
plete faithfulness to the original PathFinder algorithm requires a large amount
of communication bandwidth. This is because we have no guarantees that one
processor will not attempt to route a signal on the same wire as another proces-
sor during a given iteration unless they are in constant communication with each
other. However, because PathFinder already has a mechanism to discourage the
overuse of routing resources between different nets over multiple iterations, such
continuous communication is unnecessary. We can allow multiple processors to
operate independently of one another for an entire routing iteration.

When all processors have routed all of their nets, we can simply determine
which nodes were accidentally shared by different processors and increase their
present sharing and history costs appropriately. Just as it discourages sharing
between nets in classical single-processor PathFinder, this gradually discourages
sharing between different processors over multiple iterations. We are using the
built-in conflict-resolution mechanism in a slightly different way, but this allows
us to reduce the communication overhead considerably. That said, after we have
resolved the large-scale congestion in the system, the last few routing iterations
likely must be performed on a single processor using conventional PathFinder.

422 Chapter 20 � Fast Compilation Techniques

Overall, these techniques are extremely effective on modern FPGAs. Most of
today’s reconfigurable architectures include a wealth of routing resources that are
sufficient for a wide range of applications. Because of this, all of these approaches
to accelerating PathFinder-style routing produce good results. Ordering of nets,
fast growth of present sharing and history costs, and limiting the scope of
exploration to net bounding boxes are common in modern FPGA routing tools.
Unfortunately, however, they are still not fast enough for the most demanding
applications such as runtime netlist compilation. Even the parallel technique
outlined here has an unavoidable serial component. Thus, while such techniques
may be adequate to produce results for next-generation FPGAs or hardware pro-
totyping systems, they must be much faster if we are to make runtime netlist
compilation practical.

20.2 ALTERNATIVE ALGORITHMS

Although classical mapping techniques have proven that they can achieve high-
quality results, there is a limit to their acceleration through conventional means
if we want to maintain acceptable quality for many applications. For example,
in the case of placement the number of moves attempted in the inner loop of
simulated annealing can only be reduced to a certain point before solution quality
is no longer acceptable. While the runtime on a single processor can be cut by
a factor of 10 with relatively little change in terms of routability or critical-path
timing, even such modest degradation may not meet the most demanding design
constraints. Furthermore, as discussed earlier, attempting to scale this technique
beyond the 10x point generally results in markedly lower quality because the
algorithm simply does not have sufficient time to adequately explore the solution
space. To achieve further runtime improvements without resorting to potentially
complex parallel implementations and without abandoning solution quality, we
must make fundamental algorithmic changes.

20.2.1 Multiphase Solutions
One of the most popular ways to accelerate placement is to break the process
into multiple phases, each handled by a different algorithm. Although many
techniques use this method, a common thread among them all is that large-
scale optimization is performed first by a fast but relatively imprecise algorithm.
Slower, more accurate algorithms are reserved for local, small-scale refinement
as a secondary step. A good example of this approach is shown in papers such
as that by Xu and Kalid [20]. Here, the authors use a quadratic technique to
obtain a rough placement and then work toward a better solution with a short
simulated annealing phase.

In quadratic placement, the connections between blocks in the netlist are con-
verted into linear equations, any valid solution to which indicates the position
of each block. A good placement solution is found by solving the matrix equa-
tions while attempting to minimize another function: the sum of the squared

20.2 Alternative Algorithms 423

wirelength for each net. Unfortunately, one of the problems with this approach
is that, in order for the equations to be solved quickly, they must be uncon-
strained. Thus, the placements found directly from the quadratic solver will
likely have many blocks that overlap.

Xu and Kalid [20] identify these overlapping cells and, over multiple iterations,
slowly add equations that force them to move apart. This is a comparatively fast
process, but the additional placement legalization factors are added somewhat
arbitrarily. Thus, although the quadratic placement might have gotten all of the
blocks in roughly the correct area, there is still quite a bit of room for wirelength
and timing improvements.

In contrast, while simulated annealing produces very good results, much of
the runtime is devoted to simply making sense of a random initial placement.
By combining the two approaches, and starting a low-temperature annealing
only after we obtain a reasonable initial placement from the quadratic solver
phase, we can drastically reduce runtime and still maintain the majority of
the solution quality. Similar approaches can substitute force-directed placement
for large-scale optimization or completely greedy optimization for small-scale
improvement [12].

Another way to quickly obtain relatively high-quality initial placements is with
partitioning-based approaches. As mentioned in Chapter 14, although recursive
bipartitioning can be performed very quickly, reducing the number of signals
cut by the partitions is not necessarily the same thing as minimizing wirelength
or critical path delay. A similar but more sophisticated method is also discussed
in Chapter 14. In hierarchical placement, as described by Sankar and Rose [13],
the logical resources of a reconfigurable architecture are roughly divided into
K separate regions. Multiple clustering steps then assign the netlist blocks into
groups of approximately the correct size for the K logical areas. At this point,
the clusters themselves can be moved around via annealing, assuming that all
of the blocks in a cluster are at the center of the region.

This annealing can be performed very quickly since the number of clusters
is relatively small compared to the number of logic blocks in the netlist. We
can obtain a relatively good logic block-level placement by taking the cluster-
level placement and decomposing it. Here, we can take each cluster in turn and
arbitrarily place every block somewhere within the region assigned to it earlier.
This initial placement can then be refined with a low-temperature annealing.

Purely mechanical clustering techniques are not the only way to group related
logic together and obtain rough placements very quickly. In fact, the initial
design specification itself holds valuable information concerning how the cir-
cuit is constructed and how it might best be laid out. Unfortunately, this knowl-
edge is typically lost in the conventional tool flow. Regardless of whether they
are using a high-level or low-level hardware description language, the orga-
nizational methods of humans naturally form top-level designs by connecting
multiple large modules together. These large modules are, in turn, also created
from lower-level modules. However, information about the overall design orga-
nization is generally not passed down through logical synthesis and technology
mapping tools.

424 Chapter 20 � Fast Compilation Techniques

Packing, placement, and routing are typically performed on a completely
flattened netlist of basic logic blocks. However, as suggested in works by Gehring
and Ludwig and colleagues [10] and Callahan et al. [6], for example, for most
applications this innate hierarchy can suggest which pieces are heavily intercon-
nected and should be kept close together during the mapping process. Further-
more, information about multiple instances of the same module can be used to
speed the physical design process.

The datapath-oriented methodology described in Chapter 15 uses a closely
related concept to help design highly structured computations. In datapath com-
position, the entire CAD toolflow, from initial algorithm specification to floor-
planning to placement, is centered on building coarse-grained objects that have
obvious, simple relationships to one another. The entire computation is built
from regular, snap-together tiles that can be arranged in essentially the same
order in which they appear in the input dataflow graph. Although many applica-
tions simply do not fit the restrictive nature of the datapath computation model,
applications that can be implemented in this way benefit greatly from the highly
regular structures these tools create.

There may not be as much regularity in most applications, but we can still use
organizational information to accelerate both placement and routing. At the very
least, such information provides some top-level hints to reasonable clustering
boundaries and can be used to roughly floorplan large designs. In some sense,
this is exactly the aim of hierarchical placement, although it attempts to accom-
plish this without any a priori knowledge. Extending this idea, for very large
systems we can use these natural boundaries to create multiple, more or less
independent top-level placement problems. Even if we place each of the large
system-level modules serially on a single processor, it is likely that, because of
nonlinear growth in problem complexity, the total runtime will still be smaller
than if we had performed one large, unified placement.

We can also employ implicit organizational information on a smaller scale
in a bottom-up fashion. For example, many modern FPGAs contain dedicated
fast carry-chain logic between neighboring cells. To use these structures, how-
ever, the cells must be placed in consecutive vertical logic block locations. If
we were to begin with a random initial placement for a multibit adder, we
would probably not find the optimal single-column placement despite the fact
that, based on higher-level information, the best organization is obvious. Such
very common operations can be identified and then preplaced and routed with
known good solutions. These blocks then become hard macros. Less common or
larger calculations can be identified and turned into soft macros. As suggested by
projects such as Tessier’s [17], using the high-level knowledge of macros within
a hierarchical-style placement tool can improve runtime by a factor of up to 50
without affecting solution quality.

Still, while macro identification can significantly improve placement run-
time, its effect on routing runtime is likely negligible. Soft macros still need
to be routed because each instance may be of a different shape. Furthermore,
although hard macros do not need to be repeatedly routed, and may be relatively
common, their nets represent a small portion of the overall runtime because

20.2 Alternative Algorithms 425

they are typically short and are simple to route. Rather, to substantially improve
routing runtime we need to address the nets that consume the largest portion of
the computational effort—high-fanout nets. As discussed earlier, multi-terminal
nets present a host of problems for routers such as PathFinder. In many circuits,
the routing time for one or two extremely high-fanout nets can be a significant
portion of the overall routing runtime. However, this effort might be unnecessary
since, even though these nets are ripped up and rerouted in every iteration, they
go nearly everywhere within their bounding box. This means that virtually all
legal routing scenarios will create a relatively even distribution of traffic within
this region and none are markedly better than any other. For this reason, we can
easily route these high-fanout nets once at the beginning of the routing phase
and then exclude them from following a conventional PathFinder run without
seriously affecting overall routability. At the very least, if we do not want to put
these nets completely outside the control of PathFinder congestion resolution,
we can rip up and reroute them less frequently, perhaps every other or every
third iteration.

Regardless of how the placement and routing problem is divided into simpler
subproblems, multiphase approaches are the most promising way to deal with
the issues associated with FPGA technology scaling. Of course, when possible
it is best to gather implicit hierarchical information directly from the source
hardware description language specification. This not only allows us to create
both hard and soft macros very easily, but gives strong hints regarding how
large designs might be floorplanned. That said, we may not have information
regarding high-level module organization. In these cases we can fall back on
hierarchical or partitioning placement techniques to make subsequent annealing
problems much more manageable. All of these placement methodologies scale
very well, and they represent algorithms that can solve the most pressing issues
presented by growing reconfigurable devices and netlists.

When applicable, constructive techniques, such as the datapath-oriented
methodology described in Chapter 15, or macro-based approaches can be
very useful for mapping hardware prototyping systems and instance-specific
circuits. These methodologies naturally produce reasonable placements very
quickly. Because hardware emulation systems and instance-specific circuits do
not necessarily need optimal area or timing results, these techniques often pro-
duce placements that can be used directly without the need for subsequent
refinement steps.

20.2.2 Incremental Place and Route
Incremental placement and routing techniques attempt to reduce compilation
time by combining and extending the same ideas exploited by multiphase com-
pilation approaches: (1) begin with a known reasonable placement and (2) avoid
ripping up and rerouting as many nets as possible.

In many situations, multiple similar versions of a given circuit might be
placed and routed several times. In the case of hardware emulation, for example,
it is unlikely that large portions of the circuit will change between consecutive

426 Chapter 20 � Fast Compilation Techniques

designs. Far more likely is that small bug fixes or local modifications will be
made to specific portions of the circuit, leaving the vast majority of the design
completely unchanged. Incremental placement and routing methodologies iden-
tify those portions of a circuit that have not changed from a previous mapping
and attempt to integrate the changed portions in the least disruptive manner.
This allows successive design updates to be compiled very quickly and mini-
mizes the likelihood of dramatic changes to the characteristics of the resultant
mapping.

The key to incremental mapping techniques is to modify an existing place-
ment as little as possible while still finding good locations for newly introduced
parts. The largest hurdle to this is merely finding a legal placement for all new
blocks. If the changes reduce the overall size of the resulting circuit, any new
logic blocks can simply fit into the void left by the old section. However, if the
overall design becomes larger, the mapping process is more complex. Although
the extra blocks can simply be dropped into any available location on the chip,
this will probably result in poor timing and routability. Thus, incremental map-
ping techniques generally use simple algorithms to slightly move blocks and
make vacant locations migrate toward the modified sections of the circuit.

The most basic approaches, such as those described by Choy et al. [4], deter-
mine where the closest empty logic block locations are and then simply slide
intervening blocks toward these vacancies to create space where it is needed.
Singh and Brown [14] use a slightly more sophisticated approach that employs a
stochastic hill-climbing methodology, similar to a restricted simulated annealing
run. This algorithm takes into account where additional resources are needed,
the estimated critical path of the circuit, and the estimated required wirelength.
In this way, logic blocks along noncritical paths will preferentially be moved to
make room for the added logic.

Incremental techniques not only speed up the placement process, but can
accelerate routing as well. Because so much of the placement is not dis-
turbed, the nets associated with those logic blocks do not necessarily have to be
rerouted. Initially, the algorithm can attempt to route only the nets associated
with new or moved logic blocks. If this fails, or produces unacceptable timing
results, the algorithm can slowly rip up nets that travel through congested or
heavily used areas and try again. Either way, it will likely need to reroute only
a very small portion of the overall circuit.

Unfortunately, there are many situations in which we do not have the prior
information necessary to use incremental mapping techniques. For example,
the very first compilation of a netlist must be performed from scratch. Further-
more, it is a good idea to periodically perform a complete placement and routing
run, because applying multiple local piecework changes, one on top of another,
can eventually lead to disappointing global results. However, as mentioned ear-
lier, incremental compilation is ideal for hardware prototyping systems because
they are typically updated very frequently with minor changes. This behavior
also occurs in many other development scenarios, which is why incremental
compilation is a common technique to accelerate the engineering/debugging
design loop.

20.3 Effect of Architecture 427

However, there are some situations in which it is very difficult to apply
incremental approaches. For example, these techniques rely on the ability to
determine what portions of a circuit do or do not change between design revi-
sions. Not only can merely finding these similarities be a difficult problem, we
must also be able to carefully control how high-level synthesis, technology map-
ping, and logic block packing are performed. These portions of the mapping
process must be aware when incremental placement and routing is going to be
attempted, and when major changes have been made to the netlist and placement
and routing should be attempted from scratch.

20.3 EFFECT OF ARCHITECTURE

Although we have considered many algorithmic changes that can improve com-
pilation runtime, we should also consider the underlying reasons that the FPGA
mapping problem is so difficult. Compared to standard cell designs, FPGAs are
much more restrictive because the logic and routing are fixed. Technology map-
ping must target the lookup tables (LUTs) and small computational cores avail-
able on a given device, placement must deliver a legal arrangement that coin-
cides with the array of provided logic blocks, and routing must contend with a
fixed topology of communication resources.

For these reasons, the underlying architecture of a reconfigurable device
strongly affects the complexity of design compilation. For example, routing on
a device that had an infinite number of extremely fast and flexible wires in
the communication network would be easy. Every signal could simply take its
shortest preferred path, and routing could be performed in a single Dijkstra’s
pass. Furthermore, placement would also be obvious on such an architecture
since even a completely arbitrary arrangement could meet design constraints.
Granted, real-world physical limitations prevent us from developing such a per-
fect device, but we can reduce the necessary CAD effort with smart architectural
design that emphasizes ease of compilation—potentially even over logic capacity
and clock speed.

The Plasma architecture [2] is a good example of designing an FPGA explicitly
for simple mapping. Plasma was developed as part of the Teramac project [1]—
an extremely large reconfigurable computing system slated to contain hundreds
or thousands of individual FPGAs. Even given that a large design would be sepa-
rated into smaller pieces that could be mapped onto individual FPGAs, contem-
porary commercial reconfigurable devices required tens of minutes to complete
placement and routing for each chip. To further compound this issue, even after
placement was completed once, there was no guarantee that all of the signals
could be successfully routed, so the entire process might have to be repeated.
This meant that a design that utilized thousands of conventional FPGAs could
require days or weeks of overall compilation time. For the Teramac system to be
useful in applications such as hardware prototyping, in which design changes
might be made on a daily or even hourly basis, mapping had to be orders of

428 Chapter 20 � Fast Compilation Techniques

magnitude faster. Thus, the Plasma FPGA architecture was designed explicitly
with fast mapping in mind.

Although Plasma differed from contemporary commercial FPGAs in several
key ways, its most important distinction was high connectivity. Plasma was built
from 6-input, 2-output logic blocks connected hierarchically by two levels of
crossbars. As seen in Figure 20.6, logic blocks are separated into groups of 16
that are connected by a full crossbar that spans half the width of the chip. These
groups are then connected to other groups by a central partial crossbar. The cen-
tral vertical lines span a quarter of the height of the array, but have the capability
to be connected together to span the entire distance. Since full crossbars would

Partial
crossbar

Partial
crossbar

Partial
crossbar

Partial
crossbar

Crossbar

Crossbar

Crossbar

Crossbar

Crossbar

Crossbar

Crossbar

Crossbar

Crossbar

Crossbar

Crossbar

Crossbar

Crossbar

Crossbar

Crossbar

Crossbar

FIGURE 20.6 � The Plasma interconnect network.

20.3 Effect of Architecture 429

have been prohibitively large, the developers used empirical testing to determine
what level of connectivity was typically used in representational benchmarks. In
addition to high internal connectivity, Plasma also contained an unusually large
number of off-chip I/O pins.

Although this extremely dense routing fabric consumed 90 percent of the over-
all area, and its reliance on very long wires reduced the maximum operating
frequency considerably, placement and routing could reliably be performed on
the order of seconds on existing workstations. Given Teramac’s target applica-
tions, the dramatic increase in compilation speed and the extremely consistent
place and route success rate was considered to be more important than logical
density or execution clock frequency.

Of course, not all applications can make such an extreme trade-off between
ease of compilation and general usability metrics. However, manipulating the
architecture of an FPGA does not necessarily require dramatically altering the
characteristics of the device. For example, it is possible to make small changes
to the interconnect to make routing simpler. One possibility is using a track
domain architecture, which restricts the structure of the switch boxes in an
island-style FPGA.

As shown in Figure 20.7, the connectivity of an architecture’s switch boxes
can affect routability. While each wire in both the top and bottom switch boxes
have the same number of fanouts, the top switch box allows tracks to switch
wire domains, eventually migrating to any track through multiple switch points.

1

2

1

2

1 2

1 2

1

2

1

2

1

1

L L

L L

2

2

FIGURE 20.7 � Switch box style and routability.

430 Chapter 20 � Fast Compilation Techniques

This allows a signal coming in on one wire on the left of the top architecture
to reach all four wires exiting the right. However, the symmetric switch box
shown on the bottom does not allow tracks to switch wire domains and forces
a signal to travel along a single class of wire. This means that a signal coming
in from the left of the bottom architecture can only reach two of the four wires
exiting to the right. Although this may reduce the flexibility of the routing fabric
somewhat [18], potentially requiring more wires to achieve the same level of
routability [8], this effect is relatively minor.

Even though we may need to increase the channel width of our architec-
ture because of the restrictive nature of track domain switch boxes, routing on
this type of FPGA can be dramatically faster than on more flexible systems. As
shown by Cabral et al. [5], since the routing resources on track domain FPGAs
are split into M different classes of wire, routing becomes a parallel problem.
First, N processors are each assigned a small number of track domains from a
given architecture. Then the nets from a circuit placed onto the architecture are
simply split into N groups. Because each track domain is isolated from every
other due to the nature of the architecture, each processor can perform normal
PathFinder routing without fear that the paths found by one processor will inter-
fere with the paths found by another. When a processor cannot route a signal on
its allotted routing resources, it is given an additional unassigned track domain.
Although load balancing between processors and track domains is somewhat of
a problem, this technique has shown linear or even super-linear speedup with
a very small penalty to routability. In this case, Cabral and colleagues [5] were
able to solve the problems encountered by the parallel routing approaches that
were discussed earlier by modifying the architecture itself.

Another way to modify the physical FPGA to speed routing is by offering spe-
cialized hardware to allow the device to route its own circuits. Although similar
to the approach discussed earlier in which simulated annealing is implemented
on a generic FPGA to accelerate the placement of its own circuits, DeHon
et al. [9] suggest that by modifying the actual switch points internal to an FPGA,
we can create a specialized FPGA that can assist a host processor to perform
PathFinder-like routing by performing its own Dijkstra searches. In this type
of architecture, the switch points have additional hardware that gives them the
ability to remember the inputs and outputs currently being used when the FPGA
is put into a special compilation time-only “routing search” mode.

After the placement of a given circuit is found, we configure the FPGA to
perform routing on itself. This begins by clearing the occupancy markers on
all of the switch points. During the routing phase, the host processor requests
that each net in turn drive a signal from its source, which helps discover a path
to each of its sinks. Every time this signal encounters a switching element, the
switch allows the signal to propagate though unallocated resources but prevents
it from continuing along occupied segments. In this way, the device explores
all possible paths virtually instantaneously. When a route is found between the
source and a sink, the switch point occupancy markers along this path are
updated to reflect the “taken” status of these resources. When a route cannot
be found for a given net, because all of the legal paths have been occupied

20.4 Summary 431

by earlier nets, the system simply victimizes a random previously routed path
and rips it up until the blocked net can successfully route. Nets are continuously
routed and ripped up in this round-robin fashion until all nets have been routed.
Although this approach does not have the same sophistication as PathFinder,
the experiments by DeHon and colleagues [9] show that hardware-assisted
routing can obtain extremely similar track counts (only 1 to 2 additional tracks)
with 4 to 6 orders of magnitude speedup in terms of runtime on the largest
benchmarks.

Of course, modifying an FPGA architecture can involve a great deal of engi-
neering effort. For example, while hardware-assisted routing is one of the only
approaches that is fast enough to make runtime netlist compilation feasible, it
involves completely redesigning the communication network. That said, not all
of our architecture modifications need to be that drastic. For example, com-
mercial FPGA manufacturers have already made modifications to their archi-
tectures that accelerate routing. As mentioned earlier, commercial FPGAs offer
a resource-rich, flexible routing fabric to support a wide range of applications.
Their high bandwidth and connectivity naturally make the routing problem sim-
pler and much faster to solve. Following this logic, it seems natural that FPGAs
might switch to track domain architectures in the future. While such devices
require only minor layout changes that slightly affect overall system routability,
they enable very simple parallel routing algorithms to be used. This becomes
more and more important as reconfigurable devices scale and as multi-threaded
and multicore processors gain popularity.

20.4 SUMMARY

In this chapter we explored many techniques to accelerate FPGA placement and
routing. Ultimately, all of them have restrictions, benefits, and drawbacks. This
means that our applications, architectures, and design constraints must dic-
tate which methodologies can and should be used. Several of the approaches
do not provide acceptable runtime given problem constraints, while some may
not offer sufficient implementation quality. Some techniques may not scale ade-
quately to address our issues, while we may not have the necessary information to
use others.

FPGA scaling. Although classical block-level simulated annealing techniques
have been the cornerstone of FPGA CAD tools for decades, these method-
ologies must eventually be replaced. Hierarchical and macro-based tech-
niques seem to scale much more gracefully while preserving the large-scale
characteristics of high-quality simulated annealing. On the other hand,
routing will likely depend on PathFinder and other negotiated congestion
techniques for quite some time. That said, for compilation time to keep
pace given newer and larger devices, FPGA developers need to make some
architectural changes that simplify the routing problem. Track domain

432 Chapter 20 � Fast Compilation Techniques

systems seem to be a natural solution given that modern desktops and
workstations offer multiple types of parallel processing resources.

Hardware prototyping and logic emulation systems. While these systems benefit
greatly from incremental mapping techniques, they still require fast place
and route algorithms when compilation needs to be performed from
scratch. Hardware-assisted placement seems an obvious choice that can
take full advantage of the multichip arrays present in these large devices.
Furthermore, since optimal critical-path timing is not essential and appli-
cation source code is generally available to provide hierarchical informa-
tion, datapath and macro-based approaches can be very effective.

Instance-specific designs. Datapath and macro-based approaches are even more
important to instance-specific circuits because they cannot take advantage
of many other techniques. However, the limited scope of these problems
and the dramatic speedup made possible by these systems also make spe-
cialized architectures attractive. While the overhead imposed by architec-
tures such as Plasma may not be practical for most commercial devices,
these drawbacks are far less important to instance-specific circuits given
the significant CAD tool benefits.

Runtime netlist compilation. Reconfigurable computing systems that require
runtime netlist compilation present an incredibly demanding real-time com-
pilation problem. Correspondingly, these systems require the most aggres-
sive architectural approaches to make this possible. Radical system-wide
modifications that provide huge amounts of routing resources significantly
simplify the placement problem. However, just providing more bandwidth
does not necessarily accelerate the routing process. These systems need to
provide communication channels that either do not need to be negotiated or,
through hardware-assisted routing, can automatically negotiate their own
connections. An open question is whether the advantages of runtime netlist
compilation are worth the attendant costs and complexities they introduce.

References
[1] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider. Teramac—configurable

custom computing. Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, 1995.

[2] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider, L. Albertson. Plasma:
An FPGA for million gate systems. Proceedings of ACM Symposium on Field-
Programmable Gate Arrays, 1996.

[3] V. Betz, J. Rose, A. Marquardt. Architecture and CAD for Deep-Submicron FPGAs,
Kluwer Academic, 1999.

[4] C. Choy, T. Cheung, K. Wong. Incremental layout placement modification algo-
rithm. IEEE Transactions on Computer-Aided Design 15(4), April 1996.

[5] L. Cabral, J. Aude, N. Maculan. TDR: A distributed-memory parallel routing algo-
rithm for FPGAs. Proceedings of International Conference on Field-Programmable
Logic and Applications, 2002.

20.4 Summary 433

[6] T. Callahan, P. Chong, A. Dehon, J. Wawrynek. Fast module mapping and
placement for datapaths in FPGAs. Proceedings of ACM Symposium on Field-
Programmable Gate Arrays, 1998.

[7] P. Chan, M.D.F. Schlag, C. Ebeling. Distributed-memory parallel routing for field-
programmable gate arrays. IEEE Transactions on Computer-Aided Design 19(8),
August 2000.

[8] Y. Chang, D. F. Wong, C. K. Wong. Universal switch modules for FPGA design.
ACM Transactions on Design Automation of Electronic Systems 1(1), January 1996.

[9] A. DeHon, R. Huang, J. Wawrzynek. Hardware-assisted fast routing. Proceedings of
the IEEE Symposium on FPGAs for Custom Computing Machines, 2002.

[10] S. Gehring, S. Ludwig. Fast integrated tools for circuit design with FPGAs.
Proceedings of ACM Symposium on Field-Programmable Gate Arrays, 1998.

[11] M. Haldar, M. A. Nayak, A. Choudhary, P. Banerjee. Parallel algorithms for FPGA
placement. Proceedings of the Great Lakes Symposium on VLSI, 2000.

[12] C. Mulpuri, S. Hauck. Runtime and quality trade-offs in FPGA placement and
routing. Proceedings of ACM Symposium on Field-Programmable Gate Arrays, 2001.

[13] Y. Sankar, J. Rose. Trading quality for compile time: Ultra-fast placement for
FPGAs. Proceedings of ACM Symposium on Field-Programmable Gate Arrays, 1999.

[14] D. Singh, S. Brown. Incremental placement for layout-driven optimizations on
FPGAs. Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, 2002.

[15] J. Swartz, V. Betz, J. Rose. A fast routability-driven router for FPGAs. Proceedings
of the ACM Symposium on Field-Programmable Gate Arrays, 1998.

[16] R. Tessier. Negotiated A* routing for FPGAs. Proceedings of the Canadian Workshop
on Field-Programmable Devices, 1998.

[17] R. Tessier. Fast placement approaches for FPGAs. Transactions on Design Automa-
tion of Electronic Systems 7(2), April 2002.

[18] S. Wilton. Architecture and Algorithms for Field-Programmable Gate Arrays with
Embedded Memory, Ph.D. thesis, University of Toronto, 1997.

[19] M. Wrighton, A. DeHon. Hardware-assisted simulated annealing with applica-
tion for fast FPGA placement. Proceedings of the ACM Symposium on Field-
Programmable Gate Arrays, 2003.

[20] Y. Xu, M.A.S. Kalid. QPF: Efficient quadratic placement for FPGAs. Proceedings of
the International Conference on Field-Programmable Logic and Applications, 2005.

This page intentionally left blank

P A R T IV

APPLICATION DEVELOPMENT

Creating an efficient FPGA-based computation is similar to creating any
other hardware. A designer carefully optimizes his or her computation to
the needs of the underlying technology, exploiting the parallelism avail-
able while meeting resource and performance constraints. These designs
are typically written in a hardware description language (HDL), such as
Verilog, and CAD tools are then used to create the final implementation.

Field-programmable gate arrays (FPGAs) do have unique constraints
and opportunities that must be understood in order for this technology to
be employed most effectively. The resource mix is fixed, and the devices
are never quite fast enough or have high enough capacity for what we
want to do. However, because the chips are reprogrammable we can
change the system in response to bugs or functionality upgrades, or even
change the computation as it executes.

Because of the unique restrictions and opportunities inherent in
FPGAs, a set of approaches to application development have proven criti-
cal to exploiting these devices to the fullest. Many of them are covered in
the chapters that follow. Although not every FPGA-based application will
use each of the approaches, a true FPGA expert will make them all part
of his or her repertoire.

Some of the most challenging questions in the design process come
at the very beginning of a new project: Are FPGAs a good match for the
application? If so, what problems must be considered and overcome? Will
runtime reconfiguration be part of the solution? Will fixed- or floating-
point computation be used? Chapter 21 focuses on this level of design,
covering the important issues that arise when we first consider an appli-
cation and the problems that must be avoided or solved. It also offers a
quick overview of application development. Chapters 22 through 26 delve
into individual concerns in more detail.

FPGAs are unique in their potential to be more efficient than even
ASICs for some types of problems: Because the circuit design is com-
pletely programmable, we can create a custom circuit not just for a
given problem but for a specific problem instance. Imagine, for exam-
ple, that we are creating an engine for solving Boolean equations (e.g.,
a SAT solver, discussed in Chapter 29 in Part V). In an ASIC design, we

436 Part IV � Application Development

would create a generic engine capable of handling any possible Boolean
equation because each use of the chip would be for a different equation.
In an FPGA-based system, the equation can be folded into the circuit
mapping itself, creating a custom FPGA mapping optimized to solving
that Boolean equation and no other. As long as there is a CPU available
to dynamically create a new FPGA bitstream each time a new Boolean
equation must be solved, a much more aggressively optimized design can
be created. However, because this means that the time to create the new
mapping is part of system execution, fast mapping algorithms are often
the key (Chapter 20). This concept of instance-specific circuits is covered
in Chapter 22.

In most cases, the time to create a completely new mapping in response
to a specific problem instance is too long. Indeed, if it takes longer to cre-
ate the custom circuit than for a generic circuit to solve the problem,
the generic circuit is the better choice. However, more restricted versions
of this style of optimization are still valuable. Consider a simple FIR fil-
ter, which involves multiplication of an incoming datastream with a set
of constant coefficients. We could use a completely generic multiplier to
handle the constant * variable computation. However, the bits of the con-
stant are known in advance, so many parts of this multiplication can be
simplified out. Multipliers, for example, generally compute a set of par-
tial products—the result of multiplying one input with a single bit of the
other input. These partial products are then added together. If the con-
stant coefficient provided that single bit for a partial product, we can
know at mapping creation time whether that partial product will be 0 or
equal to the variable input—no hardware is necessary to create it. Also, in
cases where the partial product is a 0, we no longer need to add it into the
final result. In general, the use of constant inputs to a computation can
significantly improve most metrics in FPGA mapping quality. These tech-
niques, called constant propagation and partial evaluation, are covered in
Chapter 22.

Number formats in FPGAs are another significant concern. For
microprocessor-based systems we are used to treating everything as a
64-bit integer or an IEEE-format floating-point value. Because the under-
lying hardware is hardcoded to efficiently support these specific number
formats, any other format is unlikely to be useful. However, in an FPGA
we custom create the datapath. Thus, using a 64-bit adder on values that
are at most 18 bits in length is wasteful because each bit position con-
sumes one or more lookup tables (LUTs) in the device.

For this reason, an FPGA designer will carefully consider the required
wordlength of the numbers in the system, hoping to shave off some bits
of precision and thus reduce the hardware requirements of the design.

Application Development 437

Fractional values, such as π or fractions of a second, are more
problematic. In many cases, we can use a fixed-point format. We might
use numbers in the range of 0. . . 31 to represent the values from 0 to 31

32
in steps of 1

32 by just remembering that the number is actually scaled by
a factor of 32. Techniques for addressing each of the concerns just men-
tioned are treated in Chapter 23.

Sometimes these optimizations simply are not possible, particularly for
signals that require a high dynamic range (i.e., they must represent both
very large and very small values simultaneously), so we need to use a
floating-point format. This means that each operation will consume sig-
nificantly more resources than its integer or fixed-point alternatives will.
Chapter 31 in Part V covers floating-point operations on FPGAs in detail.

Once the number format is decided, it is important to determine how
best to perform the actual computation. For many applications, particu-
larly those from signal processing, the computation will involve a large
number of constant coefficient multiplications and subsequent addition
operations, such as in finite impulse response (FIR) filters. While these
can be carried out in the normal, parallel adders and multipliers from
standard hardware design, the LUT-based logic of an FPGA allows an
even more efficient implementation. By converting to a bit–serial dataflow
and storing the appropriate combination of constants into the LUTs in the
FPGA, the multiply–accumulate operation can be compressed to a small
table lookup and an addition. This technique, called distributed arith-
metic, is covered in Chapter 24. It is capable of providing very efficient
FPGA-based implementations of important classes of digital signal pro-
cessing (DSP) and similar operations.

Complex mathematical operations such as sine, cosine, division, and
square root, though less common than multiply–add, are still important
in many applications. In some cases they can be handled by table lookup,
with a table of precomputed results stored in memories inside the FPGA
or in attached chips. However, as the size of the operand(s) for these
functions grows, the size of the memory explodes, limiting this tech-
nique’s effectiveness. A particularly efficient alternative in FPGA logic is
the CORDIC algorithm. By the careful creation of an iterative circuit,
FPGAs can efficiently compute many of these complex functions. The full
details of the CORDIC algorithm, and its implementation in FPGAs, are
covered in Chapter 25.

A final concern is the coupling of both FPGAs and central process-
ing units (CPUs). In early systems, FPGAs were often deployed together
with microprocessors or microcontrollers, either by placing an FPGA
card in a host PC or by placing both resources on a single circuit board.
With modern FPGAs, which can contain complete microprocessors

438 Part IV � Application Development

(either by mapping their logic into LUTs or embedding a complete micro-
processor into the chip’s silicon layout), the coupling of CPUs and FPGAs
is even more attractive. The key driver is the relative advantages of each
technology. FPGAs can provide very high performance for streaming
applications with a lot of data parallelism—if we have to apply the same
repetitive transformation to a large amount of data, an FPGA’s perfor-
mance is generally very high. However, for more sequential operations
FPGAs are a poor choice. Sometimes long sequences of operations, with
little or no opportunity for parallelism, come up in the control of the over-
all system. Also, exceptional cases do occur and must be handled—for
example, the failure of a component, using denormal numbers in float-
ing point, or interfacing to command-based peripherals. In each case a
CPU is a much better choice for those portions of a computation. As a
result, for many computations the best answer is to use the FPGA for the
data-parallel kernels and a CPU for all the other operations. This process
of segmenting a complete computation into software/CPU portions and
hardware/FPGA portions is the focus of Chapter 26.

C H A P T E R 21

IMPLEMENTING APPLICATIONS
WITH FPGAS

Brad L. Hutchings, Brent E. Nelson
Department of Electrical and Computer Engineering
Brigham Young University

Developers can choose various devices when implementing electronic systems:
field-programmable gate arrays (FPGAs), microprocessors, and other standard
products such as ASSPs, and custom chips or application-specific integrated
circuits (ASICs). This chapter discusses how FPGAs compare to other digital
devices, outlines the considerations that will help designers to determine when
FPGAs are appropriate for a specific application, and presents implementation
strategies that exploit features specific to FPGAs.

The chapter is divided into four major sections. Section 21.1 discusses the
strengths and weaknesses of FPGAs, relative to other available devices. Section 21.2
suggests when FPGA devices are suitable choices for specific applications/
algorithms, based upon their I/O and computation requirements. Section 21.3
discusses general implementation strategies appropriate for FPGA devices. Then
Section 21.4 discusses FPGA-specific arithmetic design techniques.

21.1 STRENGTHS AND WEAKNESSES OF FPGAs

Developers can choose from three general classes of devices when implement-
ing an algorithm or application: microprocessor, FPGA, or ASIC (for simplicity,
ASSPs are not considered here). This section provides a brief summary of the
advantages and disadvantages of these devices in terms of time to market, cost,
development time, power consumption, and debug and verification.

21.1.1 Time to Market
Time to market is often touted as one of the FPGA’s biggest strengths, at least
relative to ASICs. With an ASIC, from specification to product requires (at least):
(1) design, (2) verification, (3) fabrication, (4) packaging, and (5) device test. In
addition, software development requires access to the ASIC device (or an emu-
lation of such) before it can be verified and completed. As immediately available
standard devices, FPGAs have already been fabricated, packaged, and tested by
the vendor, thereby eliminating at least four months from time to market.

440 Chapter 21 � Implementing Applications with FPGAs

More difficult to quantify but perhaps more important are: (1) refabrications
(respins) caused by either errors in the design or late changes to the specifica-
tion, due to a change in an evolving standard, for example, and (2) software
development schedules that depend on access to the ASIC. Both of these items
impact product production schedules; a respin can easily consume an additional
four months, and early access to hardware can greatly accelerate software devel-
opment and debug, particularly for the embedded software that communicates
directly with the device.

In light of these considerations, a conservative estimate of the time-to-market
advantage of FPGAs relative to ASICs is 6 to 12 months. Such a reduction is
significant; in consumer electronics markets, many products have only a
24-month lifecycle.

21.1.2 Cost
Per device, FPGAs can be much less expensive than ASICs, especially in lower
volumes, because the nonrecurring costs of FPGA fabrication are borne by many
users. However, because of their reprogrammability, FPGAs require much more
silicon area to implement equivalent functionality. Thus, at the highest volumes
possible in consumer electronics, FPGA device cost will eventually exceed ASIC
device cost.

21.1.3 Development Time
FPGA application development is most often approached as hardware design:
applications are described in Verilog or VHDL, simulated to determine cor-
rectness, and synthesized using commercial logic synthesis tools. Commercial
tools are available that synthesize behavioral programs written in sequential
languages such as C to FPGAs. However, in most cases, much better perfor-
mance and higher densities are achieved using HDLs, because they allow the
user to directly describe and exploit the intrinsic parallelism available in an
application. Exploiting application parallelism is the single best way to achieve
high FPGA performance. However, designing highly parallel implementations of
applications in HDLs requires significantly more development effort than soft-
ware development with conventional sequential programming languages such
as Java or C++.

21.1.4 Power Consumption
FPGAs consume more power than ASICs simply because programmability
requires many more transistors, relative to a customized integrated circuit (IC).
FPGAs may consume more or less power than a microprocessor or digital signal
processor (DSP), depending on the application.

21.1.5 Debug and Verification
FPGAs are developed with standard hardware design techniques and tools.
Coded in VHDL or Verilog and synthesized, FPGA designs can be debugged

21.2 Application Characteristics and Performance 441

in simulators just as typical ASIC designs are. However, many designers verify
their designs directly, by downloading them into an FPGA and testing them in
a system. With this approach the application can be tested at speed (a million
times faster than simulation) in the actual operating environment, where it is
exposed to real-world conditions. If thorough, this testing provides a stronger
form of functional verification than simulation. However, debugging applica-
tions in an FPGA can be difficult because vendor tools provide much less observ-
ability and controllability than, for example, an hardware description language
(HDL) simulator.

21.1.6 FPGAs and Microprocessors
As discussed previously, FPGAs are most often contrasted with custom ASICs.
However, if a programmable solution is dictated because of changing applica-
tion requirements or other factors, it is important to study the application care-
fully to determine if it is possible to meet performance requirements with a
programmable processor—microprocessor or DSP. Code development for pro-
grammable processors requires much less effort than that required for FPGAs
or ASICs, because developing software with sequential languages such as C or
Java is much less taxing than writing parallel descriptions with Verilog or VHDL.
Moreover, the coding and debugging environments for programmable processors
are far richer than their HDL counterparts. Microprocessors are also generally
much less expensive than FPGAs. If the microprocessor can meet application
requirements (performance, power, etc.), it is almost always the best choice.

In general, FPGAs are well suited to applications that demand extremely high
performance and reprogrammability, for interfacing components that communi-
cate with many other devices (so-called glue-logic) and for implementing hard-
ware systems at volumes that make their economies of scale feasible. They are
less well suited to products that will be produced at the highest possible volumes
or for systems that must run at the lowest possible power.

21.2 APPLICATION CHARACTERISTICS AND PERFORMANCE

Application performance is largely determined by the computational and I/O
requirements of the system. Computational requirements dictate how much
hardware parallelism can be used to increase performance. I/O system limi-
tations and requirements determine how much performance can actually be
exploited from the parallel hardware.

21.2.1 Computational Characteristics and Performance
FPGAs can outperform today’s processors only by exploiting massive amounts
of parallelism. Their technology has always suffered from a significant clock-rate
disadvantage; FPGA clock rates have always been slower than CPU clock rates
by about a factor of 10. This remains true today, with clock rates for FPGAs

442 Chapter 21 � Implementing Applications with FPGAs

limited to about 300 to 350 MHz and CPUs operating at approximately 3 GHz.
As a result, FPGAs must perform at least 10 times the computational work
per cycle to perform on par with processors. To be a compelling alternative,
an FPGA-based solution should exceed the performance of a processor-based
solution by 5 to 10 times and hence must actually perform 50 to 100 times
the computational work per clock cycle. This kind of performance is feasible
only if the target application exhibits a corresponding amount of exploitable
parallelism.

The guideline of 5 to 10 times is suggested for two main reasons. First of all,
prior to actual implementation, it is difficult or impossible to foresee the impact
of various system and I/O issues on eventual performance. In our experience,
5 times can quickly become 2 times or less as various system and algorithmic
issues arise during implementation. Second, application development for FPGAs
is much more difficult than conventional software development. For that rea-
son, the additional development effort must be carefully weighed against the
potential performance advantages. A guideline of 5 to 10 times provides some
insurance that any FPGA-specific performance advantages will not completely
vanish during the implementation phase.

Ultimately, the intrinsic characteristics of the application place an upper
bound on FPGA performance. They determine how much raw parallelism exists,
how exploitable it is, and how fast the clock can operate. A review of the liter-
ature [3–6, 11, 16, 19–21, 23, 26, 28] shows that the application characteristics
that have the most impact on application performance are: data parallelism,
amenability to pipelining, data element size and arithmetic complexity, and sim-
ple control requirements.

Data parallelism
Large datasets with few or no data dependencies are ideal for FPGA imple-
mentation for two reasons: (1) They enable high performance because many
computations can occur concurrently, and (2) they allow operations to be exten-
sively rescheduled. As previously mentioned, concurrency is extremely impor-
tant because FPGA applications must be able to achieve 50 to 100 times the
operations per clock cycle of a microprocessor to be competitive. The ability
to reschedule computations is also important because it makes it feasible to
tailor the circuit design to FPGA hardware and achieve higher performance. For
example, computations can be scheduled to maximize data reuse to increase
performance and reduce memory bandwidth requirements. Image-processing
algorithms with their attendant data parallelism have been among the highest-
performing algorithms mapped to FPGA devices.

Data element size and arithmetic complexity
Data element size and arithmetic complexity are important because they
strongly influence circuit size and speed. For applications with large amounts
of exploitable parallelism, the upper limit on this parallelism is often deter-
mined by how many operations can be performed concurrently on the FPGA
device. Larger data elements and greater arithmetic complexity lead to larger

21.2 Application Characteristics and Performance 443

and fewer computational elements and less parallelism. Moreover, larger and
more complex circuits exhibit more delay that slows clock rate and impacts
performance. Not surprisingly, representing data with the fewest possible bits
and performing computation with the simplest operators generally lead to the
highest performance. Designing high-performance applications in FPGAs almost
always involves a precision/performance trade-off.

Pipelining
Pipelining is essential to achieving high performance in FPGAs. Because FPGA
performance is limited primarily by interconnect delay, pipelining (inserting reg-
isters on long circuit pathways) is an essential way to improve clock rate (and
therefore throughput) at the cost of latency. In addition, pipelining allows com-
putational operations to be overlapped in time and leads to more parallelism in
the implementation. Generally speaking, because pipelining is used extensively
throughout FPGA-based designs, applications must be able to tolerate some
latency (via pipelining) to be suitable candidates for FPGA implementation.

Simple control requirements
FPGAs achieve the highest performance if all operations can be statically sched-
uled as much as possible (this is true of many technologies). Put simply, it takes
time to make decisions and decision-making circuitry is often on the critical
path for many algorithms. Replacing runtime decision circuitry with static con-
trol eliminates circuitry and speeds up execution. It makes it much easier to
construct circuit pipelines that are heavily utilized with few or no pipeline bub-
bles. In addition, statically scheduled controllers require less circuitry, making
room for more datapath operators, for example. In general, datasets with few
or no dependencies often have simple control requirements.

21.2.2 I/O and Performance
As mentioned previously, FPGA clock rates are at least one order of magnitude
slower than those of CPUs. Thus, significant parallelism (either data parallelism
or pipelining) is required for an FPGA to be an attractive alternative to a CPU.
However, I/O performance is just as important: Data must be transmitted at
rates that can keep all of the parallel hardware busy.

Algorithms can be loosely grouped into two categories: I/O bound and com-
pute bound [17, 18]. At the simplest level, if the number of I/O operations is
equal to or greater than the number of calculations in the computation, the
computation is said to be I/O bound. To increase its performance requires an
increase in memory bandwidth—doing more computation in parallel will have
no effect. Conversely, if the number of computations is greater than the number
of I/O operations, computational parallelism may provide a speedup.

A simple example of this, provided by Kung [18], is matrix–matrix multi-
plication. The total number of I/Os in the computation, for n-by-n matrices,
is 3n2—each matrix must be read and the product written back. The total
number of computations to be done, however, is n3. Thus, this computation is

444 Chapter 21 � Implementing Applications with FPGAs

compute bound. In contrast, matrix–matrix addition requires 3n2 I/Os and 3n2

calculations and is thus I/O bound. Another way to see this is to note that each
source element read from memory in a matrix–matrix multiplication is used n
times and each result is produced using n multiply–accumulate operations. In
matrix–matrix addition, each element fetched from memory is used only once
and each result is produced from only a single addition.

Carefully coordinating data transfer, I/O movement, and computation order is
crucial to achieving enough parallelism to provide effective speedup. The entire
field of systolic array design is based on the concepts of (1) arranging the I/O
and computation in a compute-bound application so that each data element
fetched from memory is reused multiple times, and (2) keeping many processing
elements busy operating in parallel on that data.

FPGAs offer a wide variety of memory elements that can be used to coor-
dinate I/O and computation: flip-flops to provide single-bit storage (10,000s of
bits); LUT-based RAM to provide many small blocks of randomly distributed
memory (100,000s of bits); and larger RAM or ROM memories (1,000,000s of
bits). Some vendors’ FPGAs contain multiple sizes of random access memories,
and these memories are often easily configured into special-purpose structures
such as dynamic-length shift registers, content-addressable memories (CAMs),
and so forth. In addition to these types of on-chip memory, most FPGA plat-
forms provide off-chip memory as well.

Increasing the I/O bandwidth to memory is usually critical in harnessing the
parallelism inherent in a computation. That is, after some point, further multi-
plying the number of processing elements (PEs) in a design (to increase paral-
lelism) usually requires a corresponding increase in I/O. This additional I/O can
often be provided by the many on-chip memories in a typical modern FPGA. The
work of Graham and Nelson [8] describes a series of early experiments to map
time-delay SONAR beam forming to an FPGA platform where memory band-
width was the limiting factor in design speedup. While the data to be processed
were an infinite stream of large data blocks, many of the other data structures
in the computation were not large (e.g., coefficients, delay values). In this com-
putation, it was not the total amount of memory that limited the speedup but
rather the number of memory ports available. Thus, the use of multiple small
memories in parallel were able to provide the needed bandwidth.

The availability of many small memories in today’s FPGAs further supports
the idea of trading off computation for table lookup. Conventional FPGA fabrics
are based on a foundation of 4-input LUTs; in addition, larger on-chip memories
can be used to support larger lookup structures. Because the memories already
exist on chip, unlike in ASIC technology, using them adds no additional cost to
the system. A common approach in FPGA-based design, therefore, is to evaluate
which parts of the system’s computations might lend themselves to table lookup
and use the available RAM blocks for these lookups.

In summary, the performance of FPGA-based applications is largely deter-
mined by how much exploitable parallelism is available, and by the ability of
the system to provide data to keep the parallel hardware operational.

21.3 General Implementation Strategies for FPGA-based Systems 445

21.3 GENERAL IMPLEMENTATION STRATEGIES
FOR FPGA-BASED SYSTEMS
In contrast with other programmable technologies such as microprocessors
or DSPs, FPGAs provide an extremely rich and complex set of implementa-
tion alternatives. Designers have complete control over arithmetic schemes and
number representation and can, for example, trade precision for performance.
In addition, reprogrammable, SRAM-based FPGAs can be configured any num-
ber of times to provide additional implementation flexibility for further tailoring
the implementation to lower cost and make better use of the device.

There are two general configuration strategies for FPGAs: configure-once,
where the application consists of a single configuration that is downloaded for
the duration of the application’s operation, and runtime reconfiguration (RTR),
where the application consists of multiple configurations that are “swapped” in
and out as the application operates [14].

21.3.1 Configure-once
Configure-once (during operation) is the simplest and most common way to
implement applications with reconfigurable logic. The distinctive feature of
configure-once applications is that they consist of a single system-wide config-
uration. Prior to operation, the FPGAs comprising the reconfigurable resource
are loaded with their respective configurations. Once operation commences, they
remain in this configuration until the application completes. This approach is
very similar to using an ASIC for application acceleration. From the application
point of view, it matters little whether the hardware used to accelerate the appli-
cation is an FPGA or a custom ASIC because it remains constant throughout its
operation.

The configure-once approach can also be applied to reconfigurable applica-
tions to achieve significant acceleration. There are classes of applications, for
example, where the input data varies but remains constant for hours, days, or
longer. In some cases, data-specific optimizations can be applied to the applica-
tion circuitry and lead to dramatic speedup. Of course, when the data changes,
the circuit-specific optimizations need to be reapplied and the bitstream regen-
erated. Applications of this sort consist of two elements: (1) the FPGA and
system hardware, and (2) an application-specific compiler that regenerates the
bitstream whenever the application-specific data changes. This approach has
been used, for example, to accelerate SNORT, a popular packet filter used to
improve network security [13]. SNORT data consists of regular expressions that
detect malicious packets by their content. It is relatively static, and new regular
expressions are occasionally added as new attacks are detected. The application-
specific compiler translates these regular expressions into FPGA hardware that
matches packets many times faster than software SNORT. When new regular
expressions are added to the SNORT database, the compiler is rerun and a new
configuration is created and downloaded to the FPGA.

446 Chapter 21 � Implementing Applications with FPGAs

21.3.2 Runtime Reconfiguration
Whereas configure-once applications statically allocate logic for the duration of
an application, RTR applications use a dynamic allocation scheme that
re-allocates hardware at runtime. Each application consists of multiple con-
figurations per FPGA, with each one implementing some fraction of it. Whereas
a configure-once application configures the FPGA once before execution, an RTR
application typically reconfigures it many times during the normal operation.

There are two basic approaches that can be used to implement RTR appli-
cations: global and local (sometimes referred to as partial configuration in the
literature). Both techniques use multiple configurations for a single application,
and both reconfigure the FPGA during application execution. The principal dif-
ference between the two is the way the dynamic hardware is allocated.

Global RTR
Global RTR allocates all (FPGA) hardware resources in each configuration step.
More specifically, global RTR applications are divided into distinct temporal
phases, with each phase implemented as a single system-wide configuration that
occupies all system FPGA resources. At runtime, the application steps through
each phase by loading all of the system FPGAs with the appropriate configura-
tion data associated with a given phase.

Local RTR
Local RTR takes an even more flexible approach to reconfiguration than does
global RTR. As the name implies, these applications locally (or selectively) recon-
figure subsets of the logic as they execute. Local RTR applications may configure
any percentage of the reconfigurable resources at any time, individual FPGAs
may be configured, or even single FPGA devices may themselves be partially
reconfigured on demand. This flexibility allows hardware resources to be tai-
lored to the runtime profile of the application with finer granularity than that
possible with global RTR. Whereas global RTR approaches implement the execu-
tion process by loading relatively large, global application partitions, local RTR
applications need load only the necessary functionality at each point in time.
This can reduce the amount of time spent downloading configurations and can
lead to a more efficient runtime hardware allocation.

The organization of local RTR applications is based more on a functional
division of labor than the phased partitioning used by global RTR applications.
Typically, local RTR applications are implemented by functionally partitioning
an application into a set of fine-grained operations. These operations need not
be temporally exclusive—many of them may be active at one time. This is in
direct contrast to global RTR, where only one configuration (per FPGA) may
be active at any given time. Still, with local RTR it is important to organize
the operations such that idle circuitry is eliminated or greatly reduced. Each
operation is implemented as a distinct circuit module, and these circuit modules
are then downloaded to the FPGAs as necessary during operation. Note that,
unlike global RTR, several of these operations may be loaded simultaneously,
and each may consume any portion of the system FPGA resources.

21.3 General Implementation Strategies for FPGA-based Systems 447

RTR applications
Runtime Reconfigured Artificial Neural Network (RRANN) is an early example
of a global RTR application [7]. RRANN divided the back-propagation algorithm
(used to train neural networks) into three temporally exclusive configurations
that were loaded into the FPGA in rapid succession during operation. It demon-
strated a 500 percent increase in density by eliminating idle circuitry in individ-
ual algorithm phases.

RRANN was followed up with RRANN-2 [9], an application using local RTR.
Like RRANN, the algorithm was still divided into three distinct phases. However,
unlike the earlier version, the phases were carefully designed so that they shared
common circuitry, which was placed and routed into identical physical locations
for each phase. Initially, only the first configuration was loaded; thereafter, the
common circuitry remained resident and only circuit differences were loaded
during operation. This reduced configuration overhead by 25 percent over the
global RTR approach.

The Dynamic Instruction Set Computer (DISC) [29] used local RTR to create
a sequential control processor with a very small fixed core that remained resi-
dent at all times. This resident core was augmented by circuit modules that were
dynamically loaded as required by the application. DISC was used to implement
an image-processing application that consisted of various filtering operations. At
runtime, the circuit modules were loaded as necessary. Although the application
used all of the filtering circuit modules, it did not require all of them to be loaded
simultaneously. Thus, DISC loaded circuit modules on demand as required. Only
a few active circuit modules were ever resident at any time, allowing the appli-
cation to fit in a much smaller device than possible with global RTR.

21.3.3 Summary of Implementation Issues
Of the two general implementation techniques, configure-once is the simplest
and is best supported by commercially available tool flows. This is not surpris-
ing, as all FPGA CAD tools are derivations of conventional ASIC CAD flows.
While the two RTR implementation approaches (local and global) can provide
significant performance and capacity advantages, they are much more challeng-
ing to employ, primarily because of a lack of specific tool support.

The designer’s primary task when implementing global RTR applications is
to temporally divide the application into roughly equal-size partitions to effi-
ciently use reconfigurable resources. This is largely a manual process—although
the academic community has produced some partitioning tools, no commercial
offerings are currently available. The main disadvantage of global RTR is the
need for equal-size partitions. If it is not possible to evenly partition the appli-
cation, inefficient use of FPGA resources will result.

The main advantage of local RTR over global RTR is that it uses fine-grained
functional operators that may make more efficient use of FPGA resources.
This is important for applications that are not easily divided into equal-size
temporally exclusive circuit partitions. However, partitioning a local RTR design
may require an inordinate amount of designer effort. For example, unlike global

448 Chapter 21 � Implementing Applications with FPGAs

RTR, where circuit interfaces typically remain fixed between configurations,
local RTR allows these interfaces to change with each configuration. When
circuit configurations become small enough for multiple configurations to fit
into a single device, the designer needs to ensure that all configurations will
interface correctly one with another. Moreover, the designer may have to ensure
not only structural compliance but physical compliance as well. That is, when
the designer creates circuit configurations that do not occupy an entire FPGA,
he or she will have to ensure that the physical footprint of each is compatible
with that of others that may be loaded concurrently.

21.4 IMPLEMENTING ARITHMETIC IN FPGAs

Almost since their invention, FPGAs have employed dedicated circuitry to
accelerate arithmetic computation. In earlier devices, dedicated circuitry sped
up the propagation of carry signals for ripple-carry, full-adder blocks. Later
devices added dedicated multipliers, DSP function blocks, and more complex
fixed-function circuitry. The presence of such dedicated circuitry can dramati-
cally improve arithmetic performance, but also restricts designers to a very small
subset of choices when implementing arithmetic.

Well-known approaches such as carry-look-ahead, carry-save, signed-digit,
and so on, generally do not apply to FPGAs. Though these techniques are com-
monly used to create very high-performance arithmetic blocks in custom ICs,
they are not competitive when applied to FPGAs simply because they cannot
access the faster, dedicated circuitry and must be constructed using slower,
general-purpose user logic. Instead, FPGA designers accelerate arithmetic in
one of two ways with FPGAs: (1) using dedicated blocks if they fit the needs of
the application, and (2) avoiding the computation entirely, if possible. Design-
ers apply the second option by, for example, replacing full-blown floating-point
computation with simpler, though not equivalent, fixed-point, or block floating-
point, computations. In some cases, they can eliminate multiplication entirely
with constant propagation. Of course, the feasibility of replacing slower, com-
plex functions with simpler, faster ones is application dependent.

21.4.1 Fixed-point Number Representation and Arithmetic
A fixed-point number representation is simply an integer representation with
an implied binary point, usually in 2’s complement format to enable the rep-
resentation of both positive and negative values. A common way of describing
the structure of a fixed-point number is to use a tuple: n, m, where n is the
number of bits to the left of the binary point and m is the number of bits to
the right. A 16.0 format would thus be a standard 16-bit integer; a 3.2 format
fixed-point number would have a total of 5 bits with 3 to the left of the implied
binary point and 2 to the right. A range of numbers from +1 to −1A is common
in digital signal-processing applications. Such a representation might be of the

21.4 Implementing Arithmetic in FPGAs 449

form 1.9, where the largest number is 0.111111111 = 0.99810 and the smallest
is 1.000000000 = −110. As can be seen, fixed-point arithmetic exactly follows
the rules learned in grade school, where lining up the implied binary point is
required for performing addition or subtraction.

When designing with fixed-point values, one must keep track of the number
format on each wire; such bookkeeping is one of the design costs associated
with fixed-point design. At any point in a computation, either truncation or
rounding can be used to reduce the number of bits to the right of the binary
point, the effect being to simply reduce the precision with which the number is
represented.

21.4.2 Floating-point Arithmetic
Floating-point arithmetic overcomes many of the challenges of fixed-point arith-
metic but at increased circuit cost and possibly reduced precision. The most
common format for a floating-point number is of the form seeeeeffffff, where s
is a sign bit, eeeee is an exponent, and ffffff is the mantissa. In the IEEE stan-
dard for single-precision floating point, the number of exponent bits is 8 and
the number of mantissa bits is 23, but nonstandard sizes and formats have also
been used in FPGA work [2, 24].

IEEE reserves various combinations of exponent and mantissa to represent
special values: zero, not a number (NAN), infinity (+8 and −8), and so on. It sup-
ports denormalized numbers (no leading implied 1 in the mantissa) and flags
them using a special exponent value. Finally, the IEEE specification describes
four rounding modes. Because supporting all special case number represen-
tations and rounding modes in hardware can be very expensive, FPGA-based
floating-point support often omits some of them in the interest of reducing com-
plexity and increasing performance.

For a given number of bits, floating point provides extended range to a compu-
tation at the expense of accuracy. An IEEE single-precision floating-point num-
ber allocates 23 bits to the mantissa, giving an effective mantissa of only 24 bits
when the implied 1 is considered. The advantage of floating point is that its
exponent allows for the representation of numbers across a broad range (IEEE
normalized single-precision values range from ≈±3×1038 to ≈±1×10−38). Con-
versely, while a 32-bit fixed-point representation (1.31 format) has a range of
only −1 to ≈+1, it can represent some values within that range much more accu-
rately than a floating-point format can—for example, numbers close to +1 such
as 0.11111111111111111111111111111111. However, for numbers very close to
+0, the fixed-point representation would have many leading zeroes, and thus
would have less precision than the competing floating-point representation.

An important characteristic of floating point is its auto-scaling behavior.
After every floating-point operation, the result is normalized and the exponent
adjusted accordingly. No work on the part of the designer is required in this
respect (although significant hardware resources are used). Thus, it is useful in
cases where the range of intermediate values cannot be bounded by the designer
and therefore where fixed point is unsuitable.

450 Chapter 21 � Implementing Applications with FPGAs

The use of floating point in FPGA-based design has been the topic of much
research over the past decade. Early papers, such as Ligon and colleagues [15]
and Shirazi et al. [24], focused on the cost of floating point and demonstrated that
small floating-point formats as well as single-precision formats could be eventu-
ally implemented using FPGA technology. Later work, such as that by Bellows and
Hutchings [1] and Roesler and Nelson [22], demonstrated novel ways of leverag-
ing FPGA-specific features to more efficiently implement floating-point modules.
Finally, Underwood [27] argued that the capabilities of FPGA-based platforms for
performing floating point would eventually surpass those of standard computing
systems.

All of the research just mentioned contains size and performance estimates
for floating-point modules on FPGAs at the time they were published. Clever
design techniques and growing FPGA densities and clock rates continually com-
bine to produce smaller, faster floating-point circuits on FPGAs. At the time
of this writing, floating-point module libraries are available from a number of
sources, both commercial and academic.

21.4.3 Block Floating Point
Block floating point (BFP) is an alternative to fixed-point and floating-point
arithmetic that allows entire blocks of data to share a single exponent. Fixed-
point arithmetic is then performed on a block of data with periodic rescaling of
its data values. A typical use of block floating point is as follows:

1. The largest value in a block of data is located, a corresponding
exponent is chosen, and that value’s fractional part is normalized to
that exponent.

2. The mantissas of all other values in the block are adjusted to use the
same exponent as that largest value.

3. The exponent is dropped and fixed-point arithmetic proceeds on the
resulting values in the data block.

4. As the computation proceeds, renormalization of the entire block of
data occurs—after every individual computation, only when a value
overflows, or after a succession of computations.

The key is that BFP allows for growth in the range of values in the data block
while retaining the low cost of fixed-point computations. Block floating point
has found extensive use in fast Fourier transform (FFT) computations where
an input block (such as from an A/D converter) may have a limited range of
values, the data is processed in stages, and stage boundaries provide natural
renormalization locations.

21.4.4 Constant Folding and Data-oriented Specialization
As mentioned Section 21.3.2, when the data for a computation changes, an
FPGA can be readily reconfigured to take advantage of that change. As a simple
example of data folding, consider the operation: a =?b, where a and b are 4-bit

21.4 Implementing Arithmetic in FPGAs 451

(a)

a0

b0

a1

b1

a2

b2

a3

b3

a = ? b

(b)

a0

a1

a2

a3

a = ? 1011

FIGURE 21.1 � Two comparator implementations: (a) with and (b) without constant folding.

numbers. Figure 21.1 shows two implementations of a comparator. On the left
(a) is a conventional comparator; on the right (b) is a comparator that may be
used when b is known (b = 1011). Implementation (a) requires three 4-LUTs to
implement while implementation (b) requires just one. Such logic-level constant
folding is usually performed by synthesis tools.

A more complex example is given by Wirthlin [30], who proposed a method
for creating constant coefficient multipliers. When one constant to a multiplier
was known, a custom multiplier consuming far fewer resources than a gen-
eral multiplier could usually be created. Wirthlin’s manipulations [30], going
far beyond what logic optimization performed, created a custom structure for a
given multiplier instance based on specific characteristics of the constant.

Hemmert et al. [10] offer an even more complex example in which a pipeline
of image morphology processing stages was created, each of which could per-
form one image morphology step (e.g., one iteration in an erosion operation).
The LUT contents in each pipeline stage controlled the stage’s operation; thus,
reconfiguring a stage required modifying only LUT programming. A compiler
was then created to convert programs, written in a special image morphology
language, into the data required to customize each pipeline stage’s operation.

When a new image morphology program was compiled, a new bitstream for
the FPGA could be created in a second or two (by directly modifying the original
bitstream) and reconfigured onto the platform. This provided a way to create a
custom computing solution on a per-program basis with turnarounds on the
order of a few seconds. In each case, the original morphology program that was
compiled provided the constant data that was folded into the design.

Additional examples in the literature show the power of constant folding.
However, its use typically requires specialized CAD support. Slade and Nelson
[25] argue that a fundamentally different approach to CAD for FPGAs is the
solution to providing generalized support for such data-specific specialization.
They advocate the use of JHDL [1, 12] to provide deployment time support for
data-specific modifications to an operating FPGA-based system.

In summary, FPGAs provide architectural features that can accelerate sim-
ple arithmetic operations such as fixed-point addition and multiplication.

452 Chapter 21 � Implementing Applications with FPGAs

Floating-point operations can be accelerated using block floating point or by
reducing the number of bits to represent floating-point values. Finally, constants
can be propagated into arithmetic circuits to reduce circuit area and accelerate
arithmetic performance.

21.5 SUMMARY

FPGAs provide a flexible, high-performance, and reprogrammable means for
implementing a variety of electronic applications. Because of their repro-
grammability, they are well suited to applications that require some form of
direct reprogrammability, and to situations where reprogrammability can be
used indirectly to increase reuse and thereby reduce device cost or count. FPGAs
achieve the highest performance when the application can be implemented as
many parallel hardware units operating in parallel, and where the aggregate I/O
requirements for these parallel units can be reasonably met by the overall sys-
tem. Most FPGA applications are described using HDLs because HDL tools and
synthesis software are mature and well developed, and because, for now, they
provide the best means for describing applications in a highly parallel manner.

Once FPGAs are determined to be a suitable choice, there are several ways
to tailor the system design to exploit their reprogrammability by reconfiguring
them at runtime or by compiling specific, temporary application-specific data
into the FPGA circuitry. Performance can be further enhanced by crafting arith-
metic circuitry to work around FPGA limitations and to exploit the FPGA’s spe-
cial arithmetic features. Finally, FPGAs provide additional debug and verification
methods that are not available in ASICs and that enable debug and verification
to occur in a system and at speed.

In summary, FPGAs combine the advantages and disadvantages of micropro-
cessors and ASICs. On the positive side, they can provide high performance that
is achievable only with custom hardware, they are reprogrammable, and they
can be purchased in volume as a fully tested, standard product. On the neg-
ative side, they remain largely inaccessible to the software community; more-
over, high-performance application development requires hardware design and
the use of standard synthesis tools and Verilog or VHDL.

References
[1] P. Bellows, B. L. Hutchings. JHDL—An HDL for reconfigurable systems. Proceed-

ings of IEEE Workshop on FPGAs for Custom Computing Machines, April 1998.
[2] B. Catanzaro, B. Nelson. Higher radix floating-point representations for FPGA-

based arithmetic. Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, April 2005.

[3] W. Culbertson, R. Amerson, R. Carter, P. Kuekes, G. Snider. Exploring architectures
for volume visualization on the Teramac custom computer. Proceedings of IEEE
Workshop on FPGAs for Custom Computing Machines, April 1996.

21.5 Summary 453

[4] A. Dandalis, V. K. Prasanna. Fast parallel implementation of DFT using config-
urable devices. Field-programmable logic: Smart applications, new paradigms, and
compilers. Proceedings 6th International Workshop on Field-Programmable Logic and
Applications, Springer-Verlag, 1997.

[5] C. H. Dick, F. Harris. FIR filtering with FPGAs using quadrature sigma-delta mod-
ulation encoding. Field-programmable logic: Smart applications, new paradigms,
and compilers. Proceedings 6th International Workshop on Field-Programmable Logic
and Applications, Springer-Verlag 1996.

[6] C. Dick. Computing the discrete Fourier transform on FPGA-based systolic arrays.
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, February
1996.

[7] J. G. Eldredge, B. L. Hutchings. Density enhancement of a neural network using
FPGAs and runtime reconfiguration. Proceedings of the IEEE Workshop on FPGAs
for Custom Computing Machines, April 1994.

[8] P. Graham, B. Nelson. FPGA-based sonar processing. ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, February 1998.

[9] J. D. Hadley, B. L. Hutchings. Design methodologies for partially reconfigured
systems. Proceedings of the IEEE Workshop on FPGAs for Custom Computing
Machines, April 1995.

[10] S. Hemmert, B. Hutchings, A. Malvi. An application-specific compiler for high-
speed binary image morphology. Proceedings of the the 9th Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, 2001.

[11] R. Hudson, D. Lehn, P. Athanas. A runtime reconfigurable engine for image inter-
polation. In Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines, IEEE, April 1998.

[12] B. L. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson, M. Rytting.
A CAD suite for high-performance FPGA design. Proceedings of the IEEE Work-
shop on FPGAs for Custom Computing Machines, April 1999.

[13] B. L. Hutchings, R. Franklin, D. Carver. Assisting network intrusion detection with
reconfigurable hardware. Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, IEEE, April 2002.

[14] B. L. Hutchings, M. J. Wirthlin. Implementation approaches for reconfigurable
logic applications. Field-Programmable Logic and Applications, August 1995.

[15] W. B. Ligon III, S. McMillan, G. Monn, K. Schoonover, F. Stivers, K. D. Underwood.
A re-evaluation of the practicality of floating-point operations on FPGAs. Proc-
eedings of the IEEE Symposium on FPGAs for Custom Computing Machines, 1998.

[16] W. E. King, T. H. Drayer, R. W. Conners, P. Araman. Using MORPH in an industrial
machine vision system. Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines, April 1996.

[17] H. T. Kung. Why Systolic Architectures? IEEE Computer 15(1), 1982.
[18] S. Y. Kung. VLSI Array Processors, Prentice-Hall, 1988.
[19] T. Moeller, D. R. Martinez. Field-programmable gate array based radar front-end

digital signal processing. Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines, April 1999.

[20] G. Panneerselvam, P. J. W. Graumann, L. E. Turner. Implementation of fast Fourier
transforms and discrete cosine transforms in FPGAs. Fifth International Workshop
on Field-Programmable Logic and Applications, September 1995.

[21] R. J. Petersen. An Assessment of the Suitability of Reconfigurable Systems for Digital
Signal Processing, Master’s thesis, Brigham Young University, 1995.

454 Chapter 21 � Implementing Applications with FPGAs

[22] E. Roesler, B. Nelson. Novel optimizations for hardware floating-point units in
a modern FPGA architecture. Proceedings of the 12th International Workshop on
Field-Programmable Logic and Applications, August 2002.

[23] N. Shirazi, P. M. Athanas, A. L. Abbott. Implementation of a 2D fast Fourier
transform on an FPGA-based custom computing machine. Fifth International
Workshop on Field-Programmable Logic and Applications, September 1995.

[24] N. Shirazi, A. Walters, P. Athanas. Quantitative analysis of floating point arithmetic
on FPGA-based custom computing machines. Proceedings of the IEEE Workshop
on FPGAs for Custom Computing Machines, April 1995.

[25] A. Slade, B. Nelson. Reconfigurable computing application frameworks. Proceed-
ings of the IEEE Symposium on Field-Programmable Custom Computing Machines,
April 2003.

[26] L. E. Turner, P. J. W. Graumann, S. G. Gibb. Bit-serial FIR filters with CSD coef-
ficients for FPGAs. Fifth International Workshop on Field-Programmable Logic and
Applications, September 1995.

[27] K. Underwood. FPGAs vs. CPUs: Trends in peak floating-point performance. Proceed-
ings of the ACM/SIGDA 12th International Symposium on Field-Programmable Gate
Arrays, 2004.

[28] J. E. Vuillemin. On computing power. Programming languages and system archi-
tectures. Lecture Notes in Computer Science, vol. 781, Springer-Verlag, 1994.

[29] M. J. Wirthlin, B. L. Hutchings (eds). A dynamic instruction set computer.
Proceedings of the IEEE Workshop on FPGAs for Custom Computing Machines,
April 1995.

[30] M. J. Wirthlin. Constant coefficient multiplication using look-up tables. Journal of
VLSI Signal Processing 36, 2004.

C H A P T E R 22

INSTANCE-SPECIFIC DESIGN

Oliver Pell, Wayne Luk
Department of Computing
Imperial College, London

This chapter covers instance-specific design, an optimization technique involving
effective exploitation of information specific to an instance of a generic design
description. Here we introduce different types of instance-specific designs with
examples. We then describe partial evaluation, a systematic method for produ-
cing instance-specific designs that can be automated. Our treatment covers the
application of partial evaluation to hardware design in general, and to field-
programmable gate arrays (FPGAs) in particular.

22.1 INSTANCE-SPECIFIC DESIGN

FPGAs are an effective way to implement designs in computationally intensive
datapath-orientated applications such as cryptography, digital signal processing,
and network processing. The main alternative implementation technologies in
these application areas are general-purpose processors, digital signal processors,
and application-specific integrated circuits (ASICs).

ASICs are integrated circuits designed to implement a single application
directly in fixed hardware. Because they are specialized to a single application,
they can be very efficient, with reduced resource usage and power consump-
tion over processor-based software implementations. Reconfigurable logic offers
similar advantages over general-purpose processors. However, the overhead of
providing general-purpose logic and routing resources means that FPGA-based
systems typically provide lower density and performance than ASICs. Still,
reconfigurable logic can provide a level of specialization beyond what is pos-
sible for an ASIC: optimizing circuits not just for a particular problem but for a
particular instance of it. For example, an encryption application can create cus-
tom FPGA mappings every time a new password is given, allowing any password
to be supported yet providing very highly optimized circuitry.

The basic concept of instance-specific design is to optimize a circuit for a
particular computation. This can allow a reduction in area and/or an increase
in processing speed by sacrificing the flexibility of the circuit. It is important
to distinguish between the FPGA itself, which is inherently flexible and can be
reconfigured to suit any application by loading a new bitstream, and the cur-
rent configuration of the chip, which may have a certain level of flexibility in
processing its inputs.

456 Chapter 22 � Instance-specific Design

One common way of achieving instance-specific designs automatically is
constant folding (Section 22.2.3), which involves propagating static input val-
ues through a circuit to eliminate unnecessary logic. Thus, in our encryption
example, an exclusive-or (XOR) gate with one input driven by a password bit
can be replaced with a wire or an inverter because the value of that bit is known
for each specific password.

To produce an instance-specific design, one first needs a means of providing a
particular instance for a given design. In the previous encryption example, if all
the passwords are known at design time, an instance-specific design specialized
for each password can be produced, say by constant propagation followed by the
usual tools such as placement (Chapter 14), routing (Chapter 17), and bitstream
generation (Chapter 19).

At runtime, a processor is often used to control the configuration of the FPGA
by the appropriate bitstream at the right moment to support a particular pass-
word. However, if the passwords are known only at runtime, then the designer
has to decide whether the benefits of having instance-specific designs outweigh
the time to produce them, since, for instance, current place and route tools often
take a long time to complete and their use is usually not recommended at run-
time. Fortunately for some applications, differences between instances are so
small that they can be generated realistically using runtime partial evaluation
(Section 22.2).

The ability to implement specialized designs, while at the same time provid-
ing flexibility by allowing different specialized designs to be loaded onto a device,
can make reconfigurable logic more effective at implementing some applications
than what is possible with ASICs. For other applications, performance improve-
ments from optimizing designs to a particular problem instance can help shift the
price/performance ratio away from ASICs and toward FPGAs. Specializing a Data
Encryption Standard (DES) crypto-processor, for example, can save 60 percent
in area, while replacing general multipliers with constant coefficient versions can
save area and lead to speedups of two to four times. Instance-specific designs can
also consume lower power. Bit-width optimization of digital filters, for example,
has been shown to reduce power consumption by up to 98 percent [2].

Changing an instance-specific design at runtime is generally much slower
than changing the inputs of a general circuit, because a new (or partial) con-
figuration must be loaded. Because this may take many tens or hundreds of
milliseconds, it is important to carefully choose how a design is specialized.

22.1.1 Taxonomy
Types of instance-specific optimizations
We can divide the different approaches to optimizing a design for a particular
problem instance into three main categories. Table 22.1 lists some examples of
the different categories used.

Constant folding Constant folding is the process of eliminating unnecessary
logic that computes functions with some inputs that never change or that

22.1 Instance-specific Design 457

TABLE 22.1 � Examples of the uses of instance-specific designs

Purpose Example use Impact

Constant Optimize logic for static Key-specific DES 60% area reduction
folding inputs

Function Optimize for desired Accuracy-guaranteed bit- 26% area reduction,
adaptation quality of result width optimization [4] 12% latency reduction

Architecture Achieve a specified Custom instruction 72% decrease in
adaptation performance, area, or processors [3] runtime for 3% more

power target area

change only rarely. This logic can be specialized to increase performance and
reduce area. Examples of circuits that can benefit from constant folding will be
seen later, and a more detailed description of the technique can be found in
Section 22.2.3.

Function adaptation Function adaptation is the process of altering a circuit’s
function to achieve a specific quality of result. Typically this involves varying the
number of bits used to represent data values or switching between floating-point
and fixed-point arithmetic functions. It can also involve adding or removing
parts of processing units that affect accuracy—for example, adding or removing
stages from a CORDIC circuit. Word-length optimization can be treated auto-
matically (Chapter 23), modifying a circuit’s area to meet particular accuracy
constraints.

Architecture adaptation Architecture adaptation alters the way in which a cir-
cuit computes a result while keeping the overall function the same. This can
entail introducing additional parallelism to increase speed, serializing existing
parallel processing units to save area, or refining processing capabilities to
exploit some expected characteristics of the input data. Custom instruction
processors (see Figure 22.4 later) are one example of the latter type of archi-
tecture adaptation.

22.1.2 Approaches
Instance-specific circuits can be produced either by specializing a general-purpose
circuit or by starting directly from a “template” that must be instantiated for a
particular problem instance before use, as shown in Figure 22.1. Specialization
has the advantage that it can often be performed automatically, using tech-
niques such as partial evaluation (Section 22.2). The template approach probably
requires the manual design of a template circuit substantially different from the
general-purpose architecture, but it can possibly provide a greater level of opti-
mization than what is possible through specializing a general-purpose circuit. It
can also offer the advantage that the hardware compilation process may need to be

458 Chapter 22 � Instance-specific Design

(a)

Generate
circuit

ASIC

FPGA

Problem

(c)

FPGA

Instance

Adapt to
instanceProblem

(b)

Generate
hardware

Generate
template

FPGA

Instance

Problem

FIGURE 22.1 � General-purpose hardware (a) can be implemented using FPGAs or ASICs. Instance
information (b) can be incorporated at hardware generation to produce a specialized circuit.
“Template” hardware (c) can be generated and then instantiated for particular problem instances.
The reason for the differences between (b) and (c) are that, in (b) the time-consuming process
of hardware compilation must be executed for each instance while in (c) hardware compilation
may only need to be run once, after which the final circuit bitstream can be amended.

executed only once, with instance-specific information being annotated directly
into the bitstream.

In both cases, one or more instance-specific designs will be produced that
can be converted into bitstreams through the FPGA design flow (see chapters
in Part III). The appropriate bitstream can then be used to configure an FPGA,
usually under the control of a general-purpose processor; during the reconfigu-
ration process the FPGA will usually not be able to process data, although some
partially reconfigurable devices can support the reconfiguration of some of its
resources, while some of its other resources stay operational.

22.1 Instance-specific Design 459

22.1.3 Examples of Instance-specific Designs
The benefits of instance-specific design can be illustrated by considering a few
examples of its use. In this section we present three examples of specialization
by constant folding into an existing design, and two examples of architecture
adaptation.

Constant coefficient multipliers
If using standard logic cells, multipliers are relatively expensive to implement
on FPGAs. A standard combinational multiplier ANDs each bit of input B with
all bits of input A (to perform the multiply by 0/1); an adder is then used to
sum together the partial products. When one coefficient of the multiplication
is constant, however, the required area can be reduced dramatically. The AND
functions are unnecessary because multiplying by a fixed 0 or 1 is trivial, and
the adders can be eliminated for bits of B that are 0 (and thus have a partial
product of 0). Constant coefficient multiplication is a useful operation in many
signal-processing applications.

Finite impulse response (FIR) filters contain a set of multiply–add cells that
multiply the value of the input signal across a number of cycles with filter coef-
ficients and then sum these values. The multiplier coefficients are properties of
the filter and do not change with the input data, but only need adjusting when
different filter properties are required. Thus, the generic multipliers in a FIR
filter circuit can often be replaced by smaller constant coefficient multipliers.
(see Figure 22.2).

Another application that requires multipliers with constant coefficients is con-
version from RGB to YUV video signals. This is a matrix multiplication opera-
tion where one matrix is constant, allowing specialized multipliers to be used.

Key-specific crypto-processors
Cryptographic algorithms are often designed for efficient implementation in
both hardware and software. Block ciphers, such as DES and its successor
Advanced Encryption Standard (AES), have regular algorithmic structures con-
sisting of simple operations, such as XOR and bit permutation, that are effi-
ciently implemented in hardware.

The DES algorithm consists of 16 “rounds,” or processing stages, that can
be pipelined for parallel operation. Blocks of 64-bit data are input to the array
along with a 56-bit key and processed through each round, with the same key
required to decrypt the data at the other end of the communication channel.
A single DES round is illustrated in Figure 22.3.

In typical operation it is likely that a crypto-processor is used to process large
blocks of data with the same key—for example, when transferring data between
a single sender and receiver in a network or encrypting a large file to be saved
to disk. It is therefore expected that, in contrast to the data input, the key value
will change very slowly.

The shaded area of Figure 22.3 is key generator circuitry that generates the
round key from the master key and then uses it as an input to a set of 2-input
XOR functions across the data bits.

460 Chapter 22 � Instance-specific Design

(a)

Multiplier Multiplier

Adder

Multiplier

Adder

Multiplier

Adder
Result

Input value

Filter coefficients

(b)

Adder Adder Adder
Result

Input value

Constant
coefficient
multiplier

Constant
coefficient
multiplier

Constant
coefficient
multiplier

Constant
coefficient
multiplier

FIGURE 22.2 � FIR filters utilizing (a) general multipliers with variable filter coefficients and
(b) instance-specific multipliers specialized to filter coefficients.

When the key value is known, the key generation circuitry can be eliminated
and the XOR functions replaced with either wires or inverters [5]. In fact, these
inverters can be merged into the substitution stage, eliminating the inverter logic
as well [11]. Key-specific crypto-processors can exhibit much higher throughput
than general versions, even outperforming ASIC implementations. Area savings
are also significant—a relatively simple specialization of a placed DES descrip-
tion can yield area savings of 60 percent when implemented on a Xilinx Virtex
FPGA [9].

Network intrusion detection
Network Intrusion Detection Systems (NIDS) perform deep packet inspection
on network packets to identify malicious attacks. Normally, these systems are
implemented in software, but on high-speed networks software alone is often
unable to process all traffic at the full data rate.

22.1 Instance-specific Design 461

P
er

m
ut

at
io

n

S
hi

ft
S

hi
ft

P
er

m
ut

at
io

n

S
ub

st
itu

tio
n

P
er

m
ut

at
io

n

Data inputs Data outputs

Key inputs Key outputs

FIGURE 22.3 � A single round of a DES circuit. The shaded area contains key expansion circuitry
that can be eliminated in a key-specific DES circuit, allowing the XOR function to be optimized.

The SNORT open source NDIS (see http://www.snort.org) uses a rule-based
language to detect abnormal network activities. It contains thousands of rules,
more than 80 percent of which contain signatures that must be matched against
packet contents. Eighty percent of the CPU time for SNORT is consumed by this
string-matching task [6]. String matching can be done efficiently in hardware and
in particular can be easily optimized for particular search strings. While network
data might be expected to arrive at high speed, the rule set changes much more
slowly, so string-matching circuitry on FPGAs can be customized to match parti-
cular signatures. Section 22.2.5 illustrates in more detail how an instance-specific
pattern matcher can be constructed. Further information about instance-specific
designs for SAT solving applications can be found in Chapter 29.

Customizable instruction processors
General-purpose instruction processors are very flexible computational devices.
Application-specific instruction processors, in contrast, have been customized
to perform particularly well in a particular application area. This is a form of
architecture adaptation that can improve performance for particular problem
instances while maintaining the flexibility of the overall system.

462 Chapter 22 � Instance-specific Design

Register file

Fetch

Branch forwarding

Custom
execution

units

MemoryALU Write back

FIGURE 22.4 � A simplified architecture of a custom instruction processor. The standard
arithmetic and logic operations are augmented by custom execution units that can accelerate
particular applications.

Figure 22.4 illustrates the architecture of a simple custom instruction pro-
cessor that has standard arithmetic and logic functions implemented by a
standard ALU. These functions can be supported by additional custom exe-
cution units to accelerate particular applications. The automatic identifica-
tion of instructions that can benefit from the custom execution units is a
topic of active research [1]. Further information about partitioning sequential
and parallel programs for software and hardware execution can be found in
Chapter 26.

22.2 PARTIAL EVALUATION

Partial evaluation is a process that automates specialization in software or hard-
ware. In both cases the motivation is the same: to produce a design that runs
faster than the original. In software, partial evaluation can be thought of as a
combination of constant folding, loop unrolling, function inlining, and inter-
procedural analyses; in hardware, constant folding is mainly used as an opti-
mization method.

Partial evaluation is accomplished by detecting fragments of hardware that
depend exclusively on variables with fixed values and then optimizing the hard-
ware logic to reduce its area or even eliminate it totally from the design by
precomputing the result.

22.2 Partial Evaluation 463

22.2.1 Motivation
Partial evaluation can simplify logic, and thus reduce area and increase perfor-
mance. Figure 22.5 illustrates its impact on a 2-input XOR function. When both
inputs are dynamic, the logical function must be implemented; however, when
one input is known, a partial evaluator can simplify the circuit. If one input is
fixed high, the XOR functions as an inverter and so can be replaced by a 1-input
NOT gate; if the input is fixed low, the XOR serves as a wire and the logic can
be completely eliminated.

Constant folding propagates constants through a circuit and can substantially
simplify logic functions. This can both reduce area (by allowing functions to
be implemented using fewer LUTs) and increase performance (by reducing the
number of logic levels between registers).

In this chapter we highlight two related uses of partial evaluation for circuits.
The first, at the beginning of Section 22.2.4, optimizes generic circuit descrip-
tions for improved performance. That is, circuits are described using clear and
easily maintainable but nonoptimal design patterns, which are then automati-
cally optimized during synthesis. The second, in the middle of Section 22.2.4,
specializes general circuits when some inputs are static, such as constant coef-
ficient arithmetic.

(b)

B

B
C

A

C

(c)

B C

B C

0 0

1 1

B C

0 1

1 0

(a)

C

0

1

1

A

0

0

1

1

B

0

1

0

1 0

FIGURE 22.5 � Partial evaluation of an XOR gate. (a) A 2-input XOR function can be special-
ized, when input A is to become static: (b) an inverter when A is true or (c) a wire when
A is false.

464 Chapter 22 � Instance-specific Design

22.2.2 Process of Specialization
Consider a general circuit C producing output R, whose inputs are partitioned
into two sets S and D.

R = C(S,D)

This circuit can be specialized for a particular set of S inputs such that it
computes the same result for all possible inputs D:

R = CS=X(D)

A partial evaluator is an algorithm that, when supplied with values for the set
of inputs S and the circuit C, produces a specialized circuit CS=X.

CS=X = P(C,S,X)

where S is the set of static inputs that are known at compile time, and D is the set
of dynamic inputs. The importance of partial evaluation is that the specialized
circuit computes precisely the same result as the original circuit, though it may
require less hardware to do so.

Relating this framework to the XOR gate example, R = XOR(A,B), with S = {A}
and D = {B}, the two possible simplified functions can be described as

R = XORA=X(B)

for the two possible values of A.

XORA=0 = P(XOR,A,0) = NOT(B)

XORA=1 = P(XOR,A,1) = B

22.2.3 Partial Evaluation in Practice

Constant folding in logical expressions
Partial evaluation of logic is well understood and has been used to simplify
circuit logic for many years. Figure 22.6 gives a simple partial evaluation
function, P(S)[[X]], for optimizing Boolean logic expressions expressed using
not, and, and or connectives. The function is parameterized by a set S of pairs
mapping static variables to their values and a Boolean expression X represented
as a tree.

The function is defined recursively on the structure of Boolean expressions.
Cases (1), (2), and (3) are base conditions, indicating that partial evaluation of
the Boolean constants True and False always has no effect, and partial evaluation
of a variable a returns either the constant value of that variable (if it is contained
within the static inputs) or the variable name if it is not static (i.e., remains
dynamic).

Case (4) defines partial evaluation of a single-input not function. If the subex-
pression evaluates to logical truth or falsity, this is inverted by the conditional

22.2 Partial Evaluation 465

(1) P(S)[[True]] = True

(2) P(S)[[False]] = False

(3) P(S)[[a]] = if a ∈ dom(S) then P(S)[[S(a)]] else a

(4) P(S)[[¬ x]] = Let y = P(S)[[x]]
If y == True then False
Else if y == False then True
Else ¬ y

(5) P(S)[[x & y]] = Let x’ = P(S)[[x]]
Let y’ = P(S)[[y]]
if(x’ == False || y’ == False) then False
Else if x’ == True then y’
Else if y’ == True Then x’
Else x’ & y’

(6) P(S)[[x+y]] = Let x’ = P(S)[[x]]
Let y’ = P(S)[[y]]
If(x’ == True || y’ == True) then True
Else if x’ == False then y’
Else if y’ == False then x’
Else x+y

FIGURE 22.6 � A partial evaluation algorithm for simplifying Boolean logic expressions.

check. Otherwise, the partially evaluated subexpression is returned with the not
operation.

Cases (5) and (6) define partial evaluation of 2-input and and or functions.
The process is the same: Simplify the subexpressions, precompute the function
result if possible, and, if not, return the function with simplified arguments.

As an example, consider the application of this algorithm to the simplification
of the XOR function in Figure 22.5. XOR can be described in terms of basic
Boolean operators as

a xor b = (a&¬b)+ (¬a & b)

Partially evaluating when a is asserted, the function is executed:

(i) P({a → True})[[(a & ¬b)+ (¬a & b)]]

Case (6) for simplifying logical-or is used, and the two subexpressions are
partially evaluated separately:

(ii) P({a → True})[[a&¬b]]

(iii) P({a → True})[[¬a&b]]

Both (ii) and (iii) are partially evaluated by the case for logical-and. For (ii) the
two subexpressions are first evaluated as

(iv) P({a → True})[[a]] = True

(v) P({a → True})[[¬b]] = ¬b

466 Chapter 22 � Instance-specific Design

In (iv), the variable a is within the static inputs S and thus is simplified to
True, while ¬b is unchanged because it does not contain a. The results from
partially evaluating (iii) are similar:

(vi) P({a → True})[[¬a]] = P({a → True})[[¬True]] = False

(vii) P({a → True})[[b]] = b

Equipped with the simplified subexpressions, the expression a & ¬b is simplified
to ¬b and the expression ¬a & b is simplified to False. At the top level this gives
a logical-or: ¬b+False:

(viii) P({a → True})[[¬b+False]] = ¬b

The XOR function reduces to a single inverter; if supplied with {a → False}
the partial evaluation function instead returns just b, indicating the simple wire.
This is consistent with the truth tables in Figure 22.5.

The partial evaluation function just given is quite simple and does not cap-
ture all possible optimizations. For example, the logic function a + ¬a always
evaluates to True, regardless of the value of a; however, this expression will not
be simplified by this function.

Unnecessary logic removal
Another optimization that can be carried out during partial evaluation is
removal of dead logic in a design, which does not affect any output and thus
is unnecessary. This is a very important optimization because it allows generic
hardware blocks computing many functions to be used in designs, with unused
functions pruned during synthesis.

As an algorithmic process, logic removal is quite simple and can be formu-
lated in a number of different ways. One of the simplest is to identify each gate
whose output is unconnected and eliminate it. By recursively applying this rule
we can eliminate acyclic dead logic.

22.2.4 Partial Evaluation of a Multiplier

Optimizing a simple description
Figure 22.7 shows a shift–add circuit designed for a Xilinx architecture to com-
pute the 3-bit multiplication of two 3-bit inputs. This circuit appears semi-
regular, with x and y inputs propagating horizontally and vertically through a
triangular array of processing cells. Each processing cell has common features;
however, it contains slightly different logic depending on its position in the array.

Creating and maintaining a circuit description that contains and correctly
connects the different types of cell is quite complicated. A simpler approach is
to exploit the regularity to describe the circuit as an array of a single type of
cell that is then partially evaluated during synthesis to produce the circuit in
Figure 22.7.

The general cell of the multiplier can be described as shown in Figure 22.8.
This cell implements a multiplication operation for 1 bit of x and 1 bit of y,

22.2 Partial Evaluation 467

Sum0

x2

y0

y1

y2

Sum1

Sum2

x1 x00 0

FIGURE 22.7 � A shift–add multiplier circuit that takes two 3-bit inputs and produces a 3-bit
output.

3-LUT

xorcy
Sumout

qin pin

Mult_and

pout

muxcy

youtyin

Sumin

qout

xin

xout

FIGURE 22.8 � This cell design can be replicated in a grid arrangement to create a multiplier.

producing sum and carry-out bits, and can be arranged in a grid to generate a
multiplication circuit identical in function to that shown in Figure 22.8. These
cells can be implemented densely on Xilinx architectures by using the special-
ized mult_and, xorcy, and muxcy components in each slice.

468 Chapter 22 � Instance-specific Design

Partial evaluation can automatically produce the optimized multiplication
circuitry from the initial regular description. The four components within each
cell each have their own logical formula. In the case of mult_and, xorcy, and
muxcy, no simplification is possible unless we can totally eliminate these func-
tions, because these are fixed resources on the device, compared with the LUT,
which can flexibly implement any 4-input function.

The logic of the standard cell can be represented as

LUTout = (Yin & Xin)xor Qin = (¬ (Yin & Xin) & Qin)+ ((Yin & Xin)&¬Qin)

ANDout = (Yin & Xin)

Pout = (LUTout & Pin)+ (¬ LUTout & ANDout)

SUMout = (¬ LUTout & Pin)+ (LUTout & ¬ Pin)

This logic can be simplified by two operations: removing unconnected logic
and constant folding to optimize the logic that remains. Removal of discon-
nected logic transforms the grid into the triangular array, while constant folding
can be performed by the partial evaluation function introduced in Figure 22.6.

For example, for the cells along the bottom in Figure 22.8, inputs Qin and Pin
are all zero. This allows the LUT contents to be optimized by

LUTout
′ = P({Qin → False, SUMin → False, Pin → False})

[[(¬ (Yin & Xin) & Qin)+ ((Yin & Xin)&¬ Qin)]] = (Yin & Xin)

The function attempts to partially evaluate both branches of the OR expression.
On the left branch, ¬ (Yin & Xin) cannot be further optimized and so is left intact;
however, Qin is known to be false, so the entire left branch must be false and
thus is eliminated. On the right branch, ¬Qin is evaluated to true and eliminated
from the expression, leaving (Yin & Xin) as the simplified function for the LUT
contents.

ANDout cannot be simplified because both Yin and Xin are unknown. Neither
can Pout because, although it can be partially optimized (because Pin is false),
it is a fixed component available on the FPGA that cannot be simplified. Partial
evaluation of SUMout does succeed in eliminating logic:

SUMout
′ = P({Qin → False, SUMin → False, Pin → False})

[[(¬LUTout & Pin)+ (LUTout & ¬Pin)]] = LUTout

The result of this partial evaluation is that the bottom cells of the multiplier
are optimized to remove the unnecessary xorcy component and to simplify the
3-input LUT function into a basic 2-input AND function.

Functional specialization for constant inputs
If some of the input values to the multiplication circuit are known statically, we
can apply constant folding to eliminate further logic. For example, assume that
x1 is static and always zero. Partially evaluating the cell logic under the new
assumption that {Xin → False} we find that the entire cell can be eliminated and
replaced with pure routing. The simplified cell is shown in Figure 22.9.

22.2 Partial Evaluation 469

Because a single bit of the x input is shared with an entire column of the
multiplier, this specialized cell can be used for the full column, replacing all the
logic with routing, as shown in Figure 22.10; this arrangement in turn allows
optimizations to be applied to the second LUT in the final column to eliminate
the XOR function (not shown in the figure so that the routing can be seen).

Sumout

qin
pin

pout

xin

xout youty
in

Sumin

FIGURE 22.9 � The impact of partial evaluation on multiplier cell logic when Xin = False.

y0

y1

y2

x0x1x2 00

Sum0

Sum1

Sum2

FIGURE 22.10 � Multiplier circuit specialized by eliminating the center column when xi is
always zero.

470 Chapter 22 � Instance-specific Design

When an x value is known to be true, partial evaluation can still carry
out some optimizations. However, it does not offer the significant advantages
that result when x is false. The LUT can again be optimized to a 2-input
function and the mult_and component can be eliminated. This is not very
significant, however—the mult_and component is already present on the device,
so no area is saved, and it is utilized in parallel with the (slower) LUT so there
is also no performance gain.

Geometric specialization
High-performance FPGA designs often include layout information to produce
good placements with low routing delays (see Chapter 17). Specialization of
placed designs may lead to nonoptimal results if the placement is not updated
to reflect eliminated logic. Automatic placement is not affected, since partial
evaluation is usually carried out at the synthesis stage prior to placement and
routing. However, when hand-placed designs are specialized, the effect can be to
introduce unnecessary delays by failing to compact components. These gaps can
also prevent effective use of freed logic because it is fragmented among other
components. To ensure a good placement of specialized designs it is necessary to
optimize placement information, compacting the circuit. This can be achieved
in a framework that allows partial evaluation prior to placement position gene-
ration [8] or by describing circuit layouts in a way that adapts when the circuit
is specialized [12].

22.2.5 Partial Evaluation at Runtime
Pattern matching is a relatively simple operation that can be performed effi-
ciently in hardware. It is useful in a range of fields but is of particular interest
in networking for inspecting the contents of data packets.

Figure 22.11 illustrates a simple general pattern matcher made up of a repea-
ting bit-level matcher cell. Each cell contains a pattern and a mask value, which
can be loaded separately from the data to be matched. Input data is streamed
in 1 bit per cycle; if the mask value for a particular bit position is set, the cell
for that position checks the current data value against the bit pattern.

The pattern matcher requires one LUT and three registers for each bit in the
data pattern. However, it is likely that the pattern and mask values will change
much more slowly than the data input, so it is reasonable to investigate the
potential for partial evaluation to optimize this circuit for fixed patterns.

When the pattern and mask are fixed, the registers storing their values can
be eliminated and the logic in the LUTs can be optimized. Figure 22.12 shows
how the pattern matcher can be optimized for a pattern of “10X1” (the third
pattern bit is a “don’t care,” as specified by the mask of “1101”). This circuit
uses fewer registers and three LUTs rather than four. The significance of this
particular way of optimizing is that the pattern matcher’s structure has mostly
been maintained and thus this specialization can be carried out at runtime.

Changes to the mask require routing changes—complex, though far from
impossible at runtime; however, the pattern to be matched can be changed
merely by updating the LUT contents.

22.2 Partial Evaluation 471

4-LUT 4-LUT 4-LUT 4-LUT

1

Data

Load

Pattern

Mask

Match

QD

Q

QD

Q

QD

Q

QD

Q

QD

Q

QD

Q

QD

Q

QD

Q

QD

Q

QD

Q

QD

Q

QD

Q

FIGURE 22.11 � A general bit-level pattern matcher, shown for 4-bit patterns. The pattern matcher circuit is
controlled by a pattern and a mask, which can be loaded by asserting the load signal. If the mask bit is set
for a particular position, the matcher will attempt to detect a match between the pattern bit and the data bit.

2-LUT

1

Data

Match

2-LUT 2-LUT

QD

Q

SET

CLR

QD

Q

SET

CLR

QD

Q

SET

CLR

QD

Q

SET

CLR

FIGURE 22.12 � An instance-specific pattern matcher optimized for a mask of 1101 and pattern of 10X1
requires only three LUTs and four registers.

22.2.6 FPGA-specific Concerns
LUT mapping
Recall the pattern matcher example from the previous section, where we showed
one partial evaluation of the circuit for a particular pattern. In this case partial
evaluation significantly simplified the contents of each LUT, from a 4-input func-
tion to a much simpler 2-input function.

It is important that, in contrast to ASICs, there is often no performance advan-
tage to be gained by reducing the complexity of logic functions in an FPGA
unless the number of LUTs required to implement those functions is reduced.
The propagation delay of a LUT is independent of the function it implements;
thus, there is no gain in reducing a 4-input function to a 2-input function within
the same LUT (although it does allow routing resources to be freed for other
uses).

For runtime specialization, it may be desirable to maintain much of the origi-
nal circuit structure. However, when partial evaluation is carried out at compile
time it should be performed before logic is mapped to LUTs, giving more scope
for improvements in circuit area and performance. Figure 22.13 shows that the

472 Chapter 22 � Instance-specific Design

4-LUT

1

Data

Match

QD

Q

QD

Q

QD

Q

QD

Q

FIGURE 22.13 � The instance-specific pattern matcher from Figure 22.12 can be implemented
using a single 4-LUT rather than three 2-LUTs.

specialized pattern matcher can indeed be implemented using one 4-LUT rather
than three 2-LUTs, with higher performance and lower area requirements than
the version partially evaluated at runtime.

In fact, the static 1-input can also be eliminated from this LUT; however, it
has been left to indicate that this LUT structure can be used as part of a chain
in a larger pattern matcher.

Static resources
As alluded to in the multiplier example, the existence of specific resources on
an FPGA in addition to LUTs, such as carry chain logic, poses a problem for
automatic partial evaluation algorithms. Not only can this logic not be simplified
(for example, the xorcy gate cannot be replaced with an inverter), in some cases
it cannot be eliminated at all because of routing constraints (carry signals must
propagate through muxcy multiplexers, for example, regardless of necessity).

Furthermore, it is often important to maintain use of the dedicated carry
chain, even though significantly simpler logic could perhaps be generated after
partial evaluation, because the carry chain is designed to propagate carry signals
very quickly—and much faster than the general routing fabric.

Verification of runtime specialization
Dynamic specialization at runtime poses additional verification problems over
and above verification of an original design. While a circuit may have been
verified through extensive simulation or formal methods prior to synthesis, when
it is specialized at runtime it is possible for new errors to be introduced.

To avoid this it is necessary to ensure that the algorithms that apply partial
evaluation at runtime have themselves been verified. Formal proof is an appro-
priate methodology for this problem, since it is necessary to check a generic
property of the algorithm applied to all circuits rather than any particular
specialization operation.

22.3 Summary 473

Although formal verification has been applied to partial evaluation algorithms
for specialization of FPGA circuits [7, 14], it remains a relatively unexplored
area.

22.3 SUMMARY

This chapter described instance-specific design, which offers the opportunity to
exploit the reconfigurable nature of FPGAs to improve performance by tailoring
circuits to particular problem instances. It can be broadly categorized into three
techniques: constant folding, which can be applied when some inputs are static;
function adaptation, which alters the function of circuitry to produce a certain
quality of result; and architecture adaptation, in which the circuit architecture
is adapted without affecting its functional behavior.

The level of automation that can be applied varies among these approaches.
Constant folding can often be carried out automatically using partial evalua-
tion techniques. Function adaptation can be performed by varying bit widths
and arithmetic methods in parameterized IP cores. Tools, such as Quartz (for
low-level design) [12] or ASC (for stream architectures) [10], can produce highly
parameterized circuit cores where design parameters can be traded off against
each other to achieve the desired requirements in area, speed, and power con-
sumption. Architecture adaptation, such as adding additional processing units
to instruction processors, is typically much less automated. The designer must
create separate implementations of the different architectures, optimizing each
of them somewhat independently.

References
[1] K. Atasu, R. Dimond, O. Mencer, W. Luk, C. Özturan, G. Dündar. Optimizing

instruction-set extensible processors under data bandwidth constraints. Proceed-
ings of Design, Automation and Test in Europe Conference, 2007.

[2] G. A. Constantinides. Perturbation analysis for word-length optimization. Procee-
dings of the IEEE Symposium on Field-Programmable Custom Computing Machines,
2003.

[3] R. Dimond, O. Mencer, W. Luk. Application-specific customisation of multi-
threaded soft processors. IEE Proceedings on Computers and Digital Techniques,
May 2006.

[4] D. Lee, A. Abdul Gaffar, R.C.C. Cheung, O. Mencer, W. Luk, G. A. Constantinides.
Accuracy guaranteed bit-width optimization. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, October 2006.

[5] J. Leonard, W. Magione-Smith. A case study of partially evaluated hardware
circuits: Key-specific DES. Proceedings of the International Workshop on Field-
Programmable Logic and Applications, 1997.

[6] E. P. Markatos, S. Antonatos, M. Polychronakis, K. G. Anagnostakis. Exclusion-
based signature matching for intrusion detection. Proceedings of IASTED Interna-
tional Conference on Communication and Computer Networks, 2002.

474 Chapter 22 � Instance-specific Design

[7] S. McKeever, W. Luk. Provably-correct hardware compilation tools based on pass
separation techniques. Formal Aspects of Computing, June 2006.

[8] S. McKeever, W. Luk, A. Derbyshire. Towards verifying parametrised hardware
libraries with relative placement information. Proceedings of the 36th IEEE Hawaii
International Conference on System Sciences, 2003.

[9] S. McKeever, W. Luk, A. Derbyshire. Compiling hardware descriptions with rela-
tive placement information for parameterised libraries. Proceedings of International
Conference on Formal Methods in Computer-Aided Design, LNCS 2517, 2002.

[10] O. Mencer. ASC: A stream compiler for computing with FPGAs. IEEE Transactions
on Computer-Aided Design, August 2006.

[11] C. Patterson. High performance DES encryption in Virtex FPGAs using JBits.
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, 2000.

[12] O. Pell, W. Luk. Compiling higher-order polymorphic hardware descriptions into
parametrised VHDL libraries with flexible placement information. Proceedings of
the International Workshop on Field-Programmable Logic and Applications, 2006.

[13] O. Pell, W. Luk. Quartz: A framework for correct and efficient reconfigurable
design. Proceedings of the International Conference on Reconfigurable Computing
and FPGAs, 2005.

[14] K. W. Susanto, T. Melham. Formally analyzed dynamic synthesis of hardware.
Journal of Supercomputing 19(1), 2001.

C H A P T E R 23

PRECISION ANALYSIS FOR FIXED-POINT
COMPUTATION

George A. Constantinides
Department of Electrical and Electronic Engineering
Imperial College, London

Many values in a computation are naturally represented by integers, which have
very efficient hardware implementations; basic operations are relatively cheap,
and they map well to an FPGA’s underlying hardware. However, some compu-
tations naturally result in fractional values, that is, numbers where part or all
of the value are less than 1—for example, 0.25, 3.25, and π—or that are so large
that representation as integers is too costly—for example, 10120. Handling these
values is a significant concern because the hardware necessary to compute on
scaled values can be significant in speed, power consumption, and area.

In arithmetic for reconfigurable computing designs, it is common to employ
fixed point instead of floating point to represent scaled values. This chapter
explores the reason for this design decision and the associated analysis that must
be performed in order to choose an appropriate fixed-point representation for a
particular design. Since designs for reconfigurable logic can be customized for
particular applications, it is appropriate to fit the number system to the under-
lying application properties.

23.1 FIXED-POINT NUMBER SYSTEM

In general-purpose computing, floating-point representations are most com-
monly used for the representation of numbers containing fractional compo-
nents. The floating-point representations standardized by the IEEE [22] have
several advantages, the foremost being portability across different computational
platforms.

In general, we may consider a floating-point number X [t] at time t as made
up of two components: a signed mantissa M[t] and a signed exponent E[t] (see
equation 23.1). Within this representation, the ratio of the largest positive value
of X to the smallest positive value of X varies exponentially with the exponent
E[t] and hence doubly exponentially with the number of bits used to store
the exponent. As a result, it is possible to store a wide dynamic range with
only a few bits of exponent, while the mantissa maintains the precision of the

476 Chapter 23 � Precision Analysis for Fixed-point Computation

representation across that range by dividing the corresponding interval for each
exponent into equally spaced representable values.

X [t] = M[t] ·2E[t] (23.1)

However, the flexibility of the floating-point number system comes at a price.
Addition or subtraction of two floating-point numbers requires the alignment of
radix (“decimal”) points, typically resulting in a large, slow, and power-hungry
barrel shifter. In a general-purpose computer, this is a minor concern compared
to the need to easily support a wide range of applications. This is why proces-
sors designed for general-purpose computing typically have a built-in floating-
point unit.

In embedded applications, where power consumption and silicon area are of
significant concern, the fixed-point alternative is more often used [24]. We can
consider fixed point as a degenerate case of floating point, where the exponent
is fixed and cannot vary with time (i.e., E[t] = E). The fixing of the exponent
eliminates the need for a variable alignment and thus the need for a barrel
shifter in addition and subtraction. In fact, basic mathematical operations on
fixed-point values are essentially identical to those on integer values. However,
compared to floating point, the dynamic range of the representation is reduced
because the range of representable values varies only singly exponentially with
the number of bits used to represent the mantissa.

When implementing arithmetic in reconfigurable logic, the fixed-point number
system becomes even more attractive. If a low-area fixed-point implementation
can be achieved, space on the device can be freed for other logic. Moreover, the
absence of hardware support for barrel shifters in current-generation reconfig-
urable logic devices results in an even higher area and power overhead compared
to that in fully custom or ASIC technologies.

23.1.1 Multiple-wordlength Paradigm
For simplicity we will restrict ourselves to 2’s complement representations,
although the techniques presented in this chapter apply similarly to most other
common representations. Also, we will use dataflow graphs, also known as signal
flow graphs in the digital signal processing (DSP) community, as a simple under-
lying model of computation [12]. In a dataflow graph, each atomic computation
is represented by a vertex v ∈ V, and dataflow between these nodes is represented
by a set of directed edges S ⊆ V×V. To be consistent with the terminology used
in the signal-processing community, we will refer to an element of S as a signal;
the terms signal and variable are used interchangeably.

The multiple-wordlength paradigm is a design approach that tries to fit
the precision of each part of a datapath to the precision requirements of the
algorithm [8]. It can be best introduced by comparison to more traditional fixed-
point and floating-point implementations. Each 2’s complement signal j ∈ S in a
multiple-wordlength implementation of a dataflow graph (V, S) has two param-
eters nj and pj, as illustrated in Figure 23.1(a). The parameter nj represents the

23.1 Fixed-point Number System 477

+
(n1, p1) (n2, p2) (n3, p3)

(n4, p4)(n5, p5)

S . . .

p

n

(a)

(c) (d)

+
(n, p1[t]) (n, p2[t]) (n, p3[t])

(n, p4[t])(n, p5[t])

(b)

+(n, 0) (n, 0) (n, 0)

(n, 0)(n, 0)

FIGURE 23.1 � The multiple-wordlength paradigm: (a) signal parameters (“s” indicates a sign bit);
(b) fixed point; (c) floating point; (d) multiple wordlength. The triangle represents a constant
coefficient multiplication, or “gain”; the rectangle represents a register, or unit sample delay.

number of bits in the representation of the signal (excluding the sign bit, by
convention), and the parameter pj represents the displacement of the binary
point from the least significant bit (LSB) side of the sign bit toward the LSB.
Note that there are no restrictions on pj; the binary point could lie outside the
number representation (i.e., pj < 0 or pj > nj).

A simple fixed-point implementation is illustrated in Figure 23.1(b). Each
signal j in this dataflow graph representing a recursive DSP algorithm is anno-
tated with a tuple (nj, pj) representing the wordlength scaling of the signal. In
this implementation, all signals have the same wordlength and scaling, although
shift operations are often incorporated in fixed-point designs in order to provide
an element of scaling control [25]. Figure 23.1(c) shows a standard floating-point
implementation, where the scaling of each signal is a function of time.

A single systemwide wordlength is common to both fixed and floating point.
This is a result of historical implementation on single, or multiple, predesigned
arithmetic units. In FPGAs the situation is quite different. Different opera-
tions are generally computed in different hardware resources, and each of these
computations can be built to any size desired. Such freedom points to an alter-
native implementation style, shown in Figure 23.1(d). This multiple-wordlength
implementation style inherits the speed, area, and power advantages of tradi-
tional fixed-point implementations, since the computation is fixed point with
respect to each individual computational unit. However, by potentially allow-
ing each signal in the original specification to be encoded by binary words
with different scaling and wordlength, the degrees of freedom in design are
significantly increased.

478 Chapter 23 � Precision Analysis for Fixed-point Computation

23.1.2 Optimization for Multiple Wordlength
Now that we have established the possibility of using multiple scalings and
wordlengths for different variables, two questions arise: How can we optimize
the scalings and wordlengths in a design to match the computation being per-
formed, and what are the potential benefits from doing so? For FPGA-based
implementation, the benefits have been shown to be significant: Area savings of
up to 45 percent [8] and 80 percent [15] have been reported compared to the
use of a single wordlength across the entire circuit. The main substance of this
chapter is to describe suitable scaling and wordlength optimization procedures
to achieve such savings.

Section 23.2 shows that we can determine the appropriate scaling for a
signal from an estimation of its peak value over time. One of two main
techniques—simulation based and analytical—is then introduced to perform this
peak estimation. While an analytical approach provides a tight bound on the peak
signal value, it is limited to computations exhibiting certain mathematical prop-
erties. For computations outside this class, an analytical technique tends to be
pessimistic, and so simulation-based methods are commonly used.

Section 23.3 focuses on determining the wordlength for each signal in the
computation. The fundamental issue is that, because of roundoff or truncation,
the wordlength of different signals in the system can have different impacts on
both the implementation area and the error observed at the computation output.
Thus, any wordlength optimization system needs to perform a balancing act
between these two factors when allocating wordlength to signals. The goal of
the work presented in this section is to allocate wordlength so as to minimize
the area of the resulting circuit while maintaining an acceptable computational
accuracy at the output of the circuit.

23.2 PEAK VALUE ESTIMATION

The physical representation of an intermediate result in a bit-parallel implemen-
tation of an algorithm consists of a finite set of bits, usually encoded using 2’s
complement representation. To make efficient use of the resources, it is essen-
tial to select an appropriate scaling for each signal. Such a scaling should ensure
that the representation is not overly wasteful in catering to rare or impossibly
large values and that overflow errors, which lead to low arithmetic quality, do
not occur often.

To determine an appropriate scaling, it is necessary to determine the peak
value that each signal can reach. Given a peak value P, a power-of-two scaling
p is selected with p = �log2 P�+ 1, since power-of-two multiplication is free in a
hardware implementation.

For some algorithms, it is possible to estimate the peak value that each
signal could reach using analytic means. In the next section, such techniques
for two different classes of system are discussed. The alternative, to use simu-
lation to determine the peak signal value, is described in the following section.

23.2 Peak Value Estimation 479

Also discussed are some hybrid techniques that aim to combine the advantages
of both approaches.

23.2.1 Analytic Peak Estimation
If the DSP algorithm under consideration is a linear time-invariant system, it
is possible to find a tight analytic bound on the peak value reachable by every
signal in it. This is the problem addressed in the section immediately following.
If, on the other hand, the system is nonlinear or time varying, such an approach
cannot be used. If the algorithm is nonrecursive—that is, the dataflow graph
does not contain any feedback loops—data range propagation may be used to
determine an analytic bound on the peak value of each signal. However, this
approach, described in the next section, cannot be guaranteed to produce a
tight bound.

Linear time-invariant systems
A linear time-invariant (LTI) system is one that obeys the distinct properties of
linearity and time invariance. A linear system is one that obeys superposition—
that is, if its output is the sequence y1[t] in response to input x1[t], and is y2[t]
in response to input x2[t], then it will be αy1[t] + βy2[t] in response to input
αx1[t] + βx2[t]. A time-invariant system is one that, given the input x[t] and the
corresponding output y[t], will provide output y[t− t0] a given input x[t− t0].
In other words, shifting the input sequence in time merely shifts the output
sequence by the same amount.

From a practical perspective, any computation made entirely of addition, con-
stant coefficient multiplication, and delay operations is guaranteed to be LTI.
This class of algorithms, while restricted, is extremely important; it contains all
the fundamental building blocks of DSP, such as finite impulse response (FIR)
and infinite impulse response (IIR) filters, together with transformations such
as the discrete cosine transform (DCT), the fast Fourier transform (FFT), and
many color–space conversions.

The remainder of this section assumes a basic knowledge of digital signal
processing, in particular the z-transform and transfer functions. For the unfamil-
iar reader, Mitra [32] provides an excellent introduction. Readers unconcerned
with the mechanics of peak estimation for LTI systems may simply take it as
read that for such systems it is possible to obtain tight analytic bounds on peak
signal values.

Transfer function calculation The analytical scaling rules derived in this sec-
tion rely on a knowledge of system transfer functions. A transfer function of
a discrete-time LTI system between any given I/O pair is defined to be the z-
transform of the sequence produced at that output, in response to a unit impulse
at that input [32]; these transfer functions may be expressed as the ratio of two
polynomials in z−1. The transfer function from each primary input to each sig-
nal must be calculated for signal-scaling purposes. This section considers the
practical problem of transfer function calculation from a dataflow graph.

480 Chapter 23 � Precision Analysis for Fixed-point Computation

Given a dataflow graph G(V, S), let VI ⊆ V be the set of input nodes, VO ⊆ V
be the set of output nodes, and VD ⊆ V be the set of unit sample delay nodes.
For signal scaling, a matrix of transfer functions H(z) is required, with elements
hiv(z) for i ∈ VI and v ∈ V representing the transfer function from the primary
input i to the output of node v.

Calculation of transfer functions for nonrecursive systems is a simple task,
leading to a matrix of polynomials in z−1; a straightforward algorithm is
presented by Constantinides et al. [12]. For recursive systems, it is neces-
sary to identify a subset Vc ⊆ V of nodes whose outputs correspond to a
system state. In this context, a state set consists of a set of nodes that, if
removed from the dataflow graph, would break all feedback loops. Once such
a state set has been identified, transfer functions can easily be expressed in
terms of the outputs of these nodes using algorithms suitable for nonrecursive
computations.

Let S(z) be a z-domain matrix representing the transfer function from each
input signal to the output of each of these state nodes. The transfer functions
from each input to each state node output may be expressed as in equation 23.2,
where A and B are matrices of polynomials in z−1. Each of these matrices repre-
sents a z-domain relationship once the feedback has been broken at the outputs
of state nodes. A(z) represents the transfer functions between state nodes and
state nodes, and B(z) represents the transfer functions between primary inputs
and state nodes.

S(z) = AS(z)+B(z) (23.2)

H(z) = CS(z)+D(z) (23.3)

The matrices C(z) and D(z) are also matrices of polynomials in z−1. C(z) rep-
resents the z-domain relationship between state node outputs and the outputs
of all nodes. D(z) represents the z-domain relationship between primary inputs
and the outputs of all nodes.

It is clear that S(z) may be expressed as a matrix of rational functions (equa-
tion 23.4), where I is the identity matrix of appropriate size. This allows the
transfer function matrix H(z) to be calculated directly from equation 23.3.

S(z) = (I−A)−1B (23.4)

Example Consider the simple dataflow graph from Section 23.1.1, shown in
Figure 23.1. Clearly, removal of any one of the four internal nodes (adder, gain,
delay, or the signal branch) from it will break the feedback loop. Let us arbitrarily
choose the adder node as a state node and choose the gain coefficient to be 0.1.
The polynomial matrices A(z) to D(z) may then be calculated (equation 23.5).

A(z) = 0.1z−1

B(z) = 1

C(z) = [0 1 0.1 0.1 0.1 0.1z−1]T (23.5)

D(z) = [1 0 0 0 0 0]T

23.2 Peak Value Estimation 481

Calculation of S(z) may then proceed following equation 23.4, yielding equation
23.6. Finally, the matrix H(z) can be constructed following equation 23.3, giving
equation 23.7.

S(z) = 1/(1−0.1z−1) (23.6)

H(z) = [11/(1−0.1z−1) 0.1/(1−0.1z−1) 0.1/(1−0.1z−1) 0.1/(1−0.1z−1)

0.1z−1/(1−0.1z−1)]T (23.7)

The runtime of this algorithm grows significantly with the number of state
signals |Vc|, and so selecting a small set of state signals is important. A simple
approach is to select all of the delay elements in a circuit, assuming that it has
no combinational cycles. Alternatively, techniques such as Levy and Low’s [30]
can be employed.

Scaling with transfer functions To produce the smallest fixed-point implemen-
tation, it is desirable to utilize as much as possible of the full dynamic range
provided by each internal signal representation. The first step of the optimiza-
tion process is therefore to choose the smallest possible value of pj for each
signal j ∈ S in order to guarantee no overflow.

Consider a dataflow graph G(V, S), annotated with wordlengths n and scalings
p. Recall that VI ⊆V denotes the set of input nodes, and let us say that each such
node reaches peak signal values of ±Mi(Mi > 0) for i ∈VI. Let H(z) be the scaling
transfer function matrix defined before, with the associated impulse response
matrix h[t] related to the transfer function matrix through the component-wise
inverse z-transform. Then the worst-case peak value Pj reached by any signal
j ∈ S is given by maximizing the well-known convolution sum (equation 23.8)
[32], where xi[t] is the value of the input i ∈ VI at time index t.

Solving this maximization problem provides the input sequence given in
equation 23.9, and allowing Nij → ∞ leads to the peak response at signal j given
in equation 23.10. Here sgn() is the signum function (equation 23.11).

Pj = ± ∑
i∈VI

max
xi[t′]

⎛

⎝

Nij−1

∑
t=0

xi
[

t′ − t
]

hij [t]

⎞

⎠ (23.8)

xi [t] = Mi sgn
(

hij
⌊

Nij − t−1
⌋)

(23.9)

Pj = ∑
i∈VI

Mi

∞

∑
t=0

∣
∣hij [t]

∣
∣ (23.10)

sgn(x) =
{

1, x ≥ 0
−1, otherwise

(23.11)

This worst-case approach leads to the concept of l1 scaling, defined in the
following paragraphs.

482 Chapter 23 � Precision Analysis for Fixed-point Computation

The l1-norm of a transfer function H(z) is given by equation 23.12, where
Z−1{ } denotes the inverse z-transform.

l1 {H (z)} =
∞

∑
t=0

Z−1 {H (z)} [t] (23.12)

A dataflow graph G(V, S) annotated with wordlengths n and scalings p is said
to be l1-scaled} if equation 23.13 holds for all signals j ∈ S.

pj =

⌊

log2

(

∑
i∈VI

Mi l1
{

hij (z)
}

)⌋

+1 (23.13)

The important point about an l1-scaled algorithm is that the scalings used are
optimal in the following sense. If any scaling is reduced lower than its value from
equation 23.13, it is possible for overflow to result on that variable. If any scal-
ing is increased beyond its value from equation 23.13, the area of the resulting
implementation increases or stays the same without any matching improvement
in arithmetic quality observable at the algorithm outputs.

Data range propagation
If the algorithm under consideration is not linear or time invariant, one mech-
anism for estimating the peak value reached by each signal is to consider the
propagation of data ranges through the computation graph. This is generally
possible only for nonrecursive algorithms.

Forward propagation A naive way of approaching this problem is to examine
the binary-point position that “naturally” results from each hardware operator.
Such an approach, illustrated here, is an option in the Xilinx System Generator
tool [20].

In the dataflow graph shown in Figure 23.2, if we consider that each input
has a range (−1, 1), then we require a binary-point location of p = 0 at each
input. Let us consider each of the adders in turn. Adder a1 adds two inputs
with p = 0 and therefore produces an output with p = max(0, 0)+1 = 1. Adder a2
adds one input with p = 0 and one with p = 1, and therefore produces an output
with p = max(0, 1) + 1 = 2. Similarly, the output of a3 has p = 3, and the output
of a4 has p = 4. While we have successfully determined a binary-point location
for each signal that will not lead to overflow, the disadvantage of this approach

a1 a2 a3 a4

+ + + +

FIGURE 23.2 � A dataflow graph representing a string of additions.

23.2 Peak Value Estimation 483

should be clear. The range of values reachable by the system output is actually
5∗(−1, 1) = (−5, 5), so p = 3 is sufficient; p = 4 is an overkill of one MSB.

A solution to this problem that has been used in practice is to propagate data
ranges rather than binary-point locations [4, 40]. To understand this approach
in practice, let us apply the technique to the example of Figure 23.2. The output
of adder a1 is a subset of (−2, 2) and thus is assigned p = 1; the output of adder
a2 is a subset of (−3, 3) and is thus assigned p = 2; the output of adder a3 is
a subset of (−4, 4) and is thus assigned p = 3; and the output of adder a4 is a
subset of (−5, 5) and is thus also assigned p = 3. For this simple example, the
problem of peak value detection has been solved to optimality.

However, such a tight solution is not always possible with data range prop-
agation. Under circumstances where the dataflow graph contains one or more
branches (fork nodes), which later reconverge, such a “local” approach to range
propagation can be overly pessimistic. As an example, consider the computation
graph representing a constant coefficient multiplication on complex numbers
shown in Figure 23.3.

In the figure, each signal has been labeled with a propagated range, assum-
ing that the primary inputs have range (−0.6, 0.6). Under this approach, both
outputs require p = 2. However, such ranges are overly pessimistic. The upper
output in Figure 23.3 has the value y1 = 2.1x1 −1.8(x1 +x2) = 0.3x1 −1.8x2. Thus,
its range can also be calculated as 0.3(−0.6, 0.6)−1.8(−0.6, 0.6) = (−1.26, 1.26).
A similar calculation for the lower output provides a range of (−1.2, 1.2). By
examining the global system behavior, we can therefore see that in reality p = 1
is sufficient for both outputs.

(�0.6, 0.6) (�0.6, 0.6) (�1.26, 1.26)

(�2.16, 2.16)(�2.16, 2.16)

(�2.16, 2.16)

(�3.12, 3.12)(�0.96, 0.96)

�1

(�3.42, 3.42)
2.1

(�0.6, 0.6)

(�0.6, 0.6)

(�0.6, 0.6)(�0.6, 0.6)

(�1.2, 1.2)

�1.8

�1.6

x1 [n]

x2 [n]

y1 [n]

y2 [n]

+

+

+

FIGURE 23.3 � Range propagation through a complex constant coefficient multiplier. Triangles
represent (real) constant coefficient multiplication.

484 Chapter 23 � Precision Analysis for Fixed-point Computation

Note that the analytic scheme described previously for linear time-invariant
systems would calculate the tighter bound in this case.

In summary, range propagation techniques may provide larger bounds on
signal values than are absolutely necessary. This problem is seen in extremis
with recursive computation graphs. In these cases, it is generally impossible to
use range propagation to place a finite bound on signal values, even in cases
when such a finite bound can analytically be shown to exist. Under these cir-
cumstances, it is standard practice to use some form of simulation to estimate
the peak value of signals.

23.2.2 Simulation-based Peak Estimation
A completely different approach to peak estimation is to use simulation—that
is, to actually run the algorithm with one or more provided input datasets and
measure the peak values reached by each signal.

In its simplest form, the simulation approach consists of measuring the peak
signal value Pj reached by a signal j ∈ S and then setting p = �log2 kPj�+1, where
k > 1 is a user-supplied “safety factor” (typically 2 to 4). Thus, it is ensured that
no overflow will occur so long as the signal value does not exceed kPj when
excited by a different input sequence. Particular care must therefore be taken
to select an appropriate test sequence.

Kim et al. [25] extend the simulation approach by considering more complex
forms of the safety factor. In particular, it is possible to extract information from
the simulation relating to the class of probability density function followed by
each signal. A histogram of the data values for each signal is built, and from it
the distribution is classified as unimodal or multimodal, symmetric or nonsym-
metric, and zero mean or nonzero mean. Different forms of safety factor are
applied in each case.

Simulation approaches are appropriate for nonlinear or time-varying sys-
tems, for which data range propagation, described in Section 23.1.2, provides
overly pessimistic results (such as for recursive systems). The main drawback of
simulation-based approaches is the significant dependence on the input dataset
used for simulation; moreover, usually no general guidelines can be given for
how to select an appropriate input. These approaches can, of course, be com-
bined with the analytical techniques of Section 23.2.1 [13].

There has been some recent work [34] aiming to put the derivation of safety
factors on a sound theoretical footing by using the statistical theory of extreme
value distributions [26]. It is known that the distribution of the sum of a large
number of statistically independent identically distributed (i.i.d.) random vari-
ables approaches the Gaussian distribution (the Central Limit Theorem). What
is less well known is that the (scaled) maximum value of a large number of
i.i.d. variables also approaches one of three possible distributions, no matter
the distribution of the variables themselves. These are the Gumbel, Fréchet, and
Weibull distributions [26]. Using this property, and making an assumption on
the type of distribution converged to (Özer and colleagues [34] assume Gumbel),
provides a statistically sound way of estimating the safety factor required for a
given arbitrarily small probability of overflow.

23.3 Wordlength Optimization 485

23.2.3 Summary of Peak Estimation
The optimization of a bit-parallel fixed-point datapath can be split into the
two problems of determining an appropriate scaling and determining an appro-
priate wordlength for each signal. We have discussed the first of these two
problems in detail. It has been shown that in the case of LTI systems, tight
analytic bounds can be placed on the scaling required. Analytic scaling is
also possible for non-LTI systems, at the cost of tightness in the bound—
disastrously so in the case of recursive systems. The alternative to the analyt-
ical approach is the use of simulation on trusted input datasets; some progress
has recently been made on the issue of statistically sound simulation-based peak
determination.

23.3 WORDLENGTH OPTIMIZATION

Once a scaling has been determined, it is necessary to find an appropriate
wordlength for each signal. While optimizing the scaling usually improves
circuit quality without changing circuit functionality (assuming no overflows
occur), wordlength optimization trades circuit quality (area, delay, power) for
result accuracy. The major problem in wordlength optimization is to determine
the error at system outputs for a given set of wordlengths and scalings of all
internal variables. We will call this problem error estimation. Once a technique
for error estimation has been selected, the wordlength selection problem reduces
to utilizing the known area and error models within a constrained optimization
setting: Find the minimum area implementation satisfying certain constraints
on arithmetic error at each system output.

The majority of this section is taken up with the problem of error estimation
(Section 23.3.1). Following on from this discussion, the problem of area mod-
eling is addressed. Optimization techniques suitable for solving the wordlength
determination problem are introduced (Section 23.3.2), with some discussion of
the problem’s inherent computational complexity.

23.3.1 Error Estimation and Area Models
Traditionally, much of the research on estimating the effects of truncation
and roundoff noise in fixed-point systems has focused on DSP uniprocessors.
This leads to certain constraints and assumptions on quantization errors—for
example, that the wordlength of all signals is the same, that quantization is
performed after multiplication, and that the wordlength before quantization is
much greater than that following it [36]. The multiple-wordlength paradigm
allows a more general design space to be explored, free from these constraints.

The effect of using finite register length in fixed-point systems has been
studied for some time. Oppenheim and Weinstein [36] and Liu [29] lay down
standard models for quantization errors and error propagation through LTI
systems based on a linearization of signal truncation or rounding. Error sig-
nals, assumed to be uniformly distributed, uncorrelated with each other and

486 Chapter 23 � Precision Analysis for Fixed-point Computation

with themselves over time, are added whenever a truncation occurs. This
approximate model has served very well because quantization error power is
dramatically affected by wordlength in a uniform wordlength structure, decreas-
ing at approximately 6 dB per bit. This means that it is not necessary to have
highly accurate models of quantization error power in order to predict the
required signal width [35]. In a multiple-wordlength circuit, the implementation
error power may be adjusted much more finely, and so the resulting implemen-
tation tends to be more sensitive to errors in estimation. This has led to a simple
refinement of the model, which will be discussed soon.

The most generally applicable method for error estimation is simulation: Sim-
ulate the system with a given “representative” input and measure the deviation at
the system outputs when compared to an accurate simulation (usually “accurate”
means IEEE double-precision floating point [22]). Indeed, this is the approach
taken by several systems [6, 27]. Unfortunately, simulation suffers from several
drawbacks, some of which correspond to the equivalent simulation drawbacks
discussed in Section 23.2, and some of which are peculiar to the error estimation
problem.

First, there is the problem of dependence on the chosen “representative” input
dataset. Second, there is the problem of speed: Simulation runs can take a sig-
nificant amount of time, and during an optimization procedure a large number
of simulation runs may be needed. Third, even the “accurate” simulation will
have errors induced by finite wordlength effects that, depending on the system,
may not be negligible.

We will be using signal-to-noise ratio (SNR), sometimes referred to as signal-
to-quantization-noise ratio (SQNR), as a generally accepted metric for measur-
ing the quality of a fixed-point algorithm implementation [32] (although other
measures, such as maximum instantaneous error, exist). Conceptually, the out-
put sequence at each system output resulting from a particular finite-precision
implementation can be subtracted from the equivalent sequence resulting from
an infinite-precision implementation. The difference is known as the fixed-point
error.

The ratio of the output power (i.e., the sum of squared signal values) result-
ing from an infinite precision implementation to the fixed-point error power
of a specific implementation defines the SNR. For the purposes of this chap-
ter, the signal power at each output is fixed because it is determined by
a combination of the input signal statistics and the dataflow graph G(V, S).
To explore different implementations of the dataflow graph, it is therefore
sufficient to concentrate on noise estimation, which is the subject of this
section.

The approach taken to wordlength optimization should depend on the
mathematical properties of the system under investigation. After briefly con-
sidering simulation-based estimation, we will examine analytic or semi-analytic
techniques that may be applied to certain classes of system. Next we will
describe one such method, which may be used to obtain high-quality results
for linear time-invariant algorithms. Then we will generalize this approach to
nonlinear systems containing only differentiable nonlinear components.

23.3 Wordlength Optimization 487

Simulation-based methods
Simulation-based methods for wordlength optimization were first established
at Seoul National University, and some of them have been integrated into the
Signal Processing Worksystem of Cadence.

In Kim et al. [25] and Kum and Sung [27], the search space is reduced by
grouping together all variables involved in a multiply–add operation and opti-
mizing them as a single-wordlength “block.” Within each block, the Oppenheim
model of quantization noise is applied [35].

Although simulation is almost certainly the most widespread mechanism
for estimating the impact of a given choice of wordlength, it suffers from the
drawbacks discussed earlier. Indeed, the dependence of the result on the input
dataset, while widely acknowledged, is rarely considered in depth. The class of
algorithm for which simulation forms a suitable mechanism has also remained
unclear. Recently, Alippi [1] proposed an analytical framework within which the
question of simulation input dependence can be addressed. A mechanism for
understanding the perturbation of Lebesgue-measurable functions, an extremely
wide class of algorithmic behavior, has been proposed that uses the theory of
randomized algorithms. The essential contribution of this work, for the purposes
of fixed-point analysis, has been to demonstrate that simulation is an appropri-
ate mechanism for analyzing fixed-point error. Moreover, Alippi [1] provides a
theoretically sound guideline on the number of simulations required in order to
be confident, to within a certain probability, that the SNR is within a given limit
(alternative signal quality metrics are also Lebesgue measurable and hence can
be used as well).

An analytic technique for linear time-invariant systems
We will first address error estimation for LTI systems. An appropriate noise
model for truncation of LSBs is described in the subsection that follows. It is
then shown that the noise injected through truncation can be analytically propa-
gated through the system in order to measure the effect of such noise on system
outputs.

Noise model A common assumption in DSP design is that signal quantization
(rounding or truncation) occurs only after a multiplication or multiply–
accumulate operation. This corresponds to a uniprocessor viewpoint, where the
result of an n-bit signal multiplied by an n-bit coefficient needs to be stored in
an n-bit register. The result of such a multiplication is an n′ = 2n-bit word, which
must therefore be quantized down to n bits. Considering signal truncation, the
least area-expensive method of quantization [18], the lowest value of the trun-
cation error in 2’s complement with p = 0, is 2−n′ −2−n ≈ −2−n, and the highest
value is 0 (2’s complement truncation error is always nonpositive).

It has been observed that values between these values tend to be equally likely
to occur in practice, so long as the 2n-bit signal has sufficient dynamic range
[29, 36]. This observation leads to the formulation of a uniform distribution
model [36] for the noise of variance σ2 = 2−2n/12 for the standard normaliza-
tion of p = 0. It has also been observed that, under the same conditions, the

488 Chapter 23 � Precision Analysis for Fixed-point Computation

spectrum of such errors tends to be white because there is little correlation
between low-order bits over time even if there is a correlation between high-
order bits. Similarly, different truncations occurring at different points within
the implementation structure tend to be uncorrelated.

When considering a multiple-wordlength implementation, or truncation at
different points within the datapath, some researchers have opted to carry the
uniform distribution model over to the new implementation style [25]. However,
there are associated inaccuracies involved in such an approach [7]. First, quan-
tizations from n′ bits to n bits, where n′ ≈ n, will suffer in accuracy because of
the discretization of the error probability density function; for example, if p = 0,
n′ = 2, n = 1, then the only possible error values are 0 and −1/4. Second, in such
cases the lower bound on error can no longer be simplified in the preceding
manner because 2−n′ −2−n ≈ −2−n no longer holds.

These two issues may be resolved by considering a discrete probability
distribution for the injected error signal. For 2’s complement arithmetic, the
truncation error injection signal e[t] caused by truncation from (n′, p) to (n, p)
is bounded by equation 23.14.

−2p
(

2−n −2−n′) ≤ e[t] ≤ 0 (23.14)

It is assumed that each possible value of e[t] has equal probability, as
discussed earlier. For 2’s complement truncation, there is nonzero mean E{e[t]}
(equation 23.15) and variance σ2

e (equation 23.16).

E{e [t]} = − 1
2n′−n

2n′−n−1

∑
i=0

i ·2p−n = −2p−1
(

2−n −2−n′)
(23.15)

σ2
e =

1
2n′−n

2n′−n−1

∑
i=0

(

i ·2p−n′)2 −E2 {e [t]} =
1
12

22p
(

2−2n −2−2n′)
(23.16)

Note that for n1 �n2 and p = 0, equation 23.16 simplifies to σ2
e ≈1/12 2−2n, which

is the well-known predicted error variance of Oppenheim and Schafer [35] for
a model with continuous probability density function.

Noise propagation and power estimation If it is our aim to optimize the
wordlengths used in a design, then it is important to be able to predict the
arithmetic quality observable at the design outputs. Given a set of wordlengths
and scalings, it is possible to use the truncation model described in the previous
section to predict the variance of each injection input. For each signal j ∈ S, a
straightforward application of equation 23.16 may be used, with n1 equal to the
“natural” full-precision wordlength produced by the source component, n2 = nj,
and p = pj.

By constructing noise sources in this manner for the entire dataflow graph,
a set F = {(σ2

p, Rp)} of injection input variances σ2
p, and their associated trans-

fer function to each primary output Rp(z), can be constructed. From this set it
is possible to predict the nature of the noise appearing at the system primary

23.3 Wordlength Optimization 489

outputs, which is the quality metric of importance to the user. Since the noise
sources have a white spectrum and are uncorrelated with each other, it is pos-
sible to use L2 scaling to predict the noise power at the system outputs. The L2
norm of a transfer function H(z) is defined in equation 23.17, where Z−1 denotes
the inverse z-transform. It can be shown that the noise variance Ek at output k
is given by equation 23.18.

L2 {H (z)} =

(
∞

∑
n=0

∣
∣
∣Z−1 {H (z)} [n]

∣
∣
∣

2
)1/2

(23.17)

Ek = ∑
(σ2, R)∈F

σ2L2
2{Rk} (23.18)

A hybrid approach for nonlinear differentiable systems
With some modification, some of the results from the preceding section can
be carried over to the more general class of nonlinear time-varying systems
containing only differentiable nonlinearities. In this section we address one pos-
sible approach to this problem, deriving from the type of small-signal analysis
typically used in analogue electronics [12, 38].

Perturbation analysis To make some of the analytical results on error sensitiv-
ity for LTI systems applicable to nonlinear systems, the first step is to linearize
these systems. The assumption is made that the quantization errors induced by
rounding or truncation are sufficiently small not to affect the system’s macro-
scopic behavior. Under such circumstances, each system component can be
locally linearized or replaced by its “small-signal equivalent” [38] in order to
determine the output behavior under a given rounding scheme.

We will consider one such n-input component, the differentiable function
Y[t] = f (X1[t], X2[t], . . . , Xn[t]), where t is a time index. If we denote by xi[t] a
small perturbation on variable Xi[t], then a first-order Taylor approximation for
the induced perturbation y[t] on Y[t] is given by equation 23.19.

y [t] ≈ x1 [t]
∂f

∂X1

∣
∣
∣
∣
t
+ . . . +xn [t]

∂f
∂Xn

∣
∣
∣
∣
t

(23.19)

Note that this approximation is linear in each xi but that the coefficients may
vary with time index t because, in general, ∂f /∂X1 is a function of X1, X2, . . . , Xn.
Thus, by applying such an approximation, we have produced a linear time-
varying small-signal model for a nonlinear time-invariant component. Such
an analysis is readily extended to a time-varying component by expressing
Y[t] = f(t, X1[t], X2[t], . . . , Xn[t]).

The linearity of the resulting model allows us to predict the error at sys-
tem outputs due to any linear scaling of a small perturbation of signal j ∈ S
analytically, given the simulation-obtained error from a single such perturba-
tion instance at j, which can be obtained by a single simulation run. Thus, this
method can be considered to be a hybrid analytic/simulation error analysis [15].

490 Chapter 23 � Precision Analysis for Fixed-point Computation

(a)

*
a

b

c

(b)

*
a

b

dc_da

dc_db

c

FIGURE 23.4 � A local graph transformation to insert derivative monitors: (a) multiplier node;
(b) with derivative monitors.

Derivative monitors To construct the small-signal model, we must first evaluate
the differential coefficients of the Taylor series model for nonlinear components.

In general, methods must be introduced to calculate the differential of each
nonlinear node type. This is performed by applying a graph transformation to
the dataflow graph, introducing the necessary extra nodes and outputs to do this
calculation.

The general multiplier is the only nonlinear component considered explicitly
in this section, although the approach is general; the graph transformation for
multipliers is illustrated in Figure 23.4. Since f (X1, X2) = X1X2, ∂f/∂X1 = X2 and
∂f/∂X2 = X1.

After insertion of the monitors (dc_da and dc_db, which capture the deriva-
tives of c with respect to a and b, respectively), a simulation may be performed
to write the derivatives to appropriate data files to be used by the linearization
process, which is described next.

Linearization Our aim is to construct a small-signal model, which can be sim-
ulated to determine the sensitivity to rounding errors. Once we have obtained
the derivative monitors, the construction of the small-signal model may proceed,
again through graph transformation. All linear components (adder, constant
coefficient multiplier, fork, delay, primary input, primary output) remain
unchanged as a result of the linearization process. Each nonlinear component
is replaced by its first-order Taylor model. Additional primary inputs are added
to the dataflow graph to read the Taylor coefficients from the derivative monitor
files created by the previous large-signal simulation.

As an example, the Taylor expansion transformation for the multiplier node
is illustrated in Figure 23.5. The inputs dc_da and dc_db are themselves
time-varying sequences, derived from the previous step of the procedure. Note
that the graph portion of Figure 23.5(b) still contains multiplier “nonlinear”
components, although one input of each multiplier node is now external to the
model. This absence of feedback ensures linearity, although not time invariance.

Noise injection In Section 23.3.1, L2 scaling was used to analytically esti-
mate the noise variance at a system output through scaling of the (analytically

23.3 Wordlength Optimization 491

*

*

dc/da

a

c

b

dc/db

(b)(a)

*
a

b

c

+

FIGURE 23.5 � A local graph transformation to produce a small-signal model: (a) multiplier node;
(b) first-order Taylor model.

(a) (b)

a

Noise

a +

FIGURE 23.6 � A local graph transformation to inject perturbations: (a) original signal; (b) with
noise injection.

derived) noise variance injected at each point of quantization. Such a purely
analytic technique can be used only for LTI systems. In this section we discuss
an extension of the approach for nonlinear systems.

Because the small-signal model is linear, if an output exhibits variance V
when excited by an error of variance σ2 injected into a given signal, then the
output will exhibit variance αV when excited by a signal of variance ασ2 injected
into the same signal (α ≥ 0). Herein lies the strength of the proposed lineariza-
tion procedure: If the output response to a noise of known variance can be
determined once only through simulation, this response can be scaled with ana-
lytically derived coefficients in order to estimate the response to any rounding
or truncation scheme.

Thus, the next step of the procedure is to transform the graph through the
introduction of an additional adder node, and associated signals, and then sim-
ulate the graph with a known noise. In our case, to simulate truncation of
a 2’s complement signal, the noise is independent and identically distributed
with a uniform distribution over the range [−2

√
3, 0], chosen to have unit vari-

ance (1/12(2
√

3)2 = 1), in this way making the measured output response an
unscaled “sensitivity” measure. The graph transformation of inserting a noise
injection is shown in Figure 23.6. One of these transformations is applied to
a distinct copy of the linearized graph for each signal in the dataflow graph,

492 Chapter 23 � Precision Analysis for Fixed-point Computation

after which zeros are propagated from the original primary inputs, to finalize the
small-signal model. This is a special case of constant propagation [2] that leads
to significantly faster simulation results for nontrivial dataflow graphs.

The entire process is illustrated for a simple dataflow graph in Figure 23.7.
The original graph is shown in (a). The perturbation analysis will be per-
formed for the signals marked (∗) and (∗∗). After inserting derivative monitors

*
a

(a)

b

c

(*) (**)

z21

z21

x y

(d)

(f)

*

*

dc/da

dc/db

(c)

(e)

(g)

(*) (**)

(**)

z21

*

dc/db

dc/da

(b)

(*)

(*)

(**)
x y x

Noise y

y

z21

*

Noise

dc/db y

z21

*

*

Noise

dc/da

dc/db

y

x

z21

*

*

Noise

dc/da

dc/db

x

y+

+

+ +

+

+

FIGURE 23.7 � An example of perturbation analysis: (a) original dataflow graph; (b) transformed
dataflow graph; (c) linearized dataflow graph; (d) variant for (∗) signal; (e) variant for (∗∗) signal;
(f) simplified graph for (∗) signal; (g) simplified graph for (∗∗) signal.

23.3 Wordlength Optimization 493

for nonlinear components, the transformed DFG is shown in (b). The
linearized DFG is shown in (c), and its two variants for the signals (∗) and (∗∗)
are illustrated in (d) and (e), respectively. Finally, the corresponding simplified
DFGs after zero propagation are shown in (f) and (g), respectively.

High-level area models
To implement a multiple-wordlength system, component libraries must be avail-
able to support multiple-wordlength arithmetic. These libraries can then be
instantiated by the synthesis system and must be modeled in terms of area con-
sumption to provide the wordlength optimization procedure with a cost metric.

Integer arithmetic libraries are available from FPGA vendors (e.g., Xilinx
Coregen or Altera LPM macros). Parameterizable macros for standard arith-
metic functions operating on integer arithmetic form the basis of the multiple-
wordlength libraries synthesized to by wordlength optimization tools such as
Right-Size [15] and Synoptix [8]. Blocks from each of these vendors may have
slightly different cost parameters, but the general approach described in this sec-
tion is applicable across all of them. Example external interfaces of multiple-
wordlength library blocks for constant coefficient multipliers (gain) and adders
(add) written in VHDL are shown in Listing 23.1 [23].

Listing 23.1 � Constant coefficient multipliers (gain) and adders (add) written in VHDL.

ENTITY gain IS
GENERIC(INWIDTH, OUTWIDTH, NULLMSBS, COEFWIDTH : INTEGER;

COEF : std_logic_vector(COEFWIDTH downto 0));
PORT(data : IN std_logic_vector(INWIDTH downto 0);

result : OUT std_logic_vector(OUTWIDTH downto 0));
END gain;

ENTITY add IS
GENERIC(AWIDTH, BWIDTH, BSHL, OUTWIDTH, NULLMSBS : INTEGER);
PORT(dataa : IN std_logic_vector(AWIDTH downto 0);

datab : IN std_logic_vector(BWIDTH downto 0);
result : OUT std_logic_vector(OUTWIDTH downto 0));

END add;

As well as an individually parameterizable wordlength for each input and
output port, each library block has a NULLMSBS parameter that indicates how
many most significant bits (MSBs) of the operation result are to be ignored (the
converse of sign extension). Thus, each operation result can be considered to be
made up of zero or more MSBs that are ignored, followed by one or more data
bits, followed by zero or more LSBs that may be truncated depending on the
OUTWIDTH parameter. For the adder library block, there is an additional BSHL
generic that accounts for the alignment necessary for addition operands. BSHL
represents the number of bits by which the datab input must be conceptually
shifted left to align it with the dataa input. Note that, because this is fixed-point
arithmetic, there is no physical shifting involved; the data is simply aligned in a

494 Chapter 23 � Precision Analysis for Fixed-point Computation

skewed manner, as shown in Figure 23.8. Note, too, that dataa and datab are
permuted as necessary to ensure that BSHL is always nonnegative.

In the figure, (a) shows that the MSB of input b protrudes beyond that of
input a and that all the output bits are drawn from the core integer addition
of the overlap. Figure 23.8(b) shows that the MSB of input a protrudes beyond
that of input b and that all output bits are drawn from the core integer addition
of the overlap. Figure 23.8(c) shows that the MSB of input b protrudes beyond
that of input a but that some of the output bits are drawn from the LSB overhang
of input a and are thus produced “free.” Figure 23.8(d) shows that the MSB
of input a protrudes beyond that of input b but that some of the output bits

a:

b:

o:

S

S

S

(a)

m_1

S

s

na

nb

no
q

no

o:

b:

a:

(b)

m_1

S

S

S

S

s

na

nb

no
q

no

+

a:

b:

o:

S

S

S

S

s

(c)

m_1

na

nb

no

no
q

o:

b:

a:

S

S

S
s

S

(d)

m_1

na

nb

no

no
q

++

+

FIGURE 23.8 � Four multiple-wordlength adder formats arising in practice: (a) MSB of input b
protruding beyond MSB of input a; (b) MSB of input a protruding beyond MSB of input b;
(c) MSB of input b protruding beyond MSB of input a, with “free” output bits; (d) MSB input
a protruding beyond MSB of input b, with “free” output bits. (s denotes the value of the BSHL
generic; m denotes the value of the NULLMSBS generic.)

23.3 Wordlength Optimization 495

are drawn from the LSB overhang of input a and are thus produced “free.” In
each case, the upper result shows the “error-free” wordlength nq

o without further
truncation, whereas the lower result shows the wordlength no after potential fur-
ther truncation.

Each of the library block parameters has an impact on the area resources
consumed by the overall system implementation. It is generally assumed when
constructing a cost model that each operator in the dataflow graph will map to
a separate hardware resource and that the area cost of wiring is negligible [17].
These assumptions (relaxed by Constantinides et al. [12]) simplify the construc-
tion of an area cost model. It is sufficient to estimate separately the area con-
sumed by each computation node and then sum the resulting estimates. In real-
ity, of course, logic synthesis, performed after wordlength optimization, is likely
to result in some logic optimization between the boundaries of two connected
library elements. This may result in lower area than estimated, but experience
shows that these deviations from the area model are small.

The area model for a multiple-wordlength adder is reasonably straightfor-
ward. A ripple-carry architecture is used [21] since FPGAs provide good support
for fast ripple-carry implementations. The only area-consuming component is
the core (integer) adder constructed from the vendor library. This adder has a
width of max(AWIDTH – BSHL, BWIDTH) – NULLMSBS + 2 bits. Depending on the
FPGA architecture in question, each bit may not consume the same area; how-
ever, because some bits are required for the result port whereas others may be
needed only for carry propagation, their sum outputs remain unconnected and
therefore the sum circuitry is optimized away by logic synthesis. The cost model
thus has two parameters k1 and k2, corresponding to the area cost of a sum-and-
carry full adder and to the area cost of a carry-only full adder, respectively. The
area of an adder is expressed in equation 23.20.

Aadd(AWIDTH, BWIDTH, BSHL, NULLMSBS, OUTWIDTH)

= k1(OUTWIDTH+1)+ k2(max(AWIDTHBSHL, BWIDTH) (23.20)

−NULLMSBS−OUTWIDTH+1)

Area estimation for general multipliers can proceed in a similarly straightfor-
ward way. However, the equivalent problem for constant coefficient multipliers
is significantly more problematic. A constant coefficient multiplier is typically
implemented as a series of additions through a recoding scheme such as the clas-
sic Booth technique [3]. This implementation style causes the area consumption
to be highly dependent on the coefficient value. In addition, the exact implemen-
tation scheme used by the vendor integer arithmetic libraries is known only to
the vendor.

A simple area model has been proposed (equation 23.21) and the coeffi-
cient values k3 and k4 have been determined through the synthesis of several
hundred multipliers of different coefficient values and widths [12]. The model
has then been fitted to this data using a least-squares approach. Note that the
model does not account for NULLMSBS because, for a properly scaled coefficient,

496 Chapter 23 � Precision Analysis for Fixed-point Computation

NULLMSBS ≤ 1 for a constant coefficient multiplier and therefore has little impact
on area consumption.

Again(INWIDTH, OUTWIDTH, COEFWIDTH) = k3COEFWIDTH(INWIDTH + 1)

+ k4(INWIDTH+COEFWIDTH−OUTWIDTH) (23.21)

More detailed area models for components are discussed by Chang and
Hauck [14].

23.3.2 Search Techniques
A heuristic search procedure
Because the wordlength optimization problem is NP-hard [16], several heuristic
approaches have been developed to find feasible wordlength vectors having
small, though not necessarily optimal, area consumption. An example heuristic
is shown in Listing 23.2. After performing binary-point estimation using the
techniques of Section 23.2, the algorithm determines the minimum uniform
wordlength satisfying all error constraints. The design at this stage corre-
sponds to a standard uniform wordlength design with implicit power-of-two
scaling, such as may be used for an optimized uniprocessor-based implemen-
tation. Each wordlength is then scaled up by a factor k > 1, which represents
a bound on the largest value that any wordlength in the final design may
reach (in the Synoptix implementation of this algorithm [8], k = 2 has been
used).

The resulting structure forms a starting point from which one signal
wordlength is reduced by one bit on each iteration. The signal wordlength to
reduce is decided in each iteration by reducing each wordlength in turn until it
violates an output noise constraint (Listing 23.2). At this point there is likely to
have been some pay-off in reduced area, and the signal whose wordlength reduc-
tion provided the largest pay-off is chosen. Each signal’s wordlength is explored
using a binary search.

Listing 23.2 � Algorithm wordlength falling.

Input: A Dataflow Graph G(V,S) and binary-point vector p.
Output: An optimized wordlength vector n.
begin
Let the elements of S be denoted as S = {j1,j2,...,j|S|}
Determine u, the minimum uniform wordlength satisfying error
criteria

Set n ← 1ku
do

currentcost ← AREA(n)
foreach ji �S do
bestmin ← currentcost
Set w to the smallest positive value where the error criteria
are satisfied for wordlength [n1...ni-1 w ni+1...n|S|]

Set minval ← AREA([n1...ni-1 w ni+1...n|S|])
if minval < bestmin, set bestsig ← i and bestmin ← minval

end foreach

23.3 Wordlength Optimization 497

if bestmin < currentcost
nbestsig ← nbestsig − 1

while bestmin < currentcost
end

Alternative search procedures
The algorithm described in Section 23.3.1 is a heuristic; it does not guarantee to
produce the optimum area cost for a given set of error constraints. A technique
to discover the true optimum-wordlength vectors has also been proposed [10]
that uses integer linear programming (ILP) to model the constraint space and
objective functions. This technique was able to demonstrate that the heuristic
from Section 23.1.1 provides good-quality results for the small benchmark prob-
lems addressed by both approaches. Like all NP-hard problems [16], however,
finding the optimum solution becomes computationally infeasible for large
problem sizes. The methodology of Constantinides et al. [10] is applicable only
for very small practical problems and is thus more of a theoretical than practical
interest.

Several other heuristic search procedures have been proposed in the litera-
ture, and we will review some of the more interesting ones (further comparisons
are made in the brief survey by Cantin et al. [6]).

An approach used by Kum and Sung [27] is based on the intuition that the
error observable at a system output reduces monotonically with each wordlength
in that system. This is a plausible conjecture, but is not always the case. Indeed,
it was shown independently by Constantinides [9] and Lehtinen and Renfors
[31] that this conjecture may be violated in practical situations. Nevertheless,
if we accept it for the moment, a natural search procedure becomes appar-
ent. We may divide the search into two phases. In the first phase, the system
is simulated with all but one variable having a very large precision (e.g., dou-
ble precision floating point). In this way, we can find the point at which the
output constraints are violated because of quantization on this variable alone.
Repeating this for all variables provides, under the conjecture, a lower bound
on each element of the wordlength vector. The second phase of the algorithm
is invoked if the constraints are violated when these lower bounds are used as
the wordlength vector. In this case, the precision of all variables is increased by
an equal number of bits until the constraints are satisfied. A variation on the
second phase is to exhaustively explore all possibilities above this lower bound,
until the constraints are satisfied [27].

The common meta-heuristics of simulated annealing and genetic algorithms
have been used for this problem—for example, by Chang and Hauck [14]—
(using a linear combination of area and error as an objective function [28,40]).
While there are practical advantages to using tried-and-tested meta-heuristics
for combinatorial problems, the smooth nature of the constraints and objec-
tives, as outlined previously, means that it is likely that better results can be
obtained within a fixed computation time budget by using application-specific
heuristic techniques.

498 Chapter 23 � Precision Analysis for Fixed-point Computation

23.4 SUMMARY

This chapter introduced the fundamental problems of designing optimized
fixed-point arithmetic circuits in custom hardware, including FPGA devices. The
fixed-point number system is of widespread interest in the FPGA community
because of the highly efficient arithmetic implementations possible when com-
pared to what can be achieved with floating-point arithmetic. However, much
more than with floating point, working with fixed point requires designers to
have a good grasp of the numerical robustness issues involved with their designs.
Performing such design by hand is tedious and error prone, which has motivated
the development of automatic procedures, some of which have been described
in this chapter.

The freedom in custom hardware to use multiple wordlengths in a design
creates the possibility of shaping the circuit datapath to the requirements of
the algorithm, leading to low-area, high-speed, and low-power implementa-
tions. This emerging paradigm throws up a new challenge, however: wordlength
optimization.

This chapter demonstrated that wordlength determination can be considered
as a constrained optimization, and suitable models were presented for FPGA-
based bit-parallel implementations, together with signal-to-noise ratio of linear
time-invariant and differentiable nonlinear time-varying systems. In each case,
we described at least one error estimation procedure in depth and discussed
related procedures and their advantages and disadvantages.

We will now consider some fruitful avenues for further research in this
field, broken down into MSB-side optimization, error modeling, and search
procedures.

The work discussed in Section 23.2 either avoids overflow completely (e.g.,
l1-scaling) or reduces the probability of overflow to an arbitrary level (e.g.,
extreme value theory) without considering the effect of overflow on signal-to-
noise ratio or other accuracy metrics. In algorithms where the worst-case vari-
able range is much larger than the average-case range, it may make sense to
save area by allowing rare overflow and its consequent reduction in arithmetic
accuracy. This problem was discussed by Constantinides et al. [11] using a sim-
ple model of the error induced by overflow, based on approximating all signals
by Gaussian random variables. The results achieved were weakened, however,
by an inability of the proposed method to accurately estimate the correlations
between overflow errors at different points within the algorithm. Further work
could provide much stronger bounds.

The analytical error-modeling approaches discussed in Section 23.3.1 can
adequately deal with linear time-invariant systems or with time-varying systems
containing only differentiable nonlinearities. This still leaves open the problem
of adequately modeling systems containing nondifferentiable nonlinearities.
This is a serious omission, as it includes any algorithm containing condition-
ally executed statements, where the condition is a logical expression contain-
ing variables generated by the algorithm itself (in the case where the variables

23.4 Summary 499

are external inputs, this can be viewed as a time-varying differentiable system).
Further work incorporating the results from the analysis of nonlinear dynamical
systems is likely to shed new light here.

Both heuristic and optimal search procedures were discussed in Section
23.3.2. One of the limitations of the optimal approach from Constantinides et
al. [10] is that is has relied on coercing inherently nonlinear constraints into a
linear form, resulting in a large ILP problem. Branch-and-bound, or other com-
binatorial search procedures, on top of bounding procedures from the more
general field of nonlinear mathematical programming may be able to provide
optimal results for significantly larger problems. Further effort is also called for
in the development of heuristic search procedures. None of the heuristics pre-
sented thus far can guarantee a bounded distance to optimality, although under
certain error metrics the wordlength optimization problem is approximatible in
this sense. It would be useful to concentrate efforts on heuristics that do provide
these guarantees.

It is my belief that, apart from a practical design problem, the problem
of wordlength optimization has much to offer in terms of understanding the
numerical properties of algorithms. The earliest contributions to this subject
can be traced back to two giants of computing, Alan Turing [39] and John von
Neumann [33]. At the time, IEEE standard floating point was nonexistent, and it
was necessary to carefully design the architecture around the algorithm. FPGA-
based computing has reopened this method of design by giving an unprece-
dented degree of freedom in the implementation of numerical algorithms.

References
[1] C. Alippi. Randomized algorithms: A system-level poly-time analysis of robust com-

putation. IEEE Transactions on Computers 51(7), 2002.
[2] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques and Tools,

Addison-Wesley, 1986.
[3] A. D. Booth. A signed binary multiplication technique. Quarterly Journal Mechanical

Applications of Mathematics 4(2), 1951.
[4] A. Benedetti, P. Perona. Bit-width optimization for configurable DSPs by multi-

interval analysis. Proceedings of the 34th Asilomar Conference on Signals, Systems
and Computers, 2000.

[5] M.-A. Cantin, Y. Savaria, P. Lavoie. An automatic word length determina-
tion method. Proceedings of the IEEE International Symposium on Circuits and
Systems, 2001.

[6] M.-A. Cantin, Y. Savaria, P. Lavoie. A comparison of automatic word length opti-
mization procedures. Proceedings of the IEEE International Symposium on Circuits
and Systems, 2002.

[7] G. A. Constantinides, P. Y. K. Cheung, W. Luk. Truncation noise in fixed-point
SFGs. IEE Electronics Letters 35(23), November 1999.

[8] G. A. Constantinides, P. Y. K. Cheung, W. Luk. The multiple wordlength paradigm.
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, April–May 2001.

500 Chapter 23 � Precision Analysis for Fixed-point Computation

[9] G. A. Constantinides. High-level Synthesis and Wordlength Optimization for Digital
Signal Processing Systems, Ph.D. thesis, University of London, 2001.

[10] G. A. Constantinides, P. Y. K. Cheung, W. Luk. Optimum wordlength allocation.
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, April 2002.

[11] G. A. Constantinides, P. Y. K. Cheung, W. Luk. Synthesis of saturation arith-
metic architectures. ACM Transactions on Design Automation of Electronic Systems
8(3), 2003.

[12] G. A. Constantinides, P. Y. K. Cheung, W. Luk. Synthesis and Optimization of DSP
Algorithms, Kluwer Academic, 2004.

[13] M. Chang, S. Hauck. Precis: A design-time precision analysis tool. Proceedings of
the IEEE Symposium on Field-Programmable Custom Computing Machines, 2002.

[14] M. Chang, S. Hauck. Automated least-significant bit datapath optimization for
FPGAs. Proceedings of the IEEE Symposium on Field-Programmable Custom Com-
puting Machines, 2004.

[15] G. A. Constantinides. wordlength optimization for differentiable nonlinear sys-
tems. ACM Transactions on Design Automation for Electronic Systems, January 2006.

[16] G. A. Constantinides, G. J. Woeginger. The complexity of multiple wordlength
assignment. Applied Mathematics Letters 15, 2002.

[17] G. DeMicheli. Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.
[18] P. D. Fiore. Lazy rounding. Proceedings of the IEEE Workshop on Signal Processing

Systems, 1998.
[19] C. Fang, T. Chen, R. Rutenbar. Floating-point error analysis based on affine arith-

metic. Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing, 2003.

[20] J. Hwang, B. Milne, N. Shirazi, J. Stroomer. System level tools for DSP in FPGAs.
In R. Woods and G. Brebner, eds., Processing Field Programmable Logic, Springer-
Verlag, 2001.

[21] K. Hwang. Computer Arithmetic: Principles, Architecture and Design, Wiley, 1979.
[22] IEEE Standard for Binary Floating-point Arithmetic (ANSI/IEEE Standard 991),

1986.
[23] IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis (IEEE Standard

1076.6), 1999.
[24] C. Inacio, D. Ombres. The DSP decision: Fixed point or floating? IEEE Spectrum

33(9), September 1996.
[25] S. Kim, K. Kum, W. Sung. Fixed-point optimization utility for C and C++ based

digital signal processing programs. IEEE Transactions on Circuits and Systems II
45(11), November 1998.

[26] S. Kotz, S. Nadarajah. Extreme Value Distributions: Theory and Applications, Impe-
rial College Press, 2000.

[27] K.-I. Kum, W. Sung. Combined wordlength optimization and high-level synthesis
of digital signal processing systems. IEEE Transactions on Computer-Aided Design
20(8), August 2001.

[28] D.-U. Lee, A. Gaffar, R. Cheung, O. Mencer, W. Luk, G. A. Constantinides. Accuracy
guaranteed bit-width optimization. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2006.

[29] B. Liu. Effect of finite word length on the accuracy of digital filters—A review.
IEEE Transactions on Circuit Theory 18(6), 1971.

[30] H. Levy, D. W. Low. A contraction algorithm for finding small cycle cutsets. Journal
of Algorithms 9, 1988.

23.4 Summary 501

[31] V. Lehtinen, M. Renfors. Truncation noise analysis of noise shaping DSP systems
with application to CIC decimators. Proceedings of the European Signal Processing
Conference, 2002.

[32] S. K. Mitra. Digital Signal Processing, McGraw-Hill, 1998.
[33] J. von Neumann, H. H. Goldstine. Numerical inverting of matrices of high order.

Bulletin of the American Mathematics Society 53, 1947.
[34] E. Özer, A. Nisbet, D. Gregg. Stochastic bit-width approximation using extreme

value theory for customizable processors. Proceedings of the International Confer-
ence on Compiler Construction, 2004.

[35] A. V. Oppenheim, R. W. Schafer. Digital Signal Processing, Prentice-Hall, 1975.
[36] A. V. Oppenheim, C. J. Weinstein. Effects of finite register length in digital filtering

and the fast fourier transform. IEEE Proceedings 60(8), 1972.
[37] W. Sung, K. Kum. Simulation-based wordlength optimization method for fixed-

point digital signal processing systems. IEEE Transactions on Signal Processing
43(12), December 1995.

[38] A. S. Sedra, K. C. Smith. Microelectronic Circuits, Saunders, 1991.
[39] A. Turing. Rounding-off errors in matrix processes. Quarterly Journal of Mechan-

ics 1, 1948.
[40] S. A. Wadekar, A. C. Parker. Accuracy sensitive wordlength selection for algorithm

optimization. Proceedings of the International Conference on Computer Design, Octo-
ber 1998.

This page intentionally left blank

C H A P T E R 24

DISTRIBUTED ARITHMETIC

Rajeevan Amirtharajah
Department of Electrical and Computer Engineering
University of California–Davis

Distributed arithmetic (DA) [1, 2] is a computation algorithm that performs
multiplication using precomputed lookup tables (LUTs) instead of logic. It is
well suited to implementation on homogeneous field-programmable gate arrays
(FPGAs) because of its high utilization of the available LUTs. It may also have
advantages for modern heterogeneous FPGAs that contain built-in multipliers
because it is area efficient for implementing long digital filters. DA targets the sum-
of-products (or vector dot product) operation, and many digital signal processing
(DSP) tasks such as filter implementation, matrix multiplication, and frequency
transformation can be reduced to one or more sum-of-products computations.

24.1 THEORY

The theory behind DA is based on reorganizing the vector dot product operation
around the binary representation of the vector elements [2]. Suppose that X is
the vector of input samples and A is a constant vector of filter coefficients, corres-
ponding to the taps of a finite impulse response (FIR) filter. Vectors X and A each
consist of M elements Xk and Ak. The dot product y of X and A (corresponding
to the convolution of X with the FIR impulse response) can be written as

y =
M−1

∑
k=0

Ak Xk (24.1)

We can represent each element of the input sample vector X in N-bit 2’s com-
plement notation. Then equation 24.1 can be expressed as

y =
M−1

∑
k=0

Ak

[

−bk(N−1)2
N−1 +

N−2

∑
n=0

bkn2n

]

(24.2)

where bk(N−1) is the sign bit of the input sample Xk in N-bit 2’s complement
notation, and bkn is the nth bit of input sample Xk. The possible values of bki

504 Chapter 24 � Distributed Arithmetic

are either 0 or 1. Equation 24.2 can be further rearranged into equation 24.3 by
multiplying out the factors and changing the order of the summation:

y = −
M−1

∑
k=0

Akbk(N−1)2
N−1 +

N−2

∑
n=0

[
M−1

∑
k=0

Akbkn

]

2n = Zsign +Zn1 (24.3)

Consider each term in the brackets of the second summation in equation 24.3,
labeled Zn0 in the following:

Zn0 =
M−1

∑
k=0

Akbkn (24.4)

where term Zn0 has 2M possible values because bkn is either 1 or 0. Therefore,
each summation term Akbkn can have the value of either Ak or 0. Instead of
using a multiplier to compute any of these 2M possible values whenever nec-
essary, we can precompute them and store them in a LUT with depth 2M. The
contents of the LUT are then addressed directly by the bit-serial input data,
[b0n, b1n, b2n, . . . bMn], corresponding to the nth bits of each element Xk of input
vector X. Multiplication by the factor 2n in equation 24.3 can be realized by a
shifter and the addressed LUT contents shifted and accumulated to form term
Zn1 in (N−1) cycles.

The sign term Zsign can be handled in the same way with additional circuitry
to implement subtraction; it takes one additional clock cycle. The final result y is
formed after N cycles. Note that, if the filter length is greater than the bit width
of the input data (i.e., M > N), DA computes the final result in fewer cycles than
an implementation using a single multiply–accumulate functional unit. How-
ever, because the size of the LUT grows exponentially in the number of vector
elements (2M), most practical implementations use multiple LUTs and adders to
combine partial dot products into the final result.

24.2 DA IMPLEMENTATION

A simple DA implementation is shown in Figure 24.1. It requires a 16-bit shift
register for the input vector, a 16-entry LUT, an adder/subtractor, and an accu-
mulator (Result) for the output. The x2 operation is handled purely by wiring.
This unit is a direct implementation of the DA algorithm described in the pre-
ceding section, and it is capable of computing the dot product of a 4-element
vector X and a constant 4-element vector A.

In the figure the four 4-bit-wide elements of X are fed into the address decoder
in most significant bit (MSB) first order to select the appropriate LUT row con-
tents. The selected content is added with the left-shifted version of the previous
RESULT value to form the current RESULT value. Ts is the sign bit timing sig-
nal that controls the add/subtract operation; when Ts is high, the current LUT
content is subtracted from the left-shifted version of the previous result. The
final vector dot product is obtained in four cycles. Shifting in the bit vector

24.2 DA Implementation 505

Result

x2Ts 1/2

y

4x
16

 A
dd

re
ss

 d
ec

od
er

0
A0
A1

A01A1
A2

A21A0
A21A1

A21A11A0
A3

A31A0
A31A1

A31A11A0
A31A2

A31A21A0
A31A21A1

A31A21A11A0

X3:

X2:

X1:

X0:

b30 b31 b32 b33

b20 b21 b22 b23

b10 b11 b12 b13

b00 b01 b02 b03

FIGURE 24.1 � A simple implementation of distributed arithmetic.

least significant bit (LSB) first also produces the correct final value and has the
advantage of eliminating long carry propagations when accumulating the inter-
mediate results.

The only modifications to Figure 24.1 required for this alternative are to
reverse the bits of vector Xin, the shift register, and replace the left shift by
1 bit and the right shift by 1 bit. Various other modifications to this structure
are possible. For example, the input sample shift register can be serial in/serial
out or parallel in/serial out depending on the application.

LUT size can be a determining factor in the total hardware cost of a DA
implementation. It is possible to modify the structure in Figure 24.1 to reduce
the table size by a factor of 2. To achieve this reduction, consider a different
representation of the input data samples Xk:

Xk =
1
2

[Xk − (−Xk)] (24.5)

The 2’s complement representation of the negative of Xk can be expressed as

−Xk = −bk(N−1) 2N−1 +
N−2

∑
n=0

bkn 2n +1 (24.6)

506 Chapter 24 � Distributed Arithmetic

where each bit of Xk has been complemented and a 1 has been added to the
complemented bits. Plugging equation 24.6 into equation 24.5 yields

Xk =
1
2

[

−
(

bk(N−1) −bk(N−1)

)

2N−1 +
N−2

∑
n=0

(

bkn −bkn

)

2n −1

]

(24.7)

Each difference term
(

bkn −bkn

)

(for n = 0 to N−1) in equation 24.7 can take

on values of +1 or −1. This alternate representation for Xk is convenient because,
in the resulting summation for the dot product, each linear combination of Ak
has a corresponding negative linear combination. Only one of these combina-
tions needs to be stored in the LUT, with the negative being applied during
operation using the subtractor. Substituting equation 24.7 into equation 24.1
and rearranging terms yields the following new expression for the result of the
dot product y:

y =
N−1

∑
n=0

Q (bn)+Q (0) (24.8)

where

Q (bn) =
1
2

M−1

∑
k=0

Ak

(

bkn −bkn

)

2n, n �= N−1 (24.9a)

Q (bN−1) = −1
2

M−1

∑
k=0

Ak

(

bk(N−1) −bk(N−1)

)

2N−1, n = N−1 (24.9b)

Q (0) = −1
2

M−1

∑
k=0

Ak (24.9c)

Note that the expressions for Q(bn) and Q(bN−1) have 2M−1 possible magni-
tudes, with signs determined by the input bits, and that the computation of y
requires an additional register to hold the constant term Q(0). This leads to the
reduced DA memory implementation shown in Figure 24.2, where the exclusive-
or (XOR) gates are required to recode the addresses to access the appropriate
LUT row and to control the timing of the sign bit into the adder/subtractor.
The XOR gates, the initial condition register for Q(0), and a 2-input multi-
plexer are the only additional hardware required to reduce the memory size by a
factor of 2.

The implementations in both Figures 24.1 and 24.2 require N clock cycles to
compute the final result, although additional cycles may be needed to match the
throughput of the DA unit to other functional units in the system for a particular
application. In Section 24.3 we will discuss mapping these basic structures onto
FPGA fabrics. We will address the issue of performance improvement (by reduc-
ing the number of required clock cycles and increasing the clock frequency) in
Section 24.4.

24.3 Mapping DA onto FPGAs 507

Result

x2
Ts

1/2

y

3x
8

ad
dr

es
s

de
co

de
r

Q0

Initial
condition
register

X3:

X2:

X1:

X0:

21/2(A01A11A21A3)

21/2(A01A11A22A3)

21/2(A01A12A21A3)

21/2(A01A12A22A3)

21/2(A02A11A21A3)

21/2(A02A11A22A3)

21/2(A02A12A21A3)

21/2(A02A12A22A3)

b30 b31 b32 b33

b20 b21 b22 b23

b10 b11 b12 b13

b00 b01 b02 b03

FIGURE 24.2 � Reduced DA memory implementation.

24.3 MAPPING DA ONTO FPGAs

Consider mapping a 16-tap FIR filter (M = 16) operating on 16-bit data (N = 16)
onto an FPGA fabric based on 4-input LUTs. As discussed earlier, DA’s primary
drawback is that the size of the LUTs grows exponentially in the number of filter
coefficients (or filter taps). If we want to use 16-bit data to represent the precom-
puted values, we need 16×216 = 1 Mbit of memory. To limit this growth, long
filters can be partitioned into several smaller DA units whose outputs are then
combined using a tree of 2-input adders, as shown in Figure 24.3. This partitions
the 16 filter taps A0 to A15 among four DA units, each of which incorporates N
1-bit-wide 4-input LUTs.

The partitioning is chosen to correspond to the LUT size of the individual
logic elements or CLBs. If the filter taps are symmetric (which they often are
for typical signal-processing applications), the memory size can be reduced by
a further factor of 2 by summing the appropriate elements of the input vector
Xk using serial addition and using the bits of the resulting sum to address the
LUTs. In addition to the serial adder hardware, this memory reduction comes
at the expense of an additional clock cycle of latency before the final result is
valid.

As CMOS technology has scaled and the complexity of individual CLBs has
increased with succeeding FPGA generations, the hardware cost of implementing
our example filter has shrunk dramatically. Based on an early implementation
of an 8-tap, 8-bit filter using DA on a Xilinx 3042 FPGA [3], our example
would consume approximately 120 CLBs, including control logic, even using the

508 Chapter 24 � Distributed Arithmetic

DA
Unit 0

DA
Unit 1

DA
Unit 2

DA
Unit 3

(A02 A3) (A42 A7) (A82 A11) (A122 A15)

y

+ +

+

FIGURE 24.3 � A 16-tap FIR filter mapped onto multiple DA units.

symmetry of the filter coefficients to reduce the memory requirements. This would
consume roughly the entire FPGA chip. Resource usage would be dominated
by the input shift registers (60 CLBs) since this older FPGA architecture only
allowed the local CLB flip-flops to be used in a shift configuration.

In contrast, a recent FPGA architecture encompasses four logic “slices” in
each CLB, where two slices each roughly correspond to an entire CLB in the
older architecture [6]. Because LUTs in Xilinx Spartan-3E FPGAs can be con-
figured as 16× 1 shift registers, the number of CLB resources to implement
the data memory for DA is drastically reduced. Each logic slice also contains
carry propagation logic for efficient implementation of adder circuits, which
can be used to increase the speed of DA computation, as will be shown later.
Implementing the example filter on a Spartan-3E FPGA requires approximately
113 slices, corresponding to 29 CLBs. This is under 12 percent of the total num-
ber of slices available in the smallest member of the 3S100E FPGA family.

Further enhancements to the architecture building blocks may allow for more
efficient DA implementation in the future. For example, the potential of hetero-
geneous or coarse-grained FPGAs to support DA more efficiently by incorpo-
rating small adders and accumulators directly in the CLB is currently being
explored [7].

24.4 IMPROVING DA PERFORMANCE

Two approaches can be taken to improve DA performance on an FPGA platform.
First, the design can be modified to reduce the number of cycles required to
compute the final result. Second, the cycle time can be decreased by reducing

24.4 Improving DA Performance 509

the number of logic stages in the critical path of the computation. Examples of
both approaches will be discussed in this section.

A simple approach to speeding up DA computation is to recognize that multi-
ple bits from each input vector element Xk can be used to address multiple LUTs
in each clock cycle (because addition is associative, we can perform the sum in
equation 24.3 using any combination of partial sums that is convenient). This
leads to an architecture like the one shown in Figure 24.4, which uses 2 bits of
the input data vector elements at a time. The LUTs are identical because they
contain the same linear combinations of filter coefficients Ak. The LUT outputs
must be scaled by the correct exponent of 2 to maintain the significance of the
bits added to the accumulated result (the x2 unit in Figure 24.4). Only two
cycles are required to compute the result y for this implementation, instead of
four cycles for the implementation in Figure 24.2. For longer bit-width input
data, this idea can be extended to using more bits at a time.

The modification just described provides the benefit of a linear decrease in the
number of clock cycles at the expense of a linear increase in LUT memory size.
In addition, the number of inputs and the bit width of the adder/subtractor must
increase. Mapping this approach onto an FPGA involves a trade-off between the
routing resources consumed and the speed of the computation, as the input data
bit vectors must be divided into subwords and distributed to multiple CLBs. In
addition, multiple LUT outputs must be accumulated at a single destination to
form the result, which consumes further routing.

Following a derivation similar to that presented by White [2], we can analyze
this trade-off quantitatively. Suppose that we are implementing an M-tap filter

Result

Ts
1/2

3x
8

ad
dr

es
s

de
co

de
r

3x
8

ad
dr

es
s

de
co

de
r

21/2(A01A11A21A3)

21/2(A01A11A22A3)

21/2(A01A12A21A3)

21/2(A01A12A22A3)

21/2(A02A11A21A3)

21/2(A02A11A22A3)

21/2(A02A12A21A3)

21/2(A02A12A22A3)

21/2(A01A11A21A3)

21/2(A01A11A22A3)

21/2(A01A12A21A3)

21/2(A01A12A22A3)

21/2(A02A11A21A3)

21/2(A02A11A22A3)

21/2(A02A12A21A3)

21/2(A02A12A22A3)

X3:

X2:

X1:

X0:

x2

x4

b31 b33 X3: b30 b32

X2: b20 b22

X1: b10 b12

X0: b00 b02

b21 b23

b11 b13

b01 b03

Q0

Initial
condition
register

y

FIGURE 24.4 � Two-bit-at-a-time reduced memory DA implementation.

510 Chapter 24 � Distributed Arithmetic

using an N-bit number representation and that the computation is proceeding
L bits at a time. Further suppose that the LUT data is W bits wide. Computing
the result requires that, in each cycle, MN bits are shifted in and WL bits are
read out, and N ⁄ L clock cycles must pass. The number of wires NW is therefore

NW =
MN
N ⁄ L

+WL = (M +W)L (24.10a)

If we define the relative importance of minimizing routing resources to
minimizing latency as the ratio r, then

r =
N ⁄ L
NW

=
N

(M +W)L2 (24.10b)

and we can find the L that satisfies our design criterion of relative importance r:

L =

⌈√

N
r(M +W)

⌉

(24.10c)

Now suppose that an application demands low latency and that routing
resources are not too tightly constrained; then, for r = 2, 32-bit input data
(N = 32), a 4-tap FIR filter (M = 4), and 4-bit LUT data (W = 4); this yields L = 2.
The desired DA implementation takes the input data 2 bits at a time to address
the LUTs, completing a dot product computation in 16 cycles.

In addition to exploiting parallelism to speed up the DA computation, it is
possible to employ various levels of pipelining. As we saw in Figure 24.1, the
critical path involves decoding the address presented by the data shift regis-
ters, accessing the row from the LUT, and propagating the carry through the
adder/subtractor while meeting the setup time constraints for the accumula-
tor. If the implementation spans multiple CLBs, there is a potentially signifi-
cant interconnect delay in this critical path in addition to the combinational
logic delay. An obvious way to pipeline the simple implementation is to make
the LUT synchronous and latch the outputs before they are fed to the adder/
subtractor.

An alternative approach is to use carry save addition to reduce the carry prop-
agation chain in the critical path [8]. The key modification to Figure 24.1 is
to use a different structure for the adder/subtractor and to perform the com-
putation in LSB first order. Instead of using a carry propagate adder to accu-
mulate the entire result in one clock cycle, the adder/subtractor is pipelined
at the bit level and the sum and carry outputs are stored in flip-flops at each
cycle. Each full adder takes one input bit from the LUT output and one from
the sum output of the next most significant full adder, automatically account-
ing for the x2 scaling required in Figure 24.1. Assuming that the accumula-
tor is wider than N bits, after N clock cycles the least significant N bits of
the final result are stored in the LSBs of the accumulator while the remain-
ing MSBs require one more carry propagating addition to produce the final
result. This operation adds one extra clock cycle to the latency of the DA
computation.

24.5 An Application of DA on an FPGA 511

Most modern FPGA fabrics have dedicated paths for high-speed carry prop-
agation. Given that most DA designs require accumulators with not too many
more than N bits, the final carry propagation is typically not the critical path
for the entire computation. The throughput is determined by the speed of the
carry save addition in the accumulator.

Although using carry save addition at the single-bit level results in the greatest
speed improvement, it is also the most resource intensive in terms of logic slices
and CLBs. A speed versus area trade-off can be achieved by partitioning the
adder/subtractor into multiple subcircuits, each of which propagates a carry
across p bits (p = 1 in the example just described). Speedup factors of at least
1.5 have been observed over the traditional design shown in Figure 24.1 [8].

24.5 AN APPLICATION OF DA ON AN FPGA

In addition to FIR filters, a common DA application on FPGAs is acceleration
of frequency transformations such as the discrete cosine transform (DCT),
which is a critical component of the MPEG video compression and JPEG
image compression standards. The two-dimensional DCT can be implemented
as two one-dimensional DCTs and a matrix transposition. Each DCT can be
implemented as a matrix–vector multiplication, which is easy to implement
on an FPGA using DA because it can be decomposed into a set of vector dot
products.

In one example, using DA instead of multiply–accumulate for the DCT res-
ulted in a factor of 2.4 reduction in area for the FPGA implementation (on a
Xilinx XC6200 FPGA) [9]. Using DA and pipelining of the routing to improve the
algorithm performance, this implementation was fast enough to process VGA
resolution images (640 × 480 pixels) at 25 frames per second—approximately
four times faster than a full software implementation running on a microproces-
sor. The entire two-dimensional DCT consumed a 64 × 78 array of logic blocks
on the chip (about 30 percent of the total FPGA area) and the DA portions of the
DCT consumed 3648 logic blocks, or about 70 percent of the two-dimensional
DCT total. The average utilization of each logic block for the DA components
was 61 percent. This high level of utilization was a result of careful floorplanning
in addition to DA’s inherent suitability to FPGA implementation.

References
[1] Xilinx, Inc. The Role of Distributed Arithmetic in FPGA-based Signal Processing,

Xilinx, Inc. (http://www.xilinx.com/appnotes/theory1.pdf), January 2006.
[2] S. A. White. Applications of distributed arithmetic to digital signal processing:

A tutorial review. IEEE ASSP Magazine 6(3), July 1989.
[3] L. Mintzer. FIR filters with field-programmable gate arrays. Journal of VLSI Signal

Processing 6, 1993.
[4] G. Roslin. A guide to using field-programmable gate arrays (FPGAs) for application-

specific digital signal processing performance. Xilinx white paper, 1995.

512 Chapter 24 � Distributed Arithmetic

[5] W. Wolf. FPGA-based System Design (Modern Semiconductor Design Series),
Prentice-Hall, 2004.

[6] Xilinx, Inc. Spartan-3E FPGA Family: Complete Data Sheet, DS312 (v2.0) (http://
www.xilinx.com), November 2005.

[7] B. Calhoun, F. Honore, A. Chandrakasan. A leakage reduction methodology for
distributed MTCMOS. IEEE Journal of Solid-State Circuits 39(5), May 2004.

[8] R. Grover, W. Shang, Q. Li. A faster distributed arithmetic architecture for FPGAs.
Proceedings of the 10th ACM International Symposium on Field-Programmable Gate
Arrays, February 2002.

[9] R. Woods, D. Trainor, J.-P. Heron. Applying an XC6200 to real-time image
processing. IEEE Design & Test of Computers 15(1), January/March 1998.

C H A P T E R 25

CORDIC ARCHITECTURES
FOR FPGA COMPUTING

Chris Dick
Advanced Systems Technology Group
DSP Division of Xilinx, Inc.

Because field-programmable gate arrays (FPGAs) are often used for realizing
complex mathematical calculations, the FPGA designer is in need of a set of
math libraries to support such implementations. The literature is rich with algo-
rithmic options for evaluating the type of math functions (e.g., sine, cosine, sinh,
cosh, arctangent, atan2, logarithms) that are typically found in a math library
for general-purpose and DSP processors. The enormous flexibility of the FPGA
coupled with the vast suite of algorithmic options for computing math functions
can make the development of an FPGA math library a challenging task.

Common approaches to evaluating math functions include polynomial
approximation-based techniques [13] and Newton-style iterations [13], to name
a couple. One of the most useful and flexible approaches available to the hard-
ware designer for developing high-performance computing hardware is the
CORDIC (COordinate Rotation DIgital Computer) algorithm.

CORDIC is unparalleled in its ability to encapsulate a diversity of math func-
tions in one basic set of iterations. It can be viewed as the Swiss Army Knife,
so to speak, of arithmetic—that is, a single hardware architecture, with very
minimal control overhead, having the ability to compute sine, cosine, cosh,
sinh, atan2, square root, and polar-to-rectangular and rectangular-to-polar con-
versions, to name only a few functions.

It is in coordinate transformations that the algorithm comes into its own.
In both, multi-operand input and multi-element output vectors are involved.
There are a plethora of alternatives for realizing, say, division in an FPGA, and
most of the CORDIC alternatives provide good hardware efficiency. However,
the algorithm remains unrivaled when it comes to processing multi-element I/O
vectors, as is the case when converting from Cartesian to polar coordinates or
vice versa. CORDIC falls into the class of shift-and-add algorithms—it is a mul-
tiplierless method dominated by additions. FPGAs are very efficient at realizing
arbitrary precision adders, and so the CORDIC algorithm is in many ways a nat-
ural fit for course-grained FPGA architectures such as the Xilinx Virtex-4 family
of devices [41].

This chapter begins with a brief tutorial overview of the CORDIC algorithm.
Because most hardware realizations of CORDIC employ fixed-point arithmetic,

514 Chapter 25 � CORDIC Architectures for FPGA Computing

design considerations for quantizing the datapath and selecting a suitable
number of iterations are provided. Approaches for architecting FPGA CORDIC
processors are then presented. Various options are discussed that highlight
the use of FPGA features such as embedded multipliers, embedded multiply–
accumulator (MACC) tiles, and logic fabric to deliver hardware realizations that
provide various trade-offs between throughput, latency, logic fabric utilization,
and numerical accuracy. A brief overview of the System Generator [38] design
flow used to produce our implementations is also provided. Design considera-
tions for producing very high throughput (450–500 MHz) implementations in
Virtex-4 [41] devices are presented as well.

25.1 CORDIC ALGORITHM

The CORDIC algorithm was first published by Volder [35] in 1959 as a technique
for efficiently implementing the trigonometric functions required for real-time
aircraft navigation. Since first being published, the method has been extensively
analyzed and extended to the point where a very rich set of functions is acces-
sible from the one basic set of equations. The algorithm is dominated by bit
shifts and additions and so was an ideal match for early-generation compu-
ting technology in which multiplication and division were expensive in terms of
computation time and physical resources. Volder essentially presented iterative
techniques for performing translations between Cartesian and polar coordinate
systems (vectoring mode), and a method for realizing a plane rotation (rotation
mode) using a series of arithmetic shifts and adds.

Since its publication, the CORDIC algorithm has been applied to many diffe-
rent applications and has been used as the cornerstone of the arithmetic engine
in many VLSI signal-processing implementations [34]. It has been used exten-
sively for computing various types of transforms, including the fast Fourier
transform (FFT) [10,11], the discrete cosine transform [4], and the discrete Hart-
ley transform [3]. And it has found widespread use in realizing various classes
of digital filters, including Kalman filters [31], adaptive lattice structures [21],
and adaptive nulling [30]. A large body of work has been published on CORDIC-
based approaches for implementing various types of linear algebra operations,
including singular value decomposition (SVD) [1], Given’s rotations [30], and
QRD-RLS (recursive least squares) filtering [14].

A brief tutorial style treatment of the basic algorithm is provided here; its
FPGA implementation will be discussed in subsequent sections.

25.1.1 Rotation Mode
The CORDIC algorithm has two basic modes: vectoring and rotation. These
can be applied in several coordinate systems, including circular, hyperbolic, and
linear, to compute various functions such as atan2, sine, cosine, and even divi-
sion. We begin our treatment by considering the problem of constructing an effi-
cient method to realize a plane rotation of the vector (xs, ys) through an angle
θ to produce a vector

(

xf, yf
)

, as shown in Figure 25.1.

25.1 CORDIC Algorithm 515

(xs, ys)
Input vector

y Rotated vector
(xf, yf)

x

�

FIGURE 25.1 � Plane rotation of the vector (xs, ys) through an angle θ.

The rotation is formally captured in matrix form by equation 25.1.
[

xf
yf

]

=
[

cosθ −sinθ
sinθ cosθ

][
xs
ys

]

= ROT (θ)
[

xs
ys

]

(25.1)

which can be expanded to the set of equations in equation 25.2.

xf = xs cosθ−ys sinθ
yf = xs sinθ + ys cosθ (25.2)

The development of a simplified approach for producing rotation through the
angle θ begins by considering it not as one lumped operation but as the result
of a series of smaller rotations, or micro-rotations, through the set of angles αi
where

θ =
∞

∑
i=0

αi (25.3)

The rotation can now be cast as a product of smaller rotations, or

ROT (θ) =
∞

∏
i

ROT (αi) (25.4)

If these values αi are carefully chosen, we can provide a very efficient compu-
tation structure. Equation 25.2 can be modified to reflect a micro-rotation
ROT (αi), leading to equation 25.5.

xi+1 = xi cosαi −yi sinαi
yi+1 = xi sinαi +yi cosαi

(25.5)

where (x0, y0) = (xs, ys). Factoring permits the equations to be expressed as

xi+1 = cosαi (xi −yi tanαi)
yi+1 = cosαi (yi +xi tanαi)

(25.6)

516 Chapter 25 � CORDIC Architectures for FPGA Computing

which positions the iterative update as the product of two procedures: a scaling
by the cosαi term and a similarity transformation, or scaled rotation.

The next significant step that leads to an algorithm that lends itself to an
efficient hardware realization is to place restrictions on the values that αi can
take. If

αi = tan−1
(

σi2
−i

)

(25.7)

where σi ∈ {−1, +1}, then equation 25.6 can be written as

xi+1 = cosαi
(

xi −σiyi2−i
)

yi+1 = cosαi
(

yi + σixi2−i
) (25.8)

The purpose of σi will be explained shortly.
With the exception of the scaling term, these equations can be implemented

using only additions, subtractions, and shifts. In the set of equations that are
typically presented as the CORDIC iterations, and following the lead of Volder
[35], the scaling term is usually excluded from the defining equations to produce
the modified set of equations

xi+1 = xi −σiyi2−i

yi+1 = yi + σixi2−i (25.9)

To determine the value of these σi we introduce a new variable, z (the angle
variable). The recurrence on z is defined by equation 25.10.

zi+1 = zi −σi tan−1
(

2−i
)

(25.10)

If the z variable is initialized with the desired angle of rotation θ—that is,
z0—it can be driven to 0 by conditionally adding or subtracting terms of the
form tan−1

(

2−i
)

from the state variable z. The conditioning is captured by the
term σi as a test on the sign of the current state of the angle variable zi—that is,

σi =
{

1 if zi ≥ 0
−1 if zi < 0

(25.11)

Driving z to 0 is actually an iterative process for decomposing θ into a
weighted linear combination of terms of the form tan−1

(

2−i
)

. As z goes to 0,
the vector (x0, y0) experiences a sequence of micro-rotation extensions that in
the limit n → ∞ converge to the coordinates

(

xf, yf
)

.

25.1 CORDIC Algorithm 517

The complete algorithm is summarized in equation 25.12.

i = 0

x0 = xs

y0 = ys

z0 = θ (25.12)

xi+1 = xi −σiyi2
−i

yi+1 = yi + σixi2
−i

zi+1 = zi −σi tan−1
(

2−i
)

σi =
{

1 if zi ≥ 0
−1 if zi < 0

which is easily realized in hardware because of the simple nature of the
arithmetic required. The only complex function is the tan−1, which can be pre-
computed and stored in a memory.

Because of the manner in which the updates are directed, this mode of the
CORDIC algorithm is sometimes referred to as the z-reduction mode. Figure 25.2
shows the signal flow graph for the algorithm. Observe the butterfly-style archi-
tecture in the cross-addition update.

25.1.2 Scaling Considerations
Because the scaling term cosαi has not been carried over into equation 25.12,
the input vector (x0, y0) not only undergoes a rotation but also experiences sca-
ling or growth by a factor 1/cosαi at each iteration. That is,

Ri+1 = Kc,iRi =
1

cosαi
Ri =

(

1 + σ2
i 2−2i

)1/2
Ri

=
(

1+2−2i
)1/2

Ri

(25.13)

where Ri = |xi + jyi| designates the modulus of the vector at iteration i, and the
subscript c associates the scaling constant with the circular coordinate system.

Figure 25.3 illustrates the growth process at each of the intermediate CORDIC
iterations as (x0, y0), which is translated to its final location

(

xf, yf
)

. For an infi-
nite number of iterations the scaling factor is

Kc =
∞

∏
i=0

(

1 +2−2i
)1/2

≈1.6468 (25.14)

It should also be noted that, since σi ∈ {−1, +1}, the scaling term is a constant
that is independent of the angle of rotation.

As captured by equation 25.4, the angle of rotation θ is decomposed into
an infinite number of elemental angles αi, which implies that an infinite num-
ber of iterations is theoretically required. In practice, a finite number of iter-
ations, n, is selected to make the system realizable in software or hardware.
Application of n iterations translates (x0, y0) to (xn, yn) rather than to

(

xf, yf
)

518 Chapter 25 � CORDIC Architectures for FPGA Computing

Barrel shifter

z21

z21

22i

22i

x0

y0

xi11

yi11

xi

yi

z21 SGN
2

2

ROM
tan21(22i)

i

Micro-rotation angle
storage

Initial
condition �

Unit delay
(register)

Multiply Adder

z21

FIGURE 25.2 � A signal flow graph for CORDIC vector rotation.

x

y

(x0, y0)
Input vector

(x1, y1)

(x2, y2)

(x3, y3)

(xn, yn)

(xf, yf)

ˆ

Final rotation after
infinite number of
iterations

Final rotation after
n iterations

an21

�

�

FIGURE 25.3 � Each iteration of a CORDIC rotation introduces vector growth by a factor of
1

cosαi
=

(

1+σ2
i 2−2i

)1/2
.

25.1 CORDIC Algorithm 519

as shown in Figure 25.3. The rotation error
∣
∣arg

(

xf + jyf
)−arg(xn + jyn)

∣
∣ has

an upper bound of αn−1, which is the smallest term in the weighted linear
expansion of θ.

For an infinite-precision arithmetic implementation of the system of equa-
tions, each iteration contributes one additional effective fractional bit to the
result. Most hardware implementations of the CORDIC algorithm are realized
using fixed-point arithmetic, and, as will be discussed soon, the relationship
between the number of effective output binary result digits is very different from
that of a floating-point realization of the algorithm.

25.1.3 Vectoring Mode
The CORDIC vectoring mode is most commonly used for implementing a con-
version from a rectangular to a polar coordinate system. In contrast to rotation
mode, where Z is driven to 0, in the vectoring mode the initial vector (x0, y0)
is rotated until the y component is driven to 0. The modification to the basic
algorithm required to accomplish this goal is to direct the iterations using the
sign of yi. As the y variable is reduced, the corresponding angle of rotation is
accumulated in the z register. The complete vectoring algorithm is captured by
equation 25.15.

i = 0

x0 = xs

y0 = ys

z0 = 0

xi+1 = xi −σiyi2
−i (25.15)

yi+1 = yi + σixi2
−i

zi+1 = zi −σi tan−1
(

2−i
)

σi =
{

1 if yi < 0
−1 if yi ≥ 0

This CORDIC mode is commonly referred to as y-reduction mode.
Figure 25.4 shows the results of a CORDIC vector mode simulation for

arg(xs + jys) = 7π/8 and |xs + jys| = 1. The top plot (a) shows the true angle of the
input vector (solid line) overlaid with arg(xi + jyi) , i = 1, . . .,16. We note the oscilla-
tory behavior of (xi, yi) about the true value of the angle. Overdamped or under-
damped behavior will be produced depending on the system initial conditions.
The lower plot (b) shows, for this case of initial conditions, how rapidly the
algorithm can converge toward the correct solution. In fact, for many practical
applications, a short CORDIC (small number of iterations) produces acceptable
performance.

For example, in a 16-QAM (quadrature amplitude modulation) carrier reco-
very circuit [29] employing a Costas Loop [23], a 5-iteration CORDIC usually
provides adequate performance [12].

520 Chapter 25 � CORDIC Architectures for FPGA Computing

2 4 6 8 10 12 14 16

2.4

2.6

2.8

Iteration number

(a)
A

ng
le

 (
ra

di
an

s)

0 2 4 6 8 10 12 14 16
0.2

0

0.2

Iteration number

(b)

%
 A

ng
le

 e
rr

or

FIGURE 25.4 � Convergence of CORDIC vectoring. The top plot (a) shows the true angle of the
input vector arg(xs + jys) (solid line) overlaid with arg(xi + jyi), i = 1,. . .,16. The bottom plot
(b) is the percentage angle error as a function of the iteration number.

25.1.4 Multiple Coordinate Systems and a Unified Description
Alternative versions of the CORDIC engine can be defined under the circular,
hyperbolic, and linear coordinate systems [13]. These use a computation similar
to that of the basic CORDIC algorithm, but can provide additional functions. It
is possible to capture the vectoring and rotation modes of the CORDIC algorithm
in all three coordinate systems using a single set of unified equations. To do this
a new variable, m, is introduced to identify the coordinate system so that

m =

⎧

⎨

⎩

+1 circular coordinates
0 linear coordinates

−1 hyperbolic coordinates
(25.16)

The unified micro-rotation is

xi+1 = xi −mσi yi2
−i

yi+1 = yi + σixi2
−i (25.17)

zi+1 =

⎧

⎨

⎩

zi −σi tan−1
(

2−i
)

if m = 1
zi −σitan h−1 (

2−i
)

if m = −1
zi −σi

(

2−i
)

if m = 0

The scaling factor is Km,i =
(

1+m2−2i
)1/2

.

25.1 CORDIC Algorithm 521

TABLE 25.1 � Functions computed by a CORDIC processor for the circular (m = 1),
hyperbolic (m = −1), and linear (m = 0) coordinate systems

Coordinate system Rotation/vectoring Initialization Result vector

1 Rotation x0 = xs xn = K1,n · (xs cosθ− ys sinθ)
y0 = ys yn = K1,n · (ys cosθ + xs sinθ)
z0 = θ zn = 0
x0 = 1

/

K1,n xn = cosθ
y0 = 0 yn = sinθ
z0 = θ zn = 0

1 Vectoring x0 = xs xn = K1,n · sgn(x0) · (√x2 + y2
)

y0 = ys yn = 0
z0 = θ zn = θ + tan−1 (ys/xs)

0 Rotation x0 = xs xn = xs

y0 = ys yn = ys + xsys

z0 = zs zn = 0
0 Vectoring x0 = xs xn = xs

y0 = ys yn = 0
z0 = zs zn = zs + ys/xs

−1 Rotation x0 = xs xn = K−1,n · (xs coshθ + ys sinhθ)
y0 = ys yn = K−1,n · (ys coshθ + xs sinhθ)
z0 = θ zn = 0
x0 = 1

/

K−1,n xn = coshθ
y0 = 0 yn = sinhθ
z0 = θ zn = 0

−1 Vectoring x0 = xs xn = K−1,n · sgn(x0) · (√x2 − y2
)

y0 = ys yn = 0
z0 = θ zn = θ + tanh−1 (ys/xs)

TABLE 25.2 � CORDIC shift sequences, ranges of covergence, and scale factor
bound for circular, linear, and hyperbolic coordinate systems

Coordinate system Shift sequence Convergence Scale factor

m sm,i θMAX Km (n → ∞)
1 0, 1, 2, 3, 4,. . ., i,. . . ≈1.74 ≈1.64676
0 1, 2, 3, 4, 5,. . ., i+1,. . . 1.0 1.0
–1 1, 2, 3, 4, 4, 5,. . .* ≈1.13 ≈0.83816

∗ For m = −1, the following iterations are repeated: {4,13,40,121, . . .,k,3k +1, . . .}.

Operating the two modes in the three coordinate systems, in combination
with suitable initialization of the algorithm variables, generates a rich set of
functions, shown in Table 25.1. Table 25.2 summarizes the shift sequences,
maximum angle of convergence θMAX (elaborated on in a later section), and

522 Chapter 25 � CORDIC Architectures for FPGA Computing

scaling function for the three coordinate systems. Note that each system requires
slightly different shift sequences (the sequence of i values).

25.1.5 Computational Accuracy
One of the first design requirements for the fixed-point arithmetic implementa-
tion of a CORDIC processor is to define the numerical precision requirements
of the datapath. This includes defining the numeric representation for the input
operands and the processing engine internal registers, in addition to the num-
ber of micro-rotations that will be required to achieve a specified numerical
quality of result. To guide this process it is useful to have an appreciation for
the sources of computation noise in CORDIC arithmetic. While CORDIC pro-
cessing can be realized with floating-point arithmetic [2,7], we will restrict our
discussion to fixed-point arithmetic implementations, as they are the most com-
monly used numeric type employed in FPGA realizations.

Two primary noise sources are to be considered. One is associated with the
weighted and finite linear combination of elemental angles that are used to rep-
resent the desired angle of rotation θ; the second source is associated with the
rounding of the datapath variables x, y, and z. These noise sources are referred
to as the angle approximation and the rounding error, respectively.

Angle approximation error
In this discussion we assume that all finite-precision quantities are represented
using fixed-point 2’s complement arithmetic, so the value F of a normalized
number u represented using m binary digits (um−1uu−2. . . u0) is

F = −um−1 +
m−2

∑
j=0

uj ·2−m+j+1 (25.18)

As will be presented next, there is a requirement in the CORDIC algorithm to
accommodate bit growth in both the integer and fractional fields of the x and y
variables. To accommodate this, the data format is enhanced with an additional
GI and GF integer and fractional guard bits, respectively, so that a number with
BI + GI and BF + GF bits allocated to the integer and fractional fields s and r,
respectively

(

sBI+GI−1sBI+GI−2 . . . s0rBF+GF−1rBF+GF−2. . . r0
)

, is expressed as

F = −rBI+GI−1 ·2BI+GI−1 +
BI+GI−2

∑
j=0

sj ·2j +
BF+GF−1

∑
j=0

rj ·2−(BF+GF)+j (25.19)

Figure 25.5 illustrates the extended data format. The integer guard bits are
necessary to accommodate the vector growth experienced when operating in
circular coordinates. The fractional guard bits are required to support the word
growth that occurs in the fractional field of the x and y registers due to the
successive arithmetic shift-right operations employed in the iterative updates.
It is assumed that the input samples are represented as normalized (1 · BF)
quantities.

25.1 CORDIC Algorithm 523

BF GFBI

MSBs
guard bits

GI

Fractional
guard bits

Binary-point

Input data
format

FIGURE 25.5 � The fractional fixed-point data format used for internal storage in the quantized
CORDIC algorithm.

There are n fixed rotation angles αm,i employed to approximate a desired
angle of rotation θ. Neglecting all other error sources, the accuracy of the calcu-
lation is governed by the nth and final rotation, which limits the angle approx-
imation error to αm,n−1. Because αm,n−1 = 1√

m tan−1
(√

m ·2−sm,n−1
)

, the angle
approximation error can be made arbitrarily small by increasing the number
of micro-rotations n. Of course, the number of bits allocated to represent the
elemental angles αm,i needs to be sufficient to support the smallest angle αm,n−1.
The number representation defined in equation 25.19 results in a least signif-
icant digit weighting of 2−(BF+GF). Therefore, αm,n−1 ≥ 2−(BF+GF) must hold in
order to represent αm,n−1. Approximately n + 1 iterations are required to gene-
rate BF significant fractional bits.

Datapath rounding error
As discussed earlier, most FPGA realizations of CORDIC processors employ
fixed-point arithmetic. The update of the x, y, and z state variables according
to equation 25.12 produces a dynamic range expansion, which is ideally sup-
ported by precisions that accommodate the worst-case bit growth. The number
of additional guard bits beyond the original precision of the input operands
can be very large, and carrying these additional bits in the datapath is gene-
rally impractical. For example, in the circular mode of operation the number
of additional fractional bits required to support a full-precision calculation is
determined by the sum of the shift sequence sm,i.

If the input operands are presented as a 16.15 value (a 16-bit field width with
15 fractional bits) and 16 micro-rotations are performed, the bit growth for the

fractional component of the datapath is
15
∑
i=0

i = 120 bits. Thus, the total number

of fractional bits required for a full-precision calculation is 120+15 = 135. While
FPGAs certainly provide the capability to support arbitrary precision arithmetic,
it would be highly unusual to construct a CORDIC processor with such a wide
datapath. In fact, the error in the CORDIC result vector can be maintained to a
desired value using far few fractional guard bits, as discussed next.

Rather than by accommodating the bit growth implied in the algorithm, the
dynamic range expansion is better handled by rounding the newly computed
state variables. Control over wordlength can be achieved using unbiased
rounding, simple truncation, or other techniques [26]. True rounding, while the

524 Chapter 25 � CORDIC Architectures for FPGA Computing

preferred approach because of the smaller error introduced when compared to
truncation, can be the most area consuming because a second addition is poten-
tially required. In some cases, the cost of rounding can be significantly reduced
by exploiting the carry-in port of the adders used in the implementation. Trun-
cation is obviously the simplest approach, requiring only the extraction of a
bit field from the full-precision value, but it introduces an undesirable positive
bias in the final result and an error component that is twice the magnitude of
unbiased rounding. Nevertheless, truncation arithmetic is the option most fre-
quently employed in FPGA CORDIC datapath design.

A simple approach to understanding the quantization effects of the CORDIC
algorithm was first presented by Walther [36]. A very complete analysis was later
published by Hu [16], with further work reported by Park and Cho [28] and Hu
and Bass [17].

For many practical applications Walther’s method produces acceptable
results, and this is the approach we will use to design the FPGA implemen-
tations. A brief summary of the method is presented here.

Analysis of the rounding error for the z variable is straightforward because
there are no data shifts involved in the state update, as there are with the x and
y variables. The rounding error is simply due to the quantization of the rotation
angles. The upper bound on the error is then the accumulation of the absolute
values of the rounding errors for the quantized angles αm,i.

Datapath pruning and its associated quantization effects for the x and y varia-
bles is certainly a more challenging analysis than that for the angle variable
because the scaling term involved in the cross-addition update. Nevertheless,
several extensive treatments have been published. The effects of error propa-
gation in the algorithm were reported by Hu in a Cray Research publication [5]
and later extended by Hu and Bass [17]. Walther’s treatment takes a slightly
simplified approach and assumes that the maximum rounding error for n itera-
tions is the sum of the absolute value of the maximum rounding error associated
with each micro-rotation and the subsequent quantization that is performed to
control word growth.

The format for the CORDIC variables was shown in Figure 25.5. B = BI +BF +
GF +GI bits are used to for internal storage, with BF +GF of these bits assigned to
the fractional component of the representation. The maximum error for one iter-
ation is therefore of magnitude 2−(BF+GF). In the simplified analysis, the round-
ing error e (n) in the final result, and after all n iterations, is simply n times this
quantity, which is e (n) = n2−(BF+GF). If BF accurate fractional bits are required
in the result word, the required resolution is 2−(BF−1). If BF is selected such that
e(n) ≤ 2−BF , the datapath quantization can effectively be ignored. This implies
that n2−(BF+GF) ≤ 2−BF , which requires BF ≥ log2 (n). Therefore, GF = �log2 (n)	
fractional guard bits are required to produce a result that has an accuracy of BF
fractional bits. This simplified treatment of the computation noise is a reason-
able approximation that can help guide the definition of the datapath width
required to meet a specified numerical fidelity.

Figure 25.6 shows the results of a simulation using different data representa-
tions for the x, y, and z variables of a CORDIC vectoring algorithm in circular

25.1 CORDIC Algorithm 525

4 6 8 10 12 14
3

4

5

6

7

8

9

10

11

12

Number of iterations

E
ffe

ct
iv

e
re

su
lt

bi
ts

 –
 u

log2 (n) fractional guard bits

BF5 3

BF5 4

BF5 5

BF5 6

BF5 7

BF5 8

BF5 9

BF5 10

BF5 10

BF5 12

BF5 13

BF5 14

BF5 15

BF5 16

BF5 17

BF5 18

BF5 19

BF5 20

12 14 16 18 20 22 24

12

14

16

18

20

Number of iterations

E
ffe

ct
iv

e
re

su
lt

bi
ts

 –
 u

log2(n) fractional guard bits

FIGURE 25.6 � The effiective number of result bites for a CORDIC vector processor (circular coordinates).
The number of fractional guard bites is GF = �log2(n)	.

coordinates. Unit modulus complex vectors with random angles were generated
and projected onto the CORDIC input sample (x0, y0). Each sample point in
the plot represents the maximum absolute error of the angle estimate resulting
from 4000 trials. We note that in all of the simulations the effective number of
fractional output bits is matched to the number of fractional bits in the input
operand.

The simplified treatment of the rounding noise generated in the update equa-
tions is certainly pessimistic and produces a requirement on the number of
guard bits that is biased slightly higher than what might typically be required.

Selecting GF = �log2 (n)	 is certainly a safe, if not a slightly overengineered,
choice. In the context of an FPGA realization, an additional bit of precision
carried by the variables has almost negligible impact on the area and maximum
operating clock frequency of the design.

An additional observation from the plots in Figure 25.6 is that the production
of BF effective output digits requires more iterations than the BF + 1 iterations
required for a full floating-point implementation—an additional three iterations
are, in general, necessary. The implication of this is that two additional bits must
be allocated to represent the elemental angles to provide the angle resolution
implied by the adjusted iteration count.

Defining the number of guard bits GI is very straightforward based on the
number of integer bits BI in the input operands, the coordinate system to be
employed (e.g., circular, hyperbolic, or linear), and the mode (vectoring or rota-
tion). For example, if the input data is in standard 2’s complement format and
bounded by ±1, then BI = 1. This means that the l2 norm of the input (x0, y0)
is

√
2. For the CORDIC vectoring mode, the range extension introduced by the

iterations is approximately K1 ≈1.6468 for any reasonable number of iterations.
The maximum that the final value of the x register can assume is approximately√

2 ·1.6468≈2.3289, which requires that GI = 2.

526 Chapter 25 � CORDIC Architectures for FPGA Computing

TABLE 25.3 � Number of rotations and required CORDIC processor datapath format
required to achieve a desired number of effective output bits

Number of effective Internal storage data Internal storage data
fractional result bits Micro-rotations: n format: x and y format: z

8 10 (15.12) (15.14)
12 15 (19.16) (19.18)
16 19 (24.21) (24.23)
24 27 (32.29) (32.31)

Based on this approach, a reasonable procedure for selecting the number of
CORDIC micro-rotations and a suitable quantization for the x, y, and z vari-
ables, given the effective number of fractional bits required in the output, is the
following:

1. Define the number of iterations as n = BF +3.
2. Select the field width for the x and y variables as 2 + BI + BF + log2 (n) for

the vectoring mode in circular coordinates—BF + log2 (n) of these bits are
of course allocated to the fractional component of the register.

3. Select the fractional precision of the angle register z to be BF + log2 (n)+2,
while maintaining 1 bit for the integer portion of the register.

4. Apply similar reasoning to select n and GI for the other coordinate systems
and modes.

Based on this approach, Table 25.3 shows the number of micro-rotations n
and the internal data storage format corresponding to 8, 12, 16, 24, and 32
effective fractional result bits. The notation (p ·q) indicates a bit field width of
p bits, with q of these bits allocated to the fractional component of the value.

25.2 ARCHITECTURAL DESIGN

There are many hardware architecture options to evaluate when considering
FPGA CORDIC datapath implementation. A particular choice is determined by
the design specifications of numerical accuracy, throughput, and latency. At the
highest level are key architectural decisions on whether a folded [27] or fully
parallel [27] pipelined (or nonpipelined) architecture is to be used. At a lower,
technology-specific level, FPGA features associated with a particular FPGA fam-
ily are also a factor in the decision process. For example, later-generation FPGAs
such as the Virtex-4 family [41] include an array of arithmetic units called
the XtremeDSP Slice [43] (referred to as the DSP48 in the remainder of the
chapter).

As discussed later, a CORDIC implementation can be realized that is mostly
based on the DSP48 embedded tile. Thus, with this particular family of devices

25.3 FPGA Implementation of CORDIC Processors 527

the designer has a choice of producing an implementation that is completely
logic slice based [40] or biased toward the use of DSP48 elements. The process
that guides such decisions is elaborated in the next section.

25.3 FPGA IMPLEMENTATION OF CORDIC PROCESSORS

One of the elegant properties of FPGA computing is the ability to construct a
compute engine closely tailored to the problem specifications, including pro-
cessing throughput, latency, and numerical accuracy. Consider, for example, the
throughput requirement. At one end of the architecture spectrum, and when
modest processing rates are involved, a fully folded [27] implementation, where
the same logic is used for all iterations (folding factor = n), is one option. In this
case, new operands are delivered, and a new result vector is produced, every n
clock cycles. This choice of implementation results in the smallest FPGA foot-
print at the expense of processing rate. If a high-throughput unit is required, a
fully parallel, or completely unfolded implementation (folding factor = 1) that
allocates a complete hardware PE to each iteration is appropriate. This will of
course result in the largest area, but provides the highest compute rate.

25.3.1 Convergence
One of the design considerations for the CORDIC engine is the region of con-
vergence that needs to be supported by the implementation, as the basic form
of the algorithm does not converge for all input coordinates. For the rotation
mode, the CORDIC algorithm converges provided that the absolute value of the
rotation angle is no larger than θMAX ≈ 1.7433 radians, or approximately 99.88◦.

In many applications we need to support input arguments that span all four
quadrants of the complex plane—that is, a so-called full-range CORDIC. Much
published work addresses this requirement [8, 19, 25], and many elegant exten-
sions to the basic set of CORDIC iterations have been produced. Some of them
introduce additional iterations and, while maintaining the basic shift-and-add
property of the algorithm, result in a significant time or area penalty.

The most straightforward approach for handling the convergence issue in
FPGA hardware is to first note that the natural range of convergence extends
beyond the angle π/2. That is, the basic set of equations converges over the inter-
val [−π/2, π/2]. To extend the implementation to converge over [−π, π], we can
simply detect when the input angle extends beyond the first quadrant, map that
angle to either the first or fourth quadrants, and make a post-micro-rotation cor-
rection to account for the input angle mapping. This architecture is illustrated
in Figure 25.7.

The input mapping is particularly simple. Referring to Figure 25.7, if x0 is
negative, the quadrants must be changed by applying a± π/2 (±90◦) rotation.
Whether it is a positive or negative rotation is determined by the sign of y0. To
compensate for the input mapping, an angle rotation is conditionally applied to
the micro-rotation engine result z′n to produce the final output value zn. Details

528 Chapter 25 � CORDIC Architectures for FPGA Computing

Quadrant
mappingx0

y0
Micro-

rotation
engine

Quadrant
demapping

z2L1z0

z2L2

x90

y90

z9n

xn

yn

zn

Input quadrant mapping

(x0, y0)

y

x

(x90, y90) 5 (x0, y0)y

x

(x90, y90) 5 (x0, y0)

y

x

Quadrant
mapping
operator

(x90, y90) 5 (y0, 5 x0)

(x0, y0) y

x

(x90, y90) 5 (2y0, x0)

FIGURE 25.7 � A full-range CORDIC processor showing input quadrant mapping, micro-rotation
engine, and quadrant correction.

of the course angle rotator and matching quadrant correction circuit are shown
in Figure 25.8. The area cost for an FPGA implementation of the circuits is
modest [40].

25.3.2 Folded CORDIC
The folded CORDIC architecture allocates a single PE to service all of the
required micro-rotations. At one architectural extreme a bit-serial implemen-
tation employing a single 3-2 full adder, with appropriate control circuitry and
state storage, can address all of the required updates for x, y, and z. However,
our treatment employs a word-oriented architecture that associates unique func-
tional units (FU) with each of the x, y, and z processing engines, as shown in
Figure 25.9.

Multiple mapping options are available when projecting the dependency
graph onto an FPGA architecture. In the Xilinx Virtex-4 family [41], one option
for supporting the adder/subtractor FUs is to utilize the logic fabric and realize
these modules at the cost of one lookup table (LUT) per result digit. So for
example, the addition of two 16-bit operands to generate a 17-bit sum requires
17 LUTs. An alternative is to use the 48-bit adder in the DSP48 tile.

25.3 FPGA Implementation of CORDIC Processors 529

(a) (b)

M
U

X N

R1

R2

R3

Add/Sub

z

sgn(y0)

sgn(x0)

A1

�/2

n

zn

x0

y0 x0

x0

y0

y0
M

U
X

M
U

X

Register

N

N

R1

R2

R3

R4

R5

R6

R7

R8

0
1

2
Address 0Address 1

Address
bus Data

ROM

0

A1

A2

0

a 02a
≡

9

9
9

9

FIGURE 25.8 � A course angle rotator preceding a micro-rotation engine for a full-range CORDIC
processor (a). A post-micro-rotation quadrant correction circuit (b).

αm,si

xi

yi

xi 11

yi 11

zi 11
zi

i

Ax

Ay

Az

Bx

By

Mx

Mz

My

Mα

Rx

Ry

Rz

b

a ± ba

Directed
adder/subtractor

Adder/subtractor control a

i

a22i

Wire-based
barrel shifter

Finite-state machine
to generate direction
for adder/subtractor

Register Multiplexer

FIGURE 25.9 � A folded CORDIC architecture with separate functional units for each of the x, y, and z
updates. Only the micro-rotation engine is shown.

530 Chapter 25 � CORDIC Architectures for FPGA Computing

There are also several mapping options for the barrel shifter: It can be realized
in the logic fabric, with the multiplier in the DSP48 tile, or, for that matter, using
an embedded multiplier in any FPGA family that supports this architectural
component (e.g., Virtex-II Pro [39] or Spartan-3E [37]).

Consider a fabric-only implementation of a vectoring CORDIC algorithm in
circular coordinates. In this case all of the FUs are implemented directly in the
logic fabric. The FPGA area, AF, can be expressed as

AF = 3 ·aadd +2 ·abarrel +3 ·amux +aLUT +aQ +aQ−1 (25.20)

where aadd, abarrel, amux, aLUT, aQ, and aQ−1 correspond to the area of an
adder, barrel shifter, input multiplexer, elementary angle LUT, quadrant input
mapper, and output mapper circuits, respectively. The FPGA logic fabric is
designed to efficiently support the implementation of arbitrary-precision high-
speed adder/subtractors. Each configurable logic block (CLB) [41] includes ded-
icated circuitry that provides fast carry resolution, with the LUT itself producing
the half-sum.

The component that can be costly in terms of area is the barrel shifter. The
barrel shifter area cost can be much more significant than the aggregate cost of
the adder/subtractors used for updating the x, y, and z variables. For example,
in a design that supplies 16 effective result digits, the 2 barrel shifters occupy
an aggregate area of 226 LUTs while the adders occupy 74 LUTs in total. Here,
the barrel shifters have a footprint approximately three times that of the adders.

The barrel shifter area can be reduced if a multiplier-based barrel shifter is
used rather than a purely logic fabric–based implementation. FPGA families
such as Spartan-3E [37], Virtex-II Pro [39], and Virtex-4 [40] include an array
of embedded multipliers, which are useful for realizing arithmetic shifts. The
multiplier accepts 18-bit precision operands and produces a 36-bit result. When
used as a barrel shifter, one port of the multiplier is supplied with the input
operand that is to experience the arithmetic shift, while the second port accepts
the shift value 2i, where i is the iteration index. In a typical hardware implemen-
tation the iteration index rather than the exponentiated value is usually available
in the control plane that coordinates the operation of the circuit. The exponenti-
ation can be done via a small LUT implemented using distributed memory [40].
Multiple multiplier primitives can be combined with an adder to form a barrel
shifter that can support a wider datapath. For the previous example, multiplier
realization of the barrel shifter results in an FPGA footprint that is less than
half that of an entirely fabric-based implementation.

The folded CORDIC architecture is a recursive graph, which means that deep
pipelining cannot be employed to reduce the critical path. The structure can
accept a new set of operands, and produces a result every n clock cycles.

25.3.3 Parallel Linear Array
When throughput is the overriding design consideration, a fully parallel
pipelined CORDIC realization is the preferred architecture. With this approach

25.3 FPGA Implementation of CORDIC Processors 531

x0

y0

z0

xn

yn

zn

Mode

Adder/subtractor control
Mode control: vectoring/rotation

Registerb

a ± ba

Directed adder/
subtractor

Finite-state machine
to generate direction
for adder/subtractor

a

i

a22i

Wire-based
barrel shifter

αm,s0

0

αm,s1

1

αm,s2

2 i

αm,s0

n21

αm,si

FIGURE 25.10 � A programmable parallel pipelined CORDIC array. In a completely unfolded implementation,
the barrel shifters are realized as FPGA routing and so consume no resources other than interconnect.

the CORDIC algorithm is completely unrolled and each operation is projected
onto a unique hardware resource, as shown in Figure 25.10.

One interesting effect of the unrolling is that the data shifts required in the
cross-addition update can be realized as wiring between successive CORDIC
processing elements (PEs). Unlike the folded architecture, where either LUTs or
embedded multipliers are consumed to realize the barrel shifter, no resources
other than interconnect are required to implement the shift in the linear array
architecture. The only functional units required for each PE with this approach
are three adder/subtractors and a small amount of logic to implement the
control circuit that steers the add/subtract FUs. The micro-rotation angle for
each PE is encoded as a constant supplied on one arm of the adder/subtractor
that performs the angle update—no LUT resources are required for this. Note
in Figure 25.10 that the sign bit of the y and z variables is supplied to
the control circuit that is local to each processing engine. This permits the
architecture to operate in the y- or z-reduction configuration under the con-
trol of the Mode input control signal, and thus support vectoring or rotation,
respectively.

Figure 25.11(a) shows a comparison of the area functions for the parallel
and folded architectures. The folded implementation is entirely fabric based.
As expected, the area of the parallel design exhibits modest exponential growth
and, for an effective number of result digits greater than 15, occupies more than
three times the area of the folded architecture. For the case of 24 effective result
digits, the parallel design is larger by a factor of approximately 5. Figure 25.11(b)
contrasts the throughput of the two architectures. Naturally, the parallel design
has a constant throughput of one CORDIC operation per second for a normal-
ized clock rate of 1, while the throughput for the folded design falls off as the
inverse of the number of iterations.

532 Chapter 25 � CORDIC Architectures for FPGA Computing

10 15 20
0

500

1000

1500

2000

2500

Number of bits in datapath

A
re

a
LU

T
s

Folded
Parallel

10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

Effective number of result bits

C
O

R
D

IC
 o

pe
ra

tio
ns

/s
ec

on
d

(a) (b)

Folded
linear array

FIGURE 25.11 � (a) Comparison of the FPGA resource requirements for folded and linear array CORDIC
architectures—circular coordinates. (b) Throughput in rotations/vectoring operations per second for the two
architectures. A normalized clock rate of 1 is assumed.

The parallel design has a performance advantage of approximately an order
of magnitude for the number of effective result bits great than 10. In an FPGA
implementation the advantage is significantly more than this because of the
higher clock frequency that can be supported by the linear array compared to
the folded processor. With its heavy pipelining, the linear array typically achieves
an operating frequency approximately twice that of the folded architecture, so
for high-precision calculations—for example, on the order of 24 effective frac-
tional bits or greater—the parallel implementation has a throughput advantage
of approximately 50, which is delivered in a footprint that is only five times that
of the folded design.

The add/subtract FUs can be realized using the logic fabric or the 48-bit adder
that is resident in each DSP48 tile in the Virtex-4 class of FPGAs. The DSP48 [42]
is a dynamically configurable embedded processing block that supports over
40 different op-codes, optimized for signal-processing tasks. The logic fabric
approach tends to result in an implementation that operates at a lower clock
frequency than a fully pipelined version based on the DSP48. The DSP48-based
implementations can operate at very high clock frequencies—in the region of
500 MHz in the fastest “–12” speed-grade parts [40]. However, for a datapath
precision of up to 36 bits, three DSP48 tiles are required for each CORDIC
iteration (see Figures 25.12 and 25.13). For scenarios where throughput is the
overarching requirement, these resource requirements are acceptable.

A potential downside to the use of the DSP48 in this application is that
the multiplier colocated with the high-precision adder is not available for use
by another function if the adder is used by the CORDIC PE. This is because
the input and output ports of the block are occupied supporting the addi-
tion/subtraction and there is no I/O available to access other functions (such
as the multiplier) in the tile.

25.3 FPGA Implementation of CORDIC Processors 533

Mode control: vectoring/rotation

xi

48

1

4818

18

48 48

1

A

B

C

SUB

CAST
B

DSP48

48

48

1

4818

18

48 48

1

A

B

C

SUB

CAST
B

DSP48

48

48

1

4818

18

48 48

1

A

B

C

SUB

CAST
B

DSP48

48

SGN

yi
B

B

18

18

18

18

�m,i
18

18

CAST

CAST

CAST
48

CAST
48

zi

i

xi11

yi11

zi11

CORDIC PE i

x Engine

y Engine

z Engine

i

CAST
48

Fabric-
based
register

Finite-state machine
to generate direction
for adder/subtractor

Finite-state machine
to generate direction
for adder/subtractor

a

i

a22i

Wire-based
barrel shifter

Add/subtract control

b

a ± ba

Pipelined DSP48
adder/subtractor

σi
1 if zi $ 0

21 if zi , 0

Rotation mode

DSP48
internal
register

SGN
σi

5

1 if yi , 0

21 if yi $ 0

Vectoring mode

σi 5

FIGURE 25.12 � Processing element i of a Virtex-4 DSP48-based CORDIC processor.

Mode

x1

y1

z1

x1

y1

z1

x0

48

1

4818

18

48 48

1

A

B

C

SUB

CAST
B

DSP48

48

48

1

4818

18

48 48

1

A

B

C

SUB

CAST
B

DSP48

48

48

1

4818

18

48 48

1

A

B

C

SUB

CAST
B

DSP48

48

SGN

y0
B

B

18

18

18

18

�m,0
18

18

CAST

CAST

CAST
48

CAST

z0

0

CORDIC PE 0

x Engine

y Engine

z Engine

0

48

1

4818

18

48 48

1

A

B

C

SUB

CAST
B

DSP48

48

48

1

4818

18

48 48

1

A

B

C

SUB

CAST
B

DSP48

48

48

1

4818

18

48 48

1

A

B

C

SUB

CAST
B

DSP48

48

SGN

B

B

18

18

18

18

�m,1

18

18

CAST

CAST

CAST
48

CAST
48

1

CORDIC PE 1

x Engine

y Engine

z Engine

1

48

1

4818

18

48 48

1

A

B

C

SUB

CAST
B

DSP48

48

48

1

4818

18

48 48

1

A

B

C

SUB

CAST
B

DSP48

48

48

1

4818

18

48 48

1

A

B

C

SUB

CAST
B

DSP48

48

SGN

B

B

18

18

18

18

�m,n21
18

18

CAST

CAST

CAST
48

CAST
48

n21

n21

CORDIC PE n

x Engine

y Engine

z Engine

xn

yn

zn

48

CAST
48

CAST
48

CAST
48

FIGURE 25.13 � A programmable parallel pipelined CORDIC array based almost entirely on the Virtex-4 DSP48
embedded tile. Each DSP48 has three levels of pipelining. Additional fabric-based registers are included to
pipeline the routing between DSP48 tiles.

534 Chapter 25 � CORDIC Architectures for FPGA Computing

25.3.4 Scaling Compensation
As highlighted earlier, the rotation mode of the CORDIC algorithm produces a
rotation extension (i.e., it increases or decreases the distance of the point from
the origin) rather than a pure rotation. The growth associated with circular and
hyperbolic coordinate systems is approximately K1,n ≈ 1.6468 and K−1,n ≈ 0.8382,
respectively. In some applications this growth can be tolerated, and there is no
need to perform any compensation. For example, if the vectoring mode is used
to map the output vector of a discrete Fourier transform (DFT) from Cartesian
to polar coordinates in order to compute a magnitude spectrum, the CORDIC
scaling may not be an issue because all terms are similarly scaled. If the CORDIC
output is to be further processed, there might be an opportunity to absorb the
CORDIC scale factor in the postprocessing circuit. Continuing with the DFT
example, if the magnitude spectrum is to be compared with a threshold in order
to make a decision about a particular spectral bin, the CORDIC scaling can be
absorbed into the threshold value.

If the scaling cannot be tolerated, several scaling compensation techniques are
possible. Some approaches employ modified iterations [20, 32, 33] while others
exploit alternatives such as online arithmetic [6]. Some methods merge scaling
iterations with the basic CORDIC iterations [15], which result in either an area
penalty or a time penalty if the basic CORDIC hardware is to be used for both
the fundamental updates and the scaling iterations. It is also possible to employ
a modified set of elemental angles [9].

The problem of scaling compensation has been examined by many
researchers, and many creative and elegant results have been produced; how-
ever, the most direct way to accommodate the problem in an FPGA is to
employ its embedded multipliers. The architecture of a programmable and scale-
compensated CORDIC engine is shown in Figure 25.14. The Mode control signal
defines if a vectoring or rotation operation is to be performed. It essentially
controls if the iteration update is guided by the sign of the y or z variable for
vectoring or rotation, respectively. The Coordinate_System signal selects the
coordinate system for the processor: circular, hyperbolic, or linear. This con-
trol line selects the page in memory where the elemental angles are stored:
tan−1

(

2−i
)

, i = 0, . . ., n− 1 for circular; tanh−1 (

2−i
)

, i = 1, . . ., n for hyperbolic;
and

(

2−i
)

, i = 0, . . ., n− 1 for linear. Coordinate_System also indexes a small
memory located in FPGA distributed memory that stores the values 1/Km,n for
use by the scaling compensation multiplier M1. Naturally, the precision of these
constants should be commensurate with the number of effective result bits.

25.4 SUMMARY

This chapter provided an overview of the CORDIC algorithm and its imple-
mentation in current-generation FPGAs such as the Xilinx Virtex-4 family. The
basic set of CORDIC equations was first reviewed, and the utility of this simple
shift-and-add-type algorithm was highlighted by the many functions that can be
accessed through it. We also highlighted the fact that, while there are many
options for architecting math functions in hardware, the CORDIC approach

25.4 Summary 535

Quadrant
mappingx0

y0

Quadrant
demapping

z 2L1z0

z 2L2

x90

y90

z9n

Km,nxn

yn

zn

�1, i

�0, i

�21, i

Folded or parellel
CORDIC array

i

xi

yi

zi

xi 11

yi 11

zi 11

K0,n

K1,n

K21,n

Scaling factor
memory

Coordinate system

Mode
(vectoring/rotation)

M1

FIGURE 25.14 � A programmable CORDIC processor with multiplier-based scaling compensation.

comes into its own when multi-element input and output vectors are involved.
The functional requirements of the angle and cross-addition updates make it an
excellent match for FPGAs because of the utility and efficiency with which these
devices realize addition and subtraction.

Most hardware realizations of the CORDIC algorithm employ fixed-point
arithmetic, and this is certainly true of nearly all FPGA implementations. We
showed that it is therefore important to understand the effects of quantizing
the datapath. While this analysis can be complex [16], for most applications the
simplified approach first described by Walther [36] is suitable for most cases
and provides excellent results.

The FPGA implementation of a CORDIC processor would appear to be
straightforward. However, FPGA-embedded functions such as multipliers and
the DSP48 provide opportunities for architectural innovation and for design
trade-offs that satisfy design requirements. For example, embedded multipliers
can be exchanged for logic fabric with the implementation of the barrel shifter.
The wide 48-bit adder in the DSP48 can be used almost as the sole arithmetic
building block of a complete fully parallel CORDIC array.

References
[1] J. R. Cavallaro, F. T. Luk. CORDIC arithmetic for an SVD processor. Journal of

Parallel and Distributed Computing 5, 1988.
[2] J. R. Cavallaro, F. T. Luk. Floating-point CORDIC for matrix computations. Proceed-

ings of the IEEE International Conference on Computer Design: VLSI in Computers
and Processors, October 1988.

536 Chapter 25 � CORDIC Architectures for FPGA Computing

[3] L. W. Chang, S. W. Lee. Systolic arrays for the discrete Hartley transform. IEEE
Transactions on Signal Processing 29(11), November 1991.

[4] W. H. Chen, C. H. Smith, S. C. Fralick. A fast computational algorithm for
the discrete cosine Transform. IEEE Transactions on Communications C-25,
September 1977.

[5] Cray Research. Cray XD1 Supercomputer, http://www.cray.com/products/xd1/
index.html.

[6] H. Dawid, H. Meyer. The differential CORDIC algorithm: Constant scale factor
redundant implementation without correcting iterations. IEEE Transactions on
Computers 45(3), March 1996.

[7] A. A. J. de Lange, A. J. van der Hoeven, E. F. Deprettere, J. Bu. An optimal floating-
point pipeline CMOS CORDIC processor. IEEE Symposium on Circuits and Sys-
tems, June 1988.

[8] J. M. Delsme. VLSI implementation of rotations in pseudo-Euclidean spaces.
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing 2, 1983.

[9] E. Deprettere, P. Dewilde, R. Udo. Pipelined CORDIC architectures for fast VLSI
filtering and array processing. Proceedings of the ICASSP’ 84, 1984.

[10] A. M. Despain. Very fast Fourier transform algorithms for hardware implementa-
tion. IEEE Transactions on Computers C-28, May 1979.

[11] A. M. Despain. Fourier transform computers using CORDIC iterations. IEEE Trans-
actions on Computers 23, October 1974.

[12] C. Dick, F. Harris, M. Rice. FPGA implementation of carrier phase synchronization
for QAM demodulators. Journal of VLSI Signal Processing, Special Issue on Field-
Programmable Logic (R. Woods, R. Tessier, eds.), Kluwer Academic, January 2004.

[13] D. Ercegovac, T. Lang. Digital Arithmetic, Morgan Kaufmann, 2004.
[14] B. Haller, J. Gotze, J. Cavallaro. Efficient implementation of rotation operations for

high-performance QRD-RLS filtering. Proceedings of the International Conference on
Application-Specific Systems, Arthictectures and Processors, July 1997.

[15] G. H. Haviland, A. A. Tuszinsky. A CORDIC arithmetic processor chip. IEEE Trans-
actions on Computers c-29(2), February 1980.

[16] Y. H. Hu. The quantization effects of the CORDIC algorithm. IEEE Transactions
on Signal Processing 40, July 1992.

[17] X. Hu, S. C. Bass. A neglected error source in the CORDIC algorithm. IEEE Inter-
national Symposium on Circuits and Systems 1, May 1993.

[18] X. Hu, S. C. Bass. A neglected error source in the CORDIC algorithm. Proceedings
of the IEEE ISCAS, 1993.

[19] X. Hu, R. G. Garber, S. C. Bass. Expanding the range of convergence of the
CORDIC algorithm. IEEE Transactions on Computers 40(1), January 1991.

[20] J. Lee. Constant-factor redundant CORDIC for angle calculation and rotation. IEEE
Transactions on Computers 41(8), August 1992.

[21] Y. H. Liao, H. E. Liao. CALF: A CORDIC adaptive lattice filter. IEEE Transactions
on Signal Processing 40(4), April 1992.

[22] Mathworks, The, http://www.mathworks.com/.
[23] U. Mengali, A. N. D’Andrea. Synchronization Techniques for Digital Receivers,

Plenum Press, 1997.
[24] J. Mia, K. K. Parhi, E. F. Deprettere. Pipelined implementation of CORDIC-based

QRD-MVDR adaptive beamforming. IEEE Fourth International Conference on
Signal Processing, October 1998.

[25] J. M. Muller. Discrete basis and computation of elementary functions. IEEE Trans-
actions on Computers C-34(9), September 1985.

25.4 Summary 537

[26] B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs, Oxford
University Press, 2000.

[27] K. K. Parhi. VLSI Digital Signal Processing Systems Design and Implementation,
John Wiley, 1999.

[28] S. Y. Park, N. I. Cho. Fixed-point error analysis of CORDIC processor based on the
Variance Propagation Formula. IEEE Transactions on Circuits and Systems 51(3),
March 2004.

[29] J. G. Proakis, M. Salehi. Communication Systems Engineering, Prentice-Hall, 1994.
[30] C. M. Rader. VLSI systolic arrays for adaptive nulling. IEEE Signal Processing

Magazine 13(4), July 1996.
[31] T. Y. Sung, Y. H. Hu. Parallel VLSI implementation of Kalman filter. IEEE Trans-

actions on Aerospace and Electronic Systems AES 23(2), March 1987.
[32] N. Takagi. Redundant CORDIC methods with a constant scale factor for sine and

cosine computation. IEEE Transactions on Computers 40(9), September 1991.
[33] D. H. Timmerman, B. J. Hosticka, B. Rix. A new addition scheme and fast scaling

factor compensation methods for CORDIC algorithms. Integration, the VLSI Journal
(11), 1991.

[34] D. H. Timmerman, B. J. Hosticka, G. Schmidt. A programmable CORDIC chip for
digital signal processing applications. IEEE Journal of Solid-State Circuits 26(9),
September 1991.

[35] J. E. Volder. The CORDIC trigonometric computing technique. IRE Transactions
on Electronic Computers 3, September 1959.

[36] J. S. Walther. A unified algorithm for the elementary functions. AFIPS Spring Joint
Computer Conference 38, 1971.

[37] Xilinx Inc. Spartan-3E Datasheet, http://www.xilinx.com/xlnx/xweb/xil_publi-
cations_display.jsp?iLanguageID=1&category= /Data+Sheets/FPGA+Device+Families/
Spartan-3E.

[38] Xilinx Inc. System Generator for DSP, http://www.xilinx.com/ise/optional_prod/
system_generator.htm.

[39] Xilinx Inc. Virtex-II Pro Datasheet, http://www.xilinx.com/xlnx/xweb/xil_
publications_display.jsp?category=Publications/FPGA+Device+Families/Virtex-
II+Pro&iLanguageID=1.

[40] Xilinx Inc. Virtex-4 Datasheet, http://www.xilinx.com/xlnx/xweb/xil_publications_
display.jsp?sGlobalNavPick=&sSecondaryNavPick=&category=-1210771&iLanguage
ID=1.

[41] Xilinx Inc. Virtex-4 Multi-Platform FPGA, http://www.xilinx.com/products/silicon_
solutions/fpgas/virtex/virtex4/index.htm.

[42] Xilinx Inc. XtremeDSP Design Considerations Guide, http://www.xilinx.com/
products/silicon_solutions/fpgas/virtex/virtex4/capabilities/xtremedsp.htm.

[43] Xilinx Inc. XtremeDSP Slice, http://www.xilinx.com/products/silicon_solutions/
fpgas/virtex/virtex4/capabilities/xtremedsp.htm.

This page intentionally left blank

C H A P T E R 26

Hardware/Software Partitioning
Frank Vahid, Greg Stitt
Department of Computer Science and Engineering
University of California–Riverside

Field-programmable gate arrays (FPGAs) excel at implementing applications as
highly parallel custom circuits, thus yielding fast performance. However, large
applications implemented on a microprocessor may be more size efficient and
require less designer effort, at the expense of slower performance. In some
cases, mapping an entire application to a microprocessor satisfies performance
requirements and so is preferred. In other cases, mapping an application entirely
to custom circuits on FPGAs may be necessary to meet performance require-
ments. In many cases, though, the best implementation lies somewhere between
these two extremes.

Hardware/software partitioning, illustrated in Figure 26.1, is the process of
dividing an application between a microprocessor component (“software”) and
one or more custom coprocessor components (“hardware”) to achieve an
implementation that best satisfies requirements of performance, size, designer
effort, and other metrics.1 A custom coprocessor is a processing circuit that is
tailor-made to execute critical application computations far faster than if those
computations had been executed on a microprocessor.

FPGA technology encourages hardware/software (HW/SW) partitioning by
simplifying the job of implementing custom coprocessors, which can be done
just by downloading bits onto an FPGA rather than by manufacturing a new
integrated circuit or by wiring a printed-circuit board. In fact, new FPGAs even
support integration of microprocessors within an FPGA itself, either as separate
physical components alongside the FPGA fabric (“hard-core microprocessors”)
or as circuits mapped onto the FPGA fabric just like any other circuit (“soft-core
microprocessors”). High-end computers have also begun integrating micropro-
cessors and FPGAs on boards, allowing application designers to make use of
both resources when implementing applications.

Hardware/software partitioning is a hard problem in part because of the
large number of possible partitions. In its simplest form, hardware/software
partitioning considers an application as comprising a set of regions and maps

1 The terms software, to represent microprocessor implementation, and hardware, to represent
coprocessor implementation, are common and so appear in this chapter. However, when imple-
mented on FPGAs, coprocessors are actually just as “soft” as programs implemented on a micro-
processor, with both consisting merely of a sequence of bits downloaded into a physical device,
leading to a broader concept of “software.”

540 Chapter 26 � Hardware/Software Partitioning

Application

Microprocessor

Memory

Custom
processors

FIGURE 26.1 � A diagram of hardware/software partitioning, which divides an application bet-
ween a microprocessor component (“software”) and custom processor components (“hardware”).

each region to either software or hardware such that some cost criteria (e.g.,
performance) is optimized while some constraints (e.g., size) are satisfied.

A partition is a complete mapping of every region to either hardware or
software. Even in this simple formulation, the number of possible partitions can
be enormous. If there are n regions and there are two choices (software or hard-
ware) for each one, then there are 2n possible partitions. A mere 32 regions yield
over 4 billion possibilities. Finding the optimal partition of this simple form is
known to be NP-hard in general. Many other factors contribute to making the
problem even harder, as will be discussed.

This chapter discusses issues involved in partitioning an application among
microprocessor and coprocessor components. It considers two application
categories: sequential programs, where an application is a program written in
a sequential programming language such as C, C++, or Java and where parti-
tioning maps critical functions and/or loops to coprocessors; and parallel pro-
grams, where an application is a set of concurrently executing tasks and where
partitioning maps some of those tasks to coprocessors.

While designers today do mostly manual partitioning, automating the process
has been an area of active study since the early 1990s (e.g., [10, 15, 26]) and
continues to be intensively researched and developed. For that reason, we will
begin the chapter with a discussion of the trend toward automatic partitioning.

26.1 THE TREND TOWARD AUTOMATIC PARTITIONING

Traditionally, designers have manually partitioned applications between micro-
processors and custom coprocessors. Manual partitioning was in part
necessitated by radically different design flows for microprocessors versus
coprocessors. A microprocessor design flow typically involved developing code

26.1 The Trend Toward Automatic Partitioning 541

in programming languages such as C, C++, or Java. In sharp contrast, a
coprocessor design flow may have involved developing cleverly parallelized
and/or pipelined datapath circuits, control circuits to sequence data through
the datapath, memory circuits to enable rapid data access by the data-
path, and then mapping those circuits to a particular ASIC technology. Thus,
manual partitioning was necessary because partitioning was done early in the
design process, well before a machine-readable or executable description of an
application’s desired behavior existed. It resulted in specifications for both the
software design and the hardware design teams, both of which might then have
worked for many months developing their respective implementations.

However, the evolution of synthesis and FPGA technologies is leading
toward automated partitioning because the starting point of FPGA design has
been elevated to the same level as that for microprocessors, as shown in
Figure 26.2.

Current technology enables coprocessors to be realized merely by down-
loading bits onto an FPGA. Downloading takes just seconds and eliminates
the months-long and expensive design step of mapping circuits to an ASIC.
Furthermore, synthesis tools have evolved to automatically design coproces-
sors from high-level descriptions in hardware description languages (HDLs),
such as VHDL or Verilog, or even in languages traditionally used to program
microprocessors, such as C, C++, or Java. Thus, designers may develop a single
machine-readable high-level executable description of an application’s desired
behavior and then partition that description between microprocessor and copro-
cessor parts, in a process sometimes called hardware/software codesign. New

Implementation

Assembly code

Micro-processor machine code Coprocessor FPGA bitstream

Logic equations / FSMs

Register transfersCompilation

Assembling, linking

Behavioral synthesis
(1990s)

RT synthesis
(1980s, 1990s)

Logic synthesis, physical design
(1970s, 1980s)

Microprocessors FPGA coprocessors

Automated hardware/software partitioning

C/C11/Java C/C11/Java/VHDL/Verilog/SystemC

Application (C/C11/Java/SystemC…)

Downloading Downloading

FIGURE 26.2 � The codesign ladder: evolution toward automated hardware/software partitioning
due to synthesis tools and FPGA technologies enabling a similar design starting point, and
similar implementation manner of downloading bits into a prefabricated device.

542 Chapter 26 � Hardware/Software Partitioning

approaches, such as SystemC [14], which supports HDL concepts using C++,
have evolved specifically to support it. With a single behavior description of an
application, and automated tools to convert partitioned applications to copro-
cessors, automating partitioning is a logical next step in tool evolution. Some
commercial automated hardware/software partitioning products are just begin-
ning to appear [4,7,21,27].

In the remainder of the chapter, many of the issues discussed relate to both
manual and automatic partitioning, while some relate to automatic partitioning
alone.

26.2 PARTITIONING OF SEQUENTIAL PROGRAMS

In a sequential program, the regions comprising an application’s behavior
are defined to execute sequentially rather than concurrently. For example, the
semantics of the C programming language are such that its functions execute
sequentially (though parallel execution is allowed as long as the results of the
computation stay the same). Hardware/software partitioning of a sequential pro-
gram involves speeding up certain regions by moving them to faster-executing
FPGA coprocessors, yielding overall application speedup.

Hardware/software partitioning of sequential programs is governed to a large
extent by the well-known Amdahl’s Law [1] (described in 1967 by Gene Amdahl
of IBM in the context of discussing the limits of parallel architectures for
speeding up sequential programs). Informally, Amdahl’s Law states that appli-
cation speedup is limited by the part of the program not being parallelized. For
example, if 75 percent of a program can be parallelized, the remaining nonparal-
lelized 25 percent of the program limits the speedup to 100/25 = 4 times speedup
(usually written as 4x) in the best possible case, even in the ideal situation of
zero-time execution of the other 75 percent.

Amdahl’s Law has been described more formally using the equation
max_speedup=1/(s + p/n), where p is the fraction of the program execution that
can be parallelized; s is the fraction that remains sequential, s+p=1; n is the num-
ber of parallel processors being used to speed up the parallelizable fraction; and
max_speedup is the ideal speedup. In the 75 percent example, assuming that n
is very large, we obtain max_speedup=1/(0.25+0.75/n)=1/(0.25 +∼0)=4x.

Amdahl’s Law applies to hardware/software partitioning by providing speedup
limits based on the regions not mapped to hardware. For example, if a region
accounts for 25 percent of execution but is not mapped to hardware, then the
maximum possible speedup obtainable by partitioning is 4x. Figure 26.3 illus-
trates that only when regions accounting for a large percentage of execution are
mapped to hardware might partitioning yield substantial results. For example, to
obtain 10x speedup, partitioning must map to hardware those regions account-
ing for at least 90 percent of an application’s execution time.

Fortunately, most of the execution time for many applications comes from
just a few regions. For example, Figure 26.4 shows the average execution time

26.2 Partitioning of Sequential Programs 543

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80 90 10
0

Execution mapped to hardware (%)

Id
ea

l s
pe

ed
up

FIGURE 26.3 � Hardware/software partitioning speedup following Amdahl’s Law.

0

20

40

60

80

100

Most frequent regions

C
um

ul
at

iv
e

ap
pl

ic
at

io
n

ex
ec

ut
io

n
(%

)

1 2 3 4 5 6 7 8 9 10

FIGURE 26.4 � Ideal speedups achievable by moving regions (loops) to hardware, averaged for
a variety of embedded system benchmark suites (MediaBench, Powerstone, and Netbench).

contribution for the first n regions (in this case loops) for several dozen standard
embedded system application benchmarks, all sequential programs. Note that
the first few regions account for 75 to 80 percent of the execution time. The
regions are roughly equal in size following the well-known informal “90–10”
rule, which states that that 90 percent of a program’s execution time is spent
in 10 percent of its code. Thus, hardware/software partitioning of sequential
programs generally must sort regions by their execution percentage and then
consider moving the highest contributing regions to hardware.

A corollary to Amdahl’s Law is that if a region is moved to hardware, its
actual speedup limits the remaining possible speedup. For example, consider a
region accounting for 80 percent of execution time that, when moved to hard-
ware, runs only 2x faster than in software. Such a situation is equivalent to
40 percent of the region being sped up ideally and the other 40 percent not
being sped up at all. With 40 percent not sped up, the ideal speedup obtain-
able by partitioning of the remaining regions (the other 20 percent) is limited

544 Chapter 26 � Hardware/Software Partitioning

to a mere 100 percent/40 percent = 2.5x. For this reason, hardware/software
partitioning of sequential programs generally must focus on obtaining very large
speedups of the highest-contributing regions.

Amdahl’s Law therefore greatly prunes the solution space that partitioning
of sequential programs must consider—good solutions must move the biggest-
contributing regions to hardware and greatly speed them up to yield good overall
application speedups.

Even with this relatively simple view, several issues make the problem
of hardware/software partitioning of sequential programs quite challenging.
Those issues, illustrated in Figure 26.5(a–e), include determining critical region

Application

(a)

Loops

Functions

Blocks

(b)

HW time: 12.3s
HW area: 11523 gates
SW time: 78.7s
Runtime: 5 minutes

HW time: 13.1s
HW area: 13122 gates
SW time: 85.1s
Runtime: .02s

EstimationImplementation

(e)

Performance: 28.5s
Area: 0 gates

HWSW

Performance: 28.5s
Area: 1452 gates

HWSW

Performance: 16.2s
Area: 3418 gates

HWSW

Performance: 11.1s
Area: 12380 gates

HWSW

Microprocessor

DMA

Cache

Bridge

Memory

(d)(c)

1

1

1
1

1

1

1111

1

FIGURE 26.5 � Hardware/software partitioning: (a) granularity; (b) partition evaluation;
(c) alternative region implementations; (d) implementation models; (e) exploration.

26.2 Partitioning of Sequential Programs 545

granularity (a), evaluating partitions (b), considering multiple alternative
implementations of a region (c), determining implementation models (d), and
exploring the partitioning solution space (e).

26.2.1 Granularity
Partitioning moves some code regions from a microprocessor to coprocessors.
A first issue in defining a partitioning approach is thus to determine the granu-
larity of the regions to be considered. Granularity is a measure of the amount
of functionality encapsulated by a region, which is illustrated in Figure 26.6.

A key trade-off involves coarse versus fine region granularity [11]. Coarser
granularity simplifies partitioning by reducing the number of possible partitions,
enables more accurate estimates during partitioning by considering more com-
putations when creating those estimates (and thus reducing inaccuracy when
combining multiple estimates for different regions into one), and reduces inter-
region communication. On the other hand, finer granularity may expose better

f1()
Loop1
Block1
Loop2
Block2
…..
Block20

f2()
Loop3
Loop4
Block21
…..
Block40
Loop5

f2()f1() Loop5Loop1

(a)

(c)

(b)

(d)

Block1 Block2

Block40

Block3 Block4

Block5 Block6

f1()

Loop3

Loop4

Loop5

FIGURE 26.6 � The region granularities of an application (top): (a) functions; (b) loops;
(c) blocks; (d) heterogeneous combination. Finer granularities may expose better solutions, at
the expense of a more complex partitioning problem and more difficult estimation challenges.

546 Chapter 26 � Hardware/Software Partitioning

partitions that would not otherwise be possible. Early automated partitioning
research considered fine granularities of arithmetic operations or statements,
while more recent work typically considers coarser granularities involving basic
blocks, loops, or entire functions.

Coarse granularity simplifies the partitioning problem by reducing the num-
ber of possible partitions. Take, for example, an application with two 1000-line
C functions, like the one shown in Figure 26.6 (top), and consider partitioning
at the granularity of functions, loops, or basic blocks. The granularity of func-
tions involves only two regions, as shown in Figure 26.6(a), and the granularity
of loops involves five regions, as shown Figure 26.6(b). However, the granularity
of the basic block may involve many tens or hundreds of regions, as shown in
Figure 26.6(c). If partitioning simply chooses between hardware and software,
then two regions would yield 2∗2 = 4 possible partitions, while just 32 regions
would involve 2∗2∗2∗. . . ∗2 (32 times) possible partitions, or over four billion.

Coarse granularity also enables more accurate early estimations of a region’s
performance, size, power, and so forth. For example, an approach using func-
tion granularity could individually presynthesize the two previously mentioned
functions to FPGAs before partitioning, gathering performance and size data.
During partitioning, it could simply estimate that, for the case of partitioning
both functions to the FPGA, the two functions’ performances would stay the
same and their sizes would add. This estimate is not entirely accurate because
synthesizing both functions could involve interactions between the function’s
implementations that would impact performance and size, but it is likely reason-
ably accurate. In contrast, similar presynthesis and performance/size estimates
for basic blocks would yield grossly inaccurate values because multiple basic
blocks would actually be synthesized into a combined circuit having extensive
sharing among the blocks, bearing little resemblance to the individual circuits
presynthesized for each block.

However, finer granularity may expose better partitions that otherwise would
not be possible. In the two-function example just described, perhaps the best
partition would move only half of one function to hardware—an option not
possible at the coarse granularity of functions but possible at finer granularities
of loops or basic blocks.

Manual partitioning often involves initially considering a “natural” granula-
rity for an application. An application may consist of dozens of functions, but a
designer may naturally categorize them into just a few key high-level functions.
A data-processing application, for example, may naturally consist of several key
high-level functions: acquire, decompress, transform, compress, and transmit.
The designer may first try to partition at that natural granularity before consi-
dering finer granularities.

Granularity may be restricted to one region type, but can instead be hetero-
geneous, as shown in Figure 26.6(d). For example, in the previous two-function
example from Figure 26.6 (top), one function may be treated as a region while
the other may be broken down so that its loops are each considered as a region.
A particular loop may even be broken down so that its basic blocks are indivi-
dually considered as regions. Thus, for a single application, regions considered

26.2 Partitioning of Sequential Programs 547

for movement to hardware may include functions, loops, and basic blocks. With
heterogeneous granularity, preanalysis of the code may select regions based on
execution time and size, breaking down a region with very high execution time
or large size.

Furthermore, while granularity can be predetermined statically, it can also be
determined dynamically during partitioning [16]. Thus, an approach might start
with coarse-grained regions and then decompose specific regions deemed to be
critical during partitioning.

Granularity need not be restricted to regions defined by the language
constructs such as functions or loops, used in the original application descrip-
tion. Transformations, some being well-known compiler transformations, may
be applied to significantly change the original description. They include func-
tion inlining (replacing a function call with that function’s statements), function
“exlining” (replacing statements with a function call), function cloning (making
multiple copies of a function for use in different places), function specializa-
tion (creating versions of a function with constant parameters), loop unrolling
(expanding a loop’s body to incorporate multiple iterations), loop fusion (merging
two loops into one), loop splitting (splitting one loop into two), code hoisting and
sinking (moving code out of and into loops), and so on.

26.2.2 Partition Evaluation
The process of finding a good partition is typically iterative, involving conside-
ration and evaluation of certain partitions and then decisions as to which parti-
tions to consider next. Evaluation determines a partition’s design metric values.
A design metric is a measure of a partition. Common metrics include performance,
size, and power/energy. Other metrics include implementation cost, engineering
cost, reliability, maintainability, and so on.

Some design metrics may need to be optimized, meaning that partitioning
should seek the best possible value of a metric. Other design metrics may be
constrained, meaning that partitioning must meet some threshold value for a
metric. An objective function is one that combines multiple metric values into
a single number, known as cost, which the partitioning may seek to minimize.
A partitioning approach must define the metrics and constraints that can be
considered, and define or allow a user to define an objective function.

Evaluation can be a complex problem because it must consider several imple-
mentation factors in order to obtain accurate design metric values. Among
others, these factors include determining the communication time between
regions that transfer data (thus requiring knowledge of the communication
structure), considering clock cycle lengthening caused by multiple applica-
tion regions sharing hardware resources (which may introduce multiplexers or
longer wires), and the like.

The key trade-off in evaluation involves estimation versus implementation.
Estimating design metric values is faster and so enables consideration of more
possible partitions. Obtaining the values through implementation is more accu-
rate and thus ensures that partitioning decisions are based on sound evaluations.

548 Chapter 26 � Hardware/Software Partitioning

Estimation involves some characterization of an application’s regions before
partitioning and then, during partitioning, quickly combining the characteriza-
tions into design metric values. The previous section on granularity discussed
how two C function regions could be characterized for hardware by synthe-
sizing each region individually to an FPGA, resulting in a characterization of
each region consisting of performance and size data. Then a partition with
multiple regions in hardware could be evaluated simply by assuming that each
region’s performance is the same as the predetermined performance and by
adding any hardware-mapped region sizes together to obtain total hardware
size. Estimation for software can be done similarly, using compilation rather
than synthesis for characterization.

Nevertheless, while estimation typically works well for software [24], the
nature of hardware may introduce significant inaccuracy into an estimation
approach because multiple regions may actually share hardware resources, thus
intertwining their performance and size values [9,18]. Alternatively, implementa-
tion as a means of evaluation involves synthesizing actual hardware circuits for
a given partition’s hardware regions. Such synthesis thus accounts for hardware
sharing and other interdependencies among the regions. However, synthesis is
time consuming, requiring perhaps tens of seconds, minutes, or even hours,
restricting the number of partitions that can be evaluated.

Many approaches exist between the two extremes just described. Estimation
can be improved with more extensive characterization, incorporating much
more detail than just performance and size. Characterization may, for example,
describe what hardware resources a region utilizes, such as two multipliers or
2 Kbytes of RAM. Then estimation can use more complex algorithms to com-
bine region characterizations into actual design metric values, such as that the
regions may share resources such as multipliers (possibly introducing multi-
plexers to carry out such sharing) or RAM. These algorithms yield higher accu-
racy but are still much faster than synthesis. Alternatively, synthesis approaches
can be improved by performing a “rough” rather than a complete synthesis,
using faster heuristics rather than slower, but higher-optimizing heuristics, for
example.

Evaluation need not be done in a single exploration loop of partitioning,
but can be heterogeneous. An outer exploration loop may be added to partitio-
ning that is traversed less frequently, with the inner exploration loop conside-
ring thousands of partitions (if automated) and using estimation for evaluation,
while the outer exploration loop considers only tens of partitions that are
evaluated more extensively using synthesis. The inner/outer loop concept can
of course be extended to even more loops, with the inner loops examining
more partitions evaluated quickly and the outer loops performing increasingly
in-depth synthesis on fewer partitions.

Furthermore, evaluation methods can change dynamically during partitioning.
Early stages in the partitioning process may use fast estimation techniques to
map out the solution space and narrow in on particular sections of it, while
later stages may utilize more accurate synthesis techniques to fine-tune the
solution.

26.2 Partitioning of Sequential Programs 549

26.2.3 Alternative Region Implementations
Further adding to the partitioning challenge is the fact that a given region may
have alternative region implementations in hardware rather than just one imple-
mentation, as assumed in the previous sections. For example, Figure 26.7 (top)
shows a particular function that performs 100 multiplications. A fast but large
hardware implementation may use 100 multipliers, as shown in Figure 26.7(a).
The much smaller but much slower hardware implementation in Figure 26.7(b)
uses only 1 multiplier. Numerous implementation alternatives exist between those
two extremes, such as having 2 multipliers as in Figure 26.7(c), 10 multipliers,
and so on. Furthermore, the function may be implemented in a pipelined or non-
pipelined manner. Utilized components may be fast and large (e.g., array-style
multipliers or carry-lookahead adders) or small and slow (e.g., shift-and-add mul-
tipliers or carry-ripple adders). Many other alternatives exist.

A key trade-off involves deciding how many alternative implementations to
consider during partitioning. More alternatives greatly expand the number of
possible partitions and thus may possibly lead to improved results. However,
they also expand the solution space tremendously. For example, 8 regions each
with one hardware implementation yield 28 = 256 possible partitions. If each

f() {
…

for (i 5 0; i , 100; i11)
c[i] 5 a[i]∗b[i];
…

}

(b) (c)

(a)

∗∗∗ ∗

∗ ∗Ctrl

...

...

... ...

∗Ctrl

FIGURE 26.7 � Alternative region implementations for an original application (top) requiring
100 multiplications: (a) 100 multipliers; (b) 1 multiplier; (c) 2 multipliers. Alternative region
implementations may have hugely different performances and sizes.

550 Chapter 26 � Hardware/Software Partitioning

region instead has 4 possible hardware implementations, then it has 5 possible
implementations (1 software and 4 hardware implementations), yielding 58, or
more than 300,000, possible partitions.

Most automated hardware/software partitioning approaches consider one
possible hardware implementation per region. Even then, a question exists as
to which one to consider for that region: the fastest, the smallest, or some
alternative in the middle? Some approaches do consider multiple alternative
implementations, perhaps selecting a small number that span the possible space,
such as small, medium, and large [5].

As we saw with granularity and evaluation, the number of alternative imple-
mentations considered can also be heterogeneous. Partitioning may consider only
one alternative for particular regions and multiple alternatives for other regions
deemed more critical.

Furthermore, as we saw with granularity and evaluation, the number of alter-
native implementations can change dynamically as well. Partitioning may start
by considering only a few alternatives per region and then consider more for
particular regions as partitioning narrows in on a solution.

Sometimes obtaining alternative implementations of an application region
may require the designer to write several versions of it, each leading to one
or more alternatives. In fact, a designer may have to write different region ver-
sions for software and hardware because a version that executes fast in software
may execute slow in hardware, and vice versa. That difference is due to soft-
ware’s fundamental sequential execution model that demands clever sequential
algorithms, while hardware’s inherently parallel model demands parallelizable
algorithms.

26.2.4 Implementation Models
Partitioning moves critical microprocessor software regions to hardware copro-
cessors. Different implementation models define how the coprocessors are inte-
grated with the microprocessor and with one another [6], enlarging the possible
solution space for partitioning and greatly impacting performance and size.

One implementation model parameter is whether coprocessor execution and
microprocessor execution overlap or are mutually exclusive. In the overlapping
model, the microprocessor activates a coprocessor and may then continue to
execute concurrently with it (if the data dependencies of the application allow).
In the mutually exclusive model, the microprocessor waits idly until the copro-
cessor finishes, at which time the microprocessor resumes execution.

Figure 26.8(a) illustrates the execution of both models. Overlapping may
improve overall performance, but mutual exclusivity simplifies implementa-
tion by eliminating issues related to memory contention, cache coherency, and
synchronization—the coprocessor may even access cache directly. In many par-
titioned implementations, the coprocessor executes for only a small fraction of
the total application cycles, meaning that overlapping gains little performance
improvement. When the microprocessor and coprocessor cycles are closer to

26.2 Partitioning of Sequential Programs 551

(b)

Cache

DMA

Microprocessor

Bridge

Memory

Tightly coupled

Loosely coupled

Fused

Direct
communication

Dynamically
reconfigurable

(a)

Microprocessor

FPGA

Mutually exclusive

Time

Overlapping

Microprocessor

FPGA

Time

FIGURE 26.8 � Implementation models: (a) mutually exclusive and overlapping. (b) implemen-
tation model parameters.

being equal, overlapping may improve performance, up to a limit of 2 times, of
course. Similarly, the execution of coprocessors relative to one another may be
overlapped or mutually exclusive.

A second implementation model parameter involves communication
methods. The microprocessor and coprocessors may communicate through
memory and share the same data cache, or the microprocessor may commu-
nicate directly with the FPGA through memory-mapped registers, queues, fast
serial links, or some combination of those mechanisms.

Another implementation model parameter is whether multiple coprocessors
are implemented separately or are fused. In a separate coprocessor model, each
critical region is synthesized to its own controller and datapath. In a fused
model, the critical regions are synthesized into a single controller and data-
path. The fused model may reduce size because the hardware resources are
shared, but it may result in performance overhead because of a longer critical
path as well as the need to run at the slowest clock frequency of all the regions.

552 Chapter 26 � Hardware/Software Partitioning

Certain coprocessors can be fused and others left separate. Furthermore, fusing
need not be complete—two coprocessors can share key components, such as a
floating-point unit, but otherwise be implemented separately.

Yet another model parameter is whether coprocessors and the microprocessor
are tightly or loosely coupled. Tightly coupled coprocessors may coexist on the
microprocessor memory bus or may even have direct access to microprocessor
registers. Loosely coupled, they may access microprocessor memory through a
bridge, adding several cycles to data accesses. Both couplings can coexist in a
single implementation.

FPGAs add a particularly interesting model parameter to partitioning—
dynamic reconfiguration—which replaces an FPGA circuit with another circuit
during runtime by swapping in a new FPGA configuration bitstream [2]. In this
way, not all of an application’s coprocessors need to simultaneously coexist in
the FPGA. Instead, one subset of the application’s required coprocessors may
initially be loaded into the FPGA, but, as the application continues to execute,
that subset may be replaced by another subset needed later in the application’s
execution. Reconfiguration increases the effective size of an FPGA, thus enabling
better performance when more application regions are partitioned to it or, alter-
natively, enabling use of a smaller and hence cheaper FPGA with a runtime
overhead required to swap in new bitstreams. In some cases, this overhead may
limit the benefits of reconfiguration and should therefore be considered during
partition evaluation.

Figure 26.8(b) illustrates some of the different implementation model para-
meters, including communication methods, fused regions, and tightly/loosely
coupled coprocessors. Often these parameters are fixed prior to partitioning, but
can also be explored dynamically during partitioning to determine the best imple-
mentation model for a given application and given constraints.

26.2.5 Exploration
Exploration is the searching of the partition solution space for a good partition.
As mentioned before, it is at present mostly a manual task, but automated tech-
niques are beginning to mature. This section discusses automated exploration
techniques for various formulations of the partitioning problem.

Simple formulation
A simple and common form of the hardware/software partitioning problem
consists of n regions, each having a software runtime value, a hardware
runtime value, and a hardware size. It assumes that all values are independent
of one another (so if two regions are mapped to hardware, their hardware run-
time and size values are unchanged); it assumes that communication times are
constant regardless of whether a region is implemented as software or hard-
ware (such as when all regions use the same interface to a shared memory);
and it seeks to minimize total application runtime subject to a hardware size
constraint (assuming no dynamic reconfiguration).

26.2 Partitioning of Sequential Programs 553

Although this problem is known to be NP-hard, it can be solved by first
mapping it to the well-known 0-1 knapsack problem [20]. The 0-1 knapsack prob-
lem involves a knapsack with a specified weight capacity and a set of items,
each with a weight and a profit. The goal is to select which items to place
in the knapsack such that the total profit is maximized without violating the
weight capacity. For hardware/software partitioning, regions correspond to items,
the FPGA size constraint corresponds to the knapsack capacity, an implementa-
tion’s size corresponds to an item’s weight, and the speedup obtained by imple-
menting a region in hardware instead of software corresponds to an item’s
profit.

Thus, algorithms that solve the 0-1 knapsack problem solve the simple form of
the hardware/software partitioning problem. The 0-1 knapsack problem is NP-
hard, but efficient optimal algorithms exist for relatively large problem sizes.
One of these is a well-known dynamic programming algorithm [12] having run-
time complexity of O(A∗n), where A is the capacity and n is the number of items.
Alternatively, integer linear programming (ILP) [22] may be used. ILP solvers
perform extensive solution space pruning to reduce exploration time.

For problems too big for either such optimal technique, heuristics may be uti-
lized. A heuristic finds a good, but not necessarily the optimal, solution, while an
algorithm finds the optimal solution. A common heuristic for the 0-1 knapsack
problem is a greedy one. A greedy heuristic starts with an initial solution and
then makes changes only if they seem to improve the solution. It sorts each item
based on the ratio of profit to weight and then traverses the sorted list, placing
an item in the knapsack if it fits and skipping it otherwise, terminating when
reaching the knapsack capacity or when all items have been considered. This
heuristic has O(nlgn) time complexity, allowing for fast automated partitioning
of thousands of regions or feasible manual partitioning of tens of regions. Fur-
thermore, the heuristic has been shown to commonly obtain near-optimal results
in the situation when a few items have a high profit to weight ratio. In hard-
ware/software partitioning terms, that situation corresponds to the existence of
regions that are responsible for the majority of execution time and require little
hardware area, which is often the case.

Formulation with asymmetric communication
and greedy/nongreedy automated heuristics
A slightly more complex form of the hardware/software partitioning problem
considers cases where communication times between regions change depending
on the partitioning, with different required times for communication depending
on whether the regions are both in software or both in hardware, or are sepa-
rated, with one in software and one in hardware. This form of the problem can
be mapped to the well-known graph bipartitioning problem.

Graph bipartitioning divides a graph into two sets in order to minimize an
objective function. Each graph node has two weights, one for each set. Edges
may have three different weights: two weights associated with nodes connected
in the same set (one weight for each set) and one for nodes connected between
sets. Typically, the objective function is to minimize the sum of all node and edge

554 Chapter 26 � Hardware/Software Partitioning

weights using the appropriate weights for a given partition. Graph bipartitioning
is NP-hard.

ILP approaches may be used for automatically obtaining optimal solutions
to the graph bipartitioning problem. Heuristics may be used when ILP is too
time consuming. A simple greedy heuristic for graph bipartitioning starts with
some initial partition, perhaps random or all software. It then determines the
cost improvement of moving each node from its present set to the opposite set
and then moves the node yielding the best improvement. The heuristic repeats
these steps until no move yielding an improvement is found. Given n nodes,
a basic form of such a heuristic has O(n2) runtime complexity. Techniques to
update the existing cost improvement values can reduce the complexity to O(n)
in practice [25].

More advanced heuristics seek to overcome what are known as “local min-
ima,” accepting solution-worsening moves in the hope that they will eventually
lead to an even better solution. For example, Figure 26.9 illustrates a heuristic
that accepts some solution-worsening changes to escape a local minimum and
eventually reach a better solution. A common situation causing a local mini-
mum involves two items such that moving only one item worsens the solution
but moving both improves it.

A well-known category of nongreedy heuristic used in partitioning is known
as group migration [11], which evolved from an initial heuristic by Kernighan–
Lin. Like the previous greedy heuristic, group migration starts with an initial
partition and determines the cost improvement of moving each node from its
present set to the opposite set. The group migration heuristic then moves the
node yielding the best improvement (like the greedy heuristic) or yielding the
least worsening (including zero cost change) if no improving move exists. Accept-
ing such worsening moves enables local minima to be overcome. Of course, such
a heuristic would never terminate, so group migration ensures termination by
locking a node after it is moved. Group migration moves each node exactly once
in what is referred to as an iteration, and an iteration has complexity of O(n2)
(or O(n) if clever techniques are used to update cost improvements after each

Considered sequence of changes

O
bj

ec
tiv

e
fu

nc
tio

n Local
minimum

Better
solution

FIGURE 26.9 � Solution-worsening moves accepted by a nongreedy heuristic to escape local
minima and find better solutions.

26.2 Partitioning of Sequential Programs 555

move). If an iteration ultimately leads to an improvement, then group migration
runs another iteration. In practice, only a few iterations, typically less than five,
can be run before no further improvement can be found.

The previous discussions of heuristics ignore the time required by partition
evaluation. The heuristics therefore may have even higher runtime complexity
unless care is taken to incorporate fast incremental evaluation updates during
exploration.

Complex formulations and powerful automated heuristics
Increasingly complex forms of the hardware/software partitioning problem inte-
grate more parameters related to the earlier mentioned issues of exploration—
granularity, evaluation, alternative region implementation, and implementation
models. For example, the earlier mentioned dynamic granularity modifications,
such as decomposing a given region into smaller regions, or even applying trans-
formations to an application such as function inlining, can be applied during
partitioning. The partitioning problem can consider different couplings of copro-
cessors, may also consider coprocessor fusing, and can support dynamic recon-
figuration. When one considers the multitude of possible parameters that can
be integrated with partitioning, the size of the solution space is mind-boggling.
Searching that space for the best solution becomes a tremendous combinatorial
optimization challenge, likely requiring long-running search heuristics.

At this point, it may be interesting to note that hardware/software partition-
ing brings together two previously separate research fields: compilers and CAD
(computer-aided design). Compilation techniques tend to emphasize a quick
series of transformations applied to an application’s description. In contrast,
CAD techniques tend to emphasize a long-running iterative search of enormous
solution spaces. One possible reason for these different perspectives is that
compilers were generally expected to run quickly, in seconds or at most min-
utes, because they were part of a design loop in which compilation was applied
perhaps dozens or hundreds of times a day as programs were developed. In
contrast, CAD optimization techniques were part of a much longer design loop.
Running CAD optimization tools for hours or even days was perfectly acceptable
because that time was still small compared to the weeks or months required to
manufacture chips. Furthermore, the very nature of coprocessor design meant
that a designer was extremely interested in high performance, so longer tool
runtimes were acceptable if they optimized an implementation.

Hardware/software partitioning merges compilation and synthesis into a
single framework. In some cases, compiler-like runtimes of seconds must
be achieved. In other cases, CAD-like runtimes of hours may be acceptable.
Approaches to partitioning may span that range. Highly complex partitioning
formulations will likely require moving away from the fast linear time algo-
rithms and heuristics described earlier and toward longer-running powerful
search heuristics.

A popular powerful and general search heuristic is simulated annealing [17].
The simulated annealing heuristic starts with a random solution and then
randomly makes some change to it, perhaps moving a region between software

556 Chapter 26 � Hardware/Software Partitioning

and hardware, choosing an alternative implementation for a particular region,
decomposing a particular region into finer-grained regions, performing a trans-
formation on the original regions, and so forth, and evaluates the cost (as deter-
mined by an objective function) of the new partition obtained from that change.
If the change improves the cost, it is accepted (i.e., the change is made). If the
change worsens the cost, the seemingly “bad” change is accepted with some
probability. The key feature of simulated annealing is that the probability of
accepting a seemingly bad move decreases as the approach proceeds, with the
pattern of decrease determined by some parameters provided to the annealing
process that eventually causes it to narrow in on a good solution. Simulated
annealing typically must evaluate many thousands or millions of solutions in
order to arrive at a good one and thus requires very fast evaluation methods.

The complexity of simulated annealing is generally dependent on the prob-
lem instance. With properly set parameters, it can achieve near-optimal solu-
tions on very large problems in long but acceptable runtimes. Faster machines
have made simulated annealing an increasingly acceptable search heuristic for
a wider variety of problems—it can complete in just seconds for many problem
instances.

The simulated annealing heuristic is known as a neighborhood search
heuristic because it makes local changes to an existing solution. Tabu search [13]
is an effective method for improving neighborhood search. Meaning “forbid-
den,” Tabu maintains a list of recently seen, Tabu, solutions. When considering
a change to an existing solution, it disregards any change that would yield a
solution on the Tabu list. This prevents cycling among the same solutions and
has been shown to yield improved results in less time. The Tabu list concept can
also be applied on a broader scale, maintaining a long-term history of consid-
ered solutions in order to increase solution diversity. Tabu search can improve
neighborhood search heuristic runtimes during hardware/software partitioning
by a factor of 20x [8].

Other issues
Because implementing an application as software generally requires a smaller
size and less designer effort, most approaches to exploration start with an all-
software implementation and then explore the mapping of critical application
regions to hardware. However, in some cases, such as when the application is
written specifically for hardware, an approach may start with an all-hardware
implementation and then move noncritical application regions to software to
reduce hardware size.

Furthermore, when an application is originally written for software imple-
mentation, some of its regions may not be suitable for hardware implemen-
tation. For example, application regions that utilize recursive function calls,
pointer-based data structures, or dynamic memory allocation may not be easy to
implement as a hardware circuit. Some research efforts are beginning to address
these problems by developing new synthesis techniques that support a wider
range of program constructs and behavior. Alternatively, designers sometimes

26.3 Partitioning of Parallel Programs 557

write (or rewrite) critical regions such that those regions are well suited for
circuit implementation.

26.3 PARTITIONING OF PARALLEL PROGRAMS

In parallel programs, the regions that make up an application are defined to
execute concurrently, as opposed to sequentially. Such regions are often called
tasks or processes. For some applications, expressing behavior using tasks may
result in a more parallel implementation and hence in faster application perfor-
mance. For example, an MPEG2 decoder may be described as several tasks, such
as motion compensation, dequantization, or inverse discrete cosine transform,
that can be implemented in a pipelined manner.

Numerous parallel programming models have been considered for hard-
ware/software partitioning, among others, synchronous dataflow, dynamic data-
flow, Kahn process networks, and communicating sequential processes.

26.3.1 Differences among Parallel Programming Models
While hardware/software partitioning of parallel programs has many similarities
to partitioning for sequential programs, several key differences exist.

Granularity
Partitioning of parallel programs typically treats each task as a region, meaning
that the granularity is quite coarse. In some cases, decomposing a task into finer
granularity may be considered.

Evaluation
Parallel programs often involve multiple performance constraints, with partic-
ular tasks or sets of tasks having unique performance constraints of their own.
Furthermore, estimations of performance must consider the scheduling of tasks
on processors, which is not an issue for sequential programs because regions in
these programs are not concurrent.

Alternative region implementations
Given the coarse granularity of tasks, considering alternative implementations
becomes even more important, as the variations among the alternatives can
be huge.

Implementation models
Because tasks are inherently concurrent, partitioning of parallel programs
typically uses parallel execution models in their implementations, meaning
that microprocessors and coprocessors run concurrently rather than mutually
exclusively and meaning that coprocessors may be arranged to form high-
level pipelines. Partitioning of parallel programs is less likely to consider
fusing multiple coprocessors into one because fusing eliminates concurrency.

558 Chapter 26 � Hardware/Software Partitioning

Parallel program partitioning introduces a new aspect to exploration—
scheduling. When mapping multiple tasks to a single microprocessor, partition-
ing must carry out the additional step of scheduling to determine when each task
will execute. Scheduling tasks to meet performance constraints is known as real-
time scheduling and is a heavily studied problem [3].

Including partitioning during scheduling results in a more complex problem.
Such partitioning often considers more than just one microprocessor as well and
even different types of microprocessors. It may even consider different numbers
and types of memories and different bus structures connecting memories to
processors.

Parallel partitioning must also pay more attention to the data storage require-
ments between processors. Queues may be introduced between processors, the
sizes of those queues must be determined, and their implementation (e.g., in
shared memory or in separate hardware components) must be decided.

Exploration
More complex issues in the hardware/software partitioning problem—such
as scheduling, different granularities, different evaluation methods, alterna-
tive region implementations, and different numbers and connections of micro-
processors/memories/buses—require more complex solution approaches. Most
modern automatic partitioning research considers one or a few extensions to
basic hardware/software partitioning and develops custom heuristics to solve
the new formulations in fast compiler-like runtimes. However, as more com-
plex forms of partitioning are considered, more powerful search heuristics with
longer runtimes, such as simulated annealing or search algorithms tuned to the
problem formulation, may be necessary.

26.4 SUMMARY AND DIRECTIONS

Developing an approach for hardware/software partitioning requires the
consideration of granularity, evaluation, alternative region implementations,
implementation models, exploration, and so forth, and each such issue involves
numerous options. The result is a tremendously large partition solution
space and a huge variety of approaches to finding good partitions. While
much research into automated hardware/software partitioning has occurred
over the past decades, most of the problem’s more complex formulations
have yet to be considered. A key future challenge will be the develop-
ment of effective partitioning approaches for these increasingly complex
formulations.

As FPGAs continue to enter mainstream embedded, desktop, and server com-
puting, incorporating automated hardware/software partitioning into standard
software design flows becomes increasingly important. One approach to mini-
mizing the disruption of standard software design flows is to incorporate par-
titioning as a backend tool that operates on a final binary, allowing continued
use of existing programming languages and compilers and supporting the use

26.4 Summary and Directions 559

of assembly and even object code. Such binary-level partitioning [23] requires
powerful decompilation methods to recover high-level regions such as func-
tions and loops. Binary-level partitioning even opens the door for dynamic
partitioning, wherein on-chip tools transparently move software regions to
FPGA coprocessors, making use of new lean, just-in-time compilers for
FPGAs [19].

References
[1] G. Amdahl. Validity of the single processor approach to achieving large-scale com-

puting capabilities. Proceedings of the AFIPS Spring Joint Computer Conference,
1967.

[2] J. Burns, A. Donlin, J. Hogg, S. Singh, M. De Wit. A dynamic reconfiguration run-
time system. Proceedings of the Symposium on FPGA-Based Custom Computing
Machines, 1997.

[3] G. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling Algorithms
and Applications, Kluwer Academic, 1997.

[4] S. Chappell, C. Sullivan. Handel-C for co-processing and co-design of field pro-
grammable system on chip. Proceedings of Workshop on Reconfigurable Computing
and Applications, 2002.

[5] K. Chatha, R. Vemuri. An iterative algorithm for partitioning, hardware design
space exploration and scheduling of hardware-software systems. Design Automa-
tion for Embedded Systems 5(3–4), 2000.

[6] K. Compton, S. Hauck. Reconfigurable computing: A survey of systems and soft-
ware. ACM Computing Surveys 34(2), 2002.

[7] CriticalBlue. http://www.criticalblue.com.
[8] P. Eles, Z. Peng, K. Kuchchinski, A. Doboli. System level hardware/software par-

titioning based on simulated annealing and tabu search. Design Automation for
Embedded Systems 2(1), 1997.

[9] R. Enzler, T. Jeger, D. Cottet, G. Tröster. High-level area and performance estima-
tion of hardware building blocks on FPGAs. Lecture Notes in Computer Science
1896, 2000.

[10] R. Ernst, J. Henkel. Hardware-software codesign of embedded controllers
based on hardware extraction. Proceedings of the International Workshop on Hard-
ware/Software Codesign, 1992.

[11] D. Gajski, F. Vahid, S. Narayan, J. Gong. Specification and Design of Embedded
Systems, Prentice-Hall, 1994.

[12] P. C Gilmore, R. E Gomory. The theory and computation of knapsack functions.
Operations Research 14, 1966.

[13] F. Glover. Tabu search, part I. Operations Research Society of America Journal on
Computing 1, 1989.

[14] T. Grotker, S. Liao, G. Martin, S. Swan. System Design with System C. Springer-
Verlag, 2002.

[15] R. Gupta, G. De Micheli. System-level synthesis using re-programmable compo-
nents. Proceedings of the European Design Automation Conference, 1992.

[16] J. Henkel, R. Ernst. A hardware/software partitioner using a dynamically deter-
mined granularity. Design Automation Conference, 1997.

[17] S. Kirkpatrick, C. Gelatt, M. Vecchi. Optimization by simulated annealing. Science
220(4598), May 1983.

560 Chapter 26 � Hardware/Software Partitioning

[18] Y. Li, J. Henkel. A framework for estimation and minimizing energy dissipation of
embedded HW/SW systems. Design Automation Conference, 1998.

[19] R. Lysecky, G. Stitt, F. Vahid. Warp processors. Transactions on Design Automation
of Electronic Systems 11(3), 2006.

[20] S. Martello, P. Toth. Knapsack Problems: Algorithms and Computer Implementations,
Wiley, 1990.

[21] Poseidon Design Systems, Inc. http://www.poseidon-systems.com/index.htm.
[22] A. Schrijver. Theory of Linear and Integer Programming, Wiley, 1998.
[23] G. Stitt, F. Vahid. New decompilation techniques for binary-level co-processor

generation. Proceedings of the International Conference on Computer-Aided Design,
2005.

[24] K. Suzuki, A. Sangiovanni-Vincentelli. Efficient software performance estimation
methods for hardware/software codesign. Design Automation Conference, 1996.

[25] F. Vahid, D. Gajski. Incremental hardware estimation during hardware/software
functional partitioning. IEEE Transactions on VLSI Systems 3(3), 1995.

[26] F. Vahid, D. Gajski. Specification partitioning for system design. Design Automation
Conference, 1992.

[27] XPRES Compiler. http://www.tensilica.com/products/xpres.htm.

P A R T V

CASE STUDIES OF FPGA
APPLICATIONS

Parts I through IV covered technologies and techniques for creating
efficient FPGA-based solutions to important problems. Part V focuses on
specific, important field-programmable gate array (FPGA) applications,
presenting case studies of interesting uses of reconfigurable technology.
While this is by no means an exhaustive survey of all applications done
on FPGAs, these chapters do contain several very interesting representa-
tive points in this space. They can be read in any order, and can even be
interspersed with other chapters of this book.

This introduction should help readers identify the concepts the case
studies cover and the chapters each help to illustrate. To understand
the case studies, a basic knowledge of FPGAs (Chapter 1), CAD tools
(Chapters 6, 13, 14, and 17), and application development (Chapter 21) is
required.

Chapter 27 presents a high-performance image compression engine
optimized for satellite imagery. This is a streaming signal-processing
application (Chapters 5, 8, and 9), a type of computation that typically
maps well to reconfigurable devices. In this case, the system saw speedups
of approximately 400 times, for which the authors had to optimize the
algorithm carefully, considering memory bandwidth (Chapter 21), con-
version to fixed point (Chapter 23), and alteration of the algorithm to
eliminate sequential dependencies.

Chapter 28 focuses on automatic target recognition, which is the detec-
tion of regions of interest in military synthetic aperture radar (SAR)
images. Like the compression engine in Chapter 27, this represents a
very complex, streaming signal-processing application. It also is one of
the most influential applications of runtime-reconfiguration (Chapters 4
and 21), where a large circuit is time-multiplexed onto a single FPGA,
enabling it to reuse the same silicon multiple times. This was necessary
because the possible targets to be detected were represented by individ-
ual custom, instance-specific circuits (Chapter 22), the huge number of
which was too large for the available FPGAs.

Chapter 29 discusses Boolean satisfiability (SAT) solving—the deter-
mination of whether there is an assignment of values to variables that

562 Part V � Case Studies of FPGA Applications

makes a given Boolean equation true (satisfied). SAT is a fairly general
optimization technique that is useful in, for example, chip testing,
formal verification, and even FPGA CAD flows. This work on solving
Boolean equations via FPGAs is an interesting application of instance-
specific circuitry (Chapter 3) because each equation to be solved was com-
piled directly into FPGA logic. However, this meant that the runtime of
the CAD tools was part of the time needed to solve a given Boolean equa-
tion, creating a strong push toward faster CAD algorithms for FPGAs
(Chapter 20).

Chapter 30 covers logic emulation—the prototyping of complex
integrated circuits on huge boxes filled with FPGAs and programmable
interconnect chips. This is one of the most successful applications of
multi-FPGA systems (Chapter 3) because the translation of a single ASIC
into FPGA logic necessitates hundreds to thousands of FPGAs to provide
adequate logic capacity. Fast mapping tools for such systems are also
important (Chapter 20).

In Chapter 23 we discussed methods for eliminating (or at least
minimizing) the amount of floating-point computation in FPGA designs
by converting floating-point operations to fixed point. However, there are
situations where floating point is unavoidable. Scientific computing codes
often depend on floating-point values, and many users require that the
FPGA-based implementation provide exactly the same results as those
of a processor-based solution. These situations require full floating-point
support. In other cases, the high dynamic range of values might make
fixed-point computations untenable. Chapter 31 considers the develop-
ment of a library of floating-point units and their use in applications such
as FFTs.

Chapter 32 covers a complex physical simulation application—the
finite difference time domain (FDTD) method, which is a way of modeling
electromagnetic signals in complex situations that can be very useful
in applications such as antenna design and breast cancer detection.
The solution involves a large-scale cellular automata (Chapter 5) repre-
sentation of the space to be modeled and an iterative solver. The key
to achieving a high-performance implementation on FPGAs, however,
involves conversion to fixed-point arithmetic (Chapter 23), simplifica-
tion of complex mathematical equations, and careful consideration of the
memory bottlenecks in the system (Chapter 21).

Chapter 33 discusses an alternative to traditional design flow for cre-
ating FPGA mappings in which the FPGA is allowed to evolve its own
configuration. Because the FPGA is reprogrammable, a genetic optimiza-
tion system can simply load into it random configurations and see how
well they function. Those that show promise are retained; those that do

Case Studies of FPGA Applications 563

not are removed. Through mutation and breeding, new configurations
are created and evaluated in the same way, slowly evolving better and
better computations. The hope is that such a system can support impor-
tant classes of computation with circuits significantly more efficient than
standard design flows. This design strategy exploits special features of the
FPGA’s reprogrammability and flexibility (Chapter 4).

Some of the chapters in this section focus on streaming digital sig-
nal processing (DSP) applications. Such applications often benefit from
FPGA logic because of their amenability to pipelining and because of the
large amount of data parallelism inherent in the computation. Network
processing and routing is another such application domain. Chapter 34
considers packet processing, the application of FPGA logic to network
filtering, and related tasks. Heavy pipelining of circuits onto the reconfig-
urable fabric and optimization of custom boards to network processing
(Chapter 3) support very high-bandwidth networking. However, because
the system retains the flexibility of FPGA logic, new computations and
new filtering techniques can be easily accommodated within the system.
This ability to incrementally adjust, tune, and invent new circuits pro-
vides a valuable capability even in a field as rapidly evolving as network
security.

For many applications, memory access to a large set of state, rather
than computational, throughput can be the bottleneck. Chapter 35 ex-
plores an object-oriented, data-centric model (Chapter 5) based on adding
programmable or reprogrammable logic into DRAM memories. The chap-
ter emphasizes custom-reprogrammable chips (Chapter 2) and explores
both FPGA and VLIW implementation for the programmable logic. Never-
theless, much of the analysis and techniques employed can also be applied
to modern FPGAs with large, on-chip memories.

This page intentionally left blank

C H A P T E R 27

SPIHT IMAGE COMPRESSION

Thomas W. Fry
Samsung, Global Strategy Group

Scott Hauck
Department of Electrical Engineering
University of Washington

This chapter describes the process of mapping the image compression algorithm
SPIHT onto a reconfigurable logic architecture. A discussion of why adaptive
logic is required, as opposed to an ASIC, is provided, along with background
material on SPIHT. Several discrete wavelet transform hardware architectures
are analyzed and evaluated. In addition, two major modifications to the original
image compression algorithm, which are required in order to build a reconfig-
urable hardware implementation, are presented: (1) the storage elements neces-
sary for each wavelet coefficient, and (2) a modification to the original SPIHT
algorithm created to parallelize the computation. Also discussed are the effects
these modifications have on the final compression results and the trade-offs
involved.

The chapter then describes how the updated SPIHT algorithm is mapped onto
the Annapolis Microsystems WildStar reconfigurable hardware system. This sys-
tem is populated with three Virtex-E field-programmable gate array (FPGA)
parts and several memory ports. The issues of how the modified algorithm is
divided between individual FPGA parts and how data flows through the mem-
ories are discussed. Lastly, final results and speedups are presented and evalu-
ated against a comparable microprocessor solution from the time the Annapolis
Microsystems WildStar was released.

27.1 BACKGROUND

As NASA deploys each new generation of satellites with more sensors, captur-
ing an ever-larger number of spectral bands, the volume of data being collected
begins to outstrip a satellite’s ability to transmit data back to Earth. For example,
the Terra satellite contains five separate sensors, each collecting up to 36 indi-
vidual spectral bands. The Tracking and Data Relay Satellite System (TDRSS)
ground terminal in White Sands, New Mexico, captures data from these sensors
at a limited rate of 150 Mbps [19]. As the number of sensors on a satellite grows
and the transmission rates increase, this bandwidth limitation became a driving
force for NASA to study methods of compressing images prior to downlinking.

566 Chapter 27 � SPIHT Image Compression

FPGAs are an attractive implementation medium for such a system. Software
solutions suffer from performance limitations and power requirements. At the
same time, traditional hardware platforms lack the required flexibility needed for
postlaunch modifications. After launch, such fixed hardware systems cannot be
modified to use newer compression schemes or even to implement bug fixes. In
the past, modification of fixed systems in satellites proved to be very expensive [4].

By implementing an image compression kernel in a reconfigurable system,
we overcame these shortcomings. Because such a system may be reprogrammed
after launch, it does not suffer from conventional hardware’s inherit inflexibil-
ity. At the same time, the algorithm is computing in custom hardware and can
perform at the required processing rates while consuming less power than a
traditional software implementation.

This chapter describes the work performed as part of a NASA-sponsored
investigation into the design and implementation of a space-bound FPGA-based
hyperspectral image compression machine. For this work, the Set Partitioning
in Hierarchical Trees (SPIHT) routine was selected as the image compression
algorithm. First, we describe the algorithm and discuss the reasons for its selec-
tion. Then we describe how the algorithm was optimized for implementation in
a specific hardware platform and we present the results.

27.2 SPIHT ALGORITHM

SPIHT is a wavelet-based image compression coder. It first converts an image
into its wavelet transform and then transmits information about the wavelet
coefficients. The decoder uses the received signal to reconstruct the wavelet and
then performs an inverse transform to recover the image. SPIHT was selected
because both it and its predecessor, the embedded zerotree wavelet coder, were
significant breakthroughs in still-image compression. Both offered significantly
improved quality over other image compression techniques such as vector quan-
tization, JPEG, and wavelets combined with quantization, while not requiring
training that would have been more difficult to implement in hardware. In
short, SPIHT displays exceptional characteristics over several properties all at
once [15]:

� Good image quality with a high peak-signal-to-noise ratio (PSNR).
� Fast coding and decoding.
� A fully progressive bitstream.
� Can be used for lossless compression.
� May be combined with error protection (useful in satellite transmissions).
� Ability to code for an exact bitrate or PSNR.

In addition, since the SPIHT algorithm processes an image in two distinct
steps—the discrete wavelet transform phase and the coding phase—it provides
a natural point at which a hardware implementation may be divided. (The
advantage of this property will be seen in Section 27.4.) The rest of this section

27.2 SPIHT Algorithm 567

describes the basics of wavelets, the discrete wavelet transform, and the SPIHT
coding engine.

27.2.1 Wavelets and the Discrete Wavelet Transform
The wavelet transform is a reversible transform on spatial data. The discrete
wavelet transform (DWT) is a form appropriate to discrete data, such as the
individual points or pixels in an image. DWT runs a high-pass and low-pass
filter over the signal in one dimension. This produces a low-pass (“average”)
version of the data and a high-pass (rapid changes within the average) version.
Every other result from each pass is then sampled, yielding two subbands, each
of which is one-half the size of the input stream. The result is a new image
comprising of a high- and a low-pass subband. These two subbands can be used
to fully recover the original image. In the case of a multidimensional signal such
as an image, this procedure is repeated in each dimension (Figure 27.1).

The vertical and horizontal transformations break up the image into four
distinct subbands. The wavelet coefficients that correspond to the fine details
are the LH, HL, and HH subbands. Lower frequencies are represented by the
LL subband, which is a low-pass filtered version of the original image [17].

The next wavelet level is calculated by repeating the horizontal and vertical
transformations on the LL subband from the previous level. Four new subbands
are created from the transformations. The LH, HL, and HH subbands in the
next level represent coarser-scale coefficients and the new LL subband is an
even smoother version of the original image. It is possible to obtain coarser
and coarser scales of the LH, HL, and HH subbands by iteratively repeating the
wavelet transformation on the LL subband of each level. Figure 27.2 displays the
subband components of an image with three scales of wavelet transformation.

The reverse transformation uses an inverse filter on the final LL subband and
the LH, HL, and HH subbands at the same level to recreate the LL subband
of the previous level. By iteratively processing each level, the original image
may be restored. Figure 27.3 displays a satellite image of San Francisco and its
corresponding 3-level DWT. By processing either the wavelet transform or the
inverse wavelet transform, these two images may be converted from one into
the other and thus may be viewed as equivalent.

(a) (b) (c)

L

LH

HHHL

LLLP

HP

LP

HP

H

↓2 ↓2

↓2↓2

FIGURE 27.1 � A 1-level wavelet built by two one-dimensional passes: (a) original image,
(b) horizontal pass, and (c) vertical pass.

568 Chapter 27 � SPIHT Image Compression

HH1

LH1

HL1

HL2 HH2

LH2

LH3

HH3HL3

LL3

FIGURE 27.2 � A 3-level wavelet transform.

FIGURE 27.3 � An image of San Francisco (a) and the resulting 3-level DWT (b).

27.2.2 SPIHT Coding Engine
SPIHT is a method of coding and decoding the wavelet transform of an image.
As discussed in the previous section, by coding and transmitting information
about the wavelet coefficients, it is possible for a decoder to perform an inverse
transformation on the wavelet and reconstruct the original image. A useful
property of SPIHT is that the entire wavelet does not need to be transmitted
in order to recover the image. Instead, as the decoder receives more informa-
tion about the original wavelet transform, the inverse transformation yields a
better-quality reconstruction (i.e., a higher PSNR) of the original image. SPIHT
generates excellent image quality and performance due to three properties of
the coding algorithm: partial ordering by coefficient value, taking advantage

27.2 SPIHT Algorithm 569

FIGURE 27.4 � Spatial orientation trees.

of the redundancies between different wavelet scales, and transmitting data in
bit-plane order [14].

Following a wavelet transformation, SPIHT divides the wavelet into spatial
orientation trees (Figure 27.4). Each node in a tree corresponds to an individual
pixel. The offspring of a pixel are the four pixels in the same spatial location of
the same subband at the next finer scale of the wavelet. Pixels at the finest scale of
the wavelet are the leaves of the tree and have no children. Every pixel is part of a
2×2 block with its adjacent pixels. Blocks are a natural result of the hierarchical
trees because every pixel in a block shares the same parent pixel. Also, the upper-
left pixel of each 2×2 block at the root of the tree has no children since there
are only three subbands at each scale and not four. Figure 27.4 shows how the
pyramid is defined. Arrows point to the offspring of an individual pixel and the
grayed blocks show all of the descendents for a specific pixel at every scale.

SPIHT codes a wavelet by transmitting information about the significance of
a pixel. By stating whether or not a pixel is above some threshold, information
about that pixel’s value is implied. Furthermore, SPIHT transmits information
stating whether a pixel or any of its descendents are above a threshold. If the
statement proves false, all of the pixel’s descendants are known to be below
that threshold level and they do not need to be considered during the rest of
the current pass. At the end of each pass, the threshold is divided by two and
the algorithm continues. In this manner, information about the most significant
bits of the wavelet coefficients will always precede information on lower-order
significant bits, which is referred to as bit-plane ordering.

Information stating whether or not a pixel is above the current threshold
or is being processed at the current threshold is contained in three lists: the
list of insignificant pixels (LIP), the list of insignificant sets (LIS) and the list of
significant pixels (LSP). The LIP are pixels that are currently being processed

570 Chapter 27 � SPIHT Image Compression

but are not yet above the threshold. The LIS are pixels that are currently being
processed but none of their descendents are yet above the current threshold
and so they are not being processed. Lastly, the LSP are pixels that were already
stated to be above a previous threshold level and whose value at each bit plane
is now transmitted.

Figure 27.5 is the algorithm from the original SPIHT paper [14], modified to
reflect changes (discussed later in the chapter) referring to 2× 2 block informa-
tion. Sn(i, j) represents if the pixel (i, j) is greater than the current threshold, and
Sn(D(i, j)) states if any of the pixel’s (i, j) descendents are greater than the cur-
rent threshold.

There are three important concepts to take from the SPIHT algorithm. First,
as the encoder sequentially steps through the image, it inserts or deletes pixels
from the three lists. All of the information required to keep track of the lists is
output to the decoder, allowing the decoder to generate and maintain an iden-
tical list order as the encoder. For the decoder to reproduce the steps taken by
the encoder we merely need to replace the output statements in the encoder’s
algorithm with input for the decoder’s algorithm.

Second, the bitstream produced is naturally progressive. A progressive bit-
stream is one that can be cut off at any point and still be valid. As the decoder
steps through the coding algorithm, it gathers finer and finer detail about the
original wavelet transform. The decoder can stop at any point and perform an
inverse transform with the wavelet coefficients it has currently reconstructed.
Progressive bitstreams can also be reduced to an arbitrary size or be cut off
during transmission and still produce a valid image. Such a property is very
useful in satellite transmissions.

1. Initialization: output n = floor[log2(max(i,j){|ci,j|})]; clear the LSP list,
add the root pixels to the LIP list and root pixels with descendants to LIS.

2. Sorting Pass:
2.1 for each entry (i,j) in the LIP:

2.1.1 output Sn(i,j);
2.1.2 If Sn(i,j) = 1, move (i,j) to the LSP list and output its sign

2.2 for each entry (i,j) in the LIS:
2.2.1 If one of the pixels in (i,j)'s block is not in LIP but all are

in LIS:
output Sn(all descendants of the current block);
if none are significant, skip 2.2.2.

2.2.2 Output Sn(D(i,j))
if Sn(D(i,j)) = 1, then

for each of (i,j) immediate children (k,l):
output Sn(k,l);
add (k,l) to the LIS for the current pass
if Sn(k,l) = 1, add (k,l) to the LSP and output its sign

else add (k,l) to the LIP
3. Refinement Pass: for each entry (i,j) in LSP, except ones inserted in the

current pass, output the nth most significant bit of (i,j).
4. Quantization-step Update: decrement n by 1 and go to Step 2.

FIGURE 27.5 � SPIHT coding algorithm.

27.3 Design Considerations and Modifications 571

Third, and the concept that has the largest impact on building a hardware
platform, the SPIHT algorithm develops an individual list order to transmit
information within each bit plane. This ordering is implicitly created from
the threshold information discussed before—the order in which each pixel
enters each list determines the transmission order for each image. As a result,
each image will transmit wavelet coefficients in an entirely different order.
Slightly better PSNRs are achieved with this dynamic ordering of the wavelet
coefficients.

The SPIHT algorithm in Figure 27.5, which creates the individual list order-
ing, is inherently sequential. As a result, SPIHT cannot be significantly paral-
lelized in hardware. This drawback greatly limits the performance of any SPIHT
implementation in hardware. To get around this limitation and improve perfor-
mance, it was necessary to parallelize the SPIHT algorithm and essentially create
a new image compression algorithm. These changes and the trade-offs involved
are described in Section 27.3.3.

27.3 DESIGN CONSIDERATIONS AND MODIFICATIONS

To fully take advantage of the high performance a custom hardware implemen-
tation of SPIHT could yield, the software specifications had to be examined and
adjusted where they either performed poorly in hardware or did not make the
most of the resources available. Here we review the three major factors taken
under consideration while evaluating how to create a hardware implementation
of the SPIHT algorithm on an adaptive computing platform.

The first factor was to determine what discrete wavelet transform architecture
to use. Section 27.3.1 provides a summary of the DWTs considered, showing how
memory and communication requirements helped dictate the structure chosen.
Section 27.3.2 describes the fixed-point precision optimization performed for
each wavelet coefficient and the final data representation employed. Section
27.3.3 explains how the SPIHT algorithm was altered to vastly speed up the
hardware implementation.

27.3.1 Discrete Wavelet Transform Architectures
One of the benefits of the SPIHT algorithm is its use of the discrete wavelet
transform, which had existed for several years prior to this work. As a result,
numerous studies on how to create a DWT hardware implementation were avail-
able for review. Much of this work on DWTs involved parallel platforms to save
both memory access and computations [5, 12, 16].

The most basic architecture is the basic folded architecture. The one-dimen-
sional DWT entails demanding computations, which involve significant hardware
resources. Since the horizontal and vertical passes use identical finite impulse
response (FIR) filters, most two-dimensional DWT architectures implement fold-
ing to reuse logic for each dimension [6]. Figure 27.6 illustrates how folded archi-
tectures use a one-dimensional DWT to realize a two-dimensional DWT.

572 Chapter 27 � SPIHT Image Compression

Row data

Column data

1-D DWT Memory

FIGURE 27.6 � A folded architecture.

Although the folded architecture saves hardware resources, it suffers from
high memory bandwidth. For an N×N image there are at least 2N2 read-and-
write cycles for the first wavelet level. Additional levels require rereading previ-
ously computed coefficients, further reducing efficiency.

To lower the memory bandwidth requirements needed to compute the DWT,
we considered several alternative architectures. The first was the Recursive Pyra-
mid Algorithm (RPA) [21]. RPA takes advantage of the fact that the various
wavelet levels run at different clock rates. Each wavelet level requires one-
quarter of the time that the previous level needed because at each level the
size of the area under computation is reduced by one-half in both the horizontal
and vertical dimensions. Thus, it is possible to store previously computed coeffi-
cients on-chip and intermix the next level’s computations with the current level’s.
A careful analysis of the runtime yields (4∗N2)/3 individual memory load and
store operations for an image. However, the algorithm has huge on-chip mem-
ory requirements and demands a thorough scheduling process to interleave the
various wavelet levels.

Another method to reduce memory accesses is the partitioned DWT, which
breaks the image into smaller blocks and computes several scales of the DWT at
once for each block [13]. In addition, the algorithm made use of wavelet lifting to
reduce the DWT’s computational complexity [18]. By partitioning an image into
smaller blocks, the amount of on-chip memory storage required was significantly
reduced because only the coefficients in the block needed to be stored. This
approach was similar to the RPA, except that it computed over sections of the
image at a time instead of the entire image at once. Figure 27.7, from Ritter and
Molitor [13], illustrates how the partitioned wavelet was constructed.

Unfortunately, the partitioned approach suffers from blocking artifacts along
the partition boundaries if the boundaries were treated with reflection.1 Thus,
pixels from neighboring partitions were required to smooth out these bound-
aries. The number of wavelet levels determined how many pixels beyond a
subimage’s boundary were needed, since higher wavelet levels represent data

1 An FIR filter generally computes over several pixels at once and generates a result for the middle
pixel. To calculate pixels close to an image’s edge, data points are required beyond the edge of the
image. Reflection is a method that takes pixels toward the image’s edge and copies them beyond
the edge of the actual image for calculation purposes.

27.3 Design Considerations and Modifications 573

FIGURE 27.7 � The partitioned DWT.

HH1

HL1

LH1

High ↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2Low

High

Low

High

Low

HH2

HL2

LH2

High

Low

High

Low

High

Low

HH3

HL3

LH3

LL3

High

Low

High

Low

High

Low

FIGURE 27.8 � A generic 2D biorthogonal DWT.

from a larger image region. To compensate for the partition boundaries, the
algorithm processed subimages along a single row to eliminate multiple reads
in the horizontal direction. Overall data throughputs of up to 152 Mbytes/second
were reported with the partitioned DWT.

The last architecture we considered was the generic 2D biorthogonal DWT [3].
Unlike previous designs, the generic 2D biorthogonal DWT did not require FIR filter
folding or on-chip memories as the Recursive Pyramid design. Nor did it involve
partitioning an image into subimages. Instead, the architecture created separate
structures to calculate each wavelet level as data were presented to it, as shown in
Figure 27.8. The design sequentially read in the image and computed the four DWT
subbands. As the LL1 subband became available, the coefficients were passed to
the next stage, which calculated the next coarser level subbands, and so on.

For larger images that required several individual wavelet scales, the generic
2D biorthogonal DWT architecture consumed a tremendous amount of on-chip
resources. With SPIHT, a 1024 × 1024 pixel image computes seven separate
wavelet scales. The proposed architecture would employ 21 individual high- and
low-pass FIR filters. Since each wavelet scale processed data at different rates,
some control complexity would be inevitable. The advantage of the architecture

574 Chapter 27 � SPIHT Image Compression

was much lower on-chip memory requirements and full utilization of the
memory’s bandwidth, since each pixel was read and written only once.

To select a DWT, each of the architectures discussed before were reevaluated
against our target hardware platform (discussed below). The parallel versions
of the DWT saved some memory bandwidth. However, additional resources and
more complex scheduling algorithms became necessary. In addition, some of the
savings were minimal since each higher wavelet level is one-quarter the size of
the previous wavelet level. In a 7-level DWT, the highest 4 levels compute in just
2 percent of the time it takes to compute the first level. Other factors considered
were that the more complex DWT architectures simply required more resources
than a single Xilinx Virtex 2000E FPGA (our target device) could accommodate,
and that enough memory ports were available in our board to read and write
four coefficients at a time in parallel.

For these reasons, we did not select a more complex parallel DWT archi-
tecture, but instead designed a simple folded architecture that processes one
dimension of a single wavelet level at a time. In the architecture created, pixels
are read in horizontally from one memory port and written directly to a second
memory port. In addition, pixels are written to memory in columns, inverting
the image along the 45-degree line. By utilizing the same addressing logic, pixels
are again read in horizontally and written vertically. However, since the image
was inverted along its diagonal, the second pass will calculate the vertical dimen-
sion of the wavelet and restore the image to its original orientation.

Each dimension of the image is reduced by half, and the process iteratively
continues for each wavelet level. Finally, the mean of the LL subband is calculated
and subtracted from itself. To speed up the DWT, the design reads and writes four
rows at a time. Figure 27.9 illustrates the architecture of the DWT phase.

Since every pixel is read and written once and the design processes four rows
at a time, for an N×N-size image both dimensions in the lowest wavelet level
compute in 2∗N2/4 clock cycles. Similarly, the next wavelet level processes the
image in one-quarter the number of clock cycles as the previous level. With an
infinite number of wavelet levels, the image processes in:

∞

∑
l=1

2 ·N2

4l
=

3
4
·N2 (27.1)

Thus, the runtime of the DWT engine is bounded by three-quarters of a clock
cycle per pixel in the image. This was made possible because the memory ports
in the system allowed four pixels to be read and written in a single clock cycle.

It is very important to note that many of the parallel architectures designed
to process multiple wavelet levels simultaneously run in more than one clock
cycle per image. Also, because of the additional resources required by a parallel
implementation, computing multiple rows at once becomes impractical. Given
more resources, the parallel architectures discussed previously could process
multiple rows at once and yield runtimes lower than three-quarters of a clock
cycle per pixel. However, the FPGAs available in the system used, although state
of the art at the time, did not have such extensive resources.

27.3 Design Considerations and Modifications 575

Read
address logic

Row 1 Low pass

High pass

Variable fixed-
point scaling

Variable fixed-
point scaling

Variable fixed-
point scaling

Variable fixed-
point scaling

Row 2 Low pass

High pass

Row boundary
reflection

Row boundary
reflection

Row boundary
reflection

Row 3 Low pass

High pass

Row 4 Low pass

High pass

Data selection
and write

address logic

LL subband mean
calculation and subtraction

Write
memory port

Read
memory port

DWT-level
calculation

and
control logic

Read–write crossbar

Row boundary
reflection

FIGURE 27.9 � A discrete wavelet transform architecture.

By keeping the address and control logic simple, there were enough resources
on the FPGA to implement 8 distributed arithmetic FIR filters [23] from the
Xilinx Core library. The FIR filters required significant FPGA resources, approx-
imately 8 percent of the Virtex 2000E FPGA for each high- and low-pass FIR
filter. We chose the distributed arithmetic FIR filters because they calculate a
new coefficient every clock cycle, and this contributed to the system being able
to process an image in three-quarters of a clock cycle per pixel.

27.3.2 Fixed-point Precision Analysis
The next major consideration was how to represent the wavelet coefficients in
hardware. The discrete wavelet transform produces real numbers as the wavelet
coefficients, which general-purpose computers realize as floating-point num-
bers. Traditionally, FPGAs have not employed floating-point numbers for several
reasons:

� Floating-point numbers require variable shifts based on the exponential
description, and variable shifters perform poorly in FPGAs.

576 Chapter 27 � SPIHT Image Compression

� Floating-point numbers consume enormous hardware resources on a
limited-resource FPGA.

� Floating point is often unnecessary for a known dataset.

At each wavelet level of the DWT, coefficients have a fixed range. Therefore,
we opted for a fixed-point numerical representation—that is, one where the dec-
imal point’s position is predefined. With the decimal point locked at a specific
location, each bit contributes a known value to the number, which eliminates the
need for variable shifters. However, the DWT’s filter bank was unbounded, mean-
ing that the range of possible numbers increases with each additional wavelet
level.

We chose to use the FIR filter set from the original SPIHT implementation. An
analysis of the coefficients of each filter bank showed that the two-dimensional
low-pass FIR filter at most increases the range of possible numbers by a fac-
tor of 2.9054. This number is the increase found from both the horizontal and
the vertical directions. It represents how much larger a coefficient at the next
wavelet level could be if the previous level’s input wavelet coefficients were the
maximum possible value and the correct sign to create the largest possible filter
output. As a result, the coefficients at various wavelet levels require a variable
number of bits above the decimal point to cover their possible ranges.

Table 27.1 illustrates the various requirements placed on a numerical repre-
sentation for each wavelet level. The Factor and Maximum Magnitude columns
demonstrate how the range of possible numbers increases with each level for
an image starting with 1 byte per pixel. The Maximum Bits column shows the
maximum number of bits (with a sign bit) necessary to represent the numeric
range at each wavelet level. The Maximum Bits from Data column represents the
maximum number of bits required to encode over one hundred sample images
obtained from NASA. These numbers were produced via software simulation on
this sample dataset.

In practice, the magnitude of the wavelet coefficients does not grow at the
maximum theoretical rate. To maximize efficiency, the Maximum Bits from Data
values were used to determine what position the most significant bit must stand
for. Since the theoretical maximum is not used, an overflow situation may occur.

TABLE 27.1 � Fixed-point magnitude calculations

Wavelet Maximum Maximum bits
level Factor magnitude Maximum bits from data

Input image 1 255 8 8
0 2.9054 741 11 11
1 8.4412 2152 13 12
2 24.525 6254 14 13
3 71.253 18170 16 14
4 207.02 52789 17 15
5 601.46 153373 19 16
6 1747.5 445605 20 17

27.3 Design Considerations and Modifications 577

To compensate, the system flags overflow occurrences as an error and truncates
the data. However, after examining hundreds of sample images, no instances of
overflow occurred, and the data scheme used provided enough space to capture
all the required data.

If each wavelet level used the same numerical representation, they would all
be required to handle numbers as large as the highest wavelet level to prevent
overflow. However, since the lowest wavelet levels never encounter numbers in
that range, several bits at these levels would not be used and therefore wasted.

To fully utilize all of the bits for each wavelet coefficient, we introduced
the concept of variable fixed-point representation. With variable fixed-point we
assigned a fixed-point numerical representation for each wavelet level optimized
for that level’s expected data size. In addition, each representation differed from
one another, meaning that we employed a different fixed-point scheme for each
wavelet level. Doing so allowed us to optimize both memory storage and I/O at
each wavelet level to yield maximum performance.

Once the position of the most significant bit was found for each wavelet level,
the number of precision bits needed to accurately represent the wavelet coeffi-
cients had to be determined. Our goal was to provide enough bits to fully recover
the image and no more. Figure 27.10 displays the average PSNRs for several
recovered images from SPIHT using a range of bit widths for each coefficient.

An assignment of 16 bits per coefficient most accurately matched the full-
precision floating-point coefficients used in software, up through perfect recon-
struction. Previous wavelet designs we looked at focused on bitrates less than
4 bits per pixel (bpp) and did not consider rounding effects on the wavelet trans-
formation for bitrates greater than 4 bpp. These studies found this lower bitrate
acceptable for lossy SPIHT compression [3].

0

20

40

60

80

100

120

Bit rate

P
S

N
R

0.
05 0.

4

0.
75 1.

1

1.
45 1.

8

2.
15 2.

5

2.
85 3.

2

3.
55 3.

9

4.
25 4.

6

4.
95 5.

3

5.
65 6

6.
35 6.

7

7.
05 7.

4

7.
75

Real 16 bits 14 bits 12 bits 10 bits

FIGURE 27.10 � PSNR versus bitrate for various coefficient sizes.

578 Chapter 27 � SPIHT Image Compression

TABLE 27.2 � Final variable fixed-point representation

Wavelet level Integer bits Fractional bits

Input image 10 6
0 11 5
1 12 4
2 13 3
3 14 2
4 15 1
5 16 0
6 17 −1

Instead, we chose a numerical representation that retains the equivalent
amount of information as a full floating-point number during wavelet trans-
formation. By doing so, it was possible to perfectly reconstruct an image given
a high enough bitrate. In other words, we allowed for a lossless implementation.
Table 27.2 provides the number of integer and fractional bits allocated for each
wavelet level. The number of integer bits also includes 1 extra bit for the sign
value. The highest wavelet level’s 16 integer bits represent positions 17 to 1, with
no bit assigned for the 0 position.

27.3.3 Fixed Order SPIHT
The last major factor we took under consideration was how to parallelize the
SPIHT algorithm for use in hardware. As discussed in Section 27.2, SPIHT com-
putes a dynamic ordering of the wavelet coefficients as it progresses. By always
adding pixels to the end of the LIP, LIS, and LSP, coefficients most critical to
constructing a valid wavelet are generally sent first, while less critical coefficients
are placed later in the lists. Such an ordering yields better image quality for bit-
streams that end in the middle of a bit plane. The drawback of this ordering
is that every image has a unique list order determined by the image’s wavelet
coefficient values.

By analyzing the SPIHT algorithm, we were able to conclude that the data a
block of coefficients contributes to the final SPIHT bitstream is fully determined
by the following set of localized information:

� The 2×2 block of coefficients
� Their immediate children
� The maximum magnitude of the four subtrees

As a result, we were able to show that every block of coefficients could be calcu-
lated independently and in parallel of one another. We were also able to deter-
mine that, if we could parallelize the computation of these coefficients, the final
hardware implementation would operate at a much higher throughput. How-
ever, we were not able to take advantage of this parallelism because in SPIHT

27.3 Design Considerations and Modifications 579

the order in which a block’s data is inserted into the bitstream is not known,
since it depends on the image’s unique ordering. Only once the order is deter-
mined is it possible to produce a valid SPIHT bitstream from the information
listed previously.

Unfortunately, the algorithm employed to calculate the SPIHT ordering of
coefficients is sequential. The computation steps over the coefficients of the
image multiple times within each bit plane and dynamically inserts and removes
coefficients from the LIP and LIS lists. Such an algorithm is not parallelizable
in hardware. As a result, many of the speedups a custom hardware implemen-
tation may produce would be lost. Instead, any hardware implementation we
could develop would need to create the lists in an identical manner as the soft-
ware implementation. This process would require many clock cycles per block
of coefficients, which would significantly limit the throughput of any SPIHT
implementation in hardware.

To remove this limitation and design a faster system, we created a modifica-
tion to the original algorithm called Fixed Order SPIHT. Fixed Order SPIHT is
similar to the SPIHT algorithm shown in Figure 27.5, except that the order of
the LIP, LIS, and LSP lists is fixed and known beforehand. Instead of inserting
blocks of coefficients at the end of the lists, they are inserted in a predetermined
order. For example, block A will always appear before block B, which is always
before block C, regardless of the order in which A, B, and C were added to the
lists. The order of Fixed Order SPIHT is based upon the Morton scan ordering
discussed in Algazi and Estes [1].

Fixed Order SPIHT removed the need to calculate the ordering of coefficients
within each bit plane and allowed us to create a fully parallel version of the
original SPIHT algorithm. Such a modification increased the throughput of a
hardware encoder by more than an order of magnitude at the cost of a slightly
lower PSNR within each bit plane. Figure 27.11 outlines the new version of
SPIHT we created. The final bitstream generated is precisely the same as the
bitstream generated from the original SPIHT algorithm except that data will
appear in a different order within each bit plane.

By using the algorithm in Figure 27.11 instead of the original sequential
algorithm in Figure 27.8, the final datastream can be computed in one pass
through the image instead of multiple passes. In addition, each pixel block
is coded in parallel, which yields significantly faster compression times with
FPGAs.

The advantage of this method is that at the end of each bit plane, the exact
same data will have been transmitted, just in a different order. Thus, at the end
of each bit plane the PSNR of Fixed Order SPIHT will match that of the original
SPIHT algorithm, as shown in Figure 27.12. Since the length of each bitstream
is fairly short within the transmitted datastream, the PSNR curve of Fixed Order
SPIHT very closely matches that of the original algorithm. The maximum loss
in quality between Fixed Order SPIHT and the original SPIHT algorithm found
was 0.2 dB. This is the maximum loss any image in our sample set displayed
over any bitrate from 0.05 to 8.00 bpp.

For a more complete discussion on Fixed Order SPIHT, refer to Fry [8].

580 Chapter 27 � SPIHT Image Compression

1. Bit-plane calculation: for each 2×2 block of pixels (i,j) in a Morton
Scan Ordering
1.1 for each threshold level n from the highest level to the lowest

1.1.1 if (i,j) is a root and Max((i,j)) >= n
add all four pixels to the LIP

1.1.2 if (i,j) is not a root and Max((i,j)) >= previous n
for each pixel p in the block

if p < previous n
add p to the LIP

else
add p to the LSP

1.1.3 if (i,j) is not a leaf and Max((i,j)) >= n
add all four pixel to the LIS unless (i,j) is a root, then
just add the three with children

1.1.4 if all four pixels are in LIS and at least one is not in the LIP
if at least one pixel will be removed from the LIS at this level

output a '0' to the LIS stream
else

output a '1' to the LIS stream
1.1.5 for each pixel p in the LIP

if p >= n
output a '1' and the sign of p to the LIP stream
remove p from the LIP and add it to the LSP

else
output a '0' to the LIP stream

1.1.6 for each pixel p in the LIS
if child max(p) >= n

output a '1' to the LIS stream
remove p from the LIS
for each child (k,l) of p

if (k,l) >= n
output a '1' and the sign of (k,l) to the LIS stream

else
output a '0' to the LIS stream

else
output a '0' to the LIS stream

1.1.7 for each pixel p in the LSP
output the value of p at the bit plane n to the LSP stream

2. Grouping phase: for each threshold level n from the highest level to
the lowest
2.1 output the LIP stream at threshold level n to the final data stream
2.2 output the LIS stream at threshold level n to the final data stream
2.3 output the LSP stream at threshold level n to the final data stream

FIGURE 27.11 � Fixed Order SPIHT.

27.4 HARDWARE IMPLEMENTATION

In the following subsections we first describe the target hardware platform
that the SPIHT algorithm was mapped onto. Next, we present an overview of
the implementation and a detailed description of the three major steps of the

27.4 Hardware Implementation 581

0

10

20

30

40

50

60

0.
05 0.
3

0.
55 0.
8

1.
05 1.
3

1.
55 1.
8

2.
05 2.
3

2.
55 2.
8

3.
05 3.
3

3.
55 3.
8

Bi t rate

P
S

N
R

Original Fixed order

FIGURE 27.12 � A comparison of original SPIHT and Fixed Order SPIHT.

computation. A thorough understanding of the target platform is required
because it strongly influenced the SPIHT implementation created.

27.4.1 Target Hardware Platform
The target platform was the WildStar FPGA processor board developed by
Annapolis Microsystems [2]. Shown in Figure 27.13, it consists of three Xilinx
Virtex 2000E FPGAs—PE 0, PE 1, and PE 2—and operates at rates of up to
133 MHz. The board makes available 48 MBytes of memory through 12 indi-
vidual memory ports, between 32 and 64 bits wide, yielding a throughput of up
to 8.5 GBytes/sec. Four shared memory blocks connect the Virtex chips through
a crossbar. By switching a crossbar, several MBytes of data are passed between
the chips in just a few clock cycles.

The Xilinx Virtex 2000E FPGA allows for 2 million gate designs [22]. For extra
on-chip memory, the FPGAs contain 160 asynchronous dual-ported BlockRAMs.
Each BlockRAM stores 4096 bits of data and is accessible in 1-, 2-, 4-, 8-, or
16-bit-wide words. Because they are dual ported, the BlockRAMs function well
as first in, first outs (FIFOs). A PCI bus connects the board to a host computer.

27.4.2 Design Overview
The architecture constructed consisted of three phases: wavelet transform,
maximum magnitude calculation, and Fixed Order SPIHT coding. Each phase

582 Chapter 27 � SPIHT Image Compression

SRAM SRAM SRAM SRAM

SRAM

SRAM

SRAMSRAM

Crossbar

PE1 PE0 PE2

CrossbarCrossbar

SRAM

32 bits

64 bits

64 bits

64 bits 64 bits 64 bits

64 bits64 bits 64 bits

64 bits

64 bits

64 bits

64 bits

32 bits

32 bits

32 bits

SRAM

SRAMSRAM

Crossbar
64 bits

64 bits 64 bits

64 bits

FIGURE 27.13 � A block diagram of the Annapolis Microsystems WildStar board.

was implemented in one of the three Virtex chips. By instantiating each phase
on a separate chip, separate images could be operated on in parallel. Data was
transferred from one phase by the next through the shared memories. The deci-
sion on how to break up the phases came naturally from the resources available
in each FPGA and the requirements of each section. The DWT and the SPIHT
coding phases each required close to the full resources of a single FPGA, and
the maximum magnitude phase needed to be completed prior to the SPIHT cod-
ing phase. These characteristics of the algorithm and system naturally lead to
placing the three phases on the three separate FPGAs.

The architecture was also designed in this manner because once processing
in a phase is complete, the crossbar mode could be switched and the data calcu-
lated would be accessible to the next chip. By coding a different image in each
phase simultaneously, the throughput of the system is determined by the slow-
est phase, while the latency of the architecture is the sum of the three phases.
Figure 27.14 illustrates the architecture of the system.

27.4.3 Discrete Wavelet Transform Phase
As discussed in Section 27.3.1, after implementing each algorithm in hardware
we chose a simple folded architecture, which matched the bandwidth, memory,
and chip capacities of the target board well. The results of this phase are stored
into memory and passed to the maximum magnitude phase.

27.4 Hardware Implementation 583

PE1
wavelet

PE0
magnitude

PE2
SPIHT

Wavelet
coefficients

Wavelet
coefficients

Magnitude
information

FIGURE 27.14 � An overview of the architecture.

27.4.4 Maximum Magnitude Phase
Once the DWT is complete, the next phase prepares and organizes the image into
a form easily readable by the parallel version of the SPIHT coder. Specifically, the
maximum magnitude phase calculates and rearranges the following information
for the next phase:

� The maximum magnitude of each of the four child trees
� The absolute value of the 2×2 block of coefficients
� A sign value for each coefficient in the block
� The threshold level when the block is first inserted into the LIS by its

parent
� Threshold and sign data of each of the 16 child coefficients
� Reorder the wavelet coefficients into a Morton Scan Ordering

The SPIHT coding phase shares two 64-bit memory ports with the maximum
magnitude phase, allowing it to read 128 bits on each clock cycle. The data just
listed can fit into these two memory ports. By doing so on every clock cycle the
SPIHT coding phase will be able to read and process an entire block of data. The
data that the maximum magnitude phase calculates is shown in Figure 27.15.

To calculate the maximum magnitude of all coefficients below a node in the
spatial orientation trees, the image must be scanned in depth-first search order
[7]. With a depth-first search, whenever a new coefficient is read and consid-
ered, all of its children will have already been read and the maximum coeffi-
cient so far is known. On every clock cycle the new coefficient is compared to
and updates the current maximum. Because PE 0 (the maximum magnitude
phase) uses 32-bit-wide memory ports, it can read half a block at a time.

The state machine, which controls how the spatial orientation trees are tra-
versed, reads one-half of a block as it descends the tree, and the other half as it
ascends the tree. By doing so all of the data needed to compute the maximum
magnitude for the current block is available as the state machine ascends back
up the spatial orientation tree. In addition, the four most recent blocks of each
level are saved onto a stack so that all 16 child coefficients are available to the
parent block.

Figure 27.16 demonstrates the algorithm. The current block, maximum mag-
nitude for each child, and 16 child coefficients are shown on the stack. Light
gray blocks are coefficients previously read and processed. Dark gray blocks are
coefficients currently being read. In this example, the state machine has just
finished reading the lowest level and has ascended to the second wavelet level.

584 Chapter 27 � SPIHT Image Compression

4 Children and parent’s threshold data

015163132474863

Coefficient 4 Coefficient 3 Coefficient 2 Coefficient 1

Left memory port Coefficient

15 14 0

Coefficient magnitude

Sign
bit

025313263

Right memory port

24

Threshold and sign data for 16 children

FIGURE 27.15 � Data passed to the SPIHT coder to calculate a single block.

Spatial Orientation Tree

Stack

Child
coefficients

Current
coefficients

Child
maximum

magnitudes

FIGURE 27.16 � A depth-first search of the spatial orientation trees.

The second block in the second level is now complete, and its maximum magni-
tude can now be calculated, shown as the dark gray block in the stack’s highest
level. In addition, the 16 child coefficients in the lowest level were saved and
are available. There are no child values for the lowest level since there are no
children.

Another benefit of scanning the image in a depth-first search order is that Mor-
ton Scan Ordering is naturally realized within each level, although it is intermixed
between levels. By writing data from each level to a separate area of memory and
later reading the data from the highest wavelet level to the lowest, the Morton

27.4 Hardware Implementation 585

Depth-first
search state
machine and
 control logic

Read
memory port

Magnitude
calculation

Coefficient
stack and
maximum
magnitude
calculation

Encode
maximum

magnitudes
and group
block data

Memory
buffer and
address

generator

Write
memory
port 1

Write
memory
port 2

FIGURE 27.17 � A block diagram of the SPIHT maximum magnitude phase.

Scan Ordering is naturally realized. A block diagram of the maximum magnitude
phase is provided in Figure 27.17. Since two pixels are read together and the
image is scanned only once, the runtime of this phase is half a clock cycle per
pixel. Because the maximum magnitude phase computes in less time than the
wavelet phase, the throughput of the overall system is not affected.

27.4.5 The SPIHT Coding Phase
The final SPIHT coding phase performs the Fixed Order SPIHT encoding in
parallel, based on the data from the maximum magnitude phase. Coefficient
blocks are read from the highest wavelet level to the lowest. As information is
loaded from memory it is shifted from the variable fixed-point representation to
a common fixed-point representation for every wavelet level. Once each block
has been adjusted to an identical numerical representation, the parallel version
of SPIHT is used to calculate what information each block will contribute to
each bit plane.

The information is grouped and counted before being added to three separate
variable FIFOs for each bit plane. The data that the variable FIFO components
receive range in size from 0 to 37 bits, and the variable FIFOs arrange the block
data into regular sized 32-bit words for memory access. Care is also taken to
stall the algorithm if any of the variable FIFOs becomes too full.

Data from each buffer is output to a fixed location in memory and the number
of bits in each bitstream is output as well. Given that data is added dynamically
to each bitstream, there needs to be a dynamic scheduler to select which buffer

586 Chapter 27 � SPIHT Image Compression

should be written to memory. Since there are a large number of FIFOs that all
require a BlockRAM, the FIFOs are spread across the FPGA, and some type
of staging is required to prevent a signal from traveling too far. The scheduler
selects which FIFO to read based on both how full a FIFO is and when it was
last accessed.

Our studies showed that the LSP bitstream is roughly the same size of the
LIP and LIS streams combined. Because of this the LSP bitstreams transfer
more data to memory than the other two lists. In our design the LIP and LIS
bitstreams share a memory port while the LSP stream writes to a separate mem-
ory port. Since a 2×2 block of coefficients is processed every clock cycle, the
design takes one-quarter of a clock cycle per pixel, which is far less than the
three-quarters of a clock cycle per pixel for the DWT. The block diagram for
the SPIHT coding phase is given in Figure 27.18.

With 22 total bit planes to calculate, the design involves 66 individual
data grouping and variable FIFO blocks. Although none consume a significant
amount of FPGA resources individually, 66 blocks do. The entire design required
160 percent of the resources in a Virtex 2000E, and would not fit in the target
system. However, by removing the lower bit planes, less FPGA resources are
needed, and the architecture can easily be adjusted to fit the FPGA being used.
Depending on the size of the final bitstream required, the FPGA size used in the
SPIHT phase can be varied to handle the number of intermediate bitstreams
generated.

Removing lower bit planes is possible since the final bitstream transmits data
from the highest bit plane to the lowest. In our design the lower 9-bit planes

Address
generator and
control logic

Read
memory
port 1

Read
memory
port 2

Shift data

Calculate
bit plane 21

…

LIP
data

LIS
data

LSP
data

Group
data

Variable
FIFO

Group
data

Variable
FIFO

Group
data

Variable
FIFO

Dynamic
FIFO

scheduler

Select and Read FIFOs

…

Calculate
bit plane 0

LIP
data

LIS
data

LSP
data

Group
data

Group
data

Group
data

Variable
FIFO

Variable
FIFO

Variable
FIFO

LIP and LIS
address

generator

Write
memory
port 1

Write
memory
port 2

LSP
address

generator

FIGURE 27.18 � A block diagram of the SPIHT coding phase.

27.5 Design Results 587

were eliminated. Yet, without these lower planes, bitrates of up to 6 bpp can
still be achieved. We found the constraint to be acceptable because we are inter-
ested in high compression ratios using low bitrates, and 6 bpp is practically a
lossless signal. Since SPIHT is optimized for lower bitrates, the ability to cal-
culate higher bitrates was not considered necessary. Alternatively, the use of a
larger FPGA would alleviate the size constraint.

27.5 DESIGN RESULTS

The system was designed using VHDL with models provided by Annapolis Micro
Systems to access the PCI bus and memory ports. Simulations for debugging
purposes were carried out with ModelSim EE 5.4e from Mentor Graphics. Syn-
plify 6.2 from Synplicity was used to compile the VHDL code and generate a
netlist. The Xilinx Foundation Series 3.1i tool set was used to place and route
the design. Lastly, the peutil.exe utility from Annapolis Micro Systems gen-
erated the FPGA configuration streams.

Table 27.3 shows the speed and runtime specifications of the final architec-
ture. All performance numbers are measured results from the actual hardware
implementation. Each phase computes on separate memory blocks, which can
operate at different clock rates. The design can process any square image where
the dimensions are a power of 2: 16×16, 32×32, up to 1024×1024.

Since the WildStar board is connected to the host computer by a relatively
slow PCI bus, the throughput of the entire system we built is constrained by
the throughput of the PCI bus. However, since the study is on how image com-
pression routines could be implemented on a satellite, such a system would be
designed differently, and would not contain a reconfigurable board connected to
some host platform though a PCI bus. Instead, the image compression routines
would be inserted directly into the data path and the data transfer times would
not be the bottleneck of the system. For this reason we analyzed the throughput
of just the SPIHT compression engine and analyzed how quickly the FPGAs can
process the images.

The throughput of the system was constrained by the discrete wavelet trans-
form at 100 MPixels/sec. One method to increase this rate is to compute
more rows in parallel. If the available memory ports accessed 128 bits of
data instead of the 64 bits with our WildStar board, the number of clock
cycles per pixel could be reduced by half and the throughput could double.

TABLE 27.3 � Performance numbers

Clock cycles per Clock cycles FPGA area
Phase 512×512 image per pixel Clock rate Throughput (%)

Wavelet 182465 3/4 75 MHz 100 MPixels/sec 62
Magnitude 131132 1/2 73 MHz 146 MPixels/sec 34
SPIHT 65793 1/4 56 MHz 224 MPixels/sec 98

588 Chapter 27 � SPIHT Image Compression

Assuming the original image consists of 8 bpp, images are processed at a rate of
800 Mbits/sec.

The entire throughput of the architecture is less than one clock cycle for
every pixel, which is lower than parallel versions of the DWT. Parallel ver-
sions of the DWT used complex scheduling to compute multiple wavelet levels
simultaneously, which left limited resources to process multiple rows at a time.
Given more resources though, they would obtain higher data rates than our
architecture by processing multiple rows simultaneously. In the future, a DWT
architecture other than the one we implemented could be selected for additional
speed improvements.

We compared our results to the original software version of SPIHT provided
on the SPIHT web site [15]. The comparison was made without arithmetic cod-
ing since our hardware implementation does not perform any arithmetic coding
on the final bitstream. Additionally, in our testing on sample NASA images, arith-
metic coding added little to overall compression rates and thus was dropped
[11]. An IBM RS/6000 Model 270 workstation was used for the comparison,
and we used a combination of standard image compression benchmark images
and satellite images from NASA’s web site. The software version of SPIHT com-
pressed a 512×512 image in 1.101 seconds on average without including disk
access. The wavelet phase, which constrains the hardware implementation, com-
putes in 2.48 milliseconds, yielding a speedup of 443 times for the SPIHT engine.
In addition, by creating a parallel implementation of the wavelet phase, further
improvements to the runtimes of the SPIHT engine are possible.

While this is the speedup we will obtain if the data transfer times are not a
factor, the design may be used to speed up SPIHT on a general-purpose pro-
cessor. On such a system the time to read and write data must be included as
well. Our WildStar board is connected to the host processor over a PCI bus,
which writes images in 13 milliseconds and reads the final datastream in 20.75
milliseconds. Even with the data transfer delay, the total speedup still yields an
improvement of 31.4 times.

Both the magnitude and SPIHT phases yield higher throughputs than the
wavelet phase, even though they operate at lower clock rates. The reason for
the higher throughputs is that both of these phases need fewer clock cycles
per pixel to compute an image. The magnitude phase takes half a clock cycle
per pixel and the SPIHT phase requires just a quarter. The fact that the SPIHT
phase computes in less than one clock cycle per pixel, let alone a quarter, is
a striking result considering that the original SPIHT algorithm is very sequen-
tial in nature and had to consider each pixel in an image multiple times per
bit plane.

27.6 SUMMARY AND FUTURE WORK

In this chapter we demonstrated a viable image compression routine on a recon-
figurable platform. We showed how by analyzing the range of data processed by
each section of the algorithm, it is advantageous to create optimized memory

27.6 Summary and Future Work 589

structures as with our variable fixed-point work. Doing so minimizes memory
usages and yields efficient data transfers. Here each bit transferred between
memory and the processor board directly impacted the final results. In addi-
tion, our Fixed Order SPIHT modifications illustrate how by making slight
adjustments to an existing algorithm, it is possible to dramatically increase the
performance in a custom hardware implementation and simultaneously yield
essentially identical results. With Fixed Order SPIHT the throughput of the
system increased by over an order of magnitude while still matching the original
algorithm’s PSNR curve.

This SPIHT work was part of a development effort funded by NASA.

References
[1] V. R. Algazi, R. R. Estes. Analysis-based coding of image transform and subband

coefficients. Applications of Digital Image Processing XVIII, SPIE Proceedings 2564,
1995.

[2] Annapolis Microsystems. WildStar Reference Manual, Annapolis Microsystems, 2000.
[3] A. Benkrid, D. Crookes, K. Benkrid. Design and implementation of generic 2D

biorthogonal discrete wavelet transform on an FPGA. IEEE Symposium on Field-
Programmable Custom Computing Machines, April 2001.

[4] M. Carraeu. Hubble Servicing Mission: Hubble is fitted with a new “eye.”
http://www.chron.com/content/interactive/space/missions/sts-103/hubble/archive/
931207.html, December 7, 1993.

[5] C. M. Chakrabarti, M. Vishwanath. Efficient realization of the discrete and contin-
uous wavelet transforms: From single chip implementations to mappings in SIMD
array computers. IEEE Transactions on Signal Processing 43, March 1995.

[6] C. M. Chakrabarti, M. Vishwanath, R. M. Owens. Architectures for wavelet trans-
forms: A survey. Journal of VLSI Signal Processing 14, 1996.

[7] T. Cormen, C. Leiserson, R. Rivest. Introduction to Algorithms, MIT Press, 1997.
[8] T. W. Fry. Hyper Spectral Image Compression on Reconfigurable Platforms, Master’s

thesis, University of Washington, Seattle, 2001.
[9] R. C. Gonzalez, R. E. Woods. Digital Image Processing, Addison-Wesley, 1993.

[10] A. Graps. An introduction to wavelets. IEEE Computational Science and Engineering
2(2), 1995.

[11] T. Owen, S. Hauck. Arithmetic Compression on SPITH Encoded Images, Technical
report UWEETR-2002–2007, Department of Electrical Engineering, University of
Washington, Seattle, 2002.

[12] K. K. Parhi, T. Nishitani. VLSI architectures for discrete wavelet transforms. IEEE
Transactions on VLSI Systems 1(2), 1993.

[13] J. Ritter, P. Molitor. A pipelined architecture for partitioned DWT based lossy image
compression using FPGAs. ACM/SIGDA Ninth International Symposium on Field-
Programmable Gate Arrays, February 2001.

[14] A. Said, W. A. Pearlman. A new fast and efficient image codec based on set parti-
tioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video
Technology 6, June 1996.

[15] A. Said, W. A. Pearlman. SPIHT image compression: Properties of the method.
http://www.cipr.rpi.edu/research/SPIHT/spiht1.html.

[16] H. Sava, M. Fleury, A. C. Downton, A. Clark. Parallel pipeline implementations of
wavelet transforms. IEEE Proceedings Part 1 (Vision, Image and Signal Processing)
144(6), 1997.

590 Chapter 27 � SPIHT Image Compression

[17] J. M. Shapiro. Embedded image coding using zero trees of wavelet coefficients.
IEEE Transactions on Signal Processing 41(12), 1993.

[18] W. Sweldens. The Lifting Scheme: A new philosophy in biorthogonal wavelet con-
structions. Wavelet Applications in Signal and Image Processing 3, 1995.

[19] NASA. TERRA: The EOS flagship. The EOS Data and Information System (EOS-
DIS). http://terra.nasa.gov/Brochure/Sect 5-1.html.

[20] C. Valens. A really friendly guide to wavelets. http://perso.wanadoo.fr/polyvalens/
clemens/wavelets/wavelets.html.

[21] M. Vishwanath, R. M. Owens, M. J. Irwin. VLSI architectures for the discrete
wavelet transform. IEEE Transactions on Circuits and Systems, Part II, May 1995.

[22] Xilinx, Inc. The Programmable Logic Data Book, Xilinx, Inc., 2000.
[23] Xilinx, Inc. Serial Distributed Arithmetic FIR Filter, Xilinx, Inc., 1998.

C H A P T E R 28

AUTOMATIC TARGET RECOGNITION SYSTEMS
ON RECONFIGURABLE DEVICES

Young H. Cho
Open Acceleration Systems Research

An Automatic Target Recognition (ATR) system analyzes a digital image or video
sequence to locate and identify all objects of a certain class. There are several
ways to implement ATR systems, and the right one is dependent, in large part,
on the operating environment and the signal source. In this chapter we focus
on the implementations of reconfigurable ATR designs based on the algorithms
from Sandia National Laboratories (SNL) for the U.S. Department of Defense
Joint STARS airborne radar imaging platform. STARS is similar to an aircraft
AWACS system, but detects ground targets.

ATR in Synthetic Aperture Radar (SAR) imagery requires tremendous process-
ing throughput. In this application, data come from high-bandwidth sensors, and
the processing is time critical. On the other hand, there is limited space and power
for processing the data in the sensor platforms. One way to meet the high compu-
tational requirement is to build custom circuits as an ASIC. However, very high
nonrecurring engineering (NRE) costs for low-volume ASICs, and often evolving
algorithms, limit the feasibility of using custom hardware. Therefore, reconfig-
urable devices can play a prominent role in meeting the challenges with greater
flexibility and lower costs.

This chapter is organized as follows: Section 28.1 describes a highly paralleliz-
able Automatic Target Recognition (ATR) algorithm. The system based on it is
implemented using a mix of software and hardware processing, where the most
computationally demanding tasks are accelerated using field-programmable gate
arrays (FPGAs). We present two high-performance implementations that exercise
the FPGA’s benefits. Section 28.2 describes the system that automatically builds
algorithm-specific and resource-efficient “hardwired” accelerators. It relies on the
dynamic reconfiguration feature of FPGAs to obtain high performance using lim-
ited logic resources.

The system in Section 28.3 is based on an architecture that does not
require frequent reconfiguration. The architecture is modular, easily scalable,
and highly tuned for the ATR application. These application-specific processors
are automatically generated based on application and environment parameters.
In Section 28.4 we compare the implementations to discuss the benefits and the
trade-offs of designing ATR systems using FPGAs. In Section 28.5, we draw our
conclusions on FPGA-based ATR system design.

592 Chapter 28 � Automatic Target Recognition Systems on Reconfigurable Devices

28.1 AUTOMATIC TARGET RECOGNITION ALGORITHMS

Sandia real-time SAR ATR systems use a hierarchy of algorithms to reduce the
processing demands for SAR images in order to yield a high probability of detec-
tion (PD) and a low false alarm rate (FAR).

28.1.1 Focus of Attention
As shown in Figure 28.1, the first step in the SNL algorithm is a Focus of
Attention (FOA) algorithm that runs over a downsampled version of the entire
image to find regions of interest that are of approximately the right size and
brightness. These regions are then extracted and processed by an indexing stage
to further reduce the datastream, which includes target hypotheses, orientation
estimations, and target center locations. The surviving hypotheses have the full
resolution data sent to an identification executive that schedules multiple iden-
tification algorithms and then fuses their results.

The FOA stage identifies interesting image areas called “chips.” Then it com-
poses a list of targets suspected to be in a chip. Having access to range and
altitude information, the FOA algorithm also determines the elevation for the
chip, without having to identify the target first. It then tasks the next stage with
evaluating the likelihood that the suspected targets are actually in the given
image chip and exactly where.

28.1.2 Second-level Detection
The next stage of the algorithm, called Second Level Detection (SLD), takes the
extracted imagery (an image chip), matches it against a list of provided target

Synthetic aperture radar sensors

Focus of attention

Second-level detection driver

Reporting module

M-47 Tank
Angle: 3558
Elevation: 10 ft

FIGURE 28.1 � The Sandia Automatic Target Recognition algorithm.

28.1 Automatic Target Recognition Algorithms 593

hypotheses, and returns the hit information for each image chip consisting of
the best two orientation matches and other relevant information.

The system has a database of target models. For each target, and for each
of its three different elevations, 72 templates are defined corresponding to its
all-around views. The orientations of adjacent views are separated by 5 degrees.

SLD is a binary silhouette matcher that has a bright mask and a surround
mask that are mutually exclusive. Each template is composed of several param-
eters along with a “bright mask” and a “surround mask,” where the former
defines the image pixels that should be bright for a match, and the latter defines
the ones that should not. The bright and surround masks are 32×32 bitmaps,
each with about 100 asserted bits. “Bright” is defined relative to a dynamic
threshold.

On receiving tasks from the FOA, the SLD unit compares all of the stored
templates for this target and elevation and the applicable orientations with
the image chip, and computes the level of matching (the “hit quality”). The
two hits with the highest quality are reported to the SLD driver as the most
likely candidates to include targets. For each hit, the template index number,
the exact position of the hit in the search area, and the hit quality are pro-
vided. After receiving this information, the SLD driver reports it to the ATR
system.

The purpose of the first step in the SLD algorithm, called the shape sum, is to
distinguish the target from its surrounding background. This consists of adap-
tively estimating the illumination for each position in the search area, assuming
that the target is at that orientation and location. If the energy is too little or
too much, no further processing for that position for that template match is
required. Hence, for each mask position in the search area, a specific threshold
value is computed as in equation 28.1.

SMx, y =
31

∑
u=0

31

∑
v=0

Bu, vMx+u, y+v (28.1)

THx, y =
SMx, y

BC
–Bias (28.2)

The next step in the algorithm distinguishes the target from the background
by thresholding each image pixel with respect to the threshold of the cur-
rent mask position, as computed before. The same pixel may be above the
threshold for some mask positions but below it for others. This threshold
calculation determines the actual bright and surround pixel for each posi-
tion. As shown in equation 28.2, it consists of dividing the shape sum by the
number of pixels in the bright mask and subtracting a template-specific Bias
constant.

As shown in equation 28.3, the pixel values under the bright mask that are
greater than or equal to the threshold are counted; if this count exceeds the
minimal bright sum, the processing continues. On the other hand, the pixel

594 Chapter 28 � Automatic Target Recognition Systems on Reconfigurable Devices

values under the surround mask that are less than the threshold are counted to
calculate the surround sum as shown in equation 28.4. If this count exceeds the
minimal surround sum, it is declared a hit.

BSx, y =
31

∑
u=0

31

∑
v=0

Bu, v
[

Mx+u, y+v ≥ THx, y
]

(28.3)

SSx, y =
31

∑
u=0

31

∑
v=0

Su, v
[

Mx+u, y+v < THx, y
]

(28.4)

Once the position of the hit is determined, we can calculate its quality by
taking the average of bright and surround pixels that were correct, as shown in
equation 28.5. This quality value is sent back to the driver with the position to
determine the two best targets.

Qx, y =
1
2

(
BSx, y

BC
+

SSx, y

SC

)

(28.5)

28.2 DYNAMICALLY RECONFIGURABLE DESIGNS

FPGAs can be reconfigured to perform multiple functions with the same logic
resources by providing a number of corresponding configuration bit files. This
ability allows us to develop dynamically reconfigurable designs. In this section,
we present an ATR system implementation of UCLA’s Mojave project that uses
an FPGA’s dynamic reconfigurability.

28.2.1 Algorithm Modifications
As described previously, the current Sandia system uses 64 × 64 pixel chips
and 32 × 32 pixel templates. However, the Mojave system uses chip sizes of
128×128 pixels and template sizes of 8×8 pixels. It uses different chip and tem-
plate sizes in order to map into existing FPGA devices that are relatively small.
A single template moves through a single chip to yield 14,641 (121×121) image
correlation results. Assuming that each output can be represented with 6 bits,
the 87,846 bits are produced by the system.

There is also a divide step in the Sandia algorithm that follows the shape
sum operation and guides the selection of threshold bin for the chip. This sys-
tem does not implement the divide, mainly because it is expensive relative to
available FPGA resources for the design platform.

28.2.2 Image Correlation Circuit
FPGAs offer an extremely attractive solution to the correlation problem. First of
all, the operations being performed occur directly at the bit level and are domi-
nated by shifts and adds, making them easy to map into the hardware provided
by the FPGA. This contrasts, for example, with multiply-intensive algorithms

28.2 Dynamically Reconfigurable Designs 595

that would make relatively poor utilization of FPGA resources. More important,
the sparse nature of the templates can be utilized to achieve a far more efficient
implementation in the FPGA than could be realized in a general-purpose corre-
lation device. This can be illustrated using the example of the simple template
shown in Figure 28.2.

In the example template shown in the figure, only 5 of the 20 pixels are
asserted. At any given relative offset between the template and the chip, the
correlation output is the sum of the 5 binary pixels in the chip that match
the asserted bits in the template. The template can therefore be implemented in
the FPGA as a simple multiple-port adder. The chip pixel values can be stored
in flip-flops and are shifted to the right by one flip-flop with each clock cycle.
Though correlation of a large image with a small mask is often understood con-
ceptually in terms of the mask being scanned across the image, in this case the
opposite is occurring—the template is hardwired into the FPGA while the image
pixels are clocked past it.

Another important opportunity for increased efficiency lies in the potential to
combine multiple templates on a single FPGA. The simplest way to do this is to
spatially partition the FPGA into several smaller blocks, each of which handles
the logic for a single template. Alternatively, we can try to identify templates
that have some topological commonality and can therefore share parts of their
adder trees. This is illustrated in Figure 28.3, which shows two templates sharing
several pixels that can be mapped using a set of adder trees to leverage this
overlap.

A potential advantage FPGAs have over ASICs is that they can be dynam-
ically optimized at the gate level to exploit template characteristics. For our
application, a programmable ASIC design would need to provide large general-
purpose adder trees to handle the worst-case condition of summing all possi-
ble template bits, as shown in Figure 28.4. In constrast, an FPGA exploits the
sparse nature of the templates and constructs only the small adder trees required.
Additionally, FPGAs can optimize the design based on other application-specific
characteristics.

1

D00

D00 D10 D20 D30

D01 D11 D21 D31

D10
D20
D01
D21

ResultA

TemplateA

Image

FIGURE 28.2 � An example template and a corresponding register chain with an adder tree.

596 Chapter 28 � Automatic Target Recognition Systems on Reconfigurable Devices

TemplateA

ResultA

ResultB

TemplateB

D00
D10
D20
D21

D31

D01 +

+

+

FIGURE 28.3 � Common hardware shared between two templates.

TemplateA Image

Registers
for image chip
and templates

AND gates
used to
perform
dot product

Large adderSum

FIGURE 28.4 � The ASIC version of the equivalent function.

28.2.3 Performance Analysis
Using a template-specific adder tree achieves significant reduction in routing
complexity over a general correlation device, which must include logic to sup-
port arbitrary templates. The extent of this reduction is inversely proportional
to the fraction of asserted pixels in the template. While this complexity reduc-
tion is important, alone it is not sufficient to lead to efficient implementations
on FPGAs. The number of D-flip-flops required for storing the data points can
cause inefficiencies in the design. Implementing these on the FPGA using the
usual flip-flop–based shift registers is inefficient.

This problem can be resolved by collapsing the long strings of image pixels—
those not being actively correlated against a template—into shift registers, which
can be implemented very efficiently on some lookup table (LUT)–based FPGAs.
For example, LUTs in the Xilinx XC4000 library can be used as shift registers
that delay data by some predetermined number of clock cycles. Each 16×1-bit

28.2 Dynamically Reconfigurable Designs 597

LUT can implement an element that is effectively a 16-bit shift register in which
the internal bits cannot be accessed. A flip-flop is also needed at the output of
each RAM to act as a buffer and synchronizer. A single control circuit is used to
control the stepping of the address lines and the timely assertion of the write-
enable and output-enable signals for all RAM-based shift register elements. This
is a small price to pay for the savings in configurable logic block (CLB) usage
relative to a brute-force implementation using flip-flops.

In contrast, the 256-pixel template images, like those shown in Figure 28.5,
can be stored easily using flip-flop–based registers. This is because sufficient
flip-flops are available to do this, and the adder tree structures do not consume
them. Also, using standard flip-flop–based shift registers for image pixels in the
template simplifies the mapping process by allowing every pixel to be accessed.
New templates can be implemented by simply connecting the template pixels
of concern to the inputs of the adder tree structures. This leads to significant
simplification of automated template-mapping tools.

The resources used by the two components of target correlation—namely,
storage of active pixels on the FPGA and implementation of the adder tree cor-
responding to the templates—are independent of each other. The resources used
by the pixel storage are determined by the template size and are independent of
the number of templates being implemented. Adding templates involves adding
new adder tree structures and hence increases the number of function genera-
tors being used. The total number of templates on an FPGA is bounded by the
number of usable function generators.

The experimental results suggest that in practice we can expect to fit 6 to 10
surround templates having a higher number of overlapping pixels onto a 13,000-
gate FPGA. However, intelligent grouping of compatible templates is important.
Because the bright templates are less populated than the surround templates, we
estimate that 15 to 20 of them can be mapped onto the same FPGA.

FIGURE 28.5 � Example of eight rotation templates of a SAR 16×16 bitmap image.

598 Chapter 28 � Automatic Target Recognition Systems on Reconfigurable Devices

28.2.4 Template Partitioning
To minimize the number of FPGA reconfigurations necessary to correlate a given
target image against the entire set of templates, it is necessary to maximize the
number of templates in every configuration of the FPGA. To accomplish this
optimization goal, we want to partition the set of templates into groups that
can share adder trees so that fewer resources are used per template. The set of
templates may number in the thousands, and the goal may be to place 10 to 20
of them per configuration; thus, exhaustive enumeration of all of the possible
groupings is not an option. Instead, we use a heuristic method that furnishes a
good, although perhaps suboptimal, solution.

Correlation between two templates can establish the number of pixels in com-
mon, and it is a good starting point for comparing and selecting templates. How-
ever, some extra analysis, beyond iterative correlations on the template set, is
necessary. For example, a template with many pixels correlates well with several
smaller templates, perhaps even completely subsuming them, but the smaller
templates may not correlate with each other and involve no redundant compu-
tations. There are two possible solutions to this. The first is to ensure that any
template added to an existing group is approximately the same size as the tem-
plates already in it. The second is to compute the number of additions required
each time a new template is brought in—effectively recomputing the adder tree
each time.

Recomputing the entire adder tree is computationally expensive and not a
good method of partitioning a set of templates into subsets. However, one of
the heuristics used in deciding whether or not to include a template in a newly
formed partition is to determine the number of new terms that its inclusion
would create in the partition’s adder tree. The assumption is that more terms
would result in a significant number of new additions, resulting in a wider and
deeper adder tree. Thus, by keeping to a minimum the number of new terms
created, newly added templates do not increase the number of additions by a
significant amount.

Using C++, we have created a design tool to implement the partitioning pro-
cess that uses an iterative approach to partitioning templates. Templates that
compare well to a chosen “base” template (usually selected by largest area) are
removed from the main template set and placed in a separate partition. This
process is repeated until all templates are partitioned. After the partitions have
been selected, the tool computes the adder tree for each partition.

Figure 28.6 shows the creation of an adder tree from the templates in a par-
tition. Within each partition, the templates are searched for shared subsets of
pixels. Called terms, these subsets can be automatically added together, leading
to a template description that uses terms instead of pixels.

The most common addition of two terms is chosen to be grouped together, to
form a new term that can be used by the templates. In this way, each template
is rebuilt by combining terms in such a way that the most redundant additions
are shared between templates; the final result is terms that compute entire tem-
plates. For the sample templates shown in Figure 28.6, 39 additions would be
required to compute the correlations for all 5 in a naive approach. However,

28.2 Dynamically Reconfigurable Designs 599

A B C D E

Template A 5 1 1 3 1 4

Template B 5 3 1 4 1 5

Template C 5 2 1 3 1 6 1 7

Template E 5 1 1 3 1 7

Template D 5 1 1 2 1 6 1 7

1

2 3 4

6

7

8

5

FIGURE 28.6 � Example of template grouping and rewritten as sums of terms.

after combining the templates through the process just described, only 17
additions are required.

28.2.5 Implementation Method
For a configurable computing system, the problem of dividing hardware and
software is particularly interesting because it is both a hardware and a software
issue. Consider the two methods for performing addition shown in Figure 28.7.
Method A, a straightforward parallel implementation requiring several FPGAs,
has several drawbacks. First, the outputs from several FPGAs converge at the
addition operation, which may create a severe I/O bottleneck. Second, the sys-
tem is not scalable—if it requires more precision, and therefore more bit planes,
more FPGAs must be added.

Method B in Figure 28.7 illustrates our approach. Each bit plane is correlated
individually and then added to the previous results in temporary storage. It is
completely scalable to any image or template precision, and it can implement
all correlation, normalization, and peak detection routines required for ATR.
One drawback of method B is the cost and power required for the resulting
wide temporary SRAM. Another possible drawback is the extra execution time
required to run ATR correlations in serial. The ratio of performance to number
of FPGAs is roughly equivalent for the two methods, and the performance gap
can be closed simply by using more of the smaller method B boards.

The approach of a reconfigurable FPGA connected to an intermediate memory
allows us a fairly complicated flow of control. For example, the sum calculation
in ATR tends to be more difficult than the image–template correlation. Thus, we
may want a program that performs two sum operations and forwards the results
to a single correlation.

Reconfigurations for 10K-gate FPGAs are typically around 20 kB in length.
Reconfiguring every 20 milliseconds gives a reconfiguration bandwidth of
approximately 1 MB per FPGA per second. Coupled with the complexity of the

600 Chapter 28 � Automatic Target Recognition Systems on Reconfigurable Devices

Corr

Corr

Corr

Bit plane 0

Bit plane 0
Bit plane 1

Bit plane 7

Bit plane 1

Bit plane 7

Sum

1

Sum

Corr 1

SRAM

(a) (b)

FIGURE 28.7 � Each of eight FPGAs correlating each bit plane of the template (a). A single FPGA
correlating bit planes and adding the partial sums serially (b).

flow control, this reconfiguration bandwidth can be handled by placing a small
microcontroller and configuration RAM next to every FPGA. The microcontroller
permits complicated flow of control, and since it addresses the configuration
RAM, it frees up valuable I/O on the FPGA. The microcontroller is also impor-
tant for debugging, which is a major issue in configurable systems because the
many different hardware configurations can make it difficult to isolate problems.

The principal components include a “dynamic” FPGA, which is reconfigured
on the fly and performs most of the computing functions, and a “static” FPGA,
which is configured only once and performs control and some computational
functions. The EPROM holds configuration bitstreams, and the SRAM holds
the input image data (e.g., the chip). Because the correlation operation involves
the application of a small target template to a large chip, a first in, first out
(FIFO) is needed to hold the pixels being wrapped around to the next row of
the template mask. The templates used in this implementation are of size 8×8,
whereas the correlation image is 128×128. Each configuration of the dynamic
FPGA implements a total of four template pairs (four bright templates and four
surround templates).

The large amount of sum in the algorithm can be performed in parallel. This
requires a total of D clock cycles, where D is each pixel’s depth of representa-
tion. Once the sum results are obtained, the correlation outputs are produced
at the rate of 1 per clock cycle. Parallelism cannot be as directly exploited in
this step because different pixels are asserted for different templates. However,
in the limit of very large FPGAs the number of clock cycles to compute the cor-
relation is upper-bounded by the number of possible thresholds, as opposed to
the number of templates.

28.3 RECONFIGURABLE STATIC DESIGN

Although the idea of reusing reconfigurable hardware to dynamically perform
different functions is unique to FPGAs, the main weaknesses of dynamic FPGA
reconfiguration are the lengthy time and additional resources required for
FPGA reconfiguration and design compilation. Although reconfiguration time

28.3 Reconfigurable Static Design 601

has improved dramatically over the years, any time spent on reconfiguration is
time that could be used to process more data.

Unlike the dynamic reconfigurable architecture describe in the previous sec-
tion, we describe another efficient FPGA design that does not require complete
design reconfiguration. However, like the previous system, it uses a number of
parameters to design a highly pipelined custom design to maximize utilization
of the design space to exploit the parallelism in the algorithm.

28.3.1 Design-specific Parameters
To verify our understanding of the algorithm, we first implemented a soft-
ware simulator and ran it on a sample dataset. Our simulations reproduced the
expected results. Over time this algorithm simulator became a full hardware
simulator and verifier. It also allowed us to investigate various design options
before implementing them in hardware.

The dataset includes 2 targets, each with 72 templates for 5-degree orientation
intervals. In total, then, we have 144 bright masks and 144 surround masks, each
a 32×32 bitmap. The dataset also includes 16 image chips, each with 64×64
pixels at 1 byte per pixel. Given a template and an image, there are 441 matrix
correlations that must take place for each mask. This corresponds to 21 search
rows, each 21 positions wide. The total number of search row correlations for
the sample data and templates is thus 48,384. The behavior of the simulator
on the sample dataset revealed a number of algorithm-specific characteristics.
Because the design architecture was developed for reconfigurable devices, these
characteristics are incorporated to tune the hardware engine for the best cost
and performance.

28.3.2 Order of Correlation Tasks
Correlation tasks for threshold calculation (equation 28.2), bright sum (equa-
tion 28.3), and surround sum (equation 28.4) are very closely related. Valid
results for all three must exist in order to calculate the quality of the hit, so
invalid results from any one of them make other calculations unnecessary.

For the data samples, about 60 percent of the surround sums and 40 percent
of the threshold results were invalid, while all of the bright sum results were
valid. The low rejection rate by bright sum is the result of the threshold being
computed using only the bright mask, regardless of the surround mask. The
threshold is computed by the same pixels used for computing bright sum, so we
find that, for a typical dataset, checking for invalid surround sums before the
other calculations drastically reduces the total number of calculations needed.

Zero mask rows
Each mask has 32 rows. However, many have all-zero rows that can be skipped.
By storing with each template a pointer to its first nonzero row we can skip
directly to that row “for free.” Embedded all-zero rows are also skipped.

The simulation tools showed that, for our template set, this optimization
significantly reduces the total computational requirements. For the sample

602 Chapter 28 � Automatic Target Recognition Systems on Reconfigurable Devices

template set, there are total of 4608 bitmap rows to use in the correlation tasks.
Out of 4608 bright rows, only 2206 are nonzero, and out of 4608 surround rows,
2815 are nonzero. Since the bright mask is used for both threshold and bright
sum calculations, and the surround mask is used once, skipping the zero rows
reduces the number of row operations from 13,824 to 7227, which produces a
savings of about 52 percent.

It is also possible to reduce the computation by skipping zero columns. How-
ever, as will be described in following section, the FPGA implementation works
on an entire search row concurrently. Hence, skipping rows reduces time but
skipping columns reduces the number of active elements that work in parallel,
yielding no savings.

28.3.3 Reconfigurable Image Correlator
Although it is possible to reconfigure FPGAs dynamically, the time spent on
context switching and reconfiguration could be used instead to process data on
a register-based static design. For this reason, minimizing reconfiguration time
during computation is essential in effective FPGA use. Nevertheless, when we
use FPGAs as compute engines, reconfiguration allows the hardware to take on
a large range of task parameters.

The SLD tasks represented in equations 28.1, 28.3, and 28.4 are image cor-
relation calculations on sliding template masks with radar images. To explain
our design strategies, we examine each equation by applying the algorithm on a
small dataset consisting of a 6×6 pixel image, a 3×3 mask bitmap, and a 4×4
result matrix.

For this dataset, the shape sum calculation for a mask requires multiplying
all 9 mask bits with the corresponding image pixels and summing them to find
1 of 16 results. To build an efficient circuit for the sum equations 28.3 and 28.4,
we write out the subset of both equations as shown in Table 28.1. By expanding
the summation equations, we expose opportunities for hardware to optimize the
calculations. First, the same Buv is used to calculate the nth term of all of the
shape sum results. Thus, when the summation calculations are done in parallel,
the Buv coefficient can be broadcast to all of the units that calculate each result.
Second, the image data in the nth term of the SMxy is in the (n + 1)th term of
SMxy−1, except when v returns to 0, the image pixel is located in the subsequent
row. This is useful in implementing the pipeline datapath for the image pixels
through the parallel summation units.

TABLE 28.1 � Expanded sum equations 28.3 and 28.4

Term 1 2 3 4 5 6 7 8 9

u 0 0 0 1 1 1 2 2 2
v 0 1 2 0 1 2 0 1 2
SM00 = B00M00+ B01M01+ B02M02+ B10M10+ B11M11+ B12M12+ B20M20+ B21M21+ B22M22

SM01 = B00M01+ B01M02+ B02M03+ B10M11+ B11M12+ B12M13+ B20M21+ B21M22+ B22M23

SM02 = B00M02+ B01M03+ B02M04+ B10M12+ B11M13+ B12M14+ B20M22+ B21M23+ B22M24

SM03 = B00M03+ B01M04+ B02M05+ B10M13+ B11M14+ B12M15+ B20M23+ B21M24+ B22M25

28.3 Reconfigurable Static Design 603

U2U1 U3

B00, B01, B02, B10, B11, ...

U0

M10

M11

M12

M13

M01 M02M00 M03 M04 M05

M14

M15

M16

M17

4-byte pipeline

1-byte (pixel) pipeline

1-bit (mask) broadcast

FIGURE 28.8 � A systolic image array pipeline.

Based on the characteristics of the expanded equations, we can build a
systolic computation unit as in Figure 28.8. To save time while changing the
rows of pixels, the pixel pipeline can either operate as a pipeline or be directly
loaded from another set of registers. At every clock cycle, each Uy unit performs
one operation, v is incremented modulo 3, and the pixel pipeline shifts by one
stage (U1 to U0, U2 to U1, . . .). When v returns to 0, u is incremented modulo 3,
and the pixel pipeline is loaded with the entire (u+x)th row of the image. When
u returns to 0, the results are offloaded from the Uy stage, their accumulators
are cleared, and x is incremented modulo 4. When x returns to 0, this computing
task is completed.

The initial loading of the image pixel pipeline is from the image word pipeline,
which is word wide and so four times faster than the image pixel pipeline. This
speed advantage guarantees that the pipeline will be ready with the next image
row data when u returns to 0.

28.3.4 Application-specific Computation Unit
Developing different FPGA mappings for equations 28.1, 28.3, and 28.4 in paral-
lel processing unit is one way to implement the design. At the end of each stage,
the FPGA device is reconfigured with the optimal structure for the next task. As
appealing as this may sound, current FPGA devices have typical reconfiguration
times of tens of milliseconds, during which the reconfiguring logic cannot be
used for computation.

As presented in Section 28.3, each set of template configurations also has to
be designed and compiled before any computation can take place. This can be
a time-consuming procedure that does not allow dynamic template sets to be
immediately used in the system.

Fortunately, we can rely on the fact that FPGAs can be tuned to target-specific
applications. From the equations, we derived one compact structure, shown in
Figure 28.9, that can efficiently perform all ATR tasks. Since the target ATR

604 Chapter 28 � Automatic Target Recognition Systems on Reconfigurable Devices

LU

RegisterAccumulator Accumulator

Carry

8-bit lmage pixel

Shape sum (SMx,y)Surround
sum (SSx,y) Bright

sum (BSx,y)

Mx1u, y1v

Bu,vSu,v

FIGURE 28.9 � Computation logic for equations 28.1, 28.3, and 28.4.

system can be seen as “embarrassingly parallel,” the performance of the FPGA
design is linearly scalable to the number of the application-specific units.

28.4 ATR IMPLEMENTATIONS

In this section we present the implementation results of two reconfigurable San-
dia ATR systems, researched and developed on different reconfigurable plat-
forms. Both designs leverage the unique characteristics of reconfigurable devices
to accelerate ATR algorithms while making efficient use of available resources.
Therefore, they both outperformed existing software as well as custom ASIC
solutions. By analyzing the results of the reconfigurable solutions, we examine
design trade-offs in cost and performance.

28.4.1 A Dynamically Reconfigurable System
All of the component technologies described in this chapter have been des-
igned, implemented, tested, and debugged using the Mojave board shown in
Figure 28.10. This section discusses various performance aspects of the com-
plete system, from abstract template sets through application-specific CAD tools
and finally down to the embedded processor and dynamic FPGA. The current
hardware is connected to a video camera rather than a SAR data source, though
this is only necessary for testing and early evaluation.

The results presented here are based on routing circuits to two devices: the
Xilinx 4013PG223-4 FPGA and the Xilinx 4036. Xilinx rates the capacity of these
parts as 13K and 36K equivalent gates.

Table 28.2 presents data on the effectiveness of the template-partitioning
phase. Twelve templates were considered for this comparison: in one case they
were randomly divided into three partitions; in the other, the CAD tool was used
to guide the process. The randomly selected partitions required 33 percent more
CLBs than those produced by the intelligent partitioning tool. These numbers

28.4 ATR Implementations 605

FIGURE 28.10 � Photograph of second-generation Mojave ATR system.

Table 28.2 � Comparison of scored and random partitioning
on an Xilinx 4036

Random grouping CLB count Initial partitioning CLB count

1961 1491
1959 1449
1958 1487

Table 28.3 � Comparison of resources used for the dynamic
and static FPGAs

Flip-flops Function generators I/O pins

Dynamic FPGA 532 939 54
Support FPGA 196 217 96
Available 1536 1536 192

account for the hardware requirements of the entire design, including the con-
trol hardware that is common to all designs as well as the template-specific
adder trees. Relative savings in the adder trees alone are higher.

Table 28.3 lists the overall resources used for both FPGAs in the system,
the dynamic devices used for correlation, and the static support device used
to implement system control features. Because the image source is a standard
video camera rather than a SAR sensor, the surround template is the comple-
ment of the bright template, resulting in more hardware than would be required
for true SAR templates. The majority of the flip-flops in the dynamic FPGA

606 Chapter 28 � Automatic Target Recognition Systems on Reconfigurable Devices

are assigned to holding the 8-bit chip data in a set of shift registers. This load
increases as a linear function of the template size.

Each configuration of the dynamic FPGA requires 16 milliseconds to complete
an evaluation of the entire chip for four template pairs. The Xilinx 4013PG223-4
requires 30 milliseconds for reconfiguration. Thus, a total of 4 template pairs can
be evaluated in 46 milliseconds, or 84 template pairs per second. This timing
will increase logarithmically with the template size.

Comparing configurable machines with traditional ASIC solutions is neces-
sary but complicated. Clearly, for almost any application, a bank of ASICs could
be designed that used the same techniques as the multiple configurations of the
FPGA and would likely achieve higher performance and consume less power.
The principal advantage of configurable computing is that a single FPGA may
act as many ASICs without the cost of manufacturing each device. If the com-
parison is restricted to a single IC (e.g., a single FPGA against a single ASIC of
similar size), relative performance becomes a function of the hardware savings
enabled by data specificity. For example, in the ATR application the templates
used are quite sparse—only 5 to 10 percent of the pixels are important in the
computation—which translates directly into a hardware savings that is much
more difficult to realize in an ASIC. Further savings in the ATR application are
possible by leveraging topological similarities across templates. Again, this is an
advantage that ASICs cannot easily exploit.

If the power and speed advantages of ASICs over FPGAs are estimated at a
factor of 10, the configurable computing approach achieves a factor of improve-
ment anywhere from 2 and 10 (depending on sparseness and topological prop-
erties) for the ATR application.

28.4.2 A Statically Reconfigurable System
The FPGA nodes developed by Myricom integrate reconfigurable computing
with a 2-level multicomputer to promote flexibility of programmable compu-
tational components in a highly scalable network architecture. The Myricom
FPGA nodes and its motherboard are shown in Figure 28.11. The daughter nodes
are 2-level multicomputers whose first level provides the general-purpose infras-
tructure of the Myrinet network using the LANai RISC microprocessor. The
FPGA functions as a second-level processor responsible for application-specific
tasks.

The host is a SparcStation IPX running SunOS 4.1.3 with a Myrinet inter-
face board having a 512K memory. The FPGA node—consisting of Lucent Tech-
nologies’ ORCA FPGA 40K and Myricom’s LANai 4.1 running in 3.3 V at 40
MHz—communicates with the host through an 8-port Myrinet switch.

Without additional optimization, static implementation of the complete ATR
algorithm on one FPGA node processes more than 900 templates per second.
Each template requires about 450,000 iterations of 1-bit conditional accumulate
for the complete shape sum calculation. The threshold calculation requires one
division followed by subtraction. The bright and surround sum compares all the
image pixels against the threshold results. Next, 1-bit conditional accumulate is

28.4 ATR Implementations 607

FIGURE 28.11 � A Myrinet 8-port switch motherboard with Myricom ORCA FPGA daughter
nodes. Four FPGA nodes can be plugged into a single motherboard.

executed for each sum. And then the quality values are calculated using two
divides, an add, and a multiply.

Given that 1-bit conditional accumulate, subtract, divide, multiply, and 8-bit
compare are one operation each, the total number of 8-bit operations to process
one 32×32 template over a 64× 64 image is approximately 3.1 million. Each
FPGA node executes over 2.8 billion 8-bit operations per second (GOPS).

After the simulations, we found that the sparseness of the actual templates
reduced their average valid rows to approximately one-half the number of total
template rows. This optimization was implemented to increase the throughput
by 40 percent. Further simulations revealed more room for improvements, such
as dividing the shape sum in the FPGA, transposing narrow template masks, and
skipping invalid threshold lines. Although these optimizations were not imple-
mented in the FPGA, the simulation results indicated an additional 94 percent
increase in throughput. Implementing all optimizations would yield a result
equivalent to about a 7.75 GOPS correlator.

28.4.3 Reconfigurable Computing Models
The increased performance of configurable systems comes with several costs.
These include the time and bandwidth required for reconfiguration, the memory
and I/O required for intermediate results, and the additional hardware required
for efficient implementation and debugging. Minimizing these costs requires
innovative approaches to system design.

Figure 28.12 illustrates the fundamental difference between a traditional com-
puting model and the two reconfigurable computing architectures discussed
in this chapter. The traditional processor receives simple operands from data

608 Chapter 28 � Automatic Target Recognition Systems on Reconfigurable Devices

Traditional
processor

Configuration
memory

Configuration
memory

(a) (b) (c)

Instruction
memory

Data
memory

Data
memory

Intermediate
result

storage

Data
memory

FPGA FPGA

FIGURE 28.12 � A comparison of a traditional computing model (a) with a dynamically
reconfigurable model (b) and a statically reconfigurable custom model (c).

memory, performs a simple operation in the program, and returns the result to
data memory. Similarly, dynamic computing uses a small number of rapidly
reconfiguring FPGAs tightly coupled to an intermediate result memory, data
memory, and configuration memory. A reconfigurable custom computer is simi-
lar to a fixed ASIC device in that, usually, only one highly tuned design is config-
ured on the FPGA—there is no need to reconfigure to perform a needed function.

In most cases, a custom ASIC performs far better than a traditional processor.
However, traditional processors continue to be used for their programmability.
FPGAs attempts to bridge the gap between custom ASICs and software by allow-
ing designers to build custom hardware using programmable firmware. There-
fore, unlike in pure ASIC designs, configuration memory is used to program the
reconfigurable hardware as instructions in a traditional processor would dictate
the functionality of a program. Unlike software, once the FPGA is configured, it
can function just like a custom device.

As shown in previous sections, an ATR was implemented in an FPGA using
two different methods. The first implementation uses the dynamic computer
model, where parts of the entire algorithm are dynamically configured to pro-
duce the final results. The second design uses simulation results to produce a
highly tuned fixed design in the FPGA that does not require more than a single
reconfiguration. Because of algorithm modifications made to the first design,
there is no clear way to compare the two designs. However, looking deeper, we
find that there is not a drastic difference in the subcomponents or the algo-
rithm; in fact, the number of required operations for the algorithm in either
design should be the same.

The adders make up the critical path of both designs. Because both
designs are reconfigurable, we expect the adders used to have approximately
the same performance as long as pipelining is done properly. Clever use of
adders in the static design allows it to execute more than one calculation

28.5 Summary 609

simultaneously. However, it is possible to make similar use of the hardware
to increase performance in the dynamic design.

The first design optimizes the use of adders to skip all unnecessary calcu-
lations, also making each configuration completely custom. The second design
has to be more general to allow some programmability. Therefore, depending
on the template data, not all of the adders may be in use at all times. If all of
the templates for the first design can be mapped onto a single FPGA, the first
method results in more resource efficiency than the second. The detrimental
effect of idle adders in the static design becomes increasingly more prominent
as template bitmap rows grow more sparse.

On the other hand, if the templates do not all fit in a single FPGA, the
first method adds a relatively large overhead because of reconfiguration latency.
Unfortunately, the customized method of the second design works against mak-
ing the design smaller. Every bit in the template maps to a port of the adder
engine, so the total size of the design is proportional to the number of total
bits in all of the templates. Therefore, as the number of templates increases,
the total design size must also increase. Ultimately, the design must be divided
into several smaller configurations that are dynamically reconfigured to share a
single device.

From these results, we observe the strengths and weaknesses of dynamic
reconfiguration in such applications. Dynamic reconfiguration allows a large
custom design to successfully run in a smaller FPGA device. The trade-off is
significant time overhead in the system.

28.5 SUMMARY

Like many streaming image correlation algorithms, the Sandia ATR system dis-
cussed in this chapter can be efficiently implemented on an FPGA. Because of
the high degree of parallelism in the algorithm, designers can take full advan-
tage of parallel processing in hardware while linearly scaling total throughput
with available hardware resources. In this chapter we presented two different
ways of implementing such a system.

The first system employs a dynamic computing model to effectively imple-
ment a large custom design using a smaller reconfigurable device. To fit, high-
performance custom designs can be divided into subcomponents, which can
then share a single FPGA to execute parts of the algorithm at a high speed.
For the ATR algorithm, this process produced a resource-efficient design that
exceeded the performance of previous custom ASIC-based systems.

The second system is based on a more generic architecture highly tuned for a
given set of templates. Through extensive simulations, many parameters of the
algorithm are tuned to efficiently process the incoming data. With algorithm-
specific optimizations, the throughput of the system increased threefold from
an initial naive implementation. Because of the highly pipelined structure of
the design, the maximum clock frequency is more than three times that of the

610 Chapter 28 � Automatic Target Recognition Systems on Reconfigurable Devices

dynamic computer design. Furthermore, a larger FPGA on the platform allowed
the generic processing architecture to duplicate the specifications of the original
algorithm. Therefore, the raw performance of the static design was faster than
the dynamically reconfigurable system.

Although the second system is a static design, it is best suited for reconfigurable
platforms because of its highly tuned parameters. Since this system is reconfig-
urable, it is conceivable that the dynamic computational model can be applied on
top of it. Thus, the highly tuned design may be implemented efficiently, even on a
device with enough resources for only a fraction of the entire design.

Acknowledgments I would like to acknowledge Professor William H. Mangione-
Smith for permission to integrate publications on the Mojave project into this
chapter.

References
[1] P. M. Athanas, H. F. Silverman. Processor reconfiguration through instruction-set

metamorphosis. IEEE Computer 26, 1993.
[2] J. G. Eldredge, B. L. Hutchings. Run-time reconfiguration: A method for enhancing

the functional density of SRAM-based FPGAs. Journal of VLSI Signal Processing 12,
1996.

[3] J. Villasenor, W. H. Mangione-Smith. Configurable computing. Scientific American
276, 1997.

[4] E. Mirsky, A. DeHon. MATRIX: A reconfigurable computing architecture with
configurable instruction distribution and deployable resources. Proceedings of
the IEEE International Symposium on Field-Programmable Custom Computing
Machines, 1996.

[5] R. Razdan, M. D. Smith. A high-performance microarchitecture with hardware-
programmable functional units. Proceedings of the 27th Annual International Sym-
posium on Microarchitecture, pp. 172–180, 1994.

[6] G. Estrin. Organization of computer systems—the fixed plus variable structure
computer. Proceedings of the Western Joint Computer Conference, 1960.

[7] M. Shand, J. Vuillemin. Fast implementations of RSA cryptography. Proceedings of
the Symposium on Computer Arithmetic, 1993.

[8] K. W. Tse, T. I. Yuk, S. S. Chan. Implementation of the data encryption stan-
dard algorithm with FPGAs. Proceedings of International Symposium on Field-
Programmable Logic and Applications, 1993.

[9] J. Leonard, W. H. Mangione-Smith. A case study of partially evaluated hardware
circuits: Key-specific DES. Proceedings of the 7th International Workshop on Field-
Programmable Logic and Applications 1304:151–160, 1997.

[10] P. M. Athanas, A. L. Abbott. Real-time image processing on a custom computing
platform. IEEE Computer 28, 1995.

[11] J. G. Eldredge, B. L. Hutchings. Density enhancement of a neural network using
FPGAs and run-time reconfiguration. Proceedings of the IEEE International Sym-
posium on Field-Programmable Custom Computing Machines, 1994.

[12] J. G. Eldredge, B. L. Hutchings. RRANN: The run-time reconfiguration artificial
neural network. Proceedings of the Custom Integrated Circuits Conference, 1994.

28.5 Summary 611

[13] B. Schoner, C. Jones, J. Villasenor. Issues in wireless coding using run-time-
reconfigurable FPGAs. Proceedings of the IEEE International Symposium on Field-
Programmable Custom Computing Machines, 1995.

[14] C. Chou, S. Mohanakrishnan, J. B. Evans. FPGA implementation of digital filters.
Proceedings of the Fourth International Conference on Signal Processing Applications
and Technology, pp. 80–88, 1993.

[15] G. Estrin, B. Bussell, R. Turn, J. Bibb. Parallel processing in a restructurable
computer system. IEEE Transactions on Electronic Computers EC-12(5):747–755,
December 1963.

[16] G. Estrin, R. Turn. Automatic assignment of computations in a variable structure
computer system. IEEE Transactions on Electronic Computers EC-12(6):755–773,
December 1963.

[17] M. J. Wirthlin, B. L. Hutchings. Improving functional density through run-time
constant propagation. Proceedings of the 1997 ACM Fifth International Symposium
on Field-Programmable Gate Arrays, 1997.

[18] P. Lee, M. Leone. Optimizing ML with run-time code generation. Proceedings of
Programming Language Design and Implementation, 1996.

[19] D. R. Engler, T. A. Proebsting. DCG: An efficient, retargetable dynamic code gen-
eration system. Proceedings of the Sixth International Symposium on Architectural
Support for Programming Languages and Operating Systems, 1994.

[20] H. Massalin. Synthesis: An Efficient Implementation of Fundamental Operating
System Services, Ph.D. thesis, Columbia University, Department of Computer
Science, 1992.

[21] W. H. Mangione-Smith, B. Hutchings. Configurable computing: The road ahead.
Proceedings of the Reconfigurable Architectures Workshop, 1997.

[22] P. Bertin, H. Touati. PAM programming environments: Practice and experience.
Proceedings of the International Symposium on Field-Programmable Custom Com-
puting Machines, April 1994.

[23] Y. H. Cho. Optimized automatic target recognition algorithm on scalable
Myrinet/field programmable array nodes. Thirty-fourth IEEE Asilomar Conference
on Signals, Systems, and Computers, October 2000.

[24] K. N. Chia, H. J. Kim, S. Lansing, W. H. Mangione-Smith, J. Villasenor. High-
performance automatic target recognition through data-specific very large scale
integration. IEEE Transactions on Very Large Scale Integration Systems 6(3), 1998.

[25] J. Villasenor, B. Schoner, K. N. Chia, C. Zapata, H. J. Kim, C. Jones, S. Lansing,
W. H. Mangione-Smith. Configurable computing solutions for automatic target
recognition. Proceedings of the IEEE International Symposium on FPGAs for Custom
Computing Machines, April 1996.

[26] R. Sivilotti, Y. Cho, D. Cohen, W. Su, B. Bray. Scalable network based FPGA accel-
erators for an automatic target recognition application. Proceedings of the Interna-
tional Symposium on Field-Programmable Custom Computing Machines, April 1998.

[27] R. Sivilotti, Y. Cho, W. Su, D. Cohen. Scalable, Network-connected, Reconfigurable,
Hardware Accelerators for an Automatic-Target-Recognition Application, Myricom
technical report, May 1998.

[28] R. Sivilotti, Y. Cho, W. Su, D. Cohen. Myricom’s FPGA-based Approach to ATR/SLD,
DARPA ACS PI meeting slide presentation, November 1997.

[29] R. Sivilotti, Y. Cho, W. Su, D. Cohen. Production-quality, LANai-4-based quad-
FPGA-node VME boards. http://www.myri.com/research/darpa/97a-fpga.html,
October 1997.

612 Chapter 28 � Automatic Target Recognition Systems on Reconfigurable Devices

[30] C. L. Seitz, Tactical network and multicomputer technology. http://www.myri.com/
research/darpa/index.html, March 1997, July 1997, August 1998.

[31] C. L. Seitz. Two-level-multicomputer project: Summary. http://www.myri.com/
research/darpa/96summary.html, July 1996.

[32] W. C. Athas, L. Seitz. Multicomputers: Message-passing concurrent computers.
IEEE Computer 21, 1988.

[33] M. Shand, J. Vullemin. Fast implementations of RSA cryptography. Proceedings of
11th Symposium on Computer Arithmetic, 1993.

[34] J. G. Eldredge, B. L. Hutchings. RRANN: The run-time reconfiguration artificial
neural network. Proceedings of the IEEE Custom Integrated Circuits Conference,
1994.

[35] Xilinx, Inc. RAM-based Shift Register v9.0, LogiCORE Datasheet, Xilinx, Inc.,
July 13, 2006.

C H A P T E R 29

BOOLEAN SATISFIABILITY: CREATING
SOLVERS OPTIMIZED FOR SPECIFIC
PROBLEM INSTANCES

Peixin Zhong
Department of Electrical and Computer Engineering
Michigan State University
Margaret Martonosi, Sharad Malik
Department of Electrical Engineering
Princeton University

Boolean satisfiability (SAT) is a classic NP-complete problem with a broad range
of applications. There have been many projects that use reconfigurable compu-
ting to solve it. This chapter presents a review of the subject with emphasis on
a particular approach that employs a backtrack search algorithm and generates
solver hardware according to the problem instance. This approach utilizes the
reconfigurability and fine-grained parallelism provided by FPGAs.

The chapter is organized as follows: Section 29.1 is an introduction to the SAT
formulation and applications. Section 29.2 describes the algorithms to solve the
SAT problem. Sections 29.3 and 29.4 describe in detail two SAT solvers that use
reconfigurable computing, and Section 29.5 provides a broader discussion.

29.1 BOOLEAN SATISFIABILITY BASICS

The Boolean satisfiability problem is well known in computer science [1]. Given
a Boolean formula, the goal is to find an assignment to the variables so that
the formula evaluates to true or 1 (it satisfies the formula), or to prove that
such an assignment does not exist (the formula is not satisfiable). It has many
applications, including theorem proving [5], automatic test pattern generation
[2], and formal verification [3,4].

29.1.1 Problem Formulation
The Boolean formula in an SAT problem is typically represented in conjunctive
normal form (CNF), also known as product-of-sums. Each sum of literals is
called a clause. A literal is either a variable or the negation of a variable, denoted
with a negation symbol or a bar (such as ¬v1 or v1). Equations 29.1 and 29.2
are examples of simple CNFs.

(v1 +v2 +v3)(v1 +v2 +v3)(v1 +v2 + v3)(v2 +v3) (29.1)

614 Chapter 29 � Boolean Satisfiability: Creating Solvers

or
(v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ v2 ∨v3) ∧ (v1 ∨ v2 ∨ ¬v3) ∧ (¬v2 ∨ ¬v3) (29.2)

Each sum term, such as (v1 + v2 + v3), is a clause. In the clause, v1 or ¬v1 is
called a literal. It can be easily tested that v1 = 1, v2 = 1, v3 = 0 is a solution to the
problem.

The SAT clauses represent implication relationships between variables. To
satisfy the CNF, each clause should be satisfied (i.e., at least one literal in each
clause should be 1). For a given partial assignment, if only one literal in a
clause is not assigned but all others are assigned to 0, the unassigned literal
is implied to be 1 to satisfy the clause. The first clause in equation 29.1 contains
three possible implications. If v1 = 0 and v2 = 0, v3 is implied to be 1, denoted as
¬v1¬v2 ⊃ v3. Similarly, v1 = 0 and v3 = 0 imply v2 = 1, and v2 = 0 and v3 = 0 imply
v1 = 1. Such implications can be used to construct powerful logic expressions.
They are also the key to SAT-solving algorithms.

29.1.2 SAT Applications
The many applications of SAT include test pattern generation [2] and model
checking [3, 4]. The logic relations of a digital circuit can also be represented
in SAT CNF. Each logic gate is represented by a group of clauses, with each
signal represented by a variable with two possible values, 1 or 0. A circuit is
represented by a conjunction of clauses representing all gates in the circuit.
What follows is the transformation from simple gates to clauses:

AND gate, z <= ab, maps to (a+ ¬z)(b+ ¬z)(¬a+ ¬b+ z)
NAND gate, z <= ¬ (ab), maps to (a+ z)(b+ z)(¬a+ ¬b+ ¬z)
OR gate, z <= a + b, maps to (¬a+ z)(¬b+ z)(a+b+ ¬z)
NOR gate, z <= ¬ (a +b), maps to (¬a+ ¬z)(¬b+ ¬z)(a+b+ z)
XOR gate, z <= a ⊕b, maps to (¬a+ ¬b+ ¬z)(¬a+b+ z)(a+ ¬b+ z)(a+ b+ ¬z)
Buffer gate, z <= a , maps to (¬a+ z)(a+ ¬z)
Inverter gate, z <= ¬a , maps to (a+ z)(¬a+ ¬z)

SAT can be used in test pattern generation or to verify the equivalence of
two combinational circuits. The circuit construction is shown in Figure 29.1.
In equivalence checking, the two representations of the circuit are fed with
the same primary inputs signals, and the corresponding primary outputs feed
into an exclusive-or (XOR) gate. If an assignment of primary inputs can be
found such that any of the XOR gates has 1 as an output, the circuits are
different. If no such assignment can be found, the circuits are functionally
identical.

For test pattern generation, instead of using two representations of one
circuit, we use two copies of the same circuit. However, one copy has a fault
introduced into the design, which we can detect by searching for some pat-
tern of inputs. In this case any input pattern that can generate a 1 on an XOR
output is a test for that fault. If no such assignment is possible, that fault is
untestable.

29.2 SAT-solving Algorithms 615

Reference
circuit

Circuit
under test

Primary inputs Primary outputs

...
...

...

FIGURE 29.1 � Test pattern generation.

29.2 SAT-SOLVING ALGORITHMS

29.2.1 Basic Backtrack Algorithm
There are many algorithms to solve the SAT problem. They can be divided
into two categories: complete and incomplete. A complete algorithm guarantees
either to find a solution on termination or to prove that there is no solution.
Complete algorithms typically employ a methodical search of the variable
assignment space. For hard problems, the runtime may well exceed accept-
able levels. An incomplete algorithm does not guarantee to find the solution and
typically involves greedy or randomized search [22]. It can often find a solution
of an easy problem very quickly, but if it fails to do so within a given time, it
does not prove that no solution exists. Many applications require a complete
algorithm to provide a definite answer, so this chapter concentrates on such
algorithms for SAT.

An early SAT algorithm was proposed by Davis and Putnam [5]. Like theirs,
most complete SAT algorithms are based on backtrack search [6–9], which is
similar to depth-first search in traversing a tree. The pseudo-code of the basic
algorithm, shown in Figure 29.2, starts with an empty variable partial assign-
ment (i.e., every variable value is assumed to be unknown, or free). The search
level is increased by branching—that is, assigning a value for a free variable.
The algorithm checks if the incremented partial assignment can be part of a
solution. If not, we say a conflict is detected. If there is no conflict, the algorithm
will choose another free variable and branch on it; if a conflict is detected, it
will backtrack to the most recently assigned variable and choose the opposite
value. All decisions made after that backtrack point will be undone.

616 Chapter 29 � Boolean Satisfiability: Creating Solvers

Solve_SAT()
{
assign all variables to unknown;
while (true) {
if (implications force an unknown variable to a specific value)
set that variable to that specific value;

if (the current assignment has a conflict) {
undo all implications and branches up to most recent untoggled branch;
if (all branches undone)
return No_solution;

toggle value assigned to the variable of last untoggled branch;
}
if (no unassigned variables remain)
return Solved;

} else {
start new branch by assigning a value to the next free variable;

}
}

}

FIGURE 29.2 � The basic backtrack algorithm to solve SAT.

The algorithm has two possible terminating conditions. If all variables values
are known and the formula is satisfied, a solution is found. If all branches fail
to find a solution and the algorithm must backtrack beyond the first branch
variable, there is no solution and the formula is unsatisfiable.

The key to the efficiency of the backtrack algorithm is effectively pruning the
search space. Early detection of a conflict assignment avoids useless searches
along this branch. The following are some basic rules and techniques used in
the algorithm. At each stage of the search, a variable can have one of three
possible values: 1, 0, and free (unassigned).

1. If at least one literal of a clause evaluates to 1, this clause is satisfied. There
is no need to check other literals in the clause.

2. If all literals of a clause evaluate to 0, the partial assignment is a conflict
and cannot be part of the solution.

3. If only one literal of a clause is free and all other literals evaluate to 0, the
free literal is implied to be 1. This is called unit resolution or implication.
Implication is a powerful mechanism because it can deduce implied values
of variables not yet branched on. However, it can create another case of
conflict if a variable is implied by two clauses to be of opposite values.

4. If all of the literals of a free variable in the as yet unsatisfied clauses are all
of the same polarity (i.e., inverted or not inverted), a value can be chosen
for this variable that safely satisfies these clauses.

5. Because the variable ordering of branches has a large impact on the effi-
ciency of the algorithm, different dynamic or static ordering schemes have
been investigated. A simple heuristic orders the variables based on the
number of clauses they appear in. A variable with the most appearances

29.2 SAT-solving Algorithms 617

often has more influence than others. Therefore, branching on it early
typically prunes the search space more quickly.

A basic algorithm can use a static variable ordering. It can also use a fixed
branching scheme, such as always branching with value 1, in which, after each
branch or backtrack, implication is checked exhaustively. This basic algorithm
corresponds to the reconfigurable SAT solver described in Section 29.2.

29.2.2 Improving the Backtrack Algorithm
Among the advanced features explored to further improve the efficiency of the
backtrack search algorithm [6, 7], an effective one is learning based on conflict
analysis. With the search algorithm moving back and forth by branching and
backtracking, similar spaces are explored many times. Consider a problem, as
in equation 29.3, where some of the clauses are

(¬vi +vj +vk)(¬vi +vj + ¬vk)(¬vi + ¬vj +vk)(¬vi + ¬vj + ¬vk). (29.3)

The variable vi is branched to be 1, and many other variables may have been
tested before vj is branched on. When vj is branched on and 1 is tested, a conflict
on vk is detected. Then vj is switched to 0, which again causes a conflict. Thus,
the algorithm will backtrack to the previous branch variable. However, switching
variable assignments other than vi will not help. The algorithm may reenter the
same region many times before it backtracks to vi. Conflict analysis would be
helpful in this situation.

A new variable value is implied by the value choices of all other literals in this
clause being 0. Each literal has obtained its value either from branch decisions
or from earlier implications. Therefore, we can create a transitive implication
graph where an implied variable is ultimately implied by a set of branch deci-
sions. A conflict is detected when a variable is implied to be of opposite values. It
can be identified by backtracking the implication graph to identify the complete
set of branch assignments that led to it. This set of decisions is responsible for
the conflict.

In the example just given, the first conflict is caused by vi = 1 and vj = 1. A new
clause can be derived as (¬vi +¬vj). This is a redundant clause that can be added
to the formula without changing the solution. It can also be viewed as applying
the following consensus theorem to clauses 3 and 4 in equation 29.4:

(x+y)(¬x+ z) = (x+y)(¬x+ z)(y + z) (29.4)

With the conflict on vj = 1 detected, it can be interpreted as vj is implied to
be 0. In this case, it is implied by vi = 1. Another round of implication will
render a conflict because of the first two clauses in the original formula. From
the second conflict, a new clause can be derived as (¬vi + vj). Combined with
the conflict analysis result of the previous conflict, the resulting clause is (¬vi),
which dictates vi = 0.

618 Chapter 29 � Boolean Satisfiability: Creating Solvers

The algorithm should instead directly backtrack to vi, in what is called
nonchronological backtracking by Marques-Silva and Sakallah [6]. The new
clause can be added to the problem and thus help prune the future search space.

This example is extremely simple, but the principle is applicable to all
conflicts and can reduce runtime by several orders of magnitude on many
problems. For example, for the AIM200 group of problems, GRASP takes
10.8 seconds, whereas many other SAT solvers take more than 10,000 seconds.
However, because of the heuristic nature of the algorithms, they show different
performance characteristics with different problems.

Learning also has its trade-offs. Every conflict will generate one redundant
clause, and storage will explode if every such clause is recorded permanently.
Heuristics for discarding long or unused redundant clauses can keep the storage
size manageable and still achieve significant speedup.

29.3 A RECONFIGURABLE SAT SOLVER GENERATED ACCORDING
TO AN SAT INSTANCE
This section presents an example of generating an SAT solver according to the
SAT instance [10–12]. That is, instead of creating a generic, hardware SAT solver,
we generate a new configuration for the reconfigurable computing machine for
each SAT equation being solved.

29.3.1 Problem Analysis
A hard SAT problem can take a very long time to solve, limiting the application
of the formula and the solvers’ powerful formalism. Therefore, we will look at
the use of reconfigurable computing techniques to accelerate SAT solutions. For
this it is necessary to compare the relative merit of FPGAs and CPUs and look
at the characteristics of SAT algorithms to identify an efficient solution.

FPGAs allow the full customization of control and datapaths. In particu-
lar, they make it efficient to perform bit-level operations. Also, by allocating
more computing resources for bottleneck operations, they can provide massive
parallelism and deep pipelining for suitable applications. However, FPGA clock
rates are lower than those for microprocessors of the same technology genera-
tion, so raw chip performance may suffer.

Two opportunities for parallel processing in the SAT algorithm stand out, one
of which is the parallelism in the vast search space. For a problem with n vari-
ables, there are 2n possible assignments (though with the backtrack algorithm
pruning the search space, that number is actually much smaller). It is possible
to split at the branch choices and allocate each subspace to its own processor.
However, because the search space is typically unbalanced, such parallelization
requires rebalancing the load and this would be very complex to implement
in hardware. Another source of potential performance gain is implication and
conflict checking. Whenever a new value is assigned to a variable, all clauses

29.3 A Reconfigurable SAT Solver 619

containing the variable should be checked for implication and conflict. New
implied values will trigger further checking and implication. Additionally, the
variables are Boolean and suitable for low-level processing by logic circuits, and
thus implication and conflict checking are good candidates for hardware accel-
eration. It has also been confirmed through software profiling that implication
and conflict checking take up the majority of computing time.

The basic backtrack search includes branch, implication, and backtrack func-
tions, which are relatively simple and can be implemented with finite-state
machines. Many projects implement a full SAT solver on one or multiple FPGAs.
The next section describes one of them.

29.3.2 Implementing a Basic Backtrack Algorithm
with Reconfigurable Hardware

Since implication and conflict checking are time-consuming processes, they are
good candidates for hardware acceleration. Checking all clauses in parallel is
one approach enabled by reconfigurable computing techniques. The circuit used
for such parallel checking is presented as follows.

During the search, a variable can take one of three possible values: unknown,
1 (true), and 0 (false). A 2-bit encoding, denoted (v, v), is used for the three
variable values because it can conveniently represent them: (0, 0) is an unknown
(free) variable; (1, 0) is value 1; and (0, 1) is value 0. The fourth combination,
(1, 1), is used for conflict. The 2-bit encoding can be easily used for implication
as well. For example, a clause with three literals (vi + ¬vj + vk) represents three
possible implications that can be expressed with the 2-bit encoding as logical
assignments, as shown in equation 29.5:

vi <= vjvk
vj <= vivk
vk <= vivj

(29.5)

When a literal appears in multiple clauses, its value is 1 if any one of the
clauses implies it to be 1. The general form can be written as

vinew <= ∑
each clause vi

appears in

(∏
each uninverted

literal vk

vk ∏ vl)
each inverted

literal ¬vl

vinew <= ∑
each clause vi

appears in

(∏
each uninverted

literal vk

vk ∏ vl)
each inverted

literal ¬vl

The summation ∑ is a logic OR over the set of clauses in which the implied
literal appears. The production ∏ is a logic AND over all other literals in the
clause. Note that the literal in the formula is inverted from the one in the clause,
meaning that the implication is effective if and only if all other literals are known
to be 0. With this formula, a complete CNF can be converted to circuits that
evaluate all possible implications in parallel.

620 Chapter 29 � Boolean Satisfiability: Creating Solvers

Gclear

Lchange

Lconflict

V1

V1'

V2'

V2

V4

V3

V5'

V1_set

V1'_set

V6

QD

Q

SET

CLR

QD

Q

SET

CLR

FIGURE 29.3 � The implication circuit for one variable, V1.

The implication circuit for V1, shown in Figure 29.3, corresponds to the
partial CNF of (v1 +¬v2 +¬v3)(v1 +v2 +¬v4)(¬v1 +v2 +v5)(¬v1 +¬v4 +¬v6), and is
directly derived from the implication equation. A variable may assume a value
because of either a branch decision or implication. An OR gate adds the assigned
value. Since a newly implied variable may take part in generating new implica-
tions, registering the newly implied values allows implication to propagate one
level in each clock cycle and avoids combinational cycles. To determine when
implications have settled, an XOR gate checks the difference between the cur-
rent and the next value. An AND gate checks if both literals of a variable are
assigned to 1. If such a situation exists, the conflict (also called contradiction)
signal is raised.

The other part of the algorithm is the control for the backtrack search.
A distributed control architecture is used, with each finite-state machine (FSM)
controlling one variable. Using a predetermined variable ordering, the architec-
ture can be implemented by a linear array of communicating FSMs, as shown in
Figure 29.4. Other than a few global signals, each FSM communicates only with
the two neighboring FSMs. During the SAT-solving process, only one variable is
active in terms of branching and backtracking. Its active status is represented
by an active token. Two wires connect each pair of FSMs to pass the active
token back and forth. Only one variable is the owner of the token at any given
time.

In addition to the basic clock and reset signals, there are three global control
signals. Gconflict is asserted when a conflict is detected. It is the wide OR
function of all local conflicts, Lconflict. A local conflict is asserted when both

29.3 A Reconfigurable SAT Solver 621

Gchange
Gconflict
Gclear
E_il
E_ol

Lchange
Lconflict
Lclear
E_or
E_il

Gchange
Gconflict
Gclear
E_il
E_ol

Lchange
Lconflict
Lclear
E_or
E_il

Gchange
Gconflict
Gclear
E_il
E_ol

Lchange
Lconflict
Lclear
E_or
E_il

Gchange Gconflict Gclear

ViVi21 Vi11

FIGURE 29.4 � The global topology for a basic SAT solver circuit.

vi and vi are assigned or implied to be 1. Gchange is asserted when any variable
has changed value. It is the wide OR function of all local changes, Lchange.
A local change is asserted when vinew is different from vi or when vinew
is different from vi . Gclear tells each state machine to clear the implied
values. It is issued when the algorithm needs to backtrack and erase earlier
implications.

With the external interface defined, each FSM should hold the assigned
value, the implied value, and its state of backtrack search. The state machine is
designed as registers for the implied value and an FSM combining the assigned
value and state in the backtrack search. The state diagram of the latter FSM,
shown in Figure 29.5, contains five states:

� Idle: This is the initial state, in which the internal variable value is (0, 0).
The FSM will stay in the idle state unless it has received the active token
from its neighbor through branching or backtracking. When the token is
received, if this variable already has an implied value, there is no need to
branch, and the FSM will simply pass the token to the next variable at
the next clock. If this variable has no implied value and the token has
been passed from the left, it will branch and choose the branch value as
1 (the active 1 state).

� Active 1: This state is the result of branching from the idle state, in which
the variable value is chosen to be 1. The new value will be available for
implication and conflict checking. The FSM will keep the token until
there is no more change or until a conflict is detected. In the case of no
conflict, it will pass the token to the right and will transition to the

622 Chapter 29 � Boolean Satisfiability: Creating Solvers

Idle Active 0

Passive 1 Passive 0

E_il and not implied
/nothing Gconflict/clear

Gchange and not
Gconflict/nothing

Not Gchange and not Gconflict/
send token to right

Gconflict/send token to left and clear

E_ir/send token to left and clear

Gchange and not
 Gconflict /nothing

E_ir/clear

not E_ir/nothing

Not E_ir/nothing

E_ir/send token
to left

Not E_il and not
E_ir/nothing

E_il and implied/send
token to right

Not Gchange and
not Gconflict/send
token to right

Active 1

FIGURE 29.5 � The FSM associated with one variable.

passive 1 state. If a conflict is detected, it will transition to the active 0
state and restart the implication and conflict checking.

� Active 0: This state is the result of a conflict in the active 1 state or of the
token being passed to passive 1 by backtracking. The variable value is set
to 0. Implication and conflict are checked. If there is no conflict, the FSM
passes the token to the right and transitions to passive 0. If there is a
conflict, it will transition to the idle state and pass the token to the left.

� Passive 1: This state is the result of branching further from active 1. If
the FSM receives a token from the right because of backtracking, it will
transition to active 0.

� Passive 0: This state is the result of branching further from active 0. If
the FSM receives a token from the right because of backtracking, it will
transition to idle and pass the token to the left.

With these FSMs logically forming a linear chain, the branching of the
algorithm corresponds to passing the token to the right and performing impli-
cations during the process. When a conflict is detected, backtracking is needed.
Backtrack switches a value from 1 to 0. If it is already 0, the token is passed
to the left. Whenever a conflict is detected, all of the implied values are cleared
by the global clear signal and reset to free. The termination condition is easy
to test: If the token is passed to the left of the first variable, the problem is
unsatisfiable; if it is passed to the right of the last variable, a solution has been
found. In addition to the regular problem-solving mode, the linear chain of vari-
ables can also be configured as a shift register. When a solution is found, it can
be shifted out as a bitstream.

29.3 A Reconfigurable SAT Solver 623

At the time of the design of this SAT solver (1997–1998), a single FPGA chip
provided a very limited number of logic gates, and so for typical problems a
multi-FPGA solution was needed. The algorithm was implemented on an IKOS
(now part of Mentor Graphics) VirtualLogic SLI Emulator, which contained one
to six FPGA boards, each containing 64 Xilinx XC4013E FPGA chips to form an
8×8 mesh. Thus, it provided the logic capacity to handle a midsize to large SAT
problem. While the FPGA itself could support a clock rate of about 20 MHz, the
Ikos system used a time-multiplexing I/O scheme called VirtualWire to overcome
the pin limitation (see Section 6.4). Thus, the system clock rate was reduced to
the 1-MHz range. An HP logic analyzer/function generator was connected to
provide the initial input signal and collect the result.

To provide perspective, in 1992 the mainstream FPGA XC4013E had 1368
logic cells. In 2006, the large XC4VLX200 FPGA had 200,448 logic cells
(i.e., about 146 times the logic capacity), which was more than what two big
Ikos boards could provide.

To solve an SAT problem on this platform, the following steps are needed:

1. Generate VHDL. A software tool written in C++ reads in the problem CNF
file and generates the VHDL code that models the SAT solver circuit. The
FSM is manually coded in VHDL and reused for each SAT problem.

2. Compile the FPGA. The VHDL is compiled to bitstream files for program-
ming the FPGAs. For a single FPGA implementation, this can be done by
the FPGA tools. For the Ikos emulator, in contrast, this process takes three
steps: (1) the design is synthesized into a netlist and partitioned to multiple
FPGAs by the IKOS tool; (2) the partitioned netlist is generated; and (3) the
netlist is compiled by Xilinx tools into bitstream files. The main function
of the Xilinx tools is placement and routing.

3. Configure the FPGA. The bitstream is downloaded to the FPGA board, and
the FPGA is configured with these files.

4. Run the problem solver in the FPGA and load the result. The logic ana-
lyzer/function generator creates the initial signals to start the computa-
tion. When the problem is solved, the solution is shifted out, where it can
be captured by a logic analyzer.

The runtime performance of the FPGA SAT accelerator is shown in
Figure 29.6 as a histogram of speedup ratios. This test was carried out in
1998 using the problem set from the DIMACS SAT challenge benchmark. The
software runtime basis was obtained by running GRASP with parameter set-
tings close to those of the basic backtrack algorithm. GRASP was run on a Sun
5 workstation with a 110-MHz processor and 64 MB of RAM. The hardware
performance was normalized to a 1.33-MHz system clock rate, which is repre-
sentative of implementations on the IKOS emulator. In the figure, the x-axis is
the ratio of software solver runtime to reconfigurable hardware runtime. It does
not include the compilation time and the time to configure the FPGAs.

As we see from Figure 29.6, the result indicates that even though the
reconfigurable solution has a clock rate 82 times slower than that of the
microprocessor-based system, it can still achieve 20 times or greater speedup

624 Chapter 29 � Boolean Satisfiability: Creating Solvers

0–
1

1–
10

10
–2

0
20

–3
0

30
–4

0
40

–5
0

50
–6

0
60

–7
0

70
–8

0
80

–9
0

90
–1

00
10

0–
11

0
11

0–
12

0
12

0–
13

0
13

0–
14

0
14

0–
15

0
15

0–
16

0
16

0–
17

0
17

0–
18

0
18

0–
19

0
19

0–
20

0
20

0–
…

0

5

10

15

20

Speedup ratio

In
st

an
ce

s

FIGURE 29.6 � A performance comparision of the FPGA SAT accelerator and the software version
implementing the same algorithm as hardware.

for many problems. It should be noted that the comparison is based on run-
time alone. The reconfigurable approach suffers from compilation overhead,
which in 1998 required hours to perform logic synthesis and placement and
route for the FPGAs. Current FPGA tools can perform such compilation within
a minute. Ways to ameliorate compilation issues will be discussed in later
sections.

For an understanding of the speedup results, Table 29.1 shows the speedup
ratios for different problems. The average number of clause evaluations per
cycle serves as a rough measure of the utilization of parallelism. It is defined
as the number of clauses that contain at least one literal from the variables
newly assigned in the previous clock cycle. There is a correlation between par-
allelism in clause evaluation and speedup ratio. Another factor in the speedup is
that custom hardware effectively reduces a complex operation into single-cycle
implication.

29.3.3 Implementing an Improved Backtrack Algorithm
with Reconfigurable Hardware

The example in the previous section shows the performance benefit of reconfi-
gurable computing. However, the hardware solution was implemented with the

29.3 A Reconfigurable SAT Solver 625

TABLE 29.1 � Speedup ratios for different problems

Number of Average clause Clock rate Speedup
Problem clauses evaluations/cycle (MHz) ratio

aim-50-2_0-yes1-2 100 7.1 1.78 44.5
aim-100-2_0-yes1-4 200 8.4 0.95 20.9
aim-200-6_0-yes1-1 1200 62.3 0.92 101
dubois20 160 8.0 1.78 13.9
hole7 204 18.3 1.78 44.5
hole8 297 21.9 1.78 45.6
hole9 415 25.9 1.57 40.2
hole10 561 30.1 1.48 41.4
ii8a2 800 15.8 1.07 923
par-8-1-c 254 29.4 1.57 174
par-16-1-c 1264 60.4 0.99 153
pret60_40 160 8.5 2.05 39
ssa0432-003 1027 11.0 0.95 24.7

basic backtrack algorithm, and improvements to the algorithm have brought
thousands of times speedup in the software solution. The following example
shows a more sophisticated backtrack algorithm with reconfigurable computing.
As demonstrated by GRASP, conflict analysis helps identify the true reasons for
conflict. Nonchronological backtracking and learning based on the analysis can
greatly improve search efficiency.

Knowing that the hardware can perform fast implication checking, an
alternative to conflict analysis-based backtracking was developed through trial
assignments. When a conflict is detected, there are two possible scenarios
regarding the most recently assigned variable. In the first, the variable has just
been assigned by branching—it will be assigned the alternative value and tested.
In the second, the variable has been assigned to an alternative value because
of previous conflicts, so backtracking is needed. GRASP shows that conflict
analysis can identify the reasons for conflict and may backtrack multiple levels,
saving search time.

In the reconfigurable hardware approach, trial backtrack is performed. The
algorithm moves back one decision level at a time and flips the assigned
variable. Unlike a real backtrack, the most recent assignment is not turned
to unknown. Instead, two implication/conflict tests are run for both value 0
and value 1. If both lead to conflict, we can trial-backtrack another level. If
either case leads to no conflict, we have seen the real backtrack destination
and the search reverts to regular search mode. This leads to much improved
performance, with the only drawback being an increase in finite-state machine
complexity.

Figure 29.7 is a diagram of the state machine for this enhanced algorithm.
It is an extension of the basic backtrack algorithm, but with nine states instead
of five.

626 Chapter 29 � Boolean Satisfiability: Creating Solvers

E_il and not
implied/nothing

E_ir/send token to left

idle Acitve 1 Active 0

Passive 1 Passive 0

Gonflict/clear

Not Gchange and not
Gconflict/send token to right

Gconflict/send token
to left and clear

E_ir/send token to left and clear

Not E_ir/nothing

Not E_ir/nothing

Leaf 1 Leaf 0

bk 0a bk 0b

Gconflict/clear

Gconflict/clear

not Gchange and not
Gconflict/nothing

Not Gchange and not Gconflict/nothing

Gchange and not
Gconflict/nothing

E_ir/nothing

Gchange and not
Gconflict/nothing

Gconflict /nothing

Gchange and not
Gconflict/nothing

Gchange and not
Gconflict/nothing

Not E_il and not
E_ir/nothing

E_il and implied/send
token to right

Gchange and not
 Gconflict/nothing

Gchange and not
Gconflict/nothing

Not Gchange and not
Gconflict/send token to left

Not Gchange and not
Gconflict /send token to right

Gconflict/send token
to left and clear

Not Gchange and not
Gconflict/send token
to right and clear

FIGURE 29.7 � A state diagram of the improved algorithm.

� Idle: This is the state before branch; it is also the state if the value is
already determined by implication.

� Active 1: This is the state after branch on value 1.
� Active 0: This is the state after backtrack on the branched value 1. When

a conflict is detected, instead of a simple backtrack, a new phase of
testing is added. It passes the token to the left and transitions to leaf 1.

� Passive 1: The variable value is 1 because of branching, and active control
has been passed to the right in branching.

� Passive 0: The variable value is 0 because of backtracking, and active
control has been passed to the right in branching.

29.4 A Different Approach to Reduce Compilation Time 627

� Leaf 1: Leaves 1 and 0 are testing states after conflict is detected with
value 0. If the testing settles with no conflict, we have found the most
recent branch assignment that contributes to the conflict. The FSM will
backtrack directly to that variable. If a conflict is detected, it will try a 0
value in the leaf 0 state.

� Leaf 0: This is also a testing state. If the testing settles with no conflict,
we have found the most recent branch assignment that contributes to the
conflict. The FSM will backtrack directly to that variable. If a conflict is
detected, it will switch to 1 and continue the testing.

� bk0a: This state works in coordination with the leaf 0 state. It is reached
through testing backtrack to the passive 1 state. If the test results in no
conflict, this variable is the backtrack target.

� bk0b: This state works in coordination with the leaf 1 state. If the test
results in no conflict, this variable is the backtrack target. If the conflict
persists, FSM passes the token to the left and returns to idle.

29.4 A DIFFERENT APPROACH TO REDUCE COMPILATION TIME
AND IMPROVE ALGORITHM EFFICIENCY
A practical issue in creating an FPGA-based SAT solver circuit optimized to
a specific problem instance is the time needed to generate the circuit. While
the VHDL for the solver circuit can be generated in less than a second,
the process of FPGA compilation is quite long. It can take at least 10 to
20 minutes to compile the mapping for a single FPGA. FPGA hardware and soft-
ware have improved to the point that a compilation may take a few minutes;
however, compilation time still cannot be ignored. In the next section we
describe an SAT solver with reduced compilation time and a further improved
algorithm.

29.4.1 System Architecture
The solution described in the previous section directly maps the SAT formula
into an SAT solver circuit. It does, however, have limitations:

� The circuit design does not take into account any physical design issues.
The implication circuit includes connections between state machines that
may be placed far away from each other. There are also wide OR gates
that generate global control signals. The solver requires massive routing
resources, and the system clock rate is low.

� The circuit is a complex netlist with little locality, and it takes a long time
to compile into FPGA configurations.

� The solver implements the basic backtrack search algorithm. Although
an improved nonchronological backtracking was implemented, the
architecture does not support learning.

628 Chapter 29 � Boolean Satisfiability: Creating Solvers

To deal with these issues, we developed a follow-on SAT solver with lessons
learned from the previous design [13, 14]. The following characteristics of the
new design address the previous design’s shortcomings:

� Structural regularity is a high priority. A regular structure allows easier
physical design. Specially designed processing elements allow regular
placement and distributed processing. Overall, modular approaches can
improve clock speed and allow fast circuit generation.

� Shared-wire global signaling is used to distribute data across the system.
For example, a pipelined ring-style bus replaces the random
interconnects. The bus allows a faster clock rate, a low pin count
between chips, and a regular structure.

� The algorithm control is separated from the parallel data processing in
the architecture. This allows the development of sophisticated control
algorithms.

� Algorithm improvements have been implemented. In addition to
implication, the circuit is capable of conflict analysis. Therefore,
nonchronological backtracking and learning can be implemented.

The core of the new design is an optimized pipelined bus system, in which
the bus width can be customized according to the hardware resources. The
bus includes both control and data bits. The control bits notify the processing
elements of actions to take; the data bits utilize a fixed sequence to encode the
variable values. The system uses the same 2-bit encoding for variable values.
Thus, a width of 32 data bits supports 16 variables. Also, the variables are
encoded with a fixed order. For example, if at clock t the variables are v1 through
v16, then, at t+1, the variables are v17 through v32. In n clock cycles, w ∗n vari-
ables pass through a stage, where 2w is the bit width of the data bus. The bus
only propagates the variable value. There is no need to propagate the variable
identification because it is inferred from the sequence. At each stage, the data
bit may be OR’ed with a local signal, allowing it to be set to 1.

Figure 29.8 shows the global topology. The bus width is 40 bits, with 32 bits
for data and 8 bits for control. Figure 29.9 shows one stage of the bus. The
value is accessible to the PE as Vi_in. The propagated value can be set or
reset through the signals Vi_set and Vi_reset_n. The main control block is
the core of the algorithm control. It maintains an internal copy of the variable
states and controls the backtrack algorithm.

Main PE 1 PE 2 PE 3 PE n

4040404040

FIGURE 29.8 � The global topology for processing and communication in the new SAT
architecture, with improved conflict analysis and nonchronological backtracking.

29.4 A Different Approach to Reduce Compilation Time 629

Q
SET

CLR

D Q
SET

CLR

D

Vi_set Vi_reset_n

Vi_in

QQ

FIGURE 29.9 � One stage of the pipelined bus.

Multiclause modules can be placed in one processing element (PE). The total
number of PEs depends on the total number of clauses in the CNF and the
number of clauses per PE. Each PE contains a resettable counter to count the
sequence of variables. The clause modules use the counter to identify variables
on the bus.

A clause module holds the data corresponding to one clause. To simplify the
hardware design, a 3-SAT formula is assumed (i.e., each clause has at most three
literals). This assumption does not lose generality, because any SAT formula can
be transformed into a 3-SAT formula in polynomial time by introducing new
variables and breaking up long clauses. Each clause module has the following
functions:

� Implication. Each clause should check for implication and put implied
values onto the bus.

� Conflict analysis. This is the reversal of the implication process. Given an
implied variable, the module finds the variables that lead to the
implication.

� Storage and interface. The module interfaces with the bus, taking
commands and variable values from it. It also sends new values and flags
for value updates to the bus. It needs to store the values of variables
related to the clause as well as the implication information.

Clause modules have three basic states: reset, implication, and analysis. The
reset state will reset variables to (0, 0) if the corresponding value on the bus
is (0, 0) and the state bus dictates reset. It is used during backtrack to undo
the decisions and implications made after the backtrack point. Implication uses
the same algorithm defined in the previous section. However, because the varia-
ble value is propagated on the bus, the clause module should also hold variable
values locally. The data latching takes place when the PE counter matches the
count stored in the module. The implied value is also stored locally until the cor-
rect bit passes through. The module will update the bus value at that moment.
An internal flag denotes the implied value. It will be used in the analysis phase.

The analysis phase is the reverse of implication. The goal is to find the list
of branch decisions that are transitive predecessors. This can be easily obtained

630 Chapter 29 � Boolean Satisfiability: Creating Solvers

if the history is stored. When the clause module is in analysis mode, it will be
idle if it has not generated an implication. If it has generated an implication,
it will check if the implied literal is asserted on the bus during analysis. If so,
the module will reset this literal on the bus and set the complement of other
literals in the clause. In this way it signals to the units that generated the values
of these other literals. For example, in the clause (vi + vj + ¬vk), if vi is implied,
the implying predecessors are vj = 0 and vk = 1. These variables may in turn be
implied by other variables.

The main control unit handles flow control and decision making. It has the
following major states and functions:

� Branch. Branch chooses the next free variable and assigns a value to it.
Using a fixed variable order and always choosing 1 simplifies the
function. A priority encoder can quickly select the first row with a free
variable and assign it to 1. The branch state is associated with the first
round of broadcasting the variable values. The next state is implication.

� Implication. The controller checks for conflicts, in which case it performs
conflict analysis. Alternatively, if in two cycles of data movement no new
values have been found, all iterative implications have settled. It then
performs the next round of branching.

� Conflict analysis. This step identifies the variable assignments leading to
the conflict. The control bus shows the analysis state. The conflict
variable is set to (1, 1), while all other variables are set to (0, 0). When a
clause that implied a variable currently asserted on the bus is found, that
implied literal is reset to 0 and the implying literals are all set to 1.

When a conflict arises from a branch, a list of variable assignments contribu-
ting to it can be collected through conflict analysis. The current branching vari-
able is considered to be implied by this set of literals. The implication is stored
in the main control unit and can be expressed as a redundant clause. For exam-
ple, if assignments vi = 1, vj = 1, vk = 1, vl = 1 lead to conflict, the new clause
is (¬vi + ¬vj + ¬vk + ¬vl). If vl is the current branch variable, it is implied to
be 0 by this new clause. Conceptually, the new value is not a branch decision.
Rather, it is forced to be the opposite value because of the recent conflict. It is
a redundant implication not explicitly visible from the original formula. Adding
the new clause to the database is a learning process that has been used in mod-
ern SAT solvers to prune future search space. Such learning can be carried out
in hardware by reserving some FPGAs for this purpose and generating new com-
pilations during runtime.

29.4.2 Performance
The performance of the new design is shown in Table 29.2. It should be noted
that the table lists the cycle counts, but the clock rates of the two designs
are different. The new design has a regular structure, and communication is
pipelined. It is therefore easy to achieve a much higher clock rate. Based on
the same Xilinx XC4000 FPGAs, the earlier design, implemented on the IKOS

29.4 A Different Approach to Reduce Compilation Time 631

TABLE 29.2 � Performance comparison

Acceleration of new Acceleration of new
design without added design with added

Problem clauses clauses

aim-50_2_0-yes1-2 33.00 65.87
aim-200-6_0-yes1-1 1.32 3.66
aim-50-1_6-no-1 8.10 487.19
aim-50-2_0-no-1 4.95 2449.26
aim-50-2_0-no-4 13.89 1121.68
aim-100-1_6-yes1-1 20.57 4354.04
aim-100-3_4-yes1-4 2.81 10.58
hole7 4.63 4.63
hole8 3.95 3.95
hole9 3.46 3.46
par8-1-c 5.03 5.03
par16-1-c 1.29 1.29
pret60_40 4.05 2154.23
ssa0432-003 0.65 2.04

Note: The comparison is based on normalized speedup against the old
design, assuming 20×clock speed improvement in the new design.

Logic Emulator, achieved a 1- to 2-MHz clock rate. The new design could
easily achieve a 20-MHz clock rate in 1998. In 2006, the achievable clock rate
was in the range of 200 MHz. This shows that the new design will likely achieve
better performance even without added clauses. Still, added clauses can bring
dramatic improvement in many problems.

29.4.3 Implementation Issues
One of the objectives of the new design is to reduce compilation time by exploi-
ting its regular structure. However, typical FPGA tools use simulated annealing
or similar algorithms to place the components. They are not capable of uti-
lizing the regular structure automatically, and so a regular structure will not
yield faster compilation times. It is necessary to bypass the automated tool and
directly generate the system layout.

JBits is a tool set that allows direct programming of Xilinx FPGAs. It is an
application programming interface (API) to the Xilinx configuration bitstream
file that permits Java applications to dynamically modify Xilinx XC4000EX/XL
bitstream configurations quickly.

A two-step approach can take advantage of the JBits tool and effectively
reduce compilation time. The first step is to create a generic SAT solver tem-
plate mapped to the FPGAs. The second step is customization to modify the
configuration according to a specific problem instance. For each instance, only
the second step is needed to compile the SAT solver. It can be performed quickly
if the number of changes is small.

632 Chapter 29 � Boolean Satisfiability: Creating Solvers

The architecture described in the previous section is used with additional
constraints to minimize the customization. At each pipelined stage of the bus,
multiple clause modules are connected to the bus. By limiting the problem
formulation to 3-SAT, all clause modules are the same. The only difference is
the variable identification of these three variables and the bus connection. The
variable identification is expressed as a constant that can be programmed as a
ROM that feeds a comparator. The connection to the bus also depends on the
variable identity and polarity.

The points where a clause module wire interconnects with the bus wire should
be programmed in the second step. Another simple constraint, that each bus
wire connect to no more than one clause module, can be met with a simple
greedy assignment algorithm.

The complete methodology to create an SAT solver is as follows:

1. Design of a single clause module. An SAT clause module is designed in
VHDL. The synthesized netlist is further optimized manually. The design
is expressed by schematic capture, which provides a more direct corre-
spondence between design and implementation.

2. Placement and routing of the module in a bounding box. Placement
constraints/floorplanning sets the bounding box of the clause module. The
Xilinx tool automatically places and routes within the bounding box.

3. Manual improvement. The Xilinx EPIC tool provides a graphical user inter-
face to manually edit the placement and routing on the FPGA.

4. Solver generation. With the bounding box constraints, a sample SAT solver
is generated. Additional manual editing creates a regular layout.

5. Template extraction. The JBits tool reads the configuration bitstream and
identifies the modification points.

6. Java generator. The SAT solver generator is created in Java with the JBits
library and templates.

7. Instance-specific bitstream. The SAT solver generator is run with the prob-
lem instance, and the bitstream files are created.

8. Load/run. The programming is loaded to the FPGAs and the solver is run.

Only steps 7 and 8 are needed for each problem instance. For this reason, the
compilation time is reduced from hours to merely seconds compared to the logic
emulator implementation.

The target implementation is the Xilinx XC4036EX FPGA. Each FPGA con-
tains 36×36 CLBs, and each clause module takes 4×16 CLBs. Sixteen clauses
are placed in each FPGA. Each FPGA forms a stage of the pipeline, and multiple
FPGAs can form a ring. The Sun Java 1.1.7 tool is used to compile and run the
Java program. The host computer is an Intel Pentium Pro running Microsoft
NT 4.0. The CPU clock rate is 200 MHz, and the main memory is 128 MB.

Table 29.3 shows the performance comparison, with times given in seconds.
The Old Hardware and New Hardware columns include the time to create
the FPGA mapping (CAD) and the time to find the solution on the hardware
engine (HW). Numbers in parentheses are speedups as compared to the GRASP
software.

29.5 Discussion 633

Table 29.3 � Performance comparison between the standard GRASP software and two
versions of the hardware SAT solver

GRASP Old hardware New hardware

Problem SW CAD HW Total CAD HW Total

a50-2_0-y1-2 0.05 10783 0.0011 10783 1.9 0.0004 19 (<1x)
(45x) (125x)

a100-2_0-y1-4 894 89530 42 (21x) 89572 2.4 9.7 (92x) 12.1 (74x)

a200-6_0-y1-1 128 >100K 1.35 (94x) >100K 7.9 0.89 (144x) 8.8 (14x)

dubois20 986 11377 70.8 (14x) 11447 2.3 8.44 (117x) 10.7 (92x)

par8-1-c 0.02 12834 0.000011 12834 2.7 0.000035 2.7 (<1x)
(1818x) (571x)

par16-1-c 202 83191 1.3 (155x) 83192 9.4 2.2 (92x) 11.6 (17x)

pret60_40 705 12396 18 (39x) 12414 2.3 9 (78x) 11.3 (62x)

Geometric 75.6x <1x (134x) (4.14x) (27.6x
Mean speedup

problems only)

29.5 DISCUSSION

Many groups have demonstrated that reconfigurable computing, compared to
software, can achieve speedups of about 100 times in solving SAT problems.
The main reasons are massive parallelism and fine-grained operation due to cus-
tomized hardware. Software/hardware solutions have been explored to reduce
hardware complexity and allow larger problems to be solved. A recent survey of
these systems is presented by Skliarova and Ferrari [15].

In each of the software/hardware systems, the massive computation to find
unit resolutions/implications and conflicts is the target of hardware acceleration.
However, there are several differences among these SAT solvers:

� Algorithms. The base algorithms are different. Several of them are based
on backtracking similar to that of GRASP. Some use a full variable
assignment and employ flipping during the search. Some use matrix
representations.

� Logic engine implementation. Different styles are used to implement the
massively parallel engine. Some use circuit translation, where the SAT
formula is translated into logical circuits. This means that the FPGA
configuration must be compiled for each problem instance, which is slow.
Alternatively, the formula is translated into memory, often distributed
into small blocks, which can avoid the compilation time.

� HW/SW organization. Some implementations are all hardware, where
the entire solver is mapped onto one or multiple FPGAs. Some imple-
mentations are SW/HW, in which part of the problem is handled by
software.

634 Chapter 29 � Boolean Satisfiability: Creating Solvers

While there has been significant progress in reconfigurable SAT solvers, we do
not see them replacing software solvers in real applications for several reasons:

� The need for flexibility. The SAT problem is NP-complete—that is, the
worst case is assumed to be exponential to the problem size. However,
sophisticated heuristics make many large problems solvable in practice.
Modern software SAT solvers typically contain many heuristics and allow
the user to choose different heuristic combinations to tackle especially
hard problems. Reconfigurable solvers generally have only a few
heuristics, and there is little flexibility on which ones to use.

� Algorithm efficiency. Most reconfigurable SAT solvers have algorithm
efficiencies similar to that of the basic backtrack algorithm with some
simple heuristics. In the meantime, software algorithms have made
significant efficiency gains. More elaborate analysis, such as conflict
analysis, leads to more efficient backtracking and learning. Learning can
improve SAT solver speed by several orders of magnitude. Reconfigurable
SAT solvers generally lag in algorithm sophistication.

� The scalability of hardware. The implementations of reconfigurable SAT
solvers are generally limited to moderate-size problems. However, large
problems are more likely to benefit from hardware acceleration.

Many projects have designed Boolean satisfiability solvers with reconfigu-
rable computing. These projects demonstrate the performance potential of these
solvers through fine-grained custom hardware and massively parallel process-
ing. Significant progress has been made in software algorithms as well, and
recently, reconfigurable computing solutions have not kept up in incorporating
these innovations. This is partly because the tools for reconfigurable computing
are not yet mature.

Future research may result in a breakthrough by studying these issues:

� Hardware/software solution. The complex algorithms are difficult to
implement and verify in hardware. It is more efficient to partition the
problem and allocate only the massively parallel portion to the
reconfigurable hardware. With microprocessors embedded in FPGAs,
such as Xilinx Virtex-II Pro and Virtex-4, communication between the
processor and the FPGA is greatly improved. The proliferation of
multicore processors and high-bandwidth interconnects enables the
exploitation of parallelism at different levels with heterogeneous
processing technologies.

� System-level design and synthesis methodologies. Models of computation
that preserve concurrency can be mapped to heterogeneous multicore
architectures. The designer can decide the trade-off between parallelism
and hardware usage. FPGA-based fabrics provide the massive parallelism
and low-level customization, while other components, such as embedded
processor or controller, can be chosen for their desirable characteristics.

� Distribution of data and customization of hardware. Mapping SAT
formulas to FPGA circuits generates random routing and requires long
compilation times. Mapping problem instances into distributed memory

29.5 Discussion 635

blocks can solve the time issue but it forces some degree of sequential
access. Learning from the design of content addressable memory may
lead to hardware architectures better able to solve SAT and other Boolean
problems.

� Simultaneous exploration of multiple states. Creating an algorithm
that can efficiently explore multiple states in the assignment space
simultaneously will allow the utilization of large amounts of computing
resources. A simplified approach is to simultaneously run the search on
multiple machines with different heuristics. However, efficient utilization
of learning across different searches remains an open problem.

References
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms, MIT Press,

1990.
[2] T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE Transactions

on Computer-Aided Design 11, January 1992.
[3] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu. Symbolic model checking without BDDs.

Proceedings of the Workshop on Tools and Algorithms for Analysis and Construction
of Systems (TACAS) 1579, LNCS, 1999.

[4] A. Gupta, M. Ganai, C. Wang, Z. Yang, P. Ashar. Learning from BDDs in SAT-based
bounded model checking. Proceedings of the Design Automation Conference, 2003.

[5] M. Davis, H. Putnam. A computing procedure for quantification theory. Journal of
the ACM 7, 1960.

[6] J. P. Marques-Silva, K. A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), May 1999.

[7] R. J. Bayardo Jr., R. C. Schrag. Using CSP look-back techniques to solve real-
world SAT instances. Proceedings of the 14th International Conference on Artificial
Intelligence, 1997.

[8] E. Goldberg, Y. Novikov. BerkMin: A fast and robust SAT-solver. Design, Automation
and Test in Europe, 2002.

[9] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff: Engineering
an efficient SAT solver. Proceedings of the 38th Design Automation Conference, 2001.

[10] P. Zhong, M. Martonosi, P. Ashar, S. Malik. Using configurable computing to accele-
rate Boolean satisfiability. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 18(6), June 1999.

[11] P. Zhong, P. Ashar, S. Malik, M. Martonosi. Using reconfigurable computing tech-
niques to accelerate problems in the CAD domain: A case study with Boolean
satisfiability. Proceedings of the 35th Design and Automation Conference, June 1998.

[12] P. Zhong, M. Martonosi, P. Ashar, S. Malik. Accelerating Boolean satisfiability with
configurable hardware. Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, April 1998.

[13] P. Zhong, M. Martonosi, P. Ashar, S. Malik. Solving Boolean satisfiability with
dynamic hardware configurations. Proceedings of the Eighth International Work-
shop on Field-Programmable Logic and Applications: From FPGAs to Computing
Paradigms, August–September 1998.

[14] P. Zhong, M. Martonosi, P. Ashar. FPGA-based SAT solver architecture with near-
zero synthesis and layout overhead. IEE Proceedings on Computer and Digital Tech-
niques 147(3), May 2000.

636 Chapter 29 � Boolean Satisfiability: Creating Solvers

[15] I. Skliarova, A. B. Ferrari. Reconfigurable hardware SAT solvers: A survey of
systems. IEEE Transactions on Computers 53(11), November 2004.

[16] M. Yokoo, T. Suyama, H. Sawada. Solving satisfiability problems using field-
programmable gate arrays: First results. Proceedings of the Second International
Conference on Principles and Practice of Constraint Programming, 1996.

[17] T. Suyama, M. Yokoo, H. Sawada, A. Nagoya. Solving satisfiability problems using
reconfigurable computing. IEEE Transactions on VLSI Systems 9(1), 2001.

[18] T. Suyama, M. Yokoo, A. Nagoya. Solving satisfiability problems on FPGAs using
experimental unit propagation. Proceedings of the Fifth International Conference on
Principles and Practice of Constraint Programming, 1999.

[19] T. Suyama, M. Yokoo, H. Sawada. Solving satisfiability problems using logic syn-
thesis and reconfigurable hardware. Proceedings of the 31st Hawaii International
Conference on System Sciences 7, 1998.

[20] J. de Sousa, J. P. Marques-Silva, M. Abramovici. A configware/software approach
to SAT solving. Proceedings of the Ninth IEEE International Symposium on Field-
Programmable Custom Computing Machines, 2001.

[21] I. Skliarova, A. B. Ferrari. A software/reconfigurable hardware SAT solver. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 12(4), April 2004.

[22] J. Gu. Local search for satisfiability (SAT) problem. IEEE Transactions on Systems,
Man, and Cybernetics 23(4), July 1993.

[23] H. Zhang, M. Stickel. An efficient algorithm for unit-propagation. Proceedings of the
Fourth International Symposium on Artificial Intelligence and Mathematics, 1996.

[24] H. Zhang. SATO: An efficient propositional prover. Proceedings of the International
Conference on Automated Deduction, 1997.

[25] L. Zhang, S. Malik. The quest for efficient Boolean satisfiability solvers. Proceedings
of the Eighth International Conference on Computer-Aided Deduction; Proceedings of
14th Conference on Computer-Aided Verification, July 2002.

[26] L. Zhang, S. Malik. Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. DATE2003, March
2003.

[27] F. A. Aloul, A. Ramani, I. L. Markov, K. A. Sakallah. Solving difficult instances of
Boolean satisfiability in the presence of symmetry. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 22(9), September 2003.

[28] P. T. Darga, M. H. Liffiton, K. A. Sakallah, I. L. Markov. Exploiting structure in
symmetry detection for CNF. Proceedings of the 41st IEEE/ACM Design Automation
Conference, 2004.

[29] Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, I. L. Markov. AMUSE:
A minimally-unsatisfiable subformula extractor. Proceedings of the 41st IEEE/ACM
Design Automation Conference, 2004.

C H A P T E R 30

MULTI-FPGA SYSTEMS: LOGIC
EMULATION

Russell Tessier
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst

Application specific integrated circuit (ASIC) verification has been an important
and commercially successful application of field-programmable gate arrays
(FPGAs) for over a decade. By mapping the logic of a new chip design onto
a system of FPGAs, logic emulation systems provide a high-speed simulation
of the design under development. As FPGA technology has matured and FPGA
logic capacity has grown, the use of FPGAs for functional logic emulation has
increased. Contemporary emulation systems often include a sizable number of
FPGA and memory devices organized in topologies that allow for efficient logic
evaluation and inter-FPGA communication.

Although the hardware architecture of an emulator plays an important role
in defining its effectiveness, system usability is often most closely tied to an
emulator’s compilation environment. To successfully map a complete ASIC
design to an emulation system, emulators require optimized compilation steps
that effectively distribute design logic across available FPGA resources and coor-
dinate intra-FPGA computation and inter-FPGA communication.

To illustrate contemporary approaches to FPGA-based logic emulation, we
profile here the hardware and software systems of a commercial FPGA-based
emulator. We show that, although off-the-shelf FPGAs have been used effec-
tively in a number of commercial logic emulators, several issues related to
FPGA compile time, design debugging, and emulator host interfacing must be
addressed to maintain their commercial viability.

30.1 BACKGROUND

Research in reconfigurable computing has been active for well over a decade,
but the widespread commercial use of FPGAs as computing devices has been
limited. A notable commercial success story for reconfigurable computing has
been the use of FPGAs in ASIC logic verification. Over the past decade, the
number of transistors that can be integrated into application-specific devices has
grown exponentially with Moore’s Law, leading to an increased need to verify
design functionality prior to device fabrication. Currently, it is estimated that 60

638 Chapter 30 � Multi-FPGA Systems: Logic Emulation

to 80 percent of ASIC design time is spent performing verification [29], primarily
because of the high nonrecurring engineering (NRE) cost associated with ASIC
fabrication. The flexibility, parallelism, and reprogrammability of FPGAs make
them an ideal platform for verifying, prior to fabrication, the functionality of
ASIC designs. The availability of automatic FPGA mapping tools, such as those
described in Chapters 13, 14, and 17, have streamlined the design conversion
process, making the path from ASIC design to FPGA implementation more
straightforward.

FPGA-based logic verification is often used to augment or replace
microprocessor-based simulation of register transfer level (RTL) or gate-level
designs. The primary source of emulation speed improvement versus simulation
is the parallel implementation of circuit logic in the FPGA. While the amount
of logic evaluated per clock cycle in a microprocessor-based simulator is con-
strained by a limited number of ALUs (typically four or five at most), the num-
ber of per-cycle FPGA operations per emulation system is constrained only by
the available amount of total FPGA resources. This increase in logic evalua-
tion capacity comes at a cost. Unlike its simulation counterparts, FPGA-based
emulation can provide only functional verification for designs. Because the fun-
damental technology used to implement the emulated logic differs from the
source ASIC technology, postlayout timing information cannot be replicated.
As a result, FPGA-based emulators support only cycle-accurate logic evaluation
that is synchronized to design clock edges of the emulated design. Additionally,
circuit debugging for emulation systems is often more complex than debugging
with simulators. The sequential nature of simulation-based verification facili-
tates debugging and logic tracing. Logic analysis in a parallel verification envi-
ronment requires the use of specialized hardware resources and debugging tools.

FPGA-based emulators take on a variety of forms, ranging from single-
device systems to commercial emulation systems that include hundreds of
devices. Although specific system implementations vary, most FPGA-based
logic emulators contain a tightly connected collection of FPGA devices. These
systems can be distinguished by their component FPGA and memory devices,
interconnection topology, design-mapping software, and external interfaces. The
system topology defines the positions of FPGAs and inter-FPGA communica-
tion resources. The need for multiple devices to emulate many ASIC designs is
due to the cost of FPGA reconfigurability. Because the silicon area overhead of
FPGA versus ASIC technology has been measured to be about 40x [15], FPGA
programming technology requires that an ASIC logic design be partitioned
across multiple FPGA devices to achieve the necessary device logic capacity.

For most emulators, there is a strong association between the physical archi-
tecture of the FPGA system and the compiler used to map user designs to the
emulator. Like the intra-FPGA mapping flow outlined in Chapters 13, 14, and 17,
emulation mapping for multi-FPGA emulators requires a series of complex
and interrelated algorithms. As we will see later in this section, emulation
system compilation is complicated by the variety of design features in con-
temporary ASICs. These features include multiple asynchronous clock domains,
multiported memories, and testing and debugging interfaces, which are playing

30.2 Uses of Logic Emulation Systems 639

an increasingly important role. In assessing modern emulation, the interfaces
between emulators, simulators, logic analyzers, and prototype systems must be
considered. It will be shown that, in the future of FPGA-based logic emulation,
both design compilation and testing interfaces will play a critical role.

To illustrate the complexity of contemporary FPGA-based emulation, the
hardware, compilation, and testing components of a VirtuaLogic VLE-2M
emulation system from Mentor Graphics [21] will be profiled. This commercially
successful system demonstrates not only the benefits of FPGA-based emulation,
but also some of its limitations.

30.2 USES OF LOGIC EMULATION SYSTEMS

Logic emulation systems are typically used in one of two verification scenarios:
(1) as a physical replacement for an ASIC in a target system, or (2) as a
simulation accelerator. The ASIC replacement approach requires the use of a
physical connection between the emulator and the target system. As shown
in Figure 30.1, one end of the connection typically plugs into connectors on
the emulation system that are interfaced to selected FPGA I/O pins. The other
end of the connection plugs into the location on the target system that would
normally hold the package of the emulated device. This emulation pod typically
has the same pin configuration as the emulated device package. The use of
in-circuit emulation allows for complete target system verification, including the
emulated design and surrounding interfaces and peripherals. Although many
times the target system is forced to operate at clock speeds of 0.5 to 5 MHz,
a substantial amount of system functionality can generally be evaluated via
in-circuit emulation. An attached logic analyzer is often used to probe specific
design signals.

An alternative to in-circuit emulation is coverification (sometimes called
cosimulation). In this mode of operation, the logic emulator works in con-
cert with a host workstation to verify an emulated design without the use of

Host workstation

Host interface

Probes
Target system

Emulation
pod

Logic emulator

Logic
analyzer

FIGURE 30.1 � A typical configuration of a logic emulation system.

640 Chapter 30 � Multi-FPGA Systems: Logic Emulation

a physical target system. Typically, the host workstation (Figure 30.1) performs
the simulation of target system components and provides inputs to the emulated
design via a host interface such as a backplane bus or cable. Design outputs are
returned to the host workstation via the same path. In most cases, only the most
time-consuming portion of the design under test is mapped to the emulator. The
rest is simulated on the companion processor located in the host workstation.
Coverification is often used to concurrently verify software components running
on both the processor in the host workstation and in the emulated design.

In contrast to simulation, the use of in-circuit emulation and coverification
allows for exhaustive prefabrication functional testing [3]. Typically, logic emu-
lation can provide about five to six orders of magnitude speedup versus simula-
tion for a logic design [2, 14]. Numerous commercial ASIC projects have used
coverification to confirm the functionality of end applications with billions of
test vectors prior to chip fabrication [3]. The speed of in-circuit emulation often
allows for complete software system design verification as soon as a functionally
specified ASIC design is complete. In the case of microprocessor design, a signi-
ficant fraction of the emulated processor’s software system can be tested long
before processor fabrication, ensuring the functionality of both hardware and
software. For example, Unix was successfully booted on an emulated M68060
microprocessor in about two hours [14]. This value represents a 40,000 times
speedup over RTL simulation for the same processor operation.

30.3 TYPES OF LOGIC EMULATION SYSTEMS

For many designers of small ASICs, a large, expensive multi-FPGA emulation
system may be unnecessary because one large FPGA and some associated
external memory may be sufficient to implement the entire ASIC design.

30.3.1 Single-FPGA Emulation
The use of a single FPGA simplifies emulation system mapping because design
partitioning and inter-FPGA routing are unneeded. Often, an unmodified RTL
description of the ASIC design can be resynthesized for the FPGA with the use
of an alternate synthesis library. Standard FPGA compilation tools are then used
to complete the design mapping. As shown in Figure 30.2, the FPGA used for
prototyping is typically mounted on a custom board that receives design inputs
either from a target system where the completed ASIC design eventually will be
located or from a workstation that provides input test vectors via a download
cable. Additional interfaces are usually provided to allow for connections to a
power supply and a logic analyzer. Since most FPGAs used for prototyping are
SRAM based, resources must be provided to store and download the configura-
tion bitstream to the FPGA at power-up.

As the logic capacity of FPGAs grows, it may appear that an increasing
number of ASIC designs could be prototyped using a single FPGA. However,
since both FPGA and ASIC gate counts follow the same VLSI process trends,

30.3 Types of Logic Emulation Systems 641

Host workstation

Download cable

SRAM
configuration
memory

FPGA

SRAM

Target system
interface

Power supply
Logic analyzer

Probes

FIGURE 30.2 � An example of a single-FPGA logic emulation system.

it is likely that most ASIC designs will continue to require multiple FPGAs for
verification.

30.3.2 Multi-FPGA Emulation
Contemporary multi-FPGA emulation systems are complex verification platforms
containing hundreds of FPGA and memory chips, high-speed interfaces to target
systems, hosts, logic analyzers, and support for interactive debugging [11]. Since
their initial commercial introduction in 1988, these systems have evolved into
important functional verification platforms [7]. Typical systems include multiple
boards each containing tens of FPGA devices interconnected in a fixed topology.
Interboard communication is performed via fixed connections or a backplane
bus. Because of the need to communicate signals between FPGAs, the typical
frequency of an emulated design is in the range of 0.5 to 5 MHz.

Two distinguishing characteristics of a multi-FPGA logic emulator are the
topology used to interconnect FPGAs and the approach used to communi-
cate interpartition logic signals between them. Before addressing the issues of
topology, two possible approaches for assigning logical signals to inter-FPGA
wires will be analyzed.

Consider the mapping of a simple circuit shown in Figure 30.3(a) to two
FPGAs as shown in Figure 30.3(b). For this circuit, two interpartition signals
(x and y) exist. One approach to mapping these signals to inter-FPGA wires
is to dedicate them to inter-FPGA wires A and B, respectively, as shown in
Figure 30.3(b). This dedicated-wire mapping preserves the original structure
of the circuit and does not require the inclusion of any additional logic. In
contrast, the mapping shown in Figure 30.3(c), adds pipeline flip-flops and a
multiplexer to interpartition signals so that inter-FPGA wire A can be shared.
From the figure it can be seen that wire A is multiplexed to transport both
x and y. This multiplexed-wire approach allows for more efficient use of FPGA

642 Chapter 30 � Multi-FPGA Systems: Logic Emulation

pins and inter-FPGA wires, at the cost of additional FPGA logic and flip-flops.
However, in most emulation systems I/O pins are a more precious resource than
logic and flip-flops.

Both dedicated-wire and multiplexed-wire FPGA-based emulators are com-
mercially available. Dedicated-wire systems include the SystemRealizer [24] and
Mercury [25] families from Cadence; multiplexed-wire systems include Cadence
Xcite [36] and the Mentor Graphics VirtuaLogic [21] and VStation [22] families.
For dedicated-wire systems, design logic partitions must meet both the pin and
gate count requirements of the target FPGAs. In virtually all cases, the FPGAs
are pin limited, constraining the amount of logic and associated I/O that can be
assigned to each FPGA. Rent’s Rule [17], an empirical relationship that quan-
tifies the growth of pin requirements as logic capacity increases, indicates that
this problem is likely to get worse as FPGA logic capacity increases. As a result,

(a)

(b)

(c)

x

y

A

B

A

x

y

FIGURE 30.3 � The mapping of a simple circuit (a) by dedicated-wire(b) and multiplexed-wire
(c) assignment.

30.3 Types of Logic Emulation Systems 643

the time-multiplexed use of pin resources is prevalent in contemporary emula-
tion systems.

A series of topologies for FPGA interconnection have been investigated
for both dedicated-wire and multiplexed-wire emulators. A number of early
commercial dedicated-wire emulation systems organized FPGAs primarily in a
near-neighbor or low-dimensional mesh topology, as illustrated in Figure 30.4(a).
Although these topologies are easy to build, their lack of routing flexibility
complicates design partitioning. Since many interpartition connections may not
have direct FPGA-to-FPGA connections, one or more FPGAs are required to
provide through-hop connectivity. Not only does this make the timing along
interpartition connections unpredictable, but scarce FPGA pin resources must
be dedicated to through-hop connections. As a result, direct-connect dedicated-
wire systems are now used only for emulation systems with a very small number
of FPGAs (typically four or less) [4]. These systems often allow direct connec-
tions between all FPGAs, eliminating the need for through-hops.

In an attempt to provide predictable FPGA delay and eliminate the need for
through-hops, a series of emulation systems were developed that use specialized
crossbar devices called field-programmable interconnect chips (FPICs) in
addition to FPGAs [7]. These systems route most or all inter-FPGA connections
through the FPICs so that the length of each inter-FPGA path is predictable. For
basic systems, such as the one shown in Figure 30.4(b), some of each FPGA’s I/O
pins are dedicated to bidirectional connections on each FPIC device forming a
crossbar. As a result, any inter-FPGA connection can be made by passing through
a single FPIC, leading to predictable timing. Multiple levels of FPIC interconnect
allow for system scaling to hundreds of FPGAs. The delay for each individual
path is predictable because the FPIC’s timing is predictable, although the num-
ber of FPICs traversed by different inter-FPGA paths may vary.

Most multiplexed-wire systems use meshes with primarily near-neighbor con-
nectivity [7, 34]. Inter-FPGA paths are pipelined, so each path has a predictable

(a) (b)

FPGA

FPGA FPGA FPGA

FPGA FPGA

FPIC FPIC FPIC FPIC

FPGA FPGA FPGA FPGA

FIGURE 30.4 � Example FPGA-based logic emulator topologies: (a) mesh; (b) crossbar. Source: Adapted
from Hauck [7].

644 Chapter 30 � Multi-FPGA Systems: Logic Emulation

delay, which is a multiple of the system clock frequency. Additionally, inter-FPGA
routing congestion is overcome by the reuse of inter-FPGA routing resources, elim-
inating the restrictions created by through-hops. Although some multiplexed-wire
systems that use partial or full crossbars (FPICs) have been proposed [19], the
need for these expensive devices in time-multiplexed systems is unclear.

30.3.3 Design-mapping Overview
Several key issues drive the use of logic emulation systems. For most emulation
products, system ease of use and resource utilization are important factors
in system design. The translation of designs from ASIC netlist to multi-FPGA
implementation must be fully or nearly automatic. These ease-of-use issues
require sophisticated multi-FPGA computer-aided design approaches to process
netlists in addition to the per-FPGA processing for numerous individual FPGAs.

A high-level flow for multi-FPGA logic emulation similar to the flow
outlined by Hauck and Agarwal [8] is shown in Figure 30.5. It starts with a
circuit description that is specified at the behavioral or register transfer level.
Design translation, which typically includes logic synthesis, converts the high-
level netlist to a gate-level structural equivalent. Following design translation,
design logic is partitioned into pieces that will fit within the logic resources of
individual FPGA devices. Partitioning is often performed to minimize required
inter-FPGA interconnect, control system-wide critical path delay, and localize
memory access. For some systems, partitioning must be performed so that
inter-FPGA routing restrictions in terms of available FPGA pin count and
system topology are considered. If the logic emulator contains memory chips
that are external to the FPGA, design memory must be partitioned across
memory resources to meet memory chip capacity constraints.

Partitioned design logic and memory structures are subsequently assigned
to specific system devices via global placement. For some systems, swap-based
placement algorithms, which are similar to the FPGA placement approaches
described in Chapter 14, are used. A placement cost metric based on distance
and delay is often iteratively used to judge placement quality. Partitioning and
placement are sometimes combined into a single step to concurrently optimize
interpartition bandwidth and inter-FPGA signal delay and distance [8]. The com-
munication of interpartition signals between FPGAs is determined based on
routing algorithms. For most multi-FPGA emulators, routing involves the deter-
mination of the shortest feasible path between FPGAs using available board
interconnect resources for each inter-FPGA signal [2]. Topology constraints often
require these signals to pass through intermediate (through-hop) FPGAs.

The last mapping step in logic emulation involves the individual compilation
of the FPGAs. Multi-FPGA emulation systems have a number of constraints that
can lead to less-than-efficient FPGA use. The FPGA compilation step may require
hundreds of individual compiles. If even one design partition fails to success-
fully map to its target FPGA, the emulation flow shown in Figure 30.5 must
be restarted from the design partitioning step. As a result, design partitions are
often sized conservatively to ensure successful compilation.

30.3 Types of Logic Emulation Systems 645

Design translation

Partitioning and
global placement

Global routing

Tech mapping

FPGA placement

FPGA routing

Tech mapping

FPGA placement

FPGA routing

Tech mapping

FPGA placement

FPGA routing

Individual
FPGA compile

Circuit
description

Programming
files

FIGURE 30.5 � A typical multi-FPGA emulator mapping flow. Source: Adapted from Hauck and Agarwal [8].

Although the steps just described define the high-level mapping flow for
FPGA-based logic emulators, the specific partitioning, placement, and routing
approaches used by individual emulators are heavily influenced by the approach
used to communicate intermediate data signals between FPGAs. Although
similar, dedicated-wire and multiplexed-wire emulators require specialized par-
titioning, placement, and routing algorithms.

30.3.4 Multi-FPGA Partitioning and Placement Approaches
Design partitioning and placement play an important role in system perfor-
mance for dedicated-wire FPGA-based logic emulators. Because FPGA pins are
such critical resources for these systems, the primary goal of partitioning is
to minimize communication between partitions. A large number of algorithms

646 Chapter 30 � Multi-FPGA Systems: Logic Emulation

have been developed that split logic into two pieces (bipartitioning) and multiple
pieces (multiway partitioning) based on both logic and I/O constraints. Unfor-
tunately, the need to satisfy dual constraints complicates their application to
dedicated-wire emulation systems.

One way to address the partitioning and placement problem is to perform
both operations simultaneously [8]. For example, a multiway partitioning
algorithm can be used to simultaneously generate multiple partitions while
respecting inter-FPGA routing limitations [28]. Unfortunately, multiway parti-
tioning algorithms are computationally expensive (often exhibiting exponential
runtime in the number of partitions), which makes them infeasible for systems
containing tens or hundreds of FPGA devices. As a result of inter-FPGA band-
width limitations and the need for reasonable CAD tool runtime, most dedicated-
wire FPGA emulation systems use iterative bipartitioning for combined
partitioning and placement [6]. This approach has been effectively applied to
both crossbar and mesh topologies [31].

The use of recursive bipartitioning for dedicated-wire emulators creates
several problems. Although it can be used effectively to locate an initial cut,
it is inherently greedy. The bandwidth of the initial cut is optimized, but may
not serve as an effective start point for further cuts. This issue may be resolved
by ordering hierarchical bipartition cuts based on criticality [5].

Partitioning for multiplexed-wire systems is simple compared to the
dedicated-wire case, because it must meet only FPGA logic constraints, rather
than both logic and pin constraints. Unlike the dedicated-wire case, partitioning
and placement are generally performed not simultaneously but rather sequen-
tially [2]. First, recursive bipartitioning successively divides the original design
into a series of logic partitions that meet the logic capacity requirements of the
target FPGAs. During partitioning, the amount of logic required to multiplex
inter-FPGA signals must be estimated because both design partition logic and
multiplexing logic must be included in the logic capacity analysis. Following
partitioning, individual partitions are assigned to individual FPGAs. Place-
ment typically attempts to minimize system-wide communication by minimizing
inter-FPGA distance, particularly on critical paths. To fully explore placement
choices, simulated annealing is frequently used for multi-FPGA placement [2].

30.3.5 Multi-FPGA Routing Approaches
The global routing step determines which FPGAs are used to route inter-FPGA
signals. Inter-FPGA routes may directly connect source and destination FPGAs,
or intermediate through-hops may be necessary. Global routing algorithms
typically attempt to minimize distance and inter-FPGA routing resource usage
while ensuring that no routing resources are overused.

The routing problem for dedicated-wire systems is similar to the intra-
FPGA routing problem described in Chapter 17. In dedicated-wire systems, the
amount of available inter-FPGA wiring is fixed, possibly leading to infeasible or
inefficient routes if an effective routing algorithm is not employed. Groups of
wires between FPGAs are considered a communication channel, and inter-FPGA

30.3 Types of Logic Emulation Systems 647

routing channels can be represented as a directed channel graph. As seen in
Figure 30.6, for a direct-connect topology, the edge weight in the channel graph
represents the number of physical wires in the channel [8]. Prior to routing, the
channel graph for the system topology in Figure 30.6(a) can be represented as
in Figure 30.6(b).

As routing is performed, inter-FPGA connections are assigned to wires,
reducing the available capacity in each channel. A variant of maze routing [18]
is typically used to assign inter-FPGA signals to specific system wires. Like the
maze-routing algorithms used for intra-FPGA connections, multiple router iter-
ations are often necessary. The maze-routing algorithm works by selecting a
wire and finding the shortest feasible path from its source to its destination
partition. Multiple iterations involving rip-up may be necessary to complete all
routes.

The example mapping in Figure 30.7 provides an overview of the use of channel
graph representation. Following the assignment of logical signals from the mapped
design in Figure 30.7(a) to inter-FPGA wires, the channel availability is modi-
fied to take used wires into account. The effects of this assignment are shown in
Figure 30.7(b), where the modified channels are shown with dashed lines.

For multiplexed-wire systems, both intra-FPGA computation and inter-FPGA
communication are synchronized by a global system clock. This clock provides
control over the sequence of events in the time-multiplexed system. Because
many combinational evaluations and signal transfers occur in a single design
(emulation) clock cycle, the system clock must operate at a faster speed than that
of the design clock of the emulated design. Thus, routing in multiplexed-wire

(a)

FPGA
F0

FPGA
F3

FPGA
F2

FPGA
F1

(b)

1

2

12 2 1

1

2

F0

F3 F2

F1

FIGURE 30.6 � (a) A multi-FPGA interconnection and (b) the associated channel graph for
dedicated-wire routing. Source: Adapted from Hauck and Agarwal [8].

648 Chapter 30 � Multi-FPGA Systems: Logic Emulation

(a) (b)

F3 F2

F0

1

2

1 1

0

2

02

F1

FPGA F0 FPGA F1

b

D
Q

D
Q

cd

FPGA F3 FPGA F2

a

FIGURE 30.7 � Assignment of logic signals to inter-FPGA wires in a dedicated-wire system
(a), and the resultant mapping (b).

systems assigns each interpartition wire a source–destination path schedule in
both time and space.

Routing for multiplexed-wire systems generally requires two routing steps
to connect an inter-FPGA signal: the determination of a feasible path between
FPGAs and the scheduling of multiplexed signal transport along the path [2].
Initially, a path between source and destination FPGAs is determined using a
shortest-path algorithm. Unlike dedicated-wire routing, the utilization of wires
in the channel is less restrictive because a different signal may be assigned to
each wire on each clock cycle. Following path selection, a data signal can be
transmitted along an inter-FPGA path as soon as it is assigned a valid logic
value by the flip-flop or logic gate that drives it. To complete the transmission,
the signal is assigned to a series of inter-FPGA wires along the path until it
reaches the destination FPGA. One clock cycle of the system clock is allowed
for each inter-FPGA hop along the path. Because inter-FPGA paths are synchro-
nized at FPGA boundaries with pipeline flip-flops, long combinational paths are
effectively broken into a series of discrete timesteps. A number of scheduling
algorithms that perform the assignment of interpartition signals to inter-FPGA
wires have been developed [2, 32].

The result of routing using multiplexed wires is illustrated in the following
example taken from Tessier and Jana [34]. In Figure 30.8, the circuit shown in
Figure 30.7(a) has once again been partitioned onto FPGAs interconnected using
the direct-connect FPGA topology shown in Figure 30.6(a). Each inter-FPGA signal
can travel only between two FPGAs during each system clock cycle. In the figure,
pipeline flip-flops, which have been added to allow multiplexed communication
on each path, are shaded. Circuit communication and computation in terms of
system clock cycles can be determined by evaluating the critical path from signal
a to signal d, as shown in Figure 30.9. In both Figures 30.8 and 30.9, system
clock cycles are labeled V1 through V5. In Figure 30.8, communication delays

30.3 Types of Logic Emulation Systems 649

FPGA F0 FPGA F1

FPGA F3 FPGA F2

B
b

c

dD

Q
D

Q
a

a
b

b

V4V1

V2 V3

V5

Pipeline FFs

FIGURE 30.8 � Circuit mapping to FPGAs for a multiplexed-wire system.

Design
clock

V4V1 V2 V3 V5

System
clock

Signal a
n 5 1

Signal b

Signal d

n 5 21

1

FIGURE 30.9 � The design clock cycle for the circuit mapping shown in Figure 30.8. Spans
labeled n indicate a communication delay of n system clock cycles.

are listed, with n equal to the number of system clock cycles required for com-
munication. Combinational evaluations are listed, with a number (e.g., 1). After
system cycle V5, signal d is latched into a design flip-flop, completing the design
clock cycle.

650 Chapter 30 � Multi-FPGA Systems: Logic Emulation

The schedule for this example does not depend on the binary value
of individual signals. Each interpartition signal is transmitted during each
design cycle, whether or not it has changed. Alternative, dynamic scheduling
approaches, which only transmit changed signals, have also been proposed [16].
For dynamic scheduling, the availability of the communication resources must
be determined at runtime, which can significantly increase the amount of com-
munication control circuitry needed in each FPGA. Kwon and Kyung [16] used
a global controller and a shared bus to control dynamically scheduled data
movement.

30.4 ISSUES RELATED TO CONTEMPORARY LOGIC EMULATION

30.4.1 In-circuit Emulation
As discussed in Section 30.2, a logic emulation system is often used to replace
design logic in a target system. In-circuit emulation presents a series of chal-
lenges that often must be addressed by the user of the emulation system [11].
Since emulated designs operate at relatively slow clock rates, all or a portion of
the target system must be modified to operate at a clock rate that is substan-
tially less than the planned product clock rate. Special care must be taken to
ensure that actions such as DRAM refresh and device phase-locked loop activity
are not adversely affected. The clock for the target system must be interfaced to
the emulator to control emulator logic evaluation. In some cases, the emulator
provides the target system clock, simplifying synchronization.

30.4.2 Coverification
As described in Section 30.2, coverification requires the logic emulator to verify a
portion of a design at the same time the rest of the design is simulated on a host
workstation. Typically, the physical interface between the host and the emulator
is the limiting factor to coverification performance [12]. A cycle-based approach
to coverification requires a data exchange between the host and the FPGA-based
emulator during each design clock cycle edge. This exchange includes collating
inputs for the emulated design from the simulation database, transferring the
inputs to the host interface via the appropriate software driver, collecting the
generated results from the emulator, and returning the values to the simulator.
The amount of time needed by the host to perform these transfer operations is
often significantly longer than the time to evaluate the logic for a single design
clock cycle on the emulator.

Transaction-based host–emulator interfacing has been introduced as a way
to reduce interface time [12]. In transaction-based interfacing, the host-based
simulator and FPGA-based emulator operate independently for a number
of design clock cycles, limiting the amount of data that must be trans-
ferred across the host–emulator interface. Transaction-based interfacing often

30.4 Issues Related to Contemporary Logic Emulation 651

works best for stream-based computations where dependencies between the
simulated and emulated designs are minimal, allowing independent operation
[27]. A detailed example of transaction-based coverification will be presented in
Section 30.7.

For coverification environments, the simulation performed on the host work-
station can take a variety of forms. Most commonly, an RTL or behavioral repre-
sentation of a system component written in a hardware description language is
simulated with a commercial HDL simulation tool. Following preliminary veri-
fication, some simulated components may then be synthesized and mapped to
the logic emulator. Alternately, a software version of the simulated system com-
ponents (typically in C/C++) may be used [27].

30.4.3 Logic Analysis
Logic analysis, the capturing of signal state around specific events of inter-
est, plays an important role in FPGA-based logic emulation for both in-circuit
emulation and coverification. Unlike processor-based logic simulation, which
stores intermediate logic signals in a centralized memory, intermediate signals in
FPGA-based emulation are physically distributed throughout the emulation sys-
tem. As a result, for emulation the signal set of interest usually must be selected
prior to compilation so that probing circuitry can be added to the design under
test. The data collected by this circuitry can then be connected to an external
logic analyzer or sent back to the host workstation for display. In some cases,
combinational signals can be reconstructed from saved design flip-flop values via
simulation once emulation is complete [20]. Signal reconstruction allows for a
significant reduction in the amount of probe circuitry required within the logic
emulator, and limits the amount of signal data transferred from the emulator
after each design clock cycle.

Because of their cycle-accurate operation, logic analysis for FPGA-based emu-
lators has several additional, unique characteristics:

� FPGA-based emulators can only perform functional verification, so only
combinational and flip-flop values captured on design clock edges
accurately indicate design behavior.

� If the set of design signals selected for probing is changed, one or more
FPGAs may need to be recompiled to implement the change.

� Logic analysis for a design can be triggered by prespecified logic
conditions in the design. This triggering circuitry can be added to the
design under test.

Logic emulators can be used to evaluate millions of design clock cycles, so there
often has to be a trade-off between the number of probes and the number of
consecutive clock cycles probing is performed. If emulation can be stopped,
intermediate probe values can be offloaded to the host workstation or to a disk.
Emulation can then be restarted [20].

652 Chapter 30 � Multi-FPGA Systems: Logic Emulation

30.5 THE NEED FOR FAST FPGA MAPPING

Commercially available FPGAs are optimized to provide good performance and
mapping efficiency to a wide range of user designs. As seen in Chapter 1,
contemporary off-the-shelf FPGAs offer a diverse and flexible routing network to
reach this goal. To achieve modest to high logic resource utilization (e.g., greater
than 75 percent lookup table [LUT] usage) and high design performance, an
FPGA’s mapping tools must perform a detailed evaluation of FPGA placement
and routing choices, typically requiring 30 minutes to several hours of compile
time per device. As a result, most FPGA-based logic emulators suffer from long
compile times, which is a major limitation to their widespread deployment. The
presence in an emulator of hundreds of FPGAs with significant compile times
can considerably delay the debug, redesign, and retest cycle for a design under
test. As noted in Chapter 20, several research projects have investigated acceler-
ated FPGA mapping to solve this problem.

There are several reasons why fast FPGA design mapping for logic emulation
is important:

1. The sheer number of FPGAs needed for logic emulation necessitates fast
compilation. If compilation can be accelerated by an order of magnitude, so too,
roughly, can the turnaround time from design change to emulator implementa-
tion. For many systems, faster design turnaround time can make a substantial
difference in emulator usability, especially early in the design cycle when design
errors are more prevalent.

2. A fast mapping is useful for determining if all logic partitions will fit within
emulation system FPGA devices. If any partition fails to map into the emulator,
the entire emulation mapping flow typically must be restarted from scratch.

3. Because multiplexed-wire emulation systems require the use of a
synchronous global clock to coordinate computation and communication, the
overall system clock speed is dependent on the slowest FPGA. A fast evaluation
of achievable clock speed is therefore important. A fast mapping helps identify
if the partitions are likely to meet the emulator’s target system clock speed.

4. The inclusion of probes, which are frequently changed, necessitates a fast
design compilation turnaround. Changes generally affect only a small number
of FPGAs, which usually can be recompiled quickly.

Of the emulation system mapping steps shown in Figure 30.5, the individual
FPGA compiles collectively require over 90 percent of the total compilation
time. However, unlike the other steps, individual FPGA compiles can be easily
distributed to multiple PCs and workstations for parallel compilation [9]. A cen-
tralized server is used to control distribution of the compiles to the client work-
stations, collect the resulting FPGA configuration bitstreams, and verify that all
compilation constraints have been met.

It will be difficult to significantly accelerate compilation for FPGAs with
existing commercial architectures without a substantial increase in the ratio
of routing resources to logic resources per device or improved parallel mapping

30.6 Case Study: The VirtuaLogic VLE Emulation System 653

approaches for individual FPGAs. Fundamentally, FPGA placement and routing
are dedicated resource assignment problems, and the search for a mapping
solution is accelerated only through additional available resources or a par-
allel search. Although compile times for logic emulation can be significantly
reduced by underpopulating commercial FPGA device logic in emulators, the
hardware cost involved is prohibitive. Therefore, parallel FPGA placement and
routing offer the most promise in improving compile times for existing FPGA
architectures.

In many ways, FPGA compilation for a partition of an emulated design under
test is more difficult than FPGA compilation for a single-chip design specifically
created for an FPGA. All FPGA compiles for logic emulators must be performed
with constrained pin assignments because inter-FPGA channel assignments are
determined prior to individual FPGA compilation. Forced pin assignments make
designs more difficult to map and require extended FPGA compilation times.
Since partitions were not specifically designed for an FPGA, performance or
utilization issues may sometimes arise during mapping.

30.6 CASE STUDY: THE VIRTUALOGIC VLE EMULATION SYSTEM

To illustrate many of the issues in logic emulation, we consider the VirtuaLogic
VLE emulator from Mentor Graphics [9]. This system represents one point in
a spectrum of similar FPGA-based emulation systems from Mentor Graphics,
including the Avatar and the VStation [23]. The following analysis illustrates
the basic approaches used by this family for system architecture, design compi-
lation, external system interfacing, and coverification.

30.6.1 The VirtuaLogic VLE Emulation System Structure
Figure 30.10 illustrates the components of the VLE emulation system hardware,
including its interfaces to a host workstation and target system [9]. The system
chassis, shown on the right, can contain up to six multi-FPGA array boards,
which emulate the logic and memory of a design under test. Two array boards
are shown in the configuration in the figure. Each board contains 64 Xilinx
XC4036XL FPGAs, arranged in an 8×8 array, and 32 32K × 32 single-port syn-
chronous SRAM chips. As shown in Figure 30.11, each FPGA connects to its
four nearest neighbors in both horizontal and vertical directions and to FPGAs
two hops away in the horizontal and vertical directions. A single memory device
is shared between each pair of FPGAs. Direct connections between each FPGA
and the six I/O connectors on the array board provide an interface for in-circuit
emulation connections, logic analysis, and host interfacing. As shown in
Figure 30.10, these connectors are located at the front of each board.

The FPGA array boards connect to a passive backplane in the system chassis
to create a scalable system. Each FPGA has direct connections through the
backplane to FPGAs on other array boards. All intra-FPGA computation and
inter-FPGA communication throughout the system is coordinated via a global

654 Chapter 30 � Multi-FPGA Systems: Logic Emulation

System boardArray boards

Coverification cable Configuration cable

Host

FIGURE 30.10 � A VirtuaLogic VLE-2M logic emulation system with two array boards.

system clock. The system board in the emulator controls the configuration of
array board FPGAs and coordinates the distribution of the global system clock.
Configuration bitstreams are loaded into the system board from the host work-
station via an SCSI-2 cable.

30.6.2 The VirtuaLogic Emulation Software Flow
The emulation mapping flow for the VirtuaLogic VLE system follows the flow
outlined earlier in this section. During design translation, an RTL netlist is con-
verted to a gate-level design through the use of RTL synthesis. The mapped
netlist is then partitioned into pieces appropriate for the logic capacity of each
FPGA using algorithms that attempt to minimize bandwidth and encapsulate
critical design paths within individual FPGAs.

Partitioning is performed so that the logic capacity of the FPGA is considered
while partitioning to minimize bandwidth [1, 8]. For the multiplexed-wire VLE
system, the number of logic gates required per partition can be represented as

G ≥ GP +c∗P

where G is the number of available gates in the FPGA, GP is the number of user
design logic gates in the partition, c is a constant representing the amount of

30.6 Case Study: The VirtuaLogic VLE Emulation System 655

Memory

Two-hop

FPGA

FIGURE 30.11 � The array board connections for an FPGA in the VLE logic emulation system.

logic required to multiplex a pin, and P is the number of I/O signals associated
with the partition.

Design partitions assigned to an FPGA have a required gate count that is
less than G. The partitioning process for the VLE system starts with an initial
assignment of logic to partitions. Iterative mincut swapping is then performed to
reduce the amount of I/O needed by each partition (the value P in the equation).
Not only does this optimization reduce the amount of subsequent pin multiplex-
ing for I/Os, but the amount of required logic per device is also reduced because
G depends on P [8]. Partitions for this emulation system are subsequently placed
using a simulated annealing placement algorithm [30]. In general, placement is
performed to minimize the overall distance of inter-FPGA connections assuming
that all connections will be scheduled along shortest paths. The logic partition

656 Chapter 30 � Multi-FPGA Systems: Logic Emulation

to FPGA assignment formulation is similar to the one used to place clusters
inside an island-style FPGA.

A distinctive aspect of the VLE system is the statically scheduled routing
approach used to make connections between signal sources and destinations.
The approach used by the VirtuaLogic compiler follows that described in
Section 30.4 [8, 34]. All intra-FPGA computation and inter-FPGA communica-
tion is synchronized to the global system clock cycle so that multiple system
clock cycles are required to complete an emulation clock cycle. A signal may be
routed between FPGAs on a specific system clock cycle once it is known to be
valid for the current emulation cycle based on signal dependencies. The follow-
ing steps are then taken to perform the statically scheduled routing of the signal
between a source FPGA sf and a destination FPGA df [34]:

1. The shortest feasible path Psd between FPGAs sf and df in terms of inter-
FPGA channels is determined.

2. The send time Ts of the signal is determined. This is the system clock time
slot at which the signal leaves sf.

3. The signal arrives at FPGA df at the arrival time Ta of the signal. The arrival
time is defined as Ta = Ts +n, where n is the number of FPGA chip bound-
aries (hops) between source FPGA sf and destination FPGA df.

To illustrate the use of Ts and Ta, the schedule of the circuit shown in
Figure 30.8 can be augmented to include send and arrival times. The communi-
cation schedule, including Ts and Ta values, is shown in Figure 30.12. Note that
in Figure 30.8 signal b passes unchanged through FPGA F2 on the path from

V4V1 V2 V3 V5

Design
clock

System
clock

Signal a

Signal b

Signal d

n 5 1
Ts Ta

n 5 21
Ts Ta

1

FIGURE 30.12 � The design clock cycle for the circuit mapping shown in Figure 30.8, including
send times Ts and arrive times Ta.

30.6 Case Study: The VirtuaLogic VLE Emulation System 657

FPGA F3 to FPGA F1. This through-hop is necessary given the lack of a direct
FPGA F3 to FPGA F1 connection.

After each interpartition signal is scheduled for communication, the chosen
schedule is implemented by synthesizing multiplexers, registers, and state
machines that are added to the circuit partition for each FPGA. The result-
ing circuits are then applied to standard Xilinx Foundation design-mapping
tools [37].

Most ASIC designs that are targeted for emulation contain complex logic
and memory structures that require specialized processing outside the standard
emulation mapping flow. For VLE systems, specialized mapping techniques have
been developed to map complex design memories to emulation system memory
chips [1], to map designs that contain multiple asynchronous design clocks
[13], and to incrementally map design changes [34]. The algorithms created to
address these mapping issues are important keys to system usability.

30.6.3 Multiported Memory Mapping
In a VLE system, multiple accesses to a 32K×32 synchronous single-ported
SRAM can be scheduled within a design (emulation) cycle to emulate the
behavior of a multiport RAM. For example, Figure 30.13(a) shows a user-
specified dual-port memory with two read ports and a single write port. During
an emulation cycle access that requires reads from both read ports, both reads
can be performed in sequence from the single-ported SRAM chip. As shown in
Figure 30.13(b), a state machine can be used to sequence the application of the
addresses to the single-ported SRAMs, and the storage of the read data in the
output registers.

The VirtuaLogic compiler determines the schedule for data accesses in con-
junction with routing address, data, and control signals to the on-board phys-
ical memory devices. Although not shown in the Figure 30.13, for data wider
than the width of the physical memory, memory accesses can be made by
sequentially accessing consecutive memory locations. For example, a read of a
128-bit value requires four system clock cycles. Dependency relationships for
multiported RAMs (e.g., read-after-write) can be handled via the sequential
scheduling of RAM accesses.

30.6.4 Design Mapping with Multiple Asynchronous Clocks
In Section 30.4 it was shown that for multiplexed-wire systems both intra-FPGA
computation and inter-FPGA communication are coordinated to a global system
clock. Because multiple system clock cycles are required to perform computa-
tion and communication for a single emulation clock cycle, a fixed relationship
must exist between the clocks. Many contemporary ASIC designs contain mul-
tiple design clocks that operate asynchronously to each other. While synchro-
nization between a system clock and a single design clock can be addressed
by rising design clock edges that delineate functional evaluations, deriving a
relationship between multiple asynchronous design clocks and a system clock
is more difficult.

658 Chapter 30 � Multi-FPGA Systems: Logic Emulation

(a)

WD

RA1

WA

RA0

WEN

RD0

RD1

A D

DA

A

D

(b)

RD0
D

RA1

WA

WD
D

RD1
D

Memory
FSM

DQ

Ld

DQ

Ld

Adr

Data

WEN

OEN

SRAMA

D

RA0
A

A

A

WEN

CLK

FIGURE 30.13 � A mapping of a multiported design memory to a single-ported emulator memory:
(a) parallel-accessed multiport memory; (b) sequentially accessed single-port multiplexed memory.
Source: Adapted from Agarwal [1].

In the circuitry shown in Figure 30.14, taken from Kudlugi and Tessier [13],
the asynchronous clocks CLK1 and CLK2 drive state elements. It can be seen
that signal N5 is a multidomain signal because it changes value and is sampled
as a result of both CLK1 and CLK2 clock transitions. Now consider a situation
where the circuit in Figure 30.14 is partitioned so the multidomain signal N5
must be transported from FPGA 1 to FPGA 4 as shown in Figure 30.15. In a
multi-FPGA VLE system, the physical wires that connect FPGAs are grouped
into unidirectional channels, where each physical wire is capable of carrying
multiple signals that belong to the same emulation clock domain (e.g., CLK1
or CLK2).

Signal routing may include several intermediate FPGA hops. To simplify
scheduling, logical signals assigned to the same inter-FPGA wire must be asso-
ciated with the same clock domain. For designs with multidomain signals, this
restriction requires that each multidomain signal be logically split into separate
single-domain versions prior to transport. These single-domain values are then
transmitted separately along separate physical channel links and combined at
the destination to support multidomain behavior. Unfortunately, this approach
of separately routing copies of the same signal along different links can lead to
scheduling problems because each copy may arrive at the destination at differ-
ent system clock cycles.

This issue is best illustrated through an example. As shown in Figure 30.15,
communication for each asynchronous clock domain takes place over a different

30.6 Case Study: The VirtuaLogic VLE Emulation System 659

N1

CLK1

Q

FF1

N3

G1

Q
N2

CLK2

FF2

N4

Q

FF3

Q

N5

N6

CLK1

N5

CLK2

N7

FF4

D

D

D

D

FIGURE 30.14 � A circuit that requires clocks from multiple asynchronous clock domains.

A

N5

N4

N3

FPGA
HOP

FPGA
HOP

B

FF3

FF4

FPGA 1 FPGA 4

FPGA 2 FPGA 3

Domain D1
channels

Domain D2
channels

FIGURE 30.15 � An example of multidomain signal transport. Source: Adapted from Kudlugi and
Tessier [13].

660 Chapter 30 � Multi-FPGA Systems: Logic Emulation

set of inter-FPGA channels. In the case of N5, paths using both domain 1 (D1)
and domain 2 (D2) channels are needed to transport N5 between FPGA 1 and
FPGA 2. The disjoint nature of multiple routing paths for the same logical signal
can lead to differing arrival times for the copies of signal N5 at the destination
FPGA. If both copies of signal N5 leave FPGA 1 at the same time, the D1 version
of the signal will arrive at FPGA 2 two system clock cycles before the D2 version.
This arrival order can lead to an incorrect logic evaluation if an attempt is made
to use the D1 version of the signal before the D2 version arrives.

A requirement in transporting multidomain signals is to ensure that causality
of events is guaranteed irrespective of routing delays. Causality can be preserved
by ensuring that the length of the route for each domain from the source to the
destination requires exactly the same number of system clock cycles. This can
be accomplished by requiring the scheduler to use the same number of system
clock cycles to communicate versions of the same signal to a destination FPGA.
In Figure 30.16, for example, the scheduler must determine a path from FPGA 1
to FPGA 2 of length 3 for domain D1, since this is the path length of the domain
D2 version. Each path now contains three pipeline flip-flops. The determination
of the specific schedule may require several scheduling iterations because the
length of the longest path is not known until each path is initially scheduled.

The scheduler used by the VirtuaLogic compiler takes multidomain paths
into account and can handle designs with any number of asynchronous clock

A

FPGA
HOP

FPGA
HOP

B

FF3

FF4

FPGA 1 FPGA 4

FPGA 2 FPGA 3

Domain D1
channels

Domain D2
channels

N5

N4

N3

FIGURE 30.16 � A retimed version of the multidomain signal transport shown in Figure 30.15.

30.6 Case Study: The VirtuaLogic VLE Emulation System 661

domains. The mapping of this multidomain logic to the emulator takes place
automatically. The asynchronous design clock signals may be interfaced to the
emulator from outside the system through the system board.

30.6.5 Incremental Compilation of Designs
The need for incremental design support in VLE systems is a result of recent
interest in core-based design and system-on-a-chip integration. Most ASIC ver-
ification flows involve numerous iterations of design test, debug, and recom-
pilation. As modifications are evaluated and errors are identified, the original
design is subjected to a series of minor modifications. Often, a change may be
isolated to a component that was originally spread across two or more FPGAs
in the emulator. If emulator recompilation can be limited primarily to those
FPGAs that contain logic affected by the change, the compilation process can
be greatly accelerated. The ability to support design changes in a small set of
FPGAs is crucial to avoid the need to recompile all FPGAs in the system from
scratch. In addition to providing fast design turnaround, the resulting emulation
performance of the incrementally compiled design should be the same or close
to the same as the performance of the original design mapping [34].

The use of scheduling for VirtuaLogic inter-FPGA routing facilitates the man-
agement of incremental design compilation. A series of steps are required to
address changes in the design and map them to the FPGA-based emulator [34]:

1. Netlist comparison. The first step in the incremental compilation process is
to identify the logic and interconnect associated with the initial design that is no
longer in the modified design. Subsequently, the logic and interconnect added
to the initial design to create the modified design are identified. Logic removed
from the initial design was assigned to a set of FPGAs as a result of initial design
mapping. These modified FPGAs provide a possible destination for added logic.

2. Incremental path identification. In the VLE system, individual FPGAs may
serve as through-hop steps for intermediate routes. Thus, even if a given FPGA
does not contain logic that has changed, these FPGAs will require recompilation
if they are used as through-hops for the modified logic. To limit compile time, the
number of unmodified FPGAs selected to perform through-hop routing should
be minimized.

3. Incremental partitioning. Once the modified and required through-hop
FPGAs have been identified, newly added design logic can be partitioned onto
them subject to processor logic and memory capacity constraints.

4. Incremental routing. Following incremental partitioning, routing is per-
formed to create a path for the added design signals connecting the modified
FPGAs. Because FPGAs surrounding the modified FPGAs are unaltered, this
incremental routing must be performed using board-level routing resources that
have not been consumed by unchanged design routes. Feasible shortest paths
between FPGAs are evaluated and then incremental scheduling is used to form
a communication pipeline.

662 Chapter 30 � Multi-FPGA Systems: Logic Emulation

The most important part of incremental compilation for multiplexed-wire
systems is the scheduling of added signals onto available inter-FPGA wires
(incremental routing). In some cases, portions of previously routed inter-FPGA
links may need to be rerouted as a result of changed logic depth and depen-
dency. Consider the circuit shown in Figure 30.17, taken from Tessier and Jana
[34]. The circuit is the same as the one assigned to FPGAs in Figure 30.8 except
that the OR gate F and signals e and f have been added. One potential incre-
mental mapping for the modified circuit appears in Figure 30.18. A design clock

F
a

AD Q
f

e

c d
ED QB D

b

FIGURE 30.17 � A modified version of the circuit assigned to FPGAs in Figure 30.8.
Source: Adapted from Tessier and Jana [34].

FPGA F0 FPGA F1

FPGA F3 FPGA F2

B
f

c

d

D

A

D

Q E
D

Q

a

e

b

V4

a

V1

V2
V3

V6

F

V5

FIGURE 30.18 � An incremental mapping of the circuit shown in Figure 30.17.

30.6 Case Study: The VirtuaLogic VLE Emulation System 663

cycle associated with the scheduled route of the circuit mapping in Figure 30.17
is shown in Figure 30.19.

When these waveforms are compared to the waveforms in Figure 30.12, it can
be seen that an extra cycle of combinational delay has been added because of
the OR gate evaluation in FPGA F2, extending the number of system clock cycles
needed to evaluate the design. Closer examination of the two sets of waveforms
indicates that although signal b was previously routed between FPGA F2 and
FPGA F1 in the initial design, it will have to be rerouted for the modified map-
ping. For the initial design, signal b has been routed between FPGA F2 and FPGA
F1 on system clock cycle V4. As a result of the mapping shown in Figure 30.18,
signal b cannot be routed until system clock cycle V5 because of combinational
dependencies. This results in a need to recompile both FPGA F2 to transmit the
signal on cycle V5 and FPGA F1 to receive the value on system clock cycle V5.

After dependencies are determined, the new links are scheduled for communi-
cation using the VirtuaLogic compiler two-step routing approach described ear-
lier. Only added interpartition signals are routed; previously routed signals that
are unchanged are left in place. Incremental routing of added signals may lead
to an emulation system performance loss. For example, the waveforms shown in
Figure 30.19 represent the schedule of the incrementally modified design shown
in Figure 30.17. The new schedule requires six system clock cycles to complete a
design clock cycle as opposed to the five required for the original design. Although
not shown in Figure 30.19, a global control signal distributed to all FPGAs indi-
cates the end of the design clock cycle. Following recompilation, this signal can
be asserted every six rather than five system clock cycles. This requires FPGAs

Design
clock

V4V1 V2 V3 V5 V6

System
clock

Signal b

FPGA F2 → FPGA F1

Signal a n51
Ts Ta

Signal f
n511

Ts Ta

Signal d
1

1 n51
Ts Ta

FIGURE 30.19 � The design clock cycle for the incremental mapping shown in Figure 30.18.

664 Chapter 30 � Multi-FPGA Systems: Logic Emulation

that were not recompiled to hold data values for an extra system clock cycle while
the recompiled FPGAs complete computation. All results are then clocked into
design flip-flops system-wide after six clock cycles by the design clock.

30.6.6 VLE Interfaces for Coverification
The VLE system has a number of interfaces to support both in-circuit emulation
and coverification. For in-circuit emulation, an emulation pod can be interfaced
to one of six connectors on each of the array boards shown in Figure 30.10.
These signals are directly connected to FPGAs and drive/receive I/O signals on
the emulated design. Tuned clock cables are used to control clocking both on the
target system and in the emulator when the emulator has completed evaluation
for an emulation clock. To permit in-circuit emulation the target system must
be slowed to accommodate the 0.5- to 2-MHz design emulation rate.

In addition to support for in-circuit emulation, the VLE emulator has sig-
nificant support for a variety of coverification modes. This support is primarily
provided through a series of software interfaces created at the host workstation
and on the emulator. These interfaces allow the emulator to be used in a variety
of coverification scenarios [9]. Designers initiate ASIC verification by represent-
ing the ASIC using a high-level language such as C or SystemC (a C-compatible
language that represents the concurrency and clocking associated with hardware
implementations). As a design matures, portions of it are migrated to hardware.
Inputs and outputs to the portion of the design on the emulator are interfaced
to the emulator via an application programming interface (API).

The transfer, execution, and collection of results using the emulator can be
represented as shown in Figure 30.20. This implementation of coverification is
performed with a series of components. The software test environment interacts
with an application adapter—that is, an interface to a series of library-based
drivers that packetize the data and prepare it for transfer via a PCI-based board.
The use of library-based drivers allows for communication at functional, bus-
cycle-accurate, and cycle-accurate levels [27].

An interface circuit is required at the destination to reassemble data for sub-
sequent use as input to the design. A transactor accepts the reassembled data,
generates an emulation clock for use with the design under test, and coordinates
per-cycle data transfer to and from the design. Generally, the interface circuit
and transactor are created in RTL and added to the design. VLE systems use
the transaction-based approach described earlier in this section. Transactions
contain both data and synchronization information. A single transaction results
in multiple verification cycles of work being performed by the emulator. The
transaction can be as simple as a memory read or as complex as the transfer
of an entire structured packet through a channel. To support coverification, the
host for the VLE emulator contains an SPCI (Springtime PCI) card [27]. This
custom PCI card implements the physical layer of transaction-based interfacing
between the host and the emulator via a cable.

The transaction application protocol interface (TAPI) forms the application
adapter for the VLE system [27]. TAPI consists of a library of C functions. The

30.6 Case Study: The VirtuaLogic VLE Emulation System 665

Application
adapter

PCI card
and cable

User
DUT

Transactor

Interface
circuit

Transactions

(a) (b)

Transactions

Clock cycle
accurate pin
events

Software
application

FIGURE 30.20 � The coverification flow between the workstation (a) and the emulator (b).

adapter is a utility package that converts raw signals into transactions by making
calls to the C function library. It supports a verification environment that allows
a C model to interact with an RTL model running on the emulator. The transfer
of data across the host–emulator cable can be aided by buffering data in mem-
ory and transferring it as a block. This approach is preferable to the individual
transfer of values from discrete memory locations in a file. Data buffering in
arrays can be implemented in the same C modules that contain the TAPI driver
calls for the emulator.

For the VLE system, the emulator system clock speed is set to 30 MHz. The
same six multi-FPGA board connectors used for interfacing to an in-circuit emu-
lation pod can also be used as an interface for coverification. The remaining con-
nectors on the multi-FPGA boards can allow for direct access to logic analyzers
for signal probing.

30.6.7 Parallel FPGA Compilation for the VLE System
Given the number of FPGAs in the VLE system, parallel compilation of the indi-
vidual devices is a necessity. An FPGA compile server is used to distribute the
numerous Xilinx XC4036XL compiles out to a number of available workstations
that can perform the needed operations [9]. Unfinished compiles are held in a
queue until compilation resources become available. Following design compila-
tion, configuration bitstream information and status reports are returned to the
server for subsequent transfer to the emulation system.

666 Chapter 30 � Multi-FPGA Systems: Logic Emulation

30.7 FUTURE TRENDS

Although FPGAs have played an important role in the development and
success of commercial logic emulation hardware, current trends indicate a
possibly reduced role for them in future emulation systems. Over the past few
years, special-purpose custom logic processors have replaced FPGAs in a num-
ber of commercial emulation systems [26, 35]. Processor-based emulators gener-
ally contain a series of logic resources that perform a different Boolean function
during every system clock cycle [10]. Data values, which are stored in on-chip
RAM, are supplied to the logic resources every cycle via time-multiplexed on-
chip routing resources. The per-cycle logic function definition and routing con-
figuration information form instructions that are stored in on-chip instruction
memory.

The depth of the memory constitutes the amount of multiplexing that can be
performed both on the processor and in the interprocessor interconnect struc-
ture. Like multiplexed-wire FPGAs, interprocessor communications are time-
sliced based on combinational logic dependencies so that processor pins are
reused.

In general, the compile time for processor-based emulation is very fast
compared to FPGA-based emulation. This disparity is a result of the assign-
ment of intra-FPGA (processor) logic to interconnect resources. In multiplexed-
and dedicated-wire emulation systems, internal FPGA logic and interconnect are
dedicated to specific design resources. This has three implications:

1. For long combinational paths, each logic block and intra-FPGA wire
is used only a small fraction of the time, effectively limiting system
efficiency.

2. The dedicated assignment of signals to intra-FPGA wires is a problem of
limited resource allocation. To significantly reduce compile time, a sub-
stantial increase in routing resources is needed relative to available logic
to make FPGA routing linear time (a value of at least 20 percent is reported
by Swartz et al. [33]). According to Rent’s Rule, this disparity is likely to
become worse as designs and FPGAs increase in size.

3. Because FPGA routers are unpredictable, it is impossible to determine both
whether a device will route and what the per-FPGA (and hence global sys-
tem) performance will be until all FPGAs have been successfully mapped.

In contrast, in processor-based emulator hardware, internal logic and routing
structures are time-multiplexed. As a result, simpler routing structures with fixed
memory to processor delays for all intra-processor paths are set. This, too, has
implications:

1. Logic and interconnect resources are multiplexed over time to increase
resource use efficiency per clock cycle.

2. The assignment of both inter- and intra-FPGA resources is a scheduling
problem. Unlike search-based FPGA routing, scheduling algorithms

30.8 Summary 667

typically can be performed quickly and have runtimes largely proportional
to circuit combinational depth.

3. The global system clock period is fixed by the architecture of the device,
not by individual designs.

Specialized logic processors have other potential benefits. Specialized circuitry
for signal probing and coverification transactions do not have to be fashioned
out of generic FPGA logic, but rather can be customized to limit silicon overhead
and optimize speed.

FPGA-based emulators do have some advantages. In some cases, they may
provide more parallelism for certain designs that have shallow combinational
depth. Rather than multiplexing logic resources, FPGAs can perform all logic
operations simultaneously. The use of specialized logic processors in emula-
tion introduces additional overhead for the emulation system provider. Because
FPGAs typically use the newest silicon fabrication processes, specialized logic
processors are likely to be at least one silicon generation behind the state of the
art. Additionally, mapping tools for the logic processors must be developed and
maintained by the emulation company rather than by the FPGA vendor. Recent
trends indicate that despite these issues, the benefits of orders of magnitude
faster compile time are driving emulation vendors in the direction of special-
purpose logic processors.

Several developments in the design of FPGAs may swing this trend back in
their favor. Recent FPGAs provide high-speed I/Os such as low-voltage differen-
tial signaling (LVDS) that support rapid I/O multiplexing. Additionally, the intro-
duction of fixed cores, such as multipliers and microprocessors, may provide
faster mapping and higher performance for emulation once they are integrated
in the emulator compilation flow.

30.8 SUMMARY

FPGA-based logic emulation is a distinct example of a commercially successful
reconfigurable computing application. A key aspect of its success has been the
development of sophisticated software systems that can seamlessly map a large
ASIC design to hundreds of FPGAs with minimal or no designer intervention.
An important characteristic of most multi-FPGA emulators is the scheduling
of both intra-FPGA computation and inter-FPGA communication in concert
with a global system clock. The use of scheduling overcomes limited FPGA pin
resources and takes advantage of signal dependencies, so that only portions of
a design are active at a given time. Contemporary multi-FPGA logic emulators
are used as both physical replacements in circuit and as coverification engines
to accelerate design simulation. These supporting environments have advanced
in recent years to include multiple asynchronous clock domains and support for
incremental design changes.

Extended compile times are quickly becoming a dominant issue for FPGA-
based emulators, and have motivated the development of fast FPGA compile

668 Chapter 30 � Multi-FPGA Systems: Logic Emulation

approaches. Although emulation systems with custom-designed logic processors
have been developed, recent FPGA trends and faster compile approaches may
spur renewed interest in FPGA-based emulation.

References
[1] A. Agarwal. VirtualWires: A Technology for Massive Multi-FPGA Systems, Mentor

Graphics Corp., 2002.
[2] J. Babb, R. Tessier, M. Dahl, S. Hanano, D. Hoki, A. Agarwal. Logic emulation with

virtual wires. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 16(6), June 1997.

[3] M. Butts. Future directions of dynamically reprogrammable systems. IEEE Custom
Integrated Circuits Conference, May 1995.

[4] C. Chang, K. Kuusilinna, B. Richards, R. Broderson. Implementation of BEE:
A real-time, large-scale hardware emulation engine. ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, February 2003.

[5] S. Hauck, G. Borriello. Logic partition orderings for multi-FPGA systems.
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
February 1995.

[6] S. Hauck, G. Borriello. An evaluation of bipartitioning techniques. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 16(8),
August 1997.

[7] S. Hauck. The role of FPGAs in reprogrammable systems. Proceedings of the IEEE
86(4), April 1998.

[8] S. Hauck, A. Agarwal. Software Technologies for Reconfigurable Systems, Technical
report, Department of ECE, Northwestern University, 1996.

[9] IKOS Systems. VirtuaLogic VLE Emulation System Manual, 2001.
[10] D. Jones, D. Lewis. A time-multiplexed FPGA architecture for logic emulation.

IEEE Custom Integrated Circuits Conference, May 1995.
[11] H. Krupnova, G. Saucier. FPGA-based emulation: Industrial and custom

prototyping solutions. International Conference on Field-Programmable Logic and
Applications, August 2000.

[12] M. Kudlugi, S. Hassoun, C. Selvidge, D. Pryor. A transaction-based unified
simulation/emulation architecture for functional verification. ACM/IEEE Design
Automation Conference, June 2001.

[13] M. Kudlugi, R. Tessier. Static scheduling and multidomain circuits for fast
functional verification. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 21(11), November 2002.

[14] J. Kumar. Prototyping the M68060 for concurrent verification. IEEE Design and
Test of Computers 24(1), January 1997.

[15] I. Kuon, J. Rose. Measuring the gap between FPGAs and ASICs. International
Symposium on Field-Programmable Gate Arrays, February 2006.

[16] Y. Kwon, C. Kyung. Performance-driven event-based synchronization for multi-
FPGA simulation accelerator with event time-multiplexing bus. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 24(9), September 2005.

[17] B. Landman, R. Russo. On a pin versus block relationship for partitioning of logic
graphs. IEEE Transactions on Computers C20(12), December 1971.

[18] C. Lee. An algorithm for path connections and its applications. IRE Transactions
on Electronic Computers EC-10(2), September 1961.

30.8 Summary 669

[19] J. Li, C.-K Cheng. Routability improvement using dynamic interconnect architec-
ture. IEEE Workshop on FPGA-Based Custom Computing Machines, April 1995.

[20] J. Marantz. Enhanced visibility and performance in functional verification by
reconstruction. ACM/IEEE Design Automation Conference, June 1998.

[21] Mentor Graphics Corp. VirtuaLogic Datasheet, 2002.
[22] Mentor Graphics Corp. VStation Datasheet, 2004.
[23] Mentor Graphics. Emulation products web page: http://www.mentor.com/emulation,

April 2006.
[24] Quickturn Design Systems. System Realizer Data Sheet, 1998.
[25] Quickturn Design Systems. Mercury Data Sheet, 1999.
[26] Quickturn Design Systems. Cobalt Systems User Guide, 2001.
[27] R. Ramaswamy, R. Tessier. The integration of SystemC and hardware-assisted

verification. International Conference on Field-Programmable Logic and Applications,
September 2002.

[28] K. Roy-Neogi, C. Sechen. Multiple FPGA partitioning with performance
optimization. ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, February 1995.

[29] M. Santarini. ASIC prototyping: Make versus buy. EDN, November 21, 2005.
[30] K. Shahookar, P. Mazumder. VLSI cell placement techniques. ACM Computing

Surveys 23(1), June 1991.
[31] G. Snider, P. Kuekes, W. Culbertson, R. Carter, A. Berger, R. Amerson. The Teramac

configurable compute engine. International Conference on Field-Programmable Logic
and Applications, August 1995.

[32] H. Su, Y. Lin. A phase assignment method for virtual-wire-based hardware
emulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 16(7), July 1997.

[33] J. S. Swartz, V. Betz, J. Rose. A fast routability-driven router for FPGAs. ACM/
SIGDA International Symposium on Field-Programmable Gate Arrays, February
1998.

[34] R. Tessier, S. Jana. Incremental compilation for parallel verification systems. IEEE
Transactions on VLSI Systems 10(5), October 2002.

[35] Tharas Systems. Tharas Hammer Product Brief, 2002.
[36] P. Tseng. Reconfigured engines REV simulation. EE Times, July 10, 2000.
[37] Xilinx, Inc. Xilinx Foundation Tools User Guide, 2002.

This page intentionally left blank

C H A P T E R 31

THE IMPLICATIONS OF FLOATING
POINT FOR FPGAS

Keith D. Underwood, K. Scott Hemmert
Sandia National Laboratories

FPGA-based computing has a long history of accelerating assorted types of
computations in integer and fixed-point arithmetic. Until recently, however,
applications based on floating-point arithmetic have been a relative rarity. This
stems from early work [6, 12, 13] that indicated that IEEE-754 standard [11]
floating point was a poor match for field-programmable gate array (FPGA) tech-
nology. This led directly to numerous efforts that created libraries using special-
ized floating-point formats [1, 3, 7], where the width of the exponent and the
width of the mantissa could be specified. Unfortunately, many scientific applica-
tions require compliance with the IEEE standard. While seemingly an arbitrary
requirement, it is driven by several factors. Foremost, some scientific applica-
tions have data with high dynamic ranges and high precision requirements. A
good example is a typical linear solver that needs high precision to guarantee
convergence of the algorithm. Second, application developers rely on the porta-
bility of their applications and the reproducibility of their results. Put another
way, it is difficult to trust results that differ on every platform that runs them.

Fortunately, recent work indicates that FPGAs are viable competitors in IEEE-
compliant floating-point arithmetic [14], and there has been an explosion of
interest in mapping floating-point kernels to FPGA platforms [2, 5, 8–10, 15,
17, 18]. However, while FPGAs are now capable of implementing floating-point
applications, the use of floating point in FPGAs still requires a great deal of care.
This chapter introduces the IEEE floating-point standard and discusses imple-
mentations of compliant floating-point units for FPGAs. Section 31.2 contains
case studies of three floating-point application kernels and their implementation
on FPGAs.

31.1 WHY IS FLOATING POINT DIFFICULT?

Floating-point arithmetic is fundamentally different from typical integer or fixed-
point arithmetic. Where integer and fixed-point values are typically stored in 2’s

Note: Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

672 Chapter 31 � The Implications of Floating Point for FPGAs

complement, floating-point numbers are typically stored in signed-magnitude
format. Floating-point numbers also add an exponent field to control the position
of the decimal point in the value. The most widely used floating-point format
is the IEEE-754 standard. As an example, the IEEE double-precision floating-
point format is shown in Figure 31.1. The mantissa (fraction part) is 52 bits,
the exponent is 11 bits, and the sign is a single bit. A simple picture, however,
cannot tell the full story of the complexities of the IEEE format.

First, as the figure suggests, the exponent in the IEEE format is maintained
in biased notation. That is, rather than being in a signed-magnitude or 2’s com-
plement format, a bias is added to the true exponent to store it. For double
precision, the bias is 1023 (approximately half the range). This means that an
exponent of −1022 is stored as a 1. The second complication in the format is
the use of an implied 1. An implied 1 means that the stored number is main-
tained in a normalized format such that there is a 1 immediately to the left of
the decimal and the decimal is immediately to the left of the stored value. This
allows the format to have an extra bit of precision without having to store it.
Thus, the value can be extracted as shown in equation 31.1.

(−1)S ×2exp−bias ×1.mantissa (31.1)

The format, as discussed so far, would have a major shortcoming. The num-
ber 0 would be impossible to represent. Since humanity has had the use of 0
for a few millennia now, the format inventors thought it best to include it by
reserving a special value. They also saw fit to include representations for ∞, −∞,
and not-a-number (NaN), which is used as the result of meaningless operations
(e.g., ∞×0). The reserved special values are summarized in Table 31.1.

As the table implies, both positive and negative 0 are possible (0 and 1 for the
sign bit, respectively) as are positive and negative infinity. Several values require
that the maximum possible value be loaded into the exponent field (i.e., all bits
are set to 1 in the field). Finally, there is a set of values known as denormals.

S

1 52

Mantissa

11

exp (11023)

FIGURE 31.1 � IEEE double-precision floating-point format.

TABLE 31.1 � Special values in the IEEE-754 format

Special value Sign Exponent Mantissa

Zero 0/1 0 0
∞ 0 MAX 0
−∞ 1 MAX 0
NaN 0/1 MAX nonzero
Denormal 0/1 0 nonzero

31.1 Why Is Floating Point Difficult? 673

Denormals are a special form of IEEE floating-point numbers that provide a
small amount of extra precision as the result of an operation approaches under-
flow. Unlike most IEEE floating-point numbers, they do not include the implied
1. Instead, they have an exponent of 0, keep the decimal immediately to the left
of the stored value, and allow the first 1 to fall anywhere in the stored value.
Denormals are particularly useful for code such as: if (x!= y) z = 1/(x - y).
This code should never cause an exception, but without denormal support it
can easily cause a divide by 0 when x and y are small enough and close enough
that the format cannot represent the difference. Floating-point hardware within
a microprocessor typically implements denormals with an exception that then
computes the value via software. However, in an FPGA-based implementation,
to support full IEEE floating point we must generally add denormal support
into the hardware itself. Thus, for denormal numbers, the value is extracted as
in equation 31.2.

(−1)S ×2exp−bias ×0.mantissa (31.2)

31.1.1 General Implementation Considerations
To produce the smallest, fastest circuits, it is necessary to efficiently use the
structure of the FPGA. This comes up in two areas: (1) It is necessary to fully
utilize every lookup table (LUT), whenever possible and (2) it is advantageous
to provide an optimized layout for each unit. The floating-point units presented
here have been written using JHDL—a structural design tool that provides a
clean mechanism for mapping and relationally placing logic.

The units were optimized by identifying opportunities to combine logic into
the LUT architecture of the FPGA. This can be challenging, particularly for oper-
ations that use the carry-chain logic. However, the special values in the IEEE
format make it vital that carry-chain and other logic be mixed. For example,
there are many instances where the output of the exponent logic is either the
result of an arithmetic operation or a constant. For FPGA architectures, such as
the Xilinx Virtex family, it is possible to map the arithmetic operation and the
constant generation into the same LUT (along with its associated carry logic).

Take, for example, the passAddOrConstant circuit. It has four possible out-
puts: a+b, a, c0, or c1, where a and b are variables and c0 and c1 are constants.
The inputs to the circuit are a, b, s, and c n. When c n = 0, the output is one
of the two constants, which is selected by the s input. Otherwise, the result
is a + b when s = 1 and a when s = 0. The logic used for each bit is shown in
Figure 31.2(a). The circuit is only possible because of the mult_and added in
the Virtex family of FPGAs. mult_and was originally intended for use in multi-
pliers built from logic, but it enables many other useful optimizations. The same
basic logic can also create a passSubOrConstant, and if the AND gate before
the arithmetic operation is left off, the circuit is simply an addOrConstant or
subOrConstant. These circuits are used to reduce the amount of logic and the
logic delay required to compute the exponents. The JHDL code used to generate
each bit of this circuit is shown in Figure 31.2(b). Note that all the logic is

674 Chapter 31 � The Implications of Floating Point for FPGAs

muxcy

xorcy

result

LUT

cout

a

b

mult_and
cin

cbit0
cbit1

c_n
s

(a)

// Produce the constant bit. The Xilinx tools believe
// that gnd and vcc are inputs to the LUT, so we can’t
// use them. Instead, use c_n, which will be 0
// when the constant is selected.
Wire cbit0 = ((c0 >> i) & 1) == 1 ? not(c_n) : c_n;
Wire cbit1 = ((c1 >> i) & 1) == 1 ? not(c_n) : c_n;
Wire constant_result = mux(cbit0,cbit1,s);

// Generate the sum bit.
Wire sum = mux(constant_result,

xor(a.gw(i),and(s,b.gw(i))),c_n);

// Map all the above logic in a single LUT
Cell x = map(c_n,s,a.gw(i),b.gw(i),s_partial);
place(x,0,virtex ? maxrow - i/2 : i/2);

Wire mult_and_out = wire(1,"mult_and_out" +i);
x = new mult_and(this,c_n,a.gw(i),mult_and_out);
place(x,0,virtex ? maxrow - i/2 : i/2);

x = new muxcy(this,mult_and_out,cin,s_partial,cout);
place(x,0,i/2);

x = new xorcy(this,s_partial, cin, output.gw(i));
place(x,0,i/2);

(b)

FIGURE 31.2 � Logic (a) and JHDL code (b) for the i th bit of the passAddOrConstant.

first mapped into LUTs using the map function, then relationally placed, using
the place function. The same place function is used to relationally place the
lower-level blocks at each level of hierarchy. The overall unit is placed into a
rectangular area so that it can be easily tiled in a design (see the descriptions
of the adder and multiplier in Sections 31.1.2 and 31.1.3).

In addition to concerns about efficiently using the LUT and providing good
placement directives, there are concerns about where to pipeline the units. The
major concern that largely determined the pipelining of the units presented here
involves the carry-chain logic. In the Virtex family, the times to initalize and
finalize the carry chain are large relative to the per-bit propagation time on the

31.1 Why Is Floating Point Difficult? 675

carry chain. Thus, it is necessary to avoid having cascaded carry chains in the
same stage. In most cases, this constraint determines the stage mapping.

31.1.2 Adder Implementation
The most noticeable difference between integer operations and floating-point
operations is in the implementation of the adder. A 64-bit registered integer
adder requires 64 4-LUTs, 64 flip-flops, and the associated carry-chain logic. It
can be packed into 32 slices in a Xilinx Virtex-41 or similar family. In stark
contrast, a 64-bit floating-point adder requires hundreds of 4-LUTs, hundreds
of flip-flops, and nearly 700 slices. The core of the differences can be seen in
Figure 31.3(a).

The fundamental problem is that two numbers of the form

(−1)S0 ×2exp0−bias ×1.mantissa0 (31.3)

and
(−1)S1 ×2exp1−bias ×1.mantissa1 (31.4)

must be added together. The signs can be the same or different, so the actual
operation may be an addition or a subtraction. Worse, the exponents can dif-
fer (dramatically), so the two mantissas must be aligned before the operation
can proceed. When the two are combined (different signs and different expo-
nents), it becomes necessary to determine which number is larger so that they
are subtracted in the right order. If the exponents are the same but the signs are
different, the result can yield a very small mantissa, which must be normalized
(i.e., the leftmost one is moved to the leftmost position) before it can be stored.

Looking again at Figure 31.3(a), we can see the impact of the extra format.
Each horizontal dashed line represents a register, and the vertical dashed line
separates the exponent path from the mantissa path. Note that the first two
stages are spent inspecting and preparing the numbers and determining whether
either of the inputs is one of the special values. The third and fourth stages are
needed to align the mantissas, and it is not until the fifth stage that the actual
operation occurs. In the exponent path, stages six through nine clean up the
exponent to handle a variety of exception conditions. The sixth and seventh
mantissa stages have two parallel paths: one for rounding the result and one
for computing the shift value if the result must be renormalized. The last two
stages are used to renormalize the result (if needed).

Figure 31.3(b) shows the approximate layout of the logic used in an imple-
mentation of the floating-point adder. For the adder implementation, it is possi-
ble to place all pipelining registers in the same slices as the logic, though some
registers are placed in slices with unrelated logic. Of the total area, approxi-
mately 39 percent is used to align the mantissas prior to the actual add or sub-
tract operation; this area includes right-shift logic and swap logic. These oper-
ations would be required for any floating-point format; however, the left-shift
on the backend is only required because of the existence of the implicit 1 in
the format. This case arises during a loss of precision when two numbers with

1 A slice is two 4-LUTs, two flip-flops, and the associated carry-chain logic in this generation.

676 Chapter 31 � The Implications of Floating Point for FPGAs

mux
difference greater than

shift value swap

overshift?

add/sub

priority encoder

rounddenormal?
left shift

value

subOrConstant

subOrConstant

M0 M1E1E0

right shift

1 or 2

left shift

1

2

3

4

5

6

7

8

9

E M

(a)

s
w
a
p

r
i
g
h
t

s
h
i
f
t

r
i
g
h
t

s
h
i
f
t

a
d
d
/
s
u
b

r
o
u
n
d

p
r
i
o
r
i
t
y

e
n
c
o
d
e
r

l
e
f
t

s
h
i
f
t

l
e
f
t

s
h
i
f
t

2

2

9

1 3 4 5 7 6 7 8 9

g
r
e
a
t
e
r

t
h
a
n

(b)

FIGURE 31.3 � Adder block (a) and adder layout (b) diagrams.

31.1 Why Is Floating Point Difficult? 677

identical, or very close, exponents are subtracted and require normalization.
The normalization logic, including a priority encoder to locate the first 1, uses
another 39 percent of the logic. For comparison, the actual add and round logic
consumes only 9 percent of the area.

31.1.3 Multiplier Implementation
The relationship between a floating-point multiplication and a fixed-point multi-
plication is a little more unusual. A fixed-point multiplier grows with the square
of the width of the input. At the core of a floating-point multiplier is a fixed-point
multiplier that multiplies the mantissas. Since the mantissa is significantly nar-
rower than the floating-point number, a 64-bit fixed-point multiplier actually has
a much larger core operation than a 64-bit floating-point multiplier because the
floating-point multiplier only has to multiply two 53-bit mantissas. It does, how-
ever, have a lot of other work to do that more than makes up for the difference.

Floating-point multiplication starts with two numbers:

(−1)S0 ×2exp0−bias ×1.mantissa0 (31.5)

and
(−1)S1 ×2exp1−bias ×1.mantissa1 (31.6)

that produce the result:

(−1)(S0⊕S1) ×2(exp0−bias)+(exp1−bias) ×1.mantissa0×1.mantissa1 (31.7)

Conceptually, the dataflow shown in Figure 31.4(a) is quite simple. The first
three stages unpack the IEEE format looking for special cases and preparing a
possible denormal mantissa for the multiplier core. Stages F4 through F6 oper-
ate concurrently with the multiplier core and compute the resulting exponent
and determine whether the result is denormal. The four backend stages provide
shifting for creating denormal numbers, rounding, and normalization, which
includes adjusting the exponent when required.

Figure 31.4(b) gives the approximate layout of the logic for the front- and
backends of the multiplier. The multiplier core (not shown in the figure) uses
nine 17×17 multiplier blocks plus additional logic to sum the partial products
to create a 53×53 multiplier core. The logic used in the core is about 40 percent
of the total multiplier logic. Unlike the adder, it is not possible to place all of
the required pipelining registers in slices used by the logic. The black regions in
Figure 31.4(b) are either unused or used by pipelining registers.

The logic required to support the IEEE format is nontrivial. Support for
denormals consumes 40 percent of the multiplier area and includes logic to
gather information about the mantissa, swap the mantissa, and shift the man-
tissa. Thus, supporting denormals requires approximately the same amount of
logic resources as the multiplier core. An additional 7 percent of the area is
used for rounding and normalization to put the number back into the IEEE
format.

678 Chapter 31 � The Implications of Floating Point for FPGAs

swapshift valuesub bias

swap sel
add flags

mant infomant info

left shift

concat pri encoder
7

sub

roundE = MAX? E = 0?

add one? normalize

sub

F2

E0 E1 M1M0

F1

F3

F4

F5
exponent right shift

valueF6

Multiplier
core

B1 right shift
B2

B3

B4

E M

(a)

a
d
dm
a
n
t

i
n
f
o

s
w
a
p

l
e
f
t

s
h
i
f
t

r
i
g
h
t

s
h
i
f
t

r
i
g
h
t

s
h
i
f
t

r
o
u
n
d

n
o
r
m
a
l
i
z
e

F1 F4 F2 F3

F5

F6

B1 B2 B3

B3

B4 B4

(b)

FIGURE 31.4 � Multiplier block (a) and multiplier layout (b) diagrams.

31.2 Floating-point Application Case Studies 679

31.2 FLOATING-POINT APPLICATION CASE STUDIES

Floating-point applications that are appropriate to map to FPGAs differ
dramatically from integer applications that are typically mapped to FPGAs. The
differences can be understood by realizing that a single floating-point opera-
tion can easily consist of 30 integer operations; thus, where a 2005-era FPGA
can easily implement 1000 integer operations, it is more likely that it can only
implement 32 double-precision floating-point operations. Furthermore, floating-
point operations are much higher latency than corresponding integer opera-
tions, which significantly affects designs.

This section considers three kernel operations implemented with double-
precision floating point to demonstrate three important considerations when
using floating point operations on FPGAs. The first operation is matrix multiply,
which demonstrates the FPGA’s ability to exploit high degrees of parallelism
and to programmably manage local storage to significantly reduce the amount
of external RAM bandwidth needed. The second kernel is a vector dot prod-
uct, which highlights the ability of the FPGA to provide large amounts of RAM
bandwidth; plus it highlights limitations introduced by the high latency of the
floating-point units. The third kernel is the fast Fourier transform (FFT), which
can find similar advantages in mitigating the need for memory bandwidth as the
matrix multiply, but has similar limitations from the latency of the floating-point
units to the dot product.

31.2.1 Matrix Multiply
The standard matrix multiply (the DGEMM BLAS routine) is defined as:

Cij+ =
N−1

∑
k=0

AikBkj (31.8)

The operation multiplies two matrices and adds it to a third (in place). Con-
ceptually, this means performing the dot product of a single row of A with a sin-
gle column of B and adding the result to a single point of C. Each dot product is
completely independent, which means there are N2 independent dot products.
In practice, neither microprocessors nor FPGAs implement it this way because
of the nature of modern memory hierarchies. In all modern systems (including
FPGAs), main memory is “far away” and there is one or more caches signifi-
cantly “closer.”

The primary performance characteristic of matrix multiply is that it does
O(N3) operations on O(N2) data. Thus, for every data item loaded from memory,
it should be hypothetically possible to do O(N) operations. Performing matrix
multiplication as a series of independent dot products would throw away this
advantage; thus, all matrix multiply implementations attempt to exploit some
form of locality within the cache structure.

680 Chapter 31 � The Implications of Floating Point for FPGAs

C2

C4C3

C1 A2

A4A3

A1 B2

B4B3

B1 C2

C4C3

C1
135

FIGURE 31.5 � Block decomposition of a matrix multiply.

FPGA implementation
To understand an FPGA implementation of matrix multiply, it helps to first
understand how it is done on a microprocessor. To exploit (or rather compen-
sate for) the nature of modern memory hierarchies, the typical approach to
matrix multiplication on a microprocessor breaks the matrices into smaller S×S
blocks [16]. A given block from each matrix is loaded into the processor, a matrix
multiply is performed on the block, and partial results are stored. An example
for an 8×8 matrix multiply is shown in Figure 31.5. Each matrix is broken into
four regions that are 4×4. A row of these blocks is then multiplied by a column
of these blocks to create a 4×4 block of the result; thus, C1 = A1∗B1+A2∗B3+C1.
In the process, the partial result (a 4×4 block) is updated two times (although
typically in local storage or cache).

The same approach can be used on FPGAs. After all, FPGAs and micropro-
cessors are similar in that they have a small amount of local memory with high
bandwidth and a large amount of external, slower memory. FPGAs differ, how-
ever, in that they have a drastically large number of floating-point units that
should be kept fully utilized. Whereas microprocessors must supply inputs to
two functional units per cycle, FPGAs must supply inputs to 32 functional units
(in a 2005 FPGA).

A matrix multiply can be decomposed into a series of multiply–accumulate
(MACC) operations that multiply the individual elements of a row with elements
of a column and accumulate the result into one element of the final matrix.
The MACC unit has a multiplier, an adder, and a feedback path. In an FPGA,
16 MACC units are operating concurrently. Unfortunately, the latency of the
adder is very high (10 cycles). This means that we must keep at least 10 con-
current operations (row× column operations) in progress at all times to hide
the latency of the adder. In a perfect world, each unit could work on a block of
the matrix, with the concurrent operations happening on the independent row–
column dot product in that block. Unfortunately, this would require far more
internal memory than is available in typical FPGAs.

To exploit the parallelism available in FPGAs without exhausting the limited
internal memory, we can further decompose the view of the problem. A sim-
ple way to view one block-level matrix multiplication is as a collection of S
matrix–vector multiplications. As such, significantly more parallelism is obvi-
ous. Figure 31.6 shows an FPGA-based implementation that first decomposes
the problem into blocks and then distributes portions of the work to multiply
the two blocks as matrix–vector multiplications.

31.2 Floating-point Application Case Studies 681

Store C

FIFO

FIFO

1

3

FIFO

FIFO

1

3

Replicate Replicate

FIFO

21 21423 23 234 421

B CA

…

FIGURE 31.6 � Matrix multiply implementation.

To perform the full matrix multiplication, each matrix is decomposed into
S×S blocks. In Figure 31.6, S is 4, but in practice, S is typically set large enough
to cover the adder’s latency (currently 10 cycles). Blocks of B are broken into
m columns, where m is the number of MACC units (m is assumed to be 4 in
the figure); thus, independent columns of a block of B go to each MACC unit.
All the blocks of A are broadcast to all MACC units. Thus, in Figure 31.6, one
column of block B is multplied by all four rows from the A block. This requires
that four copies (in the general case S copies) of the B block be made by the
replicate unit. This creates the concurrency needed to cover the latency of the
adder.

Matrix C is managed similarly. A block of C is loaded and distributed in the
same order as the block of B, but there is no need to replicate it. In addition,
taking the example from Figure 31.5, two A blocks and two B blocks are needed
for each C block. Thus, A1, B1, and C1 are loaded and used to create an inter-
mediate product C1−2 that is used as the C block when A2 and B2 are mul-
tiplied. Overall, this requires no more than 6S2 elements of storage at 8 bytes

682 Chapter 31 � The Implications of Floating Point for FPGAs

per element. This includes two copies of each matrix block—one to operate on
and one to change it from row-major to column-major order.

Performance
By nature, a matrix multiply requires at least 4N2 memory accesses2 and per-
forms 2N3 floating-point operations. This yields N

2 floating-point operations
for each element retrieved from memory, but it assumes that two matrices
(A and B) can be kept resident in the chip (processor or FPGA) for the entire
operation. In the perfect scenario, the maximum sustainable floating-point rate
would be

FLOPs =
N
2 ×BW

8
(31.9)

where BW is the memory bandwidth in bytes per second, N is the dimension of
the matrix, and 8 bytes are required to store a double-precision floating-point
number.

While this is unrealistic for all but relatively small matrices, using blocking
techniques [16] to manage the local storage makes it possible to sustain a high
percentage of peak performance with relatively low memory bandwidth. The
result is that the matrices are fetched several times more than would otherwise
be necessary. For blocks of dimension S, this yields a factor of N

S increase in

accesses to the A and B matrices, leading to 2N2 + 2N3

S memory accesses. For
large matrices, this approaches a floating-point rate of

FLOPs =
S×BW

8
(31.10)

This is shown in Figure 31.7(a) as MFLOP/s versus MB/s on a log–log graph.
Delineations that map memory bandwidth needs to the generation of FPGAs
are provided for clarity, based on earlier work [14,15].

A slightly different perspective is presented in Figure 31.7(b) where the total
amount of on-chip memory needed to sustain peak performance is graphed.
What is notable about these graphs is the relatively small amount of memory
and relatively small amount of memory bandwidth needed to sustain peak per-
formance on FPGAs. This stands in stark contrast to modern microprocessors
(2005 era) that only sustain 85 to 90 percent of peak performance on a matrix
multiply using several times as much on-chip memory and off-chip memory
bandwidth. This is a product of the ability of the FPGA to directly manage local
storage and to separate data prefetching from computation.

We can also compare performance over time using data from 2004 [see 14,15].
Table 31.2 shows parts used for comparison. The performance of FPGAs gained
rapidly on microprocessors during this era, as shown in Figure 31.8.

2 This assumes square matrices and includes retrieving three matrices and storing one matrix.

31.2 Floating-point Application Case Studies 683

10
100

1000
10000Memory bandwidth (MB/s) 0

200
400

600
800

1000

Block size
(elements)

0
500000
1e106

1.5e106
2e106

2.5e106
3e106

3.5e106

Performance
(MFLOP/s)

(a)

Insufficient to sustain FPGA peak in 2003
Insufficient to sustain FPGA peak in 2005
Insufficient to sustain FPGA peak in 2007
Insufficient to sustain FPGA peak in 2009

Sufficient to sustain FPGA peak in 2009

10
100

1000
10000Memory bandwidth (MB/s) 0

200
400

600
800

1000

Block size
(elements)

0
10
20
30
40
50
60
70
80
90

Cache
required (MB)

(b)

FIGURE 31.7 � Maximum achievable performance versus memory bandwidth and block size (a);
on-chip memory needed versus memory bandwidth and block size (b).

31.2.2 Dot Product
The standard vector dot product (the DDOT BLAS routine) is the sum of the
pairwise products of two vectors, or

p =
N−1

∑
i=0

xiyi (31.11)

684 Chapter 31 � The Implications of Floating Point for FPGAs

TABLE 31.2 � Parts used for performance comparison

Year FPGA CPU

1997 XC4085XLA-09 Pentium 266 MHz
1999 Virtex 1000-5
2000 Virtex-E 3200-7 Athlon 1.2 GHz
2001 Virtex-II 6000-5
2003 Virtex-II Pro 100-6 Pentium-4 3.2 GHz

10

100

1000

10000

100000

1997 1998 1999 2000 2001 2002 2003

M
F

LO
P

/s

Year

CPU matrix multiply
CPU matrix multiply trend

FPGA matrix multiply
FPGA matrix multiply trend

FIGURE 31.8 � Matrix multiply performance of FPGAs and microprocessors from 1997–2003.

which requires 2N memory accesses to perform 2N floating-point operations.
This means that a double-precision floating-point number (8 bytes) must be
fetched from memory for every floating-point operation that will be done.
Modern processors are not built with this type of balance between memory
bandwidth and floating-point capability. A processor capable of providing five
GFLOP/s may only have 6.4 GB/s of memory bandwidth. Streaming problems
(like this one) provide FPGAs an opportunity to excel—processors have a fixed-
memory bandwidth that is configured based on a balance between the require-
ments for various markets and the cost of providing that bandwidth. In contrast,
each board containing an FPGA can decide how many FPGA pins are used for
memory bandwidth, including dedicating almost all available user pins to mem-
ory connections.

31.2 Floating-point Application Case Studies 685

FPGA implementation
Although the potential for increased memory bandwidth on an FPGA gives it
a distinct advantage, it also faces significant challenges imposed by the large
number of functional units and the high latency of the units. Like many BLAS
routines, DDOT is based on multiply–accumulate operations; however, it differs
from many BLAS routines in that it exposes a relatively limited amount of paral-
lelism. Where a DGEMM operation computes N2 independent results and a DGEMV
operation computes N independent results, a DDOT operation produces a sin-
gle number as the final result. This means than any partial products must be
reduced through a long, slow pipeline. The nature of the problem is best realized
through a comparison to microprocessors.

Current microprocessors typically have a floating-point pipeline depth of four
to six cycles for the functional unit running at 2 GHz or more. Obviously, we
would not want every addition to depend on the previous addition, so the micro-
processor can easily keep six running sums in progress and then reduce those
sums to one result. This leads to several pipeline stalls in the final reduction,
but the total time is a small number of nanoseconds. In contrast, FPGAs differ
in three dramatic ways:

� The adder pipeline is deeper.
� Multiple MACC units are required to fully utilize high bandwidth

memory.
� The clock rate is lower.

A modern FPGA would have tens of functional units with a pipeline depth
of 10-cycles running at approximately 300 MHz. Assuming 16 adders with a
pipeline depth of 10 cycles means that there must be 160 concurrent summa-
tions. This is impossible for short vectors and challenging even for longer vec-
tors. Furthermore, the process of reducing these partial sums to a single result
is slow and cumbersome.

To achieve reasonable performance, additional control logic is required inside
and outside the multiply–add and MACC units. First, a multiplier bypass mul-
tiplexer (labeled MB) is required in the multiply–add (Figure 31.9(b)) to reuse
the adder for portions of the final summation. Second, the adder has a 10-cycle
latency; thus, the MACC must perform 10 concurrent operations to keep the
adder pipeline filled. This requires a second feedback path (with associated con-
trol) through the FP multiplexer in the MACC (Figure 31.9(c)) to sum the 10
results. The added logic is shown with dashed lines in Figure 31.9(b) and (c).

Performance
If we work from the memory bandwidth as the typical limiting factor, the
maximum sustainable floating-point rate is

FLOPs =
BW
8

(31.12)

where BW is the memory bandwidth in bytes per second and 8 bytes are
required to store a floating-point number. This is graphed in Figure 31.10(a)

686 Chapter 31 � The Implications of Floating Point for FPGAs

1
1 1

3

3

3

FIFO

FIFO

MB
FIFO

MB

FP

(a) (b) (c)

FIGURE 31.9 � A standard multiply–accumulate (a); a modified multiply–add for the dot product
(b); a modified multiply–accumulate for the dot product (c).

on a log–log graph. Like Figure 31.8, Figure 31.10(b) compares performance
projections for both FPGAs and microprocessors [14, 15]. In this case, how-
ever, the FPGA shows a much more dramatic advantage over a microprocessor.
This is because large FPGAs provide sufficient I/O resources to obtain much
higher memory bandwidths than commodity microprocessors offer. Since this
is a memory bandwidth-limited problem, the platform with the most memory
bandwidth wins.

The other notable feature of Figure 31.10(b) is that it is somewhat more
crowded than the matrix–multiply comparison. This is because FPGAs face a
second challenge in implementing the dot product operation: the latency of the
floating-point unit. Thus, the size of the vector has a much greater impact on
sustained performance on the FPGA than the microprocessor. The top FPGA
line represents a scenario whereby the FPGA achieves 90 percent of its peak
performance, but this requires a nearly 6000-element vector.3 The second FPGA
line shows the FPGA achieving 50 percent of peak performance by using an
800-element vector. Despite this hefty penalty, the FPGA still has a remarkable
advantage (4× in 2003) over the microprocessor.

31.2.3 Fast Fourier Transform
The fast Fourier transform (FFT) is a reduced-complexity implementation of the
discrete Fourier transform (DFT), which takes as input N complex numbers and
returns as output N complex numbers where each of the outputs is determined
by the following equation:

3 Earlier work by Underwood and Hemmert [15] specified a 7500-element vector, but the floating-
point unit latency has been optimized since then.

31.2 Floating-point Application Case Studies 687

10

100

1000

10000

1000 10000

P
er

fo
rm

an
ce

 (
M

F
LO

P
/s

)

Memory bandwidth (MB/s)

Maximum sustained dot product performance
Maximum sustained matrix vector multiply performance

(a)

CPU dot product
Extrapolated CPU dot product
Peak single FPGA dot product

Extrapolated peak single FPGA dot product
50% peak single FPGA dot product

50% extrapolated peak single FPGA dot product

10

100

1000

10000

100000

1997 1998 1999 2000 2001 2002 2003

M
F

LO
P

/s

Year

(b)

FIGURE 31.10 � Maximum achievable performance versus memory bandwidth (a) and dot product
performance on FPGAs and microprocessors from 1997–2003 (b).

Y[j] =
N−1

∑
k=0

X[k]Wjk
N (31.13)

where Wjk
N = e

−i2πjk
N .

The FFT exploits symmetries in the DFT and is implemented in stages, where
each stage combines r items to create r outputs. The value r is known as the
radix. For the implementation discussed here, r = 2 (radix-2). For the radix-2

688 Chapter 31 � The Implications of Floating Point for FPGAs

FFT, each stage operates pairwise on the data, although there are different for-
mulations of the algorithm that determine how the data are combined. These
operations are commonly referred to as butterflies and in the formulation used
in this example, each pairwise operation is identical and consists of one complex
multiply and two complex adds. This is shown graphically in Figure 31.11(a).

Even after selecting the formulation that gives the structure of the butterfly,
there is some flexibility in the structure of the stages. The basic stage structures
are shown in Figure 31.12. Both structures require data reordering, either on

mult

add

add

add

mult

R

R

S

R

R

R

R

Real (Xi)

Real (Xj)

Img (Xj)

Img (Xi)

Real (W n)

Xi / Xj

Xi / Xj

Img (Wn)

Real

Img

C

(b)(a)

Xj

Xi Xi

Xj
Wn

1

2∗

FIGURE 31.11 � Basic butterfly operation (a) and basic butterfly datapath (b). The component S
is a switch that directs inputs to alternate outputs. The components marked as R replicate the
input once and C is a crossover to facilitate the complex multiply.

W 0

W 0

W 0

W 0

W 0

W 0

W 2

W 2

W 0

W 2

W 1

W 3
X7

X3

X5

X1

X2

X4

X0

X1

X2

X3

X4

X5

X6

X6

X7

X0

(a) (b)

X1

X2

X3

X4

X5

X6

X7

X0

X4

X2

X6

X1

X5

X3

X7

X0

W 0

W 0 W 2

W 2

W 0

W 1W 0

W 0

W 0

W 0

W 2 W 3

FIGURE 31.12 � Variations of the 8-point, radix-2 FFTs with reordered inputs (a) and reordered outputs (b).

31.2 Floating-point Application Case Studies 689

the frontend or backend, and produce the identical set of computations (though
in different orders). This example uses the ordering shown in Figure 31.12(b),
because this structure provides an increasing number of independent datasets as
the computation progresses. This approach is easier for implementations that
use units in parallel to process data within a single stage since all interunit
communication can reside at the front of the pipeline.

FPGA implementation
The butterfly computation requires four multiplications and six additions to
implement one complex multiply and two complex adds. The hardware pre-
sented here uses two double-precision multiplies and three double-precision
adds (see Figure 31.11(b)). Each floating-point unit is used twice for each set
of inputs, which results in an average throughput of one data item per clock
cycle. Although it is possible to design a datapath that accepts two data items
per clock cycle, this design was chosen because it matches the available band-
width of internal RAM blocks in the target architecture and because it provides
the greatest flexibility when scaling the parallelism of the final implementation.

Parallelism in the FFT computation can be exploited in two ways: (1) pipe-
lined units, or parallelism in the stages (S), and (2) parallel units, or parallelism
(P) within a stage. Three architectures, which exploit the two types of parallelism
to differing degrees, are explored.

Parallel architecture The parallel implementation exploits only parallelism with-
in a stage (P). This is shown in Figure 31.13(a). In this implementation, data are
read from external memory, processed iteratively, and written back to external
memory. Each of the butterfly units operates on a subset of the data and is able
to work independently of the other units for a large part of the computation
(the datasets are completely independent after log2(P) stages).

The advantages of this architecture are that the utilization of the units is high
because the pipeline depth is short. The parallel version can also take advantage
of higher-memory bandwidths. The disadvantages of this architecture as imple-
mented are that it requires a large amount of internal memory and it requires a
parallelism that is a power of 2. This second restriction is important because it
can limit the number of butterfly units that can be used. For example, if six but-
terfly units fit in an FPGA, the parallel architecture is still only able to use four.

Pipelined architecture At the other extreme, one butterfly unit can be dedi-
cated to each of the stages of the FFT in a pipelined fashion, as illustrated in
Figure 31.13(c). Data is read from memory and passed through a series of but-
terfly units before being written back to memory. Data delays and permutations
are needed between each of the stages and between the pipelined FFT unit and
DRAM memory. When the number of stages, S, that can be implemented in
the FPGA is less than the number of stages needed by the FFT (log2(N)), then
log2(N)

S passes to memory are needed, with the final pass using a subset, R, of the
stages. For each pass to memory, data must be read and written in a particular
permutation to optimize the delay and storage requirements in the pipeline.

O
ff-

ch
ip

D
R

A
M

On-chip
data

storage

On-chip
data

storage

On-chip
data

storage

On-chip
data

storage

Butterfly
datapath

Butterfly
datapath

Butterfly
datapath

Butterfly
datapath

D
at

af
lo

w
 c

on
tr

ol

P 54

(a)

Butterfly
datapath

O
ff-

ch
ip

D
R

A
M

D
at

af
lo

w
 c

on
tr

ol

D
at

af
lo

w
 c

on
tr

ol

D
at

af
lo

w
 c

on
tr

ol

D
at

af
lo

w
 c

on
tr

ol

Butterfly
datapath

Butterfly
datapath

Butterfly
datapath

D
at

af
lo

w
 c

on
tr

ol

S 5 number of stages

P
5

 d
eg

re
e

of
 p

ar
al

le
lis

m

∗

* First log(P) stages must be able to communicate data between butterfly units in the stage.

B
W

5
2P

(b)

(c)

Butterfly
datapath

Butterfly
datapath

D
at

af
lo

w
 c

on
tr

ol

D
at

af
lo

w
 c

on
tr

ol

O
ff-

ch
ip

D
R

A
M

S 5 number of stages

B
W

5
2

D
at

af
lo

w
 c

on
tr

ol

FIGURE 31.13 � Three architectures: (a) parallel, (b) parallel–pipelined, and (c) pipelined for
exploiting parallelism in the FFT—from using all parallelism within a single stage to using all
parallelism in the stages.

690

31.2 Floating-point Application Case Studies 691

The pipelined architecture works well when streaming a large number of
small FFTs. This is because the architecture gets good performance with min-
imal memory bandwidth requirements. Another benefit of this architecture is
that it can take advantage of parallelism at a finer granularity than the parallel
version (i.e., it can use a nonpower of 2 number of processors). However, there
are some major disadvantages to this architecture. First, for single FFTs, the
unit utilization is low because of the depth of the overall pipeline. Second, it is
unable to take advantage of higher-memory bandwidth. Last, the buffer space
required between stages for data reordering grow as 2S, where S is the number
of stages in the circuit. For a large number of stages, the memory required for
buffering can easily exceed available on-chip memory.

Parallel–pipelined architecture Figure 31.13(b) is a cross between the two
previous architectures. Data moves from external memory, through a set of P
parallel pipelines—each with S stages—and back to external memory. The first
log2(P) stages must have additional data exchange circuits (for the first pass
through the pipeline) because these stages have data dependencies between the
pipelines. This approach leverages the ability of the pipelined architecture to
reduce bandwidth demands and the ability of the parallel architecture to toler-
ate shorter input vectors (as well as a wider variety of vector lengths) than the
pure pipelined approach. In contrast, the parallel–pipelined hybrid has a higher
bandwidth demand than the purely pipelined approach and less tolerance of
short vectors than the parallel approach.

Performance
In evaluating the performance of the FFT, the floating-point operation count
that is typically used is 5Nlog2(N); there are log2(N) stages that each contain
5N computations (four multiplies and six additions for each pair of data). To
determine performance, it is necessary to know how long it will take the FPGA
to compute the FFT. For the parallel version, the number of cycles required to
complete the FFT is given by the following equation:

T =
32N
BW

+ BL +(
N
P

+BL)(log2(N)−2) (31.14)

The first term of equation 31.14 is the time to read and then write N items
based on the memory bandwidth, BW, in bytes per cycle. The usable bandwidth
is limited to the number of units, P. The second term is the latency of passing
through the butterfly units during the read from memory. The third term is
the time to perform the iterations—using P butterfly units of latency BL for
log2(N)−2 iterations, assuming that the first and last iterations are performed
as part of reading and writing the data.

The pipelined and parallel–pipelined architectures share the same equation
for determining the number of clock cycles required to complete the oper-
ation. The only difference is that the pipelined architecture is limited to a

692 Chapter 31 � The Implications of Floating Point for FPGAs

bandwidth (BW) of 2. The number of cycles to compute the FFT for these
architectures is

T = P(S)×
⌊

log2(N)
S

⌋

+ P(R) (31.15)

P(J) = BL× J + I(J)+
2N
BW

+(B−1)×2J (31.16)

I(K) =
K−1

∑
i=0

B×2i ≈ B×2K (31.17)

R = log2(N) mod S (31.18)

Each pass, P(J), through J butterfly stages (each having a latency of BL) requires
the time shown in equation 31.16.

Data dependencies between the stages introduce a delay that doubles at each
stage, and create a total interstage delay given by I(K). Using standard DRAM
memories introduces a penalty associated with the burst length (B) required to
maintain full memory bandwidth to both the interstage delay and a backend
reordering time. The time to retrieve the data from memory and write them
back is defined by 2N

BW . The final term represents the final pass through a subset
of the stages, R, with the corresponding delays.

The preceding equations point to the fact that the best implementation for
the FFT depends on many factors: memory bandwidth, size of the FFT, and size
of the FPGA. The performance (in FLOPs per cycle) for a single FFT of the dif-
ferent FPGA architectures on a Xilinx Virtex-II Pro (a late 2005 part) are shown
in Figure 31.14(a). For single short vectors, the parallel architecture provides
the best performance. This is because of the high utilization of the floating-
point units. For longer FFTs, all three units provide good performance, though
the pipelined version requires less external memory bandwidth. Figure 31.14(b)
shows that the FPGA implementations (running at 160 MHz) compare favorably
to microprocessors for large FFTs.

31.3 SUMMARY

Implementing floating-point arithmetic on FPGAs requires significant effort. Sup-
porting the IEEE-754 standard poses particularly unique challenges, but much
of the effort is expended in coping with the interaction between exponent logic
and mantissa logic. Great care is required to minimize the latency through the
unit without significantly decreasing clock rate by having two dependent carry
chains in a single pipeline stage. Even with effort, floating-point operations are
significantly bigger and have significantly deeper pipelines than their fixed-point
counterparts. This adds additional challenges to the design of applications.

Although FPGAs can now deliver impressive performance on double-precision
floating-point operations, it requires a very different mind-set from working
with fixed-point arithmetic. Increased operation latency leads to a need to find
more parallelism to exploit in paths with the cyclic data dependencies typical of

31.3 Summary 693

262144

Pentium-4 2.8 GHz
Pentium-4 3.8 GHz (estimated)

Parallel BW-4 units-4
Pipelined BW-2 units-6

Parallel-pipelined BW-4 units-6

0

1000

2000

3000

4000

5000

6000

64 256 1024 4096 16384 65536 262144

P
er

fo
rm

an
ce

 (
M

F
LO

P
s)

FFT size (elements)

(b)

0

5

10

15

20

25

30

35

40

64 256 1024 4096 16384 65536

P
er

fo
rm

an
ce

 (
F

LO
P

s/
cy

cl
e)

FFT size (elements)

Parallel BW-2 units-4
Parallel BW-4 units-4

Pipelined BW-2 units-6
Parallel-pipelined BW-2 units-6 (P = 2)

Parallel-pipelined BW-4 units-6

(a)

FIGURE 31.14 � A comparison of performance for different FFT architectures in FLOPs per
cycle (a) and a comparison of FFT implementation on FPGAs and CPUs (b).

iterative solutions. Simultaneously, the increased size of a single operation
reduces the portion of a given dataflow graph that can be implemented directly
and pushes a designer toward more iterative solutions. The dot product is an
excellent example because it is forced to reuse adders to compute a summation

694 Chapter 31 � The Implications of Floating Point for FPGAs

that would typically be done as a tree of adders in a fixed-point solution. The
result is that only longer vectors make sense.4

Even simple feedforward paths incur a penalty from the high latency of the
floating-point units. The FFT provides an example whereby the latency of a sin-
gle butterfly path can approach the length of a short vector. Thus, if the FFT
implementation in an FPGA is not used for a long FFT or a series of short FFTs,
it cannot offer competitive performance.

There are, however, floating-point kernels that offer abundant parallelism
for the FPGAs to exploit. Matrix–multiply (DGEMM), for example, is an N3

operation with minimal data dependencies. Similar things can be said about
LU solvers, which form the basis of the traditional Linpack benchmark [4].
Three-dimensional FFTs are another example in which hundreds of one-
dimensional FFTs can be carried out simultaneously.

References
[1] P. Belanovic, M. Leeser. A library of parameterized floating-point modules and

their use. Proceedings of the International Conference on Field-Programmable Logic
and Applications, 2002.

[2] M. deLorimier, A. DeHon. Floating point sparse matrix-vector multiply for FPGAs.
Proceedings of the ACM International Symposium on Field-Programmable Gate
Arrays, February 2005.

[3] J. Dido, N. Geraudie, L. Loiseau, O. Payeur, Y. Savaria, D. Poirier. A flexible
floating-point format for optimizing data-paths and operators in FPGA based
DSPs. Proceedings of the ACM International Symposium on Field-Programmable
Gate Arrays, February 2002.

[4] J. J. Dongarra. The linpack benchmark: An explanation. First International Confer-
ence on Supercomputing, June 1987.

[5] Y. Dou, S. Vassiliadis, G. Kuzmanov, G. Gaydadjiev. 64-bit floating-point FPGA
matrix multiplication. Proceedings of the ACM International Symposium on Field-
Programmable Gate Arrays, February 2005.

[6] B. Fagin, C. Renard. Field-programmable gate arrays and floating point arithmetic.
IEEE Transactions on VLSI 2(3), 1994.

[7] A. A. Gaar, W. Luk, P. Y. Cheung, N. Shirazi, J. Hwang. Automating customisa-
tion of floating-point designs. Proceedings of the International Conference on Field-
Programmable Logic and Applications, 2002.

[8] G. Govindu, S. Choi, V. K. Prasanna, V. Daga, S. Gangadharpalli, V. Sridhar. A high-
performance and energy-efficient architecture for floating-point based LU decom-
position on FPGAs. Proceedings of the 11th Reconfigurable Architectures Workshop
(RAW), April 2004.

[9] G. Govindu, L. Zhuo, S. Choi, P. Gundala, V. K. Prasanna. Area and power
performance analysis of a floating-point based application on FPGAs. Proceed-
ings of the Seventh Annual Workshop on High-Performance Embedded Computing,
September 2003.

[10] K. S. Hemmert, K. D. Underwood. An analysis of the double-precision floating-
point FFT on FPGAs. Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, April 2005.

4 A long series of short vectors can also be made to work using an appropriate architecture.

31.3 Summary 695

[11] IEEE Standards Board. IEEE Standard for Binary Floating-Point Arithmetic.
Technical Report ANSI/IEEE Std. 754-1985, The Institute of Electrical and Elec-
tronics Engineers, 1985.

[12] L. Louca, T. A. Cook, W. H. Johnson. Implementation of IEEE single precision
floating point addition and multiplication on FPGAs. Proceedings of the IEEE Sym-
posium on FPGAs for Custom Computing Machines, 1996.

[13] N. Shirazi, A. Walters, P. Athanas. Quantitative analysis of floating-point arithmetic
on FPGA based custom computing machines. Proceedings of the IEEE Symposium
on FPGAs for Custom Computing Machines, 1995.

[14] K. D. Underwood. FPGAs vs. CPUs: Trends in peak floating-point performance. Pro-
ceedings of the ACM International Symposium on Field-Programmable Gate Arrays,
February 2004.

[15] K. D. Underwood, K. S. Hemmert. Closing the gap: CPU and FPGA trends in
sustainable floating-point BLAS performance. Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines, April 2004.

[16] R. C. Whaley, A. Petitet, J. J. Dongarra. Automated empirical optimizations of
software and the ATLAS project. Parallel Computing 27(1–2), 2001.

[17] L. Zhuo, V. K. Prasanna. Scalable and modular algorithms for floating-point matrix
multiplication on FPGAs. 18th International Parallel and Distributed Processing Sym-
posium, April 2004.

[18] L. Zhuo, V. K. Prasanna. Sparse matrix–vector multiplication on FPGAs. Pro-
ceedings of the ACM International Symposium on Field-Programmable Gate Arrays,
February 2005.

This page intentionally left blank

C H A P T E R 32

FINITE DIFFERENCE TIME DOMAIN:
A CASE STUDY USING FPGAs
Wang Chen, Miriam Leeser
Department of Electrical and Computer Engineering
Northeastern University

This chapter presents a reconfigurable hardware accelerator that implements the
FDTD method. We first present background, including applications of the FDTD
method. We then provide analysis and design details of the FPGA accelerator for
FDTD.

32.1 THE FDTD METHOD

Modeling electromagnetic behavior has become a requirement for key technolo-
gies such as cellular phones, mobile computing, lasers, and photonic circuits.
The finite-difference time-domain (FDTD) method, which provides a direct, time
domain solution to Maxwell’s equations in differential form with relatively good
accuracy and flexibility, has become a powerful method for solving a wide
variety of electromagnetic problems [1–3]. The main drawback to FDTD is its
high computational complexity.

32.1.1 Background
The discovery of Maxwell’s equations was one of the outstanding achievements
of nineteenth-century science. The equations give a unified and complete theory
for understanding electromagnetic (EM) wave phenomena. Solving Maxwell’s
equations is an important method for investigating the propagation, radiation,
and scattering of EM waves.

The FDTD method, first introduced by Yee in 1966 [4], is a way to solve
Maxwell’s equations. The differential form of these equations and constitutive
relations can be written as follows:

∇ × →
E = −∂

→
B

∂t
− σm

→
H− →

M (32.1)

∇ × →
H =

∂
→
D

∂t
+ σe

→
E +

→
J (32.2)

698 Chapter 32 � Finite Difference Time Domain

∇ · →
D = ρe; ∇ · →

B = ρm (32.3)

→
D = �

→
E;

→
B = μ

→
H (32.4)

In equations 32.1 through 32.4, the following symbols are used:
→
E: electric field

→
H: magnetic field

→
D: electric flux density

→
B: magnetic flux density

→
J : electric current density

→
M: equivalent magnetic current density

�: electrical permittivity μ: magnetic permeability

σe: electric conductivity σm: equivalent magnetic conductivity

First, the FDTD method replaces
→
D and

→
B in equations 32.1 and 32.2 with

→
E

and
→
H according to the constitutive relations in equation 32.4, which yields

Maxwell’s curl equation.

μ
∂

→
H
∂t

= −∇× →
E−σm

→
H− →

M; �
∂

→
E

∂t
= ∇× →

H−σe
→
E− →

J (32.5)

All of the curl operators are then written in differential form and replaced by
partial derivative operators, as shown in equation 32.6, with the

→
E and

→
H vectors

separated into three vectors in three dimensions (i.e.,
→
E is separated into Ex, Ey,

Ez, and
→
H is separated into Hx, Hy, Hz):

curl
→
F = ∇× →

F = x̂(
∂Fz

∂y
− ∂Fy

∂z
)+ ŷ(

∂Fx

∂z
− ∂Fz

∂x
)+ ẑ(

∂Fy

∂x
− ∂Fx

∂y
) (32.6)

We then can rewrite Maxwell’s curl equations into six equations in differential
form in rectangular coordinates.

μ
∂Hx

∂t
=

∂Ey

∂z
− ∂Ez

∂y
−σmHx −Mx; �

∂Ex

∂t
=

∂Hz

∂y
− ∂Hy

∂z
−σeEx − Jx (32.7)

μ
∂Hy

∂t
=

∂Ez

∂x
− ∂Ex

∂z
−σmHy −My; �

∂Ey

∂t
=

∂Hx

∂z
− ∂Hz

∂x
−σeEy − Jy (32.8)

μ
∂Hz

∂t
=

∂Ex

∂y
− ∂Ey

∂x
−σmHz −Mz; �

∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
−σeEz − Jz (32.9)

Second, in preparation for “discretizing” the model in the next step, the model
size, unit size, and unit timestep must be determined. The FDTD method estab-
lishes a model space, which is the physical region where Maxwell’s equations
are solved or the simulation is performed. The model space is then discretized
to a number of cells, and the time duration, t, is discretized to a number of
timesteps. The unit cell size should be small enough to ensure the accuracy of
the result, but large enough to minimize the number of cells in order to save
computation resources.

32.1 The FDTD Method 699

Although half of the EM wavelength is an upper bound of the cell size by the
Nyquist sampling theorem, the cell size is often set to less than one-tenth of the
EM wavelength for better results [1]. The model size depends on the number of
cells in the model space, which is usually inversely proportional to the size of
the unit cell. The unit timestep is calculated by following the Courant condition,
which states that it must be less than the time the EM wave spends traveling
to the adjacent unit cell. For a ground-penetrating radar example, assuming a
central frequency of 1.25 GHz, the central wave length is 0.24 m. We set the unit
cell size to 0.012 m, which is one-twentieth of the central wave length, for good
simulation quality. The timestep can be set to 0.02 ns, which meets the Courant
condition.

Every cell in the model space has its associated electric and magnetic fields.
The material type of each cell is specified by its permittivity �, permeability μ,
and conductivity σ. The three-dimensional grid shown in Figure 32.1, the “Yee
cell” [4], is helpful for understanding the discretized EM model space. The Yee
cell is a small cube that can be treated as a single cell picked from the discretized
model space; Δx, Δy, and Δz are the three dimensions of this cube. We use (i, j, k)
to denote the point whose real coordinate is (iΔx, jΔy, kΔz) in the model space.
Instead of placing the E and H components in the center of each cell, the E and
H field components are interlaced so that every E component is surrounded by
four circulating H components and every H component is surrounded by four
circulating E components.

Maxwell’s equations in rectangular coordinates—equations 32.7 through
32.9—can be clearly illustrated by Yee’s cell. For example, the Hx component
located at point (i, j + 1

2 , k + 1
2) is surrounded by four circulating E components,

two Ey components, and two Ez components, matching equation 32.7, which
states that the Hx component increases directly in response to a curl of E com-
ponents in the x direction. Similarly, the Ex component increases directly in
response to the curl of the H components, as shown in Figure 32.2, also match-
ing equation 32.7. We represent an electric component Ez at the discretized
three-dimensional coordinate (iΔx, jΔy, (k + 1

2)Δz) as Ez|i, j, k+ 1
2
, and when the

Ex
Hz

Ez

Hy

Hx

Ex

D
z

Dx
Dy

Ey(i, j,k)

Ez

Ex

Ez

Ey

Ey

z-
ax

is

y-axisx-a
xis

(i, j11
2, k11

2)

FIGURE 32.1 � The geometrical representation of the three-dimensional Yee cell.

700 Chapter 32 � Finite Difference Time Domain

Hz Hz

Hy

Hy

Ex

FIGURE 32.2 � Example of electric and magnetic components on a 4-cell grid.

current time is in the discretized Nth timestep, we denote the same component
as Ez|Ni, j, k+ 1

2
.

Third, all of the partial derivative operators in equations 32.7 through
32.9 are replaced by their central difference approximations, as illustrated in
equation 32.10. The second-order part of the Taylor series expansion is discard-
ed to keep the algorithm simple and reduce the computational cost. Also, the
variable without partial derivative can be approximated by time averaging, as
shown in equation 32.11, which has a similar structure to the central difference
approximation.

∂f(uo)
∂u

=
f(uo + Δu)− f(uo −Δu)

2Δu
+ O[(Δu)2] (32.10)

f(uo) =
f(uo + Δu)+ f(uo −Δu)

2
(32.11)

For example, equation 32.7 is changed to

μ
Hx(t0 + Δt

2)−Hx(t0 − Δt
2)

Δt
=

Ey(z0 + Δz
2)−Ey(z0 − Δz

2)
Δz

(32.12)

−Ez(y0 + Δy
2)−Ez(y0 − Δy

2)
Δy

−σm
Hx(t0 + Δt

2)+Hx(t0 − Δt
2)

2
−Mx

After these modifications, the FDTD method turns Maxwell’s equations into
a set of linear equations from which we can calculate the electric and magnetic
fields in every cell in the model space. We call these equations the electric and
magnetic field updating algorithms. Six field-updating algorithms form the basis
of the FDTD method. For example, the field-updating algorithm for the Hx

32.1 The FDTD Method 701

component, derived from equation 32.12 or equation 32.7, is given by
(μ

Δt
+

σm

2

)

Hx

∣
∣
∣

N+ 1
2

i, j+ 1
2 , k+ 1

2
=

(μ
Δt

− σm

2

)

Hx

∣
∣
∣

N− 1
2

i, j+ 1
2 , k+ 1

2
(32.13)

+
1
Δz

[

Ey

∣
∣
∣

N
i, j+ 1

2 , k+1
−Ey

∣
∣
∣

N
i, j+ 1

2 , k

]

− 1
Δy

[

Ez

∣
∣
∣

N
i, j+1, k+ 1

2

− Ez

∣
∣
∣

N
i, j, k+ 1

2

]

−Mx

∣
∣
∣

N
i, j+ 1

2 , k+ 1
2

32.1.2 The FDTD Algorithm
The FDTD algorithm, whose flow diagram is shown in Figure 32.3, is based on
these equations. It first establishes the model space and specifies the material
properties and the excitation source. The source can be a point source, a plane
wave, an electric field, or another option depending on the application. The
algorithm then runs through the electric and magnetic updating algorithms on
every cell in the model space and loops through every timestep. The output of
the FDTD algorithm can be any electric or magnetic field data from any cell in
any timestep.

The electric and magnetic fields depend on each other. As we can see from
equation 32.13, the current timestep’s magnetic field depends on the electric
fields in the surrounding cells. Similarly, the current timestep’s electric field
depends on the magnetic fields in the surrounding cells. Because of this
dependence between the electric and magnetic fields, we cannot update them

Initialization
• Establishes the model space
• Specifies the material properties
• Specifies the excitation source

Update
source excitation

End

Time over?

Yes
No, go to next

timestep

Timestep ++

Boundary conditions

Update magnetic field
data on all cells

Update electric field
data on all cells

FIGURE 32.3 � The flow diagram of the FDTD algorithm.

702 Chapter 32 � Finite Difference Time Domain

in parallel. So the FDTD algorithm updates the electric and magnetic fields in
an interlaced manner, timestep by timestep, until the job finishes. First, all the
magnetic fields in all cells in the model space are updated; next, all the electric
fields in all cells, then the source excitation and boundary conditions, are given
to the model space; finally the algorithm goes to the next timestep and starts
from the magnetic fields again.

The boundary condition computation consists of special algorithms to deal
with the unit cells located on the boundary of the model space. The preceding
electric and magnetic updating algorithms work accurately in the interior of the
model space; however, because the cells on the boundary do not have the adja-
cent cells needed, the algorithm does not work properly and, as a result, there
are algorithm-introduced reflections on the boundary. Special techniques, called
absorbing boundary conditions (ABC), are necessary to deal with boundary cells,
to prevent nonphysical reflections from outgoing waves, and to simulate the
extension of the model space to infinity. The development of efficient ABCs is
very important for the FDTD method.

The perfect matched layers (PMLs) ABC [5] sets the outer boundary of the
model space to an absorbing material medium layer, which absorbs most of
the impinging wave and has low reflection for most incidence angles. The
UPML (uniaxial PML) ABC [3]—a modification of PML—uses a generalized
formulation on the entire FDTD model space that integrates the boundary
condition and electric field updating algorithms, simplifies the FDTD algorithm,
and makes a good model for hardware datapath design. Although UPML intro-
duces extra computation and memory consumption, the quality of the uniaxial
PML is especially good for dispersive media, which is useful in solving many
realistic problems (e.g., the dispersive soil found in modeling ground-penetrating
radar and medical studies of EM waves’ effects on dispersive human tissue).

The FDTD algorithm is an accurate and successful modeling technique for
computational electromagnetics. It is flexible, allowing the user to model a
wide variety of EM materials and environments on most scales. It is also easy
to understand, with its clear structure and direct time domain calculation.
However, FDTD is data and computationally intense. It needs to visit all the cells
in every step of the calculation, forcing a large working set. The amount of data
in the FDTD model space can be very large for large model sizes, creating a heavy
burden on both memory storage and access. The computation is also intense for
each cell in the FDTD model space, including updating six electric and magnetic
fields and the boundary conditions. This complexity makes the FDTD algorithm
run slowly on a single processor—modeling an electromagnetic problem using the
FDTD method can easily require several hours. Without powerful computational
resources, FDTD models are too time consuming to be implemented on a single
computer node. Accelerating FDTD with inexpensive and compact hardware will
greatly expand its application and popularity, which is the purpose of an FPGA
implementation.

The FDTD algorithm can be viewed as a cellular automata (CA) (see
Section 5.2.5). A cellular automaton is a discrete model that consists of an
infinite or finite grid of cells, where the state of every cell at discrete time t is a

32.1 The FDTD Method 703

function of the states of a finite number of neighborhood cells at discrete time
t−1. Every cell has the same rule for updating. The updating algorithm loops
through the whole discrete model and then goes to the next discrete time t + 1.
The FDTD algorithm exactly fits the definition of a CA. First, it creates a dis-
crete model space, discretizing both physical space and time with a uniform
grid. Second, every cell in the model space follows the same rule (six uniform
updating algorithms) for updating the electric and magnetic fields. Finally, the
calculation loops though cells to simulate the phenomenon of the whole model
space through time. A hardware implementation of the FDTD method is thus a
template hardware design for most CA problems.

32.1.3 FDTD Applications
The FDTD method is an important tool for investigating the propagation, radia-
tion, and scattering of EM waves. Before the 1990s the cost of solving Maxwell’s
equations directly was high and most of the related research was for military–
defense purposes. For example, engineers used huge parallel supercomputing
arrays to model the radar wave reflection of airplanes by solving Maxwell’s
equations, trying to develop an airplane with a low radar cross-section [6]. The
difficult task of solving Maxwell’s equations has had more economical solutions
since 1990 with the development of fast computing resources applied to the
FDTD method. Now FDTD has spread to many areas, including discrete scat-
tering analysis, antenna and radar design [3], EM wave phenomena analysis on
multilayer circuit boards [6], subsurface sensing and ground-penetrating radar
(GPR) detection [7,8], studies of EM wave phenomena in the human body, and
the study of breast cancer detection using EM waves [9,10]. We apply our FDTD
solution to landmine detection using GPR, breast cancer detection, and spiral
antenna modeling.

Ground-penetrating radar
The FDTD method has been used to simulate GPR applications for buried land-
mine detection [7,8]. A three-dimensional FDTD model, as shown in Figure 32.4,
simulates the wave propagation and scatter response of three-dimensional GPR
geometries with realistic dispersive soil along with air, metal, and dielectric
media. The UPML ABC produces good results for this application. The three-
dimensional model has been validated by experiments performed with a com-
mercially available GPR system and realistic soil.

Breast cancer detection
Because of the large difference in electromagnetic properties between malignant
tumor tissue and normal fatty breast tissue, microwave breast cancer detection
has attracted much interest because it may overcome some of the shortcomings
of X-ray detection. Accurate computational modeling of microwaves in human
tissue with the FDTD method is promising for breast cancer detection research.
Researchers built a three-dimensional model of the human breast [9,10], shown
in Figure 32.5, that includes a semi-ellipsoid geometric representation of the

704 Chapter 32 � Finite Difference Time Domain

Soil

Air

Landmine

x

y

z

Transmitting
antenna

Receiving
antenna

FIGURE 32.4 � A three-dimensional FDTD application of landmine detection using GPR.

(a) (b)

0.04

0.02

15010050

20

40

60

80

100

20

40

60

80

100

0

0

5

10

15

15010050
20.02

FIGURE 32.5 � Three-dimensional FDTD application of microwave breast cancer detection:
(a) geometry map; (b) simulated model space.

breast and a planar chest wall. The modeling is in the range of 30 MHz to
20 GHz, and the UPML ABC is implemented.

Spiral antenna model
The spiral antenna is a popular frequency-independent antenna. As shown
in Figure 32.6, we use the FDTD method to simulate the radiation of the
Archimedean spiral antenna as an example of its application to antenna design.

Clearly, FDTD is a powerful tool that can be used in many different applications.
However, its data-intense and computationally intense properties make it run
slowly on a single processor.

The reconfigurable hardware implementation of the FDTD method can
greatly accelerate the running speed of the algorithm and maintain its
accuracy and flexibility. For example, the breast cancer detection FDTD algo-
rithm running on a single processor may require hours, while the hardware
implementation delivers results in minutes, enabling a medical device that

32.1 The FDTD Method 705

(a) (b)

21

0

1

2

3

20 40 60 80 100 12020 40 60 80 100 120

20

40

60

80

100

120

20

40

60

80

100

120

21.5

21

20.5

0

0.5

1

FIGURE 32.6 � (a) The floorplan of the spiral antenna model; (b) an FDTD-simulated
two-dimensional space.

delivers an answer during the examination. With the help of faster compu-
ting technology, the FDTD method will be applied to more research areas and
applications.

32.1.4 The Advantages of FDTD on an FPGA
Compared to software running on a general-purpose processor, the advantages
of an FPGA implementation are evident—faster speed, smaller size, lower power
consumption; the last two advantages are significant, especially compared to a
large computer cluster.

Compared to an ASIC finite-difference time-domain design, the FDTD field-
programmable gate array (FPGA) implementation has the advantage of flexibil-
ity while accelerating the algorithm. The FDTD method models a wide variety
of electromagnetic problems that are difficult to cover with a single hardware
design. With an FPGA, a designer can modify the model size, the materials, and
the parameters and even introduce new updating algorithms and boundary con-
ditions easily. While the ASIC may outperform the FPGA as to speed, size, and
power, the reconfigurable property of an FPGA makes it more suitable for the
FDTD algorithm.

We can achieve fast computation in an FPGA for finite-difference time-
domain because FDTD has properties that make it very suitable for hard-
ware implementation. These properties are its favorable structure for pipelining
and parallelism and its constrained data ranges, which are good for fixed-
point representation. They make the FDTD method especially suitable for FPGA
implementation.

Parallelism and deep pipelining
The FDTD algorithm repeats the same electric and magnetic updating algo-
rithms on every cell of the model space. These calculations are independent
between each cell. As long as there are adequate hardware resources, the

706 Chapter 32 � Finite Difference Time Domain

fields for several cells can be calculated in parallel. Also, although the electric
and magnetic updating algorithms depend on each other, the hardware design
can still run these calculations in parallel with a carefully designed memory
interface. The parallelism between electrical and magnetic fields and the paral-
lelism between space cells make the FDTD algorithm very suitable for parallel
hardware implementation, which is a key method for hardware acceleration.

The six electric and magnetic updating algorithms can also be constructed
with deep pipelining because they repeat the same calculation on each cell.
Deep pipelining, another key method for hardware acceleration, maximizes data
throughput and greatly increases overall design performance.

Most cellular automata have properties similar to the FDTD algorithm with
repeated, independent computation on every cell of the model space. The CA
computation can be constructed with deep pipelining, and the parallelism
between discrete cells is the same as that available in any CA problem.

Fixed-point arithmetic
Floating-point representation provides high resolution and large dynamic range,
but it can be costly. In hardware design, floating point uses slower arithmetic
components and consumes more area. In contrast, fixed-point components have
much faster speed and occupy less area. In applications where data resolution
and dynamic range can be constrained, such as the FDTD algorithm, fixed-point
arithmetic can provide similar precision and much faster speed than floating-
point arithmetic.

The majority of the data in the FDTD algorithm is the six EM field variables
and nine intermediate field variables for each cell in the model space. Since all
the calculations in the FDTD method are linear, we can maintain the EM field
data at a certain level of magnitude by normalizing the incoming source field
magnitude. For example, if the source fields are between −1 and 1, all the EM
field variables are between −1 and 1. In rare cases, we simulate the model space
with a focus lens to magnify the EM field data. In this case we can estimate the
EM data range and still keep the variables between −1 and 1 by normalizing the
source field. Since all the EM field variables can be controlled in a fixed range,
a fixed-point representation can be used for better performance with a relatively
low error rate.

The uniaxial PML FDTD algorithm must be optimized for fixed-point repre-
sentation. Several parameters in the algorithm have a much different order of
magnitude than the EM fields. They may not be representable in fixed point
directly or may result in a large error when quantized. Additional error can arise
from arithmetic calculations with these parameters in fixed point. These errors
can be canceled by making a few changes to the original FDTD algorithm. For
example, very large and small coefficients can be multiplied together to create a
medium-value coefficient to be used in the new equation. The modification has
no effect on the result of the algorithm.

Careful analysis is important for fixed-point quantization to avoid errors. For
normalized EM field values that range between −1 and 1, the data tends to
be accurate to a relative error of 0.5 percent. The resolution of the fixed-point

32.2 FDTD Hardware Design Case Study 707

representation is determined by its data bit width. The longer the bit width, the
higher the resolution, so the smaller the error. However, longer bit-width data
uses more hardware resources. After careful study of the FDTD algorithm and
representative data, we can pick a suitable bit-width with relatively small error
(see also Chapter 23).

In conclusion, the FDTD algorithm is very suitable for hardware implemen-
tation. The FPGA implementation of the finite-difference time-domain method
will empower many FDTD applications in medical, military, and other areas
by providing fast, small, low-power, and inexpensive implementations. Many
cellular automata, which share similar properties, are also suitable for FPGA
hardware implementation. The FDTD hardware design we present in the next
section is a good example of hardware implementations for CA.

32.2 FDTD HARDWARE DESIGN CASE STUDY

The FDTD algorithm has a clear structure for hardware design. For each cell in
the model space, it reads the electric and magnetic data out of the memories,
passes them through the updating algorithms, and writes the results back to
the memories. The algorithm repeats this processing until it completes the
model space; then it goes to the next timestep and does the same calculations
again.

It is easy to separate any hardware design into datapath, memory interface,
and control logic. For FDTD, the datapath implements all the electric and mag-
netic updating algorithms; the memory interface controls data reading, writing,
and caching; and the control logic uses a finite-state machine (FSM) to con-
trol the progress of the whole design. However, because of its complexity, an
efficient hardware implementation of FDTD is not straightforward. The FDTD
algorithm is data intense. The electric and magnetic updating algorithms inter-
face a lot with the input and output memories, which creates a heavy burden
on the memory interface and data bandwidth. Also, the EM field dataset for
the whole model space can be very large for a large model size (a 100×100×100
model may require 60 MB of memory space), meaning that local FPGA memory
is insufficient to contain the entire problem.

The FDTD algorithm is also computationally intense. Every EM field has its
own updating algorithms and boundary conditions. A special interlaced mecha-
nism is used between the electric and magnetic updating algorithms, making
them depend on each other. Many problems arise when considering the pipeli-
ning and parallelism of the datapaths. The FDTD algorithm is complex enough
to reach the resource limits of most advanced FPGAs available on the market.
Consideration of fixed-point quantization and resource performance trade-offs
is very important for efficient hardware design.

One of the main purposes of a hardware implementation is to achieve better
performance. To implement the FDTD algorithm on an FPGA efficiently, we need
to consider the following:

708 Chapter 32 � Finite Difference Time Domain

� Determining the right precision for fixed-point representation
(Section 32.2.2)

� Determining the memory hierarchy and designing the memory inter-
face and cache module (see Memory hierarchy and memory interface
subsection of Section 32.2.3)

� Determining the pipelining and parallelism by considering the trade-off
between resources and performance (see Pipelining and parallelism
subsection of Section 32.2.3)

It is important to analyze the data structures, algorithm structure, hardware
architecture, and resource limits before design of hardware implementation. This
section introduces a target reconfigurable platform, the WildStar-II Pro FPGA
board, and lists its detailed specifications. Then we choose the suitable fixed-
point representation by analyzing the quantization error of a fixed-point FDTD
algorithm and the hardware resource limits. Then we go through the problems
in the FDTD hardware implementation and provide detailed solutions and anal-
yses. By carefully considering the trade-offs between hardware resources and
performance, we can design the FDTD accelerator with the memory interface,
pipelining, and parallelism optimal to the current FPGA computing board.

32.2.1 The WildStar-II Pro FPGA Computing Board
The FPGA board used here is a WildStar-II Pro/PCI reconfigurable FPGA
computing board from Annapolis Micro Systems [12]. Its main features are sum-
marized in Table 32.1; a block diagram of this board is shown in Figure 32.7.
There are two Xilinx Virtex-II Pro FPGAs, each with 328 embedded 18×18
signed multipliers and 328×18-Kb BlockRAMs.

The embedded multipliers are much faster than a multiplier component imple-
mentedwithreconfigurablelogic,soitisbesttousethemifpossible.TheBlockRAMs
are the fastest memory the designer can use in an FPGA design, operating as fast
as 200+ MHz on the Virtex-II Pro chip. Critical data interchange and interfac-
ing can be programmed using the BlockRAMs. A pair consisting of an embedded
multiplier and a BlockRAM shares the same data and address buses in the Xilinx
Virtex-II architecture, so once the embedded multiplier is used, we cannot use its

TABLE 32.1 � The main features of the WildStar-II Pro FPGA board

FPGA chips Two Xilinx Virtex-II Pro XC2V70 FPGAs (33,088 slices,
328 embedded multipliers, and 5904 Kb BlockRAM)

Memory Twelve DDRII SRAM ports totaling 54 MBytes
ports (6×4.5 MBytes for each FPGA chip)

Memory Eleven GB/s memory bandwidth
bandwidth (6×72 bits for each FPGA chip)

PCI interface 133 MHz/64-bit PCI-X up to 1.03 GB/s

32.2 FDTD Hardware Design Case Study 709

PCI

PCI bus

32/64 bits 33/66/133 MHz

50
50
20
20

DDR
DRAM

I/O

DDRII/
QDRII
SRAM

36 36 36

36

80 80

36 36

32 32

36 36 36

36 36 36

Switches

I/O

Differential pairs
Single ended

PE 1
Virtex-II Pro

XC2VP 70,100,125

Rocket I/O

DDRII/
QDRII
SRAM

DDRII/
QDRII
SRAM

DDRII/
QDRII
SRAM

DDRII/
QDRII
SRAM

DDRII/
QDRII
SRAM

DDRII/
QDRII
SRAM

DDRII/
QDRII
SRAM

DDRII/
QDRII
SRAM

DDRII/
QDRII
SRAM

DDRII/
QDRII
SRAM

DDRII/
QDRII
SRAM

DDR
DRAM

PE 2
Virtex-II Pro

XC2VP 70,100,125

32 32

3232

FIGURE 32.7 � A block diagram of the WildStar-II Pro FPGA board.

corresponding BlockRAM, and vice versa. Thus, the sum of the total number of
embedded multipliers and BlockRAMs used must be less than 328.

Each FPGA is connected to six independent onboard memories, which are
1-M×36-bit DDRII SRAM that have 72-bit data bandwidth and speeds up to
200 MHz. The size of each SRAM is 36 Mbits, or 4.5 MBytes, so the total SRAM
attached to each FPGA is 27 MBytes. The WildStar-II Pro board is connected to
the desktop computer via a PCI-X interface, with a DMA data transfer rate up
to 1 GB/s between the host PC and the FPGA.

The WildStar-II Pro is a typical commercial off-the-shelf (COTS) FPGA
computing board, which is widely available and easy to set up. These boards
normally contain one or two FPGA chips. Each FPGA chip may be connected to
several onboard memories consisting of SRAM or DRAM. The computing boards
are often PCI boards for a desktop computer or PCMCIA cards for a laptop. Data
and control signals can be transferred between the FPGA computing board and
the host PC via either standard PCI transfer or fast DMA transfer. The FDTD
hardware design is based on the WildStar-II Pro board but can be easily modi-
fied for other COTS FPGA boards.

32.2.2 Data Analysis and Fixed-point Quantization
Because of its limited data range and favorable algorithm properties, the FDTD
method is suitable for fixed-point arithmetic (see Section 32.1.4). To use fixed-
point representation with the algorithm, we need to first decide its representa-
tion and the right data precision.

For simplicity, we use a 2’s complement fixed-point representation that has
a fixed number of digits before and after the binary point. Because the EM

710 Chapter 32 � Finite Difference Time Domain

Fractional bitsIS
1 1 N

FIGURE 32.8 � The data structure of the fixed-point representation.

field data in the FDTD algorithm fits in the range −1 to 1, and the results of
the intermediate calculations (i.e., add, subtract, and multiply) fit in the range
−2 to 2, we set the fixed-point data structure as one sign bit S, one integer bit I
before the binary point, and N fractional bits Fi after the binary point, as shown
in Figure 32.8. The fixed-point data value is V =−S ·2 + I + 1

2N ∑N−1
i=0 2iFi. The data

range given by this representation is between −2.0 and 1.999.
The data precision depends on the smallest absolute value that can be repre-

sented. Because the binary point position is fixed, the smallest absolute value is
2−N, which depends solely on the bit width N of the fractional part. To determine
the right value for N, we need to consider the trade-off between quantization error
and resource costs. To avoid quantization error, which is the difference between
the fixed-point and corresponding floating-point data, a longer data bit width is
preferable. However, longer data bit widths require larger and slower arithmetic
components and put more burden on memory bandwidth and data storage. The
problem is how to pick the optimal data bit width such that the fixed-point FDTD
algorithm generates acceptable quantization error and consumes a reasonable
amount of hardware resources.

To determine this, we wrote the FDTD algorithm in C code both in double-
precision floating-point and fixed-point arithmetic and compared the results.
Fixed-point representation is simulated by long integers in C, which have a
32-bit maximum bit width. We used two long integer variables to represent one
fixed-point datum up to 64 bits. Based on this representation, we created add,
subtract, and multiply components for each fixed-point bit width. The C code
simulates the fixed-point arithmetic and produces results that are exactly the
same as the hardware output. Thus, this C code also can be used for hardware
results verification.

By comparing floating-point and the corresponding fixed-point data results
for the same model space, we can calculate the relative error, defined in equation
32.14, over the time period that the algorithm runs.

Relative error =
|floating-point data−fixed-point data|

|floating-point data| (32.14)

We studied the following six experimental FDTD models to investigate quanti-
zation errors:

� The two-dimensional and three-dimensional soil media–based GPR
landmine detection models

� The two-dimensional and three-dimensional human tissue media–based
tumor detection models

� The two-dimensional and three-dimensional spiral antenna models

32.2 FDTD Hardware Design Case Study 711

TABLE 32.2 � Detailed specifications of the experimental FDTD models

2D landmine 3D landmine 2D breast 3D breast 2D spiral 3D spiral
detection detection detection detection antenna antenna

Size 150×100 50×50×50 240×140 80×60×40 120×120 120×120×25
Time duration 2000 2000 2000 2000 2000 2000
Source Plane wave Point source Point source
Media Soil, air, dielectric Human tissue, dielectric Metal, air, dielectric

TABLE 32.3 � Relative error between fixed-point and floating-point representation

Timestep (%) Average
Bit width Field 400 600 1000 1400 1600 across timestep (%)

29 Ex 9.187 3.503 0.280 0.182 0.558 2.742
Hy 12.440 0.124 1.431 0.244 0.264 2.901
Hz 2.706 1.925 0.472 0.200 0.235 1.108

31 Ex 3.861 0.941 0.058 0.032 0.110 1.001
Hy 3.681 0.025 0.295 0.042 0.001 0.809
Hz 1.905 0.461 0.105 0.039 0.046 0.511

33 Ex 2.155 0.209 0.016 0.010 0.031 0.484
Hy 2.101 0.007 0.077 0.012 0.014 0.442
Hz 1.479 0.120 0.029 0.010 0.013 0.330

35 Ex 1.729 0.063 0.004 0.002 0.008 0.361
Hy 1.420 0.002 0.021 0.003 0.004 0.290
Hz 1.314 0.030 0.007 0.003 0.003 0.271

The specifications of these models are listed in Table 32.2. For all of them, we
studied the average relative errors between the floating-point and the fixed-point
results. This section analyzes the GPR model results. The other model spaces are
similar.

Table 32.3 shows average relative errors for the fractional data bit-width range
from 29 to 35 bits in the two-dimensional GPR landmine detection model. Ex,
Hy, and Hz are electric and magnetic field data. The relative errors are plotted
in Figure 32.9. Those of both electric and magnetic field data decrease as bit
widths increase. However, the rate of decrease slows as the bit widths increase.
Considering both the relative error and the bit-width cost, a 33-bit fractional
part is a good choice for the trade-off between data precision and hardware
resources. The average absolute error for this representation is on the order of
10−8 for magnetic field data and on the order of 10−6 for electric field data;
the average relative error is about 0.3 to 0.5 percent. Thus, this representation
satisfies the accuracy requirement that the relative error is less than 0.5 percent.

In addition to quantization error analysis, we need to consider the resource
limits of the real hardware device in determining the fixed-point data bit width.
The FDTD model space will be stored in the onboard SRAMs on the WildStar-II

712 Chapter 32 � Finite Difference Time Domain

Bit width after the binary point

P
er

ce
nt

3.500

3.000

2.500

2.000

1.500

1.000

0.500

0.000
29 31 33 35

EX

HY

HZ

FIGURE 32.9 � The relative error between fixed-point and floating-point arithmetic for different
bit widths.

Pro FPGA board. The SRAM memory chip we used has size 512K×36 bit.
The data is stored in the memory in units of 36 bits. Any data more than 36 bits
wide will take two memory units. To keep the memory interface working effi-
ciently, we want to set the data bit width less than or equal to 36 bits.

The embedded multiplier provided on the Xilinx Virtex II-Pro FPGA chip, an
18×18-bit 2’s complement signed multiplier, is much faster than the multiplier
component implemented by normal reconfigurable logic. Four embedded multi-
pliers can form a 35×35-bit signed multiplier. However, to construct a 36×36-bit
signed multiplier, nine embedded multipliers are needed. Because the number
of multipliers is limited and very useful in the FDTD algorithm, it is uneco-
nomical to use a 36×36 multiplier or 36-bit data. A data bit width of 35 bits is
more efficient for the embedded multiplier. Because the fixed-point quantization
error analysis performed in the last section also recommends a data bit width
of 35, we choose 35 bits of data as the fixed-point data structure based on both
quantization error and resource limits.

32.2.3 Hardware Implementation
After choosing the fixed-point data representation, we then study two very
important problems in the FDTD hardware implementation: memory interfac-
ing and pipelining and parallelism.

Memory hierarchy and memory interface
Because the EM field data is proportional to the number of cells in the FDTD
model space, the dataset can be very large. Every cell in the FDTD model space
has 6 EM field data and 9 intermediate field data for the UPML computation,
adding up to 15 field data. An FDTD model space may have millions of cells,
require hundreds of megabytes of memory space, and easily exceed the limits of
the memory available inside the FPGA chip. Therefore, the data must be stored

32.2 FDTD Hardware Design Case Study 713

in larger memories, which are normally slower than the fast on-chip memories,
outside the FPGA chip.

The data stored in the slower memories needs to be transferred to the
processing core in the FPGA. The processing core is composed of six electric
and magnetic updating algorithms, which require very large amounts of input
data. In the worst case, three electric updating algorithms require 36 input data
and three magnetic ones require 18, adding up to 54 input data for each dis-
persive UPML FDTD cell. In other words, to make sure that the processing core
works at full speed, we need to transfer 54 input data from off-chip memory to
the FPGA for each cell. The data transfer puts a heavy burden on the interface
between the off-chip memories and the FPGA design. To provide the necessary
data at the right time and to optimize the efficiency of the memory interface,
we need to determine how to organize the memory resources efficiently by con-
sidering the size, speed, and interface bandwidth of each memory resource.

There are three levels of memory hierarchy, based on the WildStar-II Pro/PCI
FPGA computing board:

� The fast and wide data-width on-chip memory (BlockRAM) integrated on
the FPGA chip

� The fast but limited data-width onboard memory located on the FPGA
computing board

� The slow memory for the FPGA to access located in the host PC

BlockRAMs are programmable memories that are integrated inside modern
FPGA chips. A Xilinx Virtex-II Pro XC2V70 FPGA contains 328 BlockRAMs,
18 Kb each, with a maximum data width of 36 bits. They can be implemented
as small memory blocks or cascaded to form large memory blocks. They also
can be programmed to be different depths and widths to fit the hardware design
and data structures. They are fast memory units in terms of latency, with only
one clock cycle delay for clock cycles up to 200 MHz.

Although BlockRAMs are fast and flexible memory resources, there is much
less BlockRAM available compared to off-chip memory. So normally we do not
fit the entire model space’s data into BlockRAMs. Instead, they are used to build
cache modules that read from and write to off-chip memories continuously and
feed data to the processing core. What’s more, the BlockRAMs are true dual-
ported RAM units, and a group of BlockRAMs can provide a very wide data
width to the processing core when aggregated together. For example, 54 Block-
RAMs on the input side can provide a 54×36-bit data width every clock cycle,
which allows the FDTD processing core to run at full speed. The data width is
the number of bits that can be transferred in one clock cycle. Along with clock
frequency, data width determines the data transfer speed (bandwidth) of the
memory interface.

Onboard memories, which directly communicate with the FPGA chip, are
relatively slower than BlockRAMs in terms of latency, but they are usually much
larger in size, varying from megabytes to hundreds of megabytes. The interface
between the memory chips and the FPGA chips follows the read/write cycles
of the specific memory chips, which are normally single-ported data access

714 Chapter 32 � Finite Difference Time Domain

with limited data transfer width. Because of the heavy data access required by
the FDTD algorithm, the onboard memory bandwidth is very important to the
performance of the FDTD design.

As discussed before, the six electric and magnetic updating algorithms need
54 input data for each FDTD cell, which is around 54×36-bit×100 MHz = 194
Gb/s—far beyond the onboard memory bandwidth of typical FPGA boards. The
input data of a single cell have to be transferred to the updating algorithms in
several clock cycles, while the updating algorithms can calculate results with
a throughput of one cell per clock cycle. So, the onboard memory data trans-
fer bandwidth is the bottleneck of the FDTD design. Memory bandwidth is an
important specification in choosing the FPGA computing board for a finite-
difference time-domain implementation. To solve this bottleneck, we introduce
the managed-cache module that is explained in the next subsection.

The memories in the host PC can be accessed by the FPGA via the PCI or
other interfaces. These interfaces are normally slower than the two memory
interfaces we have discussed, so we treat the memories in the host PC as the
slowest memory, no matter what the actual speed. This memory can be used for
data initialization at design startup and data retrieval at the end. At the start of
processing, the model space data are loaded from the host PC to the onboard
memory and loaded back to memory in the PC at the end of the design. If the
onboard memory is not big enough to hold the whole model space, the memory
in the host PC will be the primary memory and the data need to be transferred
to and from the onboard memory throughout the entire calculation, slowing
down the whole design. The size of onboard memories is thus another critical
specification in choosing an FPGA computing board.

The memory hierarchy and memory interface structure used in this design
is shown in Figure 32.10. We use one FPGA and six onboard memories on the
WildStar-II FPGA board. The FDTD field data stored in the onboard memories
are sent to the electric and magnetic field–processing cores for calculation via

COTS FPGA computing board

FPGA

DESIGN

C
ac

h
in

g
 m

o
d

u
le Electric field

pipeline
module

Magnetic field
pipeline
module

Input
BlockRAMs

Ouput
BlockRAMs

Onboard
memory

Onboard
memory

Onboard
memory

Onboard
memory

Onboard
memory

Onboard
memory

C
ac

h
in

g
 m

o
d

u
le

Memory
in PC

Memory
in PC

PC host

PCI bus

FIGURE 32.10 � A structural diagram of the memory interface.

32.2 FDTD Hardware Design Case Study 715

the caching modules built using the BlockRAMs on the FPGA chip. The 3-level
memory hierarchy formed from the host PC, the onboard memories, and the
BlockRAM caching modules ensure that the electric and magnetic field updating
algorithms work at optimal speed.

As shown in Figure 32.10, the BlockRAM caching modules are split into two
parts: input and output. The six onboard memories, which are used to store
EM field data, are split into two parts also. The entire FDTD model space of the
previous timestep is stored in the input onboard memories, and the calculation
results, which comprises the data in the current timestep, will be stored in the
output onboard memories. In the next timestep, the role of the onboard memo-
ries is swapped. The original output onboard memories, which store the current
timestep’s data, will be connected to the input caching module and the original
input onboard memories will be connected to the output module to store the
next timestep’s result.

The separation of the input and output onboard memories eliminates the need
for simultaneous read/write access to the same memory. Because the onboard
memories are single ported, shifting between reading and writing to the same
memory will create overhead and greatly reduce the speed of the design. By sepa-
rating input and output memory, we can read from and write to the onboard
memories at the same clock cycle, and continue reading and writing a group of
data on every clock cycle. So, although the separation of the memory interface
does not change the memory bandwidth, the data-transfer rate of the memory
interface is increased. Also, the separation makes the structure of the memory
interface clearer and the swapping mechanism avoids the extra effort of transfer-
ring data from output memories to input memories at the end of every timestep.
This swapping of input and output memories is a common hardware design
technique to increase throughput.

Managed-cache module
As introduced in the previous section, onboard memory data bandwidth is
limited on the FPGA computing board, so the EM field data cannot be trans-
ferred to the FPGA fast enough to allow the processing core to run at full speed.
To solve this memory transfer bottleneck, we need to introduce the managed-
cache module, which is an important part of the memory interface design.

Memory transfer bottleneck Although the FDTD processing core requires a large
amount of input data, the input data for each cell are the EM field data in
their nearest-neighbor cells. For two cells located near each other in the FDTD
model space, some of the nearest-neighbor cells are the same. The cache module
between the onboard memories and the hardware processing cores is designed
to avoid reading the same data multiple times from onboard memories.

All of the input data for each cell are from their near neighbors, which
means the data are located in a small cubic window around the current cell.
If the managed-cache module is designed to be larger than this cubic win-
dow, when we calculate the fields of the next cell, the processing core can get
all the necessary input data from the cache module. Among the input data,

716 Chapter 32 � Finite Difference Time Domain

only a little is new, so we only need to fetch the new data from the onboard
memories every clock cycle, which greatly reduces the data-transfer burden. At
the same time, some of the old data becomes obsolete. In the managed-cache
module, we can replace the obsolete data with the new data fetched from onboard
memory.

Ideally, we keep the processing core running at full speed so that it calculates
one cell’s EM data per clock cycle. The managed-cache module needs to be
designed to provide all the necessary input data for the processing core, while
fetching only one new cell’s data from onboard memory every clock cycle. Since
every UPML FDTD cell has 15 field data and the processing core needs up to
54 field data inputs, an ideal managed-cache module will fetch 15 field data
from onboard memory every clock cycle and provide a data width of 54 field
data to the processing core, solving the memory bandwidth bottleneck problem
by reducing the number of fetches to 15 every clock cycle, which is 15×36-
bit×100 MHz = 54 Gb/s. This rate can be supported by the WildStar-II Pro FPGA
computing board. We explain how to realize this ideal cache module in the next
two subsections.

Dataflow and processing core optimization To simplify the explanation of how
to optimize the dataflow and how to optimize the processing core, we start from
a two-dimensional FDTD algorithm, which can be directly reduced from the
three-dimensional FDTD algorithm by considering only one plane in the three-
dimensional model. The two-dimensional algorithm updates three EM field data
instead of six, handling much less data transfer and calculation, but it keeps the
same algorithm structure and datapath. For a two-dimensional model plane of
size N×N, we assume that each N cell row is a basic processing unit. Calculating
one row of data means updating all EM field data for this row.

The cache modules separate the whole dataflow of the FDTD design into three
processes: (1) READ from the input onboard memory and store to the input
cache module; (2) read from the input cache module, CALCULATE, and write
the result to the output cache module; (3) read from the output cache module
and WRITE to the output onboard memory. These three processes can be run in
parallel since the cache module can be read from and written to at the same
time (i.e., because the cache modules are built from dual-ported BlockRAMs).
The parallelism of READ, CALCULATE, and WRITE means that the FDTD design
can, at the same time, READ one row of data, CALCULATE the previous loaded
row, and WRITE out the results of the row before that. We can understand this
as systemwide pipelining in the dataflow. Each process is a pipeline stage. Rows
of data are pushed into this 3-stage pipeline, one at a time. Compared to run-
ning the three processes serially, this optimized dataflow structure increases the
throughput by a factor of 3.

For a two-dimensional plane of size N×N, a simple 2-row cache module (size
2×N) realizes the READ/CALCULATE/WRITE pipelining. As shown in Figure 32.11,
the data can be READ from input onboard memory and stored in the second
input cache row while the CALCULATE process works on the previously loaded
data in the first input cache row. The result is stored in the first output cache

32.2 FDTD Hardware Design Case Study 717

Onboard
memory input Cache module

BlockRAM
input

Cache module
BlockRAM

output

Onboard
memory output

READ WRITE

Processing
core

CALCULATE

1st cache row

2nd cache row

1st cache row

2nd cache row

FIGURE 32.11 � A structural diagram of the simple 2-row cache module.

Electric field
pipeline module

Magnetic field
pipeline module

Magnetic

Electric

Onboard
memory input

Onboard
memory output

Cache module
BlockRAM

input

Cache module
BlockRAM

output

READ WRITECALCULATE

FIGURE 32.12 � A structural diagram of the two-dimensional managed-cache module.

row while the previous row’s result is read from the second output cache row
and WRITTEN to output onboard memory. This cache module structure can be
applied to other CA designs.

Furthermore, for FDTD implementation the managed-cache module enables
parallel implementation of the electric and magnetic updating algorithms in the
implementation of the processing core. Because of the data dependency of the
electric updating algorithm on the magnetic updating algorithm—the former
needs the current result of the latter—we cannot directly update the M-field
and E-field in parallel until we introduce two extra rows in the managed-cache
module (see Section 32.1.2). Why two extra rows?

The electric updating algorithm needs to have newly updated magnetic data
in the current cell and newly updated magnetic data in the cell below as inputs.
So, the electric updating algorithm needs to wait until the magnetic updating
algorithm finishes two rows of computation. As long as the cache has two extra
rows to save the newly calculated magnetic data, we can run the magnetic updat-
ing algorithms two rows ahead of the electric updating algorithms and partially
overlap their computation. This is illustrated in Figure 32.12.

For a two-dimensional model space of size N×N, the managed-cache module
stores four rows (4×N) of field data. While the READ process is working on
the fourth cache row, the magnetic updating algorithm can work on the data
in the third row, which was just read from the memories by the last READ. At

718 Chapter 32 � Finite Difference Time Domain

the same time, the electric updating algorithm can work on the first cache row,
which is two rows after the magnetic algorithm. Finally, WRITE also works on the
fourth row, sending out both calculation results from the electric and magnetic
updating algorithms. The four rows of field data roll over in the cache modules
until the entire model space is calculated. This 4-row cache module improves
the total computation time by a factor of almost 2, or (N+2)/(2N+2), by partially
parallelizing the electric and magnetic updating implementations.

Thus, the managed-cache module optimizes the design here in two ways:
(1) systemwide pipelining of the design dataflow, and (2) processing-level paral-
lelism of the electric and magnetic updating algorithms.

Expansion to three dimensions Here we expand the two-dimensional cache
module design to three dimensions. The memory interface and the cache mod-
ules are more complex in the three-dimensional FDTD hardware implementa-
tion, which handles many more data transfers and calculations. There are two
possible approaches for upgrading the cache module to three dimensional. The
first is a direct upgrade of the two-dimensional memory interface, as shown in
Figure 32.13. Instead of a 4-row cache module, we need to build a 4-slice cache
module. Here we READ one slice, CALCULATE one slice, and WRITE out one slice
of data at each time interval. However, a 4×100×100 cache module consumes
more than 1200 18-Kb BlockRAMs, which is over three times all the BlockRAMs
on the targeted Virtex-II Pro XC2V70. This approach is not feasible for large
three-dimensional model spaces.

The second approach reduces the size of the cache module to 4×3 rows of
field data by cutting the model space into slices and then into rows. As shown
in Figure 32.14, the cache module reads three rows of field data at each time
interval, goes through the current vertical slice until it finishes, and then goes
to the next vertical slice in the model space. Instead of a 4-slice cache module,
we only need to build a 4×3 row cache module. This method minimizes Block-
RAM consumption; however, it sacrifices overall design speed to achieve larger
model space compatibility. We READ three rows of data at each time interval to
CALCULATE only one row of results. This is because we need the current row

Four slices of data:
READ one slice of data while CALCULATE one slice;
WRITE one slice of data at the same time

Onboard
memory input

Cache module
BlockRAM input

FIGURE 32.13 � A structural diagram of the 4-slice caching design.

32.2 FDTD Hardware Design Case Study 719

4 3 3 rows of data:
READ approximately two rows
while CALCULATE one row

Onboard
memory input Cache module

BlockRAM
input

FIGURE 32.14 � A structural diagram of the 4×3 row caching module.

and adjacent two rows of data to calculate the current row’s results. Because
only one row of results is calculated from the field-updating pipelines, the READ
process is longer than the CALCULATE and WRITE processes. At this point the
other two processes need to wait for the READ process.

This waiting process slows down hardware design. Fortunately, we do not
need to READ all three rows (45 data per cell) to start processing since
the field-updating algorithm only needs part of the data in adjacent rows.
We only need to READ approximately two rows of data (36 data per cell),
CALCULATE one row, and WRITE one row at each time interval. Due to the limited
number of BlockRAMs, the second approach is more practical. From the pre-
ceding analysis of the managed-cache modules, we conclude that the efficiency
of the memory interface plays a key role in the performance of the complete
FPGA design. The speed and manner in which the memory interface handles
the input data often limits the speed of the entire design.

Pipelining and parallelism
Given an efficient memory interface and proper fixed-point data representations,
the designer next needs to adjust the architecture and optimize design perfor-
mance by considering pipelining and parallelism.

As discussed before, we can implement the electric and magnetic updating
algorithms in parallel with the correct cache structure. We can also implement
the three key processes—READ, CALCULATE, and WRITE—in parallel by separating
the input and output memory interfaces and building dual-ported cache modules.
In hardware design, parallelism translates to faster speed; however, it also “costs”
more in hardware resources. The FDTD algorithm is large enough to reach the
resource limits of the most advanced FPGAs on the market. One of the important
problems in FDTD hardware design is determining the design architecture by
considering the trade-offs between resources and performance. The hardware
resource limit of each FPGA chip and computing board is different. The resource–
performance trade-off analysis here is based on the targeted WildStar-II Pro FPGA
computing board.

Pipelining The FDTD algorithm repeats the same electric and magnetic updating
algorithms, which are independent of each other, on every cell of the model

720 Chapter 32 � Finite Difference Time Domain

space. The algorithms can be implemented with complex combinational logic
with long delay. Building them with deep pipelining helps reduce the clock cycle
and increase the throughput of the hardware design. Because of the advantages,
we pipeline all the updating algorithms. The embedded multipliers, which are
the slowest components in the datapath, can also be pipelined to several stages to
reduce delay. Because the lengths of the electric and magnetic updating pipelines
are different, state machines are used to control the start and end of the pipelines
and to synchronize them.

Parallelism Because the updating calculations on every cell in the FDTD model
space are independent of each other, as long as there are adequate hardware
resources, the computation of two or more FDTD cells can be implemented in
parallel. However (see Section 32.2.3), the bandwidth of the memory interface
is the bottleneck of the FDTD hardware design. The memory data width here
is 3×72 bits, which can transfer six 35-bit field data inputs at each clock cycle.
This memory bandwidth needs 6 clock cycles to prepare one cell’s 36 input data
when using the 4×3 row cache module. Can this memory interface handle the
increased parallelism?

Running two cells in parallel actually saves memory bandwidth per cell. As
shown in Figure 32.15, two adjacent FDTD cells share a portion of their nearest-
neighbor cells. For each single cell, we need to read three rows of data (36 field
data per cell) from the onboard memories, which is when running two cells in
parallel, we only need to read four rows of data, or 24 data per cell. Because
the bottleneck of the design is the memory bandwidth, the 2-cell parallelism
mechanism improves the performance of the whole design. We can use the ratio
between input data and result data as a metric to measure the efficiency of the
memory interface. After implementing 2-cell parallelism, the input–result ratio
decreases from 6:1 to 4:1.

Running two cells in parallel creates an extra burden on the cache size and
the calculation pipelines, however. The cache module needs to hold 4×4 rows
of data at the same time instead of 3×4 rows. Fortunately, the Virtex-II Pro
XC2V70 FPGA has adequate BlockRAMs for the 4×4 row cache, but there is no
space for increasing the cache beyond this, which is why we choose not to run
three cells in parallel, even though this would further save memory bandwidth
per cell and improve the input–result ratio.

FIGURE 32.15 � Running two cells in parallel.

32.2 FDTD Hardware Design Case Study 721

Also, the Virtex-II Pro FPGA XC2V70 does not have enough reconfigurable
logic to implement all the updating pipelines in parallel. Instead, because the
memory interface takes four clock cycles to transfer enough input data for one
cell’s calculation, the number of parallel updating pipelines can be reduced. The
calculation core can run several updating algorithms serially in one updating
pipeline, taking more than one clock cycle to finish the calculation for one cell.
The serial calculation reduces the level of parallelism, saves reconfigurable logic,
and still maintains the performance of the hardware design.

Two hardware implementations The preceding input–result ratio is calculated
based on the input data needed for the uniaxial PML FDTD algorithm. This
algorithm treats the whole model space as UPML cells and provides a uniform
structure for both the UPML cells and the non-UPML center cells, as shown in
Figure 32.16. However, the UPML FDTD algorithm requires nine extra field data
for each cell in the model space, which adds overhead to the memory interface.
The cells in the center of the model space that are not located in the UPML
layer can be calculated by the normal FDTD algorithm, which has only six field
data for each cell. Small modifications to the UPML updating pipelines can
make the new updating pipelines work on both the UPML cells and non-UPML
center cells.

Therefore, we can save memory bandwidth and memory space on the center
cells by combining the UPML and center cell algorithms in the hardware design.
The input–result ratio of a center cell is 3:1 and will be 2:1 after applying 2-cell
parallelism. For the normal model space, where half the cells are center cells
and the other half are UPML cells, the overall input–result ratio will decrease
to approximately (4:1 + 2:1)/2 = 3:1, raising the performance of the hardware
design.

UPML cells

Center cells

FIGURE 32.16 � Uniaxial PML boundary condition cells and non-uniaxial PML center cells in
the model space.

722 Chapter 32 � Finite Difference Time Domain

We have two hardware implementations for the uniaxial PML FDTD algo-
rithm. The first implementation treats the whole model space as UPML cells,
with a simpler design structure and an input–result ratio of 4:1. The second
implementation, which includes center cell and UPML cell calculations, has a
more complex memory interface and better performance (the input–result ratio
depends on the number of center cells and UPML cells).

The analysis of resources and performance trade-offs here is based on the
WildStar-II Pro FPGA computing board. For other FPGA devices, the analysis
is similar. A wider onboard memory data width, which can ease the memory
bottleneck, will raise the design performance proportionally. A bigger FPGA chip,
which can hold larger cache modules and more updating pipelines, will speed
up the hardware design by calculating more cells in parallel.

32.2.4 Performance Results
A comparison of performance results for three-dimensional FDTD software and
hardware implementations is shown in Table 32.4. The sample model is a
50×50×50 three-dimensional uniaxial PML FDTD algorithm model with 500
timesteps of FDTD iteration. The fixed-point FDTD hardware design, which
treats all cells as UPML boundary cells, runs at 90 MHz on the WildStar-II Pro
FPGA board. The UPML FDTD FPGA implementation is 16 times faster than
the floating-point Fortran software implementation running on a 3.0-GHz PC.
Hardware times are measured on the board and include the time to transfer data
between the FPGA board and the host PC at the start and end of computation.
The hardware design speedup can increase to 25 times with the implementation
that combines the center and UPML region. The Virtex-II Pro XC2V70 FPGA chip
is almost fully utilized because the FDTD hardware design occupies 99 percent
of the reconfigurable slices, 51 percent of the BlockRAMs, and 46 percent of the
embedded multipliers. There are two Xilinx Virtex-II Pro FPGAs on a WildStar-II
Pro FPGA board. Dual-FPGA parallel implementations of the FDTD algorithm
are expected to double the speedup.

TABLE 32.4 � Three-dimensional FDTD hardware implementation performance results

Software
floating-point Hardware Hardware Hardware
Fortran code fixed-point design fixed-point design fixed-point design

on 3.0 GHz PC running at 90 MHz running at 90 MHz running at 90 MHz
All cells as All cells as Combined center
center cells UPML boundary cells and UPML region

Runtime (sec) 49 1.59 2.985 1.89
Million 1.27 39.31 20.93 33.07
nodes/sec
Speedup 1 30.9 16.5 25.9

32.3 Summary 723

32.3 SUMMARY

Implementing the FDTD algorithm in hardware greatly increases its computa-
tional speed. The speedup is due to three major factors: fixed-point
representation, custom memory interface design, and pipelining and parallelism.
FDTD is a data-intense algorithm; the bottleneck of the hardware design is
its memory interface. With the limited bandwidth between the FPGA and data
memories, a carefully designed custom memory interface allows for full utiliza-
tion of the memory bandwidth and greatly improves performance. The FDTD
algorithm is also a computationally intense algorithm; by considering the trade-
offs between resources and performance, we implement as much pipelining and
parallelism as possible to speed up the design.

The FDTD algorithm is also a cellular automata, sharing a similar algorithmic
structure with many other CA problems. The hardware design techniques and
memory interface architecture presented in this chapter can be applied to a wide
range of other CA problems to achieve speedup on an FPGA and to provide fast,
small, low-power, and inexpensive implementations.

References
[1] K. S. Kunz, R. J. Luebbers. The Finite Difference Time Domain Method for Electro-

magnetics, CRC Press, 1993.
[2] A. Taflove, S. C. Hagness. Computational Electrodynamics: The Finite-Difference

Time-Domain Method, 2nd ed., Artech House, 2000.
[3] A. Taflove. Advances in Computational Electrodynamics: The Finite-Difference Time-

Domain Method, Artech House, 1998.
[4] K. Yee. Numerical solution of initial boundary value problems involving Maxwell’s

equations in isotropic media. IEEE Transactions on Antennas and Propagation
16, 1966.

[5] J. P. Berenger. Three-dimensional perfectly matched layer for the absorption of
electromagnetic waves. Journal of Computational Physics 127, 1996.

[6] A. Taflove. Reinventing electromagnetics: Emerging applications for FD–TD com-
putation. IEEE Computational Science and Engineering 2(4), 1995.

[7] B. Yang, C. Rappaport. Response of realistic soil for GPR applications with
two-dimensional FDTD. IEEE Transactions on Geoscience and Remote Sensing,
June 2001.

[8] P. Kosmas, Y. Wang, C. Rappaport. Three-dimensional FDTD model for GPR detec-
tion of objects buried in realistic dispersive soil. SPIE Proceedings 4742, April 2002.

[9] P. Kosmas, C. Rappaport. Modeling with the FDTD method for microwave breast
cancer detection. IEEE Transactions on Microwave Theory and Technology 52(8),
2004.

[10] P. Kosmas, C. Rappaport. Use of the FDTD method for time reversal: Application
to microwave breast cancer detection. SPIE Proceedings Computational Imaginary
5299, 2004.

[11] Xilinx, Inc. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet,
2004.

[12] Annapolis Micro Systems. WildStar-II Hardware Reference Manual, 2004.

This page intentionally left blank

C H A P T E R 33

EVOLVABLE FPGAs
Andres Upegui, Eduardo Sanchez
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne

Reconfigurable and Embedded Digital Systems Institute
Haute Ecole d’Ingénierie et de Gestion du Canton de Vaud

One of the main advantages of living beings over engineered computing systems
is their capacity to adapt. While computers are tied to a fixed architecture prede-
fined at design time, the human brain exhibits an impressive structural plasticity
whereby interconnections are constantly being reinforced or destroyed according
to environmental interactions. This and other comparisons between computers
and living beings have given rise to what we know today as bioinspired hardware
design.

Evolvable hardware is a bioinspired technique that has enjoyed impressive
growth during the last decade. In 1993 Higuchi et al. and de Garis proposed
an analogy between living beings and programmable hardware devices [1,2]: In
both cases specification of the system is by means of a finite string of symbols.
In the case of living beings, DNA determines how the organism develops into its
final phenotypic representation; in programmable hardware devices, a configura-
tion bitstream drives behavior. This parallel suggests the utilization of so-called
evolutionary algorithms in the design of hardware systems.

33.1 THE POE MODEL OF BIOINSPIRED DESIGN METHODOLOGIES

Living organisms, from microscopic bacteria to giant sequoias, including animals
such as butterflies and humans, have successfully survived on Earth for
millions of years. If we had to propose but one key to explain this success, it
certainly would be adaptation. In contrast with nature, adaptation has been very
elusive to human technology. The model examples of adaptive systems are not
among human’s creations but among nature’s—natural organisms show a strik-
ing capacity to adapt to changing circumstances, thus ensuring their continued
functionality.

During the last few years, computer scientists, inspired by certain biological
processes, have given birth to domains such as artificial neural networks and
evolutionary computation.

726 Chapter 33 � Evolvable FPGAs

Living organisms are complex systems exhibiting a range of desirable
characteristics, such as evolution, adaptation, and fault tolerance, which have
proved difficult to realize using traditional engineering methodologies. Such sys-
tems are characterized by a genetic program—the genome—that guides their
development, their functioning, and their death. If one considers life on Earth
from its very beginning, the following three levels of organization can be
distinguished [3].

Phylogeny: The first level is the temporal evolution of the genetic program, the
hallmark of which is the evolution of species, or phylogeny. The multipli-
cation of living organisms is based on the reproduction of the program,
subject to an extremely low error rate at the individual level to ensure that
the species of the offspring remains unchanged. Mutation (asexual repro-
duction) or mutation with recombination (sexual reproduction) gives rise
to new organisms. The phylogenetic mechanisms are fundamentally non-
deterministic, with the mutation and recombination rate providing a major
source of diversity. This diversity is indispensable for the survival of living
species, for their continuous adaptation to a changing environment, and
for the appearance of new species.

Ontogeny: This level constitutes the developmental process of multicellular
organisms. The successive divisions of the mother cell, the zygote, into
newly formed cells, each possessing a copy of the original genome, is fol-
lowed by a specialization of the daughter cells in accordance with their
surroundings (i.e., their position within the ensemble). This latter phase
is known as cellular differentiation. The ontogenetic process is essen-
tially deterministic: An error in a single base within the genome can
provoke an ontogenetic sequence that results in notable, possibly lethal,
malformations.

Epigenesis: The ontogenetic program is limited in the amount of information
it can store, rendering the complete specification of the organism impos-
sible. A well-known example is the human brain, whose some 1010 neu-
rons and 1014 connections are far too many to be completely specified in
the 4-character genome with a length of approximately 3×109. Therefore,
when a certain level of complexity is reached, there must emerge a different
process that permits the individual to integrate its vast quantity of interac-
tions with the outside world. This is known as epigenesis, which primarily
includes the nervous, immune, and endocrine systems. These systems are
characterized by a basic structure that is entirely defined by the genome
(the innate part), which is then subjected to modification through the indi-
vidual’s lifetime interactions with the environment (the acquired part).
The epigenetic processes can be grouped under the heading of learning
systems.

Analogous to nature, the space of bio-inspired hardware systems can be
partitioned along the phylogenic, ontogenic, and epigenetic axes; we refer to this
as the POE model [3, 4]. The distinction between the axes cannot be easily drawn

33.2 Artificial Evolution 727

where nature is concerned. We therefore define each axis within the model’s
framework as follows:

� The phylogenetic axis involves evolution.
� The ontogenetic axis involves the development of a single individual

from its own genetic material, essentially without environmental
interactions.

� The epigenetic axis involves learning through environmental interactions
that take place after the individual is formed.

As an example, consider the following three paradigms, whose hardware imple-
mentations can be positioned along the POE axes:

� P—evolutionary algorithms are the simplified artificial counterpart of
phylogeny.

� O—self-replicating and self-repairing cellular automata are based on the
concept of ontogeny, where a single mother cell gives rise through
multiple divisions to a multicellular organism.

� E—artificial neural networks embody the epigenetic process, where the
system’s synaptic weights and perhaps topological structure change
through interactions with the environment.

The domains collectively referred to as soft computing [5] often involve the
solution of ill-defined problems coupled with the need for continual adaptation
or evolution. The paradigms listed yield impressive results, frequently rivaling
those of traditional methods.

We will talk about the phylogenetic axis of hardware bio-inspired systems,
most known as evolvable hardware (EHW). The scope of EHW covers diverse
areas ranging from analog circuits to antenna design, but this chapter focuses
on evolution of digital circuits using reconfigurable computing devices, more
precisely, field-programmable gate arrays (FPGAs).

33.2 ARTIFICIAL EVOLUTION

The idea of applying the biological principle of natural evolution to artificial sys-
tems, introduced more than three decades ago, has seen impressive growth in the
past few years. Usually grouped under the term evolutionary algorithms (EAs) or
evolutionary computation, we find the domains of genetic algorithms, evolution
strategies, evolutionary programming, and genetic programming [6–9].

33.2.1 Genetic Algorithms
As a generic example of artificial evolution, we consider genetic algorithms
(GAs) [10]. As illustrated in Figure 33.1, a GA is an iterative procedure applied to
a constant-size population of individuals. Each individual represents a possible

728 Chapter 33 � Evolvable FPGAs

Initialize random
population

00100101110
10101101010
01010101110
00101011101
00101101000
00010111100

Decoding

Selection

01010101110
00100101110
00101011101
00100101110
00101011101
00010111100

01110101100
00100111110
00101011101
00110100110
01101011101
00010011100

011101| 01100

001001 | 11110

011101 11110
001001 01100

New
generation

(1)

(3)

(4a)

(4b)

(5)

00100101110 10101101010

01010101110 00101011101

00101101000
(2)

Evaluation

(4c)

MutationCrossover

0.72

0.540.21

0.43

0.78 0.35

00010111100

Population
of genomes

FIGURE 33.1 � A genetic algorithm.

solution to the given problem, and eventually one is chosen as the searched
solution.

Each individual is coded by a finite string of symbols from a given alphabet,
known as the genome. Each genome gives rise to the individual’s phenotype,
which constitutes the actual solution (a program or a circuit) to the problem
at hand (e.g., a robot controller for the example in Figure 33.1). The individual
receives a score (better known as fitness) depending on the performance exhib-
ited during its evaluation. The process from the genome to a fitness value can
be seen as an n-dimensional function (where n is the genome size), and the set
of all possible solutions can be seen as an n-dimensional search space.

A GA can be summarized in the following steps:

1. Initialization: Create an initial population of individuals by defining a
set of genomes in a random or heuristic manner.

2. Decoding: Generate the phenotypes for the individuals in the current
population by decoding (mapping) the genotypes.

3. Fitness evaluation: Evaluate individuals according to some predefined
quality criterion, referred to as fitness or fitness function.

4. Genetic operators: Apply genetically inspired operators to the current
population:

(a) Selection: Individuals are selected into a mating pool for repro-
duction according to their fitness. With stochastic or deterministic

33.3 Evolvable Hardware 729

selection mechanisms, the fittest individuals have more chances to
transmit their genetic material to the next generation.

(b) Mutation: The genome is randomly changed; and
(c) Crossover: Two genomes are selected to be split and swapped at a

random position.
5. If a predefined convergence condition has not been met, go back to step 2

to evaluate a new generation. Otherwise, deliver the best individual
evaluated.

The basic components of GAs are always the same: a population of individu-
als, a decoding mechanism from a genotype to a phenotype, a fitness evaluation,
genetic operators, and an iterative process. However, GAs allow variants: There
exist several methods for defining each of the steps just listed. By running a
large enough number of generations, the GA should eventually find an accept-
able solution (i.e., one with high fitness).

EAs can be considered as a family of stochastic global optimization algo-
rithms, mainly differing from their deterministic counterparts [11] by the lower
knowledge of the problem they require and by the absence of mathematical
proofs of convergence due to their stochastic nature. For highly nonlinear search
spaces, EAs have exhibited faster convergence than deterministic methods, given
their population-based approach. In most cases, the applications solved by EAs
can also be tackled with deterministic optimization methods.

EAs are very common, having been successfully applied to numerous pro-
blems from domains as diverse as optimization, circuit design, disease diagnosis
assistance, precision agriculture, self-organizing systems, automatic program-
ming, machine learning, economics, immune systems, ecology, population
genetics, studies of evolution and learning, and social systems [9].

33.3 EVOLVABLE HARDWARE

In the case of humans, adaptation due to evolution comes about through mod-
ifications in our DNA (deoxyribonucleic acid), which constitutes the encoding
of every living being on Earth. DNA is a double-stranded molecule composed
of two sugar-phosphate chains linked together by pairs of the bases adenine,
cytocine, guanine, and thymine, constituting a string of symbols from a qua-
ternary alphabet (A, C, G, T). Similarly, reconfigurable logic devices are con-
figured by a string of symbols (the configuration bitstream) from a binary
alphabet (0, 1). This string determines the function implemented by each of
the programmable components and the connectionism of each of the switch
matrices.

With this description, a rough analogy arises naturally between DNA and a
configuration bitstream and between a living being and a circuit (Figure 33.2).
In both cases there is a mapping from a string representation to an entity that
will perform one or more actions: growing, moving, reproducing, and so forth,
for living beings; computing a function for circuits.

730 Chapter 33 � Evolvable FPGAs

101010001100101101

GenotypeGenotype

Phenotype

Phenotype

Circuit on an FPGA

T

G

C

A

C

G

T

T

G

G

C

C

C

G

T

A

A

A

FIGURE 33.2 � The analogy between living beings and digital circuits.

Evolutionary process

After
several

generations

After
several

generations

001110100110100101

Phenotype Phenotype Phenotype

Genotype

(a)

0010010111101010010

Genotype

(b)

101010001100101101

Genotype

(c)

FIGURE 33.3 � The evolutionary design of digital circuits: (a) intial random circuit, (b) intermediate circuit,
and (c) final circuit.

This analogy between living beings and digital circuits suggests the possibility
of applying the principles of artificial evolution to circuit design (Figure 33.3).
Designing analog and digital electrical circuits is, by tradition, a hard engineer-
ing task vulnerable to human error, and for large circuits the optimality of a solu-
tion cannot be guaranteed. Design automation has become a challenge for tool
designers, and given the increasing complexity of circuits, higher abstraction
levels are needed. Evolvable hardware arises as a promising solution to this

33.3 Evolvable Hardware 731

problem: From a given behavior specification of a circuit, an EA will search for
a bitstream describing a circuit that satisfies it.

If we carefully examine the EHW work carried out to date, it becomes evident
that it mostly involves the application of EAs to the synthesis of digital systems
[12–23]. From this perspective, EHW is simply a subdomain of artificial evolu-
tion, where the final goal is the synthesis of an electronic circuit. The work of
Koza [8], which includes the application of genetic programming to the evolu-
tion of a 3-variable multiplexer and a 2-bit adder, may be considered an early
precursor along this line. It should be noted that, in Koza’s time, the main goal
was to demonstrate the capabilities of the genetic programming methodology
rather than to design actual circuits. We argue that the term evolutionary circuit
design would be more descriptive of such work than the term evolvable hard-
ware [24]. For now, we will stay with the latter (popular) term; however, we will
return to the issue of definitions in Section 33.4.

Taken as a design methodology, EHW offers a major advantage over classical
methods. The designer’s job is reduced to constructing the evolutionary setup,
which involves specifying the circuit requirements, the basic elements, a deco-
ding mechanism, and the testing scheme used to assign fitness (this last phase
is often the most difficult). If the setup has been well designed, evolution may
then (automatically) generate the desired circuit. Currently, most evolved digi-
tal designs are suboptimal with respect to traditional methodologies; however,
improved results are regularly demonstrated.

There are two critical questions to ask when setting up a system to be evolved:
how to map a phenotype from a genotype and how to compute the fitness of a
circuit. The answers to these questions are critical and can make the difference
between a successful and an unsuccessful evolution.

33.3.1 Genome Encoding
In examining the EHW work carried out to date, we can derive a classification of
current EHW in accordance with genome encoding (i.e., the circuit description)
and the calculation of a circuit’s fitness.

High-level languages
Using a high-level functional language to encode the evolving population implies
an additional step to obtain the final circuit implementation: The chosen indi-
vidual must be synthesized. Koza’s evolved solution [8] was a program that
described the (desired) multiplexer or adder rather than an interconnection
diagram of logic elements (the actual hardware representation). Mermoud
et al. [25] used fuzzy rules as evolvable components, and Murakawa et al. [26]
and Upegui et al. [27] proposed the evolution of artificial neural network
topologies at the neuron and layer levels. Hemmi et al. [28] used a high-level
HDL to represent the genomes. Koza et al. [29] used the rewriting operator, in
addition to crossover and mutation, to form a hierarchical structure.

732 Chapter 33 � Evolvable FPGAs

Low-level languages
The idea of directly incorporating the bit string representing the configuration of
a programmable circuit within the genome was presented early on by Atmar [30]
and more recently by Higuchi et al. [1] and de Garis [2]. As a first step, a set of
basic logic gates must be chosen (e.g., AND, OR, and NOT) and suitably codified,
along with the interconnections between gates, to produce the genome encoding.
For example, Higuchi et al. [31] used a low-level bit-string representation of
the system’s logic diagram to describe small-scale programmable array logics
(PALs), where the circuit is restricted to a logic sum of products. The limitations
of PAL circuits have been overcome to a large extent by the introduction of
FPGAs, as used initially by Thompson [32,33] and later by a number of research
groups.

The use of a low-level circuit description that requires no further transforma-
tion is an important step forward because it potentially enabled the placing of
the genome directly into the actual circuit and thus paved the way toward true
EHW (we will elaborate on this in Section 33.4). However, FPGAs presented two
major problems: (1) The genome’s length was on the order of tens of thousands
of bits, rendering evolution practically impossible using current technology, and
(2) within the circuit space, consisting of all representable circuits, many circuits
were invalid.

With the introduction of the Xilinx XC6200 [34] family of FPGAs, these
problems were reduced. As with previous FPGA families, there was a direct
correspondence between the bit string of a cell and the actual logic circuit;
however, because the XC6200 was completely multiplexer based, the result was
always a viable system with no short circuits. Moreover, as opposed to previ-
ous FPGAs where the entire system had to be configured, the XC6200 family
permitted the separate configuration of each cell, which was markedly faster
and more flexible. Thompson [32] employed this feature to reduce the genome’s
size, although he did not introduce real-time, partial system reconfigur-
ations. Unfortunately, the XC6200 was discontinued after a few years; however,
the results achieved by directly evolving its bitstream led to increased visibility
for the EHW community and made possible the growth of this research field.

Fitness calculation
Note the following with regard to calculations for fitness with evolvable
hardware.

� Off-chip. The use of a high-level language for genome representation
means that we have to transform the encoded system to evaluate its
fitness. This is usually carried out by simulation, and only the final
solution found by evolution is actually implemented in hardware.

� On-chip. As noted previously, the low-level genome representation enables
a direct configuration (and reconfiguration) of the circuit, which leads
to the possibility of using real hardware during the evolutionary process.
An example of on-chip fitness calculation is presented in the next section
in the form of an intrinsic evolvable system.

33.4 Evolvable Hardware: A Taxonomy 733

33.4 EVOLVABLE HARDWARE: A TAXONOMY

In EHW, the phylogenetic axis admits four qualitative subdivisions of evolution
(Figure 33.4) according to the level of bio-inspiration: extrinsic, intrinsic, com-
plete, and open ended.

33.4.1 Extrinsic Evolution
At the bottom of this axis, we find what is in essence evolutionary circuit design,
where all operations are carried out in software, and the resulting solution may
be loaded onto a real circuit. Though a potentially useful design methodology,
this falls completely within the realm of traditional evolutionary techniques.
This category is also widely known as extrinsic EHW.

Extrinsic EHW has typically targeted the synthesis of circuits—that is, from
a desired behavior specification, an EA finds a schematic of a circuit imple-
menting a function that satisfies the specification [29]. This category supports
different levels of abstraction, allowing to evolve logical gates, arithmetic opera-
tions, more complex functional blocks, or HDL code; however, it is not suited for
evolving circuits at the bitstream level. Evolution has also been used in other
extrinsic aspects of circuit design such as placement and routing [35, 36] and
scheduling and allocation [37].

Epig
en

es
is

P
hy

lo
ge

ny

Ontogeny

Extrinsic evolution

Intrinsic evolution

Complete evolution

Open-ended evolution

FIGURE 33.4 � The divisions of phylogenetic hardware.

734 Chapter 33 � Evolvable FPGAs

33.4.2 Intrinsic Evolution
Moving upward along the axis, we find research in which a real circuit is used
during the evolutionary process for fitness computation, although most opera-
tions are still carried out offline, in software, as depicted in Figure 33.5.

The very first intrinsic evolution was reported by Thompson [32]. He evolved
a section of an XC6216 FPGA, consisting of 10×10 cells (the full array size
was 64 × 64), to discriminate between square waves of 1 kHz and 10 kHz pre-
sented as inputs. His complete system setup is depicted in Figure 33.6 (see
Thompson [33]). From a PC, he configured the FPGA with a configuration bit-
stream generated by a GA, which used a genome of 1800 bits (18 configuration
bits per cell) to represent a possible circuit. Then the individual’s fitness was
automatically evaluated as follows:

1. The tone generator, driven by the PC, presented five bursts each of both
waves (1 kHz and 10 kHz) to the circuit. The analog integrator was reset
before the generation of each burst, and it then integrated the circuit’s
output during the presentation of the burst.

2. Back in the PC, the individual’s fitness was computed by a function
aiming to maximize the difference between the average output voltages
when presenting both waves.

3. After running the experiment for 2 to 3 weeks, during which 5000
generations of 50 individuals were evaluated, the resulting circuit
achieved successful discrimination of the waves. However, the perfect
desired behavior was obtained around generation 4100.

In another interesting project, Thompson et al. [38] evolved a hardware con-
troller for a two-wheeled autonomous mobile robot that was required to display
simple wall avoidance behavior in an empty rectangular arena.

A very important aspect of Thompson’s work is the unconstrained use of hard-
ware. Conventional (human) design requires that constraints be applied to the
circuit’s spatial structure and dynamic behavior, but evolution can do away with

Genotype 5
configuration bitstream

EA execution 1
Fitness computation

101010001100101101

Results

Phenotype 5 FPGA circuit

FIGURE 33.5 � Intrinsic evolution.

33.4 Evolvable Hardware: A Taxonomy 735

XC6216 FPGA
Desktop

PC

Analog
integrator

Tone
generator

Configuration

Output
(to oscilloscope)

FIGURE 33.6 � Adrian Thompson’s intrinsic evolvable system setup.

these. The circuits evolved by Thompson [33, 38] and Ly and Mowchenko [37]
had no enforced spatial structure (e.g., limitations on recurrent connections), no
impositions upon modularity, and no dynamic constraints such as a synchroniz-
ing clock or handshaking between modules. Unconstrained circuit design can
better exploit the dynamics of the circuit supporting it; however, such circuits
exhibit two main drawbacks. One is the impossibility of reproducing a solu-
tion: The same bitstream does not behave in the same manner in two different
devices. The other is the circuit’s high sensitivity to external conditions: Slight
temperature changes can modify its behavior.

Two more examples from this subdivision of the phylogenetic axis are the
works of Murakawa et al. [39] and Iwata et al. [40]. One of the major obstacles
these researchers hoped to overcome was large genome size (defining the FPGA’s
full configuration). They suggested two solutions:

1. Variable-length chromosome GAs (VGA), where the genome does not
directly represent the configuration bit string but rather codifies the
possible logical operations and interconnections [40].

2. Evolution at the function level, where the basic units are not elementary
logic gates (e.g., AND, OR, and NOT) but rather higher-level functions
(e.g., sine-wave generator, multiplier) [39].

Because no such commercial FPGA currently exists, Murakawa and Iwata and
their colleagues proposed a novel architecture, dubbed F2PGA (function-based
FPGA).

It is important to note that while experiments of the above type have been
referred to by some as intrinsic evolution, they have a prominent extrinsic aspect
because the population is stored in an external computer, which also controls
the evolutionary process.

736 Chapter 33 � Evolvable FPGAs

33.4.3 Complete Evolution
Still further along the phylogenetic axis, we find systems in which all operations
(selection, crossover, mutation), as well as fitness evaluation, are carried out
intrinsically, in hardware (Figure 33.7). This category, called complete evolution
by Haddow and Tufte [41], has as its main motivation attaining adaptive systems
that are able to accomplish difficult tasks, possibly involving real-time behavior
in a complex, dynamic environment. The major aspect missing here, compared
with biological evolution, is that the evolution is not open ended (i.e., there is a
predefined goal and no dynamic environment to speak of).

Within the category of complete evolution, we find two subdivisions:
centralized and population oriented.

Centralized evolution
The main characteristic of centralized evolution is the existence of a single evolv-
able circuit and a single evolvable algorithm computation (Figure 33.7(a)). With
this approach an on-chip genetic machine, a hardwired EA, is implemented.
The approach also comprises implementations where the EA is executed in
an on-chip processor. Centralized evolution holds special interest because it
greatly enhances the autonomy of the circuit, allowing the EHW to adapt to
a changing environment during its lifetime. Implementations of EAs in general-
purpose processors, in spite of their lower performance compared to their fully
hardwired counterparts, exhibit several important advantages that permit them
to benefit from a more general framework: They provide a more user-friendly
interface for implementing chromosome manipulations, fitness evaluations, and
memory access; they support easier algorithm upgrades; and they enhance the
possibilities of immediately using the evolving circuit for useful computations.

Genotype (G)

Phenotype (P)

EA 1 fitness computation
(specialized or general-purpose

processor)

Results (R)

FPGA

(a) (b)

FPGA

P

G

EA 1 fitness

R

P

G

EA 1 fitness

R

P

G

EA 1 fitness

R

P

G

EA 1 fitness

R

P

G

EA 1 fitness

R

P

G

EA 1 fitness

R

FIGURE 33.7 � Complete evolution: centralized (a) and population oriented (b).

33.4 Evolvable Hardware: A Taxonomy 737

One example of a self-reconfigurable platform that performs online and on-chip
evolution is that of Upegui and Sanchez [42, 43]. Their standalone platform
consists of a MicroBlaze processor with memory access control, ICAP (internal
configuration access port) access, and a reconfigurable evolvable section, as
depicted in Figure 33.8. The full system, implemented in a Virtex-II FPGA,
runs an EA on the MicroBlaze processor, reads a section of the configuration
bitstream through the ICAP, modifies the bitstream according to the genome
currently evaluated in the MicroBlaze, sends back the bitstream though the ICAP
for partially reconfiguring the FPGA, and evaluates the fitness of the current
individual by interacting with the reconfigurable evolvable section through the
standard OPB bus. Upegui and Sanchez [42] evolve nonuniform cellular rules
and FPGA lookup table (LUT) configurations with fixed interconnectivity. In
Upegui and Sanchez [43], Boolean networks are evolved as well, but in this case
the interconnectivity is not fixed, so the system topology is also driven by the
evolutionary algorithm.

Other interesting experiments were carried out by Haddow and Tufte [41] in
which a hardware implementation of a GA, the “GA pipeline,” evolves a robot
controller. Glette and Torresen [44] report the implementation of a GA on an
embedded PowerPC processor in a Virtex-II Pro FPGA that evolves a circuit in
the same FPGA.

Population-oriented evolution
A hardware implementation of the full population, not only of one individual (as
was the case in previous categories), is the distinctive feature of the population-
oriented approach (Figure 33.7(b)). A significant example is the work of Goeke
et al. [45], where an evolving cellular system was implemented in which
evolution takes place completely on-chip. This system is based on the cellu-
lar automata model—a discrete dynamic system that performs computations in

S
R

A
M

co
nt

ro
lle

r
B

R
A

MMicroblaze
core

UART HW_ICAP

R
ea

di
ng

in
te

rf
ac

e
W

rit
in

g
in

te
rf

ac
e

RBN cell
array

OPB bus

LMB bus

S
R

A
M

FIGURE 33.8 � The setup of a complete and centralized self-reconfigurable evolvable platform.

738 Chapter 33 � Evolvable FPGAs

a distributed fashion on a spatially extended grid. A cellular automaton consists
of an array of cells, each of which can be in one of a finite number of possible
states, updated synchronously in discrete timesteps according to a local, identi-
cal interaction rule [46]. The state of a cell at the next timestep is determined
by the current state of a surrounding neighborhood of cells. This transition is
usually specified in the form of a rule table, which delineates the cell’s next
state for each possible neighborhood configuration. The cellular array (grid) is
n-dimensional, where typically n = 1, 2, 3. Nonuniform cellular automata have
also been considered in which the local update rule need not be identical for all
grid cells [47].

Based on the cellular programming EA of Sipper [47], Goeke et al. [45]
implemented an evolving, one-dimensional, nonuniform cellular automaton.
The main feature of the cellular programming algorithm is the fact that genetic
operators are computed in a distributed way: Each automaton modifies its own
rule based on its own and its neighbors’ fitness. Each of the system’s 56 binary-
state cells contains a genome that represents its rule table. These genomes are
initialized at random and then are subjected to evolution.

The environment imposed on the system specifies the resolution of a global
synchronization task: On presentation of a random initial configuration of cel-
lular states, the system must reach, after a bounded number of timesteps, a
configuration for which the states of the cells oscillate between all zeros and
all ones on successive timesteps. This may be compared to a swarm of fireflies,
thousands of which may flash on and off in unison, having started from totally
uncoordinated flickerings. Each insect has its own rhythm, which changes only
through local interactions with its neighbors’. Because of the local connectivity
of the system, this global behavior, which involves the entire grid, makes for a
difficult task. Nonetheless, applying the evolutionary process of Sipper [47], the
system evolves (i.e., the genomes change) such that the task is completed.

The evolving cellular system described here exhibits complete on-chip evo-
lution in that all operations are performed in hardware in a distributed
population-based manner with no reference to an external computer.

33.4.4 Open-ended Evolution
The last subdivision, situated at the top of the phylogenetic axis, involves a popu-
lation of hardware entities evolving in an open-ended environment. When the
fitness criterion is imposed by the user in accordance with the task to be per-
formed (currently the rule with artificial evolution techniques), we attain a form
of guided, or directed, evolution. This is to be contrasted with the open-ended
evolution that occurs in nature, which admits no externally imposed fitness cri-
terion but rather an implicit, emergent, dynamic one (which can arguably be
summed up as reproducibility). Open-ended undirected evolution is the only
form of evolution known to produce such devices as eyes, wings, and nervous
systems and to give rise to the formation of species. Undirectedness may have to
be applied to artificial evolution if we want to observe the emergence of comp-
letely novel systems.

33.5 Evolvable Hardware Digital Platforms 739

We argue that only open-ended evolution can be truly considered EHW, which
is still an elusive goal at present. We point out that a more correct term would
probably be evolving hardware. A natural application area for such systems is the
field of autonomous robots—that is, machines capable of operating in unknown
environments without human intervention [48]. Specifically, collective robotics
exhibits a population of individuals interacting in a common environment, in
which they can learn to cooperate or to compete for achieving their goals [49].
In their interactions the individuals exhibit a high level of emergence as a first
step to open endedness. Modular robotics, a subtype of collective robotics, also
offers a promising open-ended real environment.

A modular robotic platform well suited for evolving distributed hardware
is YaMoR. This is a modular robot composed of mechanically homogeneous
modules [50], each of which contains an FPGA-based system that allows wire-
less FPGA configuration and on-board self-reconfiguration. Another interesting
example is what we call Hard-Tierra. This involves the hardware implementation
(e.g., FPGA circuits) of the Tierra “world,” which consists of an open-ended envi-
ronment of evolving computer programs [51]. Hard-Tierra is important because
it demonstrates that open-endedness does not necessarily imply a real, biological
environment.

33.5 EVOLVABLE HARDWARE DIGITAL PLATFORMS

The hardware substrate that supports evolution is one of the most important
initial decisions to make when evolving hardware. The hardware architecture is
closely related to the type of solution being evolved. Hardware platforms usually
have a cellular structure composed of uniform or nonuniform components. In
some cases, we can evolve the components’ functionality; in others, the connec-
tivity; or sometimes both, with the most powerful ones. FPGAs fit well into this
third category because they are composed of configurable logic elements inter-
connected by configurable switch matrices. FPGA configuration is contained in
a configuration bitstream, which holds every function and switch position to
be configured for implementing a given design. Current FPGAs allow the pro-
cessing of partial bitstreams, reconfiguring just a sector of the FPGA while the
remaining logic stays the same.

When evolving a circuit on an FPGA, we consider the logic cell as the basic
element. The logic cells’ configuration and their interconnectivity are defined
by the evolution. However, this implies a huge search space to explore and can
prevent the EA from finding a solution. A common technique to constrain the
search space is to define a basic block as a set of logic cells. In this way each
basic block can be an artificial neuron, a fuzzy rule, or a more complex cell in
general. Another option is to constrain the connectionism, using layered archi-
tectures, to a certain neighborhood, or by just defining it as fixed.

The most basic requirement when evolving hardware is to have a set of high-
or low-level evolvable components and a hardware substrate supporting them.

740 Chapter 33 � Evolvable FPGAs

These evolvable components are the basic elements from which the evolved
circuits will be built (transistors, logic gates, arithmetic functions, functional
cells, etc.), and the evolvable substrate must be a flexible hardware platform that
allows arbitrary configurations mapped from a genome. FPGAs constitute the
perfect hardware substrate, given their connectivity and functional flexibility.
The evolvable substrate can be implemented using one of two main techniques:
(1) exploiting the flexibility provided by the FPGA’s configuration logic and
(2) building a virtual flexible substrate on top of the logic.

In the first approach the configuration bitstream of the FPGA is directly gene-
rated. In this way, we can make better use of FPGA resources—logic functions
are directly mapped into the FPGAs LUTs, and connections are directly mapped
to routing switch matrices and multiplexers—but the penalty is very low-level
circuit descriptions [33, 38, 52]. In the second approach a virtual reconfigurable
circuit is built on top of the actual circuit [53]. In this way the designer can also
define the configuration bitstream and determine which features of the circuit
to evolve. This approach has been widely used by several groups, as it produces
enhanced flexibility and ease of implementation. The penalty here is the cost of
an inefficient use of logic resources [25, 27, 42, 45, 53–60].

Different custom chips have been proposed for this purpose with very
interesting results: The main interest in proposing an architecture is that
commercial FPGAs are designed for general-purpose applications, so they do
not necessarily fit the requirements for evolvable architectures. For example,
commercial devices may have illegal configurations that cause short circuits;
this is reasonable for standard FPGA users who rely on the CAD flow to create
the design, but it can be disastrous for genetically evolved bitstreams. Custom
evolvable chips generally provide dynamic and partial reconfiguration, contain
multi-context configuration memories, and can be configured with arbitrary bit-
streams. However, although the custom chips are better suited to EHW appli-
cations, the commodity devices benefit from economies of scale and access to
more advanced fabrication processes.

Different chips and platforms have been developed to provide the flexibility
necessary for evolving analog, digital, and mixed circuits; some of them have
been designed specifically for EHW, while for others EHW is just another appli-
cation field. Among them we find different levels of granularity, different types
of reconfiguration including dynamic and static reconfigurations, and the possi-
bility of loading partial configuration bitstreams, and the utilization of context
memories.

33.5.1 Xilinx XC6200 Family
The obsolete Xilinx XC6200 family [61] deserves a special mention in a
discussion of EHW platforms. For several years, the XC6200 family constituted
the perfect platform for intrinsic EHW, because it made possible downloading
any arbitrary bitstream without risking contention given its multiplexer-based
connection architecture. It also allowed dynamic reconfiguration, making it
more flexible for adaptive algorithms in a general sense. The results reported

33.5 Evolvable Hardware Digital Platforms 741

by Thompson [32, 33, 38, 62], discussed previously, are a very good example of
the XC6200’s potential for evolving circuits.

The XC6200 represents an important initial stepping-stone in the EHW field.
It has also been used for implementing several types of applications, among
them cooperative robot controllers [63], sorting networks [64], and image-
processing algorithms [65].

33.5.2 Evolution on Commercial FPGAs
After the XC6200 disappeared, many research groups turned to the Xilinx
XC4000 family. However, these FPGAs had an important drawback for evolving
hardware: They were not partially reconfigurable, and no arbitrary bitstreams
were allowed. When the Virtex FPGAs appeared, they exhibited two well-
appreciated features for the EHW community: partial and dynamic recon-
figuration. However, not all the evolution-friendly features from the XC6200
were kept. Specifically, the connection mechanism does not support arbit-
rary bitstreams, making these FPGAs susceptible to damage by internal short
circuits.

Recent work on evolvable circuits in commercial FPGAs has focused on the
Virtex and Virtex-II architectures from Xilinx [66] and will extend its focus to
Virtex-4 in the near future. Two main approaches have been used for evolving Vir-
tex circuits: using virtual reconfigurable circuits [67] and partially reconfiguring
the FPGA.

Virtual reconfiguration
Two solutions were used in order to replace the obsolete XC6200 fam-
ily: implementing an ASIC evolvable circuit (only achievable by some priv-
ileged groups, summarized in Section 33.5.3) and building a reconfigurable
circuit on top of another reconfigurable circuit (i.e., a virtual reconfigu-
rable device [53]). The concept of a virtual reconfigurable circuit is depicted
in Figure 33.9, where a reconfigurable neuron cell constitutes the device’s basic
logic cell.

In the beginning, the most intuitive method was to reconstruct the XC6200
architecture. At the University of York, a virtual XC6200 CLB was implemented
in Virtex FPGAs [68, 69]. Slorach and Sharman [54] also used virtual XC6200
cells in the Xilinx XC4010 and Altera EPF6010A, evolving configuration bit-
streams that configured not the FPGA itself but the virtual XC6200 CLBs. After-
ward, other research groups developed different reconfigurable architectures
with enhanced features, several of which had the goals of flexibility and easy
reconfiguration [54–59, 70–72]. For example, Sekanina and Drabek [70] devel-
oped a virtual reconfigurable cell called a functional block (FB) and used an
array of FBs for image compression. Durbeck and Macias [71] implemented an
8 × 8 cell matrix using a Xilinx Spartan-2 FPGA.

With this approach came the possibility of designing any desired reconfigu-
rable fabric. In most cases the architecture consists of a fine-grained cellular
array in which a general-purpose evolvable architecture is proposed. However,

742 Chapter 33 � Evolvable FPGAs

LUT

Q

QSET

CLR

D

Q

QSET

CLR

D

LUT

clk
clr
set

1

W1

W2

W3

W4

Virtual reconfigurable cell

Logic cell

FPGA

FIGURE 33.9 � A virtual reconfigurable circuit with a reconfigurable neuron.

problem-oriented reconfigurable fabrics can use coarser-grained architectures,
where a reduced set of features is evolved.

Dynamic partial reconfiguration
In addition to the Xilinx XC6200, other commercial platforms have been
partially reconfigured for evolving circuits, with the main focus on the Xilinx
Virtex families. However, there are two main issues in evolving circuits by par-
tially reconfiguring Virtex architectures. The first is the size of their configu-
ration bitstreams, which implies a huge search space for the EA. The second
is the generation of invalid bitstreams—that is, bitstreams that cause internal
contentions. Different solutions to these problems have been suggested.

Haddow and Tufte proposed a two-dimensional array of Sblocks [72], each
containing a flip-flop, a 5-input LUT, and some routing resources. Sblocks pro-
vide a reduced configurability compared to Virtex cells in order to reduce the
search space size and to guarantee contention-free configurations. Even though
the Sblock array is virtually reconfigurable, the functionality is reconfigured
by partially reconfiguring a Virtex FPGA. Haddow and Tufte used a partial
bitstream for reconfiguring only the LUT contents.

33.5 Evolvable Hardware Digital Platforms 743

At the University of York, JBits [73] has been used for evolving circuits. JBits
is a Java API for describing circuits and manipulating configuration bitstreams.
It allows safe generation of partial bitstreams, permitting the modification of
internal modules in the FPGA design. At York, LUT contents have been mapped
from a genome for evolving simple combinatorial functions [74], fault tolerance
circuits [69], and robot controllers for obstacle avoidance [75]. Also using JBits,
Levi and Guccione from Xilinx developed a tool called GeneticFPGA [76], which
translates a configuration bitstream from a chromosome, making it easy to gen-
erate legal bitstreams.

Even though JBits provides interesting features for EHW, it has several lim-
itations, such as the impossibility of running on an embedded platform (for
on-chip evolution), dependence on supported FPGA families and supported
boards, incompatibility with other hardware description languages (HDLs), and
limited support from Xilinx, mainly reflected in insufficient documentation.

Several ways to overcome these limitations have been proposed at the
EPFL. Upegui and Sanchez [52] summarize three techniques for EHW by par-
tially reconfiguring Virtex and Virtex-II families dynamically, without using
JBits. The first is a coarse-grained high-level solution based on the modular
partial reconfiguration flow proposed by Xilinx [77]. It defines large evolv-
able functions, implemented as modules, that are well suited for architecture
exploration [27].

The second and third techniques are fine-grained low-level solutions. In
both of the cases, hard-macros are used to define an evolvable compo-
nent. Then by placing the hard-macros they modify, the bitstream partially
reconfigures components of the hard macros. The second technique uses the
difference-based partial reconfiguration flow proposed by Xilinx [77]. The
third technique directly manipulates the bitstream in a manner similar to
the XC6200, by adding some constraints (only LUT and multiplexer configu-
ration modifications are allowed). These techniques are well suited for fine-
tuning. With the difference-based approach, Mermoud et al. [25] report the
intrinsic evolution of a fuzzy classifier; and with the bitstream manipula-
tion, they report a complete evolution of cellular automata [42] and Boolean
networks [43].

33.5.3 Custom Evolvable FPGAs
One of the more recent evolvable chips is the POEtic tissue [78,79], a computa-
tional substrate optimized for the implementation of digital systems inspired by
the POE model presented in the introduction to this chapter. The POEtic tissue
is a self-contained, flexible physical substrate designed (1) to interact with the
environment through spatially distributed sensors and actuators; (2) to develop
and adapt its functionality through a process of evolution, growth, and learn-
ing to a dynamic and partially unpredictable environment; and (3) to self-repair
parts damaged by aging or environmental factors in order to remain viable and
retain the same functionality.

744 Chapter 33 � Evolvable FPGAs

The POEtic tissue is composed of a two-dimensional array of POEtic cells,
each designed as a 3-layer structure following the three axes of bio-inspiration
(Figure 33.10):

� The phylogenetic layer acts on a cell’s genetic material. It can be used
to find and select the genes of the cells for the genotype layer, which is
conceptually the simplest of the three tissue layers as it is mainly a
memory containing the genetic information of the organism.

� Ontogeny concerns the development of the individual and thus the
mapping or configuration layer of the cell, which implements cellular
differentiation and growth. In addition, it has an impact on the system
as a whole for self-repair. The configuration layer selects which gene will
be expressed depending on a user-defined differentiation algorithm.

� The epigenetic axis modifies the behavior of the organism during its
operation and is therefore best applied to the phenotype, which is
probably the most application-dependent layer. If the final application
is a neural network, the phenotype layer will consist of an artificial
neuron.

A key aspect of the applicability of the POEtic tissue, in addition to its archi-
tecture, is its reconfigurability. A molecule can be partially reconfigured by an
on-chip microprocessor or by neighbor molecules. For EHW, this feature is

Execution unitEpigenesis

Ontogenesis

Phylogenesis

Phen
oty

pe l
ay

er

Map
pin

g la
ye

r

Diffe
re

nt
iat

ion

log
ic

Diffe
re

nt
iat

ion

ta
ble

In
te

rp
re

te
r

(o
pt

ion
al)

Gen
oty

pe l
ay

er

Ope
ra

to
r N

Ope
ra

to
r 2

Ope
ra

to
r 0

Ope
ra

to
r 1

Communication unit
Oper

at
iv

e
gen

om
e

Diff
er

en
tia

tio
n

gen
om

e

FIGURE 33.10 � The organizational layers of the POEtic cell.

33.6 Conclusions and Future Directions 745

very important in terms of execution time. Because only two clock cycles are
needed for a write, and three words of 32 bits define a complete molecule, the
configuration of the entire array (or a part of it) is very fast. In comparison with
commercial FPGAs, such as the Virtex-II, in which at least a full configuration
frame must be sent each time, reconfiguration takes place in parallel, allowing
a huge speedup.

A distinctive feature of the POEtic tissue is its two-dimensional array of rout-
ing units that implement a dynamic routing algorithm [80]. It is used for inter-
cellular communication, allowing the tissue to dynamically create paths between
cells. The dynamic routing can be performed by a distributed algorithm [80] or
by the on-chip processor.

Another very important circuit is the evolvable LSI chip developed by
Higuchi’s group [81]. It includes a GA unit and has the ability to process two
chromosomes in parallel. Higuchi’s group is famous for the large number of
applications implemented in their chips [82, 83]. They have implemented an
adaptive prosthetic hand controller [84, 85] that can adapt to the user’s elec-
tromyographic signals in less than 10 minutes with a much more compact cir-
cuit than required with a neural network (before that, the user had to adapt
to the hand instead of the hand to the user, requiring more than a month
of training). They have also evolved data compressors for electrophotographic
printing [86, 87], often attaining compression ratios twice those obtained with
international standard compression algorithms such as Lempel-Ziv, JBIG, and
JBIG2. It must be noted that Higuchi’s applications often finish as part of
a commercial product. Other interesting applications implemented by the
same group include robot navigation controllers [88] and low-power integrated
circuits [89].

This chapter focused primarily on evolution for digital devices; however,
several platforms have been proposed for analog and mixed-signal circuit
evolution. At the Jet Propulsion Laboratory of the California Institute of Tech-
nology, a field-programmable transistor array (FPTA) [90] has been developed
that is the basis of the Standalone Board-level Evolvable System (SABLES) [91].
Layzell [92] proposed the evolvable motherboard: a diagonal matrix of analog
switches connected to up to six plug-in daughter boards, which contain the
desired basic elements for evolution.

33.6 CONCLUSIONS AND FUTURE DIRECTIONS

EHW has been shown to be effective at finding solutions [82,83] for real-world
applications. Additionally, some solutions have proven to perform better than
their engineered counterparts [83, 89, 93]. On the other hand, EHW generally
performs poorly, as a system-level solution: Microprocessor architectures, for
example, are not among evolution results. As a matter of fact, evolution works
better when the target is a complex cellular architecture: cellular automata, neu-
ral networks, or gate arrays.

746 Chapter 33 � Evolvable FPGAs

If we look at the EHW work carried so far, we find many common
characteristics spanning most current systems that often differ from biological
evolution (this difference is not necessarily disparaging):

� Evolution pursues a predefined goal: The design of an electronic circuit
is subject to precise specifications. On finding the desired circuit, the
evolutionary process terminates.

� The population has no material existence. At best, in what has been
called intrinsic and complete evolution, there is one circuit available
onto which individuals from the population are loaded one at a time
to evaluate their fitness.

� The absence of a real population in which individuals coexist simul-
taneously entails notable difficulties in the realization of interactions
between “organisms.” This usually results in a completely independent
fitness calculation, contrary to nature, which exhibits a coevolutionary
scenario.

� The different phases of evolution are carried out sequentially, controlled
by a central unit.

These limitations suggest that the simple application of EAs to hardware
design is not enough and that future research in EHW must not be limited to
exploration of architectures and substrates; there is also much to do at the algo-
rithmic level. Human-made adaptable systems are still far from exhibiting an
adaptation comparable to living beings, and even though we have yet to attain
circuits of equivalent complexity, limitations are not just a matter of magnitude.
Only by modeling together the three axes of life (phylogeny, ontogeny, and epi-
genesis) will we be able to build systems featuring naturelike adaptation.

Future trends in nanotechnology are also guiding us toward “Avogadro
computers”—that is, massively parallel devices with 1023 transistors. What to do
with such huge number of transistors, and how to use, interconnect, and pro-
gram them, goes beyond present engineering knowledge; however, EHW archi-
tectures and algorithms arise as a promising solution for dealing with the design
complexity of these machines.

In this chapter we focused on evolving silicon circuits, which constitute the
main developments achieved by the EHW community. However, other types of
substrates have been evolved that extend the domain and represent new direc-
tions for evolvable hardware. For example, NASA researchers have been working
on evolving antennas for space missions [94, 95]. Miller and Downing are cur-
rently working on evolving liquid crystals (LC) [96]—by applying electric fields
mapped from a genome, they modify the LC molecular alignment to implement
a desired function. Molecular circuit design is another promising evolvable sub-
strate. Masiero et al. [97] report the use of a GA for tuning component param-
eters in a molecular circuit. Quantum circuit synthesis, too, is a potential field
for EHW [98], given that designing circuits in such a substrate will require new
design paradigms.

33.6 Conclusions and Future Directions 747

References
[1] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, T. Furuya. Evolving hardware

with genetic learning: A first step towards building a Darwin Machine. From
animals to animals 2. Proceedings of the International Conference on Simulation
of Adaptive Behavior, 1993.

[2] H. de Garis. Evolvable hardware: Genetic programming of a Darwin Machine.
Proceedings of the International Conference on Artificial Neural Nets and Genetic
Algorithms, 1993.

[3] E. Sanchez, D. Mange, M. Sipper, M. Tomassini, A. Perez-Uribe, A. Stauffer.
Phylogeny, ontogeny, and epigenesis: Three sources of biological inspiration for
softening hardware. Evolvable Systems: From Biology to Hardware, LNCS 1259,
1997.

[4] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Perez-Uribe, A. Stauffer.
A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems.
IEEE Transactions on Evolutionary Computation 1(1), 1997.

[5] S. Mitra, Y. Hayashi. Neuro-fuzzy rule generation: Survey in soft computing frame-
work. IEEE Transactions on Neural Networks 11(3), 2000.

[6] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms, Oxford University Press, 1996.

[7] D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence, 2nd ed., IEEE Press, 2000.

[8] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MIT Press, 1992.

[9] M. Mitchell. An Introduction to Genetic Algorithms, MIT Press, 1996.
[10] M. D. Vose. The Simple Genetic Algorithm: Foundations and Theory, MIT Press,

1999.
[11] J. Pinter. Global Optimization in Action (Continuous and Lipschitz Optimization:

Algorithms, Implementations and Applications), Kluwer Academic Press, 1996.
[12] E. Sanchez, M. Tomassini. Towards evolvable hardware. LNCS 1062. Springer-

Verlag, 1996.
[13] Y. Liu. Evolvable systems: from biology to hardware. Proceedings of the Fourth

International Conference, ICES, October 2001.
[14] A. M. Tyrrell, P. C. Haddow, J. Torresen. Evolvable systems: From biology to

hardware. Proceedings of the 5th International Conference, LNCS, March 2003.
[15] J. M. Moreno, J. Madrenas, J. Cosp. Evolvable systems: From biology to hardware.

Proceedings of the Sixth International Conference, ICES 2005, September 2005.
[16] T. Higuchi, M. Iwata, W. Liu. Evolvable systems: From biology to hardware.

Proceedings of the First International Conference, October 7–8, 1996. LNCS 1259,
Heidelberg: Springer-Verlag, 1997.

[17] M. Sipper, D. Mange, A. Pérez-Uribe. Evolvable systems: From biology to hard-
ware. Proceedings of the Second International Conference, September, LNCS 1478,
Heidelberg: Springer, 1998.

[18] J. Miller. Evolvable systems: From biology to hardware. Proceedings of the Third
International Conference, ICES 2000, April 17–19, 2000. LNCS 1801, Heidelberg:
Springer, 2000.

[19] A. Stoica, D. Keymeulen, J. D. Lohn. Proceedings of the First NASA/DOD Workshop
on Evolvable Hardware, July. IEEE Computer Society, 1999.

748 Chapter 33 � Evolvable FPGAs

[20] A. Stoica, J. D. Lohn, R. Katz, D. Keymeulen, R. Zebulum. Proceedings of the 2002
NASA/DOD Conference on Evolvable Hardware, July. IEEE Computer Society, 2002.

[21] J. D. Lohn, R. Zebulum, J. Steincamp, D. Keymeulen, A. Stoica, M. Ferguson.
Proceedings of the 2003 NASA/DOD Conference on Evolvable Hardware, July. IEEE
Computer Society, 2003.

[22] R. Zebulum, D. Gwaltney, G. Hornby, D. Keymeulen, J. D. Lohn. A. Stoica.
Proceedings of the 2004 NASA/DOD Conference on Evolvable Hardware, July 2004.
IEEE Computer Society.

[23] J. D. Lohn, D. Gwaltney, G. Hornby, R. Zebulum, D. Keymeulen. A. Stoica.
Proceedings of the 2005 NASA/DOD Conference on Evolvable Hardware, June 2005.
IEEE Computer Society.

[24] X. Yao, T. Higuchi. Promises and challenges of evolvable hardware. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
29(1), 1999.

[25] G. Mermoud, A. Upegui, C. A. Pena. E. Sanchez. A dynamically-reconfigurable
FPGA platform for evolving fuzzy systems. Computational Intelligence and
Bioinspired Systems, LNCS 3512, 2005.

[26] M. Murakawa, S. Yoshizawa, I. Kajitani, X. Yao, N. Kajihara, M. Iwata, T. Higuchi.
The GRD chip: Genetic reconfiguration of DSPs for neural network processing.
IEEE Transactions on Computers 48(6), 1999.

[27] A. Upegui, C. A. Pe˜na-Reyes, E. Sanchez. An FPGA platform for on-line topology
exploration of spiking neural networks. Microprocessors and Microsystems 29(5),
2005.

[28] H. Hemmi, J. Mizoguchi, K. Shimohara. Development and evolution of hardware
behaviors. Towards Evolvable Hardware, LNCS 1062, 1996.

[29] J. R. Koza, F. H. Bennett, D. Andre, M. A. Keane. Synthesis of topology and sizing
of analog electrical circuits by means of genetic programming. Computer Methods
in Applied Mechanics and Engineering 186(2), 2000.

[30] J. W. Atmar. Speculation on the Evolution of Intelligence and Its Possible Real-
ization in Machine Form, Ph.D. dissertation, New Mexico State University, Las
Cruces, 1976.

[31] T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao, F. T. Furuya, B. Manderick.
Evolvable hardware and its application to pattern recognition and fault-tolerant
systems. Towards Evolvable Hardware, LNCS 1062, 1996.

[32] A. Thompson. Silicon evolution. Proceedings of Genetic Programming, J. R. Koza
et al. (eds.), MIT Press, 1996.

[33] A. Thompson. An evolved circuit, intrinsic in silicon, entwined with physics.
Evolvable Systems: From Biology to Hardware, LNCS 1259, 1997.

[34] Xilinx, Inc. The Programmable Logic Data Book, 1996.
[35] G. K. Venayagamoorthy, V. G. Gudise. Swarm intelligence for digital circuits imple-

mentation on field-programmable gate array platforms. Proceedings of the 2004
NASA/DOD Conference on Evolvable Hardware, July 2004.

[36] B. C. Kahne. A Genetic Algorithm-Based Place-and-Route Compiler for a Run-time
Reconfigurable Computing System, Master’s thesis, Virginia Polytechnic Institute
and State University, Blacksburg, VA, 1997.

[37] T. A. Ly, J. T. Mowchenko. Applying simulated evolution to high-level synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
12(3), 1993.

[38] A. Thompson, I. Harvey, P. Husbands. Unconstrained evolution and hard conse-
quences. Towards Evolvable Hardware, LNCS, 1996.

33.6 Conclusions and Future Directions 749

[39] M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, T. Higuchi. Hard-
ware evolution at function level. Parallel Problem Solving from Nature (PPSN IV),
LNCS 1141, 1996.

[40] M. Iwata, I. Kajitani, H. Yamada, H. Iba, T. Higuchi. A pattern recognition sys-
tem using evolvable hardware. Parallel Problem Solving from Nature (PPSN IV),
LNCS 1141, 1996.

[41] P. Haddow, G. Tufte. Evolving a robot controller in hardware. Proceedings of the
Norwegian Computer Science Conference, 1999.

[42] A. Upegui, E. Sanchez. On-chip and on-line self-reconfigurable adaptable platform:
The non-uniform cellular automata case. Proceedings of the 20th IEEE International
Parallel and Distributed Processing Symposium, 2006.

[43] A. Upegui, E. Sanchez. Evolving hardware with self-reconfigurable connectivity in
Xilinx FPGAs. Proceedings of the First NASA/ESA Conference on Adaptive Hardware
and Systems, 2006.

[44] K. Glette, J. Torresen. A flexible on-chip evolution system implemented on a Xilinx
Virtex-II Pro device. Evolvable Systems: From Biology to Hardware, LNCS 3637,
2005.

[45] M. Goeke, M. Sipper, D. Mange, A. Stauffer, E. Sanchez, M. Tomassini. Online
autonomous evolware. Evolvable Systems: From Biology to Hardware, LNCS 1259,
1997.

[46] T. Toffoli, N. Margolus. Cellular Automata Machines: A New Environment for
Modeling. MIT Press Series in Scientific Computation, 1987.

[47] M. Sipper. Evolution of Parallel Cellular Machines: The Cellular Programming
Approach, Springer, 1997.

[48] R. A. Brooks. New approaches to robotics. Science 253, 1991.
[49] Y. U. Cao, A. S. Fukunaga, A. B. Kahng. Cooperative mobile robotics: Antecedents

and directions. Autonomous Robots 4(1), 1997.
[50] R. Moeckel, C. Jaquier, K. Drapel, E. Dittrich, A. Upegui, A. Ijspeert. YaMoR and

Bluemove: An autonomous modular robot with Bluetooth interface for exploring
adaptive locomotion. Proceedings of the 8th International Conference on Climbing
and Walking Robots (CLAWAR), 2005.

[51] T. S. Ray. An approach to the synthesis of life. Artificial Life II, SFI Studies in the
Sciences of Complexity 10, 1992.

[52] A. Upegui, E. Sanchez. Evolving hardware by dynamically reconfiguring Xilinx
FPGAs. Evolvable Systems: From Biology to Hardware, LNCS 3637, 2005.

[53] L. Sekanina. Evolvable Components: From Theory to Hardware Implementations,
Springer, 2004.

[54] C. Slorach, K. Sharman. The design and implementation of custom architectures
for evolvable hardware using off-the-shelf programmable devices. Evolvable Sys-
tems: From Biology to Hardware, LNCS, 2000.

[55] Y. Zhang, S. Smith, A. Tyrrell. Digital circuit design using intrinsic evolvable
hardware. Proceedings of the 2004 NASA/DOD Conference on Evolvable Hardware,
July 2004.

[56] L. Sekanina, S. Friedl. On routine implementation of virtual evolvable devices using
COMBO6. Proceedings of the 2004 NASA/DOD Conference on Evolvable Hardware,
July 2004.

[57] K. Vinger, J. Torresen. Implementing evolution of FIR-filters efficiently in an FPGA.
Proceedings of the 2003 NASA/DOD Conference on Evolvable Hardware, July 2003.

[58] L. Sekanina. Towards evolvable IP cores for FPGAs. Proceedings of the 2003
NASA/DOD Conference on Evolvable Hardware, July 2003.

750 Chapter 33 � Evolvable FPGAs

[59] P. C. Haddow, G. Tufte. An evolvable hardware FPGA for adaptive hardware.
Proceedings of the 2000 Congress on Evolutionary Computation, 2000.

[60] M. Sipper, M. Goeke, D. Mange, A. Stauffer, E. Sanchez, M. Tomassini. The firefly
machine: Online evolware. Proceedings of the IEEE International Conference on
Evolutionary Computation, 1997.

[61] Xilinx, Inc. The XC6200 Data Sheet v.1.7, 1996.
[62] A. Thompson, P. Layzell. Evolution of robustness in an electronics design. Evolvable

Systems: From Biology to Hardware, LNCS 1801, 2000.
[63] D.-W. Lee, C.-B. Ban, K.-B. Sim, H.-S. Seok, L. Kwang-Ju, B.-T. Zhang. Behavior

evolution of autonomous mobile robot using genetic programming based on evolv-
able hardware. Proceeding of the 2000 IEEE International Conference on Systems,
Man, Cybernetics, 2000.

[64] J. R. Koza, F. H. Bennett, J. Hutchings, S. L. Bade, M. A. Keane, D. Andre.
Evolving sorting networks using genetic programming and rapidly reconfigurable
field-programmable gate arrays. Workshop on Evolvable Systems. International Joint
Conference on Artificial Intelligence, 1997.

[65] J. Dumoulin, J. A. Foster, J. F. Frenzel, S. McGrew. Special purpose image convolu-
tion with evolvable hardware. Real-World Applications of Evolutionary Computing,
EvoWorkshops 2000, LNCS, 2000.

[66] Xilinx, Inc. Virtex-II Platform FPGA User Guide (www.xilinx.com), March 2005.
[67] L. Sekanina. Virtual reconfigurable circuits for real-world applications of evolvable

hardware. Evolvable Systems: From Biology to Hardware, LNCS 2606, 2003.
[68] G. Hollingworth, S. Smith, A. Tyrrell. Safe intrinsic evolution of Virtex devices.

Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware, 2000.
[69] R. O. Canham, A. Tyrrell. Evolved fault tolerance in evolvable hardware. Proceed-

ings of the Congress on Evolutionary Computation, 2002.
[70] L. Sekanina, V. Drabek. The concept of pseudo evolvable hardware. Proceedings of

the IFAC Workshop on Programmable Devices and Systems, 2000.
[71] L. Durbeck, N. J. Macias. Defect-tolerant, fine-grained parallel testing of a cell

matrix. Proceedings of SPIE ITCom 4867, 2002.
[72] P. Haddow, G. Tufte. Bridging the genotype-phenotype mapping for digital FPGAs.

Proceedings of the Third NASA/DoD Workshop on Evolvable Hardware, 2001.
[73] S. A. Guccione, D. Levi, P. Sundararajan. JBits: A Java-based interface for recon-

figurable computing. Proceedings of the Second Annual Military and Aerospace
Applications of Programmable Devices and Technologies Conference, 1999.

[74] G. Hollingworth, S. Smith, A. Tyrrell. The intrinsic evolution of Virtex devices
through Internet reconfigurable logic. Evolvable Systems: From Biology to Hard-
ware, LNCS 1801, 2000.

[75] A. M. Tyrrell, R. A. Krohling, Y. Zhou. Evolutionary algorithm for the promotion
of evolvable hardware. IEE Proceedings—Computers and Digital Techniques 151(4),
2004.

[76] D. Levi, S. A. Guccione. Genetic FPGA: Evolving stable circuits on mainstream
FPGA devices. Proceedings of the First NASA/DOD Workshop on Evolvable Hardware,
1999.

[77] Xilinx, Inc. XAPP 290: Two Flows for Partial Reconfiguration: Module Based or
Difference Based (www.xilinx.com), September 2004.

[78] Y. Thoma, E. Sanchez. A reconfigurable chip for evolvable hardware. Proceedings
of the Genetic and Evolutionary Computation Conference, 2004.

33.6 Conclusions and Future Directions 751

[79] Y. Thoma, G. Tempesti, E. Sanchez, J.M.M. Arostegui. POEtic: An electronic tissue
for bio-inspired cellular applications. Biosystems 76(1–3), 2004.

[80] Y. Thoma, E. Sanchez, J.M.M. Arostegui, G. Tempesti. A dynamic routing algorithm
for a bio-inspired reconfigurable circuit. Proceedings of the International Conference
on Field-Programmable Logic and Applications 2778, 2003.

[81] M. Iwata, I. Kajitani, Y. Liu, N. Kajihara, T. Higuchi. Implementation of a gate-
level evolvable hardware chip. Evolvable Systems: From Biology to Hardware, LNCS
2210, 2001.

[82] T. Higuchi, M. Iwata, H. Sakanashi, E. Takahashi, M. Murakawa, I. Kajitani.
Dynamic adaptive devices and their applications. Bulletin of the Electrotechnical
Laboratory, Special Issue: RWC Research Toward Realization of Real World Intelli-
gence 64(4/5), 2000.

[83] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Kajitani,
E. Takahashi, K. Toda, M. Salami, N. Kajihara, N. Otsu. Real-world applications
of analog and digital evolvable hardware. IEEE Transactions on Evolutionary Com-
putation 3(3), 1999.

[84] I. Kajitani, M. Iwata, M. Harada, T. Higuchi. A myoelectric controlled prosthetic
hand with an evolvable hardware LSI chip. Technology and Disability, Special Issue:
Advances in the Control of Prosthetic Arms 15(2), 2003.

[85] I. Kajitani, T. Hoshino, N. Kajihara, M. Iwata, T. Higuchi. An evolvable hardware
chip and its application as a multi-function prosthetic hand controller. Proceedings
of the 16th National Conference on Artificial Intelligence, 1999.

[86] H. Sakanashi, M. Iwata, T. Higuchi. Evolvable hardware for lossless compression
of very high resolution bi-level images. IEE Proceedings—Computers and Digital
Techniques 151(4), 2004.

[87] H. Sakanashi, M. Iwata, D. Keymulen, M. Murakawa, I. Kajitani, M. Tanaka,
T. Higuchi. Evolvable hardware chips and their applications. Proceedings of the
International Conference on Systems, Man, and Cybernetics, 1999.

[88] D. Keymeulen, M. Iwata, Y. Kuniyoshi, T. Higuchi. Online evolution for a self-
adapting robotic navigation system using evolvable hardware. Artificial Life 4, 1998.

[89] E. Takahashi, M. Murakawa, Y. Kasai, T. Higuchi. Power dissipation reductions
with genetic algorithms. Proceedings of the 2003 NASA/DoD Conference on Evolvable
Hardware, 2003.

[90] A. Stoica, R. Zebulum, D. Keymeulen, R. Tawel, T. Daud, A. Thakoor. Recon-
figurable VLSI architectures for evolvable hardware: From experimental field-
programmable transistor arrays to evolution-oriented chips. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 9(1), 2001.

[91] A. Stoica, R. Zebulum, M. Ferguson, D. Keymeulen, V. Duong. Evolving circuits in
seconds: Experiments with a stand-alone board-level evolvable system. Proceedings
of the 2002 NASA/DOD Conference on Evolvable Hardware, July 2002.

[92] P. Layzell. A new research tool for intrinsic hardware evolution. Evolvable Systems:
From Biology to Hardware, LNCS, 1998.

[93] L. Sekanina, R. Ruzicka. Easily testable image operators: The class of circuits
where evolution beats engineers. Proceedings of the 2003 NASA/DOD Conference on
Evolvable Hardware, July 2003.

[94] J. Lohn, J. Crawford, A. Globus, G. Hornby, W. Kraus, G. Larchev, A. Pryor,
D. Srivastava. Evolvable systems for space applications. Proceedings of the Inter-
national Conference on Space Mission Challenges for Information Technology, 2003.

752 Chapter 33 � Evolvable FPGAs

[95] J. Lohn, D. Linden, G. Hornby, W. Kraus, A. Rodriguez-Arroyo. Evolutionary design
of an X-band antenna for NASA’s space technology 5 mission. Proceedings of the
2003 NASA/DoD Conference on Evolvable Hardware, 2003.

[96] J. F. Miller, K. Downing. Evolution in materio: Looking beyond the silicon box.
Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware, 2002.

[97] L. P. Masiero, M. Pacheco, C. R. Hall, C. Santini. Molecular circuit design. Proceed-
ings of the 2005 NASA/DOD Conference on Evolvable Hardware. June–July, 2005.

[98] L. Spector, H. Barnum, H. J. Bernstein, N. Swamy. Quantum computing
applications of genetic programming. Advances in Genetic Programming, MIT Press,
1999.

C H A P T E R 34

NETWORK PACKET PROCESSING
IN RECONFIGURABLE HARDWARE

John W. Lockwood
Washington University in St. Louis and Stanford University

This chapter will show, through an example, how networking systems have been
built with reconfigurable hardware. It will describe how data can be switched,
routed, buffered, processed, scanned, and filtered over networks using field-
programmable gate arrays (FPGAs).

The chapter begins by describing the mechanisms by which Internet packets
are segmented into frames and cells for transmission across a network. Inter-
net Protocol (IP) wrappers are introduced, and it is shown how they simplify
the implementation of large packet-processing systems. Next, a framework for
building modular systems that implement Internet firewalls and intrusion pre-
vention systems is presented. The chapter continues with a detailed explanation
of how Bloom filters can scan streams of data for fixed strings and how finite
automata can be used to scan for regular expressions.

Case studies are provided that show how deep packet inspection systems
are implemented in reconfigurable hardware. One circuit detects the spread of
worms and viruses across an Internet link. Another circuit analyzes the seman-
tics of the text in traffic flows to determine which language is used within
attached documents. A hardware-accelerated version of the popular SNORT
intrusion detection system is illustrated, and it is shown how the FPGA hardware
works with the software on a host to analyze packets.

34.1 NETWORKING WITH RECONFIGURABLE HARDWARE

34.1.1 The Motivation for Building Networks with Reconfigurable
Hardware

Although modern microprocessors continue to improve their performance, they
are not improving as fast as the rate at which data flows over Internet connec-
tions. As the limits of Moore’s Law are reached, alternative computational meth-
ods are needed to route, process, filter, and transform Internet datastreams.

Networking systems created with reconfigurable hardware are flexible and
easily modified to provide new functionality. Reconfigurable hardware enables
features on networking platforms to be implemented in ways that are quite dif-
ferent from current platform implementations. It allows new modular compo-
nents to be created and then dynamically installed in remote networksystems.

754 Chapter 34 � Network Packet Processing in Reconfigurable Hardware

By processing network packets in hardware rather than in software, networking
applications do not suffer the performance penalty caused by sequential data
processing.

The Internet evolves as new protocols, features, and capabilities are added to
the routers that implement the underlying network. Protocols, such as IP ver-
sion 6 (IPv6), allow more devices to be individually addressed. Added features,
such as per-flow queuing, allow voice and video to be reliably delivered in real
time. Firewalls and intrusion prevention systems (IPSs) enhance Internet security.

Network platforms have been built to route network traffic, filter packets,
and queue data in reprogrammable hardware. With reconfigurable hardware,
networking platform operation can change over time as packet-processing algo-
rithms and protocols evolve. With FPGAs, all features of the packet-processing
system are configurable down to the logic gates. These systems enable new ser-
vices to deploy and operate at the rate of the highest-speed backbone links.

34.1.2 Hardware and Software for Packet Processing
For their packet-processing operations, today’s fastest routers use network pro-
cessing elements implemented in custom silicon or in application-specific inte-
grated circuits (ASICs). As shown in Figure 34.1, network processing elements
reside between the line card where packets are transmitted and received and the
Gigabit/second rate switch fabric that interconnects ports. They contain hun-
dreds to thousands of parallel logic circuits and finite-state machines that are
optimized to route, filter, queue, and/or process Internet datagrams in hardware.

Several platform types have been developed, many of which use standard micro-
processors such as the Intel Pentium, AMD Athlon, or Motorola/IBM PowerPC.
Others use ASICs from vendors such as Agere, Intel, Motorola, Cavium, Broadcom
and Vitesse. Although software-based systems have outstanding flexibility, their
packet processing is limited because of the sequential nature of their instruction
execution. ASICs and custom silicon networking chips have high performance,
but they offer little flexibility as measured by their ability to reprogram.
Figure 34.2 illustrates the trade-offs between flexibility and performance.

Gigabit
switch
fabric

Network
processing

element

Line
card

Network
packets

Network
packets

Network
processing

element

Line
card

FIGURE 34.1 � A reconfigurable network processing element located between a line card and
switch fabric.

34.1 Networking with Reconfigurable Hardware 755

Reprogrammable
hardware

Network
processor

F
le

xi
b

ili
ty

Performance

High
performance

Microprocessor

ASIC

Fully
reprogrammable

FIGURE 34.2 � Flexibility and performance trade-offs for networking systems that use
microprocessors, network processors, ASICs, and reprogrammable hardware.

34.1.3 Network Data Processing with FPGAs
Reconfigurable hardware devices share the performance advantage of ASICs
because they can implement parallel logic functions in hardware. However, they
also share the flexibility of microprocessors and network processors because
they can be dynamically reconfigured.

Using FPGAs for high-performance asynchronous transfer mode (ATM) net-
working was explored during the development of the Illinois Pular-based Optical
Interconnect (iPOINT) testbed. In this project, an ATM switch with FPGAs [2]
was developed and an advanced queuing module was implemented that pro-
vided per-flow queuing functionality in FPGA hardware. The FPGAs were used
to implement the datapath of the switch and to control the state machines that
buffered the ATM cells as they arrived on each switch port of the switch. The
lookup tables (LUTs) in the FPGA fabric were used to build the multiplexers that
switched the data between the ports. Finally, combinational logic was used to
implement the state machines that controlled how packets were written to and
read from SRAM [3].

FPGAs have also proven effective for implementation of bit-intensive func-
tion networking, such as forward error correction (FEC), and for boosting the
performance of networking protocols [4]. The bitwise processing function maps
well into the fine-grained logic on an FPGA. On-chip LUTs are used to encode
data patterns as symbols with redundant bits of information. When the symbols
are decoded, the redundant bits allow the receiver to reconstruct the data even
with a few bits in error. Reconfigurable logic allows algorithms that use varying
amounts and types of error correction to be programmed on-chip.

Through the development of the Field-Programmable Port Extender (FPX)
platform [1], it was demonstrated that high-performance network packet-
processing systems implemented with FPGAs are both useful and practical. The

756 Chapter 34 � Network Packet Processing in Reconfigurable Hardware

FPX platform used two multi-Gigabit/second network interfaces, four banks of
off-chip memory, and two FPGAs to implement over 30 networking applications.
Applications developed for the FPX platform included modules that performed
Internet Protocol IP address lookup for routing [7]; payload scanning for detec-
tion of fixed strings and regular expressions within the body of a packet; data
queuing to provide quality of service (QoS); intrusion detection to determine
when a network may be under attack; intrusion prevention to halt such attacks;
and semantic processing of network data.

34.1.4 Network Processing System Modularity
Modularity is a key feature of networking systems. Network developers need
standard interfaces to interface high-level network processing components to
the underlying network infrastructure. In systems with reconfigurable hard-
ware, modules can be implemented in regions of an FPGA and bound by a
well-defined interface to the datapath and to external memory. Multiple modu-
lar data-processing components can be integrated to compose systems. Memory
interfaces can connect logic to off-chip memory in order to buffer data and hold
large lookup tables LUTs.

For the FPX platform modules, data was received and transmitted via a series
of ATM cells carried over a 32-bit-wide Utopia interface. ATM cells contained
48 bytes of payload data and 4 bytes of a header that included a virtual path
identifier (VPI) and a virtual circuit identifier (VCI). Each ATM cell also included
an 8-bit checksum that covered the ATM cell header. Larger IP datagrams were
sent between modules using layered protocol wrappers that segmented and
reassembled multiple cells into ATM adaptation layer 5 (AAL5) frames. These
frames contained data from a series of ATM cells and a 32-bit checksum at the
end that covered all bytes of the payload. Segmentation and reassembly of cells
into frames were performed to transfer packets over the network.

The FPX platform (Figure 34.3) stored and loaded data from two types of off-
chip memory. Two interfaces supported transfer of 36-bit-wide data to and from
an on-chip SRAM. SDRAM interfaces provided 64-bit-wide interfaces to multiple
banks of high-capacity, off-chip memory. In the implementation of the IP lookup
module, the off-chip SRAM was used to store data structures for IP lookup,
while the SDRAM was used to buffer packets. The lower latency of SRAM access
was important for the implementation of lookup functions where there was a
data dependency for the result; the larger capacity of the SDRAM was beneficial
for reducing the cost of storing bulk data, including buffering dataflows.

A switch was implemented using the reprogrammable application device
(RAD) FPGA logic that allowed traffic to be routed to extensible modules. Lay-
ered protocol wrappers performed the segmentation and reassembly of AAL5
frames so that full packets could be processed by the FPGA hardware. To repro-
gram the RAD FPGA that contained the extensible modules, configuration and
control logic was implemented on the network interface device (NID) FPGA.

The FPX platform was integrated into the Washington University Gigabit
Switch (WUGS) to process packets as they passed into and out of the networking

34.2 Network Protocol Processing 757

Switch

P
R

O
M

P
rogram
cache

F
low

buffer

R
oute

filter

E
xtensible
m

odules

S
D

R
A

M
S

R
A

M

S
D

R
A

M
S

R
A

M Layered protocol wrappers Memory
RAD (FPGA)

NID (FPGA)

Network interface

(a) (b)

B
itfile

p
ro

g
ram

lo
g

ic

FIGURE 34.3 � A block diagram and a physical implementation of the FPX platform.

ports of a scalable network switch. The WUGS switching platform provided a
backplane for transferring ATM cells between ports. By adding the FPX between
the line cards and the switch fabric, the system was able to analyze, process,
route, and filter IP packets as they flowed through the system. OC-3 to OC-48 line
cards were used to directly send and receive ATM cells, while Gigabit Ethernet
line cards were used to segment frames into multiple ATM cells and reassemble
them. After data passed through the FPX, they were forwarded to the switch
fabric, where cells were forwarded to other FPX modules in the chassis based
on their VPI and VCI values.

34.2 NETWORK PROTOCOL PROCESSING

The Open Systems Interconnection (OSI) Reference Model defines how multiple
layers can be used to transport data over a computer network. OSI divides the
functions of a protocol into a series of layers, each of which has two properties:
(1) It uses only the functions of the layer below, and (2) it exports functionality
only to the layer above. A system that implements protocol behavior consisting
of a series of these layers is known as a protocol stack. Protocol stacks can be
implemented in hardware, in software, or in a mixture of the two (typically, only
the lower layers are implemented in hardware; the higher layers, in software).
This logical separation makes reasoning about the behavior of protocol stacks
much easier and allows their design to be elaborate but highly reliable. Each
layer performs services for the next highest layer and makes requests for the
next lowest layer [5].

For real systems that process Internet data, the OSI model is not directly
implemented but instead serves as a reference for implementation of the real
protocols. Layers are important for processing IP data, however, because they
permit application-processing modules to abstract details of the lower-layer

758 Chapter 34 � Network Packet Processing in Reconfigurable Hardware

Wrapper

Low-level protocol wrapper

Net
app

FIGURE 34.4 � Integration of a network application within one or more wrappers.

network protocols. At the lowest layer, networks modify raw cells of data that
move between interfaces. At higher layers, the applications process variable-
length frames or IP packets. To send and receive data at the user level, a network
application may transmit directly or receive user datagram protocol (UDP) mes-
sages by instantiating all wrappers and sending data from a network application
down through a series of wrappers [6] (see Figure 34.4).

34.2.1 Internet Protocol Wrappers
Hundreds of millions of computers deployed throughout the world communi-
cate over the Internet. Traffic from these machines is concentrated to flow over
a smaller number of routers that forward traffic through the Internet core. Cur-
rently, Internet backbones operate over communication links ranging in speed
from OC-3 (155 Mbps) to OC-768 (40 Gbps). Fast links that process small
packets have the ability to process millions of IP packets per second.

A library of layered protocol wrappers (see Figure 34.5) was developed to
process Internet packets in reconfigurable hardware. Collectively, the wrappers
simplified and streamlined the implementation of high-level networking func-
tions by abstracting the operation of lower-level packet-processing functions.
The library infrastructure was synthesized into FPGA logic and integrated into
an FPX network platform. At the lowest levels, the library processes ATM cells.
Complete frames of data are segmented and reassembled using ATM adaptation
layer 5 (AAL5), over which IP messages are then transported.

When only a single message needs to be transmitted, the UDP can send one
packet over the Internet. UDP encapsulates a variable-length message into an
IP packet and allows the system to specify source and destination port numbers
that identify from which application on a machine the data was sent and to
which application it should be delivered. UDP/IP also provides a checksum to
ensure the integrity of the data. Using the FPX protocol-processing library, this
checksum is automatically computed, using FPGA hardware, as the sum over
the payload bytes of the message.

34.2.2 TCP Wrappers
Over 85 percent of all traffic on the Internet today uses the Transmission Con-
trol Protocol (TCP). TCP is stream oriented and guarantees delivery of data with

34.2 Network Protocol Processing 759

TCP/UDP processor

Application
module

IP packet processor

Cell processor

Frame processor

External memory interfaces

Data
output

Data
input

FIGURE 34.5 � Implementation of layered protocol wrappers on the FPX platform.

an ordered byte flow. Processing TCP dataflows in the middle of the network is
extremely difficult because network packets can be dropped, duplicated, and
reordered. Packet sequences observed within the interior of the network may be
different from packets received and processed at the connection endpoints. The
complexities associated with tracking the state of end systems and reconstruct-
ing byte sequences based on observed traffic are significant.

A TCP processing circuit was developed that handles the complexities associ-
ated with flow classification and TCP stream reassembly. It provided the FPGA
logic with a view of network traffic flow data through a simple client interface.
The TCP wrapper enabled other high-performance data-processing subsystems
to operate on TCP network content without needing to implement their own
state-tracking operations. The TCP module used a state store to track the status
of each TCP/IP flow and, using a hash function, assigned a unique flow number
to each session [8].

Figure 34.6 is a block diagram of the TCP processor. Internet packets arrive
as frames of data to the input state machine of the TCP processing engine. The
input state machine forwards the frames to a first in, first out (FIFO) that buffers
the packet; a checksum engine that computes and verifies the correctness of the
TCP checksum; and a flow classifier that computes a flow identifier (flow ID)
using a hash over fields in the packet header.

The flow ID is passed to the state store manager that retrieves the state asso-
ciated with the particular flow. Results are written to the control and state FIFO,
and the state store is updated with the current flow state. The output state
machine reads data from the frame and control FIFO buffers and passes data
to the packet-routing engine. Most traffic flows through the content-scanning
engines, which scan the data. Packet retransmissions bypass these engines and
go directly to the flow-blocking module.

Data returning from the content-scanning engines also goes to the flow-
blocking module. This stage updates the per-flow state store with application-
specific state information. If a content-scanning engine indicates that it has a
need to block a flow, the flow-blocking module can enforce this rule by com-
paring the packet’s sequence number with the sequence numbers for which
flow blocking should take place. If the packet meets the blocking criteria, the

760 Chapter 34 � Network Packet Processing in Reconfigurable Hardware

TCP protocol processing

State store manager

SDRAM controller

512MB SDRAM module

Read
interface

Write
interface

Read/write
interface

Flow
classifier

Enhanced flow
management

State store
retrieval

State store
update

Read
engine

Write
engine

Blocking
retrieval

Read/write
engine

Application
update

Checksum
engine

Frame
FIFO

Control
and
state
FIFO O

ut
pu

t s
ta

te
 m

ac
hi

ne

In
pu

t s
ta

te
 m

ac
hi

ne

FIGURE 34.6 � A block diagram of the TCP processor.

flow-blocking module drops it from the network. Any remaining packets go to
the outbound protocol wrapper.

The state store manager processes requests to read and write flow state
records. It also handles all interactions with SDRAM memory and caches
recently accessed flow state information. The SDRAM controller exposes three
memory access interfaces: a read/write, a write-only, and a read-only. The con-
troller prioritizes requests in that order, with the read/write interface having the
highest priority.

34.2.3 Payload-processing Modules
Many network applications have a common requirement for string matching
in the payload of packets or flows. Once the data being transported over the
network has been reconstructed using the IP and TCP modules, it can be exam-
ined in the payload. For example, the presence of a string of bytes (or a sig-
nature) can identify the presence of a media file, an attachment, or a security
exploit. Well-known Internet worms, such as Nimda, Code Red, and Slammer,
propagate by sending malicious executable programs identifiable by certain byte
sequences in payloads [14]. Because the location (or offset) of such strings and

34.2 Network Protocol Processing 761

their length are unknown, such applications must be able to detect strings of
different lengths starting at arbitrary packet payload locations.

Packet inspection applications, when deployed at router ports, must operate
at wire speeds. As network rates increase, the implementation of packet moni-
tors that process data at Gigabit/second line rates has become increasingly diffi-
cult. Thus, the growth in network traffic has motivated specialized packet- and
payload-processing modules in hardware.

34.2.4 Payload Processing with Regular Expression Scanning
A regular expression (RE) is a pattern that describes a set of strings. The
basic building blocks for these patterns consist of individual characters, such as
{a, b, and c}. These characters can be combined with meta-characters, such
as: {*, |, and ?}, to form regular expressions with wildcards. For two regular
expressions, r1 and r2, rules define that r1* matches any string composed of
zero or more occurrences of r1; r1? matches any string composed of zero or
one occurrence of r1;r1|r2 matches any string composed of r1 or r2; and
r1r2 matches any string composed of r1 concatenated with r2. For instance,
a is an RE that denotes the singleton set {a}, while a|b denotes the set {a, b}
and a* denotes the infinite set {null, a, aa, aaa,. . .}. REs can be identified
using nondeterministic finite automata (NFA).

Research on RE matching in hardware has been performed by Sidhu and
Prasanna [16] and Franklin et al. [17]. Sidhu and Prasanna were primarily
concerned with minimizing the time and space required to construct NFAs.
They ran their NFA construction algorithm in hardware as opposed to software.
Franklin et al. followed with an analysis of this approach for the large set of
expressions found in a SNORT database [18].

The search function FPgrep was implemented by Moscola et al. to search
packet payloads for substrings that belong to the language defined by the RE
[15]. When FPgrep matched a substring in a packet, it transmitted information
about the packet to a monitoring host system. The information sent for network
intrusion detection functions specified the content found and the sender’s and
receiver’s IP addresses. The search ran in linear time (proportional to packet
size), O(n) (where n was the number of bytes in a packet), and in constant space.
That is, there was never a need to examine a character more than once and the
amount of hardware was proportional to the size of the RE. Approximately one
flip-flop was required per character.

A streaming content editor, FPsed, was implemented as a module on the FPX
platform. The FPsed module selectively replaced content in packet payloads.
String replacement for an RE is not as straightforward or efficient as searching.
It requires that the machine do more than simply determine the presence of
matching substrings in a record—it must also determine the position of the
first and last character of all complete substrings that are matched by it. It is
this requirement that makes RE search and replace more complicated and less
efficient than a simple search. Searching for the complete substring is logical
when the goal is to replace it.

762 Chapter 34 � Network Packet Processing in Reconfigurable Hardware

Consider the replacement of every occurrence of a certain hexadecimal string
associated with a computer virus, 3n*4n*5n*B, with the text Virus Pattern
Detected. For the sake of brevity, the previous expression uses n as shorthand
for any hexadecimal character (i.e., 0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F).
For the input string 3172F34435B6B7B8, the substring can be replaced from
the point where the machine starts running, 34, to the point where the substring
is accepted, just before B6 (i.e., substring 34435B). However, this would allow
a portion of the virus to remain in the content stream. In most situations, it is
preferable to replace complete substrings; here the complete substring match
starts with 31 and includes everything to just before B8 (i.e., the substring
3172F34435B6B7B).

34.2.5 Payload Scanning with Bloom Filters
A hash table is one of the most attractive choices for quick lookups. Hash tables
require only constant time, O(1), average memory accesses per lookup. Because
of their versatile applicability in network packet processing, it is useful to imple-
ment these hashing functions in hardware [19, 20].

Bloom filters can detect strings of characters that appear in streaming data
moving at very high data rates. A Bloom filter is a data structure that stores a set
of signatures compactly by computing multiple hash functions on each member
of the set. It queries a database of strings to check for the membership of a
particular string. The answer to this query can be false positive but never false
negative. The average computation time to perform a query remains constant so
long as the sizes of the hash tables scale linearly with the number of strings they
store. Because each table entry stores only a hashed version of the content, the
amount of storage required by the Bloom filter for each string is independent
of its length.

34.3 INTRUSION DETECTION AND PREVENTION

Existing firewalls that examine only the packet headers do little to protect
against many types of attack. Multiple new worms transport their malicious soft-
ware, or malware, over trusted services and cannot be detected without exam-
ining the payload. Intrusion detection systems (IDSs) perform deep scanning of
the payload to detect malware, but do nothing to impede the attack because
they only operate passively. An intrusion prevention system (IPS), on the other
hand, can intervene and stop malware from spreading. The configuration of a
network intrusion prevention system is shown in Figure 34.7.

One problem with software-based IDSs is that they cannot keep pace with the
high volume of traffic that transits high-speed networks. Existing systems that
implement IPS functions in software limit the bandwidth of the network and
delay the end-to-end connection.

A reconfigurable system that can keep pace with high-speed network traffic
has been developed. It scans data quickly, reconfigures to search for new attack

34.3 Intrusion Detection and Prevention 763

InternetInternet
… Network

intrusion
prevention

FIGURE 34.7 � Configuration of an in-line network IPS situated between two hosts attached to a
router and to the Internet.

patterns, and takes immediate action when attacks occur. By processing the
content of Internet traffic in real time within an extensible network, data that
contains computer viruses or Internet worms can be detected and prevented. By
adding only a few filtering devices at key network aggregation points, Internet
worms and computer viruses can be quarantined to the subnets where they were
introduced.

A complete system has been designed and implemented that scans the full
payload of packets to route, block, and track the packets in the flow based on
their content. The result is an intelligent gateway that provides Internet worm
and virus protection in both local and wide area networks.

Network intrusion detection and prevention systems search for predefined
virus or worm signatures in network traffic flows (see Section 34.2.3). Such sig-
natures can be loaded into the system manually by an operator or automatically
by a signature detection system. (Note that string is synonymous with signature
throughout the chapter.)

Once a signature is found, an intrusion detection and prevention system
(IDPS) can use it to block traffic containing infected data from spreading
throughout a network. To perform this operation on a high-speed network, the
signature scanning and data blocking must operate quickly. Comparing a variety
of systems running the SNORT rule-based NID sensor reveals that most general-
purpose computer systems are inadequate as NID sensor platforms even for
moderate-speed networks. Factors such as microprocessor, operating system,
main memory bandwidth, and latency limit the performance that an NIDS sen-
sor platform can achieve [22].

34.3.1 Worm and Virus Protection
Computer virus and Internet worm attacks are pervasive, aggravating, and expen-
sive, both in terms of lost productivity and consumption of network bandwidth.
Attacks by Nimba, Code Red, Slammer, SoBig.F, and MSBlast have infected com-
puters globally, clogged large computer networks, and degraded corporate pro-
ductivity. It can take weeks to months for information technology professionals
to sanitize infected computers in a network after an outbreak [24].

In the same way that a human virus spreads among people coming in contact
with each other, computer viruses and Internet worms spread when computers
communicate electronically [25]. Once a few systems are compromised, they
infect other machines, which in turn quickly spread the infection throughout
a network. As is the case with the spread of a contagious disease, the number

764 Chapter 34 � Network Packet Processing in Reconfigurable Hardware

of infected computers grows exponentially unless contained. Computer systems
spread contagion much more quickly than humans do because they can com-
municate instantaneously over large geographical distances. The Blaster worm,
for example, infected over 400,000 computers in less than five days. In fact,
about one in three Internet users are infected with some type of virus or worm
every year.

Malware can propagate as a computer virus, an Internet worm, or a hybrid of
both. Viruses spread when a computer user downloads unsafe software, opens
a malicious attachment, or exchanges infected computer programs over a net-
work. An Internet worm spreads over the network automatically when malware
exploits one or more vulnerabilities in an operating system, a web server, a
database application, or an email exchange system.

Malware can appear as a virus embedded in software that a user has down-
loaded. It can also take the form of a Trojan that is embedded in what appears
to be benign freeware. Alternatively, it can spread as content attached to an
email message, as content downloadable from a web site, or in files transferred
over peer-to-peer systems. Modern attacks typically use multiple mechanisms
to execute. Malware, for example, can spoof messages that lure users to sub-
mit personal financial information to cloaked servers. In the future, malware is
likely to spread much faster and cause much more damage.

Today, most anti-virus solutions run in software on end systems. To ensure
that an entire network is secure from known attacks, integrated systems were
developed that can perform multiple network processing functions.

34.3.2 An Integrated Header, Payload, and Queuing System
An integrated system that incorporated the payload-scanning function, a ternary
content addressable memory (TCAM) for header matching, and a flow buffer and
queue manager for packet storage was implemented [13]. It is shown as a block
diagram in Figure 34.8.

Layered protocol wrappers

Interfaces to off-
chip memories

Payload
scanner

TCAM
filter

Flow
buffer

Queue
manager

Free list
manager

SRAM
controller

SDRAM
controller

Packet
scheduler

Payload match bits Flow ID

Extensible
module(s)

SDRAM
controller

Xilinx XCV2000E FPGA

FIGURE 34.8 � Complete on-chip networking header and payload processing integrated with a
flow buffer and a queue manager.

34.3 Intrusion Detection and Prevention 765

SNORT is a lightweight NID sensor that can filter packets based on predefined
rules over packet headers and payloads [18]. With the TCP option enabled,
SNORT matches strings that appear anywhere within traffic flows. Each SNORT
rule operates first on the packet header to verify that the packet is from a source
or to a destination network address and/or port of interest. If the packet matches
a certain header rule, its payload is scanned against a set of predefined patterns
associated with that rule. Matching of one or multiple patterns implies a com-
plete match of a rule, and further action can be taken on either the packet or
the TCP flow.

To provide complete detection of all known attacks, an intrusion system must
process all packets. Several thousand patterns appeared in the version 2.2 rule
set for SNORT. SNORT’s rule database continually expands as new threats are
observed. As the number of headers and signatures to match increases, the CPU
on a PC running SNORT becomes overloaded and not all packets are processed.

A SNORT intrusion filter for TCP (SIFT) was implemented in reconfigurable
hardware and is illustrated in Figure 34.9. SIFT data entered the system via
the TCP de-serialize wrapper. Control signals marked specific locations in the

TCP data

Hash

Index

DQDQDQDQDQDQ

Hash

Index

Header
check

Bloom
filters

Control
FSM

Alert
generator

SNMP
alerter

TCP data

Alerts

Context
storage

Match
decoder

Action
retriever

Control

TCP deserialize wrapper

Off-chip ZBT
SRAM (2 MBytes)

On-chip Xilinx BlockRAMs

Off-chip SDRAM
(64–512 MBytes)

Communication wrapper

FIGURE 34.9 � A block diagram of SIFT.

766 Chapter 34 � Network Packet Processing in Reconfigurable Hardware

packet that included the starts of the IP header, the TCP header, and the payload.
The value of the header was sent to a header check component to determine
if the packet matches a header-only rule. The payload was sent through an
8-stage pipeline where each byte offset is searched for signatures by Bloom fil-
ters. If a match was detected, the match decoder determines the string identi-
fier (ID), which was next sent to the action retriever to determine what to do
with the packet. Suspect packets were forwarded to software for further inspec-
tion. Those that had no match were not inspected further; those that did need
additional processing were sent to the outgoing side of the TCP de-serialized
wrapper.

To match payloads, SIFT used Bloom filters to allow signatures to be incre-
mentally programmed into hardware. Signatures could be added or deleted
via messages embedded in UDP control packets. These packets were sent
through the communication wrapper to a control finite-state machine (FSM). In
turn, the FSM set the appropriate bits in BlockRAM memories on the FPGA to
add the signature to the Bloom filter. To achieve high throughput, four engines
ran in parallel [21].

34.3.3 Automated Worm Detection
Outbreaks of new worms constitute a major threat to Internet security. IDPSs
described previously only filter traffic that contain known worms. Systems that
automatically detect new worms in real time by monitoring traffic on a network
allow detection and protection from new outbreaks.

Internet worms spread by exploiting vulnerabilities in operating systems and
application software that run on end systems. Once they infect a machine, they
use it to attack other hosts; these attacks compromise security and degrade net-
work performance, causing large economic losses for businesses resulting from
system downtime and lowered worker productivity. The Susceptible/Infective
(SI) model illustrates the spread of Internet worms [25]. With this model, a well-
known equation can be used to estimate how fast a worm will infect vulnerable
machines.

Worms can be prevented by writing code that has no vulnerabilities, and the
computer security community has made great strides toward this goal. Program-
mers analyze the vulnerability that the worm exploits and release a “patch” to
fix it. However, it takes time to analyze and patch software. In addition, many
end users may never apply the patch, and as a result a significant number of
machines in the network remain vulnerable.

Another way to prevent the spread of worms is to have the network contain
them. When intrusion prevention systems scan traffic for a predetermined signa-
ture and filter the flows that match, the spread of a known worm can be blocked.
The EarlyBird System [26, 27] detects the signatures for unknown worms in
real time, identifying them by their repeating content. Because worms consist
of malicious code, frequently repeated content on the network can be a useful
warning of worm activity. Large flows are identified by computing a hash of
packet content in combination with a destination port.

34.4 Semantic Processing 767

A hardware-accelerated worm detection circuit implemented in reconfigur-
able hardware draws from two ideas presented in the EarlyBird system [23]. To
detect commonly occurring content, a hash is computed over 10-byte windows
of streaming data. The hash value is used to identify a counter in a vector that
is instructed to increment by one. At periodic intervals (called timeouts), the
counts in each of the vectors are decremented by the average number of arrivals
due to normal traffic. When a counter reaches a predetermined threshold, an
alert is generated and its value is reset to zero.

For the implementation of the circuit on an FPGA, the count vector was
implemented by configuring dual-ported, on-chip BlockRAMs as an array of
memory locations. Each memory afforded one read operation and one write
operation every clock cycle, which allowed a 3-stage pipeline to be implemented
that reads, increments, and writes memory every clock cycle. Because the signa-
ture changes every clock cycle and because every occurrence of every signature
must be counted, the dual-ported memories allow the occurrence count to be
written back while another count is being read.

When an on-chip counter crosses the threshold, the corresponding signature
is hashed to a table in off-chip SRAM. The next time the same string causes
the counter to exceed the threshold, it is hashed to the same location in SRAM
and the two strings are compared. If they are the same, it is determined that the
match is not a false positive and the counter is incremented. If they are different,
the contents of the string stored in SRAM is overwritten with the value of the
new string and the count is reset.

On receiving confirmation from the SRAM analyzer that a signature fre-
quently occurs, a UDP control packet is sent to an external computer. The packet
contains the offending signature, which is the string of bytes by which the hash
was computed. The computer, in turn, programs other IDS/IDP systems to filter
traffic that contains this signature.

34.4 SEMANTIC PROCESSING

Next-generation networks route and forward data based on the semantics of
the data within documents. Rather than assigning arbitrary headers to packets,
routers use the meaning of the text itself to determine the packet routing.

34.4.1 Language Identification
As of 2004, nearly two-thirds of the world’s Internet users spoke a non-English
native language [29], and nearly one-third of the pages available on the Inter-
net were written in a non-English language [29, 30]. As the rate at which data
is transferred over the Internet increases, the rapid identification of languages
becomes an increasingly difficult problem. A system capable of quickly identi-
fying the primary language or languages used in documents can be useful as a
preprocessor for document classification and translation services. It can also be
used as a mechanism for language-based document routing.

768 Chapter 34 � Network Packet Processing in Reconfigurable Hardware

A hardware-accelerated algorithm was designed to automatically identify the
primary languages used in documents transferred over the Internet [28]. The
module was implemented in hardware on the FPX platform. Referred to as
Hardware-Accelerated Identification of Languages (HAIL), this complete sys-
tem identified the primary languages used in content transferred over TCP/IP
networks. It operated on streaming data at a rate of 2.4 Gigabits/second using
FPGA hardware. This level of performance far outstripped software algorithms
running on microprocessors.

Several methods have been shown to be effective for the classification of
document characteristics based on principles from linguistics and artificial intel-
ligence. Some methods used dictionary-building techniques [31], while others
used Markov Models, trigram frequency vectors [32], and/or n-gram–based text
categorization [33, 34]. Although these methods are capable of achieving high
degrees of accuracy, most require floating-point mathematics, large amounts of
memory, and/or generous amounts of processing time.

HAIL uses n-grams to determine the language of a document. These are
sequential patterns of exactly n characters that are found in written documents,
and when they are used as indicators of language, the primary language or lan-
guages of a document can be reliably determined. HAIL can use any n-gram
length, although experiments have shown that n-grams of length 3 (trigrams)
and length 4 (tetragrams) provide the most accurate results.

Before processing data with HAIL, the target system is trained with infor-
mation on languages. Training is performed by scanning a set of documents in
the languages of interest. When an n-gram appears significantly more frequently
in the documents of one language than in any other, it is associated with that
language. After training has established which n-grams best correspond to par-
ticular languages, memory modules on the hardware platform implementing
HAIL have to be programmed. Memory is populated by using a hash to map
each n-gram to a particular memory location. The memory location that cor-
responds to a particular n-gram is labeled with the associated language. Once
data processing begins, the n-grams are sampled from the datastream and used
as addresses into memory to discern the language associated with the n-gram.
The final language is determined by the statistics of the words that appear in
each language.

34.4.2 Semantic Processing of TCP Data
Within the intelligence community, there is a need to search through massive
amounts of multilingual documents that are encoded using different charac-
ter sets. It has been shown that computational linguistics and text-processing
techniques are effective for sorting through large information sets, extracting
relevant documents, and discovering new concepts [33]. There is a problem,
however, in that the computational complexity of the text-processing algorithms
is such that the document ingest rate is too slow to keep up with the high rate
of information flow [34].

To overcome this problem, a system using FPGA hardware was devel-
oped for accelerated concept discovery and classification algorithms [35, 36].

34.4 Semantic Processing 769

Circuits were implemented as reconfigurable hardware modules that dramatically
increased data ingest rates. It was found that text analysis algorithms that perform
“bag of words” processing were widely used and appropriate for many types of
computational linguistics tasks. To investigate the utility of hardware-accelerated
text analysis algorithms, a reconfigurable FPGA-based semantic-processing sys-
tem was developed. The hardware tested a variety of target problems involving
concept classification, concept discovery, and language identification [36].

A blend of high-speed network devices and reconfigurable hardware was used
to rapidly ingest and process data [35]. Data were received from the network as
text or HTML documents and carried over standard TCP/IP packets. The TCP
processor decoded the packets that contained the document in one or more
TCP/IP input flows. Every word (baseword) in the document was analyzed for
its semantic meaning. All words in each document were then counted to deter-
mine their frequency of occurrence. A document vector was generated that char-
acterized the document content. It was then scored against a set of vectors that
represented known or emerging concepts. Thresholds were used to determine if
content could be classified as existing or if a new cluster should be formed.

Figure 34.10 diagrams the dataflow of the semantic-processing system.
The FPGAs enabled streaming, computationally intensive semantic-process-
ing functions to be performed in constant time. They performed all of the

Decode input TCP datastreams and interpret content

Map basewords to semantic meaning

Receive large volume of input content
over network (e.g., HTML documents)

Count word frequencies in each document

Automatically threshold, classify, and
cluster content in to groups for analyst

Σ
Score documents against known
and emerging conceptsΣ Σ Σ...

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

FIGURE 34.10 � Dataflow for the semantic processing system.

770 Chapter 34 � Network Packet Processing in Reconfigurable Hardware

data-processing functions for the system shown in the figure except for threshold
and classification (which were performed and displayed on a computer console).
By using FPGAs to implement all parts of the text processing, the entire sys-
tem could be dynamically reconfigured to allow variations of algorithms to be
evaluated for their content classification or concept-clustering ability. Massive
volumes of data were streamed through the system, and the system’s precision,
recall, throughput, and latency were measured [36].

The RAD circuits on the FPX (shown in Figure 34.3) were used to implement
the TCP processor, the baseword module, the count module, the score module,
and the report module. All were implemented as modular hardware compo-
nents on individual FPX platforms connected in a vertical stack. The high-speed
network interfaces allowed the FPX platforms to communicate intermediate
results of processing to other modules in the system and to send reports to soft-
ware running on a computer outside the system using standard IP datagrams.
Multiple copies of the FPX platform were stacked on each other to implement
network intrusion detection and network intrusion prevention. Figure 34.11 is
a photograph displaying how five FPX cards were stacked to implement the
semantic processing system. Additional modules were added to tag tokens in a
context-free grammar [37].

34.5 COMPLETE NETWORKING SYSTEM ISSUES

To deploy complete network systems, additional issues must be considered.
First, the hardware must be placed in a form factor appropriate for use in
remote network closets. Second, the control and configuration of the hardware
must be secure. And third, reconfiguration mechanisms are needed so that entire
FPGAs, or (as needed) only parts, can be reconfigured over the network. With
dynamic hardware plug-ins, most of the system can remain operational while
parts of it are reconfigured. Partial bitfile reconfiguration allows the system itself
to remain operational 24 hours a day (which is necessary to maintain a good
network uptime) while individual components can still be modified quickly and
efficiently. The PARBIT tool allows precompiled partial bitfile configurations
to be generated and then quickly deployed into regions of FPGA networking
hardware.

34.5.1 The Rack-mount Chassis Form Factor
Networking equipment is typically deployed in the form factor of a chassis that
can be mounted into a 19-inch rack. Each unit (U) of a rack is 1.75 inches tall.
In a 3U rack-mount chassis, up to four FPX modules could be stacked on each
of two ports in the system. Data entered and left the system through the Gigabit
Ethernet ports on the front panel. Figure 34.12 is a photograph of FPX modules
integrated in a rack-mount chassis.

34.5 Complete Networking System Issues 771

TCP processor

Word mapping module

Count module

Reporting module

Outgoing scored
document vectors

Incoming network traffic

Score module

FIGURE 34.11 � A stack of the FPX modules implemented the semantic processing system.

FIGURE 34.12 � FPX modules integrated in a rack-mount chassis.

34.5.2 Network Control and Configuration
Reconfigurable hardware circuits perform a variety of functions in the network-
ing system. Some parts of the system implemented the infrastructure while
others implemented the dynamically reconfigurable logic. Static circuits are

772 Chapter 34 � Network Packet Processing in Reconfigurable Hardware

used to switch cells between modules. The extensible modules implemented as
plug-ins perform the reconfigurable features. The FPX used a combination
of statically configured and dynamically configurable logic to implement the
complete platform.

On the FPX, the NID was statically configured using a bitfile stored in a
PROM. It controlled how data was routed between network modules. and
included switching modules that forwarded traffic flows based on virtual paths
and circuits found in the ATM cell headers. The NID also contained the logic
that enabled other hardware modules to be dynamically loaded over the net-
work. This logic implemented a circuit that used a reliable network protocol to
receive full and partial bitfiles over the network. The NID, in turn, buffered this
data in a configuration cache and streamed the bitstream into the programming
port of the attached FPGA.

The RAD on the FPX was a Xilinx VirtexE-2000E FPGA that received the
configuration data and performed application-specific functions implemented
as dynamic hardware plug-in (DHP) modules. A DHP consisted of a region of
FPGA gates and internal memory bound by the well-defined interface. For bit-
files that used all of the logic on the RAD, the interface was defined by user con-
straints file (UCF) pins. For partial bitfiles that used less than the entire FPGA,
a standard on-chip interface was developed to transmit and receive packet
data between modules. A full or partial bitfile was built using standard CAD
tools [11].

34.5.3 A Reconfiguration Mechanism
The NID allowed modules created for the FPX platform to be remotely and
dynamically loaded into the RAD. This bitstream was sent over the network into
the configuration cache, which was implemented by a circuit that controlled an
off-chip SRAM. Once a full or partial bitfile was received, a command was sent
to the NID to initiate the RAD reconfiguration. On a Xilinx Virtex, the SelectMAP
interface loaded a new bitstream into the FPGA. To reprogram the RAD, the NID
read the configuration memory and wrote a preprogrammable number of config-
uration bytes into the RAD FPGA’s SelectMAP interface. Figure 34.13 illustrates
this process.

The NCHARGE API [9] was developed for debugging, programming, and
configuring an FPX. Specifically, it included commands to check the status of
an FPX, configure routing on the NID, and perform memory updates and full
and partial RAD reprogramming.

NCHARGE provided a mechanism for applications to define their own custom
control interface. Control cells were transmitted by NCHARGE and processed
by control cell processors (CCPs) on the RAD or NID. To configure routes for
the traffic flowing through the system, NCHARGE sent control cells with com-
mands that modified routing tables on the Gigabit switch or on the NID. To
check the status of the FPX, NCHARGE sent a control cell to the NID on the
FPX, the NID updated fields in the cell, and the software process received the
response.

34.5 Complete Networking System Issues 773

Switch
Element

IPP

IPP
IPP
IPP
IPP
IPP
IPP

OPP

OPP
OPP
OPP
OPP
OPP
OPP
OPPIPP

IPP

IPP
IPP
IPP
IPP
IPP
IPP

OPP

OPP
OPP
OPP
OPP
OPP
OPP
OPPIPP

RAD NID

Configuration
cache

2. Full or partial bitstream
sent over network to NID
on the FPX and stored
in configuration cache

3. Command
issued to
reconfigure
hardware

4. NID reads memory
and reprograms
RAD via SelectMAP
interface

1. New module
created

Switch
element

FIGURE 34.13 � Remote reconfiguration of the FPX platform.

34.5.4 Dynamic Hardware Plug-ins
Use of runtime reconfiguration in networking systems enables developers of
hardware packet-processing applications to achieve a capability similar to that
of the dynamically linked libraries (DLLs) used in software applications. Just
as a DLL is a software module that can be attached to or removed from
a running program as an application demands, DHPs can be loaded into
or removed from a running FPGA without disturbing other circuits operat-
ing in it. The ability to change the hardware feature set in a running sys-
tem is particularly useful in packet-processing applications such as firewalls
and routers where it is not desirable to suspend the network operation during
reprogramming.

A practical system for implementing DHPs was implemented on the FPX and
provided sufficient resources for networking, well-defined interfaces to hard-
ware, a complete design methodology, scripts that ran physical implementation
tools to place and route logic, and tools that allowed selective reconfiguration
of portions of the bitstream. These five elements were analogous to an operat-
ing system platform, application programming interface, modular programming
methodology, compiler, and linker needed to implement DLLs in the software
domain.

34.5.5 Partial Bitfile Generation
Tools and a design methodology were developed to support partial runtime
reconfiguration of DHP modules on the FPX platform. The PARBIT tool
was developed to transform and restructure bitstreams created by standard
computer-aided design tools into partial bitstreams that programmed DHPs.

774 Chapter 34 � Network Packet Processing in Reconfigurable Hardware

The methodology allowed the platform to hot-swap application-specific DHP
modules without disturbing the operation of the rest of the system [12].

To partially reconfigure an FPGA, it is necessary to isolate a specific area in
it and download the configuration only for the bits related to that area. PARBIT
transformed and restructured the Xilinx bitstreams to extract and merge data
from the bitfile’s regions. To restructure the configuration bitfile, it read the orig-
inal bitfile, a target bitfile, and parameters given by the user that specified the
block coordinates of the logic implemented on a source FPGA, the coordinates of
the area for a partially programmed target FPGA, and the programming options.
After reading these data, PARBIT copied to the target bitstream only the part of
the original bitstream related to the area defined by the user.

The target bitstream was used by PARBIT to preserve the part of the config-
uration data that was in a column specified by the user but outside the partial
reconfigurable area. On a Xilinx VirtexE FPGA, the use of the target bitstream
was necessary because one reconfiguration frame could span all rows of a col-
umn but have a partial reconfigurable area smaller than the column’s height.
PARBIT allowed arbitrary block regions of a compiled design to be retargeted
into any similarly sized region of an FPGA.

To relocate blocks from the original bitfile, a user defined the start and end
columns and rows for the block in the original design. Then the user defined
where to put this block in a target bitfile of the same device type. The tool
generated the partial bitfile containing the area selected by the user (from the
original bitfile). This data was used to reconfigure the target device. The config-
uration bits for the top and bottom input/output blocks (IOBs) from the target
device did not change after the partial bitfile was loaded. Those for the columns
from the original and target bitfile were merged according to the rows defined
by the user.

34.5.6 Control Channel Security
For devices deployed remotely on the Internet, security of the control channel is
critical. Remote systems need to be safe from both passive and active network
attacks by malicious users. In passive attacks, malicious users glean information
by monitoring the system. In active attacks, they attempt to change the system’s
behavior or paralyze it. Access control mechanisms have been developed to pro-
tect remotely configured systems from unauthorized use.

Common attacks include passive eavesdropping, active tampering, replay, and
denial of service (DoS). For a passive eavesdropping attack, a malicious user
taps the network to copy and analyze its traffic. If the attacker can see clear text
control and configuration information, he or she may discover how to control
and configure the system. In an active tampering attack, an unauthorized user
attempts to gain control of the remote system by issuing bogus control packets.
For a replay attack, a malicious user passively captures legitimate traffic and
then attempts to change the operation of the system by resending the captured
traffic at a later time. For an active DoS attack, the user paralyzes the system
by overloading the network with massive amounts of traffic.

34.6 Summary 775

Remotely configurable network systems can be made safe by mechanisms that
ensure confidentiality of data, provide authentication of the administrator, and
guarantee integrity of the messaging. By encrypting messages with the Advanced
Encryption Standard (AES) or other secure encryption algorithms, data confi-
dentiality can be protected. With digital signatures generated by public key algo-
rithms, the administrator of the system can be authenticated to guarantee that
no one else attempts to modify its operation. The integrity of messages can be
ensured by verifying that exactly what is transmitted by the administrator is
received by the system. Use of a message authentication code (MAC) can assure
users that data are not modified and that no additional control messages are
inserted.

The Internet Protocol Security (IPSec) standard provides a mechanism to
secure communications across the Internet. Many companies, such as Cisco,
have implemented IPSec capability in their networking products. To secure a
remotely reconfigurable FPGA, an IPSec in transport mode was designed for a
Xilinx Virtex-II Pro FPGA [10]. Security policies at network access points defined
who could gain access and under what conditions access was granted. Encryp-
tion keys and hash keys remained secret using the security services previously
described. The Internet key exchange (IKE) protocol negotiated and exchanged
shared secrets between communication entities.

34.6 SUMMARY

As the limits of processor clock scaling are reached, systems that route, pro-
cess, filter, and transform Internet data scale better in reconfigurable hardware
than in software alone. Networking platforms created with FPGA hardware are
both fast and flexible. The FPX platform was used to implement over 30 core
networking functions.

The combination of Gigabit network interfaces, parallel banks of SRAM and
SDRAM, and a large array of reconfigurable logic on the FPX platform enabled
it to perform a wide range of networking applications. Modules and protocol
wrappers created in reconfigurable hardware were developed on the FPX and
provided functionality similar to the procedures and DLLs in software for net-
work processing. Reconfiguration of the modules over the network proved to
be as effective for remotely loading new functionality on the FPX as the repro-
gramming of software on remote PCs.

By using IP wrappers, the FPX platform provided the ability to process ATM
cells, AAL5 frames, IP packets, UDP datagrams, and/or TCP/IP flows. Parallel
finite automata engines proved useful in detecting regular expressions in packet
payloads and TCP traffic flows. Bloom filters that performed parallel hash
lookups also proved to be effective for detecting fixed strings in packets and
TCP flows. A complete IDS system was implemented that performed a large sub-
set of SNORT using a combination of protocol-processing wrappers, IP header
matching circuits, and Bloom filter payload-scanning circuits. A worm and virus

776 Chapter 34 � Network Packet Processing in Reconfigurable Hardware

detection and blocking system was built using an FPX that demonstrated its util-
ity in providing Internet security.

Reconfigurable hardware holds great promise for new types of networking
applications. A language detection circuit was demonstrated that routed traffic
based on the language used in a document. A semantic-processing circuit was
demonstrated that allowed documents to be classified based on their topic.

Going forward, reconfigurable hardware is becoming the technology of choice
for future networking systems. Reconfigurable hardware is the key feature of a
new platform, called the NetFPGA. This open platform enables switching and
routing of network packets on Gigabit Ethernet links. Because the NetFPGA has
many of the same resources as the FPX, it can implement most of the features
first prototyped on the FPX [38, 39].

References
[1] J. W. Lockwood. Evolvable Internet hardware platforms. NASA/DoD Workshop on

Evolvable Hardware, July 2001.
[2] J. W. Lockwood, H. Duan, J. M. Morikuni, S. M. Kang, S. Akkineni, R. H. Campbell.

Scalable optoelectronic ATM networks: The iPOINT fully functional testbed. IEEE
Journal of Lightwave Technology, June 1995.

[3] H. Duan, J. W. Lockwood, S. M. Kang, J. D. Will. A high-performance OC-12/OC-48
queue design prototype for input-buffered ATM switches. IEEE Infocom ’97, April
1997.

[4] W. Marcus, I. Hadzic, A. McAuley, J. Smith. Protocol boosters: Applying program-
mability to network infrastructures. IEEE Communications Magazine 36(10), 1998.

[5] Wikipedia. OSI model. http://wikipedia.org/wiki/OSI_model, July 2006.
[6] F. Braun, J. W. Lockwood, M. Waldvogel. Protocol wrappers for layered network

packet processing in reconfigurable hardware. IEEE Micro 22(3), February 2002.
[7] D. E. Taylor, J. S. Turner, J. W. Lockwood, T. S. Sproull, D. B. Parlour. Scalable

IP lookup for Internet routers. IEEE Journal on Selected Areas in Communications
21(4), May 2003.

[8] D. Schuehler, J. W. Lockwood. A modular system for FPGA-based TCP flow pro-
cessing in high-speed networks. Proceedings of the 14th International Conference
on Field-Programmable Logic and Applications, August 2004.

[9] T. S. Sproull, J. W. Lockwood, D. E. Taylor. Control and configuration software
for a reconfigurable networking hardware platform. IEEE Symposium on Field-
Programmable Custom Computing Machines, April 2002.

[10] J. Lu, J. W. Lockwood. IPSec implementation on Xilinx Virtex-II Pro FPGA and its
application. Reconfigurable Architectures Workshop, April 2005.

[11] E. D. Horta, J. W. Lockwood, D. E. Taylor, D. Parlour. Dynamic hardware plugins
in an FPGA with partial run-time reconfiguration. Design Automation Conference,
June 2002.

[12] E. Horta, J. W. Lockwood. Automated method to generate bitstream intellectual
property cores for Virtex FPGAs. Proceedings of the 14th International Conference
on Field-Programmable Logic and Applications, August 2004.

[13] J. W. Lockwood, C. Neely, C. Zuver, D. Lim. Automated tools to implement and
test Internet systems in reconfigurable hardware. SIGCOMM Computer Communi-
cations Review 33(3), July 2003.

34.6 Summary 777

[14] J. W. Lockwood, J. Moscola, D. Reddick, M. Kulig, T. Brooks. Application of hard-
ware accelerated extensible network nodes for Internet worm and virus protection.
International Working Conference on Active Networks, December 2003.

[15] J. Moscola, J. W. Lockwood, R. P. Loui, M. Pachos. Implementation of a content-
scanning module for an Internet firewall. IEEE Symposium on Field-Programmable
Custom Computing Machines, April 2003.

[16] R. Sidhu, V. K. Prasanna. Fast regular expression matching using FPGAs. IEEE
Symposium on Field-Programmable Custom Computing Machines, April 2001.

[17] R. Franklin, D. Carver, B. L. Hutchings. Assisting network intrusion detection with
reconfigurable hardware. IEEE Symposium on Field-Programmable Custom Com-
puting Machines, April 2002.

[18] M. Roesch. Snort: Lightweight intrusion detection for networks. Proceedings of the
13th Administration Conference, LISA, November 1999.

[19] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, J. W. Lockwood. Deep packet
inspection using parallel Bloom filters. IEEE Micro 24(1), January 2004.

[20] H. Song, S. Dharmapurikar, J. Turner, J. W. Lockwood. Fast hash table lookup
using extended Bloom filter: An aid to network processing. ACM SIGCOMM,
August 2005.

[21] M. Attig, J. W. Lockwood. SIFT: SNORT intrusion filter for TCP. IEEE Symposium
on High Performance Interconnects (Hot Interconnects-13), August 2005.

[22] L. Schaelicke, T. Slabach, B. Moore, C. Freeland. Characterizing the performance
of network intrusion detection sensors. Proceedings of the Sixth International Sym-
posium on Recent Advances in Intrusion Detection, September 2003.

[23] B. Madhusudan, J. W. Lockwood. A hardware-accelerated system for real-time
worm detection. IEEE Micro 25(1), January 2005.

[24] D. Moore, C. Shannon, G. Voelker, S. Savage. Internet quarantine: Requirements
for containing self-propagating code. IEEE INFOCOM, 2002.

[25] S. Staniford, V. Paxson, N. Weaver. How to own the Internet in your spare time.
Usenix Security Symposium, August 2002.

[26] S. Singh, C. Estan, G. Varghese, S. Savage. The Earlybird System for the Real-
time Detection of Unknown Worms, Technical report CS2003-0761, University of
California, San Diego, Department of Computer Science, 2003.

[27] C. Estan, G. Varghese. New directions in traffic measurement and accounting. ACM
SIGCOMM, August 2002.

[28] C. M. Kastner, G. A. Covington, A. A. Levine, J. W. Lockwood. HAIL: A hardware-
accelerated algorithm for language identification. Proceedings of the 15th Annual
Conference on Field-Programmable Logic and Applications, August 2005.

[29] Global Reach. Global Internet statistics by language. http://www.glreach.com/
globstats/index.php3, December 2004.

[30] Global Reach. Global Internet statistics: Sources and references. http://www.glreach.
com/globstats/refs.php3, December 2004.

[31] R. Paulsen, M. Martino. Word Counting Natural Language Determination, U.S.
Patent 6,704,698, 1996.

[32] J. Schmitt. Trigram-based Method of Language Identification, U.S. Patent 5,062,143,
1990.

[33] M. Damashek. Method of Retrieving Documents that Concern the Same Topic,
U.S. Patent 5,418,951, 1994.

[34] J. B. Sharkey, D. Weishar, J. W. Lookwood, R. Loui, R. Rohwer, J. Byrnes,
K. Pattipati, D. Cousins, M. Nicolletti, S. Eick. Information processing at very

778 Chapter 34 � Network Packet Processing in Reconfigurable Hardware

high-speed data ingestion rates. In Emergent Information Technologies and Enabling
Policies for Counter Terrosiom, edited by R. Popp and J. Yin. IEEE Press/Wiley,
2006.

[35] J. W. Lockwood, S. G. Eick, D. J. Weishar, R. Loui, J. Moscola, C. Kastner,
A. Levine, M. Attig. Transformation algorithms for datastreams. IEEE Aerospace
Conference, March 2005.

[36] J. W. Lockwood, S. G. Eick, J. Mauger, J. Byrnes, R. Loui, A. Levine, D. J. Weishar,
A. Ratner. Hardware accelerated algorithms for semantic processing of document
streams. IEEE Aerospace Conference, March 2006.

[37] Y. H. Cho, J. Moscola, J. W. Lockwood. Context-free grammar based token tagger
in reconfigurable devices. Proceedings of the International Workshop on Data Engi-
neering, April 2006.

[38] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, J. Luo. NetFPGA—An open platform for Gigabit-rate network
switching and routing. IEEE International Conference on Microelectronic Systems
Education (MSE2007), June 2007.

[39] J. Luo, J. Pettit, M. Casado, N. McKeown, J. W. Lockwood. Prototyping fast, simple,
secure switches for ethane. IEEE Symposium on High-Performance Interconnects
(Hot Interconnects-15), August 2007.

C H A P T E R 35

ACTIVE PAGES: MEMORY-CENTRIC
COMPUTATION

Diana Franklin
Department of Computer Science
California Polytechnic State University

Although field-programmable gate arrays (FPGAs) excel at tailoring the compu-
tation and interconnect to an application’s needs, we can go one step further. In
many applications, regardless of the speed of the computation, memory perfor-
mance always will be the limiting factor. This problem, referred to as the memory
wall, is broken up into two parts—memory latency and bandwidth. For large-
scale data-parallel applications, the computation can be moved to memory. This
allows for both parallel computation and increased bandwidth. The replication
of small computation units provides parallelism, and the sum of their memory
ports provides increased bandwidth. Because they are located in memory, there
is no shared-bus resource to serialize communication.

One such system, Active Pages, places computation with each page of DRAM.
It is unique in that it targets the commodity DRAM market. This decision has
both advantages and disadvantages. One advantage is that it supports both data
streaming and general-purpose computation, and the computational resources
scale automatically with memory allocation. One disadvantage is that, to keep
costs low, there is no additional interconnect, and parallelism is only at the
page level.

Many of the characteristics of Active Pages are present in any memory-centric
system. This case study explores several characteristics of the Active Pages
design. It begins, in Section 35.1, with an overview of the Active Pages architec-
ture and programming model. Section 35.2 shows the performance potential of
a scalable, memory-centric design. Section 35.3 then looks at how this scaling of
computational resources, but not the interconnect resources, affects the asymp-
totic properties of several algorithms. Finally, Sections 35.4 and 35.5, explore
the parallelism properties and the defect tolerance provided by the Active Pages
design. Active Pages is just one of many projects in this realm, and Section 35.6
presents related work, followed by some conclusions in Section 35.7.

35.1 ACTIVE PAGES

This section gives a brief description of the Active Pages system. We present
three aspects of the design: the hardware design, the interface between Active

780 Chapter 35 � Active Pages: Memory-centric Computation

Pages and the Central Processor, and the programming model that arises
naturally from the design and interface.

35.1.1 DRAM Hardware Design
High-density DRAMs are divided into subarrays, complete with row and column
decoders, to minimize column capacitance and decrease power consump-
tion [1]. The proposed Active Pages implementation exploits this natural struc-
ture, treating each subarray as an Active Page. As shown in Figure 35.1, a small
computational unit and cache—a Page Processor and Page Cache—are embedded
next to each subarray to implement Active Page functions [2]. Using commodity
1-Gb DRAM technology as a target [3], we expect subarray size to be 512 KB
and the embedded processing to consume less than 31 percent of the chip area.

To minimize DRAM modification and reduce hardware overhead, the Active
Pages implementations do not provide hardware support for communication
between Active Pages. If two Active Pages need to share data, the Central
Processor reads the data from one and writes to the other. The disadvantage of
this process-mediated approach is that interpage communication must be infre-
quent to maintain performance with a single processor.

35.1.2 Hardware Interface
To interface with the Central Processor, Active Pages leverage conventional page-
based memory mechanisms to “virtualize” hardware for memory-based com-
putation. Computations for each page can be suspended, restarted, and even
swapped to disk. Computations for several pages can be multiplexed on a single
embedded processing element.

Further, Active Pages use the same interface as conventional memory systems.
Active Pages data are modified with conventional memory reads and writes;
Active Pages functions are invoked through memory-mapped writes. Synchro-
nization is accomplished through user-defined memory locations.

uP$ $uP

uP $$ uP

uP$ $uP

uP $$ uP

Page-cache (512-bit data/1024-byte instruction)
Page-based computational engine

Column decoder
Row decoder

DRAM subarray (512 KB)

S
ta

nd
ar

d
ex

te
rn

al
 m

em
or

y
in

te
rf

ac
e

FIGURE 35.1 � The Active Pages architecture (8 pages).

35.2 Performance Results 781

35.1.3 Programming Model
The programming model of Active Pages was determined by several design
decisions. First, communication between Active Pages and the Central Processor
is accomplished through traditional reads and writes, allowing the Central Pro-
cessor to operate on Active Pages data just as it does on any other data. Second,
Active Pages were intended for commodity DRAM systems, which may be run-
ning general-purpose applications. Thus, we could not assume a traditional data
parallel, streaming model. Third, there is no interconnect between Active Pages
processors. The model needs to limit the Pages to their own data, with no knowl-
edge of neighboring cells. Finally, each Active Page has computation associated
with it. This is a direct association of data with computation. For these two
reasons, the model of computation here is object-oriented programming.

To program a Page Processor, the programmer creates an object in C++. The
choice of C++ is not critical; it is used because it has no runtime system associ-
ated with it and has well-defined interfaces for object manipulation. The 512 KB
allocated to each Page Processor is divided between code, stack, and data. These
512 KB, larger-than-typical operating systems’ virtual pages are referred to as
superpages. The code must fit within the code segment, and the data size of the
object is padded appropriately.

The operating system (OS) is responsible for allocating Active Pages mem-
ory and loading the code into the correct region. The Page Processor begins
on activation, first performing any initialization similarly to a C++ object con-
structor, and then polling a variable waiting for an invocation of a function. To
maintain pin compatibility, all Active Pages functions are designed to use con-
ventional reads and writes. The Central Processor invokes Active Pages functions
by writing the parameters into appropriate places in the Active Pages memory.
The Central Processor then changes the Running variable, on which the Page
Processor is polling, indicating which function to execute next.

When the Page Processor has completed the function, it resets the looping
variable (Running) and waits for the next invocation. Figure 35.2 shows the
object declaration and implementation for execution on a Page Processor for
LCS. More details on the LCS algorithm can be found in Section 35.3.3. In the
LCS algorithm, the application requires only a single function, so the event loop
is not actually necessary. It is shown, however, to illustrate how an application
with many functions would use the Central Processor to invoke functions on the
Page Processors. The main function run on the Central Processor is not shown.
The Central Processor can poll the Running variable to determine whether a
Page Processor has completed a particular function.

35.2 PERFORMANCE RESULTS

Now that we have an idea of what the Active Pages architecture looks like and
how it is programmed, this section presents performance results for several
applications using a simulated Active Pages system. A more detailed study can
be found in Oskin et al. [4].

782 Chapter 35 � Active Pages: Memory-centric Computation

Class LCS{
//int CodeAndStack[8192]; // added by compiler
public:
int Running, Data[WIDTH-1][LENGTH-1];
char X[WIDTH], Y[LENGTH];
LCS(){ Running = AP_WAIT; }
void Start();
void DoLCS();

} ;
void LCS::DoLCS() {
int i, j;
for(i=1;i<LENGTH;i++) // row 0, column 0 initialized by Central Processor

for(j=1;j<WIDTH;j++) {
if (X[i] == Y[j])

Data[i][j] = Data[i-1][j-1] + 1;
else if (Data[i-1][j] > Data[i][j-1])

Data[i][j] = Data[i-1][j];
else

Data[i][j] = Data[i][j-1];
}

}
void LCS::Start() {

volatile int *act = &(Running);
while(*act != AP_STOP) {

while(*act == AP_WAIT) ; // wait for Central Processor
switch (*act) {
case(AP_LCS):

DoLCS(Val);
*act = AP_WAIT; // it is done
break;

}
}

}

FIGURE 35.2 � A code example of an Active Pages object. Each Page Processor initializes its
own space on allocation using the constructor. The Central Processor starts the Page Processor
by writing to the Running variable. When the call is finished, the Page Processor sets Running
back to AP_WAIT.

To estimate the performance of Active Pages configurations, each Active Pages
function was hand-coded in a high-level circuit-description language, such as
VHDL (see Chapter 6 and [5]), and synthesized to an Altera 10K FPGA. The map-
ping was carried out all the way to placed and routed designs [6].

To demonstrate effective partitioning of applications between the Central
Processor and Active Pages, we chose a range of applications representing
both memory- and processor-centric partitioning. Table 35.1 summarizes the
attributes of these applications.

35.2.1 Speedup over Conventional Systems
To evaluate performance of the Active Pages memory system, each application
was executed on a range of problem sizes. The speedup of the applications

35.2 Performance Results 783

TABLE 35.1 � Summary of the partitioning of applications between the Central Processor
and Active Pages

Memory-centric applications
Central Processor Active Pages

Name Application computation computation

Array C++ standard template C++ code using array Array insert, delete,
library array class class cross-page moves and find

Database Address database Initiates queries Searches unindexed
summarizes results data

Median Median filter for Image I/O Median of neighboring
images pixels

Dynamic Protein sequence Backtracking Compute MINs and
program matching fills table

Processor-centric applications

Matrix Matrix multiply for Floating-point multiplies Index comparison and data
Simplex and finite gathering and scattering
element

MPEG-MMX MPEG decoder using MMX dispatch MMX instructions
MMX instructions Discrete cosine transform

running on an Active Pages memory system compared to a conventional mem-
ory system is shown in Figure 35.3. Each application was run on a range of
problem sizes, given in terms of number of Active Pages (512-KB superpages).
The following are two primary observations about this graph.

First, the performance results qualitatively scale as expected. This shows the
advantage of memory-centric computation. We observe that most applications
show little growth in speedup as data size grows within the subpage region
(below one page). In this region, Active Pages applications have little parallelism
to offset activation costs. When leaving this region, however, we enter the scal-
able region and see that performance on all applications grows as data size
increases. Four applications—database, MMX, matrix-simplex, matrix-boeing,
and median-filtering—also reach the saturated region. Here, Active Pages per-
formance is limited by the progress of the Central Processor. This limitation
may be because of either too much work for a given-speed Central Processor or
too much data travelling between the Central Processor and Active Pages across
the memory bus. Performance can actually decrease as coordination costs dom-
inate performance. Given a large enough problem size, all applications would
eventually reach the saturated region.

Second, we see that the array-delete primitive performs poorly in the subpage
region. This is because of the difference between the FPGA implementation and the
instruction set used to implement the Central Processor. The Central Processor’s
instruction set is especially well suited for the array-delete primitive. Thus, unless
there is sufficient parallelism to justify using Active Pages, it is faster to use the
Central Processor. So, for small deletes, we use only the Central Processor. This
benchmark was a combination of small deletes and large deletes.

784 Chapter 35 � Active Pages: Memory-centric Computation

1 10 100
Problem size (in 512 KB pages)

1

10

100

1000

S
pe

ed
up

matrix-simplexdyn-prog matrix-boeing
median-kernel MMXmedian-total

array-insert databasearray-findarray-delete

FIGURE 35.3 � Active Pages speedup as problem size varies.

As problem size grows, and the Central Processor is used for both the
coordination of large deletes and the complete execution of small deletes, the
Central Processor becomes the limiting factor in performance and the perfor-
mance gets closer to that of the uniprocessor. This shows an interesting trade-
off between the FPGA and the Central Processor. Some computations, though
not many, will perform better on the Central Processor. If this coincides with a
part of the application that does not require parallelism, then the advantage of
the memory-centric FPGA implementation will be reduced.

35.2.2 Processor–Memory Nonoverlap
The saturated region of Active Pages performance emphasizes the importance of
partitioning applications to efficiently use the Central Processor in a system. For
processor-centric applications, this dependence is obvious. The goal is to keep
the Central Processor computing by providing a steady stream of useful data
from the memory system. For memory-centric partitions, however, the Central
Processor is still a vital resource. Active Pages cannot compute without activa-
tion and interpage communication, both provided by the Central Processor.

As data size grows in an Active Pages application, so does the load on the
Central Processor. We measure the remaining capacity of a Central Processor to
handle this load with a metric, processor–memory nonoverlap time. Nonoverlap
is the time the Central Processor spends waiting for the memory system and can
be used to estimate the boundary between the scalable and saturated regions of
application performance.

The relative percentage of time the Central Processor is stalled, waiting
for memory system computation, is shown in Figure 35.4. As described in

35.2 Performance Results 785

1 10 100

Problem size (in 512 KB pages)

0

20

40

60

80

100

P
ro

ce
ss

or
–m

em
or

y
no

no
ve

rla
p

(%
)

matrix-simplexdyn-prog matrix-boeing
median-kernel MMXmedian-total

array-insert databasearray-findarray-delete

FIGURE 35.4 � The percent of cycles that the Central Processor is stalled on Active Pages as
problem size varies.

the previous section, the applications that reached the saturated region of
speedup were database, matrix-simplex, matrix-boeing, and median-filtering. As
Figure 35.4 shows, these applications also reach a point of complete processor–
memory overlap.

We also observe that for the array primitives and the dynamic programming
application, the nonoverlap percentage remains relatively high. These appli-
cations are largely memory-centric with very little Central Processor activity.
In fact, the array primitives operate asynchronously to the end of the applica-
tion and are artificially forced into synchronous operation for this study. This
means that an application can use the array-insert and array-delete primitives
with only the cost of Active Pages function invocation. Modulo dependencies on
the array, the time spent by the memory system shifting data, can be overlapped
with operations outside of the STL array class. This overlap occurs in a natural
way with no additional effort required by the programmer who uses the Active
Pages STL array class. Opportunities for overlapping execution of data structure
operations with data structure usage are intriguing and are being investigated
further.

The dynamic programming example maintains a very high processor–memory
nonoverlap; however, preliminary results indicate that processor-mediated com-
munication required by the Active Pages memory system eventually dominates
performance. This occurs for extremely large problems that are well beyond
the range of problem sizes presented in this study. Dedicating more resources
to the interconnect increases the range of problems that Active Pages can
help solve.

786 Chapter 35 � Active Pages: Memory-centric Computation

35.2.3 Summary
Memory-centric computation provides a scalable source of performance for
large-scale applications. Active Pages provides a large number of simple, recon-
figurable computational elements that can achieve speedups up to 1000 times
faster than conventional systems. Systems with rich interconnects have the
potential for scalable gains on an even wider range of applications.

35.3 ALGORITHMIC COMPLEXITY

Although the simulated results show great promise, to truly understand how
Active Pages improves runtimes as problem sizes grow, we need to explore
asymptotic properties of algorithms in conventional systems as well as Active
Pages systems [7]. For this study, we use a set of kernels whose asymptotic
properties are well known in algorithmic literature.

While it is unrealistic to expect the number of processors in a conventional
multiprocessor to scale arbitrarily, the amount of DRAM in a system is expected
to scale with problem size for a majority of problems. With Active Pages DRAMs,
computational hardware also scales. This scaling provides parallelism that can
improve asymptotic performance. Table 35.2 gives a preview of such gains for a
variety of algorithms. Note that Active Pages execution times rely on the optimal
page size given in the table. In practice, we expect Active Pages hardware to
support a small range of page sizes designed to support target applications and
problem sizes.

The challenge in the analysis is to take communication costs into account. In
any system, the interconnect will affect the asymptotic properties of the perfor-
mance as the problem scales. Active Pages, in particular, requires careful con-
sideration of the communication between Page Processors as well as between
the Central Processor and the Page Processors. The partitioned computations
and restricted communication model here differ substantially from traditional
parallel models such as PRAM [8]. This section presents an analysis of each
algorithm that considers these issues. These analyses are also validated with
simulation results.

TABLE 35.2 � Algorithmic complexity (summary)

Execution time
Application Conventional within Active Pages Page size

Array insert O(n) O(
√

n) O(
√

n)
2D LCS O(n2) O(n

√
n) O(n)

3D LCS O(n3) O(n7/3) O(n2)
All-pairs shortest path O(n3) O(n7/3) O(n4/3)
Sorting O(n · log2(n)) O(n · log2(log2(n))) O(n/z)

where n = z · ez

Volume rendering O(n3) O(n5/2) O(n3/2)

35.3 Algorithmic Complexity 787

35.3.1 Algorithms
Active Pages can dramatically improve the performance of many algorithms.
This section maps several common algorithms to an Active Pages system and
analyzes performance gains. Figure 35.5 introduces the notation used here. With
these conventions, we analyze the worst-case execution time of the algorithms:
insertion of an element into a linear array of elements, longest common subse-
quence of two- and three-dimensional sequences using a dynamic programming
formulation, all-pairs shortest path using a dynamic programming formulation,
sorting of a linear array of elements, and volume rendering using ray-tracing
and linear absorption coefficients [7,9].

Each analysis is provided by first presenting a general model for the algo-
rithm’s execution time. Next, various model-specific parameters are assumed to be
constants. After this simplification, the derivative of execution time with respect
to page size is used to find an optimal page size. This page size is then substi-
tuted back into the model, and execution time is expressed again as a function of
problem size.

These results are then validated with a high-level simulator. The simulator
models Active Pages execution using parameters based on execution of the cycle-
level simulator. The parameters used are given in Table 35.3. Typical parame-
ters correspond to the target architecture studied here and often exhibit better
performance than a purely asymptotic analysis would suggest. Asymptotic
parameters emphasize the dominant terms in asymptotic performance while
remaining within realistic problem sizes. These exaggerated parameters are used
to validate the more conservative analyses.

Table 35.3 summarizes the parameters used in the high-level simulator. Ta is the
amount of time required by the processor to invoke a function on a memory-based

n is the size of the input.
p is the number of data elements in an Active Page.
q is a problem-specific function of p that is used for most algorithms to define p. For instance,

for dynamic programming algorithms where a two-dimensional result set is generated, it is
convenient to describe p as equal to p = q2.

k is a function of the number of Active Pages used for the problem—usually k = n /q.

FIGURE 35.5 � The notation used for algorithmic analysis.

TABLE 35.3 � Summary of simulation parameters

Array
Parameter APSP* Sort insert LCS* LCS3 Render

Activation time (Ta) 100/0 0 2058 100/100 100 100
Central Processor per-page processing time (Tp) – 1 387 – – 5
Page processing per-element processing time (Tc) 10/10 1 2 – 10 10
Fixed communication overhead (Tsa) 1/1 – – 10/10 1 –
Per-element communication cost (Tsb) 1/1 – – 1/100 1 –

∗ Typical/asymptotic.

788 Chapter 35 � Active Pages: Memory-centric Computation

processor. This includes setup, argument passing, and invocation. This constant is
per page. Tp is the amount of time required by the processor to complete execution
of an algorithm associated with a particular page. Generally, the “focus” of execu-
tion traverses from the Central Processor to the Active Pages and then back again.
This may proceed many times and involve overlap throughout the execution of
the algorithm. However, for the analysis presented here the focus is on a single set
of transitions from host to memory and back. Hence, Tp is the time spent by the
Central Processor per page when completing the Central Processor portion of the
computation for that page. Tc is the amount of time required by the memory-based
processing element to compute its portion of the algorithm for a single data item
within the page. For instance, on a conventional processor and memory system,
an O(n) algorithm requires some time, Tc, to compute the solution for each ele-
ment; hence, the execution time is described as T = Tc ·n. Tsa is the amount of time
that corresponds to the “fixed overhead” associated with each interpage communi-
cation. Inter–Active Pages communication is a necessarily expensive process, and
this constant quantifies the relatively large fixed overhead associated with each
such communication request. Tsb is the amount of time, per data item, associated
with an interpage communication. Not all algorithms use interpage communica-
tion, and some use portions of Ta or Tp to perform such communication as part of
activation and postprocessing, respectively.

This short section can present detailed analysis only of the array and LCS
applications. We refer the reader to a technical report by Oskin et al. for the full
set of analyses and results [9].

35.3.2 Array-Insert
The analysis begins with a simple array library. Specifically, we examine an inser-
tion operation performed on an array of elements arranged in a linear fashion. A
conventional system requires O(n) execution to complete this task. In an Active
Pages memory system, we partition these n elements into k pages, with each
Active Page managing n/k elements. To insert an element at position j within
the array, each Active Page from the page containing j up to the last page of
the array shifts the elements up by one to make room for the new element.
These shifts proceed in parallel, however, since each Active Page operates inde-
pendently. Note, though, that some form of communication between pages is
required to migrate elements across page boundaries. This communication is
grouped within the activation portion of each Active Page. The algorithm can
be expressed as shown in Figure 35.6.

for j=1 to k
communicate the last element of
page j to page j+1

activate page j informing it to
shift elements upward

FIGURE 35.6 � The array-insert algorithm.

35.3 Algorithmic Complexity 789

The analysis begins with s(i), the nonoverlap (stall) time for page i. The
nonoverlap time, discussed in Section 35.2.2, is the amount of time spent by
the processor waiting for the Active Pages memory system to finish. Essen-
tially, this algorithm (and many other Active Pages algorithms) proceeds by hav-
ing the Central Processor set up and activate memory-based processing, then
wait for a page to complete computing. After the memory-based computation
section is complete, the processor can return to finish its section of the com-
putation. It turns out that quantifying how much a processor stalls while
waiting for memory-based computation to complete, for traditionally linear
algorithms, is an important and measurable quantity that can be used to tune
applications to achieve maximum performance. We use it to quantify execution
time.

Three functions—Tâ, Tp̂, and Tĉ—are used to quantify portions of the execu-
tion time. These are expressed as functions because several linear-based algo-
rithms can be mapped to an execution time analysis similar to that presented
here. The functions correspond to activation time, host processor postexecution
time, and per-page memory-based computation time, respectively.

For array insertion, these are essentially constant functions; hence, Tc(i) =
Tc, Ta(i) = Ta, and Tp(i) = Tp. Figure 35.7 shows the timing of the array-insert
operation (or any other linear-based function) on the Active Pages system using
Ta, Tc, and Tp. Next, note that ∑k

i=1 s(i)≤Tc ·p allows us to simplify execution time
and take the derivative of T with respect to p. This gives us a new expression
for T given the optimal value for p:

T =
k

∑
i=1

[

Ta +Tp + s(i)
]

= k
(

Ta +Tp
)

+
k

∑
i=1

s(i)

≤ k
(

Ta + Tp
)

+ Tc ·p =
n
p

(

Ta +Tp
)

+ Tc ·p

dT
dp

=
−n
p2

(

Ta +Tp
)

+ Tc ⇒p =

√

n
(

Ta +Tp
)

Tc

Topt =
n
p

(

Ta +Tp
)

+ Tc ·p = 2 ·
√

n · (Ta +Tp) ·Tc = O(
√

n) (35.1)

T =
k

∑
i=1

[

Ta(i)+ Tp(i)+ s(i)
]

s(i) = max

{
0

s
′
(i)

s
′
(i) = Tc(i)−

(
k

∑
j=i+1

Ta(j)+
i−1

∑
j=1

(Tp(j)+ s(j))

)

790 Chapter 35 � Active Pages: Memory-centric Computation

Ta(1) Ta(2) Ta(3) Tp(2)Tp(1) Tp(3)

Time

s(1)

Tc(1)

Tc(2)

Tc(3)

Processor Ta(K)

Tc(K)

Tp(K)

Active Page 1

Active Page 2

Active Page 3

Active Page K

FIGURE 35.7 � An array-insert operation demonstrating processor and Active Page computations.

y 5 135837n 0.5

0.0E100

1.0E106

2.0E106

3.0E106

4.0E106

5.0E106

6.0E106

7.0E106

0 125 M 250 M 375 M 500 M 625 M
n

S
im

ul
at

ed
 m

ac
hi

ne
 c

yc
le

s

FIGURE 35.8 � Simulation results for the array-insert operation.

This analysis makes the conservative assumption that computation proceeds
in serializable steps. First, all pages are activated; then all pages compute; finally,
all pages finish and the processor performs some minimal postpage computa-
tion for each page. In reality, there is substantial overlap of these functions,
and only during asymptotic performance is this serializing behavior observed.
During practical application of this algorithm, the dominant term is Tc ·p, and
execution time is held relatively constant. This behavior is observed until the
point at which the number of pages times the activation and postpage process-
ing per page starts to significantly approach Tc · p. Figure 35.8 depicts simu-
lated application performance versus problem size. As can be seen from the
graph, simulated performance follows an O(

√
n) growth curve, as predicted by

the analytical model here.

35.3 Algorithmic Complexity 791

35.3.3 LCS (Two-dimensional Dynamic Programming)
Moving to a more complex algorithm, we examine a dynamic programming
formulation for computing the longest common subsequence in a protein. The
conventional execution time of this algorithm is O(n2). Figure 35.9 outlines
the algorithm. For a more in-depth discussion of the LCS algorithm with fine-
grained parallel execution in a systolic model, see Hoang [10].

Parallel execution of this algorithm proceeds in “wave-fronts,” as depicted in
Figure 35.10. Once the first subproblem is solved and the results have been dis-
patched, two other problems can immediately start computing, and when they
are done, three other Active Pages can start their computation in parallel. The
processor is responsible for activating a wave-front. When processor-mediated
communication is used, the wave-front is uneven, with certain pages of the com-
putation executing slightly ahead of other pages. This is because of the overlap-
ping nature of Active Pages computation and processor activity. In the model of
computation here, this overlap is very important to performance, and we take
advantage of it to lower overall execution time. Also note that the subproblem
solution that an Active Page will make available consists only of the items on
two edges of the page.

For this problem we assume the following constants. Tc is the time required
by the Active Pages processor to compute the result of a single item of the LCS
computation. Tsa is the fixed overhead cost associated with an interpage com-
munication. Tsb is the cost to transfer items between pages on a per-item basis.

partition x and y into k segments
divide the computation into x/q and y/q smaller computations
initialize page (i,j) with the corresponding component i of string x

and with component j of string y.
let page (i, j) perform the conventional LCS algorithm after subproblems

(i, j-1), (i-1, j), and (i-1, j-1) have been solved.
page (i,j) dispatches results to neighboring subproblems.

FIGURE 35.9 � The two-dimensional LCS algorithm.

y/
q

pa
ge

s

x/q pages

Com
pu

ta
tio

n
wav

e-
fro

nt

FIGURE 35.10 � Parallel execution of two-dimensional LCS on Active Pages.

792 Chapter 35 � Active Pages: Memory-centric Computation

Further, since the dynamic programming model dictates that the number of
items in a page be quadratic in terms of the length of sequence x and the length
of sequence y, we define the page size p to be equal to q2, where q is a variable.

This makes the reasonable analytical assumption that x and y are of similar
lengths. We can express application execution time as

T < 2 ·
j

∑
i=1

[

Tc ·q2 +Tsa +q ·Tsb

]

+2 ·
n/q

∑
i=j+1

i · [3 ·Tsa +(2 ·q+1) ·Tsb
]

(35.2)

where j represents the particular wave-front in which the overall execution
switches from being bounded by computation to being bounded by commu-
nication. Focusing on the first half of the computation-bound area, each wave-
front has an ever-increasing cost of communication. This is because more Active
Pages are involved in each wave-front.

At first, the communication is hidden by computation, but eventually the cost
of communicating the required data between wave-fronts exceeds the cost of
computation for the wave-front. At this point, the algorithm crosses over from
being bounded by computation to being bounded by communication; thus, com-
putation completely overlaps with communication. We denote the wave-front
where this occurs as j. This chapter presents an analysis that achieves a bet-
ter theoretical upper-bound than the conventional sequential solution. Based on
particular protein sequence sizes, computer-assisted analysis can reveal the ideal
j and q, which minimize the execution time of this algorithm, thus tailoring the
behavior of Active Pages in terms of the given problem size. The simulation
results show that computer-calculated ideal page sizes entail even a slightly bet-
ter performance than the theoretical analysis. As will be seen, this is because of
a simplification in the analysis.

Suppose we force j ≥ n/q. This implies that the algorithm will never become
bounded by communication resources. We can do this by carefully selecting q
and then demonstrating that this q does indeed force j ≥ n/q. To find a q that
satisfies these conditions, we require that the communication always weighs less
than computation:

n
q
· [3 ·Tsa +(2 ·q+1) ·Tsb

] ≤
[

Tc ·q2 +Tsa +q ·Tsb

]

(35.3)

Then simplify this inequality by:

n
q
· [3 ·Tsa +(2 ·q+1) ·Tsb

] ≤
[

Tc ·q2 +Tsa +q ·Tsb

]

n
q
· [3 ·q · (Tsa +Tsb +1)

] ≤
[

Tc ·q2 +Tsa +q ·Tsb

]

(35.4)

Tc ·q2 ≤
[

Tc ·q2 +Tsa +q ·Tsb

]

35.3 Algorithmic Complexity 793

This simplification will not lead to an absolute lower-bound on execution time,
but it does present a tractable alternative that can be used to find an “ideal” q:

q ≥√
n ·

√

3 · (Tsa +Tsb +1)
Tc

= α ·√n (35.5)

Then use this q to drop j from the equation, since the algorithm will never be
bound by communication:

T < 2 ·
n/q

∑
i=1

[

Tc ·q2 +Tsa +q ·Tsb

]

= 2 · n
q
·
[

Tc ·q2 +Tsa +q ·Tsb

]

(35.6)

= 2 ·
√

n
α

·
[

Tc ·n ·α2 +Tsa +
√

n ·Tsb + α
]

= O(n
√

n)

While O(n
√

n) is a loose upper-bound, it is faster than the conventional runtime
of O(n2). The simulation results concurred with the findings and suggested a
slightly better than O(n

√
n) lower worst-case execution bound.

Figure 35.11 depicts simulated performance of the LCS algorithm; two curves
are shown. The first curve depicts the predicted performance of O(n

√
n) (using

asymptotic parameters from Table 35.3). The second curve predicts a more realistic
performance of O(n4/3) (using typical parameters). The discrepancy is because of
communication performance. If communication were more expensive, then the
ideal page size would shift away from communication requirements and toward
increased computational requirements, amplifying that term in the execution time
expression. This in turn would reveal the asymptotic order of the LCS algorithm.

y 5 35.469n1.3772

y 5 53.031n1.54

0 5000 10000 15000 20000 25000 30000 35000
n

0.0E100

1.0E107

 2.0E107

3.0E107

4.0E107

5.0E107

6.0E107

7.0E107

S
im

ul
at

ed
 m

ac
hi

ne
 c

yc
le

s

FIGURE 35.11 � Simulation results for the two-dimensional LCS.

794 Chapter 35 � Active Pages: Memory-centric Computation

y 5 6.8863x 2.3554

0.0E100

2.0E109

4.0E109

6.0E109

8.0E109

1.0E110

1.2E110

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
n

S
im

ul
at

ed
 m

ac
hi

ne
 c

yc
le

s

FIGURE 35.12 � Simulation results for the three-dimensional LCS.

A more realistic depiction of application performance follows an O(n4/3) trend.
A similar analysis predicts performance of O(n7/3) for three-dimensional LCS.
Figure 35.12 shows that the simulated performance for three-dimensional LCS
closely matches this prediction.

35.3.4 Summary
We can see that with a memory-centric architecture such as Active Pages,
in which the computation scales with the communication, the asymptotic
complexity can be reduced. We also see that it is a much more complex equa-
tion than one might think. The overhead of the Active Pages, the delay of any
communication, and the page size need to be taken into account. Two algo-
rithms, along with validated simulations, have been presented to show their new
asymptotic properties. We have found that the inexpensive parallelism provided
by page-based intelligent memories can have a significant affect on asymptotic
performance. We have also found the optimal page sizes that are required to max-
imize performance.

35.4 EXPLORING PARALLELISM

In any memory-centric system, we must decide the proper balance between
memory resources and computation power. To save money, we could share a
single computational element with twice as much memory. Allowing sharing can
potentially even out the computational requirements of two processing elements
because their needs may not always be identical.

35.4 Exploring Parallelism 795

This section looks at virtualizing the computational logic across superpages
in the Active Pages chip. Virtualization is accomplished by time-slicing a VLIW
processor (see VLIW datapath control subsection of Section 5.2.2) across one to
eight Active Pages. We refer to this time-slicing as the multiplexing of the com-
putational logic. This study presents an analysis of multiplexing and its effects
on performance in a multiprocess environment. In addition, it looks at how
varying individual processor widths affects performance. By combining these
approaches, we demonstrate that multiplexing is a more effective technique
for reducing logic area requirements than reducing individual Page Processor
performance.

In this study, we chose to use VLIW computational elements rather than an
FPGA so that we could explore the trade-off between instruction-level paral-
lelism and task-level parallelism. The results hold for FPGAs as well. From a
high level, it is merely the trade-off between smaller dedicated resources per
memory segment and shared resources between memory segments. The study
is cleaner when using processor width rather than FPGA area.

35.4.1 Speedup over Conventional
We begin with the raw speedups of a commodity workload that is used for
this study. Because the focus is on multi-programmed systems, we are using
a slightly different workload than before.

Figure 35.13 depicts application speedup when applications use an Active
Pages memory system. Speedup is measured in terms of wall-clock time for
the application in a conventional memory system divided by its wall-clock time

0

1

2

3

4

5

6

7

8

9

10

Array
(78 M)

MPEG
(8 M)

Render
(256 M)

gcc
(2.5 M)

gzip
(0.5 M)

Perl
(1 M)

Application

S
pe

ed
up

 o
ve

r
co

nv
en

tio
na

l

41 18

FIGURE 35.13 � Speedup over conventional.

796 Chapter 35 � Active Pages: Memory-centric Computation

using an Active Pages memory system. We observe that Active Pages applications
continue to show substantial speedups when executed in a multiprocess envi-
ronment. That is, even when many independent applications are executed at
once, the applications experience speedup.

35.4.2 Multiplexing Performance
We continue by exploring how much performance degradation occurs as
resources are shared between Active Pages. Figure 35.14 depicts relative appli-
cation performance as the degree of multiplexing is increased. We normalize
the results to a configuration with no multiplexing, where a one-to-one relation-
ship exists between 4-wide VLIW processors and DRAM subarrays. Multiplexing
factors of two, four, and eight make up the remaining data points. Note that
hardware multiplexing of eight incurs no more than a 17 percent performance
penalty, and a multiplexing factor of four incurs no more than a 6 percent per-
formance penalty for all Active Page applications in the workload.

35.4.3 Processor Width Performance
It is promising that with a 4-wide VLIW, performance does not degrade sub-
stantially, as it is shared between Active Pages. Is this because the VLIW proces-
sor is not being used efficiently? We now examine the inherent instruction-level
parallelism (ILP) in our applications. Figure 35.15 depicts relative application
performance as VLIW processor width is varied. Here, processor widths of one,
two, four, and eight were evaluated. We observe that half of the applications
show a 20 to 80 percent increase in performance from increasing processor
width, but the other half do not. It should be noted that MPEG suffers adverse

0.80

0.85

0.90

0.95

1.00

1.05

Array
(78 M)

MPEG
(8 M)

Render
(256 M)

gcc
(2.5 M)

gzip
(0.5 M)

Perl
(1 M)

Application

R
el

at
iv

e
pe

rf
or

m
an

ce
(n

or
m

al
iz

ed
 to

 n
o

m
ul

tip
le

xi
ng

)

1, 2, 4, 8

FIGURE 35.14 � Performance versus hardware multiplexing.

35.4 Exploring Parallelism 797

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Array
(78 M)

MPEG
(8 M)

Render
(256 M)

gcc
(2.5 M)

gzip
(0.5 M)

Perl
(1 M)

Application

R
el

at
iv

e
pe

rf
or

m
an

ce
(n

or
m

al
iz

ed
 to

 p
ro

ce
ss

or
 w

id
th

 o
f o

ne
) 1, 2, 4, 8

FIGURE 35.15 � Performance of multiplexing versus VLIW processor width.

cache effects with a VLIW width of eight, thus lowering performance relative
to a 4-wide VLIW. We note that the largest performance gains because of VLIW
processor width are achieved with processor widths of two and four, and not
with eight.

35.4.4 Processor Width versus Multiplexing
Taking another look at Figure 35.15, we find that the Active Pages applica-
tions do not have the static instruction-level parallelism to use much beyond
a 4-wide VLIW processor. In addition, Figure 35.14 shows that degradation
because of multiplexing is superlinear, suggesting that too much coarse-grained
parallelism exists within the application workloads to substantially multiplex
processor resources.

An experiment designed to compare these two forms of parallelism is depicted
in Figure 35.16. Here we compare an Active Pages device using a single-issue
processor with no multiplexing against a device using a 2-wide VLIW with two-
way multiplexing, a 4-wide VLIW with four-way multiplexing, and an 8-wide
VLIW with eight-way multiplexing.

In the Active Pages applications, a 2-wide VLIW with two-way multiplexing
shows a performance gain. This implies that the gain from the increased ILP
outweighs the reduced coarse-grained parallelism. Because several conventional
applications are active in the workloads, this makes sense because many of the
pages do not need the page processors. A 4-wide VLIW with four-way multi-
plexing is the best configuration studied. Hence, we use this configuration in
the remainder of this study.

798 Chapter 35 � Active Pages: Memory-centric Computation

0.8

1

1.2

1.4

1.6

1.8

2

Array
(78 M)

MPEG
(8 M)

Render
(256 M)

gcc
(2.5 M)

gzip
(0.5 M)

Perl
(1 M)

Application

R
el

at
iv

e
pe

rf
or

m
an

ce

1, 2, 4, 8

FIGURE 35.16 � Performance versus processor width.

To describe why multiplexing performs well in a multiprocess environment,
we identify three key factors: nonactive memory, Active Pages processing time,
and partitioning.

Nonactive memory
This helps mask the performance degradation because of multiplexing. By
definition, all pages of memory in a conventional application require no com-
putation in memory. Some pages in an Active Pages application also require no
memory computation.

Active Pages processing time
This is the amount of time spent by the Active Pages computing without
main processor intervention. The time varies with Page Processor performance.
Simple data manipulations are easily offloaded to the memory system. This leads
to longer per-page computation times, most notably MPEG, with Active Pages
processing time on the order of seconds.

The combination of low Active Pages processing times and context switch-
ing in the Central Processor hides the effects of multiplexing in the memory
system. In the absence of multiplexed Active Pages, when the main processor
switches to another process, the Active Pages associated with the previous pro-
cess quickly finish their work and stall until the process regains control of the
Central Processor. Multiplexing allows efficient utilization of Page Processors
by context-switching them to another Active Pages process when they would
otherwise be idle.

In an environment with Active Pages processing times longer than a Central
Processor time slice, such as those observed in MPEG, we would expect
multiplexing to degrade performance. Within this study, however, degradation

35.5 Defect Tolerance 799

is minimal due to the relatively low memory requirements of MPEG and the
effects of conventional memory (without computational capability).

Partitioning
This is the process of dividing an application into work done in Active Pages and
work done in the Central Processor. As long as the main processor can keep up
with the Active Pages, an application is scalable and will exhibit linear speedup
as its dataset grows and more Active Pages are used. Once the main processor
becomes saturated with work, however, performance will no longer increase as
more Active Pages are used.

We find that multiprocess environments change the position at which an
application transitions from scalable to saturated. Multiprocessing time slices
the Central Processor, which may be viewed as artificially slowing down the
processor from the perspective of a single process. This will shift the scalable-
saturated point toward smaller problem sizes. We may use multiplexing to
reverse this shift. Essentially, multiplexing slows down the Active Pages compu-
tation, shifting the scalable-saturated point back toward larger problem sizes.

Because of the preceding properties of multi-programming environments, we
observe that multiplexing is an efficient mechanism for reducing logic area
requirements in an Active Pages memory device. A four-way multiplexed 4-wide
VLIW Active Pages device is estimated to require 12 percent of the available chip
area for computational logic while still providing substantial performance gains.
This estimate is based on the reduced logic area coupled with a 20 percent logic
area increase because of additional interconnect requirements.

35.4.5 Summary
This study has looked at a promising method for reducing the computational
logic area requirements of an Active Pages memory device. Such an approach
could be exploited by any memory-centric device. By multiplexing the compu-
tational logic among one to four Active Pages, hardware cost can be reduced
by four times with little performance impact in a multiprogrammed environ-
ment. Further, we find that it is more important to have fewer, faster compu-
tational logic elements that are time-shared across pages than more abundant,
slower ones available for direct computation at each page. With a 4-wide VLIW
processor multiplexed with every four Active Pages, computational logic area
can be reduced to 12 percent of total chip area in a gigabit DRAM.

35.5 DEFECT TOLERANCE

The previous section explored the parallelism trade-offs gained by sharing
computational units between pages. This section focuses on another major fac-
tor in cost: manufacturing defects. DRAM architectures use redundant cells
to tolerate defects, dramatically increasing chip yields and reducing cost.
Embedded processors, however, do not have an analogous unit of redundancy.
While multiplexing several Active Pages with one embedded processor reduces

800 Chapter 35 � Active Pages: Memory-centric Computation

chip area, multiplexing each group of pages with two processors allows each
group to tolerate a processor defect. This associativity requires some additional
interconnect, but tolerance to randomly distributed processor defects increases
from 33 percent to more than 50 percent.

In this section, we use associativity to increase the defect tolerance of
an Active Pages system. The focus is on manufacturing defects that render
embedded processors inoperative. The goal is to provide some degree of pro-
cessor redundancy under the assumption that memory cells already have their
own redundancy techniques.

Instead of four Active Pages sharing one 4-wide VLIW processor, we allow
eight pages to share two processors. We study the effect of randomly distributed
processor defects on this associative system. If a group suffers two defects, the
operating system will only map conventional pages to that group (pages with no
computation).

The performance degradation because of randomly distributed processor
defects is depicted in Figure 35.17. We note that up to a 50-percent defect rate
is tolerated. Increasing the defect rate to 60 percent decreased the number of
functional Active Pages below that required by the workload without page swap-
ping. Virtualizing Active Pages to disk was studied by Oskin et al. [11], and a
similar mechanism can be used to further increase defect tolerance.

Associativity creates an increased tolerance to defects. The benefits are
straightforward. Two processors must fail instead of one in order to disable any
Active Pages. If 50 percent of embedded processors fail in the test system, we
see that with two-way associativity up to 75 percent of the memory will still be
available for Active Pages use.

Array
(78 M)

MPEG
(8 M)

Render
(256 M)

gcc
(2.5 M)

gzip
(0.5 M)

Perl
(1 M)

Application

R
el

at
iv

e
pe

rf
or

m
an

ce

0%, 10%, 20%, 30%, 40%, 50%

0.7

0.75

0.8

0.85

0.9

0.95

1.05

1

FIGURE 35.17 � Performance versus random processor defects.

35.6 Related Work 801

Second, not all of the system memory is required to be “active” at the same
time. This allows the OS to map around defect areas and use fully defective
functional groups for conventional applications. Further, the workloads do not
require the full 512 MB available to the system, and the unutilized memory
is available to map into defective regions. The OS can tolerate some defects
without associativity by taking advantage of underutilization and conventional
applications.

As noted in this section, multiplexing, associativity, and clever OS resource
allocation can map around manufacturing defects with only a 20 percent perfor-
mance penalty with 50 percent random logic defects. An Active Pages–aware OS
can be defect tolerant and allow a lower-cost system to be developed by increas-
ing manufacturing chip yield. These incremental costs make Active Pages an
attractive memory-based computation model, though the same principles would
hold for FPGA-based systems (see Chapter 37).

35.6 RELATED WORK

DRAM densities have made intelligent memory attractive as commodity
components. Intelligent memory, however, was proposed well before the current
commodity thrust. The SWIM project [12] combined reconfigurable logic and
memory to perform fast protocol computations. The J-Machine integrated pro-
cessor, memory, and network router in a single chip to form building blocks for
a fine-grained multiprocessor [13]. The RAW [14], MORPH [15], and RaPiD [16]
projects continue to explore the use of reconfigurable technology to exploit
parallelism. The RAW project, in particular, has also examined issues of proces-
sor width, dynamically trading off ILP and speculation. The HPAM project [17]
takes a hierarchical approach to intelligent memory.

The project that is most similar to Active Pages is FlexRAM [18], which
targeted general-purpose computation. The goal was to find computation that
could take advantage of the bandwidth provided within a DRAM chip. FlexRAM
proposed a hierarchical solution with simple computational elements within
each page and a more complex processor for each DRAM. This allowed commu-
nication to be handled by an on-chip processor rather than the Central Proces-
sor. This had the disadvantage of adding pins to commodity DRAM packaging.

Several other projects explored placing processors in DRAM for more mas-
sively parallel computation. IRAM [19] solved this problem by placing a single-
vector processor in DRAM. For applications amenable to vectorization, this is
an excellent match between a high, bandwidth memory and a processing ele-
ment. Notre Dame’s PIM [20] project uses SIMD functional units to consume
the extra bandwidth. DIVA [21] has the most sophisticated design, allowing for
a kernel to run on the PIM processors. It also features a dedicated PIM commu-
nication network, allowing for communication between PIM processors without
host processor intervention. Currently, there is a single computational element
in each DRAM.

802 Chapter 35 � Active Pages: Memory-centric Computation

The Impulse project [22] has similar goals to Active Pages but focuses on
adding address manipulation functions to the memory controller. Its applica-
tions, such as gather-scatter for multiplying a sparse matrix by a dense vector,
are also enhanced by more efficiently feeding the microprocessor with data.
All the Active Pages applications, however, require some small computations
that cannot be supported without more generalized computation in the memory
system than Impulse provides.

35.7 SUMMARY

This chapter presented the enormous potential for memory-centric computa-
tion, along with several issues specific to the Active Pages DRAM environment.
The potential for all memory-centric designs is the bandwidth between mem-
ory and the nearest computational unit. The challenge, just as in Active Pages,
is how to communicate between units. As the ratio of memory to processing
units decreases, the total bandwidth increases, but the communication needs
increase. This different balance between computation and communication can
affect the asymptotic properties of algorithms.

The barriers for intelligent memory, in particular, are the need for explicit
parallel programming and the buy-in by manufacturers to put it in commodity
production to lower the price. DIVA is working on a migration path for this tech-
nology. The advent of multicore commodity processors pushes the field in two
directions. First, it provides performance improvements in multi-programmed
environments without the need for parallel programming. This hurts the case for
intelligent memory. The prevalence of parallel processors on the market, how-
ever, increases the utility of parallel programming so that this may not be such
a rare skill in the future. If parallel programming becomes commonplace, then
intelligent memory will be poised for success in the commodity market.

Acknowledgments Like any large-scale project, Active Pages was the work of
several people over several years. Fred Chong and Mark Oskin were the driving
force behind the project. Matt Farrens provided valuable advice. Several grad-
uate and undergraduate students contributed to the project, including Justin
Hensley, Lucian Vlad-Lita, Tim Sherwood, Ravishankar Rao, Aneet Chopra,
Paul Sultana, and Jennifer Hollfelder.

References
[1] K. Itoh et al. Limitations and challenges of multigigabit DRAM chip design. IEEE

Journal of Solid-State Circuits 32(5), 1997.
[2] M. Oskin, J. Hensley, D. Keen, F. T. Chong, M. K. Farrens, A. Chopra. Exploiting

ILP in page-based intelligent memory. International Symposium on Microarchitec-
ture, 1999.

[3] Semiconductor Industry Association. The national technology roadmap for semi-
conductors. http://www.sematech.org/public/roadmap/, 1994.

35.7 Summary 803

[4] M. Oskin, F. T. Chong, T. Sherwood. Active pages: A computation model for intelli-
gent memory. Proceedings of the 25th Annual International Symposium on Computer
Architecture, 1998.

[5] P. Ashenden. The Designer’s Guide to VHDL, 2nd ed., Morgan Kaufmann, 2002.
[6] Altera Corporation. FLEX 10K Embedded Programmable Logic Family, May 1998.
[7] M. Oskin, L. V. Lita, F. T. Chong, J. Hensley, D. K. Franklin. Algorithmic complexity

with page-based intelligent memory. Parallel Processing Letters 10(1), 2000.
[8] A. Kautonen, V. Leppnen, M. Penttonen. PRAM model. http//www.cs.joensuu.fi/

pages/penttonen/parallel/pram.pram.html.
[9] M. Oskin, L.-V. Lita, F. T. Chong, J. Hensley, D. K. Franklin. Algorithmic Complexity

with Page-Based Intelligent Memory. Technical Report CS-01-00, Department of
Computer Science, University of California, Davis, February 2000.

[10] D. T. Hoang. Searching genetic database on Splash 2. In D. Buell, J. Arnold,
W. Kleinfelder, Splash 2: FPGAs in a Custom Computing Machine, IEEE Computer
Society Press, 1996.

[11] M. Oskin, F. T. Chong, T. Sherwood. ActiveOS: Virtualizing intelligent memory.
Proceedings of the IEEE International Conference on Computer Design, 1999.

[12] A. Asthana, M. Cravatts, P. Krzyzanowski. Design of an active memory system for
network applications. International Workshop on Memory Technology, Design and
Testing, IEEE Computer Society Press, 1994.

[13] M. Noakes, D. Wallach, W. Dally. The J-Machine multicomputer: An architec-
tural evaluation. Proceedings of the 20th Annual ACM International Symposium on
Computer Architecture, May 1993.

[14] W. Lee. Space-time scheduling of instruction-level parallelism on a Raw machine.
Proceedings of the 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, October 1998.

[15] A. A. Chien, R. K. Gupta. MORPH: A system architecture for robust high perfor-
mance using customization. Frontiers, 1996.

[16] C. Ebeling et al. Mapping applications to the RaPiD configurable architecture.
Symposium on FPGAs for Custom Computing Machines, April 1997.

[17] Z. Miled, R. Eigenmann, J. Fortes, V. Taylor. Hierarchical processors-and-memory
architecture for high performance computing. Sixth Symposium on the Frontiers
of Massively Parallel Computation, October 1996.

[18] Y. Kang, M. Huang, S. Yoon, Z. Ge, D. K. Franklin, V. Lam, P. Pattnaik, J. Torrellas.
FlexRAM: An advanced intelligent memory system. International Conference on
Computer Design, October 1999.

[19] D. Patterson. Microprocessors in 2020. Scientific American, September 1995.
[20] P. M. Kogge, T. Sunaga, E. A. E. Retter. Combined DRAM and logic chip for mas-

sively parallel applications. 16th IEEE Conference on Advanced Research in VLSI,
1995.

[21] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin,
C. Chen, C. W. Kang, I. Kim, G. Daglikoca. Architecture: The architecture of
the DIVA processing-in-memory chip. International Conference on Supercomputing,
2002.

[22] J. Carter, et al. Impulse: Building a smarter memory controller. Proceedings of
the International Symposium on High-Performance Computer Architecture, January
1999.

This page intentionally left blank

P A R T VI

THEORETICAL UNDERPINNINGS

AND FUTURE DIRECTIONS

Parts I through V addressed what reconfigurable architectures look like
(Part I), how we can develop reconfigurable solutions (Parts I, II, IV, V), and,
by example, where reconfigurable solutions can be particularly beneficial
(Part V). In this, the final part of the book, we examine why reconfigurable
architectures are beneficial and we gain insight into the areas where the
benefits of reconfigurable solutions lie. We also observe technology trends
and examine why reconfigurable architectures may become increasingly
important over time. To support and ground these discussions, the follow-
ing chapters delve into the technology basis from which we build these
architectures, and their alternatives, and discuss physical issues including
area, defects, faults, and manufacturing trends.

Chapter 36 constructs a simplified model of the architectural design
space in which postfabrication programmable architectures (e.g., proces-
sors, FPGAs, VLIWs, SIMD arrays) are built. Using this model, the chapter
illustrates the trade-offs inherent in different architectures and the impact
these trade-offs have on the architectures’ efficiency in implementing vari-
ous applications. This simple analysis illuminates the appropriate roles for
processors and FPGAs, underscores how we can use FPGAs efficiently, and
suggests why, as component capacities continue to grow, reconfigurable
architectures may be important for carrying out an ever-enlarging set of
high-throughput tasks.

Chapters 37 and 38 explore how continued feature size scaling will
influence the design of integrated circuits. As device feature sizes
approach the atomic scale, our traditional techniques, abstractions, and
solutions may no longer be appropriate. Manufacturing at the atomic
scale demands higher regularity and produces less controlled structures.
At the same time, physical imperfections (e.g., defects, faults, wear) occur
at significantly higher rates. Postfabrication configurability appears to be
an essential tool for dealing with these atomic-scale effects. This, too, sug-
gests the growing importance of reconfigurable architectures for future
technologies.

806 Part VI � Theoretical Underpinnings and Future Directions

Chapter 37 addresses defect and fault tolerance. It shows how con-
figurable designs can accommodate defects and suggests in what direc-
tions our design and usage paradigms should evolve in order to deal with
increasing defect rates. The chapter also examines how transient faults
will affect future configurable systems.

Chapter 38 further explores the impact of technologies in which fea-
ture sizes are measured in single-digit atomic widths. It reviews emerging
atomic-scale technologies and shows how they can be assembled into a
complete reconfigurable architecture.

C H A P T E R 36

THEORETICAL UNDERPINNINGS

André DeHon
Department of Electrical and Systems Engineering
University of Pennsylvania

Throughout this book there are examples for which reconfigurable designs offer
superior performance to processor-based solutions. The reconfigurable imple-
mentation is typically orders of magnitude faster than the processor-based
system. Even when we normalize the performance advantage to the number
of components used in the solution, or to the number of square millimeters of
silicon in the same process technology, we often see the reconfigurable solu-
tion providing one to two orders of magnitude higher computational capacity
per square millimeter. These observations raise questions about reconfigurable
computing systems.

� Why do we see this greater computational capacity per unit area?
� How can we predict when reconfigurable systems can deliver significantly

higher performance than processor-based implementations?
� What does this tell us about how we should engineer reconfigurable

designs?

This computational density advantage is not an accident. It occurs for real,
structural reasons resulting from where silicon is allocated in reconfigurable
architectures. Field-programmable gate arrays (FPGAs) and reconfigurable archi-
tectures organize their instructions differently from processors, making different
trade-offs between instruction and computational density. Processors give up raw
computational capacity for the ability to support large and irregular computations
robustly, while FPGAs give up the ability to switch rapidly among diverse tasks to
maximize available compute density and spatial parallelism. This chapter devel-
ops a simple model of programmable devices and uses it to illustrate the gross
design space, which includes processors and FPGAs, the trade-offs each makes,
and the consequences of those trade-offs.

36.1 GENERAL COMPUTATIONAL ARRAY MODEL

Let us start by focusing exclusively on a capabilities viewpoint, ignoring, for the
moment, costs. What would be good to have for a general-purpose programmable
computing architecture?

Copyright © 2008 by André DeHon. Published by Elsevier Inc.

808 Chapter 36 � Theoretical Underpinnings

The most general and flexible programmable architecture we might build
would have:

� Computational operators (e.g., programmable gates) that compute an
output bit from some number of input bits

� Full, bit-level interconnect among computational operators
� Local data storage for each bit operator
� The ability to issue a unique instruction to each bit-level computational

operator on every cycle; this instruction should indicate:
– Which computational function the operator should perform on each

cycle

– Where the inputs for the operator should come from, including both
spatially from any other operator and temporally from local memory

– Where the output of the operator on this cycle should go into local
memory

Figure 36.1 shows a diagram of this architecture. For this simple model, we
assume that all the programmable blocks are identical. We call the instruction
that controls each programmable block (including interconnect and memory, as
just summarized) a primitive instruction, or pinst for short (see Figure 36.2).
With an array of N blocks, the full instruction word issued on every cycle to
control the computational array is the composition of N pinsts.

This array provides a computational capacity of N-bit operations (bitops) on
each cycle. We have great flexibility in using this array since every bitop can
have a unique pinst on every cycle. So, if we need to process an irregular collec-
tion of operations, such as a 17-bit add, an 8-bit subtract, a 13-bit exclusive-or
(XOR), the next state evaluation on a 23-state finite-state machine (FSM), and a
5-bit shift left by 3, we can direct each bitop independently to keep all bitops
performing exactly the operations needed for the computation. Further, if the
following cycle needs a very different set of operations, such as a 9-bit multiply
by the constant 27, a 12-bit AND, the next state evaluation on a 23-state FSM,

Data store Data store Data store

Compute unitCompute unitCompute unitCompute unit

A
rr

ay
-w

id
e

in
st

ru
ct

io
n

Data store

FIGURE 36.1 � The general computational array model.

36.2 Implications of the General Model 809

Compute unit

Data store
O

p
se

le
ct

io
n

In
te

rc
on

ne
ct

se
le

ct
io

n

P
rim

iti
ve

 in
st

ru
ct

io
n

(P
in

st
)

In
pu

t
so

ur
ce

se
le

ct
io

n

W
rit

e/
re

ad
ad

dr
es

se
s

to
 d

at
a

st
or

e

FIGURE 36.2 � Primitive instruction (pinst) for programmable bitops.

and an 11-bit shift right by 2, we can issue the next array-wide instruction to
control the computational array accordingly.

We get to use all the bitops all the time. Mapping designs to this array is
simply a matter of scheduling the bit-level computational needs onto the N-bit
operations provided by the array. With this full ability to control the cycle-
by-cycle operation of each bitop independently, scheduling is relatively easy.
(Strictly speaking, optimal scheduling remains NP-hard, but it can be approxi-
mated within a factor of 2 of optimal using a variant of Johnson’s Algorithm [1].)
So, why is it that we do not have a popular architecture that provides this model?

36.2 IMPLICATIONS OF THE GENERAL MODEL

From a purely logical standpoint, we cannot fault the general computational
array model. However, we must implement any architecture in a physical com-
putational medium (e.g., out of a number of discrete vacuum tubes or transis-
tors, on a silicon die, ultimately out of molecules and atoms). To support the
architecture, we must commit physical resources. Those resources have a cost
in terms of area, delay, and energy. The general computational array model turns
out to be extravagant—so much so that we are generally willing to compromise
its power to build more practical architectures.

810 Chapter 36 � Theoretical Underpinnings

This section illustrates two ways in which the instruction organization of
the general model is unreasonably expensive. The focus here is on silicon
VLSI implementations, and we discuss the sizes and areas of components in
VLSI. To make the discussion general, resource areas are measured in terms of
technology-normalized units. In particular, we will measure widths in units of
F—the minimum feature size in a VLSI process; as a consequence, areas are
measured in units of F2. VLSI technologies are normally named by their min-
imum feature size, so when we talk about a 45 nm technology, we are talking
about a technology with F = 45 nm. Ideally, when we scale from a larger tech-
nology to a smaller technology, everything scales as F. Features 900 nm wide in
a 90 nm technology are 10 F wide and should become 450 nm wide in a 45 nm
technology. Features do not always scale perfectly linearly like this, but they
scale close enough for illustrative purposes. Details and estimates on how the
industry expects silicon technology to scale are summarized by the ITRS [2]; the
industry collaborates to produce an updated or revised version of this document
annually.

36.2.1 Instruction Distribution
This section starts by considering the resource implications of delivering a sep-
arate pinst to every bitop. We assume the following:

� The bitops are arranged in a dense
√

N×√
N array (see Figure 36.3).

� The area required for each bitop, including compute, storage, and
interconnect, is Abop = 250,000F2; we further assume that the bit operator
itself is laid out as a square 500F on a side. This size assumes that the
interconnect has also been designed in a more restrictive way than the
most general model (see Section 36.1), perhaps resembling something
closer to traditional FPGA interconnect capabilities.

� The metal pitch available for distributing an instruction bit is Wmetal = 4F.
The minimum pitch possible in a given technology is 2F because we need
to leave one feature size worth of space between features so that they do
not short together. The smallest feature sizes tend to be polysilicon for
transistor gate widths, with metal pitches being a little wider. A modern
VLSI process has many metal layers, and the ones higher in the stack
(farther from the silicon base) tend to be wider.

� We have one complete horizontal metal layer and one complete vertical
metal layer available to distribute instructions. As noted, modern VLSI
processes generally have many metal layers; for example, an F = 65 nm
process might have 11 metal layers. Some of the layers will be needed for
local wiring in the cell, some for power and clock distribution, and some
for interconnect. Dedicating two complete metal layers to instruction
distribution is extravagant even with 11 metal layers.

� Each pinst requires Ibits = 64 to specify its instruction. This may seem
small if we think about how many bits are required per 4-LUT in an
FPGA, or large if you think about 32-bit processor instructions. Encoded
densely, FPGA configurations could be much smaller [3]. The capabilities
of the pinst might be closer to two processor instructions than one.

36.2 Implications of the General Model 811

bop

N

N

Wmetal

Wires/side 5 Wmetal
N Abop

Abop

Abop

FIGURE 36.3 � Wiring for instruction distribution.

As we will see, the preceding assumptions only affect the particular quantitative
conclusion we reach. The qualitative effect remains even if we assume two or
four times as many metal layers, half the metal pitch, more compact instruction
encodings, or larger bitop cell sizes.

If the instructions must all come into the computational array, then the total
wiring capacity available for instruction distribution is equal to the perimeter
of the array.

Aside(N) =
√

N×
√

Abop (36.1)

Lperimeter(N) = 4×Aside(N) (36.2)

Note that the two metal layers allow the connections on the top and bottom
layers to cross over each other to reach into the array. However, if the lower

812 Chapter 36 � Theoretical Underpinnings

layer is completely dense, we will have trouble making connections between the
upper layer and the bit operations (i.e., we need to reserve space for vias through
the lower level). To keep the math simple, general, and illustrative, we will not
model that effect, which will only tend to make the problem more severe than
the simple model indicates.

To feed the N-bit operators into the array, we need:

Itotal bits(N) = N× Ibits (36.3)

Linstr dist(N) = Wmetal × Itotal bits(N) (36.4)

For the distribution to be viable, we need:

Lperimeter(N) > Linstr dist(N) (36.5)

Substituting into the previous equations, this results in:

4×
√

N×
√

Abop > Wmetal ×N× Ibits (36.6)

4×
√

Abop

Wmetal × Ibits
>
√

N (36.7)

N <

⎛

⎝

4×
√

Abop

Wmetal × Ibits

⎞

⎠

2

(36.8)

Using the preceding assumptions:

N <
(

4×500F
4F×64

)2

= 61 (36.9)

This says that we cannot afford to feed more than about 60 bit-processing
units without saturating available instruction distribution bandwidth. If we want
to support more bit-processing elements, we must increase the perimeter and
effectively make the bitops larger. Rearranging equation 36.6 with Abop as the
variable:

√

Abop(N) >
Wmetal ×

√
N× Ibits

4
(36.10)

Abop(N) =

(

Wmetal ×
√

N× Ibits

4

)2

(36.11)

Abop(N) = 4096×NF2 (36.12)

That is, the area of each bitop needs to grow linearly with N, meaning that the
array area is actually growing quadratically with N.

Equivalently, we can recognize this effect as a difference between the growth
rate of the area and the perimeter. If we assume the bitop area is constant,
then the total area in the array is growing linearly in the number of bitops.
However, the perimeter of the array is only growing as the square root of the

36.2 Implications of the General Model 813

array area. So it is not surprising that we reach a point where the array’s need
for instructions, which is also growing linearly with bitops, exceeds the ability to
feed instructions into the array that grows only as the square root of the number
of bitops in it. The particular assumptions used for this example starkly illustrate
that this effect is already an issue for very small arrays. You can substitute your
favorite assumptions about instruction bits, metal pitch, metal layers, or bit-
operator area, but the qualitative conclusion remains as follows:

If we support this model, either we are limited in the size of the arrays
we can build, or instruction distribution wiring ends up dominating all
other resources and forces us to scale only as the square root of the area
we spend on the computational array.

36.2.2 Instruction Storage
The previous section illustrated that instruction distribution from outside the
computational array is not scalable to large computations. Alternately, consider
storing the instructions inside the array. In particular, each bitop could include
an instruction memory that holds its instruction (see Figure 36.4). We would

Data store

Compute unit

Instruction address

Lo
ca

l i
ns

tr
uc

tio
n

st
or

e
(h

ol
ds

N
in

st
r

pi
ns

ts
)

FIGURE 36.4 � A bitop with local instruction memory.

814 Chapter 36 � Theoretical Underpinnings

then only need to broadcast an address into the array, and each bitop could
translate that through the instruction memory to its instruction. Even a 64-bit
address is small compared to Lperimeter(1), so this solution does not challenge
wiring capacity. However, it does raise the question of how large the instruction
memory should be to begin to approximate the general model.

In any case, storing the instructions requires area. So we should assess the
cost of storing these instructions. Assume that the instruction memory lives
in SRAM, and that the area of an SRAM cell to hold an instruction bit is
Abit = 200F2. This means that the area per instruction is:

Apinst = Abit × Ibits (36.13)

Apinst = 200F2 ×64 = 12,800F2 (36.14)

The total area per bitop is now:

Abitop w imem = Abop +Ninstrs ×Apinst (36.15)

Abitop w imem = 250,000F2 +Ninstrs ×12,800F2 (36.16)

Equation 36.16 now tells a very interesting story. The area required to store a
single instruction is small compared to the area required for compute and inter-
connect in the bit operator (one-twentieth the area). If we store 20 instructions
locally, we place half of the area into instruction memory. When we store 200
instructions locally, the instruction memory area ends up dominating (i.e., is 10
times the size of) the area required for computation. That is, given fixed area,
the design with 200 instructions will only fit one-tenth the number of bitops as
the design with a single local instruction.

Unless we can limit the number of different, array-wide instructions we need
to issue, the instruction memory needed to approximate the general model will
end up dominating the computational area. Taken together with the result on
instruction distribution, these examples illustrate why the general model is not
typically supported:

To support the general model, instruction resources would dominate all
other resources, forcing limited computational density.

We are left with the choice of either accepting very low computational density
or looking for compromises in the general model that will allow us to avoid the
huge instruction expense it implies.

36.3 INDUCED ARCHITECTURAL MODELS

If the general model was viable, we would not have the varied set of computer
architectures that exist. That is, computer architectures arise because (1) the
general model is too expensive, and (2) there is structure in typical computa-
tional tasks that permits more economical implementations. Having identified

36.3 Induced Architectural Models 815

that it is unreasonable to support the general computational array model, we
ask: Which structure exists in typical computations that can be exploited to
provide a more economical implementation?

36.3.1 Fixed Instructions (FPGA)
If the instructions never change, we do not need to distribute them into the
computational array, nor do we need to allocate instruction memory area to
store more than a single instruction. We still allow each bitop a pinst, so each
can perform a unique operation; however, we do not allow the pinst to change
from cycle to cycle. Unchanging instructions is an extreme form of temporal
locality, where computation remains the same over time. This allows us to build
large arrays and keep the computation dense. If we need to, or can arrange to,
perform the same computation on every cycle, then we use the array efficiently.
This restriction on the general model effectively gives us an FPGA or spatially
reconfigurable architecture. In Chapter 5, Section 5.2, we saw many system
architectures that illustrate how we might organize computation to enhance
this kind of structure.

36.3.2 Shared Instructions (SIMD Processors)
Another structure common to applications is SIMD datapaths (see Single pro-
gram, multiple data subsection of Section 5.2.4)—that is, it is common for us to
identify sequences of bit-level operations that are the same across a number of
data bits. The most common case is word-wide operations, such as multibit adds
or bitwise logical operations (e.g., OR, AND, XOR). At a higher level, we would
perform a number of identical word-wide operations on different data (e.g., per-
forming a component-wise multiplication on the elements of two arrays as part
of a dot product). Here we perform the same operation across many bitops.
Rather than providing a unique instruction for each bitop, we can arrange to
share a single instruction across a large number of bit operators, amortizing the
instruction distribution or storage expense.

In the extreme, we would distribute a single instruction to all the bitops in
the array. This is the opposite of the simplification used in the FPGA. Here, all
bitops in the array must perform the same operation on a given cycle, but this
operation may change from cycle to cycle.

We can view conventional, word-wide processors as exploiting this idea.
A processor instruction typically only tells the datapath to do one homogeneous
thing—that is, the processor instruction asks every bit in the arithmetic logic
unit (ALU) bit slice to perform the same computation (e.g., perform a full adder
bit, perform an XOR, perform a shift). For example, a 32-bit processor data-
path could perform many more operations if each individual bit slice of the
ALU could operate independently; instead, ALUs are constrained to operate in
SIMD fashion to keep the cycle-by-cycle instruction size small.

In the general computational array model, we saw that the instruction mem-
ory took up the same area as the computation when we stored only 20 instruc-
tions in the array (equation 36.16). If we instead share each instruction across

816 Chapter 36 � Theoretical Underpinnings

Wsimd = 32 bitops to form a SIMD datapath, it takes 625 instructions for the
instruction memory to reach parity with the computation—that is:

Abitop w imem(Wsimd, Ninstrs) = Abop +
(

Ninstrs

Wsimd

)

×Apinst (36.17)

Abitop w imem (Ninstrs, 32) = 250, 000F2 +Ninstrs ×400F2 (36.18)

From these illustrations, we can see how the more familiar FPGA and processor
architectures fall out as simplifications of the general computational array model
that exploits different kinds of structures that exist in typical computations.

36.4 MODELING ARCHITECTURAL SPACE

The demonstrations in Sections 36.2 and 36.3 highlight the fact that choices
about instruction architecture can have a first-order impact on the area, and
hence density, of programmable computing components. We can take this a
step farther and build models of the density, and ultimately relative efficiency,
of architectural design points.

Table 36.1 summarizes where some familiar architectures fall in the
(Wsimd, Nisntr) architectural space. Nonetheless, remember that we are using a
deliberately simple model and that many other effects and issues are associated
with each architecture, some of which are mentioned in Section 36.4.3.

36.4.1 Raw Density from Architecture
Using equation 36.17, we can plot the relative densities of each bit operator as a
function of the local instruction memory, Ninstr, and the SIMD instruction width,
Wsimd. Figure 36.5 shows plots of the computational density for the instruc-
tion memory from 1 to 16,384 and the instruction width from 1 to 1024. Here,
note that peak densities vary over three orders of magnitude. As we increase
instruction depth (Ninstr), we shift area into instructions rather than compute,
often significantly reducing computational density. Wide-word architectures can
reduce the memory costs at a particular instruction depth, but there also may
be significant computational density reductions as instruction depth grows.

TABLE 36.1 � Placement of sample architectures in (Wsimd, Ninstr) space

Architecture Wsimd Ninstr Reference

FPGA 1 1

GARP fabric 2 4 Chapter 2, Section 2.1.1

KiloCore256 8 16 Chapter 2, Section 2.1.2

MIPS-X 32 512 [4]

IA-64 (Montecito) 64 200,000 [5]

Cell SPU 128 65,536 [6]

36.4 Modeling Architectural Space 817

Relative
density

 1 4 16 64 256 1024 4096 16384
 1

 4
 16

 64
 256

 1024

0.001

0.01

0.1

1

Ninstr

Wsimd

FIGURE 36.5 � Relative peak computational density from the model (normalized to the density
of Ninstr = 1, Wsimd = 1024 design points).

36.4.2 Efficiency
The previous section showed peak raw densities achievable at various architec-
tural points. If peak raw density was all that mattered, we would build SIMD
designs with shallow instruction memories, as Figure 36.5 illustrates. However,
it is seldom the case today that we can keep the millions of SIMD bit-processing
elements we might be able to put on a die performing useful computations.
When we cannot match the structure assumed by the architecture, the yield is
only a fraction of the potential density—that is, another architecture, perhaps
one with lower peak density, often can deliver more net density to the applica-
tion. In particular, the architectural point whose structure assumptions exactly
match the application will deliver the highest net density on that application.
This leads to an interesting set of questions:

� How does the efficiency of an architecture fall off as it becomes
mismatched to the structure of the application?

� How does the net density compare between various matched and
mismatched architectures?

Since there is a model for the area of architectural design points in the
(Wsimd, Ninstr) design space (equation 36.17), we can use that to measure effi-
ciency. In particular, it is possible to measure the efficiency of an architecture
design point (Arch(Wsimd, Ninstr)) processing applications with a particular struc-
ture (App

(

Wapp, Lpath
)

) as the ratio of the area of the architecture that exactly
matches the application structure to the area of the point being evaluated:

Efficiency
(

Arch(Wsimd,Ninstr),App
(

Wapp,Lpath
))

(36.19)
=

Area
(

Arch
(

Wapp,Lpath
)

,App
(

Wapp,Lpath
))

Area
(

Arch(Wsimd,Ninstr),App
(

Wapp,Lpath
))

818 Chapter 36 � Theoretical Underpinnings

TABLE 36.2 � Sample applications in the (Wapp, Lpath) space

Application Wapp Lcritpath Lpath Comments

Conway’s Game of
“Life”

1 1 1 Bit-level CA [7]

Error correcting
codes

1 1 1–10,000 At memory interface,
need one per cycle;
on audio-rate, real-
time data can be
low throughput

Entropy coding 1 1–10 1–10,000 (similar to previous)

Video processing
of pixel data

8 1–6 12 1024×1024 at 30
frames per second
on a 500 MHz cycle
can afford approxi-
mately 12 cycles per
pixel

CD audio 16 1–10 10,000 44 kHz real-time vs.
500 MHz cycle

SPIHT image
compression

16 10 10+ Chapter 27

FDTD 35 1–5 1–5 Chapter 32

To characterize the structure of the architecture separately from the struc-
ture of the application, equation 36.19 keeps Wsimd and Ninstr as parameters
characterizing the architecture and adds the dual parameters Wapp and Lpath to
characterize the application structure. Wapp is simply the natural SIMD datapath
width of the application, while Lpath is the path length of the application (see
the Mismatch in Ninstr subsection).

For illustrative purposes, Table 36.2 summarizes where several applications
appear in the (Wapp, Lpath) space. The area of the mismatched design is always
larger, so the efficiency metric in equation 36.19 effectively tells us how much
lower the mismatched point’s net density is than the matched point’s net density.

To develop the intuition and keep the explanation simple, we stay with
the assumption that applications have homogeneous structure (i.e., single-
characteristic Wapp and Lpath). One of the reasons we are interested in how well
an architecture deals with different, mismatched structures is that a real appli-
cation will typically contain heterogeneity in the structure it exhibits.

Mismatch in Wsimd
What happens when the application width Wapp is mismatched to the architec-
tural width Wsimd?

� Wsimd > Wapp: Here we do not have as fine-grained control of the bit
operators as the application requires. Consequently, bitops go unused.
In particular, we will actually need a larger array so that we match the

36.4 Modeling Architectural Space 819

instruction control needs of the application. For example, if Wapp = 5
and Wsimd = 8, then three bitops in every architectural SIMD datapath
will go idle. To satisfy the application requirements, we end up needing
Wsimd

Wapp
=

8
5

= 1.6 times as many physical bitops as the application actually

requires.

� Wsimd < Wapp: There are two effects that can work to make implemen-
tations in this architecture larger than the optimally matched
architecture:

1. We have finer-grained control, but may still need more physical bit
operators because of granularity problems. For example, when

Wapp = 8 and Wsimd = 5, we need
⌈

Wapp

Wsimd

⌉

= 2 groups of Wsimd

bitops to cover each application group, or
⌈

8
5

⌉

×Warch = 10 bitops,

of which only Wapp = 8 are doing useful work.
2. Since we have more control than necessary for the application, the

area of each bitop is larger than necessary in order to accommodate
additional instruction memory; this extra instruction memory holds
redundant information. Continuing the Wapp = 8 and Wsimd = 5

example, each bit operator effectively pays for
Wapp

Wsimd
=

8
5

= 1.6 times

as many instructions as necessary for the application.

Assuming that instruction storage depth is matched to application path length
(Ninstr = Lpath) to focus on the width mismatch, we can show this in an area
model as:

Area
(

Arch
(

Wsimd, Lpath
)

, App
(

Wapp, Lpath
))

=
(

Wsimd

Wapp

)

×
⌈

Wapp

Wsimd

⌉

×Abitop w imem
(

Wsimd, Lpath
)

(36.20)

=
(

Wsimd

Wapp

)

×
⌈

Wapp

Wsimd

⌉

×
(

Abop +
(

Lpath

Wsimd

)

×Apinst

)

This allows us to compute the efficiency of the mismatched SIMD datapath
width at a matched Lpath as:

Efficiency [Lpath]
(

Wsimd, Wapp
)

(36.21)

=

(

Abop +
(

Lpath
Wapp

)

×Apinst

)

(
Wsimd
Wapp

)

×
⌈

Wapp
Wsimd

⌉

×
(

Abop +
(

Lpath
Wsimd

)

×Apinst

)

820 Chapter 36 � Theoretical Underpinnings

Figure 36.6 shows plots of the efficiency from equation 36.21 versus Wapp for
a collection of Wsimd’s and Lpath’s. Perhaps more significant than the large den-
sity range shown in Figure 36.5, we see that SIMD width mismatches can cost
us orders of magnitude in net density delivered to an application. Interestingly,
we see some SIMD width selections that do not show orders of magnitude effi-
ciency losses (e.g., Wsimd = 1 for Lpath = 1, Wsimd = 3 for Lpath = 64, Wsimd = 32 for
Lpath = 640). These robust points occur when the instruction area is equal to the
compute and interconnect area. That is:

Abop =
(

Lpath

Wsimd

)

×Apinst (36.22)

In these cases, half the area is allocated to storing instructions and half to com-
pute. For illustration, consider the Lpath = 640 and Wsimd = 32 case. Here, if we
are processing Wapp = 1 data, then we use only one-thirty-second of the compute

E
ffi

ci
en

cy

Wapp

 0.001

 0.01

 0.1

1

 1 4 16 64 256 1024

(a)

 0.001

 0.01

 0.1

 1

E
ffi

ci
en

cy

 1 4 16 64 256 1024

Wapp

(b)

Wsimd 5 1
Wsimd 5 3

Wsimd 5 32
Wsimd 5 64

Wsimd 5 1024
 0.001

 0.01

 0.1

 1

 1 4 16 64 256 1024

E
ffi

ci
en

cy

Wapp

(c)

FIGURE 36.6 � Efficiency as a function of Wapp for various Lpath values: (a) Lpath = 1, (b) Lpath = 640,
and (c) Lpath = 64.

36.4 Modeling Architectural Space 821

area. However, we are able to use all the memory area; a matched architecture
can, at most, be half the size of this design point since it still requires the 640
instructions, even if they drive a smaller datapath. At the opposite extreme, if
Wapp = 16, 384, we can use all the compute operators but we underutilize the
instructions. Here, a matched architecture could have used a factor of 512 lower
instruction area; however, since half the area is in compute, the matched archi-
tecture is, at best, only half the size of this robust point.

It should be clear that this observation holds for any choice of Wapp when the
area is allocated evenly between compute and instruction memory. In contrast,
if we make Wsimd = 1 for this Lpath = 640 case, then 97 percent of the area goes
into memory; if this Wsimd = 1 architecture now has a task with Wapp = 16, 384,
it is much larger (at least 33 times larger) than a design with matched width,
which can put significantly less area into instruction memory.

If we can design to a single application width, or a small range of widths, it
is best to select a matched width, or the width that provides the highest average
efficiency over the range. However, if we don’t have tight bounds on the appli-
cation width, these robust points show how we can select organizations that
remain fairly efficient for any application width.

Mismatch in Ninstr
A similar phenomenon occurs when Ninstr does not match the structure of the
application. First, we need to understand Lpath—the application demand for
Ninstr. In particular, let us consider an inner loop in a kernel or the computation
required for each invocation of a transform operator (see Transform or object
subsection of Section 5.1.2). To compute each inner loop iteration, or each
operator invocation, we need to evaluate a set of Nops bitops. In general, there
may be a set of cyclic sequential dependencies, or a critical path, of depth
Lcritpath among the bitops in the computation that prevent us from starting
the next iteration of the loop or invocation of the operator until the Lcritpath
array cycles have completed. For example, consider the loop body of a saturated
accumulation:

y[i] = max(min(x[i]+y[i−1], 255) , 0)

Before performing the next addition to compute y[i+1] from y[i], we must com-
plete the computation of y[i], including both the addition and the selection of
maximum or minimum bound limits (see Figure 36.7).1 Assume the following:

� The addition requires a path length of six sequential bitops.
� The comparisons can be performed in parallel.
� Each comparison requires a path of three sequential bitops.
� The final selection requires a single bitop.

The critical path Lcritpath is 10 for this computation. With a path length of Lcritpath,
we can schedule the Nops required to evaluate the application into Lcritpath cycles

1 With care, this actually can be avoided using sophisticated transformations [8].

822 Chapter 36 � Theoretical Underpinnings

2550

�

� �

Register

x [i]

y [i]

FIGURE 36.7 � Saturated accumulator cyclic dependency.

on the array without slowing down the application, the sequentially dependent
paths guarantee that it will always take at least Lcritpath cycles to perform the
operation.

The application may not actually demand that the computation be performed
every Lcritpath cycle. Perhaps the data throughput is lower and new samples, x[i],
are arriving every 20 ns while the array cycle time is 1 ns. Here, evaluating with
Lcritpath = 10 leaves the array sitting idle for 10 cycles before the next input sample
is available to compute. Consequently, it would be possible to schedule to Lpath =
20 > Lcritpath and cut the number of bitops needed by at least a factor of 2. In
this way, the loop or transform body is efficiently implemented by scheduling the
computations onto a minimum number of bitops in a period of Lpath cycles, with
each operator potentially getting a unique instruction on each cycle Ninstr = Lpath.
For examples, see Table 36.2, which summarizes the throughput Lpath required
in a few applications.

Now consider the two mismatched cases:

� Ninstr > Lpath: In this case, by scheduling the computation into Lpath cycles,
(

Ninstr −Lpath
)

instruction memory slots in each bitop go unused. The
matched architecture is smaller because it does not spend area on these
unused instruction memories. In the aforementioned saturated accu-
mulation, if Lpath = 20 and an array with Ninstr = 100 is used, then 80
instruction slots go unused.

� Ninstr < Lpath: In this case, we cannot necessarily reuse each bit operator
in Lpath in different ways on each of the Lpath cycles. Since we can only
use each operator in Ninstr ways, to solve the entire problem we may need

a total of
⌈

Lpath

Ninstr

⌉

times as many bitops to perform the computation.

Continuing with the example, if Ninstr = 5 and there is an Lpath = 20, we
may need four times as many bitops as the optimally matched
architecture. The total amount of memory is the same between these
cases; however, an Ninstr = 5 architecture pays for four times as many

36.4 Modeling Architectural Space 823

compute blocks (Abop). There is also a granularity effect here; for
example, we still need four times as many bitops even when Ninstr = 6.

Assuming that the datapath width is matched (Wsimd = Wapp), allows us to
focus on the instruction mismatch; we can show this in an area model as:

Area
(

Arch
(

Wapp, Ninstr
)

, App
(

Wapp, Lpath
))

=
⌈

Lpath

Ninstr

⌉

×Abitop w imem
(

Wapp, Ninstr
)

(36.23)

=
⌈

Lpath

Ninstr

⌉

×
(

Abop +
(

Ninstr

Wapp

)

×Apinst

)

This allows us to compute the efficiency of the mismatched instruction store at
a matched Wapp as:

Efficiency [Wapp]
(

Ninstr, Lpath
)

(36.24)

=

(

Abop +
(

Lpath

Wapp

)

×Apinst

)

⌈
Lpath

Ninstr

⌉

×
(

Abop +
(

Ninstr

Wapp

)

×Apinst

)

Figure 36.8 plots the efficiency from equation 36.24 versus Lpath for a collec-
tion of Ninstrs’s and Wapps’s. Again, note that instruction store mismatches can
cost orders of magnitude in net density. We also see robust points here where the
net density remains within 50 percent of the matched architecture. The effect
is the same as for datapath width mismatch (see previous section), and the effi-
cient points are governed by an analogous equation:

Abop =
(

Ninstr

Wapp

)

×Apinst (36.25)

For any of these robust points, at the minimum value, Lpath = 1, we are using
all the compute area and only a fraction of the instruction memory area, so an
optimally matched architecture could, at best, be implemented in half the area.
Similarly, for arbitrarily large Lpath, if Ninstr < Lpath, all the instruction memory
area is used to hold instructions, but this may leave the compute area idle
most of the time. Here, again, with only 50 percent of the area in compute,
the design is, at most, twice the size of an optimally matched architecture with
less area allocated to computation. In contrast, if we put 90 percent of the area
into compute, then we could end up wasting 90 percent of the area in scenar-
ios where Lpath >> Ninstr; matched architectures can be an order of magnitude
smaller in such cases. Similarly, if 90 percent of the area is put into instruc-
tion memory, we can end up wasting almost 90 percent of the area when Lpath
is small.

824 Chapter 36 � Theoretical Underpinnings

Ninstr 5 1
Ninstr 5 20

Ninstr 5 160
Ninstr 5 1280

Ninstr 5 102400.001

0.01

0.1

1

1 4 16 64 256 1024 4096

E
ffi

ci
en

cy

Lpath

(c)

0.001

0.01

 0.1

1

1 4 16 64 256 1024 4096

E
ffi

ci
en

cy

Lpath

(a)

0.001

0.01

0.1

1

1 4 16 64 256 1024 4096

E
ffi

ci
en

cy

Lpath

(b)

FIGURE 36.8 � Efficiency as a function of Lpath for various Wapp values: (a) Wapp = 1, (b) Wapp = 64, and
(c) Wapp = 8.

Composite effects
Combining the effects of SIMD width mismatch and local instruction storage
mismatch, we get the total efficiency:

Efficiency
(

Arch(Wsimd, Ninstr), App
(

Wapp, Lpath
))

(36.26)

=

(

Abop +
(

Lpath
Wapp

)

×Apinst

)

(
Wsimd
Wapp

)

×
⌈

Wapp
Wsimd

⌉

×
⌈

Lpath
Ninstr

⌉

×
(

Abop +
(

Ninstr
Wsimd

)

×Apinst

)

Unfortunately, if both the SIMD width and the local instruction storage mis-
match, it is not possible to pick a robust point as we did in previous sections.

Returning to equations 36.22 and 36.25, we note that the robust points occur

when we can match the instruction storage area,
(

Ninstr
Wsimd

)

×Apinst, and the com-

putation and interconnect area, Abop. However, when both Wapp and Lpath vary,
even when the area is matched, we can have cases where the allocation of width

36.4 Modeling Architectural Space 825

versus storage size within that area can prevent us from using the computational
units efficiently.

Efficiency of processors and FPGAs
The previous section suggests that we will not find an architectural point in this
(Wsimd, Ninstr) design space that is efficient across a wide range of application
structures. To understand where processors and FPGAs are efficient, we can use
the composite efficiency relation (equation 36.26) and estimate how efficient
they each can be across a portion of the design space (see Figure 36.9). Here the
FPGA is naturally modeled with Ninstr = 1 and Wsimd = 1. We model a processor
as Wsimd = 64 and Ninstr = 16,384.

Figure 36.9 shows starkly that the FPGA and processor are both designed
for different points in the application space. Notice that each can be less than
1 percent efficient in some portions of the space. Further, we note that in the
places where the processor is very inefficient (< 1 percent), the FPGA is highly
efficient; the reverse is true as well. This effect, coupled with the heterogeneous
nature of applications, explains why it is often useful to have reconfigurable
systems that mix FPGA or reconfigurable fabrics along with processors (e.g.,
Instruction augmentation subsection of Section 5.2.2 and Chapter 26).

36.4.3 Caveats
As noted in the introduction to this chapter, we are deliberately using a sim-
ple model to illustrate key effects in instruction organization. There are many
other application structural opportunities and architectural variables that can
also have a large effect on resource balance and efficiency, including intercon-
nect richness (e.g., [9]) and organization, data storage and memory hierarchy
capacities, bandwidth and latencies, threads of control, dynamic instruction
selection, and integration of hardware functional units (e.g., multipliers [10,11]

Wsimd 5 1, Lpath 5 1

1
4 16 64 2561024 4096 16384

1
4

 16
 64

 256
 1024

 0.0001
 0.001
 0.01
 0.1

1

FPGA efficiency

Efficiency

Lpath

Wapp

(a)

1
4 16 64 2561024 4096 16384

1
4

 16
 64

 256
 1024

 0.0001
 0.001
 0.01
 0.1

1

Processor efficiency

Efficiency

Lpath

Wapp

Wsimd 5 64, Lpath 5 16,384

(b)

FIGURE 36.9 � Efficiency of FPGA-like (a) and processor-like (b) designs across both Lpath and Wapp.

826 Chapter 36 � Theoretical Underpinnings

and floating-point units [12]). In processors, the SIMD control of ALUs is
coupled with fast logic to support carries in arithmetic (e.g., [13]), which
serves to reduce Lcritpath; FPGAs also employ fast cascade structures for sim-
ilar reasons (e.g., [14], Chapter 1) but do not tie them to SIMD datapaths.
Nonetheless, the simple model shows that these instruction organization deci-
sions can have a significant impact on computational density, and it illustrates
why FPGAs can be more efficient than processors for important classes of
applications.

36.5 IMPLICATIONS

36.5.1 Density of Computation versus Description
From this model, we can clearly see a trade-off between computational density
and instruction density. Equation 36.16 illustrates that the instruction store area
for a single bitop can be an order of magnitude smaller than the computation
to support it. This means an Ninstr = 1 design stores instructions an order of
magnitude less densely than an Ninstr = 200 design, and an Ninstr = 200 design
packs computation an order of magnitude less densely than an Ninstr = 1 design.

When the goal is to simply pack a large, irregular computation into a small
area, we are best off focusing on instruction density; this minimizes the area for
the implementation, at the expense of lower performance. When the goal is to
perform the computation at high throughput, designs with high computational
density allow us to meet the throughput with the least area.

36.5.2 Historical Appropriateness
When we first started building programmable integrated circuits, the premium
for describing large computations was high. The capacity on a single integrated
circuit was very low when they were built with F = 3μm technology. In the
mid-1980s, with Ninstr = 1 and Wsimd = 1, we could put only 64 bitops on a
die [15], limiting computations to those that could be described by 64 instruc-
tions. At roughly the same time, one could put Ninstr = 512 instructions on the
die along with 32 bitops controlled in an SIMD fashion by a single pinst on each
cycle (Wsimd = 32) [4]. The struggle at this point in history was to fit an entire
computational kernel onto a single die, and the deep instruction, word-wide pro-
cessor design could begin to fit interesting kernels while the FPGA designs could
fit only the most trivial computations.

By 2005, however, with F ≤ 0.1μm, the landscape had changed. Moore’s Law
process scaling has given us more than a 10,000-fold increase in capacity per
integrated circuit. Modern processors, still built with ever-deeper memories,
have large enough instruction stores to contain large applications. At the same
time, FPGAs hold hundreds of thousands of active bitops. Even kernels with
thousands of 64-bit-wide operations can fit spatially on the FPGA and exploit
the higher computational density.

36.5 Implications 827

The question with today’s silicon is less “Can we get the application to fit on
the die?” and more “How do we turn the available die area into performance?”
Consequently, as we continue to scale feature sizes, the fraction of tasks where
high instruction density remains the premium is shrinking, while the fraction
where the application fits on the die and high computational density offers a
benefit is increasing.

36.5.3 Reconfigurable Applications
Understanding why FPGAs can be efficient and where they are most efficient
(e.g., Figure 36.9) provides additional insight into where we should use FPGAs
and how to fully exploit their strengths. Certainly, if the task has low throughput
requirements (i.e., large Lpath), then FPGAs are often not an efficient implemen-
tation. The FPGA is efficient when we operate at minimum path length, prefer-
ably Lpath = 1, where we are performing the same operation over and over and
keeping all the bitops active during the operation. For FPGAs with a variable
clock cycle, we want to keep the cycle time to the minimum, maximizing the
reuse rate of each operation. This underscores why retiming operations such
as pipelining and C-slow (see Chapter 18) are important for optimizing FPGA
efficiency, as well as behavioral transformations that reduce Lcritpath.

When Lpath is large simply because of a low throughput demand, we can
often turn the SIMD structure, Wapp, into additional operation regularity. In
particular, when Wapp > 1, that is an indication that a number of bit-level
operators do perform the same operation. By moving this regularity into
time rather than space, we can reduce the number of unique instruction
combinations needed and hence reduce the Ninstr required. For example, if
Wapp = 16 and Lpath >> Lcritpath, we can implement the SIMD datapath bit seri-
ally so that the necessary instruction storage depth is a factor of 16 smaller

(N′
instr ≈

Lpath
Wapp

). As shown in Figure 36.10, this can increase the FPGA’s domain of
efficiency.

 1 4 16 64 256 1024 4096 16384
 1

 4
 16

 64
 256

 1024
 0.0001

 0.001

 0.01

 0.1

 1

FPGA efficiency

Lpath

Lapp

Efficiency

FIGURE 36.10 � FPGA efficiency when datapath regularity can be used to increase temporal
regularity.

828 Chapter 36 � Theoretical Underpinnings

References
[1] D. S. Hochbaum, ed. Approximation Algorithms for NP-Hard Problems,

PWS Publishing, 1997.
[2] International technology roadmap for semiconductors. http://www.itrs.net/Links/

2005ITRS/Home2005.htm, 2005.
[3] A. DeHon. Entropy, counting, and programmable interconnect. Proceedings of the

International Symposium on Field-Programmable Gate Arrays, ACM/SIGDA, 1996.
[4] M. Horowitz, J. Hennessy, P. Chow, G. Gulak, J. Acken, A. Agarwal, C.-Y. Chu,

S. McFarling, S. Przybylski, S. Richardson, A. Salz, R. Simoni, D. Stark,
P. Steenkiste, S. Tjiang, M. Wing. A 32b microprocessor with on-chip 2 Kbyte
instruction cache. IEEE International Solid-State Circuits Conference, Digest of
Technical Papers, IEEE, 1987.

[5] C. McNairy, R. Bhatia. Montecito: A dual-core, dual-thread Titanium processor.
IEEE Micro 25(2), 2005.

[6] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, T. Yamazaki.
Synergistic processing in cells multicore architecture. IEEE Micro 26(2), 2006.

[7] M. Gardner. The fantastic combinations of John Conway’s new solitaire game
“Life.” Scientific American 223, 1970.

[8] K. Papadantonakis, N. Kapre, S. Chan, A. DeHon. Pipelining saturated accum-
ulation. Proceedings of the International Conference on Field-Programmable
Technology, 2005.

[9] A. DeHon. Balancing interconnect and computation in a reconfigurable computing
array (or, why you don’t really want 100% LUT utilization). Proceedings of the
International Symposium on Field-Programmable Gate Arrays, 1999.

[10] A. DeHon. The density advantage of configurable computing. IEEE Computer
33(4), 2000.

[11] I. Kuon, J. Rose. Measuring the gap between FPGAs and ASICs. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 26(2), 2007.

[12] M. J. Beauchamp, S. Hauck, K. D. Underwood, K. S. Hemmert. Embedded
floating-point units in FPGAs. Proceedings of the International Symposium on Field-
Programmable Gate Arrays, 2006.

[13] R. P. Brent, H. T. Kung. A regular layout for parallel adders. IEEE Transactions on
Computers 31(3), 1982.

[14] S. Hauck, M. M. Hosler, T. W. Fry. High-performance carry chains for FPGAs. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 8(2), 2000.

[15] W. S. Carter, K. Duong, R. H. Freeman, H.-C. Hsieh, J. Y. Ja, J. E. Mahoney,
L. T. Ngo, S. L. Sze. A user programmable reconfigurable logic array. Proceedings
of the IEEE Custom Integrated Circuits Conference, 1986.

C H A P T E R 37

DEFECT AND FAULT TOLERANCE

André DeHon
Department of Electrical and Systems Engineering
University of Pennsylvania

As device size F continues to shrink, it approaches the scale of individual atoms
and molecules. In 2007, 65-nm integrated circuits are in volume production for
processors and field-programmable gate arrays (FPGAs). With atom spacing in
a silicon lattice around 0.5 nm, F = 65-nm drawn features are a little more than
100 atoms wide. Key features, such as gate lengths, are effectively half or a third
this size. Continued geometric scaling (e.g., reducing the feature size by a factor
of 2 every six years) will take us to the realm where feature sizes are measured
in single-digit atoms sometime in the next couple of decades.

Very small feature sizes will have several effects on integrated circuits,
including:

� Increased defect rates: Smaller devices and wires made of fewer atoms and
bonds are less likely to be “good enough” to function properly.

� Increased device variation: When dimensions are a few atoms wide, the
addition, absence, or exact position of each atom has a significant affect
on device parameters.

� Increased change in device parameters during operational lifetime: With
only a few atoms making up the width of wires or devices, small changes
have large impacts on performance, and the likelihood of a complete
failure grows. The fragility of small devices reduces traditional
opportunities to overstress them as a means of forcing weak devices to
fail before the component is integrated into an end system. This means
many weak devices will only turn into defects during operation.

� Increased single die capacity: Smaller devices allow integration of more
devices per die. Thus, not only do we have devices that are more likely to
fail, but there also are more of them, meaning more chances that some
device on the die will fail.

� Increased susceptibility to transient upsets: Smaller nodes use less charge
to hold state or configuration data, making them more susceptible to
upset by noise, including ionizing particles, thermal noise, and shot
noise. Coupled with the greater capacity, which means more nodes that
can be upset, dies will have significantly increased upset rates.

Accommodating and exploiting these effects will demand an increasing role for
postfabrication configurable architectures. Nonetheless, some usage paradigms

Copyright © 2008 by André DeHon. Published by Elsevier Inc.

830 Chapter 37 � Defect and Fault Tolerance

will need to shift to fully exploit the potential benefits of reconfigurable
architectures at the atomic scale.

This chapter reviews defect tolerance approaches and points out how the
configurability available in reconfigurable architectures is a key tool for coping
with defects. It also touches briefly on lifetime and transient faults and their
impact on configurable designs.

37.1 DEFECTS AND FAULTS

A defect is a persistent error in a component. Because defects are persistent, we
can test for defect occurrences and record their locations. We contrast defects
with transient faults that may produce the wrong value on one or a few cycles
but do not continue to corrupt calculations. For the sake of simple discussion
here, we classify any persistent problem that causes the circuitry to work incor-
rectly for some inputs and environments as defects. Defects are often modeled as
stuck-at-1, stuck-at-0, or shorted nodes. They can also be nodes that are exces-
sively slow, such that they compute correctly but not in a timely fashion, or
excessively leaky, such that they do not hold their value properly. A large num-
ber of physical effects and causes may lead to these manifestations, including
broken wires, shorts or bridging between nodes that should be distinct, excessive
or inadequate doping in a device, poor contacts between materials or features,
or excessive variation in device size.

A transient fault is a temporary error in a circuit result. Transient faults
can occur at random times. A transient fault may cause a gate output or
node to take on the incorrect value on some cycle of operation. Examples of
transient faults include ionizing particles (e.g., α-particles), thermal noise, and
shot noise.

37.2 DEFECT TOLERANCE

37.2.1 Basic Idea
An FPGA or reconfigurable array is a set of identical (programmable) bit-
processing operators with postfabrication configurable interconnect. When a
device failure renders a bitop or an interconnect segment unusable, we can
configure the computation to avoid the failing bitop or segment (see Figure 37.1).
If the bitop is part of a larger SIMD word (Chapter 36, Section 36.3.2) or other
structure that does not allow its independent use, we may be forced to avoid the
entire structure. In any case, as long as all the resources on the reconfigurable
array are not being used, we can substitute good resources for the bad ones. As
defect rates increase, this suggests a need to strategically reserve spare resources
on the die so that we can guarantee there are enough good resources to compen-
sate for the unusable elements.

37.2 Defect Tolerance 831

(a)

B

CA

(c)

(b)

Spare track

Spare logic
block

A B C

Defect

A B C

Short
to ground

FIGURE 37.1 � Configuring computation to avoid defective elements in a reconfigurable array:
(a) logical computation graph, (b) mapping to a defect-free array with spare, and (c) mapping
to an array with defects.

This basic strategy of (1) provisioning spare resources, (2) identifying and
avoiding bad resources, and (3) substituting spare resources for bad resources
is well developed for data storage. DRAM and SRAM dies include spare rows and
columns and substitute the spare rows and/or columns for defective rows and
columns (e.g., see [1, 2]). Magnetic data storage (e.g., hard disk) routinely has
bad sectors; the operating system (OS) maps the bad sectors and takes care not
to allocate data to those sectors. These two forms of storage actually illustrate
two models for dealing with defects:

1. Perfect component: In the perfect component model, the component has to
look perfect; that is, we require every address visible to the user to perform
correctly. The spare resources are added beyond those required to deliver
the promised memory capacity and are substituted out behind the scenes
so that users never see that there are defective elements in the component.
DRAM and SRAM components are the traditional example of the perfect
component model.

832 Chapter 37 � Defect and Fault Tolerance

2. Defect map: The defect map model allows elements to be bad. We expose
these defects to higher levels of software, typically the OS, which is respon-
sible for tracking where the defects occur and avoiding them. Magnetic
disks are a familiar example of the defect map model—we permit sectors
to be bad and format the disk to avoid them.

37.2.2 Substitutable Resources
Some defects will be catastrophic for the entire component. While a recon-
figurable array is composed largely of repeated copies of identical instances,
the device infrastructure is typically unique; defects in this infrastructure may
not be repairable by substitution. Common infrastructures include power and
ground distribution, clocking, and configuration loading or instruction distribu-
tion. It is useful to separate the resources in the component into nonrepairable
and repairable resources. Then we can quantify the fraction of resources that
are nonrepairable.

We can minimize the impact of nonrepairable resources either by reducing
the fraction of things that cannot be repaired or by increasing the reliability of
the constituent devices in the nonrepairable structures. Many of the infrastruc-
ture items, such as power and ground networks, are built with larger devices,
wires, and feature sizes. As such, they are less susceptible to the failures that
impact small features. Memory components (e.g., DRAMs) also have distinct
repairable and nonrepairable components; they typically use coarser feature
sizes for the nonrepairable infrastructure. Memory designs only use the smallest
features for the dense memory array, where row and column sparing can be used
to repair defects. In FPGAs, it may be reasonable to provide spares for some
of the traditional infrastructure items to reduce the size of the nonrepairable
region. For example, modern FPGAs already include multiple clock generators
and configurable clock trees; as such, it becomes feasible to repair defective
clock generators or portions of the clock tree by substitution. We simply need
to guarantee that there are sufficient alternative resources to use instead of the
defective elements.

For any design there will be a minimum substitutable unit that defines the
granularity of substitution. For example, in a memory array we cannot subs-
titute out individual RAM cells. Rather, with a technique like row sparing,
the substitutable unit is an entire row. In the simplest sparing schemes, a
defect anywhere within a substitutable unit may force the discard of the entire
element. Consequently, the granularity of substitution can play a big role in
the viable yield of a component (see the Perfect yield subsection that follows).
Section 37.2.5 examines more sophisticated sparing schemes that relax this
constraint.

37.2.3 Yield
This section reviews simple calculations for the yield of components and substi-
tutable units. We assume uniform device defect rates and independent, random

37.2 Defect Tolerance 833

failure (i.e., identical, independently distributed—iid). Using these simple models,
we can illustrate the kinds of calculations involved and build intuition on the
major trends.

Perfect yield
A component with no substitutable units will be nondefective only if all the
devices in the unit are not defective. Similarly, in the simplest models each sub-
stitutable unit is nondefective only when all of its constituent devices are not
defective. If we have a device defect probability Pd and if a unit contains N
devices, the probability that the entire component or unit is nondefective is:

Pdefect−free (N, Pd) = (1−Pd)N (37.1)

We can expand this as a binomial:

Pdefect−free (N, Pd) = ∑
i

((
N
i

)

(−Pd)i
)

= 1−N ·Pd +
(

N
2

)

(Pd)2 − . . . (37.2)

If N× Pd << 1, then we observe that each successive power of Pd is much
smaller than the previous term. We can approximate this yield as:

Pdefect−free (N, Pd) ≈1−N ·Pd (37.3)

This tells us we have a substitutable unit defect rate, Psd, or a component
defect rate, roughly equal to the product of the number of devices and the device
defect rate:

Psd (N, Pd) ≈N ·Pd (37.4)

This simple equation indicates several things:

� For today’s large chips with N > 109 devices, the defect rate Pd must be
below 10−10 to expect 90 percent or greater chip yield.

� To maintain constant yield (Pdefect−free) for a chip as N scales, we must
continually decrease Pd at the same rate. For example, a 10× increase in
device count, N, must be accompanied by a 10× decrease in per-device
defect rate.

� As noted in this chapter’s introduction, we expect the opposite effect for
atomic-scale devices; smaller devices mean a higher likelihood of defects.
This exacerbates the challenge of increasing device counts.

� At the same defect rate, Pd, a finer-grained substitutable unit (e.g., an
individual LUT or bitop) will have a higher unit yield rate than a
coarser-grained unit (e.g., a cluster of 10 LUTs, such as an Altera LAB
(Section 1.5.1) or an SIMD collection of 32 bitops). Alternatively, if one
reasons about defect rates of the substitutable units, a defect rate of
Psd = 0.05 for a coarse-grained block corresponds to a much lower device
defect rate, Pd, than the same Psd for a fine-grained substitutable unit.

834 Chapter 37 � Defect and Fault Tolerance

� To keep substitutable unit yield rates at some high value, we must
decrease unit size, N, as Pd increases. For example, if we design for
a Psd = 10−4 and the device defect rate doubles, we need to cut the
substitutable block size in half to achieve the same block yield; this
suggests a trend toward fine-grained resource sparing as defect
rates increase (e.g., see Fine-grained Pterm matching subsection of
Section 37.2.5 and Section 38.6).

Yield with sparing
We can significantly increase overall yield by providing spares so that there is no
need to demand that every substitutable unit be nondefective. Assume for now
that all substitutable units are interchangeable. The probability that we will have
exactly i nondefective substitutable units is:

Pyield(N, i) =
((

N
i

)

(Psd)i (1−Psd)N−i
)

(37.5)

That is, there are
(N

i

)

ways to select i nondefective blocks from N total blocks,
and the yield probability of each case is (Psd)i (1−Por)

N−i. An ensemble with at
least M items is obtained whenever M or more items yield, so the ensemble yield
is actually the cumulative distribution function, as follows:

Pyield(N, M) = ∑
M≤i≤N

((
N
i

)

(Psd)i (1−Psd)N−i
)

(37.6)

As an example, consider an Island-style FPGA cluster (see Figure 37.2) com-
posed of 10 LUTs (e.g., Altera LAB, Chapter 1). Assume that each LUT, along
with its associated interconnect and configuration, is a substitutable unit and
that the LUTs are interchangeable. Further, assume Psd = 10−4. The probability
of yielding all 10 LUTs is:

Pyield (10, 10) =
(

10−4
)10 (

1−10−4
)0

≈ 0.9990005 (37.7)

Now, if we add two spare lookup tables, the probability of yielding at least 10
LUTs is:

Pyield (12, 10) =
(

10−4
)12 (

1−10−4
)0

+12
(

10−4
)11 (

1−10−4
)1

+
12 ·11

2

(

10−4
)10 (

1−10−4
)2

(37.8)

= 0.99880065978+0.0011986806598+0.0000006593402969

≈ 0.9999999998 > 1−10−9

Without the spares, a component with only 1000 such clusters would be
difficult to yield. With the spares, components with 1,000,000 such clusters yield
more than 99.9 percent of the time.

37.2 Defect Tolerance 835

Cluster

Cluster inputs Cluster outputs

FIGURE 37.2 � An island-style FPGA cluster with five interchangeable 2-LUTs.

The assumption that all substitutable units are interchangeable is not directly
applicable to logic blocks in an FPGA since their location strongly impacts
the interconnections available to other logic block positions. Nonetheless, the
sparing yield is illustrative of the trends even when considering interconnect
requirements.

To minimize the required spares, it would be preferable to have fewer large
pools of mostly interchangeable resources rather than many smaller pools of
interchangeable resources. This results from Bernoulli’s Law of Large Num-
bers (the Central Limit Theorem) effects [3, 4], where the variance of a sum
of random variables decreases as the number of variables increases. For a more
detailed development of the impact of the Law of Large Numbers on defect yield
statistics and strategies see DeHon [5].

37.2.4 Defect Tolerance through Sparing
To exploit substitution, we need to locate the defects and then avoid them. Both
testing (see next subsection) and avoidance could require considerable time for
each individual device. This section reviews several design approaches, inclu-
ding approaches that exploit full mapping (see the Global sparing subsection)
to minimize defect tolerance overhead, approaches that avoid any extra mapping
(see the Perfect component model subsection), and approaches that require only
minimal, local component-specific mapping (see the Local sparing subsection).

Testing
Traditional acceptance testing for FPGAs (e.g., [6]) attempts to validate that
the FPGA is defect free. Locating the position of any defect is generally not

836 Chapter 37 � Defect and Fault Tolerance

important if any chip with defects is discarded. Identifying the location of all
defects is more difficult and potentially more time consuming. Recent work
on group testing [7–9] has demonstrated that it is possible to identify most of
the nondefective resources on a chip with N substitutable components in time
proportional to

√
N.

In group testing, substitutable blocks are configured together and given a self-
test computation to perform. If the group comes back with the correct result,
this is evidence that everything in the group is good. Conversely, if the result
is wrong, this is evidence that something in the group may be bad. By arran-
ging multiple tests where substitutable blocks participate in different groups
(e.g., one test set groups blocks around rows while another groups them along
columns), it is possible to identify which substitutable units are causing the
failures.

For example, if there is only one failure in each of two groupings, and the
failing groups in each grouping contain a single, common unit, this is strong
evidence that the common unit is defective while the rest of the substitutable
units are good. As the failure rates increase such that multiple elements in each
group fail in a grouping, it can be more challenging to precisely identify failing
components with a small number of groupings. As a result, some group testing
is conservative, marking some good components as potential defects; this is a
trade-off that may be worthwhile to keep testing time down to a manageably
low level as defect rates increase.

In both group testing and normal FPGA acceptance testing, array regularity
and homogeneity make it possible to run tests in parallel for all substitutable
units on the component. Consequently, testing time does not need to scale as the
number of substitutable units, N. If the test infrastructure is reliable, group tests
can run completely independently. However, if we rely on the configurable logic
itself to manage tests and route results to the test manager, it may be necessary
to validate portions of the array before continuing with later tests. In such cases,
testing can be performed as a parallel wave from a core test manager, testing
the entire two-dimensional device in time proportional to the square root of the
number of substitutable units (e.g., [8]).

Global sparing
A defect map approach coupled with component-specific mapping imposes low
overhead for defect tolerance. Given a complete map of the defects, we per-
form a component-specific design mapping to avoid the defects. Defective subs-
titutable units are marked as bad, and scheduling, placement, and routing are
performed to avoid these resources. An annealing placer (Chapter 14) can mark
the physical location of the defective units as invalid or expensive and penalize
any attempts to assign computations to them. Similarly, a router (Chapter 17)
can mark defective wires and switches as “in use” or very costly so that they are
avoided. The Teramac custom-computing machine tolerated a 10 percent defect
rate in logic cells (Psdlogic

= 0.10) and a 3 percent defect rate in on-chip intercon-
nect (Psdinterconnect

= 0.03) using group testing and component-specific mapping [7].

37.2 Defect Tolerance 837

With place-and-route times sometimes running into hours or days, the
component-specific mapping approach achieves low overhead for defect tole-
rance at the expense of longer mapping times. As introduced in Chapter 20,
there are several techniques we could employ to reduce this mapping time,
including:

� Tuning architectures to facilitate faster mapping by overprovisioning
resources and using simple architectures that admit simple mapping;
the Plasma chip—an FPGA-like component, which was the basis of the
Teramac architecture—takes this approach and was highlighted in
Chapter 20.

� Trading mapping quality in order to reduce mapping time.
� Using hardware to accelerate placement and routing (also illustrated

in Sections 9.4.2 and 9.4.3).

Perfect component model
To avoid the cost of component-specific mapping, an alternate technique to
use is the perfect component model (Section 37.2.1). Here, the goal is to use
the defect map to preconfigure the allocation of spares so that the component
looks to the user like a perfect component. Like row or column sparing in
memory, entire rows or columns may be the substitutable units. Since recon-
figurable arrays, unlike memories, have communication lines between blocks,
row or column sparing is much more expensive to support than in memories.
All interconnect lines must be longer, and consequently slower, to allow configu-
ration to reach across defective rows or columns. The interconnect architecture
must be designed such that this stretching across a defective row is possible,
which can be difficult in interconnects with many short wires (see Figure 37.3).

Segment extension beyond defective row (column)

S
pa

re
ro

w

Spare
column

R
o

w
 c

o
n

fi
g

u
ra

ti
o

n

Column configuration

R
o

w
 c

o
n

fi
g

u
ra

ti
o

n

Column configuration

Extended segment in use bypassing defective row (column)

FIGURE 37.3 � Arrays designed to support row and column sparing.

838 Chapter 37 � Defect and Fault Tolerance

A row of FPGA logic blocks is a much coarser substitutable unit than a memory
row. FPGAs from Altera have used this kind of sparing to improve component
yield [10,11], including the Apex 20KE series.

Local sparing
With appropriate architecture or stylized design methodology, it is possible to
avoid the need to fully remap the user design to accommodate the defect map.
The idea here is to guarantee that it is possible to locally transform the design
to avoid defects. For example, in cases where all the LUTs in a cluster are inter-
changeable, if we provision spares within each cluster as illustrated earlier in the
Yield with sparing subsection of Section 37.2.3, it is simply a matter of locally
reassigning the functions to LUTs to avoid the defective LUTs.

For regular arrays, Lach et al. [12] show how to support local interchange at a
higher level without demanding that the LUTs exist in a locally interchangeable
cluster. Consider a k×k tile in the regular array. Reserve s spares within each
k×k tile so that we only populate

(

k2 − s
)

LUTs in each such region. We can now
compute placements for the

(

k2 − s
)

LUTs for each of the possible combinations
of s defects. In the simplest case, s = 1, we precalculate k2 placements for each
region (e.g., see Figure 37.4). Once we have a defect map, as long as each region
has fewer than s errors, we simply assemble the entire configuration by selecting
an appropriate configuration for each tile.

When a routing channel provides full crossbar connectivity, similarly, it may
be possible to locally swap interconnect assignments. However, typical FPGA
routing architectures do not use fully populated switching; as a result, intercon-
nect sparing is not a local change. Yu and Lemieux [13, 14] show that FPGA
switchboxes can be augmented to allow local sparing at the expense of 10 to 50
percent of area overhead. The key idea is to add flexibility to each switchbox that
allows a route to shift one (or more) wire track(s) up or down; this allows routes
to be locally redirected around broken tracks or switches and then restored to
their normal track (see Figure 37.5).

To accommodate a particular defect rate and yield target, local interchange
will require more spares than global mapping (see the Global sparing subsec-
tion). Consider any of the local strategies discussed in this section where we allo-
cate one spare in each local interchange region (e.g., cluster, tile, or channel). If
there are two defects in one such region, the component will not be repairable.
However, the component may well have adequate spares; they are just assigned
to different interchange regions. With the same number of resources, a global
remapping would be able to accommodate the design. Consequently, to achieve
the same yield rate as the global scheme, the local scheme always has to allocate
more spares. This is another consequence of the Law of Large Numbers (see the
Yield with sparing subsection):

The more locally we try to contain replacement, the higher variance
we must accommodate, and the larger overhead we pay to guarantee
adequate yield.

37.2 Defect Tolerance 839

C

A B

C

A B

CA

B

B

A

C

FIGURE 37.4 � Four placements of a three-gate subgraph on a 2×2 tile.

(a)

Track
defect

(b)

Spare track

FIGURE 37.5 � Added switchbox flexibility allows local routing around interconnect defects:
(a) defect free with spare and (b) configuration avoiding defective track.

840 Chapter 37 � Defect and Fault Tolerance

37.2.5 Defect Tolerance with Matching
In the simple sparing case (Section 37.2.4), we test to see whether each sub-
stitutable unit is defect free. Substitutable units with defects are then avoided.
This works well for low-defect rates such that Psd remains low. However, it can
also be highly conservative. In particular, not all capabilities of the substitutable
unit are always needed. A configuration of the substitutable unit that avoids the
particular defect may still work correctly. Examples where we may not need to
use all the devices inside a substitutable unit include the following:

� A typical FPGA logic block, logic element, or slice includes an optional
flip-flop and carry-chain logic. Many of the logic blocks in the user’s
design leave the flip-flop or carry chain unused. Consequently, these
“defective” blocks may still be usable, just for a subset of the logical
blocks in the user’s design.

� When the substitutable unit is a collection of Wsimd bitops, a defect in
one of the bitops leaves the unit imperfect. However, the unit may work
fine on smaller data. For example, maybe a Wsimd = 8 substitutable unit
has a defect in bit position 5. If the application requires some com-
putations on Wapp = 4 bit data elements, the defective 8-bit unit may still
perform adequately to support 4 bitops.

� A product term (Pterm) in a programmable logic array (PLA) or
programmable array logic (PAL) is typically a substitutable unit. Each
Pterm can be configured to compute the AND of any of the inputs to the
array (see Figure 37.6). However, all the Pterms configured in the array
will never need to be connected to all the inputs. Consequently, defects
that prevent a Pterm from connecting to a subset of the inputs may not
inhibit it from being configured to implement some of the Pterms
required to configure the user’s logic.

Instead of discarding substitutable units with defects, we characterize their
capabilities. Then, for each logical configuration of the substitutable unit

Inputs

Enabled
crosspoint
allows input
to participate
in Pterm

FIGURE 37.6 � A PAL OR-term with a collection of substitutable Pterm inputs.

37.2 Defect Tolerance 841

demanded by the user’s application, we can identify the set of (potentially
defective) substitutable units capable of supporting the required configuration.
Our mapping then needs to ensure that assignments of logical configurations to
physical substitutable units obey the compatibility requirements.

Matching formulation
To support the use of partially defective units as substitutable elements, we can
formulate the mapping between logical configurations and substitutable units
as a bipartite matching problem. For simplicity and exposition, it is assumed
that all the substitutable units are interchangeable. This is likely to be an accu-
rate assumption for LUTs in a cluster or Pterms in a PAL or PLA, but it is not
an accurate assumption for clusters in a two-dimensional FPGA routing array.
Nonetheless, this assumption allows precise formulation of the simplest version
of the problem.

We start by creating two sets of nodes. One set, R = {r0, r1, r2. . .}, represents
the physical substitutable resources. The second set, L = {l0, l1, l2. . .}, represents
the logic computations from the user’s design that must be mapped to these
substitutable units. We add a link (li, rj) if-and-only-if logical configuration li
can be supported by physical resource rj. This results in a bipartite graph, with
L being one side of the graph and R being the other. What we want to find is a
complete matching between nodes in L and nodes in R—that is, we want every
li ∈ L to be matched with exactly one node rj ∈ R, and every node rj ∈ R to be
matched with at most one node li ∈ L.

We can optimally compute the maximal matching between L and R in poly-
nomial time using the Ford–Fulkerson maximum flow algorithm [15] with time
complexity O (|V| · |E|) or a Hopcroft–Karp algorithm [16] with time complexity

O
(√|V| · |E|

)

. In the graph, |V| = |L|+ |R| and |E| = O(|L| · |R|). Since there must be

at least as many resources as logical configurations, |L| ≤ |R|, the Hopcroft–Karp
algorithm is thus O

(|R|2.5); for local sparing schemes, |R| might be reasonably
in the 10 to 100 range, meaning that the matching problem is neither large nor
growing with array size. If the maximal matching fails to be a complete mat-
ching (i.e., assign each li to a unique match in ri), we know that it is not possible
to support the design on a particular set of defective resources.

Fine-grained Pterm matching
Naeimi and DeHon use this matching to assign logical Pterms to physical
nanowires in a nanoPLA (Chapter 38, Section 38.6) [17, 18]. Before conside-
ring defects, all the Pterm nanowires in the PLA are freely interchangeable.
Each nanowire that implements a Pterm has a programmable diode between
the input nanowires and the nanowire itself. If the diode is programmed into
an off state, it disconnects the input from the nanowire Pterm. If the diode is
in the on state, it connects the input to the nanowire, allowing it to participate
in the AND that the Pterm is computing.

The most common defect anticipated in this technology is that the pro-
grammable diode is stuck in an off state—that is, it cannot be programmed into
a valid on state. Consequently, a Pterm nanowire with a stuck-off diode at a

842 Chapter 37 � Defect and Fault Tolerance

particular input location cannot be programmed to include that input in the
AND it is performing.

A typical PLA will have 100 inputs, meaning each product-term nanowire is
connected to 100 programmable diodes. A plausible failure rate for the product-
term diodes is 5% (Pd = 0.05). If we demanded that each Pterm be defect free in
order to use it, the yield of product terms would be:

Pnwpterm (100, 0.05) = (1−0.05)100 ≈ 0.006 (37.9)

However, since none of the product terms use all 100 inputs, the probability
that a particular Pterm nanowire can support a logical Pterm is much higher.
For example, if the Pterm only uses 10 inputs, then the probability that a
particular Pterm nanowire can support it is:

Pnwpterm (10, 0.05) = (1−0.05)10 ≈ 0.599 (37.10)

Further, typical arrays will have 100 product-term nanowires. This suggests
that, on average, this Pterm will be compatible with roughly 60 of the Pterm
nanowires in the array—that is, the li for this Pterm will end up with compati-
bility edges to 60 rj’s in the bipartite matching graph described before.

As a result, DeHon and Naeimi [18] were able to demonstrate that we can
tolerate stuck-off diode defects at Pd = 0.05 with no allocated spare nanowires.
In other words, we can have |L| as large as |R| and, in practice, always find a
complete matching for every PLA. This is true even though the probability of a
perfect nanowire is below 1 percent (equation 37.9), suggesting that most arrays
of 100 nanowires contain no perfect Pterm nanowires.

This strategy follows the defect map model and does demand component-
specific mapping. Nonetheless, the required mapping is local (see the Local
sparing section) and can be fast. Naeimi and DeHon [17] demonstrate the results
quoted previously using a greedy, linear-time assignment algorithm rather than
the slower, optimal algorithm. Further, if it is possible to test the compatibility
of each Pterm as part of the trial assignment, it is not necessary to know the
defect map prior to mapping.

FPGA component level
It is also possible to apply this matching idea at the component level. Here,
the substitutable unit is an entire FPGA component. Unused resources will be
switches, wires, and LUTs that are not used by a specific user design. Certainly,
if the specific design does not fill the logic blocks in the component, there will be
unused logic blocks whose failure may be irrelevant to the proper functioning
of the design. Even if the specific design uses all the logic blocks, it will not use
all the wires or all the features of every logic block. So, as long as the defects in
the component do not intersect with the resources used by an particular FPGA
configuration, the FPGA can perfectly support the configuration.

Xilinx’s EasyPath series is one manifestation of this idea. At a reduced cost
compared to perfect FPGAs, Xilinx sells FPGAs that are only guaranteed to

37.3 Transient Fault Tolerance 843

work with a particular user design, or a particular set of user designs. The user
provides their designs, and Xilinx checks to see whether any of their defective
devices will successfully implement those designs. Here, Xilinx’s resource set, R,
is the nonperfect FPGAs that do not have defects in the nonrepairable portion
of the logic. The logical set, L, is the set of customer designs destined for Easy-
Path. Xilinx effectively performs the matching and then supplies each customer
with FPGA components compatible with their respective designs.

Hyder and Wawrzynek [19] demonstrate that the same idea can be exploited
in board-level FPGA systems. Here, their resource set, R, is the set of FPGAs
on a particular board with multiple FPGAs. Their logical set is the set of FPGA
configurations intended for the board. If all the FPGAs on the board were inter-
changeable, this would also reduce to the previous simple matching problem.
However, in practice, the FPGAs on a board typically have different connections.
This provides an additional set of topological constraints that must be consid-
ered along with resource compatibility during assignment. Rather than creating
and maintaining a full defect map of each FPGA in the system, they also use
application-specific testing (e.g., Tahoori [20]) to determine whether a particu-
lar FPGA configuration is compatible with a specific component on the FPGA
board.

37.3 TRANSIENT FAULT TOLERANCE

Recall that transient faults are randomly occurring, temporary deviations from
the correct circuit behavior. It is not possible to test for transient faults and
configure around them as we did with defects. The impact of a transient fault
depends on the structure of the logic and the location of the transient fault.
The fault may be masked (hidden by downstream gates that are not currently
sensitive to this input), may simply affect the circuit output temporarily, or may
corrupt state so that the effect of the transient error persists in the computation
long after the fault has occurred. Examples include the following:

� If both inputs to an OR gate should be 1, but one of the inputs is
erroneously 0, the output of the OR gate will still have the correct value.

� If the transient fault impacts the combinational output from a circuit,
only the output on that cycle is affected; subsequent output cycles will be
correct until another transient fault occurs.

� If the transient fault results in the circuit incorrectly calculating the next
state transition in a finite-state machine (FSM), the computation may
proceed in the incorrect state for an indefinite period of time.

To deal with the general case where transient faults impact the observable
behavior of the computation, we must be able to prevent the errors from prop-
agating into critical state or to observable outputs from the computation. This
demands that we add or exploit some form of redundancy in the calculation
to detect or correct errors as they occur. This section reviews two general

844 Chapter 37 � Defect and Fault Tolerance

approaches to transient fault tolerance: feedforward correction (Section 37.3.1)
and rollback error recovery (Section 37.3.2).

37.3.1 Feedforward Correction
One common strategy to tolerate transient faults is to provide adequate redun-
dancy to correct any errors that occur. This allows the computation to continue
without interruption. The simplest example of this redundancy is replication.
That is, we arrange to perform the intended computation R times and vote on
the result, using the majority result as the value allowed to update state or to
be sent to the output. The smallest example uses R = 3 and is known as triple
modular redundancy (TMR) (see Figure 37.7). In general, for there to be a clear
majority, R must be odd, and a system with R replicas can tolerate at least R−1

2
simultaneous transient faults. We can perform the multiple calculations either
in space, by concurrently placing R copies of the computation on the reconfig-
urable array, or in time, by performing the computation multiple times on the
same datapath.

In the simple design in Figure 37.7, a failure in the voter may still corrupt
the computation. This can be treated similarly to nonrepairable area in defect-
tolerance schemes:

� If the computation is large compared to the voter, the probability of voter
failure may be sufficiently small so that it is acceptable.

� The voter can be implemented in a more reliable technology, such as a
coarser-grained feature size.

� The voter can be replicated as well. For example, von Neumann [21] and
Pippenger [22] showed that one can tolerate high transient fault rates
(up to 0.4 percent) using a gate-level TMR scheme with replicated voters.

TMR strategies have been applied to Xilinx’s Virtex series [23]. Rollins et al. [24]
evaluate various TMR schemes on Virtex components, including strategies with
replicated voters and replicated clock distribution.

A key design choice in modular redundancy schemes is the granularity at
which voting occurs. At the coarsest grain, the entire computational circuit
could be the unit of replication and voting. At the opposite extreme, we can
replicate and vote individual gates as the Von Neumann design suggests. The
appropriate choice will balance area overhead and fault rate. From an area

Inputs OutputsVote

Replica of computation

Replica of computation

Replica of computation

FIGURE 37.7 � A simple TMR design.

37.3 Transient Fault Tolerance 845

overhead standpoint, we would prefer to vote on large blocks; this allows the
area of the voters to be amortized across large logic blocks so that the total area
grows roughly as the replication factor, R. From an area overhead standpoint, we
also want to keep R low. From a reliability standpoint, we want to make it suffi-
ciently unlikely that more than R−1

2 replicas are corrupted by transient errors in
a single cycle. Similar to defects (equation 37.4), the failure rate of a computa-
tion, and hence a replica, scales with the number of devices in the computation
and the transient fault rate per device; consequently, we want to scale the unit
of replication down as fault rate increases to achieve a target reliability with
low R.

Memory
A common form of feedforward correction is in use today in memories. Mem-
ories have traditionally been the most fault-sensitive portions of components
because: (1) A value in a memory may not be updated for a large number
of cycles; as such, memories integrate faults over many cycles. (2) Memories
are optimized for density; as such, they often have low capacitance and drive
strength, making them more susceptible to errors.

We could simply replicate memories, storing each value in R memories or
memory slots and voting the results. However, over the years information theory
research has developed clever encoding schemes that are much more efficient
for protecting groups of data bits than simple replication [25,26]. For example,
DRAMs used in main memory applications generally tolerate a single-bit fault in
a 64-bit data-word using a 72-bit error correcting code. Like the nonrepairable
area in DRAMs, the error correcting circuitry in memories is generally built
from coarser technology than the RAM memory array and is assumed to be
fault free.

37.3.2 Rollback Error Recovery
An alternative technique to feedforward correction is to simply detect when
errors occur and repeat the computation when an error is detected. We can
detect errors with less redundancy than we need to correct errors (e.g., two
copies of a computation are sufficient to detect a single error, while three
are required for correction); consequently, detection schemes generally require
lower overhead than feedforward correction schemes. If fault rates are low,
it is uncommon for errors to occur in the logic. In most cycles, no errors
occur and the normal computation proceeds uninterrupted. In the uncommon
case in which a transient fault does occur, we stop processing and repeat the
computation in time without additional hardware. With reasonably low
transient-fault rates, it is highly unlikely that repeated computation will also
be in error; in any case, detection guards against errors in the repeated compu-
tation as well.

To be viable, the rollback technique demands that the application tolerate
stalls in computation during rollback. This is easily accommodated in streaming
models (Chapter 5, Section 5.1.3) that exploit data-presence signaling (see Data

846 Chapter 37 � Defect and Fault Tolerance

presence subsection of Section 5.2.1) to tolerate variable timing for operator
implementations. When detection and rollback are performed on an operator
level, stream buffers between operator datapaths can isolate and minimize the
performance impact of rollback.

Detection
To detect errors we use some form of redundancy. Again, this can be either
temporal or spatial redundancy.

To minimize the performance impact, we can employ a concurrent-error detec-
tion (CED) technique—that is, in parallel with the normal logic, we compute
some additional function or property of the output (see Figure 37.8). We con-
tinuously check consistency between the logical output and this concurrent
calculation. If the concurrent calculation ever disagrees with the base computa-
tion, this means there is an error in the logic.

In the simplest case, the parallel function could be a duplicate copy of the
intended logic (see Figure 37.8(b)). Checking then consists of verifying that the
two computations obtained the equivalent results. However, it is often possible
to avoid recomputing the entire function and, instead, compute a property of
the output, such as its parity (see Figure 37.8(c)) [27].

The choice of detection granularity is based on the same basic considerations
discussed before for feedforward replica granularity. Larger blocks can amor-
tize out comparison overhead but will increase block error rates and hence the
rate of rollback. For a given fault rate, we reduce comparison block granularity
until the rollback rate is sufficiently low so that it has little impact on system
throughput.

Check F

F

In
pu

ts

Outputs

Property of
F

Error
(a)

Not
equal?

F

In
pu

ts

Outputs

Copy of
F

Error

Parity

F

In
pu

ts

Outputs

Parity of
F

Error
(b) (c)

FIGURE 37.8 � A concurrent error-detection strategy and options: (a) generic formulation,
(b) duplication, and (c) parity.

37.3 Transient Fault Tolerance 847

Recovery
When we do detect an error, it is necessary to repeat the computation. This
typically means making sure to preserve the inputs to a computation until we
can be certain that we have reliably produced a correct result. Conceptually,
we read inputs and current state, calculate outputs, detect errors, then produce
outputs and save state if no errors are detected. In practice, we often want to
pipeline this computation so that we detect errors from a previous cycle while
the computation continues, and we may not save state to a reliable storage on
every calculation. However, even in sequential cases, it may be more efficient to
perform a sequence of computations between error checks.

A common idiom is to periodically store, or snapshot, state to reliable
memory, store inputs as they arrive into reliable memory, perform a series of
data computations, and store results to reliable memory. If no errors are detected
between snapshots, then we continue to compute with the new state and discard
the inputs used to produce it. If errors are detected, we discard the new state,
restore the old state, and rerun the computation using the inputs stored in reli-
able memory. As noted earlier in the Memory subsection, we have particularly
compact techniques for storing data reliably in fault-prone memories; this effi-
cient protection of memories allows rollback recovery techniques to be robust
and efficient.

In streaming systems, we already have FIFO streams of data between opera-
tors. We can exploit these memories to support rollback and retry. Rather than
discarding the data as soon as the operator reads it, we keep it in the FIFO but
advance the head pointer past it. If the operator needs to rollback, we effectively
reset the head pointer in the FIFO to recover the data for reexecution. When an
output is correctly produced and stored in an output FIFO, we can then discard
the associated inputs from the input FIFOs. For operators that have bounded
depth from input to output, we typically know that we can discard an input set
for every output produced.

Communications
Data transmission between two distant points, especially when it involves
crossing between chips and computers, is highly susceptible to external noise
(e.g., crosstalk from nearby wires, power supply noise, clock jitter, interference
from RF devices). As such, for a long time we have protected communication
channels with redundancy. As with memories, we simply need to reliably deliver
the data sent to the destination.

Unlike memories, we do not necessarily need to guarantee that the correct data
can be recovered from the potentially corrupted data that arrive at the destination.
When the data are corrupted in transmission, it suffices to detect the error. The
sender holds onto a copy of the data until the receiver indicates they have been
successfully received. When an error is detected, the sender can retransmit the
data. The detection and retransmission are effectively a rollback technique.

When the error rates on the communication link are low, such that error
detection is the uncommon event, this allows data to be protected with
low overhead error-detecting codes, or checksums, instead of more expensive

848 Chapter 37 � Defect and Fault Tolerance

error correcting codes. The Transmission Control Protocol (TCP) used for
communication across the Internet includes packet checksums and retransmis-
sion when data fail to arrive error free at the intended destination [28].

37.4 LIFETIME DEFECTS

Over the lifetime of a component, the physical device will change and degrade,
potentially introducing new defects into the device. Individual atomic bonds
may break or metal may migrate, increasing the resistance of the path or even
breaking a connection completely. Device characteristics may shift because of
hot-carrier injection (e.g., [29,30]), NBTI (e.g., [31]), or even accumulated radi-
ation doses (e.g., [32, 33]). These effects become more acute as feature sizes
shrink. To maintain correct operation, we must detect the errors (Section 37.4.1)
and repair them (Section 37.4.2) during the lifetime of the component.

37.4.1 Detection
One way to detect lifetime failures is to periodically retest the device—that is,
we stop normal operation, run a testing routine (see the Testing subsection in
Section 37.2.4), then resume normal operation if there are no errors. It can be
an application-specific test, determining whether the FPGA can still support the
user’s mapping [20], or an application-independent test of the FPGA substrate.
Application-specific tests have the advantage of both being more compact and
ignoring new defects that do not impact the current design. Substrate tests
may require additional computation to determine whether the newly defective
devices will impact the design. While two consecutive, successful tests generally
mean that the computation between these two points was correct, the compo-
nent may begin producing errors at any time inside the interval between tests
and the error will not be detected until the next test is run.

Testing can also be interleaved more directly with operation. In partially
reconfigurable components (see Section 4.2.3), it is possible to reconfigure por-
tions of a component while the rest of the component continues operating. This
allows the reservation of a fraction of the component for testing. If we then
arrange to change the specific portions of the component assigned to testing
and operation over time, we can incrementally test the entire component with-
out completely pulling it out of service (e.g., [34,35]).

In some scenarios, the component may need to stall operation during the
partial reconfiguration, but the component only needs to stall for the reconfig-
uration period and not the entire testing period. When the total partial recon-
figuration time is significantly shorter than the testing time, this can reduce the
fraction of cycles the application must be removed from normal operation. This
still means that we may not detect the presence of a new defect until long after
it occurred and started corrupting data.

If it is necessary to detect an error immediately, we must employ one of the
fault tolerance techniques reviewed in Section 37.3. CED (see the Detection

37.5 Configuration Upsets 849

subsection in Section 37.3.2) can identify an error as soon as it occurs and
stall computation. TMR (Section 37.3.1) can continue correct operation if only
a single replica is affected; the TMR scheme can be augmented to signal higher-
level control mechanisms when the voters detect disagreement.

37.4.2 Repair
Once a new error has occurred, we can repeat global (see the Global sparing
subsection in Section 37.2.4) or local mapping (see the Local sparing subsec-
tion in Section 37.2.4) to avoid the new error. However, since the new defect
map is most likely to differ from the old defect map by only one or a few
defects, it is often easier and faster to incrementally repair the configuration. In
local mapping schemes, we only need to perform local remapping in the inter-
changeable region(s) where the new defect(s) have occurred. This may mean
that we only need to move LUTs in a single cluster, wires in channel, or remap
a single tile. Even in global schemes the incremental work required may be
modest. Lakamraju and Tessier [36] show that incrementally rerouting connec-
tions severed by new lifetime defects can be orders of magnitude faster than
performing a complete reroute from scratch.

A rollback scheme (Section 37.3.2) can stall execution during the repair.
A replicated, feedforward scheme (Section 37.3.1) with partial reconfiguration
may be able to continue operating on the functional replicas while the newly
defective replica is being repaired.

Lifetime repair strategies depend on the ability to perform defect mapping
and reconfiguration. Consequently, the perfect component model cannot support
lifetime repair. Even if the component retains spare redundancy, redundancy
and remapping mechanisms are not exposed to the user for in-field use.

37.5 CONFIGURATION UPSETS

Many reconfigurable components, such as FPGAs, rely on volatile memory
cells to hold their configuration, typically static memory cells (e.g., SRAM).
Dynamic memory cells have long had to cope with upsets from ionizing particles
(e.g., α-particles). As the feature sizes shrink, even static RAM cells can be upset
by ionizing particles (e.g., Harel et al. [37]). In storage applications, we can typi-
cally cope with memory soft errors using error correcting codes (see the Memory
subsection in Section 37.3.1) so that bit upsets can be detected and corrected.
However, in reconfigurable components, we use the memory cells directly and
continuously as configuration bits to define logic and interconnect. Upsets of
these configuration memories will change, and potentially corrupt, the logic
operation.

Unfortunately, although memories can amortize the cost of a large error
correction unit across a deep memory, FPGA configurations are shallow (i.e.,
Ninstr = 1); an error correction scheme similar to DRAM memories would end
up being as large as or larger than the configuration memory it protects. Data

850 Chapter 37 � Defect and Fault Tolerance

and projections from Quinn and Graham [38] suggest that ionizing radiation
upsets can be a real concern for current, large FPGA-based systems and will be
an ongoing concern even for modest systems as capacity continues to increase.

Because these are transient upsets of configuration memories, they can be
corrected simply by reloading the correct bitstream once we detect that the bit-
stream has been corrupted. Logic corruption can be detected using any of the
strategies described earlier for lifetime defects (Section 37.4.1). Alternatively, we
can check the bitstream directly for errors. That is, we can compute a check-
sum for the correct bitstream, read the bitstream back periodically, compute the
checksum of the readback bitstream, and compare it to the intended bitstream
checksum to detect when errors have occurred. When an error has occurred, the
bitstream can be reloaded [38,39]. Like interleaved testing, bitstream readback
introduces a latency, which can be seconds long, between configuration corrup-
tion and correction. If the application can tolerate infrequent corruption, this
may be acceptable.

Asadi and Tahoori [40] detail a rollback scheme for tolerating configuration
upsets. Pratt et al. [41] use TMR and partial TMR schemes to tolerate configu-
ration upsets; their partial TMR scheme uses less area than a full TMR scheme
in cases where it is acceptable for the outputs to be erroneous for a number of
cycles as long as the state is protected so that the results return to the correct
values when the configuration is repaired.

37.6 OUTLOOK

The regularity in reconfigurable arrays, coupled with the resource configurability
they already possess, allow these architectures to tolerate defects. As features
shrink and defect rates increase, all devices, including ASICs, are likely to
need some level of regularity and configurability; this will be one factor that
serves to narrow the density and cost gap between FPGAs and ASICs. Further,
at increased defect rates, it will likely make sense to ship components with
defects and defect maps. Since each component will be different, some form
of component-specific mapping will be necessary.

Transient upsets and lifetime defects further suggest that we should
continuously monitor the computation to detect errors. To tolerate lifetime
defects, repair will become part of the support system for components through-
out their operational lifetime. Increasing defect rates further drive us toward
architectures with finer-grained substitutable units. FPGAs are already fairly fine
grained, with each bit-processing operator potentially serving as a substitutable
unit, but finer-grained architectures that substitute individual wires, Pterms, or
LUTs may be necessary to exploit the most aggressive technologies.

References
[1] S. E. Schuster. Multiple word/bit line redundancy for semiconductor memories.

IEEE Journal of Solid State Circuits 13(5), 1978.

37.6 Outlook 851

[2] B. Keeth, R. J. Baker. DRAM Circuit Design: A Tutorial. Microelectronic Systems,
IEEE Press, 2001.

[3] J. Bernoulli. Ars Conjectandi. Impensis thurnisiorum, fratrum, Basel, Switzerland,
1713.

[4] A. W. Drake. Fundamentals of Applied Probability Theory, McGraw-Hill, 1988.
[5] A. DeHon. Law of large numbers system design. Nano, Quantum and Molecu-

lar Computing: Implications to High Level Design and Validation, S. K. Shukla,
R. I. Bahar (eds.), Kluwer Academic, 2004.

[6] W. K. Huang, F. J. Meyer, X.-T. Chen, F. Lombardi. Testing configurable LUT-
based FPGAs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
6(2), 1998.

[7] W. B. Culbertson, R. Amerson, R. Carter, P. Kuekes, G. Snider. Defect tolerance on
the TERAMAC custom computer. Proceedings of the IEEE Symposium on FPGAs
for Custom Computing Machines, 1997.

[8] M. Mishra, S. C. Goldstein. Defect tolerance at the end of the roadmap. Proceedings
of the International Test Conference (ITC), 2003.

[9] M. Mishra, S. C. Goldstein. Defect tolerance at the end of the roadmap. Nano,
Quantum and Molecular Computing: Implications to High Level Design and Valida-
tion, S. K. Shukla, R. I. Bahar (Eds.), Kluwer Academic, 2004.

[10] R. G. Cliff, R. Raman, S. T. Reddy. Programmable logic devices with spare circuits
for replacement of defects. U.S. Patent number 5,434,514, July 18, 1995.

[11] C. McClintock, A. L. Lee, R. G. Cliff. Redundancy circuitry for logic circuits. U.S.
Patent number 6,034,536, March 7, 2000.

[12] J. Lach, W. H. Mangione-Smith, M. Potkonjak. Low overhead fault-tolerant FPGA
systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26(2),
1998.

[13] A. J. Yu, G. G. Lemieux. Defect-tolerant FPGA switch block and connection block
with fine-grain redundancy for yield enhancement. Proceedings of the International
Conference on Field-Programmable Logic and Applications, 2005.

[14] A. J. Yu, G. G. Lemieux. FPGA defect tolerance: Impact of granularity. Proceedings
of the International Conference on Field-Programmable Technology, 2005.

[15] T. Cormen, C. Leiserson, R. Rivest. Introduction to Algorithms. MIT Press, 1990.
[16] J. E. Hopcroft, R. M. Karp. An n2.5 algorithm for maximum matching in bipartite

graphs. SIAM Journal on Computing 2(4), 1973.
[17] H. Naeimi, A. DeHon. A greedy algorithm for tolerating defective crosspoints in

nanoPLA design. Proceedings of the International Conference on Field-Programmable
Technology, IEEE, 2004.

[18] A. DeHon, H. Naeimi. Seven strategies for tolerating highly defective fabrication.
IEEE Design and Test of Computers 22(4), 2005.

[19] Z. Hyder, J. Wawrzynek. Defect tolerance in multiple-FPGA systems. Proceedings of
the International Conference on Field-Programmable Logic and Applications, 2005.

[20] M. B. Tahoori. Application-dependent testing of FPGAs. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 14(9), 2006.

[21] J. von Neumann. Probabilistic logic and the synthesis of reliable organisms from
unreliable components. Automata Studies C. Shannon, J. McCarthy (ed.), Princeton
University Press, 1956.

[22] N. Pippenger. Developments in “the synthesis of reliable organisms from unreliable
components.” Proceedings of the Symposia of Pure Mathematics 50, 1990.

[23] C. Carmichael. Triple Module Redundancy Design Techniques for Virtex FPGAs.
San Jose, 2006 (XAPP 197—http://www.xilinx.com/bvdocs/appnotes/xapp197.pdf).

852 Chapter 37 � Defect and Fault Tolerance

[24] N. Rollins, M. Wirthlin, P. Graham, M. Caffrey. Evaluating TMR techniques in
the presence of single event upsets. Proceedings of the International Conference on
Military and Aerospace Programmable, 2003.

[25] G. C. Clark Jr., J. B. Cain. Error-Correction Coding for Digital Communications,
Plenum Press, 1981.

[26] R. J. McEliece. The Theory of Information and Coding, Cambridge University Press,
2002.

[27] S. Mitra, E. J. McCluskey. Which concurrent error detection scheme to choose?
Proceedings of the International Test Conference, 2000.

[28] J. Postel (ed.). Transmission Control Protocol—DARPA Internet Program Protocol
Specification, RFC 793, Information Sciences Institute, University of Southern
California, Marina del Rey, 1981.

[29] E. Takeda, N. Suzuki, T. Hagiwara. Device performance degradation to hot-carrier
injection at energies below the Si-SiO2 energy barrier. Proceedings of the Interna-
tional Electron Devices Meeting, 1983.

[30] S.-H. Renn, C. Raynaud, J.-L. Pelloie, F. Balestra. A thorough investigation of the
degradation induced by hot-carrier injection in deep submicron N- and P-channel
partially and fully depleted unibond and SIMOX MOSFETs. IEEE Transactions on
Electron Devices 45(10), 1998.

[31] D. K. Schroder, J. A. Babcock. Negative bias temperature instability: Road to cross
in deep submicron silicon semiconductor manufacturing, Journal of Applied Physics
94(1), 2003.

[32] J. Osborn, R. Lacoe, D. Mayer, G. Yabiku. Total dose hardness of three commer-
cial CMOS microelectronics foundries. Proceedings of the European Conference on
Radiation and Its Effects on Components and Systems, 1997.

[33] C. Brothers, R. Pugh, P. Duggan, J. Chavez, D. Schepis, D. Yee, S. Wu. Total-dose
and SEU characterization of 0.25 micron CMOS/SOI integrated circuit memory
technologies. IEEE Transactions on Nuclear Science 44(6) 1997.

[34] J. Emmert, C. Stroud, B. Skaggs, M. Abramovici. Dynamic fault tolerance in
FPGAs via partial reconfiguration. Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 2000.

[35] S. K. Sinha, P. M. Kamarchik, S. C. Goldstein. Tunable fault tolerance for run-
time reconfigurable architectures. Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 2000.

[36] V. Lakamraju, R. Tessier. Tolerating operational faults in cluster-based FPGAs.
Proceedings of the International Symposium on Field-Programmable Gate Arrays,
2000.

[37] S. Harel, J. Maiz, M. Alavi, K. Mistry, S. Walsta, C. Dai Impact of CMOS process
scaling and SOI on the soft error rates of logic processes. Proceedings of Symposium
on VLSI Digest of Technology Papers, 2001.

[38] H. Quinn, P. Graham. Terrestrial-based radiation upsets: A cautionary tale. Proceed-
ings of the IEEE Symposium on Field-Programmable Custom Computing Machines,
2005.

[39] C. Carmichael, M. Caffrey, A. Salazar. Correcting Single-Event Upsets Through Virtex
Partial Configuration. Xilinx, Inc., San Jose, 2000 (XAPP 216—http://www.xilinx.com/
bvdocs/appnotes/xapp216.pdf).

[40] G.-H. Asadi, M. B. Tahoori. Soft error mitigation for SRAM-based FPGAs. Proceed-
ings of the VLSI Test Symposium, 2005.

[41] B. Pratt, M. Caffrey, P. Graham, K. Morgan, M. Wirthlin. Improving FPGA design
robustness with partial TMR. Proceedings of the IEEE International Reliability
Physics Symposium, 2006.

C H A P T E R 38

RECONFIGURABLE COMPUTING
AND NANOSCALE ARCHITECTURE

André DeHon
Department of Electrical and Systems Engineering
University of Pennsylvania

For roughly four decades integrated circuits have been patterned top down with
optical lithography, and feature sizes, F, have shrunk in a predictable, geometric
fashion. With feature sizes now far below optical wavelengths (c.f. 400 nm vio-
let light and 65 nm feature sizes) and approaching atomic lattice spacings (c.f.
65 nm feature sizes and 0.5 nm silicon lattice), it becomes more difficult and
more expensive to pattern arbitrary features.

At the same time, fundamental advances in synthetic chemistry allow the
assembly of structures made of a small and precise number of atoms, provid-
ing an alternate, bottom-up approach to constructing nanometer-scale devices.
Rather than relying on ever-finer precision and control of lithography, bottom-
up techniques exploit physical phenomena (e.g., molecular dimensions, film
thicknesses composed of a precise number of atomic layers, nanoparticles con-
structed by self-limiting chemical processes) to directly define key feature sizes
at the nanometer scale. Bottom-up fabrication gives us access to smaller feature
sizes and promises more economical construction of atomic-scale devices and
wires.

Both bottom-up structure synthesis and extreme subwavelength top-down
lithography can produce small feature sizes only for very regular topologies.
In optical lithography, regular interference patterns can produce regular struc-
tures with finer resolution than arbitrary topologies [1]. Bottom-up syntheses
are limited to regular structures amenable to physical self-assembly.

Further, as noted in Chapter 37, construction at this scale, whether by top-
down or bottom-up fabrication, exhibit high defect rates. High defect rates also
drive increasing demand for regularity to support resource substitution.

At the same time, new technologies offer configurable switchpoints that can fit
in the space of a nanoscale wire crossing (Section 38.2.3). The switches are much
smaller than current SRAM configurable switches and can reduce the cost of
reconfigurable architectures relative to ASICs. Smaller configurable switchpoints
are particularly fortuitous because they make fine-grained configurability for
defect tolerance viable.

High demand for regularity and fine-grained defect tolerance coupled with
less expensive configurations increase the importance of reconfigurable archi-
tectures. Reconfigurable architectures can accommodate the requirements of

Copyright © 2008 by André DeHon. Published by Elsevier Inc.

854 Chapter 38 � Reconfigurable Computing and Nanoscale Architecture

these atomic-scale technologies and exploit the density benefits they offer.
Nonetheless, to fully accommodate and exploit these cost shifts, reconfigurable
architectures continue to evolve.

This chapter reviews proposals for nanoscale configurable architectures that
address the demands and opportunities of atomic-scale, bottom-up fabrication.
It focuses on the nanoPLA architecture (see Section 38.6 and DeHon [2]), which
has been specifically designed to exploit nanowires (Section 38.2.1) as the key
building block. Despite the concrete focus on nanowires, many of the design
solutions employed by the nanoPLA are applicable to other atomic-scale tech-
nologies. The chapter also briefly reviews nanoscale architectures (Section 38.7),
which offer alternative solutions to key challenges in atomic-scale design.

38.1 TRENDS IN LITHOGRAPHIC SCALING

In the conventional, top-down lithographic model, we define a minimum, litho-
graphically imageable feature size (i.e., half pitch, F) and build devices that are
multiples of this imageable feature size. Within the limits of this feature size,
VLSI layout can perfectly specify the size of features and their location rela-
tive to each other in three dimensions—both in the two-dimensional plane of
each lithographic layer and with adequate registration between layers. This gives
complete flexibility in the layout of circuit structures as long as we adhere to
the minimum imageable and repeatable feature size rules.

Two simplifying assumptions effectively made this possible: (1) Feature size
was large compared to atoms, and (2) feature size was large compared to the
wavelength of light used for imaging. With micron feature sizes, features were
thousands of atoms wide and multiple optical wavelengths. As long as the two
assumptions held, we did not need to worry about the discreteness of atoms nor
the limits of optical lithography.

Today, however, we have long since passed the point where optical wave-
lengths are large compared to feature sizes, and we are rapidly approaching
the point where feature sizes are measured in single-digit atom widths. We have
made the transition to optical lithography below visible light (e.g., 193 nm wave-
lengths) and subwavelength imaging. Phase shift masking exploits interference
of multiple light sources with different phases in order to define feature sizes
finer than the wavelength of the source. This has allowed continued feature
size scaling but increases the complexity and, hence, the cost of lithographic
imaging.

Topology in the regions surrounding a pattern now impacts the fidelity of
reproduction of the circuit or interconnect, creating the demand for optical
proximity correction. As a result, we see an increase both in the complexity
of lithographic mask generation and in the number of masks required. Region-
based topology effects also limit the structures we can build. Because of both
limitations in patterning and limitations in the analysis of region-based pattern-
ing effects, even in “full-custom” designs, we are driven to compose functions
from a small palette of regular structures.

38.2 Bottom-up Technology 855

Rock’s Law is a well-known rule of thumb in the semiconductor industry that
suggests that semiconductor processing equipment costs increase geometrically
as feature sizes shrink geometrically. One version of Rock’s Law estimates that
the cost of a semiconductor fabrication plant doubles every four years. Fabrica-
tion plants for the 90 nm generation were reported to cost $2 to 3 billion.

The increasing cost comes from several sources, including the following:

� Increasing demand for accuracy: Alignment of features must scale with
feature sizes.

� Increasing demand for purity: Smaller features mean that even smaller
foreign particles (e.g., dust and debris) must be eliminated to prevent
defects.

� Increasing demand for device yield: As noted in Chapter 37 (see Perfect
yield, Section 37.2.3), to keep component yield constant, the per-device
defect rate, Pd, must decrease as more devices are integrated onto
each component.

� Increasing processing steps: More metal layers plus increasingly complex
masks for optical resolution enhancement (described before) demand
more equipment and processing.

It is already the case that few manufacturers can afford the capital investment
required to develop and deploy the most advanced fabrication plants. Rising fab-
rication costs continue to raise the bar, forcing consolidation and centralization
in integrated circuit manufacturing.

Starting at around 90 nm feature sizes, the mask cost per component typically
exceeds $1 million. This rising cost comes from the effects previously noted:
more masks per component and greater complexity per mask. Coupled with ris-
ing component design and verification complexity, this raises the nonrecurring
engineering (NRE) costs per chip design.

The economics of rising NRE ultimately lead to fewer unique designs. That
is, if we hope to keep NRE costs to a small fraction—for example 10 percent—of
the potential revenue for a chip, the market must be at least 10 times the NRE
cost. With total NRE costs typically requiring tens of millions of dollars for
90 nm designs, each chip needs a revenue potential in the hundreds of millions
of dollars to be viable. The bar continues to rise with NRE costs, decreasing the
number of unique designs that the industry can support. This decrease in unique
designs creates an increasing demand for differentiation after fabrication (i.e.,
reconfigurability).

38.2 BOTTOM-UP TECHNOLOGY

In contrast, bottom-up synthesis techniques give us a way to build devices and
wires without relying on masks and lithography to define their atomic-scale
features. They potentially provide an alternative path to device construction
that may provide access to these atomic-scale features more economically than
traditional lithography.

856 Chapter 38 � Reconfigurable Computing and Nanoscale Architecture

This section briefly reviews the bottom-up technology building blocks exploited
by the nanoPLA, including nanowires (Section 38.2.1), ordered assembly of
nanowires (Section 38.2.2), and programmable crosspoints (Section 38.2.3).
These technologies are sufficient for constructing and understanding the basic
nanoPLA design. For a roundup of additional nanoscale wire and crosspoint tech-
nologies, see the appendix in DeHon’s 2005 article [2].

38.2.1 Nanowires
Chemists and material scientists are now regularly producing semiconducting
and metallic wires that are nanometers in diameter and microns long using
bottom-up synthesis techniques. To bootstrap the process and define the smallest
dimensions, self-limiting chemical processes (e.g., Tan et al. [3]) can be used to
produce nanoparticles of controlled diameter. From these nanoparticle seed cat-
alysts, we can grow nanowires with diameters down to 3 nm [4]. The nanowire
self-assembles into a crystalline lattice similar to planar silicon; however, growth
is only enabled in the vicinity of the nanoparticle’s catalyst. As a result, catalyst
size defines the diameter of the grown nanowires [5]. Nanowires can be grown
to millimeters in length [6], although it is more typical to work with nanowires
tens of microns long [7].

Bottom-up synthesis techniques also allow the definition of atomic-scale fea-
tures within a single nanowire. Using timed growth, features such as compo-
sition of different materials and different doping levels can be grown along
the axis of the nanowire [8–10]. This effectively allows the placement of device
features into nanowires, such as a field effect gateable region in the middle of
an otherwise ungateable wire (see Figure 38.1). Further, radial shells of differ-
ent materials can be grown around nanowires with controlled thickness using
timed growth [11, 12] or atomic-layer deposition [13, 14] (see Figure 38.2). These
shells can be used to force the spacing between device and wire features, to act
as dielectrics for field effect gating, or to build devices integrating heterogeneous
materials with atomic-scale dimensions.

After a nanowire has been grown, it can be converted into a metal–silicon
compound with lower resistance. For example, by coating select regions of

Conduct only
with field � 1 V

Conduct any field � 5 V

FIGURE 38.1 � An axial doping profile. By varying doping along the axis of the nanowire,
selectively gateable regions can be integrated into the nanowire.

38.2 Bottom-up Technology 857

FIGURE 38.2 � A radial doping profile.

FIGURE 38.3 � The Langmuir–Blodgett alignment of nanowires.

the nanowire with nickle and annealing, we can form a nickle–silicide (NiSi)
nanowire [15]. The NiSi resistivity is much lower than the resistivity of heav-
ily doped bulk silicon. Since nanowires have a very small cross-sectional area,
this conversion is very important to keep the resistance, and hence the delay,
of nanowires low. Further, this conversion is particularly important in reducing
contact resistance between nanowires and lithographic-scale power supplies.

38.2.2 Nanowire Assembly
Langmuir–Blodgett (LB) flow techniques can be used to align a set of nanowires
into a single orientation, close-pack them, and transfer them onto a surface
[16, 17] (see Figure 38.3). The resulting wires are all parallel, but their ends
may not be aligned. By using wires with an oxide sheath around the conducting
core, the wires can be packed tightly without shorting together. The oxide sheath
defines the spacing between conductors and can, optionally, be etched away after
assembly. The LB step can be rotated and repeated so that we get multiple layers
of nanowires [16,18], such as crossed nanowires for building a wired-OR plane
(Section 38.4.1).

38.2.3 Crosspoints
Many technologies have been demonstrated for nonvolatile, switched crosspoints.
Common features include the following:

� Resistance that changes significantly between on and off states
� Ability to be made rectifying (i.e., to act as diodes)
� Ability to turn the device on or off by applying a voltage differential

across the junction
� Ability to be placed within the area of a crossed nanowire junction

858 Chapter 38 � Reconfigurable Computing and Nanoscale Architecture

Pt

Pt

Ti

Ti

[2]rotaxane
(molecules)

FIGURE 38.4 � Switchable molecules sandwiched between nanoscale wires.

Chen et al. [19, 20] demonstrate a nanoscale Ti/Pt-[2]rotaxane-Ti/Pt sandwich
(see Figure 38.4), which exhibits hysteresis and nonvolatile state storage show-
ing an order of magnitude resistance difference between on and off states. The
state of these devices can be switched at ±2 V and read at ±0.2 V. The basic
hysteretic molecular memory effect is not unique to the [2]rotaxane, and the
junction resistance is continuously tunable [21]. The exact nature of the phys-
ical phenomena involved is the subject of active investigation. LB techniques
also can be used to place the switchable molecules between crossed nanowires
(e.g., Collier et al. [22], Brown et al. [23]).

In conventional VLSI, the area of an SRAM-based programmable crosspoint
switch is much larger than the area of a wire crossing. A typical CMOS switch
might be 600 F2 [24], compared to a 3F × 3F bottom-level metal wire cross-
ing, making the crosspoint more than 60 times the area of the wire crossing.
Consequently, the nanoscale crosspoints offer an additional device size reduc-
tion beyond that implied by the smaller nanowire feature sizes. This particular
device size benefit reduces the overhead for configurability associated with pro-
grammable architectures (e.g., FPGAs, PLAs) in this technology, compared to
conventional CMOS.

38.3 CHALLENGES

Although the techniques reviewed in the previous section provide the ability to
create very small feature sizes using the basic physical properties of materials to
define dimensions, they also bring with them a number of challenges that any
nanoscale architecture must address, including the following:

� Required regularity in assembly and architecture: These techniques do not
allow the construction of arbitrary topologies; the assembly techniques
limit us to regular arrays and crossbars of nanowires.

38.4 Nanowire Circuits 859

� Lack of correlation in features: The correlation between features is
limited. It is possible to have correlated features within a nanowire, but
only in a single nanowire; we cannot control which nanowire is placed
next to which other nanowire or how they are aligned.

� Differentiation: If all the nanowires in a regular crossbar assembly
behaved identically (e.g., were gated by the same inputs or were
diode-connected to the same inputs), we would not get a benefit out
of the nanoscale pitch. It is necessary to differentiate the function
performed by the individual nanowires in order to exploit the benefits
of their nanoscale pitch.

� Signal restoration: The diode crosspoints described in the previous
section are typically nonrestoring; consequently, it is necessary to pro-
vide signal restoration for diode logic stages.

� Defect tolerance: We expect a high rate of defects in nanowires and
crosspoints. Nanowires may break or make poor contacts. Crosspoints
may have poor contact to the nanowires or contain too few molecules
to be switched into a low-resistance state.

38.4 NANOWIRE CIRCUITS

It is possible to build a number of key circuits from the nanoscale building
blocks introduced in the previous section, including a diode-based wired-OR
logic array (Section 38.4.1) and a restoring nanoscale inverter (Section 38.4.2).

38.4.1 Wired-OR Diode Logic Array
The primary configurable structure we can build is a set of tight-pitched, crossed
nanowires. With a programmable diode crosspoint at each nanowire inter-
section, this crossed nanowire array can serve as a programmable OR-plane.
Assuming the diodes point from columns to rows (see Figure 38.5), each row
output nanowire serves as a wired-OR for all of the inputs programmed into
the low-resistance state. In the figure, programmed on crosspoints are shown
in black; off crosspoints are shown in gray. Bold lines represent a nanowire
pulled high, while gray lines remain low. Output nanowires are shown bold
starting at the diode that pulls them high to illustrate current flow; the entire
output nanowire would be pulled high in actual operation. Separate circuitry,
not shown, is responsible for pulling wires low or precharging them low so that
an output remains low when no inputs can pull it high.

Consider a single-row nanowire, and assume for the moment that there is
a way to pull a nondriven nanowire down to ground. If any of the column
nanowires that cross this row nanowire are connected with low-resistance cross-
point junctions and are driven to a high voltage level, the current into the col-
umn nanowire will be able to flow into the row nanowire and charge it up to a
higher voltage value (see O1, O3, O4, and O5 in Figure 38.5). However, if none of

860 Chapter 38 � Reconfigurable Computing and Nanoscale Architecture

O1 5 A1C1E

O2 5 B1E

O3 5 D1E1F

O4 5 A1E

O5 5 C1D

O6 5 B1F

1

1 0 1 0 1 0

A B C D E F

0

1

1

1

0

FIGURE 38.5 � The wired-OR plane operation.

the connected column nanowires is high, the row nanowire will remain low (see
O2 and O6 in the figure). Consequently, the row nanowire effectively computes
the OR of its programmed inputs.

The output nanowires do pull their current directly off the inputs and may not
be driven as high as the input voltage. Consequently, these outputs will require
restoration (Section 38.4.2).

A special use of the wired-OR programmable array is for interconnect. That
is, if we restrict ourselves to connecting a single row wire to each column wire,
the crosspoint array can serve as a crossbar switch. This allows any input
(column) to be routed to any output (row) (see Figure 38.6). This structure
is useful for postfabrication programmable routing to connect logic functions
and to avoid defective resources. In the figure, programmed on crosspoints are
shown in black; off crosspoints are shown in gray. This means that the crossbar
shown in the figure is programmed to connect A→T, B→Q, C→V, D→S, E→U,
and F→R.

38.4.2 Restoration
As noted in Section 38.4.1, the programmable, wired-OR logic is passive and
nonrestoring, drawing current from the input. Further, OR logic is not universal.
To build a good, composable logic family, we need to be able to isolate inputs
from output loads, restore signal strength and current drive, and invert signals.

38.4 Nanowire Circuits 861

A B C D E F

Q

R

S

T

U

V

FIGURE 38.6 � An example crossbar routing configuration.

Fortunately, nanowires can be field effect controlled. This provides the poten-
tial to build gates that behave like field effect transistors (FETs) for restoration.
However, to realize them, we must find ways to create the appropriate gate topol-
ogy within regular assembly constraints (Section 38.5).

If two nanowires are separated by an insulator, perhaps using an oxide core
shell, we can use the field from one nanowire to control the other nanowire.
Figure 38.7 shows an inverter built using this basic idea. The horizontal
nanowire serves as the input and the vertical nanowire as the output. This gives
a voltage transfer equation of

Vout = Vhigh

(
Rpd

Rpd +Rfet (Input)+Rpu

)

(38.1)

For the sake of illustration, the vertical nanowire has a lightly doped P-type
depletion-mode region at the input crossing that forms a FET controlled by the
input voltage (Rfet (Input)). Consequently, a low voltage on the input nanowire
allows conduction through the vertical nanowire (Rfet = Ron-fet is small), and a
high input depletes the carriers from the vertical nanowire and prevents con-
duction (Rfet = Roff-fet is large). As a result, a low input allows the nanowire to
conduct and pull the output region of the vertical nanowire up to a high voltage.
A high input prevents conduction and the output region remains low. A second
crossed region on the nanowire is used for the pulldown (Rpd). This region can
be used as a gate for predischarging the output so that the inverter is pulled low

862 Chapter 38 � Reconfigurable Computing and Nanoscale Architecture

Input

Input

Ground
Ground

Vhigh Vhigh

Rpu

Rfet

Rpd

Precharge or
isolation control

 Inverted
(restored)

output

Voltage control
 for static load
or precharge

control

Ohmic contact to
 voltage source

Oxide separation

Lightly doped
 field effect
controllable

region

FIGURE 38.7 � A nanowire inverter.

before the input is applied, then left high to disconnect the pulldown voltage
during evaluation. Alternatively, it can be used as a static load for PMOS-like
ratioed logic. By swapping the location of the high- and low-power supplies,
this same arrangement can be used to buffer rather than invert the input.

Note that the gate only loads the input capacitively. Consequently, the output
current is isolated from the input current at this inverter or buffer. Further,
nanowire field effect gating has sufficient nonlinearity so that this gate provides
gain to restore logic signal levels [25].

38.5 STATISTICAL ASSEMBLY

One challenge posed by regular structures, such as tight-pitch nanowire cross-
bars, is differentiation. If all the wires are the same and are fabricated at
a pitch smaller than we can build arbitrary topologies lithographically, how
can we selectively address a single nanowire? If we had enough control to
produce arbitrary patterns at the nanometer scale, we could build a decoder
(see Figure 38.8) to provide pitch-matching between this scale and the scale at
which we could define arbitrary topologies.

The trick is to build the decoder statistically. That is, differentiate the
nanowires by giving each one an address, randomly select the nanowires that
go into each array, and carefully engineer the statistics to guarantee a high

38.5 Statistical Assembly 863

Ohmic contact to
 voltage source

Nanoscale wires

M
ic

ro
sc

al
e

w
ire

s

FIGURE 38.8 � A decoder for addressing individual nanowires assembled at nanoscale pitch.

probability that there will be a unique address associated with each nanowire
in each nanowire array. We can use axial doping to integrate the address into
each nanowire [26].

If we pick the address space sparsely enough, Law of Large Numbers statistics
can guarantee unique addressability of the nanowires. For example, if we select
10 nanowires out of a large pool with 106 different nanowire types, we get a
unique set of nanowires more than 99.99 percent of the time. In general, we
can guarantee more than 99 percent probability of uniqueness of N nanowires
using only 100 N2 addresses [26]. By allowing a few duplications, the address
space can be much smaller [27].

Statistical selection of coded nanowires can also be used to assemble
nanoscale wires for restoration [2]. As shown in Figure 38.9(a), if coded
nanowires can be perfectly placed in an array, we can build the restoration
circuit shown in Section 38.4.2 (Figure 38.7) and arrange them to restore
the outputs of a wired-OR array. However, the bottom-up techniques that
can assemble these tight-pitch feature sizes cannot order or place individ-
ual nanowires and cannot provide correlation between nanowires. As shown
in Figure 38.9(b), statistical alignment and placement of the restoration
nanowires can be used to construct the restoration array. Here, not every
input will be restored, but the Law of Large Numbers guarantees that we can
restore a reliably predictable fraction of the inputs. For further details, see
DeHon [2, 27].

864 Chapter 38 � Reconfigurable Computing and Nanoscale Architecture

Vhigh

Inputs

Inverted
restored
outputs

Ground
(a)

Vhigh

Ground
(b)

FIGURE 38.9 � A restoration array: (a) ideal and (b) stochastic.

38.6 NANOPLA ARCHITECTURE

With these building blocks we can assemble a complete reconfigurable
architecture. This section starts by describing the PLA-based logic block
(Section 38.6.1), then shows how PLAs are connected together into an array of
interconnected logic blocks (Section 38.6.2). It also notes that nanoscale mem-
ories can be integrated with this array (Section 38.6.3), reviews the defect toler-
ance approach for this architecture (Section 38.6.4), describes how designs are
mapped to nanoPLA designs (Section 38.6.5), and highlights the density benefits
offered by the technology (Section 38.6.6).

38.6.1 Basic Logic Block
The nanoPLA architecture combines the wired-OR plane, the stochastically
assembled restoration array, and the stochastic address decoder to build a
simple, regular PLA array (see Figure 38.10). The stochastic decoder described in
Section 38.5 allows individual nanowires to be addressed from the lithographic
scale for testing and programming (see Figures 38.11 and 38.12). The output
of the programmable, wired-OR plane is restored via a restoration plane using
field effect gating of the crossed nanowire set as described in Section 38.5 and
shown in Figure 38.9.

Lightly doped
control region

Precharge or static
load devices

A0 A1 A2 A3

Lightly doped
control region

Ohmic contacts
to high– and

low–supply voltages

Nanowires

Ohmic contacts to supply

/evalA

prechargeA

prechargeB

/evalB

/prechargeB

Restoration columnsRestoration columns

Programming
and precharge
power supplies

Vrow2

Vrow1

Vcommon

[for configuring array]

Programmable
diode

crosspoint

Stochastic
 inversion

array

 Programmable
diode crosspoints

(OR–planes)

Stochastic
buffer
array

/prechargeA

Stochastic
inversion

array
Stochastic

buffer
array

Restoration
wire

(P–type NWs)

Ohmic
contact
to power
supply

OR–term
(N–type NWs)

Stochastic
address
decoder

FIGURE 38.10 � A simple nanoPLA block.

865

866 Chapter 38 � Reconfigurable Computing and Nanoscale Architecture

A0 A1 A2 A3

Vrow2

Vrow1

Vcommon

FIGURE 38.11 � Addressing a single nanowire.

A0 A1 A2 A3

Programmed
junctions

Vrow2

Vrow1

Vtop1

Vbot1

Vtop4Vtop3Vtop2

Vbot2 Vbot3 Vbot4

Vcommon

FIGURE 38.12 � Programming a nanowire–nanowire crosspoint.

As shown in Figure 38.11, an address is applied on the lithographic-scale
address lines (A0 . . . A3). The applied address (1100) allows conduction through
only a single nanowire. By monitoring the voltage at the common lithographic
node at the far end of the nanowire (Vcommon), it is possible to determine whether
the address is present and whether the wire is functional (e.g., not broken). By
monitoring the timing of the signal on Vcommon, we may be able to determine
the resistance of the nanowire.

As shown in Figure 38.12, addresses are applied to the lithographic-scale
address lines of both the top and bottom planes to select individual nanowires
in each plane. We use the stochastic restoration columns to turn the corner
between the top plane and the restoration inputs to the bottom plane. Note that
since column 3 is an inverting column, we arrange for the single, selected signal
on the top plane to be a low value. Since the stochastic assembly resulted in two

38.6 nanoPLA Architecture 867

restoration wires for this input, both nanowire inputs are activated. As a result,
we place the designated voltage across the two marked crosspoints to turn on
the crosspoint junctions between the restored inputs and the selected nanowire
in the bottom plane.

The restoration planes can provide inversion such that the pair of planes serve
as a programmable NOR. The two back-to-back NOR planes can be viewed as a
traditional AND–OR PLA with suitable application of DeMorgan’s Law. A second
set of restoration wires provides buffered, noninverted inputs to the next wired-
OR plane; in this manner, each plane gets the true and complement version of
each logical signal just as is normally provided at the inputs to a VLSI PLA.
Microscale field effect gates (e.g., /evalA and /evalB) control when nanowire
logic can evaluate, allowing the use of a familiar 2-phase clocking discipline.
As such, the PLA cycle shown in Figure 38.10 can directly implement an FSM.
Programmable crosspoints can be used to personalize the array, avoid defective
wires and crosspoints (Section 38.6.4), and implement a deterministic function
despite fabrication defects and stochastic assembly.

38.6.2 Interconnect Architecture
To construct larger components using the previously described structures, we
can build an array of nanoPLA blocks, where each block drives outputs that
cross the input (wired) regions of many other blocks (Figure 38.13) [2, 28].
This allows the construction of modest-size PLAs (e.g., 100 Pterms), which are
efficient for logic mapping and keep the nanowire runs short (e.g., 10 μm) in
order to increase yield and avoid the high resistance of long nanowires. The
nanoPLA blocks provide logic units, signal switching, and signal buffering for
long wire runs. With an appropriate overlap topology, such nanoPLAs can sup-
port Manhattan (orthogonal X–Y) routing similar to conventional, island-style
FPGA architectures (Chapter 1).

By stacking additional layers of nanowires, the structure can be extended
vertically into the third dimension [29]. Programmable and gateable junctions
between adjacent nanowire layers allow routing up and down the nanowire
stack. This provides a path to continue scaling logic density when nanowire
diameters can shrink no further.

The resulting nanoPLA structure is simple and very regular. Its high-density
features are built entirely from tight-pitched nanowire arrays. All the nanowire
array features are defined using bottom-up techniques. The overlap topology
between nanowires is carefully arranged so that the output of a function (e.g.,
wired-OR, restoration, routing) is a segment of a nanowire that then crosses the
active or input portion of another function. Regions (e.g., wired-OR, restora-
tion) are differentiated at a lithographic scale. Small-scale differentiation fea-
tures are built into the nanowires and statistically populated (e.g., addressing,
restoration).

In the nanoPLA, the wired-OR planes combine the roles of switchbox, connec-
tion box, and logic block into one unified logic and switching plane. The wired-
OR plane naturally provides the logic block in a nanoPLA block. It also serves

Input
(AND)

Output
(OR)B I

nanoPLA

Buffer
array

Inversion
array

block

Y route channel
Microscale

output
Microscale

input

Inv.

FIGURE 38.13 � nanoPLA block tiling with edge I/O to lithographic scale.

868

38.6 nanoPLA Architecture 869

to select inputs from the routing channel that participate in the logic. Signals
that must be rebuffered or switched through a block are also routed through the
same wired-OR plane. Since the configurable switchpoints fit within the space
of a nanowire crossing, the wired-OR plane (hence the interconnect switching)
can be fully populated unlike traditional FPGA switch blocks that have a very
limited population to reduce their area requirements.

38.6.3 Memories
The same basic crosspoints and nanowire crossbar used for the wired-OR
plane (Section 38.4.1) can also serve as the core of a memory bank. An
address decoder similar to the one used for programming the wired-OR array
(see Section 38.5 and Figure 38.8) supports read/write operations on the
memory core [26, 30]. Unique, random addresses can be used to configure
deterministic memory addresses, avoiding defective memory rows and columns
[31]. A full-component architecture would interleave these memory blocks with
the nanoPLA logic blocks similar to the way memory blocks are embedded in
conventional FPGAs (Chapter 1).

38.6.4 Defect Tolerance
Nanowires in each wired-OR plane and interconnect channel are locally substi-
tutable (see the Local sparing subsection in Section 37.2.4). The full popu-
lation of the wired-OR crossbar planes guarantees this is true even for the
interconnect channels. We provision spare nanowires based on their defect
rate, as suggested in the Yield with sparing subsection of Section 37.2.3.
For each array, we test for functional wires as illustrated in Section 38.6.1.
Logical Pterms are assigned to nanowires using the matching approach
described in the Fine-grained Pterm matching subsection of Section 37.2.5.
For a detailed description of nanoPLA defect tolerance, see DeHon and
Naeimi [32].

38.6.5 Design Mapping
Logic-level designs can be mapped to the nanoPLA. The logic and physi-
cal mapping for the nanoPLA uses similar techniques to those introduced
in Part III. Starting from a logic netlist, technology mapping can be per-
formed using PLAmap (see Section 13.3.4) to generate two-level clusters for
each nanoPLA block, which can then be placed using an annealing-based
placer (Chapter 14). Routing is performed with a PathFinder-based router
(Chapter 17). Because of the full population of the switchboxes, the nanoPLA
router need only perform global routing. Since nanoPLA blocks provide
both logic and routing, the router must also account for the logic assigned
to each nanoPLA block when determining congestion. As noted before, at
design loadtime, logical Pterms are assigned to specific nanowires using a
greedy matching approach (see the Fine-grained Pterm matching subsection of
Section 37.2.5).

870 Chapter 38 � Reconfigurable Computing and Nanoscale Architecture

38.6.6 Density Benefits
Despite statistical assembly, lithographic overheads for nanowire addressing,
and high defect rates, small feature sizes, and compact crosspoints can offer
a significant density advantage compared to lithographic FPGAs. When map-
ping the Toronto 20 benchmark suite [33] to 10-nm full-pitch nanowires (e.g.,
5-nm-diameter nanowires with 5-nm spacing between nanowires), we typically
see two orders of magnitude greater density than with defect-free 22-nm litho-
graphic FPGAs [2]. As noted earlier, areal density can be further increased by
using additional layers of nanowires [29].

38.7 NANOSCALE DESIGN ALTERNATIVES

Several architectures have been proposed for nanoscale logic. A large number
are also based on regular crossbar arrays and look similar to the nanoPLA at a
gross level (see Table 38.1). Like the nanoPLA, all these schemes employ fine-
grained configurability to tolerate defects. Within these architectures there are
different ways to address the key challenges (Section 38.3). These architectures
enrich the palette of available component solutions, increasing the likelihood of
assembling a complementary set of technology and design elements to practi-
cally realize nanoscale configurable logic.

38.7.1 Imprint Lithography
In the concrete technology described in Section 38.2, seeded nanowire growth
was used to obtain small feature sizes and LB flow to assemble them into parallel
arrays. Another emerging technique for producing regular, nanoscale structures
(e.g., a set of parallel, tight-pitched wires) is imprint lithography. The masks for
imprint lithography can be generated using bottom-up techniques.

TABLE 38.1 � A comparison of nano-electronic programmable logic designs

HP/UCLA Hewlett-
Component crossbar CMU Stony Brook Packard
element architecture nanoFabric nanoPLA CMOL FPNI

Crosspoint Programmable Programmable Programmable Programmable Programmable
technology diode diode diode diode diode

Nanowire Nano-imprint Nanopore Catalyst Nano-imprint Nano-imprint
technology lithography templates nanowires lithography lithography

Logic Nanoscale Nanoscale Nanoscale Nanoscale Lithoscale
implementation wired-OR wired-OR wired-OR wired-OR (N)AND2

CMOS↔Nanowire Random Coded Crossbar Crossbar
interface particles – nanowires tilt tilt

Restoration CMOS RTD latch nanowire FET CMOS CMOS

References [34, 35, 36] [37, 38] [28, 39] [40] [41]

38.7 Nanoscale Design Alternatives 871

In one scheme, timed vertical growth or atomic-layer deposition on planar
semiconductors is used to define nanometer-scale layers of differentially etchable
materials. Cut orthogonally, the vertical cross-section can be etched to produce
a comblike structure where the teeth, as well as the spacing between them, are
single-digit nanometers wide (e.g., 8 nm). The resulting structure can serve as a
pattern for nanoscale imprint lithography [42,43] to produce a set of tight-pitched,
parallel lines. That is, the long parallel lines resulting from the differential etch can
be stamped into a resist mask [43], which is then etched to produce a pattern in a
polymer or coated with metal to directly transfer metallic lines to a substrate [42].
Thesetechniquescanproduceregularnanostructuresbutcannotproducearbitrary
topologies.

38.7.2 Interfacing
When nanowires are fabricated together using imprint lithography, it is not pos-
sible to uniquely construct and code nanowires as exploited for addressing in
the nanoPLA (Section 38.5). Williams and Kuekes [36] propose the first random-
ized decoder scheme for differentiating nanoscale wires and interfacing between
lithographic and nanoscale feature sizes. They use a physical process to ran-
domly deposit metal particles between the lithographic-scale address lines and
the nanoscale wires. A nanowire is controllable by an address wire only if it
has a metal particle bridging it to the address line. Unlike the nanowire-coding
scheme where addresses are selected from a carefully chosen address space and
grown into each nanowire (Section 38.5), in this scheme the address on each
nanowire is randomly generated. As a result, this scheme requires 2 to 2.5 times
as many address wires as the statistically assembled nanowire-coding scheme.

Alternately, Strukov and Likharev [40, 44] observe that it should be possible
to directly connect each long crossbar nanowire by a nanovia to lithographic-
scale circuitry that exists below the nanoscale circuits. The nanovia is a semi-
conductor pin spaced at lithographic distances and grown with a taper to a
nanoscale tip for interfacing with individual nanowires. An array of these pins
(e.g., Jensen [45]) can provide nanovia interfaces.

The key idea is to pitch-match the lithographically spaced nanovia pins with
the nanoscale pitch nanowires and guarantee that there is space in the CMOS
below the nanoscale circuitry for the CMOS restoration and programming
circuits. Note of the following:

� Nanoscale wires can be angled relative to the CMOS circuitry to match
the pitch of the CMOS nanovias to the nanoscale wires. Figure 38.14
shows this tilt interfacing to a single nanowire array layer. Nanovias that
connect to the CMOS are arranged in a square array with side 2βFCMOS,
where FCMOS is the half-pitch of the CMOS subsystem, and β is a
dimensionless factor larger than 1 that depends on CMOS cell
complexity. The nanowire crossbar is turned by an angle α = arcsin
(

Fnano
/

βFCMOS
)

relative to the CMOS pin array, where Fnano is the
nanowire half-pitch.

872 Chapter 38 � Reconfigurable Computing and Nanoscale Architecture

2Fnano

2�FCMOS

�

FIGURE 38.14 � Nanoscale and CMOS pitch matching via tilt.

� If sufficiently long nanowires are used, the area per nanowire can be as
large as each CMOS cell (e.g., restoration buffer and programming
transistors). For example, if we use 10 μm nanowires at 10 nm pitch,
each nanowire occupies 105 nm2; each such nanowire could have its
own 300 nm× 300 nm CMOS cell (β ≈3 for FCMOS = 45 nm) and keep the
CMOS area contained below the nanowire area.

For detailed development of this interface scheme, see Likharev and Strukov
[44]. Hewlett-Packard employs a variant of the tilt scheme for their field-
programmable nanowire interconnect (FPNI) architecture [41].

38.7.3 Restoration
Enabled by the array-tilt scheme that allows each nanowire to be directly
connected to CMOS circuitry, the hybrid semiconductor–molecular electronics
(CMOL) and FPNI nanoscale array designs use lithographic-scale CMOS buffers
to perform signal restoration and inversion. CMOS buffers with large feature
sizes will be larger than nanowire FETs and have less variation. The FPNI
scheme uses nanoscale configurability only to provide programmable intercon-
nect, using a nonconfigurable 2-input CMOS NAND/AND gate for logic.

Alternatively, it may be possible to build latches that provide gain and isola-
tion from 2-terminal molecular devices [38]. Specifically, molecules that serve
as resonant-tunneling diodes (RTDs) or negative differential resistors have been
synthesized [46, 47]. These devices are characterized by a region of negative
resistance in their IV-curve. The CMU nanoFabric design shows how to build
and integrate latches based on RTD devices. The latches draw their power from
the clock and provide restoration and isolation.

38.8 SUMMARY

Between highly regular structures and high defect rates, atomic-scale design
appears to demand postfabrication configurability. This chapter shows how

38.8 Summary 873

configurable architectures can accommodate the extreme regularity required.
It further shows that configurable architectures can tolerate extremely
limited control during the fabrication process by exploiting large-scale assembly
statistics. Consequently, we obtain a path to denser logic using building blocks
roughly 10 atoms wide, as well as a path to continued integration in the third
dimension.

Spatially configurable design styles become even more important when all
substrates are configurable at their base level. We can always configure sequen-
tial processors on top of these nanoscale substrates when tasks are irregular and
low throughput (see Chapter 36 and the Processor subsection of Section 5.2.2).
However, when tasks can be factored into regular subtasks, direct spatial imple-
mentation on the configurable substrate will be more efficient, reducing both
runtime and energy consumption.

References
[1] S. R. J. Brueck. There are no fundamental limits to optical lithography. Interna-

tional Trends in Applied Optics, SPIE Press, 2002.
[2] A. DeHon. Nanowire-based programmable architectures. ACM Journal on Emerging

Technologies in Computing Systems 1(2), 2005.
[3] Y. Tan, X. Dai, Y. Li, D. Zhu. Preparation of gold, platinum, palladium and silver

nanoparticles by the reduction of their salts with a weak reductant–potassium
bitartrate. Journal of Material Chemistry 13, 2003.

[4] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, C. M. Lieber. Controlled growth
and structures of molecular-scale silicon nanowires. Nanoletters 4(3), 2004.

[5] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber. Diameter-controlled
synthesis of single crystal silicon nanowires. Applied Physics Letters 78(15), 2001.

[6] B. Zheng, Y. Wu, P. Yang, J. Liu. Synthesis of ultra-long and highly-oriented silicon
oxide nanowires from alloy liquid. Advanced Materials 14, 2002.

[7] M. S. Gudiksen, J. Wang, C. M. Lieber. Synthetic control of the diameter and length
of semiconductor nanowires. Journal of Physical Chemistry B 105, 2001.

[8] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber. Growth of
nanowire superlattice structures for nanoscale photonics and electronics. Nature
415, 2002.

[9] Y. Wu, R. Fan, P. Yang. Block-by-block growth of single-crystalline Si/SiGe super-
lattice nanowires. Nanoletters 2(2), 2002.

[10] M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson,
K. Depper, L. R. Wallenberg, L. Samuelson. One-dimensional steeplechase for elec-
trons realized. Nanoletters 2(2), 2002.

[11] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber. Epitaxial core-shell and
core-multi-shell nanowire heterostructures. Nature 420, 2002.

[12] M. Law, J. Goldberger, P. Yang., Semiconductor nanowires and nanotubes. Annual
Review of Material Science 34, 2004.

[13] M. Ritala. Advanced ALE processes of amorphous and polycrystalline films. Applied
Surface Science 112, 1997.

[14] M. Ritala, K. Kukli, A. Rahtu, P. I. Räisänen, M. Leskelä, T. Sajavaara, J. Keinonen.
Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources.
Science 288, 2000.

874 Chapter 38 � Reconfigurable Computing and Nanoscale Architecture

[15] Y. Wu, J. Xiang, C. Yang, W. Lu, C. M. Lieber. Single-crystal metallic nanowires
and metal/semiconductor nanowire heterostructures. Nature 430, 2004.

[16] Y. Huang, X. Duan, Q. Wei, C. M. Lieber. Directed assembly of one-dimensional
nanostructures into functional networks. Science 291, 2001.

[17] D. Whang, S. Jin, C. M. Lieber. Nanolithography using hierarchically assembled
nanowire masks. Nanoletters 3(7), 2003.

[18] D. Whang, S. Jin, Y. Wu, C. M. Lieber. Large-scale hierarchical organization of
nanowire arrays for integrated nanosystems. Nanoletters 3(9), 2003.

[19] Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. S. Williams, J. O. Jeppesen,
K. A. Nielsen, J. F. Stoddart, D. L. Olynick, E. Anderson. Nanoscale molecular-
switch devices fabricated by imprint lithography. Applied Physics Letters 82(10),
2003.

[20] Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen,
K. A. Nielsen, J. F. Stoddart, R. S. Williams. Nanoscale molecular-switch crossbar
circuits. Nanotechnology 14, 2003.

[21] D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen,
K. A. Nielsen, J. F. Stoddart. Molecule-independent electrical switching in Pt/organic
monolayer/Ti devices. Nanoletters 4(1), 2004.

[22] C. Collier, G. Mattersteig, E. Wong, Y. Luo, K. Beverly, J. Sampaio, F. Raymo,
J. Stoddart, J. Heath. A [2]catenane-based solid state reconfigurable switch. Science
289, 2000.

[23] C. L. Brown, U. Jonas, J. A. Preece, H. Ringsdorf, M. Seitz, J. F. Stoddart. Intro-
duction of [2]catenanes into Langmuir films and Langmuir–Blodgett multilayers:
A possible strategy for molecular information storage materials. Langmuir 16(4),
2000.

[24] A. DeHon. Reconfigurable Architectures for General-Purpose Computing. AI
Technical Report 1586, MIT Artificial Intelligence Laboratory, Cambridge, MA,
1996.

[25] A. DeHon. Array-based architecture for FET-based, nanoscale electronics. IEEE
Transactions on Nanotechnology 2(1), 2003.

[26] A. DeHon, P. Lincoln, J. Savage. Stochastic assembly of sublithographic nanoscale
interfaces. IEEE Transactions on Nanotechnology 2(3), 2003.

[27] A. DeHon. Law of Large Numbers system design. In Nano, Quantum and Molecular
Computing: Implications to High Level Design and Validation, Kluwer Academic,
2004.

[28] A. DeHon. Design of programmable interconnect for sublithographic pro-
grammable logic arrays. Proceedings of the International Symposium on Field-
Programmable Gate Arrays, 2005.

[29] B. Gojman, R. Rubin, C. Pilotto, T. Tanamoto, A. DeHon. 3D nanowire-based pro-
grammable logic. Proceedings of the International Conference on Nano-Networks
2006.

[30] A. DeHon, S. C. Goldstein, P. J. Kuekes, P. Lincoln. Non-photolithographic nano-
scale memory density prospects. IEEE Transactions on Nanotechnology 4(2), 2005.

[31] A. DeHon. Deterministic addressing of nanoscale devices assembled at sublitho-
graphic pitches. IEEE Transactions on Nanotechnology 4(6), 2005.

[32] A. DeHon, H. Naeimi. Seven strategies for tolerating highly defective fabrication.
IEEE Design and Test of Computers 22(4), 2005.

[33] V. Betz, J. Rose. FPGA Place-and-Route Challenge. http://www.eecg.toronto.edu/∼

vaughn/challenge/challenge.html, 1999.

38.8 Summary 875

[34] J. R. Heath, P. J. Kuekes, G. S. Snider, R. S. Williams. A defect-tolerant computer
architecture: Opportunities for nanotechnology. Science 280(5370), 1998.

[35] Y. Luo, P. Collier, J. O. Jeppesen, K. A. Nielsen, E. Delonno, G. Ho, J. Perkins,
H.-R. Tseng, T. Yamamoto, J. F. Stoddart, J. R. Heath. Two-dimensional molecular
electronics circuits. ChemPhysChem 3(6), 2002.

[36] S. Williams, P. Kuekes. Demultiplexer for a molecular wire crossbar network. U.S.
Patent number 6,256,767, July 3, 2001.

[37] S. C. Goldstein, M. Budiu. NanoFabrics: Spatial computing using molecular
electronics. Proceedings of the International Symposium on Computer Architecture
178–189, 2001.

[38] S. C. Goldstein, D. Rosewater. Digital logic using molecular electronics. ISSCC
Digest of Technical Papers, IEEE, 2002.

[39] A. DeHon, M. J. Wilson. Nanowire-based sublithographic programmable logic
arrays. Proceedings of the International Symposium on Field-Programmable Gate
Arrays, 2004.

[40] D. B. Strukov, K. K. Likharev. CMOL FPGA: A reconfigurable architecture for
hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16(6), 2005.

[41] G. S. Snider, R. S. Williams. Nano/CMOS architectures using a field-programmable
nanowire interconnect. Nanotechnology 18(3), 2007.

[42] N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff,
J. R. Heath. Ultra high-density nanowire lattices and circuits. Science 300, 2003.

[43] M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou.
Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithogra-
phy. Applied Physics Letters 84(26), 2004.

[44] K. K. Likharev, D. B. Strukov. CMOL: Devices, circuits, and architectures. In Intro-
ducing Molecular Electronics, Springer, 2005.

[45] K. L. Jensen. Field emitter arrays for plasma and microwave source applications.
Physics of Plasmas 6(5), 1999.

[46] J. Chen, M. Reed, A. Rawlett, J. Tour. Large on-off ratios and negative differential
resistance in a molecular electronic device. Science 286, 1999.

[47] J. Chen, W. Wang, M. A. Reed, M. Rawlett, D. W. Price, J. M. Tour. Room-
temperature negative differential resistance in nanoscale molecular junctions.
Applied Physics Letters 77, 2000.

This page intentionally left blank

INDEX

* (wildcards), 152, 761
0-1 knapsack problem, 553
1:1 mapping, 329–30

area/delay trade-offs, 329
PEs, 337
pitch matching, 330
topology matching, 329–30

Absorbing boundary conditions (ABC), 702
Abstract Physical Model (APM), 322
Abstracted hardware resources, 234–36
Accelerated PathFinder, 418–22

limiting search expansion, 419
multi-terminal nets and, 420, 421
parallelized, 215–16, 421
routing high-fanout nets first, 419
scaling sharing/history costs, 419
See also PathFinder

Accelerated simulated annealing, 415–18
communication bandwidth and, 416–17
distributed, 415
hardware-assisted, 418
parallelized, 416
See also Simulated annealing

Accelerating technology, 56–59
Actel ProASIC3, 83
Active Pages, 779–802

activation portion, 788
algorithmic complexity, 786–94
array-insert, 788–90
Central Processor, 782, 784–85, 788
configurations, 782
defect tolerance, 779, 799–801
DRAM hardware design, 780
execution with parameters, 787
hardware interface, 780
LCS, 791–94
multiplexing performance, 796
Page Processor, 781
performance results, 781–86
performance versus random processor

defects, 800
processing time, 798
processor width performance, 796–97
processor-memory nonoverlap, 784–85
programming model, 781

related work, 801–2
speedup over conventional systems,

782–84
Ad hoc testing, 96
Adaptive Computing Systems (ACS), 57
Adaptive lattice structures, 514
Adaptive nulling, CORDIC algorithm and,

514
Add/subtract FUs, 531, 532
Adder trees

computation, 598
creation, 598
template-specific, 596

Adders, 504
floating point implementation, 675–77
in reconfigurable dynamic ATR system,

609
Address indirection, 178
Advanced Encryption Standard (AES), 459,

775
A* heuristic, 373–374
AIG, 285
Algebraic layout specification, 352–60

calculation, 353
case study, 357–60

Altera SignalTap, 271
Altera Stratix, 19–23

block diagram, 19
DSP block, 21
LAB structure, 21
logic architecture, 19–21
logic element, 20
MultiTrack, 21–22
routing architecture, 21–23

Altera Stratix–II, 68, 83, 300
configuration information, 68
horizontal/vertical routing, 308

Alternative region implementations, 544,
549

heterogeneous, 550
number of, 550
obtaining, 550
parallel program partitioning, 557
sequential program partitioning, 549–50
See also Hardware/software partitioning

ALTOR, 313–14, 315

878 Index

AMD/Intel, 55–56
Amdahl’s Law, 62, 542

equation, 542
in hardware/software partitioning, 542,

543
solution space pruning, 544

Amtel AT40K, 70
Analytic peak estimation, 479–84

data range propagation, 482–84
LTI system, 479–82
See also Peak estimation

Analytic placement, 315
AND gates, 133
Angle approximation error, 522–23
Annotations

absence of loop-carried memory
dependence, 178–79

pointer independence, 178
Antifuse, 17–18

use advantages, 18
Application development, 435–38

challenges, 435
compute models, 93–107
system architectures, 107–25

Application-specific computation unit,
603–4

Application-specific integrated circuits. See
ASICs

Applications
arithmetic implementation, 448–52
characteristics and performance, 441–44
computational characteristics/

performance, 441–43
configure-once implementation, 445
embedded, 476
implementation strategies, 445–48
implementing with FPGAs, 439–52
RTR, 446–47

Architectural space modeling, 816–26
efficiency, 817–25
raw density from architecture, 816–17

Area flow, 280
Area models, 485–96

high-level, 493–96
intersection mismatch, 823
for multiple-wordlength adder, 495
width mismatch, 819–21

Area-oriented mapping, 280–82
Arithmetic

BFP, 450
complexity, 442–43
distributed, 503–11

fixed-point, 448–49
implementation, 448–52
infinite-precision, 519

Arithmetic logic units (ALUs), 5, 61, 114,
401

Array processors, 48, 226–30, 790,
2191–222

Array-insert algorithm, 788–90
processor and Active Pages computations,

790
simulation results, 790

Arrays
block reconfigurable, 74–75
FPTAs, 745
local, 177
reconfigurable (RAs), 43
See also FPGAs

Artificial evolution, 727–29
ASICs

cost, 440
debug and verification, 440–41
design time, 638
development, 440
general-purpose hardware

implementation, 458
power consumption, 440
replacement, 2
time to market, 439–40
vendors, 754
verification, 637, 638

Associativity, 799–800
Asynchronous transfer mode (ATM)

networking, 755
ATM adaptation layer 5 (AAL5), 758
ATR, 591–610

algorithms, 592–94
dynamically reconfigurable designs,

594–600, 604–6
FOA algorithm, 592
with FPGAs, 591–610
implementation methods, 604–7, 608
implementations, 604–9
Mojave system, 604–6
Myrinet system, 606–7
reconfigurable computing models, 607–9
reconfigurable static design, 600–4
in SAR imagery, 591
SLD, 592–94
statically reconfigurable system, 606–7

Automated worm detection, 766–67
Automatic compilation, 162–75, 212–13

dataflow graphs, building, 164–69

Index 879

DFG optimization, 169–73
DFG to reconfigurable fabric, 173–75
hyperblocks, 164
memory node connections, 175
operation packing, 173–74
pipelined scheduling, 174–75
runtime netlist, 413–14
scheduling, 174
TDF, 212
See also C for spatial computing

Automatic HW/SW partitioning, 175–76
Automatic partitioning trend, 540–42
Automatic Target Recognition. See ATR

Back-pressure signal, 210
Backtrack algorithm, 615–17

conflict analysis, 625
distributed control architecture, 620
efficiency, 616
FSM, 621–22
implementing, 619–24
implication circuit, 620
improved, 617–18, 626–27
improved, implementing, 624–27
nonchronological backtracking, 618
reconfigurable solver, 618–27
static variable ordering, 617
terminating conditions, 616
variable values, 619

Basic blocks, 163
Batcher bitonic sorter, 357–60
BEE Platform Studio (BPS), 192, 193

BEE2 platform, 191–94
design flow, 194
I/O, 200

Bellman–Ford algorithm, 386
Bernoulli’s Law of Large Numbers, 835
Bidirectional switches, 377
Binary-level partitioning, 559
Binding

flexible, 236–38
install time, 236–37
runtime, 237–38

Bipartitioning, 312, 646
Bitonic sorter, 357–60
ilv combinator, 359
layout and behavior specification, 358
merger, 359
recursion and layout, 360
recursive structure, 357

Bitops (bit operations), 808
BLAS routines, 685

Block floating point (BFP), 450
Block reconfigurable arrays, 74–75
BlockRAMs, 585, 708, 713, 766

caching modules, 715
dual-ported, 716
latency, 713

Bloom filters, 762
payload scanning with, 762
SIFT used, 766

Boolean expressions, 464
Boolean operators, 465
Boolean satisfiability (SAT), 613–35

algorithms, 615–18
applications, 614
backtrack algorithm, 615–17
backtrack algorithm improvement,

617–18
clauses, 614
CNF, 613
complete algorithms, 615
formulas, mapping, 634
formulation, 282, 613–14
incomplete algorithms, 615
parallel processing, 618–19
problem, 613
problem analysis, 618–19
test pattern generation, 614, 615
See also SAT solvers

Booth technique, 495
BORPH, 197
Bottom-up structure synthesis, 853
Bottom-up technology, 855–58

crosspoints, 857–58
nanowires, 856–57

Bulk Synchronous Parallelism (BSP),
118–19

Butterflies, 688

C++ language, 541
C compiler flow, 163
C compiler frontend, 163–64

CFG, 163
live variable analysis, 163
processing procedures, 164

C for spatial computing, 155–80
actual control flow, 159–60
automatic compilation, 162–75
automatic HW/SW partitioning, 175–76
common path optimization, 161–62
data connections between operations,

157
full pushbutton path benefits, 155–56

880 Index

C for spatial computing (cont.)
hyperblocks, 164
if-then-else with multiplexers, 158–59
memory, 157–58
mixed operations, 157
partitioning, 155
programmer assistance, 176–80

C language, 155–159, 171, 179, 541
C-slow retiming, 390–93, 827

architectural change requirement,
395–96

benefits, 390
FPGA effects on, 391
interface, 391
latency improvement, 392
low-power environment effect, 392
memory blocks, 391
microprocessor application, 395
as multi-threading, 395–98
results, 392
as threaded design, 391
throughput, 392
See also Retiming

Caches
configurations, 83
virtually addressed, 397

CAD
JHDL system, 255, 265–68
Mentor Graphics, 56
PipeRench tools, 34
runtime, 411
runtime processes, 238
Teramac for, 58
tools, 44–45, 66

Cadence Xcite, 642
Case studies

Altera Stratix, 19–23
Xilinx Virtex-II Pro, 23–26

CDFG, See Control dataflow graphs
Cellular automata (CA), 122–23, 702–3

folded, 123
two-dimensional, 122
well-known, 122

Cellular programming evolutionary
algorithm, 738

Central Limit Theorem, 835
Centralized evolution, 736–37
Chameleon architecture, 40–41

price/performance, 41
Channel width, 430
Checkpointing, 272
Checksums, 847

Chimaera architecture, 42–44
high-level user design language, 44
overview illustration, 43
RFUOPs, 43
VICs, 43–44

Choice networks
creating, 285
mapping on, 286

Church–Turing Thesis, 96
Circuit combinators, 352
Circuit emulation, 54–56, 637–68

AMD/Intel, 55–56
impacts, 56
in-circuit, 650
multi-FPGA, 641–44
single-FPGA, 640–41
system uses, 639–40
Virtual Wires, 56
VLE, 653–65

Circuit graph
bidirectional switches, 377
de-multiplexers, 376–77
edges, 377
extensions, 376–77
model, 367
symmetric device inputs, 376

Circuit layout
algebraic specification, 352–60
calculation, 353
deterministic, 352
explicit Cartesian specification, 351–52
no and totally explicit, 350
problem, 347–51
regularity, 319
specifying, 347–63
verification for parameterized designs,

360–62
CLAP tool, benchmarks, 336
Clause modules, 629–30
Clearspeed SIMD array, 221
Clock cycles

for circuit mapping, 649
latency, 507
N/L, 510
packing operations into, 173–74
reducing number of, 506

Clock frequency, 506
Cloning, 54
Clustering, 213, 227, 228, 304–6

benefits, 304
goals, 304
iRAC algorithm, 306

Index 881

mechanical, 423
RASP system, 304–5
T-VPack algorithm, 305
VPack algorithm, 305

CMOS scaling, 507
CMX-2X, 60
Coarse-grained architectures, 32–33

PipeRench, 32–34
Codesign ladder, 541
Coding phase, 582, 585–86

block diagram, 586
See also SPIHT

Col combinator, 354–55
Columns, skipping, 602
Common path, 161–62
Common subexpression elimination (CSE),

171
Communicating Sequential Processes

(CSP), 93, 106
Communication, 243–48

I/O, 247
intertask, 251
latency, 247
method calls, 244
point-to-point, 251
shared memory, 243–44
streams, 244–46
styles, 243–46
virtual memory, 246–47

Compaction, 324, 337–44
HWOP selection, 338
optimization techniques, 338–42
phases, 337–38
regularity analysis, 338

Compilation, 212–13
accelerating classical techniques, 414–22
architecture effect, 427–31
automatic, 162–75, 212–13
C, uses and variations, 175–80
fast, 411–32
incremental place and route, 425–27
multiphase solutions, 422–25
partitioning-based, 423
PathFinder acceleration, 418–22
runtime netlist, 411, 413–14, 432
simulated annealing acceleration,

415–18
slow, 411
for spatial computing, 155–80

Compilation flow, 150–52
Complete evolution, 736–38

centralized, 736–37

population-oriented, 737–38
See also Evolvable hardware (EHW)

Complete matching, 841
Complex programmable logic devices

(CPLDs), 292
Component reuse, 198–200

signal-processing primitives, 198
tiled subsystems, 198–200
See also Streaming FPGA applications

Computations
data-centric, 110
data-dependent, 104
on dataflow graph, 99
density of, 826
deterministic, 95
feedforward, 389
fixed-point, 475–99
memory-centric, 779–802
models, 96
nondeterministic, 96
phased, 104
SCORE, 205
spatial, 157
stream, 203–17

Compute bound algorithms, 443
Compute models, 92–107

applications and, 94
challenges, 93–97
correctness reasoning, 95
data parallel, 105
data-centric, 105–6
dataflow, 98–103
in decomposing problems, 94–95
diversity, 92
functions, 97
multi-threaded, 93, 106
object-oriented, 98
objects, 97–98
parallelism existence, 95
SCORE, 74, 203–17
sequential control, 103–5
taxonomy, 93
transformation permissibility, 95
Turing–Complete, 97

Compute units, 319
Computing primitives, 95
Concurrent statements, 144, 150
Concurrent-error detection (CED), 846
Configurable Array Logic (CAL), 53
Configurable bitstreams, 16, 402–6

closed architecture, 402
configuration, generation, 401–9

882 Index

Configurable bitstreams (cont.)
control bits, 405
data generation software, 407–8
downloading mechanisms, 406–7
generation, 401–9
open, 408
sizes, 405, 406
tool flow, 408
underlying data structure, 402

Configurable logic blocks (CLBs), 23, 325
complexity, 507
flip-flops, 508
multiple, 509
resource reduction, 508
XC6200, 741

Configuration transfer time reduction,
80–82

architectural approaches, 81
compression, 81–82
data reuse, 82

Configuration upsets, 849–50
Configuration(s)

architectures, 66–76
block reconfigurable, 74–75
cache, 83
caching, 77
compression, 81–82
controller, 66, 73
cycles, number of, 68
data reuse, 82
data transfer, 67
grouping, 76
multi-context, 68–70
partially reconfigurable, 70–71
pipeline reconfigurable, 73–74
relocation and defragmentation, 71–73
scheduling, 77–79
security, 82–83
single-context, 67–68
swapping, 72

Configure-once implementation, 445
Configured switches, 216
Conjunctive normal form (CNF), 291, 613
Connection blocks, 8

detail, 10
island-style architecture with, 9

Connection Machine, 221, 223
Constant coefficient multipliers, 459, 495
Constant folding, 169, 450–51

automated, 473
constant propagation, 463
implementations with/without, 451

in instance-specific designs, 456–57
in logical expressions, 464–66

Constrained 2D placement, 335–6
Content-addressable memories (CAMs), 444
Context switching, 80
Context-sensitive optimization, 340–42

superslices, 340, 341
See also Compaction

Control dataflow graphs (CDFGs), 319
conversion to forest of trees, 330
primitive operators, 332
sequence, 334–35

Control flow, 159–60
implementation, 159
subcircuits, 160
See also C for spatial computing

Control flow graph (CFG), 163, 164
Control nets, 322
Controller design, 124, 194–98

with Matlab M language, 195–97
with Simulink blocks, 194–95
with Verilog, 197
with VHDL, 197

Controllers
configuration, 66, 73
delay line, 195–96
FSM, 124
RaPiD, 39
sequential, 120
vector architecture, 120

Coordinate systems, CORDIC, 520–21
Coprocessors

independent, 36–40
scalar processor with, 117
streaming, 109–10
vector, 121–22

CORDIC, 437, 513–35
adaptive lattice structures and, 514
adaptive nulling and, 514
alternatives, 513, 520
angle approximation error, 522–23
architectural design, 526–27
computation noise, 522
computational accuracy, 521–26
convergence, 527–28
coordinate systems, 520–21
datapath rounding error, 523–26
engine, 527, 534
in FFT, 514
folded architecture, 528–30
functions computed by, 521
implementation, 526–27

Index 883

input mapping, 527
input sample, 525
iterations, 516, 527
Kalman filters and, 514
micro-rotations, 526
parallel linear array, 530–33
PE, 532
processing, 522
quantization effects, 524
realizations, 513–14
result vector error, 523
rotation mode, 514–17
scaling, 517–19
scaling compensation, 534
shift sequences, 522
as shift-and-add algorithm, 513
unified description, 520–21
variable format, 524
vector rotation, 518
vectoring mode, 514, 519–20, 525
in VLSI signal processing, 514
y-reduction mode, 519
z-reduction mode, 517

CORDIC processors
datapath format, 526
datapath width, 523
effective number of result bites, 525
FPGA implementation, 527–34
FPGA realizations, 523
full-range, 527, 528
with multiplier-based scaling

compensation, 535
PE, 533

COordinate Rotation DIigital Computer.
See CORDIC

Cosine, 437
Cost function, 440

PathFinder, 368, 375
power-aware, 284
in simulated annealing, 306

Coverification, 639–40, 650–51
flow between workstation and emulator,

665
performance, 650
simulation, 651
use of, 640
VLE interfaces for, 664–65
See also Logic emulation systems

CPU blocks, 15
Cray supercomputers, 60
Crosspoints, 857–58

diode, 859
nanowire-nanowire, 866

Custom evolvable FPGAs, 743–45
axes, 744
POEtic tissue, 743–45
See also Evolvable hardware (EHW)

Customizable instruction processors, 121,
461–62

Cut enumeration-based algorithm, 287
Cut generation, 279–80
Cvt class, 266–68

GUI, 267
implementation, 266–67

D-flip-flops, 596
DA. See Distributed arithmetic
DAOmap, 282–83

area improvement, 283
multiple cut selection passes, 283

DAP, 221
Data Encryption Standard (DES), 459
Data nets, 321
Data parallel, 119–22

application programming, 219–30
compute model, 105
languages, 222–23
SIMD, 120
SPMD, 120
system architecture, 119–22

Data presence, 108–9, 110
Data queuing, 756
Data range propagation, 482–84
Data-centric, 105–6, 110
Data-dependent branching, 221
Data-element size, 442–43
Data-oriented specialization, 450–52
Dataflow, 98–103

analysis-based operator size reduction,
172

direction, 321
dynamic streaming, 100–2
dynamic streaming, with peeks, 102
single-rate synchronous, 99
streaming, with allocation, 102–3
synchronous, 99–100
techniques, 93

Dataflow graphs (DFGs), 78, 319
building, 164
circuit generation, 164
computation on, 99
control (CDFG), 319
DSP, 93
edges, 165
edges, building and ordering, 166–68

884 Index

Dataflow graphs (DFGs) (cont.)
implicit type conversions, 172
live variables at exits, 168–69
multirate, 100
muxes, building, 167
nodes, 165
operations in clock cycles, 173–74
optimization, 164
predicates, 167
scalar variables in memory, 169
single-rate static, 100
as “stepping stone,” 164–65
top-level build algorithms, 165–66
See also DFG optimization

Dataflow Intermediate Language (DIL), 34
Dataflow single-rate synchronous, 99
Datapath composition, 319–44

device architecture impact, 324–26
interconnect effect, 326
interface to module generators, 326–29
layout, 322–23
mapping, 329–33
regularity, 320–22
tool flow overview, 323–24

Datapath pruning, 524
Datapath rounding error, 523–26
Datapaths

butterfly, 688
with explicit control, 195
FSM, 138–49
FSM communication with, 123–24
high-performance, 184
HWOPs, 320, 321–22
layout, 322–23
sharing, 109
SIMD, 815, 818
word-wide, 216

dbC language, 224
Deadlock, 96
Deadlock prevention, 249
Debug circuitry synthesis, 271–72
Debugging

ASICs, 441
FPGAs, 440–41
JHDL, 270–72

Decoders, 376–77, 862–63
Dedicated-wire systems, 641

channel graph, 647
recursive bipartitioning, 646
routing problem, 646
See also Multiplexed-wire systems

Deep pipelining, 706

Defect maps
with component-specific mapping, 836
model, 832

Defect tolerance, 830–43
Active Pages and, 779, 799–801
associativity and, 800
concept, 830–32
defect map model, 832
global sparing, 836–37
local sparing, 838–39
with matching, 840–43
models, 831–32
nanoPLA, 869
perfect component model, 831, 837–38
with sparing, 835–39
substitutable resources, 832
testing, 835–36
yield, 832–35

Defects
faults and, 830
lifetime, 848–49
rates, 829, 832

Defragmentation, 71–73
device support, 77
software-based, 79–80

Delay lines
controller, 195–96
synchronous, 194
VPR computation, 309–10

Delay Optimal Mapping algorithm. See
DAOmap

Delay(s)
configurable, 187
as cost approximation, 375
delta, 150

Delta delay, 150
De-multiplexers, 376–77, 862–63
Denial of service (DoS), 774
Denormals, 673
Depth-first search order, 585
Derivative monitors, 490
Deterministic Finite Automata, 103
Device architecture, 3–27
DFG. See Dataflow graphs
DFG optimization, 169–73

Boolean value identification, 171
constant folding, 169
CSE, 171
dataflow analysis-based operator size

reduction, 172
dead node elimination, 170–71
identity simplification, 170

Index 885

memory access optimization, 172
redundant loads removal, 172–73
strength reduction, 170
type-based operator size reduction,

171–72
See also Dataflow graphs (DFGs)

Digital signal processors (DSPs), 49, 93
Direct memory access (DMA), 246
Discrete cosine transform (DCT), 389, 479,

511
Discrete Fourier transform (DFT)

output vector, 534
symmetries, 687

Discrete wavelet transform (DWT), 567
architecture illustration, 575
architectures, 571–75
computational complexity, 572
engine runtime, 574
folded architecture, 571, 572
generic 2D biorthogonal, 573–74
partitioned, 572, 573
phase, 582
two-dimensional, 571

Distributed arithmetic (DA), 503–11
algorithm, 504
application on FPGA, 511
FIR filters, 575
implementation, 504–7
LUT size and, 505
performance, improving, 508–11
reduced memory implementation, 507
theory, 503–4
two-bit-at-a-time reduced memory

implementation, 509
Division operation, 437
Djikstra’s algorithm, 371
Dot product, 506, 683–86

FPGA implementation, 685
maximum sustainable floating–point rate,

685
multiply–accumulate, 686
multiply–add, 686
performance, 685–87

Downloading mechanisms, 406–7
DRAMs

computational hardware, 786
dies, 831
hardware design, 780
high-density, 780

Dtb class, 270
Dynamic FPGAs, 600

Dynamic Instruction Set Computer (DISC),
447

Dynamic partial reconfiguration, 742–43
Dynamic reconfiguration, 552
Dynamic RPF, 29
Dynamic scheduling, 240–41

frontier, 240–41
runtime information, 240, 241
See also Scheduling

Dynamic streaming dataflow, 101–2
with peeks, 102
primitives, 101

Dynamic testbench, 269–70
Dynamically linked libraries (DLLs), 235,

773
Dynamically reconfigurable ATR system,

604–6
Dynamically reconfigurable designs,

594–600
algorithm modifications, 594
FPGAs over ASICs, 595–96
image correlation circuit, 594–96
implementation method, 599–600
performance analysis, 596–97
template partitioning, 598–99
See also ATR

Edge mask display, 190
Edges

building, 166–67
circuit graph model, 377
detection design driver, 185
liveness, 165
ordering, 167–68, 172, 173

EDIF (Electronic Design Interchange
Format), 407

Effective area, 280
Electric and magnetic field-updating

algorithms, 700–1
Embedded memory blocks (EMBs),

mapping logic to, 291–92
Embedded microprocessors, 197–98
Embedded multipliers, 514
Embedded multiply–accumulator (MACC)

tiles, 514, 680
EMB_Pack algorithm, 292
Epigenesis, 726
Epigenetic axis, 727, 744
Error checking, 233
Error estimation, 485–96

fixed-point error, 486
high-level area models, 493–96

886 Index

Error estimation (cont.)
LTI systems, 487–89
noise model, 487–88
noise propagation, 488–89
nonlinear differentiable systems, 489–93
quantization, 711–12
simulation, 486
simulation-based methods, 487

Evolution
artificial, 727–29
centralized, 736–37
complete, 736–38
extrinsic, 733
intrinsic, 734–35
open-ended, 738–39
population-oriented, 737–38

Evolutionary algorithms (EAs), cellular
programming, 738

Evolutionary circuit design, 731, 733
Evolutionary computation, 727
Evolvable hardware (EHW), 729–46

as artificial evolution subdomain, 731
commercial FPGAs, 741–43
complete evolution, 736–38
custom, 743–45
digital platforms, 739–45
dynamic partial reconfiguration, 742–43
evolvable components, 739–40
extrinsic evolution, 733
future directions, 746
genome encoding, 731–32
intrinsic evolution, 734–35
JBits for, 743
living beings analogy, 729–30
off-chip, 732
on-chip, 732
open-ended evolution, 738–39
taxonomy, 733–39
virtual reconfiguration, 741–42
Xilinx XC6200 family, 740–41

Exit nodes, 165
Explicit layout

Cartesian, 351–52
no, 350
totally, 350
in VHDL, 351

Explicit synchronization, 248
Exploration

0-1 knapsack problem, 553
complex formulations, 555–56
formulation with asymmetric

communication, 553–55

parallel program partitioning, 558
sequential program partitioning, 552–57
simple formulation, 552–53
See also Hardware/software partitioning

Extended logic, 12–16
elements, 12–15
fast carry chain, 13–14
multipliers, 14–15
processor blocks, 15
RAM, 15

Extreme subwavelength top-down
lithography, 853

Extrinsic EHW, 733

F2PGA, 735
Factoring, 515–16
False alarm rate (FAR), 592
Fast carry chain, 13–14
Fast Fourier transform (FFT), 21, 389, 479

butterflies, 688
CORDIC algorithm and, 514
data dependencies, 692
FPGA implementation, 689–91
implementation factors, 692
parallel architecture, 689, 690
parallel–pipelined architecture, 690, 691
performance, 691–93
pipelined architecture, 689–91
radix-2, 687–88

FDTD, 697–723
ABCs, 702
accelerating, 702
advantages on FPGA, 705–7
algorithm, 701–3
applications, 703–5
background, 697–701
breast cancer detection application, 703–4
as CA, 702–3, 723
as data and computationally intense, 702
deep pipelining, 706
field-updating algorithms, 700–1
fixed-point arithmetic, 706–7
flow diagram, 701
ground-penetrating radar application, 703
landmine detection application, 704
method, 697–707
model space, 698, 702, 712
parallelism, 705–6
PMLs, 702
reconfigurable hardware implementation,

704
spiral antenna model, 704, 705

Index 887

UPML, 702, 706
See also Maxwell’s equations

FDTD hardware design case study, 707–23
4 x 3 row caching model, 719
4-slice caching design, 718
background, 707
data analysis, 709–12
dataflow and processing core

optimization, 716–18
expansion to three dimensions, 718–19
fixed-point quantization, 709–12
floating-point results comparison, 710,

711
hardware implementation, 712–22
managed-cache module, 717
memory hierarchy and interface, 712–15
memory transfer bottleneck, 715–16
model specifications, 711
parallelism, 720–21
performance results, 722
pipelining, 719–20
quantization errors, 710
relative error, 710, 711
relative error for different widths, 712
requirements, 707–8
results, 722
two hardware implementations, 721–22
WildStar–II Pro PFGA board, 708–9

Feedforward correction, 844–45
memory, 845
TMR, 844

FF. See Flip-flops
Field effect transistors (FETs), 861
Field Programmable Port Extender (FPX)

platform, 755, 756
applications developed for, 756
multiple copies, 770
physical implementation block diagram,

757
RAD circuits on, 770, 772
remote configuration on, 773
in WUGS, 756–57

Field-programmable gate arrays. See FPGAs
Field-programmable interconnect chips

(FPICs), 643
Field-programmable transistor arrays

(FPTAs), 745
Field-updating algorithms, 700–1
FIFO, 37, 585

blocks, 586
buffers, 759
queues between operators, 108

streams, 847
token buffers, 102

Fine-grained architectures, 30–32
Finite-difference time-domain. See FDTD
Finite-impulse response (FIR) filters, 21,

98, 389, 479
4-tap, 510
16-tap, 507, 508
distributed arithmetic, 575
general multipliers, 460
instance-specific multipliers, 460
mapping onto FPGA fabric, 507
SPIHT implementation and, 576
taps, 503

Finite-precision arithmetic, 519
Finite-State Machine with Datapath

(FSMD), 112, 124
Finite-state machines (FSMs), 112, 620, 621

coarse-grained, 125
communicating with datapaths, 123–24
controller, 124
datapath example, 138–49
states, 621–22
VHDL programming, 130

Firewalls, 754
First-in, first-out. See FIFO
Fixed instructions, 815
Fixed Order SPIHT, 578–80

basis, 579
order, 579
PSNR curve, 579
SPIHT comparison, 581
See also SPIHT

Fixed-frequency FPGAs, 394–95
Fixed-Plus-Variable (F + V) computer, 48
Fixed-point computation, 475–99, 706–7

analytic peak estimation, 479–84
FDTD algorithm, 708
peak value estimation, 478–85
precision analysis for, 475–99
relative error, 712
simulation-based peak estimation, 484

Fixed-point error, 486
Fixed-point number system, 448–49, 475–78

2’s complement, 709
data structure, 710
in embedded applications, 476
flexibility, 476
multiple wordlength paradigm, 476–77
reconfigurable logic, 476

Fixed-point precision analysis, 575–78
final variable representation, 578

888 Index

Fixed-point precision analysis (cont.)
magnitude calculations, 576
variable representation, 577
See also SPIHT

FLAME, 327–28
design data model, 327–28
library specification, 328
Manager, 327
topology description, 328

Flash memory, 17
Flexible API for Module-based

Environments. See FLAME
Flexible binding, 236–38

fast CAD for, 238
install time binding, 236–37
preemption and, 242
runtime binding, 237–38
See also Operating systems (OSs)

FlexRAM, 801
Flip-flops (FFs), 286, 597

CLB, 508
D, 5–6, 596
retiming and, 286

Floating point, 449–50, 671–79, 706
adder block, 676
adder implementation, 675–77
adder layout, 676
application case studies, 679–92
denormals, 673
difficulty, 671–78
dot product, 683–86
FFT, 686–92
IEEE double-precision format, 672
implementation, 692
implementation considerations, 673–75
matrix multiply, 679–83
maximum sustainable rate, 685
multiplier block, 678
multiplier implementation and layout,

678
numbers, 672
summary, 692–94

Floating region, 303
Flow graphs, 78, 79
FlowMap algorithm, 279, 282
Focus of Attention (FOA) algorithm, 592
Folded CA, 123
Folded CORDIC architecture, 528–30
Follow-on SAT solver, 627–33

characteristics, 628
clause modules, 629–30
compilation time reduction, 627–33

conflict analysis, 630
creation methodology, 632
global topology, 628
implementation issues, 631–32
main control unit, 630
optimized pipelined bus system,

628, 629
performance, 630–33
shared-wire global signaling, 628
structural regularity, 628
system architecture, 627–30
See also Boolean satisfiability; SAT solvers

Forward error correction (FEC), 755
Forward propagation, 482–84
FPGA fabrics, 14–15, 40–41

arbitrary-precision high-speed
adder/subtractors support, 530

architectures, 30–34
dedicated paths, 511
footprint, 527

FPGA placement, 297–98
alternative, 297–98
analytic, 315
challenge, 316
clustering, 304–6
designer directives, 302–4
device legality constraints, 300–1
difficulty, 275
general–purpose FPGAs, 299–316
homogeneous, 503
importance, 299
independence tool, 312
inputs, 299
legal, 300
optimization goals, 301–2
partition-based, 312–15
problem, 299–304
PROXI algorithm, 311–12
routability-driven algorithms, 301
routing architecture influence, 302
simulated annealing, 306–12
simultaneous routing, 311–13
timing-driven algorithms, 301
tools, 301
See also FPGAs

FPGAs, 1, 47
antifuse, 17–18
application implementation with,

439–52
arithmetic implementation, 448–52
ATR systems with, 591–610
backend phase, 151

Index 889

as blank hardware, 16
case studies, 18–23
circuit layout specification, 347–63
clock rates, 441
compilation flow, 151
computing, CORDIC architectures for,

513–35
configuration, 16–18
configuration data transfer to, 67
configuration memory systems, 2
CORDIC processor implementation,

527–34
cost, 440
DA application on, 511
debug and verification, 440–41
dedicated processors, 15
development, 440
dynamic, 600
efficiency of processors and, 825
emulation system, 55
evolvable, 725–46
fabric, 15
fixed-frequency, 394–95
flash memory, 17
flexibility, 87
floating point for, 671–94
general-purpose hardware

implementation, 458
island-style, 6, 7, 314
K-gate, 600
LUTs, 4–6, 279
low-quality ASICs use, 1
multi-context, 68–70
network data processing with, 755–56
number formats, 436
partially reconfigurable, 70–71
performance, 438
power consumption, 440
in reconfigurable computing role, 3
routing resources, 348, 367
scaling, 411, 412, 431–32
SIMD computing on, 219–21
single-context, 67–68
SRAM, 16–17
static, 600
streaming application programming,

183–202
strengths/weaknesses, 439–41
testing after manufacture, 407
time to market, 439–40
volatile static-RAM (SRAM), 6
See also FPGA placement

FPgrep, 761
FPsed, 761
FPX. See Field Programmable Extender

platform
Fractional fixed-point data, 523
Fractional guard bits, 522
FSM. See Finite-state machines
FSM datapath, 138–49

adder representation, 144
concurrent statements, 144
control signal generation, 145–48
control signal generation illustration, 146
design illustration, 139
multiplexer representation, 144
multiplier representation, 144
next-state decoder, 149
registers, 144–45
sequential statement execution, 149
structural representation, 138–41
time-shared datapath, 141–44

FSMD. See Finite–state machine with
datapath

Full-range CORDIC processors, 527, 528
input quadrant mapping, 528
micro-rotation engine, 529
See also CORDIC

Function blocks. See Logic blocks
Functional blocks (FBs), 741
Functional mapping algorithms, 277
Functional Unit model, 41–43, 115–16
Functions, 97

GAMA, 331, 333
Garp’s nonsymmetrical RPF, 30–32, 40

configuration bits, 31
configurator, 32
number of rows, 30
partial array configuration support, 31
See also Fine-grained architectures; RPF

General computational array model, 807–14
implications, 809–14
instruction distribution, 810–13
instruction storage, 813–14

General-purpose FPGA placement. See
FPGA placement

General-purpose programming languages
(GPLs), 255, 256

Generic 2D biorthogonal DWT, 573–74
Genetic algorithms (GAs), 727–29

components, 729
crossover, 729
decoding, 728

890 Index

Genetic algorithms (cont.)
fitness evaluation, 728
genetic operators, 728–29
initialization, 728
mutation, 729
steps, 728–29
variable-length (VGA), 735

Genome encoding, 731–32
fitness calculation, 732
high-level languages, 731
low-level languages, 732

Genomes, 728
Given’s rotations, 514
Global RTR, 446, 447
Global sparing, 836–37
Globally Asynchronous, Locally

Synchronous (GALS) model, 109
Glue-logic, 441
Granularity, 30–34

coarse, 32–34, 546
dynamically determined, 547
fine-grained, 30–32, 546
heterogeneous, 546
manual partitioning, 546
parallel program partitioning, 557
region, 545
sequential program partitioning, 545–47
See also Hardware/software partitioning

Graph bipartitioning, 553
GRASP, 618, 625, 632–33
Greedy heuristics, 553–55
Ground-penetrating radar (GPR), 703, 704,

711
Group migration, 554

Hard macros, 336, 424
Hardware-Accelerated Identification of

Languages (HAIL), 768
Hardware-assisted simulated annealing, 418
Hardware description languages (HDLs),

183, 235, 407, 541
Hardware execution checkpoints, 272
Hardware operators (HWOPs)

boundary dissolution, 337
compaction, 324
linear stripes, 335
mapping, 323
module generation, 323
multibit wide, 320
neighboring, 338
non-bit-sliced, 324
pitch, 321

pitch-matched, 322
placement, 324
regular structure, 320–21
selection for compaction, 338
swaps, 334
See also Datapaths; HWOP placement

Hardware protection, 250–51
Hardware prototyping, 411, 412–13, 432

reasons for employing, 412
Taramac system and, 427

Hardware/software partitioning, 539–59
alternative region implementation, 544,

549–50
exploration, 544, 552–57
FPGA technology and, 539
granularity, 544, 545–47
implementation models, 544, 550–52
of parallel programs, 557–58
partition evaluation, 544, 547–48
problem, 539–40
of sequential programs, 542–57
speedup following Amdahl’s Law, 543

Hash tables, 762
HDL Coder, 183
Heuristic search procedure, 496–97
Heuristics, 553, 555

greedy, 553–55
neighborhood search, 556
nongreedy, 553–55
simulated annealing, 555–56

Hierarchical annealing algorithm, 310–11
Hierarchical composition, 125
Hierarchical FPGAs, 313
Hierarchical routing, 10–12

FPGA placements, 301
long wires, 11

High-fanout nets, 419, 425
High-level languages (HLLs), 44–45, 52, 401

enabling use of, 44–45
genome encoding, 731

Huffman decoding, 233
HWOP placement, 333–37

constrained two-dimensional, 335–36
linear, 333–35
simultaneous tree covering and, 334
styles, 333
two-dimensional, 336–37

HWSystem class, 272
Hyperblocks

basic block selection for, 166
building DFGs for, 164–69
formation, 168

Index 891

I/O, 247
bound algorithms, 443
performance, 443–44

IDCT, 233
IEEE double-precision floating-point

format, 672
If-then-else, 158–59
IKOS Logic Emulator, 630–31
IKOS VirtualLogic SLI Emulator, 623
Illinois Pular-based Optical Interconnect

(iPOINT), 755
Ilv combinator, 359
Image correlation circuit, 594–96
Image-processing design driver, 185–94

2D video filtering, 187–91
horizontal gradient, 188, 189
mapping video filter to BEE2 FPGA

platform, 191–94
RGB video conversion, 185–87
vertical gradient, 188, 189
See also Streaming FPGA applications

IMap algorithm, 281–82
Implementation models

dynamic reconfiguration parameter, 552
parallel program partitioning, 557–58
parameters, 551–52
real-time scheduling, 558
sequential program partitioning, 550–52
See also Hardware/software partitioning

Implicit synchronization, 248–49
Imprint lithography, 870–71
Impulse project, 802
In-circuit emulation, 639, 650
Incremental mapping, 425–27

design clock cycle, 663
See also Mapping

Incremental partitioning, 661
Incremental place and route, 425–77
Incremental rerouting, 374–75
Incremental routing, 661
Independence tool, 312
Induced architectural models, 814–16

fixed instructions, 815
shared instructions, 815–16

Infinite-impulse response (IIR) filters, 21,
98, 479

Install time binding, 236–37
Instance-specific design, 411, 413, 432,

455–73
approaches, 457–58
architecture adaptation, 457
changing at runtime, 456

concept, 455
constant coefficient multipliers, 459
constant folding, 456–57
customizable instruction processors,

461–62
examples, 459–62
function adaptation, 457
implementation, 456
key-specific crypto-processors, 459–60
NIDS, 460–61
optimizations, 456–57
partial evaluation, 462–73
requirements, 456
taxonomy, 456–57
use examples, 457

Instruction augmentation, 115–16
coprocessor model, 116
Functional Unit model, 115–16
instruction augmentation model, 116
manifestations, 115

Instruction distribution, 810–13
assumptions, 811
wiring, 811

Instruction Set Architecture (ISA)
processor models, 103

Instruction-level parallelism, 796
Instructions

array-wide, 814
base, 115
controller issuance, 113
fixed, 815
shared, 815–16
storage, 813–14

Integer linear programming (ILP), 497, 553
Integrated mapping algorithms, 284–89

integrated retiming, 286–87
MIS-pga, 288
placement-driven, 287–89
simultaneous logic synthesis, 284–86
See also Technology mapping

Integrated retiming, 286–87
Interconnect

Altera Stratix MultiTrack, 21–22
connection block, 8–10
effect on datapath placement, 326
hierarchical, 10–12
nearest neighbor, 7–8
optimization, 110
programmability, 12
segmented, 8–10
sharing, 110
structures, 7–12
switch block, 8–10

892 Index

Internet key exchange (IKE), 775
Internet Protocol Security (IPSec), 775
Internet worms, 760
Interslice nets, 322
Intertask communication, 251
Intraslice nets, 322
Intrinsic evolution, 734–35
Intrusion detection, 756, 762–67
Intrusion detection and prevention system

(IDPS), 763
Intrusion detection system (IDS), 762
Intrusion prevention, 756, 762–67
Intrusion prevention system (IPS), 754, 763
IP processing, 758
iRAC clustering algorithm, 305–6
Island-style FPGAs, 6, 7

with connect blocks, 9
partitioning, 314

Isolation, 251
Iterative mapping, 288

Java, 541
JBits, 408, 631

for evolving circuits, 743
JHDL with, 271

JHDL, 88, 89, 255–72
advanced capabilities, 269–72
behavior synthesis, 270
CAD system, 255, 265–68
checkpointing, 272
circuit data structure, 257
as circuit design language, 264–65
debug circuitry synthesis, 271–72
debugging capabilities, 270–72
descriptions, 264
design process illustration, 257
dynamic testbenches, 269–70
as embedded design language, 256
hardware mode, 268–69
Logic Library, 270
module generators, 263
motivation, 255–57
open-source license, 272–73
placement attributes, 263
primitive instantiation, 257–59
primitives library, 257
programmatic circuit generation, 261–63
Sea Cucumber and, 270
simulation/hardware execution

environment, 268
as structural design language, 263–64
testbenches, 265–66

JHDL classes
cvt, 266–68
dtb, 270
HWSystem, 272
Logic, 259–61, 272
Techmapper, 260, 264, 272

Johnson’s algorithm, 809

K-input lookup tables (K-LUTs), 277
K-Means clustering algorithm, 227, 228
Kalman filters, 514
Key-specific crypto-processors, 459–60

Lagrangian multipliers and relaxation, 376
Lambda Calculus model, 96
Langmuir–Blodgett (LB) flow techniques,

857
Language identification, 767–68
Latency

BlockRAMs, 713
butterfly path, 694
C-slow retiming, 392
clock cycle, 507
communication, 247

Lattice ECP2, 83
Lava, 352
LCS algorithm, 791–94

parallel execution, 791
simulation results, 793, 794
three-dimensional, 793–94
two-dimensional, 791–92

Least significant bit (LSB), 321, 510
Leiserson’s algorithm, 384–86
LEKO, 282
LEON benchmark, 398
Lifetime defects, 848–49

detection, 848–49
repair, 849
See also Defects; Defect tolerance

Linear placement, 333–35
Linear time-invariant (LTI) systems, 479–82

analytic technique, 487–89
error sensitivity, 489
scaling with transfer functions, 481–82
transfer function calculation, 479–80

Linear-feedback shift registers (LFSRs), 98
Linearization, 490
List of insignificant pixels (LIP), 569
List of insignificant sets (LIS), 569, 570
List of significant pixels (LSP), 569, 570,

586
Lithographic scaling, 854–55

Index 893

Liveness edges, 165
Local arrays, 177
Local minima, 554
Local RTR, 446–47, 448
Local sparing, 838–39
Location update chain, 417
Logic, 3–6

duplication, 284
elements, 4–6
extended, 12–16
fast carry chain, 13–14
glue, 441
mapping to EMBs, 291–92
multivalued, 150
optimization, 342
programmability, 6
in RTL, 133
simultaneous synthesis, 284–86
unnecessary removal, 466
verification, 638

Logic blocks, 5, 6, 13
Logic class, 259–61

methods, 260–61
MUX example, 259–60
subroutines, 259

Logic emulation systems, 411, 412–13, 432,
637–68

background, 637–39
case study, 653–65
complexity, 639
configuration illustration, 639
coverification, 639–40, 650–51
fast FPGA mapping, 652–53
FPGA-based, 637–39
FPGA-based, advantages, 667
future trends, 666–67
in-circuit emulation, 639, 650
issues, 650–51
logic analysis, 651
multi-FPGA, 641–44
processor-based, 666
single-FPGA, 640–41
types, 640–50
use of, 639–40, 651
VirtuaLogic VLE, 639, 653–65

Logic fabric, 3–34, 14–15, 514
Logic gates, 278
Logic networks, 278
Logic processors, 666–67
LogicGen, 332–33
Lookup table (LUT), 4–6, 264, 409, 503

4-input, 507

DA implementation and, 505
defective, 838
exponential growth, 504
functionality, 403
inputs, 404
K-input, 277
logic block illustration, 6
as logic “islands,” 404
mapping to, 289–90
as memory element, 403
memory size, 509
number per logic block, 5
outputs, 404
physical, 151
size, 5
synchronous, 510

Loops
fission, 177
fusion, 177
interchange, 177
memory dependencies, 178–79
nest, 177
reversal, 177

Loosely coupled RPF and processor
architecture, 41

Lossless synthesis, 285
Low-level languages, genome encoding, 732
Low-temperature anneal, 311
Low-voltage differential signaling (LVDS),

667
LTI. See Linear time-invariant systems

M-tap filter, 509–10
Macrocells, mapping to, 292
Macros

hard, 336, 424
identification, 424
parameterizable, 493
soft, 336, 424

Malware, 762
appearance, 764
propagation, 764

Manual partitioning, 540, 546
Mapping, 329–33

1:1, 329–30
combined approach, 332–33
component-specific, 837
DA onto FPGAs, 507–8
dedicated-wire, 641
design, with multiple asynchronous

clocks, 657–61
incremental, 425–27, 662–63

894 Index

Mapping (cont.)
LUT, 471–72
multi-FPGA emulator flow, 645
multiplexed-wire, 642
multiported memory, 657
N:1, 330–32
stages, 414

Mapping algorithms, 277–93
area-oriented, 280–82
complex logic blocks, 290–91
DAOmap, 282–83
delay optimal, 283
FlowMap, 279, 282
functional, 277
for heterogeneous resources, 289–92
IMap, 281–82
integrated, 278, 284–89
iterative, 288
LEKO, 282
logic to EMBs, 291–92
LUTs of different input sizes, 289–90
macrocells, 292
matching formulation, 841
MIS-pga, 288
optimal-depth, 287
performance-driven, 282–83
placement-driven, 287–89
PLAmap, 292
power-aware, 283–84
PRAETOR, 280–81
structural, 277, 278–84
times, 837

Markov Models, 78, 768
Mask parameters, 184, 187
MasPar, 221
Master slices, 320, 321
Matching

complete, 841
defect tolerance with, 840–43
fine-grained Pterm, 841–42
formulation, 841
maximal, 841

MATLAB, 88, 195–97, 198
Matrix multiply, 679–83

decomposition, 680
FPGA implementation, 680–81
implementation, 681
MACC operations, 680
maximum achievable performance versus

memory bandwidth, 683
memory accesses, 682
performance, 679, 682–83

performance of FPGAs and
microprocessors, 684

Maximal matching, 841
Maximum magnitude phase, 582, 583–85

block diagram, 585
calculation, 583
See also SPIHT

Maxwell’s equations, 697
curl, 698
discovery, 697
in rectangular coordinates, 699
as set of linear equations, 700
solving, 697

Memory
access operations, 158
access optimization, 172
C for spatial computing, 157–58
CAM, 444
FDTD hardware implementation, 712–15
FPGA elements, 444
instruction, 814
nodes, 175
PE, 221
ports, 175, 444
retiming, 387
scalar variables in, 169
SDRAM, 760
shared, 124–25, 243–44
single pool, 104–5
total amount of, 444
virtual, 246–47

Memory management unit (MMU), 246,
247

Memory-centric computation, 779–802
algorithmic complexity, 786–94
parallelism, 794–99
performance results, 781–86
See also Active Pages

Message authentication code (MAC), 775
Message passing, 124, 244
Method calls, 244
Microplacement, 342, 343
Microprocessors, 439, 441
MIS-pga algorithm, 288
Modular robotics, 739
Module generator interface, 326–29

data model, 327–28
flow, 327
intra-module layout, 328–29
library specification, 328

Module generators
FLAME-based libraries, 327

Index 895

flexibility, 326
PARAMOG library, 338

Mojave ATR system, 594, 604–6
machine comparison, 606
photograph, 605
results, 604
used resources, 605

Moore’s Law, 637, 753
circuit density growth, 49
process scaling, 826

MORPH project, 801
Morton Scan Ordering, 584
Most significant bit (MSB), 321, 493, 494,

510
Multi-context devices, 68–70

benefits, 69
configuration bits, 69
drawbacks, 69–70
physical capacity, 69

Multidomain signal transport, 658, 659, 660
requirement, 660
retimed, 660

Multi-FPGA emulation, 641–44
as complex verification platforms, 641
constraints, 644
crossbar topology, 643
dedicated-wire mapping, 641, 642
design mapping, 644–45
high-level flow, 644
inter- and intra-FPGA connections, 647
inter-partition logic communication, 641
interconnection, 647
mapping flow, 645
mesh topology, 643
multiplexed-wire mapping, 642
partitioning approach, 645–46
placement approach, 645–46
routing approaches, 646–50
topologies, 641, 643
See also Logic emulation systems

Multi-SIMD coarse-grained array, 228
Multi-terminal nets, 420, 421, 425
Multi-threaded, 106, 123–25

FSMs with datapaths, 123–24
message passing, 124
model, 93
processors with channels, 124
shared memory, 124–25

Multiple wordlength
adder formats, 494
optimization for, 478
paradigm, 476–77

Multiplexed-wire systems, 642
circuit mapping, 649
incremental compilation, 662
inter- and intra-FPGA connections, 647
partitioning for, 646
routing, 648
utilization of wires, 648
See also Dedicated-wire systems

Multiplexers, 401
2-input, 130–32, 403
4-input, 134–35, 136–38, 404
FSM datapath, 144
if-then-else, 158–59
inputs, 403
logical equations, 133–34
primitive instantiation example, 258
pseudo, 377

Multiplexing
factors, 796
nonactive memory and, 798
performance, 796
processor width versus, 797–99

Multiplication function, 405
Multipliers, 14–15

area estimation, 495
constant coefficient, 459, 495
embedded, 514, 712
floating point, 677–78
general cell, 466
instance-specific, 460
Lagrangian, 376
partial evaluation of, 466–70
shift-add, 467

Multiply–accumulate (MACC) operations,
680

Multiported memory mapping, 657
Multiprocessing environments, 799
Multivalued logic, 150
Multiway partitioning, 313
Muxes, building, 167
Myrinet ATR system, 606–7

host, 606
photograph, 607
simulations, 607

N:1 mapping, 330–32
NanoPLA, 841

architecture, 864–70
basic logic block, 864–67
block illustration, 865
blocks, 867
defect tolerance, 869

896 Index

NanoPLA (cont.)
density benefits, 870
design mapping, 869
interconnect architecture, 867–69
memories, 869
tiling with edge I/O, 868
wired-OR planes, 867

Nanoscale architecture, 853–73
bottom-up technology, 855–58
challenges, 858–59
CMOS pitch matching via tilt, 872
design alternatives, 870–72
imprint lithography, 870–71
interfacing, 871–72
lithographic scaling, 854–55
nanoPLA, 864–70
nanowire circuits, 859–62
restoration, 872
statistical assembly, 862–64

Nanovia, 871
Nanowire circuits, 859–62

inverter, 862
restoration, 860–62
wired-OR diode logic array, 859–60

Nanowires, 856–57
addressing, 866
angled, 871
assembly, 857
decoder for, 863
doping profiles, 857–58
field effect controlled, 861
Langmuir–Blodgett alignment, 857
statistical selection, 863
switchable modules between, 858

NBitAdder design, 262
NBTI, 848
NCHARGE API, 772
Nearest-neighbor connectivity, 7–8
Negotiated Analytic Placement (NAP)

algorithm, 315
Negotiated Congestion Avoidance

algorithm, 369
Negotiated congestion router, 367–72

algorithm, 370–71
first-order congestion, 368
iterative, 369
priority queue, 371
second-order congestion, 370

Negotiated congestion/delay router, 372–73
NetFPGA, 776
Network Intrusion Detection System

(NIDS), 460–61

Network processing
build motivation, 753–54
complete system, 770–75
control and configuration, 771–72
control channel security, 774–75
data, with FPGAs, 755–56
dynamic hardware plug-ins, 773
hardware/software packet, 754–55
intrusion detection/prevention, 762–67
IP wrappers, 758
layered protocol wrapper

implementation, 759
partial bitfile generation, 773–74
payload processing with regular

expression scanning, 761–62
payload scanning with Bloom filters, 762
payload-processing modules, 760–61
protocol, 757–62
rack-mount chassis form factor, 770–71
with reconfigurable hardware, 753–57
reconfiguration mechanisms, 772–73
semantic, 767–70
system modularity, 756–57
TCP wrappers, 758–60

Next-state decoder, 149
Nodes

dead, elimination, 170–71
exit, 165
memory, connecting, 175
Seed, 291

Noise injection, 490–93
Noise model, 487–88
Noise propagation, 488–89
Nonchronological backtracking, 618
Nondeterministic finite automata (NFA),

761
Nonlinear differentiable systems, 489–93

derivative monitors, 490
hybrid approach, 489–93
linearization, 490
noise injection, 490–93
perturbation analysis, 489

Nonrecurring engineering (NRE), 855
Not a number (NAN), 449
Number formats, 436

Object-oriented model, 98
Objects, 97–98
On-demand scheduling, 239
One-time programmable (OTP), 17
Ontogenetic axis, 727, 744
Ontogeny, 726

Index 897

Open Systems Interconnection (OSI)
Reference Model, 757

Open-ended evolution, 738–39
Operating system (OS)

abstracted hardware resources, 234–36
communication, 243–48
demands, 232
dynamic scheduling, 240–41
flexible binding, 236–39
on-demand scheduling, 239
preemption, 242
protection, 231, 249–51
quasi-static scheduling, 241
real-time scheduling, 241–42
roles, 231
scheduling, 239–42
security, 231
static scheduling, 239–40
support, 231–52

Operations
C for spatial computing, 157
DFG, 173–74
MACC, 680
memory access, 158
packing into clock cycles, 173–74

Operator size reduction, 171–72
dataflow analysis-based, 172
type-based, 171–72

Optimization(s)
common path, 161–62
compaction, 338–42
context-sensitive, 340–42
decidable, 97
DFG, 164, 169–73
FPGA placement, 301–2
instance-specific, 456–57
interconnect, 110
logic, 342
memory access, 172
for multiple wordlength, 478
SPIHT, 586
undecidable, 97
wordlength, 485–97
word-level, 339–40

Ordering edges, 167–68
absence, 173
existence, 173
false, removing, 172

Packet inspection applications, 761
Packet switches, 216
Parallel compilation, VLE system, 665

Parallel linear array, 531
based on Virtex-4 DSP48 embedded tile,

533
CORDIC, 530–33

Parallel PathFinder, 377–79
Parallel program partitioning, 557–58

alternative region implementations, 557
evaluation, 557
exploration, 558
granularity, 557
implementation models, 557–58

Parallel programs, 540
data dependence, 102
data parallel, 105
data-centric, 105–6
multi-threaded, 106
sequentialization and, 104–5
synchronization, 248–49

Parallelism, 99, 105, 118, 248
artificial, 105
bulk synchronous, 118–19
in compute models, 95
data, 95, 234, 442
FDTD, 705–6
FDTD hardware design case study,

720–21
in FFT computation, 689
instruction-level, 95, 234, 796
maximum possible, 236
memory-centric computation, 794–99
PathFinder qualities, 379
raw spatial, 219
task, 95

Parameterizable macros, 493
Parametric generation, 136–38
PARAMOG module generator library, 338
PARBIT tool, 773–74
Partial evaluation, 462–73

accomplishing, 462
cell logic, 468–69
constant folding in logical expressions,

464–66
FPGA-specific concerns, 471–73
functional specialization, 468–70
geometric specialization, 470
LUT mapping, 471–72
motivation, 463
of multipliers, 466–70
optimized multiplication circuitry, 468
in practice, 464–66
process of specialization, 464
at runtime, 470–71

898 Index

Partial evaluation (cont.)
static resources, 472
true x value, 470
unnecessary logic removal, 466
verification of runtime specialization,

472–73
of XOR gate, 463

Partial evaluators, 464
Partially reconfigurable designs, 70–71
Partition evaluation, 544, 547

design metric, 547
dynamic, 548
heterogeneous, 548
objective function, 547
parallel program partitioning, 557
sequential program partitioning, 544,

547–48
trade-off, 547–48

Partition-based placement, 312–15
bipartitions, 312
hierarchical FPGAs, 313
multiway partitioning, 312
recursive partitioning, 313–14
See also FPGA placement

Partitioned DWT, 572, 573
Partitioning, 155, 507

automatic HW/SW, 175–76
automatic, trend, 540–42
binary-level, 559
hardware/software, 539–59
incremental, 661
for island-style FPGAs, 314
manual, 540, 546
multi-FPGA, 645–46
for multiplexed-wire systems, 646
multiway, 312
recursive, 313–14
super-HWOP, 340
template, 598–99

Partitions, 540
PassAddOrConstant, 673, 674
PATH algorithm, 310
PathFinder, 216, 312, 365–80

accelerating, 418–22
applying A* to, 373–74
for asymmetric architectures, 373
bidirectional switches, 377
circuit graph extensions, 376–77
circuit graph model, 367
communication bandwidth, 421
cost function, 368, 375
de-multiplexers, 376–77

distributed memory multiprocessor
implementation, 378

enhancements/extensions, 374–77
implementation, 366
incremental rerouting, 374–75
in incrementally rerouting signals, 379
Lagrangian relaxation relationship, 376
Nair algorithm versus, 370
negotiated congestion router, 367–72
negotiated congestion/delay router,

372–73
parallel, 377–78
parallelized, 421
QuickRoute and, 379
resource cost, 375
SC-PathFinder, 366
in scheduling communication in

computing graphs, 379
single-processor, 421
symmetric device inputs, 376

Pattern matchers, 470–71
general bit-level, 471
instance-specific, 472
requirements, 470

Pattern matching, 470
Payload processing, 760–62

with Bloom filters, 762
modules, 760–61
with regular expression, 761–62

PE. See Processing elements
Peak estimation, 478–85

analytic, 479–84
simulation-based, 484
See also Fixed-point computation

Perfect component model, 831, 837–38
Perfect matched layers (PMLs), 702
Performance

Active Pages, 781–86
application, 441–44
computation, 441–43
coverification, 650
DA, 508–11
dot product, 685–86
FDTD hardware design case study,

722–23
FFT, 691–92
FPGA, 438
I/O, 443–44
matrix multiply, 682–83
multiplexing, 796
processor width, 796

Performance-driven mapping, 282–83

Index 899

Perturbation analysis, 489
Peutil.exe utility, 587
Phased computations, 104
Phased reconfiguration, 210–11

manager, 117
schedule, 215

Phylogenetic axis, 727
POEtic tissue, 744
subdivision, 735

Phylogeny, 726
Physical synthesis, 316
PIM project, 801
Pipe and Filter, 108
Pipeline operators, 184
Pipeline reconfigurable architecture, 73–74
Pipelined scheduling, 174–75
Pipelined SIMD/vector processing, 228–29
Pipelining, 443

deep, 706
FDTD hardware design case study,

719–20
READ/CALCUATE/WRITE, 716

PipeRench, 32–35
CAD tools, 34
DIL, 34
PEs, 33
physical stripe, 32
pipelined configuration, 32
virtual pipeline stages, 34
See also Coarse-grained architectures;

RPF
Pipes, 99, 213
Pitch matching, 330
Placement directives, 302–4

fixed region, 303
floating region, 303
results, 304
See also FPGA placement

Placement-driven algorithms, 287–89
PLAmap algorithm, 292, 869
Plasma architecture, 427, 428
POE model, 725–27

axes, 727
paradigms, 727

POEtic tissue, 743–45
Pointer independence, 178
Poly-phase filter bank (PFB), 200
Population-oriented evolution, 737–38
Port mapping, 133
Power cost, 284
Power estimation, 488–89
Power-aware mapping, 283–84

Power-based ranking, 284
PRAETOR algorithm, 280–82

area reduction techniques, 281
See also Mapping algorithms

PRAM, 786
Predicates, 167
Preemption, 242
Prefetching, 77
Primary inputs (PIs), 278, 279
Primary outputs (POs), 278, 279
Primitive instantiation, 257–59
Primitive instruction, 808
PRISM, 53
Probability of detection (PD), 592
Processing elements (PEs), 29, 221–22,

225–26
data exchange, 221
index calculation, 227
memory, 221
resetting, 221
SIMD, 317

Processor width
multiplying versus, 797–99
performance, 796–97

Processors
with channels, 124
connecting with communication

channels, 124
customizable instruction, 461–62
SIMD, 219
VLIW, 164

Programmable Active Memories (PAM),
49–50

Programmable chips, 2
Programmable logic blocks (PLBs), 290–91
Programmatic circuit generators, 261–63
Programmer assistance (C compilation),

176–80
address indirection, 178
annotations, 178–79
control structure, 177–78
data size declaration, 178
large block integration, 179–80
local arrays, 177
loop fission and fusion, 177
loop interchange, 177
operator-level module integration, 179
useful code changes, 176–77

Protection, 249–51
hardware, 250–51
task configuration, 251

PROXI algorithm, 311–12
Pterm matching, 841–42

900 Index

QRD-RLS (recursive least squares) filtering,
514

Quartz system, 361
Quasi-static scheduling, 241
QuickRoute, 379

Rack-mount chassis form factor, 770–71
RAM

dedicated, 15
static (SRAM), 6, 15, 16–17, 767, 775

Range propagation, 482–84
Ranking, power-based, 284
RaPiD, 36–40, 801

application design, 36
architecture block diagram, 37
datapath overview, 38
instruction generator, 39
PEs, 38
programmable controller, 39
programming, 39–40
stream generator, 37
VICs, 39

RASP system, 304–5
RAW project, 801
Real-time scheduling, 241–42, 558
Reconfigurable Application Specific

Processor (RASP), 60
Reconfigurable arrays (RAs), 43
Reconfigurable Communications Processor

(RCP), 41
Reconfigurable computing architectures,

29–45
fabric, 30–34
impact on datapath composition, 324–26
independent RPF coprocessor, 36–40
processor + RPF, 40–44
RPF integration, 35–44

Reconfigurable computing systems, 47–62
accelerating technology, 56–59
AMD/Intel, 55–56
CAL, 53
circuit emulation, 54–56
cloning, 54
early, 47–49
F + V, 48
future, 62
issues, 61–62
non-FPGA research, 61
PAM, 49–50
PRISM, 53
small-scale, 52–54
Splash, 51–52

supercomputing, 59–60
Teramac, 57–59
traditional processor/coprocessor

arrangement, 48
VCC, 50–51
Virtual Wires, 56
XC6200, 53–54

Reconfigurable functional units (RFUs), 41
processor pipeline with, 42
as RAs, 43
RFUOPs, 43
super-scalar processor with, 116
See also RFU and processor architecture

Reconfigurable image correlator, 602–3
Reconfigurable Pipelined Datapaths. See

RaPiD
Reconfigurable processing fabric. See RPF
Reconfigurable static design, 600–4

application-specific computation unit,
603–4

correlation task order, 601–2
design-specific parameters, 601
reconfigurable image correlator, 602–3
zero mask rows, 601–2
See also ATR

Reconfigurable supercomputing, 59–60
CMX-2X, 60
Cray, 60
Silicon Graphics, 60
SRC, 60

Reconfiguration
configuration, 66–76
overhead, 65
phased, 210–11
phased manager, 117
process management, 76–80
RTR, 65, 446–47
virtual, 741–42

Reconfiguration management, 65–83
configuration caching, 77
configuration compression, 81–82
configuration data reuse, 82
configuration grouping, 76
configuration scheduling, 77–79
configuration security, 82–83
configuration transfer time reduction,

80–82
context switching, 80
software-based relocation and

defragmentation, 78–80
Recursive partitioning, 313–14

Index 901

Recursive Pyramid Algorithm (RPA), 572
Reflection, 269
Register Transfer Level (RTL), 87, 129

logic organization, 133
VHDL description, 133–36

Regular expression (RE), 761
Regularity

circuit layout, 319
datapath composition, 320–22
importance, 344
inter-HWOP, 339

Relocation, 71–73, 237
device support, 77
software-based, 79–80
support problem, 80

Rent’s Rule, 642
Repipelining, 389–90

feedforward computations, 389
FPGA effects on, 391
latency cycles, 390
retiming derivation, 389
throughput improvement, 390

Reprogrammable application devices
(RADs), 756

Resonant-tunneling diodes (RTDs), 872
Resource cost, PathFinder, 375
Retiming

adoption limitation factors, 398
area-time tradeoffs, 111
Bellman-Ford algorithm, 386
benefit, 388
constraint system, 385
correctness, 386
covering and, 286
design limitations, 387
effect, 287
FFs, 286
on fixed-frequency FPGAs, 394–95
FPGA effects on, 391
global set/reset constraint, 387
goal, 384
implementations, 393–94
with initial conditions, 387
integrated, 286–87
Leiserson’s algorithm, 384–86
memories, 387
multiple clocks and, 387–88
operation, 383
problem and results, 388
sequential control, 110
as superlinear, 398

See also C-slow retiming
RFU and processor architecture, 41–42

datapath, 42
processor pipeline example, 42

RGB data
conversion, 185–87
cycle alignment, 186

RightSize, 493
Rock’s Law, 855
Rollback, 845–48

communications, 847–48
detection, 846
recovery, 847
scheme, 849
for tolerating configuration upsets,

849–50
Rotation

CORDIC, 515–18
Given’s, 514
in matrix form, 515
micro-rotations, 526
as product of smaller rotations, 515
signal flow graph, 518
vector growth factor, 518

Rotation mode, 514–17
micro-rotation extensions, 516
as z-reduction mode, 517
See also CORDIC

Routability-driven algorithms, 301
Routing, 215–16

congestion, 302
FPGA resources, 348
global, 366
hierarchical, 10–12, 301
horizontal, 308
incremental, 661
multi-FPGA emulation, 646–50
multiplexed-wire systems, 648
nearest-neighbor, 7–8
negotiated congestion, 367–372
Pathfinder-style, 422
physical FPGA modifications for, 430
programmable resources, 12
SCORE, 215–16
search wave, 419
segmented, 8–10
simultaneous placement and, 311–13
solutions, 365–66
vertical, 308
VPR, 314, 372

Rows
skipping, 602
zero mask, 601–2

902 Index

RPF and processor architectures, 40–44
Chimaera, 42–44
loosely coupled, 41
tightly coupled, 41–42

RPFs, 29
architectures, 30–34
coarse-grained, 32–33
dynamic, 29
fine-grained, 30–32
independent coprocessor, 36–40
integration into traditional systems,

35–44
integration types, 35–36
locations in memory hierarchy, 35
RaPiD, 36–40
static, 29, 901

RTL. See Register Transfer Level
Rule tables, 738
Runtime binding, 237–38
Runtime netlist compilation, 213, 411,

413–14
dynamically compiled applications and,

414
requirement, 432

Runtime reconfiguration (RTR), 65, 446–47
applications, 447
global, 446, 447
local, 446–47, 448

Runtime Reconfigured Artificial Neural
Network (RRANN), 447

Runtime specialization, 472–73

Sandia algorithm, 594
SAR. See Synthetic Aperture Radar
SAT solvers, 618–27

algorithms, 633
backtrack algorithm implementation,

619–24
differences among, 633
follow-on, 627–33
future research, 634–35
global topology, 621
HW/SW organization, 633
implementation issues, 631–33
improved backtrack algorithm

implementation, 624–27
logic engine implementation, 633
performance, 630–31
problem analysis, 618–19
runtime performance, 623
simultaneous exploration of multiple

states, 635

system architecture, 627–30
system-level design and synthesis

methodologies, 634
See also Boolean satisfiability

Satisfiability (SAT)
Boolean, 282, 613–35
FPGA-based solvers, 413
problem, 413

Sblocks, 742
SC-PathFinder, 366
Scaling

CORDIC algorithm, 517–19
CORDIC, compensation, 534
FPGA, 411, 412, 431–32
Moore’s Law process, 826
with transfer functions, 481–82
wordlength, 477

Scheduling
configuration, 77–79
dynamic, 240–41
module-mapped DFG, 174
on-demand, 239
operating system, 239–42
pipelined, 174–75
preemption, 242
quasi-static, 241
real-time, 241–42, 558
SCORE, 213–15
static, 239–40
window-based, 79

SCORE, 74, 203–217
application illustration, 204
back-pressure signal, 210
C++ integration and composition, 206–8
compilation, 212–13
compilation flow, 212
computations, 205
execution patterns, 208–12
fixed-size, 211–12
as higher-level programming model, 203
highlights, 217
operators, 205, 206, 207
phased reconfiguration, 210–11
platforms, 215
programming, 205–8
runtime, 203, 213–16
scalability, 203
scheduling, 213–15
sequential versus parallel, 211
standard I/O page, 211–12
stream support, 209–10
system architecture, 208–12

Index 903

TDF, 205–6
virtualization model, 213

SCPlace algorithm, 310
SDF, 88, 99–100, 184
SDRAM memory, 760, 775
Sea Cucumber, 270
Search

alternative procedures, 497
heuristic procedure, 496–97
techniques, 496–97

Search space, 728
Second-Level Detection (SLD), 592–94

as binary silhouette matcher, 593
shape sum, 593
steps, 593–94
target models, 593
See also ATR

Semantic processing, 767–70
dataflow, 769
language identification, 767–68
of TCP data, 768–70

Sensitivity list, 135
Sequential control, 103–5, 110–18

with allocation, 104
compute task, 110
data dependencies, 110
data-dependent calculations, 104
Deterministic Finite Automata, 103
finite-state, 104
FSMD, 112
instruction augmentation, 115–16
phased computations, 104
phased reconfiguration manager, 117
processor, 114–15
single memory pool, 104–5
VLIW, 113–14
worker farm, 117–18

Sequential program partitioning, 540
alternative region implementation, 544,

549–50
Amdahl’s Law and, 542, 543
automatic, 175–76
exploration, 544, 552–57
granularity, 544, 545–47
ideal speedups, 543
implementation models, 550–52
manual, 176
partition evaluation, 544, 547–48

Sequential Turing Machines, 103
Sequentialization, 117
Set Partitioning in Hierarchical Trees. See

SPIHT

Shared instructions, 815–16
Shared memory, 124–25, 243–44

abstraction, 244
implementations, 243
pools, 124, 125

Shared-wire global signaling, 628
Signal-processing primitives, 198
Signal-to-noise ratio (SNR), 486
Signal-to-quantization-noise ratio (SQNR),

486
Silicon Graphics supercomputers, 60
SIMD (single-instruction multiple data),

120, 219–22
algorithm compilation, 226
ALU control, 826
array size, 224
bit-processing elements, 817
computing on FPGAs, 219–21
datapaths, 815, 818
dot-product machine, 220–21
extended architecture, 227
interprocessor communication model,

224
multiple engines, 226–28
with pipelined vector units, 229
processing architectures, 221–22
processing array, 221, 222
processors, 219
width mismatches, 820
width selections, 820

SIMD/vector processing, 120–22
model, 229–30
multi-SIMD coarse-grained array, 228
multiple SIMD engines, 226–28
pipelined, 228–29
reconfigurable computers for, 223–26
SPMD model, 228
variations, 226–28

Simulated annealing, 306–12
accelerating, 415–18
annealing schedule, 307
complexity, 556
cost function, 306
distributed, 415
hardware-assisted, 418
hierarchical algorithm, 310–11
key feature, 556
low-temperature anneal, 311
meta-heuristics, 497
move generator, 306
parallelized, 416
schedule, 307

904 Index

Simulated annealing (cont.)
simultaneous placement and routing,

311–12
strengths, 307
temperature schemes, 415
VPR/related algorithms, 307–11

Simulated annealing placer, 836
Simulation, 486
Simulation-based peak estimation, 484
Simulink

2D video filtering, 187–91
component reuse, 198–200
control specification, 194–98
high-level algorithm designer, 188
image-processing design driver, 185–94
library browser, 196
mapping video filter to BEE2 platform,

191–94
Mask Editor, 198
mask parameters, 184
operator primitives, 183
pipeline operators, 184
programming streaming FPGA

applications in, 183–202
RGB video conversion, 185–87
RGB-to-Y diagram, 286
SDF, 184
subsystems, 184
System Generator, 184
top-level testbench, 192–93

Simultaneous logic synthesis, 284–86
Sine, 437
Single-context FPGAs, 67–68
Single-FPGA emulation, 640–41
Single-instruction multiple data. See SIMD
Single memory pool, 104–5
Single program, multiple data. See SPMD
Single-rate synchronous dataflow, 99
Singular value decomposition (SVD), 514
SLD. See Second-level Detection
Small-scale reconfigurable systems,

52–54
SMAP algorithm, 291
Snapshots, 847
SNORT, 445, 775

CPU time, 461
database, 761
intrusion detection, 753
intrusion filter for TCP (SIFT), 765
rule-based NID sensor, 763

Sobel edge detection filter, 188, 191, 201
Soft macros, 336, 424

Sorter
case study, 357–60
with layout information removed, 362
recursion and layout, 360–61
recursive structure, 357

Sparing
defect tolerance through, 835–39
global, 836–37
local, 838–39
row and column, 837
yield with, 834–35

Spartan-3E, 530
Spatial computations, 157
Spatial computing, 155–80
Spatial orientation trees, 569, 584
Spatial simulated annealing, 215
SPIHT, 565–88

architecture phases, 581–82
bitstream, 578, 579
coding algorithm, 570
coding engine, 568–71
coding phase, 582, 585–86
design considerations/modifications,

571–80
design overview, 581–82
design results, 587–88
DWT architectures, 567, 571–75
DWT phase, 582
engine runtimes, 588
Fixed Order, 578–80
fixed-point precision analysis, 575–78
hardware implementation, 580–86
image compression, 565–88
image quality, 568
LIP, 569
LIS, 569, 570
LSP, 569, 570, 586
maximum magnitude phase, 582, 583–85
Morton Scan Ordering, 584
optimization, 586
performance numbers, 587
spatial orientation trees, 569, 584
target hardware platform, 581
wavelet coding, 569

Spiral antenna model, 704, 705
Splash, 51–52
SPMD (single program, multiple data), 120

in parallel processing clusters, 228
SIMD versus, 228

Springtime PCI (SPCI) card, 664
Square-root operation, 437
SRC supercomputers, 60

Index 905

Standalone Board-level Evolvable System
(SABLES), 745

Static FPGAs, 600
Static RPF, 29
Static scheduling, 239–40
Static-RAM (SRAM), 6, 15, 16–17, 814

analyzer, 767
cells, 17, 814
drawbacks, 17
parallel banks of, 775

Straight-line code, 156
Stream computations, 217

compilation, 212–13
execution patterns, 208–12
organization, 203–17
programming, 205–8
runtime, 213–16
system architecture, 107–110, 208–12

Stream generator, 37
Streaming dataflow, 107–10

with allocation, 102–3
data presence, 108–9
datapath sharing, 109
dynamic, 100–2
interconnect sharing, 110
streaming coprocessors, 109–10

Streaming FPGA applications, 183–202
component reuse, 198–200
high-performance datapaths, 184
image-processing design driver, 185–94

Streams, 37, 99, 244–46
abstraction, 245–46
input, 99
multirate, 100
persistence, 245–46
SCORE, 209–10
video, 185, 202
write, 206

Structural mapping algorithms, 278–84
area-oriented, 280–82
cut generation, 279
DAOmap, 282–83
dynamic programming basis, 278–79
FlowMap, 279, 282
IMap, 281–82
LEKO, 282
performance-driven, 282–83
power-aware, 283–84
PRAETOR, 281–82
See also Technology mapping

Subsystems, 184
with configurable delays, 187

stream-based filtering, 190–91
tiled, 198–200

Super-HWOP, 340–41
building, 342–43
microplacement, 342, 343
partitioning, 340

Superslices, 340, 342
Swap negotiation, 417
Swappable logic units (SLU), 74
SWIM project, 801
Switch blocks

example architecture, 10
island-style architecture with, 9

Switch boxes, 409
connectivity, 429
style and routability, 429

Synchronization, 248–49
deadlock prevention, 249
explicit, 248
implicit, 248–49
thread-style, 248

Synchronous Data Flow. See SDF
Synopsys FPGA compiler, 393
Synoptix, 493
Synplicity Identify tool, 272
Synthetic Aperture Radar (SAR)

ATR in, 591
Sandia real-time, 592

System architectures, 107–25
bulk synchronization pattern, 118–19
cellular automata, 122–23
data parallel, 119–22
hierarchical composition, 125
multi-threaded, 123–25
sequential control, 110–18
streaming dataflow, 107–10

System Generator library, 184
SystemC, 205, 542
Systolic image array pipeline, 603–4

T-VPack algorithm, 305, 306
Tail duplication, 164
Task configuration protection, 251
Task Description Format (TDF), 205–6

behavioral operator, 206
compositional operator, 208
operators, 208
as portable assembly language, 207
specification, 206, 207

Taylor coefficients, 490
Taylor expansion transformation, 490

906 Index

TCP processing, 758–60
block diagram, 760
circuit development, 759
semantic, 768–70
See also Network processing

Techmapper class, 260, 264, 272
Technology mapping, 277–93

algorithms, 277
algorithms for heterogeneous resources,

289–92
functional algorithms, 277
integrated, 278, 284–89
in logic synthesis flow, 278
optimal solutions, 285
structural algorithms, 277, 278–84

Templates
correlation between, 598
grouping example, 599
partitioning, 598–99

Teramac, 57–59
applications, 58–59
features, 58
in hardware prototyping applications, 427

Terasys Integrated Circuit, 221
Terminal propagation, 314, 315
Ternary content addressable memory

(TCAM), 764
Test pattern generation, 614, 615
Testbenches

dynamic, 269–70
JHDL, 265–66

Theoretical underpinnings, 807–27
Tightly coupled RPF and processor

architecture, 41–42
Tiled subsystems, 198–200
Timing-driven algorithms, 301, 302
Topology matching, 329
Transaction application protocol interface

(TAPI), 664
Transaction-based host-emulator

interfacing, 650–51
Transfer functions

for nonrecursive systems, 480
scaling, 481–82

Transformations, 555
Transient faults, 830

feedforward correction, 844–45
rollback, 845–48
tolerance, 843–48

Translation lookaside buffer (TLB), 247,
397

Triple modular redundancy (TMR), 844–45,
849

Triple-key DES, 83
Truth tables, 4
Turing Machine, 96
Turing–Complete compute models, 97, 119
Two-dimensional placement, 336–37

bin-based, 336
constrained, 335–36

Two-dimensional video filtering, 187–91

Uniaxial PML (UPML), 702, 706, 721
User datagram protocol (UDP), 758

Variable fixed-rate representation, 577
Variable-length chromosome GAs (VGAs),

735
Variables

live at exits, 168–69
scalar, in memory, 169

Vector architectures, 120–21
functional units, 121
motivation, 120
sequential controller, 120

Vector coprocessors, 121–22
Vector functional units, 121, 229
Vectoring mode, 519–20

convergence, 520
implementations, 519
range extension, 525
simulation, 519
as y-reduction mode, 519
See also CORDIC

Verilog, controller design with, 197
Very High-Speed Integrated Circuit

Hardware Description Language
(VHDL), 87–88, 129–53

Active Pages, 782
concurrent statements, 144, 150
controller design with, 197
delta delay, 150
design development, 130
FSM datapath example, 138–49
gates, 130
hardware compilation flow and, 150–52
hardware descriptions, 153
hardware module description, 132–33
limitations, 153
multivalued logic, 150
parametric hardware generation, 136–38
popularity, 129
port mapping, 133

Index 907

ports, 133
programming, 130–50
RTL description, 133–36
sequential, comparison, 149
signals, 133
structural description, 130–33
submodules, 133
syntax, 153

Very long instruction word (VLIW), 61,
113–14, 795–97

computational elements, 795
processors, 164
of single multiply and add datapath, 113
time-slicing, 795
width, 797

Virtual circuit identifier (VCI), 756
Virtual Computer, 50–51
Virtual instruction configurations (VICs), 29

Chimaera architecture, 43–44
RaPiD, 39
speculative execution, 43

Virtual memory, 246–47
Virtual path identifier (VPI), 756
Virtual reconfiguration, 741–42
Virtual Wires, 56
Virtualized I/O, 72
Virtually addressed caches, 397
VirtuaLogic family, 642
VirtuaLogic VLE emulation system, 639,

653–65
array boards, 653–55
case study, 653–65
design clock cycle, 656
design partitions, 655
emulation mapping flow, 654
emulator system clock speed, 665
incremental compilation of designs,

661–64
incremental mapping, 662
incremental partitioning, 661
incremental path identification, 661
incremental routing, 661
inter-FPGA communication, 656
interfaces for coverification, 664–65
intra-FPGA computation, 656
multidomain signal transport, 658, 659,

660
multiported memory mapping, 657
netlist comparison, 661
parallel FPGA compilation, 665
partitioning, 654
software flow, 654–57

specialized mapping techniques, 657
statically scheduled routing, 656
structure, 653–54
See also Logic emulation systems

Virus protection, 763–64
VLSI, CORDIC algorithm in, 514
VPack algorithm, 305
VPR, 307–11

annealing schedule, 307
delay computation, 309–10
enhancements, 310
move generator, 307
range limit update, 307–8
recomputation, 310
router, 314, 372

VStation family, 642

Washington University Gigabit Switch
(WUGS), 756

Wavelets, 567
coding, 569
spatial orientation trees, 569

Wildcards (*), 152, 761
WildStar–II Pro PFGA board, 708–9

block diagram, 709
features, 708
memory hierarchy levels, 713
Xilinx Virtex–II Pro FPGAs on, 722

Window-based scheduling, 79
Wire congestion, 312
Wired-OR diode logic array, 859–60
Wordlength

control over, 523
scaling, 477

Wordlength optimization, 485–97
area models, 485–96
error estimation, 485–96
problem, 499
search techniques, 496–97
simulation-based methods, 487

Word-level optimization, 339–40
Word-wide datapaths, 216, 815
Worker farms, 117–18
Worm detection, 766–67
Worm protection, 763–64

Xilinx 6200 series FPGA, 53–54, 81
cell configuration, 732
CLBs, 741
EHW platforms and, 740–41
“open” bitstream, 408
wildcard registers, 81

908 Index

Xilinx
ChipScope, 271
Core Generator IP, 348
EasyPath series, 842
Embedded Development Kit (EDK), 197
MicroBlaze, 194, 347
Virtex 2000E FPGA, 581
Virtex-4, 530, 533
XC 4036EX FPGA, 632
XC4VLX200 FPGA, 623
XC4000 library, 596

Xilinx Virtex-II Pro, 23–26, 68, 83, 530, 721
CLBs, 23–24
IBM PowerPC 405–D5 CPU cores, 25
logic architecture, 23–25
multiplier blocks, 24

routing architecture and resources, 25–26
SelectRAM+, 24, 25
on WildStar-II Pro board, 722
XC2VP100, 24

XOR gates, 463, 464

Y-reduction mode, 519
YaMoR, 739
Yield, 832–85

Law of Large Numbers impact, 835
perfect, 833–34
with sparing, 834–35
See also Defect tolerance

Z-reduction mode, 517
Zero mask rows, 601–2

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

	0123705223
	Copyright Page

	Table of Contents
	List of Contributors
	Preface
	Introduction

	Part I: Reconfigurable Computing Hardware
	Chapter 1. Device Architecture
	1.1 Logic—The Computational Fabric
	1.2 The Array and Interconnect
	1.3 Extending Logic
	1.4 Configuration
	1.5 Case Studies
	1.6 Summary
	References

	Chapter 2. Reconfigurable Computing Architectures
	2.1 Reconfigurable Processing Fabric Architectures
	2.2 RPF Integration into Traditional Computing Systems
	2.3 Summary and Future Work
	References

	Chapter 3. Reconfigurable Computing Systems
	3.1 Early Systems
	3.2 PAM, VCC, and Splash
	3.3 Small-Scale Reconfigurable Systems
	3.4 Circuit Emulation
	3.5 Accelerating Technology
	3.6 Reconfigurable Supercomputing
	3.7 Non-FPGA Research
	3.8 Other System Issues
	3.9 The Future of Reconfigurable Systems
	References

	Chapter 4. Reconfiguration Management
	4.1 Reconfiguration
	4.2 Configuration Architectures
	4.3 Managing the Reconfiguration Process
	4.4 Reducing Configuration Transfer Time
	4.5 Configuration Security
	4.6 Summary
	References

	Part II: Programming Reconfigurable Systems
	Chapter 5. Compute Models and System Architectures
	5.1 Compute Models
	5.2 System Architectures
	References

	Chapter 6. Programming FPGA Applications in VHDL
	6.1 VHDL Programming
	6.2 Hardware Compilation Flow
	6.3 Limitations of VHDL
	References

	Chapter 7. Compiling C for Spatial Computing
	7.1 Overview of How C Code Runs on Spatial Hardware
	7.2 Automatic Compilation
	7.3 Uses and Variations of C Compilation to Hardware
	7.4 Summary
	References

	Chapter 8. Programming Streaming FPGA Applications Using Block Diagrams in Simulink
	8.1 Designing High-Performance Datapaths Using Stream-Based Operators
	8.2 An Image-Processing Design Driver
	8.3 Specifying Control in Simulink
	8.4 Component Reuse: Libraries of Simple and Complex Subsystems
	8.5 Summary
	References

	Chapter 9. Stream Computations Organized for Reconfigurable Execution
	9.1 Programming
	9.2 System Architecture and Execution Patterns
	9.3 Compilation
	9.4 Runtime
	9.5 Highlights
	References

	Chapter 10. Programming Data Parallel FPGA Applications Using the SIMD/Vector Model
	10.1 SIMD Computing on FPGAs: An Example
	10.2 SIMD Processing Architectures
	10.3 Data Parallel Languages
	10.4 Reconfigurable Computers for SIMD/Vector Processing
	10.5 Variations of SIMD/Vector Computing
	10.6 Pipelined SIMD/Vector Processing
	10.7 Summary
	References

	Chapter 11. Operating System Support for Reconfigurable Computing
	11.1 History
	11.2 Abstracted Hardware Resources
	11.3 Flexible Binding
	11.4 Scheduling
	11.5 Communication
	11.6 Synchronization
	11.7 Protection
	11.8 Summary
	References

	Chapter 12. The JHDL Design and Debug System
	12.1 JHDL Background and Motivation
	12.2 The JHDL Design Language
	12.3 The JHDL CAD System
	12.4 JHDL'S Hardware Mode
	12.5 Advanced JHDL Capabilities
	12.6 Summary
	References

	Part III: Mapping Designs to Reconfigurable Platforms
	Chapter 13. Technology Mapping
	13.1 Structural Mapping Algorithms
	13.2 Integrated Mapping Algorithms
	13.3 Mapping Algorithms for Heterogeneous Resources
	13.4 Summary
	References

	FPGA Placement
	Chapter 14. Placement for General-purpose FPGAs
	14.1 The FPGA Placement Problem
	14.2 Clustering
	14.3 Simulated Annealing for Placement
	14.4 Partition-Based Placement
	14.5 Analytic Placement
	14.6 Further Reading and Open Challenges
	References

	Chapter 15. Datapath Composition
	15.1 Fundamentals
	15.2 Tool Flow Overview
	15.3 The Impact of Device Architecture
	15.4 The Interface to Module Generators
	15.5 The Mapping
	15.6 Placement
	15.7 Compaction
	15.8 Summary and Future Work
	References

	Chapter 16. Specifying Circuit Layout on FPGAs
	16.1 The Problem
	16.2 Explicit Cartesian Layout Specification
	16.3 Algebraic Layout Specification
	16.4 Layout Verification for Parameterized Designs
	16.5 Summary
	References

	Chapter 17. PathFinder: A Negotiation-based, Performance-driven Router for FPGAs
	17.1 The History of PathFinder
	17.2 The PathFinder Algorithm
	17.3 Enhancements and Extensions to PathFinder
	17.4 Parallel PathFinder
	17.5 Other Applications of the PathFinder Algorithm
	17.6 Summary
	References

	Chapter 18. Retiming, Repipelining, and C-slow Retiming
	18.1 Retiming: Concepts, Algorithm, and Restrictions
	18.2 Repipelining and C-slow Retiming
	18.3 Implementations of Retiming
	18.4 Retiming on Fixed-Frequency FPGAs
	18.5 C-slowing as Multi-Threading
	18.6 Why Isn’t Retiming Ubiquitous?
	References

	Chapter 19. Configuration Bitstream Generation
	19.1 The Bitstream
	19.2 Downloading Mechanisms
	19.3 Software to Generate Configuration Data
	19.4 Summary
	References

	Chapter 20. Fast Compilation Techniques
	20.1 Accelerating Classical Techniques
	20.2 Alternative Algorithms
	20.3 Effect of Architecture
	20.4 Summary
	References

	Part IV: Application Development
	Chapter 21. Implementing Applications with FPGAs
	21.1 Strengths and Weaknesses of FPGAs
	21.2 Application Characteristics and Performance
	21.3 General Implementation Strategies for FPGA-based Systems
	21.4 Implementing Arithmetic in FPGAs
	21.5 Summary
	References

	Chapter 22. Instance-specific Design
	22.1 Instance-specific Design
	22.2 Partial Evaluation
	22.3 Summary
	References

	Chapter 23. Precision Analysis for Fixed-point Computation
	23.1 Fixed-point Number System
	23.2 Peak Value Estimation
	23.3 Wordlength Optimization
	23.4 Summary
	References

	Chapter 24. Distributed Arithmetic
	24.1 Theory
	24.2 DA Implementation
	24.3 Mapping DA onto FPGAs
	24.4 Improving DA Performance
	24.5 An Application of DA on an FPGA
	References

	Chapter 25. Cordic Architectures for FPGA Computing
	25.1 Cordic Algorithm
	25.2 Architectural Design
	25.3 FPGA Implementation of Cordic Processors
	25.4 Summary
	References

	Chapter 26. Hardware/Software Partitioning
	26.1 The Trend Toward Automatic Partitioning
	26.2 Partitioning of Sequential Programs
	26.3 Partitioning of Parallel Programs
	26.4 Summary and Directions
	References

	Part V: Case Studies of FPGA Applications
	Chapter 27. Spiht Image Compression
	27.1 Background
	27.2 Spiht Algorithm
	27.3 Design Considerations and Modifications
	27.4 Hardware Implementation
	27.5 Design Results
	27.6 Summary and Future Work
	References

	Chapter 28. Automatic Target Recognition Systems on Reconfigurable Devices
	28.1 Automatic Target Recognition Algorithms
	28.2 Dynamically Reconfigurable Designs
	28.3 Reconfigurable Static Design
	28.4 ATR Implementations
	28.5 Summary
	References

	Chapter 29. Boolean Satisfiability: Creating Solvers Optimized for Specific Problem Instances
	29.1 Boolean Satisfiability Basics
	29.2 Sat-solving Algorithms
	29.3 A Reconfigurable SAT Solver Generated According to an SAT Instance
	29.4 A Different Approach to Reduce Compilation Time and Improve Algorithm Efficiency
	29.5 Discussion
	References

	Chapter 30. Multi-FPGA Systems: Logic Emulation
	30.1 Background
	30.2 Uses of Logic Emulation Systems
	30.3 Types of Logic Emulation Systems
	30.4 Issues Related to Contemporary Logic Emulation
	30.5 The Need for Fast FPGA Mapping
	30.6 Case Study: The Virtualogic VLE Emulation System
	30.7 Future Trends
	30.8 Summary
	References

	Chapter 31. The Implications of Floating Point for FPGAs
	31.1 Why is Floating Point Difficult?
	31.2 Floating-point Application Case Studies
	31.3 Summary
	References

	Chapter 32. Finite Difference Time Domain: A Case Study Using FPGAs
	32.1 The FDTD Method
	32.2 FDTD Hardware Design Case Study
	32.3 Summary
	References

	Chapter 33. Evolvable FPGAs
	33.1 The Poe Model of Bioinspired Design Methodologies
	33.2 Artificial Evolution
	33.3 Evolvable Hardware
	33.4 Evolvable Hardware: A Taxonomy
	33.5 Evolvable Hardware Digital Platforms
	33.6 Conclusions and Future Directions
	References

	Chapter 34. Network Packet Processing in Reconfigurable Hardware
	34.1 Networking with Reconfigurable Hardware
	34.2 Network Protocol Processing
	34.3 Intrusion Detection and Prevention
	34.4 Semantic Processing
	34.5 Complete Networking System Issues
	34.6 Summary
	References

	Chapter 35. Active Pages:Memory-centric Computation
	35.1 Active Pages
	35.2 Performance Results
	35.3 Algorithmic Complexity
	35.4 Exploring Parallelism
	35.5 Defect Tolerance
	35.6 Related Work
	35.7 Summary
	References

	Part VI: Theoretical Underpinnings and Future Directions
	Chapter 36. Theoretical Underpinnings
	36.1 General Computational Array Model
	36.2 Implications of the General Model
	36.3 Induced Architectural Models
	36.4 Modeling Architectural Space
	36.5 Implications
	References

	Chapter 37. Defect and Fault Tolerance
	37.1 Defects and Faults
	37.2 Defect Tolerance
	37.3 Transient Fault Tolerance
	37.4 Lifetime Defects
	37.5 Configuration Upsets
	37.6 Outlook
	References

	Chapter 38. Reconfigurable Computing and Nanoscale Architecture
	38.1 Trends in Lithographic Scaling
	38.2 Bottom-up Technology
	38.3 Challenges
	38.4 Nanowire Circuits
	38.5 Statistical Assembly
	38.6 Nanopla Architecture
	38.7 Nanoscale Design Alternatives
	38.8 Summary

	References

	Index

