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Chapter 1

Introduction

It is important to develop and follow a disciplined and optimized design flow when imple-
menting a rapid system prototyping effort. Effective design flow optimization requires 
addressing the trade-offs between additional project risk and associated schedule reduction. 
This balance is likely to vary between projects. In order to efficiently implement a project 
with an optimized design flow system, engineering decisions become even more important 
since these key decisions affect every subsequent design phase. It is important to understand 
the design phases, their order, their relationships, and the decisions that must be made in 
each of these phases. This book attempts to address these topics. Figure 1.1 presents the 
order of topics addressed within the chapters of this book. This topic order has been arranged 

Optimized Design Flow

System Engineering

Device and Board Level Design

Implementation

Simulation

Constraining and Optimizing

Configuration

Validation and Verification

CH 3 
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Introduction
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CH 13
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Figure 1.1  Topic flow
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to parallel the order of design stages of an FPGA rapid system prototyping effort. Topics that 
are common to all rapid development FPGA efforts are covered first in the standard topic 
chapters, while the advanced topic chapters present topics that may not be required in all 
projects. This book attempts to address commonly avoided topics from a working engineer’s 
perspective, and should promote further discussion and research on important subjects.

The intended audience for this book includes embedded designers with an interest in 
efficient product development with FPGAs. The text seeks to provide a working introduc-
tion to the essential technology fundamentals and common design flows for FPGAs; to 
provide references to resources for further research on basic and advanced FPGA design 
topics; and to provide references to resources for FPGA design advanced topics. The order of 
subjects parallels that of a typical FPGA design flow process.

Each chapter presents an overview of a design topic or phase, provides sources for ad-
vanced topic research, and summarizes key concepts with design checklists and concept 
summaries. Critical design decisions and trade-offs are presented in parallel with common 
design oversights and applicable design solutions and approaches. The objective is to pres-
ent the required background knowledge in parallel with practical engineering details, 
observations, issues, and resolutions. Many design factors are presented in a bulleted list to 
avoid lengthy text, which can obscure related concepts. The intent is to encourage designers 
to consider diverse design factors that may impact project development and implementation. 
Chapter 17 provides an example which brings together all the concepts presented in the book.

Some individuals may enjoy reading academic-style discussions of embedded design topics 
and then puzzling out how to apply that information to their real-world projects, but this book 
is not for them. Most engineers like to develop a core understanding of a technology and then 
jump in and start doing actual design work with minimum delay, and that is the sort of engi-
neer this book has been written for. Following is a breakdown of typical chapter content.

Chapter Content

■	 Present essential engineering background information

■	 Present design phases and options

■	 Review concepts, terminology, and acronyms

■	 Present common design oversights and potential approaches

■	 Provide sources for further research

Appendix A lists a wide range of manufacturer technical data sources. Appendix B is a 
collection of checklists which are associated with different stages of FPGA design.

1.1	 FPGA Rapid Design Implementation Potential 
Within the digital design field there are three basic types of devices: logic, memory and 
processors. With recent field programmable gate array (FPGA) architectural evolutions and 
ever-increasing capacity, it is possible and affordable to implement all three of these elements 
within FPGA devices. These higher levels of possible design integration continue to expand 
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the range of applications that can be implemented within a single device. FPGAs continue 
to become more attractive for cost-effective design prototyping based on technology 
advantages including: design cycle flexibility, reduced-cost design iterations, low “nonrecur-
ring engineering” (NRE) fees, the ability to easily evaluate and implement alternative design 
architectures, and ability to accelerate time to market for new products. 

Today’s increasingly rushed projects exhibit a critical need for technology advance-
ments that can accelerate a product’s time-to-market. This time to market pressure requires 
increased system flexibility to hurdle the design issues and changes that inevitably seem to 
occur. The primary attribute of FPGA technology is flexibility. Flexibility in design imple-
mentation and subsequent refinement can lead to significant schedule, complexity and risk 
reduction. FPGA flexibility can provide the potential for design teams to implement their 
complex high-performance designs exhibiting a wide range of functionality and interface 
characteristics quickly and efficiently. Flexibility also allows FPGAs to support efficient de-
sign changes and updates with very limited schedule and budget impacts. 

FPGAs allow the consolidation of functionality previously requiring multiple integrated 
circuits into a single device. Figure 1.2 shows an example of a typical system with a tradition-
al discrete implementation of a DSP processor, conventional control processor and FPGA 
device with external support memory. The latest generations of performance FPGA devices 
have the potential to implement all of these functions, potentially including the required 
memory support within a single FPGA device. There are of course many trade-offs to con-
sider regarding this integrated approach, but the technical potential exists to support this 
implementation. With all of these features implemented within a single device, the flexibili-
ty, speed and performance of inter-function communication and interface can be significantly 
improved. Implementation of traditionally discrete functionality within one or more FPGAs 
increases the design team’s ability to re-architect the functional implementation throughout 
the life of the project.

MEMORY 1

CKT 1

DSP

FPGA

Configuration
Memory

MEMORY
2

Discrete System

CKT 1

Configuration
Memory

FPGA

Processor

Integrated System

A/D D/A

A/D D/ADSP M1

M2Proc

Figure 1.2  Real-estate reduction through integration
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1.2	R apidly Evolving Technology Field
The field of FPGA technology has continued to evolve at a very rapid pace since its earliest 
days. FPGA vendors have traditionally been locked in battle to improve their product fami-
lies and increase the volume of parts they deliver to customers. Since most FPGA vendors 
are “fabless” companies, they can depend on their chip manufacturing foundry partners to ef-
ficiently and reliably produce their parts based on the best semiconductor process technology 
commercially available. This has allowed FPGA vendors to focus on enhancing their device 
architectures, software tools and intellectual property core offerings.

A constant of the FPGA industry has been a relentless pace of innovation, enhance-
ment and change. These technology advances have been targeted to provide the FPGA 
designer with increased flexibility and more design implementation options. A result of 
the constantly increasing FPGA component densities and complexities is the capability to 
implement increasingly complex designs. FPGA process technologies and architectures con-
tinue to advance and evolve. Recent architecture advances include enhanced digital signal 
processing (DSP) support elements such as dedicated hardware multipliers and larger blocks 
of embedded and distributed RAM with enhanced features, higher performance embed-
ded processor cores, higher speed input/output (I/O) implementations and expanded FPGA 
configuration options. These advances serve to expand the range of functionality FPGA 
components can implement. FPGA tool set improvements have also contributed significant-
ly to a design team’s ability to take advantage of FPGA flexibility and features. These broad 
enhancements are requiring more FPGA designer cross-training within the areas of systems, 
hardware, software, firmware and DSP engineering. 

FPGA vendors are motivated to develop ever-increasing numbers of loyal designers and 
expand their products into new application spaces. Each FPGA vendor spends significant 
effort and resources on research, development and design enhancements. While each vendor 
is focused on differentiating their FPGA families, architectures, software tools and intellec-
tual property offerings from the offerings of their competitors, no “new” feature, architectural 
enhancement or pricing strategy goes unanswered for long. This competitive market has 
resulted in numerous “market corrections” as individual FPGA manufacturers have left the 
market and as technology ownership has been transferred. However, this accelerated pace of 
innovation has benefited designers and end users alike.

1.3	 Design Skill Set Crossover
The field of FPGA design continues to evolve and expand. FPGA technology advancements are 
driving design teams to gain experience with more design skills than ever before. Today’s FPGA 
engineer may need to be versed in system-level design, functional allocation, embedded processor 
implementation, DSP algorithm implementation, HDL design entry, simulation, design optimi-
zation and high-speed board layout and signal interface. The multiskilled FPGA engineer may 
require design skills from systems, software and hardware engineering roles. Critical skill areas 
include basic and advanced FPGA fabric design implementation, embedded processor implemen-
tation, implementation of intellectual property (IP) and high-speed board level design. 
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Few technologies require as broad an experience base as FPGA design to take full ad-
vantage of their benefits. FPGA design is a “convergent” technology that requires a complex 
mix of skills from multiple design specialties. Figure 1.3 represents the engineering role skill 
overlap between specialties that may be required to implement an advanced FPGA design. 

HW / DSP SW (HDL)

SYSTEM

FPGA
DESIGN

SW / DSP

Figure 1.3 
FPGA design skills overlap

(Continued)

Overviews of some of the potential activities within each of these engineering specialties 
include:

Table 1.1

Hardware/DSP Design
■ Board-level hardware design and  

interface

■ DSP algorithm implementation in  
hardware

■ Logic-level design ■ Power consumption and decoupling
■ Hardware simulation ■ Board-level pin assignment 
■ Hardware block debug ■ Definition of I/O characteristics
■ Design floorplanning ■ Design optimization trade-offs
■ Signal integrity and termination ■ FPGA device and package selection
Software (HDL) Design
■ Design capture via HDL language ■ Script-based process automation 
■ Design testbench development ■ HDL-flow file configuration management

■ Design constraint ■ Support of design reuse

System Design
■ Processor requirement analysis ■ Design data flow definition
■ Processor architecture selection ■ HW/SW implementation trade-off

■ System-level design hierarchy  
definition

■ Functional modularization and  
partitioning 
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■ System block integration and interface 
testing

■ System-level testing, debugging and 
validation

Software/DSP Design
■ Processor code block definition ■ Code writing and testing

■ Implementation of DSP algorithms in 
software

■ Conventional code debug and validation

■ Implementation of system OS on 
processor

■ Code configuration management

The range of skills required to implement an FPGA project may initially seem over-
whelming. For example, even though the design capture and simulation phase of an 
HDL-based design capture flow is software-intensive, the resulting FPGA device is imple-
mented as a hardware implementation consisting of a mix of I/O elements, memory 
elements, registers, routing and function-specific circuitry.

Many embedded designers will have skills which are directly applicable to many phases 
of the FPGA design process. The challenge comes in developing all the skills required to 
carry a design to completion. Having a multidiscipline design team with a range of specific 
strengths and experiences is the optimal solution. However, the ideal design team cannot 
always be assembled due to schedule conflicts and resource limitations. Typical design teams 
require each member to stretch and develop new skills and capabilities during the course of a 
project. Ultimately it is desirable for each team member to be familiar with as many elements 
of the complete FPGA design and development process as possible. 

1.4	H ardware Knowledge for Software/Firmware Designers
FPGA technology continues to evolve rapidly in the areas of density, speed, I/O count and 
interfaces. Taking full advantage of the flexibility of FPGA technology has traditionally re-
quired a hardware background or an engineer on the development team with the appropriate 
hardware experience. Tool and process developments are expanding the group of designers 
able to take advantage of the FPGA technology potential in new designs.

Many of the concepts and implementation details of FPGA design and development will 
be familiar to firmware designers due to the development and implementation parallels with 
embedded firmware design. These parallels are most applicable when the FPGA design pro-
cess is based on a hardware description language (HDL) design flow. An HDL such as VHDL 
or Verilog can be used to describe, implement, simulate and test a hardware design imple-
mentation within an FPGA. Familiar software design elements resulting from an HDL-based 
design flow include: levels of abstraction, HDL structures and constructs, iterative design 
cycles, compiler directives and output file generation, file configuration control, modular 
design, design reuse, and object-oriented design. 

However, even with this common experience base, implementing a hardware design 
within FPGA components can be a challenge for designers with a primarily software 
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background. There are many details to consider when implementing efficient, reliable hard-
ware function sets within an FPGA with an inherently sequential HDL description language. 
Many hardware-level decisions must be made and low-level details must be implemented.

Examples include board-level electrical interface and interconnection details under 
programmable control, such as drive strength, slew rate, signal pull-ups, on-device signal ter-
mination, I/O bank and I/O pin assignment. The design must also be effectively constrained 
to implement the required functionality with the appropriate layout and timing performance, 
without being over-constrained. 

Other potential challenges include the traditional board-level hardware design tasks 
such as package selection, surface-mount design considerations, pin-to-layer breakouts, 
device-to-device signal characteristics, routing, controlled impedance, high-speed signal 
integrity, power generation and decoupling, layout suggestions, board-level symbol creation, 
schematic capture and review, board layout, component mounting and hardware testing and 
verification.

There will always be detailed low-level electrical design and physical hardware issues 
associated with board-level design that will require specialized hardware knowledge. How-
ever, with the appropriate guidance and knowledge, it should be possible for a designer with 
primarily software experience to contribute to or even implement many of these traditional 
hardware-oriented tasks. This will allow the designer to have more influence over and con-
trol of FPGA projects they are involved in. 

1.5	 Software Knowledge for Hardware Designers
In a similar manner, there are many elements of the FPGA design process that may require a 
designer with primarily traditional hardware design training and experience to acquire new 
skills and knowledge. The most significant required new skills are likely to be associated with 
the implementation and management of the HDL design process, including design specifica-
tion, capture, syntax, synthesis, simulation and configuration control. While many of these 
individual design elements may be familiar, the overall process is very close to that of higher 
level code development and testing.

The implementation of a soft or hard core processor within an FPGA can also present 
some new challenges for hardware designers. The implementation of OS-friendly interrupt 
structures, multilayer buses, peripheral mapping and software-friendly hardware circuitry 
interfaces may not be common experiences for many hardware designers. Ultimately, imple-
menting processors within an FPGA requires “some assembly” and making the best decisions 
in terms of system performance requires quite a bit of background knowledge. Fortunately, 
FPGAs are very forgiving and less than efficient initial processor architectures can easily be 
updated to resolve identified inefficiencies. 

Another design area that may offer additional opportunity for “growth and development” 
for both hardware and software engineers is the broad topic of DSP design and algorithm 
implementation. DSP is a peculiar design area with its own terminology, required experi-
ence base and tool set. As with FPGA embedded processor implementation, the designer is 
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responsible for making and implementing decisions traditionally reserved for system engi-
neers. With the right background and access to the proper tools, hardware designers can 
excel at efficiently implementing both embedded processors and their peripherals and DSP 
algorithms within FPGA-based systems.

1.6	 When FPGA Technology May Not Be an Ideal Fit
As previously stated, the greatest advantage FPGAs bring to a design is flexibility—the 
ability to support changes at any stage of the product life cycle. Designs with well-defined, 
fixed functionality will benefit less than designs able to take advantage of the flexibility of 
an FPGA. If the need to make design changes is very limited during the life of a project, it 
is likely that FPGAs are not an optimal fit for that application. The following list contains 
some potential limitations.

RAPID SUMMARY

Potential FPGA Application Limitations
■	 FPGA performance may not be as high as specialized components

■	 Cost adder for inherent FPGA flexibility may not be justified if design does not 
require flexibility

■	 Potentially higher power than required by focused-application, specific-function 
components

■	 Challenges re-implementing complex functionality already in an ASSP compo-
nent with exactly the required functionality

There are specific applications where FPGA technology may not be appropriate. Projects 
with solid, complete requirements and a stable, fixed or mature function are not likely to be a 
great fit for FPGA technology since these designs cannot obtain much benefit from the flex-
ibility inherent in FPGA technology. 

Another area where FPGAs may not be appropriate are projects with “best of” or “lowest 
of” requirements. Projects with requirements such as “the lowest power,” “the lowest discrete 
fixed-function component price,” or “the highest clock speed” may not be ideal applications 
for FPGA technology. However, some projects with extreme requirements may still be able 
to be implemented within FPGAs with creative application of FPGA strengths. 

An example design is a project with a high-performance signal processing requirement. 
While FPGA components may not exhibit the fastest clock rate available across all tech-
nologies, certain data processing algorithms can be implemented efficiently with a parallel 
architecture. It may be possible to achieve the required signal processing functionality with 
superior performance and lower power consumption within a single part at a lower cost using 
an FPGA, with the appropriate resources.
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1.7	 When FPGAs Technology May Be Appropriate
Developing an understanding of when an FPGA device is appropriate to implement required 
system functionality is a critical element of understanding FPGA technology. Design teams 
understand that FPGA technology is not appropriate for every design or application. Being 
able to identify when FPGA technology is appropriate for a project is a critical design skill that 
is an extension of knowing the current capabilities of the technology. Designs that are likely to 
undergo significant changes in functionality during a product life cycle will benefit most from 
implementation within FPGA technology. 

The following design characteristics should be considered when evaluating FPGA tech-
nology for a project.

Design Element and Support Questions
■	 Design Stability – Is the design likely to experience changes during its life that will 

require design update capability? Are the requirements stable enough to allow selec-
tion of an appropriate FPGA family and device?

■	 Schedule – Is there a very small window of opportunity for profitable release to mar-
ket? Is there a requirement to demonstrate functionality in the shortest time possible? 
What are the schedule requirements of alternative implementations?

■	 Performance – Can the functional speed required be implemented with FPGA tech-
nology? Can the required functionality be implemented within currently available 
FPGA devices?

■	 Physical Constraints – Does the design need to consume the lowest possible power? 
Does the design need to occupy the smallest possible real-estate foot-print? Are there 
production limitations for the project?

■	 Cost – Is a specialized discrete component available that implements the required func-
tionality at a lower cost? What are the costs of alternative implementations including 
tools, training and NRE? Can development costs be spread across several projects by 
developing reusable design elements? Are pre-implemented reference designs or Intel-
lectual Property designs available to leverage?

■	 Availability – Will components with the required performance/size be available in 
time for volume production? Is a fixed-function component available that imple-
ments the required functionality? Will the fixed-function implementation be available 
for the projected life of the product and its derivatives? 

Designs that require rapid introduction to the market can benefit from FPGA tech-
nology. With an accelerated FPGA design flow, an FPGA component’s final design 
implementation does not need to be defined before production of the printed circuit board 
(PCB) starts. Thus, a design based on an FPGA can be built in parallel with the implemen-
tation of the FPGA’s functionality. This allows for significant schedule advantages. If the 
FPGA is reprogrammable, the design may be updated remotely after it has been delivered to 
the customer. 
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Designs with incompletely defined requirements or functionality are often a good fit for 
FPGAs since they can accommodate functional changes at almost any stage of the design  
life cycle. FPGA-based designs can undergo significant functional implementation changes 
and updates before delivery to the customer. FPGA technology supports designing and 
building the populated PCB before the design is complete. This allows board production 
to occur in volume in parallel with implementing and finalizing the details of the design 
functionality within the FPGA, thus potentially resulting in an earlier product delivery. With 
the correct design implementation, design changes can be made even after the product has 
been delivered to the customer. It is possible that designs with well-defined functionality may 
be a good fit for FPGA technology if future enhancements or modifications are expected for 
either current or future design implementations. The following rapid summary provides a list 
of potential FPGA advantages.

RAPID SUMMARY

Potential FPGA Advantages
■	 Faster system development and implementation (faster time to market)
■	 Ability to control part obsolescence through design ownership and viable tech-

nology roadmap
■	 Improved design update and enhancement options
■	 Higher system performance
■	 Lower implementation costs (Reduced NRE costs)
■	 Lower tool costs and verification costs than ASIC implementation
■	 Allows consolidation of multiple components into a single component 
■	 Allows consolidation of multiple external termination resistors into the FPGA
■	 Design re-architecting possible with minimal schedule or cost penalty
■	 FPGA-implemented design is likely to be easier to update, modify, maintain, and reuse
■	 An FPGA-implemented design is likely to be tolerant of design changes and func-

tional changes and future design enhancements
■	 Functionality can be adjusted, modified and customized
■	 Design elements can be more easily reused and fine-tuned for use in other systems
■	 The identification of design issues to design update/issue resolution cycle is sig-

nificantly shortened
■	 System architects can re-engineer and optimize designs with relative ease even 

after the design has been implemented
■	 Design sub-systems can be implemented, optimized and redefined independent of 

other design elements
■	 Significantly reduce design implementation costs
■	 Significantly accelerate design implementation speed

(Continued)
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■	 Reduce the amount of pre-PCB layout design implementation and verification  
required

■	 Enhanced and expanded board-level debug and verification options (embedded  
analyzers, etc.)

■	 FPGA technology allows a design team to evaluate multiple design architecture 
implementations during the course of the design development

■	 FPGA technology allows efficient trade-off between competing design architec-
tures or implementation approaches

■	 Design options can be quickly evaluated, increasing the probability of selecting 
the superior design implementation

Once the design team has completed their trade studies and determined that FPGA technol-
ogy is appropriate for their design, the early project decision phase begins. For projects where 
FPGA technology is a good fit, the open issue becomes how to most efficiently implement 
designs and how to rapidly prototype and subsequently produce designs based on FPGA tech-
nology. The design team must select the best FPGA manufacturer, device family, package 
and part based on project requirements, prior experience and available resources. An over-
view of an optimized rapid development design flow is presented in Chapter 3. Important 
device and board-level decisions are presented in Chapters 5 and 6.

1.8	 Summary
The objective of this book is to help designers with a broad range of backgrounds and design 
experience develop the knowledge required to use FPGAs to prototype their design concepts 
as quickly and efficiently as possible.

The following chapters present essential FPGA design concepts and processes in the 
same order that traditional FPGA design flows follow. Each topic is addressed with a technol-
ogy overview and practical advice on design implementation issues and potential approaches 
to common decisions and issues. The intent is to provide the needed background to form the 
required framework for developing essential knowledge and skills. The focus is on helping 
design teams implement FPGA-based designs efficiently and rapidly.

Topics throughout this book have been selected to help FPGA design team members and 
leaders develop a strong understanding of the design flow and critical decisions and actions 
that must be made and taken to prototype designs with the minimum loss of schedule and 
budget. Topics include HDL-based design entry to implement required FPGA logic function-
ality, effective design management skills, implementing functionality with pre-verified cores, 
implementation of hard and soft processors, DSP topics, advanced I/O, and system level 
integration, debug and verification. Additional topics include tools, design synthesis and 
simulation, and device- and board-level design issues and solutions. Ultimately, rapid system 
prototyping and design is based on an efficient, repeatable design process free from avoidable 
mistakes and unnecessary design efforts. It is our intent to help you achieve that goal.





13

Chapter 2

FPGA Fundamentals

2.1	 Overview
This chapter provides a brief overview of programmable logic technology and history. It is 
intended for designers with limited programmable logic experience. Since the primary focus 
of this book is on rapid design implementation with FPGA technology, the technology over-
view is at a higher level. This chapter provides a high-level overview of programmable logic 
technology. For a more detailed overview of programmable logic, refer to The Design Warrior’s 
Guide to FPGAs by Clive Maxfield.

Programmable logic devices have the potential to implement a broad range of func-
tionality, unlike the fixed-function devices that preceded them. It is the flexibility inherent 
in FPGA technology that allows design teams to rapidly develop and field complex system 
implementations. 

In this chapter, we will first review programmable logic devices in general, and then go 
on to a detailed look at FPGA devices, with an eye toward their suitability for rapid proto-
typing and design.

2.1.1		 Categories of Programmable Logic
Programmable logic devices (PLDs) are divided into three primary architectural groups: 

■	 Simple Programmable Logic Devices (SPLDs)

■	 Complex Programmable Logic Devices (CPLDs)

■	 Field Programmable Gate Arrays (FPGAs)

While each of these programmable logic device architectures have typical focused ap-
plications, they also have some common feature overlap which leads to some overlap of 
applications. Figure 2.1 illustrates the overlap between the three PLD technologies. For 
example, some applications such as address decoding could be implemented in either a 
CPLD or an FPGA. Implementation within an FPGA allows this function to be integrated 
with a larger range of additional functionality.
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The architectures are not mutually exclusive and it is often possible to implement 
the same functionality in more than one device type. In general, any function that can be 
implemented in a simpler device can also be implemented within a more complex device. 
The opposite is not necessarily true, since more complex functions may not be able to be 
implemented within simpler PLD device types at all. The following factors may influence the 
selection of a target PLD architecture for design implementation.

PLD Target Architecture Decision Factors
■	 Ability to implement required functionality within a PLD device category

■	 Cost to implement functionality within a specific PLD device

■	 Easy migration path from previous design implementation (reuse)

■	 Need for expansion of functionality in the future

■	 Absolute function implementation cost or real-estate limits 

■	 Familiarity with specific PLD architecture 

■	 Possession of or familiarity with specific PLD design and implementation tools

■	 Availability of specific package type or style

Figure 2.2 shows two PLD categories and some of their respective characteristics at a 
high level. These characteristics must be taken into account when deciding on a PLD tech-
nology to target. For example, in larger applications the larger capacity and lower gate cost of 
FPGAs can influence designers to select the category of FPGAs to implement their required 
design functionality.

Figure 2.2  PLD categories

Figure 2.1  PLD categories
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Ultimately the design factors affecting PLD architectural selection break down into the 
categories shown in Table 2.1.

Table 2.1  Design factors affecting PLD architectural selection

Design Category Design Factor Detail
Availability Long-term component availability, vendor stability
Cost Component cost, implementation cost, support cost
Debug Access to technology which makes design debug easier
Efficiency Efficiency to implement, update, modify and maintain 
Flexibility Ability to accommodate change, future function expansion
Familiarity Familiarity with the architecture, tools
History Prior design experience with the architecture/ tools, 

availability of prior design implementation to leverage
Options Tools, package, implementation options
Popularity Popular architectures are likely to have better support 

and longer availability
Support Access to vendor support staff and industry support
Training Access to training on design implementation

The design considerations listed in Table 2.1 will be common to many of the engineering 
trade studies and essential design decisions required to implement a design with program-
mable logic. As the design team addresses each of these considerations, there are additional 
design decisions that must be made. Knowing which PLD technology to target does not an-
swer which manufacturer, family or tool set to use. The flexible nature of programmable logic 
brings with it a wide range of options to evaluate and choose from. Many of these decisions 
will be affected by a combination of cost and complexity, as illustrated in Figure 2.3.

Figure 2.3 
PLD design spaces
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2.1.2		 SPLD Device Overview 
The simplest PLD device architectures are programmable array logic (PAL) devices and 
programmable logic array (PLA) devices. Both of these devices are generally categorized into 
a family of logic devices known as simple programmable logic devices (SPLDs). PLA device 
architectures are based on the implementation of two logic gate array structures. One array 
is of Boolean ANDs and the other of Boolean ORs. Combined, these arrays are capable of 
implementing a sum of products that implement the required Boolean logic equations. These 
devices also have input and output blocks and limited programmable internal signal routing 
paths that can support output signal feedback. The inputs and outputs can be either synchro-
nous or asynchronous (clocked or unclocked).

While PLA devices allow both the AND and OR planes to be programmed a PAL 
device has a fixed OR plane. The trade-off between these two architectures is speed over 
logic flexibility. However, both of these devices architectures are relatively fast and possess a 
propagation delay (commonly referred to as Tpd) in the order of a few nanoseconds. Figure 
2.4 shows a simplified PAL architecture block diagram. 

Both PAL and PLA devices are relatively small in size, generally ranging from 8 to 24 
logic cells with low pin counts on the order of 16 to 28 pins. The configuration technologies 
used for these devices include EPROM and EEPROM. A popular PAL architecture example 
is the 22V10. The typical ranges of SPLD characteristics are outlined in Table 2.2.

Product

Macro
Cell

I/O
Pins

Clock

Macro
Cell

I/O
Pins Figure 2.4 

CPLD data flow
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Macro Macro Macro

Macro Macro Macro

Switch Fabric  Input/Output

Figure 2.5  Basic CLPD Structure

Table 2.2

SPLD Characteristic Range
Number of pins 16 to 28 pins
Number of macro cells 8 to 24 logic cells
Number of flip-flops (FFs) 8 to 24 FFs
Configuration technology EPROM, EEPROM
Power-up status Nonvolatile
Programmability Can be reprogrammed after being erased
Programming mechanism Generally programmed off-board
Size Small

2.1.3		 CPLD Device Overview 
The next group of PLD devices are referred to as complex programmable logic devices 
(CPLDs). CPLDs expand the range of potential functionality of SPLD devices since they are 
extensions of the SPLD architecture with additional resources. CPLDs can be reprogrammed 
in-circuit.

CPLD components cover a middle ground in terms of complexity and density between 
SPLDs and FPGAs. A CPLD in its simplest form is based on the implementation of mul-
tiple SPLD blocks with inter-block routing resources and an enhanced peripheral ring of I/O 
blocks within a single package. Figure 2.5 shows a generic CPLD architecture.
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CPLD devices can potentially replace thousands or even tens of thousands of equivalent 
logic gates. CPLD architectures continue to evolve and increase in density, capability, speed 
and architectural complexity. The more complex CPLD families have characteristics and at-
tributes traditionally associated with FPGAs. Figure 2.6 reflects some of the design decisions 
that must be made when implementing a design with a CPLD.

Figure 2.6  CPLD decision tree
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The typical ranges of CPLD characteristics are outlined in Table 2.3.
Table 2.3

CPLD Characteristic Range
Number of Pins 44 to 300+ pins
Number of Macro Cells 32 to 500+ logic cells
Number of FFs 32 to 500+ FFs
Configuration Technology EEPROM, EPROM, FLASH
Power-up Status Nonvolatile
Programmability Can be reprogrammed
Programming Mechanism Can be programmed in-circuit
Size Medium
Equivalent Gate Count 900 to 20,000+ equivalent gates

Larger CPLD devices can implement functionality, which could also be targeted to 
smaller FPGA devices. Design teams will need to determine if the targeted CPLD family has 
the headroom required for future product implementations. While a design may currently be 
implemented within a CPLD device, designs with potential for significant future expansion 
should be considered for implementation within an FPGA. Architecturally, FPGAs tend 
to be more complex than CPLDs. The implementation of logic and signal interconnection 
within CPLDs and FPGAs is significantly different, as illustrated in Figure 2.7. For a more 
detailed comparison, review the data sheets for Xilinx’s CoolRunner-2 and Virtex™-4 fami-
lies. FPGA architectures will be presented in more detail in the following sections.

Notice that FPGAs tend toward data-path oriented functions at the cost of a more 
complex architecture. The more complex architecture requires more advanced design imple-
mentation decisions with the resulting advantages of higher I/O count, more flexible routing 
and more register resources. However, the increased complexity is largely handled at the 
design implementation tool level and is not the primary responsibility of the design team.
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CPLD Architecture FPGA Architecture

Figure 2.7  CPLD to 
FPGA comparison
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Figure 2.8  
PLD categories

Due to their architectural characteristics, CPLDs and FPGAs are optimized to imple-
ment similar but different ranges of functionality efficiently. CPLDs are well suited to 
combinatorial functions with limited register requirements, while FPGAs can implement 
larger, more register-intensive functionality. The primary trade-offs for PLD technology deci-
sions include cost versus density, I/O capability and speed. 

For the most part, at small densities the CPLD wins because of price. At high densities, 
the FPGA tends to win due to lower overall logic cost. However, when crossing over from 
CPLD to FPGA, the middle ground is gray and it becomes a battle of technologies as illustrated 
in Figure 2.8. Figure 2.8 presents a mapping of functionality for CPLD and FPGAs.
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The main trade-offs for PLDs center around cost versus density, speed, and I/O. Figure 
2.9 shows some of the operational categories of FPGA devices.

Figure 2.9  FPGA family optimization

2.1.4		 FPGA Device Overview 
Since field programmable gate array (FPGA) devices are the focus of this book, we will now 
consider FPGA architectures in more detail. FPGA or field programmable gate array devices 
were introduced in 1985 by Xilinx. FPGAs were developed to address the gap between 
CPLD and Application-Specific Integrated Circuits (ASIC) sevices. These new components 
provided a reduced-cost logic platform with the densities and I/O capabilities of gate arrays 
and the programmable nature of CPLDs. They supported faster time to market, enhanced 
design flexibility and simplified design debug, all prerequisites of rapid system prototyping 
and development.

FPGAs are manufactured by multiple manufacturers utilizing several different technolo-
gies. Each manufacturer offers different device “families” with common features, voltages and 
low-level device (IC) geometries. Each device family differs in the details of device architec-
ture, device programming technology, internal signal routing, power, capacity, voltage, I/O 
support, and packaging. This broad range of implementation is due to strong competition be-
tween manufacturers, and a desire to differentiate products by targeting specific applications 
requiring different features and architectures, such as increased on-board memory or specific 
I/O support. Despite these differences, there are also significant design architecture, feature 
and development process similarities between the broad ranges of offered devices. Table 2.4 
provides a listing of typical FPGA characteristics. 
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Table 2.4

FPGA Characteristic Range
Number of Pins 50+ 
Number of Logic Cells 5,000+
Number of FFs 5,000+
Configuration Technology Flash, EEPROM
Power-up Status SRAM: volatile, OTP: nonvolatile
Reprogrammability SRAM: can be reprogrammed, OTP: no 
Programming Mechanism SRAM: can be programmed in-circuit
Size Medium to Large
Equivalent Gate Count 10,000+ equivalent gates

Manufacturers have refined their offerings with fine-tuned architectures and function 
sets that target specific applications and functional categories. In many cases new features 
were added as technology advanced. Many of these features were not of interest to the broad 
market, so further component variations occurred. Feature differences include device granu-
larity, I/O interface support, resource mix (logic versus register), logic capacity, operational 
speed and power consumption.

Most FPGA manufacturers offer two main FPGA family categories: performance-optimized 
and cost-optimized. Within these families, the devices have a range of I/O and logic capabili-
ties. Some families and devices will have a higher ratio of logic-to-I/O and are referred to as 
logic-centric. Other devices will have relatively more I/O than logic and are referred to as 
I/O-centric. Figure 2.9 illustrates the relationships between these categories. These categories 
are methods of clarifying the relative amount and cost of available resources.

With this competitive environment and evolution brought about by technology 
advancements, FPGA resources have continued to increase in density, complexity, speed, 
and I/O count as well as architecturally, by adding larger, more versatile blocks of embed-
ded RAM, embedded hard and soft processor cores, dedicated hardware multipliers and 
high-speed communication capabilities. These larger device sizes, with more architectural 
enhancements along with advanced FPGA design tool integration, extensive hardware 
description language (HDL) usage and the availability of more intellectual property (IP), 
addressed later in this book, are allowing design teams to implement increasingly complex 
designs within shorter schedules. 

The current high-end FPGA families feature millions of equivalent gates of functionality 
and high-speed interfaces capable of supporting a very broad range of engineering solutions 
including nontraditional applications. These high-end FPGA components are capable of 
implementing complex functionality which in the past would only have been practical with 
ASICs or extensive discrete-component board designs.
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2.1.5		 FPGA Types 
There are two broad categories of FPGA devices, reprogrammable and one-time programmable 
(OTP) devices. FPGA devices must be programmed at some point in the design process to 
define their functional operation. There are four different technologies for programming 
(configuring) FPGAs and they are detailed in Table 2.5.

Table 2.5

Configuration Technology Technology Overview and Features
SRAM-based An external device (nonvolatile memory or µP) programs the 

device on power up. Allows fast reconfiguration. Configura-
tion is volatile. Device can be reconfigured in-circuit.

Anti-Fuse-based Configuration is set by “burning” internal fuses to implement 
the desired functionality. Configuration is nonvolatile and 
cannot be changed.  

EPROM-based Configuration is similar to EPROM devices. Configuration is 
nonvolatile. Device must be configured out of circuit (off-
board).

EEPROM-based Configuration is similar to EEPROM devices. Configuration is 
nonvolatile. Device must be configured and reconfigured out 
of circuit (off-board).

Configuring volatile FPGAs or SRAM FPGAs typically takes a few hundred milliseconds 
or less to complete. This time is mainly dependent on the size of the part, the configura-
tion interface implemented and the speed of data transfer. However, the length of the 
configuration delay period often is a minor consideration at the system design level, when 
compared to the benefits of being able to dynamically reconfigure the FPGA in-circuit. This 
is especially the case when other types of devices, such as a processor, are present that also 
require a boot-up. 

To configure an SRAM FPGA, the configuration data is usually loaded from an exter-
nal nonvolatile configuration PROM, although FPGAs can also be configured directly by a 
processor or via a download cable from a PC. One-time programmable (OTP) devices, on 
the other hand, are made up of traditional logic gates interconnected by employing anti-
fuse technology. The connections between the gates are not “blown” but instead made into 
permanent connections. Therefore, OTP devices cannot be modified after they are pro-
grammed. OTP parts power up “configured” and thus have the advantage of no configuration 
time or “instant on” performance. Figure 2.10 illustrates an OTP FPGA implementation. 
The I1 block represents an input block, O1–O3 represent output blocks, and the white boxes 
within the FPGA represent design logic and registers. Each of the filled boxes represents a 
permanent connection internal to the FPGA. These connection points define the signal 
routing and interface to logic and fixed-function blocks. Within a non-OTP component, 
these connections can be reconfigured, but are fixed within an OTP component. OTP FPGA 
architecture details can be found in the Quicklogic and Actel family of data sheets.
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For rapid prototyping applications, the most critical FPGA technology feature is ease of 
function definition and re-definition. Typically, the function, content and implementation 
of the FPGA will change numerous times over the life of the development and integration 
cycle. For this reason, the configuration technology selected must be reprogrammable rather 
than OTP. (Note that OTP FPGAs and non-ISP FPGAs may have significant applications 
within stable, well-tested products.) 

SRAM-based FPGAs are often the best design choice for prototyping and development 
projects. Due to the many advantages of developing designs with SRAM-based FPGAs, this 
book focuses on development with these devices. It is important to realize, however, that 
almost all of the concepts and approaches presented within this book also apply to OTP and 
non-ISP FPGA technologies.

The FPGA technology field has exhibited a turbulent history with many mergers, acqui-
sitions and market departures. While at any given time there are a medium number of FPGA 
manufacturers, there are only a few manufacturers with significant sales and shipping designs. 
It is interesting to note that no major FPGA manufacturer owns their own fab; they are all 
fabless and rely on foundry partners to produce their silicon. Table 2.6 lists some of the larg-
est current players in the FPGA market. The relative market shares of the top five vendors 
constantly fluctuate based on many factors. New families, devices, technologies and design 
innovations are regularly announced. The information in this table is not comprehensive 
and may not list the full range of any company’s offering. 

Table 2.6

Manufacturer Technology
Altera® SRAM, Flash
Actel Antifuse
Lattice SRAM, Flash
Quicklogic Antifuse
Xilinx SRAM

I1 O1

O2

O3

Figure 2.10  
OTP FPGA example
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2.2	 SRAM-Based FPGA Architecture
An FPGA device is an integrated circuit with a central array of logic blocks that can be con-
nected through a configurable interconnect routing matrix. Around the periphery of the logic 
array is a ring of I/O blocks that can be configured to support different interface standards. 
This flexible architecture can be used to implement a wide range of synchronous and combi-
natorial digital logic functions. Figure 2.11 shows a simplified view of a basic FPGA device. 

SRAM FPGAs can be configured and reconfigured with the IC permanently mounted to 
the HW target board. This allows system engineers to accommodate design fixes, updates, or 
feature enhancements, without costly board re-spins or white-wires. Avoiding the significant 
time penalty and NRE costs associated with board re-spins or addition of wires and compo-
nents to existing hardware is critical with rapid system development.

FPGA devices are based on a number of common configurable structures. While there 
are minor and major variations in the implementation of these structures between manu-
facturers and device families, the structures are common to almost all mainstream FPGA 
devices. The fundamental FPGA structures are as follows. 

FPGA Structures
■	 Logic Blocks
■	 Routing Matrix & Global Signals
■	 I/O Blocks
■	 Clock Resources
■	 Multiplier
■	 Memory 
■	 Advanced Features

Figure 2.11  Simplified 
FPGA block diagram
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2.2.1	 FPGA Logic Block Structure
FPGA logic blocks may have different architectures within different families, even if they are 
from the same manufacturer. Each manufacturer tends to call the lowest-level FPGA logic 
block by different names including logic cell, slice, macrocell, and logic element (LE). To clar-
ify further discussions, the term slice will be used to refer to this structure. A traditional slice 
will typically contain one or more N-input look-up tables (LUTs) along with one or more flip-
flops, signal routing muxes, control signals and carry logic. Figure 2.12 shows a generic slice. 
In the advanced FPGA families, the internal architecture of a slice is often quite complicated.
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Figure 2.12  Simplified 
slice architecture
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Figure 2.13  Look-up table equivalence

Each LUT element can implement any Boolean function with N or fewer inputs. The 
size and interrelationship of LUTs within the logic block can affect the resource utilization 
and implementation of a design. Designers should be familiar with the details of the logic 
block architecture for the most efficient design implementation. Traditionally, a majority of 
the implementations of LUT architectures have four inputs.

The LUT is simply a memory element. The delay through an LUT is constant regard-
less of the Boolean function implemented. The LUT delay is fixed, since it is based on a 
memory element implementation. LUT elements may also be used as memory elements such 
as FIFOs. This feature will be discussed in more detail in the memory section of this chapter. 
Figure 2.13 illustrates the equivalence between a Boolean logic gate implementation and an 
LUT-based implementation of the same functionality.
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The LUT elements can either feed out of the slice or into a register. Registers are also 
referred to as flip-flops, or FFs. FFs are time-based elements and are fundamental elements 
of all clock-based circuits. The flips flops can support clock enable and asynchronous set 
and reset functionality. There are typically many different potential configurations for these 
flip-flops. For more details on a specific device family, refer to the manufacturer device family 
documentation.

In order to support higher levels of functionality, slices may be grouped together by the 
manufacturer, forming a larger structure. Figure 2.14 illustrates a grouping of slices forming a 
larger structure. The nomenclature, architecture, features and sizes of these larger blocks var-
ies between supplier, family and device. Some example names for these combined logic block 
groups are: tile, configurable logic block (CLB), logic array block (LAB), and MegaLAB. To 
clarify further discussions, the term CLB will be used to refer to multislice structures.

Finally, these logic tiles or blocks can have different architectures within different 
devices and may even vary between families of a specific FPGA vendor. The generic FPGA 
logic block goes by different names including: logic cell, slice, macrocell, and logic element. 
Groups of logic blocks are also called by various names including: configurable logic block 
(CLB), logic array block, and MegaLAB. 

Figure 2.14 
Simplified Xilinx CLB
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Slice

Routing 
Segments

Switch Box

Figure 2.15 
FPGA signal routing

2.2.2	 FPGA Routing Matrix and Global Signals
The fundamental routing elements for an FPGA are the horizontal/vertical routing channels 
and programmable routing switches. The number of routing channels varies between FPGA 
device manufacturers and families. The function of the horizontal and vertical routing chan-
nels is to provide a connection mechanism between routing switches. The routing switch is 
programmable and can provide either 180- or 90-degree routing path. The routing switches 
are located between each column and row of CLBs. The switches are connected to the CLBs 
at their inputs and outputs with wire segments. Figure 2.15 shows a typical routing matrix. 

Constraints have a significant impact on routing path implementation, which will affect 
logic timing. Constraint implementation is an important topic and will be addressed in a lat-
er chapter. The next mechanism the FPGA employs for connecting both switches and CLBs 
is carry chain logic. The direction of the carry chain can either be vertical or horizontal 
depending on the architectural convention of the FPGA device. Carry chain logic is com-
monly used to build large efficient structures for implementing arithmetic functions within 
the general logic fabric. Figure 2.16 shows an example of a carry chain implementation.
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In parallel with the regular signal routing matrix, most manufacturers have also imple-
mented global low-skew routing resources. These resources are typically limited in quantity 
and should be reserved for high-performance and high-load signals. Global routing resources 
are often used for clock and control signals, which tend to be both high-performance and 
high-fanout. Designers can allow the tools to select the signals that are assigned to global 
routing resources, or they can control global assignments through the use of design con-
straints and tool switches.

2.2.3	 FPGA I/O Blocks
The ring of I/O banks surrounding the array of CLBs is used to interface the FPGA device 
to external components. Traditionally, the ring of I/O banks is either staggered or in-line 
around the FPGA device. The difference between staggered and in-line I/O is just as the 
names describe. A trade-off must be made architecturally between the number of available 
signal pins and the amount of resources implemented within the device. This ratio is deter-
mined and implemented by the manufacturer and will vary from device to device. Figure 
2.17 shows a generic I/O bank implementation method.

Figure 2.16  Carry logic
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Figure 2.18 
Example DDR IO  
block structure

I/O block (IOB) is a common term used to describe an I/O structure, although other 
names may also be used. An IOB includes input and output registers, control signals, muxes 
and clock signals. The signals routed through the I/O block can be registered or unregistered. 
The output block may also support the implementation of a three-state circuit within the 
IOB. In contrast, the input registers will not have a path through a three-state device. Since 
CMOS circuits use power in the indeterminate state, inputs left floating can cause extra 
power to be consumed. Thus, unused FPGA inputs should not be left floating. One approach is 
to configure unused pins as outputs. Figure 2.18 presents a simplified IOB architecture.
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Figure 2.17 
FPGA I/O banks
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In order to interface to different types of logic, an FPGA device IOB must support multi-
ple IO interface standards. Both single-ended and differential operational modes are typically 
supported. Examples of single-ended standards include PCI and LVTTL. Examples of differ-
ential standards are LVDS and LVPECL. Due to the large number of standards, it is essential 
that FPGA family data sheet and appropriate application notes be reviewed prior to hardware 
design to guarantee correct FPGA operation. It may also be necessary to reference specific 
standards since FPGA documentation may not repeat standard technical specifications.

The selection of a specific I/O standard can be implemented via a selection within the FPGA 
tool set. This selection is typically made when assigning pin locations to specific signals. Pin 
location assignment can significantly impact design implementation and performance. Pin 
assignment and pin locking is discussed in detail later in this book. Other I/O features and 
operational modes may also be implemented within the FPGA and be under the control of 
the design team. Following is a list of potential configurable I/O features. 

IOB Configurable Features
■	 Pull-up or pull-down

■	 Status of “unused” I/O

■	 I/O slew rate

■	 I/O drive strength

■	 Supported I/O standards

■	 Characteristic impedance termination 

2.2.4	 FPGA Clock Resources 
The primary FPGA element for handling, managing and adjusting FPGA local and system 
clocks is the CLOCK block. Clock manipulation can be implemented based on two different 
technologies: the phase-locked loop (PLL) and the delay lock loop (DLL). 

PLLs generate the desired clock phase or frequency output by making adjustments to a 
voltage-controlled oscillator. PLLs are inherently analog circuits and therefore they perform 
better when supplied with “clean” power and ground. It may be desirable to provide split 
planes to provide isolated power and grounds. This can complicate board layout. 

DLLs access signals from a calibrated tapped delay line circuit internal to the FPGA to 
produce the desired clock phase or frequency. DLLs are digital circuits. Figure 2.19 presents a 
graphical representation of the two technologies.

To provide worst-case clocking delays within FPGA devices, both global and regional 
clocking techniques are used to disperse clocking across the FPGA fabric. Global clocking 
includes the implementation of global steering logic and buffers for distributing the clock 
within the FPGA. Global clocking typically begins in the middle of the device and then 
branches into smaller regions. FPGA devices are typically divided into four or more clock-
ing regions. Regional clocking can also be provided to individual FPGA regions. Figure 2.20 
illustrates this point.
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Clock

Regional Clock

Differential clocking is typically implemented for global signal distribution and is 
essential for high-speed memory I/O interface (Example DDR2 interface). The desirable 
characteristics of differential clocking include faster edge rates, improved noise immunity, 
and inherently balanced duty cycles. Differential clocking also supports higher frequency 
operation and more reliable data transmission.

Figure 2.20 
Potential clocking 
implementation

Figure 2.19 
PLL and DLL clocking
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2.2.5	 FPGA Memory
Memory resources are critical for many advanced FPGA applications. There are two primary 
types of memory within FPGAs, distributed and block memory. Distributed memory takes 
advantage of the fact that LUT elements are implementations of SRAM memory blocks. 
Block memory is the implementation of dedicated SRAM memory blocks within the FPGA.  

Memory elements embedded within FPGAs are usually referred to as block RAM, 
embedded system blocks (ESB), system RAM, and content addressable memory (CAM).

Higher-performance FPGA devices typically have larger numbers of dedicated memory 
banks in addition to the inherent distributed memory functionality. Dedicated memory 
blocks in dual-port configuration may support asynchronous and synchronous reads and 
writes. Other potential capabilities include parity, clocking control and reset functional-
ity. They can be configured to support a broad range of applications. Example applications 
include cache for an embedded FPGA processor core or a FIFO supporting data buffering for 
a DSP function. 

2.3	A dvanced FPGA Features
As FPGA devices and architectures continue to evolve, certain advanced structures will be 
implemented in significantly different ways by different manufacturers. Often these advanced 
FPGA structures and features are targeted toward very specialized applications and technol-
ogy specialties. The competitive market of programmable devices encourages manufacturers 
to develop and offer features that no one else offers. This allows manufacturers to differentiate 
their products, claim superior performance and develop some user loyalty to an architecture 
that meets their specialized needs effectively.

Some of the technology areas where manufacturers are offering advanced features include: 
Advanced FPGA Structures and Implementations
■	 Enhanced clock features 

■	 Intellectual property (IP)

■	 Embedded processors (hard and soft)

■	 Digital signal processing (blocks, tools, design flow)

■	 Advanced I/O standards and protocol support

2.4	 Summary
This chapter provided a high-level overview of the primary categories of programmable 
logic and the factors that affect PLD technology selection. The three PLD categories include 
SPLDs, CPLDs and FPGAs. The crossover between CPLD and FPGA applications was 
discussed. The overlap between the two technologies can be significant; however, for larger, 
more complex projects, FPGA technology provides many benefits. The primary types of 
FPGAs and major FPGA manufacturers were presented. The primary FPGA categories are 
OTP and SRAM-based. SRAM-based FPGAs are typically better suited for rapid system 

KEY
POINT
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Figure 2.21  Generic FPGA architecture

prototyping applications due to their reprogrammability and flexibility. Since SRAM-based 
FPGAs are well suited for rapid system prototyping, special attention was focused on the 
architecture of SRAM-based FPGAs. The structures introduced in this chapter will be ref-
erenced throughout the remainder of the book. Figure 2.21 illustrates the FPGA structures 
presented in this chapter.
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The fundamental FPGA structures presented included the CLB and slice, routing matrix, 
global signals, I/O blocks, clocking resources and memory. The advanced features, including 
intellectual property, embedded processors, DSP blocks and advanced I/O will be presented 
in more detail in dedicated chapters later in the book. 

This book uses the term slice to represent the lowest-level element within an SRAM-
based FPGA. A slice is the fundamental element within an SRAM-based FPGA that is 
used to build larger logic structures. Slices may have different architectures within different 
families, even among FPGA devices from the same manufacturer. Alternative names for a 
slice include logic cell, macrocell, and logic element. The elements making up a slice include 
LUTs, flip-flops, dedicated logic and routing for connecting the elements. The LUT is a 
memory element used to implement any Boolean function with N or fewer inputs, where N 
is the number of inputs into the LUT. The number of inputs to the LUT may vary between 
manufacturer, family and device.
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Manufacturers of SRAM FPGAs may also group slices into larger structures to form more 
complex logic blocks capable of providing a higher level of functionality. The name that is 
used for slice groups within this book is CLB. As with slices, the nomenclature, architecture, 
features, and size of these larger blocks may vary between manufacturer, family and device. 
Alternative names for CLBs include tile, logic array block and MegaLAB.

To build large logic structures, SRAM FPGAs use vertical and horizontal routing signals 
in a matrix arrangement that are paired with switch boxes at intersections to support FPGA 
element interconnection. These switch boxes or routing switches can implement both 90- 
and 180-degree routing connections. Switch boxes are located at the intersection of rows 
and columns and interfaces of CLBs and slices.

SRAM FPGAs interface to external circuitry via a ring of I/O blocks. These I/O blocks 
are referred to in this book as IOBs. Groups of I/O blocks can be collected into I/O banks. 
Individual IOBs have the ability to interface with a wide range of I/O standards, which can 
be selected by the FPGA designer. Available IOB standards may be limited based on the 
configuration of the I/O bank of individual IOBs. The primary FPGA element for handling, 
managing and adjusting FPGA local and system-level clocks is the CLOCK block. To provide 
improved margin timing within FPGAs, global and regional clocks should be utilized.

SRAM FPGAs have two primary types of embedded memory: distributed and block 
memory. Distributed RAM takes advantage of the memory-based structure of LUTs within 
the logic fabric; block RAMs are dedicated memory blocks placed within the FPGA fabric. 
The size and supported modes of operation for block memories may vary between manufac-
turers and device families. 
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Optimizing the 
Development Cycle

3.1  Overview
As in other specialized engineering disciplines, most successful FPGA design teams follow a 
defined design flow. The order and relationships between the required design steps are fixed 
for most projects. The highest level of the FPGA design flow starts with design specifica-
tion and follows through to volume product manufacturing. Figure 3.1 illustrates the FPGA 
design flow at a high level.
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In order to develop a system rapidly and efficiently, it is essential that an optimized 
design flow be adopted and then followed. This optimized design flow should help the design 
team remain focused on implementing the design tasks in the most efficient sequence pos-
sible. The design flow should require design reviews at appropriate design stages and should 
identify critical milestones and primary design phase objectives and the expected results. 
The optimized design flow should also highlight critical design decisions and encourage extra 
diligence when making these decisions.

The FPGA design flow is inherently iterative in nature. Almost all of the FPGA design 
cycle phases are iterative. Many design decisions will have significant influence on the effi-
ciency of subsequent design stages, including FPGA family, device, language, tool and design 
hierarchy selections. Any increases in the time required to implement a design process may 
be multiplied many times over, since the affected design stages are likely to be within an iter-
ated phase of the design cycle. The time required to move through each of the FPGA design 
phases depends heavily on the design specification, complexity, project size, tool set, design 
team experience, and design requirement stability.

The primary objective in rapid development is to shorten the design cycle—the cycle 
from definition of system requirements to demonstration of working functionality. This can 
be best accomplished by limiting/reducing the conventional iterative nature of the FPGA-
based design cycle.

3.2  FPGA Design Flow
The high-level design phases associated with FPGA design include requirements, architec-
ture and design, implementation, and verification. In the requirements phase, the high-level 
requirements are defined and then refined. The product of this phase is a description of 
functionality required to implement the system. The next phase is the architectural and design 
phase, where the manufacturer, specific part, and tools are selected. This is an excellent time 
to invest in design team training. The issues addressed during this phase are the allocation 
between discrete fixed-function components and programmable components and between 
hardware and software implementations. Also, this is where the design is partitioned into 
blocks and modules. The implementation phase occurs after the design is complete. 

The implementation of the design involves design capture, design constraint, design 
integration, functional design simulation, timing verification, report analysis, and generation 
of files to download to the target board. The next phase is the verification phase, in which the 
design is formally and (if possible) independently tested to ensure system requirements have 
been properly implemented. This phase involves the continued detailed simulation, design 
testing, debug and functional verification within FPGA components on the target board. 
Table 3-1 summarizes the different phases of a design and the associated primary actions.
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Table 3.1

Design Phases Design Phase Primary Actions
Requirements 
Phase

■   Define and refine high-level and detailed project functionality 
and performance requirements, resolve ambiguity, conflicts and  
contradictions

■   Document requirements, eliminate redundancy
Architecture and 
Design Phase

■   Select design functional implementation technology
■   Select manufacturer, family, component and design tools
■   Define system architecture, evaluate design implementation  

alternatives
■   Partition design functionality between discrete fixed-function 

components and programmable components
■   Partition design functionality between hardware and software 

implementation options
■   Define design module functionality and interfaces

Implementation 
Phase

■	 Implement the design; design capture, review, constrain, 
integration

■	 Initial design simulation, timing verification, report review and 
analysis

Verification Phase ■	 Design testing; detailed simulation, timing verification, necessary 
design updates

■	 Generate files to download to the target board
■	 Debug and verify functionality on target board
■	 Utilize FPGA embedded logic analyzer functionality

It is common for a significant gap to exist between the amount of time and effort a design 
phase is perceived to require and the actual time and resources expended. For example, a 
majority of a typical design cycle is spent in the phases of design fine-tuning, integration, 
debug and verification while only a small percentage is spent defining requirements, archi-
tecting the design, partitioning and capturing the initial design concept. This is interesting 
because  the most significant impact on the design implementation occurs during the earli-
est design phases, which typically receive a minority of the resources expended. Managing 
this important issue is a recurring topic within this book. Effort in these foundational design 
stages has the ability to significantly affect overall design efficiency. 
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Several factors will influence the effort and time devoted to the early design phases. 
Clear, complete and unambiguous requirements will generally contribute to more efficient 
design architecture. A carefully developed and defined design architecture is easier to 
implement and partition into well-conceived design blocks and modules. Design modules 
with well-defined and characterized functionality, performance and interfaces are easier 
to develop, implement, review, evaluate and test. Designs that have been efficiently and 
clearly developed, implemented and tested are easier to integrate, modify and maintain. If 
this sequence of efficient design phases can be consistently implemented, design cycles can 
be minimized and many design issues resulting from last-minute changes and poorly con-
ceived system architectures and module implementation can be avoided.

Additional effort in the early design stages can and will significantly reduce the 
overall time and effort necessary to implement a fixed (or variable) functionality set. An 
efficient rapid prototype development cycle is based on minimizing the time and effort 
required to tune, integrate, debug and verify any given design functionality.

The following descriptions provide more detail on the tasks which must be completed 
during the primary design phases specified.

Requirements Phase
Design Specification – Define and detail the required functionality, interfaces, performance, 

and design margin. Develop and maintain a design requirement specification as a “living 
document.”

Architecture Phase
Systems Engineering/Design Partition – Partition design into functional blocks, allocate 

functionality, and performance requirements. Define system architecture and design 
hierarchy. Determine which design components will implement required functionality.

Implementation Phase
Design Entry (HDL) – Design entry and documentation with a high-level software language 

(HDL). Generate code to implement required functionality. Initial design simulation. 
Code configuration control. 

Synthesis to RTL – Synthesize higher-level HDL code blocks to lower-level representation 
called register transfer logic (RTL). RTL defines Boolean equations, data storage and 
design element connectivity. Influence design implementation through use of synthesis 
constraints and software switches. 
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Behavioral Simulation – Simulation based on assumed gate and routing delay values. 

Place and Route – The RTL design is adjusted to fit into the design elements available 
within the FPGA device. The targeted design is then iteratively placed in the logic 
fabric to find the “best” relationship between all design elements. The design signals or 
“nets” are then iteratively connected or “routed” to find the “best” connectivity solution. 
The definition of “best” is “good enough” to meet or exceed the defined performance 
requirements.

Timing-Based Simulation – Once an FPGA design has been placed and routed (also called 
fitted) into the target component architecture, the calculated block and routing delays 
are back annotated into a design database. Simulation can then run using the updated 
database allowing verification of the dynamic timing behavior of the synthesized, 
mapped, placed and routed design. The simulation at this phase is the most accurate 
system-level simulation.

Verification Phase
FPGA Design Download – The design file that defines the state of every configurable ele-

ment within the FPGA is “downloaded” to the part. This process is also referred to as 
“configuration.”

Debug and Verification – Using external test equipment and access to internal nodes, the 
design’s functionality and real-world performance is verified.

In addition to thorough design specification, rapid embedded development also requires 
efficient design, verification and testing efforts. An added challenge with prototyping efforts 
is the relatively large amount of new and untested functionality within the design. Ultimate-
ly, the primary objective is to design, debug, test and deliver the desired circuitry with the 
required functionality as quickly and efficiently as possible. 

For example, while working on the FPGA pin assignment mapping, the designer must 
be aware of the internal signal routing, working to reduce on-chip signal line crossover and 
signal congestion (which can occur at the corners of the FPGA die). If the design team does 
not make decisions with an awareness of the consequences of choices on future design 
phases, additional design iterations may be required.

KEY
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Figure 3.2 shows an optimized design cycle flow. Notice that an ongoing natural iterative 
cycle occurs between individual design steps and phases. The objective is to minimize avoid-
able iteration in order to maximize efficiency.
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Architect Design
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Package, Device
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By focusing additional effort in these key areas, the design cycle can be consistently 
reduced to a minimum and many common mistakes and oversights reduced, limited or 
eliminated. Incorporating these measures into the design cycle should allow the most 
efficient design implementation possible, saving design budget, reducing schedule and 
minimizing the resources required to implement the desired functionality. Following is a list 
containing some design risk areas.

Figure 3.2 Optimized FPGA Design Flow
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Design Risk Areas

■	 Not being able to rebuild a design

■	 Not having all the original/required files

■	 Confusion as to which files are most current

■	 Challenges with design updates affecting multiple design “chains”

■	 Not having the appropriate tools, updates, associated files (speed files?) and license/
dongles

The ultimate challenge is to achieve a higher level of efficiency with the same level of 
reliability with lower program design cycle costs. Although the basics for designing can be 
obtained in datasheets, application notes and other technical literature or training, the 
hard lessons are taught through failures and experience. While this is unfortunate and 
typically unavoidable, what is most important is that failures not be repeated.

3.2.1 R equirements Phase 
In order to implement a design rapidly with minimum design thrash, the project 
requirements should be clear, well-defined and stable. The documentation can be infor-
mal—something as simple as a Microsoft® Word document with bullets—but ideally should 
be as complete as possible and easy to maintain. Good examples include either a table-based 
document or a spreadsheet. (The challenge with a spreadsheet is the per-cell character 
limit.) Formal or informal configuration/version control on the requirements document is 
desirable. It is also a good idea to determine who made updates to the requirements, who ap-
proved them and when they occurred.

Sufficient documentation makes it easier to add resources to a project or revisit a project 
in the future with limited access to the original design team. Many FPGA design schedules 
(and budgets) are vastly extended by allowing too many changes too often and too late in 
the design cycle. Requirements must be managed in order to be able to maintain control 
over a development cycle.

The challenge with FPGA design is that the technology is perceived to be so flexible 
that there are typically few limits on the changes made to the requirements of a project. 
Changes have the potential to seriously affect a project’s architecture and, therefore, the 
schedule. Try to limit the number and scope of changes to actual requirements, especially 
as the project progresses. Collect and document the FPGA components requirements and 
required functionality in as formal a document as the project and organization can support. 
The objective is to formalize the requirements while minimizing the additional burden 
added to a project. Apply some limits as to who can change requirements and why. Con-
sider developing the requirements document as a group and have only a few individuals with 
the responsibility/authority to update the document. Keep the document up-to-date. Make 
sure that updates to the requirements (additions or changes) get effectively communicated to 
the complete design team. 
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Consider treating any new requirement as an Engineering Change Order (ECO) or 
Change of Scope. What are the potential effects on the design? Will additional resources? 
Will there be an impact to the schedule? The nature of FPGA design does not generally 
support a “complete” design requirement in the earliest stages of the project; it is likely the 
requirements will be a “moving target.” The objective is to limit the range and speed of the 
moving target. Without organizational discipline and an established requirements update 
procedure, a project can experience significant wasted effort due to project “churn” if engi-
neering work is started before the requirements have reached a critical mass or if changes are 
too easy to make.

Requirements should define what the functions must implement. The requirements 
document should specify what is required, not how it will be implemented. Interface defi-
nitions are critical; more detail is likely to help streamline the design process. Examples 
include: What signals are required? What signal states, levels, data formats and protocols will 
be used? What operational speed? What special timing requirements? Testability provisions: 
Built-In Self-Test (BIST), scan chain support? Efforts should be made to record all likely de-
sign constraints: power, thermal, package, I/O count, interface requirements and mechanical 
limitations. Insert To Be Determined (TBDs) where final details are not fully defined. These 
serve as a reminder that additional decisions must be made as the design progresses. Strive to 
identify the hard, firm and soft requirements. Some requirements will be completely non-
negotiable; other requirements may be “nice to have” rather than solid requirements. Try to 
avoid restating the same requirements multiple times or in different ways, as this makes the 
document easier to follow, clarify and update. Try to group related requirements but isolate 
requirements into individual statements rather than complex sentences or paragraphs. Avoid 
aggressive performance goals and over-designing for projected future needs; determine the 
current required performance and specify future design objectives and goals.

3.2.2 A rchitecture and Design Phase
Architectural requirement allocation is a critical phase of the design cycle. There are gener-
ally multiple viable approaches for implementing a system in programmable logic. Some are 
more efficient than others, in terms of how easily a system can be defined, implemented, de-
bugged, and tested. It is critical during this phase to provide well-defined interface definitions 
for communication with other system blocks and elements. There is also a need for good 
definitions for the required/expected functionality of each block. Important elements to keep 
in mind include breadboarding, use of evaluation boards, trade studies, and design margin.

At this stage of the design it can prove beneficial to conceptualize a portion of the 
design. Take advantage of ability to “breadboard” concepts and functionality. Utilize tools to 
provide educated estimates of potential design performance and characteristics (use power 
estimation tools to determine potential power consumption, use evaluation and demo boards 
to test critical functionality and performance in hardware to verify part and technology 
selections, use simplified similar complexity functionality to estimate resource requirements). 
Breadboarding functionality on evaluation boards allows the design team to build confidence 

KEY
POINT
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in proposed design architectures, verify performance metrics, reduce design risk and proj-
ect schedule. Breadboard implementation of functionality has a lower risk than simulating 
design functionality, since hardware-based design implementations can be more easily tested 
with real-world data streams and control signals. 

Using an evaluation board to implement test functions can provide a high level of con-
fidence in that the required design functionality can be implemented and that the required 
level of performance can be achieved. Evaluation boards provide a reliable platform for 
evaluating different design approaches and implementing specific design functionality. Try 
to utilize boards with FPGA components as similar in size and architecture (within the same 
FPGA family) to the targeted part as possible. If evaluation boards with the desired function-
ality are only available with a different FPGA or a preproduction part, gather information on 
how the part on the board differs from the target part. 

When considering evaluation board test circuit implementation, do an analysis to ensure 
that the test functionality can be implemented in the targeted design or that the knowledge 
gained from running the test is worth the resources required. It is essential that the design 
team not be distracted from focusing on the main design effort. The evaluation criteria to 
pursue a side-task should be whether it can be integrated into the main design effort and will 
not take much more time to implement than implementing the main design function itself. 
The risk is that the effort required to implement, debug and evaluate a testbench evaluation 
on a development board will exceed the direct benefit to the design effort.

Breadboard development can help identify requirement conflicts and ambiguities. 
Correcting requirement issues earlier in the design cycle will result in less lost work effort. In-
formal design and requirement reviews should be considered during evaluation board design 
efforts to keep design tasks focused. Trade studies are important in all areas of engineering; 
however, they have particular value when evaluating the typically complex, interdependent 
decisions associated with FPGA technology decisions. 

Trade studies are important in making complex manufacturer, part and tool selections. 
They have the advantage of documenting design decisions and trade-offs for management 
review and future analysis. If individuals outside the direct design team are making critical 
decisions affecting the project, the information gathered by the design team can be presented 
to them to help clarify the trade-offs, and to guide more informed decisions. 

Trade studies are effective for tracking diverse topics and subjects that can be difficult to 
organize and categorize. While there are many similarities between different FPGA families, 
there will often be unique differences between components which must be evaluated. An 
example might be the development of a product for the commercial mobile device market. 
This application requires the FPGA function to occupy a small real-estate footprint and be 
low-power, low-profile, and low-cost. Which of these requirements is most important? Which 
is least important? Which ones are almost equal? Which ones will take precedence? What 
if the priorities change? These issues defy independent analysis, yet require critical, timely 
decisions. As information is collected, it must be organized so that a side-by-side comparison 
of each of these critical design elements can be conducted. 
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A trade study can provide an efficient way of organizing the diverse design factors. The 
horizontal axis can list the potential manufacturer, part family and specific parts under evalu-
ation. The vertical axis can list both dependent and independent factors that will influence 
design decisions. These factors and elements can be primary or supporting. An example 
trade-study horizontal axis is shown in Table 3.2.

Table 3.2

Manufacturer   Part Packaging I/O Speed Logic Capacity Migration Path    
Cost  

(Q 1K)    
Tool Set       

Other
Features

Design Topic Option 1 Option 2
Manufacturer   
Part
Packaging
Available I/O
Special Considerations
Speed
Logic Capacity Range
(Slices)
Migration Path    
Cost  (Q 1K)    
Tool Sets
Other Features

The trade study table can also include columns for notes, support personnel, the level 
of support personnel experience (and their level of availability), the perceived ease of use of 
associated design tools, tool costs, prior in-house experience, and so forth. This approach has 
the potential of bringing together many different design factors that influence the part selec-
tion, component and technology decisions.

As the trade study develops, trends and relationships should become evident. The cor-
rect format should support direct comparison of features, advantages and disadvantages. The 
format can also help highlight areas that require further research.

Design margin is important to FPGA design. The flexibility of FPGA design encour-
ages functional enhancements and design expansion during the course of a project’s life. At 
a minimum, the FPGA selected must support implementation of the functionality defined 
at the beginning of the project. Ideally, the family, package and component selected will 
allow design expansion as required during the project. The amount of margin to include in 
a design can be a challenging decision. With insufficient margin, the design will not be able 
to accommodate additional functionality. With too much margin, the product will include 
extra resources that are not utilized, adding additional cost burden to the product.
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Another factor with margin is that it requires a relatively accurate estimate of the re-
sources required. Generally, estimates are established by calculating minimum and maximum 
resource requirements. Based on design factors including risk, expected accuracy, potential 
future functional needs, and budget, estimated margin can be determined. Additional design 
margin should be added in proportion to the level of design phase risk.

Margin should be considered for pin count, logic resources, memory, processor perfor-
mance, processing capacity, speed and fixed hard IP functionality. Some of these elements 
have a degree of flexibility, since additional design work can shoehorn functionality into a 
smaller resource footprint. Other design elements such as memory or number of implemented 
“hard” Ethernet MACs may be fixed and difficult to work around if sufficient resources are 
not included in the design.

Each portion of the design should be budgeted for a range of resources to implement the 
required functionality with future potential expansion/extension of functionality taken into 
consideration. Margin should be included for each design block with consideration of system 
margin goals and individual block risk and/or potential for design expansion/growth.

Ultimately, each design module should be verified to be within the range of resources it 
was assigned. If a module looks as if it will exceed (or, far less likely, significantly undershoot) 
its requirement range, the system engineer should be informed so that the overall design bud-
get (and associated design margin) can be recalculated. Ideally, the overall design margin and 
individual block margins should be capable of absorbing the expected range of functional 
expansion without exceeding the overall resource budget.

Design Partitioning
One important method for increasing a design’s ability to absorb change is to implement 
informed subsystem segregation. In rapid development, individual design subsystems can be 
developed concurrently by isolated groups of specialists. This requires the development of 
individual blocks designed to specific requirements, allowing independent development and 
verification. Depending on the design, the individual blocks can be implemented by special-
ists separated by both location and specific design knowledge. Ideally, the modules should 
be designed so they are highly independent of one another. This can isolate risks associated 
with functional implementation and allow design modules to be updated with less disruption 
to the rest of the design implementation.

With a modular design approach, the design integration phase can also progress more 
smoothly if the individual modules’ functionality and interfaces have been correctly defined, 
implemented and tested. If the design is instead implemented with highly interdependent 
modules, any changes required in the design cycle will affect many portions of the design, 
making design updates complex and time-consuming. Critical elements in a modular design 
are timing and design block interfaces, both internal to the FPGA and between the FPGA 
and external devices and circuits. The challenge is to produce, as quickly as possible, a small 
number of systems that implement the required functionality.
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When evaluating functional design options, consider a range of potential design imple-
mentation approaches. Develop a high-level and detailed FPGA system block diagram. 
Develop functional level block diagrams, including appropriate interface details. The design 
conceptual phase will be closely tied to the definition of system modules and design blocks. 
Keep in mind that design requirement updates are likely to occur during the architecture and 
design phase.

Careful design partitioning is essential if the design is being captured utilizing a hierar-
chical approach. Design partitioning has added benefit if more than one design team will be 
working on different sections of the design, or if subsections of the design will be simulated 
independently.

Carefully considered design partitioning can make working with individual elements 
of the design far easier than working with a design that was poorly partitioned. Design 
partitioning has added benefit if more than one or two individuals or design teams will be 
working on different sections of the design or if subsections of the design will be designed 
independently. At its worst, poor partitioning can affect functionality and operational speed. 
Partitioning is usually implemented by organizing the project into hierarchical levels and 
groups. The selection of design boundaries can have significant effects on placement and 
routing and overall compilation efficiency. Group related functional blocks, or blocks that 
have many signals in common has the greatest effect on the place-and-route process. Sepa-
rate portions of the design that have different design goals (performance, area, etc.) allows 
the designer to apply appropriate compiler directives to specific design blocks. Where pos-
sible, divide groups along boundaries where signals are registered. Avoid assigning a boundary 
across combinatorial logic, since this can interfere with logic optimization. The following is a 
list of partitioning considerations to keep in mind:

■	 Group blocks by common functionality

■	 Group functions that have many signals in common 

■	 Align block boundaries where signals are registered

■	 Divide groups along boundaries where signals are registered

3.2.3 Implementation Phase
The design tools are an important part of the implementation phase. The design team should 
have the tools they need to get the job done in a comfortable and efficient manner; these are 
not necessarily the best tools available, just tools appropriate to the schedule, task and work 
environment. If the design team does not have the best tools for the job in place now, de-
velop a schedule projecting when the appropriate tools will be available to the team to help 
maintain enthusiasm and motivation. 

It is desirable to reduce as many factors that can affect a design as possible. For this 
reason, it is best to implement a design with a common software design tool set. This gener-
ally requires that a design be implemented with the same design software throughout the 
entire design phase. Generally, software version updates should occur only between projects. 
If an update is required during a design cycle, it should only be implemented based on a real 
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need as opposed to a desire to keep the design software “current.” If a problem or issue that 
is affecting the current design has been identified, which a newer version of software or a 
software update such as software patch fixes, a software update should be considered. When 
moving forward to a new software version (or installing a software patch to a current soft-
ware version) the design team should be aware of: 

■	 What issues are addressed by the software update? 

■	 Is the new software version compatible with previous software versions (i.e., can a 
design be moved back and forth between the different versions of the software)? 

■	 What does the software update fix? 

■	 What are the software improvements? 

■	 What are the known problems with the new software? 

■	 Will these problems affect the design? 

■	 When will a fix for known problems be implemented? 

■	 Can a new and old version of the design co-exist on the same computer? 

■	 Can a design transition without any problems or complications back and forth 
between the newer and older software versions? (It is not unusual for a design to be 
“ported” forward to a new software version with no capability to be converted back to 
a previous software version.)

The primary advantage of FPGAs in product development is the ability to reprogram 
the component in-circuit. This often allows design issues to be resolved for functionality 
implemented internal to the FPGA component. Design teams should not limit an FPGA’s 
ability to resolve problems exclusively to functionality within the FPGA component, since 
this unnecessarily limits the technology potential of an FPGA component from a system 
point of view.

It is possible that problems can occur at the board level outside the FPGA that the 
FPGA can potentially resolve if the necessary signals are available. If a component with 
sufficient gate and I/O margin has been selected, the option remains to route board-level 
signals that are not strictly required in the FPGA to support the defined functionality. 
There are many considerations if this extra design effort is to be made, including: Which 
signals? How many signals? Will the additional signals affect FPGA performance? A practi-
cal compromise involves routing signals to the FPGA that could support additional future 
functionality, with the addition of serial surface-mount, zero-ohm resistors in the signal path 
to the FPGA I/O. This supports simple access to potentially required signals without the 
requirement to add white-wires to the design. Additional benefits include isolating potential-
ly noisy signals from the FPGA (by not populating the zero-ohm resistors) and adding a pad 
for alternate design updates or internal FPGA signal access if required. The zero-ohm resis-
tor approach should be limited to slower, less performance-critical signals. The added board 
design effort and component real-estate requirements can generally be justified in terms of 
improved design flexibility.
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It is also possible to support and implement additional design functionality after a PCB 
board has been laid out with FPGA technology. With advanced planning, including access 
to the required board-level signals and clocks and sufficient power and FPGA component 
resources, it is possible to incorporate expanded functionality that was not defined at the 
initial product definition into the FPGA component. Often as a design progresses, there are 
features that “would be great to have,” but were not incorporated in the initial design. With 
the right up-front planning and preparation, the FPGA component can often accommodate 
additional features and functionality.

Adding this capability requires a good system-level understanding of the design and 
potential future functional enhancements. Signals and clocks that may be required to imple-
ment specific functionality should be routed to the FPGA to support potential new features. 
Projecting potential future needs helps make “feature creep” easier to implement and support.

Another important aspect in implementation is synchronous design. Synchronous 
design is critical to efficient, maintainable, supportable design implementation. The use of 
synchronous design provides the FPGA design with reliability, stability, simplified simula-
tion, architectural and technology independence, and simplified constraint implementation. 
Synchronous design is discussed in more detail in Chapter 7. The following list outlines some 
of the primary objectives of synchronous design.

■	 Avoid gated clocks (avoid generating derived or divided clocks within logic fabric)

■	 Use low-skew global clock resources appropriately

■	 Use clock enables rather than gating clocks

■	 Use dedicated clock blocks and global routing to minimize skew

■	 Avoid gated asynchronous sets/resets

■	 Register asynchronous inputs

3.2.4  Verification Phase
A design must not only be designed to function and operate but must also be designed to 
support efficient design integration, verification (debug) and maintenance. Consideration 
must be given early in the design cycle as to how a design and its individual elements can 
be accessed during the design cycle. It is a bad idea to build a system that can’t be checked 
or accessed for debug without significant system disassembly. Efforts should be made early in 
the design cycle to position critical design elements (indicator LEDs, switches, power quality 
verification access, test headers, configuration headers, ground pads) so that they support the 
easiest access feasible during each stage of the design cycle. Access consideration to critical 
design elements should be incorporated into the system mechanical design.

Work hard to optimize the debug and verification design phase. Develop a validation/
testing plan to verify the design efficiently and completely. If staffing allows it, try to assign 
individuals other than the designers who implemented the blocks to simulate FPGA func-
tional blocks.
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Add sufficient test points to be able to gain easy access to any required nodes internal 
to the FPGA device or verify a difficult-to-access interface signal set. Strive to implement a 
design that allows easy access to test points, test headers and configuration ports throughout 
the design cycle, including fully or near fully assembled final deliverable product. Consider 
the functionality to be verified before the design can be delivered to the customer and include 
any signal access or special circuitry that will simplify FPGA functional verification. Consider 
including built-in self-test (BIST) functionality within the design. If the final design con-
figuration cannot support the resources required to implement BIST, consider developing a 
second FPGA image that exclusively implements testing and self-testing functionality.

Generate test vectors that cover critical functionality and record FPGA simulation 
results if there is a significant chance of transitioning the design into an ASIC in the future. 
If a second test load is going to be implemented, make sure the FPGA configuration memory 
has the capacity to support the second load and that an approach is implemented that can 
control when and how the “test” version of the FPGA is loaded.

Debug and verification are covered in more detail in later chapters.

3.3  Summary 
A high-level optimized FPGA design flow was presented in this chapter. Key elements within 
each of the design phases were identified and discussed. The development and implementa-
tion of an optimized design cycle flow can allow the design team to mitigate and eliminate 
risk factors which will increase the odds of a successful development effort by achieving 
maximum efficiency. Reduction or elimination of as many common design mistakes and 
oversights as possible throughout the development effort is an important key to successful 
rapid system development.

For maximum efficiency, the design team must develop an understanding of the complete 
design cycle and look ahead during each design phase to determine how current decisions 
will affect future design phases. The design team should develop and maintain a detailed 
functional specification taking into account potential design enhancements and modifica-
tions. The design team ideally will maintain the flexibility of the FPGA design throughout 
the design cycle. This will increase the range of options available to the design team. The 
following list highlights key design topics that are important factors for rapid system proto-
typing efforts.

■	 Pursue a systems-oriented board-level, FPGA-level design approach, allowing maxi-
mum system flexibility

■	 Breadboards can be used to provide early functional verification, thus reducing design 
risk and project schedule

■	 Trade studies are an important tool throughout the FPGA design cycle

■	 Design margin is critical to FPGA design

■	 Informed design partitioning and hierarchical design speed-up development by reduc-
ing the impact of design changes and updates 
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■	 Synchronous design is crucial to repeatable design

■	 Design tool selection plays a pivotal role in design implementation and debug

■	 Thorough testing and simulation at the appropriate points throughout the design 
flow are key to eliminating design defects
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System Engineering

4.1	 Overview
Although the system engineering subject matter in this chapter may be applied towards 
a conventional engineering development, the principles and practices presented here are 
intended to aide the FPGA designer in a Rapid System Prototyping design effort. We should 
first define a common definition that is used throughout this chapter and book as to the 
meaning of a rapid development effort. The definition of Rapid System Prototyping; is “the 
development of system functionality at a faster pace than that of a conventional engineering 
development process, aimed toward meeting demanding time-to-market design cycles while 
mitigating risks associated with a demanding development schedule.” This is what we mean 
by rapid system development throughout this book.

Rapid development requires an efficient and well-organized undertaking of identified 
design tasks. This chapter focuses on the specific decisions and actions that may minimize 
development risk and schedule. Understanding the concepts presented can help designers 
avoid design issues that can slow the development cycle and identify common design pitfalls.

FPGA technology can provide a significant advantage in speeding a design to final tested 
functionality. While FPGAs are inherently flexible devices, issues may arise due to this flex-
ibility. Care must be taken during the design phase to maintain and enhance this flexibility 
since this is the primary advantage an FPGA provides. Maintaining an FPGA’s flexibility 
throughout the design cycle requires focused effort on the part of the design team. With a 
medium amount of additional up-front effort, an FPGA-based embedded design can main-
tain maximum flexibility and adaptability.

There are two primary ways to learn: You can make your own mistakes and learn from 
them, or you can observe and research the mistakes of others and learn from the examples of 
others. The contents of this and the following chapters have evolved from real-world expe-
rience with FPGA rapid design projects. With the common accelerated schedules of rapid 
system prototyping projects design requirements, design documentation, and design processes 
become critical design factors. 
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4.2	 Common Design Challenges and Mistakes
An FPGA design mistake may be defined as a design that does not achieve the desired ratio 
of FPGA resource utilization (I/O, logic, memory, hard IP, resource area) and performance 
(speed/power) implemented within the FPGA device. The number and impact of FPGA 
design mistakes and oversights may be minimized by developing and consistently follow-
ing a optimized FPGA design process. The design process should call out design procedures, 
milestones and design objectives. It should help manage and stabilize the FPGA design cycle. 
These design challenges most relevant to rapid development that impact the management 
and development of an FPGA design are listed below.

Common Design Challenges

■	 Layout

■	 Signal integrity

■	 Clocks 

■	 Pin assignment

■	 Margin: resources, clock, logic, memory, processor,  
performance, schedule, budget

■	 Estimation: Resources, schedule, budget, staffing/manpower

■	 Future design enhancement/expansion path

■	 Architectural implementation

■	 Validation verification

At a system engineering level, common mistakes generally occur when adequate design 
preparation and planning do not occur. The result is an unstable development effort where 
schedule slips and missed design objectives hamper the success of the project. 

The resulting design failures occurring from these common mistakes impact design 
efforts and add significant risk. Usually, this haste is brought about by an overly aggressive 
schedule, a result of wishful thinking brought about by pressure to produce a product meeting 
unrealistic goals. Designers should avoid common mistakes resulting from aggressive schedule 
pressure. Following are some common design mistakes to watch for and avoid.

Common Design Mistakes

■	 Starting an FPGA design in earnest before the requirements are sufficiently defined
■	 System requirement changes that are not “rolled down” to the FPGA requirements
■	 FPGA requirement updates that are not effectively communicated to the design team
■	 Too many FPGA requirement changes 
■	 Significant FPGA requirement changes too far into the design cycle
■	 Allowing too many people to change FPGA design requirements
■	 Insufficient review of FPGA design change impacts

KEY
POINT
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■	 Poor or inconsistent HDL coding standard application
■	 Poor or inconsistent HDL source structure (system architecture)
■	 Poor or incorrect commenting of HDL source
■	 Inefficient HDL coding style
■	 Poor partitioning of design functionality between hardware and software functions
■	 Poor partitioning of design functionality between fixed-function and programmable 

design components
■	 Poor planning for design module and IP functional block integration
■	 Poor planning for design verification (debug & test)
■	 Poor selection of design tools
■	 Insufficient / Ineffective training of design team staff
■	 Poor design documentation
■	 Not enough design margin (resources, schedule, budget, personnel)
■	 Poor design team staffing 
■	 Unclear design responsibility assignment
■	 Allowing the same individuals to implement and test a design module
■	 Over-constraining a design
■	 Poor or incomplete module-to-module interface within the FPGA device
■	 Poor or incomplete FPGA to board-level signal and circuitry interface definition
■	 Incomplete analysis or implementation of pre-configuration I/O signal state for FPGA 

I/O pins
■	 Incorrect pin assignment at the FPGA component level
■	 Incorrect FPGA device footprint signal, power or ground connectivity within the 

target board PCB.
■	 Overly aggressive design schedule
■	 Performance requirements too close to the theoretical maximum performance of a 

family device or technology

4.3	 Defined FPGA Design Process 
Most organizations have not developed an official defined FPGA design process or proce-
dure. Instead, each individual designer implements the process that they deem appropriate 
based on their experience and personal preferences. This lack of a common structured FPGA 
design approach can contribute to FPGA design oversights, errors and inefficiencies. It is 
crucial to establish a correct level of process to guide and control the development and 
design process; too much or too little process can both have a significant impact on project 
progress/efficiency. The correct level of process is a difficult balance to develop and maintain, 
but it is definitely worth the effort.
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Figure 4.1 illustrates a high-level philosophical view of the FPGA design process.

Educate 

Specify 

Allocate / Partition 

Implement / Generate 

Simulate 

Refine Design 

Configure / Test 

Verify / Deliver 

Archive 

Figure 4.1  Philosophical design flow

A direct relationship can be established between the level of FPGA design process 
used and the number and effect of design errors on an FPGA design. (The “FPGA design 
process” can be loosely defined as the established design flow, requirements definition, design 
architecture definition, documentation, design review process, and design standards.) The 
need to follow a common defined FPGA design process is based on the need to make and 
verify a large number of design decisions during the FPGA design cycle. The FPGA design 
process is inherently complex with a higher degree of design flexibility and larger number of 
design options than many other potential design implementation approaches. Simply put, 
with more decisions and available design options, there are more opportunities for mistakes 
and oversights. 

The FPGA design process does not have to be overly formal or add significant overhead to 
the design cycle. An effective design process focuses on reducing the impact and frequency of 
design mistakes. The majority of FPGA design decisions can be modified or adjusted during the 
design cycle with limited design impact. However, there are design decisions and choices that 
can require significant resources (time, money, budget, and personnel) to change or re-address. 
These critical design decisions and processes need to be identified and discussed.

KEY
POINT
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A well-developed FPGA process will reference guidelines and establish standards and 
expectations for project documentation and design reviews. By developing and following an 
established FPGA design process, it is possible to move toward a standardized FPGA design 
cycle that is more science than art and far less dependent on individual design team member 
experience and personal discipline. FPGA design should not be an “ad-hoc” reactive process 
that relies on trial and error and personal experience to solve design issues.

Clear distinction must be made between the architecture phase and the implementation 
phase. Clearly, separating these two design phases reduces the effect of implementing a less-
than-optimum design architecture because the “designers wanted to get a jump on the design 
implementation” and “so much work had already been done using that particular approach.” 
A separation between the two phases can be enforced by requiring the development of a 
presentation and review of the proposed approach before significant design implementation 
efforts are allowed to begin.

Developing a requirements traceability matrix or a rudimentary testing-and-verification 
plan early in the design cycle can help the design team to identify incomplete or conflicting 
design requirements.

It is obvious that generating and updating requirement documents require man-hours of 
effort. It is certainly possible that any of these efforts may be taken beyond the limit of what 
can reasonably be supported by a commercial development effort. However, wholesale rejec-
tion of all these suggestions because “there simply isn’t the time or budget to do anything 
other than get the functionality implemented as quickly as humanly possible” is likely to re-
sult in an equal or greater number of hours spent later in the design process trying to recover 
from mistakes made in the rush to get to the finish line as quickly as possible.

A majority of FPGA design mistakes are caused by not following practices that prevent 
common design failures and oversights to occur. Critical design process steps, decisions and 
tasks can be identified by their significant impact on an implemented FPGA design and the 
high cost of reversing or re-implementing. 

4.4	P roject Engineering and Management
Project management is an important part of an FPGA design effort. Design team members 
will encounter many design decision points and can be counted on to collect information 
detailing the benefits and issues associated with different design approaches, but one 
individual must generally make critical design decisions rather than allowing the chaos of 
“design by committee.”

Management should work to provide the team with clear, common and complementary 
goals and objectives. Management should be aware of factors affecting design productivity 
including available resources, tool issues, training issues, distractions, roadblocks and work to 
minimize their effects. Design requirement changes and “churn” should be minimized.  
Nonstop changes to schedules, proposed functionality, task assignments, and requirements 
will wear down the motivation and enthusiasm of the design team.

KEY
POINT
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 If changes are required, roll them out in an organized manner. Communicate changes 
to the entire team. Verify that design change effects and ramifications have been considered, 
analyzed and incorporated into the design schedule and budget. Roll changes together into 
larger releases rather than rushing out each individual change. Establish a design change 
(both requirements and functional implementation) process. There should be a clear chain 
of command and team members should know who has the authority to make key design deci-
sions. No individual or group within the design team should be allowed to make autonomous 
design changes without peer input and notification. The changes may be necessary, but even 
minor changes can have significant impact on other areas of a design.

Keep the team focused on results by measuring progress toward clearly defined com-
mon goals. By measuring key project task progress, design issues can be identified early that 
need to be addressed to maintain schedule. The adage “what gets measured gets done” is true. 
Supporting team communication, design team communication and coordination is criti-
cal. These both take time and effort and will only become priorities if management leads by 
example and sets clear expectations. 

Table 4.1 lists the important topics associated with effective project management. 

Table 4.1

Decision Develop a clear decision-making process for the project. Either empower 
specific individuals to make decisions or make the decision makers very 
available to the team.

Identify  
Issues

Set up a procedure for identifying design setbacks and issues as early in the 
process as possible.

Deal with 
Issues

Develop a management commitment to deal with design setbacks efficient-
ly rather than leaving problems and setbacks unaddressed.

Leadership Establish a single leader with good decision-making skills who can lead and 
motivate effectively.

Mistakes Develop program policy for  dealing with mistakes.

4.4.1	T eam Communication
Consider having regular informal coordination meetings. They do not have to be long, but 
they must be efficient and have designated leaders. They should address the following topics:

Design Meeting Topics

■	 Where are we? What are the next steps?

■	 What are the current design problems and issues? What approach is being taken? 
What alternatives are available if they are needed? 

■	 Are any problems looming in the future? Can the risk be reduced?

■	 What additional resources may be required?

■	 Should a parallel design approach be started?

KEY
POINT

KEY
POINT



57

System Engineering

An efficient team requires clear goals, priorities and objectives. Solid requirements, func-
tional descriptions and well-defined interfaces are all important. Take time as early in the 
design cycle as possible to identify potential risk areas and project problem spots. Set aside 
resources to regularly and carefully monitor these identified problem areas and the factors 
associated with them. Develop contingency plans to help put a project back on track when 
problems have been identified. 

4.4.2	 Design Reviews
Design reviews are very important to the FPGA design process. Reviews should be mul-
tidisciplinary and include mechanical and software engineers in addition to hardware 
and FPGA designers. The requirements review should be thorough but not overly formal. 
The objective of the review is to make sure that everyone is aware of the requirements from 
the earliest stages of the design to avoid design rework later in the design cycle. The follow-
ing lists provide a summarized list of those objectives, factors and topics relevant to a design 
review.

Design Review Objectives

■	 Present and discuss design requirements and requirement updates since last official 
design review with the entire design team.

■	 Present how critical and difficult design requirements and objectives are being met 
and alternative implementations which were evaluated.

■	 Reviews are critical to catching design issues that may be problems in the future. A 
project without enough time to prepare for and hold reviews will likely encounter 
unnecessary delays.

Design Review Factors

■	 Present current design status, design updates, decisions, current architecture, updated 
requirements

■	 Consider full or partial verification matrix or table to present how critical design 
requirements are being met

■	 Should include block diagrams

■	 Record, track and resolve issues identified during the review

■	 Identify critical design issues and challenges (risk)

■	 Focus on high-risk circuit, function and interface implementations

■	 Present critical Finite State Machines (FSMs)

■	 Identify signals targeted for global resources

■	 Detailed clock implementation overview

■	 Focus on synchronous design implementation

■	 Highlight any unavoidable asynchronous circuitry; focus extra design review on this 
functionality
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■	 Review all critical design interfaces and clock domain boundaries (resynchronization)

■	 How high-speed signals and buses will be resynchronized at the FPGA I/O blocks

■	 Present power and thermal estimates

■	 Present mechanical considerations (device size and height, likely number of board 
layers, proposed access to FPGA configuration and test headers in deliverable product 
configuration, clearances for device rework)

■	 Power-on reset approach

■	 Design power-up sequence, timing and how all I/O power-up, configuration and reset 
states will interact with the board-level circuitry

■	 I/O signals requiring special configuration (level, slew, threshold, termination)

■	 Design fault, error and alarm monitoring and response

■	 Design configuration control plan and procedure

■	 Design integration plan (device-level and board-level)

■	 Initial board power-up plan (proposed FPGA minimum functionality)

■	 Design testing plan (debug and verification)

■	 Design block simulation plan

Design Review Topics

■	 Identify nets for global distribution

■	 Detailed clock implementation analysis (routing, resources, speeds, distribution, jitter, 
feed-back paths, proposed constraints)

■	 Identify critical signals and buses into and out of the FPGA

■	 Identify and characterize high-performance signals (differential signal pairs, board 
level routing concerns, package pin assignment limitations, controlled impedance, 
guard bands, distance from high-noise sources, signal termination architecture)

■	 Simultaneous Switching Outputs (SSO) consideration

■	 Potential device placement and orientation

■	 Data flow: how will critical signals and buses enter and exit the FPGA device and 
route through the FPGA?

■	 I/O placement/selection effects on board routing

■	 I/O placement/selection effects on FPGA signal routing

■	 I/O placement/selection relationship to I/O banks and SSO considerations

■	 I/O characteristics (drive strength, differential pairs, placement, I/O mode, slew rate, 
need for assignment to dedicated or special function pin)
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■	 I/O signal state effect on circuitry external to the FPGA device before and during 
configuration and during FPGA special conditions such as device reset

■	 Need for worst-case simulation (process, temperature, etc.)

4.4.3	 Budgets and Scheduling
Budgets and schedules are key tools for effective project management. In developing a 
budget it is important to derive solid estimates. Historical data provides the best data points 
to use for the estimates. In the budget, include an appropriate “management reserve” to deal 
with issues that will come up during the project. When scheduling, include measurable and 
significant (individual and group) milestones in each phase of a schedule. Measure concrete 
results in the schedule when possible. Develop schedules with margin for mistakes and set-
backs appropriate for the work environment and team. Allow team members time to research 
critical design decisions. Pace the work load versus efficiency and schedule; don’t schedule 
weekends and 55+ hour weeks on a long-term basis. Don’t rush into the implementation 
phase. It is better to suffer in the design phase than in the debug phase.

As previously mentioned, there is commonly a significant gap between the amount 
of time and effort a design phase is perceived to require and the actual time and resources 
expended. In order to reduce a schedule, either the effort can be parallelized or short cuts can 
be taken. Parallel development is a critical element of schedule compression. Certain tasks 
make more sense to run in parallel, and some must remain serial for maximum efficiency. 
Sometimes certain shortcuts can be taken, but often there is a price to be paid further down 
the development cycle. Work to understand what the trade-offs of a particular “shortcut” 
might be. Often the end result is a wash in terms of schedule advantage or, worse, a net sched-
ule loss. The following list of items may have a significant impact on a development schedule.

Schedule Killers

■	 Having to re-implement significant portions of the design for avoidable reasons (in-
complete/conflicting requirements, starting design capture without a solid, reviewed, 
agreed-upon design architecture, implementing a design with a poorly or inappropri-
ately partitioned design)

■	 Requirements phase – incomplete, conflicting, poor, undocumented, excess change, 
change too late

■	 Architecture phase – poor implementation, poor structure

■	 Verification phase (iteration) simulation, debug, testing, verification

■	 Implementation phase – (IP configuration, testing, integration)

■	 Poor project management decisions or guidance

■	 Poor communication

■	 Uninformed management decisions

The design team and engineering management must be aware of the costs and impacts 
of design changes and updates at each stage of the design process. Large amounts of time, 
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energy and budget can be saved if certain design changes are limited to the appropriate phase 
of the design cycle. Just because a change can be supported within an FPGA-based design 
does not mean that it is necessarily reasonable or affordable to make that change. 

There is a tendency to simplify FPGA design flow to the concept that “more design 
changes can be supported at a later phase of the design cycle than can be accommodated by 
other design implementation approaches.” While this statement is technically true, the reality 
is that even though it may be possible to support a change, the cost may be high enough that it 
is not reasonable to pursue implementing it. There is a significant risk that management teams 
will rush into FPGA-implemented designs earlier than is appropriate and accelerate design 
schedules so aggressively that the upfront schedule savings are consumed by the complications 
of trying to implement a design that was intentionally rushed into under the assumptions that 
any required design changes or updates can be implemented within the FPGA.

The objective of efficient design is to reduce or eliminate the expenditure of time, 
resources and effort re-implementing design functionality. The FPGA design cycle can 
become as efficient as the technology will allow if an efficient FPGA design process is 
followed. This requires careful management of individual FPGA design cycle processes and 
actions and reduction of design changes later in the design process.

Many design issues may be avoided by focusing on determining the correct level of 
design margin, the required FPGA resources and effective design partitioning. Design errors 
may be multiplied if critical early design decisions are rushed in order to get to the next 
design milestone. It is valuable to know which design tasks should be implemented with 
extra care or resources. Having the discipline to invest the extra effort into these tasks may 
result in a more efficient design implementation. If a design error is caught in an earlier 
design phase (ideally in the requirements or architecture phase), the cost to resolve the issue 
may be minimized. A majority of FPGA design mistakes are caused by not following prac-
tices and procedures that reduce or eliminate design oversights and mistakes.

Focusing extra effort and resources on a design’s requirement document(s) can return sig-
nificant schedule savings. Granted, few design requirements are complete before the design 
architecture and implementation phases are started, but rushing to start a project before the 
requirements are sufficiently stable can be expensive in the long run. The challenge from a 
management perspective is determining when the design requirements are mature or com-
plete enough to move into the design architecture and implementation phases. A sufficiently 
detailed concrete requirement document provides clear goals for the design architect and the 
design team.

Estimating the FPGA Design Cycle
The most accurate method of estimation is based on historical data. A historical-based 
estimation method requires access to measured and estimated metrics from previous proj-
ects. The team must collect the right information from a number of internal projects with a 
special focus on consumed resources (manpower and schedule) and influencing factors such 
as requirement stability and design team experience and continuity. Typical metrics include 
code size, complexity, and number of engineering resources, team member experience level, 
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selected tools, schedules, and various other factors appropriate for tracking FPGA project 
status. The main objective of this approach is to develop a formal or informal database with 
real-world values, based on projects implemented under the organization’s typical operational 
constraints. As real-world design data is collected, future projects can be estimated based on 
prorated extrapolations. When deriving estimates, it is critical to pay particular attention to 
any “new” element. This could include first FPGA design, first HDL, first mixed-mode HDL, 
first-time use of advanced tool features, or first hierarchical design. Each “new” element can 
add significant overhead and can also make estimation less accurate. For each “new” ele-
ment, factor the learning curves into the estimates. 

One factor that can have a significant impact on estimated schedule duration is simula-
tion. Depending on the thoroughness of the simulation effort, it may require a significant 
percentage of the overall project schedule. The required amount of simulation can vary 
greatly. A rule of thumb is to estimate that simulation should take between one to two times 
the amount of time that is scheduled to design and enter the system design. For smaller, less 
complex designs, or designs with significant reuse of pre-verified functionality, the simula-
tion numbers should tend more toward the minimum estimate. While a point of diminishing 
returns will be reached with simulation, every hour of simulation prior to this point will 
generally be time well spent. Simulation, especially of lower-level blocks before they are inte-
grated into larger assemblies, can significantly reduce the number of hours required to debug 
designs in the lab.

After an estimate has been completed for a new project, it is important to record and 
store the estimates along with any contributing factors and assumptions. Post-project evalu-
ation of estimated versus observed schedule can be very educational. An important element 
to improving future estimates is the careful tracking of factors affecting a project’s status 
and progress during the course of the project. At the completion of the development, this 
tracking data can then be used to clarify deviations from initial estimates. These refinements 
and a “lessons learned” report can be used to improve estimation results for future projects.

4.5	T raining
Work to put together the best design team possible. Having the “right” team will have a 
significant impact on an FPGA project’s efficiency. Gathering an ideal team is often a chal-
lenge for smaller design groups and organizations with limited FPGA design experience. An 
ideal team would be heavily staffed with well-trained experienced FPGA designers. If a team 
cannot be assembled with the required experience, then try to select individuals with experi-
ence that can efficiently translate into FPGA design. Selecting team members with a strong 
interest in learning FPGA technology should also be a primary objective. The following is a 
list of some training and support considerations.

■	 Seed the team with senior FPGA designers if possible

■	 Identify engineers for advanced FPGA design training based on a combination of in-
terest in FPGA technology and related design experience such as board-level design 
and layout, hardware/software partitioning, simulation experience, and design debug
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■	 When only a few experienced design engineers are allocated to the project, select 
individuals who have a willingness and ability to direct and assist others effectively, 
individuals who are team-oriented and who enjoy teaching others rather than highly 
efficient, impatient, independent designers 

■	 Give the experienced designers the objectives, responsibility, authority, and schedule 
to guide, educate, mentor and assist the less-experienced team members

Try to rotate designers with less FPGA experience onto FPGA designs so that there are 
more experienced designers to pull from for future projects. Try to involve team members in 
the detailed FPGA schedule development so that individuals have a sense of ownership and 
responsibility for their specific project responsibilities and an understanding of how their 
tasks feed into other project tasks. Work to educate team members on the tools and tech-
niques they will need to complete FPGA projects efficiently. 

Try to get as many team members as possible to appropriate tool, process and technology 
training as early in the design cycle as possible. Knowledge is power when designing with 
complex architectures and tools with many design options. Focused up-front training is often 
significantly more efficient than unstructured, on-the-job training due to the nature of FPGA 
design. Setting time and budget aside for training early in the design cycle can be a very 
good investment. An untrained design team will have a scattered design approach and may 
be more inefficient. Encourage and enable the team to develop the knowledge base required 
to make confident and well-informed design decisions. If external, for-fee training is not a 
realistic option, encourage designers to educate themselves with available free or low-cost 
training and resources.

For individuals interested in being involved in FPGA development, set up in-house 
training and required reading and tutorial completion requirements. Develop and educate 
team members on the adopted company or project FPGA design process. If one does not 
exist, invest the time and effort to develop one. It does not need to be formal, but it should 
be documented so that the team knows the impact of decisions and actions on subsequent 
design tasks and the relationships between different design phases. Try to restrict critical 
FPGA technology design decisions to individuals with the necessary knowledge base and 
understanding of the design trade-offs required to make informed decisions.

Manufacturer literature is the foundation for learning about specific FPGA families, 
components and features. While some printed literature is available, the information avail-
able online will typically be the most up-to-date. One of the challenges may be finding the 
information online. There are huge quantities of documents available, including data sheets, 
user guides, application notes, white papers, articles, and answer databases.

The design team must be diligent in reading and cross-referencing the manufacturer’s 
documentation. Due to the complexity of the product and range of features offered, even 
within a single family, it is essential to read as much information on the specific part selected 
for the design, including application notes and the footnotes associated with diagrams and 
tables. Often information located in an application note table footnote can provide clarify-
ing information on the best approach for implementing a specific function within a specific 
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part in a family. Ideally all information required to design with a specific part will be included 
in the data sheet and user guide for a part, but this is not always the case. It is possible for a 
few sentences in an application note to help clarify the understanding of a specific feature 
within an individual part. When there is conflict between two or more written sources, seek 
clarification from the manufacturer. 

It is advisable that designers copy documents that address topics important to their de-
signs to their local machine or network; this makes it easier to reference information in the 
future. Documents can move and be restructured when manufacturer web pages are updated 
and it can be frustrating and time-consuming to try to find documents covering specific 
topics again. Organizing the information as it is collected can be a challenge. Files should 
be saved into topic-specific directories, and spreadsheets can be used to make notes about 
specific file contents. Many on-line files have short cryptic file names. It can be helpful to 
expand the name of files as they are saved locally while maintaining the original file name 
information. An example would be saving “xapp139.pdf” as “Virtex_JTAG_Configuration__
xapp139.pdf”. Check regularly for document updates.

4.6	 Support
Obtaining advanced technical answers or technical clarification from a manufacturer can be 
challenging. Manufacturers will provide designers with some phone support, but the trend is 
moving toward e-mail support with direct access to answer databases to previous questions 
online. Make sure to find out what manufacturer support resources are available and get 
team members signed up for access. Generally, advanced technical support requires current 
manufacturer design tool subscription status. Many design topics have been addressed by 
previous questions so the online answer database is a good place to start when a question 
arises. Additional sources of information include manufacturer magazines and newsletters 
and online forums, both hosted by the manufacturer and independent.

Access to technical support is important to efficient FPGA design. FPGA design can 
be complicated and there are often several ways to implement a design function or control 
a software tool. Each approach will have advantages and disadvantages, with some options 
being more efficient than others in terms of resource utilization or effort required. In an ideal 
situation a new FPGA designer would have direct, unlimited access to a group of engineers 
with extensive experience with each phase of the design and verification cycle. However, 
this is seldom the case. Especially in small organizations, the engineer will not have direct 
contact or very limited contact with experienced FPGA designers. In this situation alterna-
tive sources of technical support, knowledge and training must be pursued.

Designers may also have access to FAEs (field application engineers). FAEs may work 
for the FPGA distributor or manufacturer. The individual FAEs available for support will 
depend on the relationships the organization has developed. Extensive FAE support can be 
difficult to obtain due to the large number of accounts they generally support. FAEs can gen-
erally provide good guidance to specific manufacturer documentation and resources.

KEY
POINT



64

Chapter 4

Support will depend on the size of the design and volume of business with the manufac-
turer, the organization’s relationship with the manufacturer, representative and distributor 
and the available technical resources. Generally the support group will be the same for the life 
of a project, so give some consideration to the selection of the support to be provided. The 
distributor an organization works with will influence who provides engineering support. Gen-
erally there will be more than one distributor to choose from, depending on the market. Make 
an effort to establish a relationship with available support personnel early in the design cycle. 
It can be easier to get timely support if support personnel are already familiar with the project 
and application. Distributors may also offer regional training and technical, training that can 
keep design teams up to speed on the latest architectures, tool options and design flows.

4.7	 Design Configuration Management
From a management point of view, the primary objectives of configuration control are:

■	 Allow the design team to return to a previous version of the design at any point in 
the previous history of the project

■	 Allow the design team to know what changes and updates were made to the design 
between design versions

■	 Allow the design team to undo design updates, recover from database corruptions and 
computer failures

■	 Support having the entire team working with the same version of the design files

All configuration control version backups should include:

■	 All design files sufficient to recreate/reconstruct/regenerate the design

■	 The hierarchy of all files

■	 Any support files such as design build sequence and dependency notes and script files 
which automate the FPGA build process

■	 The path to and contents of any utilized support design library

■	 The current version and revision level (software patch) for any software tools used

■	 When the design is “archived” at the end of the project, additional design elements 
that are readily available to the design team should also be included in the collected 
database

Configuration control and management of a complex FPGA project can be an over-
whelming task and is often overlooked due to its complexity. Configuration management 
provides the ability to accomplish two main functions: the ability to recover from design or 
file corruption and the ability to go back to a previous point in the design cycle even when 
the files have not been corrupted. 

In some cases, individual designers may go out of their way to limit or avoid con-
figuration control because they perceive it as an unnecessary burden or a drag on design 
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efficiency. Configuration control is a critical part of an efficient repeatable design cycle. 
Configuration control provides access to the design files required to go back to previous ver-
sions of the design if elements of the design become corrupted. Configuration management 
also improves a new design team’s ability to rebuild the project and update a design after 
production, when the original design team is no longer available.

Another advantage is the ability to develop better internal estimation methods for future 
projects. In order to evaluate a project’s progress and challenges, it is important to have ac-
cess to an accurate record of the design database during the full course of the design. There 
are many considerations associated with maintaining a design database configuration control 
process. Following is a list of important configuration control considerations and issues that 
should be addressed by project management decisions in order to implement a comprehen-
sive configuration management process.

Configuration Control Observations

■	 Configuration control for FPGA design can be more challenging because of the  
many file types and complex file interactions that differ between tool sets and FPGA 
manufacturers

■	 Many design teams do not take the time to clean older unused files out of active 
directories

■	 If design files are not regularly managed and cleaned out, directories can swell to 
unmanageable sizes

■	 Many design teams do not develop a directory structure that is inherently configura-
tion-friendly 

■	 There are few 3rd-party stand-alone configuration control tools targeting FPGA  
design

■	 Many FPGA tools do not have robust full featured built-in configuration control 
functionality

■	 In general the configuration control solutions available for FPGA design lag behind 
the functionality and features available in commercial software configuration control 
software

■	 Some FPGA tool sets support limited interface with commercially available 3rd party 
software configuration control tool suites, but few are fully integrated

One of the biggest challenges associated with FPGA configuration control is making the 
required difficult and sometimes complex decisions. Making these decisions is easier with the 
understanding that any configuration control process or plan that is actually implemented is 
infinitely better than a detailed plan that goes un-implemented, or no configuration control 
effort at all. Some of the decisions and suggestions to be considered are presented in the 
following lists.
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Configuration Control Decisions

■	 Are the selected design tool configuration control features good enough?

■	 How frequently should the design be backed up?

■	 What constitutes a sufficient backup trigger event? Weekly? Major design update? Etc.

■	 How will major and minor design “versions” be numbered, tracked and stored?

■	 What directory structure should be implemented to simplify the backup process?

■	 Should “all” the files be backed up every time?

■	 If only “source” files are backed up, which ones are they? How can they be tracked?

■	 Which team member will be responsible for implementing and verifying that backups 
have occurred?

■	 How often will the ability to re-implement a design be verified using only the saved 
files?

Configuration control for an FPGA design is in some respects a more complex chal-
lenge than configuration control for a conventional processor project. The file types and 
relationships are more complex and more proprietary than with conventional programming 
relationships. Manufacturer tools do not currently implement FPGA design configuration 
control solutions with the same level of features and ease-of-use of programming configura-
tion control solutions. Third-party development tools may implement better configuration 
control solutions for certain FPGA manufacturers. Following are some configuration control 
suggestions.

Configuration Control Suggestions

■	 Set aside schedule and budget to verify that all files required to rebuild the design 
from scratch are included in the design backup at least once

■	 Make sure that, as new source design files are added to the design, they are included 
in all subsequent backups (if possible automate this process based on hierarchy or file 
extension types)

■	 Make sure that the configuration backup maintains the relative path / directory 
structure

■	 Keep all required files under a common directory structure since it is generally easier 
to “roll-up” a directory hierarchy 

■	 If outside library directories are used, make sure to include those in the backup if they 
are regularly updated

■	 Make informed decisions (and policy) to determine the file directory hierarchy for the 
design rather than simply letting an ad-hoc directory structure develop. File hierar-
chies are very difficult to change mid-project

■	 Set up a file hierarchy that can easily expand and adapt throughout the life of the 
project
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■	 Develop and adhere to a common, agreed-on file-naming convention to be used by 
the entire design group

■	 Develop and adhere to a common agreed on signal naming convention to be used by 
the entire design group

■	 If possible use the same (or very similar) names at the PCB / board level and FPGA 
top-level

■	 If possible use the same (or very similar) names at lower FPGA module levels as used 
at the FPGA top level

■	 If the names do not match, develop and mainain a level-to-level signal translation 
(relationship) table or database

■	 If files are shared between designs, consider making local directory copies so that 
each design is complete and independent

■	 If common design files must be maintained between projects, manage changes very 
carefully to common files and make sure to include the files in design backups

■	 A simple configuration control approach can consist of simply zipping all the appro-
priate design directories (maintaining the file path hierarchy)

4.7.1	 Controlling the FPGA Design in the Lab
With the freedom to change, recompile and reload the FPGA design to a board comes the 
responsibility to keep track of changes and keep FPGA design versions under configuration 
control. It is not enough to always have access to the latest design FPGA version. Occa-
sionally it may be necessary to go back ten or more versions of the FPGA design to revisit a 
specific problem or subsequent fix. This can only be accomplished if versions of the FPGA 
design are well documented and carefully stored away for future retrieval. Board configura-
tion control factors are listed below.

■	 FPGA design files must be kept under configuration control so that any specific build 
can later be recreated

■	 Different FPGA design chains or “trees” may need to be maintained for different 
board versions

■	 This requires an efficient, effective way of propagating design updates made in one 
design chain to all current operational FPGA designs

■	 Design versions should include built-in documentation of the design change history 
including: 

■	 Change description, reason for change and who made the change, current revision of 
the design, date, time, etc.

This responsibility is further complicated when multiple versions of the target hardware 
exist, which require different versions of the FPGA design. For example, if a board update 
to a hardware design requires swapping an input and output between two FPGA pins, the 
FPGA versions for the modified board will have to be different than those loaded onto the 
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unmodified board. Loading the wrong FPGA version to a board could result in unpredictable 
behavior or component damage. By careful FPGA design configuration management and 
part programming and tracking, serious problems can be avoided.

Once the FPGA design has been captured and compiled and initially downloaded to 
the HW target, configuration tracking needs to be maintained at the board level in the lab. 
Efficient real-world debugging is much easier when as many variables as possible are removed 
when trying to determine the source of a problem. 

Logbooks should be maintained with each prototype board and these logs should be kept 
up-to-date. Information in the logbooks should include detailed information when a problem 
is encountered. What version of the software is running a test? Which board was the test run 
on? Who ran the test? What host unit was the board installed in? What test equipment was 
attached to the board? What version was loaded into the FPGA? What was the white-wire 
configuration of the board at the time of the test? Was the problem consistent or intermit-
tent? What system settings or specific sequence of events seem to affect the occurrence of 
the problem? Obviously these are difficult things to keep track of, but if this information is 
accurately recorded and good configuration control is implemented, it should be possible to 
re-create specific problem configurations, which can be invaluable in tracking down problem 
sources and testing subsequent solutions. 

Keeping track of the state of the board and other system variables can be just as im-
portant as knowing what version of the FPGA was loaded at the time of a specific fault or 
failure. In other words, when a problem occurred did it have the latest group of hardware 
modifications? Was it running older controller code? Had the board just returned from 
rework and not been fully tested? The answers to these questions can help identify system 
problem sources.

4.7.2	A rchiving the Design 
After the project has been completed, but before the design team is reassigned, a project 
design archive should be generated. A complete archive should include all the functional-
ity listed for a complete configuration version backup plus the source disks for all essential 
software tools, all software patches, design updates, known tool issue work-arounds, tools, 
design estimates including schedule, manpower and budget, manufacturers documenta-
tion, and all other technical content or effort associated with the development effort. The 
archived design should include all files required to implement a version of the design in the 
future, including a version of the OS (with installed patches) and all hardware and soft-
ware keys. For completeness, all design notes, board layout files, development and production 
documentation and databases, component datasheets, user’s guides and component errata 
should also be included. By definition, at the end of a project all the information and knowl-
edge required to implement that project should be readily available. As the years pass, much 
of the information will cease to be available and access to the original design team will also 
be reduced. The budget to completely archive a design should be set aside in management 
reserve when a project is started. If there is any significant possibility the design will need to 
be updated or leveraged in the future, the investment in wrapping up a design immediately 
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after it is completed will likely be exponentially less than it will be at any time in the future. 
A summarized list of design archive content for a design is shown in the following list.

Design Archive Considerations

■	 Design hierarchy

■	 Design file descriptions and relationships

■	 A script file which automates all or part of the design build sequence

■	 All source files required to reconstruct the final version of the design

■	 Clearly identified final versions of all files to eliminate ambiguity

■	 A list of all design tools, version numbers, revision states

■	 All design tool license files, hardware keys and license installation instructions

■	 The original source media for all design tools and revision updates (no dependency 
on the internet, internal computer network or specific computer for any files)

■	 Complete final design source and output file database with clearly identified final file 
versions

■	 Hardware equipment version number required to download and interface to the tar-
get board

■	 Design Flow Documents including: A documented procedure/process for converting 
and downloading the placed and routed design to the target board with step-by-step 
instructions and required tool settings

■	 Source code and documentation for all IP utilized in the design

■	 Tools required to implement and integrate IP functions within the design

■	 IP license agreements, keys and software key installation procedure

■	 A golden design disk containing the critical source files and clearly labeled final 
FPGA image file(s).

■	 A clearly and completely documented design build sequence 

■	 Design documents including the final version of: unit operation manual, final board 
schematics (including white-wires and board modifications), design integration, test 
plans, requirements, testing procedures, and verification matrix, and design review 
documents

A complete design archive can be trusted only when the entire load sequence has been 
verified on an unconfigured computer (preferably including the loading of the PC’s operat-
ing system and any patches or updates required to support the FPGA design tool operation). 
This may take several hours but will identify any missing source data or documentation at a 
time when fixing the problem will be cheaper than at any time in the future.

Verify and re-verify the FPGA I/O signal assignments against the PCB FPGA schematic 
symbol. Ideally, a final cross check should be done between the final post layout and route 
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FPGA report files and the final PCB board netlist. It is possible there may have been some 
back and forth FPGA pin changes during the PCB layout process, however, after the PCB 
has been released to be fabricated no more FPGA I/O assignment changes can be made. 
While every effort must be made to make sure that the I/O assignments don’t change (usu-
ally the I/O assignments are located within a design constraint file) the final PCB release I/O 
assignments should be documented and again verified before the first FPGA device image 
is downloaded to the target hardware board. If the pin assignments within the FPGA do 
not agree with the implemented design at the board level, damage can occur to either the 
FPGA component or the board-level circuits.

4.8	 Summary
This chapter presents the definition of rapid system prototyping as: “The development of 
system functionality at a pace faster than conventional development with an emphasis on 
design efficiency while balancing schedule compression activities with project risk.” Rapid 
prototyping addresses critical time-to-market and budget pressure issues.

The key system engineering topics and issues identified and addressed in this chapter 
include:

■	 Common design mistakes and oversights

■	 Design risk factors

■	 Team communication

■	 Design reviews

■	 Budget and estimation

■	 Training and support

■	 Configuration management

This chapter stresses the importance of a defined, efficient and optimized FPGA design 
process for rapid system development efforts. It is essential to understand the common design 
issues and challenges design teams may encounter during a rapid development project. 
Common design issues and challenges are identified and discussed in this chapter. Having a 
defined FPGA design process helps reduce the number and impact of design errors on a rapid 
development project by providing a development control mechanism. Some of the mecha-
nisms that may be put in place to establish and maintain control include design guidelines, 
official design procedures, configuration control, and design reviews.

Regular meetings can encourage team communication, which is essential to efficient 
project progress. Design reviews are important for identifying design issues early in the cycle 
before they can become difficult to remove or potentially affect project success. Design 
effort estimation and realistic budget creation are both critical to perceived project success 
at the management level. Team training can boost team morale and efficiency. Configura-
tion management is a complex, challenging task that is often delayed or eliminated in rapid 
development efforts. Configuration control is, however, an essential system engineering factor.
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5.1	 Overview 
This chapter addresses many of the critical device-level trade-offs and decisions that must be 
made during the device-level design effort. These decisions are important because they affect 
nearly every following design stage. Almost every design phase that follows the device selec-
tion will be heavily influenced by these architectural decisions. The decisions and actions 
discussed in this chapter can have a significant impact on a project’s final implementation 
and the efficiency of the design effort. The estimation of consumed FPGA resources and 
power are important elements of the FPGA selection process. It is critical that the compo-
nent selected have enough design margin. The following list presents important device-level 
selection categories. 

FPGA Selection Categories

■	 Manufacturer 

■	 Family 

■	 Device 

■	 Package 

After the FPGA device has been selected, there are several decisions that must be made 
to determine the functional implementation of the FPGA and its interaction with other 
components in the design. The following list presents important device option decisions that 
must be made by the design team. 

Device-Level Design Decisions

■	 Data flow through the FPGA

■	 Informed I/O pin assignments

■	 Utilization of “unused” I/O pins

Chapter 5

FPGA Device-Level 
Design Decisions
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5.2	 FPGA Selection Categories 
There are many factors that can influence a design team’s FPGA selection. The selection of 
an SRAM-based FPGA begins with the selection of a manufacturer. Two of the most signifi-
cant factors affecting manufacturer selection are design tools and support. Each group and 
organization will have biases and preferences based on prior experience. During this phase, 
it is important to re-evaluate different manufacturer offerings since features, functionality 
and price points can change significantly between projects. The decision of a manufacturer 
is important because once an FPGA family has been selected, the organization will typically 
continue to use similar parts from that manufacturer for future projects. This section presents 
some of the key factors a design team may need to consider during the FPGA device selec-
tion process. 

5.2.1	 FPGA Manufacturer Selection 
Organizational and team member design experience and biases both for and against 
specific manufacturers and toolsets are two factors that may significantly influence the 
selection of an FPGA manufacturer. This can be particularly true when previous FPGA 
designs have been implemented in-house (or by new team members from other organiza-
tions) using specific manufacturer’s components or toolsets. Another powerful influence 
on the selection of an FPGA manufacturer is a requirement (or decision) to use a specific 
type of FPGA technology. An example of such a decision is the selection of an SRAM-
based FPGA technology approach over an OTP-based FPGA technology approach during 
the architecture phase of the design process. The most popular FPGA suppliers are Xilinx, 
Altera, Lattice, Actel and Quicklogic. 

If a decision has been made to go with SRAM-based technology, the selection is nar-
rowed down to the manufacturers with products with this technology. The manufacturers 
with the largest selection of SRAM-based parts and industry presence include Xilinx, Altera 
and Lattice. 

Manufacturers lose and gain market share quarter-to-quarter and year-to-year; however, 
the top two manufacturers of SRAM FPGAs have a significant majority of the market. Com-
petition between these manufacturers is good for the engineering community, since it spurs 
technology innovation and price competition.

Each FPGA manufacturer seeks to differentiate their products by offering unique and 
proprietary features. One example is the implementation of a Tri-Mode 10/100/1000 hard IP 
Ethernet MAC within Xilinx’s Virtex-4 FPGA family. FPGA manufacturers also differenti-
ate themselves through their tool chain and technical support. When selecting an FPGA 
manufacturer, design teams should evaluate all manufacturers’ device families for innovative 
features, which may address specific specialized project requirements for both current and 
future designs. The following list identifies some important criteria to research when evaluat-
ing an FPGA manufacturer. 
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Suggested Manufacturer Selection Criteria

■	 Tools

■	 Technology leadership

■	 IP offerings

■	 Innovative product features

■	 Solid roadmaps

■	 Longevity of parts 

■	 Multiple families

■	 Support

5.2.2	 Family Selection 
Selection of a specific device family can be a challenging task which requires detailed 
analysis and complex trade-offs. The design analysis effort requires comprehensive trade-offs 
of project requirements, technical factors and proposed project budget and schedule. Each 
of these factors can have a significant impact on the success of a rapid system development 
effort. The following list summarizes some device family selection factors.

Device Family Selection Factors

■	 Size

■	 Cost

■	 Roadmap

■	 I/O voltage

■	 Maximum speed

■	 Reprogrammable capabilities

■	 Target applications (market segment focus)

During the device trade-off analysis, there are several factors that must be evaluated 
before a final selection can be made. An important issue is where a device family is in its life 
cycle. The age of a family will influence the length of availability of the components, the 
features incorporated into the device architecture and the product price. FPGA components 
do not always decrease in price with age. Older part families with larger geometries will 
eventually plateau and may even increase in price or fall in price more slowly than newer 
families. The following list presents some key questions to consider during the FPGA family 
selection process.

Device Family Trade-off Questions

■	 Where is this device family in its life cycle? 

■	 Will the range of targeted devices be supported for the expected life of the 
project (plus some margin)? 
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■	 Are new parts planned for this device family? 

■	 Are devices currently offered or planned that could accommodate any expected de-
sign enhancements? 

■	 Are the capture and “layout” tools for this family compatible with other families from 
this manufacturer? 

■	 What are the costs of the required tools? 

■	 Will the design be portable if moved to a different device family? 

■	 Is there a clear path for a larger or smaller part (gates or I/O) within the same family?  

The information obtained by addressing these questions is essential to the subsequent 
decisions. The data collected must be accurate, complete and well-organized. Special consid-
eration and effort should be devoted to early architectural trade-studies since these decisions 
are likely to have lasting influence. Changing architectures and tools (not to mention sup-
port staff) can be a significant drag on a schedule.

When possible, try to select a manufacturer, device family and software tool set that 
can be used for multiple projects. The selection of a device family, however, is often more 
complicated than simply checking the projected availability and component price. 

5.2.3 	 Device Selection 
The first step in selecting an FPGA device is to collect and review manufacturer literature 
and documentation. It is important to validate part selections with the FPGA manufacturer 
support staff to verify availability, evaluate known design issues, life cycle stage, and so 
forth. Take the time to ask about expected new families and when specific parts within a 
family are projected to be available. Also, inquire about any existing process issues, errata, or 
availability issues with the parts under consideration. 

An FPGA family’s maturity is an important design selection factor. Try to select a device 
family that is still reasonably early in its product development life cycle. This does not 
mean that the team should automatically design with the latest part from the latest family. 
Also exercise caution with the first parts in highly modified families. Allow a new FPGA 
family to establish a track record before incorporating it into new designs. An exception to 
this suggestion is when a device family incorporates unique features that are critical to the 
performance of the end application.

It is important to have sufficient margin in the selected device. Depending on how the 
design is implemented, HDL designs in particular can exhibit a wide range of efficiency in 
terms of resources required to implement functionality. Having enough device design margin 
to cover contingencies is very important if the project does not have the schedule or budget 
margin required to absorb a board re-spin if a larger part is required to accommodate the final 
design functionality.

When selecting a device, try to avoid designing with the smallest or largest component 
in a device family. Choosing parts at the extremes of a family can limit future options and 
has the potential to limit future feature incorporation and cost reduction options for future 
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product redesign efforts. Picking a part in the middle of the available component range 
allows migration from the current size component to a larger part if initial resource estimates 
were overly optimistic. Having the option to move to a smaller component is also valuable 
if the resource estimates were too conservative to implement the required functionality. The 
following list identifies some of the major factors associated with device selection. 

Device Decision Factors

■	 Cost 

■	 Size 

■	 Power 

■	 Speed 

■	 I/O count 

■	 Logic fabric resources 

■	 Clock management resources 

■	 Memory resources 

■	 Embedded processor support 

■	 DSP resources (architecture and tools)

■	 Packaging (size, reworkability, non-BGA)

■	 Prior design experience with families or tools

■	 Common footprint component migration options

■	 Interface requirements (5V tolerance, mixed-voltage protocols) 

■	 Configuration options 

■	 Design tool features and familiarity 

■	 Future product needs 

Estimating – Device Requirements 
Estimating the size of the device needed to implement the projected functionality for a 
project is not an easy task. Each FPGA manufacturer makes assumptions regarding their 
architectures and these assumptions influence the marketed “equivalent” gate count for each 
FPGA device. Performing a detailed, well-researched estimated design size, resource, and 
performance estimate has the potential to save in the development schedule and budget by 
more accurately targeting the best FPGA device options.

Estimating a design’s size in terms of “equivalent” gates is challenging. It can also be 
difficult to translate equivalent gate estimates from one FPGA manufacturer to another. 
Application notes and papers are available from manufacturers to help estimate the device size 
needed to implement the required design functionality. Functional resource requirement esti-
mation in terms of equivalent gates is a skill that requires significant experience and practice. 
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A more effective approach is to evaluate the design in terms of logic blocks, flip-flops, 
or look-up tables (LUTs). Most manufacturers encourage estimating resource requirements 
based on a mix of these resources. Some FPGA device families are now characterized by a 
direct count of the number of component resources.

Most major SRAM-technology-based FPGA manufacturers have generally similar logic 
block architectures as outlined in Chapter 2 of this book. Note that it may be possible to use 
a logic block’s FFs and LUTs for two independent functions simultaneously. Other factors 
that can influence the final quantity and mix of resources include carry logic and specialized 
circuitry such as dedicated IOB registers to support high-speed memory interfaces. Ad-
ditional architectural elements requiring design estimation include memory and clocking 
resources. Both of these resources are critical elements in FPGA designs.

The estimation of speed and I/O count are straightforward, compared to the estimation 
of size. Since there are no efficient methods for estimating device size, designers should add 
a design margin to offset any size estimation inaccuracies. Also, consider adding additional 

margin for speed and I/O. 

Estimating Power Consumption 
Power estimation is an important step in the device selection process since it is typically a 
major design factor. The selection of the FPGA device must fit within the system power bud-
get typically derived at the architectural phase. The difficulties associated with FPGA power 
consumption generally require an accurate estimate of the final FPGA design parameters, 
which are not typically known at the start of a development effort. Unfortunately, there is no 
easy or completely accurate method for calculating the FPGA power consumption until the 
design has been finalized. Therefore, it is important to select a device that has a maximum 
power usage within the allowable system power budget allocation for the FPGA device. The 
following list presents some of the FPGA design parameters influencing power estimates.

FPGA Design Parameters Effecting Power Estimation Accuracy

■	 Device size

■	 I/O loading

■	 Internal resource utilization

■	 Ratio of gated to logic functionality

■	 Number and speed of FPGA clocks

■	 Number of I/Os changing simultaneously

■	 I/O characteristics including switching speed

■	 Percentage of gates toggling within clocked FPGA circuits

■	 Percentage of internal logic blocks switching at higher clock speeds
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With this information, it is possible to perform spreadsheet-based calculations that are 
detailed in manufacturer application notes. Additional information can also be obtained from 
the manufacturer of the FPGA device. Most FPGA manufacturers provide additional power 
calculation tools in the logic design tool chain and online. These power estimation tools can 
be used to assist the FPGA design team to estimate device power consumption in the device 
selection stage and then later refine those estimates as the design content is added. 

The fundamental challenge with early design power estimation is the amount and 
accuracy of design knowledge needed to complete these calculations. Determining the 
exact logic block counts and percentage of internal blocks switching at specific clock speeds 
is further complicated when HDLs are used. This is because HDLs provide a higher level of 
abstraction from the circuitry and thus create more uncertainty. Power calculations are gen-
erally difficult until a first draft of the design is captured and synthesized. 

A related consideration is that FPGA power consumption at higher operational speeds 
can be two or more times the consumption of equivalent functionality in an ASIC. This is 
due to the overhead of FPGA programmability. This effect is more pronounced at the higher 
end of an FPGA’s operational frequency range.

5.2.4	P ackage Selection 
Once a manufacturer, device family, and component have been selected, the package must 
be selected. There may be several choices, although FPGA package choices are migrating 
toward ball grid array (BGA) packages for larger components and newer families. Designing 
with BGA packages is covered in more detail in Chapter 6. The typical available packaging 
options are quad flat packs (QFPs) or BGAs, both of which are small-pitch surface-mount 
components. Designing with BGAs can pose numerous design challenges including a lack of 
access to individual pins except through breakout vias, and an inability to inspect solder con-
nections. BGAs do have the smallest footprint, which is why they are so popular. 

If the real estate is available, prototyping may be done with a QFP component since 
it allows direct access to individual pins, solder connection inspection and simplified 
component rework. However, using a QFP package may not be possible if there are limited 
packaging options or if management will not support a design re-spin to transition from a 
QFP to a BGA package for volume production. 

An important issue to consider when selecting a package type is the available device 
migration path. Some families support devices that have the same footprint and pinout, 
but with different internal density. The details associated with supporting different size 
devices on a single board include a more complicated pinout assignment and layout. Since 
FPGA devices vary in functional pin count, care must be used to ensure pin assignment and 
usage overlap between different devices.
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5.3	 Design Decisions 
Several FPGA device-level critical design considerations are required for efficient, flexible, 
and optimized FPGA design. The FPGA resource utilization and subsequent logic design 
implementation can have far reaching effects to the performance of the design. An example 
architectural feature that design teams should be aware of is the preferred data flow orienta-
tion of the FPGA device fabric. Efficient FPGA designs can take advantage of architectural 
biases within FPGA devices. Example factors include component architecture features such 
as carry chain flow and CLB orientation within the FPGA fabric. Additional design factors 
that can affect design efficiencies include pin assignment, clocking, internal signal access, 
and proper use of unused I/O. 

5.3.1 	 Data Flow through the FPGA 
SRAM FPGA architectures seldom exhibit layout symmetry at the die level. Trade-offs must 
be made when the FPGA architecture is developed. If designers are aware of the architecture 
characteristics of the selected target FPGA family, they can work to improve the perfor-
mance of the device. Awareness of architecture design details can also help designers make 
informed pin assignments. Obtaining insight into the details of pin assignment trade-offs 
requires a detailed understanding of the FPGA’s internal architecture, “preferred” internal 
bus routing paths and package pin-to-die I/O pad mapping. For example, the FPGA fabric 
may have been designed to support efficient data flow from side-to-side or top-to-bottom at 
the silicon level. Similarly, the flow of carry and cascade routing signals will typically follow 
a row or column orientation. With math functions, there will be a preferred distribution for 
LSB to MSB signal assignments. An example of this concept is shown in Figure 5.1. 

Figure 5.1  Xilinx Virtex family flow preference  
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Additional architectural details to consider include “global” nets and bus routing. Global 
signals are low-skew FPGA internal nets intended for heavily used control functions and 
clocks. Signals intended for global distribution may need to be connected to specific I/O 
pins. Global nets can result in significant performance enhancement and should be assigned 
with great care. Similarly, FPGA architectures can have a “preferred” routing axis or direc-
tion (left-to-right, top-to-bottom) on the die to allow more efficient data bus and buffer 
control signal routing internal to the device. 

Understanding how the chip architects have optimized an FPGA family for specific 
applications can make significant differences in a design’s performance based on how 
efficiently internal resources are assigned and utilized. However, this information can be 
challenging to track down. Vendor literature and technical support staff are good sources for 
this detailed level of information. 

It is important to note that design tools will generally make design assumptions and 
assignments to specialized design resources with or without designer input. However, design-
ers can influence the implementation of the design through the use of design constraints 
and compiler switches. The important topic of constraints is covered in detail in the Design 
Constraints and Optimization chapter of this book.

5.3.2 	 Informed I/O Pin Assignments 
Assigning board-level signals to FPGA I/O pins can have a significant impact on overall 
system performance. This is an important FPGA design topic and is covered in more detail 
in the Design Constraints and Optimization chapter. In an ideal world, the critical FPGA 
functionality would be captured, compiled and simulated allowing the selection of the “best” 
device pin assignment. However, in a typical rapid system development cycle, device pins 
are assigned early, well before the design is fully captured. It is possible for the PCB board 
to be routed and in manufacturing before the initial FPGA design has been captured and 
implemented depending on the design schedule. This early I/O assignment or “pin-locking” 
is often required to meet aggressive design schedules and allow the FPGA development to 
occur in parallel to the board build effort. This has the effect of maximizing schedule progress 
while also increasing risk. To mitigate this added risk, the FPGA designer should consider 
specifying an FPGA device with more design margin (effectively more routing resources). 
The designer should avoid assigning critical signals to I/O pins that are close to die corners, 
since corners can impose routing limitations. 

When interfacing the FPGA to other components, the I/O bank architecture, character-
istics and limitations play a significant role. Interfacing the FPGA to external components 
involves an understanding of the voltage logic levels, slew rate, impedance and other factors 
typically defined within an I/O standard such as LVCMOS. The implementation details for 
the required I/O standards involve the special voltages required, maximum number of inputs 
or outputs within a bank or package and what I/O standards are supported within the banks. 
It is common for the I/O pins of FPGA devices to be segmented into multiple I/O banks. 
Each I/O bank can support a limited number of each type of I/O signal inputs or outputs. 
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Each I/O bank may be able to support more than one I/O standard, but typically only 
certain standards can be implemented at the same time within individual banks. It is possible 
that only certain banks can implement specific I/O standards. It may be necessary to limit 
specific I/O standards on an FPGA to a limited number of I/O banks based on I/O standard 
incompatability. This can complicate pin assignment at the board level, since it may be 
desirable to assign pins to I/O banks that have not been chosen to implement the required 
I/O standard. Similarly, consideration must be given to which I/O banks will be selected to 
support internal signal termination. Since the signal termination is implemented within the 
package, the associated power dissipation will also occur within the package and can affect 
the thermal characteristics of the FPGA package within the design. The following list pro-
vides FPGA features that need to be consider both in the selection process and design.

■	 On-chip signal termination 

■	 I/O standards 

■	 Differential signal pairs 

■	 Pull-up/down 

■	 Keeper circuit 

■	 Slew rate 

■	 Drive strength 

■	 Power-up and configuration mode 

An often overlooked, but important interfacing limitation of the FPGA I/O involves a 
limit on the number of I/O within a bank or package that can change states simultaneously. 
This device parameter is known as simultaneously switching outputs (SSO). It is important 
that this factor be considered as it could potentially limit the interfacing capabilities relative 
to a specific design. In dealing with SSO for an FPGA design, it is important to follow design 
guidelines specified by the FPGA manufacturer of the selected device.

Clocking Signals
The amount and type of global routing resources are important design considerations. Clock-
ing and timing-related architectural elements deserve special consideration due to their 
significant potential to affect overall performance and functionality. Important topics include 
the assignment of dedicated clock and global signal inputs. Often, the dedicated clock pins 
provide the most efficient paths to internal FPGA global routing resources. Good clock 
management and implementation plays a key role in good design. This is especially true when 
clock speeds are approaching the higher end of the operational range of the FPGA. The 
details of clock routing and clock feedback circuit implementation can be critical. The sys-
tem-level effects of poor clocking implementations can be significant. The details of clocking 
input, output and feedback circuits, and clock management block characteristics should be 
well understood before the FPGA pinout process begins. Another common mistake involves 
not understanding the ranges, limitations, and exceptions for generating (multiplying and 
dividing) clocks within the internal FPGA clock management blocks. There are often 
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limitations on the clock frequencies that can be generated and this will affect the clocks 
provided to the FPGA at the board level. This critical topic is further discussed in Chapter 9.

Configuration Pins 
There are several methods for configuring an FPGA. Popular configuration methods include 
JTAG, serial or parallel. Details of these configuration methods are covered in Chapter 10. It 
is important to understand that each configuration approach dictates the use and function of 
certain pins on the FPGA device. Significant care must be taken when assigning and verify-
ing these pin assignments. Datasheets for the FPGA device selected will specify which pins 
are used for which configuration method. Pins used for configuring the FPGA are typically 
referred to as configuration pins and may be dedicated or dual-purpose depending on the 
configuration mode selected.

Configuration pins are used to load the design data into SRAM-based FPGAs. The 
bitstream defines the functional operation of the internal resources, interconnections and 
I/O for the FPGA. The configuration mode selected to program the FPGA is an important 
design factor to consider when assigning pins. Since configuration pins can be either dedi-
cated or dual-purpose, the configuration approach selected will affect the number of available 
I/O pins on the device and the speed of device configuration. Dedicated configuration pins 
cannot be used for general-purpose signal I/O, while dual-purpose pins may be used for I/O 
once the FPGA configuration has been completed and the FPGA is in operational mode. 
Special attention should be given to reviewing and cross-referencing all manufacturer con-
figuration circuitry literature. Configuration circuit mistakes are common for new FPGA 
designers. Few things are as frustrating as building an FPGA-based board where the FPGA 
cannot be configured without white-wires.

Internal Signal Termination 
Poorly controlled signal impedances or unterminated controlled impedance signals will cause 
signal reflections, which will degrade signal and data quality and reduce the maximum pos-
sible system performance. Signal termination typically requires the addition of components 
external to the FPGA device. However, some FPGA devices support termination internal to 
the component. Be aware that signal termination internal to the FPGA package will in-
crease the power dissipated within the device. This should be taken into consideration when 
conducting design thermal analysis. Following manufacturer recommendations within 
application notes and datasheets for high-speed design improves system reliability and 
performance.

Utilization of “Unused” I/O Pins 
Since FPGA parts are available only in specific discrete sizes, many FPGA designs have “ex-
tra” I/O pins that are not required to route critical system signals into or out of the device. 
Rather than simply tying these signals high or low or leaving them unconnected, every 
effort should be made to utilize each of these pins wisely. Consider the functionality of the 
board from a system viewpoint. Following is a list of those considerations. 
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■	 What functionality might be added in the future? 

■	 What board-level signals will be required to implement these functions? 

■	 If errors exist in the design at the board level, could they be fixed internal to the 
FPGA if the correct signals were accessible? 

■	 What critical signals would be good to have access to? 

■	 Could additional future status access or control functionality be implemented if 
specific signals were available within the FPGA? 

Another important use for unused pins is for support of access to nodes internal to the 
FPGA for testing and debug. Routing a number of test points out to headers or a connector 
for easy hookup to test equipment can greatly simplify the verification and debug phase of 
the design cycle. It can be also be valuable to have a few pins routed out to simple pads that 
are available for easy connection to white wires that may be required in the future. Routing 
out signals for supporting design for testability (DFT) functionality to support transition to 
an ASIC in the future should also be considered. 

All I/O pins that are routed to board-level future expansion signals and ASIC DFT sup-
port pins should incorporate an in-series zero-ohm jumper close to the FPGA to maximize 
design flexibility. This can allow these pins to double as I/O for white wires if unforeseen sig-
nals must be accessed. Placement of pull-up and down resistors close to the white-wire pads 
can also support easier future design modification. Many of these options are useful in proto-
type and development environments, but less appropriate for volume production boards. 

Systems with multiple BGA devices or components with limited board-level signal 
access can also benefit from unused signal pins. Consider routing a group of signal lines 
between two devices rather than leaving the pins unused. The utility of these traces can be 
enhanced if one or more zero-ohm resistors are placed in series between the two compo-
nents—this allows these signal lines to double as access points into both of these devices. 

When selecting an FPGA device, it is important to consider the amount of visibility 
needed for debugging the FPGA logic. A method of obtaining increased debug capability 
is to add access to internal signals of the FPGA. Having internal signal access of the FPGA 
signals built into the design from inception adds extra debug capability without a significant 
modification to the existing design. The access to these additional pins, however, affects the 
device size of the selected FPGA so an understanding of the amount and location of these 
pins is required during the selection and design phases of the development effort. 

When incorporating test points to the design, it is useful to bring them out of the FPGA 
to a set of pads, header pins or a connector that can be connected to lab test equipment to 
monitor signals of interest. A minimum number of a group of 8–10 test points should be 
considered for the much needed visibility into the internal nodes of an FPGA. If possible, 
the pins selected as test points should be relatively close on the FPGA and have short-board 
level routing to reduce signal skew. Take time during the early design phases to identify and 
label internal FPGA signals that will be critical in understanding the internal operation of 
the FPGA in the target application. Having access to the internal signal of the FPGA is an 
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important topic of rapid system prototyping with FPGAs and is further discussed in more 
detail in the Board Level Testing chapter later in this book.

5.4	 Device Selection Checklist 
Following is an I/O assignment checklist.

I/O Consideration Checklist

■	 Early consideration for/of specialized signals including: clock, feedback, differential, 
high-speed, wide-bus, control, low-noise, high-noise, reset, signals

■	 Controlled impedance

■	 High-drive/heavy load signal traces (select drive strength)

■	 Fast edge rate (controlled clock edge rate/select clock edge rate/slew)

■	 Buses with controlled pin-to-pin slew requirements (matched length/load/impedance)

■	 Consider using signal integrity software design tools

Following is an FPGA pin assignment checklist.

Pin Assignment Checklist

■	 Make sure you set aside Margin for expansion

■	 Clock assignments are critical and should be implemented early 

■	 Assign special I/O early

■	 Assign high-performance signals and buses early

■	 Special signals and buses: matched length, control impedance

■	 Consider placement and orientation of FPGA on board

■	 Consider placement, orientation and signal flow through FPGA (Area constraint)

■	 Consider pin escape pattern

■	 Consider native FPGA architecture and preferred data flow

■	 Internal signal routing details

■	 Global routing resource details

■	 I/O bank architecture details

■	 SSO guidelines

■	 Details of clock routing and feedback options

■	 Special I/O feature characteristics

■	 Same package / I/O footprint migration details

■	 Architectural details of I/O blocks

■	 Considerations for double data rate I/O Clocks
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■	 Considerations for differential signal pairs

■	 Considerations for controlled impedance lines

■	 Clock relationships and interactions

■	 Characteristics of all FPGA I/O

■	 Potential future expansion/enhancement signals

■	 FPGA configuration approach & design download approach

■	 Plan debug signal access

■	 JTAG connector access

■	 Embedded processors

■	 Special features: DCI, I/O standards, differential signal pairs, pull-up and pull-down, 
keeper circuit, slew rate, heavy-load (drive strength), power-up requirements, con-
figuration state / status, distribution of noisy signals, distribution of SSO signals, 
distribution of heavy drive requirement signals

■	 Work to minimize signal crossover at board level

■	 Categorize and group special consideration signals and signal groups; clocks, control 
signals, buses, differential signals, test signals, noisy and quiet signals, etc.

■	 Assign signals to general purpose pins before dual use pins

■	 Do not “waste”/block access to specialized pins such as ex: clock inputs, clock feed-
back pins… unless necessary due to pin count limitations

■	 Break all special function pins out to test points/pads/headers, etc.

■	 If supporting device migration assign pins based on smaller of two devices with 
noncritical signal (test, etc.) assigned to pins only available in larger device

■	 In general unused inputs should be pulled low to avoid noise, (pull-ups consume 
unneeded power)

■	 Analog ground and power pin considerations if appropriate

■	 Double check power and ground assignments and flexible assignment power pins such 
as I/O bank reference pins

Following is an FPGA package selection checklist.

FPGA Packaging Checklist

■	 Evaluate package selection based on design height limitations

■	 When selecting device package be aware of the amount of space required around the 
component for decoupling & signal termination components

■	 Consider adding a clear area around BGA component for easier BGA rework
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■	 Determine if a TQFP package will work better for your design based on mounting 
technology, access to signals, rework, white-wires, etc. (realize that fewer and fewer 
non-BGA components are likely to be available in the future)

■	 Select packages that support a range of available device sizes

■	 Realize that common footprints between FPGA families or manufacturers is very 
unlikely 

■	 FPGA manufacturers usually want to pinout a large percentage of the available I/O 
on the device die, thus high-pin count packages will be the norm

Following is an FPGA design estimation checklist.

FPGA Design Estimation Checklist

■	 Areas include: schedule, I/O count, power consumption, thermal, internal resources: 
logic requirements, memory blocks, DSP blocks, I/O blocks, clocks, routing, and so on

■	 Factors affecting design margin include: device requirements, potential design 
enhancements, future function implementation, feature creep, debug (embedded logic 
analyzer)

■	 Include as much design margin as the design can support based on future design 
enhancement plans

5.5	 Summary 
This chapter presents many of the design decisions and factors involved in the selection of 
an FPGA manufacturer and component. The device-level selection process requires selec-
tion of an FPGA manufacturer, FPGA family, and the best package and component. Some 
manufacturer selection criteria include tool chain features and cost, IP offerings, family 
life-cycle stage, and design support. Device family selection factors include programming 
technology, size, cost, I/O voltages, supported I/O standards, features and component speed. 
FPGA resource decision factors include I/O count, clock management resources, memory 
resources, DSP resources and hard IP. 

Accurate design resource estimates are critical to the selection of the correct FPGA com-
ponent. Internal resource estimates and power estimates should be completed. Challenges 
associated with FPGA resource and power estimation were discussed. Estimating FPGA 
power consumption generally requires a detailed and accurate knowledge of the final FPGA 
design implementation parameters which are not known during the early stages of the design 
effort. Power estimation accuracy improves as the design becomes more mature, unfortunate-
ly, with rapid system development, power estimates are required long before FPGA designs 
are completed.

Board-level decision factors include packaging, power, informed I/O assignment, 
internal signal access, signal termination, and preferred FPGA data flow orientation. Once 
the manufacturer, device family and targeted component range have been determined, the 
package must be selected. Often there are several choices, although FPGA package choices 
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seem to be migrating toward ball grid array (BGA) packages for larger components and 
newer families. Some challenges associated with BGA packages were identified. FPGA signal 
termination and FPGA data flow preferences can be found within manufacturer literature 
including datasheets and application notes. Taking advantage of device-level manufacturer 
proprietary features can significantly improve system reliability and performance.
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6.1	 Overview
This chapter discusses design details associated with FPGAs that affect board-level design 
and implementation decisions. FPGA devices differ significantly from the majority of fixed-
function, fixed I/O devices mounted onto a printed circuit board (PCB). Application-specific 
standard product (ASSP) devices have fixed inputs, outputs, power and ground pins. The 
signal flow into and out of an ASSP device is fixed. With a fixed signal pin-out there are only 
a few effective device orientations on the board relative to other devices it interfaces with. 

However, with an FPGA device almost all the signals can be assigned to any available 
I/O pin on the device. Exceptions include the device configuration pins and signals such as 
clocks that are dedicated for improved performance. Another difference is that I/O pin char-
acteristics can also be configured by the design team. These options result in many decisions 
to be made during the course of an FPGA device design. The decisions regarding the FPGA 
I/O can be best made when considering the board-level circuitry surrounding the FPGA 
device. In order to make intelligent, well-considered I/O decisions, the design team must be 
aware of the details of every component or circuit the FPGA directly communicates with on 
the board. 

In order to effectively assign signals to I/O locations, the design team must know the 
characteristics of each I/O signal including the required I/O standard, and any special board-
level signal characteristics. All high-speed and controlled-impedance signals and differential 
signal pairs must be identified so they can be correctly connected to the FPGA device and 
selectable I/O characteristics correctly specified. Similarly, all critical address, control and 
data flow paths into and out of the FPGA must be defined so that they can be given signal 
assignment priority.

High-speed signals result in tighter internal timing requirements and potential sig-
nal pipelining through the FPGA. Large groups of signals with the potential to all change 
state at the same time (known as Simultaneously Switching Outputs (SSOs)) should ide-
ally be spread across one or more I/O signal banks. Noise-sensitive and noisy signals should 
be identified so they can be separated from each other. Signals requiring matched length 
traces should be assigned to pins which are close together on the FPGA package. This will 
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minimize unnecessary serpentine PCB signal traces. For buses it is also important to assign 
bus signals to I/O pins which are close together on the FPGA package to minimize signal 
skew while also reducing board-level and FPGA-level signal crossovers. For slower-speed 
designs, signal crossovers and path length skew internal and external to the FPGA are less of 
a concern and signal assignment to I/Os and routing are less important.

The optimal device and board-level signal pin assignment and signal routing is depen-
dent on both the physical placement and orientation of the FPGA component on the PCB 
and on the package pin “break-out” or “pin escape pattern” implemented for the FPGA 
package on the PCB. These design factors are discussed in this chapter.

The details of FPGA-to-external circuitry design interfaces should be well documented 
so that any future design updates are made with a clearer understanding of the complex 
signal and component relationships present within the design without the need for extensive 
reverse engineering.

6.2	P ackaging
As FPGAs continue to increase in gate density and I/O count, manufacturers are targeting 
the lowest cost, highest-density packaging available. The two most common FPGA package 
types are quad flat packs (QFPs) and ball grid arrays (BGAs). 

TQFP

PCB

Figure 6.1  TQFP package side view

A QFP is a component with surface mount leads located on all four sides as shown in 
Figure 6.1. In a QFP the leads reach down to pads on the board. The leads usually contact 
the board outside the outline of the package. BGA components consist of a square package 
body with the part’s pin connections located out of sight underneath the body in a grid ar-
rangement of solder connections as seen in Figure 6.2. Typical BGA packages can contain up 
to twice as many connections within the same footprint required by an equivalent pin-count 
QFP package. BGA components can have lead-to-lead spacing of 1.2 or 1 mm while fine 
pitch BGA (FBGA) components have 0.8 mm or 0.5 mm spacing.

The pins of a QFP are accessible for probing with an oscilloscope. A QFP package’s pins 
can be “lifted” or rerouted with a “white wire” if needed. A technician with a conventional 
soldering iron can rework any pin they have unblocked access to. This makes QFPs 
“friendly” to prototype developments when mistakes and changes requiring rework are more 
likely to occur. On a BGA component, the part’s leads are located underneath the body 
in a grid arrangement of solder connections. This results in a matrix of permanent solder 
connections that can’t be inspected, probed, or reworked without specialized equipment. 
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While BGAs allow high pin count FPGAs to occupy a minimum of board real estate, they 
tend to be development and prototype “unfriendly.”

BGA packages are rapidly becoming the preferred packages for high-lead count FPGAs. 
BGAs allow ever-higher lead counts to fit onto shrinking real-estate footprints. BGAs are 
increasingly replacing QFPs. Every year, there are fewer and fewer non-BGA parts available 
to FPGA designers. Figure 6.3 shows the packing trend toward higher-pin count BGA pack-
ages. In the late 1990s, it became evident that the pitch on large-pin count QFPs could not 
be practically further reduced. The pin-to-pin separation (lead pitch) had become so small 
that solder bridging was difficult to avoid even for experienced well-equipped volume board 
production houses. FPGA manufacturers who needed high pin counts with small footprints 
made the transition from QFPs to BGAs. 

Figure 6.2  BGA package side view
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Figure 6.3  Package density trend
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6.3	 BGA Component Considerations
Ball grid arrays have the advantage that the linear contact-to-contact (ball) separation is 
larger than the linear pin-to-pin separation of traditional fine-pitch QFPs. This reduces sol-
der bridging, but at the cost of a more complex, automated assembly process. This is fine for 
high volume production.

BGA components can be less attractive for small volume users and prototyping applica-
tions. The lack of access to solder connections eliminates the option of hand assembly and 
rework for prototype and small-volume builds. Without direct connection access, technicians 
can’t easily gain access to pins internal to the outer two I/O rings and cannot add white wires 
or intentionally open contacts for testing. Each of these issues can be handled, but the solu-
tions come with some design trade-off costs. 

BGA components are here to stay. Since there are few alternatives, designers must learn 
to design and work efficiently with BGA components. Living with BGAs means finding ways 
to support some of the design rework and debug options we enjoyed with leaded components. 
This is especially important for function prototyping and development projects.

6.3.1	 BGA Signal Breakout
The implemented or proposed package pin “break-out” or pin escape pattern for the 
targeted FPGA package and PCB layer stackup can significantly affect signal pin assign-
ments, routing options, decoupling and signal termination component location. Ultimately 
signals will be assigned not directly to the location of an I/O pad on a BGA package but 
where the signal gets “broken out” on the PCB. 

Several things must be kept in mind when designing with BGA components. BGAs 
tend to require more layers for signal breakout than QFPs since only one or two traces can be 
routed between ball rows on any individual layer. A “dog-bone” pattern is required for each 
BGA package ball contact to the PCB board since a via in the center of the PCB contact pad 
would “starve” solder from the limited available solder volume resulting in production defects. 
A BGA footprint showing example PCB signal breakout patterns is shown in Figure 6.4. 

KEY
POINT
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Figure 6.4  BGA PCB pad layout
Used with permission of Xilinx, Inc.

An example of two PCB internal layer signal break-out groups is shown in Figure 6.5. 
Traditionally the “highest” layer of the PCB breaks out the “outside” ring of the array, work-
ing further into the array with each successive PCB layer.  

Figure 6.5  Internal layer signal breakout example
Used with permission of Xilinx, Inc.
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6.3.2	 Mounting and Reworking BGA Components
A significant challenge related to BGA components is the limited number of rework 
options. Since a mounted BGA component’s solder joints are inaccessible beneath the pack-
age body, it is difficult to make modifications to the design. With BGA components, it is not 
possible to mount, remove or rework a part board with the conventional soldering iron and 
heat gun located in most nonproduction, basic maintenance-only labs. 

Typically, boards with BGAs must be sent out to a manufacturing house to mount the 
BGA components. This is true even if there are only one or two BGA components on a 
board, or only one or two boards to be built, due to the advanced equipment required to 
reliably mount BGA components. A reflow oven is typically required to mount or remove a 
BGA component to or from a board. Sending a board out for the initial build is a one-time 
event; however, most development projects will typically implement multiple white-wires 
during the course of design verification. BGA sockets are not especially attractive since they 
are still relatively expensive and generally cannot easily be accommodated in form-fit-func-
tion developments due to size.

The recommended component mounting processes for BGA parts are infrared or va-
por-phase reflow with controlled temperature profiling and carefully controlled process 
parameters. There are few viable alternatives to high-volume reflow ovens for reliable 
BGA board assembly. Similarly, reliable component rework and replacement is difficult and 
requires specialized equipment and a component-free zone directly around the part, which 
wastes valuable board real estate.

Specialized BGA rework equipment does exist, but it is relatively expensive, requires 
specialized training and is generally not available outside of high-volume production facili-
ties. Figure 6.6 illustrates one example of a BGA rework machine. The system works by 
forcing a heated gas through a nozzle which is lowered close to the board. Not shown in the 
figure is a suction cup on an arm located within the nozzle, which can lift the BGA com-
ponent off the board when the solder has reflowed. After the pads on the board have been 
cleaned the process can be reversed and a new component reflowed back onto the board. 
This process is assisted by virtue of a small video camera also located within the hood. 

One challenge associated with this approach is that there must be no mounted com-
ponents within a band or “clear zone” around the BGA component. Since decoupling and 
termination components are generally placed as close to the FPGA as possible, a clear zone 
is seldom implemented. More commonly the components (usually chip caps and resistors) 
are simply removed manually with a conventional soldering iron before the BGA rework and 
replaced after a new chip has been remounted. While it is possible to remove, prepare and 
remount a BGA component, it is much easier to install a new component.

KEY
POINT
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Figure 6.6  FPGA BGA rework

If rework is not a viable option, it may be necessary to replace the entire board assembly. 
This can be an expensive approach and is one of the disadvantages of designing with BGA 
components. 

6.3.3	 BGA I/O to Signal Assignment
Limited rework options are the most significant challenge in working with BGA packages. 
Since the only significant rework option with a BGA is replacement of the part, any mistakes 
to the pinout of the board can only be addressed by relaying out and building a new PCB. 
This is an expensive option and every effort should be made to avoid this situation. 

Using BGA components also requires that the FPGA designer be sure to bring in all re-
quired pins and carefully assign and verify all BGA pin assignments and connectivity before 
the PCB board is built since mistakes are almost impossible to fix. Designers should also seek 
to make the best possible use of the available I/O pins. This can be accomplished by bring-
ing in not only all “required” signals, but also any “likely” or even “possibly needed” signals. 
If there are unused pins, take advantage of them as discussed in the device-level decision 
chapter. If the pins are not taken advantage of in the PCB design phase, they will simply be 
wasted resources.

SRAM FPGA architectures seldom exhibit internal layout symmetry. Trade-offs were 
made when the FPGA architecture was originally developed that can reward well-informed 
pin-to-signal assignments. Obtaining insight into pin assignment trade-offs requires a 
detailed understanding of the FPGA’s internal architecture, “preferred” internal bus 
routing paths and package pin-to-die I/O pad mapping. A detailed functional design under-
standing is also required (see Figure 6.7).

KEY
POINT
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Figure 6.7  FPGA signal flow

Two examples are “global” nets and bus routing. Global signals are low-skew FPGA 
internal nets intended for heavily used control functions and clocks. Signals intended for 
global distribution must be connected to specific I/O pins. Global nets can result in signifi-
cant performance enhancement and should be assigned with great care. Similarly FPGA 
architectures can have a “preferred” routing axis or direction (left to right, top to bottom) 
on the die to allow more efficient data bus and buffer control signal routing internal to the 
device.

Understanding how the chip architects have optimized an FPGA family for specific ap-
plications can make significant differences in a design’s performance based on how efficiently 
internal resources are assigned and utilized. This information can be difficult to track down. 
Vendor training, FAEs and company representatives are sources for this detailed level of 
information.

When routing noncritical signals between BGAs, designers should consider putting 
a zero-ohm resistor in series allowing easy access to the traces and the potential to make 
changes if desired by removing the zero ohm resistor and wiring to any other pad or circuit 
desired. This not as critical since the signal input or output order can be changed within the 
FPGA, but it can provide dual-use test functionality between components, which can also be 
used for test or design modifications if the need arises.

6.3.4	 BGA Trace Signal Access
If there are available I/O pins, bring a group of lines out to a test header. A test header 
with 0.1-inch spacing will facilitate reliable connection of test signals to a logic analyzer or 
oscilloscope. Designing for convenient access to internal signals up front will make debug, 
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integration, and verification somewhat easier. Another option is to attach a few unused I/O 
pins to LEDs to allow for visual indicators of internal logic status. Make sure to evaluate the 
power consumption of the LEDs versus the capability of individual FPGA pins, as well as the 
overall FPGA power consumption if implementing more than a few LEDs in the design.

Access to signals and ability to intentionally open connections is severely limited with 
BGA components. If through vias are used to break out the BGA traces, it is possible to gain 
access to signals at the BGA end of the trace by attaching wires to the vias on the backside 
of the board. This assumes that the signal via can be accessed. In order to open a signal trace 
to or from a BGA pin it is necessary to add a surface mount zero-ohm jumper into the trace 
close to the BGA component. The removal of this jumper provides the ability to add white-
wires to the design, bypassing internal PCB traces. This approach can have complications if 
the trace carries a high-speed signal or if this option is required for a large number of pins.

6.4	 I/O Assignment Iteration
Even when signal assignment is made carefully and based on a combined, informed, and 
detailed board-level and FPGA-level signal flow model, which takes into account all signal 
interfaces, some changes and updates are still likely to be required. Very few FPGA designs 
go through a single signal-to-I/O assignment iteration. Many factors covered in the device-
level decision chapter affect the assignment of pins. However, board-level factors also 
influence signal-to-pin assignment. In general, it is not worth the extreme effort required 
to successfully assign all of an FPGA’s pins in one cycle. A generally less time-consuming 
approach is to simply iteratively assign signals and pins until results are satisfactory. 

It is also quite common to make some minor pin assignment adjustments during the 
PCB layout cycle. This can be a bit challenging because there generally is pressure to “get 
the PCB out to the board fab house” and the FPGA tools are not always co-located with the 
board layout tools. If changes are made to the FPGA pin assignments, check the changes 
carefully and then have someone else recheck them. Make absolutely certain that any and all 
changes are made to both the FPGA design database and the board schematic. 

There is generally a strong motivation to “skip a few steps” to get a PCB package out the 
door. Try to resist this urge. Ideally, when a change to the FPGA pinout is required during a 
board layout, the process should be stopped until the FPGA files, FPGA schematic symbol 
and board schematic are all regenerated and the changes double-checked. This may cost a 
few hours or even a full day of schedule. While this may seem like overkill, make sure that 
the same end result is achieved. All the files (FPGA and schematic databases) must agree 
and reflect what was designed. If the files are not correctly updated or the PCB change 
introduced an error, a range of bad things can potentially happen including a difficult design 
debug or integration, a faulty PCB or errors in subsequent PCB or FPGA designs generated 
from the faulty design database. Any of these results will likely make a few lost schedule days 
seem like a bargain.
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6.5	 FPGA Device Schematic Symbol Generation
Advances continue to occur in the area of “seamless” FPGA tool “signal-to-pin assign-
ment” from/to board-level schematic tool coordination. The tools are typically offered by 
third parties, rather than the FPGA manufacturers, and tend to interact with a limited set 
of schematic capture tools. For designs with large FPGA components, many pin-assignment 
iterations or organizations that do enough design turns a year to benefit the tools hold sig-
nificant promise. The generation of an FPGA device schematic symbol can be a tedious and 
lengthy task that must be done during the board-level design process. Building a large FPGA 
symbol may take many hours. Tools are available to assist with this effort. The signal-to-pin 
assignment process and coordination through to a PCB layout and back can be time-con-
suming, irritating and error-prone, depending on the design process followed. Assistance 
with this tedious aspect of FPGA design is always welcome.

6.6	T hermal
With larger FPGA components, faster clock speeds, heavier switching loads, higher I/O 
counts, high ambient temperature and limited airflow, FPGA components can get a little 
warm. If the design has multiple risk factors, take the time to do a power/thermal analysis. 
One of the challenges with FPGA design is that it can be difficult to estimate power con-
sumption until a majority of the design has been implemented, which is often long after the 
PCB boards have been sent out for fabrication. Evaluation boards can provide a real-world 
sense of thermal performance. Verify that chip versions match between the design and evalu-
ation board or understand the known differences of observed results. A power analysis may 
indicate that there are thermal issues. Identifying thermal issues early in the design cycle 
may allow the design team to consider available thermal mitigation options in the initial 
PCB design. The following list presents some FPGA thermal considerations to review.

Thermal Design Considerations

■	 DCI implementation may increase power consumption and thus thermal build-up

■	 Newer families of components with smaller device process/geometries may consume 
more power and require thermal mitigation; i.e., the same power consumption in a 
smaller package can create problems

■	 At higher levels of performance (i.e., high clock rate, high logic utilization, high 
switching rate, high drive current) thermal issues may occur for specific packages

■	 Thermal evaluation is based on accurate power estimation so thermal estimates may 
only be as good as the power estimate 

■	 Include thermal mitigation options “on risk” if the thermal performance is in question

■	 Consider adding passive or active heat-sinks

■	 Consider PCB features such as enhanced copper close to the FPGA for heat spread-
ing and dissipation

■	 Consider thermal pads for heat transfer to housing if feasible

KEY
POINT

KEY
POINT
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6.7	 Board Layout 
Board-level design with FPGA components can be challenging with larger device packages 
supporting more than 900 designer-assignable I/O pins. There are many considerations an 
FPGA designer must make during the board layout process for large FPGA devices. The 
manufacturers of these devices typically provide guidance and suggestions for the FPGA 
designer to follow. It is advisable that any guidance and suggestions provided by an FPGA 
manufacturer of the device chosen for the design be followed. This helps to ensure proper 
board design.

Board layout has many important elements requiring detailed consideration. Some of 
these important topics of board layout include high-speed routing and associated challenges, 
FPGA device placement and orientation, and PCB layer stack-up. The details of these topics 
are beyond the scope of this book. Appendix A of this book lists references to subject matter 
material relating to board layout. The following list presents important board layout consid-
erations for review.

Board Layout Design Considerations

■	 Differential signal routing and connectivity

■	 Matched length bus signal to I/O assignment

■	 Controlled impedance signals matching or termination

■	 Route high-speed and very-high-speed signals to dedicated high-speed I/O pins

■	 Route specialized interface signals to hard IO dedicated pins (Ethernet)

■	 Group interface signals for board & FPGA routing (Ethernet, SPI, I2C, UART, etc.)

■	 Carefully research, design and implement clock input, feedback and distribution

■	 Double check clock input and feedback signal routing

■	 Verify desired clock frequencies can be generated by the internal resources connected 
to the clock input pin selected with the provided input clock frequency

■	 If noise issues will not occur consider routing all available board clocks into the 
FPGA dedicated input clock pins rather than using them as general I/O pins

■	 Verify I/O bank reference pin signal routing, levels and assignments

■	 Are special power or ground sources needed to support internal accurate clock functions

■	 Verify power generation (pins, currents, voltages, sequencing, decoupling)

■	 PCB Layer stackup – provide solid planes for important FPGA voltages and grounds

■	 Limit vias and unnecessary signal crossovers in critical signal nets

■	 Research suggested component footprint signal breakout, dogbone PCB guidelines

■	 Component reflow, rework recommendations, guidelines

■	 Include (or at least don’t preclude) thermal mitigation options
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■	 Decoupling component values, ratings, characteristics and placement 

■	 Placement of signal termination components, characteristics, values; termination 
topology

■	 Determine/establish design signal flow and data flow path

■	 Critical bus and signal I/O modes and characteristics

■	 Are the appropriate pull-up and pull-down resistors on the right lines?

■	 Careful routing of clocks and noise sensitive signals

■	 Indicator LEDs located where they are easily visible?

■	 Mounting holes or pads to implement connection to switches for testing

■	 Include access to power and ground readily on pads and headers for testing, monitor-
ing and easy access

6.7.1	 Device Placement and Orientation
Board-level part placement and orientation both influence I/O assignment and thus routing 
within the FPGA. By carefully considering and optimizing signal path flow from external 
components through the FPGA, significant performance improvements can be obtained. 
Try to avoid the common trap of perceiving the FPGA as the “flexible” component on the 
board that can be used to resolve all board-level signal crossovers.

While it is possible to do signal crossover correction within an FPGA, it can be wasteful 
of routing resources. When possible try to orient the FPGA such that the preferred bus rout-
ing direction is aligned with the direction bus signals will be traveling within the part. Part 
placement, orientation, and I/O assignment are all closely related. 

Where possible, route buses at the board level with an organized master plan, working to 
eliminate avoidable bus signal crossings. Visualizing the signal flow through the FPGA can 
be helpful in this process. Well-planned parts placement and signal routing requires extra 
effort but can result in significant routing efficiency improvements internal to the FPGA.

6.7.2	H eaders and Internal Signal Access (Test and Configuration Cable)
Include test and configuration headers and signal access on the PCB board. If the real estate 
is available, bring out all the test signals the design can practically support. There is no re-
quirement to populate the test or configuration headers on production boards, so potentially 
the only loss is in real estate and routing resources. Place the test header and configuration 
header where they can be easily accessed in as many levels of product assembly as possible. 
For example, it is ideal to be able to remove only a product’s cable and have access to test 
and configuration headers without additional disassembly. Make sure that there is sufficient 
mechanical clearance between the header and any close parts or mechanical assemblies. Try 
to keep the headers relatively close to the FPGA to minimize signal quality issues. Place “pad 
only” contingency (white-wire) pads close to signals and circuits most likely to need them. 
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6.8	 Signal Integrity
No longer does designing with an FPGA include just proper implementation of HDL code 
and logic. The FPGA designer must know and understand important signal integrity issues 
that have become a critical part of FPGA design. Good signal integrity practices will limit 
the amount of cross-talk, ground bounce, and ringing by controlling and implementing prop-
er noise margins, impedance matching, and decoupling. Signal integrity is especially critical 
for high-speed design. High-speed design may require extra FPGA device power decoupling, 
external controlled impedance PCB traces and signal trace termination. The topics addressed 
in this section include signal protocol choices and implementation addressing single-ended 
and differential signal use, control impedance, and signal termination.

These topics and additional signal integrity design guidance are covered in high-speed 
design application notes and user guides from each manufacturer. It is highly advisable that 
these design guidelines addressing this very complex topic be followed. This will help to 
ensure reliable FPGA design. 

6.8.1	 Signal Protocol Choices and Implementation
Each FPGA manufacturer tries to support as many signal and interface protocols as possible 
for the target applications for their specific device families. Each I/O bank can support spe-
cific I/O protocols, levels and standards. In general, most I/O blocks have not been designed 
for heavy loads or extreme conditions. Generally they have been optimized for medium to 
light loads and high performance. With care, signals can be distributed between I/O banks 
set up to support the appropriate standards and FPGA devices can be used to translate be-
tween digital communication protocols. Most I/O standards are set through a combination of 
reference voltages and FPGA internal modes and software switches. Take care to make sure 
that conflicting I/O standards have not been assigned to the same I/O bank.

Beyond a certain speed range, it becomes attractive to move signals across differential 
signal trace pairs. Further detail on high-performance I/O is presented in Chapter 16, Ad-
vanced I/O. Higher performance signal interfaces and signal integrity become more critical 
when high-speed serial or parallel interfaces such as DDR, DDR2 or QDR memory interfaces 
are implemented. Adjustable signal slew rates help characterize signal performance. Many 
SSOs can create additional system noise and affect system performance.

Signals with fast data or clock rates or fast edge rates can cause traces to behave like 
transmission lines. For “high-speed” design (generally 50 MHz and higher) impedance 
control becomes important, even for short runs. Following FPGA manufacturer high-speed 
design suggestions can improve system reliability and performance significantly.

Unterminated signals or poorly controlled signal impedance can cause signal reflec-
tions. The reflections may degrade signal quality and limit maximum system performance. 
Signal termination requires adding additional components, typically in either a serial or 
parallel configuration. Termination generally occurs at either the source or destination of a 
PCB trace. Some FPGA families support termination internal to the component. Design-
ers should be aware that signal termination internal to the FPGA package will increase the 
power dissipated within the device. This should be taken into consideration when conducting 
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FPGA thermal analysis. The variations and details of signal termination are beyond this text, 
but extensive technical guidance is usually provided by manufacturers and third-party sources.

6.9	P ower
Power generation for FPGA components is becoming increasingly challenging as the level of 
integration and performance of devices continues to increase. A common design approach 
is to generate the required power levels very close to the FPGA. This has the advantage 
of localizing the power generation and distribution planes to the immediate vicinity of the 
FPGA device. 

Most FPGAs require multiple power levels with a different voltage being required for the 
I/O ring, the logic core and for reference levels for individual I/O banks within the FPGA. 
Powering up and down a circuit that includes an FPGA can present some special conditions 
that the design team should research. It is possible that the individual voltage levels should 
be powered up in a specific sequence; it is also possible that the voltage levels should be 
removed in a specific sequence. In general, the power levels should rise and fall during power 
up and power down, respectively, in relation to the power to the components the FPGAs 
interface to within the system. If circuits that an FPGA directly interfaces with either power 
up a significant delay after or period before the FPGA device itself, it can lead to undesirable 
current paths and loads.

System-level consideration must also be given to make sure that all voltages have 
achieved the required levels for at least the specified minimum time before the FPGA 
component is configured. This is less of a concern when the FPGA is being configured by 
a discrete processor in the circuit since the processor must complete its boot-up sequence 
before the FPGA can be configured. Another power-related issue is the possibility that 
configuring the FPGA results in increased power consumption. Most families do not have a 
higher than typical operational current requirement associated with configuration. However, 
it is important to check device family errata for special power-up and configuration issues.

When and where possible, FPGA power and ground connections should be made to 
solid signal planes with a low impedance path back to their source. Local power genera-
tion has the advantage of shorter path from the power supply and potentially less noise, 
depending on other components connected to it.

Most FPGA manufacturers provide power supply suggestions, power distribution notes 
and power decoupling guidelines in device family data sheets, user guides, application notes 
and technical notes. Device errata and on-line technical issue answers should also be exam-
ined for important design suggestions.

6.9.1	 Device Decoupling Considerations
Reliable FPGA design requires effective, informed FPGA device decoupling. Many factors 
can affect the specific decoupling solution required for an FPGA application. Some common 
factors include nearby devices that inject or couple noise into the power and ground planes, 
FPGA outputs with selected “fast” transition edges, and large numbers of simultaneously 
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switching I/Os (common with wide external buses). An alternative to expending extensive 
engineering effort to determine how little decoupling a design requires before a design’s 
performance or reliability is affected, it is generally easier to simply implement as much 
decoupling as is practical to avoid future problems. The practical decoupling limit is usually 
real estate. Following a manufacturer’s typical (or worst-case) decoupling suggestions can 
consume a large band of real estate around a component.

With BGA components the land-grid pattern of pins prevents any components from be-
ing placed under the FPGA package, so the decoupling capacitors must surround the FPGA 
package. A significant design challenge arises when placing decoupling capacitors around the 
package since termination components should ideally be located as close as possible to where 
the PCB signal trace enters the BGA array under the part. Decoupling capacitors are typi-
cally given the majority of the prime locations closest to the part, since the performance of 
an FPGA without effective decoupling can be suboptimal. In balance, an FPGA that is op-
erating efficiently with corrupted input signals is also of limited application. Ultimately, the 
design team must find a balance between these two classes of components that need to be “as 
close as practical” to their associated device pins. One popular approach is to put a majority 
of the decoupling capacitors closest to the FPGA with an intermediate ring of termination 
components, surrounded by the rest of the decoupling capacitors. 

An element that can help with this challenge is the ability to implement signal termina-
tion within the FPGA device package, as discussed in the previous section. Manufacturers 
provide extensive decoupling recommendations and guidelines to help designers implement 
the best design compromise possible.

The following presents an FPGA power and decoupling design consideration list.

Power and Decoupling Design Consideration

■	 Do not cut corners on manufacturer decoupling recommendations

■	 Estimate power consumption with available tools (see manufacturer documentation 
for available tools and application notes)

■	 Consider developing, downloading and testing “equivalent” or worst-case power 
consumption models and testing on evaluation/development boards. For example,  
to determine power consumption of a wide data bus, set up data bus driving real-
world load and determine power consumption with alternating 55/AA data-stream

■	 Include margin in power calculations

■	 Consider power sequencing

■	 Make sure power conditioning and quality meet or exceed manufacturer requirements

■	 Evaluate worst-case power-up current sequence

■	 Follow manufacturer power, decoupling and grounding recommendations explicitly

■	 If deviations are required from manufacturer power, decoupling or grounding recom-
mendations, consult with appropriate manufacturer personnel
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■	 Strongly consider power monitoring external to FPGA (especially appropriate 
for embedded hard- and soft-core processor implementations and state machine 
implementations)

■	 Note that internal DCI implementation may affect device power consumption

■	 Pay special attention to analog powers and grounds if they are implemented on the 
part, since these affect clocking stability and quality 

■	 Special consideration for analog ground and power implementation, decoupling, 
plane isolation, ferrite implementation, and so forth, if required by design

■	 Targeted reference specialized for designs may be available from discrete power sup-
ply vendors to supply FPGA components; modules and combined functions may also 
be available which are target to specific FPGA components and families

■	 Be aware of relative power consumption needs on required multiple power supplies

■	 Review device errata for specific power considerations (power-up current require-
ments, and so on)

6.10		 Summary
This chapter presents many of the critical board-level design decisions and the factors that 
affect them. The two most popular FGPA packages are QFP and BGA. With increasing 
demand to place larger density and higher pin count parts within ever-smaller footprints, 
BGA components have become the preferred packaging method. BGA packages can be 
challenging to design and debug with. Designers must take into account a number of factors 
when designing with BGA packages. Some of these considerations are presented in the 
following list.

■	 BGA Signal Breakout
■	 BGA I/O to Signal Assignment
■	 BGA Trace Signal Access
■	 Mounting and Reworking BGA Components
Several board-level design issues were outlined in this chapter. Topics included device 

placement and orientation, the use of headers for internal signal access, I/O assignment 
and signal integrity issues. Signal integrity design issues include signal protocol choices and 
implementation, single-ended and differential signal assignment and I/O characteristics, 
signal termination and controlled impedance. Large FPGA components with fast clock rates 
and heavy loads may become a significant signal integrity design challenge. 

Power generation and distribution are the final challenges discussed in this chapter. For 
all FPGA components, power is an open issue. It is increasingly common for design teams to 
generate FPGA power local to the FPGA on the PCB. Additional power challenges include 
the need for multiple power levels for the core and I/O banks and the distribution of these 
power planes. Informed FPGA device power generation, power distribution, and device 
decoupling are important factors for reliable FPGA design.
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The design implementation phase is a significant percentage of the overall design cycle. It is 
critical that the implementation phase of the design be handled as efficiently as possible. The 
decisions before and during the design implementation phase can have a dramatic impact on 
the implemented design and project schedule. The “pay now or pay later” principle applies in 
full force during the FPGA design implementation phase. It is important to spend extra time 
and effort on the tasks that will ripple through and influence later design phases. The most 
important design implementation tasks are presented in this chapter. Figure 7.1 presents a 
high-level design implementation flow.

The following definitions describe the main steps of an FPGA design’s implementation 
phase. 

Design Architecture – Defining the structure, interfaces and relationships between system 
functional blocks. Different architectural styles such as hierarchical or flat design organi-
zation can be used to implement a design.

Design Entry – Entering a design in an HDL (VHDL or Verilog). Designs may also be 
entered in Matlab®, Simulink™, C, or C++ if the team has access to appropri-
ate tools. However, designs described by these alternative design entry approaches will 
generally be translated to RTL-level VHDL/Verilog in an intermediate design step. This 
design phase may also be referred to as design capture.

Logic Synthesis – Tool-driven process for converting VHDL/Verilog code to a gate-level 
netlist specific to a target device.

Place and Route – Tool-driven process that determines where registers and gates are placed 
within an FPGA’s “fabric.” This process also determines the connection paths between 
design elements. The resulting design connectivity is defined by the design netlist.

Design entry and logic synthesis are commonly categorized as “front-end” processes while 
place and route and configuration bit-file generation are generally categorized as “back-end” 
processes.

Chapter 7

Design Implementation
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Many factors will affect the efficiency of a design. As with many engineering disciplines, 
the decisions made during the earliest design phases have the greatest impact on the result-
ing design implementation and how efficiently the design can be implemented. Some of the 
most significant of these factors are discussed in the following sections.

7.2  Design Architecture
Once the requirements, functionality and design architecture have been defined, the design 
must be captured. While design capture is often considered the same as design entry, there is 
another consideration that must be taken into account. The same operational functionality 
and high-level design architecture may be implemented in several different ways with the 
same final functionality and performance. The details of how the low-level design is imple-
mented can be referred to as design capture approach. Synchronous design is preferred to 
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Figure 7.1  High-level FPGA design implementation flow
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asynchronous design capture for almost all FPGA designs. The characteristics and benefits of 
different design capture approaches are presented in the following sections.

7.2.1  Synchronous Design
Synchronous design is a critical FPGA design implementation method. Synchronous design 
can be used to develop stable, reliable FPGA designs that are efficient to implement, test, 
debug and maintain. Some of the benefits that can be realized using synchronous design 
include:

Synchronous Design Advantages

■	 Simplification of timing simulation, static timing analysis and constraints

■	 Increased isolation of internal FPGA functionality from external board-level timing 
issues

■	 Reduced impacts associated with FPGA component process changes (for example,  
0.13 μm to 90 nm transition)

■	 Simplified design reuse

■	 Maximizes access to external design support (it can be challenging to assist 
designers with their asynchronous FPGA design)

Figure 7.2 illustrates the concept of synchronous design. Notice the consistent use of 
registers on all signals into and out of the design. Synchronous design is the preferred design 
capture methodology for the majority of FPGA designs. This example assumes that the same 
clock is provided to both the board-level circuits and the FPGA. If different clocks are used, 
it may be necessary to synchronize at the clock domain interfaces. This interfacing function 
is often implemented with two or more successive flip-flops clocked with the frequency of the 
clock domain the signals are transitioning into. 
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The following checklist provides some guidelines to keep in mind when implementing 
synchronous design.

✔ Synchronous Design Checklist

❑ Never use gated clocks (avoid derived or divided clocks)

❑ Use low-skew global clock resources effectively

❑ Use clock enables rather than generating additional clocks

❑ Use clock blocks to generate stable phase-controlled clocks

❑ Use dedicated clock blocks and routing to minimize skew

❑ Avoid gated asynchronous sets/resets

❑ Register asynchronous inputs to avoid race conditions 

❑ Partition hierarchy into structural blocks defined by functionality (this supports
simplified timing constraints and timing analysis)

❑ Partition lower-level hierarchical blocks based on clock and function to support 
local synthesis optimization techniques 

❑ Where more than one clock is required, try to implement synchronization within 
one hierarchical block. This localizes potential timing issues for easier design 
analysis, review and debug 

7.2.2 H ierarchical versus Flat Design
The architectural organization of the FPGA design implementation (design capture meth-
odology) will have a significant effect on the design cycle. The two most popular design 
architecture methodologies are flat and hierarchical design. Flat design methodology implements 
the FPGA design on a single layer as a single global design implementation. Hierarchical 
design methodology implements the FPGA design with multiple design layers and individual 
design blocks. Design partitioning can also have a significant influence on design implementa-
tion. Figure 7.3 provides an illustration of these architectural design capture methodologies.

HDL capture of a flat design is accomplished by defining a single entity having one 
priority level. Typically, the system performance is influenced by applying constraints glob-
ally. Implementation is performed by synthesizing, and placing and routing the entire FPGA 
design. Implementing large flat designs may increase implementation times lengthening 
development schedules. 

Hierarchical design can be used to reduce HDL code complexity by isolating or encap-
sulating the design into smaller, more manageable design blocks (partitions). These blocks 
should be functionally related and will generally share common signals and clocks. The 
hierarchical design approach makes it easier to partition complex designs into manageable sub-
design blocks that can be individually (or locally) constrained. Hierarchical design supports 
the use of both global and localized design constraints, allowing more control over the design 
implementation. This gives finer control over the design implementation. Constraints are one 
of the most effective methods a design team has to guide and influence the design implemen-
tation of design circuits. Design constraint and optimization are discussed in Chapter 9.
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For example, area constraints can be used to influence the placement of individual 
design blocks. This allows the design team to control the distribution of the design function-
ality across the target device fabric. Area constraints can also be used to locate elements of 
the design at specific locations within the target FPGA device. However, locking the loca-
tion of design elements can significantly limit the range of options available to the design 
implementation tools. 

Partitioning a design into blocks and sub-blocks allows the implementation of indi-
vidual blocks to occur separately. The ability to implement blocks in isolation from the full 
design supports concurrent development of individual design blocks and allows blocks to 
be assigned to individuals on a location-distributed design team. Hierarchical design can 
contribute to design efficiency and increased options, which can reduce design schedule. 
Hierarchical design approach advantages are summarized in the following list. 

Hierarchical Design Capture Approach Advantages

■	 Smaller design blocks that are easier to design, implement, manage and support 

■	 Allows isolated implementation of individual blocks

■	 Supports location distributed design development

■	 Supports both global and localized design constraints

■	 Allows area constraints to influence and direct design functionality placement

■	 Compatible with the implementation of intellectual property (IP) blocks

Flat File Relationship

Hierarchical File Relationship

Figure 7.3  Hierarchical and flat design architectures
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■	 Simplifies the replacement or substitution of design blocks

■	 Supports design reuse

7.2.3  Implementing a Hierarchical Design
Hierarchical design capture begins with design block partitioning. A properly partitioned 
FPGA design is easier to constrain and optimize. When defining design partitions and design 
block boundaries, keep the size of HDL code blocks required to implement block functional-
ity to a manageable size. There is often a direct relationship between the number of lines of 
code and the number of design mistakes and oversights. Design blocks that have been sized 
correctly can reduce code complexity, take less time to implement, and be easier to integrate, 
test and debug. Designers should try to minimize resource sharing between design blocks. Re-
source sharing between design blocks may affect design implementation performance. Try to 
group design elements that share signal clocks or have similar functionality and performance.

As an example, separate DSP functionality and on-chip memory functionality into dif-
ferent blocks. The separation of functionality into individual blocks supports localized design 
constraints of individual design blocks. Specialized FPGA design functionality and  manu-
facturer-specific functionality should be moved into individual design blocks. While this may 
result in a larger number of blocks, it makes the design more portable. Functionality specific 
to an individual manufacturer or device family can be modified or replaced if the design is 
ported to a different architecture. Examples of manufacturer-specific functionality are dual-
port memory and DSP functionality.

When partitioning the design into blocks, consider the potential interfaces and design 
functionality to be implemented. Analysis of the data flow within the design is an important 
part of this process. Well-defined interfaces may simplify the debug and integration efforts. 
Design oversights, exceptions and bugs often occur at the design block interfaces. Design 
block interfaces should be synchronous. Focus attention on interfaces that bridge different 
clock domains. The use of registered interfaces simplifies synthesis and place-and-route phas-
es of the design. Avoid mixing clock domains within blocks, and work hard to keep clock 
domains isolated. Isolation of clock domains supports incremental synthesis and improves 
clock management. The following list presents some hierarchical design guidelines.

✔ Hierarchical Design Checklist

❑ Keep the design blocks to a manageable size

❑ Try to partition design blocks in terms of common functionality

❑ Work to encourage resource sharing within well-defined design blocks

❑ Assign constraints locally to individual blocks as appropriate

❑ Implement manufacturer specific functionality within separate design blocks

❑ Consider block interfaces carefully; keep interfaces synchronous 

❑ Bridge clock domains with care
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7.3  Design Entry
Popular methods for design entry are schematic capture and hardware description language 
(HDL). Synthesis allows design teams to implement their HDL models as designs targeted 
to specific manufacturer parts, and to retarget the design to a different manufacturer, family 
or part by simply re-synthesizing the design to a new target library. HDL-based design gener-
ally provides better design reuse, configuration control and design simulation. These factors 
are critical to larger FPGA designs. Figure 7.4 provides a conceptual illustration of an FPGA 
design described in an HDL. This figure illustrates a design block that was coded with the 
“synthesizable” subset of VHDL/Verilog. 

 FPGA Design Block

HDL 
Synthesizable

Subset 

Logic Logic

Logic Logic

Figure 7.4  FPGA function described in HDL

An HDL is a computer language that can be used to describe a digital circuit’s operation 
and implementation. The process of translating a design into a register-transfer level (RTL) 
is called synthesis. An important characteristic of synthesis tools is that they only support a 
subset of the full “compilable” construct range of HDL languages. The subset of the languag-
es that can be used to implement hardware designs is often referred to as the “synthesizable” 
portion of the language. This is differentiated from the “compilable” set of all valid language 
constructs and structures. 

A significant advantage of HDL-based design is the abstraction of complex hardware 
functionality. Abstraction is a technique for reducing the underlying complexities of a design. 
Figure 7.5 provides an illustration of abstraction. 
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Figure 7.5  HDL abstraction level
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VHDL Verilog 

 

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity d_latch is 
   port (enable,data: in std_logic; 
                  y : out std_logic ); 
end d_latch; 

architecture rtl of d_latch is
begin 
   -- sample comment
   infer: process (enable , data ) 
   begin 
       if (enable = '1') 
       then y <= data; 
       end if; 
   end process infer;
end rtl;

module d_latch (enable,data,y);
   // sample comment
   input enable , data;
   output y;
      reg y;
      always @(enable or data)
         if ( enable )  y = data;
endmodule

Design entry is increasingly being completed with some combination of VHDL/Verilog 
HDL languages. VHDL and Verilog were both developed in the 1980’s to allow the imple-
mentation of technology-independent, text-based circuit description. Both languages may 
be used to implement both component-library models and detailed gate-level netlists. Both 
languages evolved as simulation languages for modeling the behavior of digital circuits. 
Designers in the early days of HDLs would model the behavior of a design in technology-in-
dependent VHDL or Verilog, and then implement the design by drawing a schematic using 
a manufacturer-specific component library. It became possible to skip the schematic capture 
step in the late 1980’s with access to commercially affordable synthesis tools.

VHDL has a structure and format very similar to the ADA software language. VHDL 
is a strongly typed, relatively verbose language. VHDL’s main structure container is the 
entity/architecture pair. The entity structure defines the inputs and outputs of a functional 
code block while the architecture structure defines its functional implementation. In terms 
of object-oriented design, the VHDL entity structure controls the implementation of defined 
I/O elements and their supported states. The architecture structure controls the behavior of 
the code block. 

Verilog is similar in structure and format to the C software language. Verilog differs from 
VHDL primarily in the representation of literals and the way it deals with time. In a Verilog 
implemented design, the module structure is the container for the functionality being imple-
mented. Figure 7.6 presents a comparison of simple VHDL and Verilog code examples.

Figure 7.6  VHDL versus Verilog code example
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VHDL and Verilog languages each have their supporters and detractors. Both of these lan-
guage have specific advantages and disadvantages. Ultimately, the selection of a design entry 
language is an engineering choice typically influenced by many factors. Some of these factors 
include management preference, the existence of an in-house design database, available tools, 
design team experience and preference, access to training, and available technical support.

If it is desired or required to use both languages on a single project, keep in mind that 
some tools may not support mixed-language synthesis or may exhibit superior performance 
with a specific language (VHDL or Verilog). It is important to verify mixed-language support 
details with the tool vendors. While mixed design is possible, it should generally be avoided 
unless there is a strong justification for it. An example of a mixed-language requirement is 
the implementation of a design where the majority of the design is implemented in VHDL 
and a design block being reused is already implemented in Verilog. 

7.3.1  Dual Nature of HDL Languages
HDL languages can be used for both design implementation and design simulation. It is 
important to understand that certain HDL structures, and code constructs that can be used 
to simulate a design may not be able to be translated into physical hardware. A consequence 
of the dual-nature of HDL languages is that a design described by “compilable” HDL 
code is not guaranteed to be synthesizable into a design that can be placed in a targeted 
FPGA. The designer must be aware of the specific structures and constructs that may be used 
to generate hardware. Designers should also be able to implement the structures required for 
efficient design simulation. This is likely the greatest challenge associated with HDL-based 
design. Figure 7.7 illustrates the dual nature of VHDL and Verilog.
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Figure 7.7 HDL dual nature

7.3.2 H DL Coding Guidance
Consistent generation of “good” HDL code is dependent on the development of an HDL 
coding process. The design team should research and adopt a common HDL coding guideline 
and review process. The use of a common coding standard will help team members generate 
consistent code that is self-documenting and easy to understand, update, modify and main-
tain. Use of good coding styles will result in readable code that is consistent from designer to 
designer. The following list presents some coding approaches that help implement predict-
able, reliable designs.
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Suggested HDL Coding Approaches

■	 Use case statements rather than nested if-then or if-then-else structures

■	 Try to avoid nesting case or if statements more than three deep

■	 Utilize parenthesis to guide logic implementation within FPGA structures

■	 When building arithmetic functions use arithmetic operators rather than logic 
equations

■	 Try to use inference when the objective is design flexibility or design portability

■	 Try to use instantiation when the objective is predictable performance or resource 
utilization

■	 Use instantiation when seeking to take the greatest advantage of architecture-specific 
structures and architectural features

■	 When implementing case structures, either define all possible cases or utilize the 
when others statement

Only so much can be done to affect a design through synthesis and implementation tool 
options and effort levels. The tools will influence and affect the resulting design; however, 
the majority of the structure is dictated by the original design choices and implementation. 
Another significant factor involves the coding techniques used to implement the specified 
design architecture. Ultimately, the structure of the original design and the techniques used 
to implement the code describing the design will have the most significant effects on the 
design’s timing performance. Understand the details of the interaction between the selected 
HDL, synthesis tool and the architecture/resources on the target FPGA device. 

Use manufacturer core generators when appropriate. Keep code portable, instantiate 
cores and primitives when:

■	 When the tools cannot efficiently infer the desired functionality  

■	 When design functionality generated by synthesis does not meet the required timing 
or density requirements

■	 When the use of a core will save design time and budget 

Cores are not limited to high-level design implementations. Cores can describe the 
implementation of low-level basic functionality such as timers, counters or math functions. 
Many cores will allow the designer to specify the width of the data into and out of the core 
as well as the amount of pipelining implemented. Cores will often increase the performance 
of a design since they have been optimized to take advantage of the native architecture and 
available resources of a specific FPGA device family. A hierarchically-based design can sim-
plify the use of cores since updating cores for different target parts is greatly simplified. 

Certain design structures lend themselves naturally to hard core-based implementation. 
These include clock-related functionality, memory structures, multiplier and arithmetic 
implementations, and specialized I/O interface standards such as DDR.
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Coding Styles

Procedural coding and structural coding is another area of ambiguous terminology. The 
following sections attempt to clarify these terms. 
1) Procedural Coding Style
A “procedural” coding style does not specifically imply the calling of procedures or functions, 
although such calls are supported by HDLs. This term generally applies to a style of coding in 
which the “behavior” of a circuit is described in English-like, sequential, top-to-bottom code, 
similar to the code implemented in procedural languages like C. Much procedural-style code 
is supported for RTL synthesis, and does not require a behavioral synthesis tool, and for that 
reason this style is usually referred to as behavioral code. The following simple procedural code 
infers a simple multiplexer:

--Procedural style

--

if (select_signal = ‘1’) then

   y_signal <= s1_signal;

else

   y_signal <= s0_signal;

end if;

2) Structural Coding Style

A structural style of coding involves explicitly writing out the structure of a circuit, including 
instantiating components and specifying which signals (nets, wires) are connected to each 
pin of the component. It is similar to specifying schematic connections explicitly in text. 
The following structural code example illustrates how a multiplexer can be explicitly defined 
with structural style coding:

Structural style

--

U2: mux_from_library 

   port map (

      S_pin => select_signal,

      S1_pin => s1_signal,

      S0_pin => s0_signal,

      Y_pin => y_signal

   );

It is possible for users to mix structural and procedural coding styles in the same VHDL 
or Verilog source file. Procedural style code is easier to read, however, structural style code is 
typically used for instantiating technology-specific library cells (such as I/O pads), memory 
cells, third-party IP blocks, and lower-levels of the hierarchy from the HDL code. 
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Coding Standards and Processes

Coding standards are essential to producing readable and readily understandable source code. 
Coding standards can range from a few simple guidelines to detailed organizational proce-
dures. An organization’s coding standards can vary based on the maturity of the design group, 
the level of design documentation required, the number of designers in the organization, 
and level of reuse. Coding guidelines and procedures can help the design team to routinely 
produce well-commented code with a consistent style and format. Coding standards should 
cover file, procedure, function, constant and variable naming conventions and subjects such 
as segmentation, code indention, function, control structural usage, and other elements that 
affect the flow and syntax of the source code.

Peer reviews are critical to a project’s schedule. Reviews give team members the oppor-
tunity to present alternative implementations and review proposed and implemented design 
functionality. Reviews help identify different interpretations of standards, system require-
ments, and interface specifications. Reviews often uncover design mistakes and oversights 
and generally serve to improve team communication. Reviews can provide the project man-
ager with visibility into a project’s status and current challenges. Reviews also help the team 
to define the appropriate test and verification procedures for a project. Final design block 
reviews should include validated testbenches and results for each design unit. Independently 
tested and verified design blocks tend to integrate more smoothly and with less system debug 
than design elements with limited testing efforts. When possible, peer design reviews should 
be chaired by personnel capable of directing the review team to develop constructive design 
alternatives for the design issues identified.

Well-organized design teams that document their design ideas and test results are gener-
ally better prepared for the design integration phase. Good documentation can help reduce 
and resolve design issues and can clarify areas of the design that may have been completed 
months earlier. During the final phase of the design process, design notes, source code and 
critical system files should be archived. A comprehensive file configuration control plan 
should also be implemented to manage the code development and test process. This process 
should prevent multiple team members from making modifications to the same files and thus 
corrupting the design image. Project file backups and baselines should also be captured peri-
odically to prevent critical code loss. 

The implementation of a comprehensive code development, review and verification 
process can prevent team inefficiencies that can eat into a project’s schedule and budget. 
Consistent coding standards and documentation requirements can allow a team to achieve 
maximum efficiency and benefits from code reuse.

7.3.3 T ools
The selection of an FPGA design tool suite will be influenced by a number of factors, in-
cluding existing corporate manufacturer relationships, ease of use, level of integration and 
previous design experience. Tools can be obtained either from the FPGA manufacturer or 
from third-party tool sources such as Exemplar, Synopsys and Synplicity. Third-party tools 
tend to have advanced features and good support, but typically carry a higher price than 



115

Design Implementation

FPGA manufacturer tools. The feature sets, performance, quality of documentation, level of 
support and costs of different tool sets will differ. 

Tool selection is an important design decision. Make every effort to fully evaluate the 
available tool options with the required functionality. Don’t forget to consider the direct and 
indirect costs of training. Try to talk to individuals who are currently using the tools being 
considered. Find out what they do and don’t like about the tools. Ask them about tool stabil-
ity, limitations, frustrations and irritations. Arrange for a demonstration of the tool or take it 
for a “test drive” with an evaluation license. Once a tool suite is in house, it can be painful 
to make a change. The time for critical analysis is before the company commits to a specific 
tool suite.

Due to the number of software options required to support the inherent flexibility of pro-
grammable logic, design tool suites tend to be time consuming to learn to use efficiently and 
effectively. It is likely that whatever tool set is selected will be used for a long time. Since 
there is a significant investment in design implementation, tool set cost, training and famil-
iarity with a specific design flow, significant justification will likely be required to change to 
a new tool set. In addition, some of the design files and design constraints may not translate 
to a new tool set. This can result in additional “porting” work. Schedule pressures will also 
encourage using tools the team is already familiar with for future designs.

7.4 RT L
Although it is beyond the scope of this book to fully explore the nuances of RTL and behav-
ioral synthesis, an overview of some important RTL concepts are presented below:

What is RTL? RTL means different things to different people.

1)	 To software developers, RTL may mean register transfer language. An example is the 
generation of an intermediate file format produced by a compiler such as gcc, during 
the translation of C code to machine language for a specific microprocessor.

2)	 To microprocessor designers, RTL may be conceived as a pseudo-code description of 
an instruction set architecture, describing the dataflow between different elements of 
the processor.

3)	 To FPGA designers, RTL stands for register transfer level, a relatively low level of 
abstraction allowing the description of a specific digital circuit. RTL can also be used 
to mean a hardware description language (VHDL, Verilog, SystemC), where “RTL” 
code is a lower level of abstraction than “Behavioral Level” code, although both are 
actually subsets of the full scope of HDL languages.

The VHDL language standards committee offers this definition for RTL: “The register 
transfer level of modeling circuits in VHDL for use with register transfer level synthesis. Reg-
ister transfer level is a level of description of a digital design in which the clocked behavior 
of the design is expressly described in terms of data transfers between storage elements in 
sequential logic, which may be implied, and combinatorial logic, which may represent any 
computing or arithmetic-logic-unit logic. RTL modeling allows design hierarchy that repre-
sents a structural description of other RTL models.”
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An FPGA-oriented definition for RTL will be used in this book. Additional distinctions 
can be made to clarify the meaning of RTL in different contexts:

1)	 “Simulation-only” code may employ any of the available features of the language. 
This is often the approach taken when writing testbenches when the code is not 
intended for synthesis into an FPGA. However, full feature HDL code may be used 
for abstract, algorithmic modeling of the final FPGA functionality that the design is 
eventually intended to produce. The concurrency provided by HDLs sometimes pro-
vides a more natural way to express functionality than is possible in purely sequential 
languages like C/C++.

2)	 “Behavioral Level” code may be used to describe the chip that is intended to be 
synthesized. However, the description may be abstract enough that it does not imply 
specific internal or external device timing (clocking). Synthesis to gates, from a 
description at this level of abstraction, requires very sophisticated tools. Behavioral 
descriptions can be said to be architecture-independent. Behavioral synthesis tools can 
explore the trade-offs between several architectures before outputting a netlist.

3)	 “Register Transfer Level” code is a smaller subset of the full range of HDL code. RTL 
describes circuits at a level similar to the design description on a schematic: flip-flops 
activated by fully-specified clocks, and combinatorial logic (ranging from simple gates 
to large multipliers) between the flip-flops. RTL descriptions are said to be technol-
ogy-independent (retargetable to different device families), however, the architecture 
implied by the description is fixed.

Although VHDL and Verilog offer more data types and arithmetic/logic/conditional 
expressions than older, mid-1980’s languages such as AHDL (from Altera) and PALASM, 
RTL-level VHDL/Verilog code is basically at the same level of abstraction. RTL code implies 
a straightforward mapping to hardware, which is why RTL synthesis is the most mature tech-
nology and is supported by the widest array of synthesis tools.

To explain the difference between behavioral and RTL synthesis, consider the example 
of a complex multiply operation, defined by: 

X = Xr + jXi = (A + jB) * (C + jD).

Since VHDL and Verilog do not support complex arithmetic, we would write separate 
expressions in terms of real and imaginary components, such as:

Xr = (A * C) – (B * D);

Xi = (A * D) + (B * C);

For simulation, A, B, C, D, Xr, and Xi could be represented as floating-point values, but 
for synthesis with most tools, they would have to be expressed as an “integer-like” type (inte-
ger, bit_vector, std_logic_vector, fixed_point).

The code above would be supported for simulation, behavioral synthesis, and RTL syn-
thesis. All of these tools would likely implement the circuit (by default) with four multipliers 
and two signed adders. These could be implemented in combinatorial logic with no clocking 
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implied and no registers implemented. While perfectly legal, this large chain of combinatori-
al logic may not meet the timing or area requirements of the design. A natural approach is to 
consider pipelining the design. In register-transfer level VHDL, the code could be written as:

if rising_edge(CLK) then

   PROD1 = A * C;

   PROD2 = B * D;

   PROD3 = A * D;

   PROD4 = B * C;

   Xr = PROD1 – PROD2;

   Xi = PROD3 + PROD4;

end if;

This code specifically implies four multipliers, two adders, two levels of flip-flops, and the 
clock (CLK) that drives them, as shown in Figure 7.8. For clarity, the routing of the clock is 
not shown; all the registers are connected to a single global clock.

A 

D 
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C 

+ Xi 

* 

* 

Xr 

A 

C 

B 

D 

* 

* 

Note how this description is technology-independent (could be targeted to different FPGA 
families. Although a synthesis tool could choose different implementations (for example, 
ripple-carry adders, carry-look-ahead adders, Booth multipliers) for each arithmetic element, 
the architecture (sum of products with two levels of registers) is essentially locked down by 
the coding style.

In contrast, a behavioral synthesis tool would prefer to have the earlier description (with 
no explicit pipelining), in order to explore different architectures. Part of the complexity 
in behavioral synthesis tools is their inclusion of a scheduler, their sophisticated resource 
sharing, and their ability to infer memory elements and finite state machines that provide 
temporary storage and control for transfers between registers. With the scheduler, a behav-
ioral synthesis tool would determine when each resource (adders, multipliers, registers) is 

Figure 7.8  RTL complex multiply
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needed, and try to make architecture-level decisions about which resources can be shared 
over time, and which must be fully dedicated to one function.

Behavioral tools generally allow the exploration of architectures with different latency, 
without having to write detailed code for each architecture to be considered. For example, 
the complex multiplier could be implemented with four multipliers and two adders to pro-
duce one output every clock cycle. It could also be implemented with two multipliers (or just 
one), and possibly just one adder, but additional clock cycles would be required to produce 
all the results. Intermediate storage, and finite state machines for feeding intermediate results 
into the shared resources, would be required for such implementations, but these are auto-
matically generated by the behavioral tools.

Although behavioral synthesizers support the level of code at which algorithm and 
software developers tend to think, the fact that most design teams only have access to 
RTL synthesis tools means they must learn to think like hardware designers in order to 
write efficient, synthesizable RTL code.

7.5  Synthesis

7.5.1 Logical Synthesis
Logical synthesis is the process of translating an HDL language design description into an 
RTL design description. The synthesis process occurs as a sequence of stages. The first stage 
is the parsing of the HDL code for syntax errors. When the code is verified to be syntactically 
correct, the synthesis tool begins the process of translating the design into an RTL descrip-
tion (registers, Boolean equations, clocks and interconnecting signals). The output of the 
synthesis process is a netlist file, which is used as an input to the place-and-route tools dis-
cussed later in this chapter. A common format for the output netlist file is electronic design 
interchange format (EDIF). Figure 7.9 shows the high level synthesis process.

KEY
POINT

Figure 7.9  Synthesis/implementation
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module synthesis_ex(CLK,SEL,ADD1,ADD2,ADD3,ABUS,BBUS,DOUT);
   input CLK,SEL,ADD1,ADD2,ADD3,ABUS,BBUS;
   output DOUT;
    wire BUS12;                              reg ADD123,INT1,DOUT;
   assign BUS12 = (SEL) ? ADD1 : ADD2;
   always @(posedge CLK)       ADD123 <= BUS12 + ADD3;
   always @ (posedge CLK)      INT1 <= ADD123 & ABUS;
   always @ (posedge CLK)      DOUT <= INT1 & BBUS;
endmodule
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Synthesis uses estimates of wire delays as it selects the appropriate logic cells from the 
libraries provided by the device manufacturer. With this approach, the design architecture 
input to the place-and-route phase is effectively fixed. The place-and-route tool can only 
iteratively place the logic blocks they have been provided and then work to find the best 
routes between the design elements.

The process of translating code to gates is a fairly mature technology; however, choos-
ing the gates, their placement and interconnect routing in order to meet the specified design 
timing requirements and area goals remains a significant challenge.

Synthesis can describe several different design processes. This can lead to some confusion 
since the appropriate process may need to be determined by the context of the usage of the 
term synthesis. In general, a synthesis process involves transforming an abstract description 
of a design into a more detailed level of implementation. Depending on the tool set used and 
the design methodology followed, there may be several phases of synthesis before the final 
implementation of a design is reached. Figure 7.10 illustrates a range of the possible design 
synthesis phases a design may pass through during the FPGA design implementation process.

Figure 7.10   
Possible synthesis phases
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Any of the transitions in this figure may arguably be defined as a type of “synthesis.” 
Some of the actions shown in the figure could also be defined as synthesis “transformations”; 
however, it is not unusual for these actions to be referred to simply as synthesis steps. The fol-
lowing list summarizes the logical synthesis process.

Logical Synthesis Process Summary

■	 Write an RTL-level VHDL/Verilog description of the desired design functionality

■	 Write a VHDL/Verilog testbench to test the design description

■	 Use the testbench to evaluate the functionality of the design

■	 If the design seems to perform correctly, synthesize the design to a gate-level

■	 Evaluate the synthesized gate-level design with the testbench

■	 Verify that pre-synthesis and post-synthesis functionality are the same and that post-
synthesis timing requirements have been met

7.5.2 P hysical Synthesis
Physical synthesis is a tool-driven process for translating VHDL/Verilog directly to a placed 
and routed netlist without the need for user interaction at intermediate design flow steps. 
Physical synthesis is generally only supported by higher-end tools since the algorithms are 
more complicated and require detailed knowledge of the target device architecture. Physical 
synthesis is often used for higher-performance designs since it implements a higher (more 
global) level of optimization.

Physical synthesis interactively selects the cells, the location of the cells and the inter-
connect routing paths. These selections are influenced by access to accurate routing delay 
values rather than the estimates used by plain logic synthesis. This approach eliminates the 
conservative margins typically implemented by plain logic synthesis tools to accommodate 
routing uncertainty. This routing uncertainty is due to the fact that a later design phase 
implements the routing path and the tool does not know what the routing delays will be 
at the time of synthesis. Physical synthesis requires comprehensive awareness of the target 
FPGA silicon-level architecture.

7.5.3 P reparing a Design for Synthesis
Figure 7.11 illustrates the implementation of a design within an FPGA. The figure also 
highlights some design characteristics that designers should know before the design synthe-
sis. These characteristics should be passed to the synthesizer to improve its performance. 
Depending on the features of the synthesis tool used, additional information may be valuable 
to pass to the synthesis tool. The design characteristics listed are for a generic case. 

The information in the following list should be available in support an effective design 
synthesis phase:

■	 Complete the capture of the design with the synthesizable subset of the selected lan-
guage (VHDL/Verilog)
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■	 Select the target family and device

■	 Specify the design constraints:

	 Determine the design clock frequency (or frequencies and phase/timing relation-
ships between them if multiple clocks are used in the design) 

	 Determine the input signal delays

	 Determine the required output timing to signal destination

	 Determine input signal edge rates

	 Determine the drive strength of input signals

	 Determine the signal load within the FPGA

	 Determine the operational conditions for the FPGA

The following equation demonstrates the timing relationship which must be satisfied  
in a generic case to meet timing. In the case of the example shown in Figure 7.11 the  
T_clk_period = 10 nS since the frequency of the system clock is 100 MHz.

T_clk_period ≥ (T_clk-Q + T_pd(logic) + T_wiring_delay + T_setup + T_clk_skew)

Let us take a closer look at the signal path timing shown in Figure 7.11.

First timing path within the FPGA (≤6 nS):

The designer can either tell the tool that the external logic uses 4 nS of the available 
timing period effectively specifying that 6 nS are available to implement the internal path or 
the designer can directly tell the tool to implement the logic in ≤6 nS.

Second timing path within the FPGA (≤10 nS):

The tool is able to determine that with a 100 MHz clock constraint that it has ≤10 nS 
available for internal register-to-register paths.

Third timing path within the FPGA (≤2 nS):

The designer can either tell the tool that the external logic uses 8 nS, and let the tool 
determine that it has ≤2 nS to implement the output path to the FPGA I/O pad internal to 
the FPGA, or the designer can directly tell the tool to implement the output logic in ≤2 nS.

Figure 7.11  Constraints needed by synthesis tools
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7.5.4  Design Inference versus Instantiation
Inference and instantiation are factors that affect the synthesis process. Inference is defined 
as implementing design functionality through the HDL synthesis process. It describes the 
functionality in general HDL code and relies on the synthesis tool to implement the required 
functionality within FPGA fabric resources. Inference has the benefit of being more portable 
and the disadvantage of not being optimized for maximum performance within a specific 
FPGA device target.

Instantiation is the process of implementing functionality using a pre-defined and pre-
optimized structure. The user interface may be a GUI or software wizard interface that allows 
the designer to define the characteristics of the desired functionality. The design tools then 
implement the desired functionality with an optimized design structure. The design function 
may be generated in the general FPGA logic fabric with defined resource and routing rela-
tionships or placement, or it may be implemented within an optimized hardware structure 
implemented within the architecture for enhanced performance. Design elements that are 
instantiated have the benefit of predictable resource utilization, placement and performance 
and the disadvantage of less design portability.

An example of when design inference is appropriate is the implementation of a memory 
structure that can be easily ported from one design target to another. An example of when to 
use instantiation is when the design needs to take efficient advantage of advanced clocking 
module functionality or dual-port memory options. A design macro could be used to imple-
ment either of these functions when coding HDL, but it is important to understand that 
synthesis results can differ from behavioral simulation results. 

Two important concepts are associated with synthesis: A design implemented based on 
inference of design functionality from HDL code will generally allow a design to be more 
portable. A design that is instantiated cannot have timing delays estimated through an 
instantiated component.

The factors influencing synthesis include the format and content of the HDL code, the 
characteristics of the synthesis tool and the implemented synthesis constraints and switch 
options. The design team can optimize a design within the synthesis process. The following 
section discusses this topic.

7.6 P lace and Route
After completion of the synthesis phase, the design must be translated to a placed and routed 
design that can be downloaded to the target device. The stages in creating the physical de-
sign are shown in Figure 7.12.

Place and route is a tool-driven process of deciding where to place registers and gates 
within the device “fabric” and determining the paths to connect the design elements. The 
resulting design connectivity is defined by the design netlist. When a place-and-route tool 
starts from scratch, it has the freedom to place any design element at any legal location 
within the device “fabric.”
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Although this flexibility seems advantageous, in larger designs this flexibility may 
overwhelm the tools with too many choices. Place-and-route algorithms typically involve 
some level of randomization, and with randomized placement it is possible for related logic 
to not be placed together. If the design is flat (no design hierarchy), the chances of related 
circuitry elements not being placed close together is increased. Designs that have been 
implemented with hierarchy provide the tools with additional information, which can guide 
the design element placement. This helps clarify why poor design partitioning can lead to 
sub-optimal results.

Once all the design elements have been initially placed and interconnected, the place-
and-route tool runs an internal static timing analysis (STA) to determine if the defined timing 
requirements have been met. If the timing requirements have not been met, the tools itera-
tively make adjustments to the routing and/or placement. After each design adjustment, cycle 
static timing analysis is run again until the design either meets the defined timing requirements 
or the tool is directed to stop trying alternatives. The level of effort and primary objectives (for 
example, speed versus area) of the place-and-route tools may be possible for the design team to 
control or influence through a combination of tool switches and tool option wizards.

Synthesis

Translate the 
Synthesis output files

into the required format

Map the design to
the available physical architecture

structures

Place the Design Elements

Route the Design Elements

Constraints Met

Done with Design Implementation

YES

NO

Figure 7.12 Physical implementation stages
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The place-and-route process can take hours to complete on a large, high-performance 
design. Constraints are the primary mechanism for the design team to guide and influence how 
the design tools implement the design. Design constraints may have the effect of reducing the 
solution space the tools can explore, thus reducing the length and the number of place-and-
route cycles required to achieve a specific level of performance. Design constraints may guide 
the tools to initially place related logic closer together than might otherwise occur without 
guidance. This topic is presented in more detail in the design optimization chapter.

A common design flow is to first run place and route without design floorplanning. If the 
timing is not successfully met by the placed and routed design, the implemented design can 
be evaluated for potential bottlenecks or routing issues. Designers can then specify a design 
floorplan and run the design through the place-and-route cycle again. Common floorplan ob-
jectives include the co-location of related logic and placement of high-performance circuitry 
close to fixed resources within the FPGA. Examples of fixed FPGA resources include clock 
management blocks, memory blocks, DSP blocks and high-speed serial data transceivers or 
serializer/deserializer blocks.

7.7  Summary
This chapter presents important design implementation topics including:

■	 Synchronous and hierarchical design
■	 HDL coding options and benefits
■	 Synthesis
■	 Place and route

Each of these topics can have a direct effect on the efficiency of the design implementa-
tion. The design implementation process can either flow efficiently or can bog down in any 
stage of the process and can exhibit a broad range of risk. With a well-thought-out design 
process, the design can be efficiently implemented. 

Designs that have not been carefully planned or executed can spiral out of control during 
the implementation phase. Design categories that have the potential to significantly affect 
the efficiency of the design implementation cycle include:

■	 System-level design and planning (data flow, hierarchy, test plan, etc.)

■	 Block functional definition, partitioning and interfaces

■	 Sufficient simulation (block-level and system-level)

■	 IP selection and implementation

■	 Clock generation, management and distribution

■	 Design constraints

■	 Sufficient design margin (resources, I/O, power)

■	 Configuration and reset

■	 Debug features

KEY
POINT
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The following presents an expanded list of design factors to be taken into consideration 
during the implementation phase.

✔ Design Implementation Checklist

❑ Design implemented entirely with synchronous logic

❑ Design blocks partitioned into manageable-sized blocks

❑ Design blocks partitioned based on common characteristics and well-defined func-
tional groups

❑ Design blocks partitioned based on common clock domains and control signals

❑ Design blocks with well-defined, synchronous interfaces

❑ Design blocks with the appropriate type and number of design constraints

❑ A design without an excess of global design constraints

❑ Careful handling of clock domain transitions

❑ Debug and integration-friendly functions added to the design

❑ Important signals uniquely named to facilitate design readability and signal access

❑ Clean input clock signals, good internal clock handling, and utilization of global 
clock routing

❑ Individual blocks simulated sufficiently to verify their functionality to their interfaces

❑ Testbenches which can be scaled to support block or system-level simulation

❑ Clear, organized data flow path with access to signals at appropriate points

❑ Informed implementation of block-level and system-level reset signals

❑ Debug-friendly features including debug signal access headers and on-board LEDs

❑ Well-planned and implemented internal node power-up state and post reset cir-
cuitry state

❑ Appropriate external signal pull-up/down conditioning during system configuration

❑ Careful high-speed and critical FPGA I/O signal board level routing and termination

❑ State machines with all states defined and trap and alarm structures for undefined 
performance 

❑ Good plan and practice for design configuration control and backup

❑ Sufficient level of design documentation and up-to-date in-code comments

❑ Comprehensive simulation, integration, test and debug plans

❑ Hardware design that supports required system configuration and FPGA signal access

❑ Sufficient design margin

❑ Stable, clean, sufficient, well-decoupled power sources (I/O, core and reference)

❑ Clean ground plane

❑ Consider implementing Boundary Scan to support FPGA connectivity verification 
and board-level troubleshooting.
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8.1	 Overview
Two primary methods are used for FPGA design validation: simulation and board-level testing. 
Board-level testing is implemented after the design has been placed and routed and is per-
formed on the target hardware platform. Although board-level testing is an effective design 
test and debug approach, validating a design in the lab at the board level all at once without 
significant block-level testing is only practical for small to medium designs with limited com-
plexity. Simulation plays a critical role in the FPGA design verification process, especially for 
rapid system development efforts. We will focus on design simulation in this chapter. Board-
level validation will be discussed in more detail in Chapter 11.

The primary benefit simulation provides is the ability to begin validation of design func-
tionality at the earliest phases of the project, independent of the availability of a hardware 
target platform. Simulation can begin before the synthesis process and can continue through-
out all the implementation phases of the FPGA design flow until a hardware target platform 
becomes available. 

There are three main stages of simulation. Each of these stages is related to the phases 
of implementation relative to the synthesis process. The typical terms associated with each 
simulation stage are behavioral, functional and timing. Traditionally, behavioral simulation oc-
curs before the synthesis process, while functional simulation occurs immediately following 
synthesis. Timing simulation occurs after the place-and-route design stage. Behavioral and 
functional simulations perform the functions they describe by validating high-level behavior 
and lower-level functionality, respectively. Timing simulation, on the other hand, validates 
an implemented design’s timing characteristics. Each of these simulation stages is further 
discussed in this chapter along with the types of simulation files used.

Chapter 8

Design Simulation



128

Chapter 8

8.2	 Stages of Simulation
Since different terms can be used to describe different simulation stages, we will standardize 
on referring to the three main stages of simulation as behavioral, functional and timing. Each 
stage of simulation is used at specific points during the implementation phase. Figure 8.1 
shows the relative position of these simulation stages within the FPGA design flow.

Verification Design

Board-Level Download to Target

Behavioral Simulation

Functional Simulation

Timing Simulation

HDL Design Capture

Design Synthesis

Implementation

Simulation Stages
Behavioral Used to validate the behavior of the HDL code. Performed before the syn-

thesis stage. May not be synthesizable to hardware.
Functional Used to validate that the functionality of the design blocks meet functional 

design block requirements. Performed after synthesis stage. Timing analysis 
is based on assumed gate and routing delays since the design has not yet 
been placed or routed.

Timing Used to validate the functionality, timing and performance of the design. 
Performed after design place and route. Based on actual back-annotated tim-
ing delays and thus more accurate than functional simulation. 

Behavioral simulation, as illustrated in Figure 8.1, occurs in conjunction with the design 
capture phase at the pre-synthesis implementation phase. The main objective of behavioral 
simulation is to validate the high-level functionality of the hardware circuit described by 
HDL code at the highest level of abstraction. The use of behavioral and functional simu-
lation should be targeted to removing defects within the HDL code. For rapid system 
prototyping applications, the use of behavioral simulation coupled with timing and board 
level validation is typically sufficient. Although functional simulation is not commonly 
used, there are cases where it can be beneficial to implement. 

Figure 8.1  Stages of simulation within the FPGA design flow
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Functional simulation is a post-synthesis process that occurs after the HDL code has 
been converted to RTL. It is intended to validate the low-level functionality of the HDL 
code being simulated. Since RTL provides a description of the design in terms of registers, 
Boolean equations, clocks, and interconnecting signals, it is possible for the simulation tools 
to estimate circuit delays. Initial timing analysis can be performed during the functional 
simulation stage. However, it is important to note that the timing analysis at this stage of the 
design is based on estimated gate and routing delays that are independent of the target FPGA 
architecture. This is a primary reason why functional simulation is typically not performed. It 
is important to note that in many cases a limited amount of design effort can be expended to 
perform a design place and route, making accurate design timing information available and 
post-place and route simulation possible. There are cases where functional simulation may 
prove beneficial. An example case is when a design requires such a lengthy place-and-route 
period that significant design schedule is lost with every place-and-route cycle.

When simulating, the most accurate timing analysis can be performed at the timing 
simulation stage. This accuracy improvement is a result of the FPGA design having already 
been placed and routed to the target FPGA component. The simulation tools can now pro-
vide a much higher level of accuracy for interconnect and gate delays. The delays are based 
on back-annotated timing of the target FPGA architecture. Timing simulation can be used 
to validate setup and hold times. 

The timing simulation stage is an important phase of testing for the FPGA. When tim-
ing simulation is properly performed, the maturity level of the design can be significantly 
increased. This ensures that the time spent testing in the lab on the target board will be 
more efficient.

Most design teams typically will not implement all three simulation stages. The simula-
tion stages implemented will depend on the details of the design, design team preferences 
and established processes and available schedule and budget. However, it is important to 
understand that for a rapid system development, the use of behavioral and timing simulation 
are critical. These two stages are important because in order to meet aggressive schedules, 
a parallel path must be implemented supporting FPGA design capture and test while the 
target board is being designed and built. Well-planned and executed design simulation can 
prevent the design from slipping into a chaotic “churn and burn” race to finish the design 
within the aggressive development schedule.

8.3	T ypes of Simulation Files
The two most common types of simulation stimulus files are waveform and testbench files. In 
general waveform stimulus are avoided for rapid system prototyping efforts. For this reason, 
only a brief discussion of waveform simulation will be presented. Waveform files are typically 
generated by an interactive graphical waveform editor. The file is then read by the simulation 
tools to implement design test stimulus. One example is the HDL bencher from Xilinx. 

Testbenches are nonsynthesizable HDL files that can be used to verify design functional-
ity, block interfaces, design timing and system performance. Testbenches are typically more 
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complex and modular than waveform files. Testbenches are typically written in the same 
HDL as the design file. Figure 8.2 shows the relationship between the FPGA module illus-
trated in Chapter 7 and a testbench used to stimulate and evaluate the outputs of the module. 

The main factors that affect testbench implementation include the simulator used, 
the completeness of the test cases, the execution speed, partitioning and code reuse. In 
developing a good testbench, the design team must first understand the type of simulator 
they will be using. Simulators generally produce different results. These differences are due 
in part to the fact that HDL standards do not address key simulation issues. Different simula-
tors may vary in the implementation of their design algorithms, which can affect how the 
simulator produces results. Key variations between simulators such as the use of either an 
event or cycle-based approach dictating the order of what or when something gets simulated 
are critical to understand. A cycle-based simulator will partition the HDL design into either 
synchronous or asynchronous processes. Changes of events can then be limited to process 
boundaries to reduce the number of iterations that must be performed. In contrast, an 
event-based simulator schedules events on every change in input, output or gate value. An 
event-based simulator is capable of generating delays for gates and nets permitting accurate 
timing simulation. Table 8.2 lists some of the primary characteristics of the two primary 
simulation approaches. 
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Figure 8.2  Example FPGA function and testbench
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Table 8.2  Simulator type characteristics

Event-Based Cycle-Based
Typically conforms to the semantics of 
the HDL

Places large restriction on coding style 
and constructs used on the HDL

Can achieve optimal timing simulation Cannot perform timing simulation with-
out resorting to event-based simulation or 
the use of a static timing analysis tool

Slower Faster
Most of time the best choice Best for huge designs
Deterministic results Results may vary

When using an event-based simulator specify an explicit stimulus sequence. This 
makes the testbench independent of the type of scheduling algorithm the simulator vendor 
used. Effective testbenches implement good HDL coding style, which takes full advantage 
of the HDL simulation constructs. There are several useful simulation HDL constructs, but 
their use will vary according to the language selection and simulator used. Example VHDL 
constructs include the wait and transport statements for controlling signal sequencing and 
timing in the testbench.

For large or complex designs, using testbenches is less time-consuming than generating 
comprehensive test cases using waveform entry. The time saved by using testbenches can be 
utilized to generate more test cases. In general, the more well-conceived test cases imple-
mented, the higher the design quality. Event-based simulation using testbenches to create 
test cases is the preferred approach for rapid system development.

8.4	H ow Much Simulation?
Since testing consumes a significant percentage of the overall development schedule, the 
amount and type of testing can be a complex trade-off. The advantage of extensive testing 
is elimination of potential design defects. With simulation, however, a point of diminishing 
returns is eventually reached beyond which extra simulation provides decreasing benefits. 
Ultimately, design teams simulate until it becomes “too hard,” and then move to test their 
design elements at the next higher design level of design.

Continuing to simulate design blocks up to the point of recognized diminishing return 
is important in order to reduce future debug and integration effort. In many design develop-
ments, each hour spent simulating a design can eliminate multiple hours of debug at higher 
design levels or in the lab on the target board.

The design team should consider scheduling as much time for simulation and testing as 
is scheduled for the design’s specification and capture. Even with extensive experience and 
a well-defined verification plan, the actual number of hours of simulation effort required to 
verify a design can be difficult to estimate.
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The amount of simulation that can be supported or that is appropriate for any project 
will be dependent on many factors. Factors that may affect the appropriate level and dura-
tion of simulation for a project are shown in Table 8.3.

Table 8.3

✔ Simulation Level of Effort Checklist

❑ Available schedule and budget

❑ Design team size and experience

❑ Allowable project risk

❑ Tool set capability

❑ Design hierarchy, size and complexity

To reduce the complexity of simulation, design teams should test design blocks as they 
are implemented. Design blocks should be integrated into the next higher design hierarchy 
level only after block-level simulation has been completed. Even with the best tools, the 
design team’s experience with the selected tool set and advanced simulation techniques will 
affect the amount of simulation that will be performed.

8.5	H ierarchical Design and Simulation
With the adoption of HDLs as the most popular design entry approach, FPGA develop-
ment and debug can be effectively implemented at a hierarchical block or module level. 
Hierarchical design is further discussed in Chapter 7. HDL-based simulation has the poten-
tial to streamline the verification and validation of large and complex designs. Simulation 
provides design teams the potential to verify functionality early in the design cycle on a 
block-by-block basis as the design is captured. A block-oriented simulation approach allows 
verification of functionality and interfaces before the integration phase, dramatically reduc-
ing integration risk and schedule. Effective use of simulation can prevent carrying design 
bugs and problems forward to higher levels of design integration where they can be exponen-
tially more difficult to diagnose and eliminate.

Effective simulation coupled with a hierarchical design methodology offers many 
potential benefits to a rapid system development effort. The primary benefits include faster 
time-to-market, increased design quality, and reduction of risk associated with verifying 
immature designs.

8.6	 Common Simulation Mistakes and Tips
One of the most common mistakes associated with simulation in rapid system development 
is the use of waveform stimulus. Waveform stimulus generation is a time consuming process 
that typically forces the design team to leave out many test cases. This can lead to a less 
mature design at the beginning of the board-level debug and testing phase. Resources 
are better spent generating test cases with higher levels of automation through the 
implementation of testbenches.
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A common simulation mistake when using testbenches is inadequate test case cover-
age. This can cause a sub-optimal design to be debugged at the board level. This should be 
avoided in order to avoid wasted effort and schedule.

Another common mistake involves implementing an inflexible, nonscalable test model. 
This can cause the design team to have to re-implement significant portions of the test code 
to accommodate design changes or updates. This can lead to schedule erosion and wasted 
effort.

To help further streamline the simulation process and assist in the engineering trade-offs 
associated with design testing, we will present some simulation tips. The first tip relates to 
potential differences between pre- and post-synthesis simulation results. It is important to 
realize that pre-synthesis simulation results will often be different from post-synthesis simula-
tion results. For example, control statements in synthesis tools may produce longer delays for 
“if/else” structures when compared to the delays generated by “switch/case” structures. This 
is due to the fact that “if/else” statements generate priority-based structures. Thus, it may be 
possible to experience differences in timing between simulation and the synthesized board-
level implementation. The second design tip is related to design grouping and ordering. 
Figure 8.3 shows two differently formatted HDL statements and their potential pre- and post-
synthesized simulation results. Synthesis tools have the potential to implement the second 
function as a parallel structure, while design simulation may implement both equations the 
same way. Thus, the pre- and post-synthesized simulation results may be different. 

Example 1:  No Parenthesis Example 2:  With Parenthesis

I1

I2

I3

I4 Out1

I1

I2

I3

I4

Out1 <= I1 + I2 + I3 + I4 Out1 <= (I1 + I2) + (I3 + I4)

Out1

Figure 8.3  Pre- and post-synthesis simulation issue

Synthesis tools generally (but not universally) ignore initial values. However, it may also 
be possible for a simulated design to not ignore initial values. A result of this discrepancy is 
that there may be a difference between pre- and post-synthesis simulation results and the 
design team should take this into consideration during testing. Thus, it is important to un-
derstand the implementation details of the selected synthesis tool set.

Simulation results can be improved by exercising design blocks with captured real-world 
data streams in addition to exercising the block with generated input data. An example is 
the simulation of an encryption/decryption block pair with a captured data stream from the 
intended application in addition to simulation with computer generated inputs.
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It is desirable to assign an individual, different than the original block designer, to simu-
late a design block. While this may take a little longer since the second individual will need 
to come up to speed on the design block, it can avoid many simulation errors and oversights. 
The designer of a block will bring biases and preconceptions to any simulation effort that 
can prevent comprehensive block simulation. In addition, testing other designer’s developed 
design blocks can be a good initial assignment for new HDL designers. Without a compre-
hensive design verification philosophy standard, design verification will ultimately be as 
individual as each designer’s personality. The implementation of uniform code standards and 
code reviews can dramatically reduce design development risk. 

A final design tip is the implementation of “hardware in the loop” simulation. If this 
feature is supported by the selected tool set, large-scale simulation cycle time can be dra-
matically reduced. This approach takes advantage of the acceleration of parallel hardware 
implementation over sequential software-based simulation. The following checklist identifies 
simulation topics to consider.

✔ Simulation Checklist

❑ Use behavioral and timing simulation with testbenches for simulating

❑ Add complexity incrementally

❑ Focus simulation efforts on critical design areas and new design functionality

❑ Develop testbenches which can evaluate simulation results automatically

❑ Develop modular testbenches with reuse in mind

❑ Understand simulator details – different simulators have different features, 
capabilities and performance characteristics

❑ When possible use event-based simulators

❑ Event-driven testbenches should specify an explicit stimulus sequence

❑ Develop flexible testbenches which can accommodate design changes

❑ Implement testbenches to validate functionality over a broad range of conditions

❑ Develop a simulation test plan

❑ Implement block level simulation before integration to the next design level

❑ Create testbenches for each board-level component external to the FPGA
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8.7	 Summary
Simulation provides the capability to probe any signal within an FPGA design. This prob-
ing capability can be used to observe circuit characteristics, performance, and functionality 
before a target board is available. Having the capability to access all the signals within the 
FPGA design with relative ease supports efficient design test and debug, resulting in higher 
quality design. Coupling hierarchical design with simulation provides an efficient approach 
for FPGA design validation.

Simulation has an important role in rapid system development since it can significantly 
reduce the design schedule required to implement required functionality. The three stages of 
simulation that were presented in this chapter include behavioral, functional and timing. A 
rapid system prototyping effort should implement behavioral and timing simulation. The pre-
ferred method for implementing simulation in rapid system prototyping efforts is testbenches. 
Testbench module groups should be implemented using a modular design approach, which 
takes advantage of advanced simulation constructs. The design team should understand the 
type of simulator to be used (cycle-based or event-based). Event-based simulators provide a 
higher degree of timing accuracy. When using an event-based simulator the testbench should 
use a defined sequence of stimulus events.

The common simulation mistakes include the use of waveform stimulus on large, com-
plex FPGA designs, insufficient test cases, and the implementation of testbenches that are 
unable to efficiently accommodate design changes and updates.

There are many different types of simulators having different features, capabilities and 
performance characteristics. There are multiple tool sets, simulation approaches and meth-
ods. Important simulation tool set features include ease of use, IEEE compliance with the 
primary HDLs (Verilog and VHDL), and enough capability to support testing the entire 
design. The trade-offs associated with simulation tool set evaluation and selection can be 
complex and highly interrelated. The overall design validation and debug strategy will play a 
significant role in simulation tool selection. The level of timing accuracy can vary depending 
on the simulator complexity (and cost), so a cost/benefit trade-off should be completed.
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9.1  Overview
Constraints are used to influence the FPGA design implementation tools including the 
synthesizer, and place-and-route tools. They allow the design team to specify the design 
performance requirements and guide the tools toward meeting those requirements. The 
implementation tools prioritize their actions based on the optimization levels of synthesis, 
specified timing, assignment of pins, and grouping of logic provided to the tools by the design 
team. The four primary types of constraints include synthesis, I/O, timing and area/location 
constraints.

Synthesis constraints influence the details of how the synthesis of HDL code to RTL 
occurs. There are a range of synthesis constraints and their context, format and use typically 
vary between different tools. 

I/O constraints (also commonly referred to as pin assignment), are used to assign a signal 
to a specific I/O (pin) or I/O bank. I/O constraints may also be used to specify the user-con-
figurable I/O characteristics for individual I/Os and I/O banks. 

Timing constraints are used to specify the timing characteristics of the design. Timing 
constraints may affect all internal timing interconnections, delays through logic and LUTs 
and between flip-flops or registers. Timing constraints can be either global or path-specific. 

Area constraints are used to map specific circuitry to a range of resources within the 
FPGA. Location constraints specify the location either relative to another design element or 
to a specific fixed resource within the FPGA. 

9.2  Design Constraint Management
One of the most important constraint implementation issues is the wide range of potential 
configuration overlap and interference. Effective design constraint implementation requires 
a solid knowledge and understanding of both the system requirements and the current 
design implementation approach. Even with solid knowledge of the design, there are a broad 
range of design constraint combinations that can be applied to the design. Complex inter-
relationships can and do occur between the different constraint types. This inter-relationship 
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may cause a change in one requirement group to require changes in other design constraints 
as well, even when the changes may be relatively minor. This complex interaction leads to 
some challenges in implementing and managing design constraints. 

It can be beneficial to develop a design constraint plan in the early stages of a project. 
An organized plan can help keep the design from becoming over constrained. The design 
constraint plan may be as simple as an outline with bulleted entries. The constraint plan 
should be viewed as an informal document with an open format that supports efficient up-
dates as the project matures.

Working to achieve timing closure is a challenging constraint task. The process of 
achieving timing closure can be improved by following an organized design optimization 
flow. The second part of this chapter presents a generalized design optimization flow and ad-
dresses important topics within each process stage. The selected design optimization flow and 
other text should be incorporated into the design constraint plan.

9.2.1 A voiding Design Over-Constraint 
Effective design constraint requires design analysis and restraint to develop and main-
tain the correct constraint balance. Over-constraining a design will cause the tools to work 
harder to resolve conflicting or unreasonable requirements with limited resources. Design 
over-constraint can occur in several different ways. Some of the most common include 
simply assigning too many constraints, constraining noncritical portions of the design, and 
setting constraints beyond the required level of performance. An example of design over-
constraint may occur when path-specific timing constraints have been set to a minimum 
path delay value far exceeding the required circuit performance. The principle “if a little is 
good then more must be better.” is seldom an appropriate philosophy when constraining an 
FPGA design. 

Over-constraining a design can result in a significant increase in the time required to 
place, route and analyze a design. The result is a longer design implementation time. Since 
the design implementation phase potentially occurs many times during a design cycle this 
can have a significant impact on design efficiency. A more serious design over-constraint 
consequence occurs when the place-and-route process can no longer successfully implement 
the design within the specified FPGA architecture. This may force an upgrade to a larger or 
faster speed-grade FPGA component if the over-constraint conditions are not adjusted.

To avoid design over-constraint a few simple guidelines should be followed. Start by 
constraining only the highest performance circuits and then add additional constraints as 
required in an iterative approach. Additionally try to leave significant margin within area 
constraints and avoid constraining lower performance circuits unnecessarily. A more detailed 
design optimization flow will be presented later in this chapter.

9.2.2  Synthesis Constraints 
The types, syntax and context of synthesis constraints generally vary between tools. Table 
9.1 lists some of the synthesis constraints the Xilinx Synthesis Tool (XST). 
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Table 9.1 XST synthesis constraints

BOX_TYPE LOC REGISTER_POWERUP

BUFFER_TYPE LUT_MAP RESOURCE_SHARING

BUFG (CPLD) MAP RESYNTHESIZE

BUFGCE MAX_FANOUT RLOC

CLK_FEEDBACK MOVE_FIRST_STAGE ROM_EXTRACT

CLOCK_BUFFER MOVE_LAST_STAGE ROM_STYLE

CLOCK_SIGNAL MULT_STYLE SHIFT_EXTRACT

DECODER_EXTRACT MUX_EXTRACT SHREG_EXTRACT

ENUM_ENCODING MUX_STYLE SLEW

FSM_ENCODING OPT_LEVEL SLICE_PACKING

FSM_EXTRACT OPT_MODE SLICE_UTILIZATION_RATIO

FULL_CASE PARALLEL_CASE TIG

INCREMENTAL_
SYNTHESIS

PERIOD TRANSLATE_OFF

IOB PRIORITY_EXTRACT TRANSLATE_ON

IOSTANDARD RAM_EXTRACT USELOWSKEWLINES

KEEP RAM_STYLE XOR_COLLAPSE

KEEP_HIERARCHY REGISTER_BALANCING SLICE_UTILIZATION_RATIO_
MAXMARGIN

EQUIVALENT_REGISTER_
REMOVAL

REGISTER_DUPLICATION

Synthesis constraints are used to direct the synthesis tool to perform specific opera-
tions. As an example, consider the synthesis constraint CLOCK_BUFFER. This constraint 
is used to specify the type of clock buffer used on the clock port. Two important synthesis 
constraints that can be used to optimize a design implementation are REGISTER_BAL-
ANCING and INCREMENTAL_SYNTHESIS. 

Register balancing is used to optimize performance, and incremental synthesis is used 
to reduce synthesis runtime. Register balancing is used to meet design timing requirements 
by moving the placement of Boolean logic functionality across register boundaries. Regis-
ter balancing can increase circuit clock frequency. This improved performance is gained by 
adjusting the relative path delays. There are two categories of register balancing and they are 
referred to as forward and backward balancing. Forward register balancing seeks to move a set 
of registers located at a LUT’s input to a single register at the LUT’s output. Backward regis-
ter balancing is based on the opposite principle. The synthesis tool works to move a register 
located at a LUT’s output to a set of flip-flops at the LUT’s input. At the end of the process, 
the total number of registers in the design may be increased or decreased.

The primary objective of incremental synthesis is to reduce the total time it takes to 
compile the design. This is performed by synthesizing only the portion of the design that 
has changed. Synthesis tools may have different switches or constraints within the synthesis 
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phase to support this approach. Two other factors that can significantly influence the syn-
thesis phase include preservation of the implemented design hierarchy, and the proper use of 
design constraints.

9.2.3 P in Constraints 
The first question that comes to mind when considering pin assignment is, “Why not let the 
FPGA tools assign pins?” This is a common question for designers to ask, since the FPGA 
tools are trusted to place and route the design. However, there are several factors that influ-
ence software-controlled resource location assignment. One of the primary FPGA placement 
directives is to spread functionality out to avoid routing congestion. With no clear guidance 
to the contrary, the tools will typically work to spread functionality out across the available 
resources. As an example, FPGA tools can have difficulty identifying the pins that make up 
a signal bus and can also have difficulty identifying the control signals associated with the 
bus. Without knowledge that the signals form a group, the tools do not seek to co-locate the 
signals even though they may benefit from closer placement. While it may be possible to 
increase the global constraints of the design so that the bus signals and related control signals 
will be located as a group, the design team then runs the risk of over-constraining the design. 
This can significantly increase the place-and-route time for the FPGA software. 

Ultimately, the design team knows more about the desired data flow through the design 
than the tools. The design team should be in a better position to guide and influence the de-
sign implementation through informed pin assignments. A design team using a rapid design 
development flow may need to begin I/O assignments very early in the design cycle. The 
process of I/O assignment is more involved than simply assigning signals to available pack-
age pins. The following paragraphs will present some of the considerations that affect the pin 
assignment decisions. 

Assigning board-level signals to FPGA I/O can have a large impact on system perfor-
mance. In an ideal world, the critical FPGA functionality would have already been captured, 
compiled and simulated multiple times before the pin assignment step, allowing the design 
team to determine an optimized pin assignment. However, in a typical rapid system de-
velopment, device pins are assigned early in the design cycle. The early assignment may 
be necessary to support early PCB layout. It is possible for the PCB board to have already 
been routed and in the process of being built before a significant percentage of the FPGA 
functional design has been captured. This “pin-locking” may be required to meet aggressive 
design schedules and allow the FPGA development to occur in parallel with the board build 
effort. This has the effect of maximizing schedule progress, while also increasing risk. 

It is important to note that pin assignment is not critical for all designs, or all the pins 
in a design. Designs with significant I/O margins or slow operational speeds may not require 
careful pin assignment. However, pin assignment may become a critical factor if the design 
margin is limited by any of the following FPGA design factors: 

■ 	 I/O pin availability 

■ 	 FPGA fabric-level logic resources 
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■ 	 On-chip routing resources 

■ 	 Required logic speed versus maximum FPGA speed 

■ 	 Required logic speed versus layers of logic required to implement the design 

Pin assignment can also become critical at the board level when signals require special 
routing considerations such as short signal trace length, matched line length, or controlled 
impedance. These requirements might be a result of signal loading or speed requirements or 
EMI requirements. 

Most designs fall into a crossover group where pin assignment is not quite critical but also 
not an insignificant factor in design performance. Almost any design can benefit from a well-
implemented pin assignment. It is possible to affect and improve design performance through 
considered pin assignment. The design factors that may influence pin assignment include:

■ 	 The size of the device 

■ 	 The device package required 

■ 	 The speed grade of the device 

■ 	 The maximum speed that the FPGA can run 

■ 	 The amount of time required to run place-and-route routines 

■ 	 The number of layers in the PCB 

■ 	 The number of vias required to implement signal crossovers in the PCB 

■ 	 The trace width and spacing of the PCB 

■ 	 The placement and orientation of components on the PCB 

■ 	 The difficulty and time required to route the PCB 

Pin assignment is often not given the time or attention required to implement an opti-
mized design. A few important pin assignment concepts follow.

The pin assignment process is iterative, and pin assignments are often assigned mul-
tiple times during the life of a project as design changes and updates occur. 

Effective pin assignment requires detailed system-level design knowledge, including: 

■ 	 Board-level component relationships and interface details 

■ 	 Targeted FPGA architecture details and proposed FPGA-level design 
implementation 

Pin assignment can be challenging because the designer must be knowledgeable about 
many aspects of the design. Pin assignment is affected by factors at both the board level and 
at the device fabric level. Assignments should be made based on a strong systems-oriented 
understanding of the data flow of the design at all levels. Effective pin assignment requires a 
detailed knowledge of the signal interfaces into and out of the FPGA at the board level, as 
well as an understanding of the proposed functional groups and interfaces within the FPGA. 
Assignments may also be affected by the details of the FPGA family’s architecture and I/O 
structure and the I/O bank configuration set up by the design team.
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Since FPGA components come in discrete sizes, FPGA designs may have “extra” I/O 
pins, which are not required to bring in or out system-critical signals. Rather than simply 
leaving these pins unused, every effort should be made to utilize each of these pins wisely. 
I/O Pins that are “spare” after the required signals have been assigned should be evalu-
ated for potential use as test points, auxiliary I/O or user-defined grounds. Consider the 
functionality of the board from a system viewpoint. What functionality might be added in 
the future? What signals will be required to implement future functions? Could board-level 
errors be fixed internal to the FPGA if the correct signals were accessible? Could additional 
status or control functionality be provided by routing specific signals into the FPGA? What 
are these additional signals?

Another critical use for unused pins is provision for access into internal nodes within the 
FPGA for testing and debugging. Routing a number of test points out to headers or a connec-
tor for easy hook-up to test equipment can greatly simplify the verification and debug phase 
of the design cycle. It can also be valuable to have a few pins routed out to pads. These pads 
enable easy connection to white wires that may be required to address future issues. Rout-
ing out signals for supporting design-for-test (DFT) functionality to support transition to an 
ASIC in the future should also be considered. 

Consideration should be given to incorporating zero-ohm jumpers in-series with debug 
and expansion traces relatively close to the FPGA package. Placement of pull-up and pull-
down resistor footprints, and power and ground connections close to the zero-ohm jumper 
pads may also be implemented to increase future design options. These additional pads 
support access to otherwise inaccessible I/O pins allowing simplified addition of white wires 
to implement design updates if FPGA interface changes are required. These options support 
simplified debug and potential future design expansion while maximizing future design flex-
ibility. While these options can be very useful in prototype and development environments, 
they are less appropriate for volume production boards. 

Design Clock Considerations
The implementation of clocking signals, routing, pin assignment and clock management 
can be particularly complex for FPGA design. We will discuss some design factors related 
to clock implementation in this section. For example, it is possible that bringing a clock 
in on a specific dedicated clock pin may limit the use or functionality of other dedicated 
clock pins or use of internal global resources. Similarly, clock feedback inputs to an FPGA 
component may be limited to a few specific clock input pins. It may be possible to assign a 
general-purpose signal to a clock feedback input pin blocking access to this FPGA feature 
unintentionally. A mistake in clock-related pin assignment can severely limit the func-
tionality of a design implementation. It is critical that clock assignments be verified and 
double-checked against all available clock-related documentation. 

Effective clock implementation for high-performance FPGA-based systems benefit from 
the development of a well-defined clock implementation plan. FPGA designs generally 
require high input clock quality and careful clock management and implementation internal 
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to the FPGA. Factors that may degrade clock quality include clock jitter, clock skew and, 
duty cycle distortion. 

Clock jitter effects can significantly degrade the performance of implemented systems. 
The effects of clock jitter include reduced timing budget margin and performance. Clock 
skew describes a difference between related signal and clock arrival times. The effects of 
signal and clock skew include hold time failures, data errors and reduced I/O timing margin. 
Clock duty distortion can result in reduced pulse widths, data errors and unreliable circuit 
performance. The effects of clock jitter, skew and duty cycle distortion can impact all lev-
els of FPGA circuitry performance and should be carefully managed and controlled.

The following paragraphs present some FPGA clock design guidelines.

(1) Separate FPGA clocks into priority groups. Use constraints to more clearly char-
acterize clocks for the design tools. Constraints can be used to specify clock rates, phase 
relationships and duty cycles. Constraints can also be used to associate high-priority clocks 
with the circuitry they drive.

Clock Priority Groups

■ 	 High frequency with high fan-out

■ 	 Medium or low frequency with high fan-out

■ 	 High frequency with low fan-out

■ 	 Medium or low frequency with low fan-out

(2) Assign the highest priority clocks first. The two most significant FPGA clocking 
challenges are high speed and high fan-out. Clocks with these characteristics should be as-
signed to higher performance global resources. The number of high-performance buffers and 
routing resources are limited so they should be carefully managed. 

(3) Assign clock block management resources. Clock blocks, such as Xilinx’s Digi-
tal Clock Managers (DCMs) can implement advanced clock circuit functions including 
frequency division and multiplication, phase shifting, feedback-based adjustment and syn-
chronous clock generation. Clock blocks are limited resources within FPGA components. 
The design team should monitor and control how these resources are assigned.

(4) Manage lower priority clocks. While lower priority clocks can be implemented on 
full-FPGA global resources if they are available they can also be routed through the standard 
FPGA routing fabric. It may be possible to break global clock routes into multiple smaller 
high-performance clock routes. 

Examples include breaking a global clock route with the potential to supply a clock to 
the entire FPGA into smaller circuits capable of routing a clock to half or a quarter of the 
FPGA. Routing a clock via a subsection global route may require the clock to be input to 
specific I/O pins. Once again, this stresses the importance of careful pin assignment.
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9.2.4 T iming Constraints 
Timing constraints may be used to influence and guide the placement of design elements and 
signal routes between placed elements in order to meet design performance requirements. 
The two general types of timing constraints are global and path-specific. Global timing con-
straints cover all paths within the logic design. Path-specific constraints cover specific paths. 
This section provides some guidelines on timing constraint of an FPGA design.

(1) Identify and constrain system clocks. The timing constraint process should start 
with the specification of the global timing constraints for all identified system clocks. 

(2) Identify and create signal path groups. The two primary types of path groups are 
global and specific. A global group typically includes a group of paths between registers, 
input paths, and output paths. Ideally these paths should be within the same clock domain. 
Specific paths are mostly static or combinatorial paths, paths between clock domains, or 
multicycle paths. Multicycle paths are defined as paths between logic elements that have a 
timing requirement that is a multiple of the clock period for the logic elements. For example, 
if a series of logic functions require more than a singe clock cycle to complete, the data will 
be correct at the circuit output (the input to the next synchronous design element block) 
after the pipeline has been filled.

(3) Assign global constraints. The general rule of thumb when assigning constraints is 
to use global constraints for primary coverage of a majority of the design paths. Apply global 
period constraints to the design before the HDL synthesis phase. With access to timing con-
straints, synthesis tools may attempt to optimize the synthesized design to meet the specified 
timing requirements.

 A common design optimization approach is to intentionally over-constrain the design 
period during the synthesis process. This approach will potentially reduce the amount of 
time required to meet timing objectives. 

Within the design cycle, there is a trade-off between the synthesis phase and the imple-
mentation phase of the design flow. Increasing the length of the synthesis phase to reduce 
the length of the implementation is generally a good choice, since the implementation phase 
is executed far more often than the synthesis phase during a typical design development.

A goal of 1.5 or 2 times faster than the desired design period is a good rule of thumb 
during the synthesis phase. If the choice is made to over-constrain the synthesis design 
tools, make sure to prevent the higher-value constraints from being passed forward to the 
implementation tools. This can generally be accomplished via a tool switch option or by 
removing access to the synthesis constraint file.
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 (4) Assign detailed group and individual path constraints. Use path-specific con-
straints for paths within the design that justify exceptions to the general constraints already 
assigned. Do not over constrain the paths; more is not better within the design implemen-
tation phase. The more detailed design path constraints are:

■ 	 Multicycle

■ 	 False path

■ 	 Critical path (for example, From:To) 

To explore the finer points of adding time constraints to an FPGA design, two examples 
are given. The first example involves using timing constraints to specify timing between the 
system clock and data inputs. 

The timing constraint shown in the first example specifies the clock and data signal rela-
tionships and timing to ensure that internal FPGA register setup and hold time requirements 
are not violated. The OFFSET_IN_BEFORE constraint is used to define how long the data 
signal should be valid before the system clock’s rising edge arrives at the FPGA clock pin. 
The VALID constraint is used to specify both the amount of time the data signal is valid and 
the amount of time the data signal is valid after the rising edge of the system clock. The tim-
ing relationships of these two constraints provide the implementation tools the information 
required to optimally implement the design. Figure 9.1 illustrates the timing and relation-
ships of the clock and data signals. 
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Figure 9.1  Input constraint example

The second example involves the routing of a signal from a register internal to an FPGA 
to an external component using a system synchronous timing approach. Understanding the 
FPGA to external device timing requirements is the first step in the constraint process. The 
external component interface I/O standard, the routing delay to the external component 
and the loading of the FPGA I/O pin must be determined. Knowing the detailed timing 
values supports the assignment of a timing constraint specifying the maximum time the data 
signal has to propagate from the output of the internal FPGA register to the FPGA output 
pin. The internal delay of the FPGA includes the clock path delay, register clock to output 



146

Chapter 9

time, and the data path delay from the register to the output pin. Based on these constraints, 
the implementation tools can determine a path route which will meet the specified timing 
requirements. Figure 9.2 illustrates the timing relationship for this constraint use.

Figure 9.2  Output constraint example
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9.2.5 A rea Constraints and Floorplanning 
Area constrains guide and control where the place-and-route tools may locate FPGA design 
elements. Area constraints may also define a potential placement region for design elements. 
A benefit of area constraining is the potential to reduce place-and-route tool implementa-
tion time. If the block element is area constrained, the place-and-route tool does not have 
to search for a location to place a block element. The process of laying out multiple design 
element blocks onto the target FPGA architecture is commonly referred to as floorplanning. 
Figure 9.3 illustrates the concept of FPGA floorplanning. 

Figure 9.3  Example FPGA floorplan
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Floorplanning also supports relationally placed macros (RPMs). Floorplanning is made 
easier if the design hierarchy is maintained. However, floorplanning may unintentionally cause 
the implemented design performance to be degraded. This is a consequence of the inability of 
the implementation tools to override placement constraints. Floorplanning can cause some 
design layout options to not be available to the design tools, and implemented performance can 
suffer as a consequence. In certain designs, it may be appropriate to implement the floorplan-
ning effort early in the design optimization process. Taking this step requires a strong design 
and target architecture knowledge and sufficient available design margin.

Floorplanning may be used to place specific design elements, such as block memories, 
within the FPGA. The placement of design elements should be based on knowledge of 
which design blocks the elements will interface with and where those design elements 
(including hard IP functions) will or should be implemented. Other design situations that 
may benefit from area constraint or location placement include interleaved logic from two or 
more design blocks and distributed memory implementations. 

The primary objective of hierarchical block floorplanning is to guide the flow of data 
through the FPGA. Floorplanning will be heavily influenced by the location and distribution 
of clock resources and fixed functionality within the FPGA. As discussed in the hierarchical 
design section of Chapter 7, it is desirable to register the inputs and outputs of each major 
design block to be floorplanned. This provides the best timing margin possible and increases 
potential successful layout alternatives since the block-to-block interfaces will only require a 
routing path with no logic elements. 

Area constraints are most effective when the design has been intelligently sectioned 
into functional blocks. Data path-oriented design blocks generally benefit from floor-
planning. Place-and-route tools can typically place and locate state machines and other 
non-structured logic efficiently. The following list presents some considerations associated 
with area constraining and floorplanning an FPGA design.

Area Constraining and Floorplanning Considerations

■ 	 Depending on the tool, area constraints may not be recommended to overlap; refer to 
tool documentation for guidance

■ 	 Floorplanning is effective on data-path logic and hierarchical designs

■ 	 Floorplanning should be done with an awareness of the target FPGA architecture

■ 	 Develop a detailed understanding of intended design functionality

■ 	 Effective floorplanning may be an iterative process

■ 	 Avoid design over-constraint

9.2.6  Constraint Example 
A functional implementation example will help demonstrate the relationships between the 
different design constraint categories. Consider a design team with a project requirement 
to implement a PCI bus interface that is PCI-compatible but not fully PCI-specification 
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compliant. The team will not be able to use a pre-verified IP core, but will need to develop a 
custom implementation. 

The PCI specification defines the maximum signal trace length from the card-edge con-
nector to any interface circuitry. This minimizes the bus loading at the system level, and 
limits the board-level signal propagation delays. Thus, the available signal assignments to 
I/Os at the FPGA package are limited by the placement and orientation of the FPGA com-
ponent on the PCI-daughter card layout. 

Once the FPGA device placement and orientation is defined in relation to the PCI 
card-edge connector, the design team may verify that the required PCB signal trace length 
requirements can be met. The PCI data bus and control signals need to be assigned within a 
select group of I/O pins on the FPGA. Defining the select group of pins on the FPGA pack-
age to assign the PCI interface signals to can be relatively involved. The selection process is 
complicated by the interrelationship between the available FPGA I/O banks, the available 
I/O pins and the relative relationships of the FPGA package’s I/O pins to the location of the 
die-level I/O pads.

The design team knows the number of required I/O pins and the protocol standards 
the PCI interface requires (3.3V versus 5.0V, etc.). The design team will select one or more 
I/O banks with sufficient available I/O pins to support the required number of signals (with 
some project-defined margin). Each of these selected I/O banks will be configured to imple-
ment the required protocol standard. As discussed previously, only certain I/O standards can 
co-exist within an individual I/O bank. If other standards are required within the design that 
are not compatible with the PCI protocol, I/O banks must be set aside to support the other 
protocol standards. 

With the I/O banks identified, the design team can assign the signals to the appropriate 
pins. After the I/O pins have been assigned, the design team can configure any other I/O 
pin-related characteristics the design requires. FPGA I/O configurable characteristics include 
faster signal slew rate, impedance matching, and weak pull-up or pull-down functionality. 

Next, the design team may begin implementing the area and timing constraints that the 
FPGA design tools will use to guide the resource location assignments and signal routing for 
the critical functionality of the PCI interface. The area constraints will define the desired 
relationship between the group of pins selected for the PCI interface at the board level, and 
the implemented PCI circuitry within the FPGA. Since the performance of the PCI inter-
face circuitry is critical, the area assignments should group the timing-critical parts of the 
design relative to both the selected I/O pin group and the location of any PCI functionality 
within the FPGA. 

The area constraints must strike a balance between keeping the circuitry tightly clus-
tered and providing enough margin to allow the placement and routing routines to route 
other functionality through the specified area. This allows the overall functional and timing 
requirements of the FPGA to be met. Similarly, timing constraints should be tight enough to 
guide the layout tools to achieve the required performance without driving the tools to seek 
a performance level beyond what the design requires. 
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If changes are made to any of these constraint groups, they must be evaluated to ensure 
that they won’t cause changes in one or more of the other groups as well. Potential reasons 
for constraint changes include design functionality changes or an FPGA reorientation on the 
board. In this example, if the FPGA package needed to be rotated 180 degrees, each of the 
constraint groups will need to be re-evaluated and re-implemented. Each design is unique, 
and the relationships between the design constraint groups will be just as unique. 

9.2.7  Constraints Checklist 
The following list presents FPGA design constraint guidelines.

✔ Design Optimization and Constraints Checklist

❑ Develop and follow a design constraint plan

❑ Add constraints incrementally

❑ Constrain from general to specific

❑ Add only enough constraints to consistently meet functional and timing 
requirements

❑ Achieving higher performance requires a balanced mix of design constraints

❑ Designers need to be familiar with timing report context and analysis

9.3  Design Optimization 
As applications implemented within FPGAs increase in speed, complexity and resource utili-
zation, meeting performance requirements requires additional efforts. The following sections 
present a generalized FPGA design optimization flow. The process is based on the principle 
that the minimum amount of effort should be expended to get a design to meet its timing 
requirements. The individual design blocks should be captured and initially verified by simu-
lation. The individual design blocks can then either be initially independently implemented 
or integrated, and then implemented as a system. 

When it has been determined that the design does not meet timing, then the incremen-
tal changes discussed in this optimization flow should be made to hopefully ultimately enable 
the design to meet the required timing performance. Once the design consistently meets its 
timing performance requirements, no additional design constraints or design changes are 
required. Additional effort may be expended and performance may continue to improve; 
however, if the requirement is to achieve a certain level of performance, any effort expended 
to achieve performance beyond that level will not be a productive use of resources. 

Optimization of an FPGA design can be a challenging design phase. There are many 
different approaches requiring different levels of effort. The order in which optimization ef-
forts occur is important since some optimization activities can affect the results of previously 
applied efforts. Following an established optimization procedure can help make the optimi-
zation phase more efficient. 

Some optimization approaches can affect the results of previously applied optimization 
activities, so an established optimization methodology can make the design optimization 
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effort more efficient. The sequence of activities presented here is not absolute. It is intended 
as a guide; changes may be made based on prior experience, familiarity with the design, and 
personal preference. 

This chapter presents an overview of a generalized incremental optimization design 
flow, starting with the lowest possible level of effort and working up through more involved 
optimization approaches. Additional design adjustments and modifications are iteratively 
applied to the design in an ordered sequence until the design consistently meets the desired 
performance requirements.

The objective of applying successive design optimization techniques is to avoid spending 
any more time or effort optimizing the design than necessary, while also reducing the risk of 
over-constraining the design.

9.3.1  FPGA Design Optimization Process 
Timing closure can become difficult for large and complex FPGA designs. The process of 
obtaining timing closure will typically include multiple incremental HDL modification 
iterations, constraint refinement, design re-implementation (synthesize, place and route), 
and repeated timing analysis. A well-defined and organized design implementation flow is 
important to efficient design optimization. Figure 9.4 presents a suggested design implemen-
tation optimization flow. The design optimization flow presented in this section is based on 
the flow presented in Rhett Whatcott’s Xilinx TechXclusives article, Timing Closure – 6.1i. 

Figure 9.4  FPGA design optimization flow
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(1) Use a good design approach. As always, synchronous design techniques are strongly 
recommended. Implement strong, organized hierarchical design structures. Keep design mod-
ules and blocks to a manageable size. Partition design blocks intelligently as discussed in the 
implementation chapter.

(2) Use good design entry techniques. Use an HDL design entry method following de-
fined coding standards and styles. Adopt and use a common coding standard. Comment code 
to clarify intent. When appropriate, use cores and design instantiation rather than relying on 
inference. Implement code that will take advantage of the specific resources available within 
the targeted FPGA component hardware architecture (fabric and routing resources). 

(3) Control synthesis tool options. Research and understand the available synthesis tool 
directives, switches, constraints and operational modes. Follow the synthesis tool vendor 
guidelines provided to obtain the best design results. In order to maintain design portabil-
ity between different synthesis tools, enter synthesis constraints through the synthesis tool 
constraint editor. 

(4) Implement informed pin assignments. In rapid system prototyping, pin assignment 
will occur early in the design cycle. Research and understand the details of the FPGA fabric 
and architecture. Make pin assignments and assign constraints that take into account the 
design signal and control flow, board component relationships and FPGA fabric architec-
ture. It may be possible that the pin assignment occurs even earlier in the process before the 
design has been synthesized.

(5) Assign global timing constraints. The objective of this stage is to specify the global 
timing for each design clock. Path-specific constraints can be added to either the synthesis or 
implementation tools. Adding path-specific constraints to the synthesis design tools causes 
additional architectural optimization to occur. Adding path-specific constraints to the design 
forces the tools to increase the priority on the specified paths during the place-and-route 
cycle. A combination of these two approaches can leverage a design toward meeting timing 
requirements. 

(6) Review performance goals and timing objectives. Review the design report files. 
Static timing analysis is used to evaluate how close the implemented design is to meeting or 
exceeding the required timing. Once the design has been implemented into logical design 
elements, the delay through the logic elements of the design will be defined. The logic delays 
will remain fixed through the final design implementation. 

At this point in the design cycle, it is possible to evaluate the design’s implementation 
against the 60/40 rule. This rule specifies that 60% or less of the timing budget should be 
consumed by the logic portion of a signal connection while the routing portion of the con-
nection should take 40% or more of the budget. If this design guideline is met, the tools have 
a better chance to achieve the required timing performance. Having 40% or more of the 
available routing time (the clock period) available for signal routing is a general guideline, 
the appropriate ratio for each design may vary based on the target architecture. The 60/40 
rule is intended to provide a measure of “goodness” at this stage of the design cycle. 
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(7) Refine implementation tool options. With a design close to meeting timing require-
ments, some minor adjustments to the implementation tools (mapping and place and route) 
may allow the design to pass without having to add advanced timing constraints to the design. 

Once global (and possibly high-level path-specific) constraints have been added to the 
design, the design team may make adjustments to the level of effort of the implementa-
tion tools. For example, the level of place-and-route effort can be adjusted from standard 
to a higher level. If multiple effort levels are available, it is advised that the effort level be 
increased one level at a time, rather than from lowest to highest all at once. Again, the 
objective is to apply only as much effort as required. Higher effort levels will naturally extend 
the time required to complete the place-and-route implementation effort, thus leading to a 
longer implementation cycle time. 

Changing the implementation tool effort level has the advantage of avoiding the need to 
make changes to the design code. If the timing requirements cannot be met by increasing the 
level of implementation effort, other approaches must be applied. 

(8) Assign path-specific timing constraints. If the design does not meet timing require-
ments with the application of global timing constraints and adjustments to the synthesis and 
implementation tools, it may be necessary to apply more detailed timing constraints. Apply-
ing constraints is typically an iterative process. Well-considered additional design constraints 
may help the implementation tools prioritize the place-and-route design efforts. Potential 
modifications to the code may also be required. The utilization of cores or FPGA architec-
ture-specific coding structures may be required to improve performance. 

(9) Perform timing analysis. Take time to review the design timing analysis reports. 
Ensure that all paths are fully optimized. If paths are identified that are not meeting timing, 
make changes to adjust the way these paths are implemented. 

(10) Specify critical path constraints to the synthesis tools. Use constraints to iden-
tify critical paths to the synthesis tools to guide more targeted design implementation. This 
effort will likely be iterative. For maximum design portability, implement constraints via the 
synthesis tool constraint editor.

(11) Adjust implementation tool effort and options. Make adjustments to advanced 
implementation tool options. These adjustments will likely increase the implementation 
cycle processing time. This results in a trade-off between time and results. These design 
optimization efforts occur later in the optimization flow, since they tend to increase the 
length of the design implementation phase and make each design update cycle significantly 
longer, which can be a significant penalty in designs that must be implemented many times. 

Changes can also be made to the design packing and placement tool efforts. Setting tool 
switches to force placement and routing of critical signals early in the optimization cycle can 
result in significant design performance improvements. Again, higher levels of effort will 
increase design implementation times. 
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Another option involves adjusting the number of place-and-route cycles run. Increas-
ing the number of place-and-route cycles causes the design to be implemented with different 
design implementation priorities, increasing the odds of achieving a successful design place-
ment and routing combination. One advanced implementation approach involves running 
many placements, and then only routing the “best” placements.

(12) Floorplan design or implement physical synthesis. The design place-and-route 
phase may be guided by specifying floorplanning constraints that direct design elements to 
specific locations on the FPGA fabric. This is saved as one of the last design optimization 
approaches, since floorplanning can unintentionally make certain timing paths worse. This 
factor is compounded by the fact that the tools cannot override the placement constraints. 

Make sure to allow enough margin within each placement block or range to allow the 
implementation tools sufficient margin to implement the design efficiently in parallel with 
other design functionality which may need to be co-located within that specific area of the 
FPGA fabric. Make sure to review tool restrictions. For example, some tools do not encour-
age layout block overlap and may actually restrict placement within overlapping areas. 

Another advanced option involves using a physical synthesis tool, which has a level of 
awareness of the target FPGA architecture, structure and available resources. Physical syn-
thesis implements a design that co-locates related logic functionality in the physical design 
for reduced routing overhead. Physical synthesis is related to design floorplanning since it 
influences and guides the placement of logic to assist meeting timing objectives. Physical 
synthesis tools can provide a 10–20% improvement in system timing. Most physical synthesis 
tools are not provided as part of the basic manufacturer tool suite. Physical synthesis tools are 
more efficient when operating on synchronous designs. 

9.4  Summary 
The four types of constraints include synthesis, pin, area and timing. Synthesis constraints are 
used to instruct the synthesis tool on how to map the HDL code to RTL occurs. Pin con-
straints are used to specify the assignment of I/O. Area constraints are used to instruct where 
the place-and-route tool can locate a specified design block partition. Timing constraints are 
used to specify path delays. Timing constraints can be global or path-specific.

Floorplanning is the process of guiding the placement of multiple design partitions onto 
the FPGA fabric. Design constraints, floorplanning and tool options can influence the design 
optimization. For example, floorplanning can be used to optimize the FPGA fabric area. 
Constraining a design for a minimum area results in fewer routing resources used with smaller 
interconnect distances. This means faster signal paths and implementation times. The result 
is a design that takes up less FPGA fabric area and has increased performance, and faster 
implementation times. Floorplanning is a powerful speed and area optimization technique if 
done properly. However, there are no set rules for properly floorplanning a design. 
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Design optimization is an incremental process that applies increasing engineering effort 
and tool computational time to leverage the design to meet timing. Most of the effect on 
the ability of the design to meet timing is derived from the original design implementa-
tion. Synchronous design, design modularization, a formal design hierarchy with registered 
boundaries, and good HDL coding can all positively influence the ability of the design imple-
mentation tools to achieve the desired timing performance.
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10.1		 Overview
The three operational modes for an SRAM-based FPGA are pre-configuration, configuration 
and operational. After power-up a device remains in the pre-configuration mode until it has 
been initialized. During the configuration mode of operation, a bit stream is stored in a non-
volatile memory location and then transferred in blocks into the target FPGA device. Three 
common methods of configuring FPGA devices are synchronous serial, parallel and JTAG. 
Once the FPGA has been successfully configured, the device enters operational mode. For 
specific families and architectures it may also be possible to partially reconfigure the device 
while it is running.

SRAM-based FPGA devices support in-system programming (ISP) capability. ISP refers 
to the ability to configure a programmable device on the target board without having to 
remove the device from the board to configure or reconfigure its functionality. Devices that 
do not support ISP must be configured before the device is placed on the board. One-time 
programmable (OTP) devices, such as anti-fuse based FPGAs, do not support ISP functionality.

The most common configuration sources for SRAM-based FPGAs are: an in-system 
discrete configuration memory (usually an OTP programmable read-only memory (PROM) 
or Flash memory device), an on-board or in-system processor with access to nonvolatile 
memory, or via a JTAG connection attached to a PC. 

The discrete configuration memory (generally referred to as the “configuration memory” 
regardless of its technology) can be a PROM or Flash-based device; these devices are gener-
ally ISP. There are also configuration PROMs that are OTP and not ISP. 

FPGAs are configured via a proprietary data stream, also called a “download” or “configu-
ration” data stream. There are different file formats that represent the device configuration, 
depending on how the data is to be stored and loaded into the device. Some manufacturers 
also support encrypted and compressed data files.

Chapter 10

Configuration
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10.2	 On-Board Device Configuration
Different FPGA configuration approaches may be supported. The most common modes are 
JTAG configuration, PROM configuration and processor configuration. As an example, both 
PROM and processor configurations modes can be implemented as either a serial or parallel 
configuration interface. Both of these modes may also be implemented in either master or 
slave mode. The mode of operation will depend on the operational speed required, and the 
number and relationship of the devices to be configured.

An FPGA synchronous serial interface typically requires five signals. A generalized 
description of the process follows. (Note that the signal names may be different for differ-
ent FPGA manufacturers.) The required signals are data, clock, program control, ready, and 
complete. The data line sends the configuration data one bit at a time. The synchronous 
clock shifts the data into the FPGA. Data transfer typically occurs on the rising edge of the 
clock. The program control signal can place the FPGA in configuration mode or reset the 
FPGA. The ready line is asserted by the FPGA device when it is ready to start configuration. 
The complete pin is asserted active by the FPGA when the configuration process is complete 
and the FPGA enters operational mode.

The other popular interface format is the parallel interface. This interface is asynchro-
nous. Signals required to implement this interface include a parallel data bus, address signals, 
chip select, read and write and other control signals. A parallel interface can configure an 
FPGA at a faster rate, but the increased speed comes at the cost of using more device pins.

10.3	 Configuration Cable Interface
The ISP configuration of an FPGA on a target hardware board from a PC is referred to as 
device configuration or programming. The FPGA configuration data travels through a cable 
commonly referred to as a “download” or “configuration” cable to the target board. The cable 
interface to the PC is generally a serial or USB port while the interface to the target board is 
generally a shrouded or unshrouded header. The implemented board-level test header will be 
populated on test and evaluation boards but typically will not be populated on post-develop-
ment production boards. Figure10.1 shows a typical design configuration setup.

Figure 10.1  Download cable with development board 
Used with permission of Avnet, Inc.
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Figure 10.2 shows a typical JTAG connector and signal assignment. This figure shows 
the interface from the download cable connected with a “flying leads” configuration, which 
can be used to connect individual signals to pins on 0.01-inch headers and a configuration 
PROM part in the foreground.

Figure 10.2  Download cable header 
Used with permission of Avnet, Inc.

The same configuration cable JTAG interface can be used to verify an FPGA’s con-
figuration or to access internal FPGA nodes through an “embedded logic analyzer” block 
implemented within the FPGA. Access to internal signal nodes is discussed in detail in 
Chapter 11. Common configuration related terms are defined in Table 10.1.

Table 10.1

Term Definition
ISP In-system programmable
OTP One-time programmable
Bitstream The transfer of the data file that contains an FPGA’s configuration
Download The term for loading the FPGA functionality into the FPGA
Configuration 
Cable

Cable used to communicate between the configuration PC and the 
target board

PROM Programmable read only memory
JTAG Joint test action group
TAP Test access port

JTAG configuration has become the de facto standard for the PC to FPGA configura-
tion cable link. The JTAG configuration of an FPGA on a target board is usually sourced 
from a personal computer loaded with the appropriate configuration software. 

KEY
POINT
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10.4	 JTAG Standard
Boundary scan and Joint Test Action Group (JTAG) are the terms generally used to refer to 
IEEE standard 1149.1. This standard was developed to implement an industry-standard 
protocol for communicating with devices mounted on PCB boards to test for connectivity-
related issues. The JTAG standard has been adopted by FPGA manufacturers as a method for 
configuring devices in addition to the standard testing functionality.

Devices that support JTAG functionality must implement support registers and a state 
machine. The JTAG standard requires a minimum of four dedicated signals. The signals and 
their definitions are presented in Table 10.2. 

Table 10.2

JTAG Signals
TDI Test Data In – this signal is the serial data stream received into the TDI pin 

of a device in a JTAG chain.
TDO Test Data Out – this signal is the serial data stream transmitted from the 

TDO pin to the TDI pin of the next device in a JTAG chain.
TCK Test Clock – this is the clock signal for JTAG communication, and must 

be connected to the TCK pin on all target ISP devices that share the same 
data stream. This signal should be given special routing consideration since 
it is operational critical.

TMS Test Mode Select – this is the JTAG mode signal that establishes the appro-
priate TAP state transitions for each target ISP device. It will be connected 
in common to all devices within a JTAG chain.

TRST Test Reset – this signal can be used to reset the devices in a JTAG chain. 
This is an optional signal.

 The JTAG interface can be used to program one or more devices. Interfacing with 
multiple devices is accomplished by setting up a JTAG daisy chain. Depending on load-
ing, five devices can typically be driven in a chain before buffering is required to ensure 
signal integrity. To set up a chain, all signals except TDI and TDO are connected in a daisy 
chain to all of the devices. TDI and TDO are connected to each device in the chain in a 
cascaded configuration. The TDO pin is connected to the TDI input pin of the next device 
in the chain. The loop is closed by connecting the final device’s TDO signal back to the 
master device. Depending on the chain configuration implementation it should be possible 
to configure the FPGA device and the FPGA configuration PROM as well as being able to 
communicate with any other device on the JTAG chain. 

Figure 10.3 illustrates a JTAG cable configuration interface to a JTAG chain with a con-
figuration memory and two FPGAs.
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Figure 10.3  JTAG Configuration chain interface 

JTAG has emerged as the preferred configuration and debug interface for most ISP-capa-
ble integrated circuits. A new standard, IEEE 1532, has been developed, which builds on the 
momentum of the JTAG standard. IEEE 1532 supports concurrent programming of ISP-capa-
ble devices regardless of the component manufacturer or device. The standard separates data 
and algorithm, allowing simplified design updates since a design does not need to be recom-
piled. The standard provides a standardized interface for initialization and events occurring 
during configuration. The specification assures that device pins are in defined states at all 
times. A done bit is provided to assure the device has been programmed. The ultimate goal 
of this new standard is to provide a seamless unified programming capability for all ISP-capa-
ble devices.

10.4.1	Understanding Pin Operational States
The hardware design must take into account the state of all pins in each of the possible 
FPGA modes exhibited from power-up through configured operation. There are many 
different categories of FPGA pins including general I/O, dedicated inputs and outputs, 
configuration pins and special function pins. Each of these device pin groups may exhibit dif-
ferent characteristics in each of the three FPGA modes. It is critical that the design correctly 
handle all possible pin interactions with board-level signals.

A few examples of why this can be critical follow. If an FPGA design is implemented 
with the board-level system reset signal (active low) attached to a general-purpose FPGA  
I/O pin, it is possible that the effect of the FPGA pin on the board-level signal before or dur-
ing FPGA configuration may force the reset signal active, resulting in unpredictable system 
reset. 

Similarly, a system data or address bus with signals attached to FPGA pins may be af-
fected (pulled high or low by FPGA pin effects on individual lines) resulting in undesirable 
system effects. 

KEY
POINT



160

Chapter 10

Approaches for dealing with these effects include signal pull-up or pull-down resistors 
external to the FPGA, buffer isolation of signals attached to the FPGA until the FPGA is 
fully configured, or control of pre-configuration pin status through configuration software 
switches.

However, not all FPGA pin characteristics can be controlled before, during or after 
configuration. This is especially true for dedicated configuration pins, dedicated input and 
output pins, reference pins and dual-purpose pins. The operation of each of these special 
FPGA pins before, during and after configuration should be given extra attention to pre-
vent unintended design effects.

10.5	 Design Security
Many different approaches can be used to compromise intellectual property (IP). These 
include reverse engineering the silicon, accessing unencrypted configuration files, and defeat-
ing simple encryption methods. An unencrypted bitstream provides a target for a potential 
IP attacker. Access to the design details can potentially allow unauthorized design copying 
(cloning) or unauthorized design reuse (IP theft).

For this reason design security plays a critical role in the protection of FPGA product 
IP. One viable method of IP protection takes advantage of encryption to protect the FPGA 
configuration data. The objective of design security is to make the cost of design content 
compromise ultimately too high to pursue. 

The key storage can be volatile or nonvolatile. Nonvolatile storage of the key is typically 
less secure, so most designs implement a volatile key storage approach for improved security. 
With volatile key storage, the key can be easily erased by either a command or removal of 
power to the key storage area. The disadvantage of this approach is that a battery is required. 
However, the ability to erase the key makes the reverse engineering process far more dif-
ficult. The security of an encrypted bitstream is dependent on keeping the cryptographic key 
secure. If the algorithm is sufficiently strong and the key cannot be compromised, the design 
remains secure. 

Two primary approaches remain for the IP hacker to compromise the design content. 
These approaches are brute force hacking or reverse engineering the silicon circuit imple-
mentation.

Two popular encryption algorithms are the Advanced Encryption Standard (AES) and 
the Triple Data Encryption Standard (3DES). AES is National Institute of Standards and 
Technology (NIST) recommended and has become the de facto standard. Triple DES is also 
NIST recommended but is being phased out for most new designs. Figure 10.4 illustrates a 
key-secured configuration flow.

KEY
POINT
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Figure 10.4  Virtex4 design security

10.6	 Summary
This chapter has presented topics associated with FPGA device configuration including 
device configuration mode overview and types of configuration, an overview of the JTAG 
standard, signals and typical implementation. The importance of verifying and conditioning 
of critical design signals during the pre-configuration stage of design was discussed. Secure 
design configuration was also discussed.

The most common methods for configuring an FPGA device without interfacing to an 
external host is via a serial or parallel interface from a nonvolatile on-board memory source. 
The interface can be direct to a memory device or implemented through a discrete processor 
in the design.
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11.1		 Overview
As FPGA designs increase in size and complexity, the board-level testing effort also increases 
in complexity. As previously discussed, the design verification phases of a typical FPGA 
design project including simulation, debug and verification can comprise 40% or more of the 
overall design cycle. By increasing the efficiency of the verification design phases, the design 
cycle can be dramatically reduced. 

A well-planned design will require some minimum number of hours to verify. The closer 
a design verification phase can be held to this standard, the shorter the schedule. However, 
for a poorly conceived or implemented design there is essentially no upper limit in terms of 
time and resources that may be required to verify a design; this can cause a design schedule 
to expand exponentially. Poorly implemented designs will be difficult to simulate, integrate 
and debug.

To reduce this potentially unbounded schedule and cost risk, it is important to include 
every design element that can assist in the design integration, debug and verification phases. 
The increased complexities of advanced FPGA families result in more complex design 
integration and debug challenges. Complex digital circuits require efficient debugging. The 
planning and preparation for the design, debug and verification efforts should start at the 
earliest phases of the design cycle. A design verification plan should be developed in parallel 
with the design requirements definition. The design verification plan should present plans for 
design simulation, integration, debug and verification including expected results. 

The board-level hardware design should include both hardware and software debug 
features. Inclusion of debug and verification friendly features should be included as key 
system-level requirements. The hardware debug features should include as much access to 
internal FPGA signals as possible. The software debug features should include as many ways 
to monitor and control the software running on the processor(s) (hard or soft) internal to 
the FPGA as possible. Convenient access to I/O signals and internal signal nodes can also 
simplify future design enhancement, maintenance and system troubleshooting efforts, result-
ing in lower overall cost of ownership.

Chapter 11

Board-Level Testing
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11.1.1		 FPGA Design Validation Approaches
There are two primary approaches for validating an FPGA design at the board level to verify 
the functionality and timing of the design. These methods are board-level test and debug and 
formal verification testing. Board-level testing takes place when the design has been down-
loaded to a target board. This design phase is typically iterative since SRAM-based FPGAs 
support reconfiguration. This is the most popular FPGA design verification technique, since 
it has the advantage of allowing the design to be verified within the final design environment 
at full operational speed. Since timing is a critical element in FPGA design, this capability to 
debug at full operational speed across all expected environmental conditions is essential in a 
rapid system development flow.

The next type of testing, formal verification, verifies the design against the final customer 
requirements with a formal test plan under rigorously controlled circumstances. Traditionally, 
formal verification is executed using detailed procedural steps. This type of testing should 
ideally be implemented by an independent team, but in the real world, this is not always 
possible. However, the generation and execution of a formal test plan by an outside group 
has the potential to exercise the design more completely, since the outside group has fewer 
design preconceptions or biases. If formal verification cannot be accomplished by an outside 
team, the next best approach is to establish a rigorous design test procedure to be carefully 
followed without shortcuts or deviations. The formal verification plan should verify all criti-
cal system functionality and performance characteristics.

Whatever the type of testing being used, it is extremely important to back up the design. 
This ensures configuration control of the tested baseline and prevents unknown changes from 
impacting future testing results. This also has the benefit of allowing the design team to rep-
licate previous design tests in situations where the design has been corrupted. This supports 
regression testing, which can help identify when previously tested functions stopped working.

11.1.2		A ccess to Critical Internal Signals 
As the design progresses, the design team should be constantly on the lookout for critical 
internal nodes and signals that will be critical to validate and test the performance of the 
final functional implementation. Signal nodes that are likely to be of interest should be 
provided with human-readable signal names that suggest their function within the system 
implementation. Meaningful signal names make signal selection and design understanding 
less time-consuming.

Easy access to internal signal nodes is essential for efficient design test, debug and verifi-
cation phases. It is valuable to bring a set of test points out of the FPGA on unused pins to a 
test header or set of pads for convenient external signal monitoring. Ideally, a logic analyzer 
or oscilloscope-friendly connector should be included in the design to support reliable test 
equipment signal monitoring. A group of eight to ten test points is generally considered a 
minimum for an external test header. The pins that are routed to the test header should be 
relatively close together on the FPGA package to support equal board-level signal routing 
to reduce relative signal skew. When possible, the test header should include enough pins to 
monitor all the signals of the design’s largest data bus plus a few related control signals. 
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Few things are as frustrating as waiting for an infrequent intermittent design failure to 
occur, only to discover that you are monitoring the wrong part of a bus or the wrong group 
of design nodes because you can’t accommodate all the required signals on the implemented 
test header at the same time.

If the test header cannot support all the required signals at once, resources within the 
FPGA can be used to implement mux structures connected to internal nodes to allow for 
selection between different signal groups. Implementing a mux access approach reduces the 
number of I/O pins required to support the debug process. The disadvantage of a mux access 
approach comes in the requirement to drive the mux control signals (typically via wire jump-
ers or dip switches).

There are two approaches for routing signals out to a test header: via HDL code or with 
lower-level design tools. The HDL approach requires setting up the design structure to 
accommodate and implement the HDL code necessary to control the signal routing. The 
disadvantage is that the HDL design code must be rewritten and the design must be reimple-
mented each time a signal access change is made. The iterative nature of FPGA debug can 
require many full or partial design recompiles to access different signal groups and combina-
tions. This can be made more efficient by developing a common test module with a defined 
input and output port which can be reused from design to design.

The other test header-based design debug approach involves modifying the fully placed 
and routed design with manufacturer tools to allow internal signal access. When probing 
the design this way, the signal route delays between the source node and the output pin are 
generally reported directly. 

Another debugging approach is the use of an internal logic analyzer core. This debug 
method can be used just as an external logic analyzer with test header would be used. The 
key difference is that this method will consume internal FPGA resources. Thus, an esti-
mate should be made of the potential number and type of resources necessary to support the 
projected debugging capabilities early in the design cycle to help support the selection of the 
appropriate design part. 

Other design features that can streamline the debug validation and verification design 
phases include the incorporation of switch inputs into the FPGA and LEDs to monitor signal 
states and performance. Another desirable feature is the addition of access to FPGA ground 
and power planes through access pads or test pins to support local scope and logic analyzer 
reference levels. 

11.1.3		 Boundary Scan Support
Boundary scan support is defined in IEEE Standard 1149.1. Boundary scan testing was de-
veloped to help verify board-level connection issues, and it has the potential to allow quick 
identification of manufacturing issues. Connectivity issues can be difficult to test for, identify 
or isolate in designs with isolated ball grid array (BGA) to BGA signal routes, high pin-
count devices and wide data buses. Consideration should be given to implementing boundary 
scan to support design debug and board-level troubleshooting. 
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Boundary scan testing can be performed between multiple devices in a defined scan 
chain. It requires specialized test software and equipment. Boundary scan tests are based on 
generation and propagation of test vectors through the system under test. IEEE Standard 
1532 is a superset and extension of the JTAG IEEE Standard 1149.1. Standard 1532 supports 
configuration of programmable logic devices.

Design support for integration, test and verification can be implemented with relatively 
low per-system costs. Design verification support is dependent on a design philosophy that 
emphasizes a commitment to implementing verification-friendly design features. Once verifi-
cation features have been developed and added to a design, they are generally straightforward 
to carry over to new designs.

11.2		 Design Debug Checklist
There are many factors that should be taken into account when preparing a design for 
efficient design debug and verification. Table 11.1 provides some considerations on preparing 
a design for board-level debug and verification efforts.

Table 11.1  Design debug checklist

✔ Design Debug Checklist

❑ Implement as many verification-friendly design elements as the design budget/
schedule will support

❑ Set a goal to have access to every signal to and from critical blocks

❑ Label all signals that may need to be accessed during the debug or verification 
phases

❑ Include sufficient design margin to allow implementation of embedded logic 
analyzer blocks

❑ Include internal logic analyzers for state machine monitoring of design 
functionality

❑ Include conventional debug signal headers for critical intra-signal timing 
relationships

❑ Implement embedded processor access elements (JTAG-based and signal headers)

11.3		 Summary
The cost of design-verification-friendly features tends to be low at the board level and only 
medium in terms of engineering time necessary to incorporate design enhancements to sup-
port the design verification phases. Verification-friendly design elements can also provide 
valuable support during the design phases of integration, design enhancement, system-level 
debug, board and component-level depot repair. Table 11.1 outlines some of the most effec-
tive design debug approaches.
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12.1		 Overview
Traditional FPGA technology advances have included consistent trends toward more logic 
resources, more I/O, support for more conventional I/O interface standards, higher perfor-
mance, faster software design tools, lower costs and smaller packages. Many of these advances 
are based on leveraging each new semiconductor process node. However, in order to achieve 
higher growth, additional features must also be added to FPGA architectures, software and 
IP offerings. FPGA manufacturers continue to seek to expand the range of potential applica-
tions their products can support.

Manufacturers have identified specific application groups they want to grow in, includ-
ing consumer electronics, medical, industrial, automotive and wireless communication. Each 
of these application groups requires a certain mix of design characteristics. These design 
characteristics and requirements include high volume, low power, quick time-to-market, em-
bedded computing, signal processing and high speed signal interfaces. FPGA manufacturers 
have added specialized circuitry capable of supporting and implementing signal processing, 
embedded processing and high speed interfaces. Manufacturers and third party vendors have 
addressed time-to-market concerns by offering pre-implemented, pre-verified intellectual 
property blocks. Figure 12.1 illustrates the range and overlap of some of these specialized 
FPGA technology areas.
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Figure 12.1 
Advanced FPGA topics
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The topics of intellectual property, FPGA embedded processors, digital signal processing 
and advanced signal interfaces are covered in more detail in the following chapters.  

As products become smaller and more portable, power consumption becomes an increas-
ingly significant design factor. Also, as designs mature and move into volume production, 
there is pressure to reduce implementation cost. The issues of lower power and transition of 
designs to volume production are discussed in this chapter 

12.2	R educed Power Consumption
Traditionally, FPGAs have not been perceived as a power efficient technology. Manufactur-
ers are investing in FPGA device power consumption reduction since power is so important 
to many potential market expansion design opportunities. Portable and battery powered ap-
plications are especially sensitive to power consumption.

Manufacturers are approaching power consumption reduction with a multiprong 
approach. Adjustments and design modifications are occurring at both the FPGA silicon pro-
cess level and at the device architecture level. Design implementation tool enhancements 
are also being pursued. 

Manufacturers are working actively at the silicon process level to reduce both leakage 
and dynamic power consumption at the gate level. Some architectures have been updated 
to support power consumption reduction by allowing unused circuits and clock regions to be 
put to sleep. Design teams can make design adjustments within FPGA architectures support-
ing control of inactive and unused logic fabric and circuits.

Another approach for reducing power consumption involves increasing the efficiency 
of the design implemented. It may be possible to reduce the number of gates required to 
implement specific functionality through design manipulation. This may be accomplished 
by implementing more efficient HDL design structures or by re-architecting a design to take 
advantage of potential design parallelism. Reduction of clock speed can result in power 
reduction. Intelligent use of hard IP or specialized focused-function blocks can also reduce 
power consumption.

Manufacturers will continue to focus on reducing FPGA component power consumption 
through a combination of architectural changes, efficient design implementation and silicon 
process-level changes with each new device family and design tool release.

12.3	 Volume Production Options
As designs mature they move to volume production. FPGAs with fixed functionality and 
performance gain less benefit from the ability to be reconfigured. Conventionally, when 
FPGAs reach higher volumes, consideration is given to transitioning FPGA designs to ASIC 
implementation. However, transitioning an FPGA to an ASIC may have several disadvan-
tages. The translation of FPGA designs to ASIC components is not always an efficient or 
straightforward process. The NRE charges can be significant, and the design effort to transi-
tion an FPGA design to an ASIC and the subsequent ASIC component build cycle can add 
months to a product release. It is also likely that the ASIC device pinout will change even if 
the same package is available.
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There are alternatives to design translation of SRAM-based FPGA designs to ASIC 
implementation when transitioning to volume production. The primary SRAM-based FPGA 
manufacturers have developed proprietary migration options for more affordable alternatives 
for volume production. Designs being evaluated for transition to a volume production solu-
tion should be as mature as possible. This means that the design should have been verified 
in the end application environment, and that no additional design updates or changes are 
expected. The FPGA should have reached a level of maturity where the functionality and 
performance is fixed and unlikely to require any subsequent fixes or enhancements.

The primary options for migrating SRAM-based FPGA designs to cost reduced 
higher volume production solutions include Altera’s HardCopy® and Xilinx’s EasyPath™ 
technologies. The HardCopy approach is essentially an optimized migration path to a transi-
tion-optimized structured ASIC. The EasyPath™ approach takes advantage of testing only 
the standard FPGA component resources required to implement the required specific appli-
cation functionality. These approaches involve both NRE charges and some implementation 
time; however, neither the charges nor schedule are on the scale required for a conversion 
to an ASIC. NRE costs include both NRE fees from device manufacturers to cover their 
expenses, and additional customer engineering efforts required to support migration and 
verification of the new target component in the design application.

The trade-offs that must be considered when evaluating transition into a fixed-function 
volume production device option include:

■	 The part family and component to be migrated
■	 The quantity of devices required
■	 The available migration options
■	 Per device costs for original FPGA and migration part
■	 Manufacturer NRE charges
■	 Will a different package or device pinout be required?
■	 Board re-spin costs (if there are device, package or footprint differences)
■	 Level of design migration risk (Is a function and performance guarantee available?)
■	 Amount of engineering time required to verify the new target device in the design

12.4	 Summary
Each of the design technologies covered in the following chapters could require a separate 
book in order to effectively address all the design implementation options and design details. 
Each of these technology areas is experiencing significant research and development focus by 
the major FPGA manufacturers. This is because these technologies will either allow FPGA 
components to be used in applications where they were not previously a good fit, or because 
they improve performance for current applications. With continued effort, these technol-
ogy areas will advance rapidly. These technology areas take FPGA design to higher levels of 
performance and integration; they are key for FPGA manufacturers since they are critical to 
so many applications. 
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13.1  Overview
FPGA intellectual property (IP) can be defined as a reusable design block (hard, firm or soft) 
with a fixed-range of functionality. The term IP usually refers to a pre-verified functional 
design block that is obtained from a group outside the local design team. An exception to 
this can occur when a design block is being incorporated from a different in-house project. 
Also, IP usually implies some level of previous testing, although this is not an absolute re-
quirement. Available IP offerings cover a wide range of design applications and functionality. 
Common terms used to describe IP blocks include library parameterized modules (LPMs), 
megafunctions, macros, relationally placed macros (RPMs), cores, and synthesizable cores. 
Two primary potential benefits of IP use are reduced design schedule and design, and devel-
opment cost and risk. 

IP can be leveraged to shorten project schedules by eliminating design block develop-
ment and testing time. The potential project benefit for each IP application is influenced by 
several factors, including how well the implemented functionality and performance of the IP 
block matches project requirements, the level of IP testing, the number of times an IP block 
has been implemented, and the IP cost, licensing and documentation. 

This chapter discusses some of the trade-offs, decisions and design team actions that 
must be completed by the design team to implement design functionality with IP blocks. 
Table 13.1 presents a high-level design task flow for qualifying, selecting, implementing and 
testing IP.

Chapter 13

Cores and Intellectual Property
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Table 13.1

# Design Flow Task
1 Define requirements
2 Identify required functionality 
3 Partition design
4 Make versus buy decision
5 Select IP block
6 Select IP vendor
7 IP demonstration
8 Try before buy
9 License IP (contract)
10 Review and understand documentation
11 Clarify documentation questions and discrepancies
12 Re-implement IP block
13 Verify IP block functionality in isolation
14 Run vendor-supplied testbench
15 Modify IP block (if required)
16 Re-implement, re-verify
17 Design and test IP block interface circuitry
18 Integrate IP block into system 
19 Debug design
20 Verify functionality
21 Archive and document design
22 Deliver product

With the area of IP implementation covering such a broad range of offerings, it is impor-
tant for the design team to agree on common IP terms, definitions, tools and design flows in 
order to reduce confusion and miscommunication. The terms and definitions adopted by a 
design team will be influenced by FPGA manufacturer, design tool and IP vendor selections. 
The potential project schedule benefits for using each potential IP element will be affected 
by the implemented functionality, design interfaces, amount of completed testing, documen-
tation and quality of support. All of these factors will vary from IP block-to-IP block and 
vendor-to-vendor. Some critical IP design cycle considerations include make versus buy, try 
before buy, IP qualification and IP purchase. 

IP sources include FPGA manufacturers, third-party suppliers and open sources. Each 
source will have different advantages and disadvantages. IP can be delivered in different 
formats under a broad range of licensing agreements. The IP design deliverables, documenta-
tion and support may differ significantly between sources.
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13.2 T ypes of IP
There are three commonly recognized types of IP: soft IP, firm IP and hard IP. General 
definitions for these terms within the context of FPGA design are provided in Table 13.2. It 
is important to realize that the definitions of IP may be different within the fields of ASIC, 
standard cell and software design. These types and their definitions are not absolute, and 
designers are likely to encounter overlap between the types.

Table 13.2  IP Definitions

Type Description
Soft core Design functionality implemented via an HDL with no or minimal optimi-

zation for a specific target technology (vendor, family and device).
Firm core Design functionality implemented (generally) via an HDL that has been 

optimized for a specific target technology (vendor, family and device). The imple-
mentation optimization may be physical layout aware, allowing a highly efficient 
implementation resulting in improved performance, power or area characteristics.

Hard core Design functionality implemented in fixed-logic at the gate and signal route 
level rather than within the programmable FPGA logic fabric. The func-
tionality is fixed at the silicon level during the manufacture of the device. 
The functionality cannot be removed or modified by the design team.

Hard IP is an optimized, fixed-function implementation at the silicon level. This IP 
is implemented as a fixed-gate and routing block on the FPGA device die. Benefits include 
generally higher efficiency, higher performance, lower power consumption, and smaller real-
estate requirements than equivalent functionality implemented within programmable FPGA 
logic fabric. Limitations include fixed-functionality, and inability to be removed from the 
design if unused; the block may also consume power even if unused.

Hard cores are a physical implementation of a block of transistor gates and routing 
placed within the FPGA logic fabric. Hard cores are implemented at the die level when the 
device is built at the factory. The availability of hard IP functionality is fixed and determined 
by the component selection. Taking advantage of hard IP is very straightforward since its 
functionality is predetermined and fixed. Hard IP cannot be modified; it can only be used 
or left idle in the final design. Performance associated with hard IP can be high, but hard IP 
is inflexible based on its fixed implementation. Hard cores are typically implemented when 
higher performance is required or when it is not efficient to implement the functionality 
within the FPGA’s programmable fabric.

Hard IP is by its implementation highly optimized, higher performance and not por-
table. Available hard IP blocks are typically blocks of functionality that are complex, higher 
performance or repeated multiple times within a design. Examples include processors, and 
high-speed serial IO blocks. Although FPGA resources such as block RAM could be consid-
ered hard IP, this is in fact considered an FPGA resource.
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POINT

KEY
POINT



174

Chapter 13

Hard cores are deterministic implementations within the FPGA fabric and provide the 
greatest level of both performance and decreased FPGA resource utilization. In general, hard 
IP cores have been performance-optimized for specific design functionality and require very 
limited debug effort.

The next type of IP is firm core. Firm cores are optimized for implementation in a par-
ticular FPGA family, architecture or device. This optimization is either done by the FPGA 
vendor or a third-party provider. Firm cores imply some level of architecture awareness, 
specifying a combination of physical placement interrelationship, design element place-
ment, and physical signal routing. Examples of firm cores include Xilinx’s MicroBlaze™ 
processor and Altera’s NIOS processor. Relationally placed macros (RPMs) are a related type 
of core. RPMs are a subset of firm cores that specify physical placement information to the 
FPGA design tools.

The last type of IP core is the soft core. Soft cores do not define physical placement 
information. Soft cores are the most portable of the core types, but typically at the cost of 
performance. Soft cores may be easier to modify due to their lack of physical layout defini-
tion. Since soft cores have typically not been optimized for a specific device architecture, 
the implementation of the functionality may not be optimally placed. The lack of opti-
mization may limit the maximum speed of the implemented IP block. Performance may be 
improved by optimizing the design layout; however, this can be a time-consuming effort.

Soft and firm cores, due to their programmable implementation, are inherently flexible 
with variability in their portability based on how they are implemented. The implementa-
tion challenge is in working to maximize performance, while maintaining flexibility. The 
primary trade-offs between hard, firm and soft cores are in the areas of resource requirements, 
maximum performance, flexibility and portability. Firm and soft cores generally have the fol-
lowing characteristics:

■ 	 Have the potential to reduce design effort due to existing functionality

■ 	 Allow rapid and low-effort design modifications, updates and changes as project 
requirements change or expand

■ 	 Lessen the risks of implementing design functionality the design team is not 
experienced with

■ 	 Reduced design effort

■ 	 Increased design reuse

■ 	 Provide a mechanism for rapid and relative inexpensive changes as creeping 
requirements or product upgrades occur

■ 	 Mitigate the risk of adding unfamiliar or new design elements in the configurable 
portion of the system design so that implementation decisions can be delayed right 
down to the end of the development cycle

■ 	 Provide in-the-field configuration allowing product updates or bug fixes
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13.3  Categories of IP
The range of IP availability can be divided into broad, overlapping categories. Table 13.3 
presents some typical IP categories and example IP cores.

Table 13.3

Category Examples
DSP Function Viterbi Decoder, FFT, MAC, FIR, Discrete Cosine Transform
Math Function CORDIC, Parallel Multiplier, Pipelined Divider
Base Function Shift Register, Accumulator, Comparator, Adder
Memory Function Block Memory Module, Distributed Module
Image Processing Color Space Converter, JPEG Motion Encoder
Communication AES Encryption, Reed-Solomon Encoder, Turbo Decoder
Microprocessor 8051 Compatible, RISC Processor, Z80 Compatible
Peripheral UART, CRT Controller, Watchdog Timer
Std. Bus Interface LIN Controller, PCI Master/Target, USB, I2C, CAN

IP can be grouped into three broad categories. These categories are differentiated by 
their application or functionality: processing, specialty and interface. The processor category 
includes any required processor elements and related elements required to support the processor 
infrastructure. For example, interrupt controllers add interrupt capability to the core pro-
cessing unit. The processor building blocks can be further subdivided into traditional and 
specialty processors. Traditional processors are divided into 8, 16 and 32 bit cores. These 
processors are generally used to implement control plane applications. 

Specialty processors include processors targeted to support specific applications such as 
digital signal processing and data path-oriented applications. The interface category can also 
be divided into subcategories. The category sub-choices include serial or parallel interfaces, 
with speed defining additional granularity. “High speed” includes memory interface and high-
performance networking components such as gigabit Ethernet. Slower peripherals including 
UARTs, SPI and I2C can also be grouped together.

13.4 T rade Studies
IP trade-off analysis can be a challenging undertaking, mainly due to the numerous avail-
able IP options. It may be beneficial to take a hierarchical-style decision-tree approach to 
selecting the appropriate IP to be implemented. In implementing this strategy, the design 
team starts at the highest abstraction level of IP; the type of IP to be implemented. The 
decision between hard, firm or soft core implementation has potentially the greatest impact 
on the development. This critical selection may determine both the supplier of the FPGA 
device and the device family.

A key factor that relates to IP type selection is performance. Using a processor as an 
example, the design team must decide if the required computational speed can be achieved 
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by a soft or firm core. If the system requires a high-end processing unit, then the choice of a 
hard core may be the best path. Another important consideration is the availability of design 
collateral and relative tool chain maturity. For example, the PowerPC™ core available in 
Xilinx’s V2Pro and V4 families is a mature, well-documented, high-performance processor 
with a critical mass of available design references and development tools readily available.

Another important factor to consider is the amount and type of resources required to 
most efficiently implement a complex function within an FPGA. Application examples that 
are often implemented as hard IP include high-speed communication interface blocks and 
high-speed processors. An example is in Xilinx’s V4 architecture. This FPGA family supports 
a range of high-speed interfaces with signal integrity features, an embedded PowerPC proces-
sor (commonly used in embedded applications), DSP slices for implementation of parallel 
signal processing algorithms, and commonly used IP such as FIFOs and Ethernet MACs. This 
combination of advanced hard-IP elements and conventional programmable logic fabric 
provides a high-performance platform with the performance and functionality required to 
support the implementation of system-on-a-chip (SoC) functionality.

Another important factor to consider is the amount of resources the core will require. 
Typically, hard cores are silicon-level circuits fixed within the FPGA device and require little 
or no additional resources. As an example, a FIFO core might take a few hundred CLBs to 
implement depending on the memory size and level of core optimization. Further, a FIFO 
function could be implemented as a soft, firm or hard IP block, each requiring different 
resources and providing different levels of performance. A more complex core such as a DSP 
might take several thousand CLBs to implement as a soft or firm core, potentially with lower 
maximum performance than a hard IP implementation. Keep in mind, that although hard 
cores can provide performance and resource utilization advantage, they may be less flexible 
and will generally have a significantly smaller set implementation option choices. Hard IP 
can also lock a design to a specific device family or component.

Flexibility is often a primary objective in FPGA design, and soft or firm implementa-
tions are generally the most flexible. IP provides many of the reuse benefits that have been 
available for years in the software field. IP reuse supports flexible, efficient implementation of 
design functionality, while also supporting a flexible system functionality expansion without 
the traditional schedule and budget impacts of hardware updates. 

13.5  Make versus Buy?
When a design team evaluates the implementation of a functional block in an FPGA, many 
factors must be examined. These include the size and experience of the design team, the 
design schedule and budget, and how much functionality must be implemented. If a specific 
skill set or knowledgebase is critical to future projects, making the investment to implement 
the design in-house may make sense. If the functionality exists on the IP market and the task 
will be time-consuming or tedious to implement, obtaining the core from an external source 
may an attractive option. Many design teams underestimate the time and effort required and 
the knowledge that must be gained in order to implement an unfamiliar functional block. By 
leveraging a preverified core from an outside source, the design team can focus on efficiently 
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implementing critical functionality within their areas of specialization, focus, and expertise, 
thus saving valuable schedule time.

The decision to make or buy an IP block or functional implementation begins by de-
veloping a thorough understanding of required design functionality, and the functionality 
of available IP blocks. 

After determining all of the functional requirements for the proposed IP block, the deci-
sion to make or buy the functionality must be made. This is ultimately a decision between 
having the in-house team implement the required functionality, or having an outside source 
provide the pre-implemented pretested functionality. There are challenges associated with 
either choice. The make versus buy decision is often actually a decision between internal and 
external functional block implementation. 

Many factors will influence the final IP decision. Factors influencing the make versus buy 
decision for an IP block include the design complexity, potential commonality with other 
projects, design schedule, development budget, IP vendor support level, support quality, docu-
ment quality, tools used, design flow, previous IP integration experience, and the capability 
of both the team providing the IP and the local team incorporating the IP. These factors can 
play a significant role in the schedule and budget required to implement specific IP blocks.

The following list presents some important decisions that must be addressed by design 
groups evaluating obtaining an IP block.

Important IP Decision Factors
■ 	 Design support quality
■ 	 Support duration and limitation
■ 	 Overall cost with integration and verification considered
■ 	 Licensing model
■ 	 Performance guarantee
■ 	 Delivered product package
■ 	 Contract details
■ 	 Vendor’s design flow
■ 	 Required tools
■ 	 Design constraints format
■ 	 Testbenches and test results
■ 	 Documentation quality
■ 	 Design constraint files
■ 	 Process for making design changes
■ 	 Access to subsequent design updates and enhancements
■ 	 Number of successful core implementations
■ 	 Demonstration of functionality in the targeted part
■ 	 Ability to talk to previous customers
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13.5.1  Sources of IP
There are many different potential sources for IP targeted for use in FPGAs. These include:

■ 	 FPGA vendors

■ 	 Third-party IP suppliers

■ 	 IP libraries associated with an FPGA design tool

■ 	 Open access groups

■ 	 Universities

■ 	 Internally Developed

Some sources provide low- or no-cost IP. However, testing, optimization and support for 
these offerings are often not at the same level as IP available from fee-for-product sources. 
The support for low or no cost IP is generally limited to the documentation distributed with 
the IP source code. One of the most significant advantages associated with IP is that it has 
been extensively tested.

The IP market’s development has been hampered by the lack of a common objective 
system of IP evaluation or IP supplier qualification. IP design-in is not yet consistently at the 
plug-and-play stage of evolution. 

While IP has the potential to save a design team a great deal of work and time, the buyer 
must exercise due diligence in researching potential design partners.

13.5.2 E valuating IP Options
Important elements of the IP block evaluation phase include functional verification, opera-
tional performance and design tool compatibility. The ability to “try before buy” can be a 
powerful confidence builder in an IP product. A well-conceived IP implementation sched-
ule should include a generous evaluation phase to allow the design team to evaluate and 
test potential IP blocks. Side-by-side evaluation of IP blocks can lead to selecting the right 
design option for the project, rather than just the lowest cost or highest performance option. 
Although setting aside evaluation time is often considered unnecessary overhead that can 
cut into schedule and profit, it is typically the most effective approach for eliminating design 
risks. Selecting the wrong IP solution can result in serious delays and design rework.

IP cores can be most efficiently and effectively evaluated when they are implemented 
within the targeted FPGA device. A significant number of IP cores can be evaluated before 
they are obtained or purchased. The methods for preventing a customer from including a 
“test” core within a delivered product vary from vendor to vendor. 

When evaluating the purchase of IP, it is important to understand that IP is generally 
not a seamless turn-key plug-in solution. This is why IP provider design support capability is 
at the top of the list of important IP decision factors. Marginal support not only taxes the pa-
tience of the development team but also affects the development schedule and product cost. 
In the worst case, poor support can compromise the success of a development effort. 
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Another important factor is the quantity and quality of the design documentation. The 
collateral delivered with the IP must be comprehensive and complete. Thorough, accurate, 
organized and readable documents are essential. The documentation provides the design 
team an understanding of the functionality of the IP and the details of the design interface. 
Documentation is also the primary resource for the design team for resolving technical issues 
that arise during the development, integration and test of the IP block functionality. The 
documentation should also detail the IP provider’s development methodology and process 
flow. Ad hoc documentation may reflect ad hoc product development. An IP provider’s in-
ternal development processes are critical to quality products, so, when making a decision to 
buy IP, take time to understand the processes and procedures the IP provider used to develop 
and test their IP product. 

13.5.3  Qualifying an IP Vendor
One of the biggest challenges associated with selecting an IP solution is the qualification and 
evaluation of an IP vendor. The IP partner evaluation process can be challenging since the 
selection process is subjective and usually must be based on incomplete information. Many 
factors must be taken into consideration and evaluated. 

Unfortunately, few projects are similar in scope, scale or functionality and the staff of the 
IP vendor (and their availability) are subject to significant changes. Thus, the knowledge 
and experience regarding prior IP vendor partnerships may be of limited applicability in 
subsequent IP vendor evaluations. The experience a customer had previously may not reflect 
the experience that may be experienced with a new IP block engagement. 

The process can be further complicated when the standard IP block offered by the 
vendor does not implement the exact functionality required for the project. In this case, an 
evaluation must also be made regarding how modifications to the offered IP block may be 
made. Making the modifications may require an additional contract with the IP vendor or a 
third party. 

When evaluating an IP vendor, ask open-ended questions. For example, ask them to 
explain their configuration management process. Determine if they have coding standards. 
Ask them to define their verification and validation process. Is it independent? Does the 
same group that developed the IP also test the IP? The answers to these questions can help 
the design team better understand the potential IP vendor.

The following list presents some topics that should be addressed when evaluating an IP 
vendor or evaluating modification of an available IP core.
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✔ IP Vendor Qualification Question Checklist

❑ The level of design pre-verification completed

❑ Availability of testbenches and test results

❑ Supplier experience with the targeted FPGA vendor/architecture/component

❑ IP vendor tool set used to generate, synthesize, and simulate IP blocks

❑ IP design flow and testing procedures

❑ Documentation philosophy

❑ Level and completeness of IP documentation

❑ Contract options; support, modification, guarantees

❑ How changes or updates are implemented

❑ Licensing requirements and use limitations

❑ IP delivery format and design collateral provided

❑ Evidence of IP performance on the targeted FPGA platform

❑ Organization history

❑ Staff size and qualifications

❑ Who on staff will provide required IP support

❑ Organizational expertise in critical specialization areas

❑ Number of successful commercial IP design implementations

❑ Has the design been optimized for the targeted device family?

❑ Previous implementations within the targeted device family

❑ Testbench and test result availability

Down Selecting
To select the best solution for a specific application or project, information must be gath-
ered about the potential IP offerings and their suppliers. The review process must start with 
the development of an abstract of the technical requirements, to be provided to potential 
candidates if the implementation is anything other than a standard off-the-shelf func-
tion. The responses from the IP vendors should eliminate any solutions that can’t meet the 
system-level requirements. This process should be repeated with increasingly fine levels of 
technical detail. With each review process iteration, IP cores that don’t meet the operational 
requirements can be eliminated. The final selection round should involve only two or three 
potential candidates. A final trade study with more than three candidates is likely to be quite 
complex and may require an extended selection period. 

The final selection phase should include additional detailed discussions with the IP 
suppliers regarding design details. This is a critical phase where diligence can pay dividends. 
Any candidates that are in doubt should be reviewed closely and eliminated from selection 
if possible. Once a decision has been made on the final candidates, more detailed techni-
cal reviews should be held. The process of selecting an IP vendor may include the need 
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to reveal some proprietary information to the IP suppliers being evaluated. In cases where 
highly sensitive material is involved, this can be a risk. Putting a confidentiality agreement 
or nondisclosure agreement (NDA) in place may be necessary, although this may involve a 
significant delay if legal departments become entangled in the process.

The analysis and evaluation phase is when hands-on evaluation will likely take place. 
This process includes the prototyping of solutions. This is the point in the IP selection pro-
cess where the level of a supplier’s support can be best evaluated. 

During the final stages of the decision process, it is possible to encounter a setback 
with the selected IP vendor, so it is desirable to identify and maintain a backup approach 
with one or more alternate vendors if possible. Try to maintain good relationships with the 
IP vendors who were not ultimately selected.

Before eliminating a potential candidate, give them an opportunity to respond. In cases 
where a supplier has invested heavily in assisting the design effort, it is desirable to give them 
the option and let them decide if they want to propose an alternative approach. 

Try to keep an open mind during the qualification process. Consider if a candidate may 
be trying to “buy” their way into the design. This can prove counterproductive during the 
product development cycle. It is possible that later price adjustments will occur.

13.5.4  Licensing Issues
One of the more complex issues in implementing IP is associated with reviewing, negotiating 
and approving the license agreement proposed by the IP vendor. Depending on the vendor, 
there can be several license/contract elements to be negotiated or none at all. FPGA manu-
facturers have worked to develop common license agreements, which apply to many of their 
more popular IP cores. Xilinx’s program is called “Sign Once,” and as the name suggests, al-
lows the review and acceptance of a single license that can then be updated to reflect the IP 
cores purchased. The following topics should be evaluated with awareness of the current and 
potential future planned IP core use model.

License Topic

■ 	 License agreement with IP vendor, for each IP core

■ 	 Is the license project- or site-based?

■ 	 What is the definition of a project and site?

■ 	 Can multiple versions of the same core be used on a project?

■ 	 Is multiple location support/implementation allowed?

■ 	 What happens if the core does not meet published specifications? (Fix, replace or 
refund?)

■ 	 How will the risk of patent infringement be handled?

■ 	 Is there access to technical support and upgrades?

■ 	 Can the IP be ported to other IC technologies?

KEY
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13.6  IP Implementation/Tools
Integration of IP functionality can be a significant percentage of the effort required to imple-
ment IP within a design. This is one of the areas where the field of IP continues to develop. 
There are few commonly accepted interface standards that IP vendors design to. FPGA 
vendors have developed some guidelines and protocols that are available to developers of IP; 
however, adoption of these standards is variable.

Ultimately, the design team is responsible for reviewing an IP module’s defined and 
documented interface and developing and implementing an efficient interface between 
their design and the IP module. This can pose a significant challenge if the project plan is to 
directly interface two or more IP modules. If the IP modules and their associated source of 
support are from the same vendor, some level of inter-compatibility can be expected. Unfor-
tunately, if the IP modules are from different sources, significant interface design work may 
need to be done.

13.7  IP Testing/Debug
One of the most significant advantages of IP is the promise of simple implementation of 
preverified, extensively tested functionality within a design. It is advisable to verify the 
functional performance of an IP block once it has been implemented within a design. 
Many factors can influence the functionality and performance of an integrated IP block, 
including: IP modifications, module interfaces, design constraints, final IP placement and 
routing, available FPGA resources, and tool set differences.

Many designs come with access to some level of test routines (testbenches) and test 
results. The more comprehensive the testbenches are, the easier it may be to verify the 
design. Test results should be considered as only an indication of potential performance if 
they are based on an implementation on a significantly different device target. Design test 
support is likely to be a significant factor in many IP evaluations due to the schedule impact 
of generating an extensive IP test set.

Debugging an embedded IP design element generally follows the debug approach of the 
design it interfaces to. The standard post-simulation board-level debug options include logic 
analyzer analysis of signals into and out of the device—including routed-out internal design 
nodes, emulator analysis of IP functionality, and analysis of registered internal design signal 
nodes via an embedded FPGA analyzer such as ChipScope™.

Depending on how the IP has been implemented and delivered, it may not be pos-
sible to gain access to nodes internal to the IP block. This will require debugging of the IP 
functionality at the IP block interface level. Ideally, the functionality of the IP will not be 
in question; however, without access to internal nodes, debugging IP functionality can be a 
complex challenge. Consideration of debug options may influence decisions regarding which 
IP vendor or IP core is most appropriate for a project.
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13.8  Summary
The field of intellectual property (IP) for FPGAs continues to expand. A broad description 
of FPGA IP is “a design block targeted for implementation within an FPGA that can be re-
used and retargeted to different programmable platforms capable of performing a fixed range 
of functionality.” Intellectual property can potentially reduce design schedule, verification 
effort, and cost and design effort. Intellectual property is a very broad subject that covers a 
wide range of functionality, applications, and design implementation flows. Critical IP design 
factors to consider include targeted core complexity and design team knowledge. 

IP elements can provide significant risk reduction and schedule reduction for projects 
with fast time-to-market requirements and teams with limited resources or specialized experi-
ence. It is important to maintain a systems-oriented design philosophy throughout the design 
cycle. There are many decisions that must be made to effectively select and implement the 
appropriate IP solution for the design. Many of the decisions regarding IP solutions and 
implementations can have a significant effect on system performance, resource utilization 
and design schedule. 

It is essential to develop a full understanding of the relationship between individual 
design option decisions and the resulting implemented design performance. Trade studies can 
be an effective tool to guide, clarify and document complex, interdependent IP implementa-
tion design decisions. Significant design schedule, budget and resource inefficiencies can be 
avoided by focusing on the critical design decisions presented in this chapter.
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14.1		 Overview
Processors are one of the most flexible components in an embedded designer’s toolbox. 
Processor design flexibility has evolved through hardware and software standardization and 
technology advancements. The reduced instruction set computer (RISC) is arguably one of 
the most commonly implemented processor architectures. Popular examples of RISC-based 
processors include PowerPC™, ARM™ and MIPS™. Along with the RISC architecture, 
robust software tools and high-level programming languages have enabled the use of proces-
sors in almost every conceivable type of embedded system. 

SRAM-based FPGA flexibility can be further enhanced by embedding processors within 
the FPGA component. The embedded processor can be implemented as a soft, firm or hard 
core. Potential benefits associated with implementing a processor within an FPGA include 
reduced obsolescence, increased design content ownership, and fewer board-level compo-
nents. Figure 14.1 illustrates system components which may be able to be implemented 
within an FPGA.
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The implementation of an embedded processor within an FPGA requires many of the 
same decisions and trade-offs required to implement a discrete processor design. Some of the 
factors influencing an embedded processor implementation include clear and concrete system 
requirements, good design methodology, efficient co-design , and proper design partitioning.

There are multiple hardware and software trade-offs that must be completed to imple-
ment a processor within an FPGA. Some design considerations include selection of the 
processor core, selection of the peripherals blocks and IP, processor memory architecture 
and design element interconnection. Some software design considerations include informed 
coding, selection and use of a real-time operating system (RTOS), and device driver develop-
ment. Both software and hardware tools are critical factors, and every effort should be taken 
to select the best tools available.

14.2	 FPGA Embedded Processor Types
FPGA processor cores are IP and can be categorized into the three standard IP types dis-
cussed in Chapter 13: soft, firm, or hard. Soft cores are processor implementations in an HDL 
language without extensive optimization for the target architecture. Soft cores typically have 
lower performance and are less efficient in terms of resource utilization.

Firm cores are also HDL implementations but have been optimized for a target FPGA 
architecture. Altera’s Nios®-II and Xilinx’s MicroBlaze™ processors are examples of firm 
processor cores. Hard cores are a fixed-function gate-level IP within the FPGA fabric. 
Xilinx’s Virtex-II Pro and Virtex-4 405 PowerPC™ core is an example of a hard processor 
core. Figure 14.2 illustrates a hard and soft processor example.

“Hard” Processor
 Core

“Soft” Processor
 Core

Figure 14.2  FPGA hard and soft processor example
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The following lists present a generalized summary of the advantages and disadvantages 
for each of the FPGA processor core types (soft, firm and hard). 

Soft Core Advantages and Disadvantages

■ 	 Soft Core Advantages

	 – 	Generally a much higher level of portability

	 – 	Generally most affordable

	 – 	More low-cost/free sources due to easier implementation

	 – 	Relatively easy to target to specific architectures

	 – 	Relatively easy to modify

■ 	 Soft Core Disadvantages

	 –	 Possibility of portability between architectures

	 – 	Much lower level of optimization resulting in: lower performance levels, higher 
resource utilization

	 – 	May require more design effort

	 – 	Likely less extensive simulation results for specific architectures

	 – 	Likely less documentation for specific architectures

	 – 	Differences in tool sets used for design implementation can affect results 
significantly and are not always predictable

Firm Core Advantages and Disadvantages

■ 	 Firm Core Advantages

	 –	 Likely well-optimized for targeted architecture

	 – 	Relatively easy to modify

	 – 	Performance, resource utilization and power consumption information generally 
well-characterized

	 – 	Generally provide a high level of confidence in functionality / performance

	 – 	 Design already fielded and verified

	 – 	 Easy to test in target environment

	 – 	Access to some level of simulation resources (testbenches and results)

	 – 	Some level of documentation available

	 – 	Potential access to design expertise

■ 	 Firm Core Disadvantages

	 – There are limited incentives for manufacturer-developed firm cores to be highly 
portable
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	 – 	Level of documentation, design configurability, simulation support and access to 
original design team may be variable

	 – 	Access to advance design assistance from IP source may be fee-for-service depend-
ing on the negotiated terms

Hard Core Advantages and Disadvantages

■ 	 Hard Core Advantages

	 – 	Well documented, highly-optimized, high-performance, reliable fixed 
implementation

	 – 	Similar to purchase of a standard IC component

	 – 	No delay, immediate access to functionality

	 – 	High level of confidence in functionality, known errata

	 – 	Measured and well-characterized

	 – 	Functionality

	 – 	Performance

	 – 	Power consumption

■ 	 Hard Core Disadvantages

	 –	 Generally so highly-optimized and fine tuned, difficult to port to other targets with 
equivalent performance or at an affordable price point

	 –	 Strong incentive for provider to try to strongly tie to their architecture and make it 
less attractive to port to alternative architectures

	 –	 Fixed implementation, unable to modify core implementation or add additional 
instances if required without switching devices within the family

14.3	 FPGA Processor Use Considerations 
Many factors influence the decision to implement the processor functionality of a design 
within an FPGA. A critical factor affecting FPGA processor implementation is the abil-
ity to reuse or port existing baseline code. The design team may have existing investments 
in software, tool sets and processor architecture familiarity. It is a common practice for a 
software team to leverage both knowledge and reuse from design to design. There will need 
to be compelling technical or cost advantages for switching processor cores when significant 
changes in software are required.

A common design situation involves migrating an existing design that was implemented 
with a discrete processor and an FPGA in the same system to an implementation based on a 
processor embedded within the FPGA. If the same processor core can be implemented with-
in the FPGA as was implemented in the discrete processor design, significant design leverage 
can occur. The advantages of implementing an embedded FPGA processor in this situa-
tion includes access to existing well-defined functional requirements, well-known processor 



189

Embedded Processing Cores

performance requirements and existing processor architecture. For example, if the current 
discrete processor is a PowerPC™-based processor, then the FPGA embedded processor may 
be able to be implemented within a hard core 405 PowerPC™ within Xilinx’s Virtex family. 
Even if the FPGA processor core is different from the discrete processor core there may still 
be adequate justification for switching cores.

A potential reason for switching to an FPGA embedded processor is a need to achieve 
tighter integration between the software and hardware design elements. An implementation 
of an FPGA embedded processor may be able to reduce system cost and potentially increase 
performance. The potential for increased performance is a direct result of being able to opti-
mize the design implementation to meet the specific system requirements with an optimized 
architecture.

An important potential benefit of implementing a design with an FPGA embedded 
processor is the ability to reduce risk of obsolescence. Traditionally, discrete processors are 
subject to end-of-life when the component technology becomes too old or the volume of 
sales drops below a certain threshold. With a soft or firm processor implementation within an 
FPGA, it becomes possible to port designs forward to newer FPGA device families. Several 
factors will influence the ability to carry designs forward in this manner, however, the poten-
tial exists if certain conditions are met. 

These factors include ownership of the processor HDL code, a processor architecture 
that is not dependent on specific FPGA hardware features that may not be available in future 
FPGA devices and ongoing access to software design tools. An important factor to reducing 
future obsolescence issues is the inclusion of the FPGA processor HDL source code, licenses 
and software tool set as part of the permanent system technical baseline. Potential benefits 
for implementing an FPGA processor are presented in the following list.

FPGA-Based Processor Implementation Advantages

■ 	 Ability to implement all or most of the system functionality within a single device 
(consolidation of multiple devices into one device)

■ 	 Ability to implement a highly-tailored embedded processing solution

■ 	 Ability to implement only the specific functionality required

■ 	 Ability to implement a scalable processing solution

■ 	 The potential for improved system performance

■ 	 Ability to support design modifications later in the design cycle

■ 	 Optimization of processor-to-peripheral interfaces

■ 	 Optimization of software versus hardware functional implementation

■ 	 Improved interaction between hardware and software design (co-design)

■ 	 More efficient system interface (incorporating chip-to-chip interfaces on chip)

■ 	 Potential to use the same hardware for multiple applications (lower inventory costs)

■ 	 Potential lower implementation cost
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■ 	 Ability to implement custom coprocessors

■ 	 Ability to implement multiprocessor implementation

■ 	 Ability to implement state-machine functionality 

An FPGA-based processor may not always be an ideal fit. For example, an FPGA proces-
sor implementation in applications sourced by a battery may not be an optimal fit for FPGA 
processor technology depending on power consumption. FPGA power consumption has 
dropped significantly and will continue to drop, but traditionally lags behind stand-alone 
discrete processors optimized for low-power applications.

Another situation where an FPGA-based processor might not be an ideal fit is when the 
processor application requires integrated analog functionality within the FPGA component. In 
general, the processes used to implement FPGAs are optimized for digital circuitry and do not 
easily support analog functionality. Thus, integrated analog functionality tends to be limited.

Very low-cost products are also an application where FPGA technology may not be an 
ideal fit. While process technologies continue to drive FPGA costs lower, microcontroller 
costs also continue to drop. However, FPGAs may be appropriate for projects with functional 
requirements not met by available commercial processors. In certain cases, the system cost 
reduction that may be achieved by merging multiple components into a single FPGA device 
still may not support implementation within an FPGA. The best applications for embedded 
FPGA processors are designs that already include or require FPGA functionality.

14.4	 System Design Considerations
There are a number of system design factors requiring consideration when implementing an 
FPGA processor. Some of those factors include the use of co-design, processor architectural 
implementation, system implementation options, processor core and peripheral selection, 
and implementation of hardware and software. 

14.4.1		 Co-Design
Embedded software development has the potential to consume 50% or more of embedded 
processor design schedules. Thus, it is important to have and follow a cohesive hardware 
and software development flow on a rapid system development project. This important col-
laboration between hardware and software design teams can help to streamline and parallel 
development. The parallel development of hardware and software is called co-design. Effec-
tive co-design is important to implementing an efficient rapid system development effort. 
Co-design has the potential to impact many of the elements associated with embedded 
project development, supporting increased system flexibility and reduced schedule. 

The system design tool chain can be critical to efficient co-design. The tool chain is the 
collection of hardware and software tools used for design entry, simulation, configuration 
and debug. An effective tool chain will provide a high level of interaction and synchroniza-
tion between the hardware and software tool sets and design files. Figure 14.3 illustrates the 
interactions and relationships between the two tool flows.
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In evaluating co-design tools, two of the most important factors affecting the selection 
are tool maturity and ease of use. The embedded FPGA processor software tool chain should 
include a software development kit (SDK), which supports efficient development of low 
level drivers, and a range of operating system implementations. The hardware tools should 
support the efficient integration of IP and hardware and software debug synchronization. 
Some desirable co-design tool characteristics are presented in the following list.

Desirable Co-Design Tool Characteristics

■ 	 Automated tools that hide the details but keep them accessible

	 – 	Intelligent tools must understand all details of the platform options, but provide a 
high level of abstraction to streamline design and synchronize hardware and soft-
ware components.

	 – 	Tool sophistication targets design complexity

■ 	 Tool functions that can accelerate development

	 – 	Wizards and generators

Figure 14.3  FPGA co-design flow
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■ 	 Easy to learn and use

	 – 	Intuitive user-friendly interface

■ 	 Supports complete control of the design

	 – 	Robustness to change and control without the loss of flexibility

■ 	 Powerful integrated debug capabilities

■ 	 Integrated baseline control capability

14.4.2		P rocessor Architecture
Since the RISC architecture is arguably the most implemented processor architecture, this 
book will limit discussions to the RISC architecture. When designing with a RISC-based 
processor, there are many architectural considerations affecting hardware and software design 
optimization. This section will highlight some of the RISC architectural considerations.

Achieving optimal system performance (required throughput) is a critical element of 
embedded processor design implementation. Optimal system performance is accomplished 
by informed design implementation of the hardware and software. Processor architecture is 
a critical factor that determines system performance. Understanding the architecture of the 
processor selected will assist the design team in making informed design decisions. 

The RISC architecture increases processor performance by imposing single cycle in-
struction execution. This point is clarified by considering Equation 14.1. Equation 14.1 is a 
common equation used to derive a processor’s performance. If the number of cycles per in-
struction are reduced in this equation, the processor performance is increased. However, this 
increase in performance comes as a consequence of an increase in the number of instructions 
required to implement a software program, and thus an increase in the software program size. 
The result of the larger software program size is an increase in the number of external mem-
ory operations, which serves to reduce system performance. Factors that influence system 
performance optimization include: processor core implementation, bus implementation and 
architecture, use of cache, use of a memory management unit (MMU), interrupt capability, 
and software program flow.

Time Time Cycles Instructions

Program Cycle Instruction Program
= X X

Equation 14.1  Basic RISC processor formula

The processor core is responsible for the overall flow and execution of a software pro-
gram. Common processor core elements include control, execution and temporary storage 
units. The load/store unit provides program control and instruction dispatch to the execu-
tion units. The processor core incorporates a branching unit to control execution flow of the 
software program. An important feature of the branching unit is branch prediction. Branch 
prediction is used to minimize pipeline stalls by predicting the next logical path in the 
execution flow. 

KEY
POINT
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In addition to the branching unit, the RISC processor incorporates an instruction and 
data pipeline to increase processor throughput. Three stages (fetch, decode, and execute) 
are a minimum implementation for the pipeline in RISC architectures. A performance fac-
tor to consider is the depth of the pipeline. A deeper pipeline has the potential to increase 
processor throughput. A consequence of deeper pipelines is a more complex processor imple-
mentation and degraded throughput when too many branches occur. A branch occurring 
during the program execution will stall the pipeline. A processor core recovers from a branch 
by refilling the pipeline with the required instructions and data for the segment of code to be 
executed next. The time it takes to refill the pipeline has a direct affect on program execu-
tion latency. Pipeline stalls can significantly affect runtime software efficiency.

Execution units implement a processor core’s computational functionality. The primary 
execution unit is the integer unit (IU). The IU executes arithmetic and logical operations 
on a set of integers. To perform more complicated math functions, the RISC architecture 
incorporates floating-point units (FPU) and single instruction multiple data (SIMD) execu-
tion units. The FPU provides single or double precision floating-point math capability. SIMD 
units provide vector math capability. The Altivec unit implemented in some of Freescale’s 
higher-performance PowerPC™ processors is an example of SIMD extension.

The two common RISC architectural implementations for adding parallel processing 
functionality are super-scalar and very long instruction word (VLIW). A super-scalar archi-
tecture adds parallel processing to the processor core by providing the ability to dynamically 
schedule instructions to multiple execution units simultaneously. A very long instruction 
word (VLIW) provides simultaneous execution unit processing; however, implementation is 
fixed at compile. 

The bank of general-purpose working registers may also be called register files. These reg-
isters are used for temporary storage during program execution. In RISC-based architectures, 
a relatively large number of registers are necessary to optimize compiler efficiency and reduce 
load/store unit operations. The typical number of registers is between 32 and 128. 

Cache memory may be used to increase the overall performance of a processor imple-
mentation by reducing the number of external memory accesses required. The use of cache 
in a processor design can significantly increase system performance. The two main levels 
of cache commonly implemented are called L1 and L2, with the architectures being either 
write-thru or write-back. Cache memory usage is an important factor to consider. When im-
plementing cache in an FPGA, it is typical to use block RAM for soft or firm processor cores. 
The size of the cache to be implemented is a factor that must be considered when estimating 
block RAM resource utilization for the FPGA design. Cache misuse can significantly impact 
processor throughput. As an example, cache misuse may occur when a commonly used code 
segment is replaced by another commonly used code segment resulting in cache thrashing. 
Cache thrashing can have serious consequences including reduced system performance. An-
other consideration is the use of cache to lock critical code regions such as interrupt service 
routines. Locking code segments in cache can reduce program execution latency, and may 
also increase determinism and software performance.
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The bus interface unit is the communication channel for the processor core to on-chip 
and off-chip devices. A two-bus strategy is a typical bus implementation approach. One bus 
will typically support high-speed devices, while the second bus supports slower-speed devices. 
The high-speed bus is commonly referred to as the local bus and is typically used to interface 
with off-chip devices such as DDR memory. The slower bus is commonly referred to as the 
peripheral bus and is typically used for interfacing to on- or off-chip peripherals such as an 
Ethernet 10/100 media access controller (MAC). Some improvements that can be made to 
increase bus performance and reliability are presented in the following list.

Bus Implementation Performance Improvement Factors

■ 	 Increased operational speed

■ 	 Use of wider bus widths

■ 	 Decoupling of data and address transfers

■ 	 Use of burst sequential access 

■ 	 Write buffer implementation

■ 	 Support for both synchronous and asynchronous interfaces

■ 	 Implementation of endianness (TCP/IP uses a big endian format)

■ 	 Use of error detection and correction (EDAC) to maintain bus integrity

■ 	 Use of the direct memory access (DMA) controller 

Two common architectural bus implementations are Harvard and von Neumann bus 
architectures. The Harvard bus architecture is a two-bus implementation, supporting instruc-
tion and data access simultaneously. A majority of modern processors implement Harvard 
bus architecture interfaces. An enhanced version of the Harvard architecture, called the 
modified Harvard architecture, includes two data buses to increase bus bandwidth. This archi-
tectural bus implementation is commonly seen on modern digital signal processors. 

The von Neumann bus architecture uses a single bus to access data and instructions. 
One of the benefits of this less-complex bus architecture is that it requires fewer pins. Von 
Neumann is typically the common bus implementation for external or off-chip devices. For 
processor implementation within an FPGA, the trade-off between the two bus architectures 
is heavily dependent upon the number of FPGA I/O pins that must be used to implement 
the selected bus. 

A disadvantage of von Neumann architecture is that the single data path may cause 
bottlenecks, thus producing degraded performance when compared with a Harvard imple-
mentation. An enhanced version of the von Neumann implementation is the modified von 
Neumann. This implementation allows faster transaction times by running the bus clock fast-
er than the processor core. However, due to the speeds of modern processors, this approach is 
not as practical. 

Efficient interrupt implementation is an important factor in deterministic real-time 
embedded systems. The implementation of an interrupt controller provides a low latency 
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mechanism for signaling the processor core when a device needs attention. The interrupt 
controller provides the prioritization of processor peripheral events for devices attached to 
the processor core. The interrupt controller will typically be provided by the processor ven-
dor as IP. The use of shadow registers can enhance fast context switching during interrupts. 
Interrupt software implementations should be fast and efficient. Lengthy computational 
processing should be limited to application code.

The MMU block provides a translation mechanism between the logical program data 
space, and the physical memory space. The MMU may be used to extend the range of acces-
sible external memory. MMU implementation is usually accomplished by separating the data 
and instruction memory regions. Typically, the software implementation complexity will be 
increased when an MMU is used. The implementation of an MMU within a processor may 
have a significant effect on the processors real-time performance. 

A final architectural consideration is the data-path for the software program. A proces-
sor is based on an efficient sequential instruction flow. Instruction flow interruptions and 
disturbances will impact performance. Floorplanning can be used to implement an optimized 
processor implementation data-path.

14.4.3		P rocessor Implementation Options
The three common processor implementation models are microprocessor, microcontroller, 
and specialty processor. A microprocessor is generally a stand-alone core with limited periph-
erals. Microprocessors are usually implemented with at least a 32-bit or 64-bit architecture. 
They are generally targeted toward advanced computing applications. Microprocessors may 
include advanced performance architectural elements, SIMD units to provide vector-based 
math functionality commonly used in math-intensive applications. The microprocessor 
design model is based on the implementation of an optimized, high-performance processor 
core with limited on-chip peripherals. This allows the design team to choose and implement 
the required peripheral functionality externally. The interface to these external peripherals is 
generally implemented via a high-throughput interface bus such as PCI-X.

In contrast to the microprocessor model, microcontrollers generally include significant 
on-chip peripheral functionality. Microcontrollers are generally targeted toward specific ap-
plication markets such as motor-control or PDA devices. The target application influences 
the peripheral set mix. Microcontrollers follow the system on-a-chip (SoC) design philoso-
phy. This philosophy encourages the implementation of as many peripherals on-chip as 
possible, ideally working toward a single-chip solution. Common peripheral block examples 
include Ethernet and USB communication and LCD controllers. Microcontrollers span a 
wide range of performance. 

Specialty processors target very specific applications including audio processing, software 
defined radio, or the implementation of network protocols at the highest possible speed. 
While they may be categorized as either microprocessors or microcontrollers, they are listed 
as a separate category here because they possess specialized architectures, resources and ca-
pabilities. Examples include network processors and digital signal processors (DSPs). FPGA 
DSP implementation is discussed in Chapter 15.
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Each of these processor implementation models are targeted toward different applica-
tions. The selection of a processor model to implement the specific requirements of a project 
requires many considerations. The primary trade-off areas include target application, per-
formance, architecture, integration, power and cost. A primary FPGA embedded processor 
implementation advantage is the ability to repartition hardware functionality to potentially 
create new processor implementations without board re-spins. With the incorporation of the 
processor and the circuitry it controls, the design team has control over more of the design 
elements since software and hardware functionality may be implemented using programming 
languages. The flexibility of software and hardware re-configuration allows the design team 
to determine the optimal mix for hardware and software functionality. 

The ability to repartition an embedded FPGA processor design increases the number of 
potential design implementation options. Some functional design implementation options 
are presented in the following list.

Design Functional Implementation Options

■ 	 Single processor

■ 	 Multiple processors

■ 	 Floating-point unit

■ 	 State machine

■ 	 Coprocessor

■ 	 Dedicated FPGA logic implementation

■ 	 Off-chip peripherals

There are several broad processor IP categories. Some example processor-related IP cores 
are presented in Table 14.1.

Table 14.1  Example processor IP cores

Category Example
Processor Core MicroBlaze, Nios-II, 8051, 68000, TMS320C25, Z80

Comm Peripheral 16550 UART, Gigabit Ethernet MAC 

Memory DDR SDRAM Controller, RLDRAM Controller, SDRAM Controller

Storage Element Dual-Port Memory, FIFO, CAM

Math Floating-Point to Integer Converter, LFSR

Security DES Encryption, DES3 Encryption

Bus PCI Controller, USB Controller, PCI-X Interface, CAN Bus Controller

Peripherals Reset Module, Timer/Counter

14.4.4		P rocessor Core and Peripheral Selection
The processor selection affects all aspects of the system design, budget, and schedule for a 
project. It is typically one of the most critical decisions made by a development team because 
of the broad impact it has on the performance of a project. For this reason, the selection of a 
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processor will typically be a collaborative effort between the system, hardware and software 
teams. The interactions between these decisions can become complex. Some factors to con-
sider when selecting a processor core are presented in the following list.

Processor Selection Factors

■ 	 Target application

■ 	 Optimization for specific architectures or highest possible performance

■ 	 Resource utilization

■ 	 Simulation support

■ 	 Testbench coverage

■ 	 Support for individual simulation tool sets

■ 	 Availability of real-world application-oriented simulation results

■ 	 Documentation completeness and accuracy

■ 	 Access to original core developers or qualified experts

■ 	 Number and competence of IP vendor staff 

■ 	 System, hardware and software tools

■ 	 Operating system

To conduct a processor trade-off study, the comparison of the processor core architectural 
features such as the pipeline, memory interface, and core speeds must be taken into account. 
The combination of architectural features provides the details in understanding the true 
performance of the processor. As discussed previously, a deeper pipeline may be leveraged for 
higher performance provided that branching is limited. Large register files reduce the number 
of load/store operations. Cache implementation can improve overall performance signifi-
cantly by reducing the number of external memory accesses. Some architectural factors to 
consider when evaluating processor cores are presented in the following list.

Processor Architectural Factors

■ 	 Type, size, and implementation of the memory and/or peripheral bus

■ 	 Error detection and correction mechanisms

■ 	 Bus transaction types such as bursting

■ 	 Size and model of address space

■ 	 Type and size of cache (instruction/data)

■ 	 Type of controllers such as DMA and MMU

■ 	 Functional elements such as the register files and execution units

■ 	 Type of pipeline and strategies to prevent stalls; for example, branch prediction

■ 	 Write buffers for external memory

■ 	 Interrupt response and structure; for example, shadow registers
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Other factors to consider during a processor trade study include development tools, IP 
availability, supported RTOSs, and any other critical items that impact performance or de-
velopment efficiency. A spreadsheet is a good tool for summarizing design options. Consider 
the use of tools that support code optimization while implementing proactive measures early 
in the design effort to offset any significant software issues that could require software rede-
sign. To better understand these trade-offs, the trade study shown below presents an overview 
of some important processor selection criteria. 

Processor Selection Criteria

■ 	 Performance

■ 	 Architecture 

■ 	 RTOS support

■ 	 IP availability

■ 	 Processor category

■ 	 Tool features 

■ 	 Technical support

■ 	 Reference code/examples

■ 	 Evaluation boards

14.4.5		H ardware Implementation Factors
During the hardware design effort, a few key hardware factors should be taken into consider-
ation. Hardware implementation factors associated with FPGA embedded processor design 
include device-level, board-level, design optimization, embedded processor setup, and IP use. 
All of these design factors are interrelated. Important items affecting the embedded processor 
design optimization process include FPGA device design margin, FPGA board orientation, 
data flow through the FPGA, informed pin assignment, utilization of unused pins, access to 
internal FPGA signals, and clocking. The following list summarizes these embedded proces-
sor design factors.

Key Hardware Design Factors

■ 	 Tool selection
■ 	 Design margin
■ 	 Device selection
■ 	 Design optimization
■ 	 Data flow and FPGA orientation
■ 	 Debug hooks
■ 	 System clocking
■ 	 Bus interconnection and management strategy
■ 	 Device mapping
■ 	 IP usage
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Some of the factors affecting tool selection are traditional FPGA design implementa-
tion capabilities, IP integration, target FPGA selection, and interoperability of traditional 
FPGA design tools and processor implementation tools. An important tool consideration 
is the method and flow used to build the embedded processor. Typically the design tool flow 
implementation options range from manual to highly automated. The manual flow allows a 
high level of control over the system implementation, but at the cost of time. The automated 
flow can implement a broad range of design functionality. Complex designs are often imple-
mented using a combination of the two flows. The first design pass can be implemented with 
the assistance of automated wizards, with more detailed modification and enhancements 
being implemented manually.

14.4.6		 Software Implementation Factors
Software development for an FPGA embedded processor is very similar to the flow and 
process of software development for a conventional discrete processor. This section presents 
common design terms, identifies deign tool chain elements and discusses RTOS consider-
ations. Some common software design terms include:

Common Software Design Terms

■ 	 Integrated development environment (IDE) − A unified tool interface for integrating all 
software development tools required to implement the software design

■ 	 Real-time operating system (RTOS) − A special category of operating systems used in 
timing critical systems requiring robust deterministic responses to events

■ 	 Board support package (BSP) − The low-level software, typically a mix of assembly and 
a higher level language, used to interface the application code and/or RTOS to the 
system hardware

■ 	 Application programmer interface (API) − A set of defined interfaces allowing easier 
programming and optimal reuse (for example, POSIX)

■ 	 Make file − A script file capable of implementing the steps required to build a pro-
gram or automate a sequence of required operations typically controlled by the IDE

■ 	 Source code − The program text the user can read, is the input for the compiler
■ 	 Object code − Translation of the source code into machine code, the input to the 

linker
■ 	 Linker − The program that links separately compiled functions into one program; 

combines the functions in the library with the written code; the linker output is an 
executable program

■ 	 Library − A group of files, functions and procedures containing standard functions, 
including all I/O operations and math operations and routines

■ 	 Compile time − The events that occur while the program is being compiled
■ 	 Runtime − The events that occur while the program is executing
■ 	 Critical Region − A segment of code that must run to completion without any 

interruptions
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As with any other design effort, tools play a key role in a successful development effort. 
At the core of the software tool chain is the integrated development environment (IDE). 
This tool suite brings together an editor, optimizing compiler, incremental linker, make util-
ity, simulator and non-intrusive debugger. A good example of a popular IDE is the Eclipse 
IDE. Popular compiler and debugger tools are gcc and gdb.

Even with the best tools, the software design implementation can increase in complexity 
to a point where additional levels of software abstraction are required. With the increased 
software abstraction levels, the embedded system must still be able to exhibit real-time 
response to the events it handles. A real-time operating system (RTOS) can be used to 
implement a level of abstraction while also supporting real-time event handling. In order 
to meet critical timing requirements, the selected embedded operating system must have a 
level of determinism sufficient to provide an acceptable real-time response as it relates to the 
system in question. The two categories for determinism are hard and soft. Soft determinism 
causes the largest amount of event timing jitter (timing uncertainty). 

A good RTOS solution must provide real-time deterministic performance while also 
connecting the lower-level software to the hardware. The package that provides this lower-
level connection is called the board support package (BSP). A BSP includes the boot code for 
the initialization of the processor, low-level drivers and interrupt service routines for periph-
erals and related system hardware. A good RTOS will also include important middleware 
components including, but not limited to, TCP/IP stack, web server, USB stack, encryption 
software, and other popular devices.

There are many items to consider during the selection of an RTOS. Some of the most 
important considerations are the API set, tasking model, kernel robustness, interrupt re-
sponse and footprint. Any processor core under consideration will typically have a list of 
supported or certified operating systems that have been verified. Following is a list of the 
primary components of an RTOS.

Primary RTOS Components

■ 	 Task services

■ 	 Task communication

■ 	 Task synchronization

■ 	 Memory management

■ 	 Timer management

■ 	 Application programmers interface (API)

■ 	 Middleware

■ 	 BSP

A final design factor relating to RTOS implementation that can influence a project’s 
schedule is the integration between the selected RTOS and IDE tool set. Tight coupling 
between the RTOS and the implementation tool set can improve efficiency by providing 
additional debugging capability. One of these capabilities is task profiling, which is used to 
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ensure that the software implemented follows the defined priority and resource management 
schemes. Considerations important in the selection and implementation of an RTOS is 
presented in the following list.

RTOS Selection Factors

■ 	 Determinism

	 – 	Is the kernel hard or soft?

■ 	 Defines amount of timing uncertainty

■ 	 Scheduling effects robustness

	 – 	Priority-based

	 – 	Preemption versus nonpreemption

■ 	 Preemptive is used in real-time systems

■ 	 Use a standardized API set

	 – 	Wrappers assist where no API standard exists

■ 	 Understand synchronization and communication approaches

	 – 	Avoid deadlock

	 – 	Task communications promotes better code readability and reuse at the cost of 
more memory utilization

■ 	 Use task to partition

	 – 	Promotes compartmentalization for code reusability

■ 	 Understand memory usage model

	 – 	Task stack size

	 – 	Avoid stack overflow issues

■ 	 Use the best licensing model for controlling cost and effort

	 – 	Is “ free” really free?

	 – 	Similar for hardware IP

14.5	 FPGA Embedded Processor Concept Example
This section presents an example project concept that is based on an FPGA embedded hard 
core processor implementation. This example addresses a complex design implementation 
that is beyond the scope of this book to examine in detail. The intent is to show a potential 
real-world advanced design example and discuss some of the factors that must be addressed 
in order to implement the system. Application notes and reference papers are called out. 
These documents provide a lower-level implementation detail. Other chapters with related 
design topics are also called out. For a broader understanding of the technology utilized in 
this example review of datasheets and user guides is appropriate. 



202

Chapter 14

For the purpose of this example, the result of the architecture and processor evaluation is 
Xilinx’s XC4VFX20 component. This FPGA includes a 405 PowerPC™ processor, tri-mode 
Ethernet block, embedded memory and DSP slices. 	

Our FPGA-based projected system requirements include a PCI bus interface, a 10/100 
Ethernet connection, an external DDR memory controller for access to processor memory 
and an external Flash memory controller for access to stored program memory. Additionally, 
the system will support an I2C interface, an SPI interface, an RS-232 UART implementation 
and access to external switches and LEDs via GPIO signals. The system will also support a 
DSP function, and custom circuits. Figure 14.4 illustrates the proposed system architecture.

Figure 14.4  Processor concept example
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Xilinx’s system tool for implementing the embedded processor within the FPGA is the 
embedded development kit (EDK). EDK integrates the system, hardware and software tools 
together into one package. By following the automated flow, an evaluation board may be 
used as a starting point for the project. The evaluation board chosen should include as many 
equivalent features as possible in common with the final target application. Availability of 
the right evaluation board can help reduce design schedule and risk.

While it may not be possible to obtain an evaluation board with exactly the mix of 
peripherals and exact FPGA component desired, it should be possible to find a board with a 
similar part from the targeted FPGA device family. For this example, we will obtain a board 
with a XC4VFX12 component. Most evaluation boards include DDR memory, the 10/100 
Ethernet PHY, dip-switches, LEDs and an RS-232 interface. The evaluation board should 
also support cable configuration and processor debug via a JTAG header.
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Once the evaluation board has been obtained, the EDK should be used to configure the 
evaluation board. This process involves stepping through the automated flow. An example 
automated project configuration flow follows:

■ 	 Select a new project using the automated flow

■ 	 Select the evaluation board that was obtained

■ 	 Select the processor (for this example, the PowerPC processor will be selected)

■ 	 Enable the processor core features (for this example, the processor core frequency will 
be 200 MHz, the bus frequency will be 100 MHz, cache-enabled, and a JTAG inter-
face selected for debugging)

■ 	 Select the device to be used 

■ 	 Big endian format is preferred for TCP/IP implementations

■ 	 Device peripherals, addresses and modes of operation (for this example, DDR 
memory, Flash, Ethernet, and RS-232 are selected and configured)

After these steps have been completed an initial project may be built and the FPGA 
configured. Using this project, initial development of the software can begin. This project 
is then stored and the configuration of the PCI, SPI, I2C, and timer can be performed. The 
configuration of these devices includes connecting each device to the processor bus.

The selection of the processor core will heavily influence the implementation of the 
processor bus. The processor bus is responsible for supporting communication between the 
processor core and its peripherals. The bus supported by EDK for the 405 core is an imple-
mentation of IBM’s CoreConnect™ bus structure. The bus connected directly to the 405 is 
the processor local bus (PLB). A secondary bus is also implemented and is called the on-chip 
peripheral bus (OPB). The two buses are connected through a bridge. The bridge imposes 
clock cycle latencies for accesses to peripherals connected to the OPB. The OPB is a slower 
bus implementation than the PLB. The PLB should be reserved for high-speed and high-pri-
ority devices, while slower and lower-priority devices may be mapped onto the OPB. Each 
peripheral device must have a defined mode of operation on the bus; master, slave or both. 
The memory range for each peripheral device must also be defined. For this example all the 
peripherals will be memory mapped.

The FPGA device-level and board-level decisions for the peripherals are interrelated 
with design implementation factors such as FPGA device placement and orientation, the 
physical relationship to other components on the board, the I/O standards for each FPGA 
pin, the I/O bank architecture and any I/O assignment limitations. The decisions regarding 
the implementation of the external peripheral interfaces and related internal logic place-
ment associated with each peripheral must take into account the overall FPGA data-flow. 
This effort must optimize the flow of data to and from the processor to high-priority and 
high-speed peripherals. Floorplanning is an important design activity that can guide the 
tools to achieve the desired device layout and preferred data path flow. High-bandwidth and 
high-speed interfaces should be given extra care. An example PCI interface is discussed in 
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more detail in Chapter 9. Additional information can be found in Xilinx application note, 
XAPP653 3.3V PCI Design Guidelines.

The assignment of peripheral devices to the OBP and PLB buses is an important design 
step. The PLB bus assignments include the DDR memory controller, the Flash memory con-
troller, the PCI bus controller, and the tri-mode MAC. The OPB bus assignments include 
the I2C controller, the SPI controller, the UART block and the GPIO interface pins access-
ing external LEDs and switches. Additional devices added to the OPB include a system timer 
and an interrupt controller. The assignment of these blocks to the appropriate buses has a 
huge potential influence on the implemented processor’s efficiency. For example, connect-
ing the PCI bus controller to the OPB bus would significantly degrade performance limiting 
design functionality. Some details associated with the implementation of the external 
DDR memory controller function are presented in Chapter 16. Additional information can 
be found in Xilinx application note XAPP709 DDR SDRAM Controller Using Virtex-4 
Devices, and XAPP701 Memory Interfaces Data Capture Using Direct Clocking Tech-
nique. Additional Ethernet interface information can be found in Xilinx application note 
XAPP443 Ethernet Cores Hardware Demonstration Platform.

This design requires performance acceleration. Internal cache functionality will be 
enabled. The design also takes advantage of the 405 PowerPC™ core processor auxiliary 
processing unit (APU) interface to communicate efficiently with the DSP coprocessor 
functionality implemented within the FPGA. The APU supports a high-bandwidth inter-
face between the FPGA logic fabric and the pipeline of the 405 core. Details of an APU 
implementation may be found in Xilinx’s application note XAPP 717 Accelerated System 
Performance with the APU Controller and XtremeDSP™ Slices. Additional information 
may be found in Xilinx’s PowerPC™ Instruction Set Extension Guide. The DSP copro-
cessing function implemented within the design could be similar to the design example 
presented in Chapter 15.

The design also implements an interrupt controller. The interrupt controller is used to 
add additional interrupt lines. The PowerPC™ core natively supports two interrupt pins. 
These two interrupt inputs support critical and noncritical interrupts, respectively. Design 
details are presented in Xilinx’s application note XAPP778 Using and Creating Interrupt-
Based Systems.

The main goal in using these processor features is to reduce the number of external 
memory accesses and decrease peripheral event response latency. Additionally, the DMA 
controller was used for the Ethernet device to increase data throughput and to off-load 
the processor core. Additional information on performance enhancement can be found in 
Xilinx’s ETP-367 paper “FPGA Embedded Processors: Revealing True System Performance.”

Many different software design implementation approaches can be taken to implement a 
set of fixed-functional requirements. The following paragraphs presents a potential viable set 
of software design decisions and factors. These are, of course, not the only potential solu-
tions for implementing the required functionality; however, they should serve as a high-level 
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design approach example. Figure 14.5 illustrates the interrelationship between the hardware 
and software development flows.
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Figure 14.5  Hardware and software tools interaction

The operating system selected for this example implementation is uCLinux. uCLinux is 
a good choice because it provides source code access, a TCP/IP stack and is a popular OS so-
lution. Since uCLinux does not require an MMU, the MMU functionality of the 405 core is 
disabled. Software debugging may be streamlined by taking advantage of network file system 
(NFS) capability and gdbserver. NFS allows a developer to export a working directory to a 
remote uClinux platform. This allows developers to compile code on their desktop develop-
ment platform and then run the code remotely on the target system. The gdbserver program 
is the target server that provides connection to the development system gdbdebugger tool.

Another important design consideration is the order of code execution. As an example, 
it is common for a peripheral to require a specific register access order during the device’s 
initialization phase. It is possible for the PowerPC™ core to implement nonsequential in-
struction execution. A PowerPC™ instruction that can prevent out-of-sequence instruction 
execution is the enforced in-order execution of IO (EIEIO) command. 
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The C programming language was selected to implement the PowerPC™ software pro-
gram. A few programming considerations to keep in mind for embedded development include:

■ 	 Use the static syntax to control variable visibility

■ 	 Use the nonvolatile syntax to prevent the compiler from optimizing out key variable

■ 	 Code to reduce branching since stalls affect efficiency

■ 	 Maintain an awareness of the state of stack usage

■ 	 Disable interrupts when validating boot code

■ 	 Include comments to clarify code intent, and to identify critical design factors and 
exceptions

■ 	 Use null interrupt service routines (ISRs) for any unused interrupts

One of the biggest traditional design challenges involves bringing up a new hardware 
board for the first time. The challenges associated with this process can be significantly 
reduced by initially developing and verifying software on a known-good evaluation board 
platform. Having access to a target evaluation board in advance of the access to the final 
hardware board allows progress to be made and increases confidence in the functionality of 
code developed before the final target board is available. Access to a verified hardware plat-
form can also be invaluable during board verification since it can provide a stable platform 
for operational comparison.

The process of booting the target software within an FPGA embedded processor begins 
once the FPGA has been successfully configured. In a well-designed system, the processor 
will be in a defined nominal state with the processor held in reset. Once the processor’s 
reset is released, the processor will jump to the reset vector location. The reset vector is a 
defined memory location, “0xFFFF FFFC” in the PowerPC. The instruction at this location 
must be an unconditional branch to the first location of the boot code. Most FPGA embed-
ded processors have their boot code loaded in memory within the FPGA during the device 
configuration process. The boot code program is a non-compressed routine that contains the 
code for initializing the processor and then copying the application code to its runtime loca-
tion within memory. 

The first task of the boot code is to initialize registers to place the processor in a known 
state and defined memory map. This includes clocking speeds, execution mode, and other 
related processor-specific items requiring definition, such as the memory interface. The 
PowerPC core is in big-endian mode by default after exiting reset, thus boot code must be in 
big-endian format. Program execution begins after a jump to the location in memory where 
the boot code is located.

Before jumping to the application code, the boot code must set up the C environment. 
Once the C environment is configured, the boot code jumps to the boot-loader, and com-
pletes the boot-up sequence by performing a self-test to rule out potential hardware failures. 
The memory contents are then placed in a known state, before copying operational code and 
jumping to the beginning of the application code. 
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Before the operational code copy procedure occurs, the boot-loader checks for potential 
updates. If an update is available, the boot-loader will erase the nonvolatile area of memory 
containing the application code and store the new version. It will then copy this new code 
version to its specified runtime location. A related application note is Xilinx XAPP642 Relo-
cating Code and Data for Embedded Systems.

The boot code is separate from the application code to protect the system from cor-
ruption of the boot code. Corruption of the boot code will render the system incapable of 
booting. Code updates may occur via updates through interfaces such as Ethernet or RS-232. 
A generalized board bring-up process is summarized in the following list.

Board Bring-Up of the FPGA Embedded Processor

■ 	 FPGA initialized from external nonvolatile FPGA configuration source

■ 	 Processor powers-up in reset mode

■ 	 On release of reset, processor vectors to the reset code location

	 – 	May be either external nonvolatile memory or a volatile memory block on the 
FPGA loaded during FPGA configuration process

■ 	 Initialize processor (typically written in assembly)

■ 	 Set-up higher level language environment and jump to boot-loader section of boot 
code

■ 	 Perform hardware integrity test including memory and other hardware that could af-
fect processor operation

■ 	 Update application code if newer version is available

■ 	 Copy program from source to its runtime location

■ 	 Jump to application code

■ 	 Initialize RTOS and set-up BSP

■ 	 Kick-off scheduler

Debugging can be accomplished by supporting access to signals and nodes internal to 
the FPGA. Signal test headers and signal access are discussed in the device-level and board-
level design decision chapters. Since the 405 processor uses a 32-bit bus, at least 36 lines 
should be brought out to a test header. This supports parallel access to the processor bus and 
some control signals. The test header should also include several grounded pins to support 
simplified test equipment connection. LEDs and switches may be included to help debug the 
design. Signal and internal node access may also be supported through a JTAG ChipScope 
Internal Logic Analyzer implementation. Implementation of a second JTAG port may allow 
additional 405 PowerPC™ debug capabilities such as trace capability. Implementation of an 
internal logic analyzer does require some FPGA internal resources to implement. A more 
detailed discussion of FPGA debug and configuration is presented in Chapter 10 and 11.
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14.6	 FPGA Embedded Processor Design Checklist
Table 14.2 provides a high-level FPGA embedded processor design checklist.

Table 14.2

✔ Embedded Processor Design Checklist

❑ Understand/know functional and performance requirements

❑ The more detailed and accurate the requirements, the better the processor selec-
tion process

❑ OS/RTOS selection can dramatically impact design efficiency and performance

 ❑ Selection of appropriate processor/core is critical

 ❑ Processor bus implementation selection is critical

 ❑ Knowledge/understanding of processor bus and how to interface to peripherals/IP

 ❑ Make versus buy decisions (available code)

 ❑ Hard versus soft core trade-off/decision

 ❑ Single versus multiple core implementation trade-off/decision (multiprocessing/
parallel processing)

 ❑ Partitioning

 ❑ Coding guidelines

 ❑ Modularization

 ❑ Design reuse

 ❑ Understand interrupt structure

 ❑ Careful consideration of interrupt implementation

 ❑ Detailed plan for peripheral implementation

 ❑ Data flow analysis

 ❑ Define/implement 

 ❑ Strategy/plan for processor to peripheral interface via bus structure

 ❑ Evaluate system-level tools (for example, EDK, SOPC, etc.)
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14.7	 Summary
The implementation of processors embedded within an FPGA device can be a challeng-
ing and complex process. Careful consideration of critical system design elements can help 
streamline this process. Design topics presented in this chapter are listed below:

■ 	 The decision to implement functionality as a hard, firm or soft processor

■ 	 Selection of the correct processor core architecture

■ 	 Co-design (tools and flow)

■ 	 Peripheral function implementation

■ 	 Debug and verification strategy

Ultimately, the implementation of an embedded FPGA processor design involves every 
aspect of system-level design with a higher level of flexibility. Since every aspect of the de-
sign implementation may be specified by the design team, there is a higher level of flexibility 
throughout the design cycle than is encountered with conventional discrete processor design. 
The design team is responsible for the evaluation, selection and implementation of each 
functional element within the FPGA device. The design team has unprecedented freedom in 
the implementation of the design with the option to implement functionality within either 
the hardware or software domain. Even late in the design process, the design team can repar-
tition or reconfigure the design architecture and adjust critical design elements if the system 
performance benefits justify the required effort to implement the design changes. With the 
correct preparation, an organized and disciplined team can implement complex, customized 
designs efficiently. 
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15.1		 Overview
The rapid growth of communication and multimedia technologies over the last decade has 
dramatically expanded the range of digital signal processing (DSP) applications. The ongo-
ing need to implement an increasingly complex algorithm at higher speeds and lower price 
points is a result of increasing demand for advanced information services, increased band-
width and expanded media handling capability. Some of the evolving high performance 
applications include advanced wired and wireless voice, data and video processing.

The growth of communications and multimedia applications such as internet communi-
cations, secure wireless communications and consumer entertainment devices has driven the 
need for devices and structures capable of efficiently implementing complex math and signal 
processing algorithms. 

Some typical DSP algorithms required by these applications include fast Fourier trans-
form (FFT), discrete cosine transform (DCT), Wavelet Transform, and digital filters (finite 
impulse response (FIR), infinite impulse response (IIR) and adaptive filters), and digital 
up and down converter. Each of these algorithms have structural elements that may be 
implemented with parallel functionality. FPGA architectures are able to implement parallel 
architectures efficiently.

FPGA architectures include resources capable of more advanced, higher-performance 
signal processing with each new FPGA device family. FPGA technology supports an in-
creasing range of complex math and signal processing intellectual property. Advances in 
tool integration now support simplified system-level design. With front-end tools such as 
MatLab™, pushbutton conversion from block-level system design to HDL-level code is 
possible. Chip density and process technology advances also support larger, more capable 
signal processing implementations.

FPGA implementation provides the added benefits of reduced NRE costs along with 
design flexibility and future design modification options. However, implementing DSP 
functionality within an FPGA requires the right combination of algorithm, FPGA architec-
ture, tool set and design flow. This chapter addresses the architectural features developed for 
implementing DSP functions within FPGAs, and an overview of which algorithms can be 
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more efficiently implemented within FPGA using these features. Design flow, critical design 
decisions, terminology, numeric representation, and arithmetic operations are discussed. Per-
formance and implementation cost trade-offs, available DSP IP and design verification and 
debug approaches are also discussed.

15.2	 Basic DSP System
This section presents a high-level overview of a typical DSP system and its critical elements. 
Figure 15.1 shows a typical DSP system implementation. The digital portion of the system 
is from the output of the analog-to-digital converter (ADC) through the DSP system and 
into the digital-to-analog converter (DAC). The remainder of the system is in the analog 
domain.
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Filter

Memory

Analog Out

Signal Processing

 Algorithm

Digital Domain

The ADC is responsible for converting the system input signal from the analog-to-digi-
tal domain. The ADC must be preceded by a low pass filter (LPF) based on the relationship 
between sampling speed and frequency described by the Nyquist sampling theorem. The LPF 
is required to limit the maximum frequency presented to the ADC to less than half of the 
ADC’s sampling rate. This pre-filtering is known as anti-aliasing. Anti-aliasing prevents am-
biguous data relationships known as aliasing from being translated into the digital domain.

The output of the ADC is a stream of sampled fixed-word-length values that represent 
the analog input signal at the discrete sample points determined by the ADC’s sampling 
frequency. Each of these data samples is represented by a fixed-length binary word. The 
resolution of these samples is limited to the output data word width of the ADC and the 
data representation width internal to the DSP system. The ADC outputs are quantized 
representations of the input sampled analog values. This simply means that a value that has 
been translated from the analog domain (where the range of possible analog values occupies 
an infinite number of possible values with no word length limit) must be represented by one 
of a limited number of possible values in a finite word length system. The signal processing 
functionality that is most commonly implemented within FPGA components occurs in the 
digital domain.

Fig 15.1  Basic DSP system
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The maximum number of values available to represent an individual data sample is 2N, 
where N is the number of fixed bits of the word width. In an example where N equals 16, the 
full possible numeric range is 0 to 65,535. With more bits available in a system, the accuracy 
of the digital representation of the analog sample is improved. The difference between the 
original analog signal value and the quantized N-bit value is called quantization error.

While signal processing algorithms can be implemented with either fixed- or float-
ing-point operations, the majority of signal processing algorithm implementations within 
FPGAs is done with fixed-point operations.

15.3	E ssential DSP Terms
DSP is a specialized technology with many important concepts referenced by acronyms 
and specialized terms. Table 15.1 provides definitions for important DSP terms and abbre-
viations. Expanded definitions of these terms may be found in most DSP reference books. 
These terms will allow us to examine some elements of DSP design with FPGA components.

Table 15.1  DSP Terminology

Term Definition
Accuracy Magnitude of the difference between an element’s real value and 

its represented value.
Complex math Math performed on Complex numbers. Complex numbers have a 

real and imaginary part. Used in a wide range of DSP applications. 
How a DSP system performs complex arithmetic is a common 
benchmark for DSP.

CORDIC (COordinate Rotation DIgital Computer) Algorithm to calculate 
trigonometric functions (sine, cosine, magnitude, and phase).

Decimation The process of sample rate reduction. A digital low-pass filter may 
be used to remove samples.

DFT (Discrete Fourier Transform) The digital form of the Fourier trans-
form. The DFT result is a complex number.

DSP block (FPGA) Term used to describe specialized circuitry within an FPGA opti-
mized for implementing math intensive functions.

Dynamic range Ratio of the maximum absolute value that can be represented and 
the minimum absolute value that can be represented.

FFT (Fast Fourier Transform) An algorithm used to solve the DFT.
Filter coefficients The set of constants (also called tap weights) are multiplied 

against filter data values within a filter structure.
Filter order Equal to the number of delayed data values that must be stored in 

order to calculate a filter’s output value
Finite impulse re-
sponse filter (FIR)

A class of nonrecursive digital filters with no internal data feed-
back paths. An FIR filter’s output values will eventually return to 
zero after an input impulse. FIR filters are unconditionally stable.
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Term Definition
Fixed-point Architecture based on representing and operating on numbers 

represented in integer format.
Floating-point Architecture based on representing and operating on numbers 

represented in floating-point format.
Floating-point  
format

Numerical values are represented by a combination of a mantissa 
(fractional part) and an exponent.

Format Digital-system numeric representation style; fixed-point or float-
ing-point.

Impulse response A digital filter’s output sequence after a single-cycle impulse (max-
imum value) input where the impulse is preceded and followed by 
an infinite number of zero-valued inputs.

Infinite impulse re-
sponse (IIR) filter

A class of recursive digital filters with internal data feedback 
paths. An IIR filter’s output values do not ever have to return to 
zero (theoretically) after an input impulse; however, in practice, 
output values do eventually reach negligibly small values. This 
filter form is prone to instability due to the feedback paths.

Interpolation The process of increasing the sample rate. Up-sampling typically 
stuffs zero value samples between the original samples before digi-
tal filtering occurs.

Limit cycle effect A filter’s output will decay down to a specific range and then 
exhibit continuing oscillation within a limited amplitude range if 
the filter input is presented nonzero-value inputs (excited) fol-
lowed by a long string of zero-value inputs.

Multirate Data processing where the clock rate is not fixed. The clock rate 
may either be increased (interpolated), decreased (decimated) or 
re-sampled.

Overflow A computation with a result number larger than the system’s 
defined dynamic range or addition of numbers of like sign result-
ing in an output with an incorrect sum or sign; also called register 
overflow, large signal limit cycling or saturation.

Precision Number of bits used to represent a value in the digital domain, 
also called bus width or fixed-word length. 

Q-format Format for representing fractional numbers within a fixed-length 
binary word. The designer assigns an implied binary point, which 
divides the fractional and integer numeric fields.

Quantization error Difference in accuracy of representation of a signal’s value in the 
analog domain and digital domain in a fixed-length binary word.

Radix point Equivalent to a decimal point in base-10 math or a binary point in 
base-2 math; separates integer and fractional numeric fields.

(Continued)



215

Digital Signal Processing

Term Definition
Range Difference between the most negative number and most positive 

number that can represent a value; ultimately determined by both 
numeric representation format and precision.

Recursive filter A filter structure in which feedback takes place, and previous 
input and output samples are used in the calculation of the current 
filter output value.

Representation Definition of how numbers are represented, including one’s 
complement, two’s complement, signed and unsigned.

Re-sampling Re-sampling is the process of changing the sampling rate. May be 
achieved through a combination of decimation and interpolation.

Resolution The smallest nonzero magnitude which can be represented.
Round-off error Another term for truncation error.
Saturation level The maximum value expected at the output.
Scaling Adjusting the magnitude of a value; typically accomplished by 

multiplication or shifting the binary (radix) point. May be used to 
avoid over-flow and under-flow conditions.

Tap An operation within a filter structure which multiplies a filter 
coefficient times a data value. The data value can be a current or 
delayed input, output or intermediate value.

Truncation error Loss of numeric accuracy required when a value must be shortened 
or truncated to fit within a fixed-word length.

Word length effects Errors and effects associated with reduced accuracy representation 
of numerical values within a fixed-word length.

15.4 	DSP Architectures
Many DSP algorithms require repetitive use of the operation group shown in Figure 15.2. 
This is clearly a multiply and addition operation group, also known as a multiply and accu-
mulate (MAC) block.

D = (A*B) + C MAC 

A MAC 
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Data In

Clock 

Figure 15.2  MAC block

MAC operations are heavily used in many DSP algorithms. The MAC operation is usu-
ally implemented within an iterative cycle. As the number of MAC operations that must be 
performed increases, system performance decreases. 
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15.5 	Parallel Execution in DSP Components
Traditional sequential instruction DSP processors have evolved toward architectures that 
allow them to implement a broad range of DSP functions at an affordable price point. 
The majority of currently available popular DSP processors are inherently general-purpose 
devices by design. The development of DSP processors optimized for maximum performance 
of highly specialized functions has been accomplished by adding hardware accelerators such 
as Viterbi or Turbo coders to offload dedicated functions commonly seen in specific systems 
such as those used in high performance wired and wireless applications. 

DSP processor suppliers have conventionally worked to improve performance by:

■	 Increasing clock cycle speeds

■	 Increasing the number of operations performed per clock cycle

■	 Adding optimized hardware coprocessing functionality (such as a Viterbi decoder)

■	 Implementing more complex (VLIW) instruction sets

■	 Minimizing sequential loop cycle counts

■	 Adding high-performance memory resources

■	 Implementing modifications, including deeper pipelines and superscalar architectural 
elements

Figure 15.3 illustrates the multipath, multibus architecture of a discrete DSP processor.

Figure 15.3  Discrete DSP implementing FIR filter
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Each of these enhancements has contributed to increased DSP processor performance 
improvements. Each of these design enhancements attempts to increase the parallel pro-
cessing capability of an inherently serial process. Even with these added features, DSP use 
has consistently outpaced available capabilities, especially when parallelism is required. 
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Algorithms that are inherently parallel process-oriented can stand to gain significant perfor-
mance increases by migrating to a parallel process-oriented architecture.

The traditional solution for increasing performance in discrete DSP processors has 
been to increase system clock speeds. However, even with high-clock rates, two MAC units 
and a modified Harvard bus architecture, there is a maximum level of performance that 
can be achieved. Higher levels of performance may potentially be achieved by implement-
ing additional MAC units. FPGA components have been architected to support efficient 
parallel MAC functional implementations.

15.6 	Parallel Execution in FPGA
Higher-performance, resource-hungry, MAC-intensive DSP algorithms may benefit from 
implementation within FPGA components. FPGA architectural enhancements, develop-
ment tool flow advances, speed increases and cost reductions are making implementation 
within FPGAs increasingly attractive. FPGA technology advances include increased clock 
speeds, specialized DSP blocks, tool enhancements and an increasing range of intellectual 
property solutions. Figure 15.4 illustrates an example parallel implementation of an FIR filter 
within an FPGA.

Figure 15.4  Parallel FPGA FIR filter structure
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The MAC operational group may be implemented in one of several different configura-
tions within an FPGA. Three popular implementation options for the MAC operational 
group within an FPGA are listed below.

■	 Both the multiplier and the accumulator may be implemented within the logic 
fabric of the FPGA taking advantage of FPGA structures, such as dedicated high-
speed carry chains

■	 The multiplier may be implemented in an optimized multiplier block, avoiding use 
of FPGA fabric logic with the accumulator implemented within the logic fabric of 
the FPGA

■	 Both the multiplier and accumulator may be implemented within an advanced 
multiplier block requiring the use of no FPGA logic

KEY
POINT

KEY
POINT



218

Chapter 15

Figure 15.5 illustrates the three different MAC implementation options.

Figure 15.5  Three primary MAC implementation options
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Each of these approaches has its own characteristics. The decision to use any of these 
approaches will be heavily dependent on the architecture of the FPGA fabric, the algorithms 
being implemented, the performance required and the amount of functionality being imple-
mented on the FPGA component. For example, older device families may not support the 
integrated accumulator function within the DSP block. In this situation, the DSP block is 
actually just a multiplier. Likewise, if all the DSP blocks have been used for higher-perfor-
mance algorithms, it may be possible to implement an algorithm with no DSP blocks within 
the FPGA logic fabric. FPGA DSP blocks are generally implemented in either a column or 
row structure within the FPGA fabric.

Different manufacturers have implemented significantly different DSP block architec-
tures. Figure 15.6 illustrates simplified example DSP block architecture.

Figure 15.6  Simplified DSP block architecture
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FPGA architectures are inherently oriented toward the implementation of parallel struc-
tures. FPGAs are also capable of implementing operations on wide and very wide data buses. 
They are also capable of implementing complex math operations in parallel.



219

Digital Signal Processing

Generally multiple options exist for implementing individual DSP-related operations 
within an FPGA. The structures that FPGA manufacturers have developed and continue to 
optimize for signal processing operations include:

■	 Advanced hardware multiplier blocks with associated accumulator functionality

■	 DSP blocks containing internal registers

■	 Common data widths natively supported (x9, x18, x36)

■	 Operational modes to perform various mathematical operations such as complex 
arithmetic (commonly used in DSP algorithms)

■	 Distributed and block memory within the FPGA

■	 Implementation of low-overhead shift registers

■	 Optimized clock management and distribution

■	 Access to memory external to the FPGA

DSP block implementations typically include dedicated control and carry logic circuitry 
and signal routing, allowing higher-performance, lower-overhead functional implementa-
tions of common signal processing functions.

15.7	  When to Use FPGAs for DSP
Potential advantages to implementing a DSP function within an FPGA include per-
formance improvements, design implementation flexibility, and higher system-level 
integration. FPGA-based signal processing performance may be improved through a com-
bination of design adjustments. The operational speed or data path width may be increased, 
and sequential operations may be made more parallel in structure. Each of these will result 
in higher levels of performance. When an algorithm is implemented in a structure that takes 
advantage of the flexibility of the target FPGA architecture, the benefits can be significant

Typically, there are a wider range of implementation options for signal processing 
algorithms within an FPGA than with fixed-function components. The design team must 
prioritize their design objectives. For example, it may be possible to implement an algorithm 
as a maximally parallelized architecture, or the algorithm could be implemented within a 
fully serial architecture. The serial structure would require the implementation of a loop 
counter function within an associated hardware counter. Another design option is a hybrid 
approach called a semi-parallel structure. The semi-parallel structure has elements of both the 
full-parallel and full-serial approaches. The algorithm would be separated into multiple paral-
lel structures; however, multiple iterations would be required through each structure for each 
algorithm cycle. This contrasts with the single iteration required in the full-parallel approach 
and the maximum number of possible iterations with the full-serial approach. Each of these 
algorithm implementations will have a different level of performance, design effort and 
resource requirements. The design team has the flexibility to optimize for size, speed, cost or 
a targeted combination of these factors. Algorithms may also be reconfigured to dynamically 
meet changing operational requirements.

KEY
POINT
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FPGA components also provide an opportunity to integrate multiple design functions 
into a single package. Functional integration may result in higher performance, and reduced 
real estate and power requirements. The resources integrated into the I/O blocks of FPGAs 
may improve system performance by allowing the design team control of device drive 
strength, signal slew rate, and on-chip signal termination. These options can optimize system 
performance and reduce board-level component count.

Another potential signal processing implementation advantage is the availability of pre-
verified signal processing algorithms. IP cores and blocks can be used to efficiently implement 
common signal processing functions at the highest levels of performance. The ability to 
integrate multiple high-performance signal processing algorithms efficiently can potentially 
reduce project, cost, risk and schedule.

15.8	 FPGA DSP Design Considerations
Some of the FPGA design issues that are important to signal processing algorithm implemen-
tation are presented below. These design factors must be carefully implemented in order to 
achieve the highest levels of performance and fastest design implementation.

■	 Synchronous design implementation

■	 Modular project structure

■	 Clock boundary transitions

■	 Clock architecture implementation

■	 Critical clock and control signal routing

■	 Pipeline depth and structure

■	 Effective design constraint

■	 Signal processing algorithm architecture decisions

■	 Incorporation of debug-friendly features

Many of these topics were covered in the first part of this book as standard FPGA design 
topics, but have particular impact on signal processing applications. A few topics that war-
rant additional discussion are covered in the following sections.

15.8.1		 Clocking and Signal Routing
Many signal processing applications are performance limited. In other words, the faster they 
can run, the better. This makes the implementation of clocks and clock management criti-
cal to DSP functions. Many of the most critical signal processing operations are directly 
affected by the clock architecture implementation of the design. Important clock-related 
design factors that should be implemented with care include: 

■	 Sufficient board-level device decoupling

■	 Clean low-jitter external clock sources (consider differential clock distribution for 
higher rate clocks)

KEY
POINT
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■	 Careful clock source routing to the appropriate dedicated FPGA I/O pins 

■	 Prioritized assignment (via constraints) of critical clocks to global resources

■	 Careful design analysis for clock function conflict 

Signal processing functionality should be directed toward implementation within the 
optimized DSP blocks. If there are not enough DSP blocks to implement all of the desired 
signal processing functions within the available DSP blocks, then the algorithms with the 
highest level of required performance or largest amount of equivalent logic fabric to imple-
ment should be targeted toward the available DSP blocks. Design constraints can be used 
to guide the tools to place the desired functionality within the appropriate dedicated FPGA 
resources.

The design implementation layout or report file should be regularly checked to verify that 
the targeted functionality has been placed into the correct FPGA resources. This also applies 
to math function related signal routing such as carry logic. While the tools usually correctly 
identify and assign these signals it is possible for them to be assigned to regular priority logic 
fabric routing which can significantly reduce the level of performance which can be achieved.

15.8.2		P ipelining
Pipelining is an essential element of implementing high-speed signal processing algo-
rithms. The register-rich nature of FPGA architectures naturally supports register-intensive 
algorithm implementations. The efficient implementation of signal processing algorithms 
within FPGA components is based on efficient implementation of the low-level algorithm 
arithmetic operations. These operations may be separated from each other by registers. The 
addition of registers in between math operations allows higher speeds of operation. Adding 
registers into the design is similar to higher-level architectural design partitioning. Adding 
registers to the design will result in a “deeper” pipeline through the design. The resource 
penalty of additional registers allows the highest level of performance possible.

15.8.3		A lgorithm Implementation Choices
The wide range of potential algorithm implementation options with FPGA components will 
require the design team to run a number of design trade-off studies. The most important 
design factors affecting DSP block resource allocation include the number of algorithms, 
which can benefit from DSP blocks, the number of available DSP blocks and associated 
block memories, the level of performance required for individual algorithms and the type 
of algorithm implemented. Another design factor is how algorithm coefficients will be used 
and stored within the design. For fully-serial and semi-parallel algorithm implementations, 
if fixed coefficients are required, then shift registers may be used to store the coefficients 
saving valuable block memory resources for other functions. The design team will need to 
make architectural decisions regarding full-serial, semi-parallel or full-parallel for individual 
algorithm implementations since the tools may not be able to efficiently find an optimized 
implementation solution. A final consideration is to ensure that all the available DSP 
blocks have been used. Implementing functionality within the DSP blocks results in 
higher performance and lower power consumption. 
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15.8.4		 DSP Intellectual Property (IP) 
There are a wide range of potential signal processing algorithms. Some of the most popular 
functions have been implemented as intellectual property blocks. IP blocks provide access 
to optimized, preverified DSP functionality. Signal processing IP may be obtained from 
multiple sources including manufacturer, third-party, and open-access sources. IP designs that 
have been optimized for a particular FPGA architecture may often be found on an FPGA 
manufacturer’s website. 

There are several broad DSP IP categories. The categories divide into two groups: 
operational-level implementations and application-level implementations. Some of the most 
popular DSP IP categories and example algorithms are listed in Table 15.2

Table 15.2  DSP IP categories

Group Category Example
Operational Math Function CORDIC, Parallel Multiplier, Pipelined Divider
Operational Base Function Shift Register, Accumulator, Comparator, Adder
Application DSP Function Viterbi Decoder, FFT, MAC, FIR, Discrete Cosine Trans-

form
Application Memory Function DDR-I/II Controller, ZBT Controller, Flash Controller
Application Image Processing Color Space Converter, JPEG Motion Encoder
Application Communication AES Encryption, Reed-Solomon Encoder, Turbo De-

coder

15.9 	FIR Filter Concept Example
In this section, we will consider the design and implementation of a high-performance FIR 
filter within an FPGA. The intent is to implement a low-pass FIR filter. The first step to 
implementing an FIR filter is the calculation of the number of taps. The calculation of the 
number of taps for the type of filter being implemented is shown below.

The number of filter taps is determined by the transition band and the desired stop band 
attenuation.

General Formulas

BW = Bandwidth

Transition_BW_Hz

Normalized_Transition_BW = Transition_BW_Hz / Sampling_Frequency_Hz

K(Attenuation_dB) = Attenuation_dB / 22 dB

Number_of_Taps = K(Attenuation_dB) / Normalized_Transition_BW

KEY
POINT
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Filter Parameters

Sampling_Frequency = 16,000 Hz

Pass_Band = 0 Hz to 3,800 Hz

Transition_Band = 3,800 to 4,200 Hz

Stop_Band = 4,200 Hz to 5700 Hz

Stop_Band_Attenuation = 70 dB

Filter Calculations

Transition_BW_Hz = 400 Hz

Normalized_Transition_BW = 400 Hz / 16,000 Hz

Attenuation_dB = 70 dB

K(Attenuation_dB) = 70 dB / 22 dB

Number_of_Taps = (70/22)/(400/16000)

Number_of_Taps ≈ 128 (Rounded Up)

The first part of Figure 15.7 illustrates the implementation of the FIR filter in a fully-
parallel DSP block implementation. With the implementation of the filter in a fully-parallel 
structure with fixed coefficients no block RAM elements will be required. If the design was 
implemented as a serial or semi-parallel structure, block RAM could be used to store filter 
coefficients. Depending on the operational speed, a distributed RAM implementation using 
LUT memory elements also could have been chosen for storing the filter coefficients. 

Figure 15.7  FIR filter example

C0 C2   C1

Data In

Clock

C4C3 C127

C0 C2   C1

Data In
Clock

C4C3 C127



224

Chapter 15

The second part of Figure 15.7 illustrates an FIR filter implemented in a transpose filter 
structure. 

As a further extension of this example, the implemented signal processing algorithm 
could be interfaced to an FPGA embedded processor. Xilinx application note XAPP717 pres-
ents an efficient method for interfacing an FPGA implemented signal processing algorithm 
with an embedded 405 hard processor IP through an APU block. This effectively allows the 
tight coupling of a DSP algorithm to a processor core as a DSP coprocessor function. In an 
advanced application, an embedded processor core could update the filter coefficients ef-
ficiently if they are implemented in a block RAM element.

15.10		 Summary
While traditional discrete DSP components provide a good balance of performance to cost, 
and have familiar development flows, advances in FPGA technology are providing an attrac-
tive alternative for implementing signal processing algorithms at an attractive price point. 
Traditional limitations to signal processing implementation on FPGAs are being addressed 
at the hardware and software design levels. FPGA hardware architectures are implementing 
enhanced DSP blocks with more functionality and higher performance. System-level design 
software is simplifying the process of translating designs from the block level to the HDL 
level code defining the hardware implementation. Integration with popular DSP algorithm 
development tools such as MatLab™ continues to simplify the implementation of signal 
processing algorithms in FPGAs.

The MAC operational group may be implemented in three different configurations 
within an FPGA: both the multiplier and the accumulator in the logic fabric, the multiplier 
in a hard multiplier block with the adder in the logic fabric, or both the multiplier and the 
adder in the hard DSP block. The implementation chosen will be dependent on the algo-
rithms implemented and the specialized DSP block resources available.

The following design factors should be given extra consideration when implementing 
signal processing algorithms. Some of these topics were discussed in the first part of the book 
and some are covered in more detail within this chapter.

■	 Synchronous design implementation

■	 Modular project structure

■	 Clock boundary transitions

■	 Clock architecture implementation

■	 Critical clock and control signal routing

■	 Pipeline depth and structure

■	 Effective design constraint

■	 Signal processing algorithm architecture decisions

■	 Incorporation of debug-friendly features
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The chapter has presented a number of topics related to implementing DSP functional-
ity within FPGAs, including when FPGA technology may be an attractive alternative to 
general-purpose DSP processors. Project design teams can benefit from using system-level de-
sign tools and implementing a hierarchical design block simulation flow, verifying elements 
before they are integrated into higher levels of functionality. By developing an understand-
ing of the process for integrating signal processing algorithms, understanding the features of 
available DSP algorithm development tools, and making informed implementation decision, 
a design team can implement effective signal processing algorithms efficiently within FPGAs.
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16.1	  Overview
This chapter presents some advanced FPGA I/O elements. There are no formal rules defining 
the I/O features that should be designated as “advanced.” A general definition for advanced 
features might be, “Features that are typically available only within performance-optimized 
FPGA families.” With the passage of time, the most popular “advanced” I/O features are 
added to the cost-optimized FPGA families and become categorized as standard features. 

An example of a standard FPGA I/O feature is the ability to implement a medium-speed 
single-ended I/O standard. By comparison, higher-performance differential standards, high-
performance advanced memory interfaces, high-speed data serial standards with built-in 
hardware support, and integrated high-speed signal transceivers could all be classified as 
advanced FPGA interconnect elements. While it may be argued that some elements of these 
advanced features are offered in different FPGA families, many of these features were limited 
or not available at all a few years ago. The critical point is that FPGA manufacturers will 
continue to enhance and expand existing I/O performance and options. Manufacturers will 
continue to improve the system-level performance of FPGA components and expand the 
range of supported applications.

Implementing a high-performance parallel or serial interface requires access to the ap-
propriate mix of FPGA resources and IP. The lowest level of the FPGA interface is the signal 
interface: single-ended, differential, parallel or serial. For high-performance interfaces, dif-
ferential and serial implementations are heavily used. 

16.2  Interconnection Categories
FPGA external device connectivity may be grouped into several categories, including 
chip-to-chip, board-to-board, multiboard (motherboard) and system/network connections. 
Chip-to-chip interconnection schemes generally interface multiple devices on a single PCB. 
A typical example is a bus interface to a group of discrete memory components external to 
the FPGA. The bus implementation may be based on either a single or differential inter-
connection standard. Common examples for chip-level interconnections include the DDR 
standard and the PCI protocol. Board-to-board interconnections fall into two categories: 
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single source to single destination and multiboard interconnection. The multiboard 
interconnection is usually implemented as a backplane configuration. Common multiboard 
interconnections include Rapid IO and ATCA implementations. System-level and network-
level interconnections typically implement longer haul multipoint communication links. 
Ethernet is a very popular system interconnection approach that is approaching a de facto 
standard. Ethernet is based on the IEEE 802 standard and supports communication over 
wired copper, optical or wireless links.

Chip-to-chip, board-level and system-level interconnections benefit from a broad range 
of supported standards and protocols. Interconnection solutions will be a complex mix of 
high-level system requirements, data rates, communication distance and available sup-
ported standards and protocols. A significant challenge faced by FPGA manufacturers 
in managing these numerous IO standards is the support of both legacy and emerging 
standards. Table 16.1 lists common embedded design I/O standards and protocols utilized at 
the chip-to-chip and board-to-board level. Table 16.2 lists embedded design communication 
standards and protocols commonly used at the system level. 

Table 16.1  Chip and board-level I/O standards and protocols 

Protocol Format Chip-to-Chip Board-to-Board
PCI 32/33 Parallel Yes Yes
PCI 64/66 Parallel Yes Yes
PCI-X 66 & 100 Parallel Yes Yes
SPI-4.1, SPI-3/4.2 Parallel Yes Yes
HyperTransport Parallel Yes Yes
VME Parallel — Yes
RapidIO Parallel Yes Yes
RapidIO Serial Serial — Yes
10G XAUI Serial Yes Yes
PCIExpress Serial Yes Yes
Fiber Channel Serial — Yes
InfiniBand Serial — Yes
Serial ATA Serial — Yes

KEY
POINT
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Table 16.2  System-level I/O standards and protocols

Protocol Format Network Communication
10/100 Ethernet Parallel Yes
1Gb Ethernet Parallel Yes
10Gb Ethernet Parallel Yes
1 Gb Ethernet PHY Serial Yes
10 Gb Ethernet PHY Serial Yes
10 Gb Ethernet 
XAUI

Serial Yes

OC-48 Serial Yes
OC-192 Serial Yes

These protocols may be grouped into common interconnection application groups. Fig-
ure 16.1 graphically shows some of the most common standards used to implement different 
interconnection applications.
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Another method for categorizing interconnection standards is based on the end product 
application. Using this approach, the major connectivity application spaces include: storage, 
networking, telecom, computing and video. Each of these application spaces requires support 
for standards and protocols, which are popular in products within these groups.

While the number of I/O pins available in larger FPGA components is not generally 
an issue, the board-level signal break-out and routing are becoming increasingly challeng-
ing to implement. As operational speeds increase, signal integrity issues also complicate the 
board-level FPGA implementation. For high-performance FPGA families, the I/O block 
implementations generally support as many popular high-performance I/O standards and 
protocols as possible. 

Multiple factors influence the I/O standards supported within an FPGA family, includ-
ing the application space being targeted by the manufacturer, the ability to support specific 

Figure 16.1  Serial I/O interface
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standards (inter-compatibility at the silicon level), the silicon-level real estate required to 
implement a standard, and the process and technology the family is based on. 

Figure 16.2 shows several different interconnection configurations. Path one shows a 
component-to-component or circuit local connection on the same PCB. Path two shows 
an example of a board-to-board or multiboard (motherboard) connection. This type of path 
is generally longer and likely includes multiple connectors. Path three shows a system or 
network connection where the component communicates greater distances to devices and 
circuits through a higher performance connection. An Ethernet connection is an example of 
a network connection.

Figure 16.2  Interface examples
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16.3 A dvanced I/O Interface Challenges
There are numerous challenges associated with component interconnection. All intercon-
nection schemes are evaluated based on a combination of the required system resources, their 
highest rate of reliable information transfer and the complexity of their implementation. The 
maximum data rate, typically referred to as bandwidth, is based on the width of the data path 
(the data bus width) and the maximum data transmission rate. As the speed of transmission 
increases, multiple system-level effects and complications occur including EMI, crosstalk, 
and reduced signal-to-noise ratio. These factors can reduce the integrity of the data in the 
implemented bus or signal group. Signal integrity issues can also propagate into other signals, 
buses and circuits within the system. 

FPGA manufacturers are constantly working to increase the performance of FPGA inter-
faces. Manufacturers continually work to improve and optimize the performance of supported 
interconnection standards. New families support popular high-performance standards as 
appropriate. As a part of this process, older standards that are not compatible with the FPGA 
process technology or rarely-used standards may be removed to reduce FPGA device costs. 

Manufacturers focus significant effort on improving I/O performance and signal 
integrity. Efforts are made to expand I/O standard and protocol support, while also increas-
ing functional integration into the FPGA components. These improvements are often 

KEY
POINT



231

Advanced Interconnect

implemented through changes to the FPGA I/O circuitry (IOBs), and the addition of dedi-
cated hard IP functionality. Additional performance gains can be achieved through the use 
of optimized soft IP cores and RPM elements.

Performance improvements can be implemented by increasing the operational speed 
of the FPGA IO blocks, supporting higher speed standards, and by implementing spe-
cialized I/O circuitry that can increase the data throughput into and out of the device. 
Signal integrity improvements include adjustable output drive strengths, variable signal edge 
rates, differential signaling, signal pre- and post-conditioning, and improved package perfor-
mance. Incorporating functionality into the FPGA can reduce board-level congestion and 
component count. Examples of functional integration include incorporating programmable 
impedance matching circuitry and signal pull-up and pull-down implementation within the 
FPGA package. 

16.4  Implementing an Advanced Parallel I/O Interface
This section reviews the implementation of a parallel I/O memory interface. The primary 
challenges associated with high-performance parallel memory interface design include:

■	 Achieving high bandwidth (Bus Width * Data Rate)
■	 Implementing a source synchronous interface
■	 Reliable read data capture and data write
■	 Developing and meeting an achievable timing budget with sufficient design margin
■	 Implementing a design that does not overly complicate the board-level PCB design
■	 Supporting flexible FPGA pin assignments, component orientation and board-level 

signal routing
■	 Implementing a design with good signal integrity
■	 Meeting PCB and termination requirements

Implementing a high-performance memory interface such as a DDR or QDR interface 
can be challenging at both the board and FPGA component implementation level. These 
challenges will continue to multiply as new memory interface standards are developed. 
Figure 16.3 illustrates the trend toward higher bandwidths with each new memory interface 
standard. With these higher data rates, the design implementation becomes more complex 
and more challenging.
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Figure 16.3  Interface performance trends
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In order to support interfacing with each new high-performance memory standard, 
FPGA devices must often implement a combination of specialized circuitry and routing. The 
timing specifications for the fastest available popular memory standards usually require 
careful design in order to meet critical timing requirements. Originally interfaces to high-
performance memory components were implemented with customized logic and routing 
at the I/O block and FPGA fabric level. This approach required design teams to spend a 
significant time and effort redeveloping their own custom high-speed memory interface 
implementation, resulting in a long, complex design cycle. Many of these interfaces were 
system synchronous. A system-synchronous design is where a single system clock source con-
trols the data transmission and reception of all devices

Newer FPGA families implement a source-synchronous approach to implement the new-
er high-performance memory standard interfaces. Source synchronous design is where one 
clock source controls the data transmission of all devices. Each device generates a derived 
clock that is transmitted in parallel with the data to the destination device. This derived 
clock controls the data reception of the destination device. Figure 16.4 illustrates the tight 
timing requirements associated with a high-speed source synchronous interface. The valid 
data capture window is affected by many elements including input clock jitter, data bus skew, 
valid data window jitter, internal clock distribution skew and variable internal signal routing.

KEY
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Figure 16.4  DDR timing considerations
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There are multiple factors that complicate write and read cycles to and from DDR 
memory components. The center alignment required to implement a write operation requires 
extra consideration beyond the existing challenge of implementing a tight timing budget 
with sufficient margin. Additional features have been added to FPGA I/O blocks to help 
address these design challenges. These features allow the design team to tightly control the 
generation and distribution of I/O clocks and data-to-clock alignment. As an example, some 
device families include the ability to implement precise clock-to-data centering to ensure 
reliable data capture and reduce complicated logic interface implementation. 

It is important to understand the key architectural features of the targeted FPGA 
component relative to the requirements of the selected memory interface. FPGA manufac-
turers include design details and examples in a broad range of locations including the family 
datasheet, user guides, application notes, and white papers. Every effort should be made to 
collect, review and cross-reference all documentation related to the implementation of the 
selected memory interface.
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Another memory interface design challenge is the variation between different memory 
controller state machines for different memory types. Table 16.3 illustrates the variations 
between some popular memory interface standards.

Table 16.3

DDR DDR2 QDR II RLDRAM II FCRAM II
Data Rate 400 Mbps 533 Mbps 1.2 Gbps 600 Mbps 600 Mbps
Clock Rate 200 MHz 267 MHz 300 MHz 300 MHz 300 MHz
Data Width 144 b (DIMM) 144 b (DIMM) (72+72) bit 36 bit 36 bit
I/O Standard SSTL2 SSTL18 HSTL HSTL SSTL18

Memory Interface Maximum Data Width Maximum Data Rate Peak Bandwidth
DDR SDRAM 432 400
DDR2 SDRAM 432 533 172
QDR II SRAM 216* 1200 230
RLDRAM II 432 600 259
FCRAM II 432 600 259

In order to achieve the highest levels of memory interface performance, the imple-
mentation of the required memory controller state machine must be highly optimized. The 
implementation of a memory controller may become complicated. This complication is due 
to the large number of factors which must be taken into consideration including the number 
of banks, bus width, device width, and access algorithms. The implementation and testing of 
memory controllers can be very challenging and time consuming. 

Most manufacturers are developing both memory controller IP and tools (wizards) to 
simplify memory interface implementation. IP-implemented memory controllers have the 
advantage of implementing pre-verified, optimized memory controllers, which should be 
capable of supporting higher levels of performance for the targeted FPGA family. Wizards 
simplify design implementation by generating customized VHDL code blocks that can be 
directly integrated into the design flow. 

16.5  Implementing an Advanced Serial I/O Interface
Serial interfaces are gaining popularity in high-performance design implementations. High 
performance serial I/O interconnections support faster data transmission and reception 
with fewer FPGA pins. Serial I/O connections often exhibit better performance, increased 
bandwidth and improved signal integrity including lower noise generation and better noise 
immunity. Since there are fewer signals to be routed, fewer, PCB layers are required. These 
factors have the potential to support simpler, smaller PCBs with fewer layers and reduced cost.

Serial interfaces typically can be most efficiently implemented if special structures 
have been included within the FPGA architecture. As an example, clock data recovery can KEY
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be implemented within an FPGA’s logic fabric, but higher performance may be obtained by 
implementing a dedicated hard IP function. 

A Gigabit Ethernet connection implementation is a good example of a high-performance 
serial communication link. The Gigabit Ethernet interface utilizes common blocks to inter-
face to the data stream. These building blocks are ideally built into the fabric of the FPGA for 
the highest performance. Figure 16.5 illustrates a high-speed serial implementation.
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Figure 16.5  General serial I/O block diagram

At the highest level, these building blocks are divided into two larger groups referred 
to as physical-coding sublayer (PCS) and physical-media attachment (PMA). The PCS 
includes the digital portion of the serial channel used to condition the signal for high-speed 
transmission or decode of the signals for processing. The line encoder is used to embed the 
clock within the digital signal and prepare it for high-speed transmission. The PMA is the 
analog section of the serial channel and includes programmable features for controlling the 
signal level, threshold, and signal integrity characteristics. This allows a generic block to be 
configured to implement a number of different specific I/O standards and protocols. Examples 
of advanced I/O protocols that can be implemented include RapidIO, Hyper-Transport 
and Gigabit Ethernet. A typical FPGA will implement multiple serial transceivers. Each 
transceiver will implement a standardized interface for connecting the transceiver to the 
FPGA logic or embedded processor. A serial transceiver example is the RocketIO within the 
Virtex®-II and Virtex-4 Xilinx FPGA families. Figure 16.6 shows the RocketIO functionality 
as implemented within the Virtex-4 FPGA device. 
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Another consideration associated with implementing advanced communication proto-
cols involves the implementation of the full communication protocol. Table 16.4 lists the 
related OSI model layers and the associated TCP/IP design implementation for an Ethernet 
interface implementation.

Table 16.4 OSI model and TCP/IP layer implementation 

Layer OSI TCP/IP
7 Application Telnet, FTP, etc.
6 Presentation Telnet, FTP, etc.
5 Session Telnet, FTP, etc.
4 Transport TCP/IP Stack
3 Network TCP/IP Stack
2 Link MAC
1 Physical PHY

Considering an implementation example of Gigabit Ethernet within a Xilinx V4 FPGA, 
layers seven through five can be implemented within the 405 core PowerPC processor em-
bedded within the FX components of the V4 family. Layers four and three can similarly be 
implemented within a TCP/IP stack implemented on the embedded PowerPC core. Layer 
two, the MAC, can be implemented in the hard IP within the FPGA and layer one can be 
implemented within the RocketIO block. The implementation of the physical layer within 
the FPGA’s serial transceiver and the implementation of the data link layer within the dedi-
cated hard IP eliminates the need for external components. These elements can be set up to 
be controlled by the embedded processor. The V4 family also supports the implementation of 
high-performance FIFOs for data handling, allowing full implementation of Gigabit Ethernet 
protocol within a single FPGA component. 
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Figure 16.6  Serial I/O interface
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16.6  Summary
FPGA manufacturers continue to advance the performance of FPGA interconnection func-
tionality by supporting more I/O protocols and standards. The areas of improvement include 
performance, flexibility, broad standard and protocol support, signal integrity enhancement, 
and reduced cost of implementation. Modern FPGAs incorporate advanced I/O to extend 
FPGA’s interconnection capability.

 FPGA manufacturers continue to develop and incorporate advanced dedicated I/O 
circuitry and dedicated hard IP structures, advanced dedicated clock circuits and routing to 
implement higher speed interconnection capabilities. Examples include serial transceiver 
circuitry, Gigabit Ethernet MAC and IOB dual-registers to support DDR memory interfaces.

 Incorporating these advanced features within an FPGA’s internal logic fabric and I/O 
blocks supports increased system-level integration, higher performance and reduced design 
complexity and development effort. FPGA manufacturers also continue to develop soft 
IP and design tool enhancements, which make it easier to implement common high-per-
formance interconnection functionality. Targeted advanced interconnection applications 
include DDR, DDR-2, Rapid IO, and Gigabit Ethernet.
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Bringing It All Together

17.1		 System Overview
This chapter will present an example project to bring together many of the diverse concepts 
and recommendations found throughout this book. We will step through the design at a 
high level, and discuss many of the commonly encountered rapid system development effort 
trade-offs and design decisions. The flow of this chapter will parallel the FPGA design flow 
presented in Chapter 3. For convenience, the optimized design flow is presented in Figure 
17.1. The primary design phases include requirements, architectural, implementation and 
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Figure 17.1  Optimized 
FPGA design flow 
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verification. Some of the tasks listed in the design flow do not neatly fit into a single stage. 
Some level of crossover should be expected. We will discuss the important design consid-
erations associated with each of these design stages. Additional resources within this book 
include an appendix listing FPGA manufacturer application notes and documents, an ap-
pendix listing a series of design checklists, and a listing of common design term abbreviations 
and acronyms.

This section presents an example project concept that is based on an FPGA embedded 
hard core processor implementation. The intent is to show a potential real-world design 
example and discuss some of the factors that must be addressed in order to implement the 
system. The scenario for this example is the development of a rapid system prototype of a 
product that needs to be demonstrated at an upcoming technology conference. It is critical 
that the system be fully operational at the conference since the project’s next phase of fund-
ing is dependent on a successful demonstration. 

This project is an extension of a previous project that was implemented with a discrete 
PowerPC™ processor. The project also had an FPGA that was implementing processor sup-
port functions. Since this product will become the baseline for a range of derivative projects, 
flexibility is a critical system consideration. Figure 17.2 presents a system-level example block 
diagram.
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Figure 17.2  Example system block diagram 

17.2	R equirements Phase
The first major step in the FPGA design process is the definition and refinement of system 
requirements. The system and functional requirements should be as detailed as possible. Any 
missing design information should be identified in the requirements document. A commonly 
used method for highlighting missing information is through the use of a to be determined 
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(TBD) abbreviation. It is important to limit the number of TBDs in a requirements docu-
ment. Each TBD adds uncertainty and thus risk to a project. Ideally, the design should only 
move into the implementation phase of the project when all major TBD issues have been 
resolved.

The design team should follow an organized process for deriving and defining system 
requirements. Table 17.1 presents a list of important considerations that should be addressed 
during the system requirement design phase.

Table 17.1  Requirements checklist 

✔ Requirements Checklist

❑ Identify packaging requirements and design limitations (i.e., maximum height or 
real-estate footprint, or need to avoid BGA components)

❑ Identify and document environmental requirements (temperature, vibration)
❑ Identify demanding system timing requirements or interfaces (DDR or DDR2 

memory interface, high speed ADC/DAC data path)
❑ Identify maximum operational frequency
❑ Identify all required and desired I/O interface standards
❑ List the number of each type of I/O standard signals 
❑ Identify I/O range (minimum to maximum with margin) 
❑ Identify FPGA internal memory requirements (consider standard logic require-

ments, processor and signal processing requirements with margin)
❑ Identify logic requirements based on previous functional implementation, equiva-

lent implemented functionality or number of registers required plus margin
❑ Identify specialized FPGA resource block requirements  (for example, number of 

channels of Ethernet )
❑ Identify design functionality which may be available as Intellectual Property 

blocks 
❑ Identify and list the major clocks required by the design
❑ Identify signals with signal integrity requirements (termination, matched length)
❑ Identify power consumption limitations (develop preliminary power budget)

Some of the high-level system requirements include:

■	 Reuse existing PowerPC baseline code

■	 Required product life cycle greater than five years

■	 Minimum number of board-level components

■	 Signal processing algorithm implementation required

■	 Ethernet connectivity: 10/100 now, Gigabit requirement in the future

■	 150 MHz minimum processor speed 

■	 System reconfigurability
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The lower-level design requirements include:

■	 Embedded PowerPC™ processor
■	 PCI bus controller IP block
■	 DDR memory controller IP block
■	 Flash memory controller
■	 10/100/1000 Ethernet MAC
■	 I2C and SPI controller IP block
■	 UART

17.3	A rchitectural Phase
The architectural phase can be broken into several sub-tasks, including:

■	 System engineering

	 –	 Budget and schedule

	 –	 Generate plans
■	 Technology, manufacturer family, package and device decisions
■	 Tool and language decisions
■	 Design architecture decisions 

	 –	 Design partitioning

	 –	 Design hierarchy

Once the requirements have been defined, the resource estimates should be generated, 
and component, system engineering, and design architecture decisions should be started.

Chapter 4 discusses design estimation approaches, system engineering decisions and 
design plan generation considerations. Design budgets and plans should be generated with 
margin included to allow for minor changes of scope and functionality. 

The design team selection can be an important design factor. The design team should 
include as many experienced FPGA designers as possible. When the design team cannot 
be fully staffed with experienced FPGA designers, serious consideration should be given to 
specialized training for the appropriate team members. Access to the right training can be a 
key factor to project success and efficient design implementation. 

System engineering efforts include decisions that will influence the design choices and 
selected design approaches. Acceptable design margin is one of these pivotal decisions. 
System engineering also includes developing and documenting important design plans. The 
following list identifies key standards, documents and plans, which may be generated during 
the system-engineering phase. 

■	 Design requirement document
■	 Design process with design flow
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■	 Design schedule with milestones
■	 Design review plan
■	 Design coordination meeting schedule
■	 Design configuration control procedure
■	 Design coding standards
■	 Design margin standards 
■	 Team training plan
■	 Design simulation/testing/verification plan
■	 Design integration plan

While this may seem to be an excessive documentation effort, the documents do not 
need to be difficult to generate or maintain. They will vary in size and formality based on the 
size of the project and organizational policies. The information required in these documents 
should be organized early in the design cycle to guide the design effort. At the lowest level, 
these documents can be as simple as a bulleted list or expanded outline.

The first design decision involves selection of the programmable logic technology. For 
the proposed example, SRAM-based FPGA technology has been selected. The advantages of 
SRAM-based technology include the ability to re-define FPGA functionality throughout the 
design cycle, adding flexibility and reducing risk. Chapter 2 discusses fundamental program-
mable logic technology.

For this example, the result of the architecture and processor evaluation is Xilinx’s 
XC4VFX20 component. This FPGA component includes a 405 PowerPC™ processor, tri-
mode Ethernet block, embedded memory and DSP slices. Advantages and potential benefits 
of designing with this member of the Virtex-4 family are outlined in the following list.

■	 The auxiliary processing unit (APU) for the 405 PowerPC™ allows straightforward 
connection to coprocessors

■	 The ChipSync™ interface and DDR controller IP support simplified DDR memory 
interface

■	 The Tri-mode MAC hard IP simplifies the Ethernet interface
■	 A comprehensive co-design tool
■	 MATLAB tool integration and cascading DSP slices for the signal processing func-

tion
■	 Potential 300 MHz processor performance
■	 Eclipse IDE, gecko, and gab integration into the co-design tool
■	 Tools support simplified customized IP interface
■	 Potential for implementation of a soft-core processor in the future
■	 Wide range of potential future processing solutions from coprocessing with additional 

soft core(s), or 2nd hard IP processor all within the same package
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The example system is based on an FPGA with an available 405 PowerPC™ FPGA 
embedded hard IP processor core. The processor operates from a combination of internal 
block RAM and external DDR memory. The processor implements the control function-
ality for the system. The primary activities for the processor include handling the flow of 
data through the system and the control of the functionality of the signal-processing algo-
rithm implemented within the coprocessor. Input to the coprocessor is received through 
the 10/100/1000 Ethernet MAC. The initial system implementation will only require 100 
Ethernet speed communication; however, the design implementation will be able to sup-
port higher speed throughput for added future functionality. The output of the coprocessor 
is passed to an external, down-stream PCI peripheral through the PCI bus interface. Addi-
tional communication occurs to external circuitry through slower speed SPI, I2C and UART 
communication interfaces. Figure 17.3 presents the functional block diagram for the system. 
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Example system 

functional diagram

The selection of design tools should take advantage of tool evaluation periods and tool 
demonstrations. The selection of the FPGA design tool suite and design capture language are 
influenced by many factors including:

■	 Prior experience

■	 IP source

■	 Management preference

■	 Existing design 

■	 Reference designs
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For this design, the design team will use Xilinx’s hardware design tool suite and embed-
ded processor design tool suite.

Once the design functionality has been clearly defined, the design should be partitioned 
into smaller, more manageable design blocks. The process for partitioning design functional-
ity is discussed in Chapter 7. The design blocks should be structured within a defined design 
hierarchy. The potential benefits and an approach for implementing a design hierarchy are 
discussed in Chapters 7 and 8.

At this stage in the design process, potential intellectual property blocks can be identi-
fied. The majority of IP block implementations are standard functions with no modification 
requirements. If an IP block must be customized, extensive discussions will occur with poten-
tial IP providers. The process of evaluating and negotiating with IP suppliers is discussed in 
Chapter 13.

For this example, the processor selected is a hard IP block. Thus, no optimization is 
required for the processor core within the design. The bus structure selected for the embed-
ded 405-processor core is the IBM Core-Connect™ bus implementation. The reusable soft 
and firm IP peripherals for this design include: PCI bus controller, DDR memory controller, 
Flash memory controller, interrupt controller, timer module, I2C controller, SPI controller, 
UART controller and GPIO interface. Since the required functionality for the design does 
not require modification of these IP blocks, they should be relatively straightforward to test, 
implement and integrate into the design. It is interesting to note that almost all of these 
blocks are directly available within the embedded FPGA design tool suite. However, the PCI 
bus controller is not an included processor peripheral and thus must be imported through 
the co-design tool flow as discussed in Chapter 14. A more detailed discussion of the proces-
sor implementation for this project is presented in Chapter 14. Co-design is an important 
element of an embedded FPGA processor implementation. Coprocessing supports parallel 
hardware and software functionality development, thus accelerating the development sched-
ule. Co-design is also discussed in Chapter 14.

17.4	 Implementation Phase
The implementation phase can be broken into several sub-tasks, including:

■	 Informed pins assignment

■	 Design capture

■	 Synthesis

■	 Behavioral simulation

■	 Place and route

In rapid system development, pin assignment and board layout typically occur early in 
the design cycle to allow FPGA design development in parallel with the manufacture and 
component population of the target hardware board. Thus, pin assignment must occur before 
the majority of the design has been captured or verified. There are many details associated 
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with efficient and informed pin assignment. Pin assignment is discussed in Chapters 5, 6 and 
9. Additional pin assignment guidance is provided in the design checklist appendix.

This design requires multiple high performance signal interfaces to be defined and imple-
mented. Pin groups with common design characteristics include the PCI interface, SRAM 
DDR interface, Ethernet interface and Flash interface. An example FPGA PCI interface 
is discussed in Chapter 9. Example DDR memory and Ethernet interfaces are discussed in 
Chapter 16.

For this example, the design capture will be implemented on the manufacturer design 
tool suite using VHDL as the primary design capture language. The only exception to a 
single language design capture approach would involve any required IP blocks that were 
implemented in a different language. The design will be implemented with a synchronous 
design implementation approach. 

Additional design blocks shown in the system functional diagram include custom circuit 
one and two. The system architecture has been designed to support direct communication 
between the processor core and these custom circuits. The functions implemented within 
the custom circuits are the company proprietary design elements. One of the circuits only 
requires occasional low speed communication with the system processor, thus, this circuit 
is connected to the lower performance PLB bus. The second circuit requires a higher band-
width communication channel and is connected to the higher performance OPB bus.

The design blocks that cannot be implemented with off-the-shelf IP functionality will 
be captured and implemented by the design team. These blocks were defined and partitioned 
during the architectural design phase. The blocks will be individually implemented and 
simulated at the behavioral level to verify correct structure and functionality before they are 
synthesized. Simulation will be accomplished by developing modular, scalable testbenches, 
which can be integrated and used at higher levels of design simulation. Design block code re-
views can be an important part of an efficient design cycle. Suggested design review formats 
and HDL coding guidelines are discussed in Chapters 4 and 7, respectively. 

The signal-processing algorithm implemented has been configured to allow efficient di-
rect communication with the processor core. The path for communication to the processor is 
the auxiliary processor unit (APU) interface. An APU interface is discussed in Chapter 14, 
and a signal processing example is discussed in Chapter 15.

After successful behavioral simulation, design blocks may be individually synthesized. 
Chapter 7 details synchronous design approaches, HDL to RTL translation and an overview 
of the possible synthesis stages. Hierarchical design structure and block organization can al-
low the independent simulation, synthesis, and place and route of individual design blocks. 
A design implemented with a partitioned, hierarchical structure also supports individual 
design block constraint, simplifying any required design optimization.

The final stage of the implementation phase is the place-and-route process. Chapter 
7 discusses the place-and-route process as well as physical synthesis. The design team has 
some level of control over the place-and-route process through design tool modes and switch 
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options, including the level of effort and number of place or route iterations. The end-points 
of a place-and-route effort may be fixed through the use of pin constraints. The place-and-
route process may also be influenced through the use of area and timing constraints. The 
relationship between design constraints and the placed and routed design is discussed in 
Chapter 9. 

17.5	 Verification Phase
The verification phase can be broken into several sub-tasks, including:

■	 Timing simulation

■	 Optimization

■	 Configuration

■	 Board-level testing

Figure 17.4 illustrates a high-level view of the design verification sequence. The first 
stage of verification is behavioral simulation. This process generally occurs after design 
synthesis and can be considered a part of the design implementation phase. Behavioral 
simulation is an integral part of the design entry process, allowing the design team to verify 
the behavioral functionality of a captured design block. Typically the combination of design 
capture and behavioral simulation are repeated as an iterative process for all but the simplest 
functions.

Design Verification Sequence

Design Place 
and Route

Device
Programming

Functional
Simulation

In-Circuit
Verification

Behavioral
Simulation

Design
Synthesis

Static Timing
Analysis

Timing
Simulation

Design
Entry

Figure 17.4  Design verification sequence
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The next potential step in the design verification sequence is functional simulation, 
which typically occurs after the design has been synthesized. Design teams frequently skip 
this simulation step since with some additional time and effort, it is possible to move for-
ward to post place-and-route timing simulation. While functional simulation is based on an 
estimated routing delay, timing simulation is completed using more accurate routing delays 
after the design has been placed and routed. A primary consideration in skipping the func-
tional simulation step is the length of the place-and-route cycle. If the place-and-route cycle 
is relatively short, the penalty paid to move forward to timing simulation is relatively small. 
However, if the place-and-route cycle takes many hours, the design team may elect to run 
functional simulation to save valuable design time.

Timing simulation should be implemented using an event-based simulator. Testbenches 
are typically the most efficient method to implement timing simulation. Testbenches can 
implement a wide range of design test cases efficiently. They also support automated design 
regression testing allowing a higher level of design implementation confidence and efficiency. 
The correct level of simulation has the potential to save a large amount of time in the lab 
by verifying design functionality. Up to a certain point, every hour of design simulation can 
save several hours of design testing and debug. The design team will need to evaluate the 
crossover point when enough design simulation has occurred. The appropriate level and 
amount of design simulation will vary from project to project, and will be highly dependent 
on the design implemented and the design team’s philosophy. Timing simulation is covered 
in Chapter 8.

If the implemented design meets the design timing requirements, the verification can 
move to the target hardware board. However, if the design does not meet timing, design op-
timization may need to occur. Design optimization is typically an iterative process that stops 
once the design consistently meets the timing requirements. The potential exists to over-
constrain a design in an effort to force it to achieve timing closure quickly. A disciplined, 
organized approach to design constraint and design optimization is required to avoid design 
over-constraint. Chapter 9 discussed design constraint and an optimized design constraint 
approach.

The final major design verification stage is implemented in the lab within the targeted 
FPGA component on the system hardware board. The efficiency of this design verification 
stage is greatly influenced by how many debug-friendly features were added to the design 
during the board layout phase. Inclusion of design features such as test headers, LED indica-
tors, push-buttons and dip switches can significantly improve the efficiency of the test and 
debug process. With the addition of these features, visibility into the internal nodes within 
the FPGA design and the critical external FPGA interfaces can be significantly improved. 
Embedded logic analyzers are another tool for efficient board-level design debug and test. De-
sign configuration is discussed in Chapter 10. Design debug features are discussed in Chapters 
4, 5, 6 and 11. Design debug features are also addressed in several of the checklists in the 
Checklist appendix. 
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17.6	P rototype Delivery
After the design has been successfully verified in the final application, the design will typi-
cally move to higher volume production. Some higher volume production options for 
SRAM-based FPGA designs are presented in Chapter 12. As the design is being transitioned 
to volume production, time and effort should be dedicated to archiving the design. Making 
future changes or updates to an FPGA design can be very challenging if the design team does 
not have access to the complete set of final design files, the required software tools can not 
be loaded, documentation is missing or design flow exception work-around have not been 
recorded. Some minimum level of effort should be applied toward archiving a design to sim-
plify subsequent design rework efforts. If the design is ever accessed again, the time invested 
in this effort will be repaid many times over. Design archiving is discussed in Chapter 4.

After successful testing, verification and validation of the design, the operational sys-
tem prototype may be delivered to the end customer. The most significant advantage of an 
FPGA-based system prototype is the ability to test the system in the final operational envi-
ronment and make adjustments to the functionality and performance of the design without 
the requirement for a board redesign cycle. The ability to experiment with different design 
functionality is further enhanced if the FPGA component already has access to critical 
signals required for functional expansion. This topic is covered in Chapters 4, 5 and 6. The 
implementation of design functionality within the right FPGA component allows the design 
team to respond to design updates and functional changes with the same flexibility available 
to processor-based designs.

17.7	 Summary
This example system has provided an opportunity to review some of the trade-offs, deci-
sions and considerations that are commonly encountered during FPGA-based rapid system 
implementations. A significant FPGA design process factor is the broad range of options 
and choices that must be handled by the design team. FPGA design is effectively the imple-
mentation of a system within a reconfigurable design fabric. This design fabric includes an 
increasingly complex mix of logic, signal routing, memory, processor functionality, signal 
processing elements, hard IP and programmable I/O block resources. The range and com-
plexity of design decisions can be overwhelming for an unprepared design team. The ability 
to make design changes at any phase in the design cycle can lead a design team to follow 
an unstructured design approach. A common misconception is that since everything can be 
reconfigured, a bare minimum of design planning must be completed. However, by imple-
menting an organized design approach based on solid planning and a clear understanding of 
the impact of individual design decisions, a design team can keep design risk, schedule and 
cost to an absolute minimum.
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Microcontroller Solution 

Processor Xilinx CH 14
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WP164: IBM Licenses Embedded FPGA Cores 
from Xilinx for Use in SoC ASICs 

Processor Xilinx CH 14

TechXclusives: The Root of All Evil – Richard 
Griffin

Processor Xilinx CH 14

TechXclusives: Designing a Custom Processor 
Peripheral Using Xilinx EDK – Richard Griffin 

Processor Xilinx CH 14

XAPP213: PicoBlaze 8-Bit Microcontroller for 
Virtex-E and Spartan-II/IIE Devices 

Processor Xilinx CH 14

Search On: (Embedded Processor SW) 
– SOPC Builder

Processor SW Altera CH 14

Search On: (Embedded Processor SW) – EDK Processor SW Xilinx CH 14
CP: RSA and Public Key Cryptography in 
FPGAs

Security Altera CH 11

WP: FPGA Design Security Solution Using 
MAX II Devices

Security Altera CH 11

WP: FPGA Design Security Issues: Using the 
ispXPGA Family of FPGAs to Achieve High 
Design Security 

Security Lattice CH 11

WP: ispXPGA – Achieving High-Design 
Security with FPGAs 

Security Lattice CH 11

XAPP766: Using High Security Features in 
Virtex-II Series FPGAs 

Security Xilinx CH 11

“TechXclusives: ‘The Battery Case’ – Saar 
Drimer”

Security Xilinx CH 11

WP115: Data Encryption using DES/Triple-
DES Functionality in Spartan-II 

Security Xilinx CH 11

AN: IBIS Models: Background and Usage Simulation Actel CH 8
AN: Test Vector Guidelines Simulation Actel CH 8
AN 283: Simulating Altera Devices with IBIS 
Models

Simulation Altera CH 8

CP001: Behavioral Modeling in VHDL 
Simulations 

Simulation Lattice CH 8

XAPP108: HDL Simulation Using the Xilinx 
Alliance Series Software 

Simulation Xilinx CH 8

“Search On: (High Volume Component 
Option) – Hardcopy, Hardcopy II”

Volume Option Altera CH 12

Search On: (High Volume Component 
Option) – EasyPath

Volume Option Xilinx CH 12
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B.1	R equirements Phase
Define, refine and document requirements.

✔ Requirements Checklist

❑ Identify packaging requirements and design limitations (i.e., maximum height or 
real-estate footprint, or need to avoid BGA components)

❑ Identify and document environmental requirements (temperature, vibration)

❑ Identify demanding system timing requirements or interfaces (DDR or DDR2 
Memory Interface, high-speed ADC/DAC data path)

❑ Identify maximum operational frequency

❑ Identify all required and desired I/O interface standards

❑ List the number of each type of I/O standard signals 

❑ Identify I/O range (minimum to maximum with margin) 

❑ Identify FPGA internal memory requirements (consider standard logic require-
ments, processor and signal processing requirements with margin)

❑ Identify logic requirements based on previous functional implementation, equiva-
lent implemented functionality or number of registers required plus margin

❑ Identify specialized FPGA resource block requirements (example, number of 
channels of Ethernet)

❑ Identify design functionality which may be available as Intellectual Property 
blocks 

❑ Identify and list the major clocks required by the design

❑ Identify signals with signal integrity requirements (termination, matched length)

❑ Identify power consumption limitations (develop preliminary power budget)

APPENDIX B

Design Phases
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B.2	A rchitecture Phase
Manufacturer, device, component selection, initial design, design partitioning, design 
hierarchy, and system-level design.

✔ Software Tool Selection Checklist

❑ Evaluate all available tool options

❑ Test-drive tools as appropriate 

❑ Schedule time for tools evaluation

❑ Request tool demos

❑ Ask for references, current local users

❑ Determine current and future performance needs

❑ Consider total cost of ownership including tools, maintenance, training and 
projected design team efficiency

❑ Consider tool supplier market position

❑ Evaluate tool set support and roadmap

✔ Project Scheduling Checklist

❑ Prioritize order of module implementation based on interactions and hierarchy

❑ Identify design milestones

❑ Divide project implementation into phases

❑ Track project progress, this allows management to add or adjust resources to 
minimize project slip

❑ In developing project schedule add more margin to tasks with large risk factors

❑ Identify critical tasks which should not be shortened

❑ Include design reviews and preparation time in schedule

❑ Develop fallback/contingency plans for likely design issues

❑ Seek to minimize risk and assign extra resources to common design cycle failure 
points

❑ Hold regular design team coordination meetings

❑ Factor external factors into design efforts and schedule

❑ Exclude weekends and holidays from initial schedule development

❑ Identify all planned staff absences (holiday extensions, vacations, etc.)

❑ Include team training time in project schedule

❑ Consider available staff experience levels when estimating task lengths

❑ Include time for documentation in schedule

❑ Schedule time for project wrap-up (archive designs, notes, tools, license files, etc.)
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✔ Architectural Design Checklist

❑ Verify that the targeted FPGA component clock blocks can generate the required 
frequencies from frequencies input to the FPGA

❑ Include FPGA configuration circuitry in the FPGA design budgets (BOM cost, 
power, real estate)

❑ Determine preliminary data-flow through device (understand FPGA native 
architecture)

❑ Identify types and quantities of required memory (FIFO, dual-port, CAM, block, 
distributed)

❑ Determine board-level FPGA configuration components and circuitry 

❑ Determine evaluation/debug configuration access through down-load cable

❑ Determine design block partitioning and interfaces

❑ Define clock domains, groups, speeds, loads, phase relationships and clock domain 
transitions

❑ Verify that the targeted FPGA component can support the number and proposed 
arrangement of global clocks

❑ Define preliminary external FPGA reset circuitry

❑ Define preliminary internal FPGA reset philosophy

❑ Determine internal FPGA circuitry nominal/default power-up state (register power-
up state)

❑ Identify HDL languages of primary IP candidates (this factor may affect design tool 
selection)

❑ Identify all board-level external component interfaces

❑ Develop a preliminary floor-plan for the design based on an awareness of FPGA 
component board orientation and planned external component placement and 
relationship

❑ Evaluate FPGA component power-on and configuration power requirements 

❑ Research availability of development and evaluation

❑ Consider implementing critical circuits and interfaces on evaluation board

❑ Review FPGA configuration time effect on circuit functionality (trade-off different 
configuration modes)

❑ Evaluate available FPGA manufacturer technology, families, tools, IP and support 
(trade study)

❑ Select FPGA manufacturer with an active technology roadmap and significant 
market share

❑ Select primary HDL language

❑ Select design tool suite
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✔ Architectural Design Checklist

❑ Generate preliminary FPGA resource budget (power, I/O, logic registers, memory, 
clock, specialized circuit blocks)

❑ Select manufacturer, device family, package and component

❑ Select component speed-grade

❑ Select component and package combinations that support part migration options 
without board redesign

❑ Evaluate component cost, availability, roadmap, errata 

❑ Implement circuitry to keep board-level external FPGA I/O signals in required 
states before FPGA configuration

✔ Systems Engineering Checklist

❑ Develop a clock implementation plan

❑ Develop a design constraint plan

❑ Develop a global resource utilization plan

❑ Define detailed FPGA I/O interface plan (I/O bank characteristics, SSO, V-ref, 
drive-strength, slew-rate)

❑ Develop project testing and debug plan

❑ Develop project design review plan (PDR, CDR)

❑ Develop project design rework plan

❑ Define and optimize project design flow

❑ Adopt coding standards and common coding style guidelines

❑ Refine project schedule (with margin)

❑ Refine project budget (with margin)

❑ Develop design configuration plan

❑ Develop design review and simulation plan

❑ Develop and refine design estimates

❑ Identify desired design team

❑ Identify, budget and schedule training plan

❑ Define signal integrity plan (SSO, termination, signal paring, matched length, 
Vref, slew rate)

❑ Determine acceptable margin for critical design resources (memory, I/O, logic, DSP 
blocks)

❑ Develop a testing and testbench plan
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✔ FPGA Design Estimation Checklist

❑ Areas of design/project which can benefit from design estimation include: 
schedule, I/O count, power consumption, thermal, internal memory (block and 
distributed), internal DSP blocks, clock blocks, routing resources

❑ Document and understand factors affecting the appropriate amount of margin 
to include in a design estimate including how solid the design requirements are, 
the level of experience of the design team, availability of implemented design 
functionality to leverage, the expected level of requirement changes and expected 
level of feature creep

❑ Define appropriate amount of design margin for each FPGA resource (I/O, clock 
blocks, DSP blocks, memory, etc.)

❑ Design margin will vary from project to project based on budget, schedule and risk

✔ FPGA Package-Related Checklist

❑ Evaluate package options with an awareness of  local component height restrictions 

❑ Take into account the amount of space around an FPGA component that is 
required to place the decoupling and signal termination components when evalu-
ating part footprints

❑ Consider adding a component-free zone around a BGA package on a PCB if re-
work is likely to be frequent

❑ Evaluate using a QFP package for development work with FPGAs (due to easier 
access to signals and rework and simpler design production and rework

❑ Select packages which support a range of available device sizes (device migration)

❑ Package choices are likely to tend toward high-pin count BGA options with alter-
natives being limited 

✔ Design Partitioning Checklist

❑ Partition design blocks on registered boundaries when possible

❑ Break design into modules and blocks

❑ Develop detailed understanding of design functionality 

❑ Group common design functionality

❑ Evaluate functional implementation options (hardware versus software) (this 
tends to be an iterative process)

❑ Keep modules to a manageable size; avoid overly-complex modules 

❑ Understand which design functions should be targeted to specialty FPGA blocks 
(memory, processor and DSP blocks)

❑ Develop and leverage reusable design blocks (IP)

❑ Partition the design to support efficient interface
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✔ Design Partitioning Checklist

❑ Define partitions to group functionality; example, don’t split an embedded proces-
sor peripheral function

B.3	 Implementation Phase 
Design capture, design simulation, design place and route, design constraint, and design 
optimization.

✔ HDL Coding Checklist

❑ Adopt and use coding guide-lines for the full design team

❑ Implement Synchronous Design

❑ Cover all Design Cases

❑ Do not use Simulation-related structures within code targeted toward FPGA logic 
fabric (duality of HDL languages)

❑ Comment to clarify design  intent and  to identify exceptions

❑ Understand the trade-offs between functional instantiation and inference

❑ Code for reuse

✔ FPGA Clocking Checklist

❑ If using external clock feedback functionality route feedback signals to achieve the 
desired operational result 

❑ If using an FPGA component to drive clocks to other devices on the board con-
sider using a clock buffer for heavy load signals; research recommended high 
performance clock output pins

❑ When using an FPGA component to condition and  source a clock to other com-
ponents on the board research potential clock jitter issues

❑ Provide clean power and ground to inputs associated with internal FPGA clock 
PLL (analog) circuits to support clock quality (not all manufacturers implement 
internal analog clock circuitry)

✔ Pin Assignment Checklist

❑ Add margin for future I/O expansion options

❑ Assign clock signals to  I/O pins first 

❑ Assign “special” signals to  I/O early

❑ Assign high-performance signals and buses to I/O pins early

❑ Place internal functional blocks next to associated fixed I/O signal assignments 
(floorplanning)



277

Design Phases

✔ Pin Assignment Checklist

❑ Assign pins based on the final FPGA package placement and orientation on the 
board

❑ Design to the proposed signal flow through FPGA (area constraint, layout)

❑ Be aware of the package I/O pin signal escape pattern

❑ Research the native FPGA architecture characteristics and preferred data flow 
orientation

❑ Research the details of internal signal routing

❑ Research the details of global resources and global routing

❑ Research the details of I/O bank architecture 

❑ Research global clock routing limitations and clock feedback options

❑ Research device migration options (same package/footprint for several devices)

❑ Research I/O block architectural details

❑ Research which I/O standards can be implemented within the same I/O bank

❑ Determine if special connections must be made to Vref, power, or ground pins to 
support specific I/O standards

❑ Be aware of assigned I/O constraints

❑ If I/O pins are reassigned make sure to reassign I/O constraints

❑ Review technical recommendations for high-speed interfaces

❑ Research double data rate I/O interface implementations (I/O blocks, clocking)

❑ Assign differential signal pairs to I/O early

❑ Assign I/O impedance-related characteristics early

❑ Develop detailed understanding of proposed system clock relationships and 
interactions

❑ Research the details of FPGA I/O banks, blocks, pins

❑ Assign “unused” I/O pins to potential future expansion signals

❑ Pay special attention to dual-purpose and special function pins

❑ Assign signals to general-purpose pins before dual-use pins

❑ Avoid assigning general-purpose signals to dual-use and special function I/O pins

❑ Determine FPGA configuration approach and design download approach

❑ Plan debug signal access; Assign “unused” I/O pins to headers and pads to support 
debug and design changes

❑ Verify access to JTAG/download header in final design configuration

❑ Work to minimize signal crossover at board level

❑ Categorize and group special consideration signals and signal groups; clocks, con-
trol signals, buses, differential signals, test signals, noisy and quiet signals, etc.
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✔ Pin Assignment Checklist

❑ Do not “waste”/block access to specialized pins such as clock inputs, clock feedback 
pins unless required by pin count limitations

❑ Bring special function pins out to test points/pads/headers, etc.

❑ If supporting device migration assign pins based on smaller of two devices with 
noncritical signals (test, etc.) assigned to pins only available in larger device

❑ In general unused inputs should be pulled low to avoid noise (pull-ups consume 
unneeded power)

❑ Avoid floating pins, tie signals to known state

❑ Give special design consideration to analog power and ground pins (if implement-
ed on component)

❑ Double-check power and ground pins on part symbols and board schematics

✔ I/O Block Checklist

❑ Assign and implement “special” FPGA I/O signal assignments early in the assign-
ment cycle; special signals include clocks, clock feedback, differential signal pairs, 
wide-buses, control and reset signals, low or high-noise signals, signals requiring 
matched length

❑ Implement FPGA I/O with specialized design characteristics early in the design 
cycle;  signals with specialized design characteristics include high-speed signals, 
controlled impedance signals, signals requiring termination, fast or slow slew rate, 
signals with required higher drive strength

❑ For high performance designs and interfaces consider using signal integrity soft-
ware design tools

❑ Research and implement SSO guidelines (in conjunction with an awareness of 
I/O bank limitations)

❑ Research and understand I/O block features, options and limitations

❑ Take advantage of user-configurable I/O characteristics: DCI, I/O standards, 
differential signal pairs, pull-up and pull-down, keeper circuit, slew rate, 
heavy-load (drive strength), power-up requirements, configuration state/status, 
distribution of noisy signals, distribution of SSO signals, distribution of heavy 
drive requirement signals
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✔ Board Layout Checklist

❑ Identify and route “special considerations” signals first: clock signals, noise-sensi-
tive signals, differential signals, matched-length buses, controlled impedance and 
signals requiring termination

❑ Try to optimize FPGA I/O to board-level component interfaces for high-
performance or large bus interfaces

❑ Be willing to reassign signals to FPGA I/O pins multiple times to optimize impor-
tant interfaces to and from the FPGA to other board-level components based on 
the final FPGA package placement and orientation

❑ When updating pin FPGA assignments “on the fly” during the board layout phase 
make a commitment to document the changes and update schematics and FPGA 
pin constraints

❑ Verify and re-verify FPGA schematic symbol before board layout; common symbol 
creation mistakes include incorrectly assigned power, ground, reference power, 
specialty I/O (clock feedback) and dual-purpose pins

❑ Verify that multisection FPGA device symbols (common with larger parts) assign 
pins correctly between all the sections

❑ Assign group and routing attributes and design constraints to critical signals 
internal and external to the FPGA

❑ Consider using the same signal names internal to the FPGA as used at the board-
level or develop and maintain a list documenting the mapping between signal 
names

❑ If using specialized I/O standards make sure that the signals assigned to each bank 
are compatible

❑ When reassigning signals between I/O banks verify that the required signal stan-
dard is supported within the bank the signal is being assigned to

❑ Verify that I/O bank reference pins have been correctly biased to support the I/O 
standards required for each I/O bank

❑ Consider potential FPGA package rework technologies; make any layout changes 
required to support efficient package rework

❑ Place and orient the FPGA package on the board layout with a clear understand-
ing of the preferred/planned data flow through the device and across the board

❑ Implement critical-performance signal routes and associated signal terminations 
early in the layout process

❑ Ensure that all signals are kept in a know-state before the FPGA component is 
configured
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✔ Power and Decoupling Checklist

❑ For tight real-estate layouts go with a hybrid placement strategy, split decoupling 
components into two groups; place a group of “priority” decoupling capacitors 
in optimum locations next to the FPGA package then place the most important 
signal termination and conditioning discretes as close to the FPGA package as 
possible and finally place the lower priority signal termination and “secondary” 
decoupling capacitors in the best possible configuration 

❑ Implement the cleanest possible reference, analog power and ground pin connec-
tions to isolated power and ground planes as recommended by data sheets and 
application notes

❑ When possible generate power (with margin) local to the FPGA, take power-up 
and configuration into account when calculating power requirements

❑ Consider circuit options that will allow monitoring of the power consumption for 
each required FPGA voltage

❑ Assign board stack-up layers to provide high-performance FPGA components 
with solid stable low-noise power and ground planes

❑ Consider developing and running “equivalent” or “worst-case” designs on avail-
able evaluation boards to measure power consumption

❑ Include margin in power budgets

❑ Follow manufacturer power, decoupling and grounding recommendations explicitly 

❑ Do not take shortcuts or cut corners on device decoupling efforts

❑ The higher the performance, speed and loading of an FPGA component the more 
important the decoupling and power and ground plane quality become

❑ Signal termination implemented internal to an FPGA component will affect 
device power consumption

❑ Research power generation solutions from power manufacturers targeted to 
specific FPGA families and parts

❑ Use tools available from the manufacturer to estimate the projected FPGA power 
consumption of each required voltage

❑ Review device errata for specific power considerations (power-up, configuration 
power consumption)

✔ Design Optimization and Constraints Checklist

❑ Constrain design based on constraint plan

❑ Avoid design over-constraint by following design optimization flow

❑ I/O assignment should be implemented with a detailed understanding of the FPGA 
design interfaces and individual signal and bus timing and characteristics

❑ Global timing constraints should be defined before path-specific constraints
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✔ Design Optimization and Constraints Checklist

❑ Review area constraint recommendations to avoid handicapping the place-and-
route process

❑ Design with guides for existing functionality

❑ Design with modules and hierarchy for easier design constraint

❑ Use floorplanning and area constraints to guide placement of optimized design

❑ A well constrained design should consistently meet timing

❑ Develop familiarity with the content and analysis of the timing report

❑ Become familiar with constraint context

❑ Review all available constraint training and examples

✔ Thermal Considerations Checklist

❑ Evaluate the thermal profile of new component families based on smaller device 
feature geometries since more power density may be consumed within a fixed 
package size even though the power required to implement specific functionality 
may have decreased

❑ Thermal issues are more pronounced in designs which run closer to device maxi-
mums or run heavy internal or external drive loads

❑ Accurate thermal estimation is based on accurate power estimation which can be 
challenging to implement without detailed functional performance information

❑ Try to identify thermal issues early in the design cycle so that hardware fixes can 
be evaluated

❑ If a design has thermal issues evaluate both passive and active heatsinks and PCB 
heat distribution solutions 

✔ FPGA Configuration Checklist

❑ Support as many forms of configuration as may be required during project develop-
ment, i.e., on-board processor configuration, download cable, configuration prom, 
or remote configuration i.e., allow for mode selection on board; usually via jumper 
selection

❑ Review all available configuration examples and documentation; important details 
may be distributed across multiple documents

❑ Route configuration signals carefully; short traces away from noise sources are ideal

❑ Incorporate configuration signals pull-ups and pull-downs as appropriate

❑ Try to match the connector type and signal arrangement used by the default 
configuration cable header to avoid cumbersome lab setups

❑ If implementing multiple devices supporting JTAG communication on the same 
bus verify that the targeted FPGA component is compatible with the other devices
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✔ FPGA Configuration Checklist

❑ Verify how the FPGA drives all board-level signals connected to the FPGA before, 
during and after FPGA configuration

❑ Determine which signals will require pull-up or pull-down resistors to maintain 
known state

❑ Consider JTAG signal loading and routing; in general keep traces short and match 
lengths

❑ If using boundary scan pay special attention to TCK and Treset signal routing 

B.4	 Verification Phase 
Timing analysis, timing simulation, board-level configuration, test, debug and verification.

✔ Board Level Debug Checklist

❑ Develop a debug plan early in the design cycle

❑ Incorporate debug-friendly elements into the design at the schematic capture and 
layout design phases

❑ Implement a JTAG header in the design; Consider implementing JTAG scan 
functionally into the design

❑ Consider implementing support for design self-test

❑ Make sure that the majority of signals can be accessed for debug

❑ Evaluate signal access to signals routed as buried point-to-point traces between 
two BGA components

❑ Support rework options for critical signal routes

❑ Implement cable download support for design debug if possible

❑ Incorporate test headers or test pads into the design

❑ Include sufficient FPGA margin to allow use of embedded logic analysis cores 
within the FPGA

❑ Develop a detailed understanding of the configuration process, sequence, signals, 
timing details

❑ Incorporate ground pins or pads close to the FPGA package to support efficient use 
of test equipment

❑ Incorporate test points/pads/pins on signals which will be commonly accessed dur-
ing testing; (not on critical or high speed signals)

❑ Try to match signal routing length for signals to test headers to reduce signal skew

❑ “Break out” unused signals to pads to support future white wires

❑ Support direct access to important design voltages to make design debug easier

❑ Incorporate LEDs into design (they can always double as test points, white-wire 
pads, etc. and can be not populated for final board delivery
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✔ Board Level Debug Checklist

❑ Incorporate switches (or pads to support external switches via a wiring harness) 
into the design for debug and test

❑ Design test and debug features (headers, LEDs, switches) so that they can be dual-
purpose or not populated when no longer required

❑ If possible implement design which supports larger FPGA component on a com-
mon footprint so additional resources can be obtained without a requirement for a 
board redesign

❑ Include grounds into test headers to support good signal integrity for test equipment

❑ Evaluate implementing debug connectors with one to one correspondence with 
targeted logic analyzer pod heads

B.5	A dvanced Topics 
Intellectual property, embedded FPGA processors, signal processing, and advanced I/O.

✔ Designing with IP Checklist

❑ Execute IP vendor trade study to evaluate potential IP options

❑ Try to understand the total cost of IP ownership

❑ Evaluate how the IP block will interface with the remainder of the design

❑ Take advantage of IP evaluation opportunities

❑ Set aside budget and schedule for IP contract negotiation for IP requiring 
modification

❑ Follow suggested IP integration flow

❑ Take advantage of low-cost IP and IP bundled with design tools

❑ Determine how required IP modifications and updates will be made

❑ Develop an IP integration and validation plan

❑ Write or modify available IP testbenches to allow more automated design 
regression testing

❑ Negotiate support with IP vendor

❑ Try to select IP vendors with toolset/flow similar to in-house tools and flow

❑ Determine what collateral will be delivered with a core (documentation, test-
results, testbenches)

❑ Evaluate history, health, and stability of specialized IP providers

❑ Evaluate cost of purchasing IP source code

❑ Take time to verify the ability to rebuild the IP baseline when the IP is received
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✔ Embedded Processor Design Checklist

❑ Know and understand performance and functional requirements

❑ Develop detailed and accurate requirements for more efficient processor selection 
process

❑ OS/RTOS selection can impact design efficiency and performance

❑ Embedded FPGA processor core selection can significantly impact design perfor-
mance and design schedule

❑ Processor bus implementation selection can significantly impact design performance

❑ Assignment of processor peripherals to processor bus is a critical design factor

❑ Research and take advantage of available Intellectual Property

❑ Evaluate hard versus soft processor core implementation choice carefully

❑ Evaluate support for and overhead of multiprocessing implementations

❑ Consider implementing specialty coprocessing functionality such as floating-point 
processing

❑ Estimate memory requirements

❑ Develop detailed processor power-up/boot-cycle sequence

❑ Develop detailed code update strategy

❑ Consider specialized processor debug needs and requirements

❑ Develop a design floorplan for the processor core relationship to high performance 
peripherals according to a data flow analysis

❑ Adopt and follow team-wide coding guidelines

❑ Evaluate processor loading and options for hardware coprocessing

❑ Evaluate availability of low-level device drivers (BSP)

❑ Develop an interrupt structure implementation plan

❑ Fully define required peripheral performance and potential future enhancements

❑ Develop a plan for peripheral interface and implementation

❑ Understand available design trade-off options (cache memory, MMU, DMA,  
coprocessor)

❑ Evaluate  processor use model options

❑ Work out the details of the processor core speed and required relationship to 
peripheral bus speeds

❑ Develop a detailed bus implementation plan including bus relationships, bridges, 
speeds, burst modes, EDAC

❑ Determine planned usage of internal and external memory 

❑ Estimate resource requirements for processor core, peripherals, processor buses and 
bridges, memory controllers and coprocessors
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✔ Embedded Processor Design Checklist

❑ Estimate performance requirements and the projected processor system perfor-
mance level

❑ Define the complete system memory map

❑ Evaluate processor power consumption at different operational and bus speeds

❑ Evaluate features, cost, support, usability of software development tools 

❑ Evaluate co-design tool flow and availability of design wizards

✔ FPGA DSP Design Implementation Checklist

❑ Determine required numerical accuracy and data format (fixed versus floating-
point)

❑ Understand how to efficiently implement signal processing algorithms within DSP 
blocks

❑ Evaluate high-level signal processing design implementation software

❑ Understand the number and type of resources required to implement a signal 
processing algorithm

❑ Evaluate trade-offs of alternative algorithm implementation approaches (serial,  
semi-parallel, full-parallel)

❑ Understand the benefits and implementation challenges associated with design  
pipelining

❑ Pay extra attention to FPGA clocking implementation

❑ Resource estimation is important (especially when considering parallel versus 
sequential architecture implementation)

❑ Implement an efficient interface between embedded processors and hardware 
implementation of critical performance signal processing algorithms

❑ Evaluate the availability of signal processing Intellectual Property

❑ Optimize data flow into and out of signal processing algorithm implementation

❑ Evaluate alternatives to coefficient storage within limited block resources (utilize 
distributed memory)

❑ Review manufacturer suggestions and examples for efficient algorithm 
implementation 

❑ Evaluate IP for highest level of performance

❑ Take advantage of DSP function macros, RPMs and design wizards

❑ Utilize hardware in the loop to accelerate algorithm verification 
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3DES Triple Data Encryption Standard 
A/D Analog-to-Digital Converter
ABEL Advanced Boolean Expression Language
ADC Analog-to-Digital Converter
AES Advanced Encryption Standard 
AGP Accelerated Graphics Port
AHDL Altera (specific) Hardware Description Language
AIM Advanced Interconnect Matrix
ALU Arithmetic Logic Unit
AMPP Altera Megafunction Partners Program 
AN Application Note
APU Altera Programming Unit
ASIC Application Specific Integrated Circuit
ASSP Application Specific Standard Product
ATA Advanced Technology Attachment
ATCA Advanced Telecom Computing Architecture
ATM Asynchronous Transfer Mode
ATPG Automatic Test Pattern Generation
BGA Ball Grid Array
BiCMOS Bipolar Complementary-Symmetry Metal Oxide Semiconductor
BIST Built-In Self-Test
Bit Contraction of Binary digiT
BPSK Biphase Shift Keying
BRAM Block RAM 
BSDL Boundary Scan Description Language
BSP Board Support Package
BST Boundary Scan Test (IEEE 1149.9)
CAD Computer-Aided Design
CAE Computer-Aided Engineering
CAM Content Addressable Memory
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Abbreviations and Acronyms

CAN Controller Area Network
CBGA Ceramic Ball Grid Array 
CDIP Ceramic Dual In-Line Package
CDMA Code-Division Multiple Access
CDR Clock Data Recovery
CFB Configurable Function Block
CISC Complex Instruction Set Computer
CLB Configurable Logic Block 
CLCC Ceramic J-Leaded Chip Carrier 
CLD Configurable Logic Devices
CLE Configurable Logic Element 
CLK CLocK 
CMOS Complementary Metal Oxide Semiconductor
COTs Commercial Off the Shelf
CPGA Ceramic Pin Grid Array 
CPLD Complex Programmable Logic Device
CPU Central Processing Unit
CPU Central Processing Unit
CQFP Ceramic Quad Flat Pack
CRC Cyclic Redundancy Check 
CS Chip Scale 
CSBGA Chip Scale Ball Grid Array
CSoC Configurable System-on-Chip
CSOP Ceramic Small-Outline Package
CSP Chip Scale Packaging
CUPL Compiler Universal for Programmable Logic
D/A Digital-to-Analog Converter
DAC Digital-to-Analog Converter
DCI Digitally Controlled Impedance I/O
DCM Digital Clock Manager
DDR Double Data Rate (SDRAM )
DDR2 Double Data Rate 2
DES Data Encryption Standard
DFS Digital Frequency Synthesizer/Synthesis 
DFT Design For Test
DIP Dual In-Line Package 
DLL Delay Locked Loop
DMA Direct Memory Access/Addressing
DPA Dynamic Phase Alignment
DPS Digital Phase Shifter
DRAM Dynamic (RAM) Random Access Memory
DRAM Dynamic Random Access Memory
DRC Design Rule Check
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DSP Digital Signal Processor/Processing
DSS Digital Spread Spectrum
EAB Embedded Array Block
EBR Embedded Block (RAM) Random Access Memory
ECO Engineering Change Order
EDA Electronic Design Automation
EDIF Electronic Data/Design Interchange Format
EDK Embedded Development Kit
EE Electrical Engineer
EEPLD Electrically-Erasable PLD
EEPROM Electrically-Erasable (PROM) Programmable Read-Only Memory
EIA Electronic Industry Association
ELA Embedded Logic Analyzer
EMI Electromagnetic Interference
EOL End of Life
EPAC Electrically Programmable Analog Circuit 
EPGA Embedded Programmable Gate Array
EPLD Erasable Programmable Logic Device
EPROM Erasable Programmable Read-Only Memory, also UVEPROM
ESB Embedded System Block
ESD Electro-Static Discharge
ESP Embedded Standard Product
FAE Field Applications Engineer
FBGA Fine Pitch (Fine-Line) Ball Grid Array
FDM Frequency Division Multiplexing
FEC Forward Error Correction 
FET Field Effect Transistor
FF Flip-Flop
FFT Fast Fourier Transform
FIFO First In/First Out
FIR Finite Impulse Response (Filter)
FIT Failure In Time
FLEX Flexible Logic Element MatriX 
Fmax Frequency Maximum 
FMBGA Fine Pitch Metal Ball Grid Array 
FPBGA Fine Pitch Plastic Ball Grid Array
FPGA Field Programmable Gate Array
FPIC Field Programmable InterConnect
FPLA Field Programmable Logic Array
FPSC Field Programmable System Chip
FPU Floating-Point Unit
FSK Frequency Shift Keying
FSM Finite State Machine
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FTBGA Fine Pitch Thin Ball Grid Array 
FZP Fast Zero Power 
GAL Generic Array Logic
Gbps Gigabits per second
Gbyte Gigabyte
GLB Generic Logic Block 
GND Ground
GRM General Routing Matrix
GRP Global Routing Pool 
GTL Gunning Transceiver Logic
GUI Graphic User Interface
HAL Hard Array Logic
HDL Hardware Description Language 
HLL High-Level Language
HSTL High Speed Transistor Logic
HW Hardware
I/O Input/Output
IBA Integrated Bus Analyzer
IBIS I/O Buffer Information Specification
IC Integrated Circuit
ICE In-Circuit Emulation
ICR In-Circuit Reconfigurability 
IIR Infinite Impulse Response (Filter)
ILA Integrated Logic Analyzer
IOB Input/Output Block
IP Intellectual Property
ISE Integrated Software Environment
ISP In-System Programming/Programmability
JEDEC Joint Electron Device Engineering Council
JTAG Joint Test Action Group – IEEE Standard 1149.1
Kbps Kilobits per Second
Kbyte Kilobyte
LAB Logic Array Block 
LC Logic Cell
LCA Logic Cell Array 
LCC Logic Control Cell 
LCD Liquid Crystal Display
LE Logic Element
LFSR Linear Feedback Shift Register
LIM Local Interconnect Matrix
LM Logic Module 
LPGA Laser Personalized/Processed Gate Array
LPM Library of Parameterized Modules
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LQFP Low Profile Quad Flat Pack
LRM Language Reference Manual (VHDL)
LSB Least Significant Bit
LSI Large Scale Integration 
LUT Look-Up Table
LVCMOS Low Voltage (CMOS) Complementary Metal Oxide Semiconductor
LVDS Low Voltage Differential Signaling
LVPECL Low Voltage (PECL) – Positive Emitter Coupled Logic
LVTTL Low Voltage Transistor – Transistor Logic 
MAC Multiply-and-Accumulate, Media Access Control
Max Maximum
MAX Multiple Array matriX 
Mb Megabit
MB Megabyte
Mbps Megabits Per Second
MBps MegaBytes Per Second
Mbyte Megabyte
mC Micro Controller
MCM Multi-Chip Module
MCP Multi-Chip Package
MFB Multi-Function Block
MGT Multi-Gigabit Transceiver (Block)
Min Minimum
MIPS Million Instructions Per Second
MMU Memory Management Unit
MOSFET Metal Oxide Field Effect Transistor
mP Micro Processor
MPAC Mask Programmable Analog Circuit
MPGA Mask Programmable Gate Array
MPI Microprocessor Interface
MPLD Mask-Programmed Logic Devices
MSB Most Significant Bit
MSPS Mega Samples Per Second
MTBF Mean Time Between Failure
MUX Multiplexer
NCNR Noncancelable Nonreturnable
NDA Nondisclosure Agreement 
NIH Not Invented Here
NIST National Institute of Standards and Technology 
NRE Nonrecurring Engineering (Cost)
NSEU Nuclear Single Event Upset
OC Optical Carrier
OCM On-Chip Memory (Interface)
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OEM Original Equipment Manufacturer
OOC Object-Oriented Coding
OOP Object-Oriented Programming
ORCA Optimized Reconfigurable Cell Array 
ORP Output Routing Pool
OS Operating System
OSI-RM Open Systems Interconnect Reference Mode 
OTP One Time Programmable
PAL Programmable Array Logic
PALASM PAL Assembler
PALASM PAL Assembler
PAR Place and Route
PBGA Plastic Ball Grid Array
PCB Printed Circuit Board
PCI Peripheral Component Interface/Interconnect

PCMCIA 
Personal Computer Memory Card International Association, People Can’t 
Memorize Complex Industry Acronyms

PDIP Plastic Dual In-Line Package
PECL Positive Emitter Coupled Logic
PEEL Programmable Electrical Erasable Logic 
PFU Programmable Function Unit 
PGA Pin Grid Array
PIA Programmable Interconnect Array
PIC Programmable Input/Output Cell
PIP Programmable Interconnect Point
PLA Programmable Logic Array 
PLC Programmable Logic Cell
PLCC Plastic Leaded/Leadless Chip Carrier
PLD Programmable Logic Device
PLL Phase Locked Loop
POTS Plain Old Telephone Service
PPGA Plastic Pin Grid Array 
PQFP Plastic Quad Flat Pack
PROM Programmable Read Only Memory
PSTN Public Switched Telephone Network
PTSA Product Term Sharing Array
PVT Process Voltage and Temperature Variance
PWB Printed Wiring Board
QDR Quad Data Rate
QFP Quad Flat Pack
QML Qualified Manufacturer Listing
QPSK Quadrature Phase Shift Keying
RAM Random Access Memory
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Abbreviations and Acronyms

RDRAM Direct RAMBUS DRAM
RISC Reduced Instruction Set Computing
RLDRAM Reduced Latency DRAM
ROM Read-Only Memory
RPM Relationally Placed Macro
RS-232 Recommended Standard 232
RST ReSeT
RTC Real-Time Clock
RTL Register Transfer Level/Logic/Language
RTOS Real Time Operating System
SCSI Small Computer System Interface
SDF Standard Delay Format
SDH Synchronous Digital Hierarchy
SDIP Shrink Dual In-Line Package
SDR Single Data Rate
SDRAM Synchronous DRAM 
SDT Schematic Design Tool
SERDES Serializer and Deserializer
SEU Single Event Upset
SI Signal Integrity
SIMD Single Instruction/Multiple Data
SIMM Single Inline Memory Module
SIP Silicon Intellectual Property
SLIC Supplemental Logic and Interconnect Cell 
SMART Simple Measurable Applicable Reasonable Timely
SMBus System Management Bus
SMT Surface Mount Technology
SoC System on (a) Chip
SOIC Small-Outline Integrated Circuit 
SOJ Small-Outline Integrated Circuit with J-Leads 
SONET Synchronous Optical Network
SOP Small-Outline Package 
SoPC System On (a) Programable Chip
SPGA System Programmable Gate Array
SPICE Simulation Program with Integrated Circuit Emphasis
SPLD Simple Programmable Logic Device
SPROM Serial Programmable Read-Only Memory
SQFP Shrink Quad Flat Pack
SRAM Static Random Access Memory
SRP Segment Routing Pool 
SSO Simultaneously Switching Outputs
SSOIC Shrink Small-Outline Integrated Circuit
SSOP Shrink Small-Outline Package
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Abbreviations and Acronyms

SSTL Solid-State Track Link
STA Static Timing Analysis
SW Software
TAP Test Access Port
TBD To Be Determined
TC Typical Conditions
TCL Tool Command Language 
TCP Transmission Control Protocol
TDM Time Division Multiplexing
TDMA Time Division Multiple Access
TLA Three Letter Acronyms
TLB Translation Look-aside Buffer
TMR Triple Modular Redundancy
Tpd Time – Propagation Delay
tPD Pin-to-Pin delay
TQFP Thin Quad Flat Pack
TSOP Thin Small-Outline Package 
TSSOP Thin Shrink Small-Outline Package
TTL Transistor-Transistor Logic
TTM Time to Market
UART Universal Asynchronous Receiver/Transmitter
UBGA Ultra Fine-Line Ball Grid Array
uC Micro Controller
UCF User Constraints File
UIM Universal Interconnect Matrix
ULSI Ultra Large Scale Integration
uP Micro Processor
USB Universal Serial Bus
VHDL Very High Speed Integrated Circuit (VHSIC) Hardware Description Language
VHSIC Very High-Speed Integrated Circuit
VITAL VHDL Initative Toward ASIC Libraries
VLSI Very Large Scale Integration
VME Versa Module Eurocard (Bus)
VQFP Very Thin Quad Flat Package
VSOP Very Small-Outline Package
VST Verification and Simulation Tool
WC Worst Conditions
XABEL Xilinx-specific ABEL
XCITE Xilinx Controlled Impedance TEchnology
XPGA eXpanded Programmable Gate Array
XPLA eXtended PLA 
ZBT Zero Bus Turnaround
ZIA Zero-power Interconnect Array
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A 

AES   160, 175, 222, 287
antifuse   22-23
API   199-201
APU   204, 223-224, 241, 243-244, 257, 287
architecture   3-5, 8, 11, 13-18, 20, 22, 24-26, 

29, 32-39, 41-46, 53-55, 57-60, 72-73, 75, 
78-79, 83, 92-93, 103-104, 106, 108, 110, 
112, 115-122, 128-129, 138, 141, 146-147, 
151, 153, 167-168, 173-176, 185-189, 192-
196, 198, 202-203, 209, 211, 214-220, 222, 
224, 233, 240-241, 243-244, 254, 257, 260, 
263, 265, 272, 287

architecture and design phase   37, 42, 44-46
archiving   68, 245-247
ASIC   10, 20, 49, 77, 82, 142, 167-169, 173, 

262, 287, 294
ASSP   8, 87, 287
asynchronous   16, 26, 32, 48, 57, 104-106, 130, 

156, 194, 260, 262-263, 265-266, 287, 294
asynchronous design   104-105

B 

ball grid arrays (BGAs)   88
behavioral simulation   39, 121-122, 127-128, 

243-245
BIST   42, 49, 287
board support package (BSP)   199-200

Boolean   16, 25, 33, 38, 118, 128-129, 139, 287
Boolean logic   16, 25, 139
Boolean equations   38, 118-119, 129
Boolean expression   287
Boolean function   25, 33
boot code   200, 206-207
boundary scan   158, 165-166, 253-255, 287
budgets   41, 59, 240
buffer   78-79, 94, 139, 160, 194, 290, 294

C 

CAM   32, 196, 287
carry chain   27, 78
CLB   26, 33-34, 78, 288
clock   8, 24, 26, 28-30, 32, 34, 48, 52, 57-58, 

75-77, 80-81, 83-85, 96-97, 99, 102, 105-
106, 108, 116-118, 121, 124, 139, 142-145, 
147, 151, 156, 167-168, 194, 203, 214-217, 
219-221, 224, 232-236, 252-253, 260, 263, 
288, 293

clock resources   24, 30, 48, 106, 147
clocking   30-33, 76, 78, 80, 102, 115-116, 121-

122, 142-143, 198, 204, 206, 220, 251-253, 
266

clocking signals   80, 142
coding style   53, 113, 117, 131, 259
combinatorial   4, 19, 24, 44-46, 115-117, 144
combinatorial function   19

INDEX

Index
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Index

combinatorial logic   44-46, 115-117
components   4, 6, 8-10, 17, 20-21, 24, 28, 

36-38, 41-43, 53, 62, 71-73, 77, 79, 81-82, 
84-86, 88, 90-102, 113, 116, 141-143, 167-
169, 175, 185, 190-191, 200, 203, 212-217, 
219-221, 223-224, 227-230, 232, 234-235, 
239, 271

configuration   16, 22-23, 32, 34, 38-39, 41, 
48-49, 58-59, 62-68, 70, 75, 80-81, 84, 87, 
98-100, 103, 109, 114, 124, 137, 141, 155-
161, 164-166, 174, 178-179, 190, 202-203, 
206-207, 227-228, 241, 245-246, 253-255, 
261, 282

configuration cable interface   156
configuration memory   49, 155, 158
configuration pins   81, 87, 159-160
constraint   5, 27, 36, 48, 69-70, 83, 106, 121, 

137-139, 144-152, 177, 220, 224, 243-246, 
255, 276

controlled impedance   7, 58, 81-82, 84, 87, 97, 
98, 102, 141, 278-279, 288, 294

core
	 firm core   173-176, 187
	 hard core   175-176, 185, 188-189, 201, 238
	 IP core   147-148, 174, 178-179, 181-182
	 processor core   32, 186-190, 192-197, 200, 

203-204, 209, 223-224, 241-244
	 soft core   174-175, 187, 241
CPLD   13, 16-20, 32, 139, 254-255, 259, 288

D 

DCM   252, 288
DCT   211, 258
DDR   29, 99, 112, 193-194, 196, 202-204, 227, 

231-232, 234-236, 239-244, 250, 252, 260, 
262, 264-266, 271, 288

debug   5-6, 11, 15, 20, 36-39, 43, 48-50, 53, 58-
61, 82, 84-85, 90, 94-95, 102, 105-106, 108, 
114, 124, 127, 131-135, 142, 159, 163-166, 
172-174, 181-182, 190-192, 198, 202, 207, 

209, 211-212, 245-246, 253, 256, 282
decoupling   5-7, 84, 90, 92, 97-102, 194, 220, 

267-268, 275, 280
design architecture   11, 20, 38, 54-55, 59-60, 

103-104, 106, 112, 119, 209, 240
design challenges   52, 77, 206, 232
design constraints   28, 42, 79, 106-108, 114-

115, 121, 124, 137-140, 149, 152-153, 177, 
182, 221, 243-245

design flow   1-2, 6, 9, 11, 32, 35-36, 40, 49-50, 
54, 60, 69, 114-115, 120, 124, 127-128, 144, 
149-150, 172, 177, 211-212, 232-233, 237-
238, 240, 245-247, 262-263

design mistakes   49, 52, 54-55, 60, 70, 108, 114
design validation   127, 132-135, 164
development board   43, 156
device configuration   81, 87, 155-156, 160-161, 

206, 255
DFT   82, 142, 213-215, 288
differential   30-31, 58, 80, 83-84, 87, 97, 99, 

102, 220, 227, 231, 250, 254, 261, 291
differential signal   58, 80, 84, 87, 97, 99, 102
DLL   30-31, 288
DMA   194, 197, 204, 288
documentation   26, 30, 38, 41, 51, 53-55, 62-63, 

67-69, 74, 101, 114-115, 142, 147, 171-172, 
177-179, 187-188, 197, 232, 241, 245-247

DSP   3-8, 11, 32-33, 75, 85, 108, 124, 175-176, 
195, 202, 204, 211-225, 241, 256-258, 289

DSP architecture   215
DSP components   213-216, 223-224
DSP system   211-215

E 

EDAC   194
EDK   202-203, 269-270, 289
EEPROM   16, 289
embedded processor   4, 7, 75, 166, 185-186, 188-

190, 192, 195-196, 198-199, 201-202, 206-
208, 223-224, 234-235, 242-243, 268, 270



297

Index

embedded processor core   223-224
encryption   132-133, 160, 196, 200, 270, 287-288
EPROM   16, 289
ESB   32, 289
estimation   42, 52, 60-61, 65, 70-71, 75-77, 85, 

96, 240, 250, 268
Ethernet   44-45, 72, 97, 175-176, 194-196, 202-

204, 207, 227-230, 234-236, 239-244, 262, 
264, 268, 271

Ethernet MACs   44-45, 175-176
evaluation board   42-43, 96, 202-203, 206

F 

FFT   211, 213-215, 256-257, 289
field programmable gate arrays (FPGAs)   13
FIFO   32, 175-176, 196, 263, 266, 289
FIR   211, 213-217, 222-224, 257-259, 289
Flash memory   155, 202-204, 240, 242-243, 266
flat design   103, 106-107
flip-flops   25-26, 33, 76, 105, 116-117, 137, 139
floating   29, 193, 289
floorplanning   5, 124, 146-147, 153, 195, 203, 

255
FPGA   2-11, 13, 18-37, 39-49, 51-55, 57-90, 

92-109, 111-112, 114-117, 119-122, 124, 
127-130, 132-135, 137-153, 155-161, 
163-165, 167-169, 171-176, 178, 181-183, 
185-191, 193-196, 198-199, 201-204, 206-
209, 211-215, 217-225, 227-247, 249-271, 
283, 289

FPGA memory   30-32
FPGA rapid system prototyping   2
FPU   193, 289
FSM   139, 289
function block   288

G 

gated clocks   48, 106
gate count   75
gate-level   103, 110, 120, 186

global clocks   48, 106, 116-117, 143
global constraints   139-140, 144
global signals   24, 27, 30-31, 33, 78-80, 94
global routing   28, 48, 80, 83, 290

H 

Harvard bus architecture   194, 216-217
HDL   4-7, 21, 38, 53, 60-61, 74, 98-99, 103, 

106, 108-113, 115-116, 118, 121-122, 124, 
127-134, 137, 144, 149-151, 153-154, 165, 
167-168, 186, 188-189, 223-224, 243-244, 
259, 270, 290

HDL coding   53, 111-112, 124, 131, 153-154, 
243-244, 259

HDL design entry   4, 38, 151
HDL language   5, 118, 186
hierarchical design   49, 60-61, 106-108, 124, 

131-135, 147, 151, 224-225, 243-244
hold time   142-143, 145
Hyper-Transport   234

I 

I/O
	 I/O banks   28-29, 34, 58, 79-80, 99-100, 

102, 137, 147-148
	 I/O blocks   17, 24, 28, 33-34, 58, 83, 85, 

99, 220, 232, 234-236
	 I/O constraints   137
	 I/O interface   20-21, 30-31, 112, 167, 228-

233, 235, 239, 271
	 I/O pad   78, 90, 93, 121
	 I/O pins   53, 71, 78-79, 81-82, 87-88, 92-

97, 142-143, 147-148, 164-165, 194, 
221, 228-229, 255, 260

	 I/O ring   100
	 I/O signals   58, 163
	 I/O standards   30, 32, 34, 79-80, 84-85, 99, 

147-148, 203, 228-229, 234, 260
IDE   199-200, 241
IEEE Std 1076 (see VHDL)
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IEEE Std 1364 (see Verilog)
IIR   211, 214-215, 290
impedance matching   99, 147-148, 231
implementation phase   36-38, 46, 55, 59, 103, 

124-125, 127-128, 138, 144-145, 152, 238-
239, 243-245, 274-276

integration phase   44-45, 114, 132
IOB   29-30, 34, 76, 139, 234-236, 290
intellectual property (IP)   4, 21, 32, 107, 160, 

171, 183, 221-222, 264
IP block   171-172, 174-179, 182, 240, 242-243
IP core   147-148, 174, 178-179, 181-182
IP function   233-234
IP license   69
IP selection   124, 180-181
IP vendor   171-172, 177-182, 197
ISP   155-157, 254, 290
IU   193

J 

JTAG
	 JTAG chain   158
	 JTAG configuration   62-63, 156-157, 159, 

253
	 JTAG interface   156-158, 203
	 JTAG signals   158, 282
	 JTAG standard   158-161

L 

LAB   26, 60-61, 67-68, 82, 127, 129, 131, 245-
246, 257, 290

layout
	 board layout  4, 7, 30, 68, 94-97, 243, 245-

246, 249-270
LCD   195, 290
LE   25, 290
logic
	 combinatorial logic   44-46, 115-117
logic block   25-26, 76-77, 288, 290
logic block structure   25

logic device   13, 288-289, 292-293
logic technology   13, 241
logic functions
	 sequential logic   115
LPF   212
LPM   290
LUT   25-26, 32-33, 139, 223, 263, 291
LVCMOS   79, 291
LVDS   30, 249-270, 291

M 

macros   147, 171, 174, 255, 257
MAC   72, 194, 196, 203-204, 213-218, 224, 

234-236, 240-242, 291
matrix   24, 27-28, 33-34, 55, 57, 69, 88, 257, 

287, 289-291, 294
	 routing matrix   24, 27-28, 33, 290
maximum   44-45, 49, 51, 53, 59, 73, 76, 79, 81, 

99, 114, 121-122, 141, 145, 147-148, 152, 
174-176, 212-217, 219, 228-230, 239, 271, 
289, 291

maximum data rate   228-230
maximum speed   73, 141, 174
megafunction   287
MegaLAB   26, 34
memory device   155, 161
memory structures   112
microcontroller   190, 195, 253, 269-270
microprocessor   115, 195, 254, 269, 291
MMU   192, 194-195, 197, 205, 291
motherboard   227-230
multiplexer   113, 259, 291
mux   113, 139, 164-165, 291

N 

network file system (NFS)   205
National Institute of Standards and Technology 

(NIST)   160
node   165, 167, 207
nonvolatile   22, 155, 160-161, 206-207
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NRE   3, 9-10, 24, 167-169, 211, 291
Nyquist sampling theorem   212

O 

object code   199
one-hot (see FSM)
OPB   203-204, 243-244
orientation   58, 78, 83, 85, 87-88, 96-98, 102, 

141, 147-148, 198, 203, 231
	 component orientation   231
OS-friendly interrupt structures   7
OTP   22-23, 32, 155, 157, 292

P 

packaging   20, 75, 77, 84-85, 87-88, 102, 239, 
271, 288

PAL   16, 292
parallel execution   213-217
parallel I/O interface   231
parallel I/O memory interface   231
PCB   9-10, 47-48, 53, 67, 69-70, 79, 87-88, 90-

102, 139-141, 147-148, 158, 227-231, 233, 
250-251, 292

PCI   30, 147-148, 196, 202-204, 227-228, 240-
244, 259-260, 292

PCS   234, 262
peripheral mapping   7
pin assignments   70-71, 78-79, 81, 90, 92-95, 

139-141, 151, 231
pin constraints   139-140, 153, 243-245
pipelining   87, 112, 116-117, 221, 261
place and route   39, 103, 121-122, 124, 128-

129, 139-140, 149-150, 152, 243-244, 263, 
276, 292

PLB   203-204, 243-244, 269
PLD   13-17, 19, 32, 253, 289, 292
PLL   30-31, 251-253, 267, 292
power   5-9, 20-22, 29-30, 42, 47-48, 52-53, 58, 

62, 71, 75-77, 80-81, 84-85, 87, 94-102, 
124, 142, 160, 165, 167-168, 173, 187-188, 

190, 195-196, 219-221, 239, 250, 263, 267-
268, 271, 290

power consumption   5, 8, 20-21, 42, 76-77, 85, 
94-96, 100-102, 167-168, 173, 187-188, 
190, 221, 239, 271

power estimation   42, 76-77, 85, 96, 250, 268
programmable
	 slew rate   7, 30, 58, 79-80, 84, 147-148, 220
PROM   22, 155-158, 254, 269, 289, 292
prototype   11, 38, 68, 82, 88-90, 142, 238, 245-

247
prototype delivery   245-247

Q 

quad flat packs (QFPs)   77, 88
Quicklogic   22, 72, 250, 252, 257, 259, 264, 268

R 

race conditions   106
RapidIO    228, 234
rapid system development   24, 49, 51, 70, 73, 

79, 85, 127, 129, 131-135, 139-140, 164, 
190, 237, 243

rapid system prototyping   1-2, 11, 20, 32-33, 49, 
51, 70, 83, 128-129, 132-135, 151, 249

register balancing   139
regression testing   164, 245-246
reliability   41, 48, 81, 86, 99-101, 194
requirements   8-11, 19, 35-39, 41-45, 47, 51-

57, 59-60, 62, 69, 72-73, 75-76, 83-85, 87, 
101-102, 104, 112, 114, 116-117, 119-120, 
123, 137-139, 141, 144-152, 163-164, 167, 
171-174, 177, 180, 183, 186, 188-190, 195-
196, 200, 202, 204, 219-220, 228, 231-232, 
237-240, 242-243, 245-246, 271

requirements phase   36-38, 41, 59, 238, 271
reset   26, 32, 58-59, 83, 124, 156, 159, 196, 206-

207, 263, 293
resources   2, 4, 8, 11, 17-18, 21, 24, 28, 30-33, 

37, 40-45, 47-49, 52-60, 62-64, 71, 74-76, 
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79-81, 85, 92-94, 97-98, 106, 112, 117-118, 
121-122, 124, 132, 137-143, 147, 149, 151, 
153, 163-165, 167-169, 173, 175-176, 182-
183, 187, 195, 207, 211, 216, 220-221, 224, 
227-230, 237-238, 245-247, 252

reusability   201
reviews
	 design reviews   35-36, 55, 57, 70, 114
	 peer reviews   114
RISC   185, 192-193, 269, 293
RocketIO   234-235, 254, 261-262
routing   6-7, 16-18, 20, 22, 24-25, 27-28, 33-34, 

39, 44-48, 58, 78-80, 82-83, 85, 87-88, 90, 
93-94, 96-98, 106, 116-117, 119-124, 128-
129, 139-143, 145, 147-148, 151-153, 164-
165, 173-174, 182, 219-221, 224, 228-229, 
231-232, 234-236, 245-247, 290, 292-293

routing switches   27, 34
RPM    230-231, 293
RTL   38-39, 109, 113-118, 128-129, 137, 153, 

243-244, 293
RTL code   115-116, 118
RTOS    186, 198-201, 207, 293
runtime   139, 192-193, 199, 206-207

S 
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