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 Preface to the Second Edition     

  Since the fi rst edition of this book was published almost 10 years ago, radio 
frequency design techniques and applications have continued to rapidly 
expand. Readers of this second edition will fi nd many changes from the fi rst 
edition such as expansion of power amplifi ers, oscillator phase noise, and 
impedance matching and deletion of other material. Some chapters and sec-
tions have been rearranged to provide a more logical fl ow. In particular, the 
chapter on noise now precedes the chapter on class A amplifi ers. However, 
when this book is used in our course on radio frequency circuits, students are 
asked to do a design project using the software, Advanced Design System, 
from Agilent. It has been found helpful for students to start their project after 
understanding basic amplifi er design and then treat the noise problem in their 
design subsequently. Throughout the book, design examples are given based 
on the text. Source code for the programs illustrated in the text are available 
at the website given in Chapter  1 . These programs should be helpful to the 
working engineer in need of a quick solution and to the student wishing to 
understand some of the details in a computation. 

 I wish to acknowledge the many contributions made by Krishna K. Agarwal 
in the fi rst edition of this book and the contributions to the class E power 
amplifi er section by William Cantrell in this edition. I also wish to acknowl-
edge the valuable suggestions given by the reviewers. 

   W. ALAN DAVIS 
  Arlington, Texas  
  May 2010         
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xv

 Preface to the First Edition     

  The cellular telephone has become a symbol for the rapid change in the com-
munications business. Within this plastic container reside the talents of engi-
neers working in the areas of effi cient power supplies, digital circuit design, 
analog circuit design, semiconductor device design, antennas, linear systems, 
digital signal processing, packaging, and materials science. All these talents 
are carefully coordinated at a cost that allows a wide cross section of the 
world ’ s population to have available instant communication. The particular 
aspect of all these that is of primary focus in this text is in the area of analog 
circuit design with primary emphasis on radio frequency electronics. Topics 
normally considered in electronics courses or in microwave and antenna 
courses are not covered here. For example, there is no mention of distributed 
branch line couplers, since at 1   GHz their size would be prohibitive. On the 
other hand, topics such as transmission line transformers are covered because 
they fi t so well into this frequency range. 

 This book is meant for those readers who have at least advanced standing 
in electrical engineering. The material in this text has been taught as a senior 
and graduate - level course in radio frequency circuit design at the University 
of Texas at Arlington. This class has continued to be popular for at least the 
last 20 years under the guidance of at least four different instructors, two of 
whom are the present authors. Because of the activity in the communications 
area, there has been ever greater interest in this subject. It is the intent of the 
authors, therefore, to update the current text offerings while at the same time 
avoiding simply reworking a microwave text. 

 The authors gratefully acknowledge the contribution of Michael Black, 
Raytheon Systems Company, to the phase lock loop discussion in Chapter  12 . 

   W. ALAN DAVIS 
 KRISHNA K. AGARWAL        
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1

  CHAPTER ONE 

Information Transfer 
Technology     

    1.1    INTRODUCTION 

 The design of radio frequency (RF) circuits borrows from methods used in 
low frequency audio circuits as well as from methods used in design of micro-
wave circuits. However, there are also important departures from audio and 
microwave frequency methods, so that design of radio frequency circuits 
requires some specialized techniques not found in these other frequency 
ranges. The radio frequency range for present purposes will be taken to be 
approximately somewhere between 300   MHz and 3   GHz. It is this frequency 
range where much of the present day activity in wireless communication 
occurs. In this range of frequencies, the engineer must be concerned with 
radiation, stray coupling, and frequency response of circuit elements that, from 
the point of view of lumped, low frequency analysis, might be expected to be 
independent of frequency. At the same time, the use of common microwave 
circuit elements such as quarter wave transformers is impractical because of 
the long line lengths required. The use of monolithic circuits have enabled 
many high frequency designs to be implemented with lumped elements, yet 
the frequency response of these  “ lumped ”  elements still must be carefully 
considered. The small size of lumped elements in integrated circuits has pro-
vided practical designs of fi lters, transformers, couplers, etc. in lumped element 
form. Therefore discussion of designs for low noise amplifi ers, power ampli-
fi ers, oscillators, mixers, and phase lock loops will be addressed with both 
lumped and distributed elements. Several of the numerical examples given in 
the text use computer programs. Source code for these programs are available 

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
Copyright © 2011 John Wiley & Sons, Inc.
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2 INFORMATION TRANSFER TECHNOLOGY

on the web  *  . However, before getting into the details in the design of radio 
frequency circuits, it is important to understand that the purpose for these 
circuits is to transmit information.  

   1.2    INFORMATION AND CAPACITY 

 What exactly is information?  Random House Dictionary  1966 states that 
 “ information ”  is  “ knowledge communicated or received concerning a particu-
lar fact or circumstance.  …  ”  A narrower technical defi nition more closely 
aligns with the focus given here is that  “ information ”  is an  “ indication of the 
number of possible choices of messages, expressible as the value of some 
monotonic function of the number of choices, usually log to the base 2. ”  
 Information  then is a term for data that can be coded for digital processing. 

 Some examples of data that illustrate the meaning of information is helpful. 
If a signal were sent through a communication channel that never changed, 
then it would be conveying no information. There must be change to convey 
a message. If the signal consisted of 1 0 1 0 1 0 1 0  …  , there would be changes 
in the signal but still no information is conveyed because the next bit would 
be perfectly predictable. So while change is important, it is not the sole crite-
rion for information. There is one last example. If a signal in an amplitude 
modulation system consists of purely random voltage fl uctuations, then again 
no information is being transmitted. It is simply noise, and the receiver is no 
more knowledgeable after having heard it. 

 A communication system consists of a transmitter, a receiver, and a channel. 
The channel is capable of carrying only a certain limited amount of informa-
tion. A water pipe can be seen as a rough analogy to a communication channel. 
The limitation in a communication channel is given the technical term  capacity . 
It refers to the amount of information that is transmitted over a time interval 
of  T  seconds. The time interval can be broken up into short time intervals, each 
of duration   τ  . Clearly, the more distinct time intervals   τ   there are in the total 
time span  T , the more information that can be transmitted. The minimum size 
of   τ   is determined by how well one pulse in one time frame can be distin-
guished from a pulse in a neighboring time frame. The limitation on how short 
a time frame can be is related to the channel bandwidth. In the water pipe 
analogy, the channel bandwidth corresponds to the pipe diameter. 

 In addition, the signal voltage will have a maximum amplitude that is 
limited by the available power in the system. This voltage range can be divided 
into many levels, each level representing a bit of information that is distin-
guished from another bit. The voltage range cannot be split indefi nitely because 
of the noise that is always present in the system. Clearly, the more voltage 
intervals in a given time frame   τ  , the more information capacity there is in the 
system. Just as the fl ow of water through a pipe is limited by the amount of 

     *    http://www - ee.uta.edu/online/adavis/rfsoftware   
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INFORMATION AND CAPACITY 3

pressure on the water, by the friction on the walls of the pipe, and by the 
diameter of the pipe, so the capacity of a transmission system is limited by the 
maximum voltage level, by the noise in the system that tends to muddle 
the distinction between one voltage level and another, and by the bandwidth 
of the channel, which is related to the rise time of a pulse in the system. 

 In one of the time intervals,   τ  , there are  n  voltage levels. The smaller that   τ   
is and the larger  n  is, the more information that can be transmitted through 
the channel. In each time interval, there are  n  possible voltage levels. In the 
next time interval there are also  n  possible voltage levels. It is assumed that 
the voltage level in each time frame is independent of what is going on in other 
time frames. The amount of information transmitted in a total of  T  seconds 
corresponds to the products of the possibilities in each interval:

    n n n n n nT⋅ ⋅ ⋅ =� τ     (1.1)   

 The total information,  H , transmitted intuitively is directly proportional to 
the total time span  T , and is defi ned as the log of the above product. By con-
vention, the base 2 logarithm is used.

    H T n= τ log2     (1.2)   

 The system capacity is simply the maximum  rate  of transmission (in bits/s) 
through a system:

    C H T n= = 1 2τ log     (1.3)   

 System capacity is inversely proportional to the minimum time interval over 
which a unit of information can be transmitted,   τ  . Furthermore, as the number 
of voltage levels increases, so does the capacity for more information. 

 Information can be transmitted through a channel in a variety of different 
forms, all giving the same amount of information. For example, suppose that 
a signal can take on any one of eight different voltage levels, 0,1,  …  , 7, in a 
given time interval   τ  . But the eight - level signal could also equally be sent with 
just two levels, 0,1. However, for every interval that has eight possible levels, 
three intervals will be needed for the two - level signal. A convenient conver-
sion between the two systems is shown in Table  1.1 .   

 Clearly, a 16 - level signal could be transmitted by a sequence of 4 binary 
signals, and a 32 - level signal with a sequence of 5 binary signals, and so on. For 
 n  levels, log 2     n  bits are needed. The information content of a signal is defi ned 
then to be the number of binary choices, or bits, that are needed for transmis-
sion. A system that is designed to transmit speech must be designed to have 
the capacity to transmit the information contained in the speech. While speech 
is not the total of what humans communicate, in a communication system, it 
is that with which engineers have to work. A decision must be made as to what 
level of fi delity the speech is to be transmitted. This translates to the bandwidth 
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4 INFORMATION TRANSFER TECHNOLOGY

requirement of an analog system, or the number of voltage levels available in 
a given total voltage range. Ultimately the restriction is always present even 
if sophisticated coding techniques are used. The capacity of the system must 
be greater than or equal to the rate of information that is to be transmitted. 
Beyond this, system cost, power levels, and available transmission media must 
be considered.  

   1.3    DEPENDENT STATES 

 The defi nitions of the preceding section imply that the voltage level in each 
time interval,   τ  , is independent of the voltage level in other time intervals. 
However, one very simple example where this is not the case is the transmis-
sion of the English language. It is known in the English language that the letter 
 e  is much more likely to appear than the letter  z . It is almost certain that the 
letter  q  will be followed by the letter  u . So in transmitting a typical message 
in English, less information is being actually sent than there would be if each 
letter in the alphabet were equally likely to occur. A way to express this situ-
ation is in terms of probability. The total number of signal combinations that 
could occur in a message  T  seconds long if the value in each interval is inde-
pendent of the others is  n T   /    τ   . On average, every possible message  T  seconds 
long would have a probability of occurrence of 1/ n T   /    τ   . 

 The probability takes the form

    P = number of occurrences of a particular event
total number oof events

    (1.4)   

 Information can be measured in terms of probability. The probability is  P     =    1/ n  
if there are  n  possible events specifi ed as one of  n  voltage levels, and each of 
these events is equally likely. For any one event, the information transmitted 
is written  H  1     =     −  P    log 2     P . For  m  intervals, each   τ   seconds long, there will be  m  

  TABLE 1.1    Eight - Level and 
Two - Level Systems 

    n     =    8      n     =    2  

  0    000  
  1    001  
  2    010  
  3    011  
  4    100  
  5    101  
  6    110  
  7    111  
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DEPENDENT STATES 5

times more information. For  m  intervals, the information written in terms of 
probability is

    H
T

n m P= = −
τ

log log2 2 bits     (1.5)   

 Consider a binary system, where a number 0 occurs with a probability of  p  
and the number 1 occurs with a probability of  q . Knowing that  p     +     q     =    1, 
the information content of a message consisting of 0 ’ s and 1 ’ s is found. The 
total information is the sum of the information carried by the 0 ’ s and that of 
the 1 ’ s:

    H
T

p p q q= − +( )
τ

log log2 2 bits     (1.6)   

 If the probabilities of  p  and  q  were each 0.5, then the total information in  T  
seconds is  T /  τ  . If, for example,  p     =    0.25 and  q     =    0.75, then

    

H
T

H
T

= − +( )

= +( ) =

τ

τ

0 25 0 25 0 75 0 75

0 5 0 3113 0 811

2 2. log . . log .

. . .

bits

33
T
τ

bits

    

(1.7)

   

 Hence, when there is a greater probability that an expected event will occur, 
there is less information. As  p  approaches 1 and  q  approaches 0, the near 
certainty of an event with probability  p  will give 0 information. Maximum 
information occurs when  p     =     q     =    0.5. 

 This scenario can be generalized for  n  signal levels in a given signal interval 
  τ  . Assume that each of these  n  signal levels,  s i  , have a probability of occurrence 
of  P i   where

    P P P Pn i1 2 1+ + = =∑�     (1.8)   

 Assume further that the probability of fi nding a given signal level is indepen-
dent of the value of the adjacent signal levels. The total information in  T /  τ   
intervals or in  T  seconds is

    H
T

P Pi i
i

n

= − ∑τ
log2 bits     (1.9)   

 The capacity required to transmit this amount of information is then

    C P Pi i
i

n

= − ∑1
2τ

log bits s     (1.10)   
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6 INFORMATION TRANSFER TECHNOLOGY

 In the case where each level is equally likely,  P  1     =     P  2     =     P  3     =     ·  ·  ·   P n      =    1/ n , then 
for the  n  level signal,

    H
T

P P
T

ni i
i

n

= − =∑τ τ
log log2 2 bits     (1.11)   

 More details on information may be found in specialized texts; a short intro-
duction is given by Schwartz  [1] . In this study of radio frequency (RF) design 
the primary focus will be on the fundamental hardware design used in transmit-
ters and receivers. Other topics that are of great interest to communication 
engineers such as programming digital signal processing chips, various modula-
tion schemes, or electromagnetic propagation problems are more fully explored 
in specialized texts in those areas. In this book these areas will be referred to 
only as needed in illustrations of how systems may be implemented.  

   1.4    BASIC TRANSMITTER – RECEIVER CONFIGURATION 

 Analog RF and digital designs are both found in typical communication 
systems. There are many systems where digital signal processing is playing a 
large role along with advanced RF circuit design. A typical superheterodyne 
radio transmitter and receiver are shown in Fig.  1.1 . An actual system would 

     FIGURE 1.1     Diagram of communication transmitter and receiver.  
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BASIC TRANSMITTER–RECEIVER CONFIGURATION 7

be optimized for cost, noise immunity, fading, available bandwidth, bandwidth 
effi ciency (the ratio of the throughput data rate per hertz in a given band-
width), power effi ciency (which measures the ability of a system to preserve 
the message under low - power conditions), intermodulation products, adjacent 
channel interference, and so on. The modulator and demodulator shown in the 
fi gure symbolize a large range of design options, often making use of digital 
techniques. Clearly, the circuits in Fig.  1.1  are only an outline of actual trans-
mitters and receivers.   

 The transmitter in Fig  1.1  starts with some information source, which could 
be sound or a visual image. This is then converted to an electrical signal in the 
transducer, which may require amplifi cation. The modulator codes the infor-
mation and must be compatible with the demodulator. The modulator can be 
either analog or digital, and it comes in a wide variety of forms. It encodes the 
message in a certain way so as to meet the communication channel and 
receiver requirements. For example, if a video signal is being transmitted, the 
signal must carry information about the sweep time, intensity, and often color 
as well as the actual intelligence. The commonly used analog modulation tech-
niques of amplitude modulation (AM), frequency modulation (FM), and 
phase modulation (PM) encode the carrier wave by changing its amplitude, 
frequency, or phase, respectively. Multiple signals can share the same channel 
if the signals are at different frequencies as in  frequency division multiple 
access  (FDMA), or at different time slots as in  time division multiple access  
(TDMA), or with different digital codes as in  code division multiple access  
(CDMA). 

 The mixer circuit is the fi rst component in this discussion that breaks into 
the RF range, and it provides two necessary functions. First, it raises the carrier 
frequency that in AM and FM systems is distinct from neighboring transmit-
ters. The second function of the modulator is that it translates the message 
information to a much higher frequency. This allows antennas to be made a 
manageable size since their mechanical size normally corresponds to the wave-
length of the signal. A great deal of effort has gone into making electrically 
small antennas, but there are always design compromises. Chapter  11  is devoted 
to mixers. 

 The mixer is accompanied by a local oscillator that in some cases is carefully 
tuned to different frequencies or is fi xed as in broadcast stations. The quality 
of an oscillator is judged on how low its phase noise is or how much its fre-
quency will drift over time with temperature or age. Oscillators can be designed 
to be manually or electrically tuned to different frequencies. Techniques that 
are used to stabilize an oscillator include using high  Q  elements such as quartz 
crystals, dielectric resonators, or using a constant - temperature oven. Phase -
 lock loops can be used to stabilize a high frequency with a stable low - frequency 
oscillator. Design of oscillator circuits is considered in Chapter  10  and phase -
 lock loops in Chapter  12 . 

 The fi lter that follows the mixer is required because the nonlinear multi-
plication process of the mixer produces unwanted frequencies. In addition, 
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8 INFORMATION TRANSFER TECHNOLOGY

providing appropriate impedance levels to the mixer and the following ampli-
fi er often requires impedance matching. Radio - frequency fi lters and trans-
formers are the primary subject in Chapters  3 ,  5 , and  6  and are used in the 
design of amplifi ers in Chapters  8  and  9 . 

 The fi nal stage of the transmitter before reaching the antenna is the power 
amplifi er. Since this component uses the greatest amount of power, high effi -
ciency becomes important. In FM systems, class C amplifi ers are often used 
since in practice they can produce effi ciencies as high as 70%. For AM systems, 
class A or B amplifi ers are often used because of the required linearity of AM 
signal transmission. However, class A amplifi ers typically have effi ciencies of 
only 30 to 40%. In the transmission of digital modulated signals, linearity of 
the power amplifi er becomes very important because of the need to minimize 
co - channel interference. In all these cases, it is clear that designing the ampli-
fi er for maximum power transfer so that the load impedance is conjugately 
matched to the amplifi er output impedance would mean half the power would 
be dissipated in the transistor itself. The power amplifi er must be designed for 
maximum effi ciency where the internal output impedance is small relative to 
the external load. 

 The receiver is usually more complicated than the transmitter, and its 
purpose is to unravel the signal from the transmitter after the signal has 
acquired some noise and other distractions while going through the channel. 
If the received signal is strong enough, it can be put directly into the mixer. 
However, as will be seen in a later chapter, the overall noise response of the 
amplifi er is greatly enhanced by using a low - noise amplifi er for the front end. 
The design of the low - noise amplifi er is described in detail in Chapter  8 .  

   1.5    ACTIVE DEVICE TECHNOLOGY 

 The fi rst RF vacuum devices made their appearance in the 1930s and today 
are still found to be the most reliable and effi cient high - power amplifi ers with 
power levels reaching up to 30   MW. Their demise is not likely to occur soon 
as is made evident by such things as the ubiquitous microwave oven. New 
device designs and new materials continue to improve the quality of vacuum 
tubes used in amplifi ers and oscillators. 

 The solid - state entrance to the RF arena began with two - terminal diodes. 
These included the Gunn diode, the impact avalanche transit time (IMPATT) 
diode, the trapped plasma avalanche triggered transit (TRAPATT), the tunnel 
diode, and even the  pn  junction (varactor diode) used in parametric amplifi ers. 
The three terminal GaAs  metal semiconductor fi eld - effect transistor  (MESFET) 
soon displaced the diodes in most applications. Even though the MESFET 
did not have as low a noise fi gure as the parametric amplifi er or the power 
(at the time) of an IMPATT, its stability and effi ciency was superior. 
Furthermore, its noise level was low enough for many practical applications. 
Subsequent arrivals were the AlGaAs/GaAs  heterojunction bipolar transistor  
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ACTIVE DEVICE TECHNOLOGY 9

(HBT) and the  high electron mobility transistor  (HEMT) all based on GaAs 
or other III – V materials. These classes of devices in some cases still provide 
the best performance for a variety of high - power, high - frequency applications. 
Engineers are starting to make use of GaN and SiC for high - power RF 
applications. The wide band gap of GaN (3.4   eV), high break down voltage, 
high drift velocity, and high thermal conductivity of these materials make 
them attractive for high - power  heterojunction fi eld - effect transistors  (HFET) 
devices. While self - heating and high fl icker noise has been a problem with 
the GaN devices, some resolution with the fl icker noise problem has been 
accomplished. 

 However, the world is made of silicon. Silicon has the advantage of being 
cheaper to manufacture than its GaAs cousins, has good thermal characteris-
tics, and most important has an entrenched manufacturing infrastructure. 
Silicon soon surpassed its predecessor, germanium. Within a few years the 
 complementary metal – oxide semiconductor  (CMOS) technology found favor 
in digital circuits because of its ability to integrate a large number of transis-
tors in a small space. The desire to integrate digital and analog applications on 
the same chip as well as to provide cost reduction relative to the GaAs devices 
has spawned much interest in RF CMOS designs. The progress in making small 
gate - length high - speed CMOS devices has provided the ability to make RF 
devices using CMOS technology. However, the mixed signal designs have 
required the sacrifi ce in the Early voltage, which is important in many analog 
circuits.  Laterally diffused metal – oxide semiconductor  (LDMOS) has also been 
used in power amplifi ers. Their high gain, linearity, and reliability have made 
them the best choice in many cellular base station applications. More recently, 
the SiGe  heterojunction bipolar transistor  (HBT) has been found to have many 
advantages over straight CMOS. These include superior fl icker noise, broad-
band noise, Early voltage, transconductance, and better tracking of  V  be  relative 
to the  V  t  of the MOSFET. The SiGe HBT does well with linearity, though not 
quite as well as the CMOS device. 

 In summary, there are a wide variety of devices available to the analog 
RF designer and with them a variety of specialized processing and circuit 
design techniques. It is the goal of the following chapters to provide basic 
circuit design techniques that can be applied to a wide variety of active 
devices. 

  PROBLEMS 

       1.1.    A pulse train is being transmitted through a channel at the maximum 
channel capacity of 25    ×    10 3  bits/s. The pulse train has 16 levels. 
   a.      What is the pulse width?  
   b.      The pulse width is doubled and sent back on the same channel. What 

number of levels is required?      
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10 INFORMATION TRANSFER TECHNOLOGY

    1.2.    A system can send out a signal at six different levels: 0, 1, 2, 3, 4, 5, each 
1   ms long. The probability of each of these levels occurring is 1/8, 1/8, 1/16, 
1/4, 3/8, 1/16, respectively. Each pulse value is independent of any previous 
pulse values. What is the total amount of information conveyed in 1 
second?       

  REFERENCE 

  1.       M.   Schwartz  ,  Information Transmission, Modulation, and Noise ,  3rd ed. ,  New York : 
 McGraw - Hill , Chapter 1,  1980 .   
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  CHAPTER TWO 

Resistors, Capacitors, and 
Inductors     

    2.1    INTRODUCTION 

 At radio frequencies, passive circuit elements typically have a more compli-
cated model than those used in lower frequency designs. The simple resistor, 
capacitor, or inductor cannot be counted on to provide a pure resistance, 
capacitance, or inductance in high - frequency circuits. Usually the  “ lumped ”  
element is best modeled as a combination of these pure elements. In addition, 
when the size of the element becomes larger than 0.1 wavelength in the circuit 
medium, the equivalent circuit may also include transmission lines.  

   2.2    RESISTORS 

 Integrated circuit resistors can be classifi ed into three groups: (1) semiconduc-
tor fi lms, (2) deposited metal fi lms, and (3) cermets (a mixture of metal and 
dielectric materials). Of these, only the fi rst two have found widespread use 
in high - frequency circuits. Semiconductor fi lms can be fabricated by diffusion 
into a host semi - insulating substrate by depositing a polysilicon layer or by ion 
implantation of impurities into a prescribed region. Polysilicon, or polycrystal-
line silicon, consists of many small submicron crystals of silicon with random 
orientations. 

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
Copyright © 2011 John Wiley & Sons, Inc.
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12 RESISTORS, CAPACITORS, AND INDUCTORS

   2.2.1    Resistor Types 

 The resistance value of an integrated circuit resistor depends on the conductiv-
ity of the channel through which the current is fl owing. In the diffused resistors 
in a semiconductor substrate, the conductivity is a function of the doping 
concentration and the carrier mobility. The conductivity is

    σ μ μ= +( )q n pn p     (2.1)   

 It is usually expressed in the units of ( Ω  - cm)  − 1 . In this expression,  q  is the 
electronic charge (1.602    ×    10  − 19 ) C,   μ   n  and   μ   p  are the electron and hole mobili-
ties (cm 2 /V - s), and  n  and  p  are the number of free electrons and holes, respec-
tively, available for conduction (cm  − 3 ). At room temperature, it may be assumed 
that all the impurity atoms in the semiconductor are ionized. This means that 
for an  n  - type semiconductor, the number of available electrons is equal to the 
donor impurity concentration:

    n Nn D≈     (2.2)   

 Similarly, for a  p  - type semiconductor, the number of holes equals the acceptor 
impurity concentration:

    p Np A≈     (2.3)   

 In either an  n  - type or  p  - type semiconductor, the relationship between the 
electron and hole concentrations is

    np n= i
2     (2.4)  

where  n  i     =    1.45    ×    10 10    cm  − 3  for silicon and 9.0    ×    10 6  for gallium arsenide. This 
is called the mass action law. Thus, for an  n  - type semiconductor, the conductiv-
ity is

    σ μ μ μ= +⎛
⎝⎜

⎞
⎠⎟

≈q N
n
N

q Nn D p
i

D
n D

2

    (2.5)   

 Typically, in integrated circuits,  n  - channel MOSFETs and  npn  bipolar transis-
tors are preferred because of the much larger electron mobility over that of 
the hole mobility. The total number of processing steps required in a circuit 
design often dictates the choice of resistor channel type. 

 Ideally, the diffused resistor with conductivity,   σ  , can be represented by the 
rectangular block shown in Fig.  2.1 . The resistance of the rectangular block is

    R
L
WT

=
σ

    (2.6)     
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RESISTORS 13

 It is often convenient to separate the  “ processing ”  aspects from the  “ layout ”  
aspects of the resistor. This is done by defi ning the sheet resistance in ( Ω / � ) as

    R
T

� = 1
σ

    (2.7)   

 so that the total resistance is

    R R
L
W

= �     (2.8)   

 The length - to - width ratio determines the resistance value once the conductiv-
ity and layer thickness is set. 

 Metal fi lms are made by evaporation of the desired metal on a substrate 
and the desired pattern determined by photo lithography. Metal fi lms are 
generally superior to the semiconductor fi lms in that metal fi lms are less sensi-
tive to changes in temperature and voltage. Table  2.1  shows some of the main 

     FIGURE 2.1     Diffused resistor of length  L , width  W , and height  T .  

T L

W

  TABLE 2.1    Resistor Materials 

   Resistor Type     Resistance  
   Temperature 
Coeffi cient     Voltage Coeffi cient  

  Diffused Si    10 – 100    Ω / �     1500   ppm/ ° C    200   ppm/V  
  Diffused GaAs    300 – 400    Ω / �     3000 – 3200   ppm/ ° C     —   
  Polysilicon    30 – 200    Ω / �     1500   ppm/ ° C    100   ppm/V  
  Ion implantation    0.5 – 2   k Ω / �     400   ppm/ ° C    800   ppm/V  
  AuGeNi (alloyed)    2    Ω / �      —       
  Thin fi lm Cr    13     μ   Ω  - cm    3000   ppm/ ° C      
  Thin fi lm Ti    55 – 135     μ   Ω  - cm    2500   ppm/ ° C      
  Thin fi lm Ta    180 – 220     μ   Ω  - cm     − 100 to  + 500   ppm/ ° C      
  Thin fi lm TaN    280     μ   Ω  - cm     − 180 to  − 300   ppm/ ° C      
  Thin fi lm Ni    7     μ   Ω  - cm     —       
  Thin fi lm NiCr    60 – 600     μ   Ω  - cm    200   ppm/ ° C      

  Sources:    From Pucel  [1] , Williams  [2] , and Allen and Holberg  [3] . 
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14 RESISTORS, CAPACITORS, AND INDUCTORS

properties of a variety of methods and materials. The temperature and voltage 
coeffi cients are measures of the percentage change in resistance as a function 
of a change in a given parameter. The defi nition of temperature coeffi cient is 
( dR / dT )/ R  and the voltage coeffi cient is ( dR / dV )/ R .    

   2.2.2    Resistance Determination from Layout 

 The layout shape of a resistor is typically simply a straight rectangular bar as 
shown in Fig.  2.1 . However, it may at times be better to try to have different 
shapes in order to optimize the overall layout of a circuit. A convenient 
method for determining the resistance between two points on any shape is the 
method of curvilinear squares. Of course, computer - based numerical methods 
such as the fi nite - element technique can also be used. However, using paper 
and pencil, in just 20 minutes an answer can be obtained to within 10 to 20% 
accuracy. 

 A curvilinear rectangle may be defi ned  “ as any area which is bounded on 
opposite sides by two fl ux lines, and on the other sides by two equipotential 
lines ”   [4] . These rectangles can be divided and subdivided into squares of ever 
decreasing size. Then based on Eq.  (2.8)  the total resistance can be found by 
counting the squares. 

 Rather than estimating the  “ squareness ”  of a curvilinear square, circles can 
be drawn between two fl ow lines using a compass or a template. Each curvi-
linear square has four sides tangent to the inscribed circle. 

 The curvilinear square method is illustrated in Fig.  2.2  and is accomplished 
in the following way: 

  1.     Draw fl ow lines between the two electrodes just as water would travel 
between the electrodes in a laminar fl ow. The spacing between two fl ow 
lines is less important than the shape of the fl ow lines. The fl ow lines 
should intersect the electrodes at right angles.  

  2.     Between two adjacent fl ow lines, draw a series of circles tangent to the 
fl ow lines and to each other.  

  3.     Draw equipotential lines between the circles orthogonal to the fl ow lines.  
  4.     If there is more rectangle left over than an integral number of circles, 

then draw circles in the remaining rectangle in the orthogonal direction. 
This is continued until the last rectangle is suffi ciently close to being a 
square.  

  5.     Starting with the smallest square, count all the squares in series. Invert 
and add to the next largest row of squares going in the orthogonal direc-
tion. Continue inverting and adding to the next larger row of squares.      

 As Fig.  2.2  shows, the fi rst step is to add the total number of the smallest 
squares. In this case the result is 2. Step 2 consists in inverting the result of 
step 1 and adding the remaining series squares, with the result   1

2 1 1 5+ = . . In 
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step 3, the result of step 2 is inverted and added to the remaining series squares. 
At the end of this step, the result is (1/1.5)    +    2    =    2.67. Finally, step 4 gives 
1/2.67    +    5    =    5.375. The resistance then in the indicated section of the resistor 
is 5.375 R   �  . These steps would be repeated for the other parallel fl ow lines 
to obtain the total resistance as a parallel combination. The most obvious 
application of this method to electrical engineers is in fi nding the resistance 
of an arbitrarily shaped resistor. However, it can also be applied in fi nding the 
magnetic reluctance in a magnetic circuit, capacitance, heat convection, and, 
of course, laminar fl uid fl ow. 

 There are a couple of other details that should be considered in predicting 
resistance values. One is that the rectangular bars of resistance are not really 
rectangular bars. The bottom is rounded and a better estimate can be found 
by taking this into account. Another complication is that somewhere a 
semiconductor - diffused resistor is going to have to come in contact with a 
metal. The resulting Schottky barrier can cause an additional voltage drop. 
Normally, an ohmic contact is used for this interface. An ohmic contact is 
formed by heavily doping the semiconductor at the point of contact with the 
metal. This essentially promotes tunneling of electrons through the barrier. 
Nevertheless, there is still some residual resistance from the contact. 
Consequently, the previously given expression for resistance, Eq.  (2.8) , should 
be modifi ed to incorporate the contact resistance,  R  c :

    R R
L
W

R
W

= +�
2 c     (2.9)   

     FIGURE 2.2     ( a ) Resistor shape with a fl ow line, ( b ) addition of tangential circles, 
( c ) drawing best - fi t curvilinear squares, and ( d ) expansion of the fractional curvilinear 
square from ( c ).  

(a) (b)
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16 RESISTORS, CAPACITORS, AND INDUCTORS

 A typical value for  R  c  is 0.25    Ω  - mm. 
 Active loads are often used in integrated circuits in place of passive loads 

where the required resistance value is fairly high. The primary advantage of 
the active load is its compact size relative to that of a large passive load. These 
are often used in common emitter  npn  transistor amplifi ers or FET amplifi ers 
as shown in Fig.  2.3 . In the cases shown, the base – collector, the gate – drain of 
the enhancement mode MOSFET, or the gate – source of the depletion mode 
MOSFET are shorted together. An active load can also be made in GaAs with 
a  “ saturated resistor ”   [5] . This structure is essentially a GaAs MESFET without 
a gate, and it is simpler to construct than the usual depletion mode FET with 
gate shorted to source. The saturation current in GaAs is reached at a rather 
low saturation fi eld of 3   kV/cm. This means that once saturation has occurred, 
there is a small increase in current with each increase in voltage. Consequently, 
a large effective resistance is obtained. The saturated resistor channel depth 
is effectively greater than that of the MESFET channel as shown in Fig.  2.4 . 
Consequently, for a given resistance value, the width of the saturated resistor 
would have to be made narrower. Resistance values of 8 to 10 k Ω  have been 
obtained  [5] . However, the simpler processing of the saturated resistor has 
given improved reliability and repeatability of these devices.     

     FIGURE 2.3     Active loads using ( a ) common emitter structure, ( b )  p  - channel enhance-
ment mode MOSFET load, and ( c )  n  - channel depletion mode MOSFET load.  

(a) (b) (c)

Vi Vi Vi

Vo
Vo Vo

R
I

     FIGURE 2.4     Charge distribution for ( a ) shorted gate - active load and ( b ) a saturated 
resistor.  

n GaAs n GaAs

SI GaAs SI GaAs

(b)(a)
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   2.3    CAPACITORS 

 Some of the most important parameters that need consideration in choosing 
a capacitance are (1) the capacitance value, (2) capacitance value tolerance, 
(3) loss or  Q , (4) temperature stability, (5) mechanical packaging and size, and 
(6) parasitic inductance. These criteria are interdependent, so often the appro-
priate compromises depend on the constraints imposed by the particular appli-
cation. This section will consider both hybrid and monolithic capacitor designs. 

   2.3.1    Hybrid Capacitors 

 Hybrid capacitors are available in both single - layer capacitors for high -
 frequency low - capacitance applications and multilayer capacitors for higher 
capacitance. Even for multilayer chip capacitors, the self - resonant frequency 
for a 0.1 - pF capacitor is over 10   GHz and for a 1000 - pF capacitor the self -
 resonant frequency of 250   MHz. These capacitors can be attached to printed 
circuit boards to provide high available capacitances with relatively low loss. 
Unlike low - frequency circuits, certain parasitic circuit elements must be 
accommodated in the overall design. The parasitic inductance is affected by 
the packaging since it is usually associated with the lead attachments to the 
capacitor and line length effects inside the capacitor. In low - frequency circuits, 
the effect of the inductance is so small that it can safely be neglected. However, 
at radio frequencies both the inductance and the metal losses often become 
signifi cant. Consequently, the equivalent circuit for a chip capacitor as devel-
oped by chip capacitor manufactures is shown in Fig.  2.5  and can sometimes 
be simplifi ed as simply a series  RLC  circuit. The additional parallel resistance, 
 R  p , is added to this equivalent circuit to model resistive losses caused by dielec-
tric loss. This parameter is the main loss at low frequencies in the hertz - to -
 kilohertz range, but at RF it becomes negligible when compared to  R  s . The 
impedance of the circuit is

    Z R
j
C

LC= + −( )s ω
ω 2 1     (2.10)     

 Consequently, the effective capacitance is frequency dependent:

     FIGURE 2.5     Typical equivalent circuit for a chip capacitor.  

Rp

Cp

Cs RsLs
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18 RESISTORS, CAPACITORS, AND INDUCTORS

    C
C

eff =
− ( )1 0

2ω ω
    (2.11)  

where   ω0 1= LC  is the self - resonant frequency. 
 While loss in capacitors is usually less than that in inductors, capacitor loss 

can still be signifi cant in circuit performance. Loss can be described in terms 
of dissipation factor (DF), loss tangent (tan     δ  ), the equivalent series resistance 
( R  s ), and  Q  cap . Since the circuit  Q  is assumed to result from a series  RLC  
confi guration,

    R
X

Q
s

c

cap

=     (2.12)   

 The loss terms then are related by

    tanδ = =DF
cap

1
Q

    (2.13)   

 The angle   δ      =    90    °     −      θ   where   θ   is the angle between the voltage and the 
current. In a lossless capacitor,   θ      =    90    ° . 

 In a capacitor, the dielectric is the primary source of loss. An RF fi eld can 
cause the dipole molecules in the dielectric to rotate at a rate proportional to 
the applied frequency and with a force proportional to electric fi eld strength. 
The rotation of these molecular dipoles is converted to heat loss. When  E  
is the electric fi eld and  f  is the frequency, the energy dissipation is given by 
the following empirical expression  [6] :

    E = × −E f2 6 355 5 10. tanε δr W cm     (2.14)   

 Some of the most widely used dielectric materials for capacitors are shown in 
Table  2.2 .   

 The BaTiO 3   ε  r     =    8000 material provides the most compact capacitor. 
However, it has a relatively poor temperature coeffi cient, tan     δ   shift with 
voltage, coeffi cient of expansion versus temperature, piezoelectric effects, and 
aging qualities because of its porosity. 

  TABLE 2.2    Loss Tangent (tan     δ  ) of Dielectric Materials 

   Dielectric     tan     δ   at Low Freq.     tan     δ   at 100   MHz     tan     δ   at 1   GHz  

  BaTiO 3   ε   r      =    8000     —     0.1     —   
  BaTiO 3   ε   r      =    1200    0.01    0.03    0.10  
  Ceramic (NPO)  ε   r      =    30    0.0001    0.002    0.10  
  Alumina  ε   r      =    9.8     —     0.0005     —   
  Porcelain (ATC 100)  ε   r      =    15     —     0.00007     —   
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 The BaTiO 3   ε  r     =    1200 capacitance varies by  + 15% from  − 55 to 125    ° C. 
When the BaTiO 3  materials are heated to about the Curie point, the value for 
 ε  r  jumps up about 10 to 15%. After cooling and waiting 10 hours, the dielectric 
constant drops back down only 3% of its peak value, and after 10,000 hours, 
it drops down only 7% of its peak value. As the voltage changes over a range 
of 30   V, the loss tangent increases from 0.01 to 0.1 at low frequencies. There 
are four crystalline phases for BaTiO 3  as it is heated up. The crystal changes 
from orthorhombic to tetragonal to cubic (which is near the Curie point). At 
each of these changes, there is an abrupt change in the mechanical size of the 
crystal  [7] . This has deleterious implications on solder joints of the capacitor. 

 The capacitance using NPO material varies with temperature  ± 30   ppm/ ° C. 
It moves in the negative direction, then in the positive direction exceeding the 
initial capacitance, and fi nally settling down near the original capacitance as 
the temperature rises. Hence, the name NPO. 

 The porcelain materials, such as ATC 100 from American Technical 
Ceramics, provide high  Q , no piezoelectric effects, no aging effects (since it is 
not a porous material), and temperature coeffi cient of  ± 30   ppm/ ° C up to 125    ° C. 
The coeffi cient of expansion of the porcelain capacitor is the same as alumina 
(Al 2 O 3 ). For this reason when mounted on an alumina substrate the two will 
expand the same amount. The series resistance at 1   GHz varies with the value 
of capacitance as shown in Table  2.3 .   

 For a 30 - pF BaTiO 3 ,  ε  r     =    1200 capacitor operating at 300   MHz, the resis-
tance can be as high as 1    Ω  and result in 0.3 -  to 3 - dB dissipation loss. In solid -
 state circuits that operate in high - current and low - voltage conditions, these 
losses can be quite signifi cant. The generated heat further degrades the loss 
tangent, which increases the heat dissipation. Thermal runaway can occur 
causing self - destruction. Of the materials shown in Table  2.2 , the porcelain 
material provides the best loss tangent, especially at frequencies in the 1 -  to 
3   GHz range. 

 The frequency range of a chip capacitor can be extended by the simple 
expedient of turning it on its side (Fig.  2.6 ). Resonances appear to be the result 

  TABLE 2.3    Resistance of 
Porcelain Capacitors 

    C  (pF)      R s   ( Ω )  

  5.6    0.38  
  10    0.27  
  20    0.19  
  30    0.16  
  40    0.13  
  50    0.12  

  100    0.088  

  Source:    Perna  [7] . 
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20 RESISTORS, CAPACITORS, AND INDUCTORS

of different path lengths of the path through the lower plates and upper plates 
of a multilayer capacitor. Turning the capacitor on its side tends to equalize 
the path lengths and eliminates all odd - order harmonic resonances  [7] .    

   2.3.2    Monolithic Capacitors 

 Capacitors in monolithic circuits are best avoided where possible because of 
the amount of real estate they occupy. Nevertheless, they are sometimes 
required. The capacitance tolerance is typically  ± 10%, and capacitance values 
range from 0.2 to 100   pF. There are four types of monolithic capacitors that 
might be used in integrated circuit designs: (1) open - circuit stub, (2) interdigi-
tal line, (3) metal – insulator – metal, and (4) varactor diode. 

 The open - circuit stub capacitance is simply an open - circuit transmission 
line whose length is less than   λ  /4. The capacitive susceptance is obtained from 
the transmission line equation:

    B Y
l

v
= ⎛

⎝⎜
⎞
⎠⎟0 tan

ω
c

    (2.15)   

 The value of the susceptance depends on the characteristic admittance,  Y  0 , of 
the transmission line, the length,  l , of the transmission line, and the substrate 
material that governs the velocity of the wave,  v  c . This open - circuit stub pro-
vides a shunt capacitance to ground. While the susceptance is not proportional 
to   ω   as in lumped capacitors, it is a good approximation when the argument 
of the tangent function is small. Line lengths can use a large amount of real 
estate at low frequencies, so typically the open - stub capacitor is most useful 
at frequencies greater than about 8   GHz. 

 The interdigital capacitor shown in Fig.  2.7 , unlike the open stub, provides 
series capacitance. It is most useful for capacitances less than 1   pF, and at 12 
to 14   GHz it typically has a  Q  of 35 to 50. The equivalent circuit shown in Fig. 
 2.7  includes series resistance and inductance, as well as some shunt capacitance 
to ground. The latter is caused by the metal – insulator – ground metal of the 
microstrip structure. The main series capacitance can be estimated from

    C N C= −( )f g1 �     (2.16)  

     FIGURE 2.6     Metallic conductors in ( a ) horizontal and ( b ) vertical orientation.  

(a) (b)
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where  N  f  is the number of fi ngers,   �   is the fi nger length, and  C  g  is the static 
gap capacitance per unit length between the fi ngers.   

 A third type of capacitor is the metal – insulator – metal capacitor (Fig.  2.8 ). 
Of the four monolithic capacitors, this is the most popular and is the most 
obvious. The dielectric thickness typically used is 0.1 to 0.4     μ  m. Losses can be 
reduced if the metal thickness is greater than 2 skin depths. The metal surface 
roughness should be as smooth as possible to reduce losses and avoid pin holes 
in the dielectric. Typically, the capacitance ranges from 50 to 300   pF/mm 2   [2] . 

     FIGURE 2.7     Interdigital capacitor layout and equivalent circuit.  

     FIGURE 2.8     Metal – insulator – metal capacitor and equivalent circuit.  

Metal

Metal

C

Dielectric
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When the conductor losses prevail over the dielectric losses, the conductor 
quality factor is  [1] 

    Q
R C A

c
s

=
( )
3

2 2ω �
    (2.17)     

 In this expression,  R  s  is the surface skin resistivity,  C  is the capacitance,  A  is 
the plate area, and   �   is length of the plate in the direction of the longitudinal 
microwave current fl ow. If the dielectric quality factor is

    Qd = 1
tanδ

    (2.18)   

 then the total  Q  is

    
1 1 1

Q Q QT d c

= +     (2.19)   

 The dielectric fi lms used in monolithic capacitors tend to be much higher than 
that obtained in the hybrid capacitors described above. Some typical metal –
 insulator – metal dielectric materials are shown in Table  2.4 . The variableness 
in the dielectric constant is a result of the variation in deposition methods, 
uniformity, and thickness.   

 The fourth way of obtaining capacitance is by means of the junction capaci-
tance of a Schottky diode. This capacitance is

    C
C

V
=

−( )
0

1 φ γ     (2.20)  

where   γ ≈ 1
2  [ 8 , p. 190]. When the applied voltage,  V , is zero, the capacitance 

is  C  0 . A major disadvantage of this capacitance is its voltage dependence rela-
tive to the built - in potential,   φ  .   

  TABLE 2.4    Monolithic Capacitor Dielectric Materials 

   Dielectric     Nominal   ε  r       Range of   ε  r       Temperature Coeffi cient ( ppm / ° C)  

  SiO 2     5    4 – 5    50 – 100    
  Si 3 N 4     7.5    5.5 – 7.5    25 – 35  
  Ta 2 O 5     21    20 – 25    200 – 400  
  Al 2 O 3     9    6 – 10    100 – 500  
  Polyimide    3.5    3 – 4.5     − 500  

  Source:    Pucel  [1]  and Williams  [2] . 
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   2.4    INDUCTORS 

 Inductors operating at radio frequencies have a variety of practical limitations 
that require special attention. A tightly wound coil in addition to providing a 
self - inductance also has heat loss due to the nonzero wire resistance, skin 
effect losses, eddy current losses, and hysteresis losses when a magnetic mate-
rial is used. Furthermore, two conductors close together at two different volt-
ages will also exhibit an interelectrode capacitance. At radio frequencies these 
effects cannot be neglected as easily as they could at lower frequencies. The 
equivalent circuit is shown in Fig.  2.9 . In this fi gure, the series resistance,  R  s , 
represents the conductor loss as well as the skin effect losses. The parallel 
resistance,  R  p , represents the effect of eddy current losses and the hysteresis 
loss in magnetic materials when present. The shunt capacitance,  C p  , is the 
capacitance found between the coils. Straightforward circuit analysis gives the 
impedance for this equivalent circuit:

    Z
R R R Ls

s LC R s R C R L R R
=

+
+ +( ) + +

p s p

p p s p p s p
2     (2.21)     

 If  R  p  is considered so large as to have negligible effect, and if the remaining 
series circuit  Q     =    1/  ω R  s  C  is large, then the effective inductance is approximately

    L
L

LC
eff

p

=
−1 2ω

    (2.22)  

and the effective resistance is

    R
R

LC
eff

s

p

=
−1 2ω

    (2.23)   

 Clearly, the presence of the capacitance dramatically increases the effective 
inductance and capacitance near the self - resonant frequency of the inductor. 

     FIGURE 2.9     Simple equivalent circuit for an inductor.  

Rp

Cp
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The self - capacitance of the inductor is a function of the coil - length - to - coil -
 diameter ratio,   �  / D , and has an optimum value  [9, 10] . The following sections 
will describe in greater detail the origin of the parasitic circuit elements for a 
practical RF inductor and some design methods for RF inductors. 

   2.4.1    Resistance Losses 

 The direct current (dc) fl owing through a wire with a cross - sectional area,  A , 
will encounter half the resistance if the area is doubled. At radio frequencies, 
the alternating current (ac) tends to fl ow near the surface of the conductor 
because of the skin effect. This can be illustrated by an electric fi eld impinging 
on a conductor whose resistance is not zero. The fi eld will penetrate into the 
conductor and will exponentially decay as it penetrates deeper:

    E x E e x( ) = −
0

δ     (2.24)  

where

    δ ρ
π μ

=
f

    (2.25)   

 In this equation  f  is the frequency,   ρ   is the resistivity, and   μ   is the permeability. 
Because of this skin depth, the resistance of a given wire with radius  R  will 
have a higher resistance at high frequencies than at direct current. The ac 
resistance is given by  [9] 

    

R
A
A

R

R

R R
R

R
R

R

ac
tot

skin
dc

dc

dc

=

=
− −( )

=
−

⎛
⎝⎜

⎞
⎠⎟

π
π π δ

π
πδ πδ

2

2 2

2

22

    

(2.26)   

 At high frequencies,

    R
R

Rac dc≈
2δ

    (2.27)   

 The possibility for  R  ac  to be infi nite or even negative clearly indicates that Eq. 
 (2.26)  has gone beyond its range of applicability. The problem is that the skin 
depth has become greater than twice the wire radius. Listed in Table  2.5  are 
the resistivities and skin depths of a few common metals.   

 Another important loss mechanism is called the proximity effect. When one 
conductor supporting a changing magnetic fi eld is brought close to another 
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conductor, currents will be induced on the second conductor in conformity 
with Faraday ’ s law. These currents are called  eddy currents , and they fl ow in 
closed paths so as to produce a magnetic fi eld that is in opposition to the 
originally applied external fi eld. These currents produce  joule heating . This is 
exactly the condition that occurs in a tightly wound inductive coil. When many 
wires are close together, the loss problem is compounded and the eddy current 
losses can be quite signifi cant. As an illustration of this, consider a coil with a 
length - to - diameter ratio of 0.7. If this coil is unwound and laid out as a straight 
wire, the losses would drop by a factor of 6 [ 9 , p. 47].  

   2.4.2    Magnetic Materials 

 A recurring problem is the need for a large value of inductance. An obvious 
solution is to increase the fl ux density within an inductor coil with the addition 
of a magnetic material having   high relative permeability   μ  r  . Most magnetic 
materials introduce losses that are unacceptable at radio frequencies. A variety 
of ferrite materials, however, have been found to have low loss at radio and 
microwave frequencies in comparison with most other magnetic materials. 
The relative permeability for ferrites is in the range 10    <      μ  r      <    150. Above 
the cutoff frequency,   μ  r   drops off quickly. The higher the permeability, the 
lower the cutoff frequency. Typically, for   μ  r      =    10,  f  cutoff     =    1   GHz. For   μ  r      =    150, 
 f  cutoff     =    20   MHz.  

   2.4.3    Solenoid Design up to 2   GHz  [11]   *   

 A design procedure for a single - layer solenoid is given below. The computer 
program, SOLENOID, follows the procedure outlined here and is described in 
Appendix  A . The given parameters for the analysis of a solenoid are the form 
length, number of turns ( n ), and the form diameter. The pitch is defi ned as

    Pitch
form length

inches=
n

    (2.28)   

  TABLE 2.5    Common Conductors 

   Metal     Conductivity ( Ω  - cm)  − 1      Skin Depth (cm)  

  Brass    1.57    ×    10 5     12.7 f    − 1/2   
  Aluminum    3.54    ×    10 5     8.46 f    − 1/2   
  Gold    4.27    ×    10 5     7.7 f    − 1/2   
  Copper    5.8    ×    10 5     6.61 f    − 1/2   
  Silver    6.14    ×    10 5     6.42 f    − 1/2   
  Mu - Metal    1.58    ×    10 8     0.4 f    − 1/2   

     *   Reprinted with permission,  Microwave Journal , Vol. 39, pp. 70 – 76.  
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 For maximum  Q , the wire diameter should be 0.6 to 0.7 of the value for the 
pitch. The wire diameter is selected from the standard wire sizes. For a given 
American wire gauge (AWG) value, the wire diameter is

    Wire diameter inches
AWG

= −( )
0 005

92 36 39

.     (2.29)   

 Another parameter is the turn diameter. It represents the diameter where 
the magnetic fl ux is generated. As shown in Fig.  2.10 , turn diameter    =    form 
diameter    +    wire diameter. With these quantities now defi ned, the analysis 
recipe can be followed:

   x = turn diameter
form length

    (2.30)  

    K
x x

n =
+ −

1
1 0 45 0 005 2. .

    (2.31)     

 When the wire diameter    =    0, the current sheet correction factor,  s , is set to 1. 
When the wire diameter  >  0, the  s  correction factor is needed. The  s  factor and 
fi nally the inductance, is found by fi rst fi nding  a  and  b  as shown below:

   a = ⎛
⎝⎜

⎞
⎠⎟

2 3 1 7310. log .
wire diameter

pitch
    (2.32)  

   b
n n

= − +⎛
⎝

⎞
⎠0 336 1

2 5 3 8
2

.
. .

    (2.33)  

   s
a b

nK
= − ( ) +( )

( )
1

2 form length
turn diameter nπ

    (2.34)  

    L
n

0

2 92 54 10= ( )[ ] × −π turn diameter
form length

.     (2.35)  

   L L K s= 0 n henries     (2.36)   

 The value,  L  0 , is the inductance of a closely wound coil with a fl at strip 
(wire diameter    =    0). The value,  K n  , is the Nagaoka correction factor and is 

     FIGURE 2.10     Inductor form cross section.  
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used when the wire length is not much larger than the turn diameter. The 
value,  s , is the current sheet correction factor and is needed when there is 
appreciable space between wire turns. Because  L  0  is not dimensionless, the 
lengths must be given in terms of inches. An example given in  [11]  illustrates 
the use of these expressions: 

  Pitch    =    0.0267 ( n     =    15)  
  Wire diameter    =    0.0187   in.  
  Turn diameter    =    0.2187   in.  
   x     =    0.5467  
   K  n     =    0.8035  
   a     =    0.1912  
   b     =    0.2857  
   s     =    0.954  
   L  0     =    674   nH  
   L     =    516.8   nH    

 A synthesis procedure is also available  [11] . The goal is to design a given 
value of inductance. Only a fi nite number of form diameters are available, so 
the form diameter will also be considered as a given quantity. From this, the 
number of turns  n  and the form length, FLEN, is found. 

 The inductance is a function of  n  and FLEN, and  L d   is the desired induc-
tance. An iterative procedure is followed where

   L L n1 1= ( ), FLEN     (2.37)  

    L L n n2 2 1 1= = ±( ), FLEN     (2.38)  

   n n L L
n n
L L

3 2 2
2 1

2 1

= − −( ) −
−d     (2.39)   

 This iteration loop is repeated until

    L n L, FLEN d( ) =     (2.40)   

 The equality is obtained, although with a noninteger value for  n . For printed 
circuit boards,  n  must be an integer. While the number of form diameters is 
limited, the form length can be cut to any desired length. Therefore the form 
length is adjusted to guarantee an integral  n . The procedure is to increase  n  
to the next higher integer value and adjust FLEN by an iterative scheme much 
like the previous one:

   L L n1 1= ( ), FLEN     (2.41)  

   L L n2 2= ( ), FLEN     (2.42)  

c02.indd   27c02.indd   27 9/17/2010   11:50:52 AM9/17/2010   11:50:52 AM



28 RESISTORS, CAPACITORS, AND INDUCTORS

    FLEN FLEN
FLEN FLEN

d3 2 2
2 1

2 1

= − −( ) −
−

L L
L L

    (2.43)   

 This iteration loop is repeated until

    L n L, FLEN d( ) =     (2.44)  

where  n  is an integer value. 
 Once  L ,  n , and FLEN are known, the  Q  factor and the parasitic capacitance 

can be found using the formulas given in  [11] . Using the value for  x  given in 
Eq.  (2.30) , a value for the capacitance is determined:

    C
x x

x
= ( ) +( ) +

turn diameter pF
0 301468 0 493025 0 227858. . .     (2.45)   

 The coil resonant frequency is then simply

    f
LC

r = 1

2π
    (2.46)   

 The value for  Q  is found from the empirical relationship for two cases where 
the turn diameter is in inches and  f  r  is in megahertz:

   A
x x x x

x
=

−( ) +[ ] + < <
−

58 6355 171 154 200 674 0 089708 0 2 1

0 751186

. . . . .

. 99 49018 42 506 68 1191 1 5. . .( ) +[ ] + < <
⎧
⎨
⎩ x x x

    (2.47)   

 The value for  Q  is then obtained from the two - step formula below:

    Q A f0 = ( )turn diameter     (2.48)  

   Q Q
f
f

= − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥0

2

1
r

    (2.49)   

 The procedure described above has been put in the form of the computer 
algorithm, SOLENOID. An example of the design of a 100 - nH inductor is 
found in Appendix  A  using this program.  

   2.4.4    Older Solenoid Formulas 

 Empirical formulas for solenoid designs have been proposed by many 
others, one of these authors being Wheeler  [12, 13] . In conformity with his 
notation, 2 a     ≈    turn diameter,  b     =    FLEN the form length, and  n  is the number 
of turns. In the 1928 study  [12]  where  a  and  b  are given in inches, the induc-
tance is
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    L
a n

a b
=

+
× −

2 2
6

9 10
10 H     (2.50)   

 A more accurate formula was published in 1982  [13] :

    L n a
a
b b a b a

= +⎛
⎝

⎞
⎠ +

+ ( ) + ( )
⎡

⎣
⎢

⎤

⎦
⎥μ π0

2
21

1

2 3 1 6 0 44
ln

. . .
H     (2.51)   

 This latter formula was taken to have an error  < 0.001 relative to a theoretical 
value. In this formula, 2.3    =    1/[ln(8/  π  )    −    0.5] and 0.44    =    6/(3  π   2     −    16). These last 
two formulas do not account for the wire diameter nor the wire spacing. 

 A numerical comparison of these formulas with those given in Section  2.4.3 , 
which were published in 1996, are shown in Table  2.6 . For these particular 
designs, the values show that the 1996 inductance values range from 7.5 to 
21% higher than those from the 1928 study.    

   2.4.5    Monolithic Spiral Inductors 

 Lumped monolithic inductors have been used in circuit designs as tuned loads 
for amplifi ers, fi lters to reduce out - of - band signals and noise, and as a means 
of enhancing stage gain by tuning out device or parasitic capacitances at the 
center frequency. Planar inductors have been implemented in practical systems 
for many years using a variety of different substrates. They were examined 
early in the development of silicon integrated circuits, but they were aban-
doned because of process limitations and losses in the series resistance and 
substrate that effectively reduced their operating frequency. Now, however, 
technological improvements have made them available for mobile communi-
cations systems. 

 Small inductances in the nanohenry range can be fabricated using printed 
circuit techniques. These have typically been done in either a rectangular or 

  TABLE 2.6    Solenoid Inductance Values 

   FLEN    =     b  
(in.)  

   Diameter    =    2 a  
(in.)      n   

    L  1996  (  μ  H) 
 [11]   

    L  1928  (  μ  H) 
 [12]   

    L  1982  (  μ  H) 
 [13]   

  1    0.2    20    0.4643    0.3670    0.3693  
  1    0.2    25    0.6938    0.5734    0.5770  
  1    0.2    30    0.9693    0.8257    0.8309  
  0.4    0.2    10    0.2430    0.2041    0.2053  
  0.4    0.2    15    0.5168    0.4592    0.4619  
  0.4    0.2    20    1.520    1.3559    1.3648  
  1    0.4    20    1.520    1.3598    1.3648  
  1    0.4    25    2.324    2.1186    2.1325  
  1    0.4    30    3.297    3.0508    3.0609  
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circular spiral shape. Both are widely used, but the circular spiral design seems 
to provide greater inductance per unit area of real estate. In determining the 
inductance in either case, the self - inductance of the structure must be supple-
mented by the mutual inductance of neighboring turns as well as the mutual 
inductance of its mirror image associated with the ground plane for microstrip. 
There are, in addition, capacitances between turns of the spiral and capaci-
tances to the ground. These capacitances are calculated from coupled microstrip 
line theory. A numerical implementation of the rectangular inductance based 
on  [14]  is provided. This study is heavily cited and does provide a comparison 
between the predicted and the measured inductance. 

 A comparison is made between square and circular inductors in  [15]  in 
which it is stated that square spirals provide less inductance than circular 
spirals for equivalent sized diameters, although the data seem ambiguous. This 
study uses a simple lumped - element equivalent circuit consisting of a series 
 R  –  L  circuit with shunt capacitances on either side to represent a single turn. 
However, the entire inductor is treated as a distributed circuit. 

 A design of a square inductor is described in  [16] , which is modeled like 
the one in  [15]  except that an additional resistance is added in series to the 
shunt capacitors to ground. A comparison is made with measured data and 
the design is incorporated into a low - pass fi lter design. 

 In an effort to increase the desired  Q  for an inductor, the ground plane 
under the square spiral is removed in  [17] . Excellent agreement is obtained 
up to 5   GHz. 

 An extensive study of over 100 inductors was made in  [18] . Comparisons 
were made between square, octagonal, and circular spirals. Empirically deter-
mined equivalent circuits were obtained based on measured data. The basic 
conclusions were that the resistance of circular or octagonal shaped spiral is 
10% lower than that for a square spiral inductor for the same inductance. 
Furthermore, it is better to maximize line spacing rather than maximizing line 
width to achieve high  Q . 

 The capacitance itself becomes a major part of the inductor model. An 
effort is made in  [19]  to predict the distributed capacitances of circular spiral 
inductors by means of a Green ’ s function analysis. Good agreement between 
predicted and measured values are obtained. 

 An actual determination of an equivalent circuit model for a spiral inductor 
was obtained in  [20] . The computer program is posted on the Web.  †   The 
 “ circular ”  spiral is a  p  - sided polygon of  n  turns with a total of  np  sections. Each 
section is modeled as shown in Fig.  2.11 . The analysis includes the effects of 
the internal impedance of each section as well as the magnetic and electric 
coupling to neighboring segments and the substrate. The primary advantages 
of using this analysis tool is the speed of computation (unlike a three -
 dimensional fi eld simulator), optimization, and the ability to analyze spiral 
transformers as well as inductors with various metalizations and shapes. The 

    †    ASITIC is found at  http://rfi c.eecs.berkeley.edu/ ∼ niknejad/asitic.html .  
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geometrical shape of the inductor depends on the area of the spiral, metal 
width, metal spacing, the number of turns, and frequency of operation. The 
appropriate choice for these parameters are aided by the ASITIC program.   

 An alternate approach approximates an  n  turn circular spiral as a set of  n  
concentric circular microstrips (Fig.  2.12 ). Each of these circular microstrips 
are modeled by an equivalent circuit shown in Fig.  2.11  where  R  L     =     R  q     =    0  [15] . 
The total equivalent circuit of the circular spiral is simply the cascade of each 
of the circular sections. The series resistance,  R , represents the resistive loss in 
the conductor. The resistance is be proportional to   f  because of the skin 
effect. The capacitances  C q   1  and  C q   2  are the capacitances to the ground plane, 
and  C  L  is the total coupling capacitance between neighboring turns. What is 
lacking here, but considered in  [20] , is that mutual coupling occurs for line 
segments that are not parallel. What is helpful though are the closed - form 
equations given in  [21]  for various types of inductor elements.   

 The capacitances are determined from coupled line theory in which each 
line can be excited with the same voltage (even mode) or equal but opposite 
signed voltages (odd mode). The actual capacitance is a linear combination of 
the even -  and odd - mode capacitances. The percentage of the even - mode and 
odd - mode capacitances between two adjacent turns of the spiral may be found 
based on the following approximations. For a given pair of adjacent concentric 
circular lines, assume there is a small break between the excitation of one loop 

     FIGURE 2.11     Spiral inductor modeled by a cascade of equivalent circuit sections  [21] .  
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     FIGURE 2.12     Spiral inductor can be approximated by concentric circular coupled 
lines.  
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and its end, 360    °  later (Fig.  2.12 ). There is a small connection from this point 
to the next loop. If the wave on the inner loop is excited by a 1 - V source of 
1    ×     e j   0    °  , then by the time it reaches the other end of the inner loop, the voltage 
is 1    ×     e j    Δ     φ   , where  Δ   φ   is the electrical length (circumference) of the inner loop. 
The outer loop is then excited by the voltage 1    ×     e j    Δ     φ   . Consequently, there is a 
voltage difference between the inner loop and the outer loop. The percentage 
of even - mode and odd - mode voltages between the two loops is a function 
of  Δ   φ  . 

 For the purpose of estimating the value for  Δ   φ  , the circumferences of the 
two circles will be assumed to be the average of the two circles:

    Δφ π β πβ= + =2
2

21 2r r
ravg     (2.52)  

where   β   is the propagation factor of the line in the given media. If  v  1  is the 
voltage at a certain position of the fi rst loop and  v  2  is the voltage on the second 
loop adjacent to  v  1 , then the corresponding even -  and odd - mode voltages are

    v v ve = +( )1
2 1 2     (2.53)  

   v v vo = −( )1 2     (2.54)   

 No information is lost in doing this since the original voltages  v  1  and  v  2  
are easily recovered if  v e   and  v o   are known. The percentage of even -  and 
odd - mode capacitances are proportional to the even -  and odd - mode 
voltages:

    %C
v

v v
e

e

e o

=
+

    (2.55)  

    %C
v

v v
o

o

e o

=
+

    (2.56)   

 In the equivalent circuit for a single turn of the spiral shown in Fig.  2.11 , the 
percentage of even - mode excitation determines the relative amount of even -  
and odd - mode capacitance components. For the even mode,

   CL = 0     (2.57)  

   C C C Ciq m f f= + + ′     (2.58)  

and for the odd mode

   C C CL ga ge= +     (2.59)  

    C C C iiq m f= + ′ = 1 2,     (2.60)   
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 In these expressions,  C  ga  and  C  ge  represent the gap capacitances between the 
lines through the air and through the dielectric, respectively. The capacitance, 
 C  m , represents the parallel - plate capacitance between the spiral conductor and 
the ground plane. This is modifi ed by the fringing capacitance,   ′Cf , between 
each of the two lines to ground (which is nonzero only for the even - mode 
excitation) and the fringing capacitance,  C  f , on the other side of the conductors. 
The even -  and odd - mode capacitances are added together in proportion to 
their even -  and odd - mode voltages:

   C C C CL o ga ge= + +( )0 %     (2.61)  

    C C C C C C C Ciq e f m f o m f= + + ′( ) + + ′( )% %     (2.62)   

 Detailed formulas for the circuit elements in Fig.  2.13  are found in  [21] , and 
some of these are summarized in Appendix  B .   

 Once the equivalent   π   circuit for the spiral section is known, the entire 
spiral inductor is modeled by cascading each of these sections. The  C  L ,  R , and 
 L  are combined into the single impedance  Z  p :

    Z
R sL

s LC sC R
p

L L

= +
+ +2 1

    (2.63)   

 The  ABCD  parameters described in Section  4.2  are used to cascade the indi-
vidual   π   circuits. Thus,

   A sC Z= +1 2q p     (2.64)  

   B Z= p     (2.65)  

     FIGURE 2.13     ( a ) Even -  and ( b ) odd - mode excitation of microstrip lines.  

Cf CffCm Cm

(a)

(b)

C′ fC′

Cf CfCm Cm
Cge

Cga
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    C s C C Z s C C= + +( )2
1 2 1 2q q p q q     (2.66)  

   D sC Z= +1 1q p     (2.67)   

 Each section of the spiral described in terms of an  ABCD  matrix may be 
cascaded together by simply multiplying  ABCD  matrices. The  C  in Eq.  (2.66)  
is a matrix element, not a capacitance. Once the total cascaded  ABCD  matrix 
is found, the input impedance may be determined:

    Z
AZ B
CZ D

in
L

L

= +
+

    (2.68)   

 The  Z L   is the load impedance on the output side of the spiral. If  Z L   is a short 
to ground, then the effective inductance of the spiral might be estimated by

    L
Z

eff
in= { }ℑ

ω
    (2.69)   

 In the cascade analysis, the capacitance,  C  q2 , from one section is the same as 
the  C  q1  of the subsequent section, and hence ought not to be counted twice in 
evaluating the cascaded equivalent circuit. One approach is to simply choose 
 C  q2     →     C  q2 /2 and  C  q1     →     C  q1 /2 except, of course, for the innermost and outer-
most coupled line section.   

   2.5    CONCLUSIONS 

 The basic components used in an RF transceiver are the same old resistors, 
inductors, and capacitors. However, at these high frequencies, these components 
may look and act a lot differently than their low - frequency counterparts. These 
differences arise from such things as the increasing importance of stray parasitic 
reactances, skin effect losses, and frequency dependence of materials. 

  PROBLEMS 

       2.1.    Calculate the resistance of a 1 - m long copper wire over a frequency range 
of 100   MHz to 1   GHz when (a) the diameter of the wire is 31.2 mils (AWG 
#20) and (b) when it is 10.0 mils (AWG #30). Plot your results of ac resis-
tance versus frequency.   

    2.2.    The diagram in Fig.  2.14  shows a piece of material with two terminals. 
The material is 1   cm thick. 
   a.      Determine the resistance between the two terminals if  R   �      =    2    Ω / � .  
   b.      Determine the capacitance between the two terminals if  ε     =    10    ×    10  − 14    F/

cm.        
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    2.3.    A cross section of a conductor is shaped in an irregular shape shown in 
Fig.  2.15  where the inner circle is one electrode and the outer ellipse is 
the other electrode. If the conducting material between these two elec-
trodes is made of a material in which  R   �   is 4    Ω / � , what is the resistance 
between the left and right side of the conductors? If the space between 
the two ends is fi lled with a dielectric where  ε  r     =    2, what is the capacitance 
between the two terminals? To do this derive an expression for  C   �   similar 
to  R   �  . You may wish to enlarge the drawing to achieve better accuracy.     

    2.4.    A capacitance is modeled as a series  RLC  circuit. If  C     =    20   pF and  R     =    5    Ω , 
what is the  Q  for this capacitor at 20   Mrad/s?   

     FIGURE 2.14     Cross - section geometry for Problem 2.2.  

     FIGURE 2.15     Cross - section geometry for Problem 2.3.  
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36 RESISTORS, CAPACITORS, AND INDUCTORS

    2.5.    You are asked to determine the inductance of a solenoid when the form 
length is 1.5 in., the form diameter is 0.3 in., and there are 12 turns. 
   a.      What wire diameter would you choose?  
   b.      What is the inductance?  
   c.      What is the self - resonant frequency of the inductor?          
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  CHAPTER THREE 

Impedance Matching     

    3.1    INTRODUCTION 

 A major part of RF design is matching one part of a circuit to another to 
provide maximum power transfer between the two parts. Even antenna design 
can be thought of as matching impedance of free space to a transmitter or 
receiver. This chapter describes a few techniques that can be used to match 
between two real impedance levels. While some comments will be made rela-
tive to matching to a complex load, the emphasis will be on real impedance 
matching. The fi rst part of this chapter will discuss the circuit quality factor, 
 Q . The  Q  factor is useful in certain matching circuit designs.  

   3.2    THE  Q  FACTOR 

 The circuit  Q  factor is defi ned as the ratio of stored to dissipated power in the 
following form:

    Q = ( )2π max instantaneous energy stored
energy dissipative perr cycle

    (3.1)   

 For a typical parallel  RLC  circuit, the  Q  becomes

    Q
C

G
= ω     (3.2)  

where  G  is 1/ R . For a series  RLC  circuit,

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
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40 IMPEDANCE MATCHING

    Q
L

R
= ω     (3.3)   

 It should be emphasized that  Q  is defi ned at circuit resonance. If the circuit 
reactance is plotted as a function of frequency, the slope of the reactance at 
resonance is a measure of  Q  (Fig.  3.1 ). This is explicitly given as  

    Q
G

dB
d

= ω
ω ω

0

2 0

    (3.4)  

where  B  is the susceptance and  G  the conductance. Alternately,

    Q
R

dX
d

= ω
ω ω

0

2 0

    (3.5)  

where  R  and  X  are the resistance and reactance of the circuit. For a series 
 RLC  circuit this latter formula will result in the solution given by Eq.  (3.3) . 
On the other hand, the  Q  of a complicated circuit can be readily obtained from 
Eq.  (3.4)  or (3.5), numerically if necessary.  

   3.3    RESONANCE AND BANDWIDTH 

 The minimum insertion loss or maximum transmission of a parallel  RLC  
circuit occurs at the resonant frequency of the circuit. When this circuit is 
excited by a current source, and the output is terminated with an open circuit, 
the transfer function is

    
V
I R j C j L

out

in

=
( ) + − ( )

1
1 ω ω

    (3.6)   

     FIGURE 3.1     Reactance slope related to  Q .  

X
High Q

Low Q

w
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 This is shown in Fig.  3.2 . The bandwidth is often defi ned when the output 
voltage,  V  out , drops from the resonant value by   2  (or  − 3   dB). This occurs 
when the denominator of the transfer function increases from 1/ R  at 
resonance to  

    1 2
R

j C
j
L R

+ − =ω
ω

    (3.7)   

 Equation  (3.7)  is a quadratic equation in   ω   2 :

    ω ω4 2 2 2 2 2 2 22 0C L R CLR L R− +( ) + =     (3.8)   

 Since the resonant frequency is   ω0 1= LC , and the parallel  Q  from Eq.  (3.2)  
is   ω   0  C / G     =     R /  ω   0  L , then Eq.  (3.8)  can be written in terms of  Q  and   ω   0 :

    ω ω ω ω ω4 2
0
2 0

2 2

2 0
42 0− +⎛

⎝⎜
⎞
⎠⎟

+ =L
R

    (3.9)  

   ω ω ω ω4 2
0
2

2 0
42

1
0− +⎛

⎝⎜
⎞
⎠⎟

+ =
Q

    (3.10)   

 The two solutions for   ω   2  are

    

ω ω

ω ω

2
0
2

2 2

2
0
2

2 2

1
1

2
1

1
1

4

1
1

4
1

1
1

4
1

4

= + ± +
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

= + ± + +

Q Q Q

Q Q Q Q22

2
0
2

2 2
1

1
4

1
2

1
1

4
1

2

⎧
⎨
⎩

⎫
⎬
⎭

= + ±
⎧
⎨
⎩

⎫
⎬
⎭

+ ±
⎧
⎨
⎩

⎫
⎬
⎭

ω ω
Q Q Q Q

    

(3.11)

   

 This has been written as a product of two equal terms, so that the original 
quartic equation has two pairs of equal roots. Taking the square root of 
Eq.  (3.11)  provides the two 3 - dB frequencies of the resonant circuit:

     FIGURE 3.2     Simple parallel resonant circuit.  

L CR

w1 w 0 w 2
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    ω ω1 2 0 2
1

1
4

1
2

, = + ±
⎧
⎨
⎩

⎫
⎬
⎭Q Q

    (3.12)   

 The 3 - dB bandwidth of the resonant circuit is the difference between the two 
3 - dB frequencies:

    Δω ω ω= − =2 1
1

RC
rad s     (3.13)   

 The response is clearly not symmetrical about the resonant frequency   ω   0 . The 
resonant frequency can be found by taking the geometric mean of the two 
solutions of Eq.  (3.12) .

    
ω ω ω

ω ω ω

1 2 0
2

2 2

0 1 2

1
1

4
1

2
1

1
4

1
2

= + −
⎡

⎣
⎢

⎤

⎦
⎥ + +

⎡

⎣
⎢

⎤

⎦
⎥

=

Q Q Q Q     

(3.14)

   

 However, for narrow bandwidths, the arithmetic mean of the two 3 - dB fre-
quencies can be used with small error.  

   3.4    UNLOADED  Q  

 In real physical reactive elements there are always some resistive losses. The 
loss in a capacitor or an inductor can be described in terms of its  Q . For 
example, if a lossy inductor is placed in parallel with a lossless capacitor, the 
 Q  of the resulting parallel circuit is said to be the circuit  Q  of the inductor. 
The inductor  Q  ind  then is

    Q CR
R

L
ind = =ω

ω0
0

    (3.15)   

 or

   R X Q= L ind     (3.16)   

 Similarly, for a lossy capacitor, its resistive component could be expressed in 
terms of the capacitor  Q  cap . If the inductor, capacitor, and a load resistance  R  L  
are placed in parallel, then the total resistance is  R  T :

    
1 1 1 1

R R Q X Q XT L ind L cap C

= + +     (3.17)   
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 At resonance,  X  L     =     X  C , so

    
X
R

X
R Q Q

L

T

L

L ind cap

= + +
⎡

⎣
⎢

⎤

⎦
⎥

1 1
    (3.18)   

 The unloaded  Q ,  Q u  , is the  Q  associated with the reactive elements only (i.e., 
without the load). The bracketed term is the unloaded  Q :

    
1 1 1

Q Q Qu ind cap

= +     (3.19)    

   3.5     L  CIRCUIT IMPEDANCE MATCHING 

 There are four possible confi gurations that will provide impedance matching 
with only two reactive elements. In each case, the design of the matching cir-
cuits is based on the  Q  factor, a concept that will become even more important 
in designing broadband matching circuits  [1] . Two of the circuits will be 
described as the  series connection  since the reactive element closest to the load 
resistance is a series reactance (Figs.  3.3  a  and  3.3  b ). The circuits with a shunt 
reactance closest to the load resistance are called the  shunt connection  (Figs. 
 3.3  c  and  3.3  d ). For the series connection in which the series reactance is an 
inductance, the total input admittance is given as follows:  

    

Y j C
R j L

R

R L
j C

L

R L

in = +
+

=
+ ( )

+ −
+ ( )

⎡

⎣
⎢

⎤

⎦
⎥

ω
ω

ω
ω ω

ω

1

2 2 2 2

    
(3.20)

   

     FIGURE 3.3     Four possible  L  matching circuits.  
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 Resonance occurs when the total shunt susceptance  jB     =    0. Thus,

    C
L

R L
=

+ ( )2
0

2ω
    (3.21)   

 Solution of this for the resonant frequency gives the following expression for 
the resonant frequency:

    ω0

2

2

1= −
LC

R
L

    (3.22)   

 The effect of the load resistor is to modify the resonant frequency somewhat. 
The conductive part of  Y  in  at this frequency (where  B     =    0) can be found. Its 
reciprocal is the input resistance,  R  ′ , of the circuit:

    
′ = +

= +( )
R

R L
R

R Q

2
0
2 2

1
21

ω
    

(3.23)
   

 The subscript 1 for  Q  is present to emphasize this is the fi rst resonator closest 
to the load. More complicated circuits might have several pertinent  Q  factors 
to consider. 

 At center frequency, the reactance of the series part (i.e., not the capaci-
tance part) will change with changing frequency. Its value can be found from 
the input admittance expression and is the amount the reactance changes 
because of the series inductance. This reactance change is

    jX j
R L

L
′ = + ( )
1

2
0

2

0

ω
ω

    (3.24)   

 If  X  1  represents the series reactance, which in this case is   ω   0  L , then the reac-
tance change of the series element can be found also in terms of  Q :

    jX jX
Q

′ = +⎛
⎝⎜

⎞
⎠⎟1 1

1
2

1
1

    (3.25)   

 The second element in the  LC  section is chosen to resonate out this   ′X1:

    jX jX jX
Q

2 1 1
1
2

1
1= − ′ = − +⎛

⎝⎜
⎞
⎠⎟     (3.26)   

 or with Eq.  (3.23) 
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    jX
jR

Q
2

1

= − ′
    (3.27)   

 In the typical synthesis problem,  R  ′  and  R  are known. Equation  (3.23)  gives 
the necessary value of  Q  1 , Eq.  (3.3)  gives the required  L , and Eq.  (3.26)  
or (3.27) gives the required  C  from  X  2 . This procedure is summarized in 
Table  3.1 .   

 A similar procedure can be applied for the shunt connection in which the 
shunt capacitance is closest to the load resistance. The input impedance is 
expressed as follows:

    

Z j L
G j C

G

G C
j L

C

G C

in = +
+

=
+ ( )

+ −
+ ( )

⎡

⎣
⎢

⎤

⎦
⎥

ω
ω

ω
ω ω

ω

1

2 2 2 2

    
(3.28)

   

 For resonance, the series reactance  X     =    0. Solution for the resonant frequency 
for the shunt connection is

    ω0

2

2

1= −
LC

G
C

    (3.29)   

 Substituting this back into the input impedance expression gives the input 
resistance:

    

′ =
+ ( )

=
+

R
G

C G

R
Q

1

1

1

0
2

1
2

ω
    

(3.30)
   

 The reactance associated with the capacitance is

   jX
j C

G C
′ = −

+ ( )1
0

2
0

2

ω
ω

  

  TABLE 3.1     L  Matching Circuit Design Where  X  1 ,  B  1  are Reactance or Susceptance 
Closest to the Load  R  

   Circuit      R  ′       jX  2       Q  1   

  Series              − +( )jX Q1 1
21 1  or  −  jR  ′ / Q  1      X  1 / R   

  Shunt              − +( )jX Q1 1
21 1  or  −  jR  ′  Q  1      B  1 / G   

R Q1 1
2+( )

R Q1 1
2+( )
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 Since  jX  1     =    1/ j ω C ,

    jX
jX

Q
′ =

+1
1

1
21 1

    (3.31)  

   = ′R Q1     (3.32)   

 Since   jX jX2 1= − ′, the values in Table  3.1  are obtained. The sign of  jX  2  must 
always be the opposite of  jX  1 . 

 The major feature that should be recognized, whether dealing with elabo-
rate lumped circuits or microwave circuits, if the impedance level needs to be 
raised, a series connection is needed. If the impedance needs to be lowered, a 
shunt connection is needed. Furthermore, since the design is based on a reso-
nance condition, the two reactances in the circuit must be of the opposite type. 
This means two inductors or two capacitors will not work.  

   3.6      π   TRANSFORMATION CIRCUIT 

 In the previous  L  matching circuit, the value for  Q  is completely determined 
by the transformation ratio. Consequently, there is no independent control 
over the value of  Q  that is related to the circuit bandwidth. Addition of a third 
circuit element gives fl exibility to design for bandwidth. If a design begins with 
a shunt  L  matching circuit, then addition of another shunt susceptance on the 
other side of the series element provides the necessary circuit fl exibility to be 
able to choose the circuit  Q  as a design parameter. The resulting   π   matching 
circuit is shown in Fig.  3.4 . In this circuit  B  1  and  X  2  both act as the impedance 
transforming elements while the third,  B  3 , is the compensation element that 
tunes out the excess reactance from the fi rst two elements. As in the  L  match-
ing circuit, the fi rst shunt element,  B  1 , reduces the resistance level by a factor 
of   1 1 1

2+( )Q  and  X  2  increases the resistance level by   1 2
2+ Q  where  Q  2  is a  Q  

factor related to the second element. The fi nal transformation ratio can be 
 R  ″     <     R  or  R  ″     >     R , depending on which  Q  is larger as shown in the diagram of 
Fig.  3.5 . To make  R  ″     <     R , make  Q  1     >     Q  2 . The maximum  Q ,  Q  max     =     Q  1 , will be 
the major factor that determines the bandwidth.   

 Now consider design of a circuit where  R  ″     <     R . Then the fi rst shunt trans-
formation gives

     FIGURE 3.4       π   Impedance transformation circuit.  

R″ RB1B3

X2
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π TRANSFORMATION CIRCUIT 47

   ′ =
+

R
R
Q1 1

2     (3.33)  

    ′ = − ′X R Q1     (3.34)   

 The incremental reactance,  X  ′ , is to be added to the series arm. This results in 
the circuit in Fig.  3.6 , which shows that  R  has been transformed to  R  ′  with a 
modifi ed series reactance. This series reactance will act to increase the resis-
tance level from  R  ′  to  R  ″ . The second transformation  Q  is  

   Q
X R Q

R
R X R Q

R
2

2 1 2 1= − ′
′

= ′ −( )
′

  

 or

    X
R

Q Q2
1 2′

= +     (3.35)   

 The  X  2 ,  B  3  combination is a series  L  section with  “ load ”  of  R  ′ . Consequently,

    ′′ = ′ +( )R R Q1 2
2     (3.36)  

   ′′ = − ′′
X

R
Q2

    (3.37)   

     FIGURE 3.5     Diagram showing two - step transformation.  

R″

R

R′

1+Q2
1 2

1+Q1
2

     FIGURE 3.6     Equivalent series reactance after fi rst transformation.  

R′

X2 = X2 – R′Q1′
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48 IMPEDANCE MATCHING

     FIGURE 3.7      T  transformation circuit.  

R″

X3 X1

B2 R

     FIGURE 3.8     Diagram showing impedance transformation for  T  circuit.  

R′

R″

R

1

1+Q2
21+Q1

2

  TABLE 3.2      π   Matching Circuit Design Formulas 

   Step Number      R  ″     <     R       R  ″     >     R   

  1     Q  1     =     Q  max      Q  2     =     Q  max   
  2                  
  3                  
  4     X  2     =     R  ′ ( Q  1     +     Q  2 )     X  2     =     R  ′ ( Q  1     +     Q  2 )  
  5     B  1     =     Q  1 / R      B  1     =     Q  1 / R   
  6     B  3     =     Q  2 / R  ″      B  3     =     Q  2 / R  ″   

′ = +( )R R Q1 1
2 ′ = ′′ +( )R R Q1 2

2

1 2
2+ = ′′ ′Q R R 1 1

2+ = ′Q R R

 A summary for the design process is shown in Table  3.2 . To make  R  ″     <     R , 
make  Q  1     >     Q  2  where  Q  1     =     Q  max  and follow the design steps in the fi rst column 
of Table  3.2 . For  R  ″     >     R , use the second column.    

   3.7     T  TRANSFORMATION CIRCUIT 

 The  T  transformation circuit is the dual to the   π   transformation circuit and is 
shown in Fig  3.7 . In this circuit, however, the series reactance  X  1  fi rst raises 
the resistance level to  R  ′ , and the remaining shunt susceptance lowers the 
resistance level as indicated in Fig.  3.8 . The design formulas are derived in the 
same way as the   π   circuit formulas and are summarized in Table  3.3 .      
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TAPPED CAPACITOR TRANSFORMER 49

   3.8    TAPPED CAPACITOR TRANSFORMER 

 The tapped capacitor circuit is another approximate method for obtaining 
impedance - level transformation. The description of this design process will 
begin with a parallel  RC  to series  RC  conversion. Then the tapped  C  circuit 
will be converted to an  L  - shaped matching circuit. The  Q  1  for an equivalent 
load resistance,  R  eqv , will be found. Finally, a summary of the circuit synthesis 
procedure will be given. 

   3.8.1    Parallel - to - Series Conversion 

 Shown in Fig.  3.9  is a parallel  RC  circuit that will be forced to have the same 
impedance as the series  RC  circuit, at least at one frequency. The conversion 
is, of course, valid for only a narrow frequency range, so that this method is 
fundamentally limited by this approximation.   

 The impedance of the parallel circuit is

    Z
R

sC R
p

p

p p

=
+1

    (3.38)   

 The  Q  for a parallel circuit is  Q  p     =      ω C  p  R  p . The equivalent series resistance 
and reactance in terms of  Q  p  are

  TABLE 3.3     T  Matching Circuit Design Formulas 

   Step Number      R  ″     >     R       R  ″     <     R   

  1     Q  1     =     Q  max      Q  2     =     Q  max   
  2                  
  3                  
  4     X  1     =     Q  1  R      X  1     =     Q  1  R   
  5     B  2     =    ( Q  1     +     Q  2 )/ R  ′      B  2     =    ( Q  1     +     Q  2 )/ R  ′   
  6     X  3     =     Q  2  R  ″      X  3     =     Q  2  R  ″   

′ = +( )R R Q1 1
2 ′ = ′′ +( )R R Q1 2

2

1 2
2+ = ′ ′′Q R R 1 1

2+ = ′Q R R

     FIGURE 3.9     Parallel  RC  to series  RC  conversion.  

Cp Lp

Ls

Cs

=
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50 IMPEDANCE MATCHING

   R
R

Q
seqv

p

p

=
+1 2     (3.39)  

    X
X Q

Q
seqv

p p

p

= −
+

2

21
    (3.40)    

   3.8.2    Conversion of Tapped  C  Circuit to an  L  - Shaped Circuit 

 The schematic of the tapped  C  circuit is shown in Fig.  3.10  where  R  ′  is to be 
matched to  R  2 . The parallel  R  2  C  2  section is converted to a series  R  eqv  C  eqv , as 
indicated in Fig.  3.11 . Making use of Eqs.  (3.39)  and  (3.40) ,  

    C C
Q

Q
C Qseqv

p

p
pfor high=

+⎛
⎝⎜

⎞
⎠⎟

≈2

2

2 2
1

    (3.41)  

   R R
R

Q
seqv

p

= =
+

2
21

    (3.42)  

where  Q  p     =      ω   0  C  2  R  2 . Considering  R  ′  as the load, and using the  L  circuit trans-
formation for a shunt circuit in Table  3.1 ,

    R
R

Q
seqv = ′

+1 1
2     (3.43)   

 This is the transformed resistance looking through  C  1  toward the left. Looking 
toward the right through  C  seqv  and again using the parallel - to - series conversion 
Eq.  (3.39) ,

     FIGURE 3.10     Tapped  C  transformation circuit.  

R′

C1

C2 R2

L

     FIGURE 3.11     Intermediate equivalent transformation circuit.  

R′

C1 Cseqv

L R = Rseqv
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    R
R

Q
seqv

p

=
+

2
21

    (3.44)   

 These two expressions for  R  seqv  can be equated and solved for  Q  p :

    Q
R
R

Qp =
′

+( ) −⎡
⎣⎢

⎤
⎦⎥

2
1
2

1 2

1 1     (3.45)    

   3.8.3    Calculation of Circuit  Q  

 An approximate value for  Q  can be found by equating the impedances of the 
two circuits in Fig.  3.12 :  

    Z
R L jR L

R L
R j L= ′ + ′

′ + ( )
= ′ +ω ω

ω
ω

2 2 2

2 2 eqv eqv     (3.46)   

 If the  Q  of the right - hand circuit is approximately that of the left - hand circuit 
in Fig.  3.12 , then

    Q
L

R
R L

R L
R

L
1

0 0
2

0
2 2

0

=
′

= ′
′

= ′ω ω
ω ω

eqv

eqv

    (3.47)   

 The variable  C  represents the total capacitance of  C  1  and  C  seqv  in series as 
implied in Fig.  3.11  and represented in Fig.  3.12 . For a high -  Q  circuit, circuit 
analysis gives the resonant frequency:

    ω0
2

2 2

1 1=
− ′

≈
LC L R LC

    (3.48)   

 As a result, the approximate value for  Q  1  can be found:

    Q R C
f
f

1 0
0= ′ =ω

Δ
    (3.49)   

 Here  Δ  f  is the bandwidth in hertz and  f  0  is the resonant frequency.  

     FIGURE 3.12     Equate the left -  and right - hand circuits.  

R′ R′

C CLeqv

eqvL Z ZQ1
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52 IMPEDANCE MATCHING

   3.8.4    Tapped  C  Design Procedure 

 The above ideas are summarized in Table  3.4 , which provides a design proce-
dure for the tapped  C  matching circuit. Similar expressions could be found for 
a tapped inductor transforming circuit, but such a circuit is typically less useful 
because high  Q  inductors are more diffi cult to obtain than capacitors.     

   3.9    PARALLEL DOUBLE - TUNED TRANSFORMER 

 Each of the above described  T ,   π  , or tapped  C  matching circuits provide some 
control over the bandwidth. Where precise control over the bandwidth is 
required, a double - tuned circuit allows controlling bandwidth by specifying 
two different frequencies where maximum transmission occurs. For a small 
pass band, the midband dip in the transmission coeffi cient can be made small. 
Furthermore, the double - tuned circuit is especially useful when a large differ-
ence in impedance levels is desired, although its high end frequency range is 
limited. The fi lter transmission gain is shown in Fig.  3.13 .   

 The double - tuned circuit consists of a coupled coil transformer with 
resonating capacitances on the primary and secondary side. This circuit is 
shown in Fig.  3.14 . The transformer is described by its input and output 
inductance as well as the coupling coeffi cient  k . The turns ratio for the trans-
former is  

    n
L

k L
: :1 111

2
22

=     (3.50)   

 The circuit in Fig.  3.14  can be replaced by an equivalent circuit using an ideal 
transformer (Fig.  3.15  a ). Since an ideal transformer has no self - inductance, the 
inductances and coupling factor,  k , must be added to the ideal transformer. 
The fi nal circuit topology is shown in Fig.  3.15  b ). Looking toward the right 
through the ideal transformer, the circuit values in Fig.  3.15  b ) are  

  TABLE 3.4    Tapped  C  Matching Circuit Design Formulas 

   Step Number     Tapped  C  Formula  

  1     Q  1     =     f  0 / Δ  f   
  2          
  3          
  4          
  5     C  2     =     Q  p /  ω   0  R  2   
  6          
  7     C  1     =     C  seqv  C /( C  seqv     −     C )  

C Q R R= ′( ) = ′( )1 0 1 2ω π Δ
L C= 1 0

2ω
Q R R Qp = ′( ) +( ) −[ ]2 1

2 1 2
1 1

C C Q Qseqv p p= +( )2
2 21
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    ′ = −⎛
⎝

⎞
⎠L L

k
2 11 2

1
1     (3.51)  

   ′ = ⎛
⎝⎜

⎞
⎠⎟

C
k L

L
C2

2
22

11
2     (3.52)  

   ′ =R
L

k L
RL L

11
2

22

    (3.53)   

 The circuit elements will be chosen to give an exact match at the two fre-
quencies,  f  m1  and  f  m2 . The circuit in Fig.  3.15  b  can be conceptually split into 
two (Fig.  3.16 ). The resistance  R  1  with the parallel resonant circuit will never 

     FIGURE 3.13     Double - tuned transformer response.  

GT

fm1 fm2

     FIGURE 3.14     Real transformer with resonating capacitances.  

RG

M

C1 L11 C2 RLL22

     FIGURE 3.15     ( a ) Alternate equivalent circuit with ideal transformer and ( b ) fi nal 
equivalent circuit.  

RG RLC1 L11

RG RLC1 C2L11

(b)

(a)

n:1 L22(1–k2)

C′2

L′2

c03.indd   53c03.indd   53 9/17/2010   11:51:16 AM9/17/2010   11:51:16 AM



54 IMPEDANCE MATCHING

be larger than  R  G . The right - hand side is an  L  matching circuit with the reac-
tance of the shunt element monotonically decreasing with frequency. Hence, 
 R  2  monotonically decreases. Consequently, if  R  L  is small enough, there will be 
two frequencies where  R  1     =     R  2 . This is illustrated in Fig.  3.17 .   

 A design procedure for the parallel double - tuned circuit has been reviewed 
in  [1]  and is summarized below.The typical synthesis problem is to design a 
circuit that will match  R  G  and  R  L  over a bandwidth,  Δ  f , at a center frequency, 
 f  0 , with a given pass - band ripple. The bandwidth and center frequency are 
approximated by the following: 

  1.     Determine  f  m1  and  f  m2  from  Δ  f  and  f  0 :

    Δf f f≈ −( )2 2 1m m     (3.54)  

   f f f0 1 2≈ m m     (3.55)   

 The minimum pass - band gain for the fi lter is dependent on the difference 
between the match frequencies: The larger the distance between  f  m1  and 
 f  m2 , the larger the dip in the center of the pass - band characteristic:

    G
f f

f f f f
T

m m

m m m m
,min =

( ) + +
4

2 1
2 1

2 1
2

2 1

    (3.56)   

 Equation  (3.56)  provides an approximation to the minimum gain at the 
center of the pass band, so that it predicts whether a chosen ripple factor 
can be met.  

     FIGURE 3.16     Double - tuned circuit split into two.  
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     FIGURE 3.17     Plot of left -  and right - hand resistance values vs. frequency.  
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PARALLEL DOUBLE-TUNED TRANSFORMER 55

  2.     Determine the actual transducer gain for the given ripple factor:

    GT
ripple factor dB= − ( )10 10     (3.57)    

  3.     Determine the resistance ratio  r . If  G  T     >     G  T,min , then the pass - band ripple 
specifi cation can be met.

    r
G

G
= + −

− −
1 1
1 1

1 2

1 2
T

T

    (3.58)    

  4.     Calculate the  Q  2  at the two matching frequencies:

    Q r
f
f

2 1
2 1

2

1− = −m
m

m

    (3.59)  

    Q r
f
f

2 2
2 2

1

1− = −m
m

m

    (3.60)    

  5.     Solve the following simultaneous equations for   ′L2  and   ′C2 :

    − ′ +
′

=
+−

−
ω

ωm
m

m
m

1 2
1 2

2 1
2 1
2

1
1

L
C

Q
R
Q

G     (3.61)  

    + ′ −
′

=
+−

−
ω

ωm
m

m
m

2 2
2 2

2 2
2 2
2

1
1

L
C

Q
R
Q

G     (3.62)    

  6.     Find the value for   ′RL :

    ′ = +
′

−R
Q
C R

L
m

m G

1 2 1
2

1
2

2
2ω

    (3.63)    

  7.     Calculate the input susceptance of the right - hand side where   ′ = ′G RL L1 :

    B
j L G j C

m
m L m

1
1 2 1 2

1
1

=
′ + ′ + ′( )

⎧
⎨
⎩

⎫
⎬
⎭

Im
ω ω

    (3.64)  

    B
j L G j C

m
m L m

2
2 2 2 2

1
1

=
′ + ′ + ′( )

⎧
⎨
⎩

⎫
⎬
⎭

Im
ω ω

    (3.65)    

  8.     Solve the following simultaneous equations for  L  11  and  C  1 :

   
1

1 11
1 1 1ω

ω
m

m m
L

C B− =     (3.66)  

    
1

2 11
2 1 2ω

ω
m

m m
L

C B− = −     (3.67)    
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56 IMPEDANCE MATCHING

  9.     Find the transformer coupling coeffi cient, and hence  L  22  and  C  2 :

    k
L L

=
+ ′

1

1 2 11

    (3.68)  

   L
L R
k R

L

L
22

11
2

=
′

    (3.69)  

   C
L

k L
C2

11
2

22
2= ′     (3.70)      

 This procedure has been coded into the program DBLTUNE, and an 
example of its use is given in Appendix  B . 

 The parallel double - tuned transformer makes use of a coupled coil. 
Sometimes coupled - coil transformers can be implemented in an integrated 
circuit with coupled spiral coils. This was referenced in Section  2.4.5  relative 
to using the ASITIC program.  

   3.10    CONCLUSIONS 

 This chapter has provided a variety of circuits that can be used to transform 
one impedance level to another. Impedance matching is required in many 
places within a transceiver, especially in the amplifi ers. However, the circuit 
designs described in this chapter do not provide accurate bandwidth specifi ca-
tions, nor do they make use of transmission lines. These topics will be consid-
ered later in Chapters  5  and  6 .   

 PROBLEMS 

       3.1.    The graph in Fig.  3.18  shows the susceptance of a circuit as well as the 
frequency response. 
   a.      From these graphs determine the  Q  of the circuit.  
   b.      Determine the equivalent circuit that would approximate this fre-

quency response. Give numerical values for the resistive and reactive 
components.        

    3.2.    Design an impedance transforming network that matches a generator 
resistance,  R  G     =    400    Ω  to a load resistance  R  L     =    20    Ω . The center frequency 
for the circuit is  f  0     =    6   MHz. The desired ripple (where appropriate) is to 
be less than 0.25   dB. In some cases, the ripple factor will not be able to be 
controlled in the design. The problem is to design four different transfor-
mation circuits with the above specifi cations, and for each design do an 
analysis using SPICE. See Appendix  G , Sections  G.1  and  G.2 . 
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   a.      Design a two - element  L  matching circuit and check the results with 
SPICE.  

   b.      Design a three - element tapped capacitor matching circuit with a band-
width  Δ  f     =    50   kHz and check the results with SPICE to determine the 
actual bandwidth.  

   c.      Design a three - element   π   matching circuit with a bandwidth of 
 Δ  f     =    50   kHz and check the results with SPICE to determine the actual 
bandwidth.  

   d.      Design a double - tuned transformer matching circuit with a bandwidth 
of  Δ  f     =    50   kHz and check the results with SPICE to determine the 
actual bandwidth.  

   e.      Repeat part (d) for a 3 - dB bandwidth of 2   MHz. Again check the 
results using SPICE.      

    3.3.    The   π   matching circuit shown in Fig.  3.4  is used to match the load, 
 R     =    1000    Ω  to  R  ″     =    80    Ω . If the intermediate resistance level is  R  ′     =    20    Ω , 
determine the following: 
   a.      What is  Q  1 ?  
   b.      What is  Q  2 ?  
   c.      What is  B  1 , the fi rst susceptance nearest  R ?  
   d.      What is the estimated 3 - dB bandwidth for this circuit in terms of the 

center frequency,  f  0 ?      

    3.4.    The tapped capacitor transformer is to be used in a narrow band of fre-
quencies around   ω      =    4    ×    10 9    rad/s. In designing the matching circuit, the 
tapped  C  circuit is converted to an  L  matching circuit. If  R  2  in Fig.  3.10  is 
50    Ω ,  C  2     =    8   pF, and  C  1     =    5.0   pF, then what is the total capacitance for the 
 L  matching circuit?   

    3.5.    A lossless   π   matching circuit has a load resistance  R     =    340    Ω . The center 
frequency is   ω   0     =    20    ×    10 6    rads/s and the bandwidth is  Δ   ω      =    5    ×    10 6    rad/s. 
It is also known that the series element in the   π   circuit is  L  2     =    6     μ  H. 

     FIGURE 3.18     Susceptance and frequency response for Problem 3.1.  
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58 IMPEDANCE MATCHING

   a.      Determine the matching generator resistance that is smaller than the 
load.  

   b.      Determine the susceptance at the load side.  
   c.      Determine the susceptance at the generator side.      

    3.6.    Determine the impedances that would match both sides of the two - port 
circuit in Fig.  3.19 .     

    3.7.    Show that the part of the circuit in Fig.  3.14  consisting of  L  11 ,  L  22 , and  M  
is equivalent to the part of the circuit in Fig.  3.15  a  consisting of  L  11 ,  L  22 , 
 n , and  k . This can be done by equating corresponding  z  parameters of 
both circuits. Recall that  k  2     =     k  1  k  2 ,   M k L L= 11 22 , and  n     =     L  11 / M .     

  REFERENCE 
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     FIGURE 3.19     Circuit for Problem 3.6.  
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  CHAPTER FOUR 

Multiport Circuit Parameters 
and Transmission Lines     

    4.1    VOLTAGE – CURRENT TWO - PORT PARAMETERS 

 A linear  n  - port network is completely characterized by  n  independent excita-
tion variables and  n  dependent response variables. These variables are the 
terminal voltages and currents. There are four ways of arranging these inde-
pendent and dependent variables for a two - port circuit that are particularly 
useful, especially when considering feedback circuits. They are the impedance 
parameters ( z  matrix), admittance parameters ( y  matrix), hybrid parameters 
( h  matrix), and the inverse hybrid parameters ( g  matrix). These four sets of 
parameters are defi ned as:
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z z

z z

i

i
1

2

11 12

21 22

1

2

⎡
⎣⎢
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= ⎡
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    (4.4)   

 Two networks connected in series (Fig.  4.1 ) can be combined by simply adding 
the  z  parameters of each network together. This confi guration is called the 
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60 MULTIPORT CIRCUIT PARAMETERS AND TRANSMISSION LINES

 series – series  connection. In the  shunt – shunt  confi guration shown in Fig.  4.2 , the 
two circuits can be combined by adding their  y  matrices together. In the  series –
 shunt  confi guration (Fig.  4.3 ), the composite matrix for the combination is 
found by adding the  h  parameters of each circuit together. Finally, the circuits 
connected in the  shunt – series  confi guration (Fig.  4.4 ) can be combined by 
adding the  g  parameters of the respective circuits. In each case the indepen-
dent variables for the particular confi guration are the same for each of the 

     FIGURE 4.1     Series – series connection.  

Z2

Z1ZG

ZL [Zc] = [Z1] + [Z2]
+

–
VG

     FIGURE 4.2     Shunt – shunt connection.  

Y2

Y1

YL [Yc] = [Y1] + [Y2]YGIG

     FIGURE 4.3     Series – shunt connection.  

H2

H1

YL [Hc] = [H1] + [H2]

VG

+

–

ZG

     FIGURE 4.4     Shunt – series connection.  

G2

G1

ZL [Gc] = [G1] + [G2]YGIG

c04.indd   60c04.indd   60 9/17/2010   11:52:09 AM9/17/2010   11:52:09 AM
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individual circuits; thus matrix addition is valid most of the time. The case 
where the matrix addition is not valid occurs when, for example, in Fig.  4.1  a 
current going in and out of port 1 of circuit 1 is not equal to the current going 
in and out of port 1 of circuit 2. These pathological cases will not be of concern 
here, but further information is found in [ 1 , pp. 188 – 191] where a description 
of the Brune test is given.   

 Any of the four types of circuit parameters described above can be repre-
sented by an equivalent circuit with controlled sources. As an example, the 
impedance (or  z ) parameters can be represented as shown in Fig.  4.5 . The input 
port 1 side is represented by a series resistance of value  z  11  together with a 
current - controlled voltage source with gain  z  12  in series. The controlling current 
is the port 2 current. If the current at port 1 is  i  1  and the current at port 2 is 
 i  2 , then the voltage at port 1 is  

   v i z i z1 1 11 2 12= +   

 A similar representation is used for the port 2 side. 
 The individual impedance parameters are found for a given circuit by 

setting  i  1  or  i  2  to 0 and solving for the appropriate  z  parameter. The  z  param-
eters are sometimes termed the  open - circuit parameters  for this reason. The  y  
parameters are sometimes called the  short - circuit parameters  because they are 
found by shorting the appropriate port. The conversion of these parameters is 
summarized in Appendix  D .  

   4.2     ABCD  PARAMETERS 

 Two - port networks are often cascaded together, and it would be useful to be 
able to describe each network in such a way that the product of the matrices 
of each individual network would describe the total composite cascaded 
network. The  ABCD  parameters have the property of having the port 1 vari-
ables being the independent variables and the port 2 variables being the 
dependent ones:

    
v

i

A B

C D

v

i
1

1

2

2

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥ −

⎡
⎣⎢

⎤
⎦⎥

    (4.5)   

     FIGURE 4.5     Equivalent circuit for  z  parameters.  

z11

+

–

+

–

+

–

z22 i2i1

v1

+

–

v2i2z12 i1z21
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62 MULTIPORT CIRCUIT PARAMETERS AND TRANSMISSION LINES

 This allows the cascade of two networks to be represented as the matrix 
product of the two circuits expressed in terms of the  ABCD  parameters. The 
 ABCD  parameters can be expressed in terms of the commonly used  z  
parameters:

    A
v
v

z
zi

= =
=

1

2 0

11

212

    (4.6)  

    B
v
i zv

z= − =
=

1

2 0 212

Δ
    (4.7)  

    C
i
v zi

= =
=

1

2 0 212

1
    (4.8)  

    D
i
i

z
zv

= − =
=

1

2 0

22

212

    (4.9)  

where

    Δz z z z z� 11 22 21 12−   

 In addition, if the circuit is reciprocal so that  z  12     =     z  21 , then the determinate of 
the  ABCD  matrix is unity, namely

    AD BC− = 1     (4.10)    

   4.3    IMAGE IMPEDANCE 

 A generator impedance is said to be matched to a load when the generator 
can deliver the maximum power to the load. This occurs when the generator 
impedance is the complex conjugate of the load impedance. For a two - port 
circuit, the generator delivers power to the circuit, which in turn has a certain 
load impedance attached to the other side (Fig.  4.6 ). Consequently, maximum 
power transfer from the generator to the input of the two - port circuit occurs 
when it has the appropriate load impedance,  Z  L . The optimum generator 
impedance depends on both the two - port circuit itself and its load impedance. 
In addition, the matched load impedance at the output side will depend on 
the two - port itself as well as the generator impedance on the input side. Both 
sides are matched simultaneously when the input side is terminated with an 
impedance equal to its image impedance,  Z  I1 , and the output side is terminated 
with a load impedance equal to  Z  I2 . The actual values for  Z  I1  and  Z  I2  are 
determined completely by the two - port circuit itself and are independent of 
the loading on either side of the circuit. Terminating the two - port circuit in 
this way will guarantee maximum power transfer from the generator into the 
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input side and maximum power transfer from a generator at the output side 
(if it exists).   

 The volt – ampere equations for a two - port circuit are given in terms of their 
 ABCD  parameters as

    v Av Bi1 2 2= −     (4.11)  

    i Cv Di1 2 2= −     (4.12)   

 If the input port is terminated by  Z  I1     =     v  1 / i  1 , and the output port by  Z  I2     =  
  v  2 /( −  i  2 ), then both sides will be matched. Taking the ratio of Eqs.  (4.11)  and 
 (4.12)  gives

    

Z
v
i

Av i B
Cv i D

AZ B
CZ D

I

I

I

1
1

1

2 2

2 2

2

2

= = −( ) +
−( ) +

= +
+

    
(4.13)

   

 The voltage and current for the output side in terms of these parameters of 
the input side are found by inverting Eqs.  (4.11)  and  (4.12) :

    v Dv Bi2 1 1= −     (4.14)  

    i Cv Ai2 1 1= −     (4.15)   

 If the output port is excited by  v  2  as shown in Fig.  4.7 , then the matched load 
impedance is the same as the image impedance:  

     FIGURE 4.6     Excitation of a two - port circuit at port 1.  

ZI1

ZG

ABCD

i1 –i2

+

–

+

–
v1

+

ZL = ZI2

–
v2

     FIGURE 4.7     Excitation of a two - port circuit at port 2.  

ZI2

ABCD

i1 –i2 ZL

+

–

+

–
v1

+

–
v2ZG = ZI1
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    Z
v
i

Dv i B
Cv i A

DZ B
CZ A

I
I

I
2

2

2

1 1

1 1

1

1

= = −( ) +
−( ) +

= +
+

    (4.16)   

 Equations  (4.13)  and  (4.16)  can be solved to fi nd the image impedances for 
both sides of the circuit:

    Z
AB
CD

I1 =     (4.17)  

    Z
DB
AC

I2 =     (4.18)   

 When a two - port circuit is terminated on each side by its image impedance, 
so that  Z  G     =     Z  I1  and  Z  L     =     Z  I2 , then the circuit is matched on both sides simul-
taneously. The input impedance is  Z  I1  if the load impedance is  Z  I2  and vice 
versa. 

 The image impedance can be written in terms of the open - circuit  z  
parameters and the short - circuit  y  parameters by making the appropriate 
substitutions for the  ABCD  parameters (see Appendix  D ):

    Z
z
y

I1
11

11

=     (4.19)  

    Z
z
y

I2
22

22

=     (4.20)   

 Therefore, an easy way to remember the values for the image impedances is

    Z z zI oc sc1 1 1=     (4.21)  

    Z z zI oc sc2 2 2=     (4.22)  

where  z  oc1  and  z  sc1  are the input impedances of the two - port circuit when the 
output port is an open circuit or a short circuit, respectively. 

 As an example consider the simple T circuit in Fig.  4.8 . The input impedance 
when the output is an open circuit is  

    z Z Zoc a b1 = +     (4.23)  

     FIGURE 4.8     Example T circuit.  

Za Zc

Zb
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and the input impedance when the output is a short circuit is

    z Z Z Zsc a b c1 = +     (4.24)   

 The image impedance for the input port for this circuit is

    Z Z Z Z Z ZI a b a b c1 = +( ) +( )     (4.25)  

and similarly for the output port

    Z Z Z Z Z ZI c b c b a2 = +( ) +( )     (4.26)   

 The output side of the two - port circuit can be replaced by another two - port 
circuit whose input impedance is  Z  I2 . This is possible if  Z  I2  is the image imped-
ance of the second circuit and the load of the second circuit is equal to its 
output image impedance, say  Z  I3 . A cascade of two - port circuits where each 
port is terminated by its image impedance would be matched everywhere (Fig. 
 4.9 ). A wave entering from the left side could propagate through the entire 
chain of two - port circuits without any internal refl ections. There, of course, 
could be some attenuation if the two - port circuits contain lossy elements.   

 The image propagation constant,   γ  , for a two - port circuit is defi ned as

    e
v i

v i
v
v

Z
Z

γ =
−( )

=1 1

2 2

1

2

2

1

I

I

    (4.27)   

 If the network is symmetrical so that  Z  I1     =     Z  I2 , then  e  γ       =     v  1 / v  2 . For the general 
unsymmetrical network, the ratio  v  1 / v  2  is found from Eq.  (4.11)  as

   

v
v

Av Bi
v

A
B

Z

A B
AC
BD

A
D

AD BC

1

2

2 2

2

2

= −

= +

= +

= +( )

I
  

     FIGURE 4.9     Chain of matched two - port circuits.  
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 Similarly,

   

i
i

CZ D

D
A

AD BC

1

2
2−( )

= +

= +( )

I

  

 The image propagation constant is obtained from Eq.  (4.27) :

    e
v i

v i
AD BCγ =

−( )
= +1 1

2 2

    (4.28)   

 Also,

    e AD BC− = −γ     (4.29)   

 When the circuit is reciprocal,  AD     −     BC     =    1. Now if Eqs.  (4.28)  and  (4.29)  are 
added together and then subtracted from one another, the image propagation 
constant can be expressed in terms of hyperbolic functions.

    coshγ = AD     (4.30)  

    sinhγ = BC     (4.31)   

 If  n  represents the square root of the image impedance ratio, the  ABCD  
parameters can then be written in terms of  n  and   γ  .

    
n

Z
Z

A
D

� I

I

1

2

=

    

(4.32)

  

    A n= coshγ     (4.33)  

    B nZ= I2 sinhγ     (4.34)  

    C
nZ

= sinhγ
I2

    (4.35)  

    D
n

= coshγ     (4.36)   

 Hence, from the defi nition of the  ABCD  matrix, Eq.  (4.5) , the terminal volt-
ages and currents can be written in terms of  n  and   γ   :

    v v n i nZ1 2 2 2= −cosh sinhγ γI     (4.37)  
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    i
v

nZ
i
n

1
2

2

2= −
I

sinh coshγ γ     (4.38)   

 Division of these two equations gives the input impedance of the two - port 
circuit when it is terminated by  Z  L :

    Z
v
i

n Z
Z Z
Z Z

in I
L I

L I

= = +
+

1

1

2
2

2

2

tanh
tanh

γ
γ

    (4.39)   

 This is simply the transmission line equation for a lumped - parameter network 
when the output is terminated by  Z  L     =     v  2 /( −  i  2 ). A clear distinction should be 
drawn between the input impedance of the network,  Z  in , which depends on 
the value of  Z  L , and the image impedance  Z  I2 , which depends only on the 
two - port circuit itself. For a standard transmission line,  Z  I1     =     Z  I2     =     Z  0  where 
 Z  0  is the characteristic impedance of the transmission line. Just as for the image 
impedance, the characteristic impedance does not depend on the terminating 
impedances, but is a function of the geometrical features of the transmission 
line itself. When the lumped - parameter circuit is lossless,   γ      =     j β   is pure imagi-
nary and the hyperbolic functions become trigonometric functions:

    Z n Z
Z jZ
Z jZ

in I
L I

I L

= +
+

2
2

2

2

tan
tan

β
β

    (4.40)  

where   β   is real. For a lossless transmission line of electrical length   θ      =      ω  �  / v ,

    Z Z
Z jZ
Z jZ

in
L

L

= +
+0

0

0

tan
tan

θ
θ

    (4.41)  

where   ω   is the radian frequency,   �   is the length of the transmission line, and  v  
is the velocity of propagation in the transmission line medium.  

   4.4    TELEGRAPHER ’ S EQUATIONS 

 A transmission line consists of two conductors that are spaced considerably 
less than a quarter wavelength apart. The transmission line is assumed to 
support only a transverse electromagnetic (TEM) wave. The transmission line 
might support higher order modes at higher frequencies, but it is assumed here 
that only the TEM wave is present. This assumption applies to the vast number 
of two conductor transmission lines used in practice. A transmission line may 
take a wide variety of forms: Here it will be represented as a two - wire transms-
sion line (Fig.  4.10 ). This line is represented as having a certain series induc-
tance per unit length,  L , and a certain shunt capacitance per unit length,  C  
(Fig.  4.11 ). The inductance for the differential length is thus  L     dz , and the 
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capacitance is  C     dz . If the incoming voltage and current wave entering port 1 
is  V     =     v  1  and  I     =     i  1 , respectively, then the voltage at port 2 is  

   v V
V
z

dz2 = + ∂
∂

  

 so that the voltage difference between ports 1 and 2 is

    v v
V
z

dz L dz
I
t

2 1− = ∂
∂

= − ∂
∂

    (4.42)   

 The negative sign for the derivative indicates the voltage is decreasing in going 
from port 1 to port 2. Similarly, the difference in current from port 1 to port 
2 is the current going through the shunt capacitance:

    i i
I
z

dz C dz
V
t

2 1− = ∂
∂

= − ∂
∂

    (4.43)   

 The telegrapher ’ s equations are obtained from (4.42) and (4.43):

    
∂
∂

= − ∂
∂

V
z

L
I
t

    (4.44)  

    
∂
∂

= − ∂
∂

I
z

C
V
t

    (4.45)   

     FIGURE 4.10     Two - wire representation of transmission line.  

Z Z0

z = –L z = 0

ZLV 
+

I 
+ I 

–

+

_
V 

–

+

_

     FIGURE 4.11     Circuit model of a differential length of transmission line where ( a ) is 
the lossless line and ( b ) is the lossy line.  
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 Differentiation of Eq.  (4.44)  with respect to  z  and Eq.  (4.45)  with respect to  t  
and then combining produces the voltage wave equation:

    ∂
∂

= ∂
∂

2

2 2

2

2

1V
z v

V
t

    (4.46)   

 In similar fashion the current wave equation can be found:

    ∂
∂

= ∂
∂

2

2 2

2

2

1I
z v

I
t

    (4.47)   

 The velocity of the wave is

    v
LC

= 1
    (4.48)   

 The solution for these two wave equations given below in terms of the arbitray 
functions  F  1  and  F  2  can be verifi ed by substitution back into Eqs.  (4.46)  and 
 (4.47) :

    V z t F t
z
v

F t
z
v

,( ) = −⎛
⎝

⎞
⎠ + +⎛

⎝
⎞
⎠1 2     (4.49)  

    I z t
Z

F t
z
v

F t
z
v

,( ) = −⎛
⎝

⎞
⎠ − +⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

1

0
1 2     (4.50)   

 The most useful function for  F  1  and  F  2  is the exponential function exp[ j (  ω t     ±      β z )] 
where   β      =      ω  / v . The term,  Z  0 , is the same characteristic impedance used in Eq. 
 (4.41)  for the transmission line. For the telegrapher ’ s equations it is

    Z
L
C

Lv
Cv

0
1= = =     (4.51)   

 The units for  L  and  C  are given in terms of henries per unit length and farads 
per unit length. These are to be distinguished from  L  and  C  used in lumpded -
 element circuit theory.  

   4.5    TRANSMISSION LINE EQUATION 

 The transmission line equation was determined in Section  4.3  for a cascade of 
lumped - element matched circuits. It is the input impedance of a transmission 
line terminated with a load,  Z  L , and it can also be found directly from analysis 
of a transmission line itself. The transmission line is characterized by its 
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mechanical length,   �  , and its characteristic impedance,  Z  0 . The characteristic 
impedance of a transmission line is a function only of the geometry and dielec-
tric constant of the material between the conductors and is independent of its 
terminating impedances. This is similar to the image impedance for lumped -
 element circuits. The input impedance of the transmission line depends on   �  , 
 Z  0 , and  Z  L . When terminated with a nonmatching impedance, a standing wave 
is set up in the transmission line where the forward -  and backward - going volt-
ages and currents are as indicated in Fig.  4.10 . At the load,

    V V VL = ++ −     (4.52)  

    I I IL = −+ −     (4.53)   

 Since the forward current wave is  I   +      =     V   +  / Z  0  and the reverse current wave is 
 I    −      =     V    −  / Z  0 , the current at the load is

    I
V V

Z
V
Z

L
L

L

= − =
+ −

0

    (4.54)   

 Replacing  V  L  above with Eq.  (4.52) , the voltage refl ection coeffi cient can be 
determined:

    Γ = = −
+

−

+

V
V

Z Z
Z Z

L

L

0

0

    (4.55)   

 If the transmssion line is lossy, the refl ection coeffi cent is actually

    Γ = = −
+

−

+

V
V

Z Z
Z Z

L

L

0

0

*
    (4.56)   

 The phase velocity of the wave is a measure of how fast a given phase moves 
down a transmission line. This is illustrated in Fig.  4.12  where  e j ω t   time depen-
dence is assumed. If time progresses from  t  1  to  t  2 , then in order for  e j   (    ω t    −     β z   )  to 
have the same phase at each of these two times, the wave must progress in the 
forward direction from  z  1  to  z  2 . Consequently,  

     FIGURE 4.12     Forward directed propagating wave.  

i1 i2

z1 z2 z
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   0 2 1 2 1= −( ) − −( )β ωz z t t   

 giving the phase velocity

    v
z
t

= =Δ
Δ

ω
β

    (4.57)   

 This is to be distinguished from the group velocity,

   v
d
d

g = ω
β

  

 which is a measure of velocity of energy fl ow. For low loss media,  v g v     =     c  2 / ε  
where  c  is the velocity of light in a vacuum. The negative - going wave, of course, 
has a phase velocity of  −   ω  /  β  . 

 This traveling wave corresponds to the solution of the lossless telegrapher ’ s 
equations. The total voltage at any position,  z , along the transmission line 
would be the sum of the forward -  and backward - going waves:

    V z V e V ej z j z( ) = ++ − − +β β     (4.58)   

 The total current at any point  z  is by Kirchhoff ’ s law the difference of the two 
currents:

    I z
Z

V e V ej z j z( ) = −( )+ − − +1

0

β β     (4.59)   

 At the input to the line (or left side) where  z     =     −   �  , the ratio of Eqs.  (4.58)  and 
 (4.59)  gives the input impedance:

    Z Z
V e V e
V e V e

j z j z

j z j zin = +
−

+ − − +

+ − − +0

β β

β β
    (4.60)  

    = +
−

− +

− +Z
e e
e e

j z j z

j z j z0

β β

β β

Γ
Γ

    (4.61)   

 At the position  z     =     −   �  

    Z Z
Z jZ
Z jZ

in
L

L

= +
+0

0

0

tan
tan

β
β
�
�

    (4.62)   

 If the propagation constant is the complex quantity   γ      =      α      +     j β  , then

    Z Z
Z Z
Z Z

in
L

L

= +
+0

0

0

tanh
tanh

γ
γ
�
�

    (4.63)   
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 A few special cases illustrates some basic features of the transmission line 
equation. If  z     =    0,  Z  in (0)    =     Z  L  no matter what  Z  0  is. If  Z  L     =     Z  0 , then  Z  in ( z )    =     Z  0  
no matter what  z  is. For a quarter wavelength line,   Z z Z Zin L=( ) =λ 4 0

2 . The 
input impedance for any length of line can be readily calculated from 
Eq.  (4.62)  or by using the Smith chart.  

   4.6    SMITH CHART 

 The Smith chart, as shown in Fig.  4.13 , is merely a plot of the transmission line 
equation on a set of polar coordinates. The refl ection coeffi cient is really an 

     FIGURE 4.13     Smith chart.  
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TRANSMISSION LINE STUB TRANSFORMER 73

alternate way of expressing the input impedance relative to some standard 
value ( Z  0 ), which is typically 50    Ω . The refl ection coeffi cient,  Γ , has a magnitude 
between 0 and 1 and a phase angle between 0    °  and 360    ° . The equations 
describing the radii and centers of the circles of the coordinates of the Smith 
chart are found by solving the normalized version of Eq.  (4.60) :  

    ζ
β

β= + = = +
−

−

−r jx
Z
Z

e
e

j

j
in

0

2

2

1
1

Γ
Γ

�

�
    (4.64)   

 Solution of the real part of Eq.  (4.64)  gives the center of the resistance 
circles as ( r /(1    +     r ), 0) with a radius of 1/(1    +     r ). Solution of the imaginary part 
gives the center of the reactance circles as (1, 1/ x ) with a radius of 1/ x  [ 2 , 
pp. 121 – 129]. 

 The Smith chart can be used as a computational tool, and it often gives 
insight where straight equation solving will not. It is also a convenient plotting 
tool of measured or calculated data, since any passive impedance will fall 
within its boundaries.  

   4.7    TRANSMISSION LINE STUB TRANSFORMER 

 In Chapter  3  a variety of lumped - element impedance transformers were 
described. Impedance transformation can also be achieved using a simple 
transmission line circuit with a shunt or series stub. The shunt stub design is 
the most practical for the most common types of transmission lines. When the 
transmission line and stub lengths are a small fraction of a wavelength, the 
circuit can be practical for the upper RF range. Impedance matching can be 
done using either short - circuit or open - circuit stubs. Impedance matching can 
be done using shunt or series stubs. Finally, it can be done with one, two, or 
three stubs as described by Collin  [3] . 

   4.7.1    Matching a Real Load Impedance 

 Consider the shunt stub circuit shown in Fig.  4.14 . The load admittance,  Y  L , is 
to be matched to the generator side whose admittance is  Y  G     =     Y  0 . A distance, 
 d , is determined so that the admittance looking toward the load just to the 
right side of the stub is  

    ′ = +Y Y jBin 0     (4.65)   

 When  Y  L  is real as is assumed here, then  d  2     =    0 and  Γ  L     =      ±  | Γ  L | in Fig.  4.14 . At the 
intersection of the main line and the shunt stub, the shunt stub is designed to 
produce a shunt admittance of  −  jB , which cancels the susceptance of   ′Yin  in 
leaving

    Y Y jB Y jB jB Yin in= ′ − = + − =0 0     (4.66)   
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74 MULTIPORT CIRCUIT PARAMETERS AND TRANSMISSION LINES

 Because of the periodicity of the tangent function, there are many solutions 
for  d  and shunt stub length   �  . The admittance repeats for each added half 
wavelength,  n λ  /2. Usually it is wise to choose the smallest values for  d  and   �   
in order to minimize frequency sensitivity. The end of the stub may be either 
a short or an open circuit to ground. When the stub length is shorter than a 
quarter wavelength, then

    B =
( )

− ( )
⎧
⎨
⎩

tan

cot

β
β
�

�
open circuit

short circuit
    (4.67)   

 Knowing the sign of the required susceptance determines whether to use an 
open -  or a short - circuited stub to achieve the minimum distance,   �  . 

 The characteristic admittance used in each of the transmission lines can be 
any realizable value, but for simplicity the value is chosen to be the system 
characteristic admittance,  Y  0 . Then the only two design parameters that need 
to be found are  d  and   �  . 

 The load admittance is assumed to be real, so that  Y  L     =     G  L . This restriction 
will be removed later. At a distance  d  from the load,

    ′ = + = +
+

Y Y jB Y
G jY
Y jG

in
L

L
0 0

0

0

tan
tan

θ
θ

    (4.68)  

    Y G jY Y jB Y jG0 0 0 0L L+( ) = +( ) +( )tan tanθ θ     (4.69)  

where   θ      =      β d . The real and imaginary parts of this equation are

    Y G Y BG0 0
2

L L= − tanθ     (4.70)  

    jY jY B G0
2

0tan tanθ θ= +( )L     (4.71)   

 which are, respectively,

     FIGURE 4.14     Open -  or short - circuit stub - matching circuit with  Y  L  complex. When  Y  L  
is real,  d  2     =    0 and  Γ  L     =      ±  | Γ  L |.  

Y0

Y0

Open or
Shortl

Y0Y0

–|�L|

d1 d2

d

YL
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TRANSMISSION LINE STUB TRANSFORMER 75

    tanθ = −( )Y Y G
BG

0 0 L

L

    (4.72)  

    B Y G= −( )0 L tanθ     (4.73)   

 Substitution of Eq.  (4.73)  into Eq.  (4.72)  gives

    tanθ = ± Y
G

0

L

    (4.74)   

 A useful alternative form makes use of the trigonometric double - angle 
formula

    tan
cos
cos

2 1 2
1 2

θ θ
θ

= −
+

    (4.75)   

 so that

    cos2 0

0

θ = −
+

G Y
G Y

L

L

    (4.76)  

    d
G Y
G Y

= −
+

⎛
⎝⎜

⎞
⎠⎟

λ
π4

0

0

arccos L

L

    (4.77)   

 The ambiguity in the sign for the   GL  in Eq.  (4.74)  is used to determine the 
stub length   �  . The  +  sign is chosen when 0    <      β d  1     <      π  /2 or when 0    <     d  1     <      λ  /4. 
The    −    sign is chosen when   λ  /4    <     d  1     <      λ  /2. From Eqs.  (4.73)  and  (4.74) 

    B Y
Y G

G
= −

0
0 L

L

    (4.78)   

 The transmission line equation gives the input admittance for a short - circuit 
stub as

    Y jB jY jYstub = − = − −0 0cot cotβ φ� �     (4.79)   

 so that from Eq.  (4.78) 

    cotφ = −Y G

G Y
0

0

L

L

    (4.80)   

 or

    � =
−

⎛
⎝⎜

⎞
⎠⎟

λ
π2

0

0

arctan
G Y

Y G
L

L

    (4.81)   
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76 MULTIPORT CIRCUIT PARAMETERS AND TRANSMISSION LINES

 The design is complete since the characteristic admittance and length of 
each line section have been found. The design of the open - circuit stub is similar 
and will be given after considering matching to a complex load.  

   4.7.2    Matching a Complex Load Impedance 

 The voltage across the transmission line varies sinusoidally as a function of 
the position along the line. At a certain point, the voltage will reach a minimum 
as inferred by Eq.  (4.58) :

    V z V e ej z j z( ) = +( )+ − β βΓ     (4.82)   

 Since  Γ     =    | Γ | exp( j ψ  ), then at a certain point,  d  2 ,  Γ  will be negative and real 
(Fig.  4.14 ):

    Γ Γd2( ) = −     (4.83)   

 Here the admittance is maximum and real:

    Y d Y Y2 0 0
1
1

1
1

( ) = −
+

= +
−

Γ
Γ

Γ
Γ

    (4.84)  

    = Y S0     (4.85)   

 The variable,  S , is the voltage standing - wave ratio, which is a scalar ratio of 
the maximum to minimum voltage on the transmission line. Moving from the 
load admittance,  Y  L , a distance  d  2  will give an admittance looking toward the 
load a real value of  Y  0  S  for the  “ load ”  at position  d  2 . The equations for the 
real load admittance can now be used where  G  L     =     Y  0  S . From Eqs.  (4.76) , 
 (4.77) , and  (4.81) 

    2 1
0 0

0 0

θ = −
+

⎛
⎝⎜

⎞
⎠⎟arccos

SY Y
SY Y

    (4.86)  

    d
S
S

1
4

1
1

= −
+

⎛
⎝

⎞
⎠

λ
π

arccos     (4.87)  

    � = ±
−

⎛
⎝⎜

⎞
⎠⎟

λ
π2 1

arctan
S

S
    (4.88)   

 Choose the   + S  when 0    <     d  1     <      λ  /4 and   − S  when   λ  /4    <     d  1     <      λ  /2. The total 
distance from the complex load,  Y  L , to the stub is

    d d d= +1 2     (4.89)  

where  d  1  is the same solution for  d  in Section  4.7.1  (Eq.  4.76 ). 
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TRANSMISSION LINE STUB TRANSFORMER 77

 The above designs have been based on the use of a short - circuit stub. 
However, the open circuit is often easier to implement. If the susceptance from 
the load at  d  turns out to be negative, the open - circuit stub will provide the 
shortest line length to get the positive susceptance needed for cancellation. 
The input admittance for an open - circuit stub is  jY  0  tan   φ  . Then by analogy 
with Eqs.  (4.80)  and  (4.81) ,

    tanφ = − −Y G

G Y
0

0

L

L

    (4.90)  

    � = −⎛
⎝⎜

⎞
⎠⎟

λ
π2

0

0

arctan
G Y

G Y
L

L

    (4.91)   

 or for a complex load

    � = −⎛
⎝

⎞
⎠

λ
π2

1
arctan

S

S
    (4.92)   

 As an example, design a matching circuit for a load impedance of 
 Z L      =    30    +     j 40    Ω  with  Z  0     =    50    Ω  using a short - circuit stub. The refl ection coef-
fi cient at the load is

   Γ ΓL L
L

L

= = −
+

=e
Z Z
Z Z

jjψ 0

0

0 5.   

 The magnitude of  Γ  L  is 0.5 and the angle   ψ   is   π  /2. Since,

    
Γ

Γ

d
V
V

e
e

e

j z

j z

j d

2

2 2

( ) = ⎛
⎝⎜

⎞
⎠⎟

=

−

+ −

−

β

β

β
L

    

(4.93)

  

    
=
= −

−Γ
Γ
L

L

e ej j dψ β2 2

    
(4.94)

  

    = ±ΓL e jπ     (4.95)   

 The sign change in Eq.  (4.93)  is a result of placing the origin at the load and 
moving in the  −  z  direction toward the generator a distance of  d  2 . The minus 
sign is used to ensure positive line lengths for  d  2 . Solving Eqs.  (4.94)  and  (4.95)  
for  d  2  gives

    d2
4

= +( )λ
π

ψ π     (4.96)   

 In the present example,   ψ      =      π  /2 so that  d  2     =    0.375  λ  . From Eq.  (4.85)  the standing -
 wave ratio,  S     =    3, from Eq.  (4.87)   d  1     =    0.0833   λ   so that  d     =     d  1     +     d  2     =    0.4583   λ  , and 
from Eq.  (4.88)    �      =    0.205   λ  .   
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78 MULTIPORT CIRCUIT PARAMETERS AND TRANSMISSION LINES

   4.8    COMMONLY USED TRANSMISSION LINES 

 Because TEM transmission lines have neither an elecrtric nor magnetic fi eld 
component in the direction of propagation, the characteristic impedance can 
be found from Eq.  (4.51)  and electrostatics. Since the velocity of propagation 
in the given media is presumably known, all that is necessary is to calculate 
the electrostatic capacitance between the conductors. When the geometry is 
particularly nasty and the solution is needed quickly, the fi eld mapping 
approach described in Section  2.2.2  can be used. 

   4.8.1    Two - Wire Transmission Line 

 The two - wire transmission line commonly used, for example, between a TV 
antenna and the receiver, consists of two round conductors each with a radius 
of  a  and separated by a distance  b  (Fig.  4.15 ). The dielectric surrounding the 
wires has a dielectric constant of  ε . The fi eld theory analysis, such as that given 
in  [2] , shows that the characteristic impedance of the two - wire line is  

    Z
b
a

0
2

= ⎛
⎝

⎞
⎠

η
π

arccosh     (4.97)  

where

    η μ
ε

=     (4.98)   

 While the fi eld analysis for a given structure may bring some challenges, the 
good news is that once  Z  0  is known, the rest of the problem can be solved by 
circuit theory. Losses in the two - wire transmission line stem from the lossy 
dielectric between the conductors and the resistive losses experienced by the 
current as it fl ows along the conductor. Since a voltage wave is attenuated as it 
goes down a line by exp( −   α z ), the power loss is proportional to exp( − 2  α z ) where

    α α α= +d c     (4.99)   

 The dielectric and conductor losses are

     FIGURE 4.15     Two - wire transmission line.  

2a
e r

b
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    α
σ η

d
d=
2

    (4.100)  

    α ωμ
σ ηc

arccosh
=

( )
1

2 2
1

2a b ac

    (4.101)  

where   σ   d  and   σ   c  are the conductivities of the dielectric and conductor, respec-
tively. The two - wire line is inexpensive and widely used in ultrahigh frequency 
(UHF) applications.  

   4.8.2    Parallel Strip Transmission Line 

 The parallel strip transmission line consists of two separate conductors of 
width  b  and separated by a distance  a  (Fig.  4.16 ). This is a rectangular wave-
guide without the side walls. It is fundamentally distinct from the rectangular 
waveguide, which is not a TEM transmission line. The Maxwell equations 
for a plane wave for this system are the exact analog to the telegrapher ’ s 
equations:  

    
∂
∂

= −
∂
∂

E
z

H
t

x yμ     (4.102)  

    
∂
∂

= − ∂
∂

H
z

E
t

y xε     (4.103)   

 The voltage between the strips is the integral of the electric fi eld:

    V E dx aEx

a

x= − = −∫0
    (4.104)   

 The magnetic fi eld in the  y  direction will produce a current in the conductor 
that will travel in the  z  direction according to Amp è re ’ s law:

    I H dy H by

b

y= − = −∫0
    (4.105)   

     FIGURE 4.16     Parallel strip transmission line.  
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80 MULTIPORT CIRCUIT PARAMETERS AND TRANSMISSION LINES

 Substitution of Eqs.  (4.104)  and  (4.105)  into Eq.  (4.44)  gives

    
∂
∂

= −
∂
∂

E
z

Lb
a

H
t

x y     (4.106)   

 Comparison of this with Eq.  (4.102)  indicates that

    L
a

b
= μ

.     (4.107)   

 A similar substitution of Eqs.  (4.104)  and  (4.105)  into Eq.  (4.45)  and compari-
son with Eq.  (4.103)  indicates that

    C
b
a

= ε     (4.108)   

 so that the characteristic impedance for the parallel strip guide is

    Z
L
C

a
b

0 = = μ
ε

    (4.109)   

 While this solution illustrates the major feactures of the parallel strip trans-
mission line, the neglect of the fringing fi elds makes this expression in practice 
useless. A more uselful expression was developed for the parallel strip line  [4] , 
which was later used to determine the characteristic impedance for microstrip 
by the method of images (Fig.  4.17 ). Conformal transformations of the struc-
ture were made that included an approximation of the fringing fi elds. As a 

     FIGURE 4.17     Relationship between parallel strip line and microstrip by method 
of images.  
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result two formulas were developed, one for wide and the other for narrow 
strips. The analysis formulas follow:  

    ε ε
a

r�
+ 1
2

    (4.110)  

    η μ
ε

= 0

0

    (4.111)  

    Z
a

b
b
a

0

21 4 1
8

1
2

1
1 2

1 4= + ⎛
⎝

⎞
⎠ − −

+
+⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥η

π ε
ε
ε

π
ε πa

r

r r

ln ln ln     (4.112)   

 for  b / a     <    0.56 and

    Z
b
a

b
a

0 2

1
0 441

1
2

0 94 1 451
1

0= + + + +⎛
⎝

⎞
⎠ +⎡

⎣⎢
⎤
⎦⎥

+ −η
ε

ε
πε

ε
εr

r

r

r

r

. ln . . ..82
1

( ){ }−

    (4.113)   

 for  b / a     >    0.56. 
 Equation  (4.112)  is Eq. (48) in  [4]  and Eq.  (4.113)  is Eq. (31) in  [4]  except 

that here  b / a  represents 2 a /2 b  in  [4] . The method of images then can be 
invoked to fi nd the characteristic impedance of the microstrip. This is described 
more fully in Section  4.8.4 . A comparison of Eq.  (4.109)  with no fringing 
capacitance, and the formula that includes fringing capacitance, Eqs.  (4.112)  
and  (4.113) , as well as the microstrip is shown in Fig.  4.17  ( a ,  b , and  c ) for  ε  r     =    1, 
4, and 10, respectively. A parallel strip line with a given  b / a  ratio will give a 
certain value for  Z  0 . A microstrip line with  w / h     =     b /( a /2) would give a charac-
teristic impedance of  Z  0 /2. The equations used for the microstrip calculation 
are those in Section  4.8.4 , so the factor of 2 is close, but not exact.  

   4.8.3    Coaxial Transmission Line 

 A coaxial transmission line comes in the form of rigid, semirigid, and fl exible 
forms. The end view of a coaxial line, which is shown in Fig.  4.18 , consists of 
an inner conductor and the outer conductor, which is normally grounded. The 
electric fi eld points from the center to the outer conductor, and the longitudi-
nal current on the center conductor produces a magnetic fi eld concentric to 
the inner conductor. The potential between the two conductors is a solution 
of the transverse form of Laplace ’ s equation in cylindrical coordinates where 
there is no potential difference in the longitudinal  z  direction. The notation 
for the divergence and curl operators follows that given in  [5] :  

    
t Φ0 =

0 = +1 ∂
r

1
r 

2r∂ r
∂ Φ
∂ r

∂ 
2Φ

∂ f2
    

(4.114)
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b/a or w/h

(a)

b/a or w/h

(b)

1.0×103

1.0×102
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1.0×103

1.0×102

1.0×101

1.0×10–1 1.0×100 1.0×101
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Z
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 Ω
Z
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 Ω

Parallel Line – No Fringing
Parallel Line

Microstrip

e r = 1

e r = 4

Parallel Line

Microstrip

Parallel Line – No Fringing

        FIGURE 4.18     Characteristic impedance for parallel strip line (with and without fring-
ing) and microstrip for ( a )  ε  r     =    1, ( b )  ε  r     =    4, and ( c )  ε  r     =    10.  b / a  corresponds to parallel 
strip line and  w / h  corresponds to microstrip.  
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 Because there is no potential variation in the  z  direction, the  z  derivative of 
 Φ  is zero. Because of symmetry, there is no variation of  Φ  in the   φ   direction 
either. Thus, Eq.  (4.114)  simplifi es to an ordinary second - order differential 
equation subject to the boundary conditions that  Φ     =    0 on the outer conductor 
and  Φ     =     V  0  on the inner conductor:

    0
1= ⎛

⎝
⎞
⎠r

d
dr

r
d
dr
Φ

    (4.115)   

b/a or w/h
1.0×10–1 1.0×100 1.0×101
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1.0×101

Z
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 Ω

Parallel Line

Microstrip

(c)

Parallel Line – No Fringing

e r = 10

FIGURE 4.18 Continued

     FIGURE 4.19     Coaxial transmission line.  

   Φ = 0    Φ = V0
ba
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 Integration of Eq.  (4.115)  twice gives

    Φ = +C r C1 2ln     (4.116)   

 which upon applying the boundary conditions gives the potential anywhere 
between the two conductors:

    Φ r
V
a b

r
b

( ) =
( )

⎛
⎝

⎞
⎠

0

ln
ln     (4.117)   

 The electric fi eld is easily obtained by differentiation.

    E = −∇ =
( )

−

t

j zV e
b a

r
r

Φ 0
β

ln

ˆ
    (4.118)   

 The magnetic fi eld is then  

    

H E= ×

=
( )
−

ˆ

ln
ˆ

z

V e
r b a

j z
0

β

η
φ

    
(4.119)

   

 The outward normal unit vector of the center conductor,   ̂r , is shown in 
Fig.  4.20 . The surface current on the center conductor is determined by the 
boundary condition for the tangential magnetic fi eld:  

    J H H H2 1 2S = × −( ) = ×ˆ ˆr r     (4.120)   

 The later result occurs because the magnetic fi eld is zero inside the conductor. 
The total current fl owing in the center conductor is

    

I
zV

a b a
a d

z V
a b a

0
0

0

2

02

ˆ
ˆ

ln

ˆ

ln

z =
( )

=
( )

∫ η
φ

π
η

π

    
(4.121)

   

     FIGURE 4.20     Continuity of magnetic fi eld along center conductor.  
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 so that

    Z
V
I

b
a

0
0

0 2
= = ⎛

⎝
⎞
⎠

η
π

ln     (4.122)   

  Coaxial Dielectric Loss     The differential form of Amp è re ’ s law relates the 
magnetic fi eld to both the conduction current and the displacement current. 
In the absence of a conductor

    H = J + ∂ D
∂t     (4.123)  

    ≈ jωεE     (4.124)   

 By taking the curl of Eq.  (4.124) , the Helmholtz wave equation for  H  can 
be found. A solution of the wave equation would give the propagation 
constant,   γ   :

    γ ω με ε= j jk� 0 r     (4.125)  

where  ε  r  is the relative dielectric constant and  k  0  is the propagation constant 
in free space. A lossy dielectric is typically represented as the sum of the loss-
less (real) and lossy (imaginary) parts:

    ε ε εr r r= ′ − ′′j     (4.126)   

 The revised propagation constant is found by substituting this into Eq.  (4.125) . 
The result can be simplifi ed by taking the fi rst two terms of the Taylor series 
expansion since   ′′<< ′ε εr r .

    γ α β ε ε
ε

= + = ′ − ′′
′

⎛
⎝⎜

⎞
⎠⎟j jk j0 1

2
r

r

r

    (4.127)   

 so that

    α
ε
ε

d
r

r

= ′′
′

k0

2
    (4.128)  

    β ε= ′k0 r     (4.129)   

 The power loss is proportional to exp( − 2  α z ).  

  Coaxial Conductor Loss     The power loss per unit length,  P  �   , is obtained by 
taking the derivative of the power at a given point along a transmission line:
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    P P e z= −
0

2αc     (4.130)  

    P
dP
dz

P� � − = 2αc     (4.131)   

 For a low loss conductor where the dielectric losses are negligible, Eq.  (4.123)  
becomes with the help of Ohm ’ s law,

    H = sE    (4.132)  

where   σ   is the metal conductivity. This would be the same equation as 
Eq.  (4.124)  if

    ε
σ
ω

⇒
j

    (4.133)   

 With this substitution the wave impedance becomes the metal surface 
impedance:

    μ
ε

ωμ
σ

⇒ = +( )Z jm 1
2

0     (4.134)   

 At the surface there will be a longitudinal electric fi eld of  Z  m  J  s  directed in 
the   ẑ  direction. Thus, in a lossy line, the fi elds will no longer be strictly TEM. 
This longitudinal electric fi eld produces energy fl ow into the conductor pro-
portional to   Ez Hˆ ˆ× φ . This energy is dissipated in the center and outer conduc-
tors. The power loss per unit length is found in the following way:

    

P
R

d

R
d

R
d

R V

� �

�

�

�

�

�

= ⋅

= ×( ) ×( )

= ⋅

=

∫

∫

∫

m
s s

m

m

m

*

*

*

2

2

2

0
2

2

J J

r H r H

H H

ˆ ˆ

π
η llnb a a b( )

+⎛
⎝

⎞
⎠2

1 1

    

(4.135)

   

 The power,  P , transmitted down the line is found by the Poynting theorem:

    

P Z r dr d

V
b a

m
a

b
= ℜ{ } ×

=
( )

⋅∫∫1
2 0

2

0
2

E H z*

ln

ˆ φ

π
η

π

    
(4.136)   
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 The attenuation constant associated with conductor loss is found from 
Eq.  (4.131) :

    α
ηc

P
P

R
b a

a b
ab

= =
( )

+�

2 2
m

ln
    (4.137)   

 while the dielectric loss found earlier is

    α
ε
ε

d
r

r

= ′′
′

k0

2
    (4.138)   

 The total loss is found from Eq.  (4.99) .   

   4.8.4    Microstrip Transmission Line 

 Microstrip has been a popular form of transmission line for RF and microwave 
frequencies for some time. The microstrip line shown in Fig.  4.21  consists of a 
conductor strip of width  w  on a dielectric of thickness  h  above a ground plane. 
Part of the electric fi eld between the strip and the ground plane is in the dielec-
tric and part in the air. The fi eld is more concentrated in the dielectric than in 
the air. Consequently, the effective dielectric constant,  ε   eff , is somewhere 
between  ε   r  and 1, but closer to  ε  r  than 1. A variety of methods have been used 
to fi nd  ε   eff . However, rather than provide a proof, a simple empirically based 
procedure for synthesizing a microstrip line will be given. A microstrip line is 
not strictly a TEM type of transmission line and does have some frequency 
dispersion. Unless microstrip is being used in a wide bandwidth application, 
the TEM approximation should be adequate. Determining the characteristic 
impedance could be done by using the parallel strip line described earlier and 
the method of images. The microstrip ground plane refl ects the image of the 
narrow strip so that it would appear to be two strips with dielectric between 
the strips. This is exactly what was done in  [6] . However, since the height of the 
microstrip line is half the height of the parallel strips, the electric fi eld between 
the two conductors in the microstrip will be twice as strong, the capacitance 
would be twice as large, so  Z  0  is half as large as the eqivalent paralle strip line. 
The synthesis problem occurs when the desired characteristic impedance,  Z  0 , 

     FIGURE 4.21     Microstrip transmission line.  
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and the dielectric constant of the substrate,  ε  r , are known and the geometrical 
quantity  w / h  is to be found. The synthesis equations, given by  [6]  are simple, 
and give an approximate solution to the microstrip problem.  

    w
h

A

A
=

+⎛
⎝⎜

⎞
⎠⎟ + +⎛

⎝⎜
⎞
⎠⎟8

11
7

4 1
0 81

1
1

ε εr r.     (4.139)  

    A
Z= + −exp

.
0 1
42 4

1
εr     (4.140)   

 The analysis equations given below by  [7]  are more accurate than the syn-
thesis equations. The value given by Eqs.  (4.139)  and  (4.140)  provides an ititial 
value for  w / h  that can be used in an iterative procedure to successfully solve 
the synthesis problem. This process depends on knowing  ε  r , and the conductor 
thickness,  t . The solution results in the effective dielectric constant,  ε   eff , needed 
to determine electrical line lengths and  Z  0 . The procedure for the analysis 
procedure follows:

    Δu
t h

t h w h
a = + ( )

( )
⎡

⎣
⎢

⎤

⎦
⎥π

ln
exp

coth .
1

4 1

6 5172
    (4.141)  

    Δ Δu ur
r

a= +
−

⎡
⎣⎢

⎤
⎦⎥

1
2

1
1

1cosh ε
    (4.142)  

    u
w
h

ua a= + Δ     (4.143)  

    u
w
h

ur r= + Δ     (4.144)  

    Z x
f x

x x
0

2

2
1

2
a ( ) = ( ) + + ⎛

⎝
⎞
⎠

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

η
π

ln     (4.145)  

    f x x( ) = + −( ) −( )⎡⎣ ⎤⎦
06 2 6 30 666 7528π exp . .     (4.146)  

    ε ε ε ε ε

e r
r r

r

x
x

a x b

,( ) = + + − +⎛
⎝

⎞
⎠

− ( ) ( )1
2

1
2

1
10     (4.147)  

    a x
x x
x

x( ) = + + ( )
+

⎡

⎣
⎢

⎤

⎦
⎥ + + ⎛

⎝
⎞
⎠

⎡

⎣
⎢

3

1
1

49
52

0 432
1

18 7
1

18 1

4 2

4
ln

. .
ln

.
⎤⎤

⎦
⎥     (4.148)  

    b ε ε
εr
r

r

( ) = −
+

⎡
⎣⎢

⎤
⎦⎥

0 564
0 9
3

0 053

.
. .

    (4.149)   

 From the given value of  t  and trial solutions of  w / h , Eqs. (4.141) to (4.144) 
give unique values for  u  a  and  u  r . In Eqs. (4.145) through (4.148),  x  is replaced 
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by  u  a  or  u  r  as required by the calculation for  Z  0  and  ε   eff  in Eqs  (4.150)  and 
 (4.151) :

    Z
w
h

t
Z u

u
0

0, ,
,

ε
ε ε

r
a r

e r r

⎛
⎝

⎞
⎠ = ( )

( )
    (4.150)  

    ε ε ε εeff r e r r
a a

a r

w
h

t u
Z u
Z u

, , ,⎛
⎝

⎞
⎠ = ( ) ( )

( )
⎡
⎣⎢

⎤
⎦⎥

0

0

2

    (4.151)   

 Since  w / h  increases when  Z  0  decreases and vice versa, one very simple and 
effective method for fi nding the new approximation for  w / h  is done by using 
the following ratio:

    
w
h

w
h

Z
Zi i

⎛
⎝

⎞
⎠ = ⎛

⎝
⎞
⎠

( )
+1

0

0

4 150calculated from Eq.
desired 

.
    (4.152)   

 For example, if  w / h  for trial  i  is too small, the resulting  Z  0  will increase the 
value for  w / h  in trial  i     +    1. This procedure has been coded in the program 
MICSTP, which will converge to a value for  Z  0  with acceptable error within 
fi ve iterations when given an initial value from Eq.  (4.139) . 

 The effect of dielectric and conductor loss is summarized here  [8 – 10] :

    α
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m eff
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    (4.153)  
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    (4.155)   

 The value for the loss caused by the dielectric is

    α
ε
ε

ε
ε

ε
εd

r

eff

eff

r

r

r

= −
−

′′
′

⎛
⎝⎜

⎞
⎠⎟2

1
1

0k
    (4.156)  

where the wave number in vacuum is  k  0 . The defi nition for  R  m ,   ′εr , and   ′′εr  were 
given previously as the real part of Eq.  (4.134)  and the complex parts of 
Eq.  (4.126) , respectively. 

 While actual microstrip transmission lines are somewhat dispersive, the 
above analysis presumes that the effective dielectric constant is independent 
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of frequency. Design of broadband circuits will sometimes require knowledge 
of how  ε   eff  varies with frequency. An accurate formula suitable for computer -
 aided design is given by  [11] . In these expressions, frequency  f  is in gigahertz, 
 h , and  w  are in centimeters:

    ε ε ε ε
eff r

r eff= − − =( )
+ ( )

f
P f

0
1

    (4.157)  

where

    P f P P P P fh( ) = +( )[ ]1 2 3 4
1 57630 1844 10. .     (4.158)  

    P
fh

w
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    (4.159)  

    P2 0 33622 1 0 03442= − −( )[ ]. exp . εr     (4.160)  

    P
w
h

fh
3

4 97

0 363 4 6 1
3 87

= −⎛
⎝

⎞
⎠ × − −⎛

⎝
⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

. exp . exp
.

.

    (4.161)  

    P4

8

1 2 571 1
15 916

= + − −⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

. exp
.
εr     (4.162)   

 These equations for  Z  0  and  ε   eff  are widely accepted as the most accurate 
available for the quasi - TEM microstrip transmission line. Typical silicon inte-
grated circuit transmission lines have a more complicated structure. The 
 “ dielectric ”  under the metal line typically consists of a thin layer of SiO 2  
approximately 0.5 to 1     μ  m thick and a Si substrate that could be approximately 
200     μ  m thick (Fig.  4.22 ). This results in three distinct propagation modes: (1) 
the dielectric quasi - TEM mode, (2) the skin effect mode, and (3) the slow wave 
mode  [12] . The analysis of these modes is an approximation based on the 
transverse resonance technique for parallel plate waveguide. The SiO 2  layer is 
low loss and thin. The Si layer is thick and has a conductivity,   σ  , dependent on 
its doping.   

 The dielectric quasi - TEM mode occurs when   ω  /  σ   is large so that the Si 
substrate layer is low loss and acts as a dielectric. If the signal wavelength is 

     FIGURE 4.22     Microstrip transmission line in Si - integrated circuits.  
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much greater than the double - layer thickness,  h , then propagation will be 
almost TEM. For this case the dielectric constant is

    ε
ε εeff

SiO Si

∝ +⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

−
1 1 2

1

2h
b b     (4.163)   

 The skin effect mode occurs when   ω  σ   is large so that the Si substrate acts 
as a lossy conductor wall. The skin depth,   δ σωμ= 2 0 , is large enough to 
allow signfi cant penetration of the fi elds into the Si. Propagation in this mode 
is highly dispersive. In this case

    ε εeff SiO∝ 2
1

h
b

    (4.164)  

    μ μ δ
eff ∝ +⎛

⎝
⎞
⎠0 1

1
2h

b     (4.165)   

 The slow wave mode occurs when   ω   is not too high and   σ   is moderate. The 
dielectric constant is similar to that found for the skin effect mode in Eq. 
 (4.164) , but the permeability is back to   μ   0 . The effective dielectric constant is 
multipled by the  h / b  1  ratio, thereby producing slow wave propagation. With 
the right conductivity, this slow wave mode can extend into the low gigahertz 
range. It normally pays to stay out of this range in RF circuits. When   ω  σ   is 
suffi ciently small, the fi eld can penetrate to the ground plane. 

 In multiple layer structures, it is possible to have two metals separted by Si 
where one metal would act as the ground. Depending on the metal width, it 
could be used as either microstrip with possibly an over layer or parallel plate 
line. The  t / h  ratio for integrated circuit lines will typically be much larger than 
that used in printed circuit boards. A large metal thickness will then decrease 
the required metal width for a given  Z  0 . 

 There are a variety of other transmission line geometries that could be 
studied, but these examples should provide information on the most widely 
used forms. There are cases where one line is located close enough to a neigh-
boring line that there is some electromagnetic coupling between them. There 
are cases where interactions between discontinuities or nearby structures 
would preclude an analytic solution. In such cases, solutions can be found from 
2.5 -  and 3 - dimensional numerical Maxwell equation solvers.   

   4.9    SCATTERING PARAMETERS 

 This chapter began with a discussion of fi ve ways of describing a two - port 
circuit in terms of its terminal voltages and currents. In principle any one of 
these is suffi cent. One of these, the  h  parameters, was popularized during the 
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early days of the bipolar transistor since they could be directly measured for 
a transistor. For a similar reason, scattering parameters, or  S  parameters, have 
been found convenient by RF and microwave engineers because circuits can 
be directly measured in terms of them at these frequencies. Scattering param-
eters represent refl ection and transmission coeffi cients of waves, a quantity 
that can be measured directly at RF and microwave frequencies. However, 
these wave quantities can be directly related to the terminal voltages and cur-
rents, so that there is a relationship between the scattering paramters and the 
 z ,  y ,  h ,  g , and  ABCD  parameters. 

 Consider a one - port circuit excited with a voltage source  E  G  with an inter-
nal generator impedance,  Z  G , as shown in Fig.  4.23 . Quantity  a  represents the 
wave entering into the port. Quantity  b  represents the wave leaving the port. 
Both of these quantities are complex and can be related to the terminal 
voltage and current. The generator and the load are characterized by a refl ec-
tion coeffi cient,  Γ  G  and  Γ  i , respectively. The wave  b  G  from the generator under-
goes multiple refl ections until fi nally the refl ected wave from the load,  b  1 , is 
obtained:  

    

b b b b

b

b

1
2

21

= + ( ) + ( ) +

= + + ( ) +⎡⎣ ⎤⎦

=

Γ Γ Γ Γ Γ Γ

Γ Γ Γ Γ Γ
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�

�

ΓΓ
Γ Γ

i

i G1−

    

(4.166)

   

 This last expression is the sum of a geometric series. Since  Γ  i     =     b  1 / a  1 , an expres-
sion for the wave entering into the load can be found:

    a
b

i
1

1
=

−
G

GΓ Γ
    (4.167)   

     FIGURE 4.23     Wave refl ections from unmatched generator source.  
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 The power actually delivered to the load is then

    P a b1
1
2 1

2
1

2= −( )     (4.168)   

 From the defi nition of  Γ  i  and Eq.  (4.167) , the delivered power can be found:

    P
b

1

2

2
21

2 1
1=

−
⎛
⎝⎜

⎞
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−( )G

G i
i

Γ Γ
Γ     (4.169)  

and when matched so that   Γ Γi G= * :

    P P
b

a1

2

2

1
2 1

= =
−

G

GΓ
    (4.170)   

 The latter is the available power from the source. Similar expressions could 
be found for an  n  - port circuit. 

 The wave values will be related to the terminal voltages and currents. With 
reference to Fig.  4.23 , Ohm ’ s law gives

    E Z I VG G= +     (4.171)   

 A forward - going voltage wave,  V   +  , can be related to the forward - going 
current by

    V Z I+ += G*     (4.172)   

 The reason for this is that if   Z ZG= * ,  V     =     V   +  , because  V   −      =    0. Similarly,

    V Z I− −= G     (4.173)   

 The forward - going voltage and current can be expressed by means of Ohm ’ s 
law as follows:

    V
Z E

Z Z

Z E
Z

+ =
+

=
ℜ{ }

G G

G G

G G

G

*

*

*

2
    (4.174)  

    I
E

Z
+ =

ℜ{ }
G

G2
    (4.175)   

 These voltages and currents represent root mean square (rms) values, so the 
incident power is
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P V I
E

Z

V Z

Z

inc
G

G

G

G

= ℜ{ } =
ℜ{ }

=
⋅ℜ{ }

+ +

+

*
2

2

2

4
    

(4.176)
   

 The incident power,  P  inc , is proportional to | a | 2  and the refl ected power,  P  ref , 
to | b | 2 . Taking the square root of a number to get a complex quantity is strictly 
speaking not possible mathematically unless a choice is made regarding the 
phase angle of the complex quantity. This choice is related to choosing   ZG* and 
 V   +   for  a  and  Z  G  and  V   −   for  b :

    

a P

V Z

Z

=

= ℜ{ }+

inc

G

G*

    
(4.177)

  

    = ℜ{ }+I Z Z

Z

G G

G

*

*
    (4.178)  

and for  b ,

    
b P

V Z
Z

=

= ℜ{ }−

ref

G

G

    
(4.179)

  

    = ℜ{ }−I Z Z
Z

G G

G

    (4.180)   

 From Eqs. (4.177) through (4.180) the forward -  and reverse - going voltages and 
currents can be found in terms of the waves  a  and  b . The total voltage and 
total current are then found.

    V V V
aZ bZ

Z
= + = +

ℜ{ }
+ − G G

G

*
    (4.181)  

    I I I
a b

Z
= − = −

ℜ{ }
+ −

G

    (4.182)   

 These are now in the form of two equations where  a  and  b  can be solved in 
terms of  V  and  I . Multiplying Eq.  (4.182)  by  Z  G  and adding to Eq.  (4.181)  gives

   V Z I
a Z

Z
+ = ℜ{ }

ℜ{ }G
G

G

2
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 which can be solved for  a . In a similar fashion  b  is found:

    a
Z

V Z I=
ℜ{ }

+( )1

2 G
G     (4.183)  

    b
Z

V Z I=
ℜ{ }

−1

2 G
G( * )     (4.184)   

 Ordinarily, the generator impedance is equal to the characteristic impedance 
of a transmission line to which it is connected. The common way then to write 
Eqs.  (4.183)  and  (4.184)  is in terms of  Z  0 , which is assumed lossless.

    a
Z

V Z I= +( )1

2 0
0     (4.185)  

    b
Z

V Z I= −( )1

2 0
0     (4.186)   

 The ratio of Eqs.  (4.186)  and  (4.185)  is

   
b
a

V I Z
V I Z

= −
+

=0

0

Γ  

where  Γ  is the refl ection coeffi cient of the wave. The transmission coeffi cient 
is defi ned as the voltage across the load  V  due to the incident voltage  V   +  :

    T
V
V

b
a

= = + = ++ 1 1 Γ     (4.187)   

 This is to be contrasted with the conservation of power represented by 
| T | 2     +    | Γ | 2     =    1. 

 For the two - port circuit shown in Fig.  4.24  there are two sets of ingoing and 
outgoing waves. These four quantities are related together by the scattering 
matrix.  

    
b

b

S S

S S

a

a
1

2

11 12

21 22

1

2

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

    (4.188)   

     FIGURE 4.24     Two - port circuit described with scattering parameters.  
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 The individual  S  parameters are found by setting one of the independent 
variables to zero:

   S
b
a a

11
1

1 02

=
=

 

   S
b
a a

12
1

2 01

=
=

 

   S
b
a a

21
2

1 02

=
=

 

   S
b
a a

22
2

2 01

=
=

  

 Thus,  S  11  is the refl ection coeffi cient at port 1 when port 2 is terminated with 
a matched load. The value,  S  12 , is the reverse transmission coeffi cient when 
port 1 is terminated with a matched load. Similarly,  S  21  is the forward transmis-
sion coeffi cient, and  S  22  is the port 2 refl ection coeffi cient when port 1 is 
matched. 

 The formulas for converting between the scattering parameters and the 
volt – ampere relations given in Section  4.1  are given in Appendix  D . In each 
of these formulas there is a  Z  0  because a refl ection or transmission coeffi cient 
is always relative to a reference impedance, which in this case is  Z  0 . This is 
further corroborated by Eqs.  (4.185)  and  (4.186)  where the wave values are 
related to a voltage, current, and  Z  0 .  

   4.10    INDEFINITE ADMITTANCE MATRIX 

 Typically, a certain node in a circuit is designated as being the ground node. 
Similarly, in an  n  - port network, at least one of the terminals is considered to 
be the ground node. In an  n  - port circuit in which none of the terminals is 
considered the reference node, it can be described by the indefi nite admittance 
matrix. This can be used, for example, when converting the  y  parameters of a 
common emitter transistor to the  y  parameters of a common base transistor. 
The indefi nite admittance matrix has the property that the sum of the rows    =    0 
and the sum of the columns    =    0. Thus, the indefi nite admittance matrix can be 
easily obtained from the usual defi nite  y  matrix, which has been defi ned with 
at least one terminal connected to ground. 

 The derivation of this property is based on considering the currents in the 
indefi nite circuit of Fig.  4.25 . Let  J k   represent the current going into terminal 
 k  when all terminals are connected to ground. This current,  J k  , is therefore a 
result of indepenedent current sources inside the  n  port or currents resulting 
from initial conditions. The currents going into each terminal are  
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    (4.189)   

 The sum of all the equations represented by Eq.  (4.189)  gives the total current 
going into a node, which by Kirchhoff ’ s law must be zero:

    y v i Jji i
j

n

i

n

k
k

n

k
k

n

== = =
∑∑ ∑ ∑= − =

11 1 1

0     (4.190)   

 All the terminal voltages except the  j th are set to 0 by connecting them to the 
external ground. Then since  v k      ≠    0, the only nonzero term on the left - hand side 
of Eq.  (4.190)  would be

    v yk jk
j

n

=
∑ =

1

0     (4.191)   

 Thus, the sum of the columns of the indefi nite admittance matrix is 0. 
 The sum of the rows can also be shown to be 0. If the same voltage  v  0  is 

added to each of the terminal voltages, the terminal currents would remain 
unchanged:

    

i
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⎥
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    (4.192)   

 Comparison of this with Eq.  (4.189)  shows that

     FIGURE 4.25     An  n  - port indefi nite circuit.  
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= 0     (4.193)   

 Thus, the sum of the rows is 0. A variety of other important properties of the 
indefi nite admittance matrix are described in [ 1 , Chapter  2 ] to which reference 
should be made for further details. 

 One of the useful properties of this concept is illustrated by the problem 
of converting common source hybrid parameters of an FET to common gate 
hybrid parameters. This might be useful in designing a common gate oscillator 
with a transistor characterized as a common source device. The fi rst step in 
the process is to convert the hybrid parameters to the equivalent defi nite 
admittance matrix (which contains 2 rows and 2 columns) by using the formu-
las in Appendix  D . The defi nite admittance matrix, which has a defi ned ground, 
can be changed to the corresponding 3     ×     3 indefi nite admittance matrix by 
adding a column and row such that  ∑  rows    =    0 and the  ∑  columns    =    0. If the 
 y  11  corresponds to the gate and  y  22  corresponds to the drain, then  y  33  would 
correspond to the source.

    

g d s

y11 y12 y13

y21 y22 y23

y31

g

s

[Y] = d

y32 y33

    (4.194)
   

 The common gate parameters are found by forcing the gate voltage to be 0. 
Consequently, the fi rst column may be removed since it is multiplied by the 
zero gate voltage anyway. At this point the fi rst row represents a redundant 
equation and can be removed. Row 1 and column 1 have been deleted and a 
new common gate defi nite admittance matrix is formed. This can then be 
converted to the equivalent common gate hybrid matrix.  

   4.11    INDEFINITE SCATTERING MATRIX 

 A similar property can be determined for the scattering matrix. The indefi nite 
scattering matrix has the property that the sum of the rows    =    1 and the sum 
of the colmuns    =    1. For the fi rst property, the three - port shown in Fig.  4.26  is 
excited at all three terminals by the same voltage value. The output wave is  

    b S a S a S a jj j j j= + + =1 1 2 2 3 3 1 2 3, ,     (4.195)   

 Under this excitation, all the input waves,  a j  , have the same amplitude, so 
Eq.  (4.195)  becomes
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    b S S S a jj j j j= + +( ) =1 2 3 1 1 2 3, ,     (4.196)   

 Since from Eqs.  (4.178)  and  (4.180)    a Z Ik k= +
0  and   b Z Ik k= −

0 , Eq.  (4.196)  
can be written in terms of the incident and refl ected currents:

    I S S S Ij j j j
− += + +( )1 2 3 1     (4.197)   

 When all the terminal voltages are set equal, then all the terminal currents 
must be zero, since there can be no voltage difference between any two ports. 
Thus,   I Ij

− += 1 , which means that

    S S Sj j j1 2 3 1+ + =     (4.198)   

 proving the sum of the rows    =    1. 
 To show that the sum of the columns    =    1, only port 1 is excited with a 

voltage source. Thus,  a  1     ≠    0 and  a  2     =     a  3     =    0. By Kirchhoff ’ s currnet law the sum 
of the currents into the three terminal circuit is zero:

    0 1 2 3= + +I I I     (4.199)  

    = −( ) + −( ) + −( )+ − + − + −I I I I I I1 1 2 2 3 3     (4.200)   

 Now since   I I2 3 0+ += =  because of  a  2 ,  a  3 

    I I I I1 1 2 3
+ − − −= + +     (4.201)   

 In addition

    
b S a

I S I

k k

k k

=

=− +

1 1

1 1

    
(4.202)

   

 so that

     FIGURE 4.26     Indefi nite scattering parameter circuit.  
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    I S S S I1 11 21 31 1
+ += + +( )     (4.203)   

 which shows that the sum of the columns for the indefi nite scattering matrix 
is 1. See the example in Appendix  E  for converting common source to common 
gate  S  parameters.  

   4.12    CONCLUSIONS 

 This chpater began with concepts essential for two - port circuit design. The 
 ABCD  transmission parameters were used to descirbe a lumped - element 
analog to the transmission line circuit that pervades all of RF circuit design 
practice. Various types of transmission lines were described in this chapter: 
two - wire line, parallel strip line, coaxial line, and microstrip. There are other 
widely used transmission line structures that are used such as slotline, coplanar 
line, and assorted types of coupled lines. Finally, scattering parameters were 
described and used in an indefi nite matrix approach similar to that used in 
lumped - circuit analysis.  

 PROBLEMS 

      4.1.   Determine the image impedance for the two - port circuit shown in 
Fig.  4.27 , which is terminated by a 5 -  Ω  resistor on each end.     

   4.2.   If the load side of the circuit in Fig.  4.28  is terminated with its matching 
impedance, what is the impedance that will match the input side? In this 
circuit the reactance  X     =      ω L     =    2    Ω ,   B C1 1

1
8= =ω S, and   B C2 2

7
8= =ω S.     

     FIGURE 4.27     Image impedance for Problem 4.1.  

5 2 56

4

     FIGURE 4.28     Circuit to be matched in Problem 4.2.  

L1 C2

C1
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   4.3.   A reciprocal circuit is described in terms of the  ABCD  parameters, 
where  A     =    2,  B     =    7, and  C     =    3. 
  a.     What is the value for  D ?  
  b.     What is the value for the image propagation constant?  
  c.     What is the value for  Z  I1  and  Z  I2 ?  
  d.     If the output were connected to an impedance   ZL = 77 , what would 

be the input impedance?      

   4.4.   Convert the following scattering parameters (related to 50    Ω ) to  ABCD  
parameters:      

   4.5.   Given the  S  parameters, derive the  z  parameters as given in Table D.1 
in Appendix  D .   

   4.6.   Two transmission lines are cascaded together as shown in Fig.  4.29 . What 
is the input impedance at the left - hand side of the line?     

   4.7.   The transmission line circuit of length   �   and characteristic impedance  Z  0  
is terminated by a resistance  R  L . Determine the  Q  for this circuit at the 
fi rst appropriate nonzero frequency.   

   4.8.   The impedance of a circuit is given by

   Z R j
L

Z
c

in = ⎛
⎝⎜

⎞
⎠⎟ + −( ) +⎡

⎣⎢
⎤
⎦⎥1

0

2
0
2

0
ω
ω ω

ω ω ω
tan

�
 

where   �      =      π c /  ω   0  and  c  is the velocity of light in a vacuum. What is the  Q  
of this circuit in terms of   ω   0 ? What is the  Q  of this circuit if   �      =    2  π c /  ω   0 ?   

   4.9.   In the shunt transmission line circuit in Fig.  4.30 , determine the value for 
 Z  02  that would produce a real value for  Z  in . What is the value for  Z  in ?     

   4.10.   Determine the  S  11  scattering parameter for the circuit in Fig.  4.31 . Express 
your answer in the form of a real and imaginary part.     

   4.11.   In the four parts below, design the transmission line when  Z  0     =    40    Ω  and 
 ε   r      =    2.4. 

  | S  11 |     ∠  S  11     | S  21 |     ∠  S  21     | S  12 |     ∠  S  12     | S  22 |     ∠  S  22   

  0.49     − 29    3.25    85    0.10    65    0.65     − 33  

     FIGURE 4.29     Transmission line circuit for Problem 4.6.  

80°

Z0 = 85 Z0 = 25 45 Ω

70°
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  a.     Determine the wire spacing of a two - wire transmission line that uses 
wires with a diameter of 80.1   mils (AWG#12) and that are surrounded 
with a dielectric layer.  

  b.     Design a parallel plate transmission line using a double - sided copper -
 clad printed circuit board of thickness 0.25   in.  

  c.     Determine the center conductor diameter of a dielectric - fi lled coaxial 
line where a standard outer diameter of 0.502   in. is used.  

  d.     Design a microstrip line using a 1 - oz copper - clad dielectric board that 
is 25   mils thick. The 1 - oz specifi cation refers to the thickness of the 
copper, where 1   oz    ≈    1.4   mils. Find the conductor width and effective 
dielectric constant.         
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     FIGURE 4.30     Shunt transmission line circuit for Problem 4.9.  
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  CHAPTER FIVE 

Filter Design and 
Approximation     

    5.1    INTRODUCTION 

 The development of fi lters has been extensively studied and refi ned in the 
twentieth century by engineers and scientists in Germany and the United 
States. This work was associated with the development of telephony and used 
simple mathematics. In the 1930s and 1940s major progress was made in fi lter 
theory and optimum fi lter designs. To work through that body of knowledge 
would be beyond the present purpose of reviewing fi lter design and fi lter 
synthesis techniques. New types of analog fi lters emerged in the 1950s and 
1960s called active fi lters, which for the most part used operational amplifi ers. 
At this point in time, operational amplifi ers have not made a signifi cant inroad 
to the RF range. Active fi lter design discussions can be found in Chen  [1] . 

 The present chapter concentrates on basic fi lter types and techniques. The 
solutions to the fi lter approximation problem and implementations that have 
arisen because of special requirements are treated in this chapter. The treat-
ment is further limited to fi lters that perform certain tasks on continuous 
time - varying analog signals by way of linear time - invariant circuit elements.  

   5.2    IDEAL AND APPROXIMATE FILTER TYPES 

 The function of a fi lter is to separate different frequency components of the 
input signal that passes through the fi lter network. The characteristics of the 
network are specifi ed by a transfer function,  H (  j ω  ) or  H ( s ), where  s     =     +  j ω   

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
Copyright © 2011 John Wiley & Sons, Inc.

c05.indd   105c05.indd   105 9/17/2010   11:52:35 AM9/17/2010   11:52:35 AM
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represents the complex frequency defi ned for the Laplace transform. The 
transfer function is the ratio of the output signal to the input signal:

    H j
V
V

ω( ) = out

in

    (5.1)  

    = ( ) ( )H j e jω φ ω     (5.2)   

 The transfer phase function,   φ  (  ω  ), is related to the transfer group delay 
through a derivative with respect to frequency as follows:

    τ ω φ ω
ωd ( ) = − ( )d

d
    (5.3)   

 For constant group delay, the phase function must be linear with frequency. 
In most fi lters only the magnitude of the transfer function is of interest. 
However, with modern - day systems using signals with complex modulation 
schemes, phase and group delay functions are also important. 

 A fi lter network passes some of the input signal frequencies and stops 
others, and being a linear circuit this function is performed without adding or 
generating new frequency components. The frequency band that passes, 
ideally without losses (0 - dB insertion loss) defi nes the pass band and the band 
that stops the frequencies, ideally with infi nite loss, is called the stop band. 
Figure  5.1  shows this loss representation of the ideal low - pass fi lter. It is 
low pass because it passes all low - frequency signals from dc to some given 
frequency,   ω   c , and stops all signals above   ω   c . The frequency,   ω   c , is called 
the cutoff frequency of the fi lter. An ideal low - pass fi lter is physically not 
realizable since this requires a circuit with an infi nite number of elements 
due to an abrupt change from pass band to stop band. Such a change is not 
practical.   

 This raises a practical issue of how does one specify the fi lters? The concept 
of the transition band,   ω   p  to   ω   s , is the frequency range that separates the pass 

     FIGURE 5.1     Loss or attenuation characteristics of ideal low - pass fi lter.  
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IDEAL AND APPROXIMATE FILTER TYPES 107

band and stop band where the loss transitions from a minimum to a maximum 
value. This is shown in Fig.  5.2 . The ratio of   ω   s  / ω   p  is sometimes referred to as 
fi lter selectivity, ratio, or fi lter steepness. The closer the selectivity is to one 
the more complex and costly the fi lter circuit is. Similar considerations can be 
applied in the design of fi lters using phase linearity and/or group delay 
fl atness.   

 The concepts of pass band, stop band, and transition band permit specifi ca-
tions of fi ve major types of fi lters: (a) low pass, (b) high pass, (c) band pass, 
(d) band stop, and (e) all pass. The transmission behavior of these fi lters is 
shown in Fig.  5.3 .   

     FIGURE 5.2     Method of specifying practical low - pass fi lter.  

w p w s w
Pass Band Transition Band

T
, d

B

Stop Band

αmax

αmin
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108 FILTER DESIGN AND APPROXIMATION

   5.2.1    Low - Pass Filter 

 Low - pass fi lter networks are realized by using a cascade of series inductors 
and shunt capacitors (Fig.  5.3  a ). The number of these elements determines 
the steepness of the edge of the pass band, with the larger number resulting 
in a more complex and steeper fi lter. The penalties are the complexity of the 
fi lter, the in - band loss, higher cost, and larger size. At low frequencies, series 
inductances produce low impedance, and shunt capacitors produce a high 
impedance, thus allowing the signal to appear at the output of the fi lter. Above 
the cutoff frequency, the series inductors behave as large impedances and 
shunt capacitors as low impedances, thereby impeding the signal transfer to 
the load.  

   5.2.2    High - Pass Filter 

 The high - pass fi lter shown in Fig.  5.3  b  allows signal frequencies higher than 
the cutoff frequency to pass through the fi lter to the load with a minimum loss 
and stops all frequencies below the cutoff frequency. This behavior is the 
reverse of the low - pass fi lter, and sometimes the high - pass fi lter is referred to 
as the complement of the low - pass fi lter. High - pass fi lter networks are realized 
by using a cascade of series capacitors and shunt inductors. Capacitors at high 
frequencies have low impedance and inductors have high impedance. Thus, 
the high - frequency signal passes through the fi lter to the output load with 
minimum loss. Just the opposite happens at low frequencies resulting in a high 
attenuation of the signal.  

   5.2.3    Band - Pass Filter 

 The band - pass fi lter shown in Fig.  5.3  c  shows the signal is transferred to the 
load in a band of frequencies between the lower frequency,   ω   1 , and the upper 
frequency,   ω   2 . Between the lower and upper frequency is the center frequency, 
  ω   0 , defi ned as the geometric mean of   ω   1  and   ω   2 .  

   5.2.4    Band - Stop Filter 

 The band - stop fi lter is the complement of the band - pass fi lter and is shown in 
Fig.  5.3  d . The signal in a band - stop fi lter is transferred to the load in two 
frequency bands, one from a low frequency to the lower stop - band frequency, 
  ω   1 , and the other from the upper stop band frequency,   ω   2 , to infi nite frequency. 
The signal experiences high loss between   ω   1  to   ω   2 , hence the name band - stop 
or band - reject.  

   5.2.5    All - Pass Filter 

 The all - pass fi lter allows the signal amplitude for all frequencies to pass 
through the network without any signifi cant loss (Fig.  5.3  e ). This network has 
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TRANSFER FUNCTION AND BASIC FILTER CONCEPTS 109

no frequency - selective pass band or stop band. The transmitted signal ideally 
experiences a linear phase shift or constant group delay with frequency. 
Unfortunately, minimum phase networks do not have constant group delay: 
Rather there are peaks near the corner frequency. All passive ladder net-
works, that have frequency selectivity, are minimum phase. In the design 
process there is a trade - off between fl at group delay and fi lter selectivity. 
However, a network that is nonminimum phase can be cascaded with a 
minimum phase network to achieve both fl at group delay and selectivity. All -
 pass networks with a nonminimum phase characteristic are used as group 
delay compensation devices.   

   5.3    TRANSFER FUNCTION AND BASIC FILTER CONCEPTS 

 Before proceeding with the design of fi lters, it is important to understand the 
transfer function in the complex frequency domain,  s     =      σ      +     j ω  . As described 
in Section  5.2 , the fi lter transfer function is the ratio of the output signal 
voltage to the input signal voltage. One could also easily select the ratio of 
currents. The transfer function in general can be written as a ratio of two 
polynomials:

    H s
P s
Q s

a a s a s a s
b b s b s b s

m
m

n
n

( ) = ( )
( )

=
+ + + +
+ + + +

0 1 2
2

0 1 2
2

�
�

    (5.4)  

where polynomials  P ( s ) and  Q ( s ) in general are of order  m  and  n . The order 
of polynomial  Q ( s ) is the order of the fi lter. Polynomials  P ( s ) and  Q ( s ) can 
be factored and rewritten in the form

    H s
s z s z s z s z
s p s p s p s p

m

n

( ) =
−( ) −( ) −( ) −( )
−( ) −( ) −( ) −( )

1 2 3

1 2 3

…
…

    (5.5)   

 The values  z  1 ,  z  2 ,  z  3 ,  …  ,  z m   are called the zeros of the transfer function or 
simply transmission zeros. The roots of  Q ( s ),  p  1 ,  p  2 ,  p  3 ,  …  ,  p n   are the poles of 
the transfer function. The poles and zeros can be real or complex, but complex 
poles and zeros must occur in conjugate pairs. That is, if  − 2    +     j 3 is a pole, than 
 − 2    −     j 3 must be a pole as well. The magnitude plot of a voltage transfer function 
represents the loss or attenuation of the fi lter circuit, and in decibels is given by

    L H sdB = ( )20 log     (5.6)   

 Poles and zeros of realizable passive networks must follow certain rules: 

  1.     All poles of a transfer function occur in the left half  s  - plane. The left 
half  s  - plane includes the imaginary  j ω   axis.  

c05.indd   109c05.indd   109 9/17/2010   11:52:36 AM9/17/2010   11:52:36 AM



110 FILTER DESIGN AND APPROXIMATION

  2.     The transfer function be realized as a lossless circuit terminated in a 
resistor (Darlington ’ s Theorem).     

   5.4    LADDER NETWORK FILTERS 

 The class of minimum phase fi lters are those fi lters in which the zeros of the 
impedance function are chosen to be in the left half plane. This means that 
the topology of a low - pass fi lter is a ladder network. The fi lter is assumed to 
be lossless and terminated on each side by a real resistance. As indicated in 
Fig.  5.4 , there are four possible choices for the fi rst and last reactive elements. 
The fi nal reactive element depends on whether the number of elements is even 
or odd. The basic procedure is to develop a design for a low - pass fi lter whose 
terminating resistors are 1    Ω  and whose cutoff frequency is   ω   c     =    1   rad/s. Once 
this normalized low - pass fi lter is designed, the impedance level is adjusted to 
the desired value, the cutoff frequency is adjusted, and the circuit topology is 
transformed to a high - pass, band - pass, or band - stop fi lter as desired.   

 The notation for the low - pass fi lter prototype fi lter shown in Fig.  5.4  is 
widely used. The  g  values are the prototype capacitances, inductances, and 
terminating resistances. For the normalized fi lter,  g  0     =    1. For some important 
fi lter types, the values for the  g k   can be found from recursion formulas. 

   5.4.1    Butterworth Filter 

 The transducer power gain for a two - port circuit is

    GT
power delivered to the load

power avialable from the sou
=

rrce
    (5.7)  

which for a passive fi lter is a quantity  ≤ 1. A fi lter with many reactive elements 
would be expected to more closely approximate an ideal fi lter with rectangular 
shape (infi nitely steep band edge skirts and fl at pass band) than one with few 

     FIGURE 5.4     Lumped - element prototype low - pass fi lter.  
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LADDER NETWORK FILTERS 111

reactive elements. For a fi lter with  n  poles ( n  reactive elements), the low - pass 
Butterworth approximation provides the maximum fl atness in its pass band 
near   ω      =    0. The gain function for this type of fi lter is given by

    H j G
H

nω
ω ω

( ) = =
+ ( )

2 0
21

T
c

    (5.8)  

where  H  0     ≤    1. The fi rst (2 n     −    1) derivatives of the denominator of this function 
are all zero at   ω      =    0 leading to it being maximally fl at. The poles of this func-
tion all have a magnitude of 1 and are separated from one another on the unit 
circle by   π  / n  radians. Furthermore, there are no poles on the  j ω   axis. At the 
edge of the pass band, the fi lter attenuates the power by  ½  or  − 3   dB. A recur-
sion formula for the fi lter elements that would produce this response can be 
found in a variety of references, one of which is  [1] :

    g gn0 1 1= =+     (5.9)  

    g
k

n
k nk =

−( )⎡
⎣⎢

⎤
⎦⎥

=2
2 1

2
1 2 3sin , , , ,

π
…     (5.10)   

 One set of fi lter values worthy of remembering is the three - pole Butterworth 
fi lter, where  g  1 ,  g  2 ,  g  3     =    1, 2, 1. The low - pass prototype fi lter starting with a 
shunt  C  has  C  1     =    1   F,  L  2     =    2   H, and  C  3     =    1   F. 

 Often minimum requirements are placed on the shape of the pass band. In 
this instance the minimum number of poles needed to produce a desired 
specifi cation is

    n =
−( ) − −( )

( )
log log

log

min max10 1 10 1

2

10 10α α

ω ωs p

    (5.11)   

 In this expression the maximum attenuation in the pass band 0    ≤      ω      ≤      ω   p  is 
  α   max , and the minimum attenuation in the stop band   ω   s     ≤      ω      <     ∞ , is   α   min . When 
the pass band is defi ned as the same as the cutoff frequency, then   ω   p     =      ω   c  and 
  α   max     =     + 3   dB. In this case,

    n =
−( )

( )
log

log

min10 1

2

10α

ω ωs c

    (5.12)    

   5.4.2    Chebyshev Filter 

 The slope of the pass - band skirts for a given number of poles of a fi lter can 
be improved by allowing small ripples in the pass band. In antenna theory, 
the Dolph – Chebyshev amplitude weighting of the array elements provides 
the minimum beam width for a specifi ed side lobe level. Similarly, in fi lter 
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112 FILTER DESIGN AND APPROXIMATION

design, the Chebyshev function provides the maximum possible bandwidth for 
a given pass - band ripple or the minimum possible pass - band ripple for a given 
bandwidth. The Chebyshev (equal ripple) low - pass fi lter transducer gain func-
tion is

    H j G
H

Tn

ω
ε ω ω

( ) = =
+ ( )

2 0
2 21

T
c

    (5.13)  

where   ω  c   is the low - pass cutoff frequency. The value  ε  is a number   <  1 and is 
a measure of the pass - band ripple. The Chebyshev function,  T n  ( x ), oscillates 
between  + 1 and  − 1 when its argument is less than 1. The poles of this transfer 
function lie on an ellipse with no  j ω   axis poles. 

 For  x     >    1,  T n  ( x ) rapidly becomes large. The Chebyshev function can be 
written in a form that clearly shows this characteristic:

    T x n x xn ( ) = ( )[ ] ≤ ≤cos arccos 0 1     (5.14)  

    T x n x xn ( ) = ( )[ ] >cosh arccosh 1     (5.15)   

 Since  |T n  ( x ) |     <    1 in the pass band, the pass - band transfer function is

   1
1

1
2

2

+
≤ ( ) ≤

ε
ωH j   

 Outside the pass band,  T n  ( x ) increases approximately exponentially. 
 The Chebyshev functions can be found in terms of a polynomial of its argu-

ment from a recursion formula:

    T x xT x T xn n n+ −( ) = ( ) − ( )1 12     (5.16)   

 The formula begins by setting  T  0 ( x )    =    1, and  T  1 ( x )    =     x . Furthermore for  n  odd,

    T Tn n0 0 1 1( ) = ±( ) = ±and     (5.17)  

while for  n  even

    T Tn
n

n0 1 1 12( ) = −( ) ±( ) =and     (5.18)   

 The next few Chebyshev functions are shown below:

    T x x2
22 1( ) = −     (5.19)  

    T x x x3
34 3( ) = −     (5.20)  

    T x x x4
4 28 8 1( ) = − +     (5.21)  
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    T x x x x5
5 316 20 5( ) = − +     (5.22)  

    T x x x x6
6 4 232 48 18 1( ) = − + −     (5.23)   

 If the maximum pass - band frequency is   ω   c  and the minimum stop - band 
frequency beyond which the attenuation is always greater than   α   min  is   ω   s , then 
the number of poles required in the function is  n   [1] :

    n =
−( )⎡⎣ ⎤⎦

( )
arccos

arccos

minh

h s c

1 10 110 1 2ε

ω ω

α

    (5.24)  

where   α   min  is the minimum attenuation in the stop band. 
 Just as in the Butterworth approximation, there is a set of recursion 

formulas for the low - pass prototype Chebyshev fi lter. Finding expressions 
for the  g  values for the fi lter requires fi rst expanding the Chebyshev 
functions by its own set of recursion formulas. The low - pass prototype 
fi lter structure (for a given number  n  of reactive elements) is then equated 
to the  n th - order fi lter function so that a correlation is made between the 
circuit and the function. Fortunately, the hard work has been done in 
network synthesis books (e.g.  [1, 2] ). The fi nal recursion formulas are given 
below:

    g0 1=     (5.25)  

    g
n

n
n+ =

( )
⎧
⎨
⎩

1 2

1

4

odd

eventanh β
    (5.26)  

    g
a

1
12

=
γ

    (5.27)  

    g
a a

b g
k nk

k k

k k

= =−

− −

4
2 31

1 1

, , ,…     (5.28)  

    a
k

k nk
n

=
−( )⎡

⎣⎢
⎤
⎦⎥

=sin , , ,
2 1

2
1 2

π
…     (5.29)  

    b
k
n

k nk = + ⎛
⎝⎜

⎞
⎠⎟ =γ π2 2 1 2sin , , ,…     (5.30)  

    β = ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

ln coth
.

Am

17 32
    (5.31)  

    Am = +( )10 12log ε     (5.32)  

    γ β
= ⎛

⎝⎜
⎞
⎠⎟sinh

2n
    (5.33)   
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114 FILTER DESIGN AND APPROXIMATION

 One important difference between the Butterworth and Chebyshev approx-
imations is the value for  g n    + 1 . The unequal impedance levels for the even - order 
Chebyshev termination impedances is often avoided by simply restricting the 
choices of  n  for the Chebyshev function to odd values. The circuit element 
values for these two fi lter functions were found by using network synthesis 
techniques after determining the poles of the transfer function. Other fi lter 
functions are available and are briefl y mentioned here.  

   5.4.3    Inverse Chebyshev Filter 

 In this fi lter, equal ripples are found in the stop band while the pass band is 
smooth. The inverse Chebyshev function is useful when it is necessary to 
control the attenuation over the entire stop band. The transfer function and 
the minimum number of poles needed to guarantee a maximum attenuation 
in the pass band for the inverse Chebyshev function is given below:

    H j
H T

T
n

n

ω ε ω ω
ε ω ω

( ) = ( )
+ ( )

2 0
2 2

2 21
c

c

    (5.34)  

    n =
−( )⎡⎣ ⎤⎦

( )

−
arccos

arccos

maxh

h c p

1 10 110 1 2ε

ω ω

α

    (5.35)   

 The actual circuit is generated using the Cauer network synthesis techniques 
described in Section  5.6.1 . To do this the polynomial expansion of the 
Chebyshev functions will be needed.  

   5.4.4    Bessel – Thompson Filter 

 The previous functions were designed to provide a specifi c magnitude in 
the transfer response, while the phase was left uncontrolled. The Bessel –
 Thompson fi lter is designed to provide a maximally fl at time delay response. 
The ideal Bessel – Thompson response would have a fl at magnitude response, 
 |H ( j ω  ) |     =    1, and a phase response proportional to frequency, arg[ H ( j ω  )]    =     −   ω T . 
The normalized time delay  D  is

    D T
d H j T

d T
ω ω

ω
( ) = ( )[ ]arg     (5.36)  

where  T  is the fi lter time delay. The transfer function designed to provide 
maximally fl at time delay is

    D sT
B

B sT
n

n

( ) = ( )
( )

0
    (5.37)   
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 Letting  y     =     sT , the recursion formula for the Bessel polynomials is

    B y n B y y B yn n n( ) = −( ) ( ) + ( )− −2 1 1
2

2     (5.38)  

where  B  0 ( y )    =    1 and  B  1 ( y )    =     y     +    1. The fi rst few polynomials are as follows.

    B y y y2
2 3 3( ) = + +     (5.39)  

    B y y y y3
3 26 15 15( ) = + + +     (5.40)  

    B y y y y y4
4 3 210 45 105 105( ) = + + + +     (5.41)   

 Once the polynomials are known, network synthesis techniques can be used 
to derive a low - pass prototype fi lter  [1 – 3] .   

   5.5    ELLIPTIC FILTER 

 The low - pass fi lter can be characterized as having a pass band from   ω      =    0 to 
  ω      =      ω   p  with an attenuation no greater than  H  0  plus a small ripple. In addition 
it is characterized as having a stop band from   ω   s  to  ∞  with an insertion loss 
no less than some high value,   α   min  (Fig.  5.2 ). In the Chebyshev fi lter, the pass -
 band ripple is fi xed to a certain maximum, but small, value while the attenu-
ation in the stop band increases monotonically with   ω  . The inverse Chebyshev 
fi lter produces an equal ripple in the stop band and a monotonically decreasing 
insertion loss for   ω   going from   ω   p  toward   ω      =    0. The elliptic function fi lter 
produces an equal ripple response in both the pass band and in the stop band. 
The name, elliptic, comes from its association with the Jacobian elliptic func-
tions. This design provides a way of not throwing away excess stop - band 
attenuation at high frequencies, but allows redistribution of the attenuation 
over the whole stop band. As a consequence, the rate of cutoff may be increased 
by putting some of the transmission zeros near the pass band. The cost for 
having equal ripple response in both the pass band and in the stop band is a 
slightly more complicated circuit topology for the elliptic fi lter (Fig  5.5 ).   

     FIGURE 5.5     Seven - pole low - pass elliptic fi lter topology. When  f  p     =    0.8   GHz and 
 f s      =    1   GHz,  C  1     =    3.285   pF,  C  2     =    0.547   pF,  L  2     =    12.653   nH,  C  3     =    5.459   pF,  C  4     =    2.682   pF, 
 L  4     =    9.947   nH,  C  5     =    4.846   pF,  C  6     =    2.040   pF,  L  6     =    8.963   nH, and  C  7     =    2.231   pF.  

L2 L4 L6

C2 C4 C6

C1 C3 C5 C7 5050
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116 FILTER DESIGN AND APPROXIMATION

 There is no simple recursion formula for the design of elliptic function 
fi lters. Typically, tables of values are derived numerically  [4, 5]  and are used 
for the low - pass prototype fi lter. These tabulated values have been incorpo-
rated in a program called ELLIPTIC. In this program the desired maximum 
attenuation level in the pass band, minimum attenuation in the stop band, the 
frequencies where the pass band ends and the stop band begins, and fi nally 
the number of poles,  n , are balanced against each other to provide an elliptic 
fi lter design. If so desired, the program will produce a SPICE net list that can 
be used to analyze the design. In the SPICE program, the voltage is plotted 
using V(21) or VDB(21) to display the insertion loss on a linear or log scale, 
respectively.  

   5.6    MATCHING BETWEEN UNEQUAL RESISTANCE LEVELS 

 For a low - pass fi lter, a perfect match cannot in principle be achieved when 
impedance matching is used. In the preceding Butterworth and Chebyshev 
functions, the constant,  H  0  is  ≤  1 since a passive fi lter cannot produce gain 
greater than 1. When the input and output resistance levels are equal, then 
 H  0  is 1. The ratio of the load - to - generator resistances introduces a constraint 
on  H  0 . For Butterworth fi lters this constraint is

    R
R

H

H
L

G

=
+ −
− −

⎛
⎝⎜

⎞
⎠⎟

±
1 1

1 1
0

0

1

    (5.42)  

while for Chebyshev fi lters this constraint is  [1] :

    R
R

H

H
nL

G
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+ −
− −

⎛
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⎞
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±
1 1

1 1
0
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1

    (5.43)  

    R
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H
nL
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+ + + −
+ − + −

⎛
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⎞

⎠⎟

±
1 1

1 1

2 2
0

2 2
0

1
ε ε
ε ε

    (5.44)   

 One might wonder if the generator and load consisted of complex impedances, 
what technique might be used for matching. Without getting too involved with 
that issue, it is known that such matching is not always possible. The imped-
ances must be  “ compatible ”  for matching to occur. One thing a designer can 
do though is try to incorporate the reactive part of the load as part of the fi lter 
itself as much as possible. 

   5.6.1    Cauer Procedure 

 A doubly terminated fi lter can be designed for any physically realizable trans-
fer function. A variety of different circuit realizations may be possible, but 
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only one will be described. However, this particular realization method is 
widely used and provides practical fi lter design. Approximation theory deter-
mines the transfer function  |H ( j ω  ) |  2  that will approximate the ideal fi lter 
characteristics. In a lossless, low - pass circuit with possibly unequal termination 
resistances (Fig.  5.6 ), the refl ected power  |  Γ ( j ω  ) |  2  can be found:

    1 2 2− ( ) = ( ) = ( ) −( )H j j j jω ω ω ωΓ Γ Γ     (5.45)     

 The fi nal expression results from the magnitude being the product of the 
refl ection coeffi cient and its complex conjugate. This can be generalized by 
replacing  j ω   with the complex frequency  s :

    Γ Γs s H s( ) −( ) = − ( )1 2     (5.46)   

 The right - hand side is a known function that is given in the form of a ratio of 
polynomials in  s . A requirement for realizability of an impedance or refl ection 
coeffi cient is that it be positive real. All the poles of the function must lie in 
the left half side of the complex plane in order to avoid unrealizable growing 
exponentials. Half of the poles of  |  Γ ( s ) |  2  lie in the left half side and half in the 
right half side of the complex frequency plane. The function  Γ ( s ) can be 
extracted from  Γ ( s ) Γ ( −  s ) by choosing only those poles in the left half side. The 
choice of which zeros to choose is more arbitrary since there is not the same 
realizability restrictions on the zeros. If the choice is made to use only the left 
half plane zeros, the resulting refl ection coeffi cient and the corresponding 
driving point impedance is the minimum phase function. This leads to a syn-
thesis of a ladder network. The  j ω   axis zeros are even multiples of complex -
 conjugate pairs and are divided equally between  Γ ( s ) and  Γ ( −  s ). 

 The problem of actually fi nding the poles and zeros requires fi nding the 
roots of the denominator and numerator polynomials. While these roots can 
be found analytically for the Butterworth and Chebyshev fi lters, the roots for 
other functions such as the Bessel – Thompson fi lter function must be found 
numerically. The transfer function is in the form of

    H s
H

F s
( ) =

( )
2 0     (5.47)  

     FIGURE 5.6     Butterworth low - pass fi lter with unequal resistance terminations. When 
 R  G     =    20    Ω  and  R  L     =    80    Ω ,  L  1     =    127.75   H,  C  2     =    0.01804   F, and  L  3     =    43.400   H.  

L3L1

RG C2 RL
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118 FILTER DESIGN AND APPROXIMATION

where  F (0)    =    1. 
 The dc refl ection coeffi cient is

    Γ 0 12
0( ) = − H     (5.48)  

    Γ 0 1 0( ) = ± − H     (5.49)   

 Since at dc in a low - pass circuit the series reactive elements are short circuits 
and the shunt reactive elements are open circuits, the refl ection coeffi cient is

    Γ 0( ) =
−
+

R R
R R

L G

L G

    (5.50)   

 Consequently,

    H
R R

R R
0 2

4

1
=

+( )
L G

L G

    (5.51)  

which, of course, equals 1 when both sides of the fi lter have equal terminations. 
 Once the refl ection coeffi cient is determined, the Cauer synthesis procedure 

is used to obtain the circuit elements. The input impedance to the fi lter at any 
frequency is given in terms of the refl ection coeffi cient:

    Z R
s
s

in G=
+ ( )
− ( )

1
1

Γ
Γ

    (5.52)   

 The Cauer extraction technique for a ladder network can now be used. The 
polynomials in the numerator and denominator are arranged in descending 
powers of  s . It will always be the case for a lossless transfer function that the 
highest power of the numerator and denominator will differ by at least 1. If 
the numerator is the higher order polynomial, then an impedance pole at  s     =     ∞  
(i.e., a series inductor) can be extracted from the impedance function. This is 
done by synthetic division. The fractional remainder is now inverted and syn-
thetic division is again carried out to extract an admittance pole at  s     =     ∞  (i.e., 
a shunt capacitor). The process continues until only the load resistance or 
conductance remains. 

 As an example, consider a three - pole Butterworth with a 3 - dB cutoff fre-
quency at 1   rad./s. The input resistance is  R  G     =    20    Ω , and the output resistance 
is  R  L     =    80    Ω . The Butterworth transfer function is therefore

    H
Hω

ω
( ) =

+
2 0

61
    (5.53)  

where from Eq.  (5.51) ,
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    H0
16
25

=     (5.54)  

and

    Γ ω ω ω
ω

( ) = − ( ) =
+ −

+
2 2

6
0

6
1

1
1

H
H     (5.55)   

 Now replace   ω   with  −  js , factor the denominator into the six roots of 1, and 
recombine into two cubic factors where one factor contains the left half plane 
roots and the other the right half plane roots. This is the standard Butterworth 
polynomial:

    Γ Γs s
s

s s s s s s
( ) −( ) =

−
− + − +( ) + + +( )

9 25
2 2 1 2 2 1

6

3 2 3 2     (5.56)   

 In this case the denominator is readily factored analytically, but the roots of 
the numerator when  H  0     ≠    1 must be found numerically. The program POLY 
can provide the complex roots of a polynomial with complex coeffi cients. In 
this example, all values are calculated using double - precision arithmetic, 
though for clarity only three or four signifi cant fi gures are shown. 

 The refl ection coeffi cient containing only left half plane poles and zeros is

    Γ s
s s s

s s s
( ) =

+ + +
+ + +

3 2

3 2

1 687 1 423 0 599
2 2 1

. . .     (5.57)   

 The input impedance is found from Eq.  (5.52) :

    Z
s s s
s s s

in =
+ + +
+ + +

20
2 3 687 3 423 1 599
0 0 313 0 577 0 400

3 2

3 2

. . .

. . .
    (5.58)   

 Extraction of the impedance pole at  s     =     ∞  is done by synthetic division:

   
0.313s2 + 0.577s + 0.400 2s3 + 3.3687s2 + 3.423s + 1.599

2s3 + 3.3687s2 + 2.555s

0s3 + 0s2 + 0.868s + 1.599

6.387s

  

 The remainder is inverted and an admittance pole at  s     =     ∞  is extracted:

   
0.868s + 1.599 0.313s2 + 0.577s + 0.400

0.313s2 + 0.577s

0s3        + 0s        + 0.400

0.361s
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120 FILTER DESIGN AND APPROXIMATION

 By inversion again and performing synthetic division once more, another 
impedance pole at  s     =     ∞  is removed:

   0.400 0.868s + 1.599
2.170s

  

 The fi nal remainder, 1.599 / 0.400    =    4.000, represents the normalized load 
resistance, which is the expected value. Hence,   ′ =L1 6 387. H,   ′ =C2 0 361. F, and 
  ′ =L3 2 170. H. The impedance level of the circuit is now adjusted from 1    Ω  to 
 R  G     =    20    Ω  by multiplying all the inductances and dividing all capacitances by 
20    Ω . Thus,   ′L1 becomes  L  1     =    127.75   H,   ′C2 becomes  C  2     =    0.01804   F, and   ′L3 
becomes  L  3     =    43.400   H. The fi nal circuit is shown in Fig.  5.6 . Verifi cation of 
this circuit is shown by a SPICE analysis found in Fig.  5.7 . Near zero frequency 
the insertion loss is 0.8 or  − 1.938   dB and at 1   rad/s (0.159   Hz) the loss has 
increased by 3   dB.   

 Easier analytical methods are available for the Chebyshev fi lter, and these 
are in fact used in the Chebyshev impedance transforming circuit described 
in Section  5.6.4 . The Cauer method shown here can be used where a closed -
 form solution for the roots is not available.  

   5.6.2    Filter - Type Transformation 

 Filter design is based on the design of a low - pass prototype circuit whose 
impedance level is 1    Ω  and whose low - pass cutoff frequency is   ω   c     =    1   rad/s. If 
the desired impedance level is to be changed from 1 to  R  G , then all inductors 

     FIGURE 5.7     Frequency response of Butterworth low - pass fi lter.  
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MATCHING BETWEEN UNEQUAL RESISTANCE LEVELS 121

and resistors should be multiplied by  R  G , and all capacitors should be divided 
by  R  G  as was done in the previous example. If the circuit elements of the low -
 pass prototype are denoted by a p subscript, then the new adjusted values can 
be found:

    L R L= G p     (5.59)  

    C
C

R
= p

G

    (5.60)  

    R R R= G p     (5.61)   

 To adjust the cutoff frequency from 1   rad/s to   ω   c , the low - pass circuit ele-
ments are further modifi ed in the following way:

    ′ =L
L
ωc

    (5.62)  

    ′ =C
C
ωc

    (5.63)  

    ′ =R R     (5.64)   

 Transformation of the low - pass fi lter to a high - pass fi lter can be accom-
plished by another frequency transformation. The normalized complex fre-
quency variable for the low - pass prototype circuit is  s  n . On the  j ω   axis the pass 
band of the low - pass fi lter occurs between   ω      =     − 1 and  + 1. If the cutoff fre-
quency for the high - pass fi lter is   ω   c , then the high - pass frequency variable is

    s
s

=
ωc

n

    (5.65)   

 Applying this transformation will transform the pass - band frequencies of the 
low - pass fi lter to the pass band of the high - pass fi lter. This is illustrated in Fig. 
 5.8 . The reactance of an inductor,  L , in the low - pass fi lter becomes a capaci-
tance,  C  h , in the high - pass fi lter:

    Ls
L

s C s
n

c

h

= =
ω 1

    (5.66)  

or

    C
L

h
c

=
1
ω

    (5.67)     

 Similarly, application of the frequency transformation Eq.  (5.65)  will convert 
a capacitor in the low - pass fi lter to an inductor in the high - pass fi lter:
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122 FILTER DESIGN AND APPROXIMATION

    L
C

h
c

=
1
ω

    (5.68)   

 A band - pass fi lter is specifi ed to have a pass band from   ω   1  to   ω   2 . The 
 “ center ”  of the pass band is the geometric mean of the band edge frequencies, 
  ω ω ω0 1 2= . The fractional bandwidth is  w     =    (  ω   2     −      ω   1 ) / ω   0 . A band - pass circuit 
can be formed from the low - pass prototype by using a frequency transforma-
tion that will map the pass band of the low - pass fi lter to the pass band of the 
band - pass fi lter. The desired frequency transformation is

    s
w

s
s

n = +⎛
⎝⎜

⎞
⎠⎟

1

0

0

ω
ω

    (5.69)  

where  s  is the frequency variable for the band - pass circuit. To verify this 
expression for the  j ω   axis, Eq.  (5.69)  is rewritten as

    ω
ω
ω

ω
ωn = −⎛

⎝⎜
⎞
⎠⎟

1

0

0

w
    (5.70)   

 A short table of specifi c values for the normalized low - pass prototype circuit 
and the corresponding band - pass frequencies are shown in Table  5.1 .   

 A graphic illustration of the frequency transformation is shown in 
Fig.  5.9 . A consequence of this transformation is that an inductor  L  in 
the low - pass prototype fi lter becomes a series  LC  circuit in the band - pass 
circuit:

    Ls
Ls

w
L
ws

n = +
ω

ω
0

0     (5.71)     

     FIGURE 5.8     Low - pass to high - pass transformation.  
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 Similarly, a capacitance in the low - pass fi lter is transformed to a parallel  LC  
circuit:

    Cs
Cs

w
C
ws

n = +
ω

ω
0

0     (5.72)   

 Finally, the low - pass to band - stop fi lter frequency transformation is the 
reciprocal of Eq.  (5.69) :

    s w
s

s
n = +⎛

⎝⎜
⎞
⎠⎟

−

ω
ω

0

0
1

    (5.73)   

 All these transformations from the low - pass prototype fi lter are summarized 
in Fig.  5.10 .    

   5.6.3    Number of Poles for a Band - Pass Filter 

 The functions given by Eqs.  (5.11)  and  (5.24)  are used to fi nd the number of 
poles required for a low - pass Butterworth or Chebyshev fi lter. The number 

  TABLE 5.1    Low - Pass to Band - Pass Mapping 

   Band - Pass   ω       Low - Pass   ω   n   

    ω   2      + 1  
    ω   0     0  
    ω   1      − 1  
    −  ω   1      + 1  
    −  ω   0     0  
    −  ω   2      − 1  

     FIGURE 5.9     Low - pass to band - pass transformation.  
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124 FILTER DESIGN AND APPROXIMATION

of poles required for a band - pass fi lter that gives a prescribed attenuation 
above the upper band edge frequency or below the lower band edge frequency 
can also be determined. The ratio of stop - band to cutoff frequency for the 
low - pass circuit is

    Fc
s

c

�
ω
ω

    (5.74)   

 A similar ratio can be defi ned for a band - pass fi lter:

    Fc bp
s

1
1

1
− =

ω
ω

    (5.75)   

 or

    Fc bp
s

2
2

2
− =

ω
ω

    (5.76)   

 When meeting the required level of attenuation at the upper stop frequency, 
 F  c2    −    bp  is more diffi cult to achieve than the lower stop frequency. Using  F  c2    −    bp  
provides the more conservative design. However, either pass - band edge may 
be specifi ed. The design specifi cations for the band - pass fi lter determines the 
value for  F  c2    −    bp . It is now necessary to fi nd  F  c  for the equivalent low - pass circuit 

     FIGURE 5.10     Filter conversion chart.  
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and apply the result to Eq.  (5.11)  or  (5.24)  to determine the number of poles 
for the fi lter. 

 The relationship between the normalized low - pass prototype circuit fre-
quency and the band - pass circuit frequency is given by Eq.  (5.70) . This needs 
to be solved for the equivalent stop to the upper pass - band edge frequency 
ratio for the band - pass circuit. Solving Eq.  (5.70)  for the band - pass frequency, 
  ω  , gives

    wωω ω ω ω0
2

0
2

n = −     (5.77)  

    0 2
0 0

2= − ( ) −ω ω ω ω ωnw     (5.78)  

    ω ω ω ω ω ω
=

± ( ) +0 0
2

0
24

2
n nw w     (5.79)  

    = + ( ) +⎡
⎣

⎤
⎦

ω ω ω0 2

2
4n nw w     (5.80)   

 The frequency,   ω  , is the variable corresponding to the band - pass circuit while 
  ω   n  corresponds to the low - pass prototype frequency variable. The cutoff fre-
quency for the low - pass prototype circuit is   ω   n     =      ω   c     =    1   rad/s, and this corre-
sponds to the edge of the pass band,   ω   2 , for the band - pass circuit. The low - pass 
prototype stop frequency is   ω   s     =      ω   c     ·     F  c . The corresponding stop - to - band edge 
frequency ratio for the band - pass circuit is presumed to be a design specifi ca-
tion along with the fractional bandwidth,  w . These frequency points for the 
band - pass circuit are illustrated in Fig.  5.11 . It is necessary to fi nd the corre-
sponding value,  F  c , of the low - pass circuit in order to determine  n . The band -
 pass ratio,  F  c2    −    bp , is evaluated by using Eq.  (5.80)  to provide expressions for 
  ω  s   2  and   ω   2 :

     FIGURE 5.11     Upper pass - band frequency and stop - band frequency for a band - pass 
fi lter.  

H(f )
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    F
wF wF

w w
c bp

s c c
2

2

2

2

2

4

4
− = =

+ ( ) +
+ +

ω
ω

    (5.81)  

    �
a F

w w

c( )
+ ( ) +2 4

    (5.82)     

 The value for  a ( F  c ) is determined by the specifi ed values,  F  c2    −    bp  and  w , in Eq. 
 (5.82) . This equation can be solved for  F  c  in terms of a known  a  by equating 
Eqs.  (5.81)  and  (5.82) :

    F a
aw

c = −( )2 4
1

2
    (5.83)   

 Once  F  c  is known for the low - pass circuit, the number of poles required for a 
given stop - band attenuation can be found from Eq.  (5.11)  or  (5.24)  for the 
Butterworth and Chebyshev fi lters, respectively. For example, if a band - pass 
Butterworth fi lter is to have 15   dB attenuation at a point 1.1    ×     f  2 , and have a 
fractional bandwidth of 20%, then   α   min     =    15   dB, and   α   max     =    3   dB. The above 
equations give  a ( F  c )    =    2.431,  F  c     =    1.964 and from Eq.  (5.12)   n     =    2.535. So the 
number of required poles would be three.  

   5.6.4    Chebyshev Band - Pass Filter Example 

 The analytical design technique for a Chebyshev fi lter with two unequal 
resistances has been implemented in the program called CHEBY. As an 
example of its use consider the design of a Chebyshev fi lter that matches 
a 15 -  Ω  to a 50 -  Ω  load resistance. It will have  n     =    3 poles, a center frequency 
of 1.9   GHz, and a fractional bandwidth  w     =    ( f  2     −     f  1 )/ f  0     =    20%. The program, 
CHEBY, is used to fi nd the fi lter circuit elements. The program could 
have used the Cauer procedure described in Section  5.6.1 , but instead it 
used simpler analytical formulas  [1] . The following is a sample run of the 
program:

 Generator      AND      Load      resistances       15.,50.  
 Pass       band      ripple      (dB)       0.2  
 Band - pass Filter?       < Y/N >        Y  
 Specify      stopband attenuation      OR      n,       < A/N >          N  
 Number of      transmission      poles n       =        3  
 L(   1)       =       .62405E + 02    C(      2)       =       .25125E - 01   L(   3)    =    .36000E + 02 
 Number of      poles  =  3      Ripple  =       .20000E + 00       dB 
 Center Frequency,   Fo   (Hz),   AND   Fractional   Bandwidth,   w    1.9E9,.2  
 Through    series   LC.   L1(      1)    =    .261370E - 07   C1(      1)    =    .268458E - 12 
 Shunt    parallel   LC.   L2(      2)       =       .666805E - 09   C2(      2)    =    .105229E - 10 
 Through    series   LC.   L3(      3)       =       .150777E - 07      C3(      3)    =    .465370E - 12 
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    The resulting circuit shown in Fig.  5.12  can be analyzed using the SPICE 
template described in Appendix  G . The results in Fig.  5.13  show that 
the minimum loss in the pass band is  − 1.487   dB which corresponds to 
  H0 0 7101≤ . .     

   5.7    CONCLUSIONS 

 The fi lter designs described in this chapter can be used in the transceiver 
for blocking unwanted frequencies from the antenna or mixer and providing 
critical impedance matching in the amplifi er. The following chapter 
describes impedance transformers that are unique to the radio frequency 
range. 

     FIGURE 5.12     A 15   :   50 -  Ω  Chebyshev band - pass fi lter where  L  1     =    26.14   nH, 
 C  1     =    0.2685   pF,  L  2     =    0.6668   nH,  C  1     =    10.52   pF,  L  3     =    15.08   nH,  C  3     =    0.4654   pF.  

L1 C1

RG RLC2 L2

L3 C3

     FIGURE 5.13     SPICE analysis of a Chebyshev fi lter.  
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  PROBLEMS 

       5.1.    Design a band - pass fi lter with center frequency of 500   MHz, fractional 
bandwidth  w     =    5%, and pass - band ripple of 0.1   dB. The out - of - band 
attenuation is to be 10   dB 75   MHz from the band edge. The terminating 
impedances are each 50    Ω . Using SPICE, plot the return loss (refl ection 
coeffi cient in decibels) and the insertion loss over the pass band. See 
Appendix  G .   

    5.2.    Design a band - pass fi lter with center frequency of 500   MHz, fractional 
bandwidth  w     =    5%, and pass - band ripple of 0.1   dB. The out - of - band 
attenuation is to be 10   dB 75   MHz from the band edge, and it is to trans-
form a 50 -  Ω  source impedance to a 75 -  Ω  load impedance. Using SPICE, 
plot the return loss (refl ection coeffi cient in decibels) and the insertion 
loss over the pass band. See Appendix  G .   

    5.3.    Design an elliptic function fi lter with the same specifi cations as in Problem 
5.1 and plot the results using SPICE. See Appendix  G .   

    5.4.    Design a high - pass three - pole fi lter with cutoff frequency of 900   MHz.   

    5.5.    Determine the circuit from the impedance function given below using the 
Cauer procedure:

   Z s
s s s

s s
( ) =

+ + +
+ +

20
2 8 11 12

0 5 2 2

3 2

2.
    

    5.6.    A transfer function for a desired circuit has the following form:

   H s
s D s

( ) =
+

=
( )

2

4

1
1

1
 

where

   D s s j s h s j s j( ) = − −
⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

+ +
⎛
⎝⎜

⎞
⎠⎟

+ −
⎛
⎝⎜

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

⎞⎞
⎠⎟

  

 Determine the expression for the required input impedance for this 
circuit.   

    5.7.    Design a Chebyshev 50   :   50    Ω  fi lter with a pass - band ripple of 0.1   dB 
from 2.0 to 3.0   GHz. The attenuation should be at least 15   dB at  f     <    
1   GHz and  f     >    4.0   GHz. Determine the actual fi lter attenuation from 
1.0 to 4.0   GHz using SPICE or other simulator to plot the insertion 
loss.      
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  CHAPTER SIX 

Transmission Line Transformers     

    6.1    INTRODUCTION 

 An RF transceiver often requires impedance transformation, power splitting, 
or transformation from a balanced to an unbalanced (balun) transmission line. 
Such circuits appropriate to the RF range are described in this chapter. The 
subject matter of Chapter  3  was impedance transformation. This subject is 
taken up here again, but now with more careful attention given to the special 
problems and solutions required for RF designs. The discrete - element designs 
described previously can be used in RF designs with the understanding that 
element values will change as frequency changes. The alternative to discrete -
 element circuits are transmission line circuits. The classical microwave quarter -
 wavelength transformer can be used up to hundreds of gigahertz in the 
appropriate transmission line medium. However, at 1   GHz, a three - section 
quarter - wavelength transformer would be a little less than a meter long! The 
solution lies in fi nding a transformation structure that may not work at 100   GHz 
but will be practical at 1   GHz. 

 The conventional transformer consists of two windings on a high -
 permeability iron core. The fl ux,   φ  , is induced onto the core by the primary 
winding. By Faraday ’ s law, the secondary voltage is proportional to  d φ  / dt . For 
low - loss materials, the primary and secondary voltages will be in phase. Ideal 
transformers have perfect coupling and no losses. The primary - to - secondary 
voltage ratio is equal to the turns ratio,  n , between the primary and secondary 
windings, namely  V  p / V  s     =     n . The ratio of the primary - to - secondary current 
ratio is  I  p / I  s     =    1/ n . This implies conservation of power,  V  p  I  p     =     V  s  I  s . As a con-
sequence, the impedance seen by the generator or primary side in terms of 
the load impedance is

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
Copyright © 2011 John Wiley & Sons, Inc.
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132 TRANSMISSION LINE TRANSFORMERS

    Z n ZG L= 2     (6.1)   

 When the secondary side of the ideal transformer is an open circuit, the input 
impedance of the transformer on the primary side is infi nity. 

 In a physical transformer the ratio of the leakage inductances on primary and 
secondary sides is  L  p / L  s     =     n . For the ideal transformer,  L  p  and  L  s  approach  ∞ , 
but their ratio remains fi nite at  n . The physical transformer has an associated
mutual inductance,   M k L L= p s , where  k  is the coupling coeffi cient. The 
leakage inductance together with the interwire capacitances limits the high -
 frequency response. The transmission line transformer avoids these frequency 
limitations.  

   6.2    IDEAL TRANSMISSION LINE TRANSFORMERS 

 It was found in Chapter  2  that inductive coils always come with stray capaci-
tance. It was this capacitance that restricted the frequency range for a standard 
coupled - coil transformer. The transmission line transformer can be thought 
of as simply tipping the coupled - coil transformer on its side. The coil induc-
tance and stray capacitance now form the components for an artifi cial trans-
mission line whose characteristic impedance is

    Z
L
C

0 =     (6.2)   

 The artifi cial transmission line can be used, in principle, up to very high fre-
quencies because the shunt capacitance forms part of the transmission line 
characteristic impedance. The transmission line transformer can be made from 
a variety of forms of transmission lines such as two parallel lines, a twisted 
pair of lines, a coaxial cable, or a pair of wires on a ferrite core. The transmis-
sion line transformer can be defi ned as having the following characteristics: 

  1.     The transmission line transformer is made up of interconnected lines 
whose characteristic impedance is a function of such mechanical things 
as wire diameter, wire spacing, and insulation dielectric constant.  

  2.     The transmission lines are designed to suppress even - mode currents and 
allow only odd - mode currents to fl ow (Fig.  6.1 ).  

     FIGURE 6.1     Two - wire transmission line showing odd -  and even - mode currents.  
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io ie
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IDEAL TRANSMISSION LINE TRANSFORMERS 133

  3.     The transmission lines carry their own  “ ground ”  so that transmission 
lines relative to true ground are unintentional.  

  4.     All transmission lines are of equal length and typically  <   λ  /8.  
  5.     The transmission lines are connected at their ends only.  
  6.     Two different transmission lines are not coupled together either by 

capacitance or inductance.  
  7.     For a short transmission line, the voltage difference between the termi-

nals at the input port is the same as the voltage difference at the output 
port.      

 Some explanation of these points is needed to clarify the characteristics of 
the transmission line transformer. In property 2, for a standard transmission 
line, the current going to the right in one conductor must be equal to the 
current going to the left in the other in order to preserve current continuity 
(Fig.  6.1 ). Since only odd - mode currents are allowed, the external magnetic 
fi elds are negligible. The net current driving the magnetic fi eld outside of the 
transmission line is low. The third point is implied by the second. The trans-
mission line is isolated from other lines as well as the ground. The equality of 
the odd - mode currents in the two lines of the transmission line as well as the 
equivalence of the voltages across each end of the transmission line is depen-
dent on the transmission line being electrically short in length. The analysis 
of transmission line transformers will be based on the given assumptions 
above. 

 As an example, consider the transmission line transformer consisting of one 
transmission line with two conductors connected as shown in Fig.  6.2 . The 
transformation ratio will be found for this connection. Assume fi rst that  v  1  is 
the voltage across  R  G  and  i  1  is the current leaving the generator resistance: 

  1.     Current  i  1  passes through the upper conductor of the transmission line.  
  2.     The odd - mode current  i  1  fl ows in the opposite direction in the lower 

conductor of the transmission line.  
  3.     The sum of the two transmission line currents at the output node is 2 i  1 .  

     FIGURE 6.2     Analysis steps for transmission line transformer.  
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134 TRANSMISSION LINE TRANSFORMERS

  4.     The voltage at the output node is assumed to be  v  o . Consequently, the 
voltage at the left side of the lower conductor in the transmission line is 
 v  o  above ground.  

  5.     On the left - hand side, the voltage difference between the two conductors 
is  v  1     −     v  o . This is the same voltage difference on the right - hand side. 
Consequently,

   v v vo o− = −0 1  

   v vo = 1 2   

 If  R  G     =     v  1   / i  1 , then

    R
v
i

v
i

R
L

o G= = =
2

2
2 41

1

1

    (6.3)   

 This 4   :   1 circuit steps down the impedance level by a factor of 4.      

 A physical connection for this transformer is shown in Fig.  6.3 , where the 
transmission line is represented as a pair of lines. In this diagram the nodes 
in the physical representation are matched to the corresponding nodes of the 
schematic representation. The transmission line is bent around to make the 
 B  –  C  distance a short length. The transmission line, shown here as a two - wire 
line, can take a variety of forms such as a coupled line around a ferromagnetic 
core, fl exible microstrip line, or coaxial line. If the transformer is rotated about 
a vertical axis at the center, the circuit shown in Fig.  6.4  results. Obviously, 
this results in a 1   :   4 transformer where  R  L     =    4 R  G . Similar analysis to that given 
above verifi es this result. In addition multiple two - wire transmission line trans-

     FIGURE 6.3     Physical two - wire transmission line transformer and equivalent formal 
representation.  
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IDEAL TRANSMISSION LINE TRANSFORMERS 135

formers may be tied together to achieve a variety of different transformation 
ratios. An example of three sections connected together is shown in Fig.  6.5 . 
In this circuit the current from the generator splits into four currents going 
into the transmission lines. Because of the equivalence of the odd - mode cur-
rents in each line, these four currents are all equal. The voltages on the load 
side of each line pair build up from ground to 4 ×  the input voltage. As a result, 
for match to occur,  R  L     =    16 R  G .   

 The voltages and currents for a transmission line transformer (TLT) having 
a wide variety of different interconnections and numbers of transmission lines 
can be represented by the simple diagram in Fig.  6.6 , where  x  and  y  are inte-
gers. The impedance ratios,  R  G     =    ( x / y ) 2  R  L , range from 1   :   1 for a 1 - transmission 
line circuit to 1   :   25 for a 4 - transmission line circuit with a total of 16 different 
transformation ratios  [1] . A variety of transmission line transformer circuits 
are found in  [1]  and  [2] .    

     FIGURE 6.4     Alternate transmission line transformer connection.  

RG RL

     FIGURE 6.5     A 16   :   1 transmission line transformer.  

RG RL

     FIGURE 6.6     Symbol for general transmission line transformer.  
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136 TRANSMISSION LINE TRANSFORMERS

   6.3    TRANSMISSION LINE TRANSFORMER SYNTHESIS 

 All the transmission lines in the transmission line transformer shown in Fig. 
 6.5  have their left - hand sides near the generator connected in parallel and all 
their right - hand sides near the load connected in series. In this particular 
circuit, there are three transmission lines, and analysis shows that  V  in    :    V  out     =    1   :   4, 
and  R  G    :    R  L     =    1   :   16. The number of transmission lines,  m , is the order of the 
transformer, so that when all the transmission lines on the generator side are 
connected in shunt and on the load side in series, the voltage ratio is 
 V  in    :    V  out     =    1   :   ( m     +    1). Synthesis of impedance transformations of 1   :   4, 1   :   9, 
1   :   16, 1   :   25, and so on are all obvious extensions of the transformer shown in 
Fig.  6.5 . To obtain a voltage ratio that is not of the form 1   :   ( m     +    1) there is a 
simple synthesis technique  [3] . The voltage ratio is  V  in    :    V  out     =     H    :    L , where  H  
is the high value and  L  the low value. This ratio is decomposed into an 
 V  in    :    V  out     =     H     −     L    :    L . If now  H     −     L     <     L , this procedure is repeated where now 
 H ′      =     L  and  L ′      =     H     −     L . This ratio is now  V  out    :    V  in     =     H ′     :    L ′  , which in turn can 
be decomposed into  H ′      −     L ′     :    L ′  . These steps are repeated until a 1   :   1 ratio is 
achieved, all along keeping track of which ratio is being done,  V  in    :    V  out  or 
 V  out    :    V  in . The allowed voltage ratios, upon being squared, give the impedance 
ratios as shown in Table  6.1 .   

 An example given in  [3]  illustrates the procedure. If an impedance ratio of 
 R  G    :    R  L     =    9   :   25 is desired, the corresponding voltage ratio is  V  in    :    V  out     =    3   :   5: 

  Step 1  H    :    L     =     V  out    :    V  in     =    5   :   3    →    (5    −    3)   :   3    =    2   :   3  
  Step 2  H    :    L     =     V  in    :    V  out     =    3   :   2    →    (3    −    2)   :   2    =    1   :   2  
  Step 3  H    :    L     =     V  out    :    V  in     =    2   :   1    →    (2    −    1)   :   1    =    1   :   1    

 Now working backward from step 3, a  V  in    :    V  out     =    1   :   2 transmission line trans-
former is made by connecting two transmission lines in shunt on the input side 
and in series on the output side (Fig.  6.7  a ). From step 2, the  V  out  is already 2, 
so another transmission line is attached to the fi rst pair in shunt on the output 
side and series on the input side (Fig.  6.7  b ). Finally from step 1,  V  in     =    3 already, 

  TABLE 6.1    Voltage Ratios for Transmission Line Transformers 

   Number of Lines     1     2     3     4  

      1   :   1    2   :   3    3   :   4    4   :   5  
      1   :   2    1   :   2    3   :   5    5   :   7  
       —     1   :   3    2   :   5    5   :   8  
       —      —     1   :   4    4   :   7  
       —      —      —     3   :   7  
       —      —      —     3   :   8  
       —      —      —     2   :   7  
       —      —      —     1   :   5  
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ELECTRICALLY LONG TRANSMISSION LINE TRANSFORMERS 137

so the input is connected in shunt with another added transmission line and 
the outputs connected in series (Fig.  6.7  c ). The fi nal design has  V  in    :    V  out     =    3   :   5 
as desired.    

   6.4    ELECTRICALLY LONG TRANSMISSION LINE TRANSFORMERS 

 One of the assumptions given in the previous section was that the electrical 
length of the transmission lines was short. Because of this the voltages and 
currents at each end of an individual line could be said to be equal. However, 
as the line becomes electrically longer (or the frequency increases), this 
assumption ceases to be accurate. It is the point of this section to provide a 
means of determining the amount of error in this assumption. Individual 
design goals would dictate whether a full frequency - domain analysis is needed. 

     FIGURE 6.7     Step - by - step procedure for synthesis for desired impedance ratio.  
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138 TRANSMISSION LINE TRANSFORMERS

 As pointed out in Chapter  4 , the total voltage and current on a transmission 
line are each expressed as a combination of the forward and backward terms 
(Fig.  6.8 ). In this case let  V  2  and  I  2  represent the voltage and current at the 
load end, where  V   +   and  V   −   are the forward -  and backward - traveling voltage 
waves:

    V V V2 = ++ −     (6.4)  

    I
V
Z

V
Z

2
0 0

= −
+ −

    (6.5)     

 Assuming that the transmission line is lossless, the voltage and current waves 
at the input side, 1, given in terms of their values at port 2 are modifi ed by the 
phase associated with the electrical length of the line:

    V V e V ej j
1 = ++ − −θ θ     (6.6)  

    I
V
Z

e
V
Z

ej j
1

0 0

= −
+ −

−θ θ     (6.7)   

 The sign associated with the phase angle,  +   θ  , for  V   +   is used because the refer-
ence is at port 2 while a positive phase is associated with traveling from left 
to right. The Euler formula is used in converting the exponentials to sines and 
cosines. The voltage at the input,  V  1 , is found in terms of  V  2  and  I  2  with the 
help of Eqs.  (6.4)  and  (6.5) :

    V V jZ I1 2 0 2= +cos sinθ θ     (6.8)   

 Similarly,  I  1  can be expressed in terms of the voltage and current at port 2:

    I I j
V
Z

1 2
2

0

= +cos sinθ θ     (6.9)   

 The 1   :   4 transmission line transformer shown in Fig.  6.4  is now reconsidered 
in Fig.  6.9  to determine its frequency response. The generator voltage can be 
expressed in terms of the transmission line voltages and currents:

    V I I R VG G= +( ) +1 2 1     (6.10)     

     FIGURE 6.8     Electrically long transmission line.  
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ELECTRICALLY LONG TRANSMISSION LINE TRANSFORMERS 139

 The nontransmission line connections are electrically short. Therefore, the 
output voltage across  R  L  is  V  o     =     V  1     +     V  2 , and

    V I I R I R VG G L= +( ) + −1 2 2 2     (6.11)   

 In Eqs.  (6.11) ,  (6.8) , and  (6.9) ,  V  1  is replaced by  I  2  R  L     −     V  2  to give three equa-
tions with three unknowns  I  1 ,  I  2 , and  V  2 :

    V I R I R R VG G G L= + +( ) −1 2 2     (6.12)  

    0 0 12 0 2= + −( ) + +( )I jZ R Vsin cosθ θL     (6.13)  

    0 1 2
2

0

= − + +I I j
V
Z

cos sinθ θ     (6.14)   

 The determinate of this set of equations is

    Δ = − +( ) − +
−

−⎛
⎝⎜

⎞
⎠⎟2 1

0
0R R j

R R
Z

ZG L
G Lcos cos sinθ θ θ     (6.15)  

and the current  I  2  is

    I
V

2
1

=
− +( )G cosθ

Δ
    (6.16)   

 Consequently, the power delivered to the load from the source voltage is

    
P I R

V R

R R R R Z

o L

G L

G L G L

=

=
+( )

+( ) + ( )[ ] + +

1
2

2 2

2 2

2
0

1
2

1

2 1

cos

cos cos

θ
θ θ 22

0
2 2( )[ ]Z sin θ

    
(6.17)   

     FIGURE 6.9     Electrically long 1   :   4 transmission line transformer.  
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140 TRANSMISSION LINE TRANSFORMERS

 Now the particular value of  R  L  that guarantees maximum power transfer 
into the load is found by maximizing Eq.  (6.17) . Let  D  represent the denomi-
nator in Eq.  (6.17) :

    

dP
dR

V
D

R
D

R R

o

L
G

L
G L

= =
+( )

× − +( ) +[ ] + [

0
1
2

1

1 2 2 1

2
2cos

cos cos cos

θ

θ θ θ �]]{ }⎛
⎝⎜

⎞
⎠⎟sin2 θ

    

(6.18)   

 In the low - frequency limit where   θ      →    0, the coeffi cient of sin 2      θ   in Eq.  (6.18)  
will be multiplied by zero. Furthermore,  D (  θ      =    0)    =    (4 R  G     +     R  L ) 2  so that Eq. 
 (6.18)  requires that  R  L     =    4 R  G . The optimum characteristic impedance is found 
by maximizing  P  o  with respect to  Z  0 , while this time keeping the line length    ≠    0. 
The result is not surprising, as it is the geometric mean between the generator 
and load resistance:

    Z R R R0 2= =L G G     (6.19)   

 From Eq.  (6.17)  the output power when  Z  0     =    2 R  G  and  R  L     =    4 R  G  is

    P
V

R R
o

G

G G

=
+( )

+( ) +
1
2

1

1 3 4

2 2

2 2

cos

cos sin

θ
θ θ

    (6.20)   

 This reduces to the usual form for the available power when   θ      →    0. 
 More complicated transmission line transformers might benefi t from using 

SPICE to analyze the circuit. The analysis above gives a clue to how the values 
of  Z  0  and the relative values of  R  G  and  R  L  might be chosen with the help of a 
low - frequency analysis. 

 As an example, consider the circuit in Fig.  6.9  again where  R  G     =    50    Ω  so 
that  R  L     =    200    Ω ,   Z0 50 200 100= × = Ω, the length of the transformer is 4   cm, and 
the frequency is 1.0   GHz. The return loss ( =    20   log of the refl ection coeffi cient) in 
Fig.  6.10  shows that in principle a good match is obtained even at 1   GHz.   

 The SPICE net list used to analyze this circuit makes use of the conversion 
of voltages to  S  parameters:

 Analysis of      a      circuit      for      S11      and      S21 
  *  
  *  R01 and      R02 are input      and      output resistance   levels. 
  *  RL      is the load         resistance.            The      load      may be      supplemented 
  *  with      additional      elements. 
  *  Lines beginning      with       *  *       may be      used      for      PSPICE instead 
  *  * .PARAM      R01 = 50,      R02 = 50.            RLOAD = 50.                  IN1 =  - 1/R01 
  *  * .PARAM      R01 = 50,      R02 = 200.            RLOAD = 200.            IIN =  - 1/R01 
  *  * .FUNC N(R01,R02)      SQRT(R02/R01) 
  *  * R01           1               0               {R01} 
 r01                   1               0               50 
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ELECTRICALLY LONG TRANSMISSION LINE TRANSFORMERS 141

 vin                  10            11            ac            1 
  *  * GI1         1               0               VALUE = { - V(10,11)/R01} 
  * gi1              1               0                  10               11               “ - 1/R01” 
 gi1                  1               0                 10               11                - .02 
 e11                 10            0                  1                  0               2 
 r11                  11            0                  1 
 xcircuit               1                  2                  tltckt 
  *  * RL            2               0               {RLOAD} 
 rl                     2               0                  200 
  *  * E21         21         0                  VALUE = {V(2) * 2/N(R01,R02)} 
  *             n    =    SQRT(R02/R01) 
  * e21            21         0              2         0         “2/n” 
 e21                 21         0               2         0         1 
 r21                  21             0              1 
  *  
 .subckt      tltckt        1         4 
  *  Input side 
  *  4      cm  =  0.1333     wavelength      at      1      GHz 
 TLT4            1               0            4         1            Z0 = 100      F = 1GHZ         NL = .1333 
  *  Output      side 
 .ends               tltckt 
  *  Code      for      S11   and   S21 
  * .AC DEC      “num” “f1”               “f2” 
 .ac         lin      301      .1meg               2ghz 
  *  * .PROBE V(11)         V(21) 
 .end   

     FIGURE 6.10     Return loss for frequency - dependent transmission line transformer of 
Fig.  6.9 .  
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142 TRANSMISSION LINE TRANSFORMERS

   6.5    BALUNS 

 A balun (balanced – unbalanced) is a circuit that transforms a balanced trans-
mission line to an unbalanced one. An example of a balanced line is the two -
 wire transmission line. An unbalanced line is one where one of the lines is 
grounded, such as in coaxial line or microstrip. One situation where the balun 
plays an important role is in feeding a dipole antenna with a coaxial line where 
the antenna is balanced and the coaxial line is unbalanced. One simple struc-
ture is shown in Fig.  6.11  where the difference between the inputs of the 
antenna is forced to be 180    °  by addition of a half wavelength line between 
them. At radio frequencies, a more practical way to perform this same func-
tion is to use a transmission line transformer as shown in the example of the 
1   :   1 balun in Fig.  6.12  a . There is no specifi ed ground on the right - hand side of 
this circuit, but since the voltage difference on the input side is  V , the voltage 
across the load must also be  V . For the dipole application, where a  +  V  is 
needed on one side and  –  V  on the other side, one of the output sides can be 
grounded as indicated in Fig.  6.12  b . The ( R  G    :    R  L     =    1   :   4) balun in Fig.  6.13  shows 
that impedance matching and changing to a balanced line can be accomplished 
with a balun. Analysis of this circuit may be aided by assuming some voltage, 
 V x  , at the bottom side of  R  L . When the voltage at the top side of  R  L  is found, 
it also contains  V x  . The difference between the bottom and top sides of  R  L  
removes the  V x  .    

   6.6    DIVIDERS AND COMBINERS 

 Transmission lines can be used to design power dividers and power combiners. 
These are particularly important in design of high - power solid - state RF ampli-
fi ers where the input can be split between several amplifi ers or where the 
outputs of several amplifi ers may be effectively combined into one load. A 
very simple two - way power divider is shown in Fig.  6.14 . In this circuit  R  L     =    2 R  G 
and the transmission line characteristic impedance should be   Z R0 2= G. The 
current in  R  n  ordinarily would be 0 because of the equal voltages on either 

     FIGURE 6.11     Balun example used for dipole antenna.  
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DIVIDERS AND COMBINERS 143

side of that resistance. Under unbalanced load conditions,  R  n  can absorb some 
of the unbalanced power and thus protect the load. The two loads are both 
2 R  G . The input voltage is  V  1  on the top conductor, and the voltage on the 
bottom conductor is  V x   (Fig.  6.14 ). On the right - hand side of the transmission 
line, the bottom conductor is  V  1  and so the top conductor must be 2 V  1     −     V x   
to ensure that both sides of the transmission line have the same voltage across 
the terminals, that is,  V  1     −     V x  . Since the current fl owing through the top load 
resistor and the bottom load resistor must be the same, the voltage on either 
side of  R  n  is the same. Consequently, 2 V  1     −     V x      =     V x   or  V x      =     V  1 , so the voltage -
 to - current ratio at the load is

     FIGURE 6.12     ( a ) Transmission line transformer implementation of a (1   :   1) balun, and 
( b ) grounding one side gives a  + V and  − V to two sides of dipole antenna.  
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     FIGURE 6.13     Balun with  R  G    :    R  L     =    1   :   4 impedance ratio.  
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    R
V

I
RL G= =1

1 2
2     (6.21)     

 A two - way 180    °  power combiner shown in Fig.  6.15  makes use of a hybrid 
coupler and a balun. The resistor,  R  n , is used to dissipate power when the two 
inputs are not exactly equal amplitude or exactly 180    °  out of phase so that 
matched loading for the two sources is maintained. For example, consider 
when  I  1     =     I  2  as shown in Fig.  6.15  so that  I  1  is entering the circuit and  I  2  is 
leaving the circuit. The current fl owing through the load,  R  L , is  I  o . The current 
fl owing into the hybrid transmission line from the top is  I  1     −     I  o  while the 
current fl owing into the bottom is  I  o     −     I  2 . The odd - mode current in the trans-
mission line forces

   I I I I1 2− = −o o  

     FIGURE 6.14     Two - way power divider.  
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     FIGURE 6.15     Two - way 180    °  power combiner.  
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or

    I Io = 1     (6.22)     

 All the current goes through the balun and no current fl ows through the 
hybrid. The current through  R  n  is therefore 0, leading to  V x      =    0. The voltage 
difference between the two ends of the transmission lines of the hybrid is the 
same and implies that

   V V V Vx x1 2− = −  

or

    V V1 2= −     (6.23)  

and

    V V V Vo = − =1 2 12     (6.24)   

 The matching load resistance is then

    
V
I

R
V
I

Ro

o
L G= = =

2
22

1

    (6.25)   

 When  I  1  and  I  2  are both entering the circuit so that  I  1     =      − I  2 , and  V  1     =     V  2 , 
then voltages across the top and bottom of the transmission line in the hybrid 
circuit of Fig.  6.15  are

   V V V Vx x1 2− = −  

or

    V Vx = 1     (6.26)   

 The voltage across the load is  V  o     =    0 and  I  o     =    0. The current in the hybrid 
transmission line is  I  1 , so the current fl owing through  R  n  is 2 I  1 :

    R
V
I

V
I

Rx
n

G= = =
2 2 21

1

1

    (6.27)   

 The choices for  R  L  and  R  n  assure impedance matching for an arbitrary phase 
relationship between  I  1  and  I  2 . Optimum performance would be expected if 
the characteristic impedances of the transmission lines were

    Z R0 2− =balun G     (6.28)  
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    Z R0 2− =hybrid G     (6.29)   

 The four - way power divider illustrated in Fig.  6.16  has some similarities 
with the Wilkinson power divider used at microwave frequencies. In the 
Wilkinson divider, matching impedances between the input and output is done 
by choosing the quarter - wavelength transmission lines to have a characteristic 
impedance   Z NR0 = G where  N  is the power division ratio, and  R  n     =     R  G . In 
the present circuit, impedance matching is done using an impedance trans-
former at the voltage source (not shown in Fig.  6.16 ). If it is desired that all 
the output loads and voltages be equal to one another, then it follows that the 
currents in the  R  n  resistors is 0. This can be shown easily. The voltage differ-
ence between the conductors on the right - hand side in each of the transmission 
lines is  V  o     −     V  1 . Then for the left - hand side,

    V V V V V V V V V Va d b a c b d co − = − = − = − = −1     (6.30)     

 Combining the second and third expressions, then the third and fourth expres-
sions, and so on leads to the following:

     FIGURE 6.16     Four - way power divider.  
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    2V V Va b d= +     (6.31)  

    2V V Vb c a= +     (6.32)  

    2V V Vc b d= +     (6.33)   

 Equations  (6.31)  and  (6.33)  clearly show that  V a      =     V c   and Eq.  (6.32)  shows 
 V b      =     V a   and fi nally  V d      =     V a  . This means there is no current fl owing in the  R  n  
resistors and that on the right - hand side,  V  o     =     V  1 . The current entering each 
transmission line must then be  I  1 /4 where  I  1  is the input current from the 
source. The load currents are also  I  1 /4 so the impedance transformation at the 
input requires  R  G     =     R  L /4.  

   6.7    THE 90    °  COUPLER 

 The 90    °  coupler is commonly used to do power division and combining. This 
is a four - port lossless circuit in which power entering one port will divide 
between two output ports. The two output signals are 90    °  out of phase with 
one another. The fourth port is isolated from the input. The typical branch 
line or rat race coupler used at microwave frequencies use quarter - wavelength 
transmission lines. Even techniques such as capacitive loading or folding of 
transmission lines would still produce a cumbersome design in the lower RF 
range. A compact design using lumped capacitances and coupled inductors is 
given in  [4, 5] . The coupled inductors are essentially an iron core transformer 
turned on its side. The four terminals become four ports when they are all 
referenced with respect to a ground plane. An alternative design that does not 
require coupled inductors is shown in Fig.  6.17   [6] .   

 The circuit is excited with a voltage wave amplitude of  ½  for the odd mode 
and  ½  for the even mode. The superposition of inputs will give an input ampli-
tude of 1 at port 1 and zero at port 4. The outputs at ports 2 and 3 are  b  2  
and  b  3 . The symmetry across a central horizontal line enables use of this odd -  
and even - mode analysis  [7] . When ports 1 and 4 are excited in the odd mode, 

     FIGURE 6.17     Four - port 90    °  lumped - element coupler design with odd -  and even -
 mode excitation.  
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voltages on the horizontal centerline are zero, so the voltages and currents in 
the circuit would not be affected if these points were all grounded. When ports 
1 and 4 are excited in the even mode, no currents fl ow across the central line 
of symmetry, and these points can be open circuited without changing any of 
the internal voltages or currents. The odd - mode circuit is shown in Fig.  6.18 .   

 The two halves of the circuit are each two - port circuits that can be analyzed 
separately, one of which is shown in Fig.  6.19  where  Z L      =     sL  and  Z C      =    1 /sC  x . 
The analysis process proceeds by (1) determine the  ABCD  parameters of the 
circuit, (2) fi nd the refl ection and transmission coeffi cients of the four - port 
circuit, (3) repeat the process for the even - mode excitation, (4) specify that 
 b  1     =    0, thereby enforcing a condition for impedance matching, (5) specify that 
 b  4     =    0 to enforce isolation of the fourth port, (6) determine the values of  Z L   
and  Z C  , and (7) show that  b  2  and  b  3  have equal amplitudes and a 90    °  phase 
difference.   

 For the circuit in Fig.  6.19 , the  ABCD  parameters are determined for the 
odd - mode circuit by standard circuit analysis:

    A
V
V

Z
Z

Z
ZI

L

C

L

C

= = + +
=

1

2 0

2

2
2

2 4
1     (6.34)  

    B
V
I

Z
Z
ZV

L
L

C

=
−

= +⎛
⎝⎜

⎞
⎠⎟=

1

2 02

2 1     (6.35)  

     FIGURE 6.18     Half circuit that results from odd - mode excitation.  
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     FIGURE 6.19     Odd - mode two - port half circuit.  
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    C
I
V Z

Z
Z

Z
ZI C

L

C

L

C

= = +⎛
⎝⎜

⎞
⎠⎟ +⎛

⎝⎜
⎞
⎠⎟=

1

2 02

2
2 1     (6.36)  

    D
I
I

Z
Z

Z
ZV

L

C

L

C

=
−

= + +
=

1

2 0

2

2
2

2 4
1     (6.37)   

 The impedance,  Z  0 , is the impedance level to which the coupler is attached. 
 The refl ection and transmission coeffi cients for the two - port circuit may be 

found from Table  D.1  in Appendix  D  as  S  11     =     Γ  and  S  21     =     T . It should be noted 
that  AD     −     BC     =    1 for a linear reciprocal network. For the odd mode:

    Γo =
+ − −
+ + +

A B Z CZ D
A B Z CZ D

0 0

0 0
    (6.38)  

    T
A B Z CZ D

o =
+ + +

2

0 0
    (6.39)   

 It will be shown later that if  b  1     =     b  4     =    0, then  Γ  o     =     Γ  e     =    0. The latter is the 
even - mode refl ection coeffi cient that is yet to be found. Since  A     =     D  from Eqs. 
 (6.34)  and  (6.37) , then for  Γ  o  to be zero:

    
1

0
2Z

C
B

=     (6.40)   

 The impedances in Fig.  6.19  are really reactances, which are  Z L      =     jX L   and 
 Z C      =     −  jX C  . Filling in these values for  C / B  gives

    X
Z

X
X

X
X

L L

C

L

C0

2

2⎛
⎝⎜

⎞
⎠⎟ = −⎛

⎝⎜
⎞
⎠⎟

    (6.41)   

 Equation  (6.41)  was obtained by requiring a match at the input port so that 
 Γ  o     =    0. Since  A     =     D  and  B / Z  0     =     CZ  0 , the transmission coeffi cient is

    T
A B Z

o =
+

1

0
    (6.42)   

 The denominator is complex, so after multiplying numerator and denominator 
by its complex conjugate and substituting the requirement for match, Eq. 
 (6.41) , the resulting real denominator can be shown to be equal to 1 and

    T
X
Z

j
X
Z

X
X

L L L

C
o = −⎛

⎝⎜
⎞
⎠⎟

− −⎛
⎝⎜

⎞
⎠⎟1 2 2 1

2

0
2

0

    (6.43)   

 This process for fi nding the odd - mode transmission coeffi cient for Fig.  6.19  
must now be repeated for the even - mode circuit in Fig.  6.20 . The even - mode 
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circuit is found by putting an open circuit at the line of symmetry rather than 
a short circuit to ground. The  ABCD  parameters are found again by circuit 
analysis:

    A
V
V

Z
ZI

L

C

= = +
=

1

2 02

1     (6.44)  

    B
V
I

Z
Z
ZV

L
L

C

=
−

= +⎛
⎝⎜

⎞
⎠⎟=

1

2 02

2     (6.45)  

    C
I
V ZI C

= =
=

1

2 02

1
    (6.46)  

    D
I
I

Z
ZV

L

C

=
−

= +
=

1

2 02

1     (6.47)     

 The requirement for match at port 1 and isolation at port 4 requires  B / Z  0     =     CZ  0  
just as required for the odd mode. For the even - mode circuit:

    
Z
X

X
X

X
XC

L

C

L

C

0
2

2
2= −⎛

⎝⎜
⎞
⎠⎟     (6.48)   

 Then

    T
A CZ

e =
+

1

0

    (6.49)  

    T
X
X

j
Z
X

L

C C
e = − −1 0     (6.50)   

 Equation  (6.50)  for  T  e  is found by a similar process used to fi nd  T  o . When the 
coupler in Fig.  6.17  is excited as shown, the four outputs are

    b1
1
2 0= +( ) =Γ Γe o matched     (6.51)  

     FIGURE 6.20     Even - mode two - port half - circuit.  
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    b T T2
1
2= +( )e o

    (6.52)  

    b T T3
1
2= −( )e o

    (6.53)  

    b4
1
2 0= −( ) =Γ Γe o isolation     (6.54)   

 The only way for  b  1  and  b  4  to be zero is for  Γ  o     =     Γ  e     =    0. The  Γ  o     =    0 require-
ment gave Eq.  (6.41)  and the  Γ  e     =    0 requirement gave Eq.  (6.48) . The variables 
 X L   and  X C   can be normalized with respect to  Z  0  so that   X

–
  L      =     X  L / Z  0  and 

  X
–

  C      =     X C  / Z  0 , From Eq.  (6.41) ,

    X
X

X
L

C

C

=
+

2
12

odd mode     (6.55)  

and from Eq.  (6.48) 

    X
X

X
C

L

L

=
+2 1

2
even mode     (6.56)   

 Simultaneous solution gives

    0 1 32 2= −( ) +( )X XL L     (6.57)   

 The only physically meaningful root is   X
–

  L      =    1, which implies   X
–

  C      =    1. From 
Eqs.  (6.52)  and  (6.53) ,

    b
X
X

j
Z
X

X
Z

j
X
Z

X
X

L

C C

L L L

C
2 3

0
2

0
2

0

1
2

1 1
2 2

1, = − −⎡
⎣⎢

⎤
⎦⎥

± −⎛
⎝⎜

⎞
⎠⎟

− −⎛
⎝⎜

⎞
⎠⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

    (6.58)   

 This is evaluated for the known values of  X L   and  X C   giving:

    b2
2

2
135= ∠ − °     (6.59)  

    b3
2

2
45= ∠ − °     (6.60)   

 Thus, the outputs are each 3   dB down from the input and are in phase 
quadrature. 

 This somewhat tedious process has yielded some fruit. It has shown how a 
compact 90    °  coupler might be designed for radio frequencies too low for 
quarter - wavelength transmission lines. It has also demonstrated how symme-
try may be used for analysis of four - port networks. 
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  PROBLEMS 

       6.1.    Indicate the direction of the currents in the transmission line transformer 
shown in Fig.  6.21 . Determine the value of  R  in  in terms of  R  L .     

    6.2.    Design a transmission line transformer that matches a 250 -  Ω  generator 
impedance to a 10 -  Ω  load impedance. What characteristic impedance 
would you use for the transmission lines? Verify that your design gives 
the desired result.   

    6.3.    For the 4   :   1 transformer shown in Fig.  6.2 , fi nd the output power, 
 P  o     =     |I  2  |  2  R  L /2, where the frequency dependence of the transmission lines 
is used. You will have three equations in the three unknowns  I  1 ,  I  2 , and 
 V  2 . The fi nal answer is similar to Eq.  (6.17) .   

    6.4.    Design a transmission line transformer that matches a 200 -  Ω  load to a 
50 -  Ω  source impedance. The transmission lines are to be 4   cm long, but 
the transmission line characteristic impedance can be chosen to give an 
acceptable match by not deviating from 50    Ω  by more than 25    Ω  to at least 
2.5   GHz. Using SPICE, plot the return loss at the input side as a function 
of frequency. What is the return loss at 1   GHz?   

    6.5.    Repeat Problem 6.4 for a transmission line transformer that matches 
800    Ω  to 50    Ω . The SPICE analysis should again show the return loss 
versus frequency. For this circuit, what is the return loss at 1   GHz?   

    6.6.    Synthesize a transmission line transformer using the technique described 
in Section  6.3  to give a resistance ratio of  R  G    :    R  L     =    25   :   16. You may use 
the TLT symbol given in Fig.  6.6  as long as each symbol is defi ned by a 
known two - conductor transmission line.   

    6.7.    Derive Eq.  (6.50) .      
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  CHAPTER SEVEN 

Noise in  RF  Amplifi ers     

    7.1    SOURCES OF NOISE 

 The dynamic range of a communication transmitter or receiver circuit is 
usually limited at the high - power point by nonlinearities and at the low - power 
point by noise. Noise is the random fl uctuation of electrical power that inter-
feres with the desired signal. There can be interference with the desired signal 
by other unwanted deterministic signals, but at this point only the interference 
caused by random fl uctuations will be considered. There are a variety of physi-
cal mechanisms that account for noise, but probably the most common source 
is thermal (also referred to as  Johnson noise  or  Nyquist noise ). This can be 
illustrated by simply examining the voltage across an open - circuited resistor 
(Fig.  7.1 ). The resulting voltage is not zero! The average voltage is zero but 
not the instantaneous voltage. At any temperature above absolute 0   K the 
Brownian motion of the electrons will produce random instantaneous cur-
rents. These currents will produce random instantaneous voltages, and this 
leads to noise power.   

 Noise arising in electron tubes, semiconductor diodes, bipolar transistors, 
or fi eld - effect transistors come from a variety of mechanisms. For example, 
for tubes, these include random times of emission of electrons from a cathode 
(called  shot noise ), random electron velocities in the vacuum, nonuniform 
emission energy over the surface of the cathode, and secondary emission from 
the anode. Similarly for diodes, a random emission of electrons and holes 
produces noise. In a bipolar transistor, in addition to the diode noise there is 
partition noise. This represents the fl uctuation in the path that charge carriers 
take through the base to the collector after leaving the emitter. There is in 
addition 1/ f  or  fl icker  noise (where  f  is frequency), which is probably caused 
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156 NOISE IN RF AMPLIFIERS

by surface recombination of base minority carriers at the base – emitter junc-
tion  [1] . Clearly, as the frequency approaches dc, the fl icker noise increases 
dramatically. As a consequence, intermediate - frequency amplifi er stages in 
transceivers are designed to operate well above the frequency where 1/ f  noise 
is a signifi cant contributor to the total noise. Typically, the 1/ f  noise is signifi -
cant in the frequency ranges from 100   Hz to 10   kHz. In a fi eld - effect transistor, 
there is thermal noise arising from channel resistance, 1/ f  noise, and a coupling 
of the channel noise back to the gate where it is, of course, amplifi ed by the 
transistor gain. Noise also arises from reverse breakdown in the avalanching 
of electrons in such devices as Zener diodes and IMPATT diodes. At radio 
frequencies, the two most common noise sources are the thermal noise and 
the shot noise.  

   7.2    THERMAL NOISE 

 The random fl uctuation of electrons in a resistance would be expected to rise 
as the temperature increases since the electron velocities and the number of 
collisions per second increases. The mean - square noise voltage is expressed 
as an autocorrelation of the instantaneous voltage over a time period  T :

    v
T

v t dt
T T

T2 21
2

= ( )
→∞ −∫lim     (7.1)   

 The expression for the thermal noise voltage has been derived in a variety of 
ways. Harry Nyquist fi rst solved the problem based on a transmission line 
model. Other approaches included using a lumped - element circuit, the random 
motion of electrons in a metal conductor, or the radiation from a black body. 
These are all basically thermodynamic models and each method results in the 
same expression. The black - body method is based on quantum mechanics and 
therefore provides a solution for noise sources at both cryogenic and room 
temperatures. 

   7.2.1    Black - Body Radiation 

 Classical mechanics is based on the continuity of energy states. When this 
theory was applied to calculation of the black - body radiation, it was found 
that the radiation increased without limit. This so - called ultraviolet catastro-

     FIGURE 7.1     Voltage across open - circuit resistor.  
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THERMAL NOISE 157

phe was clearly not physical. However, Planck was able to correct the situation 
by postulating that energy states are not continuous but are quantized in dis-
crete states. These energy values are obtained by solving the Schr ö dinger 
equation for the harmonic oscillator. The actual derivation is found in most 
introductory texts on quantum mechanics  [2] :

    ε = +⎛
⎝⎜

⎞
⎠⎟

=n hf n
1
2

0 1 2, , …     (7.2)   

 In this equation  h     =    6.547    ×    10  − 34    J · s is Planck ’ s constant. If energy were con-
tinuous, then the average energy could be obtained from the Boltzmann prob-
ability distribution function,  P (  ε  ), by the following integral:

    ε
ε ε ε

ε ε
=

( )

( )

∞

∞
∫
∫

P d

P d

0

0

    (7.3)  

where

    

P C

kT

ε βε

β

( ) = −( )

=

exp

1    

 (7.4)

  

and

    C
e

= −∑
1

βε   

 The value,  k     =    1.380    ×    10  − 23    J/K, is the Boltzmann constant and is essentially 
the proportionality constant between energy measured in terms of joules 
and energy measured in terms of absolute temperature. Planck replaced 
the continuous integrals in Eq.  (7.3)  with summations of the discrete energy 
levels  [3] :

    ε
ε ε

ε
=

( )

( )
=

∞

=

∞

∑

∑

P
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n

n

0

0

    (7.5)  
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=

∞

− +( )

=

∞

∑
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n

1
2

1 2

0

1 2

0

β

β
    (7.6)   
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158 NOISE IN RF AMPLIFIERS

 It may be easily verifi ed by differentiation that

    
d

d
e n hf

β
εβln − +( )∑ = −1 2     (7.7)   

 The argument of the logarithm can be evaluated by recognizing it as an infi nite 
geometric series:

    e e
e

e
hf n hf

n

hf

hf
− −

=

∞ −

−∑ =
−

β β
β

β
2

0

2

1
    (7.8)   

 If Eq.  (7.8)  is substituted back into Eq.  (7.7) , the average energy can be found:

    

ε
β

β β

β

β

= −( ) −[ ]

=
−

+

− −

−

−

d
d

e e

hfe
e

hf

hf hf

hf

hf

ln ln1

1 2

2

    
(7.9)   

 or

    ε =
−

+hf
e

hf
hf kT 1 2

    (7.10)   

 This will be used as the starting point for fi nding the noise power.  

   7.2.2    Nyquist Formula 

 The thermal noise power in a given bandwidth,  Δ  f , is obtained directly from 
Eq.  (7.10) :

    N
hf f

e
hf f

hf kTT =
−

+Δ Δ
1 2

    (7.11)   

 At room temperature the second term,  hf   Δ  f /2, plays no role, but it may be 
essential in fi nding the minimum noise fi gure for cryogenically cooled devices 
 [4] . An approximation for the noise power can be found by expanding 
Eq.  (7.11)  into a Taylor series:

    N hf f
hf
kT

hf f
kT f

hf
kT

T ≈ + −⎛
⎝⎜

⎞
⎠⎟

+ = +⎛
⎝⎜

⎞
⎠⎟

−

Δ Δ Δ1 1
2

1
2

1

    (7.12)   

 At room temperature,  hf / kT     <<    1, so that this reduces to the usual practical 
formula for noise power as given by Nyquist  [5] :
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    N kT fT = Δ     (7.13)   

 If this is the available power, the corresponding mean - squared voltage is 
obtained by multiplying this by four times the resistance,  R :

    
v RN

kTR f

2 4

4

=
=

T

Δ
    

(7.14)
   

 The mean - squared noise current is

    i kTG f2 4= Δ     (7.15)  

where  G  is the associated conductance.   

   7.3    SHOT NOISE 

 Shot noise arises from random variations of a direct current,  I  0 , and is espe-
cially associated with current - carrying active devices. Shot noise is most appar-
ent in a current source with zero shunt source admittance. For the purpose of 
illustration, consider a current source feeding a parallel  RLC  circuit (Fig.  7.2 ). 
The inductor provides a dc path and is open to ac variations of the current. 
Hence, the resulting noise voltage appears across the resistor (which is pre-
sumed free of any thermal noise). If an instrument could measure the current 
produced by randomly arriving electrons, the instrument would record a series 
of current impulses for each electron. If  n  is the average number of electrons 
emitted by the source in a given time interval  Δ  t , then the dc current is

    I
qn

t
0 =

Δ
    (7.16)  

where  q  is the charge of an electron. Each current pulse provides an energy 
pulse to the capacitor with the value of

    ε = q
C

2

2
    (7.17)     

     FIGURE 7.2     Equivalent circuit for shot noise and for certain thermal noise 
calculations.  

I0 L C R <v 
2>
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160 NOISE IN RF AMPLIFIERS

 The average shot noise power delivered to the load is then

    N
n

t
S = ε

Δ
  

 which in the light of Eqs.  (7.16)  and  (7.17)  becomes

    

N
nq
C t

qI
C

S =

=

2

0

2

2

Δ
    

(7.18)   

 The equipartition theorem as found in thermodynamics books states that 
the average energy of a system of uniform temperature is equally divided 
among the degrees of freedom of the system. If there are  N  degrees of freedom, 
then

    ε = N
kt

2
    (7.19)   

 A system with  N  degrees of freedom can be described uniquely by  N  variables. 
The circuit in Fig.  7.2  has two energy storage elements, each containing an 
average energy of  kT /2. For the capacitor this average energy is

    ε = =1
2

2 1
2C v kT     (7.20)   

 But, it was found that the Nyquist noise formula predicted that  〈  v  2  〉     =    4 kTR  
 Δ  f . Consequently,

    C
R f

= 1
4 Δ     (7.21)   

 Using Eq.  (7.21)  to replace the value of the capacitance in Eq.  (7.18)  gives the 
desired formula for the shot noise power:

    N qRI fS = 2 0 Δ     (7.22)   

 The corresponding shot noise current is found by dividing by  R 

    i qI f2
02= Δ     (7.23)   

 The shot noise current is directly proportional to the direct current as has been 
verifi ed experimentally.  
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   7.4    NOISE CIRCUIT ANALYSIS 

 When a circuit contains several resistors, the total noise power can be calcu-
lated by suitable combination of the resistors. Two resistors in series each 
produce a mean - squared voltage,  〈  v  2  〉 . Since the individual noise voltage 
sources are uncorrelated, the total  〈  v  2  〉  is the sum of the  〈  v  2  〉  of each of the two 
resistors. Similarly, two conductances in parallel each produce a mean - squared 
noise current,  〈  i  2  〉 , that may be added when the two conductances are com-
bined since the noise currents are uncorrelated. It should be emphasized that 
two noise voltages  〈  v  〉  cannot be added together; only the mean - square values 
can be added. The use of an arrow in the symbol for a noise current source is 
used to emphasize that this is a current source. The use of  +  and    −    signs in the 
symbol for a noise voltage source are used to emphasize that this is a voltage 
source. They do not imply anything about the phase of the noise sources. 
When both series and parallel resistors are present as shown in Fig.  7.3 , then 
Th é venin ’ s theorem provides an equivalent circuit and associated noise 
voltage. In Fig.  7.3  the output resistance is ( R  1     +     R  2 )   ||    R  3 , and the correspond-
ing noise voltage delivered to the output is

    v kT R R R2
1 2 34= +( )     (7.24)     

 When there is a reactive element in the circuit such as that shown in 
the simple  RLC  circuit in Fig.  7.4 , the output noise voltage would be attenu-
ated by the magnitude of the total admittance. Typically, the the measured 
noise frequency,  f , is approximately a sinusoid, which occurs when  f     >>     Δ  f . 
Then

     FIGURE 7.3     Noise voltage from series and parallel resistors.  

R1

R2

R3

(R1 + R2) ||R3

= <v2>
+

−

     FIGURE 7.4     Noise voltage from  RLC  circuit.  

<i 
2> <v 
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v
i

G j C L

kT fG

Y

2
2

2

2

1

4

=
+ −( )

=

ω ω
Δ     

(7.25)     

 If the output resistance varies appreciably over the range of the noise band-
width  Δ  f , then the individual noise  “ sinusoids ”  must be summed over the 
bandwidth, resulting in the following integral:

    v kT
G

Y
df

f

2
24= ∫Δ     (7.26)   

 As a simple example, consider the noise generated from a shunt  RC  circuit 
that would result from removing the inductance in Fig.  7.4 :

    v
kTG df

G C
2

2 20

4=
+ ( )

∞

∫ ω     (7.27)  

    

= ⎛
⎝⎜

⎞
⎠⎟

( )
+ ( )

= ⎛
⎝⎜

⎞
⎠⎟

=

∞

∫
4
2 1

2
2

2 20

kTG
G

G
C

d C G

C G

kT
C

kT
C

π
ω
ω

π
π

    

(7.28)   

 This expression does not say that the capacitor is the source of the noise 
voltage. Indeed experiments have shown that changing the temperature of the 
resistor is what changes the output noise. When the 3 - dB frequency point of 
the circuit output impedance [  f  3dB     =    1/(2  π RC )] is considered, the noise voltage 
in Eq.  (7.28)  becomes

    v f kTR2
32= π dB   

 This looks similar to the original Nyquist formula [Eq.  (7.14) ] in its form.  

   7.5    AMPLIFIER NOISE CHARACTERIZATION 

 One important quality factor of an amplifi er is a measure of how much noise 
it adds to the signal while it amplifi es it. The  “ actual noise factor, ”   F , is a 
convenient measure of how the amplifi er affects the total output noise. The 
defi nition of  noise factor  from the Institute of Electrical and Electronic 
Engineers (IEEE) standards is the ratio of (1) the total noise power per unit 
bandwidth at a corresponding output port when the noise temperature of the 
input termination is  standard  290   K to (2) that portion of the total noise power 
engendered at the input frequency by the input termination  [6] . The standard 
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 T  0     =    290   K noise temperature approximates the actual noise temperature of 
most input terminations:

    

F
T= actual noise output power at 

available noise input pow
0

eer T

out

T

1

0

G

N
kT G f

T

⎛
⎝⎜

⎞
⎠⎟

= ,

Δ

    
(7.29)   

 In this expression  G  T  is the transducer power gain. Noise factor is a measure of 
the total output noise after it leaves the amplifi er divided by the input noise 
power entering the amplifi er and amplifi ed by an ideal noiseless gain,  G  T . In an 
analog amplifi er, an amplifi er can only add noise so  F  must always be greater 
than 1. The noise factor can also be expressed in terms of the signal - to - noise ratio 
at the input to that at the output. If  P  represents the input signal power, then

    

F
P kT f

G P N

S N
S N

T

T

T

=

=

0 Δ
T out

in in

out out

,

,

,

    
(7.30)   

 The signal - to - noise ratio will always be degraded as the signal goes through 
the amplifi er. The expression Eq.  (7.30)  is strictly true only if the input tem-
perature is 290   K. This is called the spot noise factor. 

 The portion of the total thermal noise output power contributed by the 
amplifi er itself is

    N N kT G fTa out T= −, 0 Δ     (7.31)  

    = −( )F kT G f1 0 T Δ     (7.32)   

 The factor ( F     −    1) is used in two alternative measures of noise. One of these 
is noise temperature, which is particularly useful when dealing with very low 
noise amplifi ers where the decibel scale typically used in describing noise 
fi gure becomes too compressed to give insight. In this case, the equivalent 
noise temperature is defi ned as

    T T Fe = −( )0 1     (7.33)   

 This is the temperature of the source resistance that when connected to the 
noise - free two - port circuit will give the same output noise as the original noisy 
circuit. 

 Another useful parameter for the description of noise is the noise measure  [7] :

    M
F

G
= −

− ( )
1

1 1
    (7.34)   
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 This is particularly useful for optimizing a receiver in which, for example, a 
trade - off has to be made between a low - gain low - noise amplifi er and a high -
 gain high - noise amplifi er.  

   7.6    NOISE MEASUREMENT 

 Measurement of noise fi gure (noise factor measured in decibels) can be 
accomplished by using a power meter and determining the circuit bandwidth 
and gain. However, it is inconvenient to determine gain and bandwidth each 
time a noise measurement is to be taken. The  Y  factor method for determining 
noise factor is an approach where these two quantities need not be determined 
explicitly. Actual noise measurements are done over a range of frequencies. 
The average noise factor over a given bandwidth is  [6] 

    F
F f G f df

G f df
=

( ) ( )
( )

∫
∫

T

T

    (7.35)   

 This represents a more realistic expression for an actual noise measurement 
than the spot noise factor such as in Eq.  (7.30) . 

 An equivalent noise bandwidth  Δ  f  0  can be defi ned in terms of the maximum 
gain over the band as

    G f df G fT ( ) =∫ 0 0Δ     (7.36)   

 so that

    F
N

kT G f
T= ,out

0 0 0Δ     (7.37)   

 A measurement system that can be used to measure the noise factor of an 
amplifi er is shown in Fig.  7.5 . This excess noise source in this circuit is gated 
on and off to produce two values of noise measured at the output power detec-
tor,  N  1  and  N  2 . 

     FIGURE 7.5     Noise measurement using  Y  factor method.  
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NOISY TWO-PORT CIRCUITS 165

   N  ex     =    calibrated excess noise source at  T  2     −     T  0   
   N  1     =     N  T,out  when excess noise source is off  
   N  2     =     N  T,out  when excess noise source is on  
   N  in     =    noise from input termination  
   N  a     =    noise added by the amplifi er itself      

 The  Y  factor as the ratio of  N  2  to  N  1  is easily obtained:

    

Y
N
N

G N G N N
G N N

G kT f G k T T f F

= = + +
+

=
+ −( ) + −( )

2

1

0 0

0

0 0 0 0 2 0 0 1

in ex a

in a

Δ Δ kkT G f

G kT f F kT G f

T T FT
FT

0 0 0

0 0 0 0 0 0

2 0 0

0

1

Δ
Δ Δ+ −( )

= − +

   

 (7.38)   

 When solved for   F

    F
T T

T Y
= −

−( )
2 0

0 1
    (7.39)   

 Since a calibrated noise source is used, ( T  2     −     T  0 )/ T  0  is known. Also  Y  is known 
from the measurement. The amplifi er noise factor is then obtained.  

   7.7    NOISY TWO - PORT CIRCUITS 

 The noise delivered to the output of a two - port circuit depends on the two -
 port circuit itself and the impedance of the input excitation source. The noise 
factor for a two - port circuit is given by the following:

    F F
R
G

G G B B= + −( ) + −( )⎡⎣ ⎤⎦min
m

G
G opt G opt

2 2
    (7.40)  

  where  F  min          =    minimum noise factor  
  R  n        =    equivalent noise resistance (often device data are given in terms 

of a normalized resistance,  r  n     =     R  n /50)  
  Y  G        =     G  G     +     jB  G  excitation source admittance  

  Y  opt        =     G  opt     +     jB  opt  optimum source admittance where the minimum 
noise factor occurs    

 While a designer can choose  Y  G  to minimize the noise factor, such a choice 
will usually reduce the gain somewhat. Sometimes the noise factor is expressed 
in terms of the refl ection coeffi cient at the input:
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    ΓG
G

G

G

G

= −
+

= −
+

Y Y
Y Y

Z Z
Z Z

0

0

0

0
    (7.41)  

where  Y  0  and  Z  0  are the characteristic admittance and impedance, respec-
tively. Then the noise factor is

    F F r= +
−

−( ) +
min 4

1 1

2

2 2n
G opt

G opt

Γ Γ
Γ Γ

    (7.42)   

 The noise factor expression in Eq.  (7.40)  and its equivalent (7.42) are the basic 
expressions used to optimize transistor amplifi ers for noise fi gure. The deriva-
tion of Eq.  (7.40)  is the subject of the following section. Readers not wishing 
to pursue these details at this point may proceed to Section  7.9  without loss 
of continuity.  

   7.8    TWO - PORT NOISE FACTOR DERIVATION 

 The work described here is based on the Institute of Radio Engineers (IRE) 
standards published between 1956 and 1960  [8, 9] . A noisy resistor can be 
modeled as a noiseless resistor in series with a voltage noise source. In similar 
fashion a two - port circuit can be represented as a noiseless two - port and two 
noise sources. These two noise sources are represented in Fig.  7.6  a  as a voltage 
 v  n  and a current  i  n . The two - port circuit can be described in terms of its  ABCD  
parameters and internal noise sources as

     FIGURE 7.6     Equivalent circuit ( a ) for two - port noise calculation and ( b ) equivalent 
Th é venin circuit.  
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v Av Bi v

i Cv Di i

1 2 2

1 2 2

= + +

= + +

n

n

    (7.43)     

 or as shown in Fig.  7.6  as a noiseless circuit and the noise sources referred to 
the input side. If the input termination,  Y  G , produces a noise current,  i  G , then 
the circuit is completed. The polarity markings on the symbols for the noise 
sources merely point out the distinction between voltage and current sources. 
Being noise sources, the polarities are actually random. The Th é venin equiva-
lent circuit in Fig.  7.6  b  shows that the short - circuit current at the 1 ′     −    1 ′  
port is

    i i i Y vsc G n G n
2 2 2= + +     (7.44)  

    = + + + +i i Y v Y v i Y i vG n G n G n n G n n
2 2 2 2 * * *     (7.45)   

 The total output noise power is proportional to   isc
2 , and the noise caused by 

the input termination source alone is   iG2 . The noise - free part between 1 ′     −    1 ′  
and 2    −    2 is noise free; that is, it adds no additional noise to the output. All 
the noise sources are referred to the input side so that the noise factor is

    F
i

i
= sc

G

2

2     (7.46)   

 Part of the noise current source,  i  n , is correlated and part is uncorrelated 
with the noise voltage  v  n . The uncorrelated current is  i  u . The rest of the current 
is correlated with  v  n  and is given by  i  n     −     i  u . This correlated noise current must 
be proportional to  v  n . The proportionality constant is the correlation admit-
tance given by  Y  c     =     G  c     +     jB  c  and is defi ned so that

    i i Y vn u c n= +     (7.47)   

 While this defi nes  Y  c , its explicit value in the end will not be needed. The mean 
value of the product of the correlated and uncorrelated current is, of course, 
0. By defi nition, the average of the product of the noise voltage,  v  n , and the 
uncorrelated noise current,  i  u , must also be 0. Using the complex conjugate of 
the current (which is a fi xed phase shift) will not change this fact:

    v in u* = 0     (7.48)   

 Rearranging Eq.  (7.47)  gives

    
i i

Y
vn u

c
n

− =     (7.49)   
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 The product of the noise voltage and the uncorrelated current in Eq.  (7.48)  
can be expressed by substitution of Eq.  (7.49)  into Eq.  (7.48) :

    i i in u u−( ) =* 0     (7.50)   

 Because   v in u* = 0 from Eq.  (7.48) , the product of the noise voltage and 

the correlated current can be found using Eq.  (7.47) :

    v i v i Y v Y vn n n u c n c n** *= +( ) = 2     (7.51)   

 The noise source values are determined by their corresponding resistances:

    v kT R fn n
2

04= Δ     (7.52)  

    i kT G fu u
2

04= Δ     (7.53)  

    i kT G fG G
2

04= Δ     (7.54)   

 The resistance,  R  n , is the equivalent noise resistance for   vn
2 , and  G  u  is the 

equivalent noise conductance for the uncorrelated part of the noise current, 
  iu

2 . The total noise current is the sum of the uncorrelated current and the 
remaining correlated current:

    
i i i i

i Y v

n u n u

u c n

2 2 2

2 2 2

= + −

= +
    

(7.55)  

    = +( )4 0
2kT f G R YcΔ u n     (7.56)   

 The expression for the short - circuit current in Eq.  (7.45)  can be modifi ed by 
Eq.  (7.51) :

    i i i Y v Y Y v Y Y vsc G n G n G c n G c n
2 2 2 2 2 2 2= + + + +* *     (7.57)   

 Furthermore,   in
2  can be replaced by Eq.  (7.55) .

    i i i Y v Y v Y Y v Y Y vsc G u c n G n G c n G c n
2 2 2 2 2 2 2 2 2= + + + + +* *     (7.58)   

 The noise factor, given by Eq.  (7.46) , can now be put in more convenient 
form:
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    F
i v Y Y Y Y Y Y

i
= +

+ + + +( )
1

2 2 2 2

2

u n c G G c G G

G

* *
    (7.59)  

    = +
+ +( )

1
4 4

4

0 0
2

0

kT G f kT R f Y Y

kT G f

u n G c

G

Δ Δ

Δ
    (7.60)  

    = + + +( ) + +( )⎡⎣ ⎤⎦1 2 2G
G

R
G

G G B Bu

G

n

G
G c G c     (7.61)   

 The value of  F  is a function of the input termination admittance,  Y  G , 
and reaches a minimum when the source admittance is optimum. In 
particular, the optimum susceptance is  B  G     =     B  opt     =     −  B  c . The value for  F  min  is 
found by setting the derivative of  F  with respect to  G  G  to zero and setting 
 B  G     =     −  B  c . This will determine the value for  G  G     =     G  opt  in terms of  G  u ,  R  u , 
and  G  c :

    
dF

dG
G
G

R
G

G G
R

G
G G

G

u

G

n

G
2 G c

n

G
G c= = − − +( ) + +( )0

2
2

2
    (7.62)   

 Solution for  G  G  yields  

    G G
G R G

R
G opt

u n c

n

= = + 2

    (7.63)   

 or

    G G
G
R

c opt
u

n

2 2= −     (7.64)   

 Substituting this into Eq.  (7.61)  (with susceptance  B  G     +     B  c     =    0) provides the 
minimum noise factor,  F  min :

    F
G

G R G G G
G
R

G
G
R

min = + + + − + −
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢1

1
22 2 2

opt
u n opt opt opt

u

n
opt

u

n

⎤⎤

⎦
⎥     (7.65)  

    = + + −
⎡

⎣
⎢

⎤

⎦
⎥1 2 2R G G

G
R

n opt opt
u

n

    (7.66)   

 The correlation conductance,  G  c  of Eq.  (7.64)  is substituted into the total 
noise factor expression of Eq.  (7.61)  to give
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(7.67)   

 The fi rst two terms are the same as  F  min  in Eq.  (7.66) , so

    F F
R
G

G G B B= + −( ) + −( )⎡⎣ ⎤⎦min
n

G
G opt G opt

2 2
    (7.68)    

   7.9    FUKUI NOISE MODEL FOR TRANSISTORS 

 Fukui found an empirically based model that accurately describes the fre-
quency dependence of the noise for high - frequency fi eld - effect transistors 
 [10] . This model reduces to predicting the four noise parameters,  F  min ,  R  n , 
 R  opt , and  X  opt  where the latter two parameters are formed from the 
reciprocal of  Y  opt . For the circuit shown in Fig.  7.7 , the Fukui relationships are 
as follows:

     FIGURE 7.7     Equivalent circuit for noise calculation for FET.  
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    F k fC
R R

g
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+⎛
⎝⎜
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1 1
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g s
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    (7.69)  

    R
k
g

n
m

= 2     (7.70)  

    R
k
f g

R Ropt
m

s g= + +⎛
⎝⎜

⎞
⎠⎟

3 1
4

    (7.71)  

    X
k

fC
opt

gs

= 4
    (7.72)     

 In these expressions,  f  is the operating frequency in gigahertz, the capacitance 
is in picofarads, and the transconductance in siemens. The constants  k  1 ,  k  2 ,  k  3 , 
and  k  4  are empirically based fi tting factors. The expression for  R  opt  in Eq.  (7.71)  
differs from that originally given by Fukui, as modified by Golio  [11] . The 
circuit elements of the equivalent FET model in Fig.  7.7  can be extracted at a 
particular bias level. The resistance,  R  i , is often diffi cult to obtain, but for pur-
poses of the noise estimation, it may be incorporated with the  R  g . The empiri-
cally derived fi tting factors should be independent of frequency. They are not 
quite constant, but over a range of 2 to 18   GHz average values for these are 
shown below  [11] :

   k1 0 0259= .  

    k2 2 966= .  

    k3 14 51= .  

    k4 162 6= .   

 These values can be used for approximate estimates of noise factor for both 
metal semiconductor fi eld - effect transistors (MESFETs) as well as high elec-
tron mobility transistors (HEMTs). 

 The transistor itself can be modifi ed to provide either improved noise 
characteristics or improved power handling capability by adjusting the gate 
width  W . The drain current,  I  ds , increases with the base width  W . Consequently, 
those equivalent circuit parameters determined by derivatives of  I  ds  will 
also be proportional to  W . Also the capacitance between the gate electrode 
and the source electrode or between the gate electrode and the drain electrode 
will be also proportional to  W . This is readily seen from the layout of a 
FET shown in Fig.  7.8 . The gate resistance,  R  g , scales differently since the 
gate current fl ows in the direction of the width. Also, the number of gate 
fi ngers,  N , will reduce the effective gate resistance. The gate resistance is 
then proportional to  W / N   [12] . These relationships may be summarized as 
follows:
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    g Wm ∝  

    R
W

ds ∝ 1
 

    C Wgs ∝  

    C Wgd ∝  

    R
W
N

g ∝     

 These circuit elements can clearly be adjusted by scaling the transistor geom-
etry. This scaling will in turn change the noise characteristics. If a transistor 
with a given geometry has a known set of noise parameters, then the noise 
characteristics of a new modifi ed transistor can be predicted. The scaling 
factors between the new and the old transistor are

    s
W
W

1 =
′
    (7.73)  

    s
W N
W N

2 =
′ ′

    (7.74)   

 As a result, the new equivalent circuit parameters can be predicted  [11] :

    ′ =g g sm m 1     (7.75)  

    ′ =R
R
s

s
s

1
    (7.76)  

     FIGURE 7.8     Typical FET layout.  
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    ′ =R
R
s

d
d

1
    (7.77)  

    ′ =C C sgs gs 1     (7.78)  

    ′ =R R sg g 2     (7.79)   

 The Fukui equations,  (7.69)  to  (7.72) , for the newly scaled equivalent circuit 
parameters are
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′ + ′
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(7.80)  
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    (7.82)  

    ′ =X
X

s
opt

opt

1

    (7.83)   

 Reference should be made to  [11]  for a much fuller treatment of modeling 
MESFETs and HEMTs. 

 A further refi nement in the calculation of drain noise current resulting from 
an  N  fi nger gate resistance, each of value  R  g /N, was given in  [13] . The total 
drain noise current is found to be

    i g kT f R
N N

N
D m g
2 2

2
4

1 2 1
6

= ( ) +( ) −( )Δ     (7.84)  

and if  N     →     ∞ 

    v
i

g
kT f

R
D

D

m

g2
2

2
4

3
= = Δ     (7.85)   

 The bipolar transistor has a much different variation of noise with fre-
quency than does the FET type of device. An approximate value for  F  min  for 
the bipolar transistor at high frequencies is  [14] 

    F h
h

min ≈ + + +
⎛

⎝
⎜

⎞

⎠
⎟1 1 1

2
    (7.86)  
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where

    h
qI r
kT

� c b

T

ω
ω

⎛
⎝⎜

⎞
⎠⎟

2

    (7.87)   

 In this equation,  I  c  is the dc collector current,  r  b  is the base resistance, and   ω   T  
is the frequency where the short - circuit current gain is 1. Values for  Y  opt  and 
 R  n  are also given in  [14] , but are rather lengthy. A somewhat more accurate 
expression is given in  [15] . 

 Comparison of Eq.  (7.86)  with the corresponding expression for FETs, Eq. 
 (7.69) , indicates that the bipolar transistor minimum noise factor increases 
with  f  2 , while that for the FET it increases only as  f . Consequently, designs of 
low - noise amplifi ers at RF and microwave frequencies would tend to favor 
use of FETs. 

  PROBLEMS 

       7.1.    Determine the noise power at T    =    290   K,  f     =    10   GHz, and  Δ  f     =    1   Hz. 
Determine the noise power at liquid helium temperature (4   K). What is 
the value of the error if the standard Nyquist formula is used?   

    7.2.    What is the noise current from a noise voltage source in a series  RL  circuit 
shown in Fig.  7.9 ?     

    7.3.    Derive Eqs.  (7.80)  to  (7.83) .   

    7.4.    A MESFET has a base width  W     =    350     μ  m and at 3   GHz with a given bias 
is found to have  g  m     =    70   mS,  R  g     =    5    Ω ,  R  d     =    7    Ω ,  R  s     =    5    Ω , and  C  gs     =    0.3   pF. 
What are the four noise parameters  F  min ,  R  n ,  R  opt , and  X  opt ? If the base 
width is changed to  W  ′     =    200     μ  m and the number of base fi ngers remains 
unchanged, what are the four noise parameters?      
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     FIGURE 7.9     Noise current developed by series  RL  circuit.  

<v 
2>

R L

+

−

c07.indd   174c07.indd   174 9/17/2010   11:53:24 AM9/17/2010   11:53:24 AM



REFERENCES 175

     2.       A.   Messiah  ,  Quantum Mechanics ,  Amsterdam :  North - Holland , Chapter 12,  1964 .  
     3.       W. A.   Davis  ,  Microwave Semiconductor Circuit Design ,  New York :  Van Nostrand , 

Chapters 8 and 9,  1984 .  
     4.       A. E.   Siegman  ,  “  Zero - Point Energy as the Source of Amplifi er Noise , ”   Proc. IRE , 

 49 , pp.  633  –  634 , March  1961 .  
     5.       H.   Nyquist  ,  “  Thermal Agitation of Electronic Charge in Conductors , ”   Phys. Rev. , 

 32 , p.  110 , July  1928 .  
     6.       H. A.   Haus  ,  “  IRE Standards on Methods of Measuring Noise in Linear Twoports , ”  

 Proc. IRE ,  47 , pp.  66  –  68 , Jan.  1959 .  
     7.       K.   Kurokawa  ,  “  Actual Noise Measure of Linear Amplifi ers , ”   Proc. IRE ,  49 , pp. 

 1391  –  1397 , March  1961 .  
     8.       H.   Rohte   and   W.   Danlke  ,  “  Theory of Noisy Fourpoles , ”   Proc. IRE ,  44 , pp.  811  –

  818 , June  1956 .  
     9.       H. A.   Haus  ,  “  Representation of Noise in Linear Twoports , ”   Proc. IRE ,  48 , pp. 

 69  –  74 , Jan.  1960 .  
  10.       H.   Fukui  ,  “  Design of Microwave GaAs MESFETs for Broad - Band Low - Noise 

Amplifi ers , ”   IEEE Trans. Electron Devices ,  ED - 26 , pp.  1032  –  1037 , July  1979 .  
  11.       J. M.   Golio  ,  Microwave MESFETs and HEMTs ,  Norwood MA :  Artech , Chapter 

2,  1991 .  
  12.       A.   El - Sabban  ,   H.   Haddara  , and   H. F.   Ragai  ,  “  Validation of RF MOSFET Transistor 

Layout - Aware Macromodel , ”   IEEE Int. Conf. Electrical, Electronic Comput. Eng. , 
 2004  ICEEC ’ 04, pp.  524  –  527 , Sept. 2004.  

  13.       B.   Razavi  ,   R.   Yan  , and   K. F.   Lee  ,  “  Impact of Distributed Gate Resistance on the 
Performance of MOS Devices , ”   IEEE Trans. Circuits Syst. ,  41 , pp.  750  –  754 , Nov. 
 1994 .  

  14.       H.   Fukui  ,  “  The Noise Performance of Microwave Transistors , ”   IEEE Trans. 
Electron Devices ,  ED - 13 , pp.  329  –  341 , March  1966 .  

  15.       R. J.   Hawkins  ,  “  Limitations of Nielsen ’ s and Related Noise Equations Applied to 
Microwave Bipolar Transistors, and a New Expression for the Frequency and 
Current Dependent Noise Figure , ”   Solid State Electr. ,  20 , pp.  191  –  196 , March  1977 .   

   
 

c07.indd   175c07.indd   175 9/17/2010   11:53:24 AM9/17/2010   11:53:24 AM



c07.indd   176c07.indd   176 9/17/2010   11:53:24 AM9/17/2010   11:53:24 AM



177

  CHAPTER EIGHT 

Class  A  Amplifi ers     

    8.1    INTRODUCTION 

 The class A amplifi er is typically used as the fi rst amplifi cation stage of a 
receiver or a transmitter where minimum noise is desired. This is achieved 
with a cost of relatively low effi ciency. In a receiver the fi rst stage in an ampli-
fi er chain handles low power levels, so the low effi ciency of the fi rst amplifi ers 
actually wastes little power. Power amplifi ers with different class designations 
are used in later stages. The variety of amplifi er classes are described in  [1]  
and will be covered more extensively in Chapter  9 . The primary properties of 
importance to class A amplifi er design are gain, bandwidth control, stability, 
return loss, and noise fi gure. Noise fi gure was considered in Chapter  7 , but the 
other topics are described in the present one.  

   8.2    DEFINITION OF GAIN   [2]   

 In low - frequency circuits, gain is often thought of in terms of voltage or current 
gain, for example, the ratio of the output voltage across the load to the input 
applied voltage. At radio frequencies it is diffi cult to directly measure a voltage, 
so typically some form of gain is used. But once the notion of power is intro-
duced, there are several defi nitions of power gain that might be used. 

  1.     Power Gain     This is the ratio of power dissipated in the load,  Z  L , to 
the power delivered to the input of the amplifi er. This defi nition is inde-
pendent of the generator impedance,  Z  G . Certain amplifi ers, especially 
negative resistance amplifi ers, are strongly dependent on  Z  G .  

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
Copyright © 2011 John Wiley & Sons, Inc.
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178 CLASS A AMPLIFIERS

  2.     Available Gain     This is the ratio of the amplifi er output power to the 
available power from the generator source. This defi nition depends on 
 Z  G  but is independent of  Z  L .  

  3.     Exchangeable Gain     This is the ratio of the output exchangeable power 
to the input exchangeable power. The exchangeable power of the source 
is defi ned as

    P
V

Z
Z=

ℜ{ }
ℜ{ } ≠

2

4
0

G
G     (8.1)   

 For negative resistance amplifi ers P    <    0! Furthermore, this defi nition is 
independent of  Z  L .  

  4.     Insertion Gain     This is the ratio of output power to the power that 
would be dissipated in the load if the amplifi er were not present. There 
is a problem in applying this defi nition to mixers or parametric upcon-
verters where the input and output frequencies differ.  

  5.     Transducer Power Gain     This is the ratio of the power delivered to the 
load to the available power from the source. This defi nition depends on 
both  Z  G  and  Z  L . It gives positive gain for negative resistance amplifi ers 
as well. Since the characteristics of real amplifi ers change when either 
the load or generator impedance is changed, it is desirable that the 
gain defi nition refl ect this characteristic. Thus, the transducer power gain 
defi nition is found to be the most useful.     

   8.3    TRANSDUCER POWER GAIN OF A TWO - PORT NETWORK 

 The linear two - port circuit in Fig.  8.1  is characterized by its impedance 
parameters:

    V z I z I1 11 1 12 2= +     (8.2)  

    V z I z I2 21 1 22 2= +     (8.3)     

 But the relationship between the port 2 voltage and current is determined by 
the load impedance as illustrated in Fig.  8.2 :

     FIGURE 8.1     Two - port circuit expressed in impedance parameters.  
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TRANSDUCER POWER GAIN OF A TWO-PORT NETWORK 179

    V I Z2 2= − L     (8.4)   

 Substitution of this for  V  2  in Eq.  (8.3)  gives the input impedance. This is depen-
dent on both the contents of the two - port circuit itself and also the load:

    Z
V
I

z
z z

z z
in

L

= = −
+

1

1
11

12 21

22
    (8.5)   

 This will be used to determine the transducer power gain. The power delivered 
to the load is  P  2 :

    P I Z2
1
2 2

2= ℜ{ }L
    (8.6)   

 Since the power available from the source at port 1 is

    P
V

Z
1

2

8
a

G

G

=
ℜ{ }

    (8.7)  

the transducer power gain can be shown to be

    G
P
P

T
a

= 2

1
    (8.8)  

    = ℜ{ }ℜ{ }
+( ) +( ) −
4 21

2

11 22 21 12
2

Z Z z

Z z Z z z z
L G

G L

    (8.9)   

 Similar expressions can be obtained for  y ,  h , or  g  parameters by simply replac-
ing the corresponding  z ij   with the desired matrix elements and by replacing 
the  Z  G  and  Z  L  with the appropriate termination. However, for RF and micro-
wave circuits, scattering parameters are the most readily measured quantities. 
The transducer power gain will be found in terms of the scattering parameters 
in the following section.  

     FIGURE 8.2     Equivalent circuit to determine the input available power  .  
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180 CLASS A AMPLIFIERS

   8.4    TRANSDUCER POWER GAIN USING   S   PARAMETERS 

 The available power,  P  a , when the input of the two - port circuit is matched with 
  Γ Γi G= *, was given by Eq.  (4.170)  in Chapter  4 :

    P
b

1

1
2

2

21
a

G

G

=
− Γ

    (8.10)   

 At the output side of the circuit, the power delivered to the load is given by 
the following:

    P bL L= −( )1
2 2

2 21 Γ     (8.11)   

 The transducer gain is simply the ratio of Eq.  (8.11)  to Eq.  (8.10) :

    G
b

b
T

G
L G= −( ) −( )2

2

2
2 21 1Γ Γ     (8.12)   

 As this stands,  b  2  and  b  G  are not very meaningful. However, this ratio can 
be expressed entirely in terms of the known  S  parameters of the two - port 
circuit. From the description of the  S  parameters as a matrix corresponding to 
forward -  and backward - traveling waves, the two - port circuit can be repre-
sented in terms of a fl ow graph. Each branch of the fl ow graph is unidirectional 
and the combination describes the  S  matrix completely. The presumption is 
that the circuit is linear. The problem of fi nding  b  2 / b  G  can be done using either 
algebra or some fl ow graph reduction technique. The classical method devel-
oped for linear systems represented as fl ow graphs uses Mason ’ s nontouching 
loop rules. The method shown below is easier to remember, but it is more 
complicated to administer to complex circuits that require a computer analysis. 
For the relatively simple graph shown in Fig.  8.3  the simpler method works 
well. This method of fl ow graph reduction is based on four rules: 

  1.     The cascade of two branches in series can be reduced to one branch with 
the value equal to the product of the two original branches (Fig.  8.4  a ).  

     FIGURE 8.3     Flow graph equivalent of two - port circuit in Fig.  8.2 .    
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  2.     Two parallel branches can be reduced to one branch whose value is the 
sum of the two original branches (Fig.  8.4  b ).  

  3.     As illustrated in Fig.  8.4  c , a self - loop with value  Y  with an incoming 
branch  X  can be reduced to a single line of value

    
X

T1−
    (8.13)    

  4.     The transfer function remains unchanged if a node with one input branch 
and  N  output branches can be split into two nodes. The input branch 
goes to each of the new nodes. Similarly, the transfer function remains 
unchanged if a node with one output branch and  N  input branches can 
be split into two nodes. The output branch goes to each of the new nodes 
(Fig.  8.4  d ).      

 These rules can be used to fi nish the calculation of the transducer power gain 
of expression  (8.12)  by fi nding  b  2 / b  G . The fi rst step in this reduction is the split-
ting of two nodes shown in Fig  8.5  a  by use of rule 4. This forms a self - loop in 
the right - hand side of the circuit. The lower left - hand node is also split into two 
nodes (Fig.  8.5  b ). The incoming branches to the self - loop on the right - hand side 
are modifi ed by means of rule 3 (Fig.  8.5  c ). In the same fi gure, another self - loop 
is made evident on the left - hand side. In this case there are two incoming 
branches modifi ed by the self - loop. Use of rule 3 produces Fig.  8.5  d . Splitting 
the node by means of rule 4 results in Fig.  8.5  e . The resulting self - loop modifi es 

     FIGURE 8.4     Flow graph reduction rules for ( a ) two series branches, ( b ) two shunt 
branches, ( c ) a self - loop, and ( d ) splitting a node.  
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the incoming branch on the left - hand side (rule 3). The result is three branches 
in series (rule 1) so the transfer function can now be written by inspection:

    

b

b
S

S S
S S

S
S

2
11

21 12

22 11

21

22

1

1
1 1

1
= −
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⎛
⎝⎜

⎞
⎠⎟
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L G

L G
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Γ
Γ Γ

Γ Γ
Γ

bb
b

S
S S S S

2 21

22 11 12 211 1G L G G L

=
−( ) −( ) −Γ Γ Γ Γ

    

(8.14)

     

 This ratio can be substituted into the transducer power gain expression Eq. 
 (8.12) . Thus, the transducer power gain is known in terms of the scattering 
parameters of the two - port circuit and the terminating refl ection coeffi cients:

     FIGURE 8.5     Demonstration of amplifi er fl ow graph.  
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    G
S

S S S S
T

G L

L G G L

=
−( ) −( )

−( ) −( ) −
21

2 2 2

22 11 12 21
2

1 1

1 1

Γ Γ

Γ Γ Γ Γ
    (8.15)   

 This is the full equation for the transducer power gain. Other expressions 
making use of approximations are strictly speaking a fi ction, though this fi ction 
is sometimes used to characterize certain transistors. For example, unilateral 
power gain is found by setting  S  12     =    0. In real transistors  S  12  should be small, 
but it is never actually 0. The maximum unilateral power gain is found by 
setting  S  12     =    0,   ΓG 11= S*, and   ΓL 22= S* :

    G
S

S S
u,max =

−( ) −( )
21

2

11
2

22
21 1

    (8.16)    

   8.5    SIMULTANEOUS MATCH FOR MAXIMUM POWER GAIN 

 Maximum gain is obtained when both the input and output ports are simulta-
neously matched. One way to achieve this is to guess at a  Γ  L  and calculate  Γ   i   
(Fig.  8.6 ). The generator impedance then is made to match the complex con-
jugate of  Γ i. With this new value of  Γ  G , a new value of  Γ  o  is found. Matching 
this to  Γ  L  means the that  Γ  L  changes. This iterative process continues until both 
sides of the circuit are simultaneously matched.   

 A better way is to recognize this as basically a problem with two 
equations and two unknowns. Simultaneous match forces the following two 
requirements:

    Γ Γ Γ
Γi G

L

L

= = +
−

* S
S S

S
11

21 12

221
    (8.17)  

    Γ Γ Γ
Γo L

G

G

= = +
−

* S
S S

S
22

21 12

111
    (8.18)   

 Since both of these equations have to be satisfi ed simultaneously, fi nding  Γ  G  
and  Γ  L  requires solution of two equations with two unknowns. These can be 
written in terms of the determinate of the  S  matrix,  Δ , as follows:.

     FIGURE 8.6     Defi nition of refl ection coeffi cients for two - port circuit.  

ZG ZL

ΓLΓOΓiΓG

2 Port
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Γ Γ Γ
Γ

Γ Δ
Γ

G
L L

L

L

L

* = − +
−

= −
−

S S S S S
S

S
S

11 11 22 12 21

22

11

22

1

1

    
(8.19)

  

    Γ
Γ Δ

ΓL
G

G

* = −
−

S
S

22

111
    (8.20)   

 Substitution of Eq.  (8.20)  into Eq.  (8.19)  eliminates  Γ  L :

    Γ
Γ Δ Γ Δ

Γ Δ Γ
G

G G

G G

*

*
*

* * * *

* * *
=

−( ) − −( )
− − +

S S S

S S S

11 11 22

11 22
2

22

1

1
    (8.21)   

 This expression can be rearranged in the usual quadratic form. After taking 
the complex conjugate, this yields the following:

    Γ Δ Γ Δ ΔG G *2
22 11 22

2
11

2 2
11 221 0S S S S S S* *−( ) + − + −( ) − + =     (8.22)   

 This equation can be rewritten in the form

    0 1 1 1= − + −Γ ΓG
2

GC B C*     (8.23)  

where

    C S S1 11 22= − Δ *     (8.24)  

    B S S1 11
2

22
2 21= + − − Δ     (8.25)   

 In the solution of Eq.  (8.23)  the required generator refl ection coeffi cient for 
maximum gain is

    ΓGm = ± −⎡
⎣

⎤
⎦

C

C
B B C1

1
2 1 1

2
1

2

2
4

*
    (8.26)   

 In a similar fashion the load refl ection coeffi cient for maximum gain is

    ΓLm = ± −⎡
⎣

⎤
⎦

C

C
B B C2

2
2 2 2

2
2

2

2
4

*
    (8.27)  

where

    C S S2 22= − Δ 11*     (8.28)  

    B S S2 22
2

11
2 21= + − − Δ     (8.29)   
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 The parameters  B  i  and  C  i  are determined solely from the scattering parame-
ters of the two - port circuit. The    −    sign is used when  B i      >    0, and the  +  sign is 
used when  B i      <    0. Once the terminating refl ection coeffi cients are known, the 
corresponding impedances may be determined:

    Z ZG
G

G

= +
−0

1
1

Γ
Γ

    (8.30)  

    Z ZL
L

L

= +
−0

1
1

Γ
Γ

    (8.31)    

   8.6    STABILITY 

 A stable amplifi er is an amplifi er where there are no unwanted oscillations 
anywhere. Instability outside the operating band of the amplifi er can still cause 
unwanted noise and even device burn out. Oscillations can only occur when 
there is some feedback path from the output back to the input. This feedback 
can be a result of an external circuit, external feedback parasitic circuit ele-
ments, or by an internal feedback path such as through  C  μ    in a common emitter 
bipolar transistor. Of these three sources, the last is usually the most trouble-
some. The following sections describe a method for determining transistor 
stability and some procedures to stabilize an otherwise unstable transistor. 

   8.6.1    Stability Circles 

 The criteria for unconditional stability require that | Γ  i |    ≤    1 and | Γ  o |    ≤    1 for any 
passive terminating loads. A useful amplifi er may still be made if the terminat-
ing loads are carefully chosen to stay out of the unstable regions. It is helpful 
to fi nd the borderline between the stable and the unstable regions. For the 
input side, this is done by fi nding the locus of points of  Γ  L  that will give | Γ  i |    =    1. 
The borderline between stability and instability is found from Eq.  (8.19)  when 
  Γ Γi G= *  and | Γ  i |    =    1:

    1
1

11

22

= −
−

S
S

ΔΓ
Γ

L

L

    (8.32)   

 This can be squared and then split up into its complex conjugate pairs:

    1 122 22 11 11−( ) −( ) = −( ) −( )Γ Γ ΔΓ Δ ΓL L L L*S S S S* * * *     (8.33)   

 The coeffi cients of the different forms of  Γ  L  are collected together:

    Γ Δ Γ Δ Γ ΔL L L *2
22

2 2
11 22 11 22 11

2 1S S S S S S−( ) + −( ) + −( ) = −* * *     (8.34)  

    Γ Γ Δ
Δ

Γ Δ
Δ

L L L
*2 11 22

22
2 2

11 22

22
2 2+ −

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + −

−

⎛

⎝
⎜⎜

⎞

⎠
⎟

S S

S

S S

S

*
*

*
⎟⎟ = −

−
S

S
11

2

22
2 2

1

Δ
    (8.35)   
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 Equation  (8.35)  can be put in a form that can be factored by completing the 
square. The value | m | 2 , defi ned below, is added to both sides of this equation:

    Γ Γ
Δ

L L*+( ) +( ) = + −
−

m m m
S

S
* 2 11

2

22
2 2

1
    (8.36)  

where

    m
S S

S
�

Δ
Δ

11 22

22
2 2

* −
−

    (8.37)   

 Substitution of Eq.  (8.37)  into Eq.  (8.36)  and upon simplifi cation yields the 
following factored form:

    Γ Δ
Δ

Γ Δ
Δ

L L
*+ −

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + −

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =S S

S

S S

S

S11 22

22
2 2

11 22

22
2 2

*
*

* 112 21
2

22
2 2 2

S

S −( )Δ
    (8.38)   

 This is the equation of a circle whose center is

    C
S S

S
L

22*= −
−

11
2

22
2

Δ
Δ

*
    (8.39)   

 The radius of the load stability circle is

    r
S S

S
L =

−
21 12

2
22

2Δ
    (8.40)   

 The center and radius for the generator stability circle can be found by 
symmetry:

    C
S S

S
G

11*= −
−

22
2

11
2

Δ
Δ

*
    (8.41)  

    r
S S

S
G =

−
21 12

2
11

2Δ
    (8.42)   

 These two circles, one for the load and one for the generator, represent the 
borderline between stability and instability. These two circles can be overlaid 
on a Smith chart. The center of the circle is located at the vectorial position 
relative to the center of the Smith chart. The  “ dimensions ”  for the center and 
radius are normalized to the Smith chart radius (whose value is unity). 

 The remaining issue is which side of these circles is the stable region. 
Consider fi rst the load stability circle shown in Fig.  8.7 . If a matched transmis-
sion line with  Z  0     =    50    Ω  were connected directly to the output port of the 
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two - port circuit, then  Γ  L     =    0. This load would be located in the center of the 
Smith chart. Under this condition, Eq.  (8.17)  indicates that  Γ  i     =     S  11 . If the 
known value of | S  11 |    <    1, then | Γ  i |    <    1 when the load is at the center of the Smith 
chart. If one point on one side of the stability circle is known to be stable, then 
all points on that side of the stability circle are also stable. The same rule would 
apply to the load side when  Z  G  is replaced by a matched load  =  Z  0 . Then from 
Eq.  (8.18)   Γ  o     =     S  22 .   

 Unconditional stability requires that both | Γ  i |    <    1 and | Γ  o |    <    1 for any passive 
load and generator impedances attached to the ports. In this case if | S  11 |    <    1 
and | S  22 |    <    1, the stability circles would lie completely outside the Smith chart. 
Conditional stability occurs when at least one of the stability circles intersects 
the Smith chart. As long as the load and source impedances are on the stable 

     FIGURE 8.7     Illustration of stability circles where shaded region is unstable.  
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side of the stability circle, stable operation occurs. Avoiding unstable regions 
for a potentially unstable transistor will usually not provide the maximum 
transducer power gain condition as given by Eqs.  (8.26)  and  (8.27) . Avoiding 
unstable operation will usually require compromising the maximum gain for 
a slightly smaller but often acceptable gain. Clearly, using an impedance too 
close to the edge of the stability circle can result in unstable operation because 
of manufacturing tolerances. It is usually best to have an unconditionally stable 
circuit. An approach to make this happen is given in Section  8.6.3 .  

   8.6.2    Rollett Criteria for Unconditional Stability 

 It is often useful to determine if a given transistor is unconditionally stable for 
any pair of passive impedances terminating the transistor. The two conditions 
necessary for this are known as the Rollett stability criteria  [3]  and are given 
as follows:

    k
S S

S S
= − − + ≥1

2
111

2
22

2 2

12 21

Δ
    (8.43)  

    Δ ≤ 1    (8.44)   

 Rollett ’ s original derivation was done using any one of the volt - ampere immit-
tance parameters,  z ,  y ,  h , or  g . Subsequently, Rollett ’ s stability equations were 
expressed in terms of  S  parameters as shown in Eqs.  (8.43)  and  (8.44) . Others 
arrived at stability conditions that appeared different from these, but it was 
pointed out that most of these alternate formulations were equivalent to those 
in Eqs.  (8.43)  and  (8.44)   [4] . The derivation of these two quantities will be 
given in this section. 

 The fi rst of these equations is based on unconditional stability occurring 
when the load stability circle lies completely outside the Smith chart and when 
| S  11 |    <    1, that is,

    C rL L− ≥ 1     (8.45)  

or

    r CL L− ≥ 1     (8.46)  

where Eq.  (8.46)  describes the case where the stability circle encompasses 
the entire Smith chart within it. Substitution of Eqs.  (8.39)  and  (8.40)  into 
Eq.  (8.45)  gives

    
S S S S

S
22 11 12 21

2
22

2 1
− −

−
≥

*Δ
Δ

    (8.47)   

 Squaring Eq.  (8.47)  gives the following:
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    Δ Δ2
22

2 2

22 11 12 21

2

− ≤ − −⎡⎣ ⎤⎦S S S S S*     (8.48)  

    
Δ Δ

Δ

2
22

2 2

22 11

2

12 21 22 11 12 21
22

− ≤ −

− − +

S S S

S S S S S S

*

*
    

(8.49)
  

    
2 12 21 22 11

2
22

2 2

12 21
2

22 11

2

S S S S S

S S S S

− ≤ − −

+ + −

*

*

Δ Δ

Δ
    

(8.50)
   

 The last term on the right - hand side of Eq.  (8.50)  can be expanded:

    

S S S S S S

S S S S S

22 11
2

22 11 22 11

22
2

11 22 11 22

− = − −

= − −

* ( * )( *

* *

Δ Δ Δ

Δ Δ

*)

* ++

= + −

S

S S S S

11
2 2

22
2 2

11
2

11 22
2

Δ

Δ     

(8.51)

  

    + − +( * * * * )S S S S S S S S S S11 22 12 21 11 22
2

11 22 12 21
    (8.52)   

 Expansion of | Δ | 2  gives

    
Δ 2

11 22 12 21 11 22 12 21

11 22
2

12 21
2

11

= −( ) −

= + −

S S S S S S S S

S S S S S S

( * * * *)

222 12 21 11 22 12 21S S S S S S* * * *−
    

(8.53)
   

 By subtracting | S  12  S  21 | 2  inside the parenthesis in Eq.  (8.52)  and adding the same 
value outside the parenthesis, the quantity inside the parenthesis is equivalent 
to | Δ | 2  given in Eq.  (8.53) . Thus Eq.  (8.52)  can be factored as shown below:

    
S S S S S S S S

S S S

22 11
2

22
2 2

11
2

11 22
2

12 21
2 2

12 21
2

11
21

− = + − + −

= + −( )
*Δ Δ Δ

SS22
2 2−( )Δ

    
(8.54)

  

    = +δ αβ     (8.55)  

where Eq.  (8.55)  is based on the temporary defi nitions:

    α � 1 11
2−( )S     (8.56)  

    β � S22
2 2−( )Δ     (8.57)  

    δ � S S12 21
2     (8.58)   

 The original inequality, Eq.  (8.50) , written in terms of these new variables is

    2 2δ αβ δ αβ δ δ β+ ≤ +( ) + −     (8.59)   

 By fi rst squaring both sides and then canceling terms, Eq.  (8.59)  can be greatly 
simplifi ed:
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4 2

4 2 2 2

4

2 2

2 2 4

δ αβ δ αβ δ β

δ αβ δ αβ δ β αβ δ β

δ αβ

+( ) ≤ +( ) −[ ]
+( ) ≤ +( ) − +( ) +

+ δδ αβ δ αβ δ β αβ δ β

αβ β αβ δ β

( ) ≤ ( ) + ( ) + − +( ) +

≤ ( ) − +( ) +
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2 2 2 4

2 2 4

4 4 2 2

0 2 2

0 αα β δ β

α β
δ

−( ) −⎡⎣ ⎤⎦

≤
−( )

2 2

2

4

1
4

    

(8.60)

   

 Taking the square root of Eq.  (8.60)  yields

    1
2

1
2

11
2

22
2 2

12 21

≤ − = − − + =α β
δ

S S
S S

k
Δ

    (8.61)   

 This is the same as Eq.  (8.43) , which has now been demonstrated. Since the 
value of  k  is symmetrical on interchange of ports 1 and 2, the same result 
would occur with either the generator or load port stability circle. 

 The second condition for unconditional stability, Eq.  (8.44) , can also be 
demonstrated based on the requirement that | Γ  i |    <    1. The second term of the 
right - hand side of Eq.  (8.17)  can be modifi ed by multiplying it by 1 ( =   S  22 / S  22 ) 
and adding 0 ( =   S  12  S  21     −     S  12  S  21 ) to the numerator. This results in the following:

    

Γ Γ
Γi

L

L

= + + −( )
−( )

=

S
S S S S S S S

S S

S
S S

11
12 21 22 12 21 12 21

22 22

22

11 22

1

1 1−−( ) − −( ) +
−

= +
−

Γ Γ
Γ

Δ
Γ

L L

L

L

S S S S S S
S

S
S S

S

22 12 21 22 12 21

22

22

12 21

2

1
1

1
1 22

1<

    

(8.62)   

 The complex quantity 1    −     Γ  L  S  22  can be written in polar form as 1    −    | Γ  L  S  22 | e j θ   . 
Any passive load must lie within the unit circle | Γ  L |    ≤    1, so | Γ  L | is set to 1. As 
described in  [5] , the quantity

   
1

1 22− S e jθ  

which appears in Eq.  (8.62) , is a circle as pictured in Fig.  8.8  centered at

   
1
2

1
1

1
1

1

122 22 22
2−

+
+

⎛
⎝
⎜

⎞
⎠
⎟ =

−S S S
 

c08.indd   190c08.indd   190 9/17/2010   11:53:56 AM9/17/2010   11:53:56 AM



STABILITY 191

and with radius

   
1
2

1
1

1
1 122 22

22

22
2−

−
+

⎛
⎝
⎜

⎞
⎠
⎟ =

−S S
S

S
    

 Equation  (8.62)  is expressed in terms of this circle:

    
1

1 1
1

22

12 21

22
2

12 21 22

22
2S

S S

S

S S S e

S

j

Δ +
−

+
−

<
θ

    (8.63)   

 The phase of the load is chosen so that it maximizes the left - hand side of 
Eq.  (8.63) . However, it must still obey the stated inequality. This means that 
Eq.  (8.63)  can be written as the sum of the two magnitudes without violating 
the inequality condition:

   

1

1 1
1

0
1

1
1

22

12 21

22
2

12 21

22
2

22

12 21

22
2

1

S
S S
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S S

S

S
S S

S

S

Δ

Δ

+
−

+
−

<

< +
−

< − 22 21

22
21

S

S−

  

 Comparison of the far right - hand side of this expression with 0 results in the 
following inequality:

    1 22
2

12 21− >S S S     (8.64)   

 If the process had begun with the condition that | Γ  o |    <    1, then the result would 
be the same as Eq.  (8.64)  with the 1 ’ s and 2 ’ s interchanged:

    1 11
2

12 21− >S S S     (8.65)   

 When Eqs.  (8.64)  and  (8.65)  are added together,

     FIGURE 8.8     Representation of circle with | Γ  L |    =    1.  

1 − |S22|
2

1 − |S22|
2

|S22|

1

c08.indd   191c08.indd   191 9/17/2010   11:53:56 AM9/17/2010   11:53:56 AM



192 CLASS A AMPLIFIERS

    2 211
2

22
2

12 21− − >S S S S     (8.66)   

 However, from the defi nition of the determinate of the  S  parameter matrix,

    Δ = − < +S S S S S S S S11 22 12 21 11 22 12 21     (8.67)   

 When the term | S  12  S  21 | in Eq.  (8.67)  is replaced with something larger, as given 
in Eq.  (8.66) , the inequality is still true:

    Δ

Δ

< + − +( )
< − −( ) <

S S S S

S S

11 22
1
2 11

2
22

2

1
2 11 22

2

1

1 1

    

(8.68)

   

 An alternate, but equivalent, set of requirements for stability are  [4] 

    k > 1     (8.69)  

and either

    B1 0>     (8.70a)  

or

    B2 0>     (8.70b)   

 The requirement of Eq.  (8.70a)  or  (8.70b)  is equivalent to | Δ |    <    1.  

   8.6.3    Stabilizing a Transistor Amplifi er 

 There are a variety of approaches to stabilizing an amplifi er. In Section  8.6.1 , 
it was suggested that stability could be achieved from a potentially unstable 
transistor by making sure the chosen amplifi er terminating impedances remain 
inside the stable regions at all frequencies as determined by the stability 
circles. 

 Another method would be to load the amplifi er with an additional shunt 
or series resistor on either the generator or load side. The resistor is incorpo-
rated as part of the the two - port parameters of the transistor. If the condition 
for unconditional stability is achieved for this expanded transistor model, then 
optimization can be performed for the other circuit elements in order to 
achieve the desired gain and bandwidth. It is usually better to try loading the 
output side rather than the input side in order to minimize increasing the 
amplifi er noise fi gure. 

 Another approach that is sometimes useful is to introduce an external 
feedback path that can neutralize the internal feedback of the transistor. The 
most widely used scheme is the shunt – shunt feedback circuit shown in Fig.  8.9 . 
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The  y  parameters for the composite circuit are simply the sum of the  y  param-
eters of the amplifi er and feedback two - port circuits:

    Y Y Yc a f[ ] = [ ] + [ ]     (8.71)     

 To use this method, the transistor scattering parameters must be converted 
to admittance parameters (Appendix  D ). The  y  parameters for a simple series 
admittance,  y  fb  can be found from circuit theory (Fig.  8.10 ):

    y y
i
v

y
v

11 22
1

1 02

f f fb= = =
=

    (8.72)  

    y y
i
v

y
v

12 21
2

1 02

f f fb= = = −
=

    (8.73)     

 Consequently, the composite  y  parameters are

    y y y y y11 11 11 11c a f a fb= + = +     (8.74)  

    y y y y y12 12 12 12c a f a fb= + = −     (8.75)  

    y y y y y21 21 21 21c a f a fb= + = −     (8.76)  

    y y y y y22 22 22 22c a f a fb= + = +     (8.77)   

     FIGURE 8.9     Shunt – shunt feedback for stabilizing a transistor.  

YG YL
Amplifier

Circuit

Feedback
Circuit

     FIGURE 8.10     Two - port representation of feedback circuit.  

V1

i1 i2

V2

+

−

+

−

1 2
yfb
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194 CLASS A AMPLIFIERS

 If  y  12c  could be made to be zero, then  S  12c  would also be zero and unconditional 
stability could be achieved:

    g jb g jb12 12a a fb fb+ = +     (8.78)   

 Since the circuit parameter  g  12a     <    0 the value  g  fb     <    0 must be true also. Since 
it is not possible to have a negative passive conductance, complete removal of 
the internal feedback is not possible. However, the susceptance,  b  12a  can be 
canceled by a passive external feedback susceptance. Although total removal 
of  y  12a  cannot be achieved, yet progress toward stabilizing the amplifi er can 
often be achieved. There is no guarantee that neutralization will provide a 
composite  y  matrix that is unconditionally stable. In addition, neutralization 
of the feedback susceptance occurs at only one frequency. 

 As an example, consider a transistor to have the following  S  parameters at 
a given frequency:

    

S

S

S

S

11

21

12

22

0 73 102

2 21 104

0 10 48

0 47 48

a

a

a

a

= ∠ − °

= ∠ °

= ∠ °

= ∠ − °

.

.

.

.

    (8.79)   

 For this transistor,  k     =    0.752 and | Δ |    =    0.294 as found from Eqs.  (8.43)  and 
 (8.44) . Conversion of the  S  parameters given by Eq.  (8.79)  to  y  parameters 
gives

    

y j

y j

11
3 2

12
4

5 5307 10 1 9049 10

3 9086 10 2 3092 10

a

a

S= × + ×

= × − ×

− −

− −

. .

. . 33

21
2 2

22
3

4 7114 10 2 1376 10

5 4445 10 5 1841

S

Sa

a

y j

y j

= × − ×

= × + ×

− −

−

. .

. . 110 3− S

    (8.80)   

 Nothing can be done about  g  12a , but  b  12a  can be removed by setting 
 b  fb     =     b  12a     =     − 2.3092    ×    10  − 3 . The composite admittance matrix becomes

    

y j

y j

y

11
3 2

12
4

21

5 5307 10 1 6739 10

3 9086 10 0

4 7

c

c

c

S

S

= × + ×

= × −

=

− −

−

. .

.

. 1114 10 1 9067 10

5 4445 10 2 8750 10

2 2

22
3 3

× − ×

= × + ×

− −

− −

j

y j

.

. .

S

Sc

    (8.81)   

 The composite scattering parameters can now be found and the stability factor 
calculated yielding  k     =    2.067 and | Δ |    =    0.4037. The transistor with the feedback 
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circuit is unconditionally stable at the given frequency. This stability has been 
achieved by adding inductive susceptance in shunt with the transistor input 
and output ports. 

 Broadband stability can be achieved by replacing the feedback inductor 
with an inductor and resistor as shown in Fig.  8.11 . A starting value for the 
inductor can be found as described for the single - frequency analysis. The resis-
tor is typically in the 200 -  to 800 -  Ω  range, but optimum values for  R  and  L  are 
best found by computer optimization.     

   8.7    CLASS  A  POWER AMPLIFIERS 

 Class A amplifi ers, whether for small - signal or large - signal operation, are 
intended to amplify the incoming signal in a linear fashion. This type of ampli-
fi er will not introduce signifi cant distortion in the amplitude and phase of the 
signal. A linear class A power amplifi er will introduce low - amplitude harmonic 
frequency components and low intermodulation distortion (IMD). An example 
of IMD can be described in terms of a double sideband suppressed carrier 
wave that is represented as

    
V

t
V

t
2 2

cos cosω ω ω ωc m c m+( ) + −( )     (8.82)  

where   ω   c  is the high - frequency carrier frequency and   ω   m  is the low - frequency 
modulation frequency. Intermodulation distortion would result in frequencies 
at   ω   c     ±     n ω   m  and harmonic distortion would cause frequency generation at 
 k ω   c     ±     n ω   m . The later harmonic distortion can usually be fi ltered out, but the 
third - order IMD is more diffi cult to handle because the distortion frequencies 
are near if not actually inside the system pass band. Clearly, this distortion in 
a class A amplifi er is a greater problem for power amplifi ers than for small -
 signal amplifi ers. Reduction of IMD depends on effi cient power combining 
methods and careful design of the transistors themselves. 

 A transistor acting in the class A mode remains in its active state throughout 
the complete cycle of the signal. Two examples of common emitter class A 

     FIGURE 8.11     Broadband feedback stabilization.  

R L
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196 CLASS A AMPLIFIERS

amplifi ers are shown in Fig.  8.12 . The maximum effi ciency of the class A ampli-
fi er in Fig.  8.12  a  has been shown to be 25% (e.g., see  [6] ). However, if an RF 
coil can be used in the collector (Fig.  8.12  b ), the effi ciency can be increased to 
almost 50%. This can be shown by recognizing fi rst that there is no ac fl ow in 
the bias source and no dc fl ow in the load,  R  L . The total current fl owing in the 
transistor collector is

    i I I tc Q o= − sinω     (8.83)  

and the total collector voltage is

    V V V tCE CC o= + sin ω     (8.84)     

 Both the quiescent current,  I  Q , and the output current,  I  o , are defi ned in Fig. 
 8.13 . The quiescent current,  I  Q , is the direct current fl owing through the col-
lector, which sets the ac operating point. When the load is drawing the maximum 
instantaneous power,

     FIGURE 8.12     Class A amplifi ers with ( a ) collector resistor and ( b ) collector inductor.  

(a) (b)

VCC VCC

+ −

+

−

+ −

Vo

+

−
Vo RLRL

RC ioio

ic ic

Idc RFCiac + Idc

     FIGURE 8.13     Magnitude of output current and quiescent current of class A amplifi er.  

IQ

Io

Io,max
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POWER COMBINING OF POWER AMPLIFIERS 197

    I I Io Q dc,max = =     (8.85)     

 At this point, the maximum output voltage is

    V I Ro o L,max ,max=     (8.86)  

where | V  o,max |    ≈     V  CC . 
 The dc power source supplies

    P I V
V
R

dc dc CC
CC

L

= =
2

    (8.87)   

 The maximum average power delivered to the load can now be written in 
terms of the supply voltage:

    P
V

R
V
R

o
o

L

CC

L

= ≈,max
2 2

2 2
    (8.88)   

 The collector effi ciency is

    n
P
P

c
o

dc

=     (8.89)   

 This defi nition is meaningful for high - gain amplifi ers where  P  i     <<     P  o . For the 
class A amplifi er the maximum collector effi ciency is   η   c     ≈    50%. The  V  o,max  will 
always be slightly less than the supply voltage because of  V  be  or  V  ce,sat . However, 
it should be noted that many times high - power amplifi ers do not have high 
gain, so the power - added effi ciency offers a more useful quality factor for a 
transistor than if  P  i  were neglected. Power - added effi ciency will be used in 
Section  8.9.2  for analysis of multistage amplifi ers.  

   8.8    POWER COMBINING OF POWER AMPLIFIERS 

 Design of power FET amplifi ers requires use of large - gate periphery devices. 
However, eventually, the large gate periphery causes other problems, such as 
impedance matching especially at RF and microwave frequencies. Bandwidth 
improvement can be obtained by combining several transistors, often on a 
single chip. An example of combining two transistors is shown in Fig.  8.14   [7, 
8] . The separation of the transistors may induce odd - order oscillations in the 
circuit even if the stability factor of the individual transistors (even - order 
stability) indicate they are stable. This odd - order instability can be controlled 
by adding  R  odd  between the two drains to damp out such oscillations. This 
resistor is typically less than 400    Ω . Symmetry indicates no power dissipation 
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198 CLASS A AMPLIFIERS

when the outputs of the two transistors are equal and in phase. An example 
of a four - transistor combining circuit is shown in Fig.  8.15 , which now includes 
resistors  R  odd1  and  R  odd2  to help suppress odd - order oscillations.    

   8.9    PROPERTIES OF CASCADED AMPLIFIERS 

 An ideal amplifi er is completely unilateral so that there is no feedback signal 
returning from the output to the input side. Under this condition, analysis of 
cascaded amplifi ers results in some interesting properties related to noise 
fi gure and effi ciency. The results obtained will be approximately valid for 
almost unilateral amplifi ers, even if some of the  “ amplifi ers ”  are mixers or 
attenuators. The following two sections deal with the total noise fi gure and 
total effi ciency, respectively, of a cascade of unilateral amplifi ers. 

     FIGURE 8.14     Power combining two transistors  [7, 8] .  

50 Ω
50 Ω

Rodd

     FIGURE 8.15     Power combining four transistors  [7, 8] .  

50 Ω
50 Ω

Rodd 1

Rodd 2

Rodd 1
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PROPERTIES OF CASCADED AMPLIFIERS 199

   8.9.1    Friis Noise Formula 

 The most critical part for achieving low noise in a receiver is the noise fi gure 
and gain of the fi rst stage. This is intuitively clear since the magnitude of the 
noise in the fi rst stage will be a much larger percentage of the incoming signal 
than it will be in subsequent stages where the signal amplitude is much larger. 
Although both signal and noise get amplifi ed the same amount, the difference 
between the signal and noise increases. For a receiver with  n  unilateral stages, 
the total noise factor for all  n  stages is  [9] 

    F
N

kT f G G G
n

n

n
T

T
,

,=
0 1 2Δ �

    (8.90)  

where  N  T,   n   is the total noise power delivered to the load. This can be expressed 
in terms of the sum of the noise added by the last stage,  N n  , and that of all the 
previous stages multiplied by the gain of the last stage:

    N N G Nn n n nT T, = + −( )1     (8.91)   

 If the  n th stage were removed, and its noise factor measured alone, then its 
noise factor would be

    F
kT G f N

kT G f
n

n n

n

= +0

0

Δ
Δ     (8.92)  

    F
N

kT G f
n

n

n

− =1
0 Δ     (8.93)   

 By substitution Eq.  (8.91)  into Eq.  (8.90)  an expression for the noise factor 
is obtained that separates the contributions of the noise coming from the last 
stage only from the previous  n     −    1 stages:

    F
N

kT fG G G G

G N

kT f G G G G
n

n

n n

n n

n n
T

T
, =

( )
+

−

−( )

−0 1 2 1

1

0 1 2 1Δ Δ� �
    (8.94)   

 Canceling the  G n   in the second term and substituting  (8.93)  yields

    F
F

G G G

N

kT f G G G
n

n

n

n

n
T

T
, = − +

−

−( )

−

1

1 2 1

1

0 1 2 1� �Δ
    (8.95)   

 The second term in Eq.  (8.95)  is the same as Eq.  (8.90)  except that  n  has been 
reduced to  n     −    1. This process is repeated  n  times, giving what is known as the 
Friis formula for the noise factor for a cascade of unilateral gain stages:

    F F
F

G
F
G G

F
G G G

n
n

n
T, = + − + − + + −

−
1

2

1

3

1 2 1 2 1

1 1 1
�

�
    (8.96)   
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200 CLASS A AMPLIFIERS

 Clearly, the noise factor of the fi rst stage is the most important contributor to 
the overall noise factor of the system. If the fi rst stage has reasonable gain, the 
subsequent stages can have much higher noise factor without affecting the 
overall noise factor of the receiver.  

   8.9.2    Multistage Amplifi er Effi ciency 

 For a multistage amplifi er, the overall power effi ciency can be found that will 
correspond in some way with the overall noise fi gure expression. Unlike the 
noise fi gure, however, the effi ciency of the last stage will be found to be most 
important. Again, this would appear logical since the last amplifying stage 
handles the greatest amount of power so that poor effi ciency here would waste 
the most amount of power. For the  k th stage of an  n  - stage amplifi er chain, the 
power - added effi ciency is

    ηk
k k

k

P P
P

= −o i

d

, ,

,
    (8.97)  

where    P  o,   k          =  output power of the  k th stage  
  P  i,   k          =  input power to the  k th stage  
  P  d,   k          =  source of power, which is typically the dc bias for the  k th stage    

 If the input power to the fi rst stage is  P  i,1 , then

    P P G G G Gk ki i, ,= −1 1 2 3 1�     (8.98)  

and for the  k th stage alone

    P P Gk k ko i, ,=     (8.99)   

 When Eqs.  (8.98)  and  (8.99)  are substituted into the effi ciency equation, 
Eq.  (8.97) , the power from the power source can be found:

    P
G G G G

Pk
k k

k
d i, ,= −( )−1 2 1

1
1�

η
    (8.100)   

 The total added power for a chain of  n  amplifi ers is

    P P P G G G Gn no i i, , ,− = −( )1 1 1 2 3 1�     (8.101)   

 The effi ciency for the whole amplifi er chain is clearly given by the following:

    
ηT

o i

d

= −

=
∑

P P

P

n

k
i

n
, ,

,

1

1

    (8.102)   
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AMPLIFIER DESIGN FOR OPTIMUM GAIN AND NOISE 201

 Replacing the power levels in Eq.  (8.102)  with their explicit expression gives 
the value for the overall effi ciency of a chain of unilateral amplifi ers:

    
η

η η η

T = −
− + −( ) + + −( )−

G G G G
G G G G G G G

n

n n

n

1 2 3

1

1

1 2

2

1 2 1

1
1 1 1

�

�
�     

(8.103)   

 When each amplifi er stage has a gain suffi ciently greater than 1, the overall 
effi ciency becomes

    
η

η η η

T ≈
+ + +

−

1
1 1 1

2 3 1 1G G G Gn n n n�
�     

(8.104)
   

 This fi nal equation highlights the assertion that it is most important to make 
the fi nal stage the most effi cient one.   

   8.10    AMPLIFIER DESIGN FOR OPTIMUM GAIN AND NOISE 

 The gain for a nonunilateral amplifi er was previously given as Eq.  (8.18)  is 
repeated here:

    G
S

S S S S
T

G L

G L G L

=
−( ) −( )

−( ) −( ) −
21

2 2 2

11 22 12 21
2

1 1

1 1

Γ Γ

Γ Γ Γ Γ
    (8.105)   

 If  S  12  is set to zero, thereby invoking the unilateral approximation for the 
amplifi er gain, then

    G
S

S
S

T
G

G

L

L

≈ −
−

−
−

1

1

1

1

2

11
2 21

2
2

22
2

Γ
Γ

Γ
Γ

    (8.106)   

 This approximation, of course, removes the possibility of analytically deter-
mining the transistor stability conditions. Using this expression, a set of con-
stant gain circles can be drawn on a Smith chart for a given transistor. That is, 
for a given set of device scattering parameters and for a fi xed load impedance, 
a set of constant gain circles can be drawn for a range of generator impedances 
expressed here in terms of  Γ  G . 

 The noise fi gure was previously found in Eq.  (7.40) . As was done for the 
constant gain circles, constant noise fi gure circles can be drawn for a range of 
values for the generator admittance,  Y  G     =     G  G     +     jB  G . The optimum gain occurs 
when   ΓG = S11* and the minimum noise fi gure occurs when  Y  G     =     Y  opt . These two 
source impedances are rarely the same, but a procedure is available to at least 
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     FIGURE 8.16     Constant gain and noise fi gure circles.  
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     FIGURE 8.17     Series inductive feedback can be used to lower noise fi gure.  
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optimize for both of these parameters simultaneously  [10] . As seen on the 
Smith chart in Fig.  8.16 , it appears possible that the least damage to either the 
gain or the noise fi gure is obtained if the actual chosen generator impedance 
lies on a line between   S11*  and  Y  opt . It has been found that addition of series 
emitter inductance, such as shown in Fig.  8.17 , will lower the minimum noise 
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fi gure of the circuit because it lowers the effective  F  min  and  r  n . This series induc-
tance also increases the real part of the input impedance. The output imped-
ance does not affect the noise fi gure but can be manipulated to adjust the gain.   

 Low - noise, wide - band amplifi ers have been reported using CMOS technol-
ogy. Wide bandwidth can be achieved using negative feedback by using a 
resistor between the gate and source (or base and emitter). Since the gain is 
reduce by the factor of 1    +     T  where  T  is the loop gain, then the bandwidth 
increases by 1    +     T . However, even a larger bandwidth and a better noise fi gure 
can be achieved by using inductive source (or emitter) degeneracy along with 
an added input inductor and shunt capacitor  [11] . Inductors are problematic 
in integrated circuit (IC) designs because of their size and relatively poor  Q . 
A wide - bandwidth CMOS circuit with a noise fi gure below 4.8   dB has been 
reported that uses no inductors. Low noise is achieved in Fig.  8.18  by using a 
feed - forward technique that effectively cancels noise  [12] . This circuit provides 
not only noise cancellation but enhanced gain (11   dB in this case) that former 
feed - forward designs lacked. Noise coming out of the input matching transis-
tor,  M  1 , is canceled by  M  2  and  M  3 , and delivered to  M  4  and  M  5  through two 
feed - forward paths. The capacitor  C  2  is large enough to provide an effective 
RF ground.    

   8.11    CONCLUSION 

 This chapter began with a defi nition and graphical derivation of the most 
useful form of power gain, the transducer power gain. A linear analysis of an 
amplifi er focuses on gain, bandwidth, stability, and noise. An analytical treat-
ment for bandwidth is usually intractable, so this aspect is normally done by 
computer simulation. An introduction to class A power amplifi ers is given 
along with a schematic of at least one integrated circuit low - noise amplifi er 
that can be implemented with CMOS technology.  

     FIGURE 8.18     Feed - forward noise cancellation low - noise amplifi er described in  [12] .  
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204 CLASS A AMPLIFIERS

      a.     Determine the stability factor,  k , for this transistor.  
  b.     Determine the  y  parameters for this circuit.  
  c.     Determine the circuit at 1.5   GHz that would neutralize (almost unilat-

eralize) the circuit. While this procedure does not guarantee stability 
in all cases, it usually helps lead toward greater stability.  

  d.     Determine the new scattering parameters for the neutralized circuit.  
  e.     Determine the generator and load impedances that would give 

maximum transducer power gain (not unilateral power gain).  
  f.     What is the value for the maximum transducer power gain?      

    8.3.    Determine the transfer function for the fl ow graph in Fig.  8.19 .     

    8.4.    A certain transistor has the following  S  parameters:

   S S S S11 21 12 221 2 4 0 0 0 9= = = =. . .   

 Determine whether this transistor is unconditionally stable.   

    8.5.    Verify Eq.  (8.38) .   

    8.6.    A three - stage amplifi er consists of three individual unilateral amplifi ers. 
The fi rst one (the input stage) has a gain  G  1     =    10   dB, a noise factor  F  1     =    1.5, 
and an effi ciency   η   1     =    1%. For stage 2,  G  2     =    20   dB,  F  2     =    10, and   η   2     =    5%. 
For stage 3,  G  3     =    5   dB,  F  3     =    15, and   η   3     =    50%. What is the overall total 
noise factor for the cascaded amplifi er? What is the overall total effi ciency 
for the cascaded amplifi er?      

 PROBLEMS 

       8.1.    Using the fl ow graph reduction method, verify the refl ection coeffi cient 
found in Eq.  (8.17) .   

    8.2.    The measured scattering parameters of a transistor in an amplifi er circuit 
are found to be the following:

     FIGURE 8.19     Flow graph for Problem 8.3.  

a b

e

f

c d

  | S  11 |     ∠  S  11     | S  21 |     ∠  S  21     | S  12 |     ∠  S  12     | S  22 |     ∠  S  22   
  0.65     − 40    3.6     − 140    0.05    74    0.90     − 20  
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  CHAPTER NINE 

 RF  Power Amplifi ers     

    9.1    TRANSISTOR CONFIGURATIONS 

 In Chapter  8 , class A amplifi ers were treated. Some discussion was given to its 
application as a power amplifi er. While class A amplifi ers are used in power 
applications where linearity is of primary concern, they do so at the cost of 
effi ciency. This chapter describes power amplifi ers that provide higher effi -
ciency than the class A amplifi er. Before describing these in detail, it should 
be recalled that a single - transistor amplifi er can be installed in one of four 
different ways: common emitter, common base, common collector (or emitter 
follower), and common emitter with emitter degeneracy. Although there are 
always exceptions, the common emitter circuit is used in amplifi ers where 
high - voltage gain is required. The common base amplifi er is used when low 
input impedance and high output impedance is desired. This is accompanied 
with a current gain     ≈     1. The emitter follower is used when high input imped-
ance and low output impedance is desired. This is accompanied with a voltage 
gain     ≈     1. The common emitter with emitter degeneracy confi guration is used 
when improved repeatability is needed with respect to differences in the tran-
sistor short - circuit current gain (  β  ). The emitter resistance provides negative 
feedback and thus causes some loss in voltage gain. These confi gurations 
(minus bias circuits) are illustrated in Fig.  9.1 . These properties are described 
in detail in most electronics texts.   

 The transistor itself can be in one of four different states: saturation, forward 
active, cutoff, and reverse active. It is in the forward active region, when for 
the bipolar transistor, the base – emitter junction is forward biased and the 

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
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208 RF POWER AMPLIFIERS

base – collector junction is reverse biased. These states are illustrated in Fig.  9.2  
for an  npn  transistor. An actual bipolar transistor requires a base – emitter 
voltage greater than 0.6 to 0.8   V for it to go into the active state. For MOSFETs 
the gate – source voltage must exceed the threshold voltage,   υ   t .   

 The voltage swing of a class A amplifi er will remain in the forward active 
region throughout its entire cycle. If the output signal current is

    i t I to Cω ω( ) = ˆ sin     (9.1)  

and the dc bias current is  I  dc , then the total instantaneous current is

    I I tdc C+ ˆ sinω     (9.2)   

 The quiescent current,  I  Q , is the current around which the alternating current 
fl ows. For the class A amplifi er,   Î IC Q< , so that the entire waveform of the ac 
signal is amplifi ed without distortion. The conduction angle is 360 ° . For the 
power amplifi ers under consideration in this chapter, the transistor(s) will be 
operating during part of their cycle in either cutoff or saturation or both.  

   9.2    CLASS  B  AMPLIFIER 

 The class B amplifi er is biased so that the transistor is on only during half of 
the cycle of the incoming signal. The other half of the cycle is amplifi ed by 

     FIGURE 9.1     Connections for ( a ) common emitter, ( b ) common base, ( c ) common 
collector or emitter follower, and ( d ) common emitter with emitter degeneracy.  

(a) (b) (c) (d)

     FIGURE 9.2     Four bias regions for  npn  bipolar transistor.  
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another transistor so that at the output the full wave is reconstituted. This is 
illustrated in Fig.  9.3 . While each transistor is clearly operating in a nonlinear 
mode, the total input wave is directly replicated at the output. The class B 
amplifi er is therefore classed as a linear amplifi er. In this case, the quiescent 
current,  I  Q     =    0. Since only one of the transistors is cut off when the total 
voltage is less than 0, only the positive half of the wave is amplifi ed. The con-
duction angle is 180 ° . The term class AB amplifi er is sometimes used to 
describe the case when the direct quiescent current is much smaller than the 
signal amplitude,   ÎC , but still greater than 0. In this case,

   180° < << °conduction angle 360     

   9.2.1    Complementary (  npn  /  pnp  ) Class  B  Amplifi er 

 The illustration in Fig.  9.4  a  shows a complementary type of class B amplifi er. 
In this case transistor  Q  1  is biased so that it is in the active mode when the 
input voltage is greater than the transistor turn - on voltage,   υ   in     >    0.7, and cut 
off when the input signal   υ   in     <    0.7. The other half of the signal is amplifi ed by 

     FIGURE 9.3     Reconstituted waveform of class B amplifi er.  

iout

Q1 on

Q2 on

     FIGURE 9.4     Complementary class B amplifi er: ( a ) the basic amplifi er, ( b ) compensa-
tion to reduce crossover distortion, and ( c ) amplifi er with  V  BE  multiplier to reduce 
crossover distortion.  
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transistor  Q  2  when   υ   in     <     − 0.7. When no input signal is present, no power is 
drawn from the bias supply through the collectors of  Q  1  or  Q  2  so the class B 
operation is attractive when low standby power consumption is an important 
consideration. There is a small region of the input signal for which neither  Q  1  
nor  Q  2  are on. The resulting output will therefore suffer some distortion.   

 The  npn  transistor  Q  1  in the class B circuit in Fig.  9.4  a  has its collector con-
nected to the positive power supply,  V  CC , and its emitter connected to the load, 
 R  L . The collector of the  pnp  output transistor,  Q  2 , has its collector connected 
to the negative supply voltage  V  EE , which is often equal to  −  V  CC , and its emitter 
also connected to the load,  R  L . The bases of  Q  1  and  Q  2  are connected together 
and are driven by the collector of the input transistor  Q  3 . The input transistor, 
 Q  3 , has a bias current source,  I  bias , feeding its collector, which also provides 
base current for  Q  1 . The input voltage,   υ   in  to the input transistor  Q  3  is what 
drives the output stage. It is tempting when doing hand or SPICE calculations 
to start with   υ   in . However, because a small change in the base voltage of  Q  3  
makes a large change in the collector voltage of  Q  3 , it is easier to start the 
analysis at the base of  Q  2 . This base voltage is  V  x  in Fig.  9.4 . 

 When  V  x     =    0, both output transistors  Q  1  and  Q  2  are turned off because the 
voltage is less than the 0.7   V necessary to turn the transistors on. If  V  x      >     0.7, 
then  Q  1  ( npn ) is on and  Q  2  ( pnp ) is off. Current is then drawn from the power 
supply,  V  CC , through  Q  1  to produce the positive half - wave of the signal in the 
load. If  V  x     <    0.7, then  Q  1  ( npn ) is off and  Q  2  ( pnp ) is on. The voltage  V  x  is 
made negative by turning  Q  3  on, thus bringing the collector voltage of  Q  3  
closer to  V  EE , which is less than zero. An extreme positive or negative input 
voltage puts the turned - on output transistor (either  Q  1  or  Q  2 ) into saturation. 
The maximum positive output voltage is

    V V Vo CC CE sat
+

( )= − 1     (9.3)  

and the maximum negative output voltage is

    V V Vo EE EC sat
−

( )= − + 2     (9.4)   

 Typically, the value for  V  CE(sat)      ≈     0.2   V for a bipolar transistor. More design 
details are available from a variety of sources, such as  [1] .  

   9.2.2    Elimination of the Dead Band 

 The 1.2 -  to 1.4 - V range in the base voltages of  Q  1  and  Q  2  can be substantially 
compensated by addition of two diodes in series between the bases of  Q  1  and 
 Q  2  (Fig.  9.4  b ). These diodes are named, respectively,  D  4  and  D  5 . For purposes 
of calculation, let  V  x  stand for the voltage at the collector of the driver transis-
tor  Q  3 , which is the same as the base voltage for the  pnp  output transistor  Q  2 . 
To get to the base of  Q  1  from  V  x  now requires going through the two series -
 connected diodes  “ backward ”  from cathode to anode. If  V  x      >     0 but not so high 
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as to turn off the diodes  D  4  and  D  5 , then  Q  1  is on as inferred from Fig.  9.4  a . 
The voltage across the load is

    V V V V Vo x D D BE
+ = + + −4 3 1     (9.5)  

to make  V  x     <    0. The input voltage to the driver  Q  3  must be a positive voltage. 
The  npn  output transistor  Q  1  is turned off, and the excess bias current from 
 I  bias  fl ows through the diodes  D  4  and  D  5  and then through the now turned - on 
 Q  3 . In this case the output voltage is not now affected directly by the diode:

    V V Vxo EB
− = +2     (9.6)   

 Under this condition, the value of  V  x  is actually a negative number. In the 
middle where  V  x     =    0, the output voltage across  R  L  is

    V V V V Vo D D BE BE
+ = + − ≈4 5 1     (9.7)  

and

    V V Vo EB BE
− = =2     (9.8)   

 In either case, the output voltage is the voltage drop across one  pn  junction. 
If the forward diode voltage drops are equal to the base – emitter drops of the 
transistors, there is no discontinuity in  V  o  in going from negative to positive 
input voltages. 

 In actual production circuits, tight specifi cations are needed on diodes  D  4  
and  D  5  since they are in the base circuit of the output transistors and conse-
quently carry much less current than the output power devices. The discrep-
ancy between the high - power and low - power devices can be alleviated by 
using the  V  BE  multiplier shown in Fig.  9.4  c . In this circuit the base – emitter 
voltage of  Q  4  sets the current through  R  2 :

    I
V
R

R
BE

2
4

2

=     (9.9)   

 Assuming the base current of  Q  4  is negligible, the voltage drop between the 
bases of the output transistors  Q  1  and  Q  2  is

    V I R R V
R
R

V VCE R BE BE EB4 2 1 2 4
1

2
1 21= +( ) = +⎛

⎝⎜
⎞
⎠⎟ = +     (9.10)   

 When the voltage at the base of  Q  2  is positive, the load voltage is

    V V V
R
R

Vo x BE BE
+ = + +⎛

⎝⎜
⎞
⎠⎟ −4

1

2
11     (9.11)  
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and when  V  x     <    0,

    V V Vo EB x
− = +2     (9.12)   

 In the middle when  V  x     =    0, the   Vo
+ and   Vo

−  can be forced to be equal by adjust-
ment of the resistors  R  1  and  R  2 :

    V V
R
R

V Vo BE BE BE= +⎛
⎝⎜

⎞
⎠⎟ − =4

1

2
1 21     (9.13)   

 In addition to reducing or eliminating the dead - band zone, the compensa-
tion circuits in Figs.  9.4  b  and  9.4  c  also provide for temperature stability, since 
a change in the temperature changes the transistor  V  BE  value. The compensa-
tion circuit and the power transistors vary in the same way with temperature 
since they are physically close together. 

 Another aspect that deserves attention is the actual value of the current 
source,  I  bias . Since this supplies the base current for the  npn  output transistor 
 Q  1 ,  I  bias  must be large enough to not  “ starve ”   Q  1  when it is drawing the 
maximum current through its collector. This means that  I  Q     ≥     I  C1  / β   1 .  

   9.2.3    Composite   pnp   Transistor 

 One of the primary problems in using this type of class B amplifi er is the 
requirement for obtaining two equivalent complementary transistors. 
Fundamentally, the problem arises because of the greater mobility of electrons 
by over a 3   :   1 factor over that of holes in silicon. The symmetry of the gain in 
this circuit depends on the two output transistors having the same small - signal 
short - circuit base - to - collector current gain,   β      =     i  c  /i  b . When it is not possible to 
obtain a high -   β  pnp  transistor, it is sometimes possible to use a composite 
transistor connection. A high - power  npn  transistor,  Q  1 , is connected to a low -
 power low -   β  pnp  transistor,  Q  2 , as shown in Fig.  9.5 . Normally, the base – emitter 
junctions of the composite and single  pnp  transistor are forward biased so that 

     FIGURE 9.5     Composite connection for  pnp  transistor.  
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the Shockley diode equation may be used to describe the bias currents. For 
 Q  2  in the composite circuit,

    I I eqV kTEB
C S2 = −     (9.14)     

 The collector current for  Q  1  in the composite circuit is the same as the collec-
tor current for the single  pnp  transistor:

    I I I eV kT
C C S

BE= +( ) = − +( )β β1 2 11 1     (9.15)   

 The composite circuit has the polarity of a  pnp  transistor with potentially the 
gain of an  npn  transistor.  

   9.2.4    Small - Signal Analysis 

 The three fundamental parameters that characterize an amplifi er are its 
voltage gain,  A  v , input resistance,  R  i , and output resistance,  R  o . In the circuit 
shown in Fig.  9.4  a , neither  Q  1  nor  Q  2  are on simultaneously. If  Q  1  is on,  Q  2  is 
an open circuit and need not be considered as part of the ac analysis. A small -
 signal hybrid   π   model (Fig.  9.6 ) for a bipolar transistor consists of a base 
resistance,  r b  , base – emitter resistance,  r  π   , collector – emitter resistance,  r  o , trans-
conductance,  g  m , and short - circuit current gain   β      =     g  m  r  π   . There are in addition 
high - frequency effects caused by reactive parasitic elements within the device. 
Since the voltage gain of an emitter follower is   ≈  1, the voltage gain of the  Q  3  
and  Q  1  combination is

    A g R effv m L= − ( )3     (9.16)     

 The effective load resistance  R  L(eff)  seen by the fi rst transistor,  Q  3 , is the same 
as the input resistance of the emitter follower circuit  Q  1 . Circuit analysis of 
the low - frequency transistor hybrid model shown in Appendix  F  gives

     FIGURE 9.6     Small signal hybrid   π   model of bipolar transistor.  
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    R r r r ReffL b o L( ) = + + +( )( )π β1 1 1 11     (9.17)  

    ≈ β1RL     (9.18)   

 The voltage gain is then found by substitution:

    A g r r r Rv m b o L
+ = − + + +( )( )[ ]3 1 1 1 11π β     (9.19)  

    ≈ − 1g RLm3β     (9.20)   

 The low - frequency input resistance to the actual class B amplifi er is given by 
 R  L(eff)  in Eq.  (9.17) , and the output resistance is

    R
r r r

o
bb b=

+ +
+

π

β1
    (9.21)   

 Thus, the input resistance is high and the output resistance is low for a class B 
amplifi er, which enables it to drive a low - impedance load with high effi ciency.  

   9.2.5    All -   npn   Class  B  Amplifi er 

 The complementary class B amplifi er shown in Fig.  9.4  needs to have sym-
metrical  npn  and  pnp  devices. In addition this circuit also requires comple-
mentary power supplies. These two problems can be alleviated by using the 
totem pole or all  npn  transistor class B amplifi er. This circuit requires only one 
power supply and has identical  npn  transistors that amplify both the positive 
and negative halves of the signal. However, it requires that the two transistors 
operate with an input phase differential of 180 ° . This circuit is illustrated in 
Fig.  9.7 . Clearly, the cost of the all -  npn  transistor amplifi er is the added require-
ment of two center - tapped transformers. These are necessary to obtain 180 °  
phase difference between  Q  1  and  Q  2 . The center - tapped transformer also pro-
vides dc isolation for the load. When the input voltage is positive,  Q  1  is on and 
 Q  2  is off. When the input voltage is negative, the input transformer induces a 
positive voltage at the  “ un - dotted ”  secondary winding, which turns  Q  2  on. The 
output of  Q  2  will induce on the output transformer a positive voltage on the 
un - dotted terminal and a negative voltage on the  “ dotted ”  terminal. The nega-
tive input voltage swing is thus replicated as a negative voltage swing at the 
output. The transformer turns ratio can be used for impedance matching. The 
output fi lter is used to fi lter out any harmonics caused by crossover or other 
sources of distortion. The fi lter is not necessary to achieve class B operation, 
but it can be helpful.    

   9.2.6    Class  B  Amplifi er Effi ciency 

 The maximum effi ciency of a class B amplifi er is found by fi nding the ratio of 
the output power delivered to the load to the required dc power from the bias 
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voltage supply. In determining effi ciency in this way, power losses caused by 
nonzero base currents and crossover distortion compensation circuits used in 
Figs.  9.4  b  and  9.4  c  are neglected. Furthermore, the power effi ciency (or collec-
tor effi ciency) rather than the power - added effi ciency is calculated so as to 
form a basis for comparison for alternative circuits. It is suffi cient to do the 
calculation during the part of the cycle when  Q  1  is on and  Q  2  is off. The load 
resistance in Fig.  9.7  is transformed through to the primary side of the output 
transformer, loading the transistors with a value of   ′RL . Since the transformer 
is assumed lossless, referring the load resistance to the primary side,   ′RL will 
not change the effi ciency. 

 The peak magnitude of the collector current that fl ows into   ′RL is   ÎC. The 
alternating current is

    i t I to Cω ω( ) = ( )ˆ sin     (9.22)  

and the peak voltage is

    υ ω ωo C Lt I R t( ) = ′ ( )ˆ sin     (9.23)   

 Since the collector – base voltage must remain positive to avoid the danger of 
burning out the transistor,   ˆ ˆV I R VC C L CC= ′ < . The maximum allowable output 
power delivered to the load is

    P
V
RL

o
o=
′

ˆ 2

2
    (9.24)   

 A determination of the direct current supplied by the bias supply is needed. 
The magnitude of the current delivered by the bias supply to the load by  Q  1  is

    i I t tBB C1 0= ( ) < <ˆ sin ω ω π     (9.25)  

and for  Q  2 

     FIGURE 9.7     All  npn  class B amplifi er.  
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216 RF POWER AMPLIFIERS

    i I t tBB C2 2= − ( ) < <ˆ sin ω π ω π     (9.26)   

 The total current is then   ̂ sinI tC ω( ), which is shown in Fig.  9.8 . The direct 
current from the bias sources is found by fi nding the average current:

    

I
T

I t dt

I
t

t

I
T T T

T

T

T

dc C

C

C

=

= −

= −
( )

∫
2

2

2
2

2

1
0

2

1

0

2

1

ˆ sin

ˆ
cos

ˆ
cos

ω

ω
ω

π
π

22
1

1 11

⎛
⎝⎜

⎞
⎠⎟ −⎡

⎣⎢
⎤
⎦⎥

= − − −[ ]ÎC

π

    

(9.27)

  

    I
I V

R
dc

C o

L

= =
′

2 21
ˆ ˆ

π π
    (9.28)     

 The power drawn from both of the power supplies by both of the output 
transistors is

    P V I
V
R

Vdc CC dc
o

L
CC= =

′
2
π

ˆ
    (9.29)   

 Thus, the output power is proportional to   V̂o and is the average power drawn 
from the power supply. The power delivered to the load is

    P
V

R
o

o

L

=
′

ˆ 2

2
    (9.30)   

 The effi ciency is the ratio of these latter two values:

    η π
= =

′
′P

P

V R
V V

o

dc

o

L

L

CC oR

ˆ 2

2 2
    (9.31)  

    =
π
4

V̂
V

o

CC

    (9.32)   

     FIGURE 9.8     Waveform for fi nding average dc from power supply.  
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CLASS C AMPLIFIER 217

 The maximum output power occurs when the output voltage is  V  CC     −     V  CE(sat) :

    P
V V

R
o

CC CE sat

L
max( )

( )=
−( )

′
1
2

2

    (9.33)  

    η
π

max . %=
−

≈( )

4
78 5

V V

V
CC CE sat

CC

    (9.34)   

 This effi ciency for the class B amplifi er should be compared with the maximum 
effi ciency of a class A amplifi er where   η   max     =    25% when the bias to the collec-
tor is supplied through a resistor and   η   max     =    50% when the bias to the collector 
is supplied through an RF choke.   

   9.3    CLASS  C  AMPLIFIER 

 The class C amplifi er is useful for providing a high - power continuous wave 
(CW) output. When it is used in amplitude modulation schemes, the output 
variation is done by varying the bias supply  [2] . There are several characteristics 
that distinguish the class C amplifi er from the class A or B amplifi er. First of 
all, it is biased so that the transistor conduction angle is  < 180 ° . Consequently, 
the class C amplifi er is clearly nonlinear in that it does not directly replicate a 
broadband input signal like the class A and B amplifi ers do (at least in principle). 
The class A amplifi er requires one transistor, the class B amplifi er requires two 
transistors, and the class C amplifi er uses one transistor. Topologically, it looks 
similar to the class A except for the dc bias level at the transistor input. It was 
noted in the class B amplifi er, an output fi lter was used optionally to help clean 
up the output signal. In the class C amplifi er, such a tuned output is necessary 
in order to recover the sine wave. Finally, class C operation is capable of higher 
effi ciency than either of the previous two cases, so when dealing with the 
appropriate signal types, they become very attractive as power amplifi ers. 

 The class C amplifi er in Fig.  9.9  shows the output circuit for an  n  - channel 
enhancement mode MOSFET. A power bipolar transistor might also be used 

     FIGURE 9.9     Simple class C amplifi er where  V  GG  determines conduction angle.  
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218 RF POWER AMPLIFIERS

here. The choice between the two lies in the specifi c design goals for the 
amplifi er. Actually, the analysis that follows for the class C amplifi er is based 
on triode vacuum tubes  [3] , which were later incorporated by  [2] . The  Q  of 
the tuned circuit will determine the bandwidth of the amplifi er. The large 
inductance RF coil in the drain voltage supply ensures that only dc current 
fl ows there. During that part of the input cycle when the transistor is on, the 
bias supply current fl ows through the transistor and the output voltage is 
approximately 90% of  V  DD . When the transistor is off, the supply current fl ows 
into the blocking capacitor. The current waveform at the drain can be modeled 
as the waveform shown in Fig.  9.10 :

    i t
I I t t

D
Q D 3 3

0 otherwise
ω ω π ψ ω π ψ( ) = − ( ) − ≤ ≤ +⎧

⎨
⎩

ˆ sin 2 2
    (9.35)     

 Other approximations have been made for this current waveform based on 
different device characteristics, but Eq.  (9.35)  will provide a reasonable ana-
lytical solution. 

 For class C operation, the magnitude of the quiescent current is   I IQ < ˆ
C . 

The point where the total current    =    0 is

    
i I I

I I

D Q D

Q D

3
2

0
3
2

0

π ψ π ψ

ψ

±⎛
⎝⎜

⎞
⎠⎟ = = − ±⎛

⎝⎜
⎞
⎠⎟

= +

ˆ sin

ˆ cos
    

(9.36)
   

 This determines the value of the quiescent current in terms of the conduction 
angle 2  ψ   :

    I IQ D= − ˆ cosψ     (9.37)   

 The direct current from the power supply is the average of the total drain 
current  i  D (  θ  ) where   θ      =      ω t :

     FIGURE 9.10     Drain current waveform for class C operation.  
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I i d

I I d

I I

dc D

Q D

Q D

= ( )

= −( )

= +

∫

∫
−

+

1
2

1
2

1
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2

3 2

3 2

π
θ θ

π
θ θ

π
ψ

π

π ψ

π ψ
ˆ sin

ˆ siinψ( )

    

(9.38)

   

 Evaluation of the integral makes use of the trigonometric identity, cos(  α      ±      β  )    
=    cos     α     cos     β      +_    sin     α     sin     β  . From Eq.  (9.36)  the direct current is

    I
I

dc
D= −( )

ˆ
sin cos

π
ψ ψ ψ     (9.39)   

 This gives the average of the actual conducting current of the clipped sine 
wave in Fig.  9.10 . The quiescent current,  I  Q , is the negative bias current around 
which the alternating current fl ows if it could. This gives the direct current 
from the power supply in terms of   ÎD and the conduction angle   ψ  , so that 
power supplied by the source is

    P V Iin DD dc=     (9.40)   

 The ac component of the current fl ows through the blocking capacitor and 
into the load. Harmonic current components are shorted to ground by the 
tuned circuit. The magnitude of the output voltage at the fundamental fre-
quency is found using the Fourier method. The minus sign is used because the 
drain current convention draws current up from the load:

    

ˆ sin

ˆ sin sin

V i R d

R
I I d

o D L

L
Q D

= − ( )

= − −( )

∫

( )−

(

1
0

2

3 2

3 2

π
θ θ θ

π
θ θ θ

π

π ψ

π ))+

∫
ψ     

(9.41)

  

    = −( ) + −⎛
⎝⎜

⎞
⎠⎟( )−
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� ++⎡
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⎤

⎦
⎥
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ψ

    (9.42)  

    = + ( ) − +( ) − −( )[ ]{ }⎛
⎝⎜

⎞
⎠⎟

R
I

IL
Q

D

π
ψ ψ π ψ π ψ2

2
2

1
2

3 2 3 2sin sin sin
�

    (9.43)   

 The quiescent current term,  I  Q , is replaced using Eq.  (9.37)  again, and the 
trigonometric identity for sin     α     cos     β   is used:
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    ˆ
ˆ

sin sin sinV
R I

o
L D= − + − − −( )⎡

⎣⎢
⎤
⎦⎥π

ψ ψ ψ ψ2
1
4

2 2     (9.44)  

    = −( )R IL D

2

ˆ
sin

π
ψ ψ2 2     (9.45)   

 The ac output power delivered to the load is

    P
V
R

o =
ˆ
o

L

2

2
    (9.46)   

 The effi ciency (neglecting the input power) is simply the ratio of the output 
ac power to the input dc power. The maximum output power occurs when 
  V̂ Vo DD= . The maximum effi ciency is then

    ηmax
max= = ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )P

P
V

R V I
o

dc

DD

L DD dc

2

2
1

    (9.47)  

    =
−
−( )

2 2
4

ψ ψ
ψ ψ ψ

sin
sin cos

    (9.48)   

 A plot of this expression (Fig.  9.11 ) clearly illustrates the effi ciency in terms of 
the conduction angle for class A, B, and C amplifi ers. The increased effi ciency 
of the class C amplifi er is a result of the drain current fl owing for less than a 

     FIGURE 9.11     Power effi ciency for class A, B, and C amplifi ers.  
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CLASS C INPUT BIAS VOLTAGE 221

half cycle. When the drain current is maximum, the drain voltage is minimum, 
so the power dissipation is inherently lower than class B or class A operation.   

 Another important parameter for the power amplifi er is the ratio of the 
maximum average output power where   V̂ Vo DD= , to the peak instantaneous 
output power:

    r
P

V i
= ( )

( ) ( )

o

D D

max

max max
    (9.49)   

 The maximum average output power occurs when   V̂ Vo DD=  and is given by

    P
V

R
o max

DD

L
( ) =

2

2
    (9.50)  

    =
−( )ˆ sinI R

R
D L

L

2 2

2

2

4
2 2

2π
ψ ψ     (9.51)   

 The maximum voltage at the drain is the peak output voltage plus the dc bias 
voltage:

    V V
I R

D DD
D L

max sin( ) = = −( )2 2
2

2 2
�

π
ψ ψ     (9.52)   

 The maximum current based on Eq.  (9.37)  is

    i I I I ID Q D D Dmax cos( ) = + = − +� � �ψ     (9.53)   

 The ratio of the maximum average power to the peak power from Eq.  (9.49)  is

    r =
−
−( )

2 2
8 1

ψ ψ
π ψ

sin
cos

    (9.54)   

 A plot of this ratio as a function of conduction angle in Fig.  9.12  shows that 
maximum effi ciency of the class C amplifi er occurs when there is no output 
power. Figures  9.11  and  9.12  show the trade - offs in choosing the appropriate 
conduction angle for class C operation.    

   9.4    CLASS  C  INPUT BIAS VOLTAGE 

 Device SPICE models for RF power transistors are relatively rare. 
Manufacturers often do supply optimum generator and load impedances that 
have been found to provide the rated output power for the designated fre-
quency. The circuit shown in Fig.  9.9  is a generic example of a class C amplifi er 
in which the manufacturer has determined empirically the optimum generator 
and load impedances. The  Q  of the output tuned circuit is
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    Q
f
f

= 0

Δ
    (9.55)   

 The  Q  then determines the inductance and capacitance of the output shunt 
resonant circuit:

    C
Q
R

=
ω 0 L

    (9.56)  

    L
R

Q
= L

ω 0
    (9.57)   

 Furthermore, if the desired output power is  P  Q(max) , the drain voltage source, 
 V  DD , and the maximum drain current is  i  D(max) , then the average to peak power 
ratio,  r , is found from Eqs.  (9.49)  and  (9.54) . Iterative solution of Eq.  (9.54)  
gives the value for the conduction angle,   ψ  . This will then allow for estimation 
of the maximum effi ciency from Eq.  (9.48) . Alternatively, for a given desired 
effi ciency, the conduction angle,   ψ  , can be obtained by iterative solution of Eq. 
 (9.48) . Numerically, it is useful to take the natural logarithm of Eq.  (9.48)  
before searching iteratively for a solution:

    ln ln sin ln sin cosmaxη ψ ψ ψ ψ ψ= −( ) − −( )[ ]2 2 4     (9.58)   

 The effi ciency expression can be modifi ed to account for the nonzero drain –
 source voltage:

     FIGURE 9.12     Maximum output power to peak power ratio.  
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    η
ψ ψ
ψ ψ ψmax

sin
sin cos

=
−
−( )

−⎛
⎝⎜

⎞
⎠⎟

( )2 2
4

V V

V
DD DS on

DD
    (9.59)   

 To achieve the desired conduction angle, the gate – source voltage must be 
biased so that the transistor will be in conduction for the desired portion of 
the input signal. Drain current fl ows when the transistor is above cutoff, 
 V  GS      >      V  t . First, it is necessary to determine the required generator voltage 
amplitude,   V̂G, that will produce the desired maximum output current. This is 
illustrated in Fig.  9.13  where the input ac signal is superimposed on the gate 
bias voltage. The input voltage commences to rise above the turn on voltage 
of the transistor at

    − = −V V VGG G t
ˆ cosψ     (9.60)     

 In this way the gate bias voltage is determined.  

   9.5    CLASS  D  POWER AMPLIFIER 

 Inspection of the effi ciency and output power of a class C amplifi er reveals 
that 100% effi ciency only occurs when the input power is zero. A modifi cation 
of class B operation shown in  [4]  indicates that a judicious choice of bias 
voltages and circuit impedances provide a clipped voltage waveform at each 
output of the transistors while retaining the half sine wave output current. In 
the limit the clipped voltage waveform becomes a square wave. This is no 
longer linear and, thus, is distinguished from the class B amplifi er. 

 The class D amplifi er shown in Fig.  9.14  superfi cially looks like a class B 
amplifi er except for the input side bias. In class D operation, the transistors 
act as near ideal switches that are on half of the time and off half of the time. 
The transistors may be pulse width modulated to produce an output that does 
not have a 50% duty cycle. However, in this discussion the input is excited by 
a square wave. If the transistor switching time is near zero, then drain current 
fl ows while the drain – source voltage  V  DS     =    0 and  V  DS  is nonzero when  I  D     =    0. 

     FIGURE 9.13     Conduction angle dependence on  V  BB .  
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224 RF POWER AMPLIFIERS

As a result 100% effi ciency is theoretically possible. In practice, the switching 
speed of a transistor is not suffi ciently fast at high frequencies to produce 
square waves using this design.   

 For the circuit shown in Fig.  9.14 , the voltage is either at  V  DD  or 0, depend-
ing on the phase of the input signal. However, only current at the resonant 
frequency of the  LC  resonator can pass on to the load. Since one transistor is 
on while the other is off, the transistors must either be complementary 
devices or make use of a center - tapped transformer as shown. This ensures the 
required 180 °  phase difference between the inputs of the two transistors. A 
more practical class D circuit is shown in Fig.  9.15 . Both of these circuits are 
described as  voltage mode  circuits since the voltage at the input of the fi lter is 

     FIGURE 9.14     Class D power amplifi er.  
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approximately a square wave. The waveform of the voltage mode circuit is 
shown in Fig.  9.16 .   

   9.5.1    Class  D  Amplifi er Effi ciency 

 The analysis begins by fi nding the ac power delivered to the load. The Fourier 
series expansion of the square wave voltage at the input to the  LC  fi lter is

    V V
n

nn

n
DS DD= + − −( )⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭=

∑1
2

1
1 1

1 π
θsin     (9.61)  

where   θ      =      ω t . The current going through the resonant  LC  circuit is

    i
V
R

L
DD

L

θ
π

θ( ) =
2

sin     (9.62)   

 Consequently, the RF power delivered to the load is

    P
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    (9.63)  

    = V
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2
2

2
π

    (9.64)   

 The rectifi ed voltage mode current wave shown in Fig.  9.16  is given as

    I
I

D
D

=
≤ <

≤ <
⎧
⎨
⎩

0 0

2

θ π

θ π θ πˆ sin
    (9.65)   

 A Fourier expansing of Eq.  (9.65)  results in
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     FIGURE 9.16     Voltage and current waveforms for voltage mode (vm) amplifi er.  
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 The dc component from Eq.  (9.66)  is

    I Idc D=
1
π

ˆ     (9.67)   

 The amplitude,   ÎD, is proportional to the amplitude of the rectifi ed current 
sine wave, which in turn is determined by the fundamental voltage amplitude, 
2 V  DD   / π  . From Eq.  (9.67) 

    I
V
R

dc
DD

L

= ⎛
⎝⎜

⎞
⎠⎟

1 2
π π

    (9.68)   

 The dc input power is

    

P I V

V
R

dc dc DD

DD

L

=

=
2 2

2π
    (9.69)   

 The ratio of the RF power in the load from Eq.  (9.64)  and the dc power from 
Eq.  (9.69)  gives an effi ciency of 100%. 

 The effi ciency of the class D amplifi er falls short of the promised 100% 
because of the presence of parasitic lead inductance and especially the shunt 
capacitance,  C  DS . The switching transistors can be modeled as an ideal switch 
plus these parasitic reactances (Fig.  9.17 )  [5] . The energy stored in the inductor, 
 Li  2  / 2 and in the capacitor,  C υ   2  / 2, is dissipated during each cycle. The current 
is not completely zero when the voltage starts to turn on, and the voltage is 
not completely zero when the current starts to turns on. This overlap gets 
worse as the operating frequency increases.    

     FIGURE 9.17     Switching transistor model.  
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   9.5.2    Current Mode Class  D  Amplifi er 

 Voltage mode operation occurs when the voltage is a square wave and the 
current a rectifi ed sine wave. Reversing this as suggested by Fig.  9.18  so that 
the current is a square wave and the voltage a sine wave can increase the 
operating frequency range signifi cantly. This circuit design was described in  [5]  
and later in a thesis  [6] . A circuit schematic for the current mode class D 
amplifi er is shown in Fig.  9.19 . The basic idea is to use the parasitic inductance 
or capacitance (Fig.  9.17 ) as part of the resonant circuit. The voltage mode 
circuit can absorb the inductance while the current mode circuit can absorb 
the capacitance. Since the capacitance is a far larger problem than the induc-
tance, the current mode design is in practice capable of a much higher fre-
quency range.   

 Current mode class D waveforms are shown in Fig.  9.18  and the circuit is 
shown in Fig.  9.19 . The two transistors must be either a complementary pair 
or they must be excited out of phase with one another. The drain bias for the 
transistors goes through a choke that permits only a dc current to fl ow into 
the transformer center tap. This steady current is switched between the top 
transistor and the bottom transistor, thereby producing a current square wave. 
The  LC  fi lter will only allow the fundamental ac voltage to appear across the 
load. All higher voltage harmonic components are shorted to ground by the 
capacitor,  C . Furthermore,  C  and the  C  DS  from the transistors appear in shunt 
with one another so that  C  DS  can be made to be part of the resonant circuit. 

     FIGURE 9.18     Current mode waveforms.  
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     FIGURE 9.19     Current mode class D amplifi er.  
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 The square current waveform and the rectifi ed sine voltage waveform can 
be expanded in a Fourier series much like the voltage mode waveforms were. 
The choice of origin will change the sign of the harmonic components from 
that obtained for the voltage mode:
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 These two equations are complementary to Eqs.  (9.66)  and  (9.61) , respectively. 
The effi ciency can be calculated when the current waveform is less than a 
perfect square wave. If only the fundamental and one harmonic is considered, 
the fi rst three terms of these two expressions give

    V V V VDS DD= + −1 2 2sin cosθ θ     (9.72)  

    I I I ID dc= − −1 3 3sin sinθ θ     (9.73)   

 Rather than consider the last two equations as a truncated series, they are 
considered to be the total voltage and current with the restriction that neither 
one is ever less than zero. This is the technique used in  [5] . From the voltage 
waveform pictured in Fig.  9.18 , at   θ      =    3  π / 2:

    V V V VDS DD= = + ⋅ −( ) − ⋅ −( )0 1 11 2     (9.74)  

    V V VDD = −1 2     (9.75)  

and for the current at   θ      =      π / 2

    I I I ID dc= = − ⋅( ) − ⋅ −( )0 1 11 3     (9.76)  

    I I Idc = −1 3     (9.77)   

 The fi rst - order derivatives of the waveforms are zero at  V  DS (  π /  2),  I  D (  π /  2), and 
 I  D (3  π / 2). However, this yields no new information about the voltage and 
current amplitudes. The second - order derivative gives the rate of change of 
the slope. In the fl at portion of the waves, the second - order derivative is zero. 
In particular, the voltage wave is fl at at   θ      =    3  π /  2:

    
d V
d

V V
2

2
3 2

1 20 4 2DS

θ
θ θ

θ π=

= = − +sin cos     (9.78)  

    V V1 24=     (9.79)   

 This along with Eq.  (9.75)  yields
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V V1

4
3

= DD     (9.80)  

    V V2
1
3

= DD     (9.81)   

 For the current wave, there are two fl at spots. Evaluating the second - order 
derivative at either of these places gives the same result:

    

d I
d

I I

D
2

2
2 3 2

1 3

0

9 3

θ

θ θ
π π,

sin sin

=

= +
    

(9.82)
  

or

    I I1 39=     (9.83)   

 This with Eq.  (9.77)  yields

    I I1
9
8

= dc     (9.84)  

    I I3
1
8

= dc     (9.85)   

 The above values for the voltage and current components using one har-
monic can be used to determine the effi ciency. When the  V  DS  from transistor 
 M  1  in Fig.  9.19  is high, the fundamental voltage across  R  L  is high. When the 
 V  DS  from  M  2  is high the fundamental voltage across  R  L  is low. The ac voltage 
swing around the input to the center - tapped transformer is 2 V  1  centered at 
 V  DD . For the purposes of calculating effi ciency, the transformer is considered 
lossless. The load resistance transformed to the primary side is   ′RL. The total 
dc current from the power supply to the two transistors is

    I I Itdc dc− = =2
16
9

1     (9.86)  

and the dc power is

    

P I V

I V

tdc dc DD

DD

=

=

−

16
9

1     (9.87)   

 Since

    I
V

R
V
R

1
12 8

3
=

′
=

′L

DD

L

    (9.88)  

then

    P
V
R

dc
DD

L

=
′

128
27

2

    (9.89)   
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 The fundamental ac power delivered to the load,   ′RL  is

    P I R
V
R

Ro L
DD

L
L= ′ =

′
⎛
⎝⎜

⎞
⎠⎟ ′

1
2

1
2

8
3

1
2

2

    (9.90)  

    =
′

32
9

2V
R

DD

L

    (9.91)   

 Thus, the drain effi ciency is

    η = =
P
P

o

dc

3
4

    (9.92)   

 This calculation was done using only one harmonic above the fundamental to 
approximate the current square wave. As the number of harmonics are 
increased, the more square the current waveform becomes and the closer to 
100% effi ciency is achieved. Indeed, an analytical expression using two har-
monics above the fundamental has been provided in  [5] . The major contribu-
tion of this study is to show how current mode class D amplifi ers can incorporate 
 C  DS  so that high - effi ciency, high - power (in the tens of watts) operation can be 
practically achieved in the low - gigahertz frequency range  [6] .   

   9.6    CLASS  E  POWER AMPLIFIER 

 The class E amplifi er, like the class D, assumes the transistor acts as an ideal 
switch rather than a current source. Both the class D and the class E nonlinear 
amplifi ers are capable of achieving 100% effi ciency. The major weakness of 
the class D amplifi er is that the frequency of operation is limited by the rise 
and fall times of the transistor output pulse. The nonzero switching time is a 
result of parasitic capacitances in the circuit and transistor. Even the current 
mode class D amplifi er will eventually have this diffi culty at high frequencies. 
The class E design turns this liability into a feature, so that high - effi ciency 
operation can be achieved at higher frequencies than that available in the class 
D circuit. 

 The class E amplifi er concept was fi rst introduced by Ewing  [7]  in 1964 and 
later independently rediscovered by Sokal and Sokal  [8]  in 1975. In 1977 and 
1978, Raab derived design equations for the class E amplifi er  [9, 10] . This work 
was later expanded to include a relationship between maximum output power 
and maximum effi ciency. The derivation in  [9]  was done for an arbitrary duty 
cycle, but it is simpler to assume the duty cycle is 50% as done in  [11]  and  [12]  
for the simple reason that high - frequency switching is diffi cult and counter-
productive at a duty cycle other than 50%. 

 The material in this section on class E amplifi ers is largely the result of work 
done by Cantrell as described in  [11]  and  [12] . The basic feature of the class 
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E amplifi er (Fig.  9.20 ) is to produce a voltage wave across the capacitance 
shunting the transistor that has zero amplitude and zero slope when the tran-
sistor is turned on. This relieves the switching speed requirement of the class 
D amplifi er and yet maintains the possibility of 100% effi ciency. The circuit in 
Fig.  9.20  consists of a transistor that is switched between on and off by the 
input gate voltage, a choke inductor,  L  1 , to maintain dc current fl ow, a high  Q  
series resonant circuit, an additional excess reactance,  jX , and an external drain 
to source capacitance,  C  1 . An idealized equivalent circuit is shown in Fig.  9.21 . 
For analysis purposes, the transistor has been replaced by an ideal switch.   

 The analysis starts with a pure sine wave at the output and proceeds back 
toward the input. The output voltage with amplitude  a  and unspecifi ed phase 
  φ   is

    υ θ ω φ θ φo ( ) = +( ) = +( )a t asin sin     (9.93)  

and the output current is

    i
a
R

o θ θ φ( ) = +( )sin     (9.94)   

     FIGURE 9.20     Class E amplifi er with switching transistor.  
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     FIGURE 9.21     Ideal class E amplifi er with ideal switch used for analysis.  

C = C1+CDS

VDD

Idc

L0
L1 C0

C

jX

∠g ∠g

+ +

−−

Phase y
vy (q )+ −

+

−

R vo(q ) ∠fv (q ) io(q )vγ (q )

g = y + f

c09.indd   231c09.indd   231 9/17/2010   11:54:54 AM9/17/2010   11:54:54 AM



232 RF POWER AMPLIFIERS

 The voltage,   υ   γ   (  θ  ), is also sinusoidal but with a phase offset   γ   :

    

υ θ υ θ υ θ

θ φ θ φ

γ ψ( ) = ( ) + ( )

= +( ) + +( )

o

a X
a
R

sin cos
    

(9.95)
   

 These two terms may be added together by defi ning  b  and   ψ   as

    Xa
R

b= sinψ     (9.96)  

    a b= cosψ     (9.97)  

then

    υ θ ψ θ φ ψ θ φo ( ) = +( ) + +( )b bcos sin sin cos     (9.98)  

    = +( )bsin θ γ     (9.99)  

where

    γ φ ψ φ� + = + ( )arctan X R     (9.100)  

and

    b a X R a= + ( )1 2 � ρ     (9.101)   

 When the switch is turned off, the voltage across the switch results from 
charging the capacitance  C  with  i c  (  θ  ). This voltage is not sinusoidal:

    υ θ
ω

ξ ξ
θ

( ) = ( )∫
1

0C
i dc     (9.102)  

    = − +( )⎡
⎣⎢

⎤
⎦⎥∫

1
0B

I
a
R

ddc sin ξ φ ξ
θ

    (9.103)  

    = + +( ) −
I
B

a
BR

a
BR

dc θ θ φ φcos cos     (9.104)   

 In this expression, the susceptance is  B     =      ω C . 
 At the fundamental frequency the tuned circuit is resonant, so at this fre-

quency   υ  (  θ  )    =      υ   γ    (  θ  ), and the fundamental amplitude of the switch voltage is

    b d= ( ) +( )∫
1

0π
υ θ θ γ θ

π
sin     (9.105)   
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 During the second half of the cycle, the switch is closed so that no voltage 
component appears during this time. This expression can be expanded into 
four terms by substitution from Eq.  (9.104) :

   b
I

B
I

B
a
BR

a
BR

= +( ) − + +( ) −⎡
⎣⎢

⎤
⎦⎥

+( )∫ dc dc

π
θ γ

π
γ

π
θ φ

π
φ θ γ

π
cos cos sin

0
ddθ     (9.106)  

    � b b b b1 2 3 4+ + +     (9.107)   

 Each component of  (9.107)  is simplifi ed using the identities sin(  α      ±      β  )    =    
sin     α     cos     β      ±    sin     β     cos     α   and cos(  α      ±      β  )    =    cos     α     cos     β      +_    sin     α     sin     β  . The value 
for  b  1  is found by using the change of variables,   ξ      =      θ      +      γ   and integration 
by parts:

    
b

I
B

d

I
B

d

1 =

= − +( )

+

+ +

∫

∫

dc

dc

π
ξ ξ ξ

π
ξ ξ ξ ξ

γ

γ π

γ

γ π

γ

γ π

sin

cos cos
    

(9.108)

  

    = + −( )I
B
dc

π
π γ γ γ γcos cos sin2 2     (9.109)  

    
b

I
B

I
B

2
0

2

= − − +( )[ ]

= −

dc

dc

π
γ θ γ

π
γ γ

π

cos

cos
    

(9.110)
  

    b
a
BR

d3
02

2= + +( ) + −( )[ ]∫π
θ γ φ γ φ θ

π
sin sin     (9.111)  

    =
a
BR2

sinψ     (9.112)  

    b
a
BR

4
0

= +( )
π

φ θ γ
π

cos cos     (9.113)  

    = −
a
BRπ

γ φ2cos cos     (9.114)   

 The sum of these four terms gives

    b a
I
B

I
B BR

a
BR

= = − + −ρ γ
π

γ α ψ
π

γ φdc dccos sin sin cos cos
2

2
2     (9.115)   

 This can be solved for the value of  a , which will provide a relationship between 
the dc power supply current and the amplitude of the output signal:
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    a I R
BR

=
−

+ +( ) − ( )dc
π γ γ

π ρ φ φ ψ π ψ
cos sin

cos cos sin
2

2 2
    (9.116)  

    � I R h B Rdc( ) ( )φ ψ γ ρ, , , , ,     (9.117)   

 At the fundamental frequency, the quadrature component of   υ  (  θ  ) must be 
zero. This gives a second relationship for  a . Again for the half period when 
  υ  (  θ  )    ≠    0,

    0
1

0
= ( ) +( )∫π

υ θ θ γ θ
π

cos d     (9.118)  

    = +( ) − + +( ) −⎡
⎣⎢

⎤
⎦⎥

+( )∫
I
B

I
B

a
BR

a
BR

ddc dcθ γ γ θ φ φ θ γ θ
π

cos cos cos
0

    (9.119)  

    � c c c c1 2 3 4+ + +     (9.120)   

 The calculation is done in a way analogous to what was done for Eqs.  (9.106)  
to  (9.114) . Thus,

    c
I
B

1 2 2= − − −[ ]dc π γ γ γ γsin sin cos     (9.121)  

    c
I
B

2
2

= dcγ γsin     (9.122)  

    c
a
BR

3
2

=
π ψcos     (9.123)  

    c
a

BR
4

2
= cos sinφ γ     (9.124)  

which when summed together gives

    0 2
2

2= − −[ ] + ⎛
⎝⎜

⎞
⎠⎟ +⎡

⎣⎢
⎤
⎦⎥

I
B

a
BR

dc π γ γ π ψ γ φsin cos cos sin cos     (9.125)   

 This is the same result as Eq.  (9.115)  (with the factor of   π   reinserted) 
where the phase angle has been advanced by 90 °  or where cos     γ      →      −  sin     γ  , 
sin     γ      →    cos     γ  , and sin     ψ      →    cos     ψ  . Solving this for  a  gives

    a I R=
+

( ) +dc
2

2 2
cos sin

cos cos sin
γ π γ

π ψ φ γ
    (9.126)  

    � I R gdc( ) ( )θ ψ γ, ,     (9.127)   
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 The average value of the voltage,   υ  (  θ  ), across the capacitance,  C , is the same 
as the dc power supply,  V  DD . The power supply dc load resistance is  R  dc . Thus, 
the value for  R  dc  is found from taking the average of  V (  θ  ) of Eq.  (9.104) :

    V I R dDD dc dc= = ( )∫
1

2 0π
υ θ θ

π
    (9.128)  

    = + +( ) −⎡
⎣⎢

⎤
⎦⎥∫

1
2 0π

θ θ φ φ θ
π I

B
a

BR
a

BR
ddc cos cos     (9.129)  

    = ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+ +( ) −[ ] −
I

B
a
BR

a
BR

dc

2 2 2 2

2

π
π

π
π φ φ π

π
φsin sin cos     (9.130)  

and

    R
B

g gdc = − −⎛
⎝⎜

⎞
⎠⎟

1
2 2

2
2

π
π φ π φsin cos     (9.131)  

where  g  is defi ned by Eq.  (9.127) . The dc input power is

    P V Idc DD dc=     (9.132)  

and using  a     =     I  dc  Rg  and Eq.  (9.93)  the output power is

    P
V

R
a
R

I Rg
o

o dc= = =
ˆ 2 2 2 2

2 2 2
    (9.133)   

 This gives the (drain) effi ciency:

    η = = =
P
P

I Rg
V

Rg
R

o

dc

dc

DD dc

2 2

2 2
    (9.134)   

 To achieve 100% effi ciency, the drain - to - source voltage,   υ  (0) and   υ  (  π  ), must 
be zero. Because of the transient response of the capacitance, the slope of this 
voltage must also be zero, that is,  d υ  (  θ  ) /d θ      =    0 at   θ      =      π  . The class E amplifi er 
does not depend on having a zero rise and fall time for a pulse. Equation 
 (9.104)  clearly shows that   υ  (0)    =    0. Making   υ  (  π  )    =    0 determines the value 
for   φ  :

    0 = ( ) = + +( ) −υ π π π φ φI
B

a
BR

a
BR

dc cos cos     (9.135)  

    = −
I
B

a
BR

dc π φ2
cos     (9.136)   

 Replacing  a  from Eq.  (9.127)  gives
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cosφ π

=
2g

  
  

(9.137)
   

 To this is now added the constraint that the voltage slope is zero at   θ      =      π   :

    0 = ( ) = − +( )
=

d
d

I
B

a
BR

υ θ
θ

π φ
θ π

dc sin     (9.138)  

    sinφ = −
1
g

    (9.139)   

 There are now two equations and two unknowns,  g  and   φ  . The ratio of 
Eqs.  (9.139)  to  (9.137)  determines   φ  :

    tanφ
π

=
−2     (9.140)   

 Mathematically, there is a sign ambiguity for the value of  g . However, since  g  
is related to the voltage magnitude,  a ,  g     >    0. Figure  9.22  clearly shows how 
 g  is found and hence   φ  :

    sinφ
π

=
−

=
−
+

1 2

4 2g
    (9.141)  

    cosφ π
π

=
+4 2

    (9.142)  

    g = +1
2

24 π     (9.143)     

 For 100% effi ciency

     FIGURE 9.22     Determination of value for   φ  .  
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    1
2

1
8

4
2

2= = = +( )η πg R
R

R
Rdc dc

    (9.144)  

or

    R
V
I

R Rdc
DD

dc

= = +( ) =
1
8

4 1 7342π .     (9.145)   

 This gives a relationship between the amplifi er load resistance,  R , and the dc 
power source voltage - to - current ratio. 

 The circuit parameters that remain unknown at this point are the shunt 
capacitive susceptance and the series reactances. Now that   φ   and  g  are known, 
Eqs.  (9.131)  and  (9.145)  gives

    R
B

Rdc = = +( )1 1
8

4 2

π
π     (9.146)  

or

    B
R

=
+( )

8
4 2π π

    (9.147)   

 This represents the optimum total shunt susceptance that incorporates  C  DS , 
the parasitic capacitance, and the additional circuit capacitance needed to 
provide 100% effi ciency. What remains is the magnitude and phase of the 
series reactance,   X < ψ . The phase part can be extracted from the expression 
for  g  implied by Eqs.  (9.126)  and  (9.127) :

    g φ ψ φ ψ π φ ψ
π ψ φ φ ψ

,
cos sin

cos cos sin
( ) =

+( ) + +( )
( ) + +( )

2
2 2

    (9.148)  

whose numerical value is   12
24 + π  from Eq.  (9.143) . To solve for   ψ  , this func-

tion is expanded using the trigonometric double - angle formulas:

    
2

2
2

cos cos sin sin sin cos sin cos

cos cos sin

φ ψ φ ψ π φ ψ ψ φ
π ψ φ

−( ) + +( )

= +g φφ ψ ψ φcos sin cos+( )⎡
⎣⎢

⎤
⎦⎥

    
(9.149)

   

 Next, the coeffi cients of sin     ψ   and that of cos     ψ   are each combined together:

    
0 2 2

2
2

2

2= − + −[ ]
+ + − −

sin sin cos cos

cos cos sin sin cos

ψ φ π φ φ

ψ φ π φ π φ

g

g g φφ⎡
⎣⎢

⎤
⎦⎥

    
(9.150)
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    tan
cos sin sin cos

sin cos cos
ψ φ π φ π φ φ

φ π φ φ
=

+ − −
− +

2 2 2
2 2 2

g g
g

    (9.151)   

 Substituting for cos     φ  , sin     φ  , and  g  gives

    tanψ π π
= −⎛

⎝⎜
⎞
⎠⎟4 4

1
2

    (9.152)  

so that

    ψ = °49 052.     (9.153)   

 Since tan     ψ      =     X/R ,

    X R R= −⎛
⎝⎜

⎞
⎠⎟

=
π π
4 4

1 1 153
2

.     (9.154)   

 This optimum series reactance must be inductive. It should be noted that in 
practice the series resonant circuit absorbs this additional reactance,  X , so the 
total output network does not operate at resonance when operating at 
maximum effi ciency. 

 The required power supply voltage necessary to provide the desired output 
voltage amplitude,  a , can be found by equating Eqs.  (9.132)  and  (9.133)  since 
effi ciency is 100%:

    P I V P
a
R

dc dc DD o= = =
2

2
    (9.155)  

and replace  I  dc  with Eq.  (9.127) :

    V
a

aDD = + =
4

4 0 9312π .     (9.156)   

 In summary, the design process for the maximum effi ciency class E amplifi er 
begins with knowing the desired output voltage amplitude,  a , and the load 
resistance,  R . The shunt susceptance,  B , is found from Eq.  (9.147) , the series 
reactance,  X , from Eq.  (9.154) , and the power supply voltage,  V  DD , from 
Eq.  (9.156) . The resonant tank circuit,  L  0  and  C  0 , must be of suffi ciently high 
 Q  to block harmonic frequencies. The series  Q  is proportional to  L  0 , and 
the capacitance is determined by the resonant frequency. The value for  L  1  
is chosen to be high enough to provide a dc current with negligible ac 
content. The size must be tempered with the practical problem of parasitic 
capacitance in a high value inductor. A summary of the design process is given 
in Table  9.1 .   
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 A numerical example illustrates the characteristics of this amplifi er. Consider 
the design of the class E amplifi er in Fig.  9.21  at  f     =    2   MHz,  R     =    15    Ω ,  P  o     =    7.5   W, 
and tuned circuit Q    =    50. Then   a pR= =2 15 V,  C     =    974   pF,  L     =    1.37     μ  H, 
 V  DD     =    13.97   V,  L  0     =    59.68     μ  H, and  C  0     =    106.1   pF. The RF choke inductance 
was chosen to be 200   μ  H. Too small an inductance will allow ac currents to 
fl ow into the power supply. A SPICE analysis of this design is shown in 
Fig.  9.23  where the voltage across the switch,  υ (  θ  ), and the output voltage at 
the load,   υ   o (  θ  ), are displayed. The phase difference between the switch voltage 
and the load voltage shown in Fig.  9.23  is   φ  . The SPICE analysis is an approxi-
mation to the ideal circuit model, since convergence requirements determine 

  TABLE 9.1    Class  E  Design Summary 

   Formula     Circuit Value  

  Choose     R   
  Choose     a   
  Eq.  (9.147)      B   
  Eq.  (9.154)      X   
  Eq.  (9.156)      V  DD   
  Choose     Q   
   RQ/ ω   0      L  0   
           C  0   
  Choose     L  1   
1 0

2
0ω L

     FIGURE 9.23     Voltage,   υ  (  θ  ), at switch and the voltage,   υ   o (  θ  ) at the load. Phase differ-
ence between these two is   φ  .  

1.4980 1.4985 1.4990 1.4995 1.5000
Time, ms

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

V
ol

ta
ge

V

VO

c09.indd   239c09.indd   239 9/17/2010   11:54:55 AM9/17/2010   11:54:55 AM



240 RF POWER AMPLIFIERS

that the switch have a nonzero on resistance and the switching time must be 
greater than zero.   

 The assumptions that this analysis was based on are (1) the device capaci-
tance is considered to be independent of voltage amplitude, since it is linear, 
(2) the gate to drain capacitance,  C  GD  is neglected, and (3) the load at harmonic 
frequencies is considered to be infi nite. The latter could be enhanced by replac-
ing the series - tuned circuit with a multipole fi lter. Another enhancement for 
the microwave frequency range is the use of two 45 °  transmission lines to 
provide the required shunt susceptance,  B , while ensuring an open circuit at 
the output of the switch at the second - harmonic frequency  [13] . This circuit 
provided a 0.94   W of output power with a drain effi ciency of 75% at 1   GHz. 
Control of multiple harmonics leads to the class F amplifi er described in the 
following section.  

   9.7    CLASS  F  POWER AMPLIFIER 

  “ A class F amplifi er is characterized by a load network that has resonances at 
one or more harmonic frequencies as well as at the carrier frequency ”  [ 2 , 
p. 454]. The class F amplifi er was one of the early methods used to increase 
amplifi er effi ciency and has attracted some renewed interest recently. The 
circuit shown in Fig.  9.24  is a three - frequency peaking amplifi er where the 
shunt resonator is resonant at the fundamental,  f  0 , and the series resonator at 
3 f  0 . More details for higher order resonator class F amplifi ers are found in  [14] . 
When the transistor is excited by a sinusoidal source, ideally it is on for 
approximately half the time and off for half the time. The resulting output 
current waveform given in Fig.  9.25  a  is converted back to a sine wave by the 
resonator,  L  1  , C  1 . The  L  3  , C  3  resonator is not quite transparent to the funda-
mental frequency, but blocks the frequency at 3 f  0  from getting to the load. The 
drain or collector voltage will range from 0 to twice the power supply voltage 
with an average value of  V  CC . The second harmonic voltage at 3 f  0  on the drain 
or collector, if it has the appropriate amplitude and phase, will tend to make 
this device voltage more square in shape. This will make the transistor act more 
like a switch with the attendant high effi ciency.   

     FIGURE 9.24     Class F three - frequency peaking power amplifi er.  
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CLASS F POWER AMPLIFIER 241

   9.7.1    Three - Frequency Peaking Class  F  Amplifi er 

 The Fourier expansion of a square wave illustrated in Fig.  9.25  b  with amplitude 
from  + 1 to  − 1 and period 2  π   is

    
1
2

2 3
3

5
5

+ − − −⎛
⎝⎜

⎞
⎠⎟π

sin
sin sin

x
x x

…     (9.157)   

 Consequently, to produce a square wave voltage waveform at the transistor 
terminal, the impedance must be a short at even harmonics and large at odd 
harmonics. Ordinarily, only the fundamental, fi rst - harmonic and second -
 harmonic impedances are determined. In the typical class F amplifi er shown 
in Fig.  9.24 , the  L  1  C  1  tank circuit is resonant at the output frequency,  f  0 , and 
the  L  3  C  3  tank circuit is resonant at 3 f  0 . It has been pointed out  [15]  that the 
blocking capacitor,  C  B , could be used to provide a short to ground at 2 f  0  rather 
than simply acting as a dc block. 

 The design of the class F amplifi er proceeds by fi rst determining the output 
voltage from the desired output power and load resistance requirement. Of 
course, the load resistance can be transformed to a standard value by use of 
an impedance transformer. The resulting output voltage is

    V̂ R Ro o L= 2     (9.158)   

 A square switching waveform at the collector can be approximated with 
the fundamental and two harmonics. Based on Eq.  (9.157) , the transistor col-
lector voltage would be of the form

    V t V V t V tC CC C Cω ω ω( ) = − −ˆ sin ˆ sin3 3     (9.159)   

 Setting the change of the slope to be zero at   ω t     =    3  π / 2 is done by

    
d V t

d t
V V

2

2
3 2

30 9C
C C

ω
ω π

( )
( )

= = − +ˆ ˆ     (9.160)  

or

     FIGURE 9.25     ( a ) Class F collector current and ( b ) ideal switching square wave.  
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ˆ ˆV VC C3

1
9

=     (9.161)   

 Furthermore, at   ω t     =      π / 2 the collector voltage is zero:

    

V V V V

V V
V

V V

C CC C C

CC C
C

C CC

π
2

0

0
9

9
8

3
⎛
⎝⎜

⎞
⎠⎟

= = − +

= − +

=

ˆ ˆ

ˆ

ˆ

    

(9.162)

   

 The expected maximum effi ciency can be done much like the calculation 
done for the class B amplifi er. The direct current for the class F amplifi er is a 
half - wave - rectifi ed current rather than a full - wave - rectifi ed current. One might 
expect from the class B analysis that the direct current would be   V̂ Ro Lπ( ) 
where   V̂o is the voltage across the load. Since there is a short between the 
collector and the load at the fundamental,   ˆ ˆV Vo C= . For the class F amplifi er 
the peak value of the load current is   V̂ Ro L. However, the current entering the 
blocking capacitor,  C  B , has a peak value of   2V̂ Ro L and a minimum value of 
zero. Thus, the average of the half wave current entering  C  B  is
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(9.163)

   

 During the time the current is not fl owing into the load through  C  B , it fl ows 
through the transistor to ground. The power from the supply is
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and maximum power occurs for   V̂ Vo CC= :
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 The maximum output power is
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 Thus, the maximum effi ciency is
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    η
π

= =
9
8 4

83 4. %     (9.164)   

 The determination of the reactive circuit begins by fi nding  C  1  from the 
desired amplifi er bandwidth. The circuit  Q  is assumed to be determined solely 
by  L  1 ,  C  1 , and  R  L . Thus,

   Q C RL= =ω ω
ω0 1
0

Δ
 

or

    C
R

1
1

=
LΔω

    (9.165)   

 Once  C  1  is determined, the inductance must be that which resonates the tank 
at  f  0 :

    L
C

1
0
2

1

1
=

ω
    (9.166)   

 At 2 f  0 , the  L  1  C  1  tank circuit has negative reactance and the  L  3  C  3  tank circuit 
has positive reactance. The capacitances,  C  B  and  C  3 , can be set to provide a 
short to ground:
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    (9.167)   

 Since   L C3 3
0
2

1
9

=
ω

, and   L C1 1 0
21= ω , Eq.  (9.167)  reduces to
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or

    
1 4

5
4

33 1C C CB

= −     (9.168)  

which is the requirement for series resonance at 2 f  0 . In addition, at the funda-
mental frequency,  C  B  and the  L  3  C  3  tank circuit can be tuned to provide no 
reactance between the transistor and the load,  R  L . This eliminates the approxi-
mation that the  L  3  C  3  has zero reactance at the fundamental:
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    0
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L CB

    (9.169)  

    C CB = 8 3     (9.170)   

 This value for  C  B  can be substituted back into Eq.  (9.168)  to give a relationship 
between  C  3  and  C  1 :

    C C3 1
81

160
=     (9.171)   

 In summary,  C  1  is determined by the bandwidth Eq.  (9.165) ,  L  1  by Eq.  (9.166) , 
 C  3  from Eq.  (9.171) ,  L  3  from its requirement to resonate  C  3  at 3 f  0 , and fi nally 
 C  B  from Eq.  (9.170) . In addition, interstage networks are presented in  [15]  that 
aim at reducing the spread in circuit element values and hence help make 
circuit design practical. 

 As a numerical example, an amplifi er is to be designed to deliver 10   W of 
power to a 25 -  Ω  load at 900   MHz. From  (9.158) ,   ˆ .Vo = 22 36 V and using Eq. 
 (9.161)  the required dc supply voltage is 19.87   V, so  V  CC     =    20   V is chosen. 
Knowledge of   V̂o gives the direct current from the power supply as  I  dc     =    569.4   mA 
from  P  dc  /V  CC . Assume the desired bandwidth requires  Q     =    100. Then 
 C  1     =    707.35   pF,  L  1     =    44.21   pH,  C  3     =    358.10   pF,  L  3     =    9.70   pH, and  C  B     =    2.86   nF. A 
SPICE analysis using the default SPICE bipolar transistor model gives the 
collector current (Fig.  9.26 ) and the voltages at the collector and load (Fig.  9.27 ). 

     FIGURE 9.26     SPICE simulation of collector current of class F amplifi er.  
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Since actual transistor models are much more complicated than that used here, 
actual results could be quite different from those shown.    

   9.7.2    Transmission Line Class  F  Amplifi er 

 Additional odd harmonics can be controlled by adding additional resonators 
that make the collector voltage come closer to having a square shape. In effect, 
an infi nite number of odd harmonic resonators can be added if a   λ / 4 transmis-
sion line at the fundamental frequency replaces the lumped - element  L  3  C  3  
second - harmonic resonator (Fig.  9.28 ).   

     FIGURE 9.27     SPICE simulation of collector and load voltages of class F amplifi er.  
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     FIGURE 9.28     Class F transmission line power amplifi er.  
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 The admittance at the fundamental frequency seen by the collector is

    ′ =
( ) + + ( )

Y
Y

R sC sL
L

L

0
2

1 11 1
    (9.172)   

 The   λ / 4 transmission line converts the shunt load at the end of the line to an 
effective series load at the collector:

    ′ = + +Z
Z
R

sC Z
Z
sL

L
L

0
2

1 0
2 0

2

1

    (9.173)  

in which

    ′ =R
Z
RL

L
0
2

 

    ′ =L C Z1 0
2  

    ′ =C
Z
sL

0
2

1

  

 At the fi rst harmonic, the transmission line is   λ / 2 and the resonator ( L  1  , C  1  ) 
is a short, so   ′ ( ) =ZL 2 00ω . The effective load for all the harmonics can be 
found easily at each of the harmonics:

   ′ ( ) =ZL 2 0 20ω λ  

    ′ ( ) = ∞ZL 3 3 40ω λ  

    ′ ( ) =ZL 4 00ω λ  

    ′ ( ) = ∞ZL 5 5 40ω λ   
.
.
.

 While this provides open and short circuits to the collector, it is not obvious 
that these impedances, which act in parallel with the output impedance of the 
transistor, will provide the necessary amplitude and phase that would produce 
a square wave at the collector. 

 There are some practical diffi culties in trying to make the transmission line 
class F amplifi er. Most obvious is the physical size of a   λ / 4 line. For typical 
radio frequencies a technique would need to be used to make the line mechan-
ically short while still providing an electrical length of   π / 2 at the fundamental 
operating frequency. Furthermore, the resonator capacitance,  C  1 , must be suf-
fi ciently large to provide approximately zero reactance at 2 fo . At the same 
time the desired bandwidth also governs the size of  C  1  [Eq.  (9.165) ]. The 
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competing requirements of low second - harmonic impedance and the desired 
 Q  may produce an unacceptable compromise. A more extensive harmonic 
balance analysis of a physics - based model for a metal semiconductor fi eld -
 effect transistor (MESFET) showed that a power added effi ciency of 75% can 
be achieved at 5   GHz  [16] .   

   9.8    FEED - FORWARD AMPLIFIERS 

 The concept of feed - forward error control was conceived in a patent disclosure 
by Harold S. Black in 1924  [17] . This was several years prior to his more famous 
concept of feedback error control. A historical perspective on the feed - forward 
idea is found in  [18] . The feedback approach is an attempt to correct an error 
after it has occurred. However, a 180 °  phase difference in the forward and 
reverse paths in a feedback system can cause unwanted oscillations. In con-
trast, the feed - forward design is based on cancellation of amplifi er errors in 
the same time frame in which they occur. Signals are handled by wide - band 
analog circuits, so multiple carriers in a signal can be controlled simultane-
ously. Feed - forward amplifi ers are inherently stable, but this comes at the price 
of a somewhat more complicated circuit. Consequently, feed - forward circuitry 
is sensitive to changes in ambient temperature, input power level, and supply 
voltage variation. Nevertheless feed - forward design offers many advantages 
that have brought increased interest. 

 The major source of distortion, such as harmonics, intermodulation distor-
tion, and noise, in a transmitter is the power amplifi er. This distortion can be 
greatly reduced using a feed - forward design. The basic idea is illustrated in 
Fig.  9.29  where it is seen that the circuit consists basically of two loops. The 
fi rst one contains the main power amplifi er, and the second loop contains the 
error amplifi er. In the fi rst loop, a sample of the input signal is coupled through 
coup1 reducing the signal by the coupling factor  −  C  1    dB. This goes through the 
delay line with insertion loss of  −  D  1    dB into the comparator coupler coup3. At 
the same time the signal passing through the main amplifi er with gain  G  1    dB 

     FIGURE 9.29     Linear feed - forward amplifi er.  
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is sampled by coupler coup2, reducing the signal by  −  C  2    dB, the attenuator by 
 −  L  1    dB, and the coupler coup3 by  −  C  3    dB. The delay line, delay1, is adjusted to 
compensate for the time delay in the main amplifi er as well as the passive 
components so that two input signals for coup3 are 180 °  out of phase but 
synchronized in time. The amplitude of the input signal when it arrives at the 
error amplifi er is

    − − − − − −[ ]C D G C L C1 1 1 2 1 3     (9.174)     

 which should be adjusted to be zero. What remains is the distortion and noise 
added by the main amplifi er, which is in turn amplifi ed by the error amplifi er 
by  G  2    dB. At the same time the signal from the main amplifi er with its distor-
tion and noise is attenuated by  D  2    dB in the second loop delay line. The second 
delay line is adjusted to compensate for the time delay in the error amplifi er. 
The relative phase and amplitude of the input signals to coup4 are adjusted 
so that the distortion terms cancel. The output distortion amplitude

   − − − − − + −[ ]D C L C G C2 2 1 3 2 4  

should be zero for complete cancellation to occur. 
 The error amplifi er will also add distortion and noise to its input signal so 

that perfect error correction will not occur. Nevertheless, a dramatic improve-
ment is possible since the error amplifi er will be operating on a smaller signal 
(only distortion) that will likely lie in the linear range of the amplifi er. Further 
improvement may be accomplished by treating the entire amplifi er in Fig.  9.29  
as the main amplifi er and adding another error amplifi er with its associated 
circuitry  [18] . 

 A typical implementation of a feed - forward system is described in  [19]  for 
an amplifi er operating in the frequency range of 2.1 to 2.3   GHz with an RF 
gain of 30   dB and an output power of 1.25   W. This amplifi er had intermodula-
tion products at least 50   dB below the carrier level. Their design used a 6 - dB 
coupler for coup1, a 13 - dB coupler for coup2, a 10 - dB coupler for coup3, and 
an 8 - dB coupler for coup4. In some designs, the comparator coupler, coup3, is 
replaced by a power combiner. 

 The directional coupler itself can be implemented using microstrip or 
stripline coupled lines at higher frequencies  [20]  or by a transmission line 
transformer like that shown in Fig.  6.17 . A variety of feed - forward designs have 
been implemented, some using digital techniques  [21, 22] .  

   9.9    CONCLUSIONS 

 The discussion in this chapter has centered on two basic types of power ampli-
fi ers: the linear class A, AB, and B amplifi ers and the nonlinear class C, D, E, 
and F amplifi ers. The alphabet soup of power amplifi ers does continue beyond 
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class F, but these are the most widely used types today. In general, though, 
higher effi ciency comes with the cost of higher distortion. The feed - forward 
amplifi er does attempt to reduce noise and distortion by cancellation, but 
with the cost of higher complexity and some loss in effi ciency. The Doherty 
power amplifi er, though not discussed in this chapter, represents a technique 
of using two parallel amplifi ers where the auxiliary amplifi er provides 
additional current when the main amplifi er begins to saturate at high signal 
level. It is an attempt to provide high effi ciency while maintaining signal 
integrity.  

 PROBLEMS 

       9.1.    If the crossover discontinuity is neglected, is a class B amplifi er considered 
a linear amplifi er or a nonlinear amplifi er. Explain your answer.   

    9.2.    A class B amplifi er such as that shown in Fig.  9.7  is biased with an 18 - V 
power supply, but the maximum voltage amplitude across each transistor 
is 16   V. The remaining 2   V is dissipated as loss in the output transformer. 
If the amplifi er is designed to deliver 12   W of RF power, what is 
  a.     The maximum RF collector current?  
  b.     The total dc current from the power supply?  
  c.     The collector effi ciency of this amplifi er?      

    9.3.    The bipolar class C amplifi er equivalent to that shown in Fig.  9.9  has a 
conduction angle of 60 ° . It is designed to deliver 75   W of RF output power. 
The saturated collector – emitter voltage is known to be 1   V and the power 
supply voltage is 26   V. What is the maximum peak collector current?   

    9.4.    Assume the class C amplifi er shown in Fig.  9.9  is excited by the rectangu-
lar wave shown in Fig.  9.30 . Determine the effi ciency of this amplifi er as 

     FIGURE 9.30     Square wave pattern for Problem 9.4.  
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a function of   ψ  . If the conduction angle 2  ψ      =      π / 3, what is the numerical 
value for the effi ciency?     

    9.5.    A class C amplifi er is to be designed using a bipolar transistor to produce 
a maximum average output power,  P  o     =    26   W, at 50   MHz. The transistor 
being used has a saturation voltage,  V  CE    −    sat     =    2   V. The power supply 
voltage is  V  CC     =    28   V. The current wave form shown in Fig.  9.10  can be 
used where  I  Q     =      −  4   A,   ÎC = 12 A, and   ψ      =    45 ° .
   a.     Determine,  r , the ratio of the average power to the peak power.  
  b.     Determine the load resistance needed to realize the required output 

power.      

    9.6.    A certain power amplifi er in the common emitter confi guration has a 
conduction angle of 120 ° . What is the class type (A, AB, B, C,   …  ) of the 
amplifi er in Fig.  9.31 ? The maximum average power delivered to the load 
by this amplifi er is 30   W. What is the peak instantaneous power across the 
output terminals?        
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  CHAPTER TEN 

Oscillators and Harmonic 
Generators     

    10.1    OSCILLATOR FUNDAMENTALS 

 An oscillator is a circuit that converts energy from a power source (usually a 
dc power source) to ac energy. In order to produce a self - sustaining oscillation, 
there necessarily must be feedback from the output to the input, suffi cient 
gain to overcome losses in the feedback path, and a resonator. There are a 
number of ways to classify oscillator circuits, one of those being the distinction 
between one - port and two - port oscillators. The one - port oscillator has a load 
and resonator with a negative resistance at the same port, while the two - port 
oscillator is loaded in some way at the two ports. In either case there must be 
a feedback path, although in the case of the one - port circuit this path might 
be internal to the device itself. 

 An amplifi er with positive feedback is shown in Fig.  10.1 . The output 
voltage of this amplifi er is

   V aV a Vo i o= + β  

which gives the closed - loop voltage gain

    A
V
V

a
a

= =
−

o

i 1 β
    (10.1)     

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
Copyright © 2011 John Wiley & Sons, Inc.
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254 OSCILLATORS AND HARMONIC GENERATORS

     FIGURE 10.1     Circuit with positive feedback.  
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 The positive feedback allows an increasing output voltage to feedback to the 
input side until the point is reached where

    aβ = 1     (10.2)   

 This is called the  Barkhausen criterion  for oscillation and is often described in 
terms of its magnitude and phase separately. Hence, oscillation can occur 
when | a β  |    =    1 and  ∠  a β      =     n     ×    360    ° , where  n  is an integer. An alternate way of 
determining conditions for oscillation is determining when the value  k     <    1 for 
the stability circle as described in Chapter  8 . Still a third way will be considered 
in Section  10.4 .  

   10.2    FEEDBACK THEORY 

 The active amplifi er part and the passive feedback part of the oscillator can 
be considered as a pair of two two - port circuits. Usually the connection of 
these two port circuits occurs in four different ways: series – series, shunt – shunt, 
series – shunt, and shunt – series (Fig.  10.2 ). A linear analysis of the combination 
of these two two - port circuits begins by determining what type of connection 
exists between them. If, for example, they are connected in series – series, then 
the best way to describe each of the two - port circuits is in terms of their  z  
parameters. The composite of the two two - port circuits is found by simply 
adding the  z  parameters of the two circuits together. Thus, if [ z  a ] and [ z  f ] 
represent the amplifi er and feedback circuits connected in series – series, then 
the composite circuit is described by [ z  c ]    =    [ z  a ]    +    [ z  f ]. The form of the feedback 
circuit itself can take a wide range of forms, but, being a linear circuit, it can 
always be reduced to a set of  z ,  y ,  h , or  g  parameters any one of which can be 
represented by the symbol  k  for the present. The term that feeds back to the 
input of the amplifi er is  k  12f . The  k  12f  term, though small, is a signifi cant part 
of the small incoming signal, so that it cannot be neglected. The open - loop 
gain,  a , of the composite circuit is found by setting  k  12f     =    0. Then using the 
normal circuit analysis, the open - loop gain is determined. The closed - loop 
gain is found by including  k  12f  in the closed - loop gain given by Eq.  (10.1) . The 
Barkhausen criterion for oscillation is satisfi ed when  ak  12f     =     a β      =    1.    
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TWO-PORT OSCILLATORS WITH EXTERNAL FEEDBACK 255

   10.3    TWO - PORT OSCILLATORS WITH EXTERNAL FEEDBACK 

 There are a wide variety of two - port oscillator circuits that can be designed. 
The variety of oscillators results from the different ways the feedback circuit 
is connected to the amplifi er and the variety of feedback circuits themselves. 
Five of these shown in Fig.  10.3  are known as the Colpitts, Hartley, Clapp –
 Gouriet  [1, 2] , Armstrong, and Vackar  [2, 3]  oscillators. The Pierce oscillator 
is obtained by replacing the inductor in the Colpitts circuit with a crystal that 
acts like a high -  Q  inductor. As shown, the fi rst four of these feedback circuits 
are drawn in a series – series connection while the Vackar is drawn as a series –
 shunt confi guration. Of course, a wide variety of connections and feedback 

     FIGURE 10.2     Four possible ways to connect the amplifi er and feedback circuit. 
Composite circuit is obtained by adding designated two - port parameters. Units for 
 “ gain ”  are as shown.  
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256 OSCILLATORS AND HARMONIC GENERATORS

circuits are possible. In each of these oscillators, there is a relatively large 
amount of energy stored in the resonant reactive circuit. If not too much 
power is dissipated in the load, sustained oscillations are possible.   

 The Colpitts circuit is generally favored over that of the Hartley because 
the capacitors in the Colpitts circuit usually have higher  Q  than inductors at 
radio frequencies and come in a wider selection of types and sizes. In addition, 
the inductances in the Hartley circuit can provide a means to generate spuri-
ous frequencies because it is possible to resonate the inductors with parasitic 
device capacitances. Because the fi rst element in the Colpitts circuit is a shunt 

     FIGURE 10.3     Oscillator types: ( a ) Colpitts, ( b ) Hartley, ( c ) Clapp – Gouriet, 
( d ) Armstrong, and ( e ) Vackar.  
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TWO-PORT OSCILLATORS WITH EXTERNAL FEEDBACK 257

capacitor, it is a low - pass circuit. For similar reasons, the Hartley oscillator is 
a high - pass circuit and the Clapp – Gouriet oscillator is a band - pass circuit. 
There is an improvement in the frequency stability of the tapped capacitor 
circuit over that of a single  LC  tuned circuit  [1] . In a voltage - controlled oscil-
lator application, it is often convenient to vary the capacitance to change the 
frequency. This can be done using a reverse - biased varactor diode as the 
capacitor. If the capacitance shown in Fig.  10.4  a  changes because of, say, a 
temperature shift, the frequency will change by

    
df
f

dC
C

0

0

0

02
= −     (10.3)     

 In the tapped circuit in Fig.  10.4  b ,  C  0  is the series combination of  C  1  and  C  2 . 
Only  C  2  is used for tuning (Colpitts circuit), and it has a frequency stability 
given by

    
df
f

C
C

dC
C

= − 0

2

2

22
    (10.4)   

 This has an improved stability by the factor of  C  0 / C  2 . Furthermore, by increas-
ing  C  0  so that  C  1  and  C  2  are increased by even more while adjusting the 
inductance to maintain the same resonant frequency, the stability can be 
further enhanced. The Clapp – Gouriet circuit exhibits even better stability 
than the Colpitts  [2] . In this circuit,  C  1  and  C  2  are chosen to have large values 
compared to the tuning capacitor  C  3 . The minimum transistor transconduc-
tance,  g  m , required for oscillation for the Clapp – Gouriet circuit increases 
 ∝    ω   3 / Q . While the  Q  of a circuit often rises with frequency, it would not be 
suffi cient to overcome the cubic change in frequency. For the Vackar circuit, 
the required minimum  g  m  to maintain oscillation is  ∝    ω  / Q . This would tend 
to provide a slow drop in the amplitude of the oscillations as the frequency 
rises  [2] . 

 The oscillator is clearly a nonlinear circuit, but nonlinear circuits are diffi -
cult to treat analytically. In the interest of trying to get an approximate design 
solution, linear analysis is used. The circuit can be treated by small - signal 
linear mathematics to just prior to its breaking into oscillation. In going 

     FIGURE 10.4     ( a ) Simple  LC  resonant circuit and ( b ) tapped capacitor  LC  circuit used 
in Colpitts oscillator.  
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258 OSCILLATORS AND HARMONIC GENERATORS

through the transition between oscillation and linear gain, the active part of 
the circuit does not change appreciably. As a justifi cation for using linear 
analysis, the previous statement certainly has some fl aws. Nevertheless, linear 
analysis does give remarkably close answers. More advanced computer model-
ing using methods such as harmonic balance will give more accurate results 
and in addition provide predictions of output power. 

 As an example, consider the Colpitts oscillator in Fig.  10.5 . Rather than 
drawing it as shown in Fig.  10.3  a  as a series – series connection, it can be drawn 
in a shunt – shunt connection by simply rotating the feedback circuit 180    °  about 
its  x  axis. The  y  parameters for the feedback part are

    y sC
sL

11 1
1

f = +     (10.5)  

    y sC
sL

22 2
1

f = +     (10.6)  

    y y
sL

12 21
1

f f= =
−     (10.7)     

 The equivalent circuit for the  y  parameters now may be combined with the 
equivalent circuit for the active device (Fig.  10.6 ). The open - loop gain,  a , is 
found by setting  y  12f     =    0:

    
v
v

g y
R y

o

gs

m f

D f

= −
+

( ) +
21

221
    (10.8)     

     FIGURE 10.5     Colpitts oscillator as shunt – shunt connection.  
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     FIGURE 10.6     Equivalent circuit of Colpitts oscillator.  
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TWO-PORT OSCILLATORS WITH EXTERNAL FEEDBACK 259

 In the usual feedback amplifi er theory the  y  21f  term would be considered neg-
ligible since the forward gain of the feedback circuit would be very small 
compared to the amplifi er gain. This is not assumed here. The open - loop gain, 
 a , for the shunt – shunt confi guration is

    a
v
i

v
v y

g y
y R y

= =
−

=
+

( ) +[ ]
o

i

o

gs f

m f

f D f11

21

11 221
    (10.9)   

 The negative sign introduced in getting  i  i  is needed to make the current go 
north rather than south, as made necessary by the usual sign convention. 
Finally, using the Barkhausen criterion, oscillation occurs when   β a     =    1:

    1
1

12
12 21

11 22

= =
+( )

( ) +[ ]
ay

y g y
y R y

f
f n f

f D f
    (10.10)   

 Making the appropriate substitutions from Eqs.  (10.5)  through  (10.7)  results 
in the following:

    − −⎛
⎝⎜

⎞
⎠⎟ = +⎛

⎝⎜
⎞
⎠⎟ + +⎛

⎝⎜
⎞
⎠⎟ +⎛

⎝⎜
⎞
⎠g

sL
sL sC

sL R
sC

sL
sC

sL
m

D

1 1 1 1 1
1 1 2 ⎟⎟

⎡
⎣⎢

⎤
⎦⎥

    (10.11)   

 Both the real and imaginary parts of this equation must be equal on both sides. 
Since  s     =     j ω   0  at the oscillation frequency, all even powers of  s  are real and all 
odd powers of  s  are imaginary. Since  g  m  in Eq.  (10.11)  is associated with the 
real part of the equation, the imaginary part should be considered fi rst:

    
1 12

1 2
1 2

2 2sL
sL s C C

C
L

C
L s L

= + + +⎛
⎝⎜

⎞
⎠⎟     (10.12)   

 Solution for the oscillation frequency is

    ω0
1 2

1 2

=
+C C

LC C
    (10.13)   

 Solving the real part of Eq.  (10.11)  with the now known value for   ω   0  gives 
the required value for  g  m :

    g
C

R C
m

D

= 1

2

    (10.14)   

 The value for  g  m  found in Eq.  (10.14)  is the minimum transconductance the 
transistor must have in order to produce oscillations. The small - signal analysis 
is suffi cient to determine conditions for oscillation assuming the frequency of 
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260 OSCILLATORS AND HARMONIC GENERATORS

oscillation does not change with current amplitude in the active device. The 
large - signal nonlinear analysis would be required to determine the precise 
frequency of oscillation, the output power, the harmonic content of the oscil-
lation, and the conditions for minimum noise. 

 An alternative way of looking at this example involves simply writing down 
the node voltage circuit equations and solving them. The determinate for the 
two nodal equations is zero since there is no input signal:

    Δ =
+

−

−
+ + +

=
sC

sL sL

sL
g sC

sL R

1

2

1 1

1 1 1
0

m
D

    (10.15)   

 This gives the same equation as Eq.  (10.11)  and, of course, the same solution. 
Solving nodal equations can become complicated when there are several ampli-
fying stages involved or when the feedback circuit is complicated. Advanced 
theory for feedback amplifi ers can be used in a wide variety of circuits.  

   10.4    PRACTICAL OSCILLATOR EXAMPLE 

 The oscillator shown in Fig.  10.7  is one of several possible versions of the 
Hartley circuit. In this circuit, the actual load resistance is  R  L     =    50    Ω . Directly 
loading the transistor with this size resistance would cause the circuit to cease 
oscillation. Hence, the transformer is used to provide an effective load to the 
transistor of

    R R
n
n

= ⎛
⎝⎜

⎞
⎠⎟L

2

3

2

    (10.16)  

     FIGURE 10.7     ( a ) Practical Hartley oscillator and ( b ) equivalent circuit.  
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PRACTICAL OSCILLATOR EXAMPLE 261

and at the same time  L  2  acts as one of the inductors required by the Hartley 
circuit. By solving the network in Fig.  10.7  b  in the same way as described for 
the Colpitts oscillator, the frequency of oscillation and minimum transconduc-
tance can be found:

    ω0
1 2

1
=

+( )C L L
    (10.17)  

    g
L

L R
m = 2

1

    (10.18)     

 For a 10 - MHz oscillator biased with  V  DD     =    10   V, the inductances  L  1  and  L  2  
are chosen to be both equal to 1     μ  H. The capacitance from Eq.  (10.17)  is 
126.6   pF. If the minimum device transconductance for a MOSFET is at least 
0.333   mS, then  R  from Eq.  (10.18)  is 3000    Ω . This transconductance is con-
siderably smaller than is found in typical BJTs so that the minimum  g  m  
condition for oscillation is much easier to achieve with a BJT. For the resis-
tance  R  to be 3000    Ω , it will require the transformer turns ratio to be

   n
n

R
R

2

3

7 746= =
L

.  

and

   L L
n
n

3 2
3

2

2 2

1
1

7 746
0 01667= ⎛

⎝⎜
⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟ =

.
. μH   

 These circuit values can be put into SPICE to check for the oscillation. 
However, SPICE will give zero output when there is zero input. Somehow, a 
transient must be used to start the circuit oscillating. If the circuit is designed 
correctly, oscillations will be self - sustaining after the initial transient. One way 
to initiate a start - up transient is to prevent SPICE from setting up the dc bias 
voltages prior to doing a time - domain analysis. This is done by using the UIC 
(use initial conditions) command in the transient statement. In addition it may 
be helpful to impose an initial voltage condition on a capacitance or initial 
current condition on an inductance. A second approach is to use the PWL 
(piecewise linear) transient voltage somewhere in the circuit to impose a short 
pulse at  t     =    0, which forever after is turned off. The fi rst approach is illustrated 
in the SPICE net list for the Hartley oscillator:

 Hartley Oscillator Example. 10 MHz, RL = 50 
 L1 1 16 1uH 
 VDC 16 0 dc  + .1 
 C 1 2 126.65pF 
 L2 3 2 1uh 
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 L3 4 0 0.1667e − 1u 
 K23 L2 L3 1. 
 RL 4 0 50. 
 MOS1 2 1 0 0 MOS - EX L = 1.2um W = 10um 
 VDD 3 0 10 
 .tran 1ns 2us uic 
 .op 
  *  MOSIS CMOS 1.2um Level 1 version 
 .MODEL MOS - EX NMOS (LEVEL = 1, PHI = 0.6, TOX = 2.12E − 8, 
  + TPG = 1 ,VTO = 0.786, LD = 1.647E − 7,KP = 9.6379E − 5, 
  + U0 = 591.7,RSH = 8.5450E1,GAMMA = 0.5863, 
  + NSUB = 2.747E16, 
  + CGDO = 4.0241E − 10,CGSO = 4.0214E − 10, 
  + CGBO = 3.6144E − 10,CJ = 3.8541E − 4,MJ = 1.1854,CJSW = 1.3940E − 10, 
  + MJSW = 0.125195,PB = 0.8) 
 .END  

 The result of the circuit analysis in Fig.  10.8  shows the oscillation building 
up to a steady - state output after many oscillation periods.    

   10.5    MINIMUM REQUIREMENTS OF THE REFLECTION COEFFICIENT 

 The two - port oscillator has two basic confi gurations: (1) a common source 
FET that uses an external resonator feedback from drain to gate and (2) a 

     FIGURE 10.8     10 - MHz Hartley oscillator time - domain response.  
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MINIMUM REQUIREMENTS OF THE REFLECTION COEFFICIENT 263

common gate FET that produces a negative resistance. In both of these the 
dc bias and the external circuit determine the oscillation conditions. When a 
load is connected to an oscillator circuit and the bias voltage is applied, noise 
in the circuit or start - up transients excites the resonator at a variety of frequen-
cies. However, only the resonant frequency is supported and sent back to the 
device negative resistance. This in turn is amplifi ed and the oscillation begins 
building up. 

 Negative resistance is merely a way of describing a power source. Ohm ’ s 
law says the resistance of a circuit is the ratio of the voltage applied to 
the current fl owing out of the positive terminal of the voltage source. If the 
current fl ows back into the positive terminal of the voltage source, then, of 
course, it is attached to a negative resistance. The refl ection coeffi cient of a 
load,  Z  L , attached to a lossless transmission line with characteristic impedance, 
 Z  0 , is

    Γ =
−
+

Z Z
Z Z

L

L

0

0

    (10.19)   

 Just like viewing yourself in the mirror, the wave refl ected off a positive 
resistance load would be smaller than the incident wave. It is not expected 
that an image in the mirror would be brighter than the incident light. However, 
if the  ℜ { Z  L }    <    0, then it would be possible for  Γ  in Eq.  (10.19)  to be greater 
than 1. The  “ mirror ”  is indeed capable of refl ecting a brighter light than was 
incident on it. Negative resistance produces oscillations when the denominator 
of Eq.  (10.19)  approaches 0. The power needed to create the negative resis-
tance must come from an external power source or bias supply. 

 The conditions for oscillation then for the two - port circuit in Fig.  10.9  are

    k < 1     (10.20)  

and

    Z ZG i= −     (10.21)  

where  k  is the amplifi er stability factor from Eq.  (8.43)  and  Z  i  is the input 
impedance of the two - port circuit when it is terminated by  Z  L . The expression 

     FIGURE 10.9     Doubly terminated two - port circuit.  
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for oscillation in terms of refl ection coeffi cients is easily found by fi rst deter-
mining the expressions for  Γ  i  and  Γ  G :

    Γ i
i i

i i

=
− +
+ +

R Z jX
R Z jX

0

0

    (10.22)  

    ΓG
G G

G G

=
− +
+ +

R Z jX
R Z jX

0

0

    (10.23)     

 If  Z  G  is now replaced by  −  Z  i  in Eq.  (10.23) ,

    Γ
ΓG

i i

i i i

=
− − −
− + −

=
R Z jX
R Z jX

0

0

1
    (10.24)   

 Thus, Eqs.  (10.21)  and  (10.24)  are equivalent conditions for oscillation. In any 
case the stability factor,  k , for the composite circuit with feedback must be 
less than 1 to make the circuit unstable and thus capable of oscillation. 

 An equivalent condition for the load port may be found from Eq.  (10.24) . 
From Eq.  (8.17)  in Chapter  8 , the input refl ection coeffi cient for a terminated 
two - port circuit was found to be

    

Γ
Γ
Γ

ΔΓ
Γ Γ

i
L

L

L

L G

= +
−

=
−

−
=

S
S S

S
S

S

11
12 21

22

11

22

1

1
1

    
(10.25)

  

where  Δ  is the determinate of the  S  parameter matrix. Solving the right - hand 
side of Eq.  (10.25)  for  Γ  L  gives

    Γ
Γ

ΔΓL
G

G

=
−

−
1 11

22

S
S

    (10.26)   

 But from Eq.  (8.18) ,

    

Γ
Γ
Γ

ΔΓ
Γ Γ

o
G

G

G

G L

= +
−

=
−

−
=

S
S S

S
S

S

22
12 21

11

22

11

1

1
1

    
(10.27)

   

 The last equality results from Eq.  (10.26) . The implication is that if the condi-
tions for oscillation exists at one port, they also necessarily exist at the other 
port.  
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COMMON GATE (BASE) OSCILLATORS 265

   10.6    COMMON GATE (BASE) OSCILLATORS 

 A common gate confi guration is often advantageous for oscillators because it 
has a large intrinsic reverse gain ( S  12g ) that provides the necessary feedback. 
The subscript g, indicates common gate  S  parameters. Furthermore, feedback 
can be enhanced by putting some inductance between the gate and ground. 
Common gate oscillators often have low spectral purity but wide - band tun-
ability. Consequently, they are often preferred in voltage controlled oscillator 
(VCO) designs. For a small signal approximate calculation, the scattering 
parameters of the transistor are typically found from measurements at a 
variety of bias current levels. Probably the  S  parameters associated with the 
largest output power as an amplifi er would be those to be chosen for oscillator 
design. Since common source  S  parameters,  S ij  , are usually given, it is neces-
sary to convert them to common gate  S  parameters,  S ij   g . Once this is done, the 
revised  S  parameters may be used in a direct fashion to check for conditions 
of oscillation. 

 The objective at this point is to determine the common gate  S  parameters 
with the possibility of having added gate inductance. These are derived from 
the common source  S  parameters. The procedure follows: 

  1.     Convert the two - port common source  S  parameters to two - port common 
source  y  parameters (Appendix  D ).  

  2.     Convert the two - port  y  parameters to three - port indefi nite  y  parameters 
(Section  4.10 ).  

  3.     Convert the three - port  y  parameters to three - port  S  parameters 
(Appendix  D ).  

  4.     One of the three - port terminals is terminated with a load of known 
refl ection coeffi cient,  r .  

  5.     With one port terminated, the  S  parameters are converted to two - port 
 S  parameters, which could be, among other things, common gate  S  
parameters (Appendix  E ).    

 The fi rst step, converting the  S  parameters to  y  parameters, can be done 
using the formulas in Table D.1 or Eq.  (D.10)  in Appendix  D . For example, 
if the common source  S  parameters, [ S  s ], are given, the  y  parameter matrix is

    Y
Y
D

S S S S S

S S S
s

s

s s s s s

s s
[ ] =

−( ) +( ) + −
− +( ) −

0 11 22 12 21 12

21 11 2

1 1 2

2 1 1 22 12 21s s s( ) +
⎡
⎣⎢

⎤
⎦⎥S S

    (10.28)  

where

    D S S S Ss s s s s� 1 111 22 12 21+( ) −( ) −     (10.29)   

 Next the  y  parameters are converted to the 3    ×    3 indefi nite admittance matrix 
using the method given in  [4]  and Section  4.10 . Purely for convenience, the 
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third row and column will be added to the center of the matrix. Then the  y  11  
will represent the gate admittance, the  y  22  the source admittance, and the  y  33  
the drain admittance. The new elements for the indefi nite matrix are then put 
in between the fi rst and second rows and in between the fi rst and second 
columns of Eq.  (10.28) . For example, the new  y  12  is

    y Y
S S S S S S S

D
12 0

12 11 22 12 21 12 212 1 1
=

− −( ) +( ) + −⎡
⎣⎢

⎤
⎦⎥

s s s s s s s

s

    (10.30)   

 The values for  y  21 ,  y  23 , and  y  32  are found similarly. The new  y  22  term is found 
from  y  22     =     −  y  21     −     y  23 . The indefi nite admittance matrix is then represented as 
follows:

    

g s d

y11 y12 y13

y21 y22 y23

y31

g

d

[Y] = s

y32 y33

    (10.31)   

 The  S  parameter matrix for 3    ×    3 or higher order can be found from 
Eq.  (D.9)  in Appendix  D :

    S F G Y I GY F= −( ) +( )− −1 1 1*     (10.32)   

 In this equation  I  is the identity matrix, while  G  and  F  are defi ned in Appendix 
 D . When the reference characteristic impedances,  Z  0 , are the same in all three 
ports, the  F  and the  F   − 1  will cancel out. Determining  S  from Eq.  (10.32)  is 
straightforward but lengthy. At this point the common terminal is chosen. To 
illustrate the process, a common source connection is used in which the the 
source is terminated by a load with a refl ection coeffi cient,  r  s , as shown in Fig. 
 10.10 . If the source is grounded, the refl ection coeffi cient is  r  s     =     − 1. The rela-
tionship between the incident and refl ected waves is

     FIGURE 10.10     Three - port with source terminated with  r  s .  

G11 2

a1

b1 b3

b2rsa2

a3

D3

S2

c10.indd   266c10.indd   266 9/17/2010   11:55:28 AM9/17/2010   11:55:28 AM



COMMON GATE (BASE) OSCILLATORS 267

    

b S a S a S a

b S a S a S a

b S a S a S

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33

= + +

= + +

= + + aa3

    (10.33)

     

 Solution for  S  11s  is done by terminating the drain at port 3 with  Z  0  so that 
 a  3     =    0. The source is terminated with an impedance with refl ection 
coeffi cient

    r
a
b

s = 2

2

    (10.34)  

or for any port

    r
Z Z
Z Z

i
i ref

i ref

=
−
+

    (10.35)   

 The refl ection coeffi cient is determined relative to the reference impedance, 
which is the impedance looking back into the transistor. With Eq.  (10.34) ,  b  2  
can be eliminated in Eq.  (10.33)  giving a relationship between  a  1  and  a  2 :

    

a
r

S a S a

a
S a
r S

2
21 1 22 2

2
21 1

221

s

s

= +

=
−

    

(10.36)   

 The ratio between  b  1  and  a  1  under these conditions is

    S
b
a

S
S S
r S

11
1

1
11

12 21

221
s

s

= = +
−

    (10.37)   

 This represents the revised  S  11s  scattering parameter when the source is ter-
minated with an impedance whose refl ection coeffi cient is  r  s . In similar fashion 
the other parameters can be easily found as shown in Appendix  E . The num-
bering system for the common source parameters is set up so that the input 
port (gate side) is port 1 and the output port (drain) is port 2. Therefore the 
subscripts of the common source parameters,  S ij   s , range from 1 to 2. In other 
words, after the source is terminated, there are only two ports, the input and 
output. These are written in terms of the three - port scattering parameters,  S ij  , 
which of course have subscripts that range from 1 to 3. 

 The common gate formulas are given in Appendix  E . For a particular RF 
transistor, in which the generator is terminated with a 5 - nH inductor, the 
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required load impedance on the drain side to make the circuit oscillate is 
shown in Fig.  10.11  as obtained from the program SPARC ( S  parameters 
conversion). Since a passive resistance must be positive, the circuit is capable 
of oscillation only for those frequencies in which the resistance is above the 
0 -  Ω  line. An actual oscillator would still require a resonator to force the oscil-
lator to provide power at a single frequency. A numerical calculation at 2   GHz 
that illustrates the process is found in Appendix  E .   

 When the real part of the load impedance is less than the magnitude of the 
negative real part of the device impedance, then oscillations will occur at the 
frequency where there is resonance between the load and the device. For a 
one - port oscillator, the negative resistance is a result of feedback, but here the 
feedback is produced by the device itself rather than by an external path. 
Specifi c examples of one - port oscillators use a Gunn or IMPATT diode as the 
active device. These are normally used at frequencies above the frequency 
band of interest here. On the surface the one - port oscillator is, in principle, 
no different than a two - port oscillator whose opposite side is terminated in 
something that will produce negative resistance at the other end. The negative 
resistance in the device compensates for positive resistance in the resonator. 
Noise in the resonator port or a turn on transient starts the oscillation going. 
The oscillation frequency is determined by the resonant frequency of a high -  Q  
circuit.  

     FIGURE 10.11     Plot of load impedance required for oscillation when generator side 
is terminated with 5 - nH inductor.  
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   10.7    STABILITY OF AN OSCILLATOR 

 In the previous section, a method has been given to determine whether a 
circuit will oscillate or not. What is yet to be addressed is whether the oscil-
lation will remain stable in the face of a small current transient in the active 
device. The simple equivalent circuit shown in Fig.  10.12  can be divided into 
the part with the active device and the passive part with the high -  Q  resonator. 
The current fl owing through the circuit is

    i t A t t t A t e j t t( ) = ( ) + ( )[ ] = ℜ ( ){ }+ ( )cos ω φ ω φ     (10.38)  

where  A  and   φ   are slowly varying functions of time. The part of the circuit 
with the active device is represented by  Z  d ( A ,   ω  ) and the passive part by  Z (  ω  ). 
The condition for oscillation requires the sum of the impedances around the 
loop to be zero:

    Z A Zd , ω ω( ) + ( ) = 0     (10.39)     

 Ordinarily, the passive circuit selects the frequency of oscillation by means of 
a high -  Q  resonator. The relative variation of the impedance of the active 
device with frequency is small, so Eq.  (10.39)  can be approximated by

    Z A Zd ( ) + ( ) =ω 0     (10.40)   

 In phaser notation the current is

    I Ae j= φ     (10.41)  

and

    Z R jXω ω ω( ) = ( ) + ( )     (10.42)  

so that the voltage drop around the closed loop in Fig.  10.12  is

    
0 = ℜ ( ) + ( )[ ]{ }

= ( ) + ( )[ ] +( ) − ( ) + ( )[ ]
Z Z A I

R R A A t X X A A

ω
ω ω φ ω

d

d dcos sin ωω φt +( )
    

(10.43)
   

     FIGURE 10.12     Oscillator model when passive impedance  Z (  ω  ) is separated from 
active device  Z  d ( A ,   ω  ).  

Zd (A,w) Z (w)
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270 OSCILLATORS AND HARMONIC GENERATORS

 The time rate of change of the current is found by taking the derivative of 
Eq.  (10.38) :

    

di
dt

A
d
dt

t
dA
dt

t

j
d
dt

= − +⎛
⎝⎜

⎞
⎠⎟ +( ) + +( )

= ℜ +⎛
⎝⎜

⎞
⎠⎟ +

ω φ ω φ ω φ

ω φ

sin cos

11
A

dA
dt

Ae j t⎡
⎣⎢

⎤
⎦⎥{ }+ω φ

    
(10.44)   

 Ordinarily, in ac circuit analysis,  d / dt  is equivalent to  j ω   in the frequency 
domain. Now with variation in the amplitude and phase, the time derivative 
is equivalent to

    
d
dt

j j
d
dt

j
A

dA
dt

→ ′ = + −⎡
⎣⎢

⎤
⎦⎥

ω ω φ 1
    (10.45)   

 The Taylor series expansion of  Z (  ω   ′ ) about   ω   0  is

    Z
d
dt

j
A

dA
dt

Z
dZ
d

d
dt

j
A

dA
dt

ω φ ω
ω

φ
+ −⎛

⎝⎜
⎞
⎠⎟ ≈ ( ) + −⎛

⎝⎜
⎞
⎠⎟

1 1
0     (10.46)   

 Consequently, an expression for the voltage around the closed loop can be 
found:

   

ℜ +( ){ } = ( ) + ( ) + +⎡
⎣⎢

⎤
⎦⎥

+( )Z Z I R R A
dR
d

d
dt

dX
d A

dA
dt

A td dω
ω

φ
ω

ω φ0
1

cos

−− ( ) + ( ) + −⎡
⎣⎢

⎤
⎦⎥

+( )X X A
dX
d

d
dt

dR
d A

dA
dt

A tω
ω

φ
ω

ω φ0
1

d sin
   

 (10.47)   

 Multiplying Eq.  (10.47)  by cos(  ω  t     +      φ  ) and integrating will produce Eq.  (10.48)  
by the orthogonality property of sine and cosine. Similarly, multiplying Eq. 
 (10.47)  by sin(  ω  t     +      φ  ) will produce Eq.  (10.49) :

    0
1

= ( ) + ( ) + +R R A
dR
d

d
dt

dX
d A

dA
dt

ω
ω

φ
ωd     (10.48)  

    0
1

= − ( ) + ( ) − +X X A
dX
d

d
dt

dR
d A

dA
dt

ω
ω

φ
ωd     (10.49)   

 Multiplying Eq.  (10.48)  by  dX / d ω   and Eq.  (10.49)  by  dR / d ω   and adding will 
eliminate the  d φ  / dt  term. A similar procedure will eliminate  dA / dt . The results 
are

    0
12

= ( ) + ( )[ ] − ( ) + ( )[ ] + ( )
R R A

dX
d

X X A
dR
d

dZ
d A

dA
dt

ω
ω

ω
ω

ω
ωd d     (10.50)  
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    0
2

= ( ) + ( )[ ] + ( ) + ( )[ ] + ( )
X X A

dX
d

R R A
dR
d

dZ
d

d
dt

ω
ω

ω
ω

ω
ω

φ
d d     (10.51)   

 Under steady - state conditions, the time derivatives are zero. Combination of 
Eqs.  (10.50)  and  (10.51)  gives

    
dR d
dX d

R R A
X X A

X X A
R R A

ω
ω

ω
ω

ω
ω

= ( ) + ( )
( ) + ( )

= − ( ) + ( )
( ) + ( )

d

d

d

d
    (10.52)   

 The only way for this equation to be satisfi ed is that it satisfi es Eq.  (10.40) . 
However, suppose there is a small disturbance in the current amplitude of   δ A  
from the steady - state value of  A  0 . Based on Eq.  (10.40)  the resistive and reac-
tive components would become

    
R R A R R A A

R A
A

A
R A

A

ω ω δ

δ

0 0 0( ) + ( ) = ( ) + ( ) +
∂ ( )

∂

=
∂ ( )

∂

d d
d

d
    

(10.53)  

    X X A A
X A

A
ω δ0( ) + ( ) =

∂ ( )
∂d
d     (10.54)   

 The derivatives are, of course, assumed to be evaluated at  A     =     A  0 . Substituting 
these into Eq.  (10.50)  gives the following differential equation with respect to 
time:

    0
12

0

=
∂ ( )

∂
( ) −

∂ ( )
∂

( ) + ( )δ ω
ω

δ ω
ω

ω
ω

δ
A

R A
A

dX
d

A
X A

A
dR

d
dZ

d A
d A

dt
d d     (10.55)  

or

    0 = +δ α δ
AS

d A
dt

    (10.56)  

where

    S
R A

A
dX

d
X A

A
dR

d
�

∂ ( )
∂

( ) −
∂ ( )

∂
( )d dω

ω
ω

ω
    (10.57)  

and

    α ω
ω

�
dZ

d A
( ) 2

0

1     (10.58)   
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 The solution of Eq.  (10.56)  is

   δ αA Ce St= −  

which is stable if  S     >    0. The Kurokawa stability condition for small changes in 
the current amplitude occurs when Eq.  (10.57)  is positive  [5] . As an example, 
consider the stability of a circuit whose passive circuit impedance changes with 
frequency as shown in Fig.  10.13  and device impedance that changes with 
current amplitude shown in the third quadrant of Fig.  10.13 . As the current 
amplitude increases,  R  d ( A ) and  X  d ( A ) both increase:

   ∂ ( )
∂

>
R A

A
d 0  

   ∂ ( )
∂

>
X A

A
d 0     

 As frequency increases, the passive circuit resistance,  R (  ω  ), decreases and the 
circuit reactance,  X (  ω  ), increases:

   dR
d

ω
ω
( ) < 0  

   dX
d

ω
ω
( ) > 0   

 From Eq.  (10.57)  this would provide stable oscillations at the point where 
 Z (  ω  ) and  −  Z  d ( A ) intersect. If there is a small change in the current amplitude, 
the circuit tends to return back to the  A  0 ,   ω   0  oscillation point. 

     FIGURE 10.13     Locus of points for oscillator passive and active impedances.  
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 If there is a small perturbation in the current phase rather than the current 
amplitude, the stability criterion can be found in similar fashion as above. In 
this case the equations similar to  (10.53)  and  (10.54)  are

    R R
Rω φ δφ φ

φ
( ) + ( ) =

∂ ( )
∂d
d     (10.59)  

    X X
Xω φ δφ
φ0( ) + ( ) =

∂
∂d

d     (10.60)   

 This is substituted into Eq.  (10.51)  in which the device impedance is given as 
a function of   φ   rather than  A . The terms  R (  ω   0 )    +     R  d (  φ  ) and  X (  ω   0 )    +     X  d (  φ  ) are 
replaced by Eqs.  (10.59)  and  (10.60) , respectively:

    0
2

=
∂ ( )

∂
( ) +

∂
∂

( ) + ( )δφ φ
φ

ω
ω

δφ
φ

ω
ω

ω
ω

δφX dX
d

R dR
d

dZ
d

d
dt

d d     (10.61)  

    0 = ′ + ′S
d
dt

δφ α φ     (10.62)  

where

    S
X dX

d
R dR

d
�

∂ ( )
∂

( ) +
∂ ( )

∂
( )d dφ

φ
ω

ω
φ

φ
ω

ω
    (10.63)  

and

    ′
( )α ω
ω

�
dZ

d

2

    (10.64)   

 Since

   δφ α= − ′ ′Ce S t  

the oscillator is stable with respect to small changes in phase if  S  ′     >    0.  

   10.8    INJECTION - LOCKED OSCILLATORS 

 A free - running oscillator frequency can be modifi ed by applying an external 
frequency source to the oscillator. Such injection - locked oscillators can be 
used as high - power FM amplifi ers when the circuit  Q  is suffi ciently low to 
accommodate the frequency bandwidth of the signal. If the injection signal 
voltage,  V (  ω   in ), is at a frequency close to but not necessarily identical to the 
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free - running frequency of the oscillator and is placed in series with the passive 
impedance,  Z (  ω   in ), in Fig.  10.12 , then the loop voltage is

    Z Z A I Vω in d( ) + ( )[ ] =     (10.65)   

 The amplitude of the current at the free - running point is  A  0  and the relative 
phase between the voltage and current is   φ  . Hence,

    Z Z A
V
A

e jω φ
in d( ) = − ( ) + −

0

    (10.66)   

 Up to this point, the passive impedance has been left rather general. As a 
specifi c example, the circuit can be considered to be a high -  Q  series resonant 
circuit determined by its inductance and capacitance together with some cavity 
losses,  R  c , and a load resistance,  R  L :

    Z j L
C

R Rω ω
ωin in

in
c L( ) = −⎛

⎝⎜
⎞
⎠⎟ + +

1
    (10.67)   

 Since   ω   in  is close to the circuit free - running oscillator frequency   ω    0 ,

    
Z j

L
R R

j L R R

ω
ω

ω ω

ω

in
in

in c L

m c L

( ) = −( ) + +

≈ + +

2
0
2

2 Δ
    

(10.68)  

where  Δ   ω    m     =      ω    0     −      ω    in  comes from the Taylor series expansion of  Z (  ω    in ). 
 Equation  (10.66)  represented in Fig.  10.14  is a modifi cation of that shown 

in Fig.  10.13  for the free - running oscillator case. If the magnitude of the injec-
tion voltage,  V , remains constant, then the constant magnitude vector, | V |/ A  0 , 
which must stay in contact with both the device and circuit impedance lines, 
will change its orientation as the injection frequency changes [thereby chang-

     FIGURE 10.14     Injection - locked frequency range.  
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ing  Z (  ω    in )]. However, there is a limit to how much the | V |/ A  0  vector can move 
because circuit and device impedances grow too far apart. In that case injec-
tion lock ceases. The example in Fig.  10.14  illustrates the simple series reso-
nant cavity where the circuit resistance is independent of frequency. 
Furthermore, the | V |/ A  0  vector is drawn at the point of maximum frequency 
excursion from   ω   0 . Here | V |/ A  0  is orthogonal to the  Z  d ( A ) line. If the frequency 
moves beyond   ω   1  or   ω   2 , the oscillator loses lock with the injected signal. At 
the maximum locking frequency,

    2
0

Δω θmL
V
A

cos =     (10.69)     

 The expressions for the oscillator power delivered to the load,  P  o , the available 
injected power, and the external circuit  Q  ext  are

    P R Ao L= 1
2 0

2     (10.70)  

    P
V
R

i
L

=
2

8
    (10.71)  

    Q
L

R
ext

L

≈
ω0     (10.72)   

 When these are substituted into Eq.  (10.69)  the well - known injection locking 
range is found  [6] :

    Δω ω
θm

ext

i

o

= 0 1
Q

P
P cos

    (10.73)   

 The total locking range is from   ω   0     −     Δ   ω   m  to   ω   0     +     Δ   ω   m . The expression origi-
nally given by Adler  [6]  did not included the cos     θ   term. However, high -
 frequency devices often exhibit a phase delay of the RF current with respect 
to the voltage. This led to Eq.  (10.73)  where the device and circuit impedance 
lines are not necessarily orthogonal  [7] . In the absence of information about 
the value of   θ  , a conservative approximation for the injection range can be 
made by choosing cos     θ      =    1. The frequency range over which the oscillator 
frequency can be pulled from its free - running frequency is proportional to the 
square root of the injected power and inversely proportional to the circuit  Q  
as might be expected intuitively.  

   10.9    OSCILLATOR PHASE NOISE 

 The fl uctuations in the amplitude and especially the phase of an oscillator is 
an important limitation on the quality of an oscillator. In a receiver, the noise 
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in the local oscillator of a mixer translates to noise in the intermediate fre-
quency (IF) output. This implies the channel bandwidth must be larger than 
that required by the signal to accommodate the added phase noise. In a digital 
system using a clock, phase noise produces timing jitter. A noise current spike 
will primarily affect the amplitude of the oscillation if it occurs at one of the 
two extrema of the oscillation waveform. It will primarily affect the phase of 
the oscillation if it occurs during the zero crossing of the waveform (Fig.  10.15 ). 
When the noise fl uctuation occurs at the waveform extrema in a stable oscil-
lator, the amplitude will be quickly restored to its equilibrium value, and there 
will be no long - term effects. When the noise fl uctuation occurs at the zero 
crossing, the phase change is permanent. Phase noise,  L { Δ   ω  }, is defi ned as the 
ratio of the noise power in a certain bandwidth (usually 1   Hz) at a certain 
offset frequency,  Δ   ω  , away from the main carrier frequency to the signal 
power. The units for phase noise are typically given in dBc/Hz although the 
hertz part is inside the logarithm. This will be clarifi ed later in this section.   

 The analysis of phase noise is done with a simple  RLC  resonator excited 
by an ideal negative resistance energy source (Fig.  10.16 ). A variety of models 
for phase noise have been proposed, but the  linear time - varying  theory devel-
oped by Hajimiri and Lee provides both a reasonably tractable and accurate 
model  [8 – 10] . One of the assumptions they make is that a small increase in 
the input signal from a noise perturbation will produce a proportional output 
phase response. While the large - signal oscillator is clearly nonlinear, the small -
 signal perturbation is assumed to be linear. The second assumption is that the 
low - frequency 1/ f  noise can be folded up to the oscillator output band by the 
periodic and therefore time - varying signal.   

     FIGURE 10.15     Effect of noise ( a ) injected at peak and ( b ) at zero crossing.  

(a)

(b)

     FIGURE 10.16     Circuit model for phase noise calculation.  
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OSCILLATOR PHASE NOISE 277

 The linearity assumption allows defi ning an impulse response function that 
relates the input noise impulse to the output phase response. This is modeled 
as the unit step function,  u ( t ), in the response function,  h  φ   . Since phase noise 
is much more important than amplitude noise, only the phase impulse response 
is useful:

    h t
q

u tφ τ ω τ τ,
max

( ) = ( ) −( )Γ 0     (10.74)   

 Hajimiri  [8]  defi nes  Γ ( x ) as the  impulse sensitivity function . This function is 
periodic (though not necessarily sinusoidal) with a period equal to that of the 
oscillator. The maximum charge displacement on the tank capacitor,  q  max , 
normalizes  Γ ( x ) so that it is independent of signal level. This function is 
maximum at the signal zero crossings and zero at the extrema of the oscilla-
tion. Hajimiri  [8]  shows how values for this function might be obtained by 
simulation methods or approximate analytical methods for special cases. The 
phase response to a noise current is

    φ τ τ τ ω τ τ τφt h t i d
q

i d
t

( ) = ( ) ( ) = ( ) ( )
−∞

∞

−∞∫ ∫,
max

1
0Γ     (10.75)   

 Since  Γ ( x ) is a periodic function, it can be expanded into a Fourier series:

    Γ ω τ ω τ θ0
0

0
12

( ) = + +( )
=

∞

∑c
c nn n

n

cos     (10.76)   

 Since   θ  n   represents the phase of the uncorrelated noise, it plays no signifi cant 
role and is set to zero. The injected noise current,  i ( t ), is represented as a sine 
wave at a multiple,  m , of the oscillation frequency,   ω   0 ,

    i t I m tm( ) = +( )[ ]cos ω ω0 Δ     (10.77)  

where  ±  Δ   ω   is the frequency offset above and below  m ω   0  where there is  “ sig-
nifi cant ”  noise. Equations  (10.76)  and  (10.77)  are substituted into Eq.  (10.75) . 
The orthogonality of the cosine functions demands that only the case where 
 m     =     n  survives. Also the product of the dc terms is dropped out for now in 
order to focus on the frequency terms:

    φ ω ω τ ω τ τt
c I
q

m n dn m t
( ) = +( )[ ] ( )

−∞∫
max

cos cos0 0Δ     (10.78)   

 From the trigonometric double - angle identity
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    φ ω ω τ ωτ τt
c I
q

m dm m t
( ) = +( )[ ] + ( )

−∞∫2
2 0

max

cos cosΔ Δ     (10.79)  

    =
+( )[ ]

+
+ ( )⎡

⎣⎢
⎤
⎦⎥ −∞

c I
q

m
m

m m
t

2
2

2
0

0max

sin sinω ω τ
ω ω

ωτ
ω

Δ
Δ

Δ
Δ

    (10.80)  

    ≈ ( )c I t
q

m m sin

max

Δ
Δ

ω
ω2

    (10.81)   

 It is assumed that  Δ   ω      <<      ω    0  so that the fi rst term is negligible. Also, the evalu-
ation at  t     =     −  ∞  is assumed to be zero. This shows two sideband offsets,  ±  Δ   ω  , 
of the phase spectrum around the oscillation frequency even if the noise is 
injected at some integer multiple,  m , above   ω    0 . As pointed out in  [8, 10] , the 
noise voltage and subsequently the noise power in the two sidebands are found 
using the phase - to - voltage converter:

    v t t tout ( ) = + ( )[ ]cos ω φ0     (10.82)  

    = +[ ]cos sinω ω0t K tm Δ     (10.83)  

where  K  m  is the prefi x to sin    Δ   ω  t  in Eq.  (10.81) . Thus

    v t t K t t K tm mout ( ) = ( ) ( ) − ( ) ( )cos cos sin sin sin sinω ω ω ω0 0Δ Δ     (10.84)  

    ≈ ( ) − ( ) ( )cos sin sinω ω ω0 0t t K tmΔ     (10.85)   

 Since for small argument sin( K  m  Δ   ω  t )    ≈     K  m    sin( Δ   ω  t ),

    v t t
K

t tm
out ( ) ≈ ( ) − −( ) − +( )[ ]cos cos cosω ω ω ω ω0 0 0

2
Δ Δ     (10.86)   

 The ratio of the noise power in the sidebands at  Δ   ω   to the carrier power is 
proportional to  K m  /2 or in log form:

    P
I c

q
m m

SBC = ⎡
⎣⎢

⎤
⎦⎥

10
4

2

log
maxΔω

    (10.87)   

 For white noise with a wide band of frequencies, all the  I m   in Eq.  (10.87)  are 
equal to each other, and the sum of the   Im

2  is  〈 i 2  〉 / Δ  f.  This is the equivalent rms 
noise current. The total noise spectral density relative to the carrier is

    L Δ
Δ Δ

ω
ω

{ } =
⎛
⎝⎜

⎞
⎠⎟=

∞

∑10
1

4 2 2

2
2

0

log
maxq

i

f
cm

m

    (10.88)   

 Experimentally, it is easier to fi nd the rms value of  Γ  2  than the individual   cm
2  

components. Parseval ’ s theorem gives the link between these:
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    c x dxm
m

2

0

2 21
2

=

∞

∑ ∫= ( ) =
π

π
Γ Γ

0

2

rms     (10.89)  

so that Eq.  (10.88)  is

    L Δ
Γ Δ

Δ
ω

ω
{ } =

⎛
⎝⎜

⎞
⎠⎟

10
22

2

2
log

max

rms

q

i f
    (10.90)   

 Equation  (10.90)  has two frequency terms:  Δ   ω   is the offset frequency from the 
carrier where the noise is measured, and  Δ  f  is the band over which the noise 
is measured, typically 1   Hz. Figure  10.17  illustrates the distinction between  Δ   ω   
and  Δ  f.    

 The sideband power given in Eq.  (10.90)  represents fi rst a translation of 
noise generated at  m ω   0  to near dc by the Fourier coeffi cients. The 1/ f  noise is 
turned into 1/ f   2  noise near dc. This is a result of the implied integration of the 
impulse response function. The phase - to - voltage transformation upconverts 
the near dc 1/ f   2  noise back up to   ω   0 . Thus, the oscillator will have both the 
original 1/ f  noise as well as a 1/ f   2  noise component. Minimization of the effects 
of noise implies using a high -  Q  resonator and a large signal. Also, the  Γ ( x ) 
function should have a small value of  Γ  dc  so as to minimize upconversion of 
noise at low frequencies to   ω   0 . Often the device has in itself a fl icker noise 
component that is proportional to 1/ f . When this is upconverted back up to 
  ω   0 , the phase noise then also includes a 1/ f   3  frequency dependence as has been 
experimentally observed. 

 The Hajimiri model gives design insights on how noise might be minimized 
and provides a physical mechanism for observed phenomena. Its practical 
weakness lies in determining the impulse sensitivity function,  Γ ( x ). Hajimiri 
 [8]  describes three methods for fi nding  Γ  that involve SPICE simulation or 
approximate analytical methods. 

 However, the assumption of linearity in an oscillator and the approxima-
tions that it brings is troublesome. The actual determination of  Γ ( x ) is lengthy. 

     FIGURE 10.17     Phase noise over band of  ±  Δ   ω   within  Δ  f.   

Δ f

Δw
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280 OSCILLATORS AND HARMONIC GENERATORS

The alternative would be a nonlinear model that would include both AM and 
PM as part of the noise generation mechanism. Still more general and accurate 
models have been developed such as that by Kaertner  [11]  and Demiri  [12, 
13] . While these two approaches give more accurate results, they do require 
simulation techniques to provide answers. Moreover, the increased rigor asso-
ciated with these approaches has the effect of reducing the physical insight 
that the Hajimiri model has. 

 The phase noise models support oscillator insight and analysis. Practical 
design criteria are needed to actually make an oscillator. Optimization, 
however, requires using the simple linear time - invariant model. What is lost 
in accuracy is gained in fi nding an optimum design. The linear model assumes 
the existence of the parallel resonant tank circuit shown in Fig.  10.16 . The tank 
admittance near resonance at   ω  o      +     Δ   ω   is

    

Y G
j
L

LC

G
jR

L

ω
ω

ω

ω
ω ω ω ω

ω

( ) = + −( )

≈ +
+ + ( ) −

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

2

0

0
2

0
2

0
2

1

1
2

1
Δ Δ

Δ ⎦⎦
⎥

≈ + ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

G jQ1
2

0

Δω
ω

    

(10.91)  

where  R     =    1/ G . The magnitude squared of the impedance is, therefore,

    Z R
Q

2 2 0
2

2
≈ ⎛

⎝⎜
⎞
⎠⎟

ω
ωΔ

    (10.92)   

 The mean - square noise voltage per hertz is determined using Eq.  (10.92) :

    
v

f

i

f
Z

2 2
2

Δ Δ
=     (10.93)  

    = ⎛
⎝⎜

⎞
⎠⎟

4
2

2 0
2

kTGR
Q
ω

ωΔ
    (10.94)  

    = ⎛
⎝⎜

⎞
⎠⎟ ( )4

2
0

2

0
2kTG L

ω
ω

ω
Δ

    (10.95)   

 The phase (noise - to - signal ratio) is

    L Δ
Δ

ω ω
ω

ω{ } = ⎛
⎝⎜

⎞
⎠⎟ ( )4

22
0

2

0
2kTG

V
L

o

    (10.96)   

 Zhu  [14]  started with this simple formula to arrive at a procedure for mini-
mizing phase noise in an  LC  voltage - controlled oscillator. In integrated circuit 
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design, the inductor takes up the major part of the real estate. Design of the 
oscillator is focused on controlling the inductor size. In the subsequent analysis 
the inductor area and the line spacing between turns is maintained constant, 
while the width and number of turns are varied to achieve various values of 
inductance. 

 The focus here will be on the  LC  oscillator circuit in Fig.  10.18  since it 
provides lower phase noise than the popular ring oscillator. The  LC  oscillator 
is biased by a tail current source,  I  T . The tank circuit current waveform is a 
square wave that provides voltage harmonics. Only the fundamental of the 
voltage wave is supported so that its amplitude is   ′( )V0 4 π . Since half of 
the current fl ows through the left side and half through the right side, this 
voltage is

    V I R0 2= T π     (10.97)     

 To emphasize that the  G  in Eq.  (10.96)  is the parallel tank circuit conductance, 
 G  is replaced by the symbol,  g  p . In terms of the tail current,  I  T , Eq.  (10.96)  is

    L Δ
Δ

ω
π ω

ω
ω{ } = ⎛

⎝⎜
⎞
⎠⎟ ( )

2 3

2
0

2

0
2

2

kTg

I
Lp

T

    (10.98)   

 The output waveform is proportional to the tail current, so, as expected, 
the phase noise decreases with increasing signal power. Similar calculations 
were carried out in  [14]  for noise resulting from the base spreading resistance 
and the shot noise of the transistor. In each case the phase noise was found to 
be proportional to   g Lp

3 2. The tail current can be increased to the point where 

     FIGURE 10.18     The  LC  oscillator.  
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282 OSCILLATORS AND HARMONIC GENERATORS

the oscillation signal becomes distorted. However, once this is set to a con-
stant, it is not part of the design decisions. What remains for design analysis is 
minimizing   g Lp

3 2. 
 The analysis done in  [14]  was based on a fi xed spiral inductor size of 

400    ×    400     μ  m 2 , which had a minimum conductor spacing of 2     μ  m. The line 
width was varied between 25 and 55     μ  m and the number of turns,  n , varied 
from 2 to 5. The operating frequency was 900   MHz. Zhu ’ s  [14]  simulations 
show that by varying  n  and the line widths the optimum  Q  and   L g2 3

p occur at 
different values of  L . As the inductance changes from 2 to 9   nH by varying  n  
and line width, the maximum  Q  drops from 3.8 to 3.2, or 16%. At the same 
time, the   L g2 3

p decreases 35.5%. Usually, it is thought that high  Q ( =    1/ g  p   ω   o  L ) 
would imply small  L  to achieve low - phase noise. Zhu  [14]  has shown that large 
 L  gives lower phase noise. While increasing  L  2  does increase the noise, the  g  p  
decreases the noise even more. Furthermore, a comparison of two designs, one 
optimized for maximum  Q  and the other for minimum   L g2 3

p showed that the 
latter had a 3.6 - dB lower phase noise than the oscillator designed for maximum 
 Q .  

   10.10    HARMONIC GENERATORS 

 The previous sections have been concerned with fundamental frequency oscil-
lators. It is also possible to use a highly stable low - frequency oscillator and 
use a frequency multiplier to obtain the desired radio frequency. The nonlin-
earity of a resistance in a diode can be used in mixers to produce a sum and 
difference of two input frequencies (see Chapter  11 ). If a large signal is applied 
to a diode, the nonlinear resistance can produce harmonics of the input 
voltage. However, the effi ciency of the nonlinear resistance can be no greater 
than 1/ n , where  n  is the order of the harmonic. However, a nonlinear suscep-
tance (reciprocal of reactance) as found in a reverse - biased diode can provide 
effi cient frequency upconversion:

    dv
dq

S S
v

= = −⎛
⎝⎜

⎞
⎠⎟0 1

φ

γ

    (10.99)  

where   φ   is the built - in voltage and typically is between  + 0.5 and  + 1   V. The 
applied voltage  v  is considered positive when the diode is forward biased. The 
exponent  γ  for a varactor diode typically ranges from 0 for a step recovery 
diode to   13  for a graded junction diode to   12  for an abrupt junction diode. Using 
the nonlinear capacitance of a diode theoretically allows for generation of 
harmonics with an effi ciency of 100% with a loss - free diode. This assertion is 
supported by the Manley – Rowe relations  [15, 16] , which describe the power 
balance when two frequencies,  f  1  and  f  2 , along with their harmonics are present 
in a lossless circuit:
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∑∑     (10.101)   

 These equations are basically an expression of the conservation of energy. 
From Eq.  (10.100) 

    P P nm
m

1 0
2

0= − =
=

∞

∑ ,     (10.102)   

 The depletion elastance given by Eq.  (10.99)  is valid for forward voltages 
up to about   v φ = 1

2 . Under forward bias, the diode will exhibit diffusion capaci-
tance that tends to be more lossy in varactor diodes than the depletion capaci-
tance associated with reverse - bias diodes. Notwithstanding, an analysis of 
harmonic generators will be based on Eq.  (10.99)  for all applied voltages up 
to  v     =      φ  . This is a reasonably good approximation when the minority carrier 
life time is long relative to the period of the oscillation. The maximum elas-
tance (minimum capacitance) will occur at the reverse breakdown voltage,  V  B . 
The simplifi ed model for the diode then is defi ned by two voltage ranges:

    S
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v
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    (10.103)  
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= >0 φ     (10.104)   

 Integration of Eq.  (10.99)  gives
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    (10.106)   

 This can be evaluated at the breakdown point where  v     =     V  B  and  q     =     Q  B . Since 
 V  B  and  Q  B  are negative quantities, their signs in Eq.  (10.107)  and following 
will be effectively reversed. Taking the ratio of this with Eq.  (10.106)  gives the 
voltage and charge relative to that at the breakdown point:

    φ
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=
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⎛
⎝⎜

⎞
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−( )
v

V

q q
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1 1

    (10.107)   

 For the abrupt junction diode where   γ = 1
2 , it is possible to produce power at 

 mf  1  when the input frequency is  f  1  except for  m     =    2  [17] . Higher order terms 
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require that the circuit support intermediate frequencies called  idlers . While 
the circuit allows energy storage at the idler frequencies, no external currents 
can fl ow at these idler frequencies. Thus, multiple lossless mixing can produce 
output power at  mf  1  with high effi ciency when idler circuits are available. 

 Design of a varactor multiplier consists in predicting the input and output 
load impedances for maximum effi ciency, the value of the effi ciency, and the 
output power. A quantity called the  drive ,  D , may be defi ned where  q  max  rep-
resents the maximum stored charge during the forward swing of the applied 
voltage:

    D
q Q
q Q

=
−

−
max B

Bφ
    (10.108)   

 If  q  max     =     q  φ   , then  D     =    1. An important quality factor for a varactor diode is 
the cutoff frequency. This is related to the series loss,  R  s , in the diode:

    f
S S

R
c

s

=
−max min

2π
    (10.109)   

 When  D     ≥    1,  S  min     =    0. When  f  c /( nf  1 )    >    50, the tabulated values  *   given in  [18]    
provide the necessary circuit parameters. These tables have been coded in the 
program MULTIPLY. The effi ciency given by  [18]  assumes loss only in the 
diode where  f  out     =     mf  1 :

    η α= ( )exp f fout c     (10.110)   

 The output power at  mf  1  is found to be

    P
V

S
m =

−( )β ω φ1
2

B

max

    (10.111)   

 The values of   α   and   β   are given in  [17, 18] . If the varactor has a dc bias voltage, 
 V  o , then the normalized voltage is

    V
V
V

o norm
o

B
, =

−
−

φ
φ

    (10.112)   

 This value corresponds to the selected drive level. Finally, the input and load 
resistances are found from the tabulated values. The elastances at all sup-
ported harmonic frequencies up to and including  m  are also given. These 
values are useful for knowing how to reactively terminate the diode at the 

  *   Values taken, in part, from  [18]  are Copyright  © 1965. AT & T. All rights reserved. Reprinted with 
permission. 
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idler and output frequencies. A packaged diode will have package parasitic 
circuit elements as shown in Fig.  10.19  that must be considered in the design 
of a matching circuit. When given these package elements, the program 
MULTIPLY will fi nd the appropriate matching impedances required external 
to the package. Following is an example run of MULTIPLY in the design of 
a 1 – 2 – 3 – 4 (idlers at each of these harmonics) varactor quadrupler with an 
output frequency of 2   GHz. The  bold  numbers are user input values:

 Input frequency, GHz.       =  
  0.5  
 Diode Parameters 
 Breakdown Voltage  =  
  60  
 Built - in Potential phi  =  
  0.5  
 Specify series resistance or cutoff frequency, Rs OR fc.    < R/F >  
  f  
 Zero Bias cutoff frequency (GHz), fc  =  
  50.  
 Junction capacitance at 0 volts (pF), Co  =  
  0.5  
 Package capacitance (pF), Series inductance (nH)  =  
  0.1, 0.2  
 For a Doubler Type A 
 For a 1 – 2 – 3 Tripler Type B 
 For a 1 – 2 – 4 Quadrupler Type C 
 For a 1 – 2 – 3 – 4 Quadrupler Type D 
 For a 1 – 2 – 4 – 5 Quintupler Type E 
 For a 1 – 2 – 4 – 6 Sextupler Type F 
 For a 1 – 2 – 4 – 8 Octupler Type G 
 For a 1 – 4 Quadrupler using a SRD, Type H 
 For a 1 – 6 Sextupler using a SRD, Type I 
 For a 1 – 8 Octupler using a SRD, Type J 
 Ctrl C to end 
  d  
 Type G for Graded junction (Gamma  =  .3333) 
 Type A Abrupt Junction (Gamma  =  .5) 
 Choose G or A 

     FIGURE 10.19     Intrinsic varactor diode with package.  

Cp

C (u)Rin Rs Ls
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286 OSCILLATORS AND HARMONIC GENERATORS

  g  
 Drive is      1.0 <  D    <    1.6. 
 Linear extrapolation done for D outside this range. 
 Choose drive. 
  2.0  
 Input Freq  =          0.5000 GHz, Output Freq  =          2.0000 GHz, 
 fc  =          50.0000 GHz, Rs  =       31.4878 Ohms. 
 Pout  =          78.50312 mWatt, Effi ciency  =          75.47767% 
 At Drive      2.00, DC Bias Voltage  =        − 7.76833 
 Harmonic elastance values 
 S0( 1)  =       0.197844E + 13 
 S0( 2)  =       0.313252E + 13 
 S0( 3)  =       0.296765E + 13 
 S0( 4)  =       0.263791E + 13 
 Total Capacitance with package cap. 
 CT0( 1)  =       0.605450E − 12 
 CT0( 2)  =       0.419232E − 12 
 CT0( 3)  =       0.436967E − 12 
 CT0( 4)  =       0.479087E − 12 
 Inside package, Rin  =          643.400               RL  =          346.470 
 Diode model Series Ls, Rin + Rs, S(v) shunted by Cp 
 Required impedances outside package. 
 Zin  =          456.218                + j  − 606.069 
 Zout  =          208.267                +  j  − 242.991 
 Match these impedances with their complex conjugate 
 Match idler      2 with conjugate      of 0  +  j       − 379.181 
 Match idler      3 with conjugate      of 0  +  j       − 242.125    

  PROBLEMS 

       10.1.    Verify Eqs.  (10.3)  and  (10.4) .   

    10.2.    The crystal - controlled oscillator in Fig.  10.20  uses a tank circuit on the 
output side to achieve high effective reactance to help stabilize the oscil-
lator. The narrow - band crystal is inductive when this circuit oscillates. 

     FIGURE 10.20     Crystal - controlled oscillator for Problem 10.2  .  
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  a.     Write down the small - signal equivalent circuit for this oscillator.  
  b.     Write down the equations needed to determine the frequency of oscil-

lation and the minimum transistor  g  m  oscillation to occur.        

    10.3.    In Appendix  D  derive Eq.  (D.9)  from  (D.10) .   

    10.4.    In Appendix  E  derive the common gate  S  parameters from the presum-
ably known three - port  S  parameters.   

    10.5.    Prove the stability factor  S  ′  that is given in Eq.  (10.63) .   

    10.6.    The measurements of a certain active device as a function of current 
give  Z  d  (10   mA)    =     − 20    +     j 30    Ω  and  Z  d  (50   mA)    =     − 10    +     j 15    Ω . The pas-
sive circuit to which this is connected is measured at two frequencies: 
 Z  (800   MHz)    =    12    −     j 10    Ω  and  Z  (1000   MHz)    =    18    −     j 40    Ω . Determine 
whether the oscillator will be stable in the given ranges of frequency and 
current amplitude. Assume linear interpolation between the given values 
is justifi ed.      
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  CHAPTER ELEVEN 

RF Mixers     

    11.1    NONLINEAR DEVICE CHARACTERISTICS 

 A typical mixer is a three - port circuit that accepts two signals at two different 
frequencies and produces at the third port a signal that is the sum or difference 
of the two input frequencies. Production of a new frequency or frequencies 
requires a nonlinear resistance device. The two most common semiconductor 
nonlinear characteristics are of the form  e qV   (   t   )/   kT   as found in  pn  junction diodes 
or bipolar junction transistors and of the form  I  DSS [1    −     V  ( t )/ V  t ] 2  as found in 
fi eld - effect transistors. Schottky barrier diodes are not described here since 
they are mostly used out of necessity for low - noise high - microwave - frequency 
applications. 

 When a  pn  junction is excited by two signals (plus a dc term):

    V t V V t V tt( ) = + +dc p pcos cosω ω1     (11.1)   

 The device current is of the form

    I t I
V
V

V

V
t

V
V

( ) = ⎛
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⎛
⎝⎜
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⎠⎟S

dc

T

p

T
p

T

exp exp cos exp cosω ω1
1tt

⎡
⎣⎢

⎤
⎦⎥

    (11.2)  

where the thermal voltage,  V  T , is defi ned as  kT / q ,  k  is Boltzmann ’ s constant, 
 T  is the absolute temperature, and  q  is the magnitude of the electronic charge. 
It is known, however, that this can be simplifi ed by expressing it in terms of 
modifi ed Bessel functions because

    e I z I z nz
n

n

cos cosθ θ= ( ) + ( )
=

∞

∑0
1

2     (11.3)  
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where  I n  ( z ) is the modifi ed Bessel function of order  n  and argument  z   [1] . The 
Bessel function has the property that as  n  increases and  z  decreases the func-
tion itself decreases. The two exponentials in Eq.  (11.2)  indicate there are two 
infi nite series of the form shown in Eq.  (11.3) : the fi rst with summation index 
 n  and the second with index  m . If   V V Vdc dc T= ,   V V Vp p T= , and   V V V1 1= T , 
the current given in Eq.  (11.2)  can be found by the appropriate substitution:

   

I t I e I V I V n t I V I VV
n
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n( ) = ( ) + ( ) ( )⎡
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∞

∑ cos m t

I e I V I V

I e I V

m

V

V

ω1
1

0 0 1

0 12

dc p

dc

dc

dc II V n t I V I V m t

I

n
n

m
m

p p p

d

( ) ( ) + ( ) ( ) ( )⎡
⎣⎢

⎤
⎦⎥

+

=

∞

=

∞

∑ ∑cos cosω ω
1

0 1 1
1

4 cc p p
dce I V n t I V m tV

n
n

m
m

( ) ( )⎡
⎣⎢

⎤
⎦⎥

( ) ( )⎡
⎣⎢

⎤
⎦⎥=

∞

=

∞
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 The basic result is a set of frequencies  n ω   p     +     m ω   1 , where  n  and  m  can take 
on any integer. The actual current values at any given frequency would 
be greatly modifi ed by circuit impedances at these frequencies as well as 
variations in the device itself. In the usual mixer application shown in Fig.  11.1 , 
the amplitude of the local oscillator voltage,  V  p , is typically 40   dB greater 
than the RF signal voltage  V  1 . Consequently, the number of frequencies 
drops to  

    ω ω ωn n= +p 0     (11.5)   

 The higher order mixing products are reduced in amplitude by approximately 
1/ n . The usual desired output for a receiver is the intermediate frequency (IF), 
  ω   0 . The frequencies of primary interest are given the following names: 

  Local oscillator (pump) frequency (LO):   ω   p   
  Intermediate frequency (IF):   ω   0     =      ω   1     −      ω   p   
  Input signal frequency (RF):   ω   1   

     FIGURE 11.1     Schematic diagram for mixer.  

RF IF
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  Image frequency:   ω    − 1     =     −   ω   p     +      ω   0   
  Sum frequency:   ω   2     =    2  ω   p     +      ω   0     

 In the FET type of nonlinearity, the current as a result of excitation given 
by Eq.  (11.1)  is

   I t
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V
V

t
( ) = − −⎛
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 While it may appear that the FET is  “ less nonlinear ”  than the  pn  junction type 
of nonlinearity, it should be remembered that the circuit into which the device 
is embedded will refl ect back into the nonlinear device and create multiple 
mixing products. However, ultimately the frequencies will follow at least 
potentially the values shown in Fig.  11.2 .   

 Readily apparent from the foregoing, a measure of patience is necessary to 
unravel all the frequency terms and their relative amplitudes. The nonlinear 
device is sometimes modeled as a power series of the applied voltages:

    I t I aV t bV t cV t( ) = + ( ) + ( ) + ( )dc
2 3 …     (11.8)   

 Rather than directly determining the mixing products by multiplication, it is 
more convenient to determine these in the frequency domain by employing 
the Fourier transform  [2] . The most convenient way of writing the pair is sym-
metrically where  f  is used rather than   ω   :

     FIGURE 11.2     Frequency components in mixer.  
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    g t G f e dfj ft( ) = ( ) −
−∞

∞

∫ 2π     (11.9)  

    G f g t e dtj ft( ) = ( )
−∞

∞

∫ 2π     (11.10)   

 The Fourier transform of an exponential function is a Dirac   δ   function:

    F e f fjf−( ) = −( )a
aδ     (11.11)   

 If two voltages are represented as  V  a     =    cos(  ω   a  t     +      θ   a ) and  V  b     =    cos(  ω    b  t     +      θ    b ), 
then these are to be multiplied together. Before doing this, they can each be 
converted into the frequency domain by Eq.  (11.10)  and substituted into the 
convolution theorem:

    G f G G f do a b( ) = ( ) −( )
−∞

∞

∫ λ λ λ     (11.12)   

 For sinusoidal voltages, the integral is simply a series of   δ   functions that are 
trivial to integrate. The process proceeds most easily graphically. The function 
 G  a (  λ  ) is fi xed and the  G  b (  f     −      λ  ) is allowed to slide from right to left. The 
nonzero parts of the integration occurs when   δ   functions coincide. 

 As an example, consider the frequencies that would result from the product 
of two voltages:

    V t V t V to a b( ) = ( ) ( )     (11.13)  

where

    V t f ta( ) = +( )cos 2 1 1π θ  

and

   V t f tb( ) = +( )cos 2 2 2π θ   

 The Fourier transform of  V  a ( t ) is

    G f V t e dtj ft
a a( ) = ( )

−∞

∞

∫ 2π      (11.14)  
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(11.15)

  

and similarly for  G  b . The corresponding components of the integrand of Eq. 
 (11.12)  are

    G f e f ej j
a λ δ λ δ λθ θ( ) = +( ) + −( )[ ]−1

2 1 1
1 1

    (11.16)  
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    G f f f e f f ej j
b −( ) = − +( ) + − −( )[ ]−λ δ λ δ λθ θ1

2 2 2
2 2     (11.17)   

 The Fourier transforms,  G  a (  λ  ) and  G  b (  f     −      λ  ) are shown in Figs.  11.3  a  and 
 11.3  b , which display both the magnitude and the phase of the terms. 
As   λ   increases,  G  b (  f     −      λ  ) moves from right to left. No contribution to the 
convolution integral occurs until a   δ   function in Fig.  11.3  a  coincides with 
a   δ   in Fig.  11.3  b . The fi rst of these occurs at   λ      =     f  1     =     f     −     f  2  or  f     =     f  1     +     f  2 . The 
amplitude is   1

4  and the phase is  ∠     −      θ   1     −      θ   2 . This is the rightmost line shown 
in Fig.  11.3  c . As   λ   continues to increase, all four intercepts between  G  a (  λ  ) 
and  G  b (  f     −      λ  ) are found. While the amount of effort in using the frequency -
 domain approach described here and the time - domain approach of 
multiplying sines and cosines in this example is about the same, adding a third 
frequency quickly tilts the ease of calculation toward the frequency - domain 
approach.    

   11.2    FIGURES OF MERIT FOR MIXERS 

 The quality of a mixer rests on a number of different mixer parameters, which 
of course must fi t the application under consideration. The fi rst of these is 

     FIGURE 11.3     Graphical integration of convolution integral where ( a ) is  G  a (  λ  ), ( b ) is 
 G  b (  f     −      λ  ), and ( c ) is result of integration.  
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 conversion loss L . This is the ratio of the delivered output power to the input 
available power:

   L
P= output IF power delivered to the load

available RF inp
, 0

uut signal power, P1
  

 Clearly, the conversion loss is dependent on the load of the input RF circuit 
as well as the output impedance of the mixer at the IF port. The conversion 
loss for a typical diode mixer is between 6 and 7   dB. 

 The  noise fi gure  is a measure of the noise added by the mixer itself to the 
RF input signal as it gets converted to the output IF. It specifi cally excludes 
the noise fi gure of the following IF amplifi er and neglects the 1/ f  fl icker noise. 
In practice, the mixer noise fi gure is very nearly the same as the conversion 
loss. 

 The  isolation  is the amount of local oscillator power that leaks into either 
the IF or the RF ports. For double - balanced mixers this value typically lies in 
the 15 -  to 20 - dB range. 

 A single -  or double - balanced mixer will convert energy in the upper or 
lower sidebands with equal effi ciency. Consequently, noise in the sideband with 
no signal will be added to the IF output, which of course will increase the noise 
fi gure by 3   dB in the IF port.  Image rejection  mixers will block this unwanted 
noise from the IF port. 

 The  conversion compression  is the RF input power above which the RF 
input versus the IF output deviates from linearity by a given amount. For 
example, the 1 - dB compression point occurs when the conversion loss increases 
by 1   dB above the conversion loss in the low - power linear range. A typical 
value of 1.0 - dB compression occurs when the RF power is  + 20   dBm and the 
LO is  + 7   dBm. 

 The  LO drive power  is the required LO power level needed to make the 
mixer operate in optimal fashion. For a double - balanced mixer, this is typically 
 + 6 to  + 20   dBm. 

 The  dynamic range  is the maximum RF input power range for the mixer. 
The maximum amplitude is limited by the conversion compression, and the 
minimum amplitude is limited by the noise fi gure. 

 The  input intercept point  is the RF input power at which the output power 
levels of the undesired intermodulation products and the desired IF output 
would be equal. In defi ning the input intercept point, it is assumed that the IF 
output power does not compress. It is therefore a theoretical value and is 
obtained by extrapolating from low power levels. The higher this power level, 
the better is the mixer. Sometimes, an output intercept point is used. This is 
the input intercept point minus the conversion loss. The idea of intercept 
points is described in greater detail in Section  11.7 . 

 The  two - tone third - order intermodulation point  is a measure of how the 
mixer reacts when two equal amplitude radio frequencies excite the RF input 
port of the mixer.  
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   11.3    SINGLE - ENDED MIXERS 

 Mixers are usually classed as either single ended, single balanced, or double 
balanced. The technical advantages of the double - balanced mixer over the 
other two usually precludes using the slightly lower cost of the single - ended 
or single - balanced types in RF circuits. They are used though in millimeter -
 wave circuits where geometrical constraints and other complexities favor using 
the simpler single - ended mixer. 

 The single - ended mixer in Fig.  11.4  shows that the RF input signal and the 
local oscillator signal enter the mixer at the same point. Some degree of isola-
tion between the two is achieved by using a directional coupler in which the 
RF signal enters the direct port and the local oscillator enters through the 
coupled port. The amplitude of the local oscillator, even after passing through 
the coupler, is large enough to turn the diode on and off during each cycle. 
Indeed, the LO power is so large that it causes clipping of the LO voltage, 
thereby approximating a square wave. The small RF signal is then presented 
with alternately a short or open circuit at the LO rate. It is this turning on and 
off of the radio frequency that produces the | nf  p     ±     f  1 | set of frequencies. The 
one of most interest in the standard receiver is the IF frequency,  f  0     =     f  p     −     f  1 . 
Among the disadvantages of the single - ended mixer are a high noise fi gure, a 
large number of frequencies generated because of the nonlinear diode, a lack 
of isolation between the RF and LO signals, and large LO currents in the IF 
circuit. The RF to LO isolation problem can be very important since the LO 
can leak back out the RF port and be radiated through the receiver antenna. 
The LO currents in the IF circuit would have to be fi ltered out with a low - pass 
fi lter that has suffi cient attenuation at the LO frequency to meet system speci-
fi cations. It does have the advantage of requiring lower LO power than the 
other types of mixers.   

 Rather than using a switching diode, an   FET can be switched at the LO 
rate. One such design is when the LO and RF signal both enter the FET gate 
and the output IF signal is developed in the drain circuit. The nonlinearity of 
the FET implies that fewer spurious signals are generated than the  “ more ”  
nonlinear diode. Furthermore, it is possible to achieve conversion gain between 
the input RF and output IF signals. A second alternative would be to excite 
the gate with the RF signal and the source with the LO; then the output IF is 

     FIGURE 11.4     Single - ended mixer.  
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developed in the drain. This circuit offers improved isolation between the RF 
and LO signals but at the cost of higher LO power requirements. The dual - gate 
FET can be used where one gate is excited with the LO and the other with 
the RF. The IF is again developed in the drain circuit. This circuit offers even 
better isolation between RF and LO, but its gain is somewhat lower.  

   11.4    SINGLE - BALANCED MIXERS 

 The single - balanced (or simply balanced) mixer has either two or four diodes 
as shown in the examples of Fig.  11.5 . In all these cases, when the LO voltage 
has a large positive value, all the diodes are shorted. When the LO voltage has 
a large negative value, all the diodes are open. The LO power cannot reach 
the IF load nor the RF load because of circuit symmetry. However, the incom-
ing RF voltage sees alternately a path to the IF load and a blockage to the IF 
load. The block may be either an open circuit to the IF load or a short circuit 
to ground.   

 It is assumed the LO voltage is much greater than the RF voltage ( V  p     >>     V  1 ) 
as in Eq.  (11.5) . The LO voltage can be approximated as a square wave with 
period  T     =    1/ f  p  that modulates the incoming RF signal (Fig.  11.6 ). A Fourier 
analysis of the square wave results in a switching function designated by  S ( t ):  

    S t
n

n
n t

n

( ) = + ( )
=

∞

∑1
2

2
21

sin
cos

π
π

ωp     (11.18)   

 If the input RF signal is expressed as  V  1    cos     ω   1  t , then the output voltage is 
thus multiplied by the switching function:

    V V t S t0 1 1= ⋅ ( )cosω      (11.19)  
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2
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 Clearly, the RF input signal voltage will be present in the IF circuit. However, 
only the odd harmonics of the local oscillator voltage will effect the IF load. 
Thus, the spurious voltages appearing in the IF circuit are

   f f f f f f f1 1 1 13 5, , , ,p p p+ ± ± …  

and all even harmonics of  f  p  are suppressed (or balanced out).  

   11.5    DOUBLE - BALANCED MIXERS 

 The double - balanced mixer is capable of isolating both the RF input voltage 
and the LO voltage from the IF load. The slight additional cost of some extra 
diodes and a balun is usually outweighed by the improved intermodulation 
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     FIGURE 11.5     Four possible single - balanced mixers.  
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suppression, improved dynamic range, low conversion loss, and AM noise 
cancellation at the expense of higher LO power requirement. The two most 
widely used double - balanced mixers for the RF and microwave band are the 
 “ ring ”  mixer and the  “ star ”  mixer depicted in Fig.  11.7 . In the single - balanced 
mixer, all the diodes were either turned on or turned off, depending on the 
instantaneous polarity of the local oscillator voltage. The distinguishing feature 
of the double - balanced mixer is that half the diodes are on and half are off at 

     FIGURE 11.7     Double - balanced mixers using ( a ) ring diode design and ( b ) diode 
star design.  
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     FIGURE 11.6     Single - balanced mixer waveform.  
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DOUBLE-BALANCED MIXERS 299

any given time. The diode pairs are switched on or off according to the local 
oscillator polarity. Thus, the path from the signal port with frequency  f  1  to the 
intermediate frequency port,  f  0, reverses polarity at the rate of 1 /f  p .   

 In Fig.  11.7  a , when the LO is positive at the upper terminal so that node  A  
is positive and node  B  is negative, diodes  D  1  and  D  3  are shorted while diodes 
 D  2  and  D  4  are open. When the LO is negative, diodes  D  2  and  D  4  are shorted. 
Thus, nodes  C  and  D  alternately become virtual ground to the RF signal. The 
RF signal,  f  1 , is sent to the IF port at alternate polarities governed by the LO 
frequency,  f  p . The switching of the polarity at the LO frequency,  f  p , of the 
current in the IF circuit produces the difference frequency,  f  0 . 

 An analysis of this mixer can be done using SPICE with diodes and ideal 
center - tapped transformers. An ideal transformer could be modeled in SPICE 
with mutual inductances having a coupling coeffi cient of 1 and very high 
inductance. However, this would result in very long time constants when doing 
a transient analysis. An alternative is to model the transformer with voltage -
 controlled voltage sources and current - controlled current sources with a mul-
tiplication factor equal to the transformer turns ratio,  n . A variety of sources 
for this circuit can be found on the Internet, and the one used here is based 
on  [3] . Figure  11.8  a  shows a center - tapped transformer with an equivalent 
representation. This second form is modeled by the circuit in Fig.  11.8  b , which 
uses ideal controlled sources. The very large primary resistance,  R  p , and the 
very small secondary resistance,  R  s , are included to help SPICE converge. The 
net list for this transformer model is given in the form of a subcircuit. The local 
oscillator in this circuit is set at 900   MHz and the RF signal at 800   MHz. The 
resulting time - domain output shown in Fig.  11.9  is not easily interpreted. The 
Fourier transform in Fig.  11.10  clearly shows the resulting IF output frequency 
at 100   MHz along with other frequencies generated by the mixer.   

  Double Balanced Diode Mixer 
  *  Local Oscillator 
 vp                  10            0            sin(0            6.            900e6) 
 rp                     10            1            0.01 
 xpump            1            0            2            0            3            ctap 
  *  rf signal 
 vrf                  20            0            sin(0            0.2            800e6) 
 rrf                  20            4            0.01 
 xrf                  4            0            5            6            7            ctap 
 rdummy                  7            0            100meg 
  *  Diode ring 
 d1 2            7            diodem 
 d2                  5            2            diodem 
 d3                  7            3            diodem 
 d4                  3            5            diodem 
 rlif               6            0            5000 
 .model            diodem         d      (rs = 0.) 
  * .op 
  *                   print step            fi nal            begin prt            ceiling            UIC 
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     FIGURE 11.9     Time - domain voltage at IF load of double - balanced mixer using ideal 
switches.  
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     FIGURE 11.8     ( a ) Center - tapped transformer used in mixer and ( b ) SPICE model for 
ideal transformer.  
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  * .tran            0.1ns            200ns            180ns            10ps 
 .tran            0.1ns            200ns            180ns 
  *  if output is v(6) 
 .end 
 .subckt            ctap 1            2            3            4            5 
  *  node 1 positive primary 
  *  node 2 negative primary 
  *  node 3 positive fi rst secondary 
  *  node 4 secondary center tap 
  *  node 5 negative second secondary 
  *  Each transformer part is a 1:n turns ratio (here given n = 2) 
  *  fp is the primary cccs, and es is the secondary vcvs. 
  * es1            7            9            1            2            “n” 
 es1            7            8            1            2               1 
  *  Current Controlled Current Source 
  * fp1               1            2            vmeas1            “n” 
 fp1               1            2            vmeas1            1 
 rp                 1            2            1meg 
 rs1            6            3            1u                         
 vmeas1   7            6            dc            0             
  *  Current Controlled Current Source 
 fp2                  1            2            vmeas2            1             
 es2                  9            5            1               2            1 
 rs2                  8            4            1u                         
 vmeas2            9            8            dc           0             
 .ends    

     FIGURE 11.10     Fast Fourier transform of time function clearly shows frequency com-
ponents off double - balanced mixer.  
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302 RF MIXERS

 The star circuit shown in Fig.  11.7  b  also acts as a double - balanced mixer. 
An advantage over the ring mixer is that the central node of the four diodes 
allows direct connection to the IF circuit. On the other hand the star mixer 
requires a more complicated transformer in the RF signal and LO ports. When 
the LO voltage is positive, diodes  D  1  and  D  2  are shorted and diodes  D  3  and 
 D  4  are open. The RF signal current from the upper terminals of the secondary 
winding fl ows to the IF port at the center of the star. When the LO voltage is 
negative, diodes  D  3  and  D  4  are shorted and diodes  D  1  and  D  2  open. The current 
then fl ows from the lower terminals of the RF signal transformer secondary. 
The RF signal current in the IF circuit has switched polarity. The switching 
rate produces an output at the difference frequency,  f  0 . In both these cases the 
switching function is shown in Fig.  11.11 . Fourier analysis provides the follow-
ing time - domain representation of the switching function, which differs from 
Eq.  (11.18)  by a lack of a dc term:  

    S t
n

n
n t

n

( ) = ( )
=

∞

∑2
2

21
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cos

π
π

ωp     (11.21)   

 The IF voltage is found by multiplying the signal voltage by the switching 
function:
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(11.22)
   

 Clearly, there is no RF signal nor LO voltage seen in the IF circuit, nor any 
even harmonics of the LO voltage. 

 The above description of mixers has assumed the use of ideal diodes. The 
diodes are in fact either  pn  or Schottky barrier (metal – semiconductor) junc-
tions with a nonzero forward voltage drop and nonzero leakage current in the 
reverse - bias condition. The Schottky barrier devices are particularly useful 
when low noise is required at high microwave frequencies. The device and 
package parasitic elements limit mixer frequency response, although designs 

     FIGURE 11.11     Double - balanced mixer waveform.  
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DOUBLE-BALANCED MIXERS 303

based on the above analysis have been made to work at frequencies exceeding 
26   GHz. 

 This analysis was also based on the availability of ideal center - tapped trans-
formers. At RF frequencies, these can be realized using transmission line 
transformers as shown in Fig.  11.12 .   

 The double - balanced ring mixer described above used a single diode in each 
arm of the ring. Such a mixer is termed a class 1 mixer. Class 2 mixers are 
obtained by replacing the single diode in each arm of the ring with two diodes 
in series or with a diode and resistor in series (Fig.  11.13 ). The precision resis-
tor in the later case can be adjusted to improve the ring balance and thus the 
intermodulation distortion. More complex ring elements can be used to further 
improve intermodulation distortion with the added cost of increasing the 

     FIGURE 11.12     Transmission line transformer equivalent to center - tapped transformer.  

     FIGURE 11.13     Double - balanced mixer classes based on elements in each branch. 
Required LO power levels increase with circuit complexity  [6] .  
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304 RF MIXERS

amount of LO power required to drive the diodes. More detailed information 
on design of RF and microwave mixers is available in  [4, 5] .    

   11.6    DOUBLE - BALANCED TRANSISTOR MIXERS 

 Transistors can also be used as the mixing element in all three types of mixers 
described above, though only the double - balanced confi guration is described 
here. These are called  active mixers  because they provide the possibility of 
conversion gain, which the diode mixers are not capable of doing. They produce 
approximately the same values of port isolation and suppression of even har-
monic distortion as the diode mixers. One example of such a circuit is a tran-
sistor ring of enhancement mode  n  - channel MOSFETs in which the gate 
voltage must exceed  V  t  in order for the transistor to turn on (Fig.  11.14 ). When 
the LO voltage is positive as indicated, the pair of transistors on the right - hand 
side is turned on and the left - hand pair is turned off. When the LO voltage is 
negative, the two pairs of transistors switch roles. In this process, the path from 
the RF signal switches back and forth between the positive and negative IF 
ports at the LO switching rate. While the balance of the polarity of the 
RF signal voltage precludes it from being seen at the IF port, the difference 
frequency generated by the switching action does appear across the IF 
terminals.   

 An alternative design is based on the Gilbert cell multiplier  [7] . An analysis 
of the elementary Gilbert cell in Fig.  11.15  is most easily accomplished by 
assuming the base and reverse - bias saturation currents are negligible, that the 
output resistances of the transistors are infi nite, and that the bias source is 
ideal. Current continuity of, transistors  Q  1 ,  Q  2 , and  Q  5  demands:  

    I I IC C C5 1 2= +     (11.23)   

     FIGURE 11.14     Double - balanced mixer using MOSFETs.  
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DOUBLE-BALANCED TRANSISTOR MIXERS 305

 The ratio of the Shockley diode equations with negligible saturation current 
gives a second relationship:

    
I
I

e V
e V

e
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1= =     (11.24)  

where  V  BE1      −      V  BE2     =     V  1  and an expression for  I  C1  can be found. In like manner 
the currents for  Q  2 ,  Q  3 , and  Q  4  are found:
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 For  Q  5  and  Q  6  the collector currents are

     FIGURE 11.15     Gilbert cell can be used as a modulator.  
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 The output voltage is proportional to the difference of the currents through 
the collector resistors:

    V I I I I Ro C C C C= +( ) − +( )[ ]1 3 2 4
    (11.31)  
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 Since tanh  x      ≈      x  for  x      <<     1, monotonically increasing output occurs when 
 V i       <<     2 V  T  where  i     =    1, 2. At the other extreme tanh  x      ≈     1 when  x      >>     1. 

 The modulator application typically has one large input voltage (LO) and 
one small one (RF signal). A positive value of the LO voltage, shown as  V  1  
in Fig.  11.15 , will then turn on  Q  1  and  Q  4 , while  Q  2  and  Q  3  are turned off. 
As in the previous double - balanced mixers, the LO switches the RF signal 
voltage path to the IF port at the frequency,  f  p , so that the difference frequency 
is generated. A SPICE analysis of the Gilbert cell shown below again 
demonstrates the production of an IF output between the collectors of  Q  1  
and  Q  4 . 

  Gilbert Cell 
 vrf               1            4            sin (0           .2            800meg ) dc            0 
 vp                  8            9            sin (0            2            900meg ) dc            0 
 vcc               7            0            dc            15 
 vee               0            12         dc            15 
 q1                  2            1            3               device 
 q2                  6            4            3               device 
 q3                  2            4            5               device 
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SPURIOUS RESPONSE 307

 q4                  6            1            5               device 
 q5                  3            8            10            device 
 q6                  5            9            10            device 
 q7                  11         11         12            device 
 q8                  10         11         13            device 
 r1                  7            11         15 
 r2                  13         12         100 
 rc1               7            2               30k 
 rc2                 7            6            30k 
 .model            device            npn 
 .dc vrf             − 100m 10m vp  − 100m 100m 20m 
  *  print step, fi nal time, print start, step ceiling 
 .tran            1ns                  100ns                  0 
  *  if output is v(2,6) 
  *  dc analysis 
 .tf            v(6) vrf 
  * .tf           v(6) vp 
 .end  

 This same circuit can be realized using fi eld - effect transistors. In either case, 
a large RF signal input can cause the mixer to operate outside of its linear 
region. The mixer dynamic range can be improved by adding emitter (source) 
degeneracy. This is a small resistor (usually in the hundreds of ohms) in the 
emitter circuit. Another scheme is to include a fi lter between the lower two 
transistors and the upper ones  [8] . Distortion products produced in  Q  5  and  Q  6  
are thus fi ltered out before the RF signal reaches the transistors being switched 
by the LO. A 20 - dB improvement in dynamic range over the conventional 
Gilbert cell is reported using this fi ltering technique.  

   11.7    SPURIOUS RESPONSE 

 The previous sections considered some representative mixer circuits. Here, 
some of the primary performance criteria for mixers are described. The fi rst 
of these are the spurious frequencies generated when the mixer is excited by 
a single - tone RF signal. A second measurement of mixer performance results 
from exciting it with two tones near to each other that produces two IF terms. 
The latter is termed  two - tone intermodulation distortion . 

 Single - tone intermodulation is an effect that is a result of the imbalance in 
the transformers or the diodes used in the mixer. A distinction is made between 
the inherent nonlinear current – voltage curve of a diode and the nonlinearity 
associated with the switching action of the diode  [9] . Fitting a polynomial 
function to an ideal diode characteristic whose current is zero when off and 
whose  i      −      v  slope is a straight line when the diode is on, would yield a poly-
nomial fi tting function with many powers of the independent variable. Indeed 
the switching of the diode appears to be the predominant effect in a mixer. 
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Analytical estimates of intermodulation distortion suppression can be made 
solely on the basis of the switching action of the diodes in the mixer, rather 
than any curvature of individual diode curves. Such an expression is presented 
in Appendix H. That equation has also been coded in the program IMSUP. 
Basically, the intermodulation suppression is measured in dBc (dB below the 
carrier) for a set of frequencies  nf  p      ±      mf  1 . 

 Two - tone intermodulation distortion is best explained by following a simple 
experimental procedure. Exciting the RF port of the mixer with two RF 
signals,  f  1a  and  f  1b , spaced close together within the pass band of the mixer input 
will produce the following frequencies:

    ± ±( ) ±m f m f nf1 1 2 1a b p     (11.33)   

 The order of the mixing product is  m  1     +     m  2 . It would be nice if the IF output 
were only  |f  1a      −      f  p  |  and  |f  1b      −      f  p   |  since that would represent the down - converted 
signal to the IF output. Those terms containing harmonics of  f  p  would be far 
outside the band of interest and could be fi ltered out. There are essentially 
two possibilities for the second - order intermodulation products:

   ± ±( ) ±f f f1 11a b p  

   ±( ) ±1 11 1f f fa b p∓   

 In the fi rst case, the output is near 3 f  p , and is therefore well outside the IF pass 
band. The second case presents an output frequency slightly above or below the 
local oscillator frequency,  f  p , which again is well outside the IF pass band. 
However, the third - order intermodulation products are prolematic:

   ±( ) ±2 11 1f f fa b p∓  

   ±( ) ±1 21 1f f fa b p∓   

 A numerical example illustrates what occurs with the third - order intermodula-
tion products. If  f  p     =    500   MHz, the desired RF input signal is  f  1a     =    410   MHz, 
and a second signal of the same amplitude is at  f  1   b      =    400   MHz. The fi rst - order 
products would give the desired output IF frequencies and a high frequency 
that could be easily fi ltered out:

   f f1 90 910a p MHz± = ,  

    f f1 100 900b p MHz± = ,   

 The third - order intermodulation products would be

   2 820 400 500 80 9201 1f f fa b p MHz− ± = − ± = ,  

    2 800 410 500 110 8901 1f f fb a p MHz− ± = − ± = ,   
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SPURIOUS RESPONSE 309

 As shown if Fig.  11.16 , the undesired 80 -  and 110 - MHz third - order intermodu-
lation products could lie inside the IF pass band and thus distort the signal. 
The surest defense against this is to keep the amplitudes of the third - order 
intermodulation products small.   

 The measure of the size of the third - order intermodulation product is the 
intersection of third - order term with the desired fi rst - order term,  f  0     =     f  p      −      f  1  
(Fig.  11.16 ). The second - order intermodulation product is a result of having two 
RF signals that are multiplied together because of a quadratic nonlinearity:

   A t B t tcos cos cosω ω ω1 1a b p⋅[ ]   

 The resulting amplitude proportional to  AB  will increase 2   dB when  A  and  B  
each increase by 1   dB. The third - order intermodulation product is a result of 
a cubic nonlinearity:

   A t B t t2 2
1 1cos cos cosω ω ωa b p⋅[ ]   

 The resulting amplitude proportional to  A  2  B  will increase by 3   dB for every 
1 - dB rise in  A  and  B . Thus, when the RF signal rises by 1   dB, the desired IF 
term will rise by 1   dB, but the undesired third - order intermodulation term rises 
by 3   dB (Fig.  11.17 ). The interception of the extrapolation of these two lines 
in the output power versus input power is called the  third - order intercept point . 

     FIGURE 11.16     Third - order intermodulation distortion.  
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310 RF MIXERS

The input power level where this intersection occurs is called the  input inter-
cept point . The actual third - order intermodulation point is not directly mea-
sured, but it is usually found by extrapolation from lower power levels. It gives 
a single - valued criterion for determining the upper limit of the dynamic range 
of a mixer (or power amplifi er). The conversion compression is the point 
where the desired IF output drops by 1   dB below the linear extrapolation from 
the low - level values.   

 The range of mixer LO frequencies and RF signal frequencies should be 
chosen so as to reduce to a minimum the possibility of producing intermodula-
tion products that will end up in the IF bandwidth. When dealing with multiple 
bands of frequencies, keeping track of all the possibilities that may cause 
problems is often done with the aid of computer software available on the 
Internet or can be easily coded (see Problem 11.5).  

   11.8    SINGLE - SIDEBAND NOISE FACTOR AND NOISE TEMPERATURE 

 The frequency - independent noise power from a resistor is to a good approxi-
mation  kT  where  k  is Boltzmann ’ s constant and  T  is the absolute temperature. 
In a two - port circuit shown in Fig.  11.18 , a generator resistance,  R  G , produces 
the equivalent noise temperature of  T  G . The network itself is characterized as 
having a certain transducer power gain,  G  T , and noise temperature. When 
describing the noise temperature of a two - port circuit, it must be decided if 
the noise is measured at the input or the output. The noise power at the output 
is presumably  

    T G Tout T in=     (11.34)  

where  T  in  is the noise temperature referred to the input port and  G  T  is the 
transducer power gain. For mixers, this is the conversion gain or loss between 
the signal and IF ports. In the land where amplifi ers are broadband, linear, and 
have wide dynamic range, Eq.  (11.34)  is accurate. It is assumed low - level 
random noise voltages are amplifi ed the same way a clean sinusoid is. So the 
noise power delivered to the load,  Z  L , is

    N k G T TL T G out= +( )     (11.35)   

 or

     FIGURE 11.18     Noise within circuit referred to input side.  
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T G T T

G T T
L T G out

T G in

= +
= +( )     (11.36)   

 While the load will generate its own noise, this load noise is defi ned out of the 
equation since this is the noise  delivered  to the load. 

 The noise factor from Eq. (7.30) is

    

F
S N

S N
S
S

N
N

G
G T T

T

T

= = ⎛
⎝⎜

⎞
⎠⎟

= +( )

= +

in in

out out

in

out

out

in

T

T G in

G

i

1

1 nn

GT
⎛
⎝⎜

⎞
⎠⎟

    

(11.37)

   

 The noise factor depends on the temperature of the generator, which by con-
vention is set to room temperature,  T  G     =    290   K   � �     T  0 . Thus, the noise character-
istics of a two - port circuit such as a mixer (the LO port being conceptually 
ignored) can be characterized with either noise factor or noise temperature. 
Because of the greater expansion of the temperature scale over that of noise 
fi gure in decibels, noise temperature is preferred when describing very low 
noise systems and noise fi gure for higher noise systems. However, the concept 
of noise temperature becomes increasingly convenient when describing mixers 
with their multiple frequency bands. 

 The noise fi gure of a mixer can be described in terms of single - sideband 
(SSB) noise fi gure or double - sideband (DSB) noise fi gure. If the IF term,   ω   0  
in Fig.  11.2  comes solely from the signal,   ω   1 , and the image frequency,   ω    − 1 , is 
entirely noise free, then the system is described in terms of its single - sideband 
noise fi gure,  F  SSB  (Fig.  11.19  a ). Double - sideband noise fi gure comes from con-
sidering both the noise contributions of the signal and the image frequencies 

     FIGURE 11.19     Mixer noise specifi cation using ( a ) single - sideband noise and 
( b ) double - sideband noise.  
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312 RF MIXERS

(Fig.  11.19  b ). In general, the output noise of the mixer will be the sum of the 
noise generated within the mixer itself and the noise power coming into the 
mixer multiplied by the mixer conversion gain. The noise power from inside 
the mixer itself can be referred to either the output port or the input port as 
described by Eq.  (11.34) . If all the internal mixer noise is referred back to the 
input RF signal port, then this is designated as  N  SSB . The total noise power 
delivered to the load is found by multiplying  N  SSB  by the RF port conversion 
gain,  G  rf , and adding to this the power entering from the signal source,  N  G , at 
both the RF signal and image frequencies:  

    N N N G N GL SSB G rf G im= +( ) +     (11.38)   

 The gains at the RF signal and image frequencies,  G  rf  and  G  im , are typically 
very close to being the same since these two frequencies are close together. 
The terms in this defi nition are readily measurable, but Eq.  (11.38)  is at vari-
ance with the way the IEEE standards defi ne single - sideband noise fi gure  [4] . 
The single - sideband noise factor is conventionally defi ned as the ratio of the 
total noise power delivered to the load to the noise power entering at the RF 
signal frequency from a generator whose temperature is  T  0  and when the 
mixer itself is considered to be noise free:

    F
N

N G
SSB

L

G rf

=     (11.39)   

 Assuming that  G  rf     =     G  im ,

    

F
N G G N

G N
T
T

SSB
SSB rf rf G

rf G

SSB

= +

= +

2

2
0

    
(11.40)

   

 Since  N  SSB  is referred to the mixer input, so its associated noise temperature, 
 T  SSB , is also referred to the input side. 

 If the internal mixer noise power is referred back to both the RF frequency 
band and the image frequency band, then this power will be designated as the 
double - sideband power,  N  DSB . For the double - sideband analysis, both the RF 
signal and image frequencies are considered as inputs to the mixer. In this case 
the total power delivered to the load is

    N N N G GL G DSB rf im= +( ) +( )     (11.41)   

 The double - sideband noise factor is determined by taking the ratio of the 
power delivered to the load from both of these frequency bands if the mixer 
were considered noise free:
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    F
N

G G N
DSB

L

rf im G

=
+( )     (11.42)   

 Substituting Eq.  (11.41)  into Eq.  (11.42)  and again assuming  G  rf     =     G  im ,

    F
T
T

DSB
DSB= +

0

1     (11.43)   

 In the single - sideband case, all mixer noise power is referred to the mixer input 
at the RF signal frequency. In the double - sideband case, all the mixer noise is 
referred to the mixer input at both the RF signal and image frequencies. Since 
the internal mixer power is split between the two frequency bands,

    T TSSB DSB= 2     (11.44)   

 so that

    F
T
T

T
T

FSSB
SSB DSB

DSB= + = + =
0 0

2
2

2 2     (11.45)   

 This illustrates the often stated difference between single -  and double - sideband 
noise fi gures. Noise fi gure specifi cation of a mixer should always state which 
of these two is being used.  

   11.9    SPECIAL MIXER APPLICATIONS 

 A single - sideband mixer can be obtained using the mixers discussed thus far 
with 90    °  and 180    °  couplers such as those described in Chapter  6 . This circuit 
is shown in Fig.  11.20  where the signal and local oscillator are given as:  

     FIGURE 11.20     Single - sideband mixer.  
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    RF = ( )C tcos ω1     (11.46)  

    LO p= ( )D tcos ω     (11.47)   

 The plan is to fi nd the signals delivered at ports  A  and  B . The input RF signal 
as well as the LO signal are split and phase shifted by the couplers into RF 1 , 
RF 2 , LO 1 , and LO 2 .

    RF1 1
2

= ( )C
tcos ω     (11.48)  

    
RF2 1

1

2 2

2

= −⎛
⎝⎜

⎞
⎠⎟

= ( )

C
t

C
t

cos

sin

ω π

ω
    

(11.49)  

    LO p1
2

= ( )D
tsin ω     (11.50)  

    LO p2
2

= ( )D
tcos ω     (11.51)   

 The two intermediate frequencies are obtained by the mixing of the RF 1  with 
LO 1  and the mixing of RF 2  with LO 2 :

    IF p1 1
2

= ( ) ( )[ ]CD
t tsin cosω ω     (11.52)  

    IF p2 1
2

= ( ) ( )[ ]CD
t tcos sinω ω     (11.53)   

 The output at port  A  is the sum of the two IF terms with 0    °  phase 
difference:

    
A

CD

CD
t

= +[ ]

= +( )[ ]
2

2

1 2

1

IF IF

psin ω ω
    

(11.54)
   

 At port  B ,

    
B

CD

CD
t

= −[ ]

= −( )[ ]
2

2

1 2

1

IF IF

psin ω ω
    

(11.55)
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 The output at port  A  is the upper sideband and the output at port  B  is the 
lower sideband. Each sideband is separated out to different ports. 

 An image rejection mixer can be obtained using the circuit in Fig.  11.21 . 
Two frequencies enter the receiver on either side of the local oscillator fre-
quency, one being the image of the other. The lower frequency is   ω    RFL     =      ω   p     −      ω   0  
and the higher frequency is   ω   RFH     =      ω   p     +      ω   0 . For   ω   RFL :  

    RFL p= −( )[ ]C
t

2
0cos ω ω     (11.56)   

 then

    RF RFL1 =   

 This is the same as the SSB case above.

    
IF p p1 0

0

2

4

= ( ) −( )[ ]

= ( )

CD
t t

CD
t

cos cos

cos

ω ω ω

ω
    

(11.57)

  

where the 2  ω   p  term is fi ltered out. For the other branch the intermediate 
frequency is offset by  −  π /2:

    
IF p p2 1

0

2 2

4

= ( ) −( ) −⎡
⎣⎢

⎤
⎦⎥

= − ( )

CD
t

CD
t

cos cos

sin

ω ω ω π

ω
    

(11.58)

   

     FIGURE 11.21     Image rejection mixer.  
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316 RF MIXERS

 Again it is assumed the high - frequency term is fi ltered out. At the output end, 
the IF 2  term is shifted in phase, so the total IF is given below:

    

IF IF IF= = ∠ −⎛
⎝⎜

⎞
⎠⎟

= ( ) − −⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥{ }

=

1 2

0 0

2

4 2

π

ω ω πCD
t t

C

cos sin

DD
t

2
0cos ω( )

    

(11.59)

   

 Consequently, the lower RF input image frequency passes on through to the 
IF circuit. The destination of the upper image frequency,   ω   RFH  needs to be 
found:

    RF p1 0
2

= = +( )[ ]C
tcos ω ω     (11.60)  

    
IF p p1 0

0

2

4

= +( )[ ]{ }

= ( )

CD
t t

CD
t

cos cos

cos

ω ω

ω
    

(11.61)

   

 Similarly for RF 2 

    
RF p

p

2 0

0

2 2

2

= +( ) −⎡
⎣⎢

⎤
⎦⎥

= +( )[ ]

C
t
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t

cos

sin

ω ω π

ω ω
    

(11.62)
  

    
IF p p2 0

0

2

4

= ( ) +( )[ ]

= ( )

CD
t t

CD
t

cos sin

sin

ω ω ω

ω
    

(11.63)

   

 The IF 1  and IF 2  terms are combined through the coupler, which shifts one of 
the signals by  − 90    ° :

    

IF IF IF= + ∠ −⎛
⎝⎜

⎞
⎠⎟

= ( ) − ( )[ ]

=

1 2

0 0

2

4
0

π

ω ωCD
t tcos cos

    

(11.64)
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 Hence, the upper image frequency,   ω   RFH  does not get through this mixer circuit. 
Only the lower sideband is received.  

   11.10    CONCLUSIONS 

 The mixer component in the transceiver can take a wide variety of forms. Their 
design is usually based on effi ciently controlling the unwanted frequencies that 
are generated by the device nonlinearity. The single mixer can be combined 
with other mixers to provide a wide variety of modulation and demodulation 
schemes. 

  PROBLEMS 

       11.1.    Using the Fourier transform pair, show that  F ( e   −    j ω t  )    =      δ  (  ω      −      ω   0 ).   

    11.2.    Two closely separated frequencies are delivered to the input signal port 
of a mixer of a receiver. The center frequency of the receiver is 400   MHz, 
and the two input frequencies are at 399.5 and 400.5   MHz. The mixer has 
a conversion loss of 6   dB and the local oscillator is at 350   MHz. The 
power level of these two input frequencies are  − 14   dBm (dB below a 
milliwatt). At this input power, the third - order modulation products are 
at  − 70   dBm. 
  a.     What are the numerical values for the output frequencies of most 

concern to the receiver designer?  
  b.     What is the output third - order intercept point?      

    11.3.    A nonlinear device is modeled by the following equation:

   i t I av t bv t cv to i i i( ) = + ( ) + ( ) + ( ) +0
2 3 �  

where  I  0     =    10  − 2 ,  a     =    5    ×    10  − 3 ,  b     =    2    ×    10  − 3   , and  c     =    10  − 3 . The applied input 
voltage is

   v t f t f ti( ) = +1 2
1
2

21 2cos cosπ π   

 Find the series representation of the output current in terms of sines and 
cosines of the various frequencies by means of the convolution theorem. 
Finding the   v ti

3( ) is done by fi rst fi nding   v ti
2( )  and then multiplying that 

by  v  i ( t ) by means of the convolution theorem.   

    11.4.    For the mixer circuit in Fig.  11.22 ,  f  p  is 10   MHz and  f  1  is 8   MHz. Assume 
the diode model is
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 .model d1n4148 d(is = 2.682n n = 1.836 rs = .5664 ikf = 44.17m xti = 3 
  +  eg = 1.11 cjo = 4p m = .3333 vj = .5 fc = .5 bv = 100 ibv = 100u tt = 11.54n)    

 Using SPICE, determine the amplitudes of the mixing products at 2, 8, 
10, and 18   MHz. A suggested step size for the transient analysis is 1   ns, 
and the time duration is 1     μ  s.   

    11.5.    Write a program that determines the spurious responses of a mixer in a 
receiver where frequencies other than the desired radio frequency is 
inside the band of the amplifi er. You are asked to not only provide the 
answers to the given specifi c problem, but a listing of the source code. 
The nonlinear mixer produces sum and difference frequencies of the RF 
and LO inputs as well as with smaller levels of intermodulation products. 
These frequencies are given by

   f nf mfs LO RF= −  

where  m  and  n  are positive integers. Some of these products may fall 
inside the IF pass band and thus interfere with the desired signal. The 
spurious responses may be determined by the following procedure: 
  a.     Divide the RF tuning range of the receiver into a number of frequen-

cies, each spaced by the IF bandwidth.  
  b.     For each RF frequency, compute the required LO frequency from

   f f fLO RF IF= ±    

  c.     Compute the intermodulation frequency from (1) for 1    ≤     m     ≤     M  and 
1    ≤     n     ≤     N . The values  M  and  N  represent the order of the mixer non-
linearity at each of these frequencies.  

  d.     A spurious response lies within the IF pass band if  f     =     |mf  1     −     nf  p  |     ≤    the 
IF pass band.    

     FIGURE 11.22     Single end mixer for Problem 11.4.  
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 Determine the spurious responses for a receiver with an input radio 
frequency range from 840 to 850   MHz, an IF frequency of 168   MHz, and 
an IF bandwidth of 10   MHz for orders up to 10 for  M  and  N . Consider 
both the high side and low side for the  f  LO  frequency.      
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  CHAPTER TWELVE 

Phase - Lock Loops     

    12.1    INTRODUCTION 

 Phase - lock loops (PLL) became widespread with the availability of high -
 quality integrated circuit operational amplifi ers (op - amps) in the 1960s. Since 
then this versatile circuit has found applications across the frequency spectrum 
in consumer, commercial, deep space, and military projects. Understanding the 
operation of the PLL incorporates RF techniques, oscillator design, closed -
 loop control theory, analog circuit design, and digital circuit design. The refer-
ences listed at the end of this chapter provide insight beyond the present scope 
 [1 – 4] . This chapter begins with the basic concepts, which are later expanded 
into practical designs.  

   12.2     PLL  DESIGN BACKGROUND 

 The PLL uses negative feedback to tailor its performance. The primary design 
parameters are response time, transient performances, bandwidth, damping 
ratio, and phase margin. The type and order of a closed - loop system defi ne the 
complexity and response to a stimulus. At least two of the components of a 
PLL, the voltage - controlled oscillator (VCO) and the phase detector, are high -
 frequency components. There may also be amplifi ers, mixers, frequency mul-
tipliers, and other oscillators that require RF techniques. 

 Many integrated circuits are presently available that combine many of the 
PLL functions on a single chip. Operational amplifi ers often are used in fi lter 
circuits, which may be either inverting or noninverting designs as required by 

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
Copyright © 2011 John Wiley & Sons, Inc.
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the phase - lock loop design. Integrators, dc amplifi ers, Schmitt triggers, and 
offset circuits are used to set the loop operation. Resistor/capacitor circuits 
provide phase shift for stability. The VCO keeps the loop locked.  

   12.3     PLL  APPLICATIONS 

 A phase - lock loop can be used to multiply, divide, or fi lter different frequen-
cies. The latter is illustrated in a space probe rapidly moving away from Earth. 
To recover data from the probe, the transmitter frequency must be known. 
The signal is very weak because of the distance, and the low signal - to - noise 
ratio requires a very small receiver fi lter bandwidth to recover the data. 
However, because of the relative motion, there is a signifi cant and changing 
Doppler shift to the transmit frequency. The system requires a fi lter that 
may be only a few hertz wide, operating at a varying frequency that is centered 
at several gigahertz. The PLL helps keep the fi lter centered on the correct 
frequency. 

 An electronic PLL is one form of a closed - loop system. The cruise control 
in an automobile is another. A switching power supply, a camera ’ s light meter, 
a radio ’ s automatic gain control, the temperature control in a building, a car ’ s 
emission system controls, and a touch - tone dialing system are examples of 
closed - loop systems. A broadcast receiver changes frequency with a button 
push or electronically. Each time the station is accurately centered with no 
manual adjustment required. Physically, these PLLs are all very different, but 
they all have common characteristics and must be made stable. 

 The concept of feedback control is illustrated by the simple action of con-
trolling the speed of a car. If the desired speed is 60   mph, then this becomes 
the reference speed. Any deviation from this speed is an error. The accelerator 
pedal is the control element. On level terrain, a constant pressure on the pedal 
will maintain constant speed. As the car goes up a hill, it will slow down, and 
the difference between the actual speed and the reference value generates an 
error. This error generates a command to push the accelerator pedal to increase 
the speed, but there will continue to be a slight error. As the car crests the hill 
and starts down, the speed will increase. Releasing pedal pressure will slow 
the acceleration, but an error will remain until a steady - state condition is again 
reached. For this example, the driver ’ s brain is the feedback path. The driver 
controls the sense of the feedback by knowing when to push and when to 
release the pedal. By his reaction time, he controls how close to the reference 
he maintains the car ’ s speed. He may decide to rapidly change the correction 
to tightly match the desired speed, or he may choose to compensate slowly so 
his speed averages out to the correct value. His actions coupled with the car ’ s 
controls form a system closely analogous to a phase - lock loop. Replace the 
human with an electrical circuit that senses the speed error, include another 
circuit that tempers the response time, and couple it to the accelerator controls. 
This is the typical cruise control system.  
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   12.4     PLL  BASICS 

 A PLL is a closed - loop system used for frequency control. Three and some-
times four building blocks are common to most PLL designs: 

  1.     The phase detector.  
  2.     The loop fi lter.  
  3.     The voltage - controlled oscillator.  
  4.     In addition a frequency divider is used when the output frequency is to 

be a multiple of the reference input frequency.    

 Figure  12.1  illustrates the connection of these blocks to make a complete 
phase - lock loop. The phase detector has two inputs and one output. This block 
can be realized by a specialized mixer based on those described in Chapter  11  
where the IF port pass band goes down to dc. If the two input signals are very 
close in frequency, then the output will contain a term at twice the input fre-
quency and a term that is almost zero frequency. The loop error signal in the 
PLL is the near - zero term. This error signal goes to the loop fi lter, which may 
be as simple as a capacitor and a resistor, or it can be one or more operational 
amplifi ers with many resistors and capacitors. The VCO is the control element 
of this loop. The input is a control voltage from the loop fi lter, while the output 
is the required frequency. The time integral of this frequency is the phase that 
when compared with the input phase gives the error voltage to the loop fi lter.   

 When the loop is fi rst turned on, the VCO frequency is not controlled by 
an error voltage. The loop fi lter output voltage can be anywhere between the 
high and low limits set by the power supply. However, the phase detector 
produces an error voltage that is the difference between the actual VCO fre-
quency and the reference frequency. Like the cruise control example, this 
signal tells the loop fi lter whether the VCO frequency is too high or too low 
relative to the reference frequency. If the error signal indicates that the VCO 
frequency is less than the reference, the loop fi lter adjusts the control voltage 
to raise the VCO frequency. If the VCO frequency is too high, the loop fi lter 
changes the voltage and lowers the VCO frequency. The loop fi lter sets how 
fast the error is corrected. Some loops may be designed for a fast bumpy ride, 

     FIGURE 12.1     Basic phase - lock loop.  
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while others may require a slow response, resulting in a smooth ride. When 
the loop fi lter has done its job, the VCO frequency will exactly match the 
reference frequency, and the two inputs will have a constant phase difference. 
This match in frequency and constant phase difference will be maintained even 
if the reference frequency changes. With each change, the PLL again goes 
through the settling out process. If the reference is noisy, the PLL is in a con-
tinual state of change, working hard to follow the input.  

   12.5    LOOP DESIGN PRINCIPLES 

 The important top - level PLL parameters are the input and output frequency, 
the response time, the loop bandwidth, and the loop damping ratio. The PLL 
block diagram in Fig.  12.2  includes a frequency divider in the feedback path. 
Both frequencies coming into the phase detector must be locked together at 
the same frequency. This will force the output frequency,  f  out , to be  N  times the 
reference frequency,  f  ref . The actual design process can be summarized in three 
steps. First, each component should be thoroughly understood and tested 
individually. Second, when the components are assembled together, they 
should give the required phase margin and bandwidth for stability. Third, 
closed - loop analysis should show that the fi nal connection matches the system 
level goals both in theory and experimentally. The basic building blocks, except 
in exotic applications, are those shown in Fig.  12.2 . This section describes in 
greater depth each of these functions.   

   12.5.1    Phase Detectors 

 Phase detectors come in many confi gurations. These include those with logic 
level inputs, passive and active analog designs, and sampling versions used 
for high - frequency multiplication. In addition, there are phase detectors 
with automatic frequency search features to aid in initial frequency acquisi-
tion. In its simplest form, a phase detector is a frequency mixer. As described 
in Chapter  11 , when two signals come into the mixer, the output consists 

     FIGURE 12.2     Phase - lock loop with frequency counter.  
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primarily in the sum and difference frequencies. The sum frequency is fi ltered 
out by the loop fi lter. The difference frequency, historically called the  beat note , 
is typically a few kilohertz or less in a PLL. If the two input frequencies are 
exactly the same, the phase detector output is the phase difference between 
the two inputs. This loop error signal is fi ltered and used to control the VCO 
frequency. The two input signals can be represented by sine waves:

    V V t1 1 1= +( )a sin ω φ     (12.1)  

    V V t2 2 2= +( )b sin ω φ     (12.2)   

 The difference frequency term is the error voltage given as

    V K V V
K V V

te m
m a b= = −( ) + −( )[ ]1 2 1 2 1 2

2
cos ω ω φ φ     (12.3)  

where  K  m  is a constant describing the conversion loss of the mixer. Equation 
 (12.3)  is a time - varying cosine waveform at the beat note frequency. When the 
two frequencies are identical, the output voltage is a function of the phase 
difference,  Δ   φ      =      φ   1     −      φ   2 :

    V
K V V

e
m a b= ( )

2
cos Δφ     (12.4)   

 This is maximum when  Δ   φ      =    0    ° , a minimum when  Δ   φ      =    180    ° , and zero when 
 Δ   φ      =    90    °  or 270    °  (Fig.  12.3 ).   

 In the frequency domain, the phase detector can be modeled as

    K
a

a s
pd +

    (12.5)   

 which at low frequencies is simply the slope of the voltage versus phase curve. 
The units for  K  pd  is V/rad:

    K
dV
d

K V V
pd

e m a b= = − ( )
Δ

Δ
φ

φ
2

sin     (12.6)   

 Thus,  K  pd     =    0 when  Δ   φ      =    0    °  or 180    °  and is at its extreme values at  Δ   φ      =    90    °  or 
270    ° .  

   12.5.2    Voltage - Controlled Oscillator 

 The voltage - controlled oscillator is the PLL control element in which the 
output frequency changes monotonically with its input tuning voltage. A linear 
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326 PHASE-LOCK LOOPS

frequency versus tuning voltage is an adequate model for understanding its 
operation (Fig.  12.4 ):  

    ω ωout vco tune= +K V 0     (12.7)   

 In a PLL, the ideal VCO output phase may be expressed as

    φ ω φ2 0
0

0t t K V dt
t

( ) = + +∫ vco tune     (12.8)  

     FIGURE 12.4     Voltage - controlled oscillator tuning.  
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     FIGURE 12.3     Phase detector voltage output as function of phase difference.  
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LOOP DESIGN PRINCIPLES 327

where   φ   2 ( t ) is the output phase of the VCO,   ω   0  is the free - running VCO fre-
quency when the tuning voltage is zero, and  K  vco  is the tuning rate with the 
dimension of rad/s - V. 

 The error voltage from the phase detector fi rst steers the frequency of the 
VCO to exactly match the reference frequency, then holds it there with a 
constant phase difference. It is modeled as having a low - frequency gain  K  vco  
and one or more poles of the following form:

    
K

s s a
vco

+( )     (12.9)    

   12.5.3    Loop Filters 

 A loop fi lter is a low - frequency circuit that fi lters the phase detector error 
voltage, which in turn controls the VCO frequency. The fi lter may be either 
active or passive, but it is usually a simple analog design. In extreme cases it 
might be an entire microprocessor. This discussion will be limited to analog 
loop fi lters such as the representative topologies shown in Fig.  12.5 . Figure 
 12.5  a  shows an op - amp integrator with nearly infi nite dc gain. This is the loop 

     FIGURE 12.5     Loop fi lter used in ( a ) type 2 second - order PLL, ( b ) type 2 third - order 
PLL, ( c ) type 1 second - order PLL, and ( d ) type 1 second - order inverting PLL.  
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328 PHASE-LOCK LOOPS

fi lter often associated with the type 2 PLL. The order and type of a PLL is 
defi ned in Section  12.9 . Figure  12.5  b  shows an operational amplifi er loop fi lter 
with a fi nite gain and is associated with a type 1 PLL. Figure  12.5  c  is a passive 
fi lter used with a phase detector whose output is current rather than voltage. 
This type of detector is frequently found in synthesizer ICs and is associated 
with a type 2 PLL. While the loop fi lter is a simple circuit, its characteristic is 
important in determining the fi nal closed - loop operation. The wrong design 
may make the loop unstable, causing oscillation or have an undesirable 
response. The loop fi lters shown in Fig.  12.5  are of the form  

    F s k
s a
s b

( ) = ± +
+

    (12.10)  

where  −  a  is a zero and  −  b  is a pole.  

   12.5.4    Frequency Dividers 

 When the output frequency must be a multiple of the input frequency, fre-
quency dividers may be included in a PLL. Most dividers use a digital circuit, 
although analog techniques dating from 1939 are available for very high 
frequency devision. With the availability of complete synthesizers on a single 
IC, fewer stand - alone divider circuits are on the market. Most dividers have a 
division ratio equal to a binary number or switchable from a binary to a binary 
 + 1 (e.g., divide by 64 or 65). The upper limit on the input frequency is about 
3   GHz, although only a few ICs will go that high. Divide by four circuits have 
been demonstrated with inputs above 14   GHz, but this is a very specialized 
device not required by most PLLs. For a linear analysis when the loop band-
width is much less than the reference frequency, dividers are modeled as a gain 
element with a value    =    1/ N .   

   12.6    LINEAR ANALYSIS OF THE  PLL    [5]   *    

 From the perspective of the time domain, the control voltage for the VCO is

    V t V V t f t d
t

tune tune e( ) = + ( ) −( )− ∫0
0

μ μ     (12.11)  

where  f ( t ) is the impulse response of the fi lter and  V  e  is the error voltage 
coming from the phase detector. The Laplace transform of  f ( t ) is

    F s f t e dt tst( ) = ( ) >−∞

∫0
0     (12.12)  

     *   This material is based on A. J. Viterbi,  Principles of Coherent Communication , 1966, by permission 
of The McGraw - Hill Companies.  
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and the inverse transform can be obtained in principle by the integral:

    f t
i

F s e dt sst

i

i
( ) = ( ) ℜ{ } >

→∞ −

+

∫
1

2π
γ

β γ β

γ β
lim     (12.13)  

    Substituting Eq.  (12.11)  into the derivative of Eq.  (12.8)  gives the VCO 
frequency:

    d t
dt

K V
K K V V

f t d
tφ ω μ φ μ μ2

0 0
02

( ) = + + −( ) ( )− ∫vco tune
vco m a b cos Δ     (12.14)  

where  Δ   φ  ( t )    =      φ   1 ( t )    −      φ   2 ( t ). Consequently, a general equation describing the 
phase error is

    d
dt

d
dt

K V
K K V V

f t d
tΔ Δφ φ ω μ φ μ μ� 1

0 0
02

− − − −( ) ( )− ∫vco tune
vco m a b cos     (12.15)   

 For a given input phase   φ   1 , the solution of this equation describes the exact 
operation of the PLL. However, to avoid carrying along   ω   0 , a new phase vari-
able may be defi ned:

    ψ φ ω1 1 0 0t t K V t( ) ( ) − +( )−� vco tune     (12.16)  

    ψ φ ω2 2 0 0t t K V t( ) ( ) − +( )−� vco tune     (12.17)   

 The equation for the phase error is now given without   ω   0 :

    d
dt

d
dt

K K V V
f t d

tΔ Δφ ψ μ φ μ μ= − −( ) ( )∫1

02
vco m a b cos     (12.18)   

 This suggests an alternate representation for the phase - lock loop as shown in 
Fig.  12.6 . In this representation the multiplier is replaced by a subtracter and 
a cosinusoidal nonlinearity while the VCO is replaced by an integrator.   

 When the phase error  Δ   φ   deviates from 90    °  by a small amount, 
cos( Δ   φ      −    90    ° )    ≈     Δ   φ  . Then Eq.  (12.18)  becomes

     FIGURE 12.6     Time - domain nonlinear phase - lock loop.  
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    d
dt

d
dt

K f t d
tψ φ μ φ μ μ1

0
= + −( ) ( )∫

Δ Δ     (12.19)  

where

    K
K K V V= vco m a b

2
    (12.20)   

 If the Laplace transform of   ψ   1 ( t ) is represented by   �ψ s( )  and the Laplace 
transform of  Δ   φ  ( t ) is represented by   Δ �φ s( ), then the Laplace transform of Eq. 
 (12.19)  is

    s s KF s s s sΔ Δ� � �φ φ ψ( ) + ( ) ( ) = ( )1     (12.21)   

 This linear frequency - domain equation for the PLL can be represented as 
shown in Fig.  12.7 . The solution for the phase error gives  

    Δ � �
φ ψ

s
s

KF s s
( ) = ( )

+ ( )
1

1
    (12.22)   

 so that the phase shift at the output of the PLL is

    

� � �

�
�

�

ψ ψ φ

ψ
ψ

2 1

2

1 1

s s s

s
s

H s
G s

G s

( ) = ( ) − ( )
( )
( )

′( ) = ( )
+ ( )

Δ
    

(12.23)
  

where  G ( s )    =     KF ( s )/ s . The phase error can in turn be written in terms of this 
phase transfer function:

    Δ � � � �φ ψ ψ ψs s s H s s( ) = ( ) − ( ) = − ′( )[ ] ( )1 2 11     (12.24)   

 This is the difference of the two phase terms entering the phase detector. 
A frequency multiplier circuit will incorporate a frequency divider in the 
feedback loop, so that  K   →   KN . However, the output will differ from   �ψ 2 s( ) 

     FIGURE 12.7     Frequency - domain linear phase - lock loop.  
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by the frequency multiplier factor,  N , and the transfer function from input to 
output is

    H s H s N
G s N N

G s N
( ) = ′( ) = ( )[ ]

+ ( )1
    (12.25)   

 For example, let  N     =    1, the phase of the incoming signal be given by 
  φ   1 ( t )    =      ω  t     +      φ   0 , and the PLL has no fi lter so that  F ( s )    =    1. Readjusting the 
phase reference as was done in Eqs.  (12.16)  and  (12.17)  gives

    ψ φ ω1 1 0t t t( ) = ( ) −     (12.26)  

    = −( ) +ω ω φ0 0t     (12.27)   

 In the frequency domain this becomes

    �ψ ω ω φ
1

0
2

0s
s s

( ) = − +     (12.28)   

 The phase error is found from Eq.  (12.22) :

    Δ �φ ω ω φ
s

s
s K s s

( ) =
+

− +⎛
⎝⎜

⎞
⎠⎟

0
2

0     (12.29)   

 The inverse transform in this case is straightforward and gives the phase error 
in the time domain:

    Δφ ω ω φt
K

e eKt Kt( ) = − −( ) +− −0
01     (12.30)   

 The steady - state phase error is found by allowing  t   →   ∞ :

    Δφ ω ω
t

K
= ∞( ) = − 0     (12.31)   

 Clearly, the phase will change when the incoming frequency changes, so that 
phase lock is not achieved. 

 The insertion of a low - pass fi lter into the PLL will produce lock. An active 
fi lter such as that shown in Fig.  12.8  is recognized as basically a noninverting 
amplifi er. The inverting amplifi er would have right half - plane poles in the PLL 
and is therefore unstable unless the VCO or phase detector circuit can accom-
modate the minus sign. For the noninverting case, the voltage transfer function 
can be found by writing node equations at the input nodes of the operational 
amplifi er:  
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    F s
V
V

R sC
R

R
R sCR

( ) = = + + = +⎛
⎝⎜

⎞
⎠⎟ +o

1

2

1

2

1 1

1
1

1
1

    (12.32)   

 The phase transfer factor is found from Eq.  (12.23) :

    ′( ) = ( )
( )

= +( ) +[ ]
+ +( ) +

H s
s
s

K R R R Cs
s CR CR K R R s K

�
�

ψ
ψ

2

1

2 1 1
2

1 1 2 1

1 1
1

    (12.33)   

 Thus, using Eq.  (12.24) , the phase error is easily obtained:

    Δ �φ ψs H s s( ) = − ′( )[ ] ( )1 1     (12.34)  

    Δ �φ ω ω φ
s

CR CR s
s CR CR K R R s K

( ) = −( ) +
+ +( ) +

0 1 0 1
2

1 1 2 11
    (12.35)   

 Rather than fi nd the inverse transform this time, the fi nal value theorem may 
be used to fi nd the steady - state phase error:

    lim lim
t s

t s s
→∞ →

( ) = ( ) =Δ Δφ φ
0

0�     (12.36)   

 In this case, the phase error is independent of frequency and in the steady 
state is zero.  

   12.7    LOCKING A PHASE - LOCK LOOP 

 The previous sections examined the individual elements of a PLL. A simple 
loop with no frequency divider will serve as an example of how these parts 
work together. Assume that initially the loop is not locked, and the reference 
frequency is 100   MHz. A tuning voltage of 5   V is required to make the VCO 
frequency operate at 100   MHz. The phase detector can produce a cosine wave 
beat note of 1   V peak to peak. 

 An inverting op - amp type 1 loop fi lter will be used with a gain of 100 at 
low frequency and a gain of 0.1 at high frequency (Fig.  12.9 ). With the loop 
unlocked, the VCO frequency could be anywhere within its operating limits. 

     FIGURE 12.8     Possible active low - pass fi lter for PLL.  
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Assume that it is operating at 101   MHz, so that there is a 1 - MHz beat note at 
the phase detector output when the reference frequency is fi rst applied. This 
beat note frequency is high enough to only be amplifi ed with a gain of 0.1 by 
the loop fi lter. The VCO tuning voltage will be modulated by the phase detec-
tor output of 0.1 - V peak to peak, but this voltage will not cause any signifi cant 
change in the VCO frequency.   

 Since the VCO frequency is too far away from the reference frequency, 
there is not enough gain in the loop to bring the loop into lock. However, if 
the VCO frequency is 100.1   MHz when the reference frequency is applied, the 
beat note frequency is 100   kHz. That is well within the high - gain frequency 
range of the loop fi lter for this design. The amplifi ed beat note voltage modu-
lates the VCO frequency. As the VCO frequency swings closer to the reference 
frequency, the beat note frequency gets even lower, and it enters an even 
higher gain region of the loop fi lter. This action accelerates the VCO frequency 
change until it crosses the reference frequency. At this point the beat note 
frequency is zero. The PLL has been designed as a stable closed - loop system, 
and the VCO is at the same frequency as the reference. The transient phase 
detector output voltage and the VCO tuning voltage are shown in Figs.  12.10  
and  12.11 , respectively. The input voltage to the VCO is 5   V when the PLL is 
at frequency lock. Since the loop fi lter has a dc inverting gain of 100, the 
voltage at the phase detector output is  

    Ve mV=
−

= −5
100

50     (12.37)   

 The maximum voltage from the phase detector was specifi ed to be 1   V peak 
to peak or  V  e     =    0.5   V from the zero level to the peak. This would occur when 
 Δ   φ      =    0    °  as specifi ed by Eq.  (12.4) . This equation then gives the value for 
 K  m  V  a  V  b     =    1. When  V  e     =      −  50   mv as given in Eq.  (12.37)  the value for the phase 
difference from Eq.  (12.4)  is  Δ   φ      =    arccos(2 V  e / K  m  V  a  V  b )    =    arccos(  −  0.1)    =    95.7    ° . 
The loop fi lter will keep the VCO at 100   MHz and maintain a 95.7    °  phase 
difference between the two phase detector inputs. 

     FIGURE 12.9     ( a ) Type 1 loop fi lter and ( b ) its frequency response.  
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334 PHASE-LOCK LOOPS

 An oscillator accumulates 360    °  of phase rotation in each cycle. If the fre-
quency increases, it will accumulate more phase rotation in a given period of 
time. If the VCO tries to drift higher in frequency, it will quickly accumulate 
more phase rotation. The phase detector output voltage will go up, and the 
loop fi lter will amplify this change, which will lower the VCO control voltage. 
The VCO output frequency will drop and return to 100   MHz. The situation is 
similar for the VCO trying to move lower in frequency. This is the effect of 
the negative feedback within the loop. The battle for control goes on continu-
ously. Small changes in the VCO due to temperature, noise, or even gravity 

     FIGURE 12.10     Phase detector voltage as PLL pulls into lock.  

     FIGURE 12.11     VCO tuning voltage as PLL pulls into lock.  
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cause small frequency changes. The PLL will not tolerate errors due to 
frequency or phase changes. When an error voltage develops at the phase 
detector output, the loop fi lter will amplify it and the VCO frequency and 
phase will return to the correct value. The corrective action of the loop will 
make whatever adjustments are required to hold the phase and frequency 
constant. 

 The initial beat note frequency must be well within the loop fi lter band-
width to achieve lock without frequency aiding. In any loop, the fi rst event is 
to bring the VCO frequency in line with the reference frequency. Once the 
circuit is in lock, a steady - state phase relationship that satisfi es the loop feed-
back and dc requirements is found that will hold its lock frequency.  

   12.8    LOOP TYPES 

 The PLL is a closed - loop system controlled by negative feedback. The closed -
 loop gain  H ( s ) for the circuit in Fig.  12.7  is described by

    H s
s
s

G s
G s N

( ) = ( )
( )

= ( )
+ ( )

�
�
φ
φ

o

1 1
    (12.38)  

where  G ( s ) is called the open loop or forward gain, and  G ( s )/ N  is called the 
loop gain. The forward gain is the product of the phase detector gain, the loop 
fi lter gain, and the VCO gain, that is,  G ( s )    =     KF ( s )/ s . The frequency divide ratio 
is  N . 

 At every point in the loop, the signal has a voltage amplitude and a phase. 
The function,  H  ′ ( s ), from Eq.  (12.23)  represents a ratio of two phase terms. 
The  G ( s ) function can be seen as converting a phase to a voltage in the phase 
detector and converting voltage to a phase in the VCO. The frequency divider 
simply multiplies the output of  G ( s ) (a phase or frequency) by 1/ N . The func-
tions  G ( s ) and  N  are both dimensionless quantities. 

 The number of pure integrators (or number of poles at the frequency 
origin) in the loop gain  G ( s )/ N  determines the  type  of the system. A VCO is 
a pure phase integrator that will contribute one pole to the type determination. 
Therefore, a PLL will be at least type 1. A loop fi lter with a fi nite dc gain will 
not increase the type number. A loop fi lter with an integrator such as that in 
Fig.  12.5  a , will increase the type to 2. 

 The  order  of the PLL is the degree of the denominator polynomial of Eq. 
 (12.38) . The loop fi lter operational amplifi er has at least two signifi cant break 
points: typically one at a frequency between 1   Hz and 100   kHz and a second 
above 10   MHz. In the example given in Section  12.7  that used a type 1 loop, 
the only pure integrator is the VCO, so there is only one pole at dc. The loop 
fi lter has a dc inverting gain of 100. If the VCO gain is 1   MHz/V and the refer-
ence frequency is changed to 103   MHz, the VCO tuning voltage will now be 
8   V. This is found from  f  ref     =     f  out     =     K  vco  V  tune     +     f  0  where  V  tune     =    5 gives  f  0     =    95   MHz. 
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Thus, when  f  ref     =    103   MHz,  V  tune  must be 8   V. With a gain of  − 100, the phase 
detector voltage must be  V  e     =    8/( − 100)    =     − 80   mV  . 

 This represents an angular difference of  Δ   φ      =    arccos(2 V  e / K  m  V  a  V  b )    =    99.2    °  
in contrast to 95.7    °  found earlier when the reference frequency was 100   MHz. 
If the reference frequency continues to change, the VCO frequency will change 
to match it, which in turn will change the phase detector output voltage. As 
the reference frequency changes in a type 1 loop, the phase difference changes. 
This is an important characteristic that is sometimes desirable and other times 
unacceptable. 

 If the dc gain of the loop fi lter is increased to 1000, the phase detector 
output voltage for a 100 - MHz lock is only  − 5   mV. For phase lock at 103   MHz 
the phase detector output voltage is  − 8   mV. These values represent phase 
differences,  Δ   φ  , of 90.57    °  and 90.92    ° , respectively. If the dc gain is further 
increased, the change of  Δ   φ   with frequency will further decrease. Finally, the 
dc feedback resistor,  R  p , will approach an open circuit and the loop fi lter dc 
gain will increase to infi nity. The loop fi lter in Fig.  12.5  b  is transformed to that 
shown in Fig.  12.5  a . 

 This loop fi lter is now a pure integrator, thereby producing a type 2 loop. 
The total number of integrators for the PLL with this loop fi lter is two: one 
for the VCO and one for the loop fi lter. Among the features of this loop is the 
constant phase shift between the VCO and reference frequency that is main-
tained with a change in frequency. 

 Type 1 and type 2 loops constitute the majority of applications. Type 3 and 
higher loops are required to solve frequency change problems in unusual situ-
ations. For example, a ground - launched missile must track an orbiting satellite 
during its own launch and orbital insertion. During the launch phase, the 
rocket is consuming fuel and thus reducing its mass. With a constant force, its 
acceleration will increase at an increasing rate. As the satellite comes over-
head, its transmit frequency is shifted due to the relative motion with the 
rocket. This shift is changing at an increasing rate. Then the booster separates 
from the rocket and the force goes to zero during coast. To track the satellite 
frequency with no phase error requires a PLL type of at least 4. Most high - type 
loops are used to solve complicated motional problems.  

   12.9    NEGATIVE FEEDBACK IN A  PLL  

 A frequency change that generates a change in the phase of a stable negative 
feedback loop generates a correction for the phase error. In the previous 
example, the type 1 loop fi lter was described as having a dc inverting gain 
of 100. The VCO requires 5   V to produce a 100 - MHz output. An open - loop 
connection of the PLL components will demonstrate what is called the  “ sense ”  
of the loop. For open - loop testing, the VCO is connected to a manually adjust-
able power supply. With the power supply set at 5   V, there will be a low -
 frequency beat note observed at the phase detector output. If the voltage is 
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changed to either 4 or 6   V, the beat note will be 1   MHz. The frequency of 
the VCO cannot be determined from the beat note, since the beat note 
shows only the frequency difference between the two signals and not which 
signal is the higher or lower frequency. A complete description of the differ-
ence frequency between the VCO and reference requires both a direction 
and a magnitude. With the loop out of lock, this type of phase detector can 
only determine the magnitude, | Δ   φ  |. The VCO frequency must be forced 
close enough to the reference frequency for the beat note to be inside the 
loop bandwidth for a PLL with this type of phase detector to pull into phase 
lock. 

 In the previous example with the inverting fi lter, the VCO frequency 
increased as the tuning voltage decreased as seen from Eq.  (12.7)  where 
 K  vco     <    0. Many VCOs have the opposite characteristic; that is, the frequency 
increases with increasing tuning voltage. Stability is assured by the appropriate 
choice of an inverting or noninverting fi lter. If the loop locked up at 90    °  dif-
ference between the two inputs with the positive slope VCO, it will lock up at 
270    °  with the negative slope VCO. The phase detector output in either case 
will be correct to adjust the VCO to match the reference input frequency and 
phase. 

 Most synthesizer ICs and PLLs using frequency dividers or logic ICs have 
a different type of phase detector. Using fl ip - fl ops to count the input edges, 
these phase detectors produce an error voltage that has not only a magnitude 
but also a sense of the direction between the two inputs. The output is a series 
of voltage or current pulses. The loop fi lter averages these pulses to form the 
control voltage for the VCO. A pulse duty cycle above 50% indicates that the 
VCO frequency is higher than the reference frequency, and a duty cycle of less 
than 50% indicates that the VCO frequency is lower. If the VCO is running 
higher than the reference frequency, the control voltage will force it toward 
the correct value. If the VCO is running too low, the error voltage will drive 
the frequency higher. This type of phase detector can drive a PLL into lock 
even when the VCO and reference frequencies are a great distance apart, far 
outside the loop bandwidth. The typical IC synthesizer will have a pin available 
to reverse the sense of the error voltage to accommodate VCOs of either 
positive or negative tuning slope.  

   12.10     PLL  DESIGN EQUATIONS 

 Each block of the normal phase - lock loop model (Fig.  12.12 ) is described by 
a gain value that may be a constant or a function of frequency. The components 
are carefully selected to ensure a locking mechanism and stable loop opera-
tion. The frequency response of the closed loop is typically displayed as a Bode 
plot with a minimum frequency of 1   Hz and a maximum frequency between 
10   kHz and 10   MHz. The Bode plot describes the fi ltering bandwidth and in 
turn the transient response of the PLL to the input voltage.   
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   12.10.1    Inverting Loop Filter 

 An inverting fi lter, such as that shown in Fig.  12.5  b , produces a 180    °  phase 
shift between its input and output. The VCO would have to match the fi lter 
so as to produce an increase in frequency with a decrease in voltage. Thus, with 
either an inverting fi lter or a noninverting fi lter, the phase transfer function 
given by Eq.  (12.25)  remains:

    H s
G s
G s N

( ) = ( )
+ ( )1

    (12.39)   

 The example that follows makes use of a second - order type 1 PLL. The trans-
fer function for the fi lter in Fig.  12.5  b  is

    

F s
R R Cs

R

R R R sC R R

R R sC

( ) = −
+( )

= − ( ) + ( )
+( ) +

p s

in

p s in p in

p s

1

1

    
(12.40)

   

 The open - loop gain is

    G s
F s K K

s
KF s

s
( ) =

( ) ( )pd vco �     (12.41)   

 When Eqs.  (12.40)  and  (12.41)  are substituted into the expression for the the 
closed - loop PLL [Eq.  (12.39) ], the result is clearly of second order in the 
denominator. This can be written in terms of notation commonly used in 
control theory:

    H s
KR R

R R R
s CR

s s
( ) =

−
+( )

+ ( )
+ +

⎡
⎣⎢

⎤
⎦⎥

p s

in p s

s

n n

1
22 2ζω ω

    (12.42)   

 The variable,   ζ  , is the damping ratio and   ω   n  is called the natural frequency. The 
roots of the denominator are

     FIGURE 12.12     Frequency - domain closed - loop model for PLL.  
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    s1 2
2 1, = − ± −ζω ω ζn n     (12.43)   

 For the second - order type 1 loop under consideration,

    2ζωn
in p s

in p s

=
−

+( )
NR KR R C

R NC R R
    (12.44)  

    ωn
p

in p s

=
−

( ) +
KR

NR C R R
    (12.45)   

 so that

    ζ
ω

=
− ( )

+( )
1

2
C KR R NR

R R
p s in

n p s
    (12.46)   

 The design specifi cation for a PLL is typically given in terms of a damping 
ratio and a natural frequency. The design task is to determine circuit values 
that will meet the specifi cation. The fi lter response at dc is

    F
R

R
dc

p

in

= −     (12.47)  

where the minus sign is to be absorbed by  K . Thus, Eq.  (12.45)  can be rear-
ranged to give

    R R
KF

NC
p s

dc

n

+ =
ω 2     (12.48)  

and this substituted into Eq.  (12.46)  to give

    R R
KF

NC C
KF R
N

p s
dc

n n

dc s

n

+ = = +
ω ω ζ ω ζ2

1
2 2

    (12.49)   

 Using Eq.  (12.48)  to replace  R  s  above gives,

    
KF

NC C
KF

N
F K

NC
Rdc

n n

dc

n

dc

n
pω ω ζ ω ζ ω2 2

1
2 2

= + −⎛
⎝⎜

⎞
⎠⎟     (12.50)   

 If, in addition to the damping ratio and the natural frequency, values for  C  and 
the dc gain are chosen, then the required resistance values can be found as 
summarized below. Solution of Eq.  (12.50)  gives the value for  R  p , then  R  s , and 
fi nally  R  in :

    R
K

NC
F N

K F
N

K
p

dc

n dc n

= + −⎡
⎣⎢

⎤
⎦⎥ω

ζ
ω2

2

2

2
    (12.51)  
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    R
KF

NC
Rs

dc

n
p= −

ω 2     (12.52)  

    = −⎡
⎣⎢

⎤
⎦⎥

K
NC

N
K

N
K F

2 2

2

ζ
ωn dc

    (12.53)  

    R
R

F
in

p

dc

= −     (12.54)   

 To guarantee  R  p     >    0, the fi rst two terms in the brackets of Eq.  (12.51)  must be 
more negative than the third term. Since  K     <    0 for a PLL with an inverting 
fi lter,  R  p  would be positive. Thus

    
F N

K F
N

K
dc

n dc nω
ζ
ω2

2

2

2+ <     (12.55)   

 To guarantee  R  s     >    0, the fi rst term in Eq.  (12.53)  must be more negative than 
the second terms:

    
2 2

2

ζ
ω
N

K
N

K Fn dc

<     (12.56)   

 These two inequalities lead to the following conclusion:

    
F N

k F
N

K
N

K F
dc

n dc n dcω
ζ
ω2

2

2

2

2

2+ < <     (12.57)   

 Comparing the fi rst and last inequalities of Eq.  (12.57)  gives  F  dc     <    0, which was 
assumed at the outset. However, Eqs.  (12.55)  and  (12.56)  give the explicit 
requirements for  R  p  and  R  s . 

 Figure  12.13  illustrates the expected PLL bandwidth versus frequency for 
several values of damping ratio in a typical second - order circuit. These results 
are calculated for a natural frequency of 1   Hz. The results can be easily scaled 
for loops requiring higher natural frequencies. When   ζ      <    1, the PLL is under-
damped and peaking occurs. The response of such a loop to a disturbance will 
be a damped oscillation that fi nally converges to the fi nal answer. When   ζ      >    1, 
the system is overdamped. The  − 3 - dB frequency is found by setting the transfer 
function to   1 2  and solving for   ω   3 /  ω   n . It is assumed in doing this that only 
the denominator terms are frequency dependent. Thus,  

    H j
j

ω
ω ω ζω ω ω

( ) =
− + +

=2

3
2

3
2 2 2

2
1

2

1

2n n n

    (12.58)   

 Therefore,
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    ω ω ζ ζ3
2 2 2 2 22 1 1 2 1= −( ) + − −( )⎡

⎣⎢
⎤
⎦⎥n     (12.59)   

 The  − 3 - dB gain frequency,  f  3 , for a damping ratio of 1.0 is 0.6436 times the 
natural frequency. If a  − 3 - dB frequency of 50   kHz were required with a 
damping ratio of 1.0, then a natural frequency of 77.889   kHz would be chosen. 

 A type 2 PLL can be formed by allowing  R  p   →   ∞  to give the fi lter shown 
in Fig.  12.5  a . Equation  (12.44)  becomes

    2ζωn = − K
NR Cin

    (12.60)  

and from Eq.  (12.45) 

    ωn
in

2 = − K
NR C

    (12.61)   

 which gives

    R
K

NC
in

n

= −
ω 2     (12.62)   

     FIGURE 12.13     PLL response with natural frequency of 1   Hz and various damping 
ratios.  
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 Consequently,

    R
NR
K C

s
in

n

= − =2 2ζ ζ
ω

    (12.63)    

   12.10.2    Noninverting Loop Filter 

 Design equations can be developed for a noninverting loop fi lter like that 
shown in Fig.  12.5  d . The fi lter transfer function is

    

F s
R R sC

R

R R sC R R R R R

sC R R

( ) = +
+ ( )[ ]

=
+ + + +( )

+ +( )

1
1

1
1

1

1 1

p s

p p s p s

p s

    
(12.64)

   

 The closed - loop gain is found by substituting Eq.  (12.64)  into Eq.  (12.38) :

    H s K
R R

R R R

s C R R R

s
( ) = +

+( )
⎛
⎝⎜

⎞
⎠⎟

+ +( )[ ]
+ +

⎡
⎣⎢

⎤
⎦

1
1

21

1

2 2

s p

p s

p s

n nζω ω ⎥⎥     (12.65)   

 From this the loop natural frequency and damping ratio can be identifi ed:

    ωn
p

p s

=
+( )
+( )

R R K

N R R R C
1

1

    (12.66)  

    ζ
ω

=
+ + +( )

+( )
1

2
1C R R R R R K N

C R R
s p p s

n p s

    (12.67)   

 The typical synthesis procedure is to design a PLL for a given natural fre-
quency and damping ratio using a specifi ed capacitance,  C . Solving Eq.  (12.66)  
for  R  p     +     R  s  and substituting this into Eq.  (12.67)  gives an equation in terms of 
one unknown,  R  p . First, from Eq.  (12.66) ,

    R
K R R

NR C
Rs

p

n
p=

+( ) −1

1
2ω

    (12.68)   

 then substitution gives
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⎞
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⎤
⎦⎥

p

nω
    

   (12.69)   

 This has one unknown,  R  p , which can be solved by the quadratic formula as 
follows:
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    0 2= + +R a R b cp p     (12.70)  

where

    a
K
N

K
N

R C= −⎛
⎝⎜

⎞
⎠⎟1

2ωn     (12.71)  

    b
KR
N

K
N

= −⎛
⎝⎜

⎞
⎠⎟

2 1 ζωn     (12.72)  

    c R
K
N

K
N

= + −⎛
⎝⎜

⎞
⎠⎟1

2 2
2

2

2ω ζ ω
n

n     (12.73)   

 so that

    R
b b ac

a
p = − + −2 4

2
    (12.74)   

 The value of  R  1  is associated with the dc voltage gain of the noninverting 
loop fi lter:

    R
R

F
1

1
=

−
p

dc
    (12.75)   

 The value for  R  s  is obtained from Eq.  (12.68) . Physically realizable solutions 
would require the discriminant of Eq.  (12.74)  to be positive. This can be found 
in terms of the PLL parameters:

    b ac
R K

N
K
N

R C
K
N

R KC
N

2 1
2 2

2
1

2
2

2
14

4
1 0− = −( ) + +⎛

⎝⎜
⎞
⎠⎟

−⎡
⎣⎢

⎤
⎦⎥

>ω ζ ω ωn
n

n     (12.76)   

 The type 2 PLL parameters with the noninverting loop fi lter can be found by 
letting  R  p   →   ∞ . Thus, the design equations for a given natural frequency, 
damping ratio, and capacitance for a type 2 PLL are

    ωn
2

1

= K
NR C

    (12.77)   

 or

    R
K

NC
1 2

=
ωn

    (12.78)  

and the damping ratio is
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    2 0
1

ω ζn
s= + +R K

NR
K
N

    (12.79)   

 or

    R R
N

K
s

n= −⎛
⎝⎜

⎞
⎠⎟1

2
1

ω ζ
    (12.80)   

 The value for  K  is given by Eq.  (12.41) . A second - order loop can be built either 
as a type 1 or a type 2 with either an inverting or noninverting loop fi lter. The 
actual loop order may be several orders higher than 2 when all the extraneous 
poles are considered. A good design procedure initially ignores these poles 
and assumes ideal VCOs, phase detectors, operational amplifi ers, and the like 
and determines a set of loop fi lter values based on the second - order model. 
Subsequently, nonideal parts can then be added and computer simulation used 
to refi ne the analysis.   

   12.11    PHASE DETECTOR TYPES 

 Previous sections have introduced both the mixer and fl ip - fl op - based phase 
detectors. These two widely used confi gurations have many specialized varia-
tions. A sampling phase detector is a third type that is frequently used in RF 
and microwave applications. The design requirements for a specifi c application 
will usually point to the correct choice. 

   12.11.1    Mixer Phase Detectors 

 Mixers with a dc - coupled output make an excellent phase detector. At high 
frequencies, a mixer may be either active (with transistors) or passive (with 
diodes). The diode versions usually provide the best dc stability. It is the best 
choice for low - noise designs where the PLL reference input is a low - level 
signal. The beat note output is typically 100   mV to 1   V peak to peak, depending 
on the mixer type and application. The mixer type phase detector is the best 
choice when the input signal is pulsed or noncontinuous. The ability of this 
type of detector to resolve an angular difference is limited to  ± 90    ° . It has no 
ability to determine which input is the higher frequency, so it is not capable 
of frequency discrimination.  

   12.11.2    Sampling Phase Detectors 

 Sampling phase detectors (SPD) can be used in a phase - lock loop to produce 
an output frequency that is an integer multiple of the reference frequency. This 
mixer relies on a device to generate a comb of frequencies at multiples of the 
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reference. The VCO then uses the correct spectral line to produce an error 
signal. An SPD is used in a phase - lock loop where the output frequency is an 
integer multiple of the input frequency. If  f  out     =     Nf  in     +     Δ  f,  the SPD output is a 
cosine wave of frequency  Δ  f . If  f  out  is exactly  N  times  f  in , the SPD output is a 
dc level proportional to the phase difference between its two inputs. The input 
frequency,  f  in  is typically between 50 and 200   MHz at a power level of  + 20   dBm 
or higher, and  f  out  can be at any harmonic of  f  in  up to about 18   GHz or up to 
about the 150th harmonic of  f  in . 

 A sampling phase detector is one of the best choices for a very high fre-
quency PLL where excellent phase noise is a requirement. However, an exter-
nal circuit is usually required to bring the VCO into lock range. Additionally, 
provisions must be made to ensure that the VCO will be locked to the correct 
multiple of  f  in .  

   12.11.3    Flip - Flop Phase Detector with Frequency Acquisition Aiding 

 All of the phase detectors previously discussed have a major drawback. They 
produce an output equal to the difference between the two input frequencies, 
either a cosine wave or a triangle wave. However, this output does not have 
information about whether the VCO is too high in frequency or too low. A 
PLL using these phase detectors must also include a sweep or search circuit 
to initially bring the VCO frequency close enough to lock. This can involve a 
substantial amount of circuitry. The phase detector circuit shown in Fig.  12.14  a  
uses positive edge triggered  D  - type fl ip - fl ops to overcome this problem. 
The  D  inputs are connected to a logic 1. Figure  12.14  b  illustrates the timing 
sequence. The signal,  f  1 , positive edge arrives fi rst, causing  Q  1  to clock high. 
Later the positive edge of  f  2  causes  Q  2  to clock high. Two 1 ’ s at the NAND 
gate ’ s input cause its output to go low and clear both  Q  1  and  Q  2 . The output 
at  Q  2  is a pulse whose duty cycle represents the time delay between  f  1  and  f  2 . 
The pulse at  Q  2  is very short since it is the sum of the propagation times 
through the fl ip - fl ops and gates. Of course, if  f  2  arrives before  f  1 , then the 
output pictures are reversed.   

 The outputs,  Q  1  and  Q  2 , turn on the current sources. These current sources 
either source or sink current to the capacitor, which ramps up or down the 
phase detector output voltage. The action of this circuit is identical to 
the op - amp integrator. So the phase detector has added another integrator 
to the PLL. A PLL using this circuit will be at least a type 2 loop. 

 The advantage of this circuit is the self - searching capability. If  f  1  is higher 
than  f  2 , the output voltage will go to the positive voltage limit. If  f  1  is lower 
than  f  2 , the output voltage will go to the negative voltage limit. If  f  1  equals  f  2 , 
the output voltage will be proportional to the phase difference. Thus, this 
circuit can sense which input frequency is higher. The output voltage can then 
be used to drive the VCO in the correct direction to bring the loop into lock. 
Once the two frequencies are the same, this circuit becomes a phase detector 
and drives the VCO for no phase error. 
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 This phase detector circuit is used in many present - day frequency synthe-
sizer ICs, where its built - in search capability makes it ideal for a variety of 
applications. However, there are at least two drawbacks to this circuit that 
limits its usage. The largest problem is the short pulse on one of the fl ip - fl op 
outputs. With high - speed logic, this pulse is only a few nanoseconds long. If  f  1  
and  f  2  are high in frequency, this pulse width may be a signifi cant part of their 
period. The pulse dead time due to propagation delays results in a nonlinear 
phase detector transfer curve. In older versions, there were fl at spots with zero 
gain and regions where the gain reversed its slope. The pulse also contributes 
heavily to the output noise, easily adding 20   dB of noise to the PLL output 

     FIGURE 12.14     ( a ) Phase detector using a  D  fl ip - fl op and ( b ) the timing chart.  
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even in the most modern devices. The second problem is that the searching 
capability can become confused if there is any interruption in either  f  1  or  f  2 . 
Therefore, this circuit should be used in applications where very low phase 
noise is not required and the inputs are continuous. For this phase detector 
the gain is  K  pd  volts/rad.  

   12.11.4    Exclusive  OR  Phase Detector 

 An exclusive OR gate works as a frequency doubler and phase detector. Figure 
 12.15  illustrates a typical example for the phase detector. For correct opera-
tion, both inputs,  f  1  and  f  2 , must be at the same frequency and both must have 
50% duty cycles. The XOR output will be a logic level waveform at twice the 
input frequency. The duty cycle of the output depends on the phase difference 
between the two inputs. Phase shifts of 90    °  or 270    °  produce a 50% duty cycle 
output. The  RC  low - pass fi lter produces a dc value proportional to the duty 
cycle. For a 90    °  or a 270    °  phase difference, the fi lter output is one half the 
difference between the logic high -  and logic low - output voltages.   

 The XOR gate is the functional equivalent of the balanced mixer. This 
circuit is useful for PLL applications requiring a high - frequency VCO to be 
divided down and locked to a low - frequency logic - level frequency reference. 
This phase detector is suitable for low phase noise applications, but it fre-
quently requires an external search circuit to initially achieve lock.  

   12.11.5    Charge Pump  PLL  

 The charge pump phase - lock loop described by Gardner  [6]  incorporates a 
digital phase/frequency detector (PFD) plus a charge pump that basically 
converts the digital output voltage to an analog current. This in turn is fed to 
the loop fi lter. The block diagram is shown in Fig.  12.16  where the PFD has a 
three - state digital logic output of up, down, and neutral (UP, DW, and N).   *    This 
is fed into a charge pump that charges or discharges the loop fi lter capacitance 

     FIGURE 12.15     Exclusive OR phase detector.  
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    *    See, for example, the Max9382 PFD from Maxim.  

c12.indd   347c12.indd   347 9/17/2010   11:56:26 AM9/17/2010   11:56:26 AM



348 PHASE-LOCK LOOPS

depending on whether the output logic is UP or DW. If the phase detector is 
N, the loop is locked and no current fl ows. The loop fi lter can be as simple as 
a shunt capacitance to ground or something like that shown in Fig.  12.5  c .   

 There are a wide variety of charge pump circuits, two of which are shown 
in Fig.  12.17 . The fi rst of these uses positive and negative voltage logic states 
that charges or discharges the loop fi lter, depending on the state of the PFD. 
It is possible for both transistors to be off so that the voltage on the loop fi lter 
is fl oating. The operational amplifi er in Fig.  12.17  b  helps to control this voltage. 
This circuit, as drawn, uses positive and 0 voltage logic states. When UP is high 
and DW is 0, transistors  M  1  and  M  4  are on and  M  2  and  M  3  are off. Current  I  UP  
charges the loop fi lter and  I  DW  draws current through  M  4  and the low - impedance 

     FIGURE 12.17     Example charge pump circuits.  
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     FIGURE 12.16     Charge pump phase - lock loop.  
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output of the operational amplifi er. The opposite transistors turn on when 
DW is high and UP is 0, and the loop fi lter is discharged. The operational 
amplifi er must be capable of handling the current levels of the current sources. 
Several advanced designs have been proposed that address the fl oating voltage, 
the additional complexity of the operational amplifi er, and nonideal compo-
nents  [7 – 9] .     

   12.12    DESIGN EXAMPLES 

   Example 1     A phase - lock loop design shown in Fig.  12.18  requires an output 
frequency of 1600   MHz where the reference oscillator is 100   MHz. The design 
approach chosen is to use an inverting type 2 loop fi lter with a frequency 
divider and a mixer phase detector. The VCO chosen shows a typical tuning 
slope of 1   MHz/V. Measurement of the phase detector output shows a 100 - mV 
peak to peak cosine wave. The fi lter is to have a 3 - dB bandwidth of 100   kHz 
with a damping ratio of 1. 

  a.     Using a 100 - pF capacitor, fi nd the remaining loop fi lter values.  
  b.     Using a 10 - k Ω   R  in , fi nd the remaining loop fi lter values.        

   Solution 1     From the graph in Fig.  12.13  the 3   dB frequency for a damping ratio 
  ζ      =    1 is  f  / f  n     =    0.6435 so that  f  n     =    100   kHz/0.6436    =    155.38   kHz and   ω   n     =    976.26   ·   
10 3    rad/s. The type 2 circuit for this example is shown in Fig.  12.16 . The output 
frequency is 16 times the input frequency so  N     =    16. The value for  K  vco  is speci-
fi ed to be at 1   MHz/V. The phase detector output is a cosine wave. If the loop 
locks at 90    °  or 270    ° , the phase detector output voltage is zero. For a positive 
 R  in , the slope is the fi rst derivative evaluated at 270    ° , so that from Eq.  (12.6) 

   K
K V V

pd
m a b mV rad= − = −

2
50sin Δφ   

 The 50   mV/rad comes from the 100 - mV peak to peak specifi cation. The value 
for  K / N  is

     FIGURE 12.18     PLL for Example 1.  
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K
N

= − [ ]× [ ] [ ]× [ ]

= − ×

−50 10 2 10
16

19 635 10

6 3

3

MV rad Hz v rad Hz v mVπ

.
    

(12.81)
   

 For part (a). where  C  is set at 100   pF, Eqs.  (12.62)  and  (12.63)  are to be used:

    
Rin = + ×

× ×( )
=

−

19 635 10

100 10 976 26 10

206

3

12 3 2

.

.

Ω
    

(12.82)

  

and

    
Rs

k

= ×
×( ) ×( )

=

−

2 1
100 10 9 7626 10

20 48

12 5.

. Ω
    

(12.83)
     

   Example 2     A synthesizer design shown in Fig.  12.19  requires an output fre-
quency from 900 to 920   MHz. The output frequency can be changed in 1   kHz 
steps by changing the divide ratio. Design a PLL using a synthesizer IC and 
an external VCO. The synthesizer IC data sheet lists the current mode phase 
detector output as 5   mA/rad. The VCO data sheet lists the tuning rate at 
10   MHz/V.     

   Solution 2     The output frequency must be an integer multiple of the refer-
ence frequency so the reference frequency is 1   kHz. The circuit diagram is 
shown in Fig.  12.19 . The divide ratio must change from 900   MHz/1   kHz or 
9    ×    10 5  to 920   MHz/1   kHz or 9.2    ×    10 5 . The midpoint value, 9.1    ×    10 5  can be 
used for the design. A damping ratio of 1 is chosen for a rapid settling time 
when the divide ratio changes. The loop fi lter must attenuate the pulses 
from the phase detector output running at 1   kHz. Figure  12.13  shows that 14   dB 
of attenuation can be expected at 10 times the natural frequency. With a 
slope of  − 20   dB/decade, 34   dB attenuation can be expected at 100 times 
the natural frequency. Choosing  f  n     =    10   Hz or   ω   n     =    62.83   rad/s will work with 

     FIGURE 12.19     Synthesizer design for Example 2.  
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a 1 - kHz reference frequency. Here the value of  K  is in dimensions of 
ampere/volt:

   

K
N

K K

N
=

= × × × ×

=

−

vco pd

MHz
volt

ma
rad

rad
Hz

A
ma

Hz
MHz

10 5 2 10 10

3 14

3 6π

. 116 105× A
V

  

 The VCO is assumed to have a high input impedance so that the ratio of the 
voltage,  V  e , seen at the input of the VCO to the input current  i  is

   V
i

F s R
sC

e = ( ) = +2
1   

 The phase transfer function is found from  G ( s ):

    H s
G s

G s
( ) = ( )

+ ( )1
 

where

   G s
KF s

s
K

R Cs
s

( ) = ( ) = +2
2

1   

 Thus,

    H s
K R Cs

s sKCR K
( ) = +( )

+ +
2

2
2

1
    (12.84)   

 From Eq.  (12.84)   K     =      ω   2  and 2  ζ  ω   n     =     KCR  2  so that

   R
C

2
2= ζ

ωn

  

 which gives for  C     =    100     μ  F and   ζ      =    1,  R  2     =    318    Ω .   

   Example 3     A frequency synthesizer contains a phase - lock loop circuit 
that uses a type 1 noninverting fi lter. The data sheets for the phase detector 
show that the output waveform has a slope of 100   mV/rad. The VCO nominal 
output frequency is 3   GHz with a tuning rate of 100   MHz/V. The reference is 
a 100 - MHz crystal oscillator. If  R  in     =    620    Ω ,  R  s     =    150    Ω ,  R  p     =    56    k  Ω , and  C     =    1   nF, 
what is the expected 3 - dB bandwidth and damping ratio for this PLL?   
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352 PHASE-LOCK LOOPS

   Solution 3     With a 3 - GHz output and a 100 - MHz reference, the frequency 
divide ratio  N  must be 30:

   

K K K=

= × × ×

= ×

−

vco pd

MHz
V

Hz
V

V
V

100 10 10 2

6 2822 10

8 3

7

π

.

 

and

    K
N

= ×2 0944 106.   

 For the noninverting loop, Eq.  (12.66)  gives the natural frequency:

    ωn rad s= ×1 847 106.  

and from Eq.  (12.67) :

    ζ = 0 7091.   

 Finally, the 3 - dB frequency for the loop is found from Eq.  (12.59) :

    ω3
61 8404 10= ×. rad s   

 Thus, the 3 - dB frequency is  f  3     =    292.9   kHz. This can be confi rmed from the 
curve in Fig.  12.13 . A linear interpolation for the 3 - dB normalized frequency 
when   ζ      =    0.709 is found from Fig.  12.13  to be approximately 1. The natural 
frequency for this PLL is approximately   ω   n /2  π      =    293.7   kHz.    

   12.13    CONCLUSIONS 

 Chapter  1  began with a description of a generic superheterodyne transmitter –
 receiver pair. Each of the components in that block diagram were analyzed 
using a variety of circuits often requiring special RF design techniques. Passive 
circuit elements had to be chosen with care because of their stray inductance, 
parasitic capacitance, skin effect losses, and the like. A large amount of atten-
tion was given to fi lters and impedance transformers. Filters control the band-
width and are necessary to avoid transmitting unwanted signals and receiving 
extraneous interference or noise. Impedance matching played a crucial role 
in determining the gain, stability, and noise fi gure of amplifi ers as well as design 
of oscillators. The discussion of transmitter power amplifi ers described 
the pros and cons of different types of amplifi ers and provided analytical 
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guidelines for their design. Low - phase noise oscillators supply the transmitter 
carrier frequency by exciting the LO port of a mixer. The modulator and 
demodulator scheme takes on a wide variety of forms in communication 
circuits, both analog and digital. The basic forms given in Chapter  11  provide 
the basic theory for mixers. Not found explicitly on the transceiver block 
diagram is the phase - lock loop described in this fi nal chapter. Nevertheless, 
they are pervasive in RF designs and, for example, often are used to lock the 
frequency of the transmitter and receiver together. The journey does not con-
clude here, for there are a multitude of applications and designs that were left 
out, and others yet to be discovered. What was provided in this book is the 
background for further study and invention.  

 PROBLEMS 

       12.1.    A phase - lock loop can be described in the frequency domain in terms 
of the input and output phase angles shown in Fig.  12.7 . The input phase 
is   �φ1 s a b s( ) = + . The fi lter transfer function is

   F s
sCR

sC R R
( ) = +

+ +( )
1

1
2

1 2
 

   a.     What is the steady - state phase error?  
  b.     What is the steady - state phase error if the capacitance  C     =     ∞ ?      

    12.2.    The circuit in Fig.  12.7  has an input signal with a phase that varies as 
  �φ ω ω φ1 0

3
0

2s s s( ) = −( ) + , where   ω   0  and   φ   0  are offset constant values. The 
fi lter has a transfer function given by  F ( s )    =    2    +    10 /s  2 . Determine if this 
loop provides phase lock. If not, determine if it provides frequency lock.       
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 APPENDIX A   

Example of a Solenoid Design     

     The design of a solenoid inductor was described in Chapter  2 . An example for 
a 100 - nH solenoid design where the  Q  is evaluated at 200   MHz is shown below 
using the program SOLENOID where the  bold  type indicates user inputs. 
After initial values for the solenoid are given, the form length and number 
of integral turns are modifi ed, but the form diameter remains unchanged. 
The interwire capacitance,  C,  the self - resonant frequency,  F  res , and the  Q  are 
calculated.  

 Frequency in Hz for Q calculation  =   200.E6  
 Geometry  -  >  Inductance, type  < G >  
 Inductance  -   >   n, the number of turns, type  < L >  

  L  
 Desired inductance, L (H), initial form Length, 
 Form Diameter  -  inches, Initial value for no. turns 
  100.E - 9, 0.5, 0.1, 20  
 Number of turns  =  13.00000 
 AWG  =  21.0 Wire Diameter  =  .284625E - 01 
 Final Length  =  .576708E + 00 inches 
 Pitch  =  .44362E - 01 Wire Diameter  =  .28462E - 01 in. 
 Turn Diameter  =  .12846E + 00 in. Form Diameter  =  .10000E + 00 
in. 
 L  =  .10002E + 00   µ  H 
 C  =  .203350E + 00 pF Fres  =  .111600E + 04 MHz 
 Q  =  .649760E + 02 at F  =  .200000E + 03 MHz          

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
Copyright © 2011 John Wiley & Sons, Inc.
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 APPENDIX B   

Analytical Spiral 
Inductor Model     

     Modeling equations for spiral inductors given in  [1, 2]  are collected here for 
convenience. A straight line of length  l , width  w , thickness  t , resistivity   ρ  , and 
in a material of permeability   μ   0  has the following inductance:

    L
l l= ⎛

⎝⎜
⎞
⎠⎟

−⎡
⎣⎢

⎤
⎦⎥

μ
π ρ
0

2
2

1ln     (B.1)  

where

    

ln ln ln
ρ
2

25
12

1
6

1 1
2 2 2

c
w
t

t
w

t
w

w
t

⎛
⎝⎜

⎞
⎠⎟ = − − ⎛

⎝⎜
⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟ + ⎛⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ ⎛
⎝⎜

⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

2

2
3

w
t

t
w

t
w

w
t

arctan arctan

    

(B.2)

  

    2 2 2c w t= +     (B.3)   

 If inhomogeneous current density across the conductor cross section is to be 
considered, an additional expression is found in  [1] . 

 The single - loop inductor is illustrated in Fig.  B.1  where the total angular 
rotation,   φ   0 , is somewhat less than 360 ° . The inductance is found by numerical 
integration of the following equation:

    L
w

F d= −( ) ( ) ( )∫
μ
π

φ φ φ φ φ
φ0

2 0
0

2

2
2 2 2

0
cos     (B.4)  

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
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where

    F G r r G r r G r r G r rφ( ) = ( ) − ( ) − ( ) + ( )o o i o o i i i, , , ,     (B.5)     

 The values for  r  1  and  r  2  below are replaced by  r  i  and  r  o  as specifi ed by 
Eq.  (B.5) :

   G r r R r r R r
r r

1 2
1
3

3 2
3 1 2 1

3 2 1
2

2
3

2
2

, cos cos arcsin
cos

( ) = + ( ) + ( ) − (
φ φ

φ))
( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥r1 2sin φ

    (B.6)  

    R r r r r= + − ( )1
2

2
2

1 22 2cos φ     (B.7)   

 The inductance of a circular spiral with  n  turns (with air bridge) consists of 
 n  static inductances,  L i , i     =    1,  …  , n  as found by Eq.  (B.4)  plus mutual induc-
tance terms between the  i th and  j th line segments. This mutual inductance is

    M ab
k

k K k
k

E kij
ij

ij ij
ij

ij= −
⎛
⎝⎜

⎞
⎠⎟

( ) − ( )⎡

⎣
⎢

⎤

⎦
⎥μ 2 2

    (B.8)  

where

    k
ab

a b
ij =

+( )
4

2     (B.9)  

    a r i w s= + −( ) +( )i 0 5.     (B.10)  

    b r j w s= + −( ) +( )i 0 5.     (B.11)   

 In this expression for the mutual inductance,  r  i  is the inner radius of the inner-
most turn of the circular spiral,  w  is the conductor width, and  s  is the spacing 
between turns. The outermost radius of the outermost turn is determined by 
these parameters together with the number of turns,  n . The  K ( k ij  ) and  E ( k ij  ) 

     FIGURE B.1     Single - loop inductor.  
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are the complete elliptic integrals of the fi rst and second kind, respectively. If 
there is a ground plane underneath the spiral conductor a distance  h  away, 
there is an additional mirrored mutual inductance,   Mij

m, given by Eq.  (B.8)  
where

    k
ab

h a b
ij =

+ +( )
4

4 2 2     (B.12)  

and where  a  and  b  are given by Eqs.  (B.10)  and  (B.11) . The inductance of the 
multiple - turn circular spiral is then

    L L M Mi
i

n

ij
j i

n

i

n

ij
m

j

n

i

n

= + +
= = +=

−

==
∑ ∑∑ ∑∑

1 11

1

11

2     (B.13)   

 The associated capacitances are shown in Fig.  B.2 , which were given by 
 [3 – 5] 

    C
K k
K k

ga = ′( )
( )

ε0

2
    (B.14)     

 The arguments of the elliptic integrals are

    k
s
h

s
h

w
h

= +⎛
⎝⎜

⎞
⎠⎟

2
    (B.15)  

    ′ = −k k1 2     (B.16)   

 The dielectric coupling capacitance is

     FIGURE B.2     Capacitances associated with coupled microstrip: ( a ) even mode and 
( b ) odd mode.  
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 The main capacitance to ground is

    C
w

h
m

r= ε ε0     (B.18)   

 The fringing capacitances are

    C
cZ

w
h

f
eff r= −

⎡

⎣
⎢

⎤

⎦
⎥

1
2 0

0ε ε ε
    (B.19)  

    ′ =
+ ( ) ( )

C
C

A h s s h
f

f

1 8tanh
    (B.20)  

    A
w
h

= − −⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

exp . exp . .0 1 2 33 2 53     (B.21)   

 The capacitance,  C  f , is the fringing capacitance of a single microstrip line of 
width  w/h , characteristic impedance,  Z  0 , and effective dielectric constant  ε   eff , in 
which the velocity of light in a vacuum is  c . The microstrip parameters can be 
calculated based on Section 4.7.4. Hence, the total even - mode capacitance is

    C C C Ce m f f= + + ′     (B.22)  

and the odd - mode capacitance is

    C C C C Co m f ga ge= + + +     (B.23)    
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 APPENDIX C   

Double - Tuned Matching 
Circuit Example     

     Assume that an impedance transformation is required between a 50 -  Ω  source 
and a 15 -  Ω  load. The matching is to be done using the double - tuned matching 
circuit described in Chapter  3  using the program DBLTUNE. The center fre-
quency is at 4   MHz, the bandwidth is 100   kHz, and the pass - band ripple is 
0.5   dB. The capacitances and transformer parameters are to be determined. In 
the following computer output, the  bold  characters are the responses the 
program expects from the user. Furthermore, in this example, the verbose 
mode is chosen by choosing to display the intermediate results. An analysis of 
this circuit using SPICE is shown in Fig.  C.1 .   
 
 Display intermediate results?   <  Y/N  >    Y  
 Center Freq, Bandwidth (Hz)  =  ?  4.E6, 100.E3  
 Fm1  =  .396480E + 07 Fm2  =  .403551E + 07 
 GTMIN  =  .99992E + 00 
 Passband ripple in dB  =  ?  0.5  
 Resistance Ratio r  =  .19841E + 01 
 Q2_m1  =  .97432E + 00 Q2_m2  =  .10097E + 01 
 Generator and Load resistances values  =   50., 15.  
 L2 ’   =  .56259E + 02   μ  H C2 ’   =  .28140E + 02pF 
 RL ’   =  .79332E + 05 Bm1  =  .19480E - 01 Bm2  =   - .20193E - 01 
 Given terminal resistances: RG  =  .500E + 02 RL  =  .150E + 02 
 Input Circuit: C1  =  .446554E + 05pF L11  =  .354637E - 01  μ  H 
 Output Circuit: C2  =  .148828E + 06pF L22  =  .106441E - 01  μ  H  
 Transformer coupling coeffi cient k  =  .250991E - 01     
    

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
Copyright © 2011 John Wiley & Sons, Inc.
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     FIGURE C.1     Double - tuned matching circuit example.  
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 APPENDIX D   

Two - Port Parameter 
Conversion       

     Conversion between the  z ,  y ,  h , and  g  two - port voltage – current parameters is 
simply rearrangement of two linear equations relating voltages and currents 
at the two ports. Converting between these and the  S  parameters requires 
relating the voltage waves to voltages and currents. This latter relationship 
always includes the characteristic impedance,  Z  0 , by which the  S  parameters 
are referenced. Typically, this value is 50    Ω . Table  D.1  shows this conversion. 
The program PARCONV is basically a code of many of the conversions in 
Table  D.1 .   

 The defi nitions of the various two - port parameters are described below. In 
each case, it is assumed that the current is fl owing into the port terminal:
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366 APPENDIX D TWO-PORT PARAMETER CONVERSION
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    (D.6)   

 For conversion to and from  S  parameters for circuits with more than two 
ports, the following formulas may be used  [1] . Each variable is understood to 
be a matrix representing the  S ,  z , or  y  parameters. The conversion formulas are

    S F Z G Z G F= −( ) +( )− −* 1 1     (D.7)  

    Z F I S SG G F= −( ) +( )− −1 1 *     (D.8)  

    S F I G Y I GY F= −( ) +( )− −* 1 1     (D.9)  

    Y F G I S I S F= +( ) −( )− − −1 1 1     (D.10)  

where
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    (D.11)  
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    (D.12)   

 The  I  in Eqs.  (D.8)  through  (D.10)  is the square identity matrix, and the  Z  0   i , 
i     =    1   …  n , are the characteristic impedances associated with each of the ports. 
An example of the usage of PARCONV is shown below. In using the program, 
make sure to include the decimals with the input data. Boldface values repre-
sent user inputs to the program. To exit the program use Ctrl. C.  

 TYPE SOURCE AND LOAD REFERENCE IMPEDANCE Z01,Z02  =  
 50., 50. Y  -  -  >  S  =  YS OR S  -  -  >  Y  =  SY 
 Z  -  -  >  S  =  ZS OR S  -  -  >  Z  =  SZ 
 ABCD  -  -  >  S  =  AS OR S  -  -  >  ABCD  =  SA 
 H  -  -  >  S  =  HS OR S  -  -  >  H  =  SH 
 H  -  -  >  Z  =  HZ OR Z  -  -  >  H  = ZH 
  SY  
 INPUT S11, MAG. AND PHASE (deg) 
  .9,  − 80.  
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  TABLE D.2     S  - Parameter to Hybrid Parameter Conversion Chart 

         S       h   

   S  11      S  11           

   S  12      S  12           

   S  21      S  21           

   S  22      S  22           

   h  11              h  11   

   h  12              h  12   

   h  21              h  21   

   h  22              h  22   

h Z h Z h h Z
h Z h Z h h Z

11 0 22 0 12 21 0

11 0 22 0 12 21 0

1
1

−( ) +( ) −
+( ) +( ) −

2
1

12 0

11 0 22 0 12 21 0

h Z
h Z h Z h h Z+( ) +( ) −

−
+( ) +( ) −

2
1

12 0

11 0 22 0 12 21 0

h Z
h Z h Z h h Z

h Z h Z h h Z
h Z h Z h h Z

11 0 22 0 12 21 0

11 0 22 0 12 21 0

1
1

+( ) −( ) +
+( ) +( ) −

Z
S S S S
S S S SS

0
11 22 12 21

11 22 12 21

1 1
1 1

+( ) +( ) −
−( ) +( ) +

2
1 1

12

11 22 12 21

S
S S S SS−( ) +( ) +

1 1 1
1 10

11 22 12 21

11 22 12 21Z
S S S S
S S S SS

−( ) −( ) −
−( ) +( ) +

−
−( ) +( ) +

2
1 1

21

11 22 12 21

S
S S S SS

 INPUT S21, MAG. AND PHASE (deg) 
  1.9, 112.  
 INPUT S12, MAG. AND PHASE (deg) 
  0.043, 48.  
 INPUT S22, MAG. AND PHASE (deg) 
  0.7,  − 70.  
 Y(1,1)  =  .162912E - 02 J .156482E - 01 
 Y(1,2)  =  .304363E - 03 J  - .759390E - 03 
 Y(2,1)  =  .360540E - 01 J  - .262179E - 02 
 Y(2,2)  =  .483468E - 02 J .123116E - 01 
 Y  -  -  >  S  =  YS OR S  -  -  >  Y  =  SY 
 Z  -  -  >  S  =  ZS OR S  -  -  >  Z  =  SZ 
 ABCD  -  -  >  S  =  AS OR S  -  -  >  ABCD  =  SA 
 H  -  -  >  S  =  HS OR S  -  -  >  H  =  SH 
 H  -  -  >  Z  =  HZ OR Z  -  -  >  H  = ZH  

 Table  D.2  provides a direct conversion between two - port  S  parameters and 
two - port  h  parameters. This can be convenient with transistor models that are 
given in terms of  h  parameters.  

  REFERENCE 

  1.       K.   Kurokawa  ,  “  Power Waves and the Scattering Matrix , ”   IEEE Trans. Microwave 
Theory Tech. ,  MTT - 11 , pp.  194  –  202 , March  1965 .     
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369

 APPENDIX E   

Termination of a Transistor 
Port with a Load     

     In the three - port circuit in Fig.  E.1  one of the three ports is terminated with 
an impedance that has a refl ection coeffi cient relative to the reference imped-
ance  Z  ref :

    r
Z Z
Z Z

i
i

i

= −
+

ref

ref
    (E.1)     

 In this expression the subscript  i  represents  s ,  g , or  d , depending on whether 
the device connection is common source, gate, or drain terminated with  Z  s ,  Z  g , 
or  Z  d  . For example,  r  s     =     a  2  /b  2  in Fig.  E.1  or  b  2     =     a  2  /r  s  . This is substituted in the 
appropriate place in the following equations. The incident and scattered waves 
from the three - port circuit are

    b S a S a S a1 11 1 12 2 13 3= + +     (E.2)  

    b S a S a S a2 21 1 22 2 23 3= + +     (E.3)  

    b S a S a S a3 31 1 32 2 33 3= + +     (E.4)   

 When one of the ports is terminated with  r  i , then the circuit really is a two 
port. The scattering parameters for the common source, gate, and drain con-
nection follow: 

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
Copyright © 2011 John Wiley & Sons, Inc.
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  Common Source 

    S S
S S
r S

11 11
12 21

221
s

s

= +
−

    (E.5)  

    S S
S S
r S

12 13
12 23

221
s

s

= +
−

    (E.6)  

    S S
S S
r S

21 31
32 21

221
s

s

= +
−

    (E.7)  

    S S
S S
r S

22 33
23 32

221
s

s

= +
−

    (E.8)   

  Common Gate 

    S S
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11 22
12 21

111
g

g

= +
−

    (E.9)  

    S S
S S
r S

12 23
21 13

111
g

g

= +
−

    (E.10)  

    S S
S S
r S

21 32
31 12

111
g

g

= +
−

    (E.11)  

    S S
S S
r S

22 33
31 13

111
g

g

= +
−

    (E.12)   

  Common Drain 

    S S
S S
r S

11 11
13 31

331
d

d

= +
+

    (E.13)  

     FIGURE E.1     Three - port with source terminated with  r  s .  

a1

b1

a3

a2 b2rs

b3

G 11 D 3

S 2

2
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    S S
S S
r S

12 12
13 32

331
d

d

= +
−     (E.14)  

    S S
S S
r S

21 21
23 31

331
d

d

= +
−

    (E.15)  

    S S
S S
r S

22 22
23 32

331
d

d

= +
−

    (E.16)   

 A numerical example illustrates the process. A transistor with a set of 
common source  S  parameters at 2   GHz is given below:

    S11 0 136 86= ∠.  

    S21 3 025 6= ∠.  

   S12 0 085 164= ∠ −.  

   S22 0 304 136= ∠ −.   

 These are then converted to two - port  y  parameters. These will be called  y  11 , 
 y  31 ,  y  13 , and  y  33 . The indefi nite admittance matrix is formed by adding a third 
row and column such that the sum of each row and the sum of each column 
is zero. The resulting 3    ×    3 set of  y  parameters are obtained:

    y11
3 39 681 10 7 695 10= × − ×− −. .  

    y12
3 32 77 10 6 776 10= − × + ×− −. .  

   y13
3 33 086 10 9194 10= − × + ×− −. .  

    y21
3 3104 2 10 20 85 10= × + ×− −. .  

    y22
3 382 89 10 14 39 10= − × + ×− −. .  

   y23
3 321 28 10 6 452 10= − × + ×− −. .  

   y31
3 3113 8 10 13 15 10= − × + ×− −. .  

   y32
3 395 65 10 7 618 10= − × + ×− −. .  

   y33
3 318 19 10 5 533 10= − × + ×− −. .   

 These are then converted to three - port  S  parameters using Eq.  (10.32)  as 
originally given in  [1] :

   S11 1 6718 168 12= ∠ − °. .  

    S12 1 6573 3 639= ∠ °. .  

    S13 1 0103 13 684= ∠ °. .  

   S21 3 1794 157 77= ∠ − °. .  
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372 APPENDIX E TERMINATION OF A TRANSISTOR PORT WITH A LOAD

    S22 2 0959 14 185= ∠ °. .  

    S23 0 7156 74 511= ∠ °. .  

    S31 1 6455 70 181= ∠ °. .  

   S32 2 7564 167 02= ∠ − °. .  

   S33 2 1085 153 87= ∠ − °. .   

 At this point it is desired to transform these parameters to common gate 
parameters in which the gate is connected to ground through a short circuit. 
The resulting common gate two - port  S  parameters are found from Eqs.  (E.9)  
through  (E.12) :

    S11 5 317 170 925g = ∠ °. .  

   S21 10 772 14 852g = ∠ − °. .  

    S12 2 496 177 466g = ∠ °. .  

    S22 6 250 7 553g = ∠ − °. .   

 With the transistor now characterized in the orientation that it is to be used 
in the oscillator, a choice is made for the impedance at the generator side. If 
this impedance is chosen to be a 5 - nH inductor at 2   GHz, the output refl ection 
coeffi cient is

   Γo = ∠ − °1 7775 30 35. .   

 This shows that oscillation is possible under these loading conditions. The 
above expressions for the revised  S  parameters can be found in  [2]  using 
slightly different notation.  

  REFERENCES 

  1.       K.   Kurokawa  ,  “  Power Waves and the Scattering Matrix , ”   IEEE Trans. Microwave 
Theory Tech. ,  13 , pp.  194  –  202 , March  1965 .  

  2.       R. M.   Dougherty  ,  “  Feedback Analysis and Design Techniques , ”   Microwave J. , pp. 
 133  –  150 , April  1985 .   
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 APPENDIX F   

Transistor and Amplifi er 
Formulas     

     The following formulas are meant as a reminder of the fundamentals given in 
most standard electronics textbooks. Notation for the formulas have the tra-
ditional meanings. Depletion capacitances are all given with a negative sign in 
the denominator as in  C     =     C  0  / (1     −      V/ φ  )   γ   . Consequently, when the junction is 
reverse biased, the minus sign turns into a positive sign. Figure  F.1  presents 
the basic FET features and symbols. The transistor body terminal typically is 
connected to the source or to ground. When the source is not grounded, the 
body effect modifi es the transistor properties. The equations using the Early 
voltage,  V A  , should conform with the sign convention used by SPICE ( V  A      >     0).    

  BIPOLAR TRANSISTOR PARAMETERS ( BJT ) 

      

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
Copyright © 2011 John Wiley & Sons, Inc.

   Description     Formula  

  Collector current  
        

  Transconductance  
        

  Input resistance          

I I
qV
kT

C S
BE= ⎛

⎝⎜
⎞
⎠⎟exp

g
qI
kT

m
C=

r
g

π
β= 0

m

(continued)
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   Description     Formula  

  Output resistance          

  Base charging capacitance     C  D     =      τ F gm    

  Emitter – base junction  
        

  Input capacitance     C   π      =     C  b     +     C  je   

  Collector base          

  Collector substrate          

  Transition frequency          

  Thermal voltage          

r
V
I

o
A

C

=

C A
q N

Vj
je E

B=
⎛
⎝⎜

⎞
⎠⎟

ε
1 3

C
C

V
μ

μ

ψ
=

−( )
o

BC oc1 1 3

C
C

V
cs

CSO

sc os

=
−( )1 1 2ψ

f
g

C C
T

m=
+( )

1
2π π μ

V
kT
q

T V= = 0 0259.

  JUNCTION FIELD - EFFECT TRANSISTOR PARAMETERS ( JFET ) 

         Description     Formula  

  Saturated drain current  
        

       V  DS     ≥     V  GS     −     V  P   

  Ohmic region drain 
current  

        

       V  DS     <     V  GS     −     V  P   

            

            

  Transconductance  
        

I I
V
V

V
V

VD DSS
GS

P

GS

A
A= −⎛

⎝⎜
⎞
⎠⎟ +⎛

⎝⎜
⎞
⎠⎟ >1 1 0

2

I G V
V V V

V
D o DS

GS DS GS

P

= + + −( ) − +( )
+( )

⎡

⎣
⎢

⎤

⎦
⎥

3
2

0
3 2

0
3 2

0
1 2

ψ ψ
ψ

G
aW
L

o c= 2 σ

I K V V V VD GS P DS DS≈ −( ) −[ ]2 2

g
I
V

V
V

m
DSS

P

GS

P

= −⎛
⎝⎜

⎞
⎠⎟

2
1

(continued)

(continued)
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     FIGURE F.1     FET symbols.  

FET Symbols
ID

NMOS Depletion.
NJFET

NMOS Enhance.

PMOS Depletion.
PJFET

VGS

PMOS Enhance.

N-Channel JFET

N-Channel MOSFET   –

N-Channel MOSFET  –

P-Channel MOSFET   –

P-Channel MOSFET  –

P-Channel JFET

Enhancement Enhancement

Depletion Depletion

   Description     Formula  

  Output resistance  
        

  Gate – source capacitance  
        

  Gate – drain capacitance  
        

  Gate – substrate capacitance  
        

   n  - Channel JFET     V  P      <     0  
   p  - Channel JFET     V  P      >     0  

r
V
I

o
A

D

=

C
C

V
gs

gs

GS

=
−( )

0

0
1 31 ψ

C
C

V
gd

gd

GD

=
−( )

0

0
1 31 ψ

C
C

V
gss

gss

GSS

=
−( )

0

0
1 21 ψ

(continued)
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   Description     Formula  

  Saturation region drain 
current  

        

       V  DS      ≥      V  GS     −     V  t   

  Ohmic region drain current  
        

       V  DS      <      V  GS     −     V  t   

  Oxide capacitance  
        

  Transconductance          

  Output resistance          

  Input capacitance     C  in     =     C  GS     +     C  GD     =     C  ox  LW   

  Transition frequency  
        

  Surface mobility holes      μ   s     =    200   cm 2 /V − s  

  Surface mobility electrons      μ   s     =   450    cm 2 /V − s  

   n  - Channel JFET    p - Channel JFET  

   I  DSS      >     0     I  DSS      <     0  

   V  P      <     0     V  P      >     0  

                

                

   V  P     <     V  GS  for | I  DS |     >     0     V  GS     <     V  P  for | I  DS |     >     0  

I
C W

L
V V

V
V

VD
ox

GS t
DS

A
A= −( ) +⎛

⎝⎜
⎞
⎠⎟ >μ

2
1 02

I
C W

L
V V V V

V
V

D
ox

GS t DS DS
DS

A

= −( ) −[ ]× +⎛
⎝⎜

⎞
⎠⎟

μ
2

2 12

C
t

ox
ox

ox

= ε

g C
W
L

V Vm ox GS t= −( )μ

r
V
I

o
A

D

=
0

f
g
C

V V
L

c
m

in

s GS t= = −( )
2 2 2π

μ
π

g
I

V
ms

DSS

P

= −2
g

I
V

ms
DSS

P

= −2

K
I
V

� DSS

P
2

0> K
I
V

� DSS

P
2

0<

  METAL – OXIDE SEMICONDUCTOR FIELD - EFFECT TRANSISTOR 
( MOSFET ) PARAMETERS 

      

(continued)
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  SMALL - SIGNAL SINGLE - TRANSISTOR AMPLIFIER CONFIGURATIONS 

        
    
  MOSFET    BJT  

   Common Source     Common Emitter  

   R  in     =     R  B     =     R  1  ||  R  2      R  in     =    ( r  π       +     r  b ) ||  R  B     ≈     r  π     

   R  out     =     R  D  ||  r  o      R  out     =     R  c  ||  r  o   

           A  V     =      − g  m  ( R  c  ||  r  o  ||  R  L )  

  Source Degeneration    Emitter Degeneration  

   R  in     =     R  B     =     R  1  ||  R  2      R  in     =     R  B  || [ r  π       +     R  E  (  β      +    1)]  

           ≈   r  π    (1    +     g  m  R  E )  

   R  out     =     r  o [1    +    ( g  m     +     g  mb ) R  S ]    +     R  S      R  out     =     R  E  ||  r  π       +     r  o  [1    +     g  m  ( r  π    ||  R  E )]  

           ≈   r  o  (1    +     g  m  R  E )  

                

A g r R R
I

V m D L
D

= − ( ) ∝0
1

G
g

g g R R r
m

m

m mb S S o

=
+ +( ) +1

G
g

g R
m

m

m E

=
+ +( )1 1 1 β

   Description     Formula  

  NMOS Enhancement    PMOS Enhancement  

   V  t      >     0     V  t      <     0  

   V  GS      >      V  t      V  GS      <      V  t   

                

  NMOS Depletion    PMOS Depletion  

   V  t      <     0     V  t      >     0  

   V  GS      >      V  t     <    0 for | I  DS |    >    0     V  GS      <      V  t  for | I  DS |  

                

K
C W

L
n�

μ ox

2
0> K

C W
L

p�
μ ox

2
0<

K
C W

L
n�

μ ox

2
0> K

C W
L

p�
μ ox

2
0<

(continued)

(continued)

n-Channel JFET p-Channel JFET
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  MOSFET    BJT  

   Common Source     Common Emitter  

  Common Gate    Common Base  

                

   R  out     =     R  D  || [ r  o     +     R  gen     +     R  gen  r  o  ( g  m     +     g  mb )]  
        

   G  m     =     g  m     +     g  mb           

       A  V     =     g  m  ( R  C | R  L )  

            

  Common Drain (Source Follower)    Common Collector (Emitter Follower)  

   R  in     =     R  1  ||  R  2      R  in     =     R  B  || [ r  π       +     r  b     +    (  β      +    1)( r  o  ||  R  E )]  

                

  

      

  

      

R
r R R

g g r

g g
R R

g g r
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D L

m mb

m mb

D L

m mb
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≈
+
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1

1

R
r R R

g R R r
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R R
g r
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m C L

m

C L

m

= +
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0

0 0 0

0 0

0

1 1β β
α α
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r R r g

R r
out C
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R
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m
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β β1
1

1
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(continued)

MOSFET BJT
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379

  APPENDIX G 

Transformed Frequency -
 Domain Measurements 
Using  SPICE      

    G.1    INTRODUCTION 

 Time - domain measurements taken on an automatic network analyzer can be 
easily replicated theoretically for dispersionless transmission lines using the 
SPICE time - domain program simulation. A technique is presented here that 
gives the type, value, and position of a measured discontinuity directly from 
time - domain measurements. Furthermore, the effect of multiple discontinui-
ties can be replicated by SPICE. 

 Microwave impedance measurements have evolved from the slotted line to 
the computer - controlled automatic network analyzer. One of the major inno-
vations of the network analyzer made possible by its broadband frequency 
capability was the simulation of time - domain measurements. Though funda-
mentally a frequency - domain machine, the network analyzer has been very 
useful in doing time - domain analysis of broadband circuits. This was demon-
strated by the pioneering work of Hines and Stinehelfer  [1] . Fundamentally, 
time - domain equipment such as the time - domain refl ectometer have lagged 
because of the requirement for fast switching devices. However, that has not 
been true of the software side, as the widespread use of SPICE can readily 
attest. Here, it will be demonstrated how time - domain measurements on the 
network analyzer can be simulated using the transient analysis in SPICE. 

 There have been several studies that have shown how  S  parameters can be 
plotted using SPICE  [2 – 4] . SPICE can be used to model physical directional 

Radio Frequency Circuit Design, Second Edition, by W. Alan Davis 
Copyright © 2011 John Wiley & Sons, Inc.
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380 APPENDIX G TRANSFORMED FREQUENCY-DOMAIN MEASUREMENTS USING SPICE 

couplers by means of interconnection of three transmission lines  [5] . By this 
means, a SPICE model was developed for the characteristics of a network 
analyzer in the frequency domain. However, the above - mentioned applica-
tions are not using the time - domain capability of SPICE. 

 First of all, the SPICE  S  parameter simulation can be expanded to include 
unequal input and output impedance levels. This is useful in analyzing imped-
ance steps and transformers with two different resistance levels. Second, rather 
than using an ac steady - state voltage source, a time - domain pulse can be used. 
The automatic network analyzer is made to simulate a time - domain refl ectom-
eter by mathematically producing an  “ impulse ”  that can be replicated in 
SPICE approximately by using the PULSE function or more accurately by the 
piecewise linear (PWL) transient function. Rather than use an ideal impulse, 
the SPICE analysis uses the  “ impulse ”  - like waveform produced by the network 
analyzer. This SPICE replica of the actual network analyzer impulse can be 
used to show how various circuit elements react to time - domain measure-
ments. Simple formulas are given that can be used to obtain the value of the 
inductance, capacitance, or impedance step directly from time - domain impulse 
data.  

   G.2    FREQUENCY - DOMAIN  S  PARAMETERS 

 In  [4]  the  S  parameters were obtained for a given circuit from SPICE for a 
two - port circuit in which the input and output resistances were both 50    Ω . 
However, the conversion circuit used to obtain the  S  parameters can be modi-
fi ed so that the two ports of the circuit are at different impedance levels (Fig. 
 G.1 ). This is done by the addition of an ideal transformer whose turns ratio is  

    n
R
R

= 02

01

    (G.1)  

where  R  01  and  R  02  are the reference characteristic impedance levels of the 
input and output sides, respectively. The input impedance,  Z  1 , looking into the 
transformer from the port 1 side is

    Z
Z
n

1 2
= L     (G.2)   

 which is equal to  R  01  when  Z  L     =     R  02 . The voltage drop caused by the indepen-
dent current source of value 1 /R  01  is

    V
R

R Z
Z

R Z
1

01
01 1

1

01 1

1= ( ) =
+

    (G.3)   

 The voltage at node 11 in Fig.  G.1  is numerically the same as  S  11  since
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    V V V
Z R
Z R

11 2 1
1 01

1 01

( ) = − = −
+in     (G.4)   

 For the output side, the secondary current in the transformer is  I  2     =     I  1   /n . 
The portion of current going into the transformer primary from the current 
source side is

    I
R

R Z
Z Z R

1
01

01 1
1 1 01

1 1 1= ( ) =
+

    (G.5)   

 The voltage at node 2 is

    V I Z
I
n

Z
Z

Z R n
2 2

1

1 01

= = =
+( )L L

L     (G.6)   

 The voltage across  R  21  with the marked polarity is  V (21)    =    2 V  2  /n , which upon 
replacing  V  2  with the above value gives a value for  V (21) that is numerically 
equal to  S  21 :

    V
Z

Z R n
Z

Z R
S21

2 2

1 01
2

02
21( ) =

+( )
=

+
=L L

L
    (G.7)   

 The right - hand side is obtained using Eqs.  (G.1)  and  (G.2) . For a matched load 
when  Z  L     =     R  02 ,  S  21     =    1 as expected. Finding the  S  22  and  S  12  for a circuit is 
achieved by direct analogy. A suggested SPICE listing for fi nding the  S  param-
eters with unequal source and load impedance levels is shown in Section  G.6 .  

   G.3    TIME - DOMAIN REFLECTOMETRY ANALYSIS 

 Time - domain refl ectometer (TDR) measurements from an automatic network 
analyzer can be directly compared with a theoretical circuit model in the time 
domain in SPICE. All that is required is to make the two modifi cations 
described in Section  G.7 . Of course, a near ideal impulse can be implemented 
in SPICE, but the point of view taken here is to calculate time - domain data 
that would actually be measured using the time - domain feature on a network 
analyzer. Two actual time - domain impulses were measured on a network ana-
lyzer under the conditions in which the maximum frequency was 18 and 
26   GHz, respectively. A third impulse with a maximum frequency of 50   GHz 
was calculated from the precursor of Agilent ’ s Advanced Design System 
(ADS) called Microwave Development System (MDS). This was justifi ed on 
the basis that (1) the program and the network analyzer use the same algo-
rithm for the chirp - Z transform, and (2) the measured and calculated 18 - GHz 
impulses were nearly identical. Circuit responses to impulses with different 
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TIME-DOMAIN IDENTIFICATION OF CIRCUIT ELEMENTS 383

maximum frequency content will of course differ, so the time  - domain response 
must be always coupled to the frequencies used in producing the impulse. 

 Two options for representing the network analyzer impulse are illustrated 
in Fig.  G.2 . The approximate impulse is modeled in SPICE as a PULSE, while 
the more accurate approach is achieved by using the PWL SPICE function. 
In the present case, the PWL function uses 77 different ( x , y ) coordinate pairs 
to represent the 26 - GHz impulse. The result is indistinguishable from the 
measured impulse within the resolution of the graph in Fig.  G.2 . A similar fi t 
was made for the 18 -  and 50 - GHz impulses. The piecewise linear fi t of the 
network analyzer impulses for use in SPICE are found in Section  G.7 . The 
approximate trapezoidal pulse for a 50 -  Ω  source impedance has the advantage 
of providing results similar to the PWL approximation with a lot less data 
entry. However, to closely represent the actual time - domain response of the 
network analyzer, the PWL approach should be used.    

   G.4    TIME - DOMAIN IDENTIFICATION OF CIRCUIT ELEMENTS 

 Time - domain analysis of discontinuities in broadband circuits enables deter-
mining the type of circuit element, the position of the circuit element, and the 
size of the circuit element causing the discontinuity. For example, if a shunt 
capacitance is causing the discontinuity, the time - domain impulse refl ection 
fi rst goes below the baseline, then rises above the baseline, and then settles 

     FIGURE G.2     Measured and approximate trapezoidal 26 - GHz pulse used in SPICE 
analysis.  
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back to the baseline, looking roughly like a single - period sine wave. Figure  G.3  
shows a typical response to a shunt capacitance and series inductance that are 
a half wavelength apart at 10   GHz. The typical response for a series capaci-
tance is shown in Fig.  G.4 . A shunt inductance response would look like the 

     FIGURE G.4     Typical time - domain response for series capacitor.  
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     FIGURE G.3     Time - domain response from shunt capacitor separated from series 
inductor by 100 - pS 50 -  Ω  transmission line.  
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TIME-DOMAIN IDENTIFICATION OF CIRCUIT ELEMENTS 385

     FIGURE G.5     Maximum and minimum values of time - domain response for shunt 
capacitance using piecewise linear approximation to measured impulse.  
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negative of the series capacitance. The shunt capacitance, series inductance, 
series capacitance, shunt inductance, and step in characteristic impedance all 
have their peculiar time - domain signature.   

 In general, the larger the discontinuity, the larger is the time - domain refl ec-
tion, | Γ ( t )|. For the larger shunt capacitances, the magnitude of the dip below 
the baseline is not equal to the magnitude of the rise above the baseline. So, 
there is some ambiguity in choosing what part of the curve to use to predict 
the value of the shunt capacitance. Various capacitance values were tested 
using the PWL representation for the network analyzer time - domain impulse. 
The results in Fig.  G.5  show that if the algebraic maximum of  Γ ( t ) (the second 
extremum) is chosen, there are two possible values of capacitance for  Γ ( t ). 
However, the maximum value of the negative excursion of  Γ ( t ) (the fi rst extre-
mum) is monotonic and hence gives a unique value for the capacitance. The 
series inductance response is a mirror image about the  Γ ( t )    =    0 line. Thus, the 
fi rst maximum of  Γ ( t ) is monotonically related to the value of the series induc-
tance. It is this fi rst maximum of | Γ ( t )| that can be used to fi nd the value of 
these two types of discontinuities.   

 The time - domain not only allows determination of the discontinuity type 
and size but also the discontinuity position in time. Here again, there is some 
ambiguity in what part of the impulse response curve should be used to fi nd 
the position. For shunt capacitances, a position midway between the lower and 
upper part of the curve could be used, that is, where  Γ ( t )    =    0. From a compari-
son of this choice with the theoretical distance in Fig.  G.6  it is seen that this is 
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accurate if the discontinuity is very small. However, for larger discontinuities, 
a better choice would be the location of the fi rst extremum of | Γ ( t )|.   

 The minimum  Γ ( t ) of the shunt capacitor, the maximum  Γ ( t ) of the series 
inductor, the maximum  Γ ( t ) of the series capacitance, the minimum  Γ ( t ) of the 
shunt inductance, and the peak  Γ ( t ) (either negative or positive) of the imped-
ance step can be each described by a simple formula that could be readily 
stored in a handheld calculator. These formulas are listed in Table  G.1 . 
The parameters for these expressions are listed for the 18, 26, and 50   GHz 
impulses.   

  TABLE G.1    Expressions for Reactance Element Values in Terms of  Γ  

   Max. Freq.  

   Shunt  C , pF 

   
C

A
B

= −
+
Γ

Γ1   

   Series  L , nH 

   
L

A
B

= −
+
Γ

Γ1   

   Series  C , pF 

   
C

A
B

= −1 Γ
Γ   

   Shunt  L , nH 

   
L

A
B

= −1 Γ
Γ   

  18 - GHz 
  pulse  

   A     =    1.212 
  B     =    0.9887  

   A     =      −  2.965 
  B     =      −  0.9908  

   A     =    0.9379 
  B     =    1.691  

   A     =      −  0.9239 
  B     =      −  0.6892  

  26 - GHz 
  pulse  

   A     =    0.8216 
  B     =    1.004  

   A     =      −  2.061 
  B     =      −  1.010  

   A     =    0.9068 
  B     =    2.624  

   A     =      −  0.9275 
  B     =      −  1.036  

  50 - GHz 
  pulse  

   A     =    0.4275 
  B     =    0.9875  

   A     =      −  1.091 
  B     =      −  1.010  

   A     =    0.9279 
  B     =    4.801  

   A     =      −  0.8770 
  B     =      −  1.9885  

     FIGURE G.6     Estimated position (in time) of shunt capacitor using minimum value of 
 Γ ( t ) and position where  Γ ( t )    =    0.  

180.00

170.00

160.00

150.00

140.00

130.00

120.00
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

Γ = 0

Actual Position

Min. Γ

Capacitance, pF

T
im

e,
 p

S

bapp07.indd   386bapp07.indd   386 9/17/2010   11:50:25 AM9/17/2010   11:50:25 AM



MULTIPLE DISCONTINUITIES 387

 Shunt capacitance:

    C
A

B
= −

+
Γ

Γ1
    (G.8)   

 Series inductance:

    L
A

B
= −

+
Γ

Γ1
    (G.9)   

 Series capacitance:

    C
A

B
= −1 Γ

Γ
    (G.10)   

 Shunt inductance:

    L
A

B
= −1 Γ

Γ
    (G.11)   

 Step in characteristic impedance:

    ′ = +
−

Z Z0 0
1
1

Γ
Γ

    (G.12)   

 Measurements of a given series - mounted chip capacitor on a LCR meter 
at say 1   MHz would not necessarily give accurate correlation with a time -
 domain model of a simple series capacitance as modeled by Eq.  (G.10)  or 
direct measurements on a network analyzer. However, a better fi t with the 
time - domain data can be obtained by using a model of a high - frequency 
capacitor as described in Chapter  2 .  

   G.5    MULTIPLE DISCONTINUITIES 

 The preceding formulas are correct when there is only one signifi cant discon-
tinuity in the circuit that is being measured. When there are multiple discon-
tinuities, the SPICE analysis will also display the results that would be expected 
in a real time - domain refl ectometer measurement. The gating error in measur-
ing a discontinuity in the presence of other discontinuities was analyzed in  [6] . 
That analysis used a rectangular gating function with a depth of 40   dB rather 
than the chirp - Z transform used in the network analyzer software. Four sources 
of error are identifi ed by  [6] . The fi rst is out - of - gate attenuation associated 
with incomplete suppression of refl ections outside the gating function. The 
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second is a truncation error where the gate is made too narrow to pick up all 
the response due to the discontinuity in question. The third is a masking error 
where the transmission coeffi cients of previous discontinuities reduces the 
signal getting to the discontinuity under investigation. The fourth is a multire-
fl ection aliasing error that occurs when the circuit has commensurate line 
lengths, and the residual refl ection of one discontinuity adds to or subtracts 
from the refl ection of the discontinuity under investigation. 

 When two discontinuities are suffi ciently separated in time, each can be 
analyzed separately. However, the accuracy of predicting the later discontinui-
ties from the formulas in Table  G.1  are less accurate than when there is 
only one discontinuity. Three impedance steps were set up such that if they 
were alone, they would have had a  Γ ( t ) of 0.3, 0.2, and 0.1, respectively 
(Fig.  G.7 ), as was done by  [6] . However, when the three steps were put in one 
circuit suitably separated from one another, the SPICE analysis showed 
that  Γ ( t )    =    0.3 (0% error),  Γ ( t )    =    0.181 (9.6% error), and  Γ ( t )    =    0.087 to 0.076 
(12.9 to 24% error depending on whether line lengths are commensurate or 
not). The estimated errors in  [6]  were 0, 12, and 20%, respectively, which 
correlate well with the SPICE results given the approximations that are 
employed.   

 In addition, the technique described here can be used in a wide variety of 
circuits to model two elements that are too close together to be resolved sepa-
rately in time. Adjustment of a theoretical time - domain model to make its 

     FIGURE G.7     Predicted response from three discontinuities whose actual refl ection 
coeffi cients are 0.3, 0.2, and 0.1.  

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Γ 
(T

)

0.0 0.2 0.4 0.6 0.8 1.0

0.3

0.181

0.076

Time, nS

bapp07.indd   388bapp07.indd   388 9/17/2010   11:50:25 AM9/17/2010   11:50:25 AM



SAMPLE SPICE LIST 389

response match that of the measured time - domain measurements gives a 
method to extract an equivalent circuit in the time domain.  

   G.6    SAMPLE  SPICE  LIST 

 The SPICE listing below can be used to fi nd the  S  11 [ =  V (11)] and  S  21 [ =  V (21)] 
parameters when the source and load resistances are 50    Ω , and the circuit is 
terminated with a 50 -  Ω  load. The PSPICE specifi c functions have been com-
mented out, but they may be useful if PSPICE is used. For example, the .PARAM 
statement can be used to set the input and output impedance levels. The circuit 
to be analyzed is entered in the .SUBCKT section. The number of frequencies 
and the frequency range must also be added to the .AC statement. 

 
     Analysis of a circuit for S11 and S21 
      *  
      *  R01 and R02 are input and output resistance levels. 
      *  RL is the load resistance.    The load may be supplemented 
      *  with additional elements. 
      *  Statements below with  *  *  may be used for PSPICE 
      *  * .PARAM R01 = 50, R02 = 50. RLOAD = 50.    IIN = { − 1/R01} 
      *  * .FUNC N(R01,R02) {SQRT(R02/R01)} 
      *  *  R01    1    0    {R01} 
     R01    1    0     ‘  ‘ value ’  ’  
     VIN    10    11    AC    1 
      *  *  GI1    1    0    VALUE = { - V(10,11)/R01} 
     GI1    1    0    10    11     ‘  ‘  − 1/R01 ’  ’  
     E11    10      0    1    0    2 
     R11    11      0    1 
     Xcircuit    1    2    netname 
      *  *  RL    2    0    {RLOAD} 
     RL    2    0     ‘  ‘ value ’  ’  
      *  *  E21    21    0    VALUE = {V(2) * 2/N(R01,R02)} 
      *     n  =  SQRT(R02/R01) 
     E21    21    0    2    0     ‘  ‘ 2/n ’  ’  
     R21    21    0    1 
      *  
     .SUBCKT netname     ‘  ‘ fi rst node ’  ’      ‘  ‘ last node ’  ’  
      *  Input side 
      *     . 
      *     . 
      *     . 
      *  Output side 
     .ENDS    netname 
      *  Code for S11 and S21 
      * .AC DEC  ‘  ‘ num ’  ’      ‘  ‘ f1 ’  ’      ‘  ‘ f2 ’  ’  
      *  *  PROBE V(11)    V(21) 
     .END   
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   G.7    IMPULSE RESPONSE  SPICE  NET LIST MODIFICATION 

 Time - domain analysis with SPICE requires replacing the  .AC  statement with 
a  .TRAN  statement similar to the following: 

 
 .TRAN .01ps 250ps 0 .2ps  

 In addition the  VIN  statement should be replaced with one containing 
either the  PULSE  or  PWL  transient function. The pulse statement has 
the form  PULSE  (initial volt, pulse volt, delay time, rise time, fall time, pulse 
width, period). The measured impulse from the time - domain measurements 
from the network analyzer is approximated by the following  PULSE  state-
ments. The 18 - GHz pulse, with base width of 94.019 pS, is approximated as 
follows: 

 
 VIN 10 11 PULSE(0 1 0 39.482p 39.491p 15.05p)  

 The 26 - GHz pulse, with base width of 64.150 pS, is approximated as follows: 
 

 VIN 10 11 PULSE(0 1 0 26.395p 28.477p 9.278p)  

 Alternately, the more accurate PWL fi t could be used. The 18 - GHz impulse is 
approximated using 81 points: 

 
 VIN 10 11 PWL(0ps 0, 1.5ps 0.0037, 3.0ps 0.0089, 4.5ps 0.0156, 
      +  6.0ps 0.0237, 7.5ps 0.0336, 9.0ps 0.0452, 10.5ps 0.0589, 
      +  12.0ps 0.0745, 13.5ps 0.0922, 15.0ps 0.1121, 16.5ps 0.1342, 
      +  18.0ps 0.1584, 19.5ps 0.1848, 21.0ps 0.2134, 22.5ps 0.2441, 
      +  24.0ps 0.2767, 25.5ps 0.3111, 27.0ps 0.3472, 28.5ps 0.3848, 
      +  30.0ps 0.4236, 31.5ps 0.4634, 33.0ps 0.5038, 34.5ps 0.5448, 
      +  36.0ps 0.5858, 37.5ps 0.6267, 39.0ps 0.6671, 40.5ps 0.7065, 
      +  42.0ps 0.7448, 43.5ps 0.7815, 45.0ps 0.8162, 46.5ps 0.8489, 
      +  48.0ps 0.8789, 49.5ps 0.9062, 51.0ps 0.9304, 52.5ps 0.9513, 
      +  54.0ps 0.9687, 55.5ps 0.9824, 57.0ps 0.9922, 58.5ps 0.9983, 
      +  60.0ps 1.0002, 61.5ps 0.9982, 63.0ps 0.9922, 64.5ps 0.9823, 
      +  66.0ps 0.9686, 67.5ps 0.9512, 69.0ps 0.9303, 70.5ps 0.9061, 
      +  72.0ps 0.8788, 73.5ps 0.8487, 75.0ps 0.8161, 76.5ps 0.7813, 
      +  78.0ps 0.7446, 79.5ps 0.7064, 81.0ps 0.6669, 82.5ps 0.6266, 
      +  84.0ps 0.5857, 85.5ps 0.5446, 87.0ps 0.5037, 88.5ps 0.4633, 
      +  90.0ps 0.4235, 91.5ps 0.3847, 93.0ps 0.3471, 94.5ps 0.3111, 
      +  96.0ps 0.2767, 97.5ps 0.2441, 99.0ps 0.2135, 100.5ps 0.1849, 
      +  102.0ps 0.1585, 103.5ps 0.1342, 105.0ps 0.1122, 106.5ps 0.0923, 
      +  108.0ps 0.0746, 109.5ps 0.0591, 111.0ps 0.0455, 112.5ps 0.0338, 
      +  114.0ps 0.0240, 115.5ps 0.0158, 117.0ps 0.0092, 118.5ps 0.0040, 
      +  120.0ps 0)  
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 The PWL fi t for the 26 - GHz impulse is approximated using 77 points: 

 
 VIN 10 11 PWL(0ps 0,1ps .005, 2ps .015, 3ps .0267, 4ps .0402, 
      +  5ps .0556, 6ps .0731, 7ps .0925, 8ps .1140, 9ps .1375, 
      +  10ps .1632, 11ps .1909, 12ps .2204, 13ps .2519, 14ps .2850, 
      +  15ps .3198, 16ps .3560, 17ps .3933, 18ps .4318, 19ps .4709, 
      +  20ps .5106, 21ps .5505, 22ps .5904, 23ps .6299, 24ps .6688, 
      +  25ps .7067, 26ps .7433, 27ps .7784, 28ps .8116, 29ps .8427, 
      +  30ps .8713, 31ps .8972, 32ps .9202, 33ps .9401, 34ps .9566, 
      +  35ps .9697, 36ps .9792, 37ps .9850, 38ps .9871, 39ps .9855, 
      +  40ps .9801, 41ps .9710, 42ps .9584, 43ps .9423, 44ps .9227, 
      +  45ps .9001, 46ps .8745, 47ps .8462, 48ps .8155, 49ps .7825, 
      +  50ps .7477, 51ps .7112, 52ps .6734, 53ps .6346, 54ps .5952, 
      +  55ps .5553, 56ps .5154, 57ps .4756, 58ps .4363, 59ps .3979, 
      +  60ps .3604, 61ps .3240, 62ps .2891, 63ps .2557, 64ps .2240, 
      +  65ps .1942, 66ps .1663, 67ps .1404, 68ps .1166, 69ps .0948, 
      +  70ps .0751, 71ps .0575, 72ps .0418, 73ps .0279, 74ps .0160, 
      +  75ps .0058, 76ps 0)  

 The PWL fi t for the 50 - GHz impulse is approximated using 46 points: 
 
 VIN 10 11 PWL(0ps  − 4.530E - 03, 1ps  − 611.4E - 06, 2ps 6.941E - 03, 
      +  3ps 0.019, 4ps 0.037, 5ps 0.061, 6ps 0.091, 7ps 0.130, 
      +  8ps 0.175, 9ps 0.229, 10s 0.289, 11ps 0.355, 12ps 0.425, 
      +  13ps 0.500, 14ps 0.576, 15ps 0.651, 16ps 0.724, 17ps 0.792, 
      +  18ps 0.854, 19ps 0.906, 20ps 0.948, 21ps 0.979, 22ps 0.996, 
      +  23ps 1.000, 24ps 0.990, 25ps 0.967, 26ps 0.931, 27ps 0.884, 
      +  28ps 0.828, 29ps 0.763, 30ps 0.693, 31ps 0.618, 32ps 0.542, 
      +  33ps 0.467, 34ps 0.394, 35ps 0.325, 36ps 0.262, 37ps 0.204, 
      +  38ps 0.155, 39ps 0.112, 40ps 0.077, 41ps 0.049, 42ps 0.028, 
      +  43ps 0.013, 44ps 3.141E - 03, 45ps  − 2.711E - 03)   
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  APPENDIX H 

Single - Tone Intermodulation 
Distortion Suppression for 
Double - Balanced Mixers     

     An expression is given in  [1]  for the suppression for single - tone intermodula-
tion distortion in a double - balanced mixer. This is repeated below as well as 
coded in the program IMSUP. The intermodulation suppression in dBc (dB 
below the carrier) is  S  nm  for a set of frequencies  nf  p     ±     mf  1 :

    S m P Anm nm= −( ) + ( )1 20Δ log     (H.1)   

 The difference in dB between the RF signal and LO power is  Δ  P .
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    B moo = + + +( ) − − − +( ) − +( )[ ]1 4 3 2 4 2 3 2 3 4δ α δ δ δ δ α δ δ β δ δ  

   B mee = − + − −( ) − − − −( ) + −( )[ ]1 4 3 2 4 2 3 2 3 4δ α δ δ δ δ α δ δ β δ δ  

    B moe = − − + +( ) + −( )[ ]δ δ α δ δ β δ δ4 2 3 2 4 3  

    B meo = + + −( ) − +( )[ ]δ δ α δ δ β δ δ4 2 3 2 4 3  

    B B mIF oo= =( )1   

 The value for  V  f  in Eq.  (H.2)  is the ratio of the forward saturation diode 
voltage,  V  sat  and the peak LO voltage,  V  L . Thus,

    V
V
V

f
sat

L

=     (H.4)   

 The   α   and   β   represent the isolation in the LO and RF transformers resulting 
from their imbalance. The imbalance is illustrated in Fig.  H.1 , which is the same 
as used in Fig.  11.5  except the diode numbering convention has been made 
here to conform to that used in  [1] :

    LO isolation = −( )20 1log α  

    RF isolation = −( )20 1log β     

 The values for   δ   are a measure of the inequality of the forward voltages across 
the diodes:

    δ2
2

1

= V
V

 

   δ3
3

1

= V
V

 

     FIGURE H.1     Double - balanced mixer with transformer and diode imbalanced.  
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   δ4
4

1

= V
V

  

 Under ideal conditions

   α β δ δ δ= = = = =2 3 4 1   

 Typical values for isolation by the transformers are 10 to 15   dB while the values 
for   δ   range from 0.85 to 1.15. 

 The equations have been implemented in a program called IMPSUP, which 
determines the single - tone intermodulation suppression for a given set of 
frequency harmonics of the RF signal and LO oscillator, the relative RF signal 
and LO power levels, the peak value of the LO voltage, imbalances resulting 
in fi nite isolation in the transformers, and imbalances in the diode forward 
voltage drops. A sample run of IMSUP shows the intermodulation suppression 
for a variety of frequency harmonics. 

 
 LO and RF Signal Transformer Isolation (typ.      10 to 15 dB) 
  10.,10.  
 Ring diode voltage ratios:      V2/V1, V3/V1, V4/V1  =  ? 
 Typically .85 to 1.15 (ideally  = 1) 
  0.85, 0.90, 1.15  
 Difference in LO and RF power in dB (typ.       − 20.) 
   − 20.  
 Peak LO voltage  =  ? 
  3.  
 Forward diode saturation voltage (typ.      0.1) 
 IM product n x FL  +   −  m x Frf:      n,m  =  ? 
  1, 1  
 For intermodulation product n x m  =  1 1 
 IM Suppression  =  0.000000E + 00 dBc 
 New n,m values only?       < Y/N >  
  y  
 IM product n x FL  +  -  m x Frf:      n,m  =  ? 
  2, 1  
 For intermodulation product n x m  =  2 1 
 IM Suppression  =   - 0.437641E + 02 dBc 
 New n,m values only?       < Y/N >  
  y  
 IM product n x FL  +  -  m x Frf:      n,m  =  ? 
  3, 1  
 For intermodulation product n x m  =  3 1 
 IM Suppression  =   - 0.954243E + 01 dBc 
 New n,m values only?       < Y/N >  
  y  
 IM product n x FL  +  -  m x Frf:      n,m  =  ? 
  3, 2  
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 For intermodulation product n x m  =  3 2 
 IM Suppression  =   - 0.602423E + 02 dBc 
 New n,m values only?       < Y/N >  
  n  
 Completely new mixer specs?       < Y/N >  
  n  
 fi n   
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90° coupler 147–151
ABCD parameters 31–34, 61–64, 66, 92, 

100, 148, 150, 166
Active loads 16
Admittance parameters, see y parameters
All-pass fi lter 107–108
AM 7, 280, 298
American wire gauge 26
Amplifi er(s)

class A 8, 177, 195–196, 203, 207–208, 
220–221, 248

class AB 209, 248
class B 9, 208–210, 214, 217, 220–223, 

248
class C 8, 217–218, 220–221, 223, 248
class D 223–227, 230–231, 248
class E 230–231, 235, 238, 248
class F 240–242, 244–246, 248–249
Feed-forward 247–249
high-power 8
low-noise 8

ASITIC 30, 56

Balun(s) 142–144
Band-pass fi lter 107–108, 122–126
Band-stop fi lter 107–108, 110, 123

Bandwidth 3, 40–42, 177, 203, 218, 246, 
321–322

Barkhausen criterion 294, 259
Beat note 325, 332, 335–337, 344
Bessel-Thompson fi lter 114, 117
Black body 156
Boltzmann probability 157
Brownian motion 155
Butterworth  110–111, 118–119, 123, 

126

Capacitor(s)
chip 17
hybrid 17
interdigital 20–21
metal-insulator-metal 20–21
multilayer 20
open-circuit stub 20
procelain 19
varactor 20

Capacity 3, 5
Cauer procedure 116, 118, 120, 126
Center-tapped transformer 214, 227, 

299–300
Channel 2, 7
Characteristic admittance 74–76, 166

INDEX
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Characteristic impedance
artifi cial line 132
coaxial line 85
microstrip 80–83, 87–91
Telegrapher’s equations 69
transmission line transformers 140
two wire line 80

Charge pump 347–348
CHEBY 126
Chebyshev 111–113, 116, 120, 

123, 126
CMOS 9
Coaxial transmission line 81, 83–87, 100, 

132, 134
Common base  207–208
Common emitter 207–208
Composite pnp transistor 207–208
Computer programs 1
Conditional stability 187–188
Conduction angle 208–209, 217–223
Conductors 25
Conversion compression 294
Conversion loss 294, 298
Convolution theorem 292
Coupler 144
Current mode 227
Curvilnear square 14–15
Cutoff frequency 106, 110–112

Damping ratio 321, 324, 338–343, 350
Darlington’s Theorem 110
DBLTUNE 56, 361
Dead band 210
Device technology 8–9
Dielectric materials 13, 18–19, 22
Dielectric resonator 7
Doppler shift 322
Duty cycle 223, 230
Dynamic range 294

Early voltage 373
Effective dielectric constant 87–88, 90
Effi ciency

class A 296
class B 214–217
class C 217–220
class D 223–226, 230
class E 230–231, 235–236, 238, 240
class F 297, 242–243

multistage 201
collector 197, 207, 215
power added 197, 200

ELLIPTIC 116
Elliptic fi lter 115–116
Emmitter follower 207–208
Equal ripple, see pass-band ripple
Error voltage 323, 327, 337
Even mode 132, 147–151
Exclusive OR 347

Feedback theory 294, 260
Feed-forward 203
Filter 7–8
Flip-fl op detector 345–346
Flow graph 180
FM 7–8
Fourier transform 290, 292–293, 299, 301
Frequency divider 322, 330, 335
Frequency multiplier 330–331
Friis formula 199
Fukui  170–171, 173

Gain circle(s) 201
Gilbert cell 304–306
g parameters 59–60, 92, 188, 254, 363
Group delay 106, 109
Group velocity 71

Harmonic generator(s) 282–283
High-pass fi lter 107–108, 110, 121
h parameters 59–60, 91–92, 98, 188, 254, 

363, 367
Hybrid parameters, see h parameters
Hybrid, see coupler

Ideal transformers 131
Idler(s) 284–285
Image frequency 290, 311–312, 316
Image impedance 62–65, 71
Image propagation constant 65–67, 70
Impedance matching 8, 39

double-tuned 52–56, 361–362
L circuit 43–46
π circuit 46–48
stub 73–77
T circuit 48–49
tapped capacitor 49–52

Impedance match(ing) 62–63, 131, 136, 
142, 145–146, 352

bindex.indd   398bindex.indd   398 9/17/2010   11:50:30 AM9/17/2010   11:50:30 AM



INDEX 399

Impedance parameters, see z parameters
Impedance transformation, see 

impedance matching
Impedance transformer, see impedance 

matching
Impulse sensitivity function 277
IMSUP 308, 393, 395
Indefi nite admittance matrix 96–98, 

265–266
Indefi nite scattering matrix 98–100
Indefi nite y parameters, see indefi nite 

admittance matrix
Inductors 34

losses 23
model  23, 30–31
monolithic 29
solenoid 25–29, 355

Information 2–7
Injection locking range 275
Input impedance 71–73
Input intercept point 294, 310
Intercept point 309
Intermediate frequency (IF)

amplifi er 156
idlers 284
mixer 290, 295–296, 299, 302, 304, 

306–308, 311, 314
receiver 6, 323
single sideband 316

Intermodulation distortion (IMD) 195, 303
Inverse Chebyshev fi lter 114
Inverse hybrid parameters, see g parameters
Inverting fi lter 338, 344
Isolation 294

Kurokawa stability 272

Local Oscillator (LO) 290, 296, 299, 302, 
304, 306–308, 311, 314, 353

LO drive power 294
Loop bandwidth 324–325, 335
Loop fi lter 322, 327–328, 333, 344
Loop gain 203

closed 254
open 254, 258–259

Low-pass fi lter 106–108, 110, 115, 
121–124, 126, 295, 331

Low-pass prototype 110–111, 113, 115, 
120, 125

Manley-Rowe relations 282
Mason’s rules 180
Mass action law 12
MESFET 16
Microstrip 20, 30–31, 33, 80–83, 87–91, 

134, 360
Minimum number of poles 111, 123–124
Minimum phase 109
Mixer(s) 7–8, 276, 289–291, 293–294, 321, 

324, 344, 353
active 304
double balanced 295–296, 298, 300, 

302–303, 363–364
image rejection 315
ring 298, 302–303
single balanced 295–297
single ended 295
single-sideband (SSB) 313, 315
star 298, 302
transistor 304

MOSFET 9
MOSFET(s) 12, 16
MULTIPLY 284–285

Nagaoka factor 26
Natural frequency 338–343, 350
Negative feedback 321
Negative resistance 263
Neutralization 194
Noise

1/f 2 279
1/f 3 279
amplitude 277
bandwidth 162
circle(s) 201
current 159–161, 167–168, 278
double-sideband 311–313
factor 162–167, 174, 199–200, 

310–311
figure 158, 164, 177, 192, 201–203, 311
flicker (1/f) 155–156, 276
Johnson 155
measure 163
Nyquist 155
phase 275–277, 279–282, 345
power 158, 161, 163, 278, 311–312
shot 155, 159. 160
single-sideband 310, 312–313
sources(s) 166–168
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400 INDEX

Noise (cont’d)
spectral density 278
temperature 163, 310
thermal 155–156, 158
voltage 159, 161, 164, 168

Noninverting fi lter 338, 342–344
Nyquist formula 158, 160, 162

Odd mode 132–133, 135, 147–151
Offset frequency 276–277, 279
Ohmic contact 15
Order 327–328, 335, 338–339, 344
Oscillator

Armstrong 255–256
Clapp-Gouriet 255–257
Colpitts 255–258, 261
crystal 286, 351
Hartley 255–257, 260–262
injection-locked 273–275
Vackar 255–257

Parallel strip transmission line 79–83, 
91,100, 132

PARCONV 363, 366
Pass-band ripple 112, 115
Peak power ratio 221–222
Phase detector 321, 323–325, 328, 

330–331, 334, 336–337, 344–349, 351
Phase error 329–330, 332–333, 345
Phase margin 321
Phase-to-voltage converter 278
Phase velocity 71
PM 7, 280
POLY 119
Positive real 117
Potentially unstable 192
Power combiner(s) 142, 144
Power divider(s) 142
Power splitting 131
Probability 4–5
Propagation constant 71
Proximity effect 24

Quality factor Q 22, 39–43, 47–52
Quarter-wavelength 131
Quartz crystals 7
Quiescent current 208–209, 218–219

Receiver 6, 155, 177, 295, 352
Refl ection coeffi cient 70

fi lter 118
gain 182–184,
noise 165
oscillator 262–267
Smith chart 72–73
voltage wave 92, 95–96

Resistor(s) 34
cermets 11
diffused 11–12
metal fi lm 11, 13
saturated 16

Response time 321, 324
Rollett criteria 188

Sampling phase detector(SPD) 344–345
Scattering parameters, see S parameters
series–series connection 60, 254–255, 258
series–shunt connecton 60, 254–255
Sheet resistance 13
Shockley diode equation 213, 305
shunt–series connection 60, 254
shunt–shnt connection 60, 254, 258
Shunt-shunt feedback 192–193, 254
Signal (RF) 290, 296, 299, 302, 304, 306–

308, 312–314
Signal-to-noise ratio 163, 322
Skin depth 24–25
Skin effect mode 90–91
Slow wave mode 90
Smith chart 72–73, 186–187, 188, 202
SOLENOID 25, 28, 355
S parameter(s)

conversion 100, 363–387
conversion 364, 366
defi nition 91–92. 95–96
gain 179, 182
oscillator 264–265
stability 185. 188. 194

SPARC 268
SPICE

class B amplifi er 210
class F amplifi er 239, 244
fi lter 127
mixer 299–300, 306
models 221, 373
oscillator 261
time domain analysis 379–383, 387, 

389–390
transmission line transformer 140
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Spiral inductor 29–31, 357
Spot noise factor 163
Spurious frequencies 307
Stability 203

amplifi er 177, 185–188
frequency 257, 273
oscillator 269, 272–273
unconditional 188, 192, 195
temperature 212

Stability circle(s) 185–188, 190, 192
Stability factor 197
Step recovery diode 282
Sum frequency 290
Superheterodyne 6, 352
Synthetic division 119–120

Telegrapher’s equations 67–69
Temperature coeffi cient 14
Third-order intermodulation 294, 

309–310
Time domain refl ectometer (TDR) 380, 

382, 385, 387
Transducer power gain 110, 112, 178–

182, 188, 203, 310
Transfer function 40, 181
Transformers 8
Transmission coeffi cient 95, 149
Transmission line equation 69–72
Transmission line(s) 67, 91, 132, 263

balun 142–143
combiner 145–147
current 138

matched 186
noise model 156
quarter-wavelength 151, 245–246
voltage 76

Transmission line stub 73–74
Transmission line transformer 

(TLT) 132–143, 303
Transmitter 6–7, 155, 177, 352
Transverse electromagnetic 

(TEM) 67–68, 78, 87, 90–91
Two-wire transmission line 78
Type 327–328, 335–336, 338–339, 344, 349

Unconditional stability 185, 187, 190, 
194–195

Unilateral 183, 198–199, 201

Varactor  257, 282, 285
Voltage controlled (VCO)

phase-lock loop(s) 321–325, 327, 329, 
331, 333–338, 344–345, 347, 349–351

Voltage mode 224, 227–228

Wave equation 69
Wilkinson 146

Y factor 164–165
y parameters 59–61, 92, 188, 193–194, 

254, 258, 265, 363

z parameters 59–62, 64, 92, 178, 188, 
254, 363
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